
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Blair, Calum Grahame (2014) Real-time video scene analysis with
heterogeneous processors. EngD thesis.

http://theses.gla.ac.uk/5061/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Real-time Video Scene Analysis with
Heterogeneous Processors

Calum Grahame Blair M.Eng.

A thesis submitted to
The Universities of

Glasgow,
Edinburgh,
Heriot-Watt,

and Strathclyde

for the degree of
Doctor of Engineering in System Level Integration

c○ Calum Grahame Blair

May 2014

Abstract

Field-Programmable Gate Arrays (FPGAs) and General Purpose Graphics Pro-
cessing Units (GPUs) allow acceleration and real-time processing of computationally
intensive computer vision algorithms. The decision to use either architecture in
any application is determined by task-specific priorities such as processing latency,
power consumption and algorithm accuracy. This choice is normally made at design
time on a heuristic or fixed algorithmic basis; here we propose an alternative method
for automatic runtime selection.

In this thesis, we describe our PC-based system architecture containing both plat-
forms; this provides greater flexibility and allows dynamic selection of processing
platforms to suit changing scene priorities. Using the Histograms of Oriented
Gradients (HOG) algorithm for pedestrian detection, we comprehensively explore
algorithm implementation on FPGA, GPU and a combination of both, and show
that the effect of data transfer time on overall processing performance is significant.
We also characterise performance of each implementation and quantify tradeoffs
between power, time and accuracy when moving processing between architectures,
then specify the optimal architecture to use when prioritising each of these.

We apply this new knowledge to a real-time surveillance application representative
of anomaly detection problems: detecting parked vehicles in videos. Using motion
detection and car and pedestrian HOG detectors implemented across multiple
architectures to generate detections, we use trajectory clustering and a Bayesian
contextual motion algorithm to generate an overall scene anomaly level. This is in
turn used to select the architectures to run the compute-intensive detectors for the
next frame on, with higher anomalies selecting faster, higher-power implementations.
Comparing dynamic context-driven prioritisation of system performance against
a fixed mapping of algorithms to architectures shows that our dynamic mapping

iv

method is 10% more accurate at detecting events than the power-optimised version,
at the cost of 12W higher power consumption.

Acknowledgements

I would like to acknowledge the consistent and enthusiastic help and constructive
advice given to me by my supervisor, Neil Robertson, throughout the course of this
doctorate.

I would also like to thank Siân Williams for all her procedural advice, before, during
and after the winding-up of the ISLI.

I’m also grateful for the work done by Scott Robson during his internship at Thales.
Acknowledgements are also given to the funders of this research, EPSRC and Thales
Optronics.

Thanks are due also to my friends especially Chris, Kenny and Johnathan, for
dragging me out to the pub whenever this degree started to get too overwhelming.
Doubly so for those – including Marek – willing to accompany me as I dragged
them up and down various Munros.

My thanks also go to Rebecca for her continued understanding, patience and
enthusiasm.

Above all, I would like to thank my family, Mum, Dad, Mhairi and Catriona, for all
the support and encouragement they have given me throughout this period, and
particularly for their frequent offers to appear — especially with the dog — in my
video datasets.

v

Contents

Abstract iii

Acknowledgements v

List of Publications x

List of Tables xi

List of Figures xii

List of Abbreviations xv

Declaration of Originality xviii

1. Introduction 19

1.1. Academic Motivation and Problem Statement 21

1.1.1. A Motivating Scenario . 21

1.1.2. Specifying Surveillance Subtasks 23

1.1.3. Wider Applicability . 24

1.2. Industrial Motivation . 25

1.3. Aims . 28

1.4. Knowledge Transfer . 29

1.4.1. Research Outputs . 29

1.4.2. Knowledge Transfer within Thales 29

1.5. Contributions . 31

1.6. Thesis Roadmap . 31

2. Related Work 35

2.1. Data Processing Architectures . 35

2.1.1. Processor Taxonomy . 36

2.1.2. Methods for CPU Acceleration 39

vi

Contents vii

2.1.3. Graphics Processing Units . 39

2.1.4. Field-Programmable Gate Arrays 42

2.1.5. FPGA vs. GPU . 46

2.1.6. Alternative Architectures . 48

2.2. Parallelisable Detection Algorithms 48

2.2.1. Algorithms for Pedestrian Detection 50

2.2.2. Classification Methods: Support Vector Machines 55

2.2.3. HOG Implementations . 57

2.3. Surveillance for Anomalous Behaviour 60

2.4. Design Space Exploration . 66

2.5. Conclusion . 70

3. Sensors, Processors and Algorithms 72

3.1. Introduction . 73

3.2. Sensors . 73

3.2.1. Infrared . 73

3.2.2. Visual . 74

3.3. Processing Platforms . 75

3.3.1. Ter@pix Processor . 76

3.4. Simulation or Hardware? . 77

3.4.1. Modelling . 77

3.5. Algorithms for Scene Segmentation 80

3.5.1. Vegetation Segmentation . 80

3.5.2. Road Segmentation . 81

3.5.3. Sky Segmentation . 81

3.6. Automatic Processing Pipeline Generation 82

3.7. Conclusions . 85

4. System Architecture 87

4.1. Processor Specifications . 87

4.2. System Architecture . 88

4.2.1. PCIe . 89

4.2.2. Interface . 93

4.2.3. Interface Limitations . 95

4.3. Conclusion . 95

Contents viii

5. Algorithm-Level Partitioning 96

5.1. HOG Algorithm Analysis . 96

5.1.1. Algorithm Steps . 98

5.1.2. Partitioning . 100

5.2. Hardware Implementation . 101

5.2.1. Cell Histogram Operations . 103

5.2.2. Window Classification Operations 105

5.3. Software and System Implementation Details 107

5.4. Classifier Training . 108

5.5. Results . 109

5.5.1. Performance Considerations 109

5.5.2. Detection Performance . 114

5.5.3. Performance Tradeoffs . 114

5.5.4. Analysis, Limitations, and State-of-the-Art 121

5.6. Variations . 124

5.6.1. Kernel SVM Classification . 124

5.6.2. Pinned Memory . 125

5.6.3. Version Switching . 126

5.6.4. Embedded Evaluation . 127

5.7. Conclusion . 129

6. Task-Level Partitioning for Anomaly Detection 131

6.1. Introduction . 131

6.2. Datasets . 133

6.2.1. Bank Street Dataset . 134

6.2.2. i-LIDS Dataset . 134

6.3. A Problem Description and Related Work 136

6.4. High-level Algorithm . 136

6.5. Algorithm Implementations . 140

6.5.1. Pedestrian Detection with HOG 140

6.5.2. Car Detection with HOG . 141

6.5.3. Background Subtraction . 145

6.5.4. Detection Combination . 146

6.5.5. Detection Matching and Tracking 146

6.5.6. Trajectory Clustering . 148

6.5.7. Contextual Knowledge . 150

Contents ix

6.5.8. Anomaly Detection . 151

6.6. Dynamic Mapping . 154

6.6.1. Priority Recalculation . 155

6.6.2. Implementation Mapping . 156

6.7. Evaluation Methodology . 157

6.8. Results . 158

6.8.1. Detection Performance on BankSt videos 158

6.8.2. Detection Performance on i-LIDS videos 159

6.9. Analysis . 165

6.9.1. Comparison to State-of-the-Art 167

6.9.2. System Architecture Improvements 169

6.9.3. Algorithm-Specific Improvements 170

6.9.4. Task-Level Improvements . 170

6.10. Conclusion . 171

7. Conclusion 173

7.1. Summary . 173

7.2. Contributions . 175

7.2.1. Outcomes . 176

7.3. Future Research Directions and Improvements 176

A. Mathematical Formulae 178

A.1. Vector Norms . 178

A.2. Kalman Filter . 178

A.3. Planar Homography . 179

Bibliography 180

List of Publications

∙ Characterising Pedestrian Detection on a Heterogeneous Platform, C. Blair,
N. M. Robertson, and D. Hume, in Workshop on Smart Cameras for Robotic
Applications (SCaBot ’12), iros 2012.

∙ Characterising a Heterogeneous System for Person Detection in Video using Histo-
grams of Oriented Gradients: Power vs. Speed vs. Accuracy, C. Blair,
N. M. Robertson, and D. Hume, ieee Journal of Emerging and Selected Topics
in Circuits and Systems, V3(2) pp. 236–247, 2013.

∙ Event-Driven Dynamic Platform Selection for Power-Aware Real-Time Anomaly
Detection in Video, C. G. Blair & N. M. Robertson, International Conference on
Computer Vision Theory and Applications (visapp) 2014.

x

List of Tables

2.1. Data processing architectural comparison 38

3.1. List of simple image processing algorithm candidates 85

5.1. Data generated by each stage of hog 100

5.2. Resource Utilisation for hog application and pcie link logic on fpga. 107

5.3. Processing times for each execution path 110

5.4. Processing time with smaller gpu . 110

5.5. Hog power consumption using ml605 fpga and gtx560 gpu . . . 111

5.6. Power consumption above reference for each execution path 112

5.7. Hog power consumption using ml605 fpga and Quadro 2000 gpu 112

5.8. Hog implementation tradeoffs . 118

5.9. Pinned and non-pinned memory processing time 126

5.10. Differences in processing times when switching between versions . . 127

6.1. Algorithms and implementations used in anomaly detection 141

6.2. Parameters for car detection with hog 142

6.3. Resource Utilisation for pedestrian and car hog detectors on fpga . 144

6.4. Implementation Performance Characteristics 156

6.5. Detection performance for parked vehicle events on all prioritisation
modes on i-lids sequence pv3. 160

6.6. Detection performance for parked vehicle events on all prioritisation
modes on daylight sequences only in i-lids sequence pv3. 160

6.7. F1-scores for all prioritisation modes on i-lids sequence pv3. . . . 161

6.8. Processing performance for all prioritisation modes on pv3 163

6.9. Processing performance for all prioritisation modes on pv3 (daylight
sequences only) . 165

xi

List of Figures

1.1. Mastiff land defence vehicle . 21

1.2. Routine behaviour in a surveillance scene 23

1.3. Demonstration platform with user-driven performance prioritisation 30

1.4. Power vs. time tradeoffs for runtime deployment 32

1.5. Example anomalous event detection 32

1.6. Power vs. time: design space exploration for multiple detectors . . . 33

2.1. Image Processing Pipeline . 36

2.2. Simd register structure in modern x86 processors 39

2.3. Cuda gpu Architecture . 41

2.4. Fpga Architecture . 43

2.5. Throughput comparison for image processing operations 46

2.6. Improved PCIe transfer via fewer device copy stages 48

2.7. Face detection with Haar features . 49

2.8. Hog algorithm pipeline . 50

2.9. Graphical representation of hog steps. 51

2.10. The Fastest Pedestrian Detector in the West 52

2.11. Inria and Caltech dataset sample images 52

2.12. State-of-the-Art Pedestrian Detection Performance 53

2.13. Support Vectors . 55

2.14. Hog workload on gpu . 58

2.15. Hog pipeline on a hybrid fpga-gpu system 59

2.16. Fast Hog pipeline on a fpga system: histogram generation 60

2.17. Fast Hog pipeline on a fpga system: classification 60

2.18. Analysis and information hierarchies in surveillance video 61

2.19. Surveillance analysis block diagram 61

2.20. Traffic trajectory analysis . 62

2.21. Trajectory analysis via subtrees . 63

xii

List of Figures xiii

2.22. Pipeline assignment in the Dynamo system 68

2.23. Resulting allocations from the Dynamo system 68

2.24. Global and local Pareto optimality . 69

3.1. A person shown on infrared and visual cameras. 74

3.2. Modelling a fpga algorithm from within matlab 78

3.3. Running a gpu kernel in an OpenCV framework from within matlab. 79

3.4. Registered source cameras and vegetation index. 81

3.5. Road segmentation from IR polarimeter data. 81

3.6. Sky segmentation from visual camera 82

3.7. Simulink image processing pipeline 83

4.1. Accelerator cards in development system 88

4.2. System functional diagram showing processor communications . . . 89

4.3. Pci-express topology diagram . 90

4.4. System internal fpga architecture. 93

5.1. Hog algorithm stages . 97

5.2. Cells, blocks and windows . 98

5.3. Histogram orientation binning . 98

5.4. Svm person model generated by hog training 99

5.5. Hog algorithm processing paths . 102

5.6. Hog stripe processors within an image 103

5.7. Operation of a hog stripe processor 104

5.8. Operation of a hog block classifier . 105

5.9. Time taken to process each algorithm stage for each implementation 113

5.10. Det curves for Algorithm Implementations 115

5.11. Det curves comparing implementations to state-of-the-art 116

5.12. Power vs. time: design time and run time analysis 117

5.13. Run-time tradeoffs for various pairs of characteristics on hog 119

5.14. Relative tradeoffs between individual characteristics. 120

5.15. Comparison of pinned and non-pinned transfers 126

5.16. Embedded system components . 128

5.17. Processor connections in an embedded system 128

6.1. Algorithm mapping loop in anomaly detection system 133

6.2. Sample images with traffic from each dataset used. 134

6.3. All possible mappings of image processing algorithms to hardware 137

List of Figures xiv

6.4. Hog detector false positives . 142

6.5. Car detector training details . 143

6.6. Det curves for car detector implementations 143

6.7. Bounding box extraction from background subtraction algorithm . . 145

6.8. Object tracking on an image projected onto the ground plane. 148

6.9. Learned object clusters projected onto camera plane 150

6.10. Presence intensity maps . 152

6.11. Motion intensity maps . 152

6.12. Anomaly detected by system . 155

6.13. Dashboard for user- or anomaly-driven priority selection 155

6.14. Power and time mappings for all accelerated detectors 161

6.15. Power and time mappings for all accelerated detectors: full legend . 162

6.16. Parked vehicle detection in BankSt dataset 162

6.17. Impact of video quality on object classification 163

6.18. True detections and example failure modes of anomaly detector . . 164

6.19. Relative tradeoffs: power vs. error rate for dynamically-mapped detector167

6.20. Accuracy and power tradeoffs . 168

List of Abbreviations

AP Activity Path.
API Application Programming Interface.
ASIC Application-Specific Integrated Circuit.
ASR Addressable Shift Register.

BAR Base Address Register.

CLB Combinatorial Logic Block.
COTS Commercial Off-the-Shelf.
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.

DET Detection Error Tradeoff.
DMA Direct Memory Access.
DSE Design Space Exploration.

FIFO First-In First-Out buffer.
FPGA Field Programmable Gate Array.
FPPI False Positives per Image.
FPPW False Positives per Window.
FPS Frames per second.

GB/S Gigabytes per second.
GPGPU General-Purpose Graphics Processing Unit.
GPU Graphics Processing Unit.

xv

List of Abbreviations xvi

GT/S Gigatransfers per second.

HOG Histogram of Oriented Gradients.

i-LIDS Imagery Library for Intelligent Detection Systems.
ISTAR Intelligence, Surveillance, Target Acquisition, and

Reconnaissance.

MAC/S Multiply-Accumulate Operations per second.
MB/S Megabytes per second.
MOG Mixture of Gaussians.
MPS Maximum Payload Size.

NMS Non-Maximal Suppression.
NPP Nvidia Performance Primitives.

PCIE PCI Express.
PE Processing Element.
POI Point of Interest.

QVGA Quarter VGA, 320× 240 resolution.

RBF Radial Basis Function.
ROC Receiver Operating Characteristic.
RTL Register Transfer Level.

SBC Single-Board Computer.
SIMD Single Instruction Multiple Data.
SIMT Single Instruction Multiple Thread.
SM Streaming Multiprocessor.
SP Stream Processor.
SSE Streaming SIMD Extensions.
SVM Support Vector Machine.

List of Abbreviations xvii

TLP Transaction Layer Packet.

Declaration of Originality

Except where I have explicitly acknowledged the contributions of others, all work
contained in this thesis is my own. It has not been submitted for any other
degree.

xviii

1. Introduction

Computer vision, or the science of extracting meaning from images, is a large and
growing field within the domains of electronic engineering and computer science.
As humans, vision is our primary sense and many of our everyday tasks depend
heavily on an ability to see our surroundings. Teaching or programming machines
to perceive the world as we do opens up a myriad of possibilities: routine, repetitive
tasks can be automated, dangerous situations made safer, and many more options
for entertainment become feasible. Autonomous vehicles equipped with cameras
allow us to explore areas of our world and universe which would be extremely
hostile to humans. Grand aims such as these cover much of the motivation for
research in this field.

From an engineering perspective, many tasks within computer vision are difficult
problems. The human brain has specialised hardware built for processing informa-
tion from images, with a design time of millions of years. It is capable of forming
images, extracting shapes, recognising objects, inferring meaning and intent to
observed motion, and using this information to interact with the world around it
— fast enough that we can catch a flying ball or step out of the way of a speeding
car. A machine built or programmed to perform tasks which require interpretation
of visual data must operate accurately enough to be effective and complete its task
fast enough that the data it extracts is timely enough to be usable. In many cases,
this is in real time; we must process images at the same speed or faster than they
are received, and we accept some known time delay or latency between starting and
finishing processing of a single image.

And what of the underlying processing hardware that we rely on to do this work?
The state of the art in electronics has continued to advance rapidly; using computers
built within the last few years we can now make reasonable progress towards creat-
ing implementations of complex signal processing algorithms which can run in real

19

20

time. These same advances have allowed devices containing sensors and processors
to shrink to where they become handheld or even smaller. Their ubiquity and low
cost, along with their size, further expand the potential benefits of mobile computing
systems, and offer even more applications for embedded or autonomous vision
systems. However, the power consumption of any machine must be considered, and
this is the limiting factor affecting processing devices at all scales, from handhelds
to supercomputers. These three characteristics — power consumption, latency and
accuracy — are ones which we will return to repeatedly in this thesis.

The thesis itself describes the research undertaken for the Engineering Doctorate
in System Level Integration. The work is in the technical field of characterization
and deployment of heterogeneous architectures for acceleration of image processing
algorithms, with a focus on real-time performance. This was carried out in com-
bination with the Visionlab, part of the Institute for Sensors, Signals and Systems
at Heriot-Watt University1, and Thales Optronics Ltd2. It was sponsored jointly
by the Engineering and Physical Sciences Research Council (epsrc) and Thales
Optronics. It was managed by the Institute for System Level Integration, a joint
venture between the schools of engineering in the four Universities of Glasgow,
Edinburgh, Heriot-Watt and Strathclyde. Operating between 1999 and 2012, it ran
courses for postgraduate taught and research students, along with commercial
electronics design consultancy services. Its website was shut down following its
closure in 2012, but an archived copy is available3.

This chapter is laid out as follows: in Section 1.1 we give an overall statement of
the problem studied and our motivation for conducting research in this area. As
the EngD involves carrying out commercially relevant research, Section 1.2 places
this work in a commercial context and gives the business motivation behind it. We
then concentrate on the specific aims of this thesis in Section 1.3. This is followed
in Section 1.4 by our research outputs and knowledge transfer outputs to industry.
Finally, Section 1.5 states the contributions made by this work and Section 1.6 gives
a roadmap for the rest of this thesis.

1http://visionlab.eps.hw.ac.uk
2http://www.thalesgroup.com/
3http://web.archive.org/web/20130527020950/http://www.isli.ac.uk/

http://visionlab.eps.hw.ac.uk
http://www.thalesgroup.com/
http://web.archive.org/web/20130527020950/http://www.isli.ac.uk/

1.1. Academic Motivation and Problem Statement 21

Figure 1.1: Land defence vehicles such as the British Army’s Mastiff now include
cameras for local situational awareness.

1.1 Academic Motivation and Problem Statement

We start by considering the problem of situational awareness. Locally, this involves
monitoring of one’s own environment. In a military situation, simply looking at a
scene to identify threats has its own problems; visual range is limited, and merely
being in an unsafe area to monitor it involves some level of risk to the observers.
Visual and infrared sensors allow situational awareness of both local and remote
environments with reduced risk; the current generation of land defence vehicles for
the British Army now include multiple cameras for this reason (see Figure 1.1).

However, the deterioration of performance of human operators over time when
performing vigilance tasks such as monitoring radar or closed-circuit TV screens,
or standing sentry duty, is well-known [1]. It was first established by Mackworth
in 1948; he showed that human capability to detect events decreased dramatically
after only half an hour on watch, with this degradation continuing over longer
watches [2]. Donald argues that cctv surveillance falls under the taxonomy of
vigilance work and should be treated the same way [3]. In both military and civilian
domains, there is thus a clear benefit to deploying machines which can perform
automated situational awareness tasks.

1.1.1 A Motivating Scenario

We now consider the situations in which such a machine could be deployed. The
vehicle in Figure 1.1 is likely to perform two main types of tasks: (i) situational
awareness while moving and on patrol, and (ii) surveillance while stationary. In each

1.1. Academic Motivation and Problem Statement 22

case, some image processing of visual or infrared sensor data must be done. When
the vehicle is moving, fast detections and a high framerate may be required so that
actions may be taken quickly, in response to changes in the vehicle’s environment
which may pose a threat. The engine will be running, so plenty of electrical power
will be available for image processing. In the second scenario, we assume the
vehicle is performing surveillance and is stationary with the engine turned off. Any
processing done in this state should not drain the battery to the point where (i) the
engine can no longer start or possibly (ii) where continued surveillance operations
become impossible. The operating priorities of such a system will change so that
power conservation becomes more important than fast processing.

Expanding on this, if we consider a scenario where the degree of computational
operations increases with the number of objects or amount of clutter in an image
then the weighting given to power consumption, latency and accuracy of object
classification may change dynamically. This would require the system to either
change the way it processes data (starting or stopping processing entirely) or moving
processing to different platforms more suited to the current priorities.

In an ideal world, we would have a processing platform and an algorithm which
is the most accurate, the fastest and the least power-hungry when compared to all possible
alternatives. However, as we explain in detail later in this thesis, any combination of
processor and algorithm involves a compromise and no such consistently optimal
solution exists. Any solution is a tradeoff between power, time, accuracy, and
various other less critical factors. It is this problem of adapting our system performance
and behaviour to best fit the changing circumstances of the operating environment that we
wish to study here.

So far we have used the example of a military patrol vehicle, but this problem is
also one faced by autonomous vehicles or remotely operated sensors — indeed,
any device which must conserve battery power while doing some kind of signal
processing. This would encompass civilian applications such as disaster recovery or
driver assistance, as well as the military example we use throughout this thesis.

1.1. Academic Motivation and Problem Statement 23

Figure 1.2: An example scene: normal pedestrian and vehicle behaviour is to some
extent dictated by the structure of the scene, and these patterns can
be learned via prolonged observation. However, unexpected behaviour
(cars driving onto pavement or running red lights, or a person running
across the road) is still possible.

1.1.2 Specifying Surveillance Subtasks

Given that we wish to automate some existing surveillance task – under power and
complexity constraints – we now consider what this might involve. We choose to
focus on the detection of pedestrians and vehicles, for several reasons:

∙ Humans (and, to a lesser extent, vehicles controlled by humans) are arguably
the most important objects in any scene. They will often have a routine or
pattern of life affected by their surroundings, but be capable of easily deviating
from this. Consider the scene in Figure 1.2; the position of the road and
pavement influences pedestrian and vehicle location, and features such as
traffic lights and double yellow “No Parking” lines influence their behaviour –
but not to the extent that illegal parking or jaywalking is impossible.

∙ There are clear advantages to deploying this technology in military and ci-
vilian applications, and a tangible benefit to doing this in real time. The
car manufacturer Volvo is already including pedestrian detection systems for
driver assistance which rely on video and radar in their latest generation of
cars [4]. However, doing this on a mobile phone-sized device and without
relying on active sensing is still a challenge.

1.1. Academic Motivation and Problem Statement 24

∙ The algorithms necessary to perform pedestrian detection generalise well to
other object detection tasks; e.g. an existing pedestrian detector can produce
state-of-the-art results when applied to a road sign classification problem [5].

1.1.3 Wider Motivations

The UK Ministry of Defence’s research division, the Defence Science and Technology
Laboratory, has identified around thirty technical challenges in the area of signal
processing [6], and, together with the Engineering and Physical Sciences Research
Council, has provided £8m in funding for research which will directly address these,
under the umbrella of the Universities Defence Research Collaboration4. While
these were formulated well after this project was started, the themes of this thesis
are nevertheless applicable to the open problems faced by the wider defence and
security research community today. Several udrc challenges touch on the area of
anomaly detection in video (“Video Pattern Recognition” and “Statistical Anomaly
Detection in an Under-Sampled State Space”), while another specifically addresses
the implementation of algorithms on mobile or handheld devices (“Reducing Size,
Weight and Power Requirements through Efficient Processing”).

In the civilian domain, the UN World Health Organisation’s 2013 Road Safety Re-
port notes that half of all road deaths are from vulnerable traffic users (pedestrians,
cyclists, and motorcyclists) and calls for improved infrastructure and more consider-
ation of the needs of these vulnerable users. Starting in 2014, the European New
Car Assessment Programme will include test results of Autonomous Emergency
Braking systems for cars. These detect pedestrians or other vehicles ahead of the
car, then brake automatically if the driver is inattentive [7]. Finally, in 2013 the
first instance of an unmanned aerial vehicle being used to locate and allow the
rescue of an injured motorist was recorded [8], demonstrating the applications of
this technology for disaster recovery scenarios in the future.

To summarise our motivations at this point: within the field of computer vision,
the problem of pedestrian and vehicle detection has a wide variety of applications,
many of which involve anomaly detection and surveillance scenarios. Many of these
scenarios require real-time solutions operating under low power constraints. We
comprehensively survey progress towards these solutions in Chapter 2, but we note

4http://www.mod-udrc.org/technical-challenges

http://www.mod-udrc.org/technical-challenges

1.2. Industrial Motivation 25

here that this is an open field with advances required in all three metrics of accuracy,
speed and power.

1.2 Commercial and Industrial Motivation

There are several commercial factors which have influenced this work. We start by
briefly considering the field of high-performance computing, then narrow our focus
to look at the factors affecting Thales Optronics.

Within the last decade, computing applications have no longer been able to improve
performance by continually increasing the clock speed of the processors they run on.
The “power wall” acts to limit the upper clock speed available, and development
efforts have instead focused on increasing the number of cores in a processor; the
“Concurrency Revolution” [9]. This allows improved performance of concurrent and
massively parallel applications. Taken to its logical conclusion, this has allowed,
firstly, the development of processors with thousands of cores on them, all capable
of reasonable floating-point performance [10]; secondly, division of labour inside
a computer system or network. A multicore processor optimised for fast execution
of one or two threads may control overall program flow, but the embarrassingly
parallel calculations which make up the majority of “big data” scientific data compu-
tation and signal processing operations can be farmed out to throughput-optimised
massively multicore accelerators. Such an approach is known as heterogeneous computing.
The validity of this approach is borne out by the Top 500 list of most powerful
supercomputers; as of November 2013, 53 computers on the list were using some
form of accelerator, including the first and second most powerful (using Intel Xeon
Phi and Nvidia Graphics Processing Unit (gpu) accelerators respectively) [11].

As we will discuss in Chapter 2, the choice of processing platform to use for
a specific application has significant implications for performance. Thales is an
engineering firm which designs and manufactures opto-electronic systems for
applications throughout the defence sector, including naval, airborne and land
defence. Changing customer requirements in recent years have lead to an increase in
the processing capability included in the systems they develop. This is part of a move
from current image enhancement (such as performing non-uniformity correction on
the output from an infrared camera) to near-term future image processing capability,

1.2. Industrial Motivation 26

such as detection and tracking of potential targets. The Ministry of Defence has
formalised the requirements for interoperability of such systems for land defence
applications [12], meaning that cameras from one vendor can in theory be paired
with signal processing equipment from another, and processing equipment can be
easily upgraded when required.

Thales are thus concerned with the deployment of image-processing algorithms
in embedded systems, and are aware that such technology operating with real-
time performance has a wide variety of current and future applications, limited in
many cases by the size, weight and power of any developed solution. As these are
designed for military operations, various other economic factors must be considered.
Small, irregular production runs are the norm. Rather than a company defining its
own product release roadmap to a regular schedule as in the telecommunications
industry, development and release of new products is customer-driven in response
to contracts or tenders. Products must also be supported by the manufacturer for
much longer than commercial devices; requirements to be able to provide support
and replacement parts for twenty years are not unusual. Military devices must
also operate in more extreme temperature ranges than commercial products. Taken
together, all these constraints preclude the use of Application-Specific Integrated
Circuits (asics), many Commercial Off-the-Shelf (cots) parts, and the ability to
make use of economies of scale. In the last decade or so, Field Programmable Gate
Arrays (fpgas) have been used to perform most image and signal processing tasks in
embedded systems. Fpga boards are available in form factors designed for defence
applications, such as OpenVPX cards. Unlike asics, fpgas can be reprogrammed
at some point in their operational lifetime to add new features, without replacing
the entire unit.

However, the long development times and limited potential for component reuse
between different designs (a high Non-Recurring Engineering cost) have meant that
fpga development has been regarded as time-consuming, complicated and expens-
ive. The recent growth of gpu computing has offered firms like Thales an alternative
to this. The faster development cycle of gpu programming and in some cases its
lower cost must be weighed against a probable increase in power consumption
when compared to fpga. Another major concern is availability of parts in twenty
years time, particularly for products where a new generation is launched around

1.2. Industrial Motivation 27

every 18–24 months. The wide availability of highly optimised matrix mathematics
libraries on gpu may further reduce development time.

Gpus have another advantage over asics in that they are quickly reprogrammable
at runtime (new kernels can be launched in under 10µs [13]). Dynamically recon-
figurable fpgas also behave similarly. These approaches allow the same hardware
to be used for different tasks within the same mission, reducing the size, weight
and power of the equipment carried. (As an example, consider a system running
different algorithms on the same processing platforms, using visual sensors in
daylight and infrared at night, or automatically selecting different segmentation
or detection algorithms in urban and rural environments). Again, the differing
approaches of the gpu (“run a new task on a fixed architecture”) and fpga (“shut
down parts of the chip and reprogram it”) to these changing mission profiles should
be contrasted.

A comparison of the performance of fpga compared to gpu for image processing
applications, then, is a pressing business requirement for Thales. This can be split
into a commercial side — studying hardware costs, design time and expenditure,
and how to manage longevity — and a technical one. The technical study would
use one or more signal processing tasks to investigate the relative performance of
fpga and gpu in the three metrics of power, latency and accuracy, as these have
direct and indirect effects on SWaP.

We concentrate on the technical question in this thesis. Previous comparisons have
been reported in the literature, and are discussed in Chapter 2. These assume a
direct choice between a single fpga and gpu in a system. We wished to build on
this earlier work by characterizing the performance of a joint system containing
three processors: fpga, gpu and Central Processing Unit (cpu). Such a system, if
built today, would have little integration between the different accelerator types; the
complexity of data transfer between devices has already been demonstrated [14].
However, commercial embedded devices containing both reconfigurable logic and
manycore processors on the same platform are now becoming available (such as
the Parallella5). In the near future, integration of these devices on the same die
can be expected, and this approach could offer substantial performance and SWaP
improvements.

5http://www.parallella.org/board/

http://www.parallella.org/board/

1.3. Aims 28

1.3 Aims

To summarise our dual motivations from the previous section, we wish to investigate
the performance of processing architectures capable of pedestrian and vehicle
detection, within a surveillance context. Conceptually, we use a vehicle with some
onboard processing capability as a target platform, while keeping in mind its power
constraints.

Our commercial motivations involve ascertaining the best architecture to run such a
system on, and also whether or not a system with multiple heterogeneous processors
outperforms e.g. a single-gpu one. As we argue in the previous section, knowledge
gained from studying this problem has implications for defence and civilian applic-
ations, and is both relevant and timely. We thus apply our academic and industrial
motivations to a specific problem within the field of surveillance.

This work aims to answer two questions:

1. “How does the performance of an algorithm when partitioned temporally across a
heterogeneous array of processors compare to the performance of the same algorithm in
a singly-accelerated system, when considering a real-world image processing problem?”

2. “What is the optimal mapping of a set of algorithms to a heterogeneous set of processors?
Does this change over time, and does a system with this architecture offer any advantage
in a real-world image processing task?”

We answer these in detail in Chapters 5 and 6 respectively, while the remainder of
this thesis places this in more context and provides details of the underlying hard-
ware which these results depend on. Chapter 5 considers the effects on performance
of partitioning parts of a single algorithm, while Chapter 6 addresses the same topic
at task level.

Note that throughout this work we refer to “real-time” operation. This uses the
“soft” definition of real-time computing, where results received after a deadline are
less useful. In a “hard” real-time system, failure to generate results by a deadline
would be catastrophic. We use the frame rate of 30 frames per second, and accept a
small measure of latency during processing.

1.4. Knowledge Transfer 29

1.4 Knowledge Transfer

1.4.1 Research Outputs

∙ A workshop paper [15] was presented at the Workshop on Smart Cameras
for Robotic Applications at the ieee Conference on Intelligent Robots and
Systems in 2012.

∙ This was followed by a longer journal paper “Characterising a Heterogeneous
System for Person Detection in Video using Histograms of Oriented Gradients:
Power vs. Speed vs. Accuracy” [16], based on the work carried out in Chapter 5.
This was published in a special issue on Smart Cameras in the ieee Journal of
Selected and Emerging Topics in Circuits and Systems.

∙ An invited talk on the subject of “Power, Speed and Accuracy Tradeoffs:
Characterising a Heterogeneous System for Person Detection in Video using
hog” was given at a bmva Symposium on “Vision in an Increasingly Mobile
World”, in May 2013.

∙ A paper was presented at the International Conference on Computer Vision
Theory and Applications, in January 2014. This was based on the work in
Chapter 6, titled “Event-Driven Dynamic Platform Selection for Power-Aware
Real-Time Anomaly Detection in Video” [17]. This was accepted for a full oral
presentation.

1.4.2 Knowledge Transfer within Thales

Thales Research and Technology, the research division within the multinational
Thales Group, hosts an annual research day called “Journee de Palaiseau”. This
allows PhD students seconded to various divisions and countries within Thales,
who are working on a common theme defined as “Software and Critical Information
Systems”, to present updates to their work and explore opportunities for collabora-
tion. Work from this thesis was presented at these days on two occasions. Based on
this, the algorithms discussed within this thesis were considered for implementation
on another hardware architecture platform developed within Thales. This involved
undertaking training on the Ter@pix architecture and the steps required to evaluate
its performance on an algorithm. This occurred both at a low level, involving

1.4. Knowledge Transfer 30

(a) Power consumption given priority (b) Processing time given priority

Figure 1.3: Screenshots of demonstration platform with user-driven selection of
performance priorities. In (a), increasing the priority of “Time” causes
algorithm processing to be moved from fpga to gpu. This increases
speed at the expense of power consumption, as shown at the bottom of
(b).

operators (analogous to Compute Unified Device Architecture (cuda) kernels or
basic image processing steps), and a higher algorithmic level, involving operator
performance, data processing capacity and host/device transfer characteristics. Ul-
timately, the Ter@pix platform was not used in this project, but this is discussed
further in Chapter 3 and Chapter 7.

A demonstration of the dynamic architecture selection parts of this thesis (a user-
driven version of the system described in Chapter 6) was also given at a Thales
Research Day, in conjunction with another student’s work. In this technology
demonstrator, emphasis was given to changing power, time and accuracy priorities
and their effect on dynamic selection of algorithm implementations within a system.
Examples of this are shown in Figure 1.3. A main theme in other work shown at this
exhibition was products to improve Intelligence, Surveillance, Target Acquisition,
and Reconnaissance (istar). These were demonstrated to various customers of
Thales in the defence and security sectors, and conveyed Thales’ capability for
system development in the future. The demonstration we gave also fitted within
this broad theme.

Throughout this project, several presentations were also given to engineers and
managers within Thales to inform them about current research developments, and

1.5. Contributions 31

to receive feedback on potential approaches for future work. Finally, priorities for
future architecture and system-level research within Thales have been identified
based on the conclusions from work documented in this thesis.

1.5 Contributions

The key contributions of this thesis are as follows:

∙ We give a comprehensive analysis of the performance of a complex signal
processing algorithm when applied to a platform with multiple heterogeneous
accelerators (fpga and gpu). Taking into account processing time, power
consumption and accuracy, we show the cost (in absolutes and in percentage
change from best measurement for that characteristic) of trading one of these
against the other. An example of this is shown in Figure 1.4.

∙ We construct and describe the performance of a real-time image processing
system for anomaly detection. This is capable of detecting vehicles parked in
prohibited locations, as shown in Figure 1.5. This system responds to events
within a scene by dynamically modifying the arrangement of processing ele-
ments it uses and and hence its power consumption characteristics. From
this we show a clear tradeoff of event detection accuracy against power con-
sumption. We also show the tradeoffs made when moving algorithm subtasks
between heterogeneous processors; see Figure 1.6.

1.6 Thesis Roadmap

The remainder of this thesis is laid out as follows:

∙ Chapter 2 describes related work. This covers the architecture of the various
processors used, examples of their use in image processing to date, and
relevant object and anomaly detection algorithms used throughout the thesis.
We also consider techniques for mapping algorithms to architecture.

32

0 100 200 300 400 500 600 700 800 900
30

40

50

60

70

time(ms)

po
w

er
ab

ov
e

id
le

ba
se

lin
e

(W
)

ggg-560, FPGA on gff-560, FPGA on gfg-560, FPGA on
cff-560, FPGA on cfc-560, FPGA on ccc-560, FPGA on

Figure 1.4: Run-time design space exploration: power vs. time for various imple-
mentations of HOG pedestrian detection using a gpu and fpga. Power
consumption shown as increase over baseline of 147W. Each version
shown here can be selected at runtime. Letters denote the architecture
which each algorithm segment is run on; e.g. for gff, resizing is done on
gpu, followed by feature extraction and classification on fpga.

;

Figure 1.5: Real-time anomaly detection. The van parked on the left-hand side of
the road is highlighted with a red square, signifying an anomaly. The
overlaid text shows current system performance characteristics.

1.6. Thesis Roadmap 33

0 50 100 150 200 250 300 350 400 450 500 550 600 650
180

190

200

210

220

230
Green: more work on FPGA
Blue: more work on CPU
Red: more work on GPU

time (ms)

po
w

er
(W

)

Figure 1.6: Power and time plots of all possible solutions for car, pedestrian and
motion detectors across fpga and gpu. A mainly red dot indicates most
processing is done on gpu, while a dot closer to green indicates most
processing is done on fpga.

∙ Chapter 3 moves on from the academic literature to consider implementa-
tion details. We explore a simulation-oriented compared to a hardware-only
approach and consider whether image segmentation is required. We then
focus on our choice of heterogeneous processors and discuss algorithms for
exploring design space.

∙ Chapter 4 is shaped by the previous chapter, and documents the system
architecture we will use to perform real-time detection and hence surveillance.
We give specifications of the processors used and discuss the interface for data
transfer between them.

∙ Chapter 5 uses the system constructed in the previous chapter. Here we
perform an in-depth study of the performance characteristics which result from
implementing the Histogram of Oriented Gradients algorithm for pedestrian
detection on a system of heterogeneous processors: fpga, gpu and cpu. We
analyse the algorithm, identify the different types of computation involved
in each stage of the algorithm (resizing, feature extraction and classification),
and justify our approach to partitioning computation between architectures in
this way. We then report power, accuracy and latency numbers for each of six

1.6. Thesis Roadmap 34

arrangements, and the tradeoffs involved in moving between arrangements:
i.e. if power consumption is reduced by 10%, how much longer does processing take?

∙ Chapter 6 builds on the work of Chapters 4 and 5 and describes a system
for anomaly detection in video. This performs detection of parked vehicles
in real time by dynamically allocating parts of the detection algorithms onto
each processor (fpga, gpu and cpu) depending on the level of anomaly seen
in the frame. Again, we explore the performance of Histogram of Oriented
Gradients (hog) when running both car and pedestrian detections, and show
the resulting tradeoffs between power, accuracy and processing time. As this
system operates in real time, we concentrate on power and accuracy; if power
consumption is reduced by 10%, how many more parked vehicle events will be missed?

∙ Chapter 7 concludes this thesis. Here we summarise the key points of each
chapter and highlight relevant results. We finish with a short discussion on
directions for future work.

Note that in system architecture and processing diagrams throughout this thesis, we
have tried to use a consistent colour scheme. Yellow boxes signify operations carried
out on fpga or the fpga itself. Similarly, blue boxes represent gpu operations, red
ones refer to work done on cpu, and green boxes represent accesses to host memory
from any device.

2. Related Work

The problem of obtaining real-time performance from sophisticated image processing al-
gorithms operating on large quantities of data is important and timely. This is evidenced by
the ongoing focus of both industrial and academic research and development. In this chapter
dealing with existing literature, we cover four relevant topics as part of this problem:

1. current hardware architectures for generalised and parallelised data processing and
approaches to programming them;

2. a description of certain processing-intensive image processing algorithms for object
detection and classification;

3. a survey of higher-level algorithms for scene surveillance and anomaly detection;

4. a review of approaches taken to the problem of assigning algorithms to a hardware
platform.

Following this, we summarise and restate the problem around which this thesis is centred;
that of dynamic mapping of algorithms to hardware.

2.1 Data Processing Architectures

In recent years, computer architectures designed for massively-parallel data pro-
cessing have become more widespread and affordable; alongside this, embedded
versions of these same processors have become available. Using these, tasks such
as face detection [19], which would have been infeasible in real-time ten years
ago, are now performed in realtime within most consumer cameras and mobile
phones [20].

35

2.1. Data Processing Architectures 36

light scene con-
straints

optical image

image
acquisition

image array

pre-processing

image array

segmentation

image array

feature
extraction

feature
descriptions

classification &
interpretation

scene
descriptions

actuation

Key: processing
stage

information
format

Figure 2.1: Image Processing Pipeline (from Awcock & Thomas [18]). Each stage in
the pipeline can be considered another layer of abstraction.

We now review the various platforms for algorithm acceleration which were either
used or considered for use in this work. Any implementation of an algorithm on one
or more of these platforms will exist at some point in design space. This is defined as
a multidimensional space with dimensions specific to the problem at hand, such as
power consumption, chip area, ease of programming, processing time, and accuracy
of result [21].

2.1.1 Processor Taxonomy

We start by considering the domain of image processing algorithms in more detail.
Figure 2.1 shows a standard machine vision processing pipeline, as described by
Awcock and Thomas in 1995, and still widely in use today [18]. Applying the
Berkeley dwarves paradigm to this pipeline is instructive.

The Berkeley dwarves are defined as “algorithmic method[s] that capture a pat-
tern of computation and communication” which “present a method for capturing
the common requirements of classes of applications while being reasonably di-
vorced from individual implementations” [22]. The original seven computational
dwarves were: dense and sparse linear algebra, spectral methods, n-body methods,
structured and unstructured grids and Monte Carlo methods. In a wide-ranging
technical report from Berkeley, Asanovic et al. renamed Monte Carlo to the more

2.1. Data Processing Architectures 37

general MapReduce, and extended this list to thirteen to include combinational logic,
graph traversal, graphical models, finite state machines, dynamic programming and
backtrack and branch-and-bound.

These dwarves were based on a generalisation of existing benchmarks; this ap-
proach allows classification of signal processing operations into groups. The most
relevant dwarf to image processing is arguably dense linear algebra (vector-vector,
matrix-vector and matrix-matrix operations). Specifically, all processing operations
described in the rest of this thesis use dense linear algebra. The only exception
is the trajectory clustering algorithm described in Chapter 6 which we class as
graph traversal (object property search, involving “indirect table lookups and little
computation”). However, this is not computationally demanding enough to consider
as a candidate for acceleration.

Other researchers note that vision processing is inherently parallel, and is one of
the application domains described as “embarrassingly parallel” [23, 24], especially
the early pixel-processing operations found when working at low levels of abstrac-
tion. Embarrassingly parallel applications are those which have “a high degree of
parallelism and it is possible to make efficient use of many processors, [but] the
granularity is large enough that no cooperation between the processors is required
within the matrix computations” [25]. This situation is where Amdahl’s law [26]
applies:

s =
1

rs +
rp

n

, (2.1)

where the speedup s is determined by the ratio of the parallel section of code rp to
the serial portion rs, in a system containing n parallel processors. For large n, the
proportion of sequential code limits the overall speedup available.

Returning to the pipeline, the greatest potential for parallelisation is in its early
stages: preprocessing, segmentation and feature extraction, where the same opera-
tions are performed on most pixels. Here the system must handle large volumes of
data quickly; several operations are often required for each pixel, of which there can
be millions in a single frame. Real-time processing requires doing this dozens of
times per second, which leaves only a few nanoseconds to process a single pixel [27].
Moving from the problem domain to the hardware domain, in this section we

2.1. Data Processing Architectures 38

Table 2.1: Summarised comparison of data processing architectures (compared to a
reference x86).

FPGA GPU X86 SSE Multicore CPU

Power low high medium medium
Consumption

Clock Speed low medium high high

Ease of hard medium low low
Programming

Speed gain high high medium medium

Floating-point arbitrary, single/ double single/ double single/ double
Precision fixed

consider various candidate architectures, the structure of each one, methods of
programming, and any other relevant information.

The processing architectures themselves can be arranged using Flynn’s taxonomy,
which categorises systems into the groups below [28].

SISD Single instruction single data: normal single-core processors, e.g. a single core
of an x86 chip.

SIMD Single instruction multiple data: Flynn puts systems which express paral-
lelism both temporally (via pipelining) and spatially (via multiple discrete
processing elements) in this category. This includes x86 Streaming simd

Extensions (sse) vectorisation, gpus and fpgas.

MISD Multiple instruction streams working on a single data stream.

MIMD Multiple instruction multiple data: independent multiprocessor systems with
some level of shared memory e.g. multicore processor systems.

This is summarised in Table 2.1. We now consider each architecture in that Table in
detail.

2.1. Data Processing Architectures 39

xmm0 1 2 3

xmm1

xmm2simd operations

. . .

xmm7

registers

0 127

memory

4 floats

2x doubles

Figure 2.2: Simd register structure in modern x86 processors. Eight 128-bit registers
(right) can be used by the vector processing unit (left) for packed fixed-
and floating-point operations.

2.1.2 Methods for CPU Acceleration

Intel and derivative x86 processors provide a simd vectorisation unit which works on
128 bits of data (see Figure 2.2). For e.g. single-precision floating point calculations,
this can offer an up to 4× speedup in arithmetic and logic operations. This is an
example of simd parallelism and does not require much hardware knowledge to
apply; in certain circumstances, certain compilers can automatically vectorise code
to make best use of this hardware.

Multithreading can also be used to spread work out over multiple cores and hide
processing stalls while waiting for memory or i/o operations to complete, although
in general this speedup is limited as only a few cores are available to share the work
onto.

2.1.3 Graphics Processing Units

The General-Purpose Graphics Processing Unit (gpgpu or gpu) grew out of the
increasing computational power available in consumer graphics cards in the mid-
2000s, along with changes in the way these cards could be programmed. They
have become very prevalent in the area of high-performance computing, so much
so that the current Top 500 list of supercomputers contains 39 systems which are

2.1. Data Processing Architectures 40

cuda-accelerated1. Early literature on gpu computing, such as a review by Owens
et al. [29] in 2007, framed all processing operations in computer graphics terms,
such as vertex buffers, fragment processors and texture memory, and relied on
custom languages such as Cg and Brook. In their review the following year [30], the
same authors noted that “One of the historical difficulties in programming gpgpu

applications has been that despite their general-purpose tasks having nothing to
do with graphics, the applications still had to be programmed using their graphics
Application Programming Interfaces (apis)”. Gpu-accelerated research work on
certain applications was done at this point (for example on particle filtering [31]),
but problems such as the floating-point calculations not conforming to the published
ieee standard were still prevalent [32].

That changed with the advent of Nvidia’s cuda
2 and the Khronos Group’s cross-

platform OpenCL3, two general-purpose C-based languages designed to expose the
underlying parallelism in gpus. Both function on the basis of kernels, processing
functions applied to streams of data. As cuda was the language used in this
work, we focus on that; the extensions to cuda beyond standard C mostly relate to
choosing which architecture to run a kernel on (host or device), and arrangements
for partitioning and accessing data between processing elements. Rather than using
one of Flynn’s taxonomy entries [28] to describe their architecture, Nvidia describe
cuda as Single Instruction Multiple Thread, similar to simd.

An overview of cuda architecture is shown in Figure 2.3; multiple Stream Processors
(sps), each with their own arithmetic and logic unit, make up a Streaming Multi-
processor. Within a Streaming Multiprocessor (sm), each sp can share data with its
neighbours using a small amount of shared memory, very close to the sm and hence
fast to access. Multiple sms are arranged on chip, with each sp also being able to
access slightly slower global memory (on the same board as the gpu) and, with even
more latency, the host PC’s main memory (Figure 2.3b). This memory hierarchy also
has two levels of caching (not shown), which is managed automatically, and from
the point of view of the programmer, the same mechanism is used to access the
various types of memory (shared, texture, global, and host). Each sm is scheduled to
run multiple groups of processing threads simultaneously; the central idea behind
this architecture is that context switching between threads on a sm is very fast, and

1Details at http://www.top500.org/lists/2013/06/highlights/
2Available from https://developer.nvidia.com/what-cuda
3Available from http://www.khronos.org/opencl/

http://www.top500.org/lists/2013/06/highlights/
https://developer.nvidia.com/what-cuda
http://www.khronos.org/opencl/

2.1. Data Processing Architectures 41

SP SP

SP SP

SP SP

SP SP

Shared Memory

SM

(a) Structure and memory interface
of a streaming multiprocessor in
a cuda gpu.

SM SM SM SM

SM SM SM SM

Global Memory

GPU

PCIe link

Host Memory

(b) Processor arrangement and memory hierarchy in a
cuda gpu.

Figure 2.3: Cuda Architecture: (a) multiple stream processors (sp) make up a
streaming multiprocessor (sm) and have access to a small, fast shared
memory region. (b) sms are arranged within a gpu and can access global
device and host memory.

low cost, so thousands of threads can be queued for execution at once across a card.
A group of 32 threads executed on an sm is known as a warp, and in the latest
generation of chips, up to 32 warps can be queued at once. Thus, the inefficiencies
involved in multiple levels of memory access will be hidden, because while one
warp waiting for data access is stalled, another which requires processing can be
run in its place. Despite this technique for latency hiding, memory accesses are still
slower than processing operations, and cuda cards obtain their best performance
when performing lots of operations on a limited amount of data, i.e. maximising
the ratio of computations to data transfers. This is a very brief overview of the
cuda architecture, focusing on the main benefits for general-purpose computing: a
comprehensive description is given in [10].

Application to Image Processing

Gpus have now become mainstream in accelerating a wide variety of signal pro-
cessing applications. There are numerous utilities available to help this process, such
as specific linear algebra (cuBLAS) and fast Fourier transform (cuFFT) libraries and
image and signal processing primitives (NPP). The most well-known in the vision

2.1. Data Processing Architectures 42

community is probably OpenCV4, a general image processing library in which a
large number of algorithms are now gpu-accelerated. This includes algorithms for
segmentation [33, 34], Viola and Jones’ face detection work [19, 35, 36] and medical
imaging applications [37], many of which have now been incorporated into OpenCV
as summarised in [38]. A general theme among these publications is that some level
of knowledge of the hardware is required to gain a speedup.

Mobile devices which are cuda or OpenCL-capable have increased the potential for
deployment of algorithms such as these on handheld platforms; accelerated sift

(Scale Invariant Feature Transform) for descriptor generation by Wang et al. [39] is
one recent example of this.

2.1.4 Field-Programmable Gate Arrays

One of the alternatives to mapping large computations to a fixed hardware architec-
ture is to adapt that hardware to the processing required – hence the appearance
of fpgas. The concept of a reconfigurable parallel processing system was first
described in the 1960s by Estrin et al. [40], and is similar in form to modern Xilinx
and Altera devices. As Xilinx fpgas hold around 50% of the market share5, and
Xilinx devices were used within Thales, we concentrate on Xilinx devices here.
However, everything discussed in this section is true for alternatives such as Altera
as well.

The structure of a modern fpga is shown in Figure 2.4. Processing is done by pro-
gramming Combinatorial Logic Blocks (clbs), as shown in Figure 2.4a, to perform
application-specific logic functions. These clbs contain programmable look-up
tables followed by a storage element (flip-flops). They are connected by program-
mable switch matrices. Modern heterogeneous devices also contain commonly-used
elements such as blockrams and embedded multiplier-accumulators (dsp48s in
Xilinx terminology), allowing the clbs to be used for other operations. All pro-
grammable elements within the device are configured at bootup time by pushing a
configuration bitstream through a set of configuration registers on the chip. Fpgas
may also contain specialised high-speed transceiver blocks for communications, and
allow general-purpose processors to be instantiated on the fabric, whether designed
for close integration with the chip (such as a Microblaze [41]) or not [42].

4http://opencv.itseez.com
5See http://www.xilinx.com/about/company-overview/

http://opencv.itseez.com
http://www.xilinx.com/about/company-overview/

2.1. Data Processing Architectures 43

SM SM

CLB CLB

SM SM

CLB CLB

(a) Combinatorial logic blocks (containing
look-up tables and storage elements) are
connected by a configurable switch mat-
rix.

CLB CLB CLB CLB MULT

CLB CLB BRAM CLB CLB MULT

CLB CLB CLB CLB MULT

(b) Heterogeneous fpga containing fabric, blockram and
embedded multipliers.

Figure 2.4: Fpga Architecture: (a) clbs are connected by switch matrices. (b) Other
components such as memory and embedded multipliers can also be
incorporated on-chip.

Programming

An overview of the whole fpga programming process is given by Bacon et al. [43].
Programming an fpga, particularly when starting with an existing signal processing
algorithm, has been described as “very time consuming” by Bailey [44]. This
is especially true when considering traditional methods of capturing designs at
Register Transfer Level (rtl), using Verilog or Vhdl; this step has also been
described by Johnston et al. as “difficult and cumbersome for large and complex
algorithms” [27]. The gulf between a high-level algorithm description as described by
matlab code, and one written in rtl is quite large, especially if any changes must
be made to the original design. This has led to multiple methods for programming
fpgas from a high-level language or model (model-based design). Zoss et al. [45]
compare various extensions to matlab which allow production of bitstreams
from a Simulink model. They note that manufacturer tools (e.g. Xilinx System

2.1. Data Processing Architectures 44

Generator) can have closer integration with the hardware (especially hard-wired
multiplier blocks) than competing alternatives, such as the Mathworks’ hdl Coder
for Simulink. However, they also state that there is scope for expansion in the area
of automated or guided parameter selection for various design elements, a topic
explored further in Section 2.4. For more details of our use of model-based design
in this project see Section 3.4.

A high-level alternative to either rtl design entry or model-based design is to
describe the original algorithm in a dialect of C, and many such languages are
available (Handel-C, Catapult C, arguably System-C, even, to an extent, cuda [46]).
Two papers by Edwards provide a good overview of this [47, 48], but, as noted in
the second, C does not have an explicit mechanism for controlling timing and hence
specifying any exploitable concurrency [48].

Finally, an interesting conclusion to this latter line of thought is that OpenCL may
potentially be used in fpga designs [49]. In this work, an OpenCV algorithm is
accelerated on the programmable portions of a Xilinx Zynq chip, using OpenCL
for design entry and compiled by the Xilinx High-Level Synthesis tools. Such work
is still in the early stages and requires lots of parametrising and use of #pragma

instructions to the synthesis tools, however.

Application to Image Processing

A multitude of image processing applications have now been accelerated with
fpgas. However, unlike gpus and the extensions to OpenCV, these have not been
gathered together into a library [50], so any such speedup tends to be application-
specific. Similar complaints emerge in other domains: Jones et al. note that “there
is little open-source, portable firmware for fpga [high-productivity computing
systems]” [51]. We describe existing parallelised implementations of the algorithms
we use in Section 2.2, but here we briefly note the wide variety of applications which
have been accelerated in this way (feature detection [52], sky segmentation [53]
and object detection [54]). The latter example differs from the former in that the
amount of processing done may vary dynamically with scene content – in other
words, what proportion of windows are still present after a given number of stages
of an Adaboost classifier (the theoretical basis for this is again provided by Viola
and Jones [19]). This problem is tackled by allocating the first ten classifier stages

2.1. Data Processing Architectures 45

to hardware, and running subsequent stages in software, processed by a hard cpu

on the same fpga. This is an interesting example of design partitioning across
platforms applied to an image processing algorithm, albeit one where this decision
is made at design time; we explore this further in Section 2.4.

Reconfiguration

An important consideration with fpgas is the potential for reprogramming the
device while it is running; standard methods require a global reset of the device
post-program, while in comparison gpus can execute kernel launches in around 3−
7µs [13]. Both Xilinx and Altera now offer some form of support for Partial Dynamic
Reconfiguration, i.e. reprogramming portions of the chip while it is running) [55, 56].
This technology can be used in a variety of domains, such as autonomous agents
for processing of network data [57], and in the domain of imaging again (e.g. for
executing each separate stage of a fingerprint scanning process on a single, small
fpga, reducing the required resources [58]. This can be considered another attempt
to approach the Size, Weight and Power problem we defined in Chapter 1 as
being central to the relevant question this thesis addresses. It can also be used for
implementing hardware “threads”, as shown in [59], although the authors note
the considerable latency associated with every reconfiguration. This cost must
be included when attempting dynamic reconfiguration, as explored further in
Section 2.4 and in work by Quinn [60]. Xilinx described their enhancements to the
internal programming process in [61] which enabled partial reconfiguration, but as
of late 2013 the tools to do this require a special licence, and require considerable
expertise to set up.

Happe et al. demonstrate real-time, dynamic reassignment of tasks between hard-
ware and software regions on an fpga containing a soft processor and dynamically
reconfigurable regions [62]. Their paper documents real-time video object tracking
using sequential Monte Carlo methods. Unlike the work described in this thesis,
their self-adaptive system does not have changing constraints and only considers
time and (indirectly) fpga resource use as performance criteria.

2.1. Data Processing Architectures 46

Figure 2.5: Throughput of image processing operations on 3 fpgas and 2 gpus
compared. Image from [67].

2.1.5 Comparison and Selection of FPGA vs. GPU

As discussed above, various algorithms in various domains have been implemented
on both fpga and gpu. There have been many efforts made to approach comparisons
between this platform in a structured manner, and to answer the question “given
a particular algorithm, is it better to implement this on an fpga or gpu?”. The
answers to these have either taken the form of empirical results from implementing
algorithms on both platforms [63, 23, 64, 65, 66] or a combination of empirical
results and theory [51]. This work can also be grouped according to applications,
with some of the papers above applying specifically to image processing.

A lower-level analysis of this area was also the main subject of Cope’s work [67].
Early work by this author and others in 2005 [68] argued that gpus had not made
fpgas redundant for video processing, especially for applications with large num-
bers of memory accesses (e.g. large 2− D convolutions). In later work [64], five
image enhancement and processing algorithms are analysed and the relationship
between instruction set characteristics is measured. This is reproduced in Figure 2.5;
note the dramatic falloff in gpu performance for 2− D convolution at higher kernel
sizes.

Both platforms are found to provide substantial speedup in all cases. However, some
results from this are worth highlighting: Cope notes the higher power consumption

2.1. Data Processing Architectures 47

of the gpu, alongside its ability to bring a higher n to bear in Amdahl’s law (2.1).
When fixed-point fpga performance is compared to the potential for floating-point
computation from a gpu, the gpu has a higher computational density factor (i.e. to
achieve equivalent floating-point performance to the gpu, their fpga would need to
have 12 times the area). In common with other studies, implementation time is not
considered. As noted in §2.1.3, this work was done before the advent of cuda and
OpenCL, so this comparison provides a useful overview, but certain conclusions
may now be out of date.

A limited amount of work has also been done in three-way comparisons which
include cpu as a possible platform, such as Grozea et al. who used text searching in
network processing as an application [69]. Their conclusions match closely with the
tradeoffs we present in Table 2.1; i.e. fpga is “most flexible but least accessible”, cpu

is “easiest to approach” but “might sometimes be too slow”, and gpu is “difficult to
debug and requiring data transfers which increase the latency”. However, since then
gpu debugging technology has improved and this step is less cumbersome.

A different research direction to the one discussed above has also been pursued
by other researchers; that of combining — rather than contrasting — fpga and
gpu computations in a single system. Bauer et al.’s work [70, 71] is relevant here;
they manually partition the hog algorithm between their fpga and gpu, but do
not discuss the rationale behind these choices. See §2.2.3 for a fuller discussion.
More comprehensive work by Bittner et al. [72, 14] focuses on low-level fpga and
gpu interaction and methods for data transfer, including discussion of methods for
reducing the number of times data is copied unnecessarily during transfers between
both accelerators over PCI Express (pcie); see Figure 2.6. They also described a
2.2× reduction in data transfer time by removing the standard, intermediate step of
copying to host memory. They note that transfer speeds are asymmetrical, due to
the quality of the implementation of the Direct Memory Access (dma) controller on
the fpga; gpu-initiated transfers from gpu to fpga are considerably faster than the
other direction (1.6Gigabytes per second (gb/s) against 0.51gb/s). For a discussion
of how these factors relate to this work see Chapter 4 of this thesis.

There is no overall clear picture from these many comparisons; fpga and gpu can
often be applied to the same application, and achieve a substantial speedup. In such
circumstances factors other than raw performance — such as power consumption

2.2. Parallelisable Detection Algorithms 48

Figure 2.6: Reduced transfer times between fpga and gpu are achievable by initi-
ating a dma transfer directly between the two device memories (green)
rather than an intermediate copy to host memory (red). Image from [14].

or implementation time — should also be considered; however, this is often missing
from published work (for example, see Bauer et al. [70]).

2.1.6 Alternative Architectures

Various other architectures can be considered as possible candidates, including the
Cell Broadband Engine [24], and Intel’s multicore compute and graphics platform
Larrabee, before development of the latter was cancelled. (Intel’s latest multicore
accelerator Xeon Phi is a successor to Larrabee [73]). A comprehensive review of all
these architectures by Brodtkorb et al. is given in [24]; here the authors note that one
architecture is unlikely to be suitable as the desired accelerator for all applications —
this is a reasonable conclusion as each platform exists at a different point in design
space.

2.2 Parallelisable Detection Algorithms

Most image processing algorithms are inherently parallel and often belong to the
class of dense linear algebra operations, as discussed in §2.1.1. We concentrate here
on algorithms which can be deployed in some manner to suit our goals as stated in

2.2. Parallelisable Detection Algorithms 49

Figure 2.7: First and second Haar features in Adaboost classifier for face detection.
Image from [19].

Chapter 1: that of scene analysis. This again follows the pipeline of Figure 2.1, so
we concentrate specifically on the classification stage of this pipeline. At this point
we also restrict discussion of algorithms to those which process visible-spectrum
data.

Work on object detectors either concerns classification performance on multiple
classes of objects (such as in the Pascal challenge [74]), or the development and
improvement of detectors for a specific object class. The most popular objects
investigated are either human bodies or faces, due to their relevance in many
fields, from human-machine interaction to road-safety and surveillance and military
applications, on both desktop and mobile platforms. As this is a fast-moving field,
we provide an overview of the history of human detection here.

Viola and Jones’ fast detector in 2002 [19] applied Haar wavelets (see Figure 2.7) to
object detection. This was combined with the development of an integral image,
allowing precalculation and then fast accessing of the sum of the intensity contained
within any rectangle in the image within constant time (important for evaluating
Haar features). This was paired with a cascade classifier, allowing construction of
a strong classifier using a succession of weak ones. The classifier cascade was
arranged so that each stage rejected non-faces early on, thus reducing the num-
ber of classification operations needed; the efficiency of this approach has been
demonstrated by various hardware implementations (see e.g. [75] for fpga or [76]
on gpu.)

2.2. Parallelisable Detection Algorithms 50

Figure 2.8: Hog algorithm pipeline. Image from [77].

2.2.1 Algorithms for Pedestrian Detection

We focus now on detection of humans in images and videos, a major area of object
detection research. A significant improvement was made in this area by Dalal and
Triggs’ description of their Histogram of Oriented Gradients detector in 2005 [77].
Their processing pipeline is shown in Figure 2.8. We describe this algorithm in
detail in Chapter 5 in order to reimplement it, but here we will only note that it
consists of sliding a detection window across an image and obtaining a confidence
that a person is present in that sub-window. This process is repeated at multiple
scales, then non-maximal suppression is performed to group detections. Detections
are made as shown in Figure 2.8 and Figure 2.9; per-pixel gradients are binned into
orientation histograms and gathered over dense, overlapping local regions to form
blocks. A sub-window full of blocks is then classified against a model trained on a
dataset of pedestrian images (developed by Dalal and known as the inria dataset)
using a Support Vector Machine (svm). Classifiers are discussed in §2.2.2.

Both stages here (histogram generation and svm classification) have localised,
regular memory access, are relatively computationally dense, and are not iterative,
and so we expect that they will be strongly suited to a parallelised implementation.
Dalal also extended the detector to the other object classes (car, motorbike, cat,
dog, etc.) in the Pascal dataset, and gave parameters for this in his thesis [78].
Performance on these classes was sufficient for his work to win the 2006 Pascal

challenge.

Further progress in this area was made by Felzenszwalb et al. [79], who applied
a deformable-parts model to hog and improved detection accuracy on the inria

dataset. Similarly, Tu and Perona [80] extended hog in combination with features
selected from other image channels (the luv space) to form the Integral Channel
Features detector. The latter was optimised in 2010 by Dollàr, Belongie and Perona,
who recognised that feature generation over multiple dense scales was one of the
major effects on the long runtimes affecting existing detectors [81]. Their approach,

2.2. Parallelisable Detection Algorithms 51

Figure 2.9: Building the hog processing pipeline. (a) Average gradient over training
images. (b) Maximum positive svm weights in each block; (c) Maximum
negative svm weights in each block; (d) Most relevant blocks (just outside
contour); (e) Test image; (f) Hog descriptor for test image; (g)–(h) Positive
and negative weights for test image. Image and labels from [78].

involving a sparsely sampled image pyramid with multiscale classification, is shown
in Figure 2.10.

Dollàr et al. conducted a comprehensive review in this area in 2011 [82]. This
evaluated 16 existing pedestrian detectors in terms of their performance on the inria

and Caltech datasets. They standardised evaluation methodology (e.g. matlab code
accompanying the paper provided a robust method for non-maximal suppression),
and argued for a change in the standard evaluation metric (see below). They also
identified various future research directions to pursue, noting that “Performance
is abysmal at far scales (under 30 pixels [in height]) and under heavy occlusion
(over 35 percent occluded)”. In addition, inria remained the dataset of choice
for training most detectors [82, 79, 81]. A sample hog detection on an inria

image is in Figure 2.11a, and ground truth for a still from a Caltech video is in
Figure 2.11b.

Since that review paper, new detectors have continued to be produced, particularly
by Benenson or Dollàr. The VeryFast detector, first described in 2012 by Benenson
et al. [83], achieved 50Hz detections across whole images by running on gpu and

52

Figure 2.10: The Fastest Pedestrian Detector in the West moves away from the
traditional approach of computing features and classifying on a densely
sampled image pyramid (a). However, only scaling the classifier (b) does
not work because the desired features are scale invariant. The hybrid
approach (c) uses a classifier pyramid within each octave, but only
samples and scales the image once per octave, considerably reducing
evaluation time. Image from [81].

(a) HOG detections on INRIA dataset image. (b) Ground truthed bounding boxes on
Caltech dataset image.

Figure 2.11: Inria and Caltech dataset sample images. Image (a) from [78], (b)
from [82].

2.2. Parallelisable Detection Algorithms 53

Figure 2.12: State-of-the-Art Pedestrian Detection Performance still requires im-
provement in many situations. INRIA dataset performance is shown in
a Detection Error Tradeoff curve from [84].

only evaluating an image at a single scale (i.e. reversing the optimisations of [81]),
and using stump classifiers and Adaboost instead of svms for classification. This
rate increased to 135Hz by using stereo images and only classifying objects on the
ground plane.

Evaluation Metrics

Figure 2.12 is a detection error tradeoff curve. These are often used instead of more
traditional Receiver Operating Characteristic (roc) curves when comparing detector
performance, because the curves they present are close to linear, while roc curves
often “bunch” into a corner [85]. False positives are on the x-axis and (1−true
positives) are on the y-axis. Dalal and Triggs’ results and others’ subsequent work
used False Positives per Window (fppw) as the x−axis measurement. This considers
per-window performance on its own and does not take into account techniques for

2.2. Parallelisable Detection Algorithms 54

grouping and non-maximal suppression of nearby and overlapping detections over
many scales. Dollàr et al. pushed for a movement away from the fppw performance
metric to a False Positives per Image (fppi) one, arguing that (i) it is the performance
of the overall pedestrian detection algorithm which is important for comparison
and deployment, and (ii) contrary to expectations, per-window detector rankings do
not match per-image rankings [82]. Throughout this work, we use fppi. However,
many implementations of hog still use fppw [86, 87] so we compare performance
against them when required.

State of the Art

The current state-of-the-art detector is by Benenson [84]. By returning to [80] and
systematically evaluating feature and normalisation choices (i.e. using all possible
squares within a classification subwindow, rather than Dalal and Triggs’ manually-
selected grid of fixed-size blocks), detection performance has increased still further.
It is far from a solved problem, as Figure 2.12 shows; almost one-fifth of pedestrians
are still missed for every false positive in 10 images. In addition, this graph shows
results evaluated on the inria dataset, and does not include occluded pedestrians.
The Caltech dataset is considered to be somewhat harder, and includes pedestrians
with varying levels of occlusion. As this figure shows, hog, although no longer
considered state-of-the-art, is still commonly seen as a measure of standard or
baseline performance and is “surprisingly competitive” [84]. This paper also notes
that training detectors on inria rather than on a larger dataset such as Caltech still
produces best results.

To reinforce the extent to which hog and its derivatives generalise, we consider two
further applications, starting with detection of vehicle orientation. Rybski et al. [88]
evaluate hog to perform two separate tasks for vehicle detection. First, given a
vehicle detection obtained from another source (LiDAR in this case), they compute
coarse vehicle orientation placed into one of eight directional bins, by running eight
one-vs-all svms across the image region of interest. Secondly, they test the ability of
a single classifier to detect vehicle presence. This test was successful, but as a fppi

curve is not provided, their results are not directly comparable to the results above.
The authors note that, as cars viewed from different angles look much more diverse
than humans from different angles (compare side-on vs. head-on), car detection is a
harder problem than human detection. They also convert the classifier confidence

2.2. Parallelisable Detection Algorithms 55

Figure 2.13: Support Vectors in a 2-D problem. The support vectors (grey squares)
are placed on the optimal margin, which defines the largest separation
between the two classes. Image from [89].

output into a probability value, allowing for selection of the orientation with the
highest posterior probability. This uses Platt’s method as discussed in §2.2.2. The
second non-human detection application involves road signs; taking the VeryFast

detector [83], Mathias et al. [5] apply it to road sign detection, achieving > 95%
detection accuracy with little algorithmic modification.

2.2.2 Classification Methods: Support Vector Machines

Svms are a common machine learning tool for classification; for a thorough intro-
duction to their use in imaging and the broader discipline of signal processing see
Burges [90]. They operate by learning support vectors which maximise the margin in
some feature space between the two classes of data being classified. An example is
shown in Figure 2.13.

For an input vector x representing a data point (e.g. gradient histograms in a sliding
window), the output y = {+1,−1} from a svm acting as a binary classifier will
be

y =

+1, f (x, w) > 0,

−1, otherwise,
(2.2)

2.2. Parallelisable Detection Algorithms 56

where w is a set of nsv learned weights, each of length n, and

f (x, w) =
nsv

∑
i=1

(αi · yi ·K(wi, x)) + b . (2.3)

y, α and b are learned parameters. Different kernel functions K can be used here. A
common one is the Radial Basis Function (rbf) kernel,

K(x,w) = exp (−γ‖x− w‖2) . (2.4)

However, this is computationally expensive for large or dense vectors, so a linear
classifier with a single vector of n weights is often used instead, giving

f (x, w) =
n

∑
j=1

(xj · wj) + b . (2.5)

The linear kernel involves evaluation of a dense dot product. This is the method
used in hog [78]. The drawback of the svm approach is that the entire calculation
over n or nsv needs evaluated before we can confirm the classification of x.

An alternative to evaluating the entire calculation is to use a reduced set of support
vectors, as described by Burges and Scholkopf [91]. Here, a set of nrs vectors,
denoted w′, are used, where nrs ≪ nsv. The authors choose nrs by limiting the
allowable error between f (x, w) and f (x, w′) and note that this technique can reduce
the number of vectors evaluated on each image patch by two orders of magnitude.
This method is then applied to face detection by Rohmdani et al. [92]. Here, a
cascaded svm is built. Early cascade stages are trained to reject non-faces quickly.
As soon as the score from f (x, w′) falls below a threshold, evaluation of that image
patch is terminated. This results in very few windows which could possibly be faces
remaining at the end of the cascade. These can then be evaluated by a full-length
set of support vectors trained for accurate detections, while an increase in speed is
gained.

In all cases, the svm training process consists of learning w to maximise the margin
between the classes. Thus, all the learning of the characteristics of the person (or
other object that the svm is trained to detect) is done at the training stage, and
w is a “model” of what the object looks like. The testing or operational stage is

2.2. Parallelisable Detection Algorithms 57

essentially a comparison of how close a given image subwindow is to this model.
This evaluation, described by equations 2.4 and 2.5, involves a large number of
matrix multiplications and additions (dense linear algebra from [22]). These map
well to fpga or gpu and allow real-time operation (as described in the following
section) and it is this stage that we aim to accelerate. The support vector training
stage can also be accelerated by performing many kernel evaluations in parallel,
and again by performing a parallel “reduce” on gpu to select the best candidate
during every training iteration [65].

Use of Platt’s method [93] to convert svm outputs into a posterior probability p(Ci|s)
is also possible: given a svm score s = f (x), what is the probability of the vehicle
being in orientation bin Ci? Platt’s method involves fitting parameters a and b to
the data, in the form of the svm output s:

p(Ci|D) =
1

(1 + exp(a× s + b))
. (2.6)

However, this method is empirical and has been criticised as such [94, 95]. It also
leads to unduly confident classifications of test points a long distance from the
margin.

2.2.3 HOG Implementations

Having reviewed pedestrian detection and the svm classifier algorithms, we now
consider existing implementations of hog, both to provide an understanding of
the research field, and to allow for comparison to our own work in Chapter 5.
hog has been implemented for gpu by moving all operations except non-maximal
suppression onto gpu [96]. As Figure 2.14 shows, histogram generation takes up
most processing time (compare this to the algorithm stages given in Figure 2.8). A
similar implementation is now present in OpenCV. Various simd-accelerated hog

routines are also present in Dollàr’s toolkit [97].

Multiple fpga implementations are also documented in the literature. Kadota
et al. [86] perform hog feature extraction in fpga, then classify the results on a
microprocessor. They achieve real-time feature extraction by using ten instances
of their architecture in parallel. Martelli et al. [87] perform fpga-based pedestrian
detection using covariance features, and Hiromoto et al. [98] describe a similar

2.2. Parallelisable Detection Algorithms 58

Figure 2.14: Time spent on each algorithm stage in a hog gpu implementation.
Image from [96].

system using co-occurrence hog. Each set of authors describe their processing
pipeline and techniques used to modify the original algorithm, and most reach
real-time performance on small image sizes, with limited accuracy. See Section 5.5.4
for a comparison of results against our own. Similarly, Cao and Deng [99] perform
hog-based road sign detection on fpga; this paper is helpful for details of low-level
implementations.

An interesting hybrid system is described by Bauer et al. [70, 71]; their processing
pipeline is shown in Figure 2.15. Histograms generated on fpga based on visual
data are transferred to cpu. Regions of interest corresponding to motion regions
found in both visual and infrared data are then downselected (i.e. the number of
windows selected for svm processing are greatly reduced). This allows candidate
regions which may contain pedestrians to be transferred to the gpu, where a rbf

kernel-svm is used to process them. Rbf svms allow better detection performance
(around 3% fppw gain on inria [78]) at the cost of greatly increased runtime due
to the large matrix multiplications needed. By capping the number of candidate
windows at 1000, performance of around 10 fps is achieved. Bauer et al. do not
provide the justification for choosing this particular arrangement of devices in design
space, or discuss the possibility of arranging processing differently (e.g. doing all
work on fpga), especially considering the overheads relating to inter-processor data
transfer. Detection performance improves on the linear-classifier hog used in [77],
but is worse than the kernel classifier version in Dalal’s paper.

In a 2013 paper, Hahnle et al. [100] describe a high-performing implementation
of the entire hog algorithm on fpga. This work is notable in that a hd image

2.2. Parallelisable Detection Algorithms 59

Figure 2.15: Processing pipeline in a hybrid system. Image from [70].

is used, requiring a much higher-performance implementation than other related
work (where resolutions on the order of 640× 480 are common). Their pipeline is
shown in Figure 2.16 (for histogram generation) and Figure 2.17 (for classification).
In common with other published work, the L1Sqrt instead of the L2Hys norm is
used to reduce implementation complexity at a minor cost in accuracy. Derivations
are given in Appendix A. (See also §5.2.2).

Classification performance is demonstrated on the inria dataset, and is shown to
be similar to the original hog, if slightly less accurate due to use of fixed point
number representation and other optimisations. The authors note the difficulties
involved in performing detection at large numbers of scales while working under
real-time constraints. Their approach to this is to choose a number of scales to
evaluate, then spread evaluation of those scales over three frames. Without details
of the scaling factor used, it is difficult to evaluate the effectiveness of this approach
(i.e. using the standard factor of 1.05 between scales, 44 scales would be required
for a 1920× 1080 image; only 18 are used), particularly when the fppw evaluation
method is used.

2.3. Surveillance for Anomalous Behaviour 60

Figure 2.16: Fast fpga hog processing pipeline. Histogram generation steps shown.
Image from [100].

Figure 2.17: Fast fpga hog processing pipeline. Classification steps shown. Image
from [100].

In conclusion, hog and its derivatives are still highly relevant for human detection,
as evidenced by the fact that hog derivatives are currently the scientific state of
the art in pedestrian detection. As shown by applications in vehicle and traffic sign
detection, these generalise extremely well across other object classes. There are also
a multitude of parallelised versions documented across multiple architectures, and
as shown by the work of Hahnle et al. [100] this extends into 2013. All of these
factors make it a good candidate for investigation of performance tradeoffs.

2.3 Surveillance Video Analysis and Anomalous Behaviour

Detection

Having reviewed methods for generating object detections, we now consider lit-
erature on higher-level inferences which can be obtained by deploying these in
video surveillance. We start with a discussion of a wide-ranging survey paper by
Morris and Trivedi which provides an overview of the field of surveillance video

2.3. Surveillance for Anomalous Behaviour 61

Figure 2.18: Analysis and information hierarchies in surveillance video. Image
from [101].

Figure 2.19: A block diagram of surveillance analysis system. Image from [101].

analysis [101]. In it they define the problem of automatic behaviour understanding
from video as one of “extraction of relevant visual information, suitable representa-
tion ... and interpretation ... for behaviour learning and recognition”. They note the
tedium of the task, in common with our arguments from Chapter 1 [2, 3].

Their generalised processing model is shown in Figure 2.18, with corresponding
block diagram in Figure 2.19; this occupies the higher levels of the machine vision
pipeline (Figure 2.1). The model can be defined in terms of Points of Interest (pois)
and Activity Paths (aps). Morris and Trivedi note the challenging scale of the
problem, particularly in complex or unstructured scenes. As a simpler motivating
example, consider a highly structured scene such as traffic travelling in lanes in
a motorway. A representation of aps can be built up; traffic tends to travel in
well-defined lanes and at speed. This is not the case for traffic at intersections or
urban roads; various vehicle classes (car, bicycle, lorry, pedestrian) are present and
can often be stationary for some time, increasing the possibility of tracking failure
or generation of incomplete tracks.

2.3. Surveillance for Anomalous Behaviour 62

Figure 2.20: Offline filtered traffic analysis produces smooth detections. Image
from [103].

This allows object tracking and trajectory generation. Tracking of detections is often
done with a Kalman Filter [102], an algorithm for producing smoothed tracks of
time-varying signals. This relies on a prediction step — estimating the position of
an object x̂t based on knowledge of its previous positions xt−1 — followed by a
correction step, where new measurements zt are used to update x̂t. The relevant
equations are given in Appendix A.

The next stage in trajectory processing is clustering, and the authors note that
normally, trajectory lengths must be normalised before any clustering or further
processing is done to compare multiple trajectories. This can be done via tech-
niques like zero-padding, interpolation, or smoothing via Kalman Filtering; how-
ever, these are “ill-suited for analyzing incomplete trajectories obtained via live
tracking”. Smoothing tracks and rejecting unsuitable ones via various heuristics
(“vehicles are invariably longer than wider”, “reject all objects that never move faster
than 10km/h”, ignore all pedestrians), followed by K-means clustering, produces
very clear trajectories for traffic analysis and planning applications, as Figure 2.20

shows [103]. Generating directional histograms from trajectories is also effect-
ive [104], as is construction of trajectories using flow vectors of position and velocity
data to compare new trajectories to [105].

As we aim to build a real-time causal system, (we wish to analyse and match
trajectories to existing ones while they are still in progress), this approach is, un-

2.3. Surveillance for Anomalous Behaviour 63

Figure 2.21: A set of clusters depicting object trajectories in a motorway scene.
Tracking transits into subtrees generates a probability distribution, as
on the right. Image from [106].

fortunately, unsuitable. Work by Piciarelli and Foresti [106] describes a method for
online clustering of tracked points into trajectories, where tracks are matched to
trajectories using a sliding temporal window which expands with track length. As
Morris and Trivedi note, a large training database does not need to be collected
before starting and the number of tracks does not need to be known in advance,
making this ideal for “long-term time-varying scenes” [101]. This method is used in
the anomaly detection system in Chapter 6 for these reasons.

Once a cluster is complete (i.e. the object generating it has left the area, or it has been
reinforced by several transits through it), it can be used to predict the behaviour
of objects as they move through the scene. Clustering into trees is the approach
pursued by Piciarelli and Foresti, as shown in Figure 2.21 [106]. Here, trajectories are
projected onto a ground plane rather than the image plane to minimise perspective
distortion. The planar homography equation used to do this is given in Appendix A.
Under their definition “an anomaly is simply defined as an event which happens
rarely.” The frequency of transits between a tree and leaf node is thus used as
a probability distribution, and can flag anomalous events as they appear. An
alternative is to use Hidden Markov Models, as in traffic flow analysis by Morris
and Trivedi [107]. This is able to detect some anomalous events such as U-turns, and
runs in real-time but performance or hardware information is not provided.

2.3. Surveillance for Anomalous Behaviour 64

Finally, we consider anomalous behaviour detection as the highest stage of the
analysis hierarchy (Figure 2.18). This eventually relies on thresholding; i.e. take
some action if p(AP|trajectory) is below some (possibly cluster-specific) threshold.
In our surveillance patrol vehicle example from Chapter 1, this can extend to alerting
the operator or changing the power consumption goals of the system, while other
options include pointing a pan-tilt-zoom camera at any interesting behaviour to get
more information about it [108].

Loy et al. provide a three-tiered definition of anomalous actions in video: Category A
actions are “visually very different from the training set” (e.g. a fire engine running
a red light), Category B are ambiguous and rarely appear in the training set, and
Category C have only weak visual evidence for an anomalous event happening at
all [109]. It can be difficult for humans to detect B and C class events (particularly
during a prolonged vigilance task). Loy et al. approach the problem of urban
surveillance and argue against object- and trajectory-based approaches, noting
that large numbers of broken trajectories cause problems for anomaly detection.
Instead, they use an approach based on segmentation and cascaded Dynamic
Bayesian Networks. However, in common with other published work, a Gaussian
mixture model background subtraction algorithm is used to segment out foreground
objects [110]. Another approach using online clustering of spatiotemporal volumes
describes real-time results and a smaller number of required initialisation frames,
but no hardware specification is given [111].

The Future of Anomalous Behaviour Detection

Returning to our original survey article, in 2008 Morris and Trivedi listed the
main challenges in this field. They particularly noted the lack of a standardised
performance metric for evaluating effectiveness of competing systems, with some
using classification accuracy and others reporting anomaly detection rates [101]. This
is reiterated by Sivaraman and Trivedi in another survey on behavioural analysis of
vehicles in 2013 [112], where they emphasise that the lack of benchmark datasets
and metrics is mainly due to the infancy of the research area, and many research
papers in this field having different aims. Unlike pedestrian detection with Caltech
and inria, there is as yet no standard dataset or metrics. Such a dataset would, they
point out, require several levels of ground truth, from object detections and tracking,

2.3. Surveillance for Anomalous Behaviour 65

to behaviour analysis and identification of events. As we discuss in Chapter 6, this
is a long way off.

Given that this field is relatively immature, real-time performance has not received
much attention. As much of the parallelisation work must be carried out at the
earlier (pre-trajectory generation stage) this is, to a degree, expected. As an example,
a paper documenting a cpu and gpu system for pedestrian and vehicle detection
(i.e. detection-only) shows 42 Frames per second (fps) performance on 640× 480
video [113]. A precision/recall curve is given but no details of either training dataset
are provided. For a pedestrian detector based on hog, the omission of even a fppw

curve is surprising.

Parked Vehicle Detection

In Chapter 6, we consider the task of parked vehicle detection as an example of
anomalous behaviour extraction. Having sought a real-world problem to apply
object-based anomalous behaviour detection to, detection of illegally parked vehicles
is an example task for which training and test data is readily available. Here we
must again bear in mind Sivaraman and Trivedi’s comments about a lack of standard
datasets and performance measures [112].

Parked vehicle detection was the subject of a conference session at avss in 2007.
This used four clips from the i-lids dataset. (See Figure 6.2b for an example.)
The challenge was to identify the start time when a vehicle parked at the side of
the road, and the time it stayed there. We disregard some of the entries to this
challenge, as they require extensive human intervention (they manually define the
kerbs on both sides of the image as no-parking regions, and run blob-detection
on anything stopping there) [114, 115]. The remainder, such as Bevilacqua et al.,
consider real-time operation on PCs or embedded hardware, and are able to detect
all four events in the video sequences and obtain start and stop times within a few
seconds of ground truth [116].

Later work by Albiol et al. concentrates on detecting stopped vehicles in traffic
scenes [117]. They use the full i-lids dataset, covering 24 hours of training and
test data – much more than the avss clips. Similarly to [115] they rely on manual
annotation of lane regions in cities and then identify times in which these are

2.4. Design Space Exploration 66

occluded. This technique works well, with precision and recall rates of > 95% on
i-lids. They avoid the use of any background subtraction algorithm, relying on
lane masking instead, which gives more robust detection of longer-lasting objects.
However, it is difficult to reconcile this approach with the anomalous behaviour
model of Figure 2.18; we know exactly what behaviour is being sought, and there
is no concept of objects or vehicle classes in this work. A container left on the
street for 12 hours is recorded in the same way as a car. We return to this topic in
Chapter 6.

2.4 Design Space Exploration and Allocating Algorithms to

Hardware

Having enumerated the most common platforms for accelerating image processing
operations, and having explored various algorithms relevant to the original goals of
this thesis, in this Section we consider how to obtain the optimal arrangement of
those algorithms on one or more hardware platforms.

The concept of Design Space Exploration is usually applied when considering
partitioning of algorithms between hardware and software, on shared or discrete
substrates. The two factors traded off are processing time and substrate area (for
asic) [21] or resource use (for fpga). Some method is chosen for assigning a score
— cost or fitness function — to each possible choice and then various algorithms can
be used to explore points with different characteristics in design space.

The partitioning can be fine-grained (such as partitioning at what is essentially an
instruction level [118]), or more coarse-grained, placing either algorithm stages or
whole algorithms on specific devices. The work in §2.1.5 can also be considered as
Design Space Exploration (dse), and our work in Chapter 6 can be interpreted as a
particular case of this too.

The fitness function normally depends on the latency and area results, but can
perform multiobjective optimisation by minimising several parameters; software
execution time, program memory, data memory, and hardware execution time and
area cost [119]. Under these circumstances the cost function can be expensive to
compute in itself. Exhaustively evaluating the design space itself is NP-hard [120].

2.4. Design Space Exploration 67

Various algorithms are therefore used to explore a subset of the design space. These
can be on the level of heuristics as in Zuluaga and Topham [121], or, in similar
work by Almer et al. [122], via standard machine learning techniques, i.e. neural
nets and support vectors. Almer et al. note that neural networks are particularly
effective for unseen designs for the asic problem. The same approach also produces
good results when tasks are distributed over embedded networks [123]. Even when
a single architecture is selected, work by Bouganis et al. [124] demonstrates that
multiplier stages within a 2D filter can be allocated between design elements with
different properties — specifically, fabric and embedded multipliers on a fpga.
This trades off higher accuracy in the former against higher resource use on the
device.

Coarse-grained architecture selection is perhaps more relevant in our application,
so we move to the problem of performing automated dse where the end result
is an algorithm partition between multiple devices. Focusing on work aimed at
allocating processing between platforms in a single system rather than multiple
distributed systems (in other words ruling out large-scale job-shop scheduling
problems), the work of Quinn et al. [125, 60] is closest to our intended application
here. Working on the problem of interactive offline image analysis, Quinn built
the Dynamo system to accelerate these operations. (Although this problem would
probably be tackled in software by a gpu nowadays, this approach is nevertheless
instructive for the broader topic of algorithm mapping in a heterogeneous system.)
Given an operator-chosen pipeline of image processing algorithms and knowledge
of the source image size, a detailed solution pipeline of data processing, conversion
and transfer operations is then generated by performing dse; see Figure 2.22 and
Figure 2.23 respectively.

Pipeline compilation is then performed using a “lego block approach”, by connect-
ing pre-existing component implementations for all pipeline stages. If necessary the
fpga is reconfigured, then the image is then processed by the pipeline execution
unit. When moving a stage to hardware, communication or transfer costs, padding
costs and reprogramming costs must be considered, and these change depending
on the neighbouring pipeline stages. Hardware or software components for each
stage are selected as a function of image size. This leads to a crossover point above
which it is always faster to process images in hardware. The fitness function is
therefore driven mostly by latency, with a hard constraint on the area of the recon-

2.4. Design Space Exploration 68

Figure 2.22: Pipeline assignment in the Dynamo system. Image from [60].

Figure 2.23: Resulting allocations from the Dynamo system for a pipeline consisting
of a median filter followed by a histogram.. Processing operations are
in (parentheses) and transfers are in [square brackets]. Image from [60].

figurable logic (any solution which comes in above this area will have infinite cost).
Algorithms for different image sizes are considered as different algorithms and are
not parametrised for window size. The same base algorithm with different kernel
sizes are also treated as different discrete algorithms.

All of these factors mean that design space grows rapidly with the number of
algorithms, and in fact choosing the pipeline assignment problem becomes NP-
complete [60]. To mitigate this, various search algorithms are used to explore the
design space. This becomes a common problem of global vs. local search and
search techniques such as dynamic programming, integer linear programming, and
local search with taboo list are used at different pipeline lengths [126]. Genetic
algorithms have also found some success in this area [120]. All of these involve

2.4. Design Space Exploration 69

Figure 2.24: Global and local Pareto optimality. Image from [127].

various perturbations of existing solutions to produce new possibilities for which a
cost function is evaluated.

A key concept here is that of Pareto efficiency for multiobjective optimisation. The
two axes in Figure 2.24 represent different objective functions. As explained by
Deb [127], perturbing a solution within design space using any method will cause
another solution to be selected. The new solution x2 is said to dominate x1 if every
objective function of x2 is no worse than those of x1, and x2 improves upon the
performance of x1 in at least one objective. Eventually an optimal set of solutions will
be found which cannot be improved upon, and these dominate all other positions
(either locally or globally), as Figure 2.24 shows. Once this stage is reached, one of
these solutions can be selected for implementation by weighting the fitness function
to favour one property (e.g. latency) over another, based on knowledge of the target
application.

As we touch on evolutionary algorithms, we provide a brief diversion into this sub-
ject. Work by Thompson [128] showed that by ignoring the normal fpga synthesis
process and running evaluations in hardware, signal processing driven by genetic
algorithms generated a tone discriminator with no clock, producing “probably the
most bizarre, mysterious, and unconventional unconstrained evolved circuit yet
reported.” [128].

2.5. Conclusion 70

Returning to Quinn’s work, the fact that data transfer times between devices are
explicitly considered is key, as it allows an improved estimation of the overall
performance of the system before synthesis. The authors note that failing to account
for the transfer and reconfiguration delays produces a 79% error in estimated vs.
actual runtimes.

2.5 Conclusion

The background to this work has been described in this Chapter. Given a description
of the architecture of various possible target platforms for acceleration, we then
considered the applicability of each one to object classification problems within
the field of image processing. These fall into the dense linear algebra category of
Berkeley dwarves. We focus on Histogram of Oriented Gradients and its derivatives,
noting recent advances in human detection in visual images, and demonstrating
how those techniques apply well to other scenarios such as road sign classification.
We then considered existing higher-level inference algorithms for anomaly detection.
Finally, we discuss previous work in partitioning algorithms onto various hardware
platforms, and exploring and selecting optimal solutions in the resulting design
space.

From our evaluation of these areas of research, we note the potential for design
space exploration as applied to either a changing set of tasks, or a fixed set of
tasks with changing priorities. Returning to the example of vehicle surveillance,
a vehicle stationary and on battery power will exist at a different point in design
space than one which is moving with the engine running. The latter may require
faster assessment of threats. Given that this system may deploy multiple algorithms
at different times to perform different tasks, such a scenario is ripe for further
characterisation.

Such a characterisation would ideally involve the hog algorithm, given its wide
applicability to various object classes. Several real-time hardware implementations
on different platforms have been documented, and a principled comparison of
these across one or more heterogeneous platforms within a system would provide
guidance about how hog and its derivatives should best be deployed for real-time
applications under power constraints. Doing this then allows us to explore dynamic

2.5. Conclusion 71

performance tradeoffs in an anomaly detection task, again with a mobile surveillance
vehicle scenario in mind.

This overall goal is the subject of our efforts in the remainder of this thesis. To set
the scene, in the next chapter we consider the sensors, platforms and lower-level
algorithms available or developed within Thales, which will form the basis of our
heterogeneous processing system.

3. Sensors, Processors and

Algorithms

Having performed an exploration of the academic literature as documented in the previous
Chapter, our focus now turns to designing a system capable of real-time object and anomaly
detection. Several big implementation questions must now be addressed:

1. is a simulation-centric approach possible and does it offer any advantages, or is
immediately moving to targeting hardware a better strategy?

2. if we aim to perform fast design-space exploration to choose the most appropriate
selection of platforms to meet our power, speed and accuracy goals, how large is this
design space and what algorithms are suitable for exploring it?

3. can existing Thales sensors be used to supply more information about any observed
scene, and does doing this offer any benefits?

4. should any preprocessing should be performed, and if so where? Does running
preprocessing or segmentation algorithms on incoming data offer any advantages?

These questions are explored in this chapter. As we will see, the outcome from this chapter is
that we can close off various — to us — unrewarding topics of study and concentrate on
constructing a hardware-based system. The evidence supporting this decision is summarised
in Section 3.7, the conclusion of this chapter.

72

3.1. Introduction 73

3.1 Introduction

Thus far, we have not explored in detail the broad problem of how to move from an
algorithmic representation of a task to its implementation on a hardware platform,
preferably one running in real-time. This was a question which needed resolving
in the early stages of this work. We first investigated the opportunities offered
by model-based design techniques for mapping to fpga and, to an extent, gpu.
This was done in conjunction with the hardware implementation of multi-modal
image segmentation algorithms, in order to explore their applicability to the bigger
questions of Chapter 1, and to explore the applicability of real-time implementations
of existing work at Thales.

First we consider available sensor modalities in Section 3.2. We then discuss our
choice of hardware platform and explore any alternatives in Section 3.3. Section 3.4
lists the arguments for focusing on either simulation or hardware in the design
process.

Following this, Section 3.5 describes the image segmentation algorithms we consider
as part of an early stage in any processing pipeline (recall the location of segmenta-
tion tasks in Figure 2.1). Section 3.6 describes ways to automatically arrange these
and other algorithms in a processing pipeline, and pitfalls when mapping this to
hardware. Finally, Section 3.7 summarises our conclusions from this chapter and
re-states the direction we will explore next.

3.2 Sensors

As mentioned in the Introduction, Thales is primarily an electro-optic sensor com-
pany, now contemplating a move from image enhancement to image processing.
Here we summarise the equipment which they have available for image acquisition
as part of a scene surveillance task.

3.2.1 Infrared

The Catherine MP is Thales’ high-end infrared camera, giving an output as in
Figure 3.1a. This produces images with low noise, making human monitoring

3.2. Sensors 74

(a) Catherine MP Infrared (b) Visual Camera

Figure 3.1: A person shown on infrared and visual cameras.

less error-prone and machine vision processing of the output possible. Pedestrian
detection from infrared or multimodal infrared and visual images is possible, as
Bauer et al. showed [71]. This could be relevant in situations like in Figure 3.1, where
processing handoff between visual and ir in dark or low-contrast areas could be
explored; however, the added complexity makes this difficult to justify. In addition,
a relevant benchmark or dataset containing hard-to-detect humans in joint visual
and infrared datasets would be challenging to gather.

A polarimetric version of the Catherine MP was also available, where individual
pixels on the sensor had been polarised into 0∘, 90∘, 45∘ and 135∘ angles to detect
long-wave infrared radiation polarised at various angles. This allowed discrimina-
tion between man-made and natural objects, as documented by Connor et al. [129].
An example is shown in Figure 3.5a.

3.2.2 Visual

A standard visible-light sensor was available, as shown in Figure 3.1b. This operated
at a resolution of 1024× 768; footage from this camera was used as part of the pro-
cessing time evaluation in Chapter 5. In some trials, images from a sensor head with
six separate cameras were available. These faced in the same direction but operated
at different wavelengths in the visual to near-visual infrared spectrum, at 450nm,
500nm, 550nm, 650nm, 700nm and 880nm respectively as noted by Letham [130]. See
Figures 3.4a and 3.4b as an example.

3.3. Processing Platforms 75

We now discuss processing platforms and return to algorithms making use of this
sensor data in Section 3.5.

3.3 Processing Platforms

Here we consider the processing platforms suitable for constructing a heterogeneous
real-time system. Such a system should include fpga and gpu as well as cpu.
As discussed in Chapter 2, cpu provides a baseline for accelerated algorithms to
be measured against, is required for gpu control, and is needed for processing
of sequential algorithms, while fpga and gpu were chosen because of their wide
applicability, occupation of discrete and arguably complementary points in design
space, and existing documented implementations of selected algorithms.

Xilinx fpgas were chosen, based on their market share and availability of licences
within Thales. Nvidia gpus were chosen, based on the support for cuda present
in the OpenCV library.

Various other processing platforms were considered for their viability as components
in a heterogeneous system, including Thales’ Ter@pix platform, discussed below. As
one of the aims of this project was to consider embedded vision applications, various
low-power embedded processing platforms were briefly considered. However, all of
these had limited computational power and extensibility, particularly in the form of
low-latency high-bandwidth links which would allow a heterogeneous system to be
built and characterised.

In 2010, when hardware was being selected for this project, embedded systems with
graphics processors suitable for general-purpose processing were rare (for example,
they could not be programmed using cuda and programming with the OpenCL
api had only recently become available [131]). Adding an embedded processor to
a Xilinx fpga system required either instantiation of a Microblaze IP-core on-chip
(reducing the number of slices available for application-specific processing), use of
an embedded PowerPC microprocessor on older architectures, or an interface to an
external processor elsewhere in the system, with all except the last requiring extra
development time. Decisions on the hardware to use in a development system were
eventually made on the basis of availability of existing code and documentation in

3.3. Processing Platforms 76

the image processing domain and support and existing understanding of a given
architecture within Thales.

3.3.1 Ter@pix Processor

A signal processing platform created by Thales Optronics in France and known
as Ter@pix was also investigated for use as an accelerator. Usually referred to as
MORPHEUS within the academic literature, it is described publicly in a technology
report [132]. It is based on a set of simd Processing Elements (pes) using the under-
lying resources on a Xilinx Virtex-5 fpga; each pe is arranged around one blockRAM
and dsp48 embedded multiplier. It was accessed over a pcie link and data transfer
to and from the pes was controlled by a Microblaze soft processor. Simd operations
were done using operators, analogous to gpu kernels, which performed operations
such as morphological opening on image data. Despite Ter@pix appearing to be a
promising platform for image processing work, it was not considered for further
integration for several reasons:

∙ Specialised hardware (a platform based around a Virtex-5) was required, and
arranging a loan of this from France to the UK could have been time-consuming
to arrange.

∙ Specialised software (simulator, compiler and programmer) was required, and
was in some cases only available in the original French.

∙ A very limited selection of operators was available, and development time
would have been required to write, debug and test any additional ones (the
operator library is conceptually similar to the Nvidia Performance Primitives
(npp) library, with a wide selection of low-level processing kernels optimised
for the underlying hardware provided to the end user).

∙ Extra time would have been required to interface Ter@pix to the rest of the sys-
tem (set up control and data transfer logic to and from the other accelerators).

∙ Any algorithm written for gpu and fpga would then have had to be rewritten
for Ter@pix to allow a proper comparison, and attempting to publish results
or comparisons based around a proprietary platform such as this would have
been of limited academic interest.

3.4. Simulation or Hardware? 77

In short, considering that a separate fpga platform was already present, the engin-
eering time required to integrate Ter@pix alongside this would have been prohibitive
and would have reduced the time available for algorithm development or imple-
mentation.

3.4 Choosing a Simulation- or Hardware-Centric Approach

In order to accurately characterise the behaviour of a heterogeneous system contain-
ing both the components described above, two approaches are available. First, to
produce a tool for design space exploration which incorporated heterogeneity by
building a virtual model of a complete heterogeneous system, we could attempt
to model the entire system in Simulink, recording data transfer times between
processors and gpu performance on certain scenarios and incorporating this into
the model; this approach presents itself because design of the fpga logic is one of
the more complex parts of the system and expressing the behaviour of this can be
done within existing model-based design tools. This approach is documented below
in §3.4.1.

Alternatively, we could trade off the time required to model the rest of the system
within Simulink with the time required to link the fpga-centric model with a
physical system, and obtain performance details on physical hardware, while
moving away from a broader tool-based approach to system design. This approach
is documented in Chapter 4.

3.4.1 Implementation Modelling in MATLAB

When considering algorithm performance analysis on multiple heterogeneous pro-
cessing architectures, one of the main sources of complexity in any such project is
the difference or design gap between any high-level algorithm model and its imple-
mentation across various platforms. Use of multiple discrete designs at different
levels of abstraction could introduce errors in an implemented version which were
not present in the original. Conversely, if model and implementation code were
allowed to diverge, enhancements made to the lower-level code may not have been
replicated in the model. To reduce the possibilities of hard-to-find errors such as
these occurring, model-based design techniques were used wherever possible. As

3.4. Simulation or Hardware? 78

source
matrix

destination
matrix

transpose transpose

serialise serialise

System Generator
algorithm model

Simulink

pixel stream pixel stream

Figure 3.2: Modelling a fpga algorithm using System Generator for Simulink from
within matlab.

algorithm exploration and initial prototyping work was done in matlab, this ideally
required code in matlab which exactly matched the downstream implementation.
This approach was possible for the fpga algorithms; using Xilinx System Generator
allowed direct generation of Verilog or vhdl from the model. This modelling pro-
cess is shown in Figure 3.2. This model-based design approach is frequently seen in
industry, and is discussed further in §2.1.4. This generally works well because at the
early stages of a design, changes to the model can be made and the results evaluated
in Simulink within a few minutes. The underlying architecture which supports the
model is easily described and emulated within a prototyping environment. Working
with this is considerably faster than re-simulation within a hdl simulator such as
Modelsim, and orders of magnitude faster than re-synthesis, chip reprogramming
and evaluation of changes on the target hardware.

All of these conditions are not true when considering cuda code. Nvidia no longer
supplies a cuda emulator and generation of cuda code for software emulation
on a PC without a hardware gpu is similarly no longer supported [133]. Indeed,
there is little demand for a simulation option considering the relatively low cost
and easy availability of gpus currently. A further drawback to simulation is that
nvidia’s architecture is proprietary and information about the underlying elements
is not provided in the same way that Xilinx provides details of its low-level ar-

3.4. Simulation or Hardware? 79

source
matrix

destination
matrix

transpose transpose

transfer
to gpu

transfer
from gpu

gpu kernel execution

mexopencv

Figure 3.3: Running a gpu kernel in an OpenCV framework from within matlab.

chitectural building blocks. The most effective way of evaluating the behaviour
and performance of a cuda kernel is therefore to run it on target hardware. This
is especially true when relatively fast compile times and ease of including debug
information are considered. A model-based approach is not particularly appropriate
here; cuda kernels can’t be emulated easily and there is no pressing reason to do so.
When prototyping, a common practice is therefore to run cuda kernels from within
matlab. There are several extant approaches to this: both matlab toolboxes and
external suppliers provide a limited selection of gpu library functions and allow
evaluation of custom cuda kernels.

The approach used in this project, in keeping with standard model-based design
goals, was to use the same code to describe model and implementation for as long as
possible within the design process. To do this, we extended the mexopencv1 library
to allow execution of OpenCV’s gpu functions from within matlab. This ensured
that any differences between cpu and gpu implementations for both OpenCV library
functions and our code had a minimal effect, and made moving from matlab to
C++ code supported by OpenCV considerably easier. Once a gpu implementation
of an algorithm had been written and tested, only a small C++ function and M-
file wrapper was needed before that algorithm was usable from within matlab.
The prototyping process within matlab is shown in Figure 3.3. Thus, instead of

1Available from http://www.cs.stonybrook.edu/~kyamagu/mexopencv/index.html

http://www.cs.stonybrook.edu/~kyamagu/mexopencv/index.html

3.5. Algorithms for Scene Segmentation 80

implementing a design from a model, we ensure that our model accurately reflects
the implemented design.

3.5 Algorithms for Scene Segmentation

The real-time implementation of image segmentation algorithms was considered
for two reasons: first, as a continuation of another research project at Thales
(described in Letham [134, 130]), which investigated algorithms for contextual
anomaly detection; second, as a preprocessing stage which could generate contextual
information. This could be used to segment or mask image regions, with the goal
of reducing execution time by removing non-viable image regions. For example,
for aircraft or fast-moving object detectors, regions which were not sky should be
ignored, while sky regions should be discarded for pedestrian and vehicle detectors.
This could have resulted in processing a smaller image with each of the more
expensive object detectors. Various scene segmentation algorithms were identified
as candidates for inclusion in a preprocessing stage as part of a real-time scene
understanding platform. Details of each are given below. Each algorithm was
implemented on gpu within an OpenCV framework, and was modelled for fpga

within System Generator for Simulink. Simulation details are given in the following
Section.

3.5.1 Vegetation Segmentation

Data for this test was provided by the 650nm and 880nm sensors from the six-sensor
head. As Tucker [135] notes, a suitable measure for identifying areas of vegetation
from satellite imagery is the normalised vegetation index:

NDVI =
NIR− RED
NIR + RED

, (3.1)

where NIR is the intensity obtained from the 880nm camera, and RED that from
the 650nm sensor. Thresholding NDVI at 0 then selects all vegetation regions in the
image. A real-time gpu version of this was trivial to implement, as was the fpga

version to model. Output from the gpu version is shown in Figure 3.4.

3.5. Algorithms for Scene Segmentation 81

(a) 650nm RED (b) 880nm NIR (c) NDVI output

Figure 3.4: Registered source cameras and vegetation index.

(a) Polarimeter (b) Segmented road

Figure 3.5: Road segmentation from IR polarimeter data.

3.5.2 Road Segmentation

Road segmentation has a long history in Computer Vision, and previous investiga-
tions made use of lane markings [136] in conjunction with vanishing points [137]
for detection on structured roads. Detection on unstructured roads has also been
demonstrated in a desert environment [138]. However, the method investigated
used images from a Thales Catherine MP long-wave infra-red camera, as described
in §3.2.1. Tarmac roads, and other man-made objects, are polarised differently to nat-
ural objects, allowing segmentation of roads with no markings from the surrounding
vegetation. Using intensities from light polarised horizontally (i0) and vertically
(i90), and some basic logical and morphological operations, a region corresponding
to the road was extracted, as shown in Figure 3.5. Fpga and gpu versions were
modelled and implemented respectively, then characterised.

3.5.3 Sky Segmentation

A blue-sky segmentation algorithm operating on colour images has been described
in [139] by Zafarifar et al., with a fpga adaptation by Gaydadjiev et al. documented

3.6. Automatic Processing Pipeline Generation 82

Figure 3.6: Sky region (highlighted in red) segmented from visual camera.

in [53]. This generates a probability that a pixel belongs to the sky region using
colour and texture information and a vertical position heuristic. The results of this
on a colour source image are shown in Figure 3.6. A gpu-accelerated implementation
of [139] was written for this project, along with a partial re-implementation of the
fpga version described in [53].

3.6 Automatic Processing Pipeline Generation

A key component of the early stages of this work was a feasibility study of an
allocation algorithm; this was designed to decide which platform to assign various
image processing algorithms to. The previous work most closely aligned to this
was done by Quinn et al. [60]. They described a system for selecting hardware or
software implementations of image processing operators at runtime, given an input
set of algorithms to run and an image to process. Quinn et al. used various search
algorithms (dynamic programming, tabu search) to efficiently search the design
space at runtime to generate an optimal solution. Their methods are covered in
more depth in Chapter 2.

Based on this work, we reimplemented various search algorithms within matlab,
and created a library with cpu, gpu and fpga versions of the image processing
algorithms described in the previous Section, as well as a small set of standard low-
level image processing operators such as median filters, morphological operators, etc.
The latter were either modelled in Simulink or abstracted as calls to manufacturer-
supplied libraries (such as npp) where possible. The aim behind this was to evaluate
the feasibility of creating such a system for running dynamically-selected operators
across a heterogeneous system in real-time.

3.6. Automatic Processing Pipeline Generation 83

(a) Source (b) Pipeline (all in software) (c) Sink

Figure 3.7: Sample image processing pipeline in Simulink, generated from imple-
mentations which were selected automatically. This performed repeated
median filtering followed by Sobel edge detection, with each pipeline
stage implemented in hardware or software.

In more detail, the system behaved in the following manner:

1. search: given an input list of image processing operators to apply, a search
algorithm was used to explore the design space. Given a constraint (device
utilisation or latency), the algorithm selected the best possible pipeline within
that space, for a given search algorithm runtime;

2. generate: a Simulink pipeline is constructed by connecting the appropriate im-
plementations of each operator together, and adding any appropriate transfers
between platforms;

3. process: the image is processed through the generated pipeline.

An example of steps 2–3 is shown in Figure 3.7, using an all-cpu pipeline and a
subset of available operator blocks. The purpose of this was to evaluate automated
interconnection of components rather than design state-of-the-art edge detection
algorithms.

In short, this system simulated automatic generation of image processing pipelines
made up of auto-coded operators; candidate algorithms are shown in Table 3.1. To
generate this pipeline, we then evaluated the performance of a variety of search
algorithms including dynamic search, genetic algorithms, and local search using
steepest-descent and tabu methods, within various runtime constraints. These were
compared to exhaustive search and various naïve search methods.

3.6. Automatic Processing Pipeline Generation 84

All of these used a fitness function which was evaluated for each candidate solution;
this relied on properties of each candidate implementation such as runtime and
transfer time (i.e. the time taken to transfer data between processors). There were
several drawbacks with this approach:

∙ As each stage in this pipeline was simulated within matlab or Simulink,
runtime for software-based platforms (cpu and gpu) could not be confirmed,
and times for data transfer between platforms could only be estimated.

∙ The algorithms themselves, particularly those for segmentation, were in most
cases insufficiently computationally complex (i.e. having a low ratio of compu-
tations to data transfer) to obtain much benefit from accelerating them.

∙ In addition, for the segmentation algorithms described in Section 3.5, multiple
image sources at various wavelengths would have been required to generate
scene segmentations, requiring a non-linear processing pipeline to be generated
and increasing the complexity of the pipeline generator.

∙ Several of the algorithms in Table 3.1 were not yet implemented by the time
the pipeline system was written. Even with autocoding to hdl, at least
two versions of every algorithm would have been required to adequately
explore the design space. Writing and testing each individual implementation
would take a considerable amount of time, and in the meantime performance
estimates would have been required by the search algorithm.

∙ One of the aims was to compare the effectiveness of several types of search
algorithm. To adequately exercise the search algorithms in a large, well-
populated design space (one where the runtime required to exhaustively search
all possible combinations of implementations would have been prohibitive)
would have required a large number of implemented algorithms.

∙ There was no obvious path between creating a modelled system (as shown in
Figure 3.7b) and automatically deploying that implementation on hardware in
real-time, as we discussed in Section 3.4.

Based on the lack of concrete performance data for the fitness function, the time
required to code multiple implementations of multiple segmentation algorithms,

3.7. Conclusions 85

Implemented and Envisaged Simple Image Processing Algorithms

sky segmenter road segmenter vegetation index
people detector (HOG) background subtractor (MOG) median filter
hotspot (motion) detector histogram generation

Table 3.1: Simple Image Processing Algorithms – either implemented or considered
for implementation within a Simulated Processing Pipeline.

and the difficulty of modelling a complete heterogeneous system in Simulink, the
decision was taken to move to a more in-depth examination of complex algorithms
in a physical platform consisting of an fpga and a gpu.

3.7 Analysis and Conclusions from Early Work

The work performed in the early stages of this project has been described in this
chapter. After covering available sensors from Thales, in Section 3.3 we discussed
our choices for processing platforms, eventually concentrating on fpga and gpu.
These findings were reinforced by studies of a simulated Ter@pix system; the same
algorithms would need to be reimplemented again on a more restricted processor,
which would need integrated into what would be a four-way system for transferring
data between heterogeneous processors. This time could arguably be more product-
ively spent by producing better implementations of existing algorithms.

As discussed in Section 3.5, when investigating image segmentation algorithms
on multiple platforms, the algorithms were not sufficiently complex to produce a
compelling argument for accelerating such processing stages on fpga or gpu. In
addition, the need to use multimodal sources to generate segmentations complicated
any opportunities for data collection and benchmarking and would have reduced
the clarity of the argument in any resulting thesis. The comparatively large number
of algorithms envisaged – and the time required to implement each one – further
added to complexity but did not add to the potential to make a contribution in the
field of real-time object or anomaly detection.

3.7. Conclusions 86

As expanded upon in Section 3.6, attempting to model such a system without a well-
characterised physical platform and without adequate implementation performance
data would not have produced results representative of a real system.

The conclusions reached after these early explorations and simulations therefore
served as a natural break point within the project. The overall goals were then
reformulated and the focus narrowed considerably, subsequently concentrating
on evaluating the performance of a single complex algorithm with components
allocated across multiple heterogeneous platforms, before building on that to reach
the level of abstraction needed to perform anomaly detection. The next chapter
describes the architecture required to achieve this.

4. Selection of System Architecture

Chapter 3 investigated and closed off the possibility of preprocessing and filtering images
prior to detection, and by demonstrating the unsuitability of a simulation-based approach,
moved the focus of the work towards building a hardware-based system for object detection
and, ultimately, scene analysis and anomaly detection.

We now describe the platform on which algorithms described elsewhere in this work were
evaluated, in particular the specifications of the three main processing elements. This is
followed by an overview of the pcie network used for data transfer and communication,
and a description of a sample fpga-accelerated image processing operation. The system
constructed in this chapter is used for the experiments in Chapters 5 and 6.

4.1 Processor Specifications

Following the decision to use physical hardware wherever possible, discussion of
the development system is now appropriate. This consisted of a desktop PC with
an Intel x86 processor (a dual-core Xeon 2.4ghz chip, referred to throughout as the
host or cpu).

This system had 4gb ram and was running 32-bit Windows xp. Two accelerators
were connected: a nvidia GeForce 560ti gpu, and a Xilinx ml605 development
board containing a Virtex-6 xc6vlx240t fpga. The gpu had 384 cuda cores,
grouped into sms of 32 cores. This unit belongs to nvidia’s Fermi family, which is
defined as having a compute capability of 2.1. This means it has certain features
designed to support general-purpose processing, such as limited hardware support
for double-precision floating-point arithmetic. The fpga had 768 fixed-point embed-
ded multipliers available, compared to the 384 single-precision floating point ones

87

4.2. System Architecture 88

Figure 4.1: ml605 fpga card (upper) and gpu card (lower) in development system.

on the gpu. Here, we treat both fpga and gpu as accelerators in a larger system,
rather than complete image processing systems themselves. This allows the reading
and display of images and videos to be done in software, without handling this
in firmware; this greatly reduces the development time required to make use of a
variety of image sources.

All discrete gpus in pc-based systems are connected via a pcie link, and this model
used a 16-way pcie 2.0 connection. Pcie was chosen as the common method of
data transfer between the memory of all three processors. A brief description of a
pcie network and methods of data transfer within it is given in §4.2.1.

4.2 System Architecture

When work on this system began, different options for data transfer between the
various processors were considered. The ml605 fpga development board had
several high-bandwidth communications interfaces (gigabit ethernet and various
high-speed serial protocols) available, as well as pcie support. However, as the gpu

was only designed to transfer data to and from host memory (and optionally to a
display), the only interface available was pcie. This was therefore chosen as the
mechanism for transferring data between all three processors; any others would
have incurred either more discrete data transfer steps between buses and devices, or

4.2. System Architecture 89

host
x86 cpu

FPGA
host

memory GPU

FPGA
on-card
memory

GPU
on-card
memory

PCIe PCIe

Figure 4.2: High-level system functional diagram showing arrangement of pro-
cessors. Each processor can access host main memory, and the two
accelerators have private access to on-card memory.

additional complexity and possibly decreased system reliability as various drivers
and interfaces were modified to directly transfer data between each other in ways
which they were not designed for. Figure 4.1 shows both accelerator cards running
inside the pc.

A high level arrangement of processors is shown in Figure 4.2. §4.2.1 describes the
arrangements for data transfer, and §4.2.2 describes an example fpga-accelerated
transfer and processing operation.

4.2.1 DMA Controller for PCI Express

The pci-express subsystem within a computer system can be thought of as a network,
made up of a root complex and several child nodes or endpoints. Connections
between nodes are by means of one or more serial full-duplex links, in contrast
to the older pci architecture, which was a traditional bus arrangement with data
broadcast to every device on the bus. A pcie 1.0 ×8 link describes an 8-way full-
duplex link operating at 2.5 Gigatransfers per second (gt/s) or 2.0 gb/s, while a
2.0×16 link describes a 16-lane link at 5.0 gt/s or 8.0 gb/s. In an x86-based system,
the root port is coupled closely to the processor, from which the memory controller
allows access to ram[140, 141]. A pcie network topology diagram is shown in
Figure 4.3. In Figure 4.2, for conceptual purposes, the accelerators are shown as
being able to access host memory directly. Architecturally, only the processor is

4.2. System Architecture 90

host
processor

memory

switch
PCIe root
complex GPU

FPGA

x16 link

x4 link

Figure 4.3: System architectural diagram showing interconnections between pro-
cessors over pcie network.

directly connected to memory. It contains an integrated memory controller, and the
pcie accelerators access host ram through it.

Memory or registers on an endpoint can be mapped into the system address space
and will appear in the host memory map. Mapping a device’s Base Address Register
(bar) in this way allows its registers or memory to be accessed by the host processor
in the usual fashion. This allows the endpoints to read and write system ram

through dma transfers. These have the following format:

∙ source address to start reading from

∙ transfer size

∙ destination address to start writing to

∙ transfer direction (host→device or device→host)

These bars do not need a 1:1 mapping between the physical memory they represent
and the range in the system address space they take up: for devices with gigabytes
of on-board ram, this would be prohibitive, particularly with a 32-bit address
space on the host. In a full implementation, this allows memory attached to one
endpoint — and not present in the system address map — to be accessed from
another endpoint. For example, if a request to read data from system memory is

4.2. System Architecture 91

passed to an endpoint, the destination write address given may only exist or have
meaning in the endpoint’s private memory. However, here we are only concerned
with transfers between a device and host memory. When considering a nvidia

gpu, all these details are abstracted away behind the cudaMemCpy function in
the cuda api, and dma transfers are handled by dedicated circuitry on the gpu.
However, the Virtex-6 fpga has hardware support for pcie transfers (in that its high-
speed transceivers are connected to pcie lines) but no built-in firmware support for
performing transfers above the link level. A dma-capable controller was required to
interface the fpga to the rest of the system, and this was adapted from an existing
example documented in an application note for the Virtex-5 [142]. As the dma

controller forms a significant part of the fpga logic, its operation is summarised
below.

The function performed by a dma controller in a pcie network is to break down
a complete dma transfer, as described by the parameters above, into individual
groups of transactions which are then streamed across the pcie link. The data
to be transferred is always split into Transaction Layer Packets (tlps); as a pcie

link is used for both data and control functions, saturating it for long periods by
transferring large volumes of data is not allowed. This is described fully in the
PCI-Express Base Specification [141].

Dma transfers can be device-to-host, or host-to-device. As we consider these from
the point of view of the controller on the device, these are known as egress and
ingress respectively. At system startup, the device registers its bars with the host
controller. This is one small bar containing control registers and one or more larger
data bars. The maximum amount of data which can be transferred in a single
transaction or Maximum Payload Size (mps), is dictated by a combination of the
system and device capabilities, and is established during link initialisation after
system reset.

Consider an example 1mb ingress transfer. At the beginning of the transfer, the host
issues a dma request by writing the transfer details to registers within the control
bar: in this case, a read address within system memory, a write address inside one
of the device’s data bars, and a transfer size of 1 mb. The controller then issues a
read request tlp to the host for a small contiguous volume of data, usually around
1-4kb. The host then responds with a number of completion packets containing the
requested data, with each one being a known maximum size. As each packet arrives,

4.2. System Architecture 92

it is checked and the data is extracted and written to device memory or an on-chip
buffer. The controller must keep track of all outstanding read requests, re-issue
them if they time out, and re-order the data if it arrives in an unexpected order. This
procedure continues until the entire 1mb has been transferred.

The process for an egress transfer is similar, except the host issues a series of read
request packets, which the device must respond to by reading data from internal
memory or a buffer, forming completion packets and sending them. A mechanism
for keeping track of timeouts and signalling the host that a request could not
be completed was not implemented in this system, so all read transfers had to
be sized so that they did not request more data than would be generated by the
device during an operation: if this happened, the dma controller would assert the
transaction_source_ready line in the dma core forever while waiting for data
which would never arrive. This would then crash the host os.

Achieving high throughput for a controller requires extensive pipelining and the
capacity to keep track of a large number of packets at once, particularly during
full-duplex operation. Complexity here is also increased by the relatively high clock
speeds that the dma logic had to operate at; this required constraining much of the
dma logic to be close to the hardware high-speed transceivers on the fpga. This
was simplified slightly by only using onboard blockrams, rather than instantiating
a memory controller and transferring data to and from the external sdram on the
fpga board; this also removed the need for arbitration between application and dma

controller for access to memory, and between memory controller and application
for access to the dma controller.

The WinDriver library1 was used to generate a Windows device driver for the
fpga; this handled bar allocation and passed register reads and writes of the dma

registers to and from the fpga. The dma controller interfaced to the application
logic through two First-In First-Out buffers (fifos), one for image data being
streamed in and one for data being streamed out. A control register system was
also implemented. This allowed parameters and options for the algorithm used to
be configured from the host. A schematic is given in Figure 4.4. The dma system
was clocked at 250MHz as required by the pcie link logic, while the application

1Available from http://www.jungo.com/st/windriver_usb_pci_driver_development_
software.html

http://www.jungo.com/st/windriver_usb_pci_driver_development_software.html
http://www.jungo.com/st/windriver_usb_pci_driver_development_software.html

4.2. System Architecture 93

dma clock
domain

application
clock domain

RX

TX

Xilinx
PCIe core

DMA engine

ingress FIFO

control register

egress FIFO

application
logic

packet
decode

packet encode

PCIe lanes

Figure 4.4: System internal fpga architecture.

logic was clocked separately. The bitstream was synthesised using Planahead and
ise 13.4.

4.2.2 Exemplar FPGA-accelerated OpenCV Operation

Having described the operation of the dma subsystem, a description of an exemplar
data transfer will give an understanding of its operation within a complete image
processing application. The principal data type for operations on images in OpenCV
is the CvMat matrix. This consists of a header structure containing basic information
(height, width, row stride length, pixel data type (char, float, etc.)) and a pointer
to the image data. The fpga interface therefore had to operate on images stored in
this data structure to allow interoperability with the rest of the application. Here we
consider an operation of the form operation(source, destination) where
source and destination are CvMat types with pointers to data in host memory,
and operation is one for which a streaming implementation exists on the fpga. In
order to perform the calculations described by operation on fpga, the following
steps must be performed by the host:

1. Perform any relevant preprocessing steps such as colour-space conversion or
padding.

2. Allocate an area of page-locked memory2 and copy the source matrix into it.

2Memory which must stay in physical memory and which the operating system is prevented from
paging to disk.

4.2. System Architecture 94

3. Calculate data transfer sizes. For ingress transfers, this must be sufficient to
transfer all the original data, plus sufficient to push the data through any
pipelined application logic and push the resulting processed data into the
output buffer. The egress transfer size must be large enough to contain all the
resulting data, but not more than would be generated by the application logic,
otherwise the egress transfer would stall while waiting for output data from
the application logic, and crash the host os.

4. Obtain a lock on a mutex controlling access to the fpga. (Required if the host
is running multiple worker threads, all of which access the fpga).

5. Write dma transfer details into registers, and write to the control register to
start the full-duplex transfer.

6. Poll fpga status register until transfer is completed. The results returned by
the operation will now be in the output buffer in host memory.

7. Copy destination matrix into another location for further processing, or per-
form further processing as part of the operation in-place then place the results
elsewhere.

8. Unlock the fpga mutex.

9. Construct and return a CvMat header structure for the destination matrix,
where the data pointer points to an area of page-locked memory accessible by
both the fpga and host.

During step 5, the dma controller streams the data from the pcie lanes to the input
fifo, from where it is read by the application logic. This can include unpacking
individual pixels from the 128-bit words which the dma controller works on, to the
8- or 32-bit words used by the application. The dma controller monitors the amount
of data in the fifo; once it rises above a predefined level, read requests to the host
for more data are paused until the application consumes more data. The application
then performs the defined operation on the data, repacks the output into 128-bit
words, and loads the results into the output fifo. Similarly, transfers of egress data
are not started until there is enough data in the output buffer to perform a group of
transfers. This method achieved two simplifications: the dma controller was not

4.3. Conclusion 95

required to access the onboard memory on the fpga and was thus less complex, and
performance of the overall processing operation was governed almost completely
by the rate at which the application logic consumed and generated data (save for
the initial delay in filling the input fifo).

This abstraction thus allows fpga-accelerated image processing operations to be
transparently integrated with the rest of a C++ application relying on OpenCV.

4.2.3 Interface Limitations

There are several limitations associated with the interface. These were the result of
decisions made to reduce time spent developing the interface rather than application-
specific logic. As OpenCV stores colour images in planar format, delivering a colour
image to the fpga would require transferring all three channels of the image to
fpga, either: sequentially by storing them in memory then synchronising delivery to
the application logic; or in parallel, by increasing the number or complexity of dma

engines on-chip, or converting the image from planar to interleaved on the host,
thus increasing transfer time. Each transfer was also limited to a maximum of 1mb.
The external memory on the ml605 board was also not accessed, due to the lack of
a straightforward abstraction to access it from within System Generator.

4.3 Conclusion

This Chapter describes the construction of a system consisting of multiple hetero-
geneous processors for accelerated image processing — a key part of real-time scene
analysis. The specifications of the system we used are given; we then focussed on
the mechanisms for data transfer within it, and described the pcie protocol and its
application in this case. This platform is used in subsequent chapters as a platform
to run all human and car detections on, as part of our broader goal of power-aware
scene surveillance.

5. Algorithm-Level Partitioning in a

Heterogeneous System

This chapter describes partitioning of a pedestrian detection algorithm into separate opera-
tions, and an exploration of the mapping of those operations onto separate processors, using
the heterogeneous system architecture described in Chapter 4.

First we describe the algorithm, and state the criteria for deciding where to partition it,
then we describe in detail the software and hardware implementations required to do this.
A description of the test methodology is then followed by presentation and analysis of the
results using algorithm accuracy, system power consumption and processing time as metrics.
This includes exploration of design space at both design-time and run-time, and in particular
the tradeoffs required when moving between different elements. We compare our accelerated
versions to other published implementations and show that, where data is available, our
version is more accurate than existing fpga-accelerated implementations. Finally we
explore some modifications made to the implementations which change the performance
characteristics to some degree.

The power-aware anomaly detection task in Chapter 6 uses the detection algorithm and parti-
tioning information described in this Chapter to choose the optimal mapping of algorithms to
architectures. This chapter is an expanded version of a paper published in the ieee Journal
of Emerging and Selected Topics in Circuits and Systems in 2013 [16].

5.1 HOG Algorithm Analysis

The Histogram of Oriented Gradients algorithm was described briefly in Section 2.2.
It has become one of the standard object detection techniques in computer vision and

96

5.1. HOG Algorithm Analysis 97

pixel level
source
image

pixel
gradients
in x and y

per-pixel
angle

bin and
magnitude

feature level
cell

histograms
block

histograms

window
SVM clas-
sification

object level image
scaling

result
grouping detections

Figure 5.1: Hog algorithm stages: (i) gradients; (ii) angle & magnitude calculation;
(iii) generation of oriented histograms over cells; (iv) block concatenation
and normalisation; (v) linear svm scoring; (vi) image scaling; (vii) result
grouping.

versions have been implemented on several platforms, allowing for comparison with
existing implementations. In addition, the current state-of-the-art object detectors
are extensions of hog in some form. The algorithm itself can be split into two
compute-intensive steps, as shown by the colour groups in Figure 5.1: feature
extraction and svm classification. This expands to three if we consider image
resizing as compute-intensive also.

A description of the algorithm is provided here. While hog has been described
repeatedly elsewhere in the literature, a comprehensive description here is nonethe-
less necessary in order to explain the behaviour of the firmware implementation and
to understand the interaction of operations between different architectures. §5.1.2
describes the ideal places within the algorithm to consider partitioning between
multiple processors. Section 5.2 describes details specific to hardware implement-
ation including providing a full annotated description of the firmware algorithm
flow, and Section 5.3 does the same for software details.

Hog is a sliding window algorithm. The steps below all work on an image patch
which is 128 pixels high and 64 wide; this is sufficient to detect pedestrians which
are around 96 pixels high. Conceptually, the window is broken down into an
overlapping set of blocks, each with 2× 2 cells. Each cell represents a set of 8× 8 pixels;
thus one sliding window contains 7× 15 blocks and 8× 16 cells (see Figure 5.2).

5.1. HOG Algorithm Analysis 98

Figure 5.2: Hog blocks (left) overlap
by 8 pixels in each direc-
tion, and these make up a
sliding window (right).

90 −70
−50

−30

−10

10

30

50
7090

Figure 5.3: Hog histogram bins over
180∘.

5.1.1 Algorithm Steps

The steps below broadly correspond with the stages in Figure 5.1.

1. Gradients: Gradients in x and y are taken by first normalising the input range
by taking the square-root, then convolving with a 1D kernel [1 0 −1] in
both directions. For colour images, each channel is processed separately. Pixel
gradients gx and gy are generated.

2. Orientation and Magnitude: For each pixel, the magnitude M =
√

g2
x + g2

y and

angle arctan
gy

gx
are calculated. Dalal used 9 bins, split over 0− 180∘; he noted

that this is effective for pedestrian detection, but can be changed to 0− 360∘,
which is more effective for man-made objects. Constants b0, b1, . . . , b9 repres-
enting the edges of each bin B0 . . . B8 are set as tan 0∘, tan 20∘, . . . , tan 180∘. For

each pixel,
gy

gx
is evaluated and e.g. bin B0 is chosen if b0 ≤ (gy/gx) < b1. See

Figure 5.3.

3. Cell Histogram generation: M is then weighted based on the difference between
the gradient angle and the angle of the closest bin edge, and added to the eight
surrounding bins (bins Bn and Bn+1 in all four cells in a block); this prevents
quantisation errors caused by large-magnitude weights close to a bin edge.
For each cell, Bn thus contains accumulated magnitudes of all pixel gradients,
where the direction of the gradient falls close to bn.

5.1. HOG Algorithm Analysis 99

Figure 5.4: Svm person model generated by hog training. Note the strong vertical
responses on arms and sides of body and strong diagonals at shoulders.

4. Block Histogram Generation: Four cell histograms at indices C(x,y), C(x+1,y),
C(x,y+1) and C(x+1,y+1) are concatenated to produce a 1× 36 block histogram
vector bv. This is then normalised to produce bn in two stages:

bn′ =
bv√
|bv|22 + ε

where ε≪ 1. bn′ is capped at 0.2, then:

bn =
bn′√
|bn′|22 + ε

.

This is L2Hys normalisation as described in Appendix A. All 7× 15 block
vectors in the window are concatenated to generate a feature descriptor f v.

5. Window SVM Classification: The above feature descriptor is multiplied by
linear svm weights of 7× 15 elements with 36 weights each, to generate a
window score s:

s =
n=3780

∑
i=1

(f vi · wi) + b . (5.1)

The value of sign(s) represents the presence or absence of a detection, while
the magnitude of |s| denotes the level of confidence in the result. Figure 5.4
shows a visual representation of the weights used.

6. Image Shifting and Scaling: The steps above are now repeated on a window
offset by 8 pixels from the previous one. This overlapping allows better

5.1. HOG Algorithm Analysis 100

Table 5.1: Size of data generated during each algorithm stage, per 1024× 768 frame.

Algorithm Stage Single-scale data (kB)

source 768
gradients 6144
magnitude & angle bins 3840
cell histograms 432
normalised blocks 1697
window scores 38

detection, but a pixel and hence a block may belong to up to 105 windows
and calculations will be duplicated. In practice, block histograms for the
entire image are calculated, then the classifier window is slid over the result.
Scoring is repeated over all windows, then the image is downscaled by a factor
s f = 1.05 and the process is repeated for n scales, or until the resulting image
is too small to classify.

7. Result Grouping: Any resulting positive scores are then grouped into a single
detection if they are of similar size and in a similar location.

5.1.2 Partitioning

The exploration of how to allocate algorithm operations to candidate architectures
was done manually, based on knowledge of the calculations required for each of the
above steps, and dimensions of data generated at each step, as shown in Table 5.1.
We could investigate the time taken to allocate each of these stages to a separate
processor, but as each transfer of data between processors takes a finite time, some
of these (e.g. accelerating only the gradient computation stage) would yield little
benefit. Instead we focus on stages which can group together, and from which we
expect to see some benefit if they are accelerated.

Stages 1–3 in §5.1.1 involve stream processing and histogram binning, which map
well to a heavily-pipelined fpga, particularly when we can construct a subsystem
for e.g. single-cycle histogram binning. Stages 4 and 5 involve repeated vector
multiplications, and are well-suited to the dense arrays of floating-point multipliers
on a gpu. At stage 4, memory access patterns change from streaming pixels which
can be read and retained for a few lines then discarded, to cell histograms which

5.2. Hardware Implementation 101

must be copied to multiple blocks, then classifier weights which are reused many
times over. Conversely, at this stage data access on fpga becomes more complex
and requires more development time. Due to the smaller amount of data produced
by the window scoring stage, the low amount of further processing required on
it, and the need to make use of the result in further calculations, in all cases we
perform stage 7 on the host cpu.

Thus, considering the properties of both the algorithm and the data it generates, we
can generate a list of dataflows through the algorithm which are viable candidates
for implementation and further investigation. Based on Table 5.1, the only data
which can reasonably be transferred between different processors is input pixels
at our chosen scale, cell histograms or window scores. We split these paths into 3

stages: scaling, cell histogram generation, and classification, and refer to them by
the processor used to perform each task, e.g. gfg means “scale on the gpu, generate
cell histograms on the fpga, then normalise and classify on the gpu”. All six
of these paths are shown in Figure 5.5, where these mnemonics are also defined.
Using this information, the question from Chapter 1 we wish to answer is “how
does the performance of an algorithm when partitioned temporally across a heterogeneous
array of processors compare to the performance of the same algorithm in a singly-accelerated
system?”. Sections 5.2 and 5.3 describe platform-specific details of these algorithm
implementations which answer this question.

5.2 Hardware Implementation

The firmware implementation is autogenerated from a System Generator model and
fits into the OpenCV-accelerated framework described in §4.2.2. The 128-bit wide
words output from the ingress fifo shown in Figure 4.4 are shifted out pixel-by-pixel
and fed into the hog logic.

The application logic consists of multiple stripe processors placed side-by-side
(see Figure 5.6: 16 stripes are required for a 1024× 768 image). Magnitude and
orientation information is calculated for each pixel as it is streamed in, then this
information is fed to all stripe processors. Each processor operates on a 64-pixel wide
stripe of image data and generates cell and block histograms for all pixels within
it. These are detailed in §5.2.1 and Figure 5.7. If the data is then being transferred

102

detections

ccc* cfc* cff* gff gfg ggg

source

fpga

cpu

fpgacpu

fpgacpu

fpgacpu

fpga

cpu

fpga

cpu

fpga

cpu

fpgacpu

fpgacpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu Image scaling

Gradients

Magnitude &
Angle Binning

Cell Histogram
Generation

Block Histogram
& Normalisation

SVM Classifica-
tion

Result Grouping

Mnemonics

Figure 5.5: Six possible processing paths through the algorithm. Any one of these
can be selected and used to generate detections. We define these using
the three-letter mnemonics above in the format resize-histogram-classify.
Starred mnemonics denote multithreaded versions.

5.2. Hardware Implementation 103

Stripe Fn Stripe Fn+1

Window i

Figure 5.6: Processing regions for two stripe processors, overlaid on an image.
Fn passes cell histograms and column scores for the left portion of
window i to Fn+1.

to the host or gpu, the cell histograms can then be read out and discarded from
the fpga. Alternatively, §5.2.2 and Figure 5.8 describe classification on fpga. For
multiscale evaluation at n scales, the frame is scaled on the gpu or host cpu then
padded to the original image width and passed to the fpga for processing. While
this involves more data transfer and would be slower than image scaling on-board
the fpga, complexity is reduced, as we do not have to consider changing image
sizes (particularly if many scales per octave are required), or construct a memory
interface and arbitration logic between the application and pcie interface.

The sections below detail specific modifications made to the hardware implementa-
tion from the original algorithm.

5.2.1 Cell Histogram Operations

Orientation and Magnitude: Due to limitations in our pcie interface we convert
the colour image to grayscale before transfer to the fpga. For magnitude
generation, we use the magnitude approximation described in Wilson et
al. [143]:

Mapprox =
1

1 +
√

2
(|gx|+ |gy|+

√
2×max(|gx|, |gy|))

to avoid square-roots. We then select an orientation bin without using division
or trigonometric calculations, using the method described in Bauer et al. [70]:
we retain constants b0, b1, ..., b9, flip the angles of any pixels with gx < 0 by

104

trow = 0

stage i

stage ii

stage iii

trow = 8
stage iv

stage iv

trow = 16
stage v

64 pixels

Stripe Processor Fn

transfers in transfers outGlobal Processing

pixels in

mag and bin
to all stripes

x- and y- gradients

magnitude and
angle binning

last cell
from Fn−1

histograms for 8

cells
last cell to Fn+1

concatenate and
normalise blocks

8x cell histo-
grams to host

histograms for 8

blocks

column scores
from Fn−1

column scores
to Fn+1

per-column SVM
classification x8

sum 7 columns x8

8x window
scores to host

Figure 5.7: Hog stripe processors extract histograms from cells sequentially. Each
stripe shares the normalisation logic, classification control logic and svm

weights between its block classifiers. As pixels are fed in, cell histograms
are generated, stored in an addressable shift register, and read out after 8

rows. Internally, these are then concatenated and normalised into block
histograms. Cells from neighbouring stripes are included for blocks
which overlap between stripes.

5.2. Hardware Implementation 105

×block
histogram B

SVM
Weights

blockRAM

+
completed

column
scores

s(i−6)...(i−1)

rolling
column

score
blockRAM

window
score Si,j
to host

36 × 1
vector w

Figure 5.8: Ci, one of eight block classifiers in a stripe. A block histogram is eval-
uated against each weight vector in turn and the result is accumulated
into the classifier blockram. On readout, columns are summed together
before adding completed column scores from the stripe to the left.

setting gx = −gx and gy = −gy, then select bin B0 if b0 × gx ≤ gy < b1 × gx

etc.

Cell Histogram: Once an angle bin for a pixel is selected, the pixel’s magnitude
is then added to the relevant bin for that cell. Weighted voting into several
angle bins is omitted; this simplifies the calculation and allows re-use of cell
histograms in adjacent blocks. The cell histograms are stored in accumulators
and, after every 8 rows, are either read out to host memory or passed to
Addressable Shift Registers (asrs) within the block normaliser (stage iv in
Figure 5.7). As each stripe operates on 8 cells, we need to retain ten cell
histograms (eight from row i and two from i− 1) in the asrs at any one time
to generate a block histogram.

5.2.2 Window Classification Operations

Block Histogram: All cell histograms in each stripe are loaded from the asrs filled
in the previous stage, and then normalised. Some of the overlapping blocks
span two stripes so cells are shared between stripes when necessary, as shown
by the transfers in Figure 5.7. The normalisation logic is shared between all

5.2. Hardware Implementation 106

blocks in a stripe due to its complexity. The L1-norm is taken instead of the
capped L2-norm:

bn =
bv√
|bv|+ ε

This only requires one division and square root, instead of two square-roots,
divisions and dot products.

SVM evaluation: For histogram classification, 16 rows of cells must be retained for
each window of 7× 15 = 105 blocks; this is an impractical amount of data to
store in blockrams. We avoid this problem by normalising the cells into the
appropriate block histograms B, immediately classifying that block histogram
against each of the 105 overlapping windows it belongs to, then discarding
that block and retaining only the 105 partial sums. This is done in the block
classifiers within each stripe (Figure 5.8).

For a window at location mi,j, seven partial sums si−6, si−5, . . . , si representing
columns made up of blocks mi−6, . . . , mi will be stored in the individual
blockrams of classifiers Ci−6, . . . , Ci. These will be updated as each new
row of blocks is processed. Once all rows forming window mi,j have been
processed, si will contain partial sums for block columns Bi,(j−15,j−14,...,j) · w
and so on. Columns si−6,...,i are summed in Ci to form a window score Si,j,
which is then transferred to the host. However, because the sliding windows
overlap vertically and horizontally, the ram in Ci also contains partial sums
for all windows which contain the location mi,j. As before, these are read out
as each window finishes, and transferred from the preceding stripe Fn−1 if
necessary. Thus, instead of sliding an image window through a classifier, we
evaluate all elements in the support vector for each new block then gradually
sum the results as new blocks are presented. This requires one blockram

and one embedded multiplier for each row of blocks in a stripe, plus an extra
blockram per stripe to hold classifier weights. Normalisation of 8 blocks per
stripe and the 3780 multiplications required by each block must be completed
before the next cell histograms arrive eight rows later; this prevents the fpga

version from being scaled down to smaller image widths, but can work on
larger image widths by adding more stripes.

The cell histogram pipeline is relatively short, and for e.g. cfc can output histograms
after seeing only eight rows of image data. The window classifier requires 128 rows

5.3. Software and System Implementation Details 107

Table 5.2: Resource Utilisation for hog application and pcie link logic on fpga.

Resource Percentage Used

Registers 33%
LUT 56%
Slice 81%
BlockRAMs 23%
Embedded Multipliers 18%

before it is fully filled, although after this point it generates a row of window scores
for every eight rows seen in the image. Finally, the output data is converted to
single-precision floating point format for easier processing on the host, concatenated
into 128-bit words, and fed into the egress fifo.

The application logic was clocked at 200MHz and synthesised using Xilinx ise 13.4.
Resource use is shown in Table 5.2.

5.3 Software and System Implementation Details

The software implementations of both cpu and gpu rely on the HOGDescriptor

class in the OpenCV library. This corresponds closely to the algorithm steps given
above, with the main difference being that instead of conceptually following a
sliding-window model, gradients then block histograms for all areas in the image
are computed at once. Block histograms corresponding to each part of each window
are then selected from the resulting matrix.

For the cfc and gfg versions, OpenCV was modified to process histograms which
were generated on the fpga using the system described in §4.2.2. This required
reading in the cell histograms, rearranging them into blocks, and passing them to
the existing normalisation and classification code. The cfc version was then speeded
up further using sse commands for the svm classification stage. Cff and cfc are
multithreaded, with one thread spawned for each image scale in a frame. This
allowed the cpu to process window evaluations for e.g. scale n while the fpga

was generating histograms for scale n + 1; mutexes were used to prevent multiple

5.4. Classifier Training 108

simultaneous accesses to the fpga. For cfc and gfg, we normalise with the original
clamped L2-norm method.

The fpga is configured at system boot time from on-card flash memory. Dynamic
fpga reconfiguration is not used, and algorithm selection (histogram or score
outputs) is done by toggling a flag at the same time as the dma request is made.
For data transfer to and from the fpga, the dma transfer is triggered by the fpga

driver as described in §4.2.2. Using this processing model, the fpga acts as a stream
processor, moving data directly from host memory, operating on it, and returning
the results to the host all in one operation. This avoids a separate data transfer step,
so the time taken to complete the operation is governed by application processing
not transfer time. The cpu periodically checks a completion flag, which is set
when output data from the fpga is finished being transferred into main memory.
Depending on the version, this can then be transferred to gpu memory for further
processing. Gpu kernels may then be launched in the standard manner by the cuda

driver.

In summary then, ccc and ggg are unmodified from OpenCV and closest to the
original algorithm. Cfc and gfg omit the magnitude voting into histogram bins, and
gff and cff further simplify the normalisation technique.

5.4 Classifier Training

Classifier training was done in the manner described in Dalal’s thesis [78]. The
classifier was trained on positive and negative examples from the inria dataset1.
This was in two stages: first on positive images and a selection of negative windows,
and then re-trained using all negative errors. As with [78], this used a modified
version of SVMLight2 for training. Two sets of svm weights were generated, one
for cfc and gfg and one for cff and gff. (The ccc and ggg versions used the weights
from [77]). Multiple linear support vectors were condensed to form a single support
vector w with l = 3780. Training was accelerated by performing window evaluations
on the target architecture, but parameter calculation was performed on the host,
unlike the method described in [65].

1Available from http://pascal.inrialpes.fr/data/human/
2Available from http://pascal.inrialpes.fr/soft/olt/

http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/soft/olt/

5.5. Results 109

5.5 Results

Two separate tests were performed, one to evaluate algorithm accuracy and another
to evaluate performance for processing time and power consumption. Classifier
accuracy was measured on the test images in the inria dataset, and performance
was measured using several video clips containing one to three pedestrians at
medium range, taken from the Thales camera described in §3.2.2.

Dollár notes that hog detects pedestrians at around 96 pixels in height, placing
them at 20m or more away from the camera [82]. Scaling allows pedestrians much
closer than this to be detected, at the expense of detection runtime. (Detection of
pedestrians of less than 96 pixels in height is discussed in Chapter 6.) The application
we aim to target involves detection at a distance (given that we are interested in
images from a camera mounted on a vehicle), thus we evaluate performance at
n = (1, 3, 13, 37) scale levels, scaling the image by 1.05× between each level. This
is sufficient to detect pedestrians of 96 up to 105, 170 and 560 pixels in height
respectively.

5.5.1 Performance Considerations

Time and power measurements were taken for the system described in Chapter 4.
In addition, these tests were repeated using a smaller gpu, a Quadro 2000 with 192

cuda cores. This was done to extend the analysis to include decisions which can be
made during the system design phase (design-time) rather than only at run-time:
(for example, for a given power budget, is this best distributed between e.g. a single
large gpu, or one gpu and one fpga?).

Using this system, we performed pedestrian detection on a w = 1024× h = 768
video at our chosen scale levels (n = 37 is the maximum number of scales for this
size of video). Overall processing times for each version are given in Table 5.3. From
these, the fpga versions are fastest, taking 5.09ms at n = 1 (cff and gff are identical
as no scaling is done at this level). In these cases, most of the time taken is spent
moving the image data through the fpga (1024× 768 pixels at 200MHz = 3.91ms).
Performance of the heterogeneous version is comparable to that of the cff version
until large nscales, while for n > 3 the ggg version is consistently faster.

5.5. Results 110

Table 5.3: Mean processing time (milliseconds) when running hog on 1024× 768
video using a nvidia gtx560 gpu. (Labels defined in Figure 5.5. See
§5.6.1 for kernel SVM details.)

Processing time (ms)
Linear SVM 1 level 3 levels 13 levels 37 levels

ccc 151.6 290.1 678.0 867.1

cfc 52.3 101.7 288.1 453.9
cff 5.10 13.9 57.1 108.5
gff 5.09 16.4 59.6 122.2
gfg 7.82 24.7 87.8 166.1
ggg 5.90 16.4 42.7 65.1

Kernel SVM

gfg 2200 6540 28280 81180
ggg 3540 9570 25700 35345

Table 5.4: Mean processing time (milliseconds) when running hog on 1024× 768
video using a nvidia Quadro 2000 gpu.

Processing time (ms)
Linear SVM 1 level 3 levels 13 levels 37 levels

ccc 153.0 288.0 672.0 873.1
ggg 13.4 36.2 98.6 140.0
cff 5.1 13.8 58.5 111.5
gff 5.1 16.6 60.0 121.4
gfg 11.9 37.1 129.4 236.8
cfc 51.0 102.8 282.1 430.0

Table 5.4 shows processing times for the system using the Quadro 2000 gpu; the gfg
and ggg versions are considerably slower.

Figure 5.9 shows processing times of individual algorithm stages and transfers
between them, at the original image size and the 37th scale, where the image is
around 128 pixels high. In Figure 5.9b, the gff version appears faster than cff, and
this is true at a single, 37th scale. However, when run over multiple scales, cff
is multithreaded, so the fpga processing time dominates. This accounts for the
shorter cff times seen over multiple scales in Table 5.3. The “fpga histograms” and
“fpga scores” bars in Figure 5.9 also include transfer to and from the fpga. There
is no discrete “data transfer to or from the fpga” step; after the ingress buffer is

5.5. Results 111

Table 5.5: Idle and load power consumption using ml605 fpga and gtx560 gpu.

(a) System power consumption when idle using ml605 fpga

and gtx560 gpu.

CPU GPU FPGA Power Consumption (W)

idle idle off 129
idle idle on 147

(b) System power consumption for each execution path at 1, 3, 13 and 37

scaling levels.

Version FPGA Power Consumption (W)
1 level 3 levels 13 levels 37 levels

ccc off 156 172 170 171
ccc on 180 191 191 191
ggg off 170 180 198 201

cfc on 180 185 189 187
cff on 181 175 185 184
gff on 170 170 179 179
gfg on 189 190 192 194
ggg on 193 205 215 216

filled initially, fpga transfer time is hidden and is dictated by the rate at which the
hog logic consumes and generates data. The gpu implementation avoids this by
storing each frame in its own global memory, performing on-board scaling, and
only transferring individual detections back to main memory. The compute to i/o

ratio when the gpu↔host link is considered is thus higher.

Power consumption of the whole pc system for each version is shown in Table 5.5b.
Idle power consumption of the system with and without the fpga turned on is
shown in Table 5.5a for reference. These were obtained by using a mains power
meter to measure the power drawn by the entire system. It was possible to turn
off power to the fpga but not the gpu as the latter was used for image display
as well as processing. The bottom half of Table 5.5b compares each accelerated
method. Consumption in gfg and ggg appears to increase with the number of scales,
while power for the versions where the fpga does most of the processing remains
constant. At all scales, the gff version draws the least power in cases where all three
processors are switched on. Table 5.6 shows the same information as an increase
over baseline power consumption.

112

Table 5.6: Power consumption above baseline (156 Watts) for each execution path at
1, 3, 13 and 37 scaling levels.

Version FPGA Power Consumption (W)
1 level 3 levels 13 levels 37 levels

ccc off 0 16 14 15
ccc on 24 35 35 35
ggg off 14 24 42 45

cfc on 24 29 33 31
cff on 25 19 29 28
gff on 14 14 23 23
gfg on 33 34 36 38
ggg on 37 49 59 60

Table 5.7: System power consumption using ml605 fpga and Quadro 2000 gpu.

(a) Idle system power consumption using ml605 fpga and
Quadro 2000 gpu.

CPU GPU FPGA Power Consumption (W)

idle idle off 77
idle idle on 97

(b) System power consumption for each variant at 1, 3, 13 and 37 scaling
levels when running hog on 1024× 768 video using a nvidia Quadro
2000 gpu.

Variant FPGA Power Consumption (W)
1 level 3 levels 13 levels 37 levels

ccc off 122 132 135 136
ccc on 141 153 154 156
ggg off 130 135 140 139

ggg on 149 155 160 160
cff on 129 133 141 141
gff on 129 131 150 137
gfg on 135 141 145 149
cfc on 135 141 147 147

113

0 1 2 3 4 5 6 7 8 9

ccc

ggg

cff

cfc

gff

gfg

time(ms)
CPU resize GPU resize CPU histograms
GPU histograms FPGA histograms Transfer from FPGA to GPU
CPU scores GPU scores FPGA scores

→ 151ms

→ 52ms

(a) Processing time (in ms) for each algorithm stage at n = 1 (no resizing).

0 1 2 3 4 5 6 7 8 9

ccc

ggg

cff

cfc

gff

gfg

time(ms)
CPU resize GPU resize CPU histograms
GPU histograms FPGA histograms Transfer from FPGA to GPU
CPU scores GPU scores FPGA scores

→ 46ms

(b) Processing time (in ms) for each algorithm stage at 37th image scale only.

Figure 5.9: Time (in ms) spent on each algorithm stage for each version, at (a) first
and (b) 37th scale, using gtx560. Transfers to and from the fpga are
contained within fpga measurements, which also includes extra non-
image data transferred to flush the buffer. Some cpu processing times
are > 9ms.

5.5. Results 114

Table 5.7a shows power consumption at idle for the Quadro 2000 system; this is
considerably lower than for the larger gpu version. Table 5.7b shows consumption
of the same system under load. Here the gff version is faster than ggg, while
usually also drawing less power than a system with no fpga present. Thus for a
system with a small gpu, a heterogeneous arrangement of processors always offers
both a power and speed advantage over gpu-only acceleration unless accuracy is a
high priority. A given power budget is therefore better spent on a heterogeneous
processor arrangement unless it is capable of including a large, fast gpu.

5.5.2 Algorithm Detection Performance

Figure 5.10a shows a Detection Error Tradeoff (det) curve for the inria pedestrian
dataset, evaluated on the basis of fppw. All images are padded to 1024× 768 before
evaluation; images which are larger than this in any dimension are cropped for
fpga evaluation. The results are comparable to the original, with a slight decrease
in accuracy in the gfg and cfc-versions due to simplified block weighting, and a
further decrease for gff and cff due to the simplified normalisation.

Figure 5.10b compares each of our implementations to the performance of the ori-
ginal hog algorithm on the large positive test set from inria, using the evaluation
code from Dollàr [82]; this allows comparison to other algorithms and implement-
ations, and evaluates detector performance, including Non-Maximal Suppression
(nms) over multiple scales. On this graph the differences between our versions are
more pronounced, but still have the same ranking as in Figure 5.10a. Both figures
here show that as we move more processing to the fpga, the accuracy decreases
slightly; this is as expected, given the simplifications we make when implementing
the algorithm here. The graph legend also includes the log-average miss rate. This
is obtained by sampling the miss rate at a logarithmically-spaced set of points along
the x-axis, then taking the mean of those points.

5.5.3 Performance Comparisons and Tradeoffs

Based on the accuracy results in Figure 5.10a and the power and latency information
for a high-power and lower-power system given in Tables 5.3, 5.4, 5.5a, 5.5b, 5.7a
and 5.7b, we now compare execution time, accuracy and power consumption of
each implementation.

115

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

false positives per window (FPPW)

m
is

s
ra

te

Kadota

Martelli

Bauer

Orig−HOG
ccc
gfg
cff
cfc
ggg
gff
ggg−kernel

(a) Fppw det curve for hog on inria dataset.

10
−2

10
−1

10
0

0.40

0.50

0.64

0.80

1

false positives per image (FPPI)

m
is

s
ra

te

62% cff
61% gff
59% gfg
59% cfc
53% ccc
52% ggg
48% ggg−kernel
46% Orig−HOG

(b) Fppi det curve for hog on inria dataset. Percentages in legend denote log-average
miss rate.

Figure 5.10: Detection Error Tradeoff curves for algorithm implementations.

5.5. Results 116

10
−3

10
−2

10
−1

10
0

10
1

0.05

0.10

0.20

0.30

0.40

0.50

0.64

0.80

1

false positives per image (FPPI)

m
is

s
ra

te

62% cff
61% gff
59% gfg
59% cfc
53% ccc
52% ggg
48% ggg−kernel
46% Orig−HOG
19% Crosstalk
16% VeryFast

Figure 5.11: Fppi det curve for multiscale hog on inria dataset, showing com-
parisons to current state-of-the-art detectors (VeryFast and Crosstalk).
Percentages denote log-average miss rate.

We can make a design-time choice between the two systems here; given that the
accuracy of each implementation between the two systems is the same, we are
only concerned with power and latency at design time. Figure 5.12a shows power
consumption against the lowest idle baseline of 77W, versus processing time for
both systems. Processing time for all fpga-centric versions is largely similar but idle
power consumption changes considerably, and the ranking of each option changes
as we move from a low-power (Quadro 2000, where cff is faster) to a higher power
system (where ggg is faster). This move from 111ms to 65ms processing time costs
an extra 75W; a 42% speed improvement draws 53% more power.

As we are concerned with something which we mean to target at real-time applica-
tions, and where we would ideally perform additional post-detection processing
each frame, we choose the faster, higher-power system for further analysis; this
gives more opportunities to e.g. vary the number of scales processed to reach an
arbitrary limit in fps. Given the ability to select any of the implemented versions
at any time (see §5.6.3), we can quantitatively match system priorities (processing
speed, power consumption, and accuracy) to particular versions, and evaluate the
costs of selecting one configuration over any other.

117

0 100 200 300 400 500 600 700 800 900

60

80

100

120

time(ms)

po
w

er
ab

ov
e

id
le

ba
se

lin
e

(W
)

ccc-quadro, FPGA off ggg-quadro, FPGA off gff-quadro, FPGA on
gfg-quadro, FPGA on cff-quadro, FPGA on cfc-quadro, FPGA on
ggg-560, FPGA off gff-560, FPGA on gfg-560, FPGA on
cff-560, FPGA on cfc-560, FPGA on

(a) Design-time design space exploration: power vs. time plot using small Quadro 2000 and large
gtx560 gpu. Power consumption shown as use over baseline of 77W.

0 100 200 300 400 500 600 700 800 900
30

40

50

60

70

time(ms)

po
w

er
ab

ov
e

id
le

ba
se

lin
e

(W
)

ggg-560, FPGA on gff-560, FPGA on gfg-560, FPGA on
cff-560, FPGA on cfc-560, FPGA on ccc-560, FPGA on

(b) Run-time design space exploration: power vs. time plot using gtx560 gpu. Power consump-
tion shown as increase over baseline of 147W.

Figure 5.12: Design space exploration: processing time (ms) vs. power consumption
(W) for hog at n = 37. In (a) two different gpus are tested with the
fpga turned on or off as required. (b) shows options for selection at
runtime. The large gpu is used and the fpga is always on.

5.5. Results 118

Table 5.8: Choice of algorithm version and compromises for a given priority at
13 scales. Tradeoffs shown as percentage differences from their best
measurement. Accuracy is measured as % change in log-average miss
rate.

Priority Best Choice Tradeoffs

high speed ggg power ↑ 20% accuracy ↓ 4%
lowest power gff time ↑ 26% accuracy ↓ 13%
high accuracy ggg-kernel power ↑ 20% time ↑ 54600%
power & speed gff time ↑ 26% accuracy ↓ 13%
accuracy & speed ggg power ↑ 20% accuracy ↓ 4%
accuracy & power ccc time ↑ 1290% accuracy ↓ 1% power ↑ 7%

The costs and tradeoffs for these three parameters are shown in Table 5.8 for
nscales = 13. Here we focus on viable implementations; we discuss the ggg-kernel
implementation briefly in §5.6.1. Although it is the most accurate, this configuration
does not have the potential to run fast enough to be usable in any scenario, so we
do not consider it further here.

For the fastest available system we have, we now focus on its runtime characteristics.
Although our design space is three-dimensional, given the difficulty of representing
a very small number of widely scattered discrete points in a 3D space in a 2D
medium, we discuss each set of tradeoffs separately, as 2D pairs.

Power consumption above idle versus processing time for runtime-selectable ver-
sions is shown in Figure 5.12b. Here, ggg and cff and gff form a very steep Pareto
curve for these characteristics. Thus, ggg provides a fast, high-power version and gff
provides a lower-power, slower alternative. For all other versions, only processing
histograms on the fpga is not Pareto-efficient.

Dollàr et al. discuss the log-average miss rate metric, which allows comparison of
detection algorithms using a single number to express accuracy. This was calculated
using code from [82]. This takes into account performance at various points on the
x-axis seen in Figure 5.11. Figure 5.13a shows power consumption over the idle
baseline, against log-average miss rate. This forms another Pareto front between
ggg, ccc and gff, showing that the increase in accuracy offered by cfc and gfg does
not offer any Pareto-efficient benefits. Figure 5.13b shows that ggg is always the best
choice when only considering accuracy and time.

119

52 53 54 55 56 57 58 59 60 61 62
30

40

50

60

70

log-average miss rate (%)

po
w

er
ab

ov
e

id
le

ba
se

lin
e

(W
)

ggg gff gfg cff cfc ccc

(a) Power vs. log-average miss rate plot using gtx560 gpu. Power consumption shown as
increase over baseline of 147W.

0 100 200 300 400 500 600 700 800 900
50

55

60

65

processing time (ms)

lo
g-

av
er

ag
e

m
is

s
ra

te
(%

)

ggg gff gfg cff cfc ccc

(b) Processing time vs. log-average miss rate plot using gtx560 gpu.

Figure 5.13: Run-time design space exploration for various pairs of characteristics.

120

ggg gff gfg cff cfc ccc

1

10

100

1000
∆

t
(%

)

% increase in time from ggg

−20
−16
−12
−8
−4
0

∆
P

(%
)

% decrease in power from ggg

(a) Relative change in processing time and
power consumption of each configuration
compared to ggg. A red bar below zero
indicates decreased power consumption.

ggg gff gfg cff cfc ccc

0
4
8

12
16
20

∆
P

(%
)

% increase in power from gff

−10
−8
−6
−4
−2
0
2

∆
la

m
r

% decrease in miss rate from gff

(b) Relative change in power consumption
and decrease in log-average miss-rate of
each configuration compared to gff. A
red bar above zero indicates increased
power consumption and a yellow bar
below zero shows decreased miss rate
(i.e. smaller error).

ggg gff gfg cff cfc ccc

0
200
400
600
800

1,000
1,200

∆
t

(%
)

% increase in time from ggg

−10
−8
−6
−4
−2
0

∆
la

m
r

% increase in miss rate from ggg

(c) Relative change in processing time and in-
crease in log-average miss-rate of each con-
figuration compared to ggg. A blue bar
above zero indicates increased runtime and
a yellow bar below zero indicates increased
miss rate (i.e. larger error).

Figure 5.14: Relative tradeoffs between individual characteristics.

5.5. Results 121

The charts in Figure 5.14 express this information as relative tradeoffs; Figure 5.14a
shows that to get a 15% reduction in power consumption from the maximum we
need a ∼80% increase in processing time (from ggg→cff). From here, a further 2%
decrease in power consumption using gff only requires an extra 10% increase in
time. Figure 5.14b shows that, starting from gff, to get a 8% improvement in accuracy
requires 5% more power, or 20% more power to get 9% more accuracy (using total
system power consumption rather than increase from idle power consumption).
Figure 5.14c echoes the contents of the other time against accuracy graph; as ggg
already outperforms other implementations for both measurements, any move away
from this results in a significant decrease.

5.5.4 Analysis, Limitations, and State-of-the-Art

A comparison to the current state-of-the art detectors (VeryFast and Crosstalk) is
also given in Figure 5.11. Two conclusions can be drawn from this figure: the
first is the advancement made in the underlying algorithm in the eight years
since hog was first published; and the second is that modifying an accelerated
hog implementation to more faithfully match the original algorithm offers fewer
opportunities for fast, accurate detections than starting with a baseline algorithm
offering better performance, such as VeryFast [83] (particularly when such an
algorithm already makes use of an accelerated processor such as the gpu).

There are three reasons for the decrease in performance of the fpga seen in §5.5.1
when considering high numbers of scales. First, the fpga implementation is not
capable of performing the multiple image scaling per octave that hog requires for
accurate detection; this has been mitigated by rescaling on the cpu or gpu and
padding and transferring the result. Second, the pcie interface has a maximum size
limit of 1mb for one dma transfer: each scaled image must be transferred separately
and incurs its own overhead, in the form of additional data transferred after the
frame data to push remaining window scores or cell histograms through the pipeline.
This means that at multiple scales, the large pipeline is emptied between each scaled
image. Finally, the row buffers used by the fpga are fixed at a standard line length
of 1024; smaller images are padded by adding blank space to the right to fill each
row. Thus, as image size decreases, the number of clock cycles required to process
all pixels in the image scales sublinearly, unlike the effectively linear scaling seen on
gpu and cpu. These effects are shown in Figure 5.9b.

5.5. Results 122

The inefficiencies associated with the multiple transfers to fpga mean that all
fpga versions run slower than ggg at multiple scales. In addition, for gfg the cell
histograms must be transferred twice (from the fpga back to main memory then
to the gpu). However, the pci-express specification allows for direct endpoint-to-
endpoint transfer, allowing an fpga to transfer data directly into gpu on-board
memory. This technique is currently only possible with Kepler-class gpus on Linux
hosts [144] but is an option to consider for future work.

Various fixes could be implemented to improve performance; if we resized and
processed all 37 scales in one transfer it would take around 69ms per-frame, but
as Figure 5.11 shows, this time would arguably be better spent taking a more ad-
vanced algorithm to work from. The same figure shows that, in contrast to the large
differences in runtime and power consumption, differences in accuracy between
implementations on various platforms are relatively minor. The analysis above
has used fppi and log-average miss rate throughout, as they provide a means of
comparing to other algorithms. Dollàr et al. [82] argue that fppw measurements are
flawed, as detector ranking can change between window and image measurements,
and is affected by the nms method used. However, for existing fpga implement-
ations where detection accuracy is discussed, only fppw information is available,
so we compare against that. Figure 5.10a also shows comparisons to other fpga

implementations, showing that our implementation is more accurate than three
existing fpga versions. Kadota et al. [86] perform hog feature extraction on fpga at
30fps on vga video, with 5% miss rate on the inria dataset at 10−2

fppw. Mar-
telli et al. [87] perform fpga-based pedestrian detection using covariance features,
achieving 20% miss rate at 10−4

fppw on inria.

Hiromoto et al. [98] describe a similar system using co-occurrence hog. They do not
provide accuracy information, but evaluate a qvga image at scale ratio s = 1.2 with
3615 windows per frame at 38fps or 139166 sub-windows per second, whereas our
gff version described above evaluates 20868 windows per frame at 13fps (271284 sub-
windows per second) for the same s. Kadota et al.’s implementation [86] evaluates
56466 windows on 10 parallel elements, taking 5.7µs per window. In contrast, cff
and gff take 657µs to generate all histograms over a single-scale window, or a further
40µs to generate window scores, where up to 121 parallel elements are used to
generate a row of scores across the image at once. This longer window period is
dictated by the pixel clock and our larger frame width. In both cases, our slower

5.5. Results 123

framerate is a limitation of our pcie architecture; if the multiscale evaluation was
fully pipelined, multiscale evaluation at s = 1.2 would take around 20ms.

Finally, the performance information given above, the advantages of a heterogeneous
system become apparent: in situations where speed and power consumption are
both desired, and power consumption is the most important constraint, gff provides
a suitable compromise, while still offering a 7.1× speed-up over ccc. As Table 5.5b
shows, gff requires less power than a gpu-accelerated system when no fpga is
present. As shown by Figures 5.12b and 5.14, gfg and cfc are always outperformed by
other configurations in all scenarios, showing the effect of increased communications
delays between processors. This is confirmed by the transfer overhead graphs in
Figure 5.9: in particular, in Figure 5.9b, although the resize step for gff on gpu

takes considerably less time than on cpu, the extra transfers required means that
cff is faster overall. The power consumption analysis for runtime switching done
in §5.5.3 is done on the assumption that all processors are running constantly and
cannot be powered down when not in use. Again, this is a limitation of our pcie

implementation.

One could speculate that, as moving more algorithm stages to fpga increases speed
and reduces power, a worthwhile comparison would be to include an all-fpga

implementation. Until now we have only considered run-time characteristics, but at
this point we would have to include increased development time as another element
in the design stage exploration process; at this stage, again, the time would be
better spent implementing an algorithm which does not require implementation at
multiple dense scales.

The analysis here also assumes that we always evaluate over a fixed number of
scales. If our target application involves hypothesis generation via motion or infrared
hotspot detection, we would confirm pedestrian detections at a certain pixel height
rather than performing exhaustive evaluation over n scales. For detections closer
to the camera than this, we aim to use motion-cued detection on a smaller region
as this considerably reduces the number of scales which are required to process an
image. However, the tradeoffs do not change significantly unless nscales ≤ 3, where
cff is slightly faster.

5.6. Variations 124

5.6 Variations

The previous section describes the main body of tests which were performed on
the heterogeneous system; the conclusions drawn from Section 5.5 were the main
factor influencing the selection of algorithm implementations used in Chapter 6.
This current section details various other tests which were performed on the system,
but which were not found to improve performance enough to be considered for
further use.

5.6.1 Radial Basis Function Kernel Classification

Based on the suggestion of a journal paper reviewer, the linear classifier in the svm

was compared with a rbf kernel. To generalise, rbf kernels offer increased accuracy
at the expense of runtime, as noted by Dalal [78]. A variation of this method for
classification in hog was used by Bauer et al. [71], where image histograms were
generated on fpga; however, motion detection was used to select a maximum of
1000 windows per frame to evaluate.

Svm classification with a linear kernel on a feature vector x is shown in Equation 5.1.
The rbf kernel instead uses:

s =
nsv

∑
i=1

(αi · yi ·K(wi, x)) + b (5.2)

where the kernel K is:
K(w,x) = exp (−γ‖w− x‖2) (5.3)

Around 4000 support vectors were generated during training. Using a linear kernel,
it is possible to condense all generated support vectors into one vector w by summing
the weights, but this is not possible with rbf kernels.

Rbf kernel evaluation was implemented on gpu, and both the gfg and ggg algorithm
versions were evaluated using this kernel. Weights were generated as described in
Section 5.4. The reviewer had also requested an implementation and analysis of
this classifier on fpga. However, this was judged not to be feasible based on the
quantity of calculations required to produce a result in real time over the whole
frame. Examples do exist in the literature of rbf kernels implemented on fpga,

5.6. Variations 125

such as Irick et al. [145] which works on small windows, or Cadambi et al. [146],
which classifies at 14× 109 Multiply-Accumulate Operations per second (mac/s).
However, if we were to use every optimisation listed in [146] (such as making
every calculation with 4-bit precision in order to pack multiple calculations into
one hardware multiplier, and double-clocking the multipliers3) and assuming we
were able to use all 768 multipliers on the fpga, we would still take around 700ms
to classify a 1024× 768 image at one scale, and several seconds to classify a whole
frame over multiple scales. The relatively long processing times for gfg-kernel and
ggg-kernel in Table 5.3 confirm this; again, this delay is mostly due to the large
number of support vectors which must be evaluated.

Note that this version differs from Bauer et al.’s [71] in that we evaluate the whole
image and do not generate motion-cued hypotheses to reduce the number of
candidate windows to be evaluated. As discussed in Chapter 6 we use motion
detections to target both histogram extraction and classification to specific regions
instead. For an application with the goal of real-time operation in mind, these
processing times are arguably not useful, and so we do not consider rbf svm

classification outside of this section.

5.6.2 Transfer Tests with Pinned Memory

A test was also performed to ascertain whether performance could be improved
using pinned memory. This is a gpu memory optimisation technique whereby an
area of page-locked host memory is defined as being directly accessible from the
gpu, and is mapped into gpu global memory [147]. In this mode, each running
kernel fetches data from the pinned memory area on-demand, rather than including
a explicit step of copying data to gpu global memory before the kernel is run. Thus,
in the gff and gfg stages, it appeared possible to reduce the transfer delays when
moving fpga data to gpu by removing a copying step. The memory region which
was pinned was the output buffer which held data returned from the fpga, as
described in §4.2.2. This was allocated and marked as page-locked by the fpga

driver at initialisation, then mapped into gpu memory. A schematic is shown in
Figure 5.15. As this would have affected mainly the gfg and gff versions, processing
time results for these variants only are given in Table 5.9.

3This may already be infeasible given that our application logic base clock is 200MHz rather than
Cadambi’s 133MHz.

5.6. Variations 126

FPGA

host
memory
output
buffer

GPU
GPU

global
memory1

2

3

4

(a) Non-pinned memory transfer.

FPGA

host
memory
output
buffer

GPU
GPU

global
memory1 2 3

(b) Pinned memory transfer.

Figure 5.15: For non-pinned transfers, data is written by the fpga(1) into host
memory, then read by the gpu(2) into gpu global memory, loaded from
global as it is processed(3), then results written back to global(4). For
pinned transfers, data is written as before(1) then read straight from
the host by the gpu(2), processed, then the results are written to global
memory(3).

Table 5.9: Mean processing time (milliseconds) of hog for 1024× 768 video while
using pinned and non-pinned memory.

Variant Pinned? Processing time (ms)
1 level 3 levels 13 levels 37 levels

gfg no 7.82 25.4 111.0 303
gfg yes 8.60 27.8 129.0 341

gff no 4.88 17.4 78.5 196
gff yes 5.10 21.0 79.8 231

From these results, it becomes apparent that pinned memory does not offer an
advantage in this case; at 37 scales, the pinned gfg version is 10% slower than
non-pinned; i.e. a separate copy step to gpu memory is faster than allowing each
kernel to load data from the fpga output buffer as required. Based on these results,
non-pinned memory was used throughout the other experiments.

5.6.3 Version Switching

Switching times between different versions were also measured to determine if
any noticeable delay was incurred due to version switching. Processing times were
averaged for transitions between both version a → a (same) and a → b (different)

5.6. Variations 127

Table 5.10: Processing times for different hog versions on a 1024× 768 image, where
the version used to process timestep t = tn was either the same as at
t = tn−1 (column 2) or different (column 3). The final column shows
times for the a→ b transition as a percentage of the a→ a transition.

Variant Processing time (ms) for transition: Time for a→ b,
a→ a (same) a→ b (other) normalised to a→ a (%)

ccc 776.6 765.1 98.5
ggg 55.5 55.7 100.3
gfg 119.1 123.1 103.3
cfc 646.4 640.1 99.0
cff 96.6 95.1 98.4
gff 85.5 88.2 103.1

versions at the t = tn−1 to t = tn timestep. These are shown in Table 5.10. As
shown by the final column of this table, when switching between two versions,
all processing times are within 4% of times when not switching. This means that,
when constructing a cost function to determine which implementation to select
at any point in time, we do not need to assign a cost to the time taken to switch
between different versions, and need only consider scene content and current system
priorities.

5.6.4 Evaluation of Embedded Implementation

In order to test performance of this algorithm partitioning method on an embedded
system, an evaluation was performed on ruggedised hardware suitable for install-
ation in a vehicle for image enhancement and surveillance tasks. The embedded
system consisted of a mobile Intel Core2 processor on a Single-Board Computer
(sbc), mounted on a 3U-high OpenVPX board. This was connected to another
OpenVPX board containing a nvidia mobile gpu via a backplane, which allowed a
connection via pcie. The sbc and OpenVPX housing are shown in Figure 5.16. The
gpu was a compute capability 1.2 gt240 with 96 cores, an older generation than the
system described in Section 3.3. Both of these boards were ruggedised, and had
variants which were certified for use over the full military temperature range and
required only external convection cooling.

A schematic is shown in Figure 5.17. The backplane also had breakout connections
for external pcie cables, to allow links to other equipment. As no OpenVPX fpga

board was available, the existing ml605 development board was connected to the

128

(a) Single-board computer. (b) OpenVPX card housing and backplane.

Figure 5.16: Single-board computer used in embedded system. OpenVPX backplane
connection shown at top right.

GPU x86 SBC
External PCIe

breakout

Backplane

8-to-4-way
adapter

PCIe socketML605 board

8-lane cable

4-lane cable

System

Figure 5.17: Embedded system connected to ml605 over pcie. Packet loss suspected
between system breakout and socket.

5.7. Conclusion 129

system via a pcie extender: essentially, a pcie socket connecting to the development
system via an external cable and an 8-way to 4-way adapter. The extender was
limited to a pcie 1.0 4-lane connection, providing a theoretical bandwidth of 1 gb/s.
As the application logic consumed data at 200 Megabytes per second (mb/s), this
should in theory have been more than sufficient to keep the input buffer filled.
However, when the system was tested, it was found that most of the data transfers
to the fpga failed or timed out, meaning that histograms for each frame were not
generated, as the fpga stalled because the pipeline emptied. As described in §4.2.1,
the dma controller had very limited capability to re-request lost packets. Due to
this problem, detections could not be generated for any of the implementations
using the fpga. The cause for this problem was believed to lie with one of the
external pcie cables, the socket or the adapter, but it was not possible to definitely
confirm this or to work around it. All other performance evaluation in this project
was therefore done on the desktop system described in §4.2.1.

5.7 Conclusion

This chapter has described the implementation and analysis of a well-studied object
detection algorithm across multiple architectures. Recall that our motivation here
was to answer the question posed in the Introduction and §5.1.2: “how does the
performance of an algorithm when partitioned temporally across a heterogeneous array of
processors compare to the performance of the same algorithm in a singly-accelerated system?”.
We analysed the calculations performed and volume of data generated at each stage
of the algorithm and used this to temporally partition hog onto multiple hetero-
geneous processors, writing our own implementations where necessary. Having
described the implementation methods for each platform, we evaluated this running
on a system using a low-power and high-performance gpu separately. The gpu-only
version proved to be the fastest and most accurate overall, while the gff version
consistently drew the least power, even less than the reference cpu implementation.
The versions with more transfers associated with them were significantly slower
than the others, showing that data transfers between processors have a significant
impact on performance.

5.7. Conclusion 130

The main outcomes from this chapter are as follows. Given this set of algorithm
implementations, we can state which implementation to select to best match a
particular priority (high speed, low power, or high accuracy) and the tradeoffs
associated with this decision, expressed in terms of other characteristics. We also
demonstrated that switching between different implementations in this system
incurs no time penalty.

In the next chapter, we move up one level of abstraction and consider the tradeoffs
between fpga and gpu implementations at the task level when given a specified
characteristic to prioritise. Following this we evaluate how this affects overall
performance in a real-world computer vision task.

6. Task-Level Partitioning for

Power-Aware Real-Time Anomaly

Detection in Video

In the previous Chapter, we implemented an object detection algorithm in multiple arrange-
ments across heterogeneous architectures in a system, and tabulated its performance in terms
of processing time, power and detection accuracy, making use of the system architecture
described in Chapter 4. In this Chapter, we now move up a level of abstraction and apply our
knowledge to a real-world image processing problem; that of performing anomaly detection
in video.

In doing so, we return to the grand aim of this thesis; building then evaluating the perform-
ance of a system able to adjust its performance characteristics in response to events in the
environment it monitors. This applies mainly to the mobile vehicle surveillance scenario
described in Chapter 1, where the electrical power available and system performance priorities
will change over time. In any case, we wish to balance conservation of power against the
ability to obtain fast scene understanding in uncertain or possibly threatening situations.
This is a broader concern for any electrical system, battery-powered or otherwise.

A paper based on an abridged version of this chapter was presented at the 2014 VISAPP
International Conference on Computer Vision and Applications.

6.1 Introduction

This chapter describes the components and behaviour of a system for performing
power-aware real-time anomaly detection in video. This uses various accelerated

131

6.1. Introduction 132

algorithms running on one or more platforms in a system of heterogeneous pro-
cessors, and uses the presence of anomalous objects or behaviour in the video to
prioritise power, speed or detection accuracy — and hence the set of algorithm
implementations to use — at any particular time. In other words, we quantify the
level of anomaly in a scene and alter the processing used in response. From this
we evaluate the performance of a heterogeneous processing architecture compared
to a single-accelerator model. We also compare performance of this system when
running with dynamic mapping between algorithms and processors, against static
mapping.

Understanding power consumption, and particularly the power and speed trade-offs
or changes associated with using one heterogeneous processor over another, is an
important, if under-represented, problem worth studying. The quantitative informa-
tion given by such a study allows systems with greater endurance, intelligence and
autonomy to be built. In any embedded system, Size, Weight and Power (SwaP) are
the limiting factors, and reducing power consumption affects all of these metrics.
As we discuss in Section 6.3, this is not addressed by current work in this area.

The high-level structure of this system is shown in Figure 6.1. The rest of this
chapter describes each component in that diagram. We provide details of the dataset
in Section 6.2, and summarise related work and define the task in Section 6.3.
Section 6.4 describes control flow in the high-level algorithm. Section 6.5 describes
each of the algorithms used throughout the system and provides examples of the
performance of each. The ’detection algorithms’ step in this Figure relies on the
system architecture described in Chapter 4 and the accelerated pedestrian detection
algorithms described in Chapter 5. As we are not using state-of-the-art object
detectors, many of the errors observed in the final output can be attributed to
individual detector errors at this stage, so we discuss example errors alongside
each detector. That section concludes with a description of the reasoning methods
used to obtain an anomaly level for every frame. In Section 6.6 this measure is
used to determine which of our three characteristics (power, speed and accuracy)
to prioritise, and by how much. It also describes how the detectors for use in the
next frame are chosen. Section 6.7 gives testing methodology, and is followed by
results in Section 6.8. The Chapter concludes with analysis of the outcomes and a
summary in Section 6.9 and Section 6.10 respectively.

6.2. Datasets 133

performance
data

algorithm
→ platform

mapping
impl. search priority

selection

log event
and save

image

video
frame

detection
algorithms

detection
merging

object
tracking

trajectory
clusters

cluster
anomaly

level

anomaly
thresholding

location
context
update

object
anomaly

level

Mapping generation

Anomaly detection

System output

Figure 6.1: Frame processing and algorithm mapping loop in anomaly detection sys-
tem. Figure 6.3 shows an expanded version of the “detection algorithms”
block.

At this point, we note that the fpga version of the histogram generator in the car
classifier described in this chapter (§6.5.2) was done by Scott Robson, a summer
student at Thales Optronics, specifically for this project (Specifically, the fpga

component of the cfc and gfg detectors). It is a modified version of the fpga

implementation of hog described in Chapter 5, with parameters changed to perform
car detection and with the structure altered to reduce device area. This work was
not done by me, but I integrated it into this system and it is used as part of the
processing pipeline. Power, accuracy and latency results of this fpga car detector are
therefore reproduced in this chapter, to allow for its performance to be understood
in the context of this system.

6.2 Datasets

One of the possible applications envisaged for the system described in this thesis is
as a real-time processing system onboard a vehicle. Data collection from a moving
vehicle of video sequences featuring other traffic participants behaving anomalously
presents various operational and safety concerns. Indeed, detection of pedestrians
from a moving platform, particularly when pedestrians are occluded or far away, is
still regarded as a difficult problem and is the focus of ongoing research efforts [82].

6.2. Datasets 134

(a) BankSt Scenario (b) Parked Vehicle Scenario 3 (pv3)

Figure 6.2: Sample images with traffic from each dataset used.

Adding a real-time processing constraint to this list adds yet more complexity. We
reduce the complexity of this problem somewhat by using two video scenarios
gathered from a static camera. Both datasets are described below.

6.2.1 Bank Street Dataset

The BankSt scenario involves a static camera overlooking a busy four-way intersection
in Glasgow, taken in August 2013. This was recorded using a consumer point and
shoot camera at 1280× 720 and 30fps, then downscaled to 700 pixels wide. Video
quality is generally good, and there is little camera shake. A sample image is shown
in Figure 6.2a.

6.2.2 i-LIDS Dataset

Imagery Library for Intelligent Detection Systems (i-lids) is a dataset collated by the
UK Government’s Home Office1. It is a collection of annotated video clips dealing
with “scenarios central to the Government’s requirements,” including: abandoned
baggage events, movement in restricted areas, tracking via multiple cameras, and
detection of parked vehicles. The Home Office runs yearly evaluations for companies
and universities to submit their systems for evaluation on these scenarios. Here,
we focus on the last scenario and use video clips from one of three datasets in the
Parked Vehicle task, pv3, to detect anomalous events.

Note that the work described in this chapter is not attempted as an entry into the
i-lids evaluation itself, but as an evaluation of the performance of a heterogeneously-

1Details at http://www.ilids.co.uk.

http://www.ilids.co.uk

6.2. Datasets 135

accelerated real-time system, as applied to a real-world vision task. Our definition
of anomalous events in this case is simply “observed behaviour which is absent or rarely
present in the training data.” This can include pedestrians moving into unexpected
areas of the scene or vehicles moving in an unexpected way, e.g. entering or exiting a
rarely-used car park. In practice, however, it involves vehicles parking in forbidden
areas. In the complete pv dataset, videos of three separate locations are provided.
There are 24 hours of training and 24 hours of test footage, split across the three
locations. Each individual clip within a scenario required registration points to be
obtained manually. For this reason and to reduce evaluation time (3 repetitions of 8

hours each per run), pv3 is used as representative of the entire dataset.

Parked Vehicle Scene Three

A sample image of pv3 is shown in Figure 6.2b. Similarly to BankSt this involves
colour, visible-light surveillance videos of urban road scenes taken from an elevated
position, at 720× 576 resolution and 25 fps. This camera overlooks a two-way road
with several turnings on the left and right. A roundabout off-screen below the image
often causes traffic on the right of the picture to queue. Pedestrians are usually
found on the pavements but can appear anywhere within the image. A white van
is parked by the side of the road in Figure 6.2b; this is an example anomalous
event as defined by the Home Office. Timestamps and descriptions of all such
anomalous events are given. Ground-truthed locations of vehicle and pedestrian
data are also provided for some sequences in the training dataset. Pedestrians
can appear at small scales far away in the images. Working with this dataset
presents some challenges in the different weather conditions and day and night
conditions are provided. Strong shadows, camera shake, camera repositioning
between sequences, camera noise, and tape artefacts interfere with reliable scene
analysis. In this respect, pv3 is of considerably poorer quality than BankSt. The
intention of the Home Office was presumably to expose researchers to the level
of accuracy which an algorithm working on real-world surveillance videos would
require. Nevertheless, the evaluation of performance on better-quality images was
the main factor motivating our collection of data in BankSt.

6.3. A Problem Description and Related Work 136

6.3 A Problem Description and Related Work

We discussed the wider challenge of anomaly detection in Section 2.3 and listed
previous progress in stopped vehicle detection. As we note in §2.3, this field
lacks standardised measurements and datasets. Other researchers have looked at
detecting events such as illegal U-turns in video [107], but we address the challenge
of detecting parked vehicles. These events are anomalous in that they are not
representative of normal traffic flow, and are not present in the training data. They
thus mostly fall into Category A (“very different from the training set”) of Loy’s
three anomaly categories [109].

We are working with i-lids as it is a dataset which “accurately represents real
operating conditions and potential threats” [148]. This data has been used for
parked vehicle detection by other researchers. Albiol et al. [117] identify parked
vehicles in pv3 with precision and recall of 0.98 and 0.96 respectively. As discussed
in more detail in Section 6.9, their approach is considerably different from ours,
in that they:- (a) require all restricted-parking lanes in the image to be manually
labelled first, (b) only evaluate whether an object in a lane is part of the background
or not (and so detect non-vehicle objects left in no-parking areas), and (c) do not
work in real-time or provide performance information. In addition, their P and R
figures do not denote events, bur rather the total fraction of time during which the
lane is obstructed. Theirs is the only work we are aware of which evaluates the entire
i-lids dataset. Due mainly to limitations within our detectors, our accuracy results
alone do not improve upon this state-of-the-art, but bearing in mind the points
noted above, we are trying to approach a different problem (real-world anomaly
detection under power and time constraints) than Albiol et al.

6.4 High-level Algorithm

The high-level frame processing algorithm is given in Algorithm 1 Part 1 and
continued in Algorithm 1 Part 2. It works on offline videos and maintains real-time
performance by continually calculating the number of frames to drop. We do not
count time taken to decompress the video, or time taken to mark up and display
the output image as part of processing time, as these take up a significant fraction

137

im
ag

e
d

et
ec

ti
on

s

cp
u

op
er

at
io

n:
sc

al
e

hi
st

og
ra

m
s

cl
as

si
fy

gr
ou

p
sc

al
e

hi
st

og
ra

m
s

cl
as

si
fy

gr
ou

p
ex

tr
ac

t
BB

s

gp
u

op
er

at
io

n:
sc

al
e

hi
st

og
ra

m
s

cl
as

si
fy

sc
al

e
hi

st
og

ra
m

s
cl

as
si

fy
up

da
te

m
as

k
im

ag
e

op
en

in
g

fp
ga

op
er

at
io

n:
hi

st
og

ra
m

s
cl

as
si

fy
hi

st
og

ra
m

s

Pe
de

st
ri

an
D

et
ec

ti
on

(H
O

G
)

C
ar

D
et

ec
ti

on
(H

O
G

)
M

ot
io

n
D

et
ec

ti
on

(M
O

G
2)

Figure 6.3: All possible mappings of image processing algorithms to hardware. Data
transfer steps not shown.

138

Algorithm 1 Part 1. High-level frame processing algorithm for anomaly detection.
Compute-intensive algorithm steps are marked with a black triangle I.

I ← candidate implementations and performance data
C ← learned trajectory clusters
load velocity and presence heatmaps Hv, Hp and ground-plane homography hC
initialise list of Kalman-Filter based trackers T
for all frames fi in video do

if fi < fnext then . must skip to maintain realtime processing rate
process_this_ f rame← f alse

else
process_this_ f rame← true

end if
if process_this_ f rame then

A← user-selected algorithms (motion and object detection by default).
P← user/auto-selected priorities.
D ← 0, DF ← 0, DB ← 0: initialise list of detections for this frame.
run exhaustive search of all I matching A, using P as weightings for cost

function.
choose mapping M using lowest cost.
for all implementations Mi in M do . perform full-frame detections

II generate detections di from frame by running Mi
append di to list of initial detections D

end for
for all detections dj in D do . improve detections

remove duplicates and overlapping detections in D
if dj is from motion detector and still unclassified then

II run all object detectors in M on magnified region around dj.
end if
remove duplicates and overlapping detections of dj in D.
append dj to list of final detections DF.

end for
predict all T.
ground plane detections DB ← perspectiveWarp(DF, hC).
match DB to T (i.e. correct T using measurements DB).

else . skip frame. Don’t run expensive detectors.
predict all T. . only update the tracker positions

end if
continues . . .

139

Algorithm 1 Part 2. High-level frame processing algorithm for anomaly detection.

continues . . .
for all tracked objects tj in T do

match tj to a trajectory cluster Ck in C
update Ck . update contextual knowledge and heatmaps
update Hv and Hp from tj
cluster anomalousness UCj ← clusterAnomaly(Ck, C) . calculate anomaly

levels
I object anomalousness UOj ← contextAnomaly(tj, Hv, Hp)
anomalousness Uj ← weighted sum(UOj, UCj)
if Uj > Uthresh and τ > τthresh then

snapshot and log detected anomaly at ti
end if

end for
Umax ← max(U)
if automatically prioritise then

update P based on Umax
else

update P from user callback
end if
if process_this_ f rame then . allow realtime processing by skipping frames

f skip← ⌈t(current f rame processing)/t(source f rame duration)⌉
fnext ← fi + f skip
display annotated frame

end if
end for . end frame processing

6.5. Algorithm Implementations 140

of the 40ms available to process each frame at 25 fps. Compute-intensive algorithm
steps are marked with a black triangle I in the listing. These were identified with a
profiler during development.

These steps are also shown in Figure 6.1 and an expanded version of the ’detection
algorithms’ step showing all permutations is given in Figure 6.3. As all post-
detection stages depended on trusting the detections generated by the individual
detectors, any false positives or negatives at the detection stage could potentially
cause anomalies to be missed, or flagged incorrectly. The main cause of our system
not approaching the performance of Albiol et al. is the detectors we use. In the
following section on implementation, we discuss false positive and negatives at the
detector level.

6.5 Algorithm Implementations

This section gives details of each algorithm used within this system, summarised in
Table 6.1. Here we describe the task performed by each algorithm, if not already
discussed elsewhere, and its hardware implementations, if relevant. This Section
begins with the detection algorithms run on the image, and concludes with gen-
eration of the image anomaly level. The following Section describes the methods
used to select processing implementations to run on the next frame based on this
measurement.

6.5.1 Pedestrian Detection with HOG

The pedestrian detector used is the accelerated version described in Chapter 5. The
fpga versions of hog are scaled down to work faster on images 770 pixels wide,
and to use fewer resources to allow inclusion of the car detector logic on the same
physical fpga.

As seen in Figure 6.4, the error rate of the hog detectors led to false positives
in certain circumstances. This affected the performance of the contextual motion
detection further in the processing pipeline.

6.5. Algorithm Implementations 141

Table 6.1: Details of algorithms used in the system, sources and implementations.

Algorithm (source) Platform Implemented by

Pedestrian Detection CPU OpenCV
(via HOG [78]) GPU OpenCV

FPGA this project: gff
and cff versions

Car Detection CPU this project
(via HOG) GPU this project

FPGA intern: gfg
and cfc versions

Background Subtraction GPU OpenCV
(via Mixture of Gaussians [149])

Object Tracking CPU OpenCV
(via Kalman Filter [150])

Anomaly Detection (via CPU this project
Trajectory Clustering [106])
Anomaly Detection (via CPU this project
Bayesian motion context)

6.5.2 Car Detection with HOG

We required an implementation of a vehicle detector which could be used in close
to real-time, and ideally one which made use of an accelerated processor. The
LatentSVM object detector as part of OpenCV has a detector trained for vehicles,
but only offers a small improvement in detector accuracy over hog. It is also not
optimised and extremely slow (taking over one second per frame on cpu, even once
the slowest parts are vectorised using sse). In his thesis, Dalal gave implementation
details for hog for use with other object classes than pedestrians [78]; these are
given in Table 6.2. See Section A.1 for details of normalisation methods used. Based
on this, hog was chosen once again due to the presence of existing accelerated
versions and a framework to run them in. From this, the cpu implementation of
hog on OpenCV was modified to use the options given in Table 6.2. A gpu version
was also implemented by modifying OpenCV. A version incorporating histogram
generation on fpga was implemented by a student intern by modifying the cfc and
gfg implementations discussed in Chapter 5.

6.5. Algorithm Implementations 142

Figure 6.4: False positive (blue rectangle) from hog pedestrian detector. Similar
problems affected the car detector.

Table 6.2: Changes between hog parameters and methods for pedestrian and car
detectors, taken from [78].

Class Window Average Angle Angle Normalisation
Size (pixels) Height (pixels) Bins Range Method

Person 64× 128 96 9 (0− 180∘) L2-Hys
Car 104× 56 48 18 (0− 360∘) L1-Sqrt

These implementations were trained on data from the Pascal Visual Object Classes
Challenge [74], 2012 version2. Image patches annotated as containing cars were
extracted from the training and testing sets and resized into a 104× 56 window so
that each car was around 48 pixels high. Cars were selected if they were not marked
as “occluded”, “truncated” or “difficult” in the ground truth, and were at least 40

pixels high in the original image. A positive training set was made up of 106 images
of cars extracted from one half of the annotated set. These were flipped horizontally
to double the available number of images, producing 212 positive training and 172

positive test image patches; examples are shown in Figure 6.5. A composite based
on the average intensities of all training images is shown in Figure 6.5g. Negative
examples (limited to 500 to reduce training time) from the dataset were also chosen
from images which did not contain cars.

2Details at http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

143

(a) (b)
‘

(c) (d) (e) (f)

(g) Composite image (h) Learned svm model

Figure 6.5: Example images for hog car detector training. Composite of all training
images shown in (g). Resulting detector model shown in (h).

10
−2

10
−1

10
0

0.40

0.50

0.64

0.80

1

false positives per image (FPPI)

m
is

s
ra

te

94% cfc
93% gfg
89% ggg
89% ccc

Figure 6.6: Detection Error Tradeoff curve for car detector implementations.

6.5. Algorithm Implementations 144

Table 6.3: Resource Utilisation for pedestrian (histogram and classification) and car
(histogram only) hog detectors with pcie link logic on fpga.

Resource Percentage Used

Registers 27%
LUT 52%
Slice 75%
BlockRAMs 20%
Embedded Multipliers 14%

The svm model was generated through training in a similar manner to that described
in Chapter 5, (i.e. positive and negative training followed by retraining on all hard
negative examples) and a visualisation is shown in Figure 6.5h. Following the
discussion by Dollàr et al. [82], we show a fppi curve in Figure 6.6, generated from
all positive images in Pascal-voc at scale factor 1.05. This detector is not as accurate
as the original pedestrian version; this is probably due to the wider variation in
training data and smaller dataset than inria. The latter has less variation in shape
and size when seen from different angles; cars can be seen head-on, from the side
and at various angles and elevations, and in some cases need to be wider than
the window to maintain the 48-pixel height. The detector is only trained on cars,
although during testing it was also possible to detect vans and trucks. The scaling
factor was set to 1.05, giving a maximum of nscales = 31. The grouping threshold was
set to 1 and the hit threshold to 0.75 during use. Instead of using this hard threshold,
methods for obtaining probabilistic output from a support vector classifier score
(such as Platt’s method involving sigmoids [93]) were investigated, but were not
considered robust enough. For further justification see [94] or [95] §6.4.

All designs (pedestrian hog with histogram and score outputs, and car hog with
histogram outputs) were implemented on the same fpga, using Xilinx Planahead
13.4 as in Chapter 5, and with detectors running at 160MHz. (While both car and
pedestrian detectors were capable of running at 200MHz, the larger feature vectors
used in the car detector overflowed the output buffer at the higher clock rate.)
Resource use for this joint design is given in Table 6.3. Performance characterist-
ics are given — along with those for all other algorithm implementations — in
Table 6.4.

6.5. Algorithm Implementations 145

(a) Motion detection by background subtrac-
tion in video.

(b) False regions of interest generated by
background subtraction due to changes
in illumination and camera shake.

Figure 6.7: Bounding box extraction from Mixture-of-Gaussians gpu implementa-
tion.

6.5.3 Background Subtraction

The Mixture of Gaussians algorithm was used to perform background subtraction
and leave foreground objects. The OpenCV gpu version of this is based on Zivkovic’s
implementation [149] (which expands from [110]), and includes shadow detection,
which was effective in the sequences with strong sunlight. The resulting binary
image was morphologically opened and then transferred back to the host. Contour
detection was then performed to generate bounding boxes around objects in the
scene for further processing, as shown in Figure 6.7a. For each identified bounding
box, the area was calculated and the box discarded if its area was below a threshold
defined by its lower vertical bound y0 within a frame:

Tarea = Ca +
Cb × y0

h f rame
,

where Ca = 2000 and Cb = 400. As the contents of every bounding box were then
passed to one or more computationally intensive algorithms, early identification and
removal of possible overlaps resulted in significant reductions in processing time.
All bounding boxes were compared, and of those pairs with ≥ 90% intersection
with each other, the smaller one was discarded; i.e. we discard Bi if:

Bi ∩ Bj

area(Bj)
≥ 0.9 & area(Bi) < area(Bj) .

6.5. Algorithm Implementations 146

Occasionally heavy camera shake, fast adjustment of the camera gain, or fast changes
in lighting conditions would cause large portions of the frame to be falsely indicated
to contain motion, as shown in Figure 6.7b. When this occurred, all bounding
boxes for that frame were dropped, and we waited until the next frame to reacquire
bounding boxes.

6.5.4 Detection Combination

Detections of objects could be generated from two sources: a direct pass over the
entire frame by the pedestrian or car detector, or by detections on a magnified region
of interest triggered by areas of motion identified by the background subtractor.
Regions with motion were extracted and magnified by 1.5× then passed to detectors
on cpu or gpu. This allowed detection of pedestrians less than 96 pixels high, which
would otherwise have been missed. The alternative to this step was to magnify the
entire image by 2× then run both hog detectors on the result. However, this would
be prohibitively slow if done every frame. For both humans and cars, a minimum
detection grouping threshold of 3 in the image patches was effective. Candidate
detections from global and motion-cued sources were filtered using the ’overlap’
criterion from the Pascal voc challenge [74]:

a0 =
area(Bi ∩ Bj)

area(Bi ∪ Bj)
,

and duplicates removed if a0(Bi, Bj) > 0.45, and where the two object classes were
compatible. Regions with unclassified motion were still passed to the tracker
matcher to allow previously-classified detections to be updated or identification of
new tracks.

6.5.5 Detection Matching and Object Tracking via Kalman Filtering

A constant-velocity Kalman filter [150, 102] was used to smooth detections from all
sources before further processing. The filter equations are given in Appendix A.
The detectors run every frame and do not take temporal information into account.
This is done at a higher level by the tracker, which matches new detections to
existing tracks. This approach is particularly useful with imperfect detectors which
do not identify an object every frame, or only identify regions within an object.
Unmatched predictions are carried over until the object is detected again, or deleted
if an object is not seen for a long time. Due to the wide variation in depth of objects

6.5. Algorithm Implementations 147

as seen from each camera, all object detections were projected onto a ground plane
before smoothing. This normalises inter-object distance and minimises perspective
distortion — important for the clustering stage [101]. The equations for this are
given in Section A.3.

A new ground plane detection D with bounding box centre (xd, yd) is matched to
an existing track Ti if the Euclidean distance between Ti and D is less than a fixed
threshold, and if Ti is the tracker with the smallest distance r. r is an elliptical
distance measure between an ellipse centred at the origin, and a point (x, y):

r =

√
x2 +

y2

1− e2 , (6.1)

where the ellipse has eccentricity e =
√

1− b2/a2, defined using the radii a and b
along the long and short axes respectively. The long axis of the ellipse in Equation 6.1
points along the x-axis and denotes the direction of motion of the tracker. (xd, yd)

denotes the position of the detection as seen from the tracker, which is considered
to be at the origin. 2r thus denotes the length of the long axis of an ellipse passing
through (xd, yd) and centred with orientation θTi at (xTi , yTi). If the tracker is
stationary, r becomes the Euclidean distance measure. Once matched, the tracker is
updated using the detection as the measurements in Equation A.7.

This approach takes into account deficiencies in both the object detection and
background subtraction stages, in that detection bounding boxes may be located
anywhere within an object, and may be significantly smaller than the object itself.
At the same time, we especially wish to avoid matching a tracker to e.g. a nearby
car travelling in the opposite direction, as this would generate a false positive for
anomalous activity. Detections not matched to an existing tracker are assigned a
new one, and trajectories not matched to a detection for a long time are deleted.
Trajectories are merged if they are very close together, travelling at the same speed
and in the same direction. At the end of this algorithm stage, a list of points denoting
the centre of objects are passed to the trajectory clustering algorithm. Tracked points
in the base plane are shown in Figure 6.8. As trajectory smoothing and detection
matching operate on the level of abstraction of objects rather than pixels or features,
the number of elements to process is low enough, and the computations for each
one are simple enough that this step is not considered as a candidate for acceleration
via parallelization.

6.5. Algorithm Implementations 148

Figure 6.8: Object tracking on an image projected onto the ground plane.

6.5.6 Trajectory Clustering

The trajectory clustering algorithm used is based on a reimplementation of that
described by Piciarelli and Foresti [106], used for detection of anomalies in traffic
flow. Piciarelli et al. apply the algorithm to fast-moving traffic on a motorway,
whereas the i-lids scenes have more discrete types of object (pedestrians and
vehicles), numerous entrances and exits in the scene, greater opportunities for
occlusion to occur, and long sequences where objects stop moving entirely and
may start to be considered as part of the background. However, it allows online
learning of cluster positions and analysis of tracks still in progress, so we describe
the algorithm as we have used it in this application.

Starting with a short trajectory Ti = (t0, t1, . . . , t4) consisting of several smoothed
detections seen over several frames (five, in this case), the algorithm matches these
to and subsequently updates a set of clusters C. Each cluster Ci contains a vector
of elements cj = (xj, yj, σj), with a location xj, yj and a variance σj. Clusters are
arranged in a tree structure, with each having zero or more children. One tree

6.5. Algorithm Implementations 149

(starting with a root cluster) thus describes a single point of entry to the scene and
all observed paths which are taken through the scene from that point.

For a new or unmatched trajectory Tu, all root clusters and their children are
searched to a given depth and Tu is assigned to the closest C if distance d is below a
threshold. The calculation made for d is:

d(Tu, Ci) = min

dist(ti, cj)√
σ2

j

 , j ∈ {⌊(1− δ)i⌋ . . . ⌈(1 + δ)i⌉} , (6.2)

where dist is the Euclidean distance between point ti of Tu and point cj of Ci, and the
lower and upper bounds of the elements within Ci to search over are controlled by
δ = 0.4. For new points in trajectories previously matched to a cluster, this δ factor
allows points matched to longer clusters more possible matches, to take account of
subsequent objects within one cluster not moving in exactly the same manner. If a
point is matched to a cluster, the closest element match cj is updated with ti:

xj = (1− α)xj + αxi

yj = (1− α)yj + αyi

σ2
j = (1− α)σ2

j + α[dist(Ti, cj)]
2 ,

where the learning rate α = 0.05. If Tu is not a match to any point within the root
search tree, a new root cluster is created and added to C.

Three actions are possible for new points appearing as the most recent point in a
trajectory which has previously been matched:

∙ If a point is matched to the end of a cluster, a child of that cluster is spawned
with a length of 1, matched to that point, and subsequently concatenated into
the parent cluster. This is the most common behaviour for clusters generated
to match specific trajectories and which keep pace with them.

∙ If a point is matched to within a cluster, that cluster point is updated as
described above.

6.5. Algorithm Implementations 150

Figure 6.9: Learned object clusters, projected onto camera plane. Green, blue and
orange tracks represent cars, pedestrians and undetermined (motion-
only) objects respectively.

∙ If a point is matched to within a cluster and is diverging from that cluster, a
child cluster is created and split from its parent. The parent cluster is truncated
at the split point and subsequent points are stored in another child cluster.

Cluster maintenance (involving pruning clusters not seen in a long time, and
concatenation of single-child clusters into their parents) is performed periodically.
As with detection matching and tracking, clustering operates on a relatively small
number of objects and is not computationally expensive, so was not considered
as a candidate for acceleration. Learned class-specific object clusters are shown in
Figure 6.9, projected back onto the camera plane.

6.5.7 Contextual Knowledge

Contextual knowledge in this case relies on known information about the normal
or most common actions within the scene. Position and motion information can
capture various examples of anomalous behaviour: for example stationary objects
in an unusual location, or vehicles moving the wrong way down a street. Ground
truth information giving object location, type and unique id is provided for certain
sequences within i-lids; however, due to discrepancies between the ground truth
and detections generated by the object classifiers (caused by camera repositioning
and differences in sampling frequency), unsupervised learning based on the output

6.5. Algorithm Implementations 151

of the object classifiers was used instead. This has an advantage over hidden Markov
Model-based systems such as [105] in that we can still make use of the velocity data
from (frequent) broken and reformed tracks away from the edges of the frame.

Type-specific information about object presence at different locations in the base
plane was captured by recording the per-pixel location of each base-transformed
bounding box, then downscaling this by two to decrease evaluation time. Figure 6.10

shows presence heatmaps for car and pedestrian classes for pv3, i.e. where these
objects are expected to be found in the scene. Average per-pixel velocity v̄ in x− and
y−directions was also recorded by sampling this data from the Kalman Filter, and
downscaling in the same way. Thus for an object existing at base plane co-ordinates
(x . . . x′, y . . . y′) with x−velocity vx and update rate α = 0.0002:

v̄(x...x′, y...y′) = (1− α)v̄(x...x′, y...y′) + αv .

This is shown in Figure 6.11. For most conceivable traffic actions, presence and
motion information is appropriate; however, this may fail to capture more complex
interactions between people. In addition, errors from the object and motion detectors
now affected the performance of the Bayesian context algorithm; Figure 6.11 also
contains false-positive and object misclassifications. In certain areas these persisted
over long periods of time, in effect removing the ability to identify stationary objects
in the affected regions as anomalous.

6.5.8 Anomaly Detection

Based on the methods given in the two preceding sections, we can define an
anomalous object as:

∙ one which is present in an unexpected area, or:

∙ one which is present in an expected area but which moves in an unexpected
direction or at an unexpected speed.

A Bayesian method is used to determine if an object’s velocity in the x and y
directions should be considered anomalous, based on the difference between it
and the known average velocity v̄ in that region. Bayes’ theorem [151] defines the
probability of an anomaly at a given pixel p(A|D), given detection of an object at

152

(a) Car presence (b) Pedestrian presence

Figure 6.10: Presence intensity maps for different object classes in pv3. The colour
bar denotes objects passing through that pixel, and the x and y axes
correspond to the ground plane image of the scene (shown in Figure 6.8).

(a) Person x-motion (b) Person y-motion (c) Car x-motion (d) Car y-motion

Figure 6.11: Ground-plane, per-pixel motion intensity maps of ground-truthed data
for different object classes in pv3. The colour bar denotes average
velocity at that pixel, and the x and y axes correspond to the ground
plane image of the scene (shown in Figure 6.8).

6.5. Algorithm Implementations 153

that pixel:

p(A|D) =
p(D|A)p(A)

p(D|A)p(A) + p(D|Ā)p(Ā)
, (6.3)

where the prior probability of an anomaly anywhere in the image, p(A), is set to
a constant value. p(D|A), the likelihood of detecting an event at any pixel in the
presence of an anomaly, is constant (i.e. we assume that an anomaly can occur with
equal probability anywhere within the image, as we do not have any information
about it), p(Ā) = 1− p(A) and p(D|Ā) is a measure based on the learned values
for v̄x or v̄y.

p(D|Ā) returns values between (0.01, 0.99) based on the distance between v and v̄,
assuming a linear relationship between distance to the mean and p(Ā):

dv =

sign(v̄)×max(C|v̄|, |v̄|+ C), if sign(v̄) = sign(v) & |v| > |v̄|

sign(v̄)×min(−0.5|v̄|, |v̄| − c), otherwise.
(6.4)

dv is then used to obtain a linear equation for v, with a gradient of:

a =
0.01− 0.99

dv − v̄
.

Finally, b is obtained in a similar manner, and v is projected onto this line to obtain
a per-pixel likelihood that v is not anomalous,which is then clamped:

y = av + b ,

p(D|Ā) = max(0.01, min(0.99, y)) . (6.5)

Profiling during development showed that evaluation of this step was expensive, so
this function was vectorised using sse on the cpu.

p(D|Ā) is substituted into Equation 6.3 to obtain an object anomaly measure UOx.
This is repeated for y−velocity data to obtain UOy.

This measure is combined with information about the abnormality of the current
cluster associated with the object. When a trajectory moves from one cluster to one
of its children, leaves the field of view, or is lost, the number of transits through
that cluster is incremented. In addition, for any trajectory T matched to a cluster

6.6. Dynamic Mapping 154

Cp with children Cc1 and Cc2, the number of trajectory transits between Cp and all
Cc is logged, thus building up a trajectory frequency distribution between Cc1 and
Cc2. These two metrics (cluster transits and frequency distributions of parent–child
trajectory transitions) allow anomalous trajectories to be identified:

UC(Ci) =


1

1 + transits(Ci)
, if Ci is a root node,

1−
transitions(Cp → Ci)

Σ(transitions(Cp → all children of Cp))
, if Ci is a child

node of Cp .
(6.6)

An overall anomaly measure Ui for an object i is then obtained, and Umax is updated:

Ui = wo
Στi

1 UOx

τi
+ wo

Στi
1 UOy

τi
+ wcUC(Ci) . (6.7)

Umax = max(Ui) . (6.8)

The UOx,y measures are running totals which are normalised using the object
age τ.

After computing Equation 6.8, we have now moved from an input to the system
consisting of a frame of pixels, to a single scalar representing the level of anomaly
present in the scene for that frame. Two detectors are required to flag an object as
behaving unusually before the system treats it as an anomaly. w0 and wc are thus
set to 10, with the overall anomaly detection threshold set at 15.

Once an anomaly is detected for the minimum threshold time tA, its location and
object class is logged and a snapshot of the annotated video frame is saved. An
example snapshot is in Figure 6.12. In the next Section we discuss how the Umax

measure is used to choose which platforms to map the algorithms onto.

6.6 Dynamic Mapping

The mapping function selects algorithm implementations used to process the next
frame. This code is re-run every time a frame is processed, allowing for selection

6.6. Dynamic Mapping 155

Figure 6.12: An anomaly detection is logged. The red box indicates a van parked in
a forbidden location.

Figure 6.13: Dashboard for user-driven priority selection. Moving a slider to the
right represents increased weight given to that performance character-
istic. Other sliders are automatically moved to the left to compensate.

of new implementations in response to changing scene characteristics. After every
processed frame, if process time > f rame time, then ⌈process time/ f rame time⌉
frames are skipped to regain a realtime rate. The algorithms used for all tests were
fixed as hog-ped, hog-car and mog.

6.6.1 Priority Recalculation

A mechanism for displaying and updating the current system priorities P is shown
in Figure 6.13. This allocated ten credits between the three priority sliders or
characteristics in P: power consumption wp, processing time wt and detection
accuracy wε. Moving a slider — either programmatically or by user intervention —
caused the other sliders to move in the other direction accordingly. Here we work on

6.6. Dynamic Mapping 156

Table 6.4: Performance characteristics for various algorithm implementations on
770× 578 video. Where the algorithm required scaling, nscales was tuned
to the dataset used, and was 8 for pedestrians and 11 for cars in this case.

Algorithm Platform Processing Power Accuracy
Time (ms) Consumption (log-average

(W) miss rate (%))

HOG-PED ggg 17.6 229 52
cff 23.0 190 62
gff 27.5 186 61
gfg 39.0 200 59
cfc 117.3 187 59
ccc 282.0 191 53

HOG-CAR ggg 34.3 229 89
cfc 175.6 189 94
gfg 60.0 200 92
ccc 318.0 194 89

MOG GPU 8.1 202 N/A

the assumption that a higher level of anomaly in the scene should be responded to
with increased processing resources in order to obtain more information about the
scene in a timely fashion, with fewer dropped frames, and at the expense of lower
power consumption. Conversely, frames with low or zero anomaly levels caused
power consumption to be scaled back, at the expense of accuracy and processing
time. Realtime processing is maintained by dropping a greater number of frames.
When automatic prioritisation was used, (i.e. the system was allowed to respond to
scene events by changing its mapping) the speed priority was increased to maximum
when Umax ≥ 15. A level of hysteresis was built in by maximising the power priority
when Umax < 12.

6.6.2 Implementation Mapping

Once a list of candidate algorithms and a set of performance priorities is generated,
implementation mapping is run. This uses performance data for each algorithm
implementation, shown individually for all algorithms in Table 6.4.

This data is summarised for all possible solutions in Figure 6.14, where dots closer
to bright green, red or blue signify the majority of algorithm stages being mapped
to fpga, gpu and cpu respectively. A more detailed version with individually

6.7. Evaluation Methodology 157

annotated solutions is given in Figure 6.15. A Pareto curve can be seen in this
Figure, stretching from {ped− ggg, car− ggg, mog− gpu} on the top left to {ped−
c f c, car− c f c, mog− gpu} in the lower centre, with all other points shadowed.

An exhaustive search function is used to generate and evaluate all possible mappings,
using a cost or fitness function:

𝒞i = wpPi + wtti + wεεi , (6.9)

where all w are controlled by P. Estimated power, runtime and accuracy is also
generated at this point. As established in §5.6.3, there is no cost associated with
changing the mapping between frames, so this is not considered as part of 𝒞. The
mapped algorithms are then run sequentially to process the next frame and generate
detections.

Having now described all the steps in Algorithm 1, in the next Section we evaluate
its performance.

6.7 Evaluation Methodology

The clusters and heatmaps were first trained by initialising on training video
sequences containing varying levels of traffic. Each of the test sequences was then
processed in approximately real time, using these learned clusters and heatmaps.
The same set of learned clusters and heatmaps were used for each cluster, and were
not updated (i.e. changes were not carried over) between test videos. To account
for camera repositioning between sequences (some of which were filmed months
apart), the homography matrices required to register each video clip onto the base
plane were obtained manually. Tests were run three times and referred to as follows,
using the prioritisation settings described in §6.6.1:

speed speed prioritised and anomaly-controlled automatic prioritisation off;

power power prioritised and anomaly-controlled automatic prioritisation off;

auto anomaly-controlled automatic prioritisation on.

6.8. Results 158

For each configuration, all anomalous events (defined as objects having U > 15 for
more than time limit of either tA = 10 or 15 seconds) were logged and compared
with ground-truth data. Total processing time and ratio of dropped to processed
frames were logged. As the power measurement device did not have a method for
recording average power over a period of time, power consumption for one frame
was estimated by averaging the energy used to process each implementation over
runtime for that frame. Average power consumption over a sequence of frames was
obtained in the same manner.

6.8 Results

We present performance results on two datasets; an initial evaluation on BankSt and
a complete evaluation on i-lids.

6.8.1 Detection Performance on BankSt videos

An initial evaluation was done on videos from BankSt. As noted in Section 6.2, this
was done to evaluate system and algorithm performance on higher-quality videos
than i-lids. A set of clusters and heatmaps was trained on a 20-minute clip from
the BankSt dataset. As before, registration was done manually. Evaluation was done
using a three-minute test clip, involving normal traffic patterns and including a blue
car driving round the corner then parking illegally on the yellow lines, as shown
in Figure 6.16. This one event was detected (see Figure 6.16b) along with one false
positive event caused by slow-moving pedestrians. Both these events were detected
using all three prioritisations.

As Figure 6.17 shows, video quality also affected detection performance; in Fig-
ure 6.17a magnifying allows additional classification of objects in the middle distance
— shown via blue (pedestrians) and green (car) circles, while in i-lids data, magni-
fying and reclassifying the area around a moving object often failed to improve on
existing detections.

6.8. Results 159

6.8.2 Detection Performance on i-LIDS videos

For the i-lids data, clusters and heatmaps were first trained by initialising on two
twenty-minute daylight sequences containing varying levels of traffic from the i-lids

training set.

A modified version of the i-lids criteria [152] was used to evaluate detection
performance. Events are counted as true positives if they are registered within 10

seconds of the start of an event. For parked vehicles, i-lids considers the start of
the event to be one full minute after the vehicle is parked, whereas we consider
the start of the event to be when the vehicle parks, thus we may flag events before
the timestamp given in the ground truth data. Such events are counted as true
positives. The time window for matching detections is thus either 70 or 75 seconds
long. We also do not ignore events in the first five minutes of a video; they are
present in the ground truth and we take much less than 5 minutes to initialise the
system. The i-lids criteria only require a binary alarm signal in the presence of an
anomaly; however, we require anomalous tracks to be localised to the object causing
the anomaly.

Precision p and recall r are calculated in the usual manner from the number of true
positives, false positives and false negatives (TP, FP and FN respectively):

p =
TP

TP + FP
, (6.10)

r =
TP

TP + FN
. (6.11)

i-lids also uses a F1 score, allowing detection performance to be expressed as a
single number. It is obtained from Van Rijsbergen [153] and defined as:

F1 =
(α + 1)rp

r + αp
, (6.12)

where α is a “recall bias” measure, set at 0.55 for real-time operational awareness
(to reduce false-alarm rate), or 60 for event logging (to allow logging of almost
everything with low precision). α is obtained from α = 1/(β2 + 1) , and “measures
the effectiveness of retrieval with respect to a user who attaches β times as much
importance to recall as precision” [153].

6.8. Results 160

Table 6.5: Detection performance for parked vehicle events on all prioritisation
modes on i-lids sequence pv3.

Prioritisation True False False p(%) r(%)
positives positives negatives

for tA = 10 seconds

power 4 44 26 8.3 13.3
speed 6 51 25 10.5 19.4
auto 6 53 25 10.2 19.4

for tA = 15 seconds

power 2 15 29 11.8 6.5
speed 8 13 23 38.1 25.8
auto 4 14 26 22.2 13.3

Table 6.6: Detection performance for parked vehicle events on all prioritisation
modes on daylight sequences only in i-lids sequence pv3.

Prioritisation True False False p(%) r(%)
positives positives negatives

for tA = 10 seconds
power 4 29 23 12.1 14.8
speed 6 40 22 13.0 21.4
auto 6 42 22 12.5 21.4

for tA = 15 seconds
power 2 10 29 16.7 6.5
speed 8 8 23 50.0 25.8
auto 4 10 26 28.6 13.3

Table 6.5 shows precision and recall for all “parked vehicle” events in the i-lids

pv3 sequence. As the night-time sequences have no events but still generate a large
proportion of false positives, we also show results for daylight-only (“day” and
“dusk” clips) in Table 6.6.

Table 6.7 shows F1 scores for all videos and daylight-only scenes, for tA = 10 and
15 seconds.

Table 6.8 shows performance details for all three priority modes on i-lids pv3. The
runtime column shows overall program execution time relative to the total length
of all source videos. This shows that, once overheads from decoding input frames

161

0 50 100 150 200 250 300 350 400 450 500 550 600 650
180

190

200

210

220

230
Green: more work on FPGA
Blue: more work on CPU
Red: more work on GPU

time (ms)

po
w

er
(W

)

Figure 6.14: Power and time plots of all possible solutions, where each solution
consists of one car hog, one pedestrian hog and the mog detector, as
described in Table 6.4. A greener dot represents a solution with most
operations mapped to fpga, while bluer and redder dots represent
those with most operations mapped to cpu or gpu respectively.

Table 6.7: F1-scores for all prioritisation modes on i-lids sequence pv3.

Prioritisation PV3 PV3 daylight only
F1(α = 0.55) F1(α = 60) F1(α = 0.55) F1(α = 60)

for tA = 10 seconds
power 0.0957 0.1317 0.1294 0.1475
speed 0.1254 0.1913 0.1510 0.2118
auto 0.1226 0.1912 0.1466 0.2115

for tA = 15 seconds
power 0.0910 0.0652 0.1067 0.0652
speed 0.3259 0.2594 0.3752 0.2601
auto 0.1797 0.1342 0.2030 0.1345

162

0 50 100 150 200 250 300 350 400 450 500 550 600 650
180

190

200

210

220

230

processing time (ms)

sy
st

em
po

w
er

co
ns

um
pt

io
n

(W
)

ped-ggg ped-cff ped-gff
ped-gfg ped-cfc ped-ccc
car-ggg car-cfc car-gfg
car-ccc

Figure 6.15: Power and time plots of all possible solutions, where each solution
consists of one implementation of car hog, one for pedestrian hog and
the mog detector, as described in Table 6.4. Pedestrian implementations
are labelled by colour, and car implementations by shape; thus the dark
blue hollow circle at t = 95ms means a solution with pedestrian hog

mapped to gff, car hog mapped to gfg and mog, as always, mapped to
gpu.

(a) Blue car (centre) (b) Stopped vehicle

Figure 6.16: Detection on the BankSt dataset. In (a), the blue car (centre) is behaving
normally, while in (b) it has stopped by the roadside and is eventually
flagged as anomalous.

6.8. Results 163

(a) BankSt video (b) i-lids video

Figure 6.17: Dataset quality impacts quality of detections: in a BankSt video (a),
video quality allows classification of most objects as either pedestrian
(blue circle) or car (green circle). In i-LIDS, (b), detections often remain
as uncategorised motion (orange circle).

Table 6.8: Processing performance for all prioritisation modes on i-lids sequence
PV3. Idle/baseline power is 147W.

Prioritisation Frames Runtime Processing Mean estimated
skipped as % of time as % of power above baseline

(%) source time source time while processing (W)

power 75.8 125.4 87.9 49.1
speed 59.5 124.3 81.7 72.8
auto 66.5 127.8 83.4 61.9

from a video file on disk, marking up output images for display, and displaying the
resulting images are included, total runtime is slightly slower than real (or source
video) time. The processing time column does not include overheads. It assumes
that a raw video frame is already present in memory, and frame-by-frame marked-up
video output is not required (i.e. only events are logged). Under these circumstances,
the system runs faster than realtime, with the percentage of skipped frames shown
in the second column. This is as expected; the slower power-optimised priority
setting causes more frames to be skipped. Table 6.9 repeats this for daylight-only
sequences, with similar results.

Figure 6.18 shows examples of true positive, false negative and false positive
detections logged at tA seconds. While some true positives are detected (up to
50% in the best case), many false negatives and false positives are present, and
have various causes. False positives are often caused by the background subtractor

164

(a) TP (b) TP (c) TP

(d) TP (e) FP (f) FP

(g) FP (h) FN (i) FN, FP

(j) FN, FP

Figure 6.18: True detections and failure modes of anomaly detector on i-lids PV3.
Anomalies are marked by red squares. (a)–(d): true positives of different
objects in varying locations and with varying numbers of other vehicles.
(e)–(g): false positives, caused by slow-moving traffic, an object moving
offscreen and incorrect background subtraction respectively. (h): false
negative caused by occlusion. (A car is hidden behind the road sign
on the right-hand side). (i) is treated as a false negative and a false
positive: the detector identifies the car on the left instead of the van
parked beside it. (j) is an anomaly identified outside the allowed time
window, so counts as a false negative and false positive.

6.9. Analysis 165

Table 6.9: Processing performance for all prioritisation modes on daylight sequences
only in i-lids sequence PV3. Idle/baseline power is 147W.

Prioritisation Frames Runtime Processing Mean estimated
skipped as % of time as % of power above baseline

(%) source time source time while processing (W)

power 75.5 125.4 87.9 49.1
speed 60.1 124.2 82.0 78.4
auto 66.0 122.0 83.4 61.8

erroneously identifying patches of road as foreground, caused by the need to acquire
slow-moving or waiting traffic in the same region. The anomaly detectors then flag
an object on the road as either stationary for long periods or moving in the wrong
direction, and generate a false alarm.

False negatives are, in general, caused by poor performance of the object classifiers
or background subtractor. Directly failing to detect partially occluded objects (as
in Figure 6.18h), or stationary, repeated false detections in regions overlapping
the roadside which are generated during training can both cause anomalies to be
missed. To reduce processing of a large number of regions which are erroneously
designated as foreground by the background subtractor during a large, fast change
in camera gain, all regions are discarded immediately after such a change and the
background is re-learnt once the image stabilises. In at least two cases, camera gain
is changed immediately after a vehicle parks at the roadside. The parked vehicle is
then treated as part of the new background and not detected.

The false positive shown in Figure 6.18i is a result of the criteria for i-lids detection;
the white van is stopped and should be registered as an anomaly, but the car on
the left is flagged instead. This situation counts as one false-negative and one
false-positive event.

6.9 Analysis

In this Section we draw attention to significant results from this experiment and
place it in the context of other work. We then comment on possible improvements to

6.9. Analysis 166

this system in ascending order of abstraction, from improvements to the underlying
architecture to algorithms to the task itself.

Unlike in Chapter 5 when we considered the tradeoffs between time, power and
accuracy, here the system must run in real-time, so we drop frames to ensure a
close-to-realtime rate. The main tradeoffs which we can make here are therefore
accuracy and power; optimising for time allows more frames to be processed, which
in combination with the natural increased detection accuracy of the ggg detectors,
increases p and r. This is borne out by the data in Table 6.5. This twin improvement
of accuracy and time is partly because all of the detectors run slightly slower than
the frame rate. A faster detector will usually improve accuracy, as it sees more
frames. For a hypothetical less accurate detector which was faster than the frame
rate, such an observation would no longer apply.

The data of interest in Table 6.9 are mean estimated power consumption above
baseline; there is 29W range in average power consumption between highest-power
and lowest-power priority settings. When the system was run with speed prioritised
with the fpga turned off, power consumption was 208W, or 62W above baseline.
The average power for auto-prioritised mode with the fpga on was 61.9W, but this
is dependent on the dataset used; datasets with fewer moving objects would have a
lower average power consumption than this. This is also due to the lack of cff and
gff implementations for the car hog detector; these would reduce average power
consumption below this number.

As Figure 6.19 shows, running the system in automatic prioritisation mode allows
an increase in accuracy of 10% over the lowest-power option for a cost of 12W in
average power consumption. A further 17% gain in F1−score (from auto to speed)
costs an extra 17W above baseline. These results show a clear relationship between
power consumption and overall detection accuracy.

Figure 6.20 presents these results in relative and absolute terms, showing the relative
decreases in accuracy from speed when moving to lower-power prioritisations, and
using F1(speed) as a baseline. The 12W power reduction at auto reduces accuracy
by 45 % of baseline, while the fully-optimised power option loses 72% accuracy for
32% in power savings from best-case.

6.9. Analysis 167

45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

system power consumption above baseline (W)

F 1
-s

co
re

(α
=

0.
55
)

power, tA = 10 sec power, tA = 10 sec, daylight
power, tA = 15 sec power, tA = 15 sec, daylight
speed, tA = 10 sec speed, tA = 10 sec, daylight
speed, tA = 15 sec speed, tA = 15 sec, daylight
auto, tA = 10 sec auto, tA = 10 sec, daylight
auto, tA = 15 sec auto, tA = 15 sec, daylight

Figure 6.19: F1−scores for operational awareness (α = 0.55) against power con-
sumption, for various anomaly time periods on i-lids PV3.

6.9.1 Comparison to State-of-the-Art

Some previous work has considered four clips made publicly available from i-lids,
known as avss and containing four parked-vehicle events, classed as easy, medium,
hard and night. The only work we are aware of which evaluates the complete i-lids

dataset is by Albiol et al. [117], as discussed in Section 6.3. Using spatiotemporal
maps and manually-applied lane masks per-clip to denote areas in which detections
are allowed, Albiol et al. are able to improve significantly on the precision and recall
figures given above, reaching p− and r−values of 1.0 for several clips in PV3. They
do not provide performance information but note that they downscale the images
to 320× 240 to decrease evaluation time. In their work they discuss the applicability
and limitations of background subtractors for detecting slow-moving and stopped
objects, as well as discussing the same difficulties with the i-lids data previously
seen in Figure 6.17.

However, we also consider real-time implementation and power consumption, with
an end goal of a fully automatic system. Unlike Albiol et al.’s requirement for

6.9. Analysis 168

power speed auto

0
5
10
15
20

∆
W

decrease in P from speed (W)

−80

−60

−40

−20

0

∆
F 1

-s
co

re
(%

)

decrease in accuracy from speed (%)

(a) Absolute decrease in power consumption
and relative decrease in F1-score of each
configuration compared to speed priorit-
isation.

power speed auto

0
5
10
15
20
25
30
35

∆
W

(%
)

% decrease in P from speed

−80

−60

−40

−20

0

∆
F 1

-s
co

re
(%

)

% decrease in accuracy from speed

(b) Relative decrease in power consumption
and relative decrease in F1-score of each
configuration compared to speed priorit-
isation.

Figure 6.20: Relative tradeoffs between system power consumption above baseline
and F1-score. In each case, a bar further from zero in either direction
indicates decreased accuracy or power consumption, and F1(speed) =
100%.

manual operator intervention, we only need to re-register videos between clips to
overcome camera movement, which could be done automatically.

If we only consider our detector accuracy compared to those of other researchers
working on this data, we cannot improve upon existing results. The most obvious
way to do so would be to use the currently best-performing object classifiers, but
implementing multiple heterogeneous versions of these would take a prohibitively
long time to develop. Any accuracy measurement must be traded against other
characteristics, as Figure 6.19 shows.

We set out, however, to tackle the novel and different problem of power-aware
anomaly detection rather than offline lane masking. To the best of our knowledge,
no other work has been presented in this area.

6.9. Analysis 169

6.9.2 System Architecture Improvements

An exhaustive search method was used for exploring the search space, and this was
suitable given the relatively low number of 24 combinations (1 background subtrac-
tion implementation × 6 pedestrian detectors × 4 car detectors, as in Figure 6.15) in
use as candidates to be mapped. (Note that this design space is much smaller than
the work referred to in Section 2.4). However, this does not adequately capture any
interactions or commonalities between detectors. Generic, detector-independent op-
erations such as colour-to-grayscale conversion and transferring of frames between
cpu and gpu are cached, i.e. are not repeated for separate detectors run in a single
frame. Additional common steps are not removed; for example, the “resize” step is
repeated for both pedestrian and car detectors for all n scales. Fpga-specific steps
are also not identified and pipelined: the source image at each scale is run through
the fpga separately for each detector. This could be streamlined to generate window
scores in parallel for multiple detectors (as described in Komorkiewicz et al. [154])
for pedestrians and cyclists, at the cost of additional memory or dma controller
logic. Allowing these common steps to be identified and cached would decrease
processing time considerably, but at the expense of complexity, both of the image
pipeline processing system and the mapping algorithm. The behaviour and per-
formance characteristics of one detector would now depend on its own performance,
plus whichever other algorithms are running during that frame. This would also
require additional complexity during the design of each detector implementation.
One interesting extension of this is to treat each image transport, conversion or
resizing step as a separate algorithm stage, define prerequisites based on these for
each processing stage and allow the allocation algorithm to generate a connected,
optimised pipeline, in a similar manner to Quinn et al.’s firmware and software
selection mechanism [60].

Such interaction between a potentially much larger permutation of algorithm im-
plementations may then require a more optimised search algorithm, such as tabu
search [126], a genetic algorithm or dynamic programming techniques [60], although
the runtime of such an allocation algorithm over large search spaces may start to
become significant compared to the runtime of the detectors themselves.

Running separate algorithms in parallel simultaneously on different accelerators
is another plausible improvement which would reduce processing time, possibly
at the expense of power consumption, although we already multithread the cfc

6.9. Analysis 170

detectors at different scales. Currently, multiple implementations of different object
detectors running on gpu must share the same constant memory, (e.g. detectors
having different descriptor feature lengths) which means that detectors for different
objects cannot be run simultaneously.

6.9.3 Algorithm-Specific Improvements

A higher-level improvement which could be applied is to swap one or more of
the detectors for state-of-the art versions, for example the VeryFast pedestrian
detector [83], which shows both improved detection accuracy and faster runtime, at
the cost of flexibility (the current algorithm is gpu-only). Similarly, the car classifier
could be swapped in a similar manner, or further detectors trained on more object
classes could be added. (We currently do not aim to detect buses, trucks, vans
and cyclists, instead relying on motion detection or misclassifications from other
object detectors). The most significant limiting factor here is the time required to
write an implementation of any algorithm, on one or more target platforms. The
current system is written to support this, and object detection algorithms can be
easily added provided performance metadata is known.

6.9.4 Task-Level Improvements

As discussed in this chapter, contextual information can be used to detect objects
behaving anomalously. Letham et al. [130] also show that it can be used to increase
the quality of existing detections, by removing false detections in unusual areas; this
could possibly be combined with the score or confidence-measure associated with
each detected object.

Finally, specifically considering this anomaly detection scenario, improved tracking,
contextual awareness and anomaly detection mechanisms could be considered.
(Recall that we described this as an example of a real-world computer vision
problem which we have applied a heterogeneous system to, rather than having
set out to produce a state-of-the-art anomaly detector). Compromises have been
made at multiple levels of abstraction to attempt to mitigate the relatively poor
performance of the object classifiers and background subtraction mechanism. The
latter is severely affected by camera shake and changes in camera gain. The relatively
high false positive rate of all detectors resulted in compromises being made to the
tracker; with more accurate detectors the tracker could be made more sensitive,

6.10. Conclusion 171

allowing stationary or occluded objects to be tracked for much longer with a lower
risk of false alarms from false detections believed to be anomalous. The Bayesian
motion-based anomaly detection is also heavily affected by the false positives from
the classifiers, and the trajectory clustering mechanism does not properly handle
lost tracks in the middle of a scene (properly tracking the trajectory of objects is as
task for the object tracker rather than the clustering mechanism).

In the i-lids scenarios described above, detecting parked vehicles is one part of the
challenge; the other is to look for pedestrians subsequently entering or leaving those
vehicles. An interesting addition would be to expand the system to look for such
events, although this would probably require some of the baseline improvements
described above, and possibly require careful prioritisation of tasks per-frame,
possibly dropping some requested algorithms to better fit the available processing
time.

6.10 Conclusion

This chapter has described a system of heterogeneous processors used for perform-
ing a real-world computer vision task: real-time anomaly detection in video. The
system adjusts the platforms it runs on and the power it uses in response to scene
content. While there are various problems with the implementation, as described in
the previous section, we were able to detect some of the “parked vehicle” anomalous
events as categorised by the uk Home Office in the i-lids dataset, and show the
effect of using the presence or absence of these events in the video to dynamically
adjust system performance characteristics. We compared this to a single-accelerator
model and showed that power consumption for the automatically-prioritised sys-
tem, was approximately equal to the single-accelerator model for the dataset used.
We were also able to show a clear link between overall detection accuracy and
system power consumption. To our knowledge, other work in this area has not been
presented.

This chapter has thus answered the second question posed in the Introduction
chapter: “does the optimal mapping of a set of algorithms to a heterogeneous set of
processors change over time, and does such a system offer any advantage in a real-world
image processing task?”

6.10. Conclusion 172

The answers to this are “yes — if dynamically-adjusted priorities are used to weight
the mapping function,” and “performance does not improve on that of a single-
accelerator system on this dataset, but this is dataset-dependent”. This answer is
affected by the algorithm implementations available, such as the lack of cff and gff
car detectors, each of which we would expect to be faster, lower-power and less
accurate than their cfc and gfg equivalents. This leads to a broader discussion next
chapter about design implementation times, something which has not hitherto been
considered here.

This forms the conclusion of the experimental work in this thesis. In the follow-
ing, final chapter, we discuss outcomes from this work and directions for future
research.

7. Conclusion

7.1 Summary

The overall aim of this thesis was to answer, in detail, two sets of related questions:
“how does the performance of an algorithm when partitioned temporally across a heterogeneous
array of processors compare to the performance of the same algorithm in a singly-accelerated
system, when considering a real-world image processing problem?” and “what is the optimal
mapping of a set of algorithms to a heterogeneous set of processors? Does this change over
time, and does a system with this architecture offer any advantage in a real-world image
processing task?”.

We provide the justification for asking these questions in the Introduction (1),
considering this from both an academic and industrial angle; here we noted the
commercial benefits to Thales of having a detailed technical study of performance
on heterogeneous architectures available. As this is research within an engineering
discipline and with an industrial component, it is done with a clear application in
mind: that of improving scene understanding in the context of scene surveillance
and situational awareness from mobile vehicles, operating under time and power
constraints.

Advancing research in this area is a priority for the UK Ministry of Defence, as
shown by a 2013 award of grants totalling £16m to UK universities, including Heriot-
Watt and Edinburgh, to investigate signal processing in the networked battlespace.
A portion of this will focus on anomaly detection in video and other modalities
and on reducing the size, weight and power of sensing devices in the field – topics
which have been addressed by this work.

In the Background, we place this work in an academic context. First, using an
existing processor taxonomy, we provide details necessary to understand the basic

173

7.1. Summary 174

architecture of the platforms we used, and discuss alternative architectures which
we considered. We go on to consider image processing algorithms relevant to the
problem of scene understanding.

Concentrating specifically on object detection, we chart the progress of the state-of-
the-art algorithms in human detection, focusing mainly on Histogram of Oriented
Gradients, its derivatives and implementations. We conclude Chapter 2 by bringing
these two disciplines together, by discussing work on the automatic mapping of
algorithms to hardware, both at design and runtime. After analysing previous
work on performance comparisons between fpga and gpu along with design space
exploration work, we argue that there is as yet no clear overall roadmap for selecting
processing architectures for an application based on performance alone, and other
factors such as power consumption must be considered. Under such constraints,
dynamic mapping within a heterogeneous processing architecture becomes more
attractive.

In Chapter 3 we discussed sensor inputs and explored possibilities for indirectly
improving performance by confining object detection work to specific image re-
gions through segmentation. We described an alternative architecture, Ter@pix,
before choosing fpga and gpu. We also considered the feasibility of simulating the
heterogeneous processing system we hoped to build, before ultimately choosing a
hardware-focused approach. We described design space exploration methods oper-
ating on simple segmentation algorithms. These early explorations then influenced
the design of our PC-based system, which we documented in Chapter 4. Here we
also note the architectural mechanism and issues involved when transferring data
between accelerators.

Chapter 5 explores in depth the hog algorithm and the possibilities available when
implementing it across multiple platforms. We describe the multiple methods
for partitioning algorithm stages across heterogeneous processing architectures,
and the tradeoffs inherent in each one. The outcome of this, as well as a real-
time pedestrian detector, was a quantised set of tradeoffs of power, speed and
accuracy for a particular algorithm, with the understanding that such tradeoffs
would generalise over other detection algorithms. This, then, answered our first
question: a heterogeneous processor array with tasks partitioned temporally does not
outperform a single-processor array when only processing time is considered, but offers
lower power consumption while maintaining competitive performance, thus moving along a

7.2. Contributions 175

Pareto-optimal curve. The when partitioned temporally qualification here is important;
other approaches such as processing larger images on fpga and higher scales on
gpu are not considered in this work, as we concentrated on the placement of discrete
pipeline stages. In addition, this conclusion depends to an extent on implementation
details, the most significant of which is the fpga pcie interface. This underscores
the importance of efficient methods of data transfer between processing platforms:
while systems with more optimised data transfer interfaces might perform better
then the one we describe, any improvement in power or time would come at the
cost of increased design and implementation time.

Finally, in Chapter 6, we turned to the problem of anomaly detection in a scene,
using detection of parked vehicles as an example. With the stated goal of reducing
power consumption during idle video sequences while still retaining the capability
to generate fast, accurate detections in the presence of anomalies, we used our
heterogeneous system to detect multiple object classes in real time. We defined
a scene anomaly level generated by trajectory clustering and motion-based object
context, and were able to use that to recalculate the optimal mapping between
algorithms and architecture. In the process, we addressed our second question: the
optimal mapping between architectures and algorithms changes over time, and is affected by
system performance priorities. On the video sequences used, performance was comparable to
that of a single-accelerator system, but this was heavily dependent on the dataset. We are
unaware of any other such framework for dynamically reallocating tasks between
heterogeneous processors when power consumption is constrained and real-time
operation must be maintained.

7.2 Contributions

The original contributions of this work are, in summary:

∙ We give a comprehensive analysis of the performance of a complex signal
processing algorithm when applied to a platform with multiple heterogeneous
accelerators (fpga and gpu). Having considered processing time, power
consumption and accuracy, we show the cost (in percentage change from best
measurement for that characteristic) of trading one of these against the other.
This work ([16]) was published in the Journal of Emerging and Selected Topics

7.3. Future Research Directions and Improvements 176

in Circuits and Systems in 2013 and a talk and paper was presented at the
“Smart Cameras for Robotic Applications” workshop, part of iros, in 2012 [15].

∙ We construct and describe a real-time image processing system for anomaly
detection which dynamically modifies the processing elements it runs on and
hence its power consumption characteristics in response to events within a
scene. To the best of our knowledge, there is no other literature on dynamic
switching between heterogeneous accelerators under real-time constraints.
Work describing this was accepted for presentation at visapp 2014 [17] as a
full paper, with a 2013 acceptance rate of 9%.

7.2.1 Outcomes

In addition to the publications from the original contributions above, we also
produced two other outcomes:

∙ A real-time technology demonstrator was produced and exhibited at a Thales
research day.

∙ An invited talk describing the work done in chapter 5 was given at a bmva

Symposium on “Vision in an Increasingly Mobile World”.

7.3 Future Research Directions and Improvements

More work, funded by significant Networked Battlespace grants from dstl, (the
UK MoD research department), and epsrc, is now being undertaken to improve
the confidence and real-time performance of classifiers such as hog; this is a
continuation of some more widely applicable parts of this current work. However,
there are several interesting possibilities for extending the work documented in this
thesis in different directions. These are listed below and should be considered in
conjunction with the improvements given in Section 6.9.

One interesting direction would be to greatly improve the monitoring of power
consumption of the system to one which has much more granularity (i.e. fpgas have
built in power measurement tools, as do later generations of gpu). Alternatively,

7.3. Future Research Directions and Improvements 177

focusing on measurement of energy rather than power may be instructive: is higher
power consumption for a shorter duration an acceptable tradeoff, and does this hold
for all system sizes?

The most significant architectural bottleneck discussed in Chapter 5 was transfer
times between architectures. Current developments allow closer integration between
cpu and accelerator, with both elements being available on one chip. Some plat-
forms now include a fast cpu, reconfigurable logic and a simple manycore array
on one chip; the application and constraints described in this thesis would be re-
warding to investigate on such a platform. More broadly, any such base platform
should be sufficiently mature that algorithms can be implemented on to it without
encountering limitations due to memory interfaces such as dma or external ram.
This implies using a system based on Bittner’s work [14], or at a minimum, a robust,
high-performance dma controller and sdram interface on fpga.

This point naturally leads to a discussion about tools. Current model-based design
tools on fpga lack automatic or minimally-customisable mechanisms for incorpor-
ating an interface to external subsystems; this should be addressed. Alternatively,
the ability to exploit parallelism within an algorithm and write a single imple-
mentation in a high-level language such as OpenCL and have that automatically
compile to multiple architectures such as fpga and gpu is a much broader general
research problem, one with lots of potential both academically and industrially.
Current-generation autocoding tools for fpga are not a complete solution. For
simple streaming pixel-in, pixel-out processing with no need for recall of previous
frames, autocoding an algorithm in Simulink might be a trivial task. However, for
involved algorithms requiring any level of short- or long-term data storage (and
thus instantiation of memories), fine control over finite state machines, or manual
pipelining, autocoding reduces the time to capture design elements of, but does not remove
the need for an understanding of the underlying hardware.

Finally, a natural continuation of the current work would be to port it to an em-
bedded system with a massively reduced power consumption, particularly when
idle. Nvidia’s forthcoming Logan chipset has a stated power consumption of 2W,
while being able to run standard cuda code. Implementation of the closed-loop
surveillance system described in Chapter 6 on such a platform would provide a
compelling validation of the work described in this thesis.

A. Mathematical Formulæ

A.1 Vector Norms

For a vector v, normalised vectors nvL1Sqrt and nvL2Hys are defined as follows. ε is
added to prevent division by zero.

nvL1Sqrt ≡
√

v
‖ v ‖1 +ε

(A.1)

For nvL2Hys, we first find

v′ ≡ v√
∑ ‖ v ‖2

2 +ε
, (A.2)

then cap v′ at a constant Vmax, then

nvL2Hys ≡
v′√

∑ ‖ v′ ‖2
2 +ε

. (A.3)

A.2 Kalman Filter

Given knowledge of the state of an object x at time tk−1 (in this case, position and
velocity in x and y in 2D space), its state at time tk can be predicted given some
knowledge or assumptions about the process causing x to move:

x̂−k = Ax̂k−1 + Buk−1 (A.4)

P−k = APk−1AT + Q . (A.5)

178

A.3. Planar Homography 179

Here, x̂−k is the predicted state of x at tk, x̂k−1 is the a posteriori state at tk−1, A is
the state transition matrix, B is the coupling between process noise and state, and
uk−1 is the control input to the system (zero in this case). P−k is the estimated a priori
error covariance and Q is the process noise covariance matrix.

Once the prediction step is completed, a detection position can be matched to the
position-components of x̂−k . If a match is made, the state is then corrected with
the updated measurement zk = (xd, yd) to produce the a posteriori state estimate
x̂k:

Kk = P−k HT/(HP−k HT + R) (A.6)

x̂k = x̂−k + Kk(zk − Hx̂−k) (A.7)

Pk = P−k − KkH . (A.8)

Where Kk is the Kalman gain, H relates measurements taken to the state and R is
measurement noise covariance.

A.3 Planar Homography

Bradski and Kaelher define planar homography as “a projective mapping from
one plane to another” [155]. This is used to project points from a camera plane
to a ground plane to obtain a ’birds-eye view’. To move to a point in a plane
pdst = [xdst, ydst] from a point in a plane psrc = [xsrc, ysrc], the following equation is
used:

pdst = Hpsrc (A.9)

where xdst

ydst

1

 =

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3


xsrc

ysrc

1

 (A.10)

and the 9-entry homography matrix H contains homography data learned from
control points.

Bibliography

[1] J. S. Warm, R. Parasuraman, and G. Matthews, “Vigilance Requires Hard Mental Work and Is Stressful,”
Hum. Factors J. Hum. Factors Ergon. Soc., vol. 50, no. 3, pp. 433–441, Jun. 2008.

[2] N. H. Mackworth, “The breakdown of vigilance durning prolonged visual search,” Q. J. Exp. Psychol.,
vol. 1, no. 1, pp. 6–21, Apr. 1948.

[3] F. M. Donald, “The classification of vigilance tasks in the real world.” Ergonomics, vol. 51, no. 11, pp.
1643–55, Nov. 2008.

[4] Volvo Car Group, “Press Release: Pedestrian Detection with full auto brake - unique technology in the
all-new Volvo S60,” 2010. [Online]. Available: https://www.media.volvocars.com/global/en-gb/media/
pressreleases/31773

[5] M. Mathias, R. Timofte, R. Benenson, and L. Van Gool, “Traffic sign recognition - How far are we from
the solution?” in Int. Jt. Conf. Neural Networks, Dallas, Aug. 2013.

[6] DSTL, “UDRC Technical Challenges,” 2013. [Online]. Available: http://www.see.ed.ac.uk/drupal/udrc/
technical-challenges/

[7] Euro NCAP, “Autonomous Emergency Braking,” 2013. [Online]. Available: http://www.euroncap.com/
results/aeb.aspx

[8] Royal Canadian Mounted Police., “Single Vehicle Rollover – Saskatoon RCMP Search for Injured
Driver with Unmanned Aerial Vehicle,” 2013. [Online]. Available: http://www.rcmp-grc.gc.ca/sk/
news-nouvelle/video-gallery/video-pages/search-rescue-eng.htm

[9] H. Sutter and J. Larus, “Software and the concurrency revolution,” Queue, vol. 3, no. 7, p. 54, Sep. 2005.

[10] W.-M. W. Hwu and D. B. Kirk, Programming Massively Parallel Processors. Chicago: Morgan Kauffman,
2010.

[11] H. Meuer, E. Strohmaier, H. Simon, and J. Dongarra, “Top 500 Supercomputers: Highlights - November
2013,” 2013. [Online]. Available: http://www.top500.org/lists/2013/11/highlights/

[12] Ministry of Defence, “Defence Standard 00-82 Vetronics Infrastructure for Video Over Ethernet Part 0 :
Guidance,” Ministry of Defence, Tech. Rep. 2, 2012.

180

https://www.media.volvocars.com/global/en-gb/media/pressreleases/31773
https://www.media.volvocars.com/global/en-gb/media/pressreleases/31773
http://www.see.ed.ac.uk/drupal/udrc/technical-challenges/
http://www.see.ed.ac.uk/drupal/udrc/technical-challenges/
http://www.euroncap.com/results/aeb.aspx
http://www.euroncap.com/results/aeb.aspx
http://www.rcmp-grc.gc.ca/sk/news-nouvelle/video-gallery/video-pages/search-rescue-eng.htm
http://www.rcmp-grc.gc.ca/sk/news-nouvelle/video-gallery/video-pages/search-rescue-eng.htm
http://www.top500.org/lists/2013/11/highlights/

Bibliography 181

[13] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense linear algebra,” in 2008 SC - Int. Conf. High
Perform. Comput. Networking, Storage Anal. IEEE, Nov. 2008, pp. 1–11.

[14] R. Bittner, E. Ruf, and A. Forin, “Direct GPU/FPGA communication Via PCI express,” Cluster Comput.,
no. February, Jun. 2013.

[15] C. Blair, N. M. Robertson, and D. Hume, “Characterising Pedestrian Detection on a Heterogeneous
Platform,” in Work. Smart Cameras Robot. Appl. (Scabot ’12), IROS 2012, 2012.

[16] ——, “Characterising a Heterogeneous System for Person Detection in Video using Histograms of
Oriented Gradients: Power vs. Speed vs. Accuracy,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 3, no. 2, pp.
236–247, 2013.

[17] C. G. Blair and N. M. Robertson, “Event-Driven Dynamic Platform Selection for Power-Aware Real-Time
Anomaly Detection in Video,” in Int. Conf. Comput. Vis. Theory Appl. (VISAPP 2014), Lisbon, Jan. 2014.

[18] G. J. Awcock and R. Thomas, Applied Image Processing. Basingstoke: Macmillan New Electronics, 1995.

[19] P. Viola and M. Jones, “Robust real-time object detection,” Int. J. Comput. Vis., vol. 57, no. 2, pp. 137–154,
2002.

[20] M. Rahman, J. Ren, and N. Kehtarnavaz, “Real-time implementation of robust face detection on mobile
platforms,” in Proc. 2009 IEEE Int. Conf. Acoust. Speech Signal Process. IEEE Computer Society, 2009, pp.
1353–1356.

[21] M. Zuluaga and N. Topham, “Design-space exploration of resource-sharing solutions for custom instruc-
tion set extensions,” Trans. Comput. Des. Integr. Circuits Syst., vol. 28, no. 12, pp. 1788–1801, 2009.

[22] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape of Parallel Computing Research : A View from
Berkeley,” University of California at Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[23] D. B. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs, FPGAs, and massively parallel
processor arrays for random number generation,” Int. Symp. F. Program. Gate Arrays, pp. 63–72, 2009.

[24] A. R. Brodtkorb, C. Dyken, T. R. Hagen, and J. M. Hjelmervik, “State-of-the-art in heterogeneous
computing,” Sci. Program., vol. 18, pp. 1–33, 2010.

[25] C. Moler, “Matrix computation on distributed memory multiprocessors,” in Hypercube Multiprocessors,
1986.

[26] G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,”
Proc. April 18–20 1967 spring Jt. Comput. Conf., vol. 30, no. 3, pp. 483–485, 1967.

[27] C. Johnston, K. Gribbon, and D. Bailey, “Implementing image processing algorithms on FPGAs,” in Proc.
Elev. Electron. New Zeal. Conf. ENZCon’04, 2004, pp. 118–123.

Bibliography 182

[28] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Trans. Comput., vol. C-21,
no. 9, pp. 948–960, Sep. 1972.

[29] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. Lefohn, and T. Purcell, “A survey of
general-purpose computation on graphics hardware,” in Comput. Graph. Forum, vol. 26, no. 1. Citeseer,
2007, pp. 80–113.

[30] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU Computing,” Proc.
IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[31] G. Hendeby, J. Hol, R. Karlsson, and F. Gustafsson, “A graphics processing unit implementation of the
particle filter,” in Proc. Eusipco 2007, vol. 1, no. Eusipco, 2007, pp. 1639–1643.

[32] N. Whitehead and A. Fit-Florea, “Precision & performance: Floating point and IEEE 754 compliance for
NVIDIA GPUs,” 2011.

[33] V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts on the GPU,” 2008 IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. Work., pp. 1–8, Jun. 2008.

[34] V. Pham, P. Vo, and V. Hung, “GPU implementation of Extended Gaussian mixture model for Background
subtraction,” in Comput. Commun. Technol. Res. Innov. Vis. Futur. (RIVF), 2010 IEEE RIVF Int. Conf. IEEE,
2008, pp. 1–4.

[35] B. Sharma, R. Thota, N. Vydyanathan, and A. Kale, “Towards a robust, real-time face processing system
using CUDA-enabled GPUs,” 2009 Int. Conf. High Perform. Comput., pp. 368–377, Dec. 2009.

[36] L. Polok, A. Herout, P. Zemčík, M. Hradiš, R. Juránek, and R. Jošth, “‘Local Rank Differences’ Image
Feature Implemented on GPU,” in Adv. Concepts Intell. Vis. Syst. Springer, 2008, pp. 170–181.

[37] M. Boyer and D. Tarjan, “Accelerating leukocyte tracking using CUDA: A case study in leveraging
manycore coprocessors,” in Parallel & Distrib. Comput. Symp., no. May, 2009.

[38] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime Computer Vision with OpenCV,” Queue,
vol. 10, no. 4, p. 40, Apr. 2012.

[39] G. Wang, B. Rister, and J. Cavallaro, “Workload Analysis and Efficient OpenCL-based Implementation of
SIFT Algorithm on a Smartphone,” in IEEE Glob. Conf. Signal Inf. Process., no. December, 2013.

[40] G. Estrin, B. Bussell, R. Turn, and J. Bibb, “Parallel Processing in a Restructurable Computer System,”
IEEE Trans. Electron. Comput., vol. EC-12, no. 6, pp. 747–755, Dec. 1963.

[41] Xilinx, “MicroBlaze Processor Reference Guide,” 2012.

[42] S. Lu, P. Yiannacouras, T. Suh, R. Kassa, and M. Konow, “A Desktop Computer with a Reconfigurable
Pentium,” ACM Trans. Reconfigurable Technol. Syst., vol. 1, no. 1, pp. 1–15, 2008.

Bibliography 183

[43] D. Bacon, R. Rabbah, and S. Shukla, “FPGA Programming for the Masses,” Queue, vol. 11, no. 2, p. 40,
Feb. 2013.

[44] D. G. Bailey and C. T. Johnston, “Algorithm Transformation for FPGA Implementation,” in 2010 Fifth
IEEE Int. Symp. Electron. Des. Test & Appl. IEEE, 2010, pp. 77–81.

[45] R. Zoss, A. Habegger, V. Bandi, J. Goette, and M. Jacomet, “Comparing signal processing hardware-
synthesis methods based on the Matlab tool-chain,” in 2011 Sixth IEEE Int. Symp. Electron. Des. Test Appl.
IEEE, 2011, pp. 281–286.

[46] A. Papakonstantinou, K. Gururaj, J. a. Stratton, D. Chen, J. Cong, and W.-M. W. Hwu, “FCUDA: Enabling
efficient compilation of CUDA kernels onto FPGAs,” 2009 IEEE 7th Symp. Appl. Specif. Process., pp. 35–42,
Jul. 2009.

[47] S. Edwards, “The Challenges of Hardware Synthesis from C-Like Languages,” in Des. Autom. Test Eur.
IEEE, 2005, pp. 66–67.

[48] ——, “The challenges of synthesizing hardware from C-like languages,” Des. & Test Comput. IEEE, vol. 23,
no. 5, pp. 375–386, 2006.

[49] Xilinx, “Accelerating OpenCV Applications with Zynq-7000 All Programmable SoC using Vivado HLS
Video Libraries,” Xilinx, Tech. Rep. 1167, 2013.

[50] K. Underwood, “From Silicon to Science: The Long Road to Production Reconfigurable Supercomputing,”
ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 4, 2008.

[51] D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. Cheung, “GPU Versus FPGA for High Productivity
Computing,” 2010 Int. Conf. F. Program. Log. Appl., pp. 119–124, Aug. 2010.

[52] J. Svab, T. Krajnik, J. Faigl, and L. Preucil, “FPGA based Speeded Up Robust Features,” in 2009 IEEE Int.
Conf. Technol. Pract. Robot Appl. IEEE, Nov. 2009, pp. 35–41.

[53] G. N. Gaydadjiev, N. T. Quach, and B. Zafarifar, “Real-time FPGA-implementation for blue-sky Detection,”
in IEEE 18th Int. Conf. Appl. Syst. Archit. Process., 2007, pp. 76–82.

[54] M. Hiromoto, K. Nakahara, H. Sugano, Y. Nakamura, and R. Miyamoto, “A Specialized Processor Suitable
for AdaBoost-Based Detection with Haar-like Features,” in 2007 IEEE Conf. Comput. Vis. Pattern Recognit.
IEEE, Jun. 2007, pp. 1–8.

[55] Altera Corporation, “White Paper FPGA Run-Time Reconfiguration : Two Approaches,” Altera, Tech.
Rep. March, 2008.

[56] Xilinx, “Partial Reconfiguration User Guide,” Xilinx, Tech. Rep. 702, 2012.

[57] I. Colwill, “Multi Agent System Platform in Programmable Logic,” DPhil Thesis, Sussex, 2008.

Bibliography 184

[58] F. Fons, M. Fons, E. Cantó, and M. López, “Real-time embedded systems powered by FPGA dynamic
partial self-reconfiguration: a case study oriented to biometric recognition applications,” J. Real-Time Image
Process., pp. 1–23, 2011.

[59] L. Gantel, S. Layouni, M. E. a. Benkhelifa, F. Verdier, and S. Chauvet, “Multiprocessor Task Migration
Implementation in a Reconfigurable Platform,” 2009 Int. Conf. Reconfigurable Comput. FPGAs, pp. 362–367,
Dec. 2009.

[60] H. Quinn, M. Leeser, and L. Smith King, “Dynamo: a runtime partitioning system for FPGA-based
HW/SW image processing systems,” J. Real-Time Image Process., vol. 2, no. 4, pp. 179–190, 2007.

[61] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited paper: Enhanced architectures,
design methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs,” in F. Program. Log.
Appl. 2006. FPL’06. Int. Conf., Xilinx. IEEE, 2006, pp. 1–6.

[62] M. Happe, E. Lübbers, and M. Platzner, “A self-adaptive heterogeneous multi-core architecture for
embedded real-time video object tracking,” J. Real-Time Image Process., vol. 8, no. 1, pp. 95–110, Jul. 2011.

[63] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.-J. Lee, “Real-Time Optical Flow Calculations on FPGA and
GPU Architectures: A Comparison Study,” in 16th Int. Symp. Field-Programmable Cust. Comput. Mach.
IEEE, 2008, pp. 173–182.

[64] B. Cope, P. Y. Cheung, W. Luk, and L. Howes, “Performance Comparison of Graphics Processors to
Reconfigurable Logic: A Case Study,” IEEE Trans. Comput., vol. 59, no. 4, pp. 433–448, Apr. 2010.

[65] M. Papadonikolakis, C.-S. Bouganis, and G. Constantinides, “Performance comparison of GPU and FPGA
architectures for the SVM training problem,” in 2009 Int. Conf. Field-Programmable Technol. IEEE, 2009,
pp. 388–391.

[66] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison of FPGA, GPU and CPU in image
processing,” in 2009 Int. Conf. F. Program. Log. Appl. IEEE, 2009, pp. 126–131.

[67] B. Cope, “Video processing acceleration using reconfigurable logic and graphics processors,” PhD Thesis,
imperial college, 2008.

[68] B. Cope, P. Cheung, W. Luk, and S. Witt, “Have GPUs made FPGAs redundant in the field of video
processing?” in Proceedings. 2005 IEEE Int. Conf. Field-Programmable Technol. IEEE, 2005, pp. 111–118.

[69] C. Grozea, Z. Bankovic, and P. Laskov, “FPGA vs. Multi-core CPUs vs. GPUs: Hands-On Experience with
a Sorting Application,” LNCS Facing Multicore-Challenge, pp. 105–117, 2011.

[70] S. Bauer, U. Brunsmann, and S. Schlotterbeck-macht, “FPGA Implementation of a HOG-based Pedestrian
Recognition System,” in MPC Work. Karlsruhe, no. July, 2009.

[71] S. Bauer and S. Kohler, “FPGA-GPU architecture for kernel SVM pedestrian detection,” in Comput. Vis.
Pattern Recognit. Work. (CVPRW), 2010 IEEE Conf. IEEE, 2010, pp. 61–68.

Bibliography 185

[72] R. Bittner, E. Ruf, and A. Forin, “Direct GPU/FPGA Communication via PCI Express,” 2012 41st Int. Conf.
Parallel Process. Work., pp. 135–139, Sep. 2012.

[73] Intel Corporation, “History of Many-Core leading to Intel Xeon Phi,” 2012.

[74] M. Everingham, L. Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal Visual Object Classes
(VOC) Challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Sep. 2009.

[75] C. Cheng and C.-S. Bouganis, “An FPGA-based object detector with dynamic workload balancing,” in
2011 Int. Conf. Field-Programmable Technol. IEEE, Dec. 2011, pp. 1–4.

[76] D. Hefenbrock, J. Oberg, N. T. N. Thanh, R. Kastner, and S. B. Baden, “Accelerating Viola-Jones Face
Detection to FPGA-Level Using GPUs,” 2010 18th IEEE Annu. Int. Symp. Field-Programmable Cust. Comput.
Mach., pp. 11–18, 2010.

[77] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Comput. Vis. Pattern
Recognition, 2005. IEEE Computer Society, 2005, pp. 886– 893.

[78] N. Dalal, “Finding People in Images and Videos,” PhD Thesis, Institut National Polytechnique de
Grenoble / INRIA Grenoble, 2006.

[79] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively
trained part-based models.” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–45, Sep. 2010.

[80] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral Channel Features.” in BMVC, 2009, pp. 1–11.

[81] P. Dollar, S. Belongie, and P. Perona, “The Fastest Pedestrian Detector in the West,” in Procedings Br. Mach.
Vis. Conf. BMVC 2010, 2010, pp. 68.1–68.11.

[82] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection: An Evaluation of the State of the
Art,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 743–762, Jul. 2011.

[83] R. Benenson and M. Mathias, “Pedestrian detection at 100 frames per second,” in Comput. Vis. Pattern
Recognit. (CVPR), 2012 IEEE Conf., 2012, pp. 2903–2910.

[84] R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool, “Seeking the strongest rigid detector,” in Proc.
IEEE CVPR, 2013.

[85] A. Martin, G. Doddington, and T. Kamm, “The DET curve in assessment of detection task performance,”
DTIC, Tech. Rep., 1997.

[86] R. Kadota and H. Sugano, “Hardware architecture for HOG feature extraction,” in Intell. Inf. Hiding
Multimed. Signal Process. 2009. IIH-MSP’09. Fifth Int. Conf. IEEE, 2009, pp. 1330–1333.

[87] S. Martelli, D. Tosato, M. Cristani, and V. Murino, “FPGA-based pedestrian detection using array of
covariance features,” in Distrib. Smart Cameras (ICDSC), 2011 Fifth ACM/IEEE Int. Conf., 2011, pp. 1–6.

Bibliography 186

[88] P. E. P. Rybski, D. Huber, D. D. Morris, and R. Hoffman, “Visual classification of coarse vehicle orientation
using Histogram of Oriented Gradients features,” in 2010 IEEE Intell. Veh. Symp. IEEE, Jun. 2010, pp.
921–928.

[89] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995.

[90] C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov.,
vol. 2, no. 2, pp. 121–167, 1998.

[91] C. Burges and e. Schölkopf, “Improving the accuracy and speed of support vector machines,” in Adv.
Neural Inf. Process. Syst., 1997.

[92] S. Romdhani, P. Torr, B. Scholkopf, and A. Blake, “Efficient face detection by a cascaded support-vector
machine expansion,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 460, no. 2051, pp. 3283–3297, Nov. 2004.

[93] J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods,” in Adv. large margin Classif., 1999.

[94] M. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Mach. Learn. Res., vol. 1, pp.
211—-244, 2001.

[95] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. University Press Group
Limited, 2006.

[96] V. Prisacariu and I. Reid, “fastHOG-a real-time GPU implementation of HOG,” Department of Engineering
Science, Oxford University, Tech. Rep. 2310, 2009.

[97] P. Dollár, “Piotr’s Image and Video Matlab Toolbox (PMT),” http://vision.ucsd.edu/~pdollar/toolbox/
doc/index.html.

[98] M. Hiromoto and R. Miyamoto, “Hardware architecture for high-accuracy real-time pedestrian detection
with CoHOG features,” in Comput. Vis. Work. (ICCV Work. 2009 IEEE 12th Int. Conf. IEEE, Sep. 2009, pp.
894—-899.

[99] T. P. Cao and G. Deng, “Real-Time Vision-Based Stop Sign Detection System on FPGA,” in Digit. Image
Comput. Tech. Appl. IEEE, 2008, pp. 465–471.

[100] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-Based Real-Time Pedestrian
Detection on High-Resolution Images,” 2013 IEEE Conf. Comput. Vis. Pattern Recognit. Work., pp. 629–635,
Jun. 2013.

[101] B. Morris and M. Trivedi, “A Survey of Vision-Based Trajectory Learning and Analysis for Surveillance,”
IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 8, pp. 1114–1127, Aug. 2008.

[102] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 2nd ed. John
Wiley & Sons, 2001.

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

Bibliography 187

[103] S. Atev, O. Masoud, and N. Papanikolopoulos, “Learning Traffic Patterns at Intersections by Spectral
Clustering of Motion Trajectories,” 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 4851–4856, Oct. 2006.

[104] X. Li, W. Hu, and W. Hu, “A Coarse-to-Fine Strategy for Vehicle Motion Trajectory Clustering,” 18th Int.
Conf. Pattern Recognit., pp. 591–594, 2006.

[105] B. Morris and M. Trivedi, “Trajectory learning for activity understanding: Unsupervised, multilevel, and
long-term adaptive approach,” Pattern Anal. Mach. Intell., vol. 33, no. 11, pp. 2287–2301, 2011.

[106] C. Piciarelli and G. Foresti, “On-line trajectory clustering for anomalous events detection,” Pattern Recognit.
Lett., vol. 27, no. 15, pp. 1835–1842, Nov. 2006.

[107] B. Morris and M. Trivedi, “Learning, modeling, and classification of vehicle track patterns from live
video,” Intell. Transp. Syst. . . . , vol. 9, no. 3, pp. 425–437, 2008.

[108] R. Khoshabeh, T. Gandhi, and M. M. Trivedi, “Multi-camera Based Traffic Flow Characterization &
Classification,” 2007 IEEE Intell. Transp. Syst. Conf., pp. 259–264, Sep. 2007.

[109] C. C. Loy, T. Xiang, and S. Gong, “Detecting and discriminating behavioural anomalies,” Pattern Recognit.,
vol. 44, no. 1, pp. 117–132, Jan. 2011.

[110] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time tracking,” in Proceedings.
1999 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 99, 1999, pp. 246–252.

[111] M. J. Roshtkhari and M. D. Levine, “Online Dominant and Anomalous Behavior Detection in Videos,” in
IEEE Conf. Comput. Vis. Pattern Recognit. Ieee, Jun. 2013, pp. 2611–2618.

[112] S. Sivaraman and M. M. Trivedi, “Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle
Detection, Tracking, and Behavior Analysis,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 4, pp. 1773–1795,
Dec. 2013.

[113] T. Machida and T. Naito, “GPU & CPU cooperative accelerated pedestrian and vehicle detection,” in 2011
IEEE Int. Conf. Comput. Vis. Work. (ICCV Work. IEEE, Nov. 2011, pp. 506–513.

[114] M. S. Ryoo, M. Riley, and J. K. Aggarwal, “Real-time detection of illegally parked vehicles using 1-D
transformation,” in 2007 IEEE Conf. Adv. Video Signal Based Surveill. Ieee, Sep. 2007, pp. 254–259.

[115] S. Boragno, B. Boghossian, J. Black, D. Makris, and S. Velastin, “A DSP-based system for the detection of
vehicles parked in prohibited areas,” 2007 IEEE Conf. Adv. Video Signal Based Surveill., no. 1, pp. 260–265,
Sep. 2007.

[116] A. Bevilacqua and S. Vaccari, “Real time detection of stopped vehicles in traffic scenes,” in Adv. Video
Signal Based Surveillance, 2007. AVSS 2007. IEEE Conf. IEEE, 2007, pp. 1–5.

[117] A. Albiol, L. Sanchis, A. Albiol, and J. M. Mossi, “Detection of Parked Vehicles Using Spatiotemporal
Maps,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1277–1291, Dec. 2011.

Bibliography 188

[118] C. Galuzzi and K. Bertels, “The Instruction-Set Extension Problem: A Survey,” Lect. Notes Comput. Sci.,
vol. 4943, pp. 209–220, 2008.

[119] R. Niemann and P. Marwedel, “Hardware/software partitioning using integer programming,” Proc.
ED&TC Eur. Des. Test Conf., pp. 473–479, 1996.

[120] M. Dhodhi, F. Hielscher, R. Storer, and J. Bhasker, “Datapath synthesis using a problem-space genetic
algorithm,” Trans. Comput. Des. Integr. Circuits Syst., vol. 14, no. 8, pp. 934–944, 1995.

[121] M. Zuluaga and N. Topham, “Resource Sharing in Custom Instruction Set Extensions,” in 2008 Symp.
Appl. Specif. Process. IEEE, 2008, pp. 7–13.

[122] O. Almer, M. Gould, N. Topham, and B. Franke, “Selecting the Optimal System : Automated Design of
Application-Specific Systems-on-Chip,” in Proc. 4th Int. Work. Netw. Chip Archit., 2011.

[123] K. Kuchcinski, “Constraints-driven design space exploration for distributed embedded systems,” J. Syst.
Archit., vol. 47, no. 3-4, pp. 241–261, Apr. 2001.

[124] C.-S. Bouganis, S.-B. Park, G. A. Constantinides, and P. Y. K. Cheung, “Synthesis and Optimization of 2D
Filter Designs for Heterogeneous FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 1, no. 4, pp. 1–28,
2009.

[125] H. Quinn, “Runtime tools for hardware/software systems with reconfigurable hardware,” PhD Thesis,
Northeastern University, Boston, 2004.

[126] U. Schneider, “A tabu search tutorial based on a real-world scheduling problem,” Cent. Eur. J. Oper. Res.,
Mar. 2010.

[127] K. Deb, “Multi-objective genetic algorithms: problem difficulties and construction of test problems.” Evol.
Comput., vol. 7, no. 3, pp. 205–30, Jan. 1999.

[128] A. Thompson, P. Layzell, and R. Zebulum, “Explorations in design space: Unconventional electronics
design through artificial evolution,” IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 167–196, 1999.

[129] B. Connor, I. Carrie, R. Craig, and J. Parsons, “Discriminative imaging using a LWIR polarimeter,” in Proc.
SPIE, vol. 7113, 2008.

[130] J. Letham, N. M. Robertson, and B. Connor, “Contextual smoothing of image segmentation,” in Int. Conf.
Comput. Vis. Pattern Recognit. Work. CVPRW 2010, San Francisco, 2010, pp. 7–12.

[131] J. Leskela, J. Nikula, and M. Salmela, “OpenCL embedded profile prototype in mobile device,” in Signal
Process. Syst. 2009. SiPS 2009. IEEE Work., 2009, pp. 279–284.

[132] P. Bonnot, F. Lemonnier, G. Edelin, G. Gaillat, O. Ruch, and P. Gauget, “Definition and SIMD imple-
mentation of a multi-processing architecture approach on FPGA,” Des. Autom. Test Eur., pp. 610–615,
2008.

Bibliography 189

[133] NVidia Corporation, CUDA Toolkit Reference Manual v5.0. NVidia Corporation, 2012.

[134] J. A. Letham, “Context Based Image Segmentation,” MRes Thesis, Heriot-Watt University, 2011.

[135] C. J. Tucker, “Red and Photographic Infrared linear Combinations for Monitoring Vegetation,” Remote
Sens. Environ., vol. 150, pp. 127–150, 1979.

[136] K. Kluge and S. Lakshmanan, “A deformable-template approach to lane detection,” in Intell. Veh. 95 Symp.
Proc., 1995, pp. 54–59.

[137] Y. Wang, N. Dahnoun, and A. Achim, “A Novel Lane Feature Extraction Algorithm Based on Digital
Interpolation,” in Proc. Eusipco 2009, vol. 1, no. Eusipco, 2009, pp. 480–484.

[138] J. Lee and C. Crane, “Road Following in an Unstructured Desert Environment Based on the
EM(Expectation-Maximization) Algorithm,” in 2006 SICE-ICASE Int. Jt. Conf. Ieee, 2006, pp. 2969–
2974.

[139] B. Zafarifar and P. de With, “Blue Sky Detection for Picture Quality Enhancement,” in Adv. Concepts Intell.
Vis. Syst. Springer, 2006, pp. 522–532.

[140] Intel Corporation, “Intel X58 Express Chipset Datasheet,” 2009.

[141] PCI-SIG, “PCI Express 2.0 Base Specification,” 2006.

[142] K. Lund, D. Naylor, and S. Trynosky, “Application Note 859: Virtex-5 FPGA Integrated Endpoint Block
for PCI Express Designs: DDR2 SDRAM DMA Initiator Demonstration Platform,” Xilinx Corporation,
Tech. Rep. 859, 2008.

[143] T. Wilson, M. Glatz, and M. Hodlmoser, “Pedestrian detection implemented on a fixed-point parallel
architecture,” in Consum. Electron. 2009. ISCE’09. IEEE 13th Int. Symp. IEEE, 2009.

[144] NVidia Corporation, “Developing a Linux kernel module using RDMA for GPUDirect,” Nvidia Corpora-
tion, Tech. Rep., 2012.

[145] K. Irick, M. DeBole, V. Narayanan, and A. Gayasen, “A Hardware Efficient Support Vector Machine
Architecture for FPGA,” in 16th Int. Symp. Field-Programmable Cust. Comput. Mach. IEEE, Apr. 2008, pp.
304–305.

[146] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto, S. Chakradhar, and H. P. Graf, “A
Massively Parallel FPGA-Based Coprocessor for Support Vector Machines,” in 17th IEEE Symp. F. Program.
Cust. Comput. Mach. IEEE, 2009, pp. 115–122.

[147] NVidia Corporation, CUDA C Best Practices Guide. NVidia Corporation, 2012.

[148] UK Home Office, “Imagery Library for Intelligent Detection Systems - Detailed guidance,” 2013. [Online].
Available: https://www.gov.uk/imagery-library-for-intelligent-detection-systems

https://www.gov.uk/imagery-library-for-intelligent-detection-systems

Bibliography 190

[149] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background subtraction,” in Proc. 17th Int.
Conf. Pattern Recognition, 2004. ICPR 2004., vol. 2. IEEE, 2004, pp. 28–31.

[150] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” University of North Carolina at Chapel
Hill, Tech. Rep. 1, 2006.

[151] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006, vol. 4.

[152] Home Office Centre for Applied Science and Technology, Imagery Library for Intelligent Detection Systems
(I-LIDS) User Guide, 4th ed. UK Home Office, 2011.

[153] C. J. Van Rijsbergen, Information Retrieval, 2nd edition. Butterworth-Heinemann, 1979.

[154] M. Komorkiewicz, M. Kluczewski, and M. Gorgon, “Floating point HOG implementation for real-time
multiple object detection,” in 22nd Int. Conf. F. Program. Log. Appl., Aug. 2012, pp. 711–714.

[155] G. Bradski and A. Kaelher, Learning OpenCV. O’Reilly, 2008.

	Abstract
	Acknowledgements
	List of Publications
	List of Tables
	List of Figures
	List of Abbreviations
	Declaration of Originality
	Introduction
	Academic Motivation and Problem Statement
	A Motivating Scenario
	Specifying Surveillance Subtasks
	Wider Applicability

	Industrial Motivation
	Aims
	Knowledge Transfer
	Research Outputs
	Knowledge Transfer within Thales

	Contributions
	Thesis Roadmap

	Related Work
	Data Processing Architectures
	Processor Taxonomy
	Methods for CPU Acceleration
	Graphics Processing Units
	Field-Programmable Gate Arrays
	FPGA vs. GPU
	Alternative Architectures

	Parallelisable Detection Algorithms
	Algorithms for Pedestrian Detection
	Classification Methods: Support Vector Machines
	HOG Implementations

	Surveillance for Anomalous Behaviour
	Design Space Exploration
	Conclusion

	Sensors, Processors and Algorithms
	Introduction
	Sensors
	Infrared
	Visual

	Processing Platforms
	Ter@pix Processor

	Simulation or Hardware?
	Modelling

	Algorithms for Scene Segmentation
	Vegetation Segmentation
	Road Segmentation
	Sky Segmentation

	Automatic Processing Pipeline Generation
	Conclusions

	System Architecture
	Processor Specifications
	System Architecture
	PCIe
	Interface
	Interface Limitations

	Conclusion

	Algorithm-Level Partitioning
	HOG Algorithm Analysis
	Algorithm Steps
	Partitioning

	Hardware Implementation
	Cell Histogram Operations
	Window Classification Operations

	Software and System Implementation Details
	Classifier Training
	Results
	Performance Considerations
	Detection Performance
	Performance Tradeoffs
	Analysis, Limitations, and State-of-the-Art

	Variations
	Kernel SVM Classification
	Pinned Memory
	Version Switching
	Embedded Evaluation

	Conclusion

	Task-Level Partitioning for Anomaly Detection
	Introduction
	Datasets
	Bank Street Dataset
	i-LIDS Dataset

	A Problem Description and Related Work
	High-level Algorithm
	Algorithm Implementations
	Pedestrian Detection with HOG
	Car Detection with HOG
	Background Subtraction
	Detection Combination
	Detection Matching and Tracking
	Trajectory Clustering
	Contextual Knowledge
	Anomaly Detection

	Dynamic Mapping
	Priority Recalculation
	Implementation Mapping

	Evaluation Methodology
	Results
	Detection Performance on BankSt videos
	Detection Performance on i-LIDS videos

	Analysis
	Comparison to State-of-the-Art
	System Architecture Improvements
	Algorithm-Specific Improvements
	Task-Level Improvements

	Conclusion

	Conclusion
	Summary
	Contributions
	Outcomes

	Future Research Directions and Improvements

	Mathematical Formulae
	Vector Norms
	Kalman Filter
	Planar Homography

	Bibliography

