
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 

 

Khalil, Omari S (2014) Effects on brain development of prenatal 
inhibition of Kynurenine-3-Monooxygenase. PhD thesis. 
 
http://theses.gla.ac.uk/5075/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Effects on Brain Development of Prenatal 

Inhibition of Kynurenine-3-Monooxygenase 
 

 
 
 

In the partial fulfilment of the requirements for the degree of Doctor of 
Philosophy. 

 
 
 
 

 
Institute of Neuroscience and Psychology 

 

 
College of Medical, Veterinary and Life Science 

 
 

University of Glasgow 
 
 
 
 
 

March 2014 

 
 
 
 
 

© Omari S Khalil 
BSc (Hons)  



2 

 
 

 

   
 
 

Much is known about the disease pathology related to schizophrenia, however, little is 

known with regards to its aetiology.  Recent evidences suggest a neurodevelopmental 

hypothesis for schizophrenia where environmental factors including: infection, stress and 

malnutrition, can adversely affect the pregnant mother thereby elevating the risk for 

schizophrenia developing in the offspring during adulthood (Meyer et al., 2008d; Meyer and 

Feldon, 2009; 2012; Forrest et al., 2012; Meyer, 2013).  Since a variety of viral and bacterial 

infections in animal models have demonstrated to increase the risk in schizophrenia, it is 

proposed that factors common to the immune response may mediate this link.  While many 

laboratories have reported several behavioural abnormalities following maternal immune 

activation, we sought to examine molecular changes following poly(I:C) exposure, a synthetic 

viral mimetic, in the pregnant mother and assessed a range of protein markers with known 

developmental roles, since an appreciable understanding of the molecular alterations taking 

place would permit suitable therapies to follow.  Interestingly, poly(I:C) was able to induce a 

range of changes resembling those observed during schizophrenia, where the major NMDA 

receptor subunit GluN1 and α-Synuclein was reduced in postnatal day 21 animals born to 

mothers treated with poly(I:C) during gestation days 14, 16 and 18.  Furthermore, these 

changes suggest a mechanism by which maternal immune activation may lead to the 

subsequent emergence of schizophrenia. 

 

Another aspect of this work examined the role of the kynurenine pathway on brain 

development.  There is increasing evidence suggesting the involvement of the kynurenine 

pathway, a biochemical pathway responsible for the oxidative metabolism of tryptophan, in 

the disease pathology of schizophrenia, including neurodegenerative disorders such as 

Parkinson’s, Alzheimer’s and Huntington’s disease (Giorgini et al., 2005; Ting et al., 2009; 

Bonda et al., 2010).  Since immune activation induces the activation of the kynurenine 

pathway, it was hypothesised that alterations in central kynurenine concentrations during 

development may be involved in mediating the subsequent increased risk for schizophrenia 

(Forrest et al., 2013, Khalil et al., 2013, 2014). As very little is known about the physiological 

activity of the kynurenine pathway during development, we sought to examine the potential 

consequence of disrupting this pathway and examining its effects upon brain development.  

Therefore, a kynurenine monooxygenase inhibitor, Ro61-8048, was administered to pregnant 

rats during gestation day 14, 16, and 18, that would inhibit the synthesis of the neurotoxic 

metabolite quinolinic acid, while redirecting the pathway to increase the neuroprotectant 
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kynurenic acid.  Brain development was assessed by examining changes in protein expression 

of markers intimately involved in synaptic transmitter release machinery, neurogenesis and 

many aspects of neuronal development.  Interestingly, we found the kynurenine pathway is 

highly active during brain development, and induces a variety of changes in protein markers 

that may be involved in precipitating a range of neuronal and cognitive deficits.   While Ro61-

8048 induced no changes in the embryo brains at 5 and 24 h following treatment, delayed 

changes were seen in postnatal day 21 animals displaying a decrease in RhoB expression as 

examined in the western blots.  Since the full blow symptoms of schizophrenia become 

apparent during early adulthood, we sought to examine any changes in protein expression in 

postnatal day 60 animals in regions of the cortex, hippocampus, midbrain and cerebellum.  

Interestingly, profound alterations were seen in doublecortin and the netrin receptors 

responsible for axonal guidance.  Perhaps the most striking protein change in the postnatal 

day 60 animals is the significant alteration induced in the expression of disrupted in 

schizophrenia (DISC)-1, a protein strongly linked with schizophrenia.  Glutamate function 

was assessed as indicated by the density of glutamate transporters, VGLUT-1 and VGLUT-2, 

in the CA1 region of the hippocampus of postnatal day 60 animals using 

immunocytochemistry.  While the relative density of glutamate transporters were substantially 

increased, there were no changes in the GABA transporters, indicating that while GABA 

transmission remained the same, glutamate function may have increased in the absence of an 

increase in synaptic connections.  Spine densities of pyramidal neurons in the hippocampus 

were also examined, using the golgi-impregnation method, to reveal a significant loss in spines 

of the apical and basal dendrites, consistent with reports in schizophrenia.  To conclude, the 

kynurenine pathway is highly active during development, and alterations in central 

kynurenines during pregnancy, as induced by environmental factors such as stress and 

infection, may be involved in the subsequent emergence of neurodevelopmental disorders.   
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1.1  Normal Foetal Development 

The correct neurodevelopment of the central nervous system (CNS) and the normal 

physiological processes of neurogenesis in the developing foetus is imperative for the normal 

functioning of mammals.  The health and well-being of the offspring critically depends upon 

newly born neurons developing axons that navigate through a complex environment to find 

their target, while dendrites undergo extensive branching after which functional synapses are 

established between neuronal populations throughout the developing cortex.  This is achieved 

by efficient neuronal differentiation and migration responding to precise axonal guidance cues, 

leading to the formation of functional synapses on dendritic spines (Linseman and Loucks, 

2008), thereby allowing for accurate synaptic communication to occur between neurons.  

Although early embryonic development and neurogenesis occurs within the protective 

environment of the maternal placenta, maternal pregnancy (gestation) is a critically vulnerable 

period for the developing embryo.  Early foetal damage during gestation can prove severely 

debilitating later in life displaying several permanent neurochemical, cyto-architectural and 

behavioural abnormalities in the offspring. 

 

1.2  Abnormal Foetal Development 

Embryonic development is known to be severely affected by a variety of factors 

including: maternal smoking, alcohol exposure and drug use.  Maternal smoking has been 

reported to affect foetal growth, thereby reducing the birth weight of the offspring (Lobel et 

al., 2008), and is implicated with behavioural problems in childhood and adolescence such as 

ADHD, aggression and depression (Ashford et al., 2008; Indredavik et al., 2007).  Maternal 

alcohol exposure also increases the risk of behavioural problems, cognitive deficits and stress 

reactivity in the developing offspring (Sayal et al., 2007; Haley et al., 2006), while prenatal 

exposure to drugs like cocaine and marijuana are characterised by heightened risks for 

behavioural problems and cognitive deficits in neonatal animals (Bennett et al., 2008; 

Goldschmidt et al., 2008).  As maternal smoking, alcohol exposure and drug use are voluntary 

acts; their detrimental effects on the developing foetus can largely be avoided.  However, 

maternal infection is now also a recognised environmental risk factor implicated in the 

aetiologies of several disorders, including schizophrenia.  Since maternal infection is largely 

independent upon individual lifestyles, novel pharmacological treatments or vaccinations may 

prove fruitful in the endeavour to minimise the risk of early foetal damage.  

 

Introduction 
Part One 

Maternal Infection and Developmental Disorders 
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1.2.1  Maternal Influenza Exposure Increases the Risk for Schizophrenia 

Schizophrenia is a mental disorder affecting around 1% of the population 

characterised by deficits in cognitive abilities like abnormal and incoherent thought processes, 

flattening of the emotional responses, lack of motivation often resulting in social withdrawal, 

and the onset of auditory and visual hallucinations.  A strong genetic tendency is observed in 

familial studies (Harrison and Weinberger, 2005) where twin studies of schizophrenic patients 

suggest concordance rates of 45% for monozygotic twins and 14% for dizygotic twins 

(Sullivan et al., 2003).  The aetiology of schizophrenia remains unknown, however, recent 

evidence is increasingly beginning to view schizophrenia as a neurodevelopmental disorder 

caused by disruptions in early brain development.   

 

In 1988 an intriguing paper was published which reported a striking 50% increase in 

the risk for schizophrenia in Finnish individuals whose mothers were exposed to the 1957 A2 

influenza virus, during the second trimester of pregnancy (Mednick et al., 1988).  However, 

their findings, based upon case records obtained from psychiatric hospitals, failed to confirm 

whether the mothers of the schizophrenic patients had indeed contracted the influenza A viral 

infection during the epidemic.  Strikingly, 9 out of 15 studies have replicated these findings 

demonstrating a positive correlation with the influenza virus and the subsequent increased risk 

for schizophrenia (O’Callaghan et al., 1991; Adams et al., 1993).  Furthermore, an increase in 

schizophrenic births in late winter and spring also indicates a potential influenza infection 

(Machon et al., 1983).  Mednick later reported obstetric records showing 13 of 15 pregnant 

mothers in their second trimester of pregnancy during the influenza epidemic were recorded 

to display symptoms of influenza viral infection (Mednick et al., 1994).  Since the first report, 

several studies have examined these claims using various sources including: health records, 

hospital records, maternal recall and birth cohort studies showing 3 out of 5 birth cohort 

reports attest to this correlation (Wright et al., 1995; Byrne et al., 2007), while the majority of 

approximately 50 studies undertaken indicate a 5-15% excess for schizophrenic births in the 

northern hemisphere during the months of January and March (Boyd et al., 1986).   

 

More conclusively, recent studies have examined archived maternal serum thereby 

providing serologic evidence to confirm the positive association between maternal exposure to 

the influenza virus followed by the subsequent increase in risk of schizophrenic offspring 

(Mortensen et al., 2007; Brown et al., 2004, 2005; Buka et al., 2008).  Furthermore, studies 

revealed that patients exposed to the influenza infection in-utero were accompanied by 

executive dysfunction (Brown et al., 2009) and significantly reduced intelligence rates (Eriksen 

et al., 2009), findings consistent with schizophrenia as being recognised to be accompanied by 
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cognitive deficits and executive dysfunction (Rusch et al., 2007).  These studies provide 

convincing evidence demonstrating maternal exposure to the influenza virus heightens the risk 

for the subsequent development of schizophrenia during adulthood. 

 

On the contrary, other groups have shown an association between prenatal exposure 

to the influenza virus and mental retardation (Takei et al., 1995), while another reported an 

increased risk in major affective disorder following maternal influenza exposure in the second 

trimester of pregnancy (Machon et al., 1997).  Additionally, maternal infection has also been 

reported to increase the risk of autism and cerebral palsy developing in the offspring later in 

life. Together, this demonstrates the effects of prenatal infection with the influenza virus are 

not specific for or restricted to schizophrenia, but is also a risk factor associated with a wide 

range of CNS disorders. 

 

1.2.2  Immune Activation Precipitates Developmental Disorders 

Since influenza is a common seasonal virus affecting the respiratory system and its 

detrimental association for the increased risk of schizophrenia and related disorders is 

concerning, Canada and America advised pregnant women to be vaccinated against influenza 

(Boksa, 2008).  However, many studies with other viruses and bacterial infections have 

replicated the findings of influenza infection.  Currently, there is compelling evidence for an 

increased susceptibility for schizophrenia and related disorders following prenatal exposure to 

infection with a variety of viral pathogens including: influenza (Mednick et al, 1988), rubella 

(Brown et al., 2000), toxoplasma gondii (Brown et al., 2005; Mortensen et al., 2007), measles, 

polio, herpes simplex (Buka et al., 2001; 2008) including infection with bacterial pathogens and 

genital and/or reproductive infections (Meyer and Feldon, 2009).  While these several studies 

provide convincing evidence for a rationale suggesting prenatal infection with bacterial or viral 

entities contributes to the emmergence of the disease, they all fall short in proving causation.  

Furthermore, reflecting on the diversity of infectious agents involved, it is hypothesised that 

factors common to the immune system may provide the critical link between maternal 

infection and the increased risk for schizophrenia (Patterson, 2002).  Promising studies 

demonstrate pro-inflammatory cytokines to be a principal key player in mediating this link 

(Bell et al., 2004), leading to the hypothesis that induction of the maternal immune response 

may be important in altering early brain development thereby increasing the risk of 

schizophrenia and related disorders.  
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1.2.3  Neuroinflammation and Parkinson’s Disease 

Many disorders are known to be accompanied by neuroinflammation including 

Parkinson’s disease (PD) and Alzheimer’s disease (AD).  In contrast to schizophrenia, 

Parkinson’s disease is a neurodegenerative disorder primarily affecting elderly people aged 

over 65, and is associated with the progressive loss of catecholinergic neurons in the 

substantia nigra (SN) with a reduction in dopamine (DA) and acetylcholine (Ach) transmitters.  

While much is known about the disease pathology, very little is known with regards to the 

aetiology of Parkinson’s disease.  Neuroinflammation is recognised as an integral part of its 

pathophysiology, however, it is unknown whether this is the driving force in 

neurodegeneration or whether it simply represents a response to neuronal death.  While 

neuroinflammation has long been considered secondary to PD, involved in the self-

perpetuating deleterious events that lead to protracted neuronal degeneration, recent evidence 

suggests that members of the immune system may also be able to initiate CNS disorders like 

PD.  Indeed, case-control studies showed PD is significantly related to influenza and herpes 

simplex complex infections (Vlajinac et al., 2013).  Another study provided evidence of an 

association between CNS infections and a higher future risk of PD (Fang et al., 2012), while 

one group showed the presence of influenza A virus inside neuromelanin granules as well as in 

tissue macrophages within the substantia nigra from post-mortem PD brains (Rohn et al., 

2011).  While these studies suggest some infectious diseases may play a role in the 

development of PD, other independent groups have shown that members of the immune 

system can indeed recapitulate some Parkinsonian-like symptoms.  This is supported by a 

study showing encephalitis or viral infection with the H5N1 influenza strain in mice could 

cause Parkinsonianism by inducing neurodegeneration of neurons in the substania nigra (Jang 

et al., 2009).  Furthermore, overexpression of interferon-gamma (IFN-γ) in mice resulted in 

age-progressive nigrostriatal degeneration and basal ganglia calcification, which is reminiscent 

of human idiopathic basal ganglia calcification (IBGC ; Chakrabarty et al., 2011),  and 

characterised by neurological features such as Parkinsonianism, dystonia, tremor and cognitive 

decline (Manyam et al., 2001; Baba et al., 2005).  Since poly(I:C) is a  potent inducer of the 

interferons, including IFN-γ, these studies suggest viral infection may be involved in the 

initiation of Parkinson’s disease.  Furthermore, they lend mutual support that maternal 

immune activation may potentially also be a risk factor for the subsequent early onset of PD 

during adulthood and may account for, at least in part, the increased incidence of PD 

following the encephalitis lethargica during 1917-1928. 
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1.3  Immunological Contributors: Cytokines 

Immune activation, by either infection or stress, resulting in the rapid induction of 

cytokines, molecules existing as low-molecular weight proteins produced and secreted by 

immune competent cells, respond to a number of environmental stimuli mediating a defence 

against a variety of infectious agents (Patterson, 2002).  Receptors activated by the binding of 

cytokines on target cells initiate intracellular signalling cascades which regulate gene expression 

within target cells.  The role of cytokines varies considerably in activating lymphocytes and in 

regulating immune cell differentiation and homeostasis, while some cytokines are capable of 

inducing cell apoptosis and inhibiting protein synthesis.  Members of the cytokine family are 

separated into two main groups according to their principal function.  Pro-inflammatory 

cytokines are involved in the body’s early defence against infection where they are responsible 

for the initiation and progression of inflammation.  Examples of pro-inflammatory cytokines 

include interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α (Bell et al., 2004; Brown 

et al., 2009).  Conversely, anti-inflammatory cytokines are responsible for limiting the 

production of pro-inflammatory cytokines thus reducing the degree of inflammation.  

Therefore, anti-inflammatory cytokines including: IL-10 and transforming growth factor 

(TGF)-α, are intimately involved in maintaining a state of immunological homeostasis (Meyer 

et al., 2008a).  Since activation of the maternal immune response during pregnancy interferes 

with the development of the foetus, a phenomenon strongly linked to an increase in 

subsequent risk of developmental disorders during adulthood, this raises the possibility of 

novel anti-inflammatory therapeutics to treat such conditions where current anti-psychotic 

medication has failed. 

 

1.3.1  Cytokine Specific Actions and Dependencies 

In an attempt to elucidate the effects of cytokines in mediating developmental damage, 

the roles of cytokines in vitro have been investigated.  Studies have shown that out of various 

cytokines, IL-1β is most capable in proliferating rat mesencephalic progenitor cells into cells 

with a dopaminergic phenotype (Ling et al., 1998; Potter et al., 1999) while IL-6 is highly 

efficacious in decreasing the survival of foetal brain serotonin neurons (Jarskog et al., 1997).  

Also, IL-1β and IL-6 at low to medium concentrations are equally capable in negatively 

regulating the survival of foetal midbrain dopaminergic neurons, while at higher 

concentrations they are able to promote the survival of these cells (Jarskog et al., 1997).  

Furthermore, low concentrations of TNF-α disrupts the dendritic development of cortical 

neurons, while cortical dendritic development can also be disrupted by higher concentrations 

of IL-1β, IL-6 including TNF-α.  This demonstrates that cytokine specific reactions occur 
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often with a dependency upon their relative concentration in regulating neuronal populations 

principally affected in schizophrenia.   

 

However, not all effects of specific cytokine reactions appear to be solely dependent 

upon their relative concentration, since studies have shown the effects of developing cells 

towards cytokines vary as foetal brain development progresses.  Although TNF-α is 

neurotrophic in early foetal development towards dopaminergic ventral mesencephalic 

neurons, during later stages of foetal brain development it precipitates neurotoxic effects to 

the same neuronal population (Doherty, 2007).  In vitro studies also highlight this altered 

sensitivity toward signalling cues where embryonic cells cultured as progenitor neurospheres 

show a greater sensitivity and responsiveness in proliferating in response to basic Fibroblast 

Growth Factor (bFGF) then to Epidermal Growth Factor (EGF), while postnatal and adult 

progenitor cells show enhanced proliferation in response to EGF than bFGF (Zhu et al., 

1999).  This demonstrates that immune activation during different stages of brain 

development can exert varying effects due to the altered sensitivity or responsiveness of 

developing cells towards a variety of signalling cues.   

 

This concept has been taken further in a series of experiments to show maternal 

immune activation in mice exposed to poly(I:C) during different developmental windows 

precipitates different patterns of subsequent dysfunctions in the brain and behaviour of the 

offspring. While some brain and behavioural dysfunctions were preserved between the 

developmental insults occurring during both early/middle or late gestation including: 

impairments in special working memory and the enhanced sensitivity to amphetamine and 

dizocilpine (Meyer et al., 2007), suggesting a conserved pool of behavioural abnormalities, 

there also exists a select pool of behavioural dysfunctions that are restricted to developmental 

damage occurring only during early/middle gestation including: deficiencies in latent and 

prepulse inhibition (Meyer et al., 2006a; Meyer et al., 2007), and reduced exploratory behaviour 

(Meyer et al., 2006b).  Although these effects may be due to the altered sensitivity and 

responsiveness of the foetal brain towards the cytokine-specific reactions as development 

progresses, another mechanism accounting for this may be due to cytokine interference with 

specific spatiotemporal events occuring at distinct times of neurodevelopment thereby 

affecting select systems in the foetal brain.   

 

1.3.2  Candidates for Acute Cytokine Mediators 

Promising studies have emerged associating the relative role of key individual 

cytokines with the emergence of behavioural deficits in vivo.  Interestingly, prenatal 
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administration of exogenous IL-6 mimics the long-term consequences of poly(I:C) treatment 

in mice producing deficits in prepulse inhibition (PPI) and latent inhibition (LI) in the 

offspring, while co-administration with IL-6 blocking antibodies with poly(I:C) failed to 

induce behavioural deficits in latent and prepulse inhibition (PPI), social interaction and 

exploratory behaviour in the offspring (Smith et al., 2007).  Furthermore, prenatal exposure to 

poly(I:C) in IL-6 knockout mice did not induce deficits in PPI, exploratory behaviour and 

social interaction.  The emerging role of IL-6 has been extended to a rat model of prenatal 

infection, where IL-6 administered in early gestation (E8, E10 and E12) including late 

gestation (E16, E18 and E20) produced deficits in spatial learning, neuronal loss and changes 

in the hippocampus (Samuelsson et al., 2006).  A recent study also confirmed these findings 

where prenatal exposure to poly(I:C) in DISC-1 mutant mice were more sensitive to the 

effects of maternal immune activation, an observation attributed to substantially elevated 

levels of IL-6 found in foetal brains.  Consistently, co-administration of anti-IL-6 antibodies 

with poly(I:C) reversed the schizophrenia-related behavioural phenotype in the DISC-1 

mutant mice (Lipina et al., 2013).   

 

Similarly, co-administration of IL-1 receptor antagonist (IL-1ra) with LPS in pregnant 

rats prevents the increase in pro-inflammatory cytokine levels, microglial activation and motor 

deficits in the offspring (Girard et al., 2010).  However, prenatal exposure to IL-1β alone is not 

sufficient to induce similar behavioural deficits in the offspring during adulthood.  Prenatal 

exposure to IFN-γ or TNF-α alone was also incapable of inducing behavioural deficits in the 

offspring, while poly(I:C) co-administered with soluble IL-1β or IFN-γ receptor antagonist 

during pregnancy failed to prevent behavioural deficits induced by poly(I:C) (Smith et al., 

2007).  Another group showed inhibiting prostaglandin synthesis with an adequate dose of 

ibuprofen, a cyclooxygenase (COX) inhibitor, prior to LPS exposure, was insufficient in 

blocking the reduced neurogenesis observed in P14 animals in response to prenatal exposure 

with LPS alone (Cui et al., 2009).  These studies provide some of the most convincing 

evidence that IL-6 and IL-1ra may indeed represent key cytokines by which maternal immune 

activation can induce significant impairments in brain and behaviour, while lending mutual 

support to the theory that therapies aiming to regulate IL-6 and IL-1ra during prenatal 

infection may provide an alternative therapy for the treatment of developmental disorders.    

 

Since pro-inflammatory cytokines like IL-6 appear to be leading candidates in 

mediating considerable brain and behavioural damage following maternal immune activation, 

the question arises whether enhancing the expression of anti-inflammatory cytokines are 

equally as efficacious in alleviating these behavioural deficits.  In order to address this, some 
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models of prenatal infection have exposed poly(I:C) to pregnant transgenic mice constitutively 

overexpressing the anti-inflammatory cytokine IL-10 in macrophages.  Interestingly, normal 

control animals exposed to poly(I:C) were accompanied by behavioural deficits including 

abnormalities in PPI, LI and exploratory behaviour, while these effects were prevented in 

animals overexpressing IL-10 that were exposed to poly(I:C) (Meyer et al., 2008a).  However, it 

was also noted that animals overexpressing IL-10, in the absence of prenatal poly(I:C) 

exposure, resulted in similar deficits in exploratory behaviour and latent inhibition.   This 

suggests IL-10 may have a significant role in providing protection against pro-inflammatory 

cytokines in the context of prenatal infection only. 

 

 

1.4  Interplay of a Heterogeneous Aetiology for Schizophrenia 

Although maternal infection is associated with an increased incidence in the offspring 

developing schizophrenia, some studies have failed to show this trait (Morgan et al., 1997; 

Selten et al., 1999), demonstrating maternal infection on its own is not sufficient to account for 

such an association.  Prenatal exposure to influenza B virus resulted in reduced cognitive 

performances in children aged 7 and developed schizophrenia in adulthood, whereas no effect 

was seen in control children who displayed no signs of psychiatric morbidity in adulthood 

(Ellman et al., 2009).  Another study found that maternal exposure to urinary and bladder 

infections, the risk of schizophrenia was only evident in those individuals who possessed a 

family history of psychiatric disorders (Clark et al., 2009).  It is therefore likely other factors, 

including genetic and environmental contributions, influence the enhanced risk for 

schizophrenia, and that maternal infection may incur a heightened risk in individuals already 

possessing pre-existing vulnerabilities.   

 

It is possible there exist certain gene polymorphisms within individuals making them 

more vulnerable to the effects of infection. Indeed, recent advances have identified multiple 

susceptibility genes known to be adversely affected in the foetal brain during prenatal 

infection, however, the precise nature of environment-gene interactions leading to 

vulnerabilities in developing schizophrenia remains largely unknown.  It is possible these 

genes may confer susceptibility to particular disorders or cofound how the developing embryo 

may react to maternal infection or adverse environments.  In contrast to rodent models of 

prenatal infection, the majority of cases of maternal infection during human pregnancies are 

not accompanied by the subsequent development of schizophrenia when the offspring reach 

adulthood.  This clearly demonstrates that firstly, maternal infection does not prove causation 

of the disorder, and secondly, should maternal infection be involved in the aetiology of 
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schizophrenia, it may likely serve to interact with genetically determined factors, like genes, 

may confer a particular vulnerability towards the disorder.   

 

Finally, although genes may predispose an individual to a particular disorder, studies 

have consistently demonstrated the necessity for continued environmental stressors and 

conflict to play an integral role in the development of schizophrenia (Dean and Murray, 2005).  

A variety of environmental factors are now known to increase the risk for schizophrenia 

including: family conflict, paternal criminality, low social class, inconsistent parenting styles, 

maternal psychopathology and exposure to acute or chronic stressors (Opler and Susser, 

2005).  It is therefore believed genetic and environmental factors together have a dynamic 

interplay leading to the subsequent development of schizophrenia.  

 

 

1.5  Experimental Models of Maternal Infection 

Several animal models have been developed in order to investigate the effects of 

maternal infection, and to address whether prenatal immune activation can cause relative or 

absolute, transient or more prolonged long-term alterations in CNS function, while providing 

an invaluable tool to study what these mechanisms may be.  These experimental models exist 

almost exclusively in rodents, and rely on pharmacological agents capable of activating the 

cytokine response thereby mimicking an infection.  These cytokine-activating agents are 

administered to the pregnant rodent at various doses to induce a strong or weak immune 

response, ranging from the repeated administration of immunogenic agents throughout 

pregnancy to a single administration in early or late gestation.   

 

Currently, most research has focused on three principal rodent models of maternal 

infection, with each model dependent upon the specific pharmacological agent employed.  

This includes the influenza virus itself, lipopolysaccharide (LPS), and polyriboinosinic-

polyribocytidilic acid (poly(I:C)).  The use of LPS and poly(I:C) in animal models of prenatal 

infection over live pathogens, like the influenza virus, is of benefit since these agents illicit the 

immune response but provide more control over the time course of infection and dosage, 

allowing for a more regulated approach to identify the precise gestational windows of 

vulnerability.  Consequently, these agents are merely immunogenic stimulants activating their 

specific toll-like receptors, and since no live bacterial or viral entity exists within drug 

preparations, these agents fail to activate the full inflammatory response while also remaining 

incapable of reproducing the entire time course of a live propagating infection.   
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1.5.1  Lipopolysaccharide (LPS) 

LPS is a bacterial endotoxin, from Gram-negative bacteria, known to activate toll-like 

receptor (TLR)-2 and TLR-4 (Triantafilou and Triantafilou, 2002).  Systemic administration of 

LPS activates the innate immune response typically observed following infection with Gram-

negative bacteria characterised by cytokine induction, inflammation, fever onset, activation of 

the hypothalamic-pituitary-adrenal axis and sickness behaviour.  LPS bound to TLR-4 on 

macrophages, and other immune competent cells, initiate a signal transduction cascade 

activating transcription factors NFkB with the subsequent transcription of genes coding for 

both pro- and anti-inflammatory mediators including: cytokines, chemokines and proteins of 

the complement system.  LPS induces the pro-inflammatory cytokines: IL-1, IL-6 and TNF-α 

(Ashdown et al., 2006).  Locally produced IL-1 and TNF-α activates fibroblasts and 

endothelial cells to induce their own synthesis of cytokines, while circulating levels of IL-6 in 

the brain induces the inducible enzyme COX-2 isoform which is involved in the synthesis of 

prostaglandins (PGs).  This COX-2-induced activation of prostaglandins mediates the rise in 

core body temperature frequently seen during fevers, a mechanism involving PGE2 acting on 

thermo-responsive neurons in the preoptic area of the anterior hypothalamus (Roth et al., 

2009). 

 

1.5.2  polyriboinosinic-polyribocytidilic acid (Poly(I:C)) 

Poly(I:C), a synthetic analogue of virus-specific double stranded RNA, is often used as 

an experimental tool to mimic the acute phase of viral infection.  Viruses, as with poly(I:C), 

activate TLR-3 (Takeuchi and Akira, 2007) and involves the translocation of NFkB to the cell 

nucleus to induce the expression of pro-inflammatory cytokines: IL-1, IL-6 and TNF-α.  

Poly(I:C) is also a potent inducer of the type I interferons, INF-α and IFN-β, thus mimicking 

the acute phase response to viral infection (Cunningham et al., 2007). Furthermore, poly(I:C) 

induces a pro-inflammatory viral response in the absence of an actual viral entity.   

 

Intriguingly, schizophrenia exhibits a unique characteristic maturational delay in 

disease onset where the full blown spectrum of symptoms only emerges after post-pubertal 

maturity until early adulthood (Weinberger, 1987).  Similarly, this maturational delay is 

mirrored by the long term effects of prenatal poly(I:C) exposure in rodents since the complete 

spectrum of poly(I:C)-induced behavioural, cognitive and pharmacological abnormalities only 

emerge after the post-pubertal stage of development (Rapoport et al., 2005).  Although 

prenatal infection has also been linked to autism spectrum disorders and mental retardation 

developing in the offspring during adulthood, these are not dependent upon post-pubertal 

maturation processes which appear to be a distinctly relevant characteristic unique to 
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schizophrenia, suggesting maternal immune activation may be a more suited model to study 

the aetiopathological and pathophysiological processes associated with schizophrenia.  

 

1.5.2.1  Reason for Selecting poly(I:C) over LPS 

For the purpose of this research, rodent models of prenatal infection where employed 

while poly(I:C) was used as the immunogenic agent over LPS, since most infections during 

pregnancy appear to be viral in nature as opposed to bacterial, and secondly, due to issues 

with the reproducibility of LPS arising from batch-to-batch variations.  Since LPS is extracted 

and purified from the cell wall of bacteria, each batch of LPS usually varies in its pyrogenic 

and cytokinogenic activity (Rey et al., 1991).  It has been demonstrated that equal doses of 

different batches of LPS may differ in their time course of cytokine induction with the 

propensity to produce a hypothermic response as opposed to a hyperthermic response 

(Akarsu and Mamuk, 2007). On the contrary, it is unknown whether different batches of 

poly(I:C) are accompanied with variations in its immunogenic activity.  Finally, since the 

mothers of postnatal day 21 animals were injected on three separate occasions with poly(I:C), 

there exists a tolerance to repeated LPS exposure where successive dosing results in attenuated 

cytokine and fever responses (Chen et al., 2005), whereas this does not occur with poly(I:C). 

 

1.5.3  Timing of Infection and Window of Maximal Foetal Damage 

Initial epidemiological reports implicated viral infection during pregnancy to be 

associated with an increased prevalence of schizophrenia emerging in the offspring only when 

the pregnant mother was exposed to the virus in the second trimester of human pregnancy 

(Mednick et al., 1988; O’Callaghan et al., 1991; Adams et al., 1993).  Recent more quantifiable 

studies examining serologic samples from pregnant mothers exposed to an infection have 

revealed interesting findings, firstly challenging the view that the second trimester of 

pregnancy may be the critical time window which may confer maximal risk for the offspring 

developing schizophrenia during adulthood, and secondly, highlighting the undue 

overemphasis on second trimester infections.  Serologic evidence demonstrates influenza viral 

infection during the first trimester of pregnancy is associated with yet the greatest risk of 

schizophrenia developing in the offspring (Brown et al., 2004).  Although a variety of studies 

have shown rodent models of maternal infection exposed to poly(I:C) during early, middle 

and late stages of gestation are all efficacious in inducing brain abnormalities, one study 

examining the effects of poly(I:C) exposure on mice during E9 (early/middle gestation) and 

E17 (late gestation) indicated prenatal exposure to poly(I:C) during early/middle gestation 

(E9) may precipitate a more extensive impact on brain and behavioural deficits relevant to 

schizophrenia (Meyer et al., 2007).  Furthermore, since early/middle pregnancy (E9) in a 
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mouse roughly corresponds to the middle/end of the first trimester of human pregnancy and 

late pregnancy (E17) in a mouse roughly corresponds to the middle trimester of human 

pregnancy, this experimental mouse model of prenatal infection lends further support to the 

theory that the first trimester, as opposed to the second trimester, of human pregnancy may 

indeed represent the time period where prenatal immune activation confers maximal 

vulnerability to foetal brain development.  Indeed, during late gestation many physiological 

systems are already established and an immunological insult with LPS or poly(I:C) may result 

in a marginal disruption on brain development, while interference during a stage where these 

processes are largely still underway with neurogenesis and synaptogenesis still occurring, an 

immunogenic insult at this stage would induce  maximal disruption in the normal 

development of these systems thereby inducing significant impairments in brain function 

while further maturational processes would build upon and incorporate earlier immune-

compromised neuronal networks.  However, since infections in the second trimester of 

pregnancy are also efficacious (albeit to a lesser extent) at inducing brain abnormalities, 

models of maternal infection corresponding to both the first and second trimesters of human 

pregnancy are of relevance in understanding the pathophysiological alterations occurring in 

schizophrenia.   

 

 

1.6  Effects of Anti-psychotic Drugs in Immune Challenged Offspring 

Since prenatal exposure to infectious agents is known to elevate the risk of 

schizophrenia, with rodents exhibiting symptoms reminiscent of schizophrenia during 

adulthood, considerable interest has peaked into assessing whether current anti-psychotic 

drugs are able to treat, or marginally correct, behavioural deficits in adult offspring exposed to 

LPS or poly(I:C) prenatally.  Research groups have employed two principal treatment 

schedules.  Firstly, to assess the effectiveness of acute and moderate doses, adult rodent 

offspring were treated acutely with anti-psychotics prior to behavioural testing.  Studies 

utilising this treatment schedule have shown a single injection of haloperidol, a typical anti-

psychotic, was efficatious in correcting deficits in PPI in mice exposed to the influenza virus 

prenatally (Shi et al., 2003).  These findings have also been observed in mice following acute 

treatment with other anti-psychotics including chlorpromazine and clozapine.  The results 

have been extended to rats exposed prenatally to LPS and poly(I:C) where acute treatment 

with anti-psychotics reversed changes in PPI (Romero et al., 2007) and LI (Zuckerman and 

Weiner, 2005).  This demonstrates that both mice and rats are responsive to even acute 

treatment with anti-psychotic medication during adulthood and lends further support to the 

theory that offspring born to LPS or poly(IC)-treated animals during pregnancy indeed display 
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a schizophrenia-like behavioural phenotype that respond to current anti-psychotic drug 

treatment. 

 

 A second treatment schedule, employed in these animal studies, attempts to replicate 

the time scale required for anti-psychotic efficacy in humans, and therefore involved adult 

offspring being treated with anti-psychotics for several weeks prior to behavioural testing.  

Studies utilising this treatment schedule demonstrated the repeated treatment with clozapine 

over a period of two weeks was able to correct deficits in novel object recognition tests in 

mice exposed to poly(I:C) during gestation (Ozawa et al., 2006).  A larger study on mice 

prenatally exposed to poly(I:C) were treated with either haloperidol, clozapine or the SSRI 

anti-depressant fluoxetine over a period of four weeks from P35-P65 while behavioural testing 

was done during adulthood at P90-P120.  Their results demonstrated selective responses 

where different drugs were able to correct selective abnormalities.  Clozapine corrected 

deficits in PPI and LI, haloperidol corrected deficits in latent inhibition including the increased 

AMPA and MK-801-induced locomotion, while fluoxetine corrected PPI and the increased 

AMPA-induced locomotion (Meyer et al., 2008a, 2008b, 2008c).  The mechanisms by which 

these drugs are capable of correcting abnormalities during adulthood caused by prenatal 

immune activation remain largely elusive, since anti-psychotics often have multiple actions on 

multiple receptor systems in addition to antagonising dopamine D2 receptors, all which may 

have contributing effects.  Although current anti-psychotics are effective in treating the 

symptoms of schizophrenia in these animals, their practical application in humans remain 

unsatisfactory, while it is increasingly becoming recognised that these drugs may indeed be 

responsible for the reduction in cortical and hippocampal volume previously attributed to 

disease progression (Lieberman et al., 2005; Moncrieff and Leo, 2010; Cacabelos et al., 2011).   

 

 Considering the increasingly evident neurodevelopmental aetiology for schizophrenia 

where environmental factors such as infection or stress may predispose individuals to an 

increased susceptibility of developing the disorder, anti-inflammatory therapy for treating 

inflammatory reactions during early development have been proposed.  The significance of 

this was illustrated in a cohort study showing 63.3% of 4967 pregnant women were exposed 

to a viral or bacterial infection during pregnancy, while infections were more common during 

earlier stages of pregnancy than in the three months prior to conception (Collier et al., 2009).  

However, maternal exposure to analgesics, including anti-inflammatory agents and codeine, in 

the second trimester of pregnancy is also associated with an increased risk for schizophrenia 

(Sorensen et al., 2004), while cytokine knockout studies show pregnancies to spontaneously 

abort, suggesting cytokines and their receptors are constitutively expressed during pregnancy 
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and are important in the development of the foetus.  Indeed, TNF-α at low physiological 

levels is involved in neuronal survival, while prenatal exposure to poly(I:C) and LPS 

significantly reduces its expression in the foetal brain (Urakubo et al., 2001; Gilmore et al., 

2005), which may contribute towards neuronal loss.  Since overexpression of IL-10 in 

macrophages also precipitates behavioural deficits in the offspring (Meyer et al., 2008a), it 

becomes apparent that a potential treatment should aim to restore the relative balance 

between pro- and anti-inflammatory cytokines during maternal immune activation.  Moreover, 

although clinical trials show anti-inflammatory therapy used in conjunction with anti-

psychotics to demonstrate a superior treatment schedule in alleviating schizophrenia 

symptoms when compared with anti-psychotic treatment alone (Meyer et al., 2011), employing 

the use of broad non-specific anti-inflammatory or immunosuppressive treatments during a 

long term illness like schizophrenia may increase the incidence of increased sensitivity to 

infections.  Therefore, future therapeutic approaches would likely emerge from deciphering 

intracellular pathways that underlie the convergence of environmental-immune influences and 

their effects on neurodevelopment.   

 

 1.6.1  The Kynurenine Pathway: A Missing Link to Developmental Disorders? 

 While attempting to restore the cytokine imbalance may prove challenging, this entire 

field of study to date has neglected the significant contribution and immunomodulatory role 

of the kynurenine pathway, which is readily activated during neuroinflammation generating a 

variety of neurotoxic metabolites.  It is most probable that many of the effects of maternal 

immune activation are mediated, at least in part, by the generation of neurotoxic kynurenine 

metabolites that may be involved in mediating damage previously attributed to cytokines 

alone, suggesting the kynurenine pathway may indeed mediate this convergent link between 

environment-immune influences on development.  Therefore, since the targeting of the 

overall immune system appears to be guarded by a complex set of interactions, modifying the 

activity of the kynurenine pathway to prevent the synthesis of neurotoxic metabolites while 

simultaneously promoting the synthesis of neuroprotective metabolites serves a valid drug 

target and an exciting prospect of a kynurenine based therapy to treat disorders involving 

immune activation.  Indeed, the kynurenine pathway as a potential drug target for the 

treatment of neurodegenerative diseases including: Huntington’s, Parkinson’s, Alzheimer’s and 

cerebral hyperexcitability disorders including: ischemia, stroke and epilepsy are well under way 

including some compounds being patented (Muchowski et al., 2011; Zisapel et al., 2012; 

Andersen et al., 2012) while others have reached clinical trials.  However, in order to evaluate 

the therapeutic use of kynurenine based drugs for treatment of developmental disorders, the 

consequences of modifying the physiological activity of the kynurenine pathway during 
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development needs to be addressed, which is the centre of intense research within our 

laboratory. 
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1.7  The Kynurenine Pathway 

L-tryptophan, an essential amino acid, is a precursor for the synthesis of several 

biologically active compounds including the neurotransmitter serotonin, the hormone 

melatonin, and tryptamine.  Approximately 99% of endogenous tryptophan not utilised for 

protein synthesis is metabolised along the kynurenine pathway (figure 1-1), thereby forming 

the major route of oxidative tryptophan metabolism, generating a variety of neuroactive 

metabolites.  The conversion of tryptophan is initiated by induction of the rate-liming heme-

containing enzymes either tryptophan-2,3-dioxygenase (TDO), an enzyme located in the liver,  

or more importantly, by the extra-hepatic indoleamine-2,3-dioxygenase (IDO) enzyme which 

is found in most other tissues.  Tryptophan is metabolised by reduction of the heme iron by 

either superoxide or cytochrome b5 (Maghazal et al., 2008) thereby forming N-

formylkynurenine.  This intermediary compound is then further metabolised to form 

kynurenine (KYN), a precursor for two principal divergent arms of the pathway (figure 1-2).  

The precursor protein kynurenine can be metabolised by two principle enzymes ultimately 

leading to the formation of either neurotoxic or neuroprotective metabolites.  Kynurenine-3-

monooxygenase (KMO) is responsible for the conversion of kynurenine (KYN) into 

quinolinic acid (QUIN), while kynurenine aminotransferase (KAT) converts KYN into 

kynurenic acid (KYNA) (Schwarcz et al., 2009). 
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Figure 1-1. The oxidative metabolism of tryptophan along the kynurenine 
pathway. The majority of unused dietary tryptophan is metabolised along the 
kynurenine pathway producing a variety of neurotoxic metabolites including 
quinolinic acid (QUIN), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic 
acid (3-HAA), while kynurenic acid (KYNA) forms the major neuroprotective 
metabolite of this pathway.  Tryptophan not metabolised via the kynurenine 
pathway is used to produce the transmitter 5-hydroxytryptamine (5-HT) including 
the hormone melatonin. This diagram has been reproduced with permission from 
the author Trevor Stone from the University of Glasgow. 
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Kynurenines were initially believed to be physiologically inactive metabolites of 

tryptophan until QUIN was found to selectively activate N-methyl-D-aspartate (NMDA) 

receptors thereby increasing glutaminergic activity (Stone and Perkins, 1981), albeit with weak 

agonistic activity with an IC50 of 30-100 µM (Schwarcz et al., 2009).  Since activation of 

NMDA receptors is associated with the greatest influx of calcium ions into neurons, over 

other glutamate receptors, it is known to play an integral role in neurotoxicity and 

neurodegenerative disorders.  Owing to the ability of QUIN to activate NMDA receptors, this 

kynurenine metabolite has been examined to delineate its physiological significance, including 

its possible interactions during pathological states.  QUIN was found to mediate excitotoxicity 

leading to neuronal death following application of QUIN to neuronal cell cultures in vitro 

(Kim and Choi, 1987) including direct intracerebral administration in vivo (Stone et al., 1987), 

raising the possibility that QUIN may indeed contribute towards neurodegeneration via 

Figure 1-2. Simplified diagram of the kynurenine pathway. 
The oxidative metabolism of tryptophan is initiated by the rate-limiting enzyme 
indoleamine-2,3-dioxygenase (IDO) which can be induced by a variety of 
environmental stressors including infection or pro-inflammatory cytokines.  
Activation of IDO metabolises tryptophan to produce the precursor protein, 
kynurenine (KYN), which can undergo further metabolism to produce two 
principal metabolites.  While KYN can be metabolised by kynurenine 
aminotransferase (KAT) to produce the neuroprotective kynurenine, kynurenic 
acid (KYNA), during an infection the predominant route of metabolism involves 
KYN conversion into quinolinic acid (QUIN), a neurotoxic metabolite catalysed 
by the enzyme kynurenine mono-oxygenase (KMO).   
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activation of NMDA receptors.  This was confirmed by the finding that kainic acid (KA) 

produced axon-sparing lesions of the striatum and neuronal damage which was significantly 

reduced by antagonists at the NMDA receptor, including by preventing the synthesis of 

QUIN,   suggesting this damage is mediated, at least in part, by the toxic amounts of QUIN 

which is produced following treatment (Behan and Stone, 2000).  

  

The emerging role of the kynurenine pathway as a regulator of NMDA receptors was 

strengthened by the finding that kynurenic acid (KYNA) was a neuro-inhibitory compound 

capable of antagonising all excitatory ionotropic glutamate receptors, including the NMDA 

receptor via inhibition of the glycine recognition site (Perkins and Stone, 1982), albeit with a 

low potency of around 7 µM. Furthermore, KYNA is also efficacious in inhibiting the α-7 

nicotinic receptor with a similar potency (Hilmas et al., 2001), while recent reports have 

demonstrated agonistic actions at the aryl hydrocarbon receptor and an orphan G-protein 

coupled receptor (GPCR)-35 with a low potency of 30-100 µM, although thier functions 

remain poorly understood (Wang et al., 2006; DiNatale et al., 2010).  Importantly, KYNA has 

been shown to protect against many of the effects of QUIN via inhibition of its excitotoxic 

actions by directly inhibiting the excessive activation of glutamate and NMDA receptors.  

Since elevated levels of QUIN are associated with higher frequencies of epileptiform activity, 

higher levels of KYNA are effective anticonvulsants and provide protection against QUIN-

induced excitotoxic lesions, ischemia and traumatic brain injury (Vamos et al., 2009).    

Although no clear physiological functions for these kynurenine metabolites have emerged in 

the brain, there are reports demonstrating the ability of KYNA and QUIN in modulating 

glutamate and acetylcholine (Ach) receptor function in diseased states (Schwarcz et al., 2009; 

Costantino, 2009), however, their endogenous contribution towards neurotransmission in 

normal CNS physiology remains poorly understood.  Owing to the principle actions whereby 

kynurenine metabolites regulate NMDA receptors, the kynurenine pathway has become a 

novel target for aspiring drugs to modulate glutamate receptor activity in a different way.  

Although, four isoenzymes for kynurenine aminotransferase (KAT) have been identified in 

the mammalian brain, only KAT I and KAT II are widely associated with the transamidation 

of KYN into KYNA (Guidetti et al., 2007; Yu et al., 2006), while the pharmacological 

inhibition of KAT II decreases KYNA concentrations (Alkondon et al., 2004) consequently 

increasing NMDA activity and glutamate release, a mechanism predicted to be useful in 

treatments of glutaminergic and cholinergic hypofunction like schizophrenia and Alzheimer’s 

disease.  Furthermore, in diseases involving hyperexcitability and neurodegeneration, including 

Parkinson’s and Huntington’s disease, selective KMO inhibitors aimed at reducing the 

neurotoxin QUIN in favour of KYNA production illustrate promising results. 
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1.7.1  Immune Activation Induces IDO Expression 

All component enzymes and metabolites of the kynurenine pathway are present within 

the PNS and CNS.  Peripherally, kynurenine enzymes can be found in the liver (in the case of 

TDO), endothelial cells, pericytes of the blood-brain barrier (BBB ; Owe-Young et al., 2008) 

and immune-competent cells of the monocyte and macrophage lineage (Heyes et al., 1992), 

while centrally, all component enzymes and metabolites are expressed, albeit at much lower 

levels, in glial cells while little or no expression is found in neurons.  However, the precursor 

protein KYN in the peripheral circulation can be uptaken through the BBB into glial cells, as 

well as being produced in the brain, thereby increasing central kynurenine levels and their 

resulting metabolites (Fukui et al., 1991).  Therefore, tissue damage from CNS trauma is 

accompanied by induction of the inflammatory response with activation and invasion of 

peripheral macrophages into the CNS, including activation of central microglial cells.  This 

neuroinflammation is also accompanied by the activation of the kynurenine pathway, where 

macrophages and microglial cells produce a variety of cytotoxins in addition to QUIN (Espey 

et al., 1997). 

 

Indeed, in vivo studies using the bacterial endotoxin LPS have shown IDO expression 

to be increased in excess of 100-fold (Saito et al., 1992), and QUIN immunoreactivity is 

increased in the brain and lymohoid tissues within 24 hours, primarily within dendritic cells 

and macrophages (Espey et al., 1995).  Infection with HIV in patients with AIDS-dementia 

complex, a disorder involving a persistent neuroinflammation, is also accompanied with 

increases in QUIN (Brew et al., 1995), while patients suffering from various neurological 

dysfunctions, with a neuroinflammatory component, saw significantly elevated concentrations 

of QUIN in many brain regions including the prefrontal cortex, hippocampus, basal ganglia 

and cerebellum, when compared with patients whose neurological dysfunction existed in the 

absence of neuroinflammation (Heyes et al., 1992a).  In vitro studies have also yielded 

consistent findings where interferon-γ can readily increase IDO, KMO and NOS activity in 

macrophages and microglia (Alberati-Giani and Cesura, 1998), while tryptophan and KYN is 

readily converted into QUIN thereby elevating its concentration in human microglia, blood 

macrophages and human foetal brain cells (Heyes et al., 1992b; Heyes et al., 1996).  Infiltrating 

macrophages following inflammation are also believed to produce 20-30-fold more QUIN 

then brain microglial cells (Moffet et al., 1997).  Another group reported substantial increases 

in the concentration of QUIN reaching 10.3 µM 72 hours post-treatment of human 

macrophages to INF-γ, while co-administration of INF-γ with TNF-α produced even higher 

concentrations of QUIN reaching 16.7 µM (Pemberton et al., 1997).   
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Since basal levels of QUIN in the brain are very low, usually in the range of 0.01 µM 

and rarely exceeding 1 µM (Stone and Darlington, 2002), it is therefore conceivable and 

indeed likely that pathological activation of the kynurenine pathway following CNS injury or 

neuroinflammation may well be efficacious in producing local concentrations of QUIN that 

are sufficient to substantially activate NMDA receptors to induce neurotoxicity.  This is 

supported by in vitro experiments where QUIN at a concentration of 100 nM is sufficient to 

induce cell death in 40-60% of rat spinal neurons (Giulian et al., 1993), while many reports 

have shown QUIN concentrations to exist well in excess of neurotoxic levels following 

exposure to cytokines (Pemberton et al., 1997).  However, although true for in vitro studies, this 

has not been adequately addressed in in vivo models.  These studies illustrate infection or 

inflammation is accompanied with the induction of IDO and substantially elevated levels of 

QUIN as opposed to KYNA.  The induction of IDO initiating tryptophan metabolism leads 

to the increased formation of the precursor protein kynurenine (KYN) which is then 

metabolised either into QUIN or KYNA, however, given that resident and reactive microglia, 

following CNS injury or neuroinflammation, including activated infiltrating macrophages from 

the periphery harbour very little KAT activity in favour of KMO enzyme activity, this 

accounts for the majority conversion of KYN into QUIN (Guillemin et al., 2003), thereby 

substantially increasing the ratio between QUIN:KYNA to mediate neurotoxicity and 

neurodegeneration.   

 

1.7.1.1  QUIN-Induced Damage in HIV and AIDS-Dementia Complex 

Some of the strongest evidence of kynurenine involvement in CNS disorders comes 

from the acquired immunodeficiency syndrome (AIDS) accompanied with dementia.  It is 

reported around 20% of patients suffering from AIDS experience significant CNS 

involvement associated with cognitive decline, motor dysfunction and behavioural 

abnormalities (Power and Johnson, 1995).  Since NMDA receptor activation precipitates brain 

damage in AIDS patients (Lipton, 1998), there is mounting evidence implicating the 

neurotoxin kynurenine metabolite QUIN in the development of this CNS dysfunction during 

AIDS-dementia complex.  A mouse model of immunodeficiency syndrome induced by 

administration of LP-BM5 murine leukaemia virus displayed an increase in QUIN 

concentration in the blood and brain measured 2 weeks post-infection with a maximal 

increase seen at 16 weeks post-infection, while a non-pathogenic but equivalent strain of virus 

induced no change.  Interestingly, both the viral load and the concentration of QUIN was 

significantly reduced following anti-viral treatment, (Nagra et al., 1994; Sei et al., 1996), 

suggesting the mechanism of anti-virals may also involve the reduction of QUIN thereby 

improving the symptoms of the disease.  Furthermore, infected monkeys show increased 
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levels of IDO activity (Saito et al., 1991) with heightened levels of QUIN in the CSF (Rausch 

et al., 1994), with up to a 400-fold increase above basal levels.  Consequently, it was also noted 

the substantial elevation of QUIN correlated directly with the levels of neurological 

impairment observed in these animals (Rausch et al., 1994; Heyes et al., 1998).  Post-mortem 

analysis of brain tissue from AIDS-patients revealed a 23-fold increase when compared with 

controls (Achim et al., 1996).  Furthermore, the levels of QUIN in the CSF of HIV infected 

patients are significantly elevated by 20-fold, an increase directly correlating with the degree of 

CNS dysfunction including deficits in cognition and motor control (Martin et al., 1992), while 

brain levels itself may exceed those reported in the CSF by a 300-fold increase (Heyes, et al., 

1998).  Interestingly, zidovudine, an anti-viral drug used in the treatment of HIV, was able to 

significantly reduce the concentration of QUIN which was accompanied by neurological 

improvements.  Also, IDO expression and activity is significantly increased in brains of 

patients suffering from AIDS-dementia complex, when compared with AIDS patients in the 

absence of dementia (Sardar and Reynolds, 1995), confirming the rise in QUIN is indeed from 

the increased oxidative metabolism of tryptophan along the kynurenine pathway (Huengsberg 

et al., 1998).  Although these studies examined the levels of QUIN in HIV infected adults, 

these findings have been extended to children with symptomatic HIV-1 infection, albeit with 

lower levels.  One study reported a 4-fold increase in QUIN levels from the CSF of children 

infected with HIV when compared with controls, which when treated with zidovudine 

returned to control values (Brouwers et al., 1993).  Collectively, these studies lend substantial 

support that QUIN is an important metabolite in the disease pathology of HIV and AIDS-

dementia complex likely involved in mediating central neurodegenerative damage, potentially 

contributing towards the ensuing neurological dysfunction.  This is further strengthened by 

the reduction of QUIN followed by improvements in neurological function following anti-

viral treatment.  Furthermore, since the concentration of QUIN is far exceeding neurotoxic 

levels in these disorders, often over substantial periods of time, it is likely to be a major 

contributor of towards neurotoxicity.  This is consistent with early reports demonstrating 

micromolar concentrations of QUIN to be toxic after several hours (Galarraga et al., 1990) 

while even submicromolar concentrations induce neuronal toxicity in cultured experiments if 

the levels of QUIN are maintained for several weeks (Whetsell and Schwarcz, 1989).  Toxicity 

here is presumably since basal levels of QUIN in the brain are extremely low and not detected 

suggesting a rapid metabolism, therefore the prolonged exposure of QUIN even at non-toxic 

doses may induce toxicity.   Cell culture experiments of human central neurons exposed to 

QUIN at a concentration of 350 nM for 5 weeks, reduce cell density and a microtubule-

associated protein thereby affecting cellular cyto-structure (Kerr et al., 1998).  Since neurotoxic 
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concentrations of QUIN are achieved in AIDS-patients, these in vitro studies emphasise the 

potential contribution chronically elevated QUIN may exert during AIDS-dementia complex. 

 

1.7.1.2  QUIN-Induced Damage in Huntington’s Disease 

Kynurenine metabolites are implicated in a large number of diseases including 

Parkinson’s, Alzheimer’s, Huntington’s and AIDS-dementia (Stoy et al., 2005).   It remains 

unknown whether alterations in kynurenine metabolites precipitate a direct cause to these 

diseases, or simply exert a secondary role in disease progression thereby prolonging or 

exacerbating symptoms.  However, due to remarkably striking similarities identified between 

the neurotoxic effects of direct intrastriatal administration of QUIN with the subsequent 

neurochemical and histological pathology reminiscent of Huntington’s disease, many have 

proposed QUIN may indeed exert a causative role in this disorder via activation of NMDA 

receptors (Heng et al., 2009), and has also been used as an animal model of Huntington’s 

disease prior to the availability of genetic models. The disease is characterised by the 

progressive neurodegeneration of medium spiny neurons in the striatum, the primary region 

of disease pathology, while later progressing to other regions including: the basal ganglia, 

hippocampus, cortex and cerebellum, leading to CNS dysfunction and ultimately death (Roze 

et al., 2008; Cowan and Raymond, 2006).  Huntington’s disease is a fatal disorder often 

emerging during midlife and is caused by a genetic mutation in the gene encoding the protein 

Huntington (Htt), where a codon bearing the amino acid sequence CAG repeats are elongated 

from the normal of 35 CAG codon repeats to over 100 (Rosas et al., 2008).    Furthermore, 

Huntington’s disease pathology also displays an activated immune system thereby regulating 

kynurenine metabolites, accompanied by the subsequent loss of tryptophan (Leblhuber et al., 

1998).  Chronic treatment with QUIN infused into the rat striatum precipitates deficits in 

spatial learning (Shear et al., 1998), while an intrastriatal injection of QUIN in rodents induces 

lesions in the striatum reminiscent of Huntington’s disease striatum (Beal et al., 1990).  

Similarly, QUIN-induce lesions in the striatum of monkeys recapitulate the symptoms of 

dystonia and dyskinesia closely resembling those seen in Huntington’s disease patients (Burns 

et al., 1995).  In addition to a range of behavioural deficits induced following even acute 

intrastriatal injections of QUIN (Bordelon and Chesselet, 1999; Schwarcz et al., 2009), 

alterations in brain neurochemistry exist for substance P, GABA and glutamate (Nicholson et 

al., 1995), while expression of the gene coding for Huntington’s disease (Htt) is induced within 

6 hours of QUIN-induced lesions (Carlock et al., 1995).  While these studies support the 

theory that elevation of QUIN could be related to deficits observed in Huntington’s disease, 

intriguingly, early reports showed levels of QUIN remained unchanged in the CSF of patients 

suffering from Huntington’s disease (Heyes et al., 1992a, 1992b).  While this implies QUIN 
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may not be involved in precipitating neuronal damage in Huntington’s disease, it is likely that 

changes are occurring at highly localised and variable regions beyond the detection of gross 

level measurements.  Interestingly, in a genetic mouse model of Huntington’s disease (R6/2), 

levels of QUIN, 3-HK, IDO and KMO activity was increased in the cortex and striatum at 1-

4 months of age (Guidetti et al., 2006; Slow et al., 2003; Sathyasaikumar et al., 2010) and 

provided a good model of the earlier symptoms of Huntington’s disease.   This suggests 

QUIN may be important in the early prognosis of the disease, possibly accounting for the lack 

of QUIN detected in the CSF of patients at later stages.  This is further supported by 

heightened levels of 3-HK and QUIN of up to 3- to 4-fold increases measured in the brains 

of patients with low grade Huntington’s disease, while remaining unchanged in higher grade 

cases, suggesting KMO inhibition may indeed represent an attractive drug target (Giorgini et 

al., 2005).  Furthermore, while QUIN may not appear to be disregulated in later stages of 

Huntington’s disease, there is considerable evidence demonstrating its antagonist, KYNA is 

changed. Reduced levels are found in the caudate nucleus, while both KAT I and KAT II 

enzyme isoforms are reduced in the striatum of Huntington’s disease patients (Jauch et al., 

1995).  The significance here is that while QUIN remains unchanged, KYNA may have 

antagonised the effects of QUIN during physiological levels, thereby producing no net effect.  

However, since KYNA is substantially reduced in the striatum during later stages of 

Huntington’s disease, this may result in the loss of KYNA-induced inhibition of QUIN, 

therefore physiological and non-toxic levels levels of QUIN may exert toxicity.  Under basal 

resting levels this would prove difficult since physiological levels of QUIN remain non-toxic, 

however, since 3-hydroxykynurenine (3-HK), an intermediary metabolite of KYN metabolism 

before being metabolised further to QUIN, is increased in the cortex and striatum of 

Huntington’s disease patients (Pearson and Reynolds, 1992; Guidetti et al., 2006), this may 

produce a synergistic action with QUIN to induce toxicity.  This is supported by in vitro 

studies demonstrating 3-HK to be neurotoxic and to potentiate the neurotoxic effects of 

QUIN even when non-toxic concentrations of QUIN are applied to cultures that failed to 

produce toxicity on its own, while another study demonstrated a similar effect in the rat 

striatum (Guidetti and Schwarcz, 1999).  While QUIN mediates its neurotoxicity via activation 

of NMDA receptors and by generation of free radicals, 3-HK largely mediates its 

neurotoxicity through generation of reactive oxygen species (ROS) as opposed to activation of 

glutamate receptors (Okuda et al., 1998). 
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1.7.1.3  QUIN-Induced Damage in Alzheimer’s Disease 

The contribution of QUIN has been assessed in Alzheimer’s disease since this 

neurodegenerative disorder is also accompanied by a self-perpetuating inflammatory response 

where non-steroidal anti-inflammatory therapy is associated with improvements in 

symptomology.  Recent studies have confirmed an increase in the activity of IDO with the 

subsequent increase in QUIN found in amyloid plaques, neurofibrillary tangles and dystrophic 

neurons (Guillemin et al., 2005; Bonda et al., 2010), while another study found QUIN to be an 

important regulator of astroglial dysfunction producing effects consistent with astrogliosis 

(Ting et al., 2009), all pathological hallmarks of Alzheimer’s disease.  QUIN present in fatty 

acid deposits may contribute towards their propensity to cause toxicity in neurons via 

increasing oxidative stress which heavily surrounds amyloid plaques.  Accumulation of QUIN 

within plaques is consistent with a recent report demonstrating QUIN induced 

phosphorylation of tau, a protein known to aggregate during plaque formation, in a dose-

dependent manner via activation of NMDA receptors since this effect was abrogated by the 

pharmacological blockade of the receptor with memantine (Rahman et al., 2009).  

Furthermore, β-amyloid proteins also appear to induce IDO activity (Walker et al., 2006).  

These studies provide considerable evidence that Alzheimer’s disease is associated with 

heightened levels of QUIN.  Conversely, its antagonist KYNA is significantly reduced in the 

CSF and blood plasma (Vamous et al., 2009; Hartai et al., 2007) and therefore unable to 

antagonise the toxic effects of QUIN, leading to the proposal that reducing QUIN while 

simultaneously increasing KYNA concentration may provide an optimum mechanism for 

neuroprotection and be associated with improvements in neurological outcome (Gong et al., 

2011).   

 

1.7.1.4  Cognitive Decline Associated with Degenerative Disorders 

While many studies have linked heightened levels of QUIN with neurodegeneration in 

AIDS-dementia complex, Huntington’s, Parkinson’s and Alzheimer’s disease, it is proposed 

this may directly contribute towards cognitive decline.  This is supported by studies 

demonstrating the subchronic infusion of QUIN for 2 weeks into the cerebral ventricles 

precipitates deficits in memory and a significant loss of neurons in the basal forebrain (Misztal 

et al., 1996).  This is thought to resemble the underlying basis of cognitive decline associated 

with ageing, which is also a risk factor for neurodegeneration.  Since CSF and brain levels of 

kynurenines (Wada et al., 1994) including QUIN increase with age progression, it is possible 

the additional heightened levels of QUIN in neurodegenerative disorders, may serve to 

accelerate the process of age-related cognitive decline.  This may potentially contribute to the 

early symptoms of cognitive decline appearing in patients suffering from these diseases.    
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1.7.1.5  Mechanisms of Damage by Quniolinic Acid (QUIN) 

Although QUIN-induced neurotoxicity via activation of NMDA receptors are likely to 

produce substantial damage, there exist other mechanisms by which QUIN induces 

neurotoxicity.  Cytokines potentiate the effects of glutamate receptors, while the neurotoxicity 

exerted by activated macrophages are significantly attenuated by NMDA receptor antagonists 

(Ma et al., 1997).  This may likely involve the production of nitric oxide (NO) (Kim et al., 1997) 

in mediating this potentiation, since the pro-inflammatory cytokine INF-γ can induce the 

expression of inducible nitric oxide synthase (iNOS).  Interestingly, QUIN has also been 

shown to induce iNOS expression thereby generating neurotoxic levels of nitric oxide.   

QUIN and INF-γ may induce the expression of iNOS separately or INF-γ-induced expression 

of iNOS may be secondary to the induction of IDO with the subsequent expression of 

QUIN.  Another neurotoxic mechanism involved in many disorders, including Parkinson’s 

disease, is the propensity of QUIN to induce the progressive dysfunction of mitochondria 

(Bordelon et al., 1997), a process intimately linked with neurodegeneration (Lo Bianco et al., 

2004; Yasuda et al., 2007; Rothfuss et al., 2009).  QUIN-induced lesions and neurotoxicity are 

attenuated significantly by reactive oxygen species (ROS) scavengers (Nakai et al., 1999; 

Santamaría et al., 2003), implying QUIN-induced toxicity is also mediated in part by oxidative 

damage produced by ROS in addition to its actions at the NMDA receptor. 

 

 

 1.8 Drug Development and the Kynurenine Pathway 

1.8.1  Kynurenic Acid (KYNA) Analogues 

Since the kynurenine pathway is intimately involved in neurodegenerative disorders, 

often contributing towards disease progression, it has been the attention of intense interest to 

develop drugs capable of correcting kynurenine metabolites and to increase the levels of 

KYNA to mediate neuroprotection.  For many neurodegenerative diseases, QUIN is believed 

to contribute towards neurodegeneration by inducing neuronal toxicity either directly via 

activation of NMDA receptors, synergistically with the actions of 3-HK or via the generation 

of ROS and induction of mitochondrial damage.  Since KYNA can antagonise many of the 

neurotoxic effects of QUIN, initial studies led to the development of KYNA derivatives as a 

mechanism to elevate levels of KYNA.  Indeed, KYNA and its derivatives protect against 

neuronal damage in primary neuronal cultures exposed to excitotoxins (Maroni et al., 1992), 

while studies in stroke and ischemia show reductions in infarct volume following middle 

cerebral artery occlusion in rats (Chen et al., 1993) and a decrease in cell death of hippocampal 

pyramidal neurons following transient carotid occlusion in gerbils (Pellegrini-Giampietro et al., 

1994).  Due to relatively high doses being used in these studies, reflecting their poor 
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penetration of the BBB, several alterations and substitutions have been made to enhance their 

level of permeability with some success.   

 

1.8.2  Kynurenic Acid (KYNA) Prodrugs 

Later developments focused on an entirely different approach where compounds were 

generated acting as prodrugs to transport KYNA into the brain (Moore et al., 1993).  Such 

compounds including: L-4-chlorokynurenine and 4,6-dichlorokynurenine (Hokari et al., 1996) 

show neuroprotective activity against QUIN-induced damage (Wu et al., 2000).  These 

developments have led to the patenting of a variety of agents used for the treatment of CNS 

disorders including: ischemic brain injury, stroke and epilepsy, thereby increasing central 

KYNA concentration to inhibit the excitotoxic activation of NMDA receptors.  The major 

advantage of a therapy aimed at inhibiting the glycine binding site is they do not produce the 

serious neurotoxic and psychological side effects accompanied by the pharmacological 

blockade of NMDA receptors with MK-801 (dizocilpine), including disruptions in behaviour 

(Wood et al., 1997), suggesting a kynurenine based therapy may likely be accompanied with 

safer symptomology profiles.   

 

1.8.3  Indoleamine 2,3-Dioxygenase (IDO) Inhibition 

Although previous therapies increase KYNA, they fail to produce alterations in 

neurotoxic levels of QUIN.  To address the rise in QUIN following immune activation, IDO 

inhibition presents an obvious target since it is directly induced by pro-inflammatory cytokines 

and is responsible for the initial stage of tryptophan metabolism subsequently leading to the 

formation of QUIN.  In addition to its role in neurodegeneration, IDO inhibition has been 

implicated as a novel therapeutic target for the treatment of cancer due to their tumor 

suppressive actions on T cells (Constantino, 2009; Muller and Scherle, 2006), leading to the 

subsequent patenting of many compounds inhibiting IDO (Andersen et al., 2012).   

 

1.8.4  Kynurenine Monooxygenase (KMO) Inhibition 

Since many neurodegenerative disorders, including Alzheimer’s disease, have increased 

QUIN while KYNA is reduced, alternative therapies aimed at reducing QUIN while 

simultaneously enhancing the production of KYNA were developed.  Most attractive is the 

concept of KMO inhibition since neuroinflammation activates IDO stimulating tryptophan 

metabolism to form the precursor protein KYN.  During neuroinflammation, KMO are the 

predominant enzymes responsible for the metabolism of KYN into QUIN, however, KMO 

inhibition permits the subsequent elevation of KYN allowing its transamidation to KYNA 

(figure 1-3).  Within the context of neurodegeneration, such a mechanism deals with the 
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problem of enhanced QUIN, and addresses the need to stimulate KYNA synthesis to mediate 

neuroprotection by antagonising glutamate receptors (Maroni et al., 1991).  Further benefits 

from KMO inhibitors arise from the principal location of KMO in endothelial cells, 

infiltrating macrophages and microglia where it is localised to the outer membrane of 

mitochondria (Okamoto et al., 1967) and responsible for the predominate QUIN production 

during infection.  Therefore, KMO inhibitors would directly affect the ability of macrophage 

and microglial production of QUIN during neuroinflammatory diseases.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. The proposed effect of kynurenine monooxygenase inhibitors. 
While tryptophan is metabolised forming the precursor protein kynurenine (KYN), 
compounds capable of inhibiting its subsequent metabolism along the quinolinic 
acid arm of the pathway increases the concentration of KYN thereby subsequently 
allowing for the increased transamidation of KYN into kynurenic acid (KYNA).  A 
compound efficacious in inhibiting kynurenine monooxygenase (KMO) includes 
the experimental compound Ro61-8048, thereby elevating central concentrations 
of KYN and KYNA.  Such an approach has been useful in treating 
hyperexcitability disorders like ischemia, stroke and epilepsy, while also proving 
useful in neurodegenerative disorders including Parkinson’s and Huntington’s 
disease. 
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1.8.4.1  Kynurenine Monooxygenase (KMO) Inhibition: ‘Proof of Concept’ 

The concept of blocking QUIN synthesis while diverting KYN metabolism to KYNA 

was first illustrated with the compound nicotinylalanine, a KMO inhibitor (Connick et al., 

1992; Russi et al., 1992), co-administered with L-kynurenine and probenecid, to prevent 

elimination of KYNA from the brain via acidic transporters (Nozaki and Beal, 1992), elevated 

brain KYNA substantially by 5-fold with the subsequent prevention of seizures.  Similarly, 

alanine derivatives including meta-nitrobenzoyalanine in mice sensitive to audiogeneic seizures 

increased KYNA in the hippocampus correlating with seizure suppression (Chiarugi et al., 

1995), while another study showed protection against ischemic neuronal damage in gerbils 

(Cozzi et al., 1999).  Since m-nitrobenzoylalanine also offers protection against kainate-induced 

hippocampal damage, this further supports the theory that neuronal damage, caused by 

cerebral states of hyperexcitability in response to neuronal injury and ischemia, is mediated by 

QUIN produced from macrophages and microglial cells.  Together, these studies confirm the 

hypothesis that KMO inhibitors are of therapeutic interest to reduce cerebral hyperexcitability 

and excitotoxic damage induced by excess QUIN.  This concept has been extended to 

neurodegenerative models in subsequent studies where nicotinylalanine provided protection 

against NMDA or QUIN-induced damage in the rat striatum (Harris et al., 1998), while co-

administration of nicotinylalanine with L-kynurenine and probenecid protected nigrostriatal 

neurons against neurotoxicity induced by the local injection of QUIN or NMDA (Miranda et 

al., 1999), confirming the potential use of KMO inhibitors in Huntington’s and Parkinson’s 

disease.  The therapeutic utility of KMO inhibitors is further strengthened since meta-

nitrobenzoyalanine not only increases KYNA and reduces QUIN, but also reduces other 

neurotoxic metabolites like 3-HK in the brain, which is known to produce synergistic 

neurotoxic actions with QUIN.  

 

1.8.4.2  Kynurenine Monooxygenase (KMO) Inhibitor Ro61-8048 

Due to the relatively low potency of alanine derivatives, experimental compounds like 

Ro61-8048 were developed as a highly potent inhibitor of KMO, while remaining effective 

following oral administration in gerbils, raising KYNA concentrations in the extracellular fluid 

of the brain (Rover et al., 1997).  Since an induced transient ischemia in gerbils results in 

dramatic increases in QUIN, remaining elevated within ischemic regions for several days 

(Saito et al., 1993), the therapeutic potential of Ro61-8048 was examined in organotypic 

hippocampal slice cultures of oxygen and glucose deprivation and in an in vivo stroke model in 

gerbils, to find Ro61-8048 increased central KYNA accompanied by attenuated levels of post-

ischemic cell death (Carpenedo et al., 2002; Rover et al., 1997).  Furthermore, neuroprotection 

provided was ineffective when 3-HK and QUIN were applied to hippocampal slice cultures 
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demonstrating Ro61-8048 exerts neuroprotection by reducing the synthesis of 3-HK and 

QUIN.  These results have been extended in an in vivo model of cerebral ischemia were Ro61-

8048 substantially reduced the degree of hippocampal cell death in rats accompanied by a 7.5-

fold increase in KYNA (Cozzi et al., 1999).   

 

1.8.4.3  KMO Inhibition by Ro61-8048 in Parkinson’s Disease 

Parkinson’s disease is accompanied by an increase in QUIN and neuronal activity 

contributing towards the loss of dopamine function, however, a major problem facing 

dopaminomimetic therapy for Parkinson’s disease, including patients suffering from focal 

dystonia, are presented by their adverse effects on inducing dyskinesia. Sufficient evidence 

indicates striatal alterations are involved in producing dystonic symptoms characterised by 

sustained muscle contractions leading to repetitive movements or abnormal postures (Zhuang 

et al., 2004).  Studies show drugs blocking NMDA receptors prevent levodopa (L-DOPA)-

induced motor symptoms in animal models of PD (Blanchet et al., 2004; Gregoire et al., 2008), 

while another study demonstrated in both the 6-hydroxydopamine (6-OHDA) rodent model 

and 1-methyl 4-phenyl-,2,3,6-tetrahydropyridine (MPTP) primate model of PD, that an 

inhibitor of glutamate release was efficacious in relieving or delaying L-DOPA-induced 

dyskinesias (Gilgum-Sherki et al., 2003).  While NMDA receptor antagonists can reduce the 

severity of parkinsonism in animal models and humans (Zipp and Fisher, 1993; Montastruc et 

al., 1997), albeit with limited dosage due to their side effects, KYNA derivatives, acting at the 

glycine recognition site or KMO inhibitors, may be safer for use in clinical practice and could 

prove valuable adjuncts to the dopamine-based drugs currently available. Since NMDA 

receptor inhibitors are efficacious in alleviating dystonias and dyskinesias, and altered 

kynurenine metabolites are found in neurodegenerative basal ganglia disorders (Nemeth et al., 

2006), including patients with focal dystonia (Hartai et al., 2007), Ro61-8048 was examined to 

correct changes in kynurenines while also inhibiting NMDA receptors to alleviate movement 

disorders.  This may be useful since 3-HK is elevated in the putamen and substantia nigra of 

Parkinson’s disease sufferers, accompanied with reduced KYN in the substantia nigra, 

putamen and frontal cortex, suggestive of increased KMO activity.  A reduction in KYN also 

implies the reduced availability for KYNA synthesis, a combination of effects potentially 

contributing towards neuronal damage (Ogawa et al., 1992).  Consistently, Ro61-8048 reduces 

neuronal damage and dyskinesias in animal models of PD (Gregoire et al., 2008) and in MPTP 

monkeys when co-administered with L-DOPA (Ouattra et al., 2009).  Systemic injection of 

Ro61-8048 increases extracellular concentrations of KYNA in different brain regions of 

mutant hamsters at anti-dystonic doses (Richter and Hamann, 2003), while intrastriatal 

injections significantly reduces the severity of dystonia in mutant hamsters (Hamann et al., 
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2008).  The therapeutic efficacy of Ro61-8048 in these models further strengthens the concept 

that KYNA plays an important role in basal ganglia function capable of reducing extracellular 

dopamine and glutamate in the striatum (Maroni et al., 2005; Wu et al., 2007).  Consistently, 

systemic administration of Ro61-8048 in rats significantly increased KYNA in dialysates 

obtained from the parietal cortex, caudate nucleus and hippocampus while glutamate was 

reduced in dialysates collected from extracellular spaces of the caudate nucleus (Maroni et al., 

2005).  Intrastriatal infusion of low concentration KYNA reduced extracellular levels of 

glutamate and dopamine in the rat striatum via inhibition of α-7 nicotinic acetylcholine 

receptors located on glutamatergic afferents (Rassoulpour et al., 2005; Wu et al., 2007).  This 

suggests another mechanism accounting for the anti-dystonic efficacy of Ro61-8048 and 

improvements to dyskinesias in parkinsonian monkeys following treatment with levodopa 

(Samadi et al., 2005). 

 

1.8.4.4  Benefit of KMO Inhibition Over NMDA Receptor Blockers 

A major benefit for modifying the kynurenine pathway as a drug target for CNS 

diseases involving neuroinflammation is since selective inhibition of kynurenine enzymes, 

including KMO, aimed at reducing QUIN while stimulating KYNA synthesis, would produce 

localised actions only affecting brain regions displaying neuroinflammation, while areas with 

normal glutamate signalling would remain unaffected, ultimately producing a safer side effects 

profile than NMDA channel blockers (Javitt & Zukin, 1991; Krystal et al., 1994; Harris et al., 

2003, Kawabe et al., 2007; Kawabe & Miyamoto, 2008).  This is especially important 

considering every NMDA receptor channel blockers developed for treatment of stroke, 

ischemia, epilepsy or neurodegeneration have consistently failed in clinical trials due to their 

side effects greatly limiting their therapeutic potential.  Indeed, this may be the principal 

reason supporting the continuous rise in interest of kynurenine pathway inhibitors, especially 

for KMO (Cesura and Rover, 1999), leading to the patenting of many compounds (Daily et al., 

2010; Zisapel et al., 2012) for a wide range of CNS diseases including stroke and Huntington’s 

disease (Muchowski and Giorgini, 2009; Muchowski et al., 2011).   
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1.9  Purpose of Study 

 Many studies have demonstrated a range of behavioural and cognitive deficits in 

rodent offspring during adulthood when exposed to infectious or immune stimulating agents 

prenatally, however, the molecular changes underlying these behavioural and cognitive 

abnormalities remain poorly understood.  Therefore, the first part of this project examined 

any changes in protein expression of a selected group of target proteins in embryo and 

neonatal brains that may be responsible for the emergence of schizophrenia-like symptoms 

during adulthood.  Indeed, it remains within an appreciable understanding of the molecular 

alterations underlying the heightened risk for schizophrenia that would permit suitable 

therapies to follow. 

 

Studies of maternal immune activation have assessed damage attributed to pro-

inflammatory cytokines, while specific neuronal and behavioural deficits have been linked with 

particular members of the cytokine family.  However, since maternal immune activation is 

accompanied with the subsequent activation of the kynurenine pathway, it is likely that 

kynurenine metabolites, including QUIN and 3-HK among others, are involved in mediating 

considerable amounts of this damage.  Since KMO inhibitors provide neuroprotection against 

neuroinflammatory conditions where neurotoxicity is mediated through actions of QUIN and 

3-HK, it was initially hypothesised that deficits in brain and behaviour, following maternal 

immune activation, may be reduced or prevented by selectively modulating the kynurenine 

pathway.  However, it is appreciated that very little is known with regards to the physiological 

activity of the kynurenine pathway during normal foetal development, or its potential 

consequences of altering kynurenine metabolites on the offspring later in life, all factors which 

should clearly need to be addressed.  For this reason, the project sought to examine the effects 

of disrupting the normal physiology of the kynurenine pathway in utero and its effects on brain 

development.  Such findings would permit informed decisions for the potential utility of such 

a therapy in treating the effects of maternal immune activation. 

 

On the other hand, many CNS disorders during adulthood involve changes in 

kynurenine metabolites contributing towards disease progression, either induced by infection, 

stress or other factors.  This raises the possibility whether changes in kynurenines induced by 

disruptions in the pathway early in life, or even prenatally by conditions affecting the pregnant 

mother, may affect cognitive and behavioural functions in the offspring later in life (Stone and 

Darlington, 2013).  Since environmental factors predispose individuals to heightened risks of 

developing CNS disorders, when exposed to subsequent life events, involves the activation of 

tryptophan metabolism along the kynurenine pathway, either in response to stress or 
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infection, this may be the common factor in mediating changes in glutamate receptor 

function.  This suggests alterations in kynurenine metabolites, by modifying the activity of the 

kynurenine pathway, during development may also lead to subsequent cognitive and 

behavioural deficits in the offspring.  Therefore, this project largely assessed the role of 

modifying the activity of the kynurenine pathway prenatally, using the KMO inhibitor Ro61-

8048, on brain development in the offspring to identify whether prenatal disruption of 

kynurenines could predispose the offspring to subsequent risks in psychopathology during 

adulthood.   
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Aims of the Project 
 

Poly(I:C) Model: 

 

1. To assess the acute effects of maternal exposure to poly(I:C) on the protein expression 

of selected markers in embryo brains  

 

2. To assess the effects of maternal immune activation during development and its 

impact on neonatal brains by examining alterations in protein expression of adolescent 

rats 

 

Ro61-8048 Model: 

 

1. To assess the acute effects of prenatal exposure to Ro61-8048 on the protein 

expression of selected markers in embryo brains 

 

2. To assess the impact of prenatal exposure to Ro61-8048 during development and its 

effects on neonates by examining alterations in protein expression in the brains of 

adolescent rats 

 

3. To assess the impact of prenatal exposure to Ro61-8048 during development and its 

effects on young adult rats by examining alterations in protein expression in the 

hippocampus, cortex, midbrain and cerebellum 

 

4. To assess changes in excitatory (VGLUT-1/2) and inhibitory (VGAT) transporters in 

the stratum pyramidale layer of the CA1 hippocampus of young adult rats exposed to 

Ro61-8048 prenatally 

 

5. To assess changes in co-localisation between VAMP-1 and VGLUT-1/2 or VGAT in 

the stratum pyramidale layer of the CA1 hippocampus of young adult rats exposed to 

Ro61-8048 prenatally 

 

6. To assess morphological changes of dendritic spine densities in apical and basal 

pyramidal cell dendrites in the CA1 hippocampus of young adult rats exposed to 

Ro61-8048 prenatally 
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2.0 Animals 

All animal studies were carried out with ethical approval in accordance to the Animals 

(Scientific Procedures) Act 1986 of the UK, which was regulated and monitored by the Home 

Office, and all experimental procedures where approved by the University of Glasgow 

Research Ethics Committee.  Male and female Wistar rats (Harlan Olac, UK) were housed 

together for mating in our in-house Central Research Facility (CRF), and monitored daily for 

the vaginal plug.  Once successfully mated, pregnant females were housed alone from that 

point with free access to food and water.   

 

2.1  Poly(I:C) Injection Schedules 

 2.1.1  Selected Dosage 

Timing schedules and treatment dosages were carefully selected after a thorough 

review of the literature and a large number of test experiments performed by Dr. Caroline 

Forrest.  Since adversely sick animals display overt signs of stress and abnormal behaviour 

towards neonatal pups after birth, factors that could confound the interpretation of the 

results, 10 mg/kg was selected as a suitable dose that could be administered to pregnant dams 

on three separate occasions during late gestation without evoking any signs of sickness 

(hyperpyrexia, lethargy, hyper-sensitivity, anorexia) or abnormal behavioural changes in the 

mother.  This provided confidence that changes observed in neonatal pups during adolescence 

or early adulthood were not caused by changes in the mothers behaviour towards her litter.  

Furthermore, to minimise variations in responses, all animal injections were administered 

between 9 am and 11 am.  The individual contributions made by others during the course of 

the work can be seen in the table 2-1.   

 

 

 

 

 

 

 

 

 

 

 

Methods Chapter Two 
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Table 2-1.  Table of contributions 

Action Done     Performed by 

Animal Injections    Dr. Forrest, CRF staff 

Mating of Animals    CRF staff 

Killing of Animals    Dr. Forrest, CRF staff 

Drug Preparations    Dr. Forrest, Khalil, Mazura 

Paraformaldehyde Preparation   Khalil, Mazura, Robert, Christine 

Animal Perfusions    Dr. Hughes, Dennis 

  

 

 2.1.2  Embryo Experiments: 5 h Post-Injection 

For poly(I:C)-treated animals, two series of experiments were performed. 

Firstly, an intraperitoneal injection of 10 mg/kg poly(I:C) was administered to pregnant dams 

on gestation day E18 and euthanized 5 h later with CO2.  Embryos were removed, and whole 

brains were extracted for western blotting.  Blood from the mother was also removed by 

cardiac puncture for ELISA experiments by Dr. Caroline Forrest.  A primary reason for this 

was to validate our model of maternal immune activation following poly(I:C) treatment, 

showing the elected dose of 10 mg/kg was sufficient to induce activation of pro-inflammatory 

cytokines, a response typical of immune activation.  Additionally, we sought to examine any 

immediate changes of protein expression in the embryo brains as a direct consequence to an 

immunological challenge.   

 

 2.1.3  Neonatal Experiments: Postnatal Day 21 Animals 

Secondly,  in order to assess the effects on maternal infection during development and 

its impact on neonatal pups later in life, pregnant rats were injected with 10 mg/kg poly(I:C) 

at gestation days E14, E16 and E18.  This triple injection schedule was selected to extend the 

temporal impact of maternal immune activation on the embryos.  Following the injections, 

gestation was allowed to proceed normally with a full-term delivery.  Neonates were allowed 

to survive until postnatal day 21 (P21), the day of weaning, then taken from the home cage 

and euthanized with an intraperitoneal (i.p) injection of sodium pentobarbitone.  Brains were 

rapidly removed and separated into two cerebral hemispheres, placed on dry ice and stored at 

-80°C to be processed for immunoblotting.  
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2.2  Ro61-8048 Injection Schedule 

 2.2.1  Selected Dosage 

A dosage of 100 mg/kg was used in experiments where Ro61-8048 was administered 

via an intraperitoneal injection to pregnant rats.  The dose was chosen since previous studies 

identified it to be a suitable dose that can be administered repeatedly to the same animal with 

minimal ill effects in adult rats (Clark et al., 2005; Rodgers et al., 2009).  This dose was tolerated 

well by our animals and displayed no sickness behaviour.  In order to study the normal 

physiological role of the kynurenine pathway during development, and its impact on brain 

function following maternal disruption of the kynurenines, a series of experiments were 

performed across four time points with either a single or triple injection schedule. 

 

 2.2.2  Embryo Experiment: 5 h Post-Injection 

Firstly, 100 mg/kg Ro61-8048 was injected via an intraperitoneal injection to pregnant 

dams at gestation day E18 and euthanized 5 h later with CO2.  Embryos were removed, and 

whole brains dissected for western blotting.  Blood from the mother was removed by cardiac 

puncture for HLPC measurements by Dr. Caroline Forrest, primarily to validate our model 

that the selected dose was sufficient to induce profound changes in the levels of kynurenic 

acid as expected.  Additionally, we sought to examine any immediate effects of Ro61-8084 on 

protein expression in the embryo brains as a consequence to changes in the levels of 

kynurenine metabolites. 

 

 2.2.3  Embryo Experiments: 24 h Post-Injection 

The second series of experiments maintained the same protocol where pregnant dams 

were injected with 100 mg/kg Ro61-8048 at gestation day E18.  However, pregnant rats were 

euthanized 24 h later on gestation day E19 with CO2.  Embryos were removed and whole 

brains extracted for immunoblotting.   

 

 2.2.4  Neonatal Experiments: Postnatal Day 21 Animals 

For the third series of experiments, in order to examine the effects of the kynurenine 

pathway of tryptophan oxidative metabolism during development and its impact on neonates 

later in life, pregnant rats were injected with 100 mg/kg Ro61-8048 at gestation days E14, E16 

and E18.  This triple injection schedule across late gestation was selected to maximise and 

extend the period in which the activity of the kynurenine pathway was disrupted.  Following 

treatment schedules, gestation was allowed to proceed normally leading to a full-term delivery.  

Neonates were allowed to survive until postnatal day 21 (P21), the day of weaning, then 

removed from the home cage and euthanized with an intraperitoneal injection of sodium 
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pentobarbitone.  Brains were rapidly removed and separated into two cerebral hemispheres, 

placed on dry ice and stored at -80°C until further processing by immunoblotting. 

 

 2.2.5 Postnatal Experiments: Postnatal Day 60 Animals  

For some disorders like schizophrenia, the full spectrum of behavioural symptoms 

only become apparent later in life during adulthood.  For this reason, many studies have 

focussed on behavioural analysis on adult rats.  Therefore, the fourth series of experiments 

sought to examine the effects of Ro61-8084 on young adult rats. Timed pregnant rats were 

administered an intraperitoneal injection of 100 mg/kg Ro61-8048 on days E14, E16 and E18 

of gestation, and then proceeded normally leading to a full-term delivery.  Pups were allowed 

to survive until postnatal day 60 (P60), then removed from the home cage and used in a series 

of three different experimental protocols. 

 

 Firstly, P60 animals were euthanized with sodium pentobarbitone, and brains were 

removed and separated revelaing two cerebral hemispheres.  While subtle changes in 

localised brain regions of some proteins of interest may not have been detected by 

overall gross examination of entire halves of the cerebral hemisphere, as examined in 

P21 animals, at P60 both hemispheres were regionally dissected into: cortex, 

hippocampus, midbrain and cerebellum in artificial cerebrospinal fluid (ACSF; 2.2 mM 

KH2PO4, 2.0 mM KCl, 25mM NaHCO3, 115 mM NaCl, 2.5 mM CaCl2, 1.2 mM 

MgSO4, glucose 10  (Sigma, UK), distilled water (dH2O)), placed on dry ice and stored 

at -80°C.  The principal reason for this was to further localise changes in protein 

expression by immunoblotting. 

 

 Secondly, P60 animals were deeply anaesthetised using sodium pentobarbitone and 

perfused intracardially via the left ventricle with mammalian ringer solution to flush 

out blood for 1 min followed by 4 % paraformaldehyde (PFA) containing 0.2 M 

phosphate buffer (PB) at pH 7.2 for 20 min at a comparable perfusion pressure to 

match the systemic circulation.  Perfusion efficiency and tissue fixation was monitored 

by the hardening of internal organs, the disappearance of the dark red colour of the 

liver to a light pink colour implying the removal of blood, and the rigidity of limbs and 

tail.  Brains were removed following perfusion and post-fixed for 4 h at 4°C, then 

rinsed in 0.3 M phosphate buffered saline (PBS) and stored in 30 % sucrose solution 

at 4°C until cut for processing by immunocytochemistry.  
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 Thirdly, P60 animals were euthanized with sodium pentobarbitone, and brains were 

rapidly removed, briefly rinsed in dH2O and immersed in the impregnation solution 

for golgi experiments. 

 

 

2.3  Control Animals 

Since handling animals during injection schedules and the injections themselves are 

sources of stress and may produce slight physiological alterations, to remove any bias or 

confounding effect on the results, naïve animals were not used as a control.  Instead, control 

animals were subjected to the same timed-injection protocol where 0.9 % sterile saline was 

administered into pregnant dams during gestation days E18 for embryo experiments and E14, 

E16 and E18 for P21 and P60 experiments. 

 

 

2.4  Preparation of Drugs for Animal Injections 

 2.4.1  0.9 % Saline 

0.9 g NaCl (Sigma, UK) was dissolved in 100 ml dH2O.  0.9 % saline was then 

sterilised in the flow hood by passing the solution through a sterile syringe.  Aliquots of 0.9 % 

sterile saline were stored at -20°C ready for animal injections.  To ensure sterile conditions at 

all times, the flow hood was sterilised with ethanol prior to use, all laboratory equipment 

including pipettes, pipette tips, ependorph tubes and laboratory gloves were sterilised with 

ethanol first then introduced into the flow hood, and sterile techniques were used throughout 

to ensure no pipette tip made contact with the surface of the flow hood.   

 

 2.4.2  10 mg/kg poly(I:C) 

Poly(I:C ; P0913, Sigma, Poole, UK) was removed from the freezer 30 min prior to 

use and allowed to thaw at room temperature.  10 mg was dissolved in sterile saline (0.9 % 

NaCl) and heated to 50°C to ensure complete solubility.  Since double stranded RNA 

dissociates at high temperatures, the drug was allowed to cool at room temperature allowing 

doublestranded RNA to re-anneal.  Poly(I:C) was sterilised in the flow hood by passing the 

solution through a sterile syringe.  Aliquots of sterile poly(I:C) were stored at -20°C ready for 

animal injections. 

 

 2.4.3  100 mg/kg Ro61-8048 

100 mg Ro61-8048 (purchased from Rover) was dissolved in 100 ml of 60 mM NaoH 

(240 mg in 100 ml 0.9 % saline) and vortexed to aid dissolving of the drug.  The pH of Ro61-
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8048 was adjusted to pH 7.6 using 1 M HCL, then sterilised in the flow hood by passing the 

solution through a sterile syringe.  Aliquots of sterile Ro61-8048 were stored at -20°C ready 

for animal injections.   

 

 

2.5  Experimental Protocol 

2.5.1  Western Blots 

  2.5.1.1  Injection Schedule  

Timed pregnant rats were injected with saline, poly(I:C) or 100 mg/kg Ro61-8048 at 

E18 for embryo experiments and euthanized 5 and 24 h later with CO2, while for postnatal 

experiments pregnant rats were injected at E14, E16 and E18.  Pups were allowed to survive 

until P21 or P60, and then euthanized with sodium pentobarbitone.  A total of 5-6 animals 

(both male and female) were randomly selected across 3 litters per treatment group.  

 

 2.5.2  Methods 

2.5.2.1  Sample Preparation 

Frozen brain samples were weighed and multiplied by a factor of 5 to provide the total 

volume of RIPA buffer used to homogenise brain tissue.  Protein was extracted from brain 

tissue by homogenising brain samples mechanically in glass test tubes containing RIPA buffer 

(60 mg TRIS, 87.6 mg NaCl, 10 mg SDS, 50 µl Triton X-100, 100 µl IGEPAL, 9850 µl sterile 

dH20 and a Roche complete protease inhibitor tablet (Invitrogen)), while homogenates were 

placed in 1 ml ependorph tubes and centrifuged at 18,000 g for 5 min at 4°C, with the 

supernatants removed and aliquoted in 1 ml ependorph tubes and stored at -80°C for 

processing.   

 

2.5.2.2  Bradford Protein Assay  

Total protein concentration in brain lysates were determined using the Bio-Rad 

Coomassie Blue protein assay (Bio-Rad, Hamel Hampsted, UK), based on the method of 

Bradford, where protein in brain lysates were compared against a standard curve of known 

protein content.  Bovine Serum Albumin (BSA) standard (20 mg BSA and 100 ml dH2O) was 

diluted 1/10 with dH2O, and Biorad reagent was diluted with dH2O by ½.  BSA standards 

were prepared in duplicates to produce the protein concentration curve using concentrations: 

0 mg/ml, 0.25 mg/ml, 0.5 mg/ml, 1.0 mg/ml, 1.5 mg/ml and 2.0 mg/ml in universal tubes.  

BSA standards were diluted in dH20 to achieve these concentrations.  Sample dilutions were 

made by a 1/10 dilution with dH2O followed by a 1/100 dilution with dH20.  200 µl of diluted 

Biorad reagent was added to each standard and sample then vortexed.  Finally, 200 µl of each 
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standard and sample was loaded onto a 96-well plate in duplicate, and absorbance was 

measured using an Opsys MR Plate Reader (Dynex Technologies, UK) at a wavelength of 595 

nm using Revelation Quicklink Software (Dynex Technologies, version 4.25) and the 

BIORAD.asy program.  A representative curve fitting from the Bradford protein assay is seen 

in figure 2-1.  All measurements obtained from this assay were multiplied by a factor of 100 to 

compensate for the dilution factor applied earlier. 

 

 

 

Figure 2-1. BSA curve fitting from the Bradford protein assay. 

A representative example of a BSA standard curve obtained from the Bradford protein assay.  The 

standard curve was used as a method of quantifying the amount of protein content in brain lysates, 

while a linear regression analysis was used to determine the line of best fit and to calculte the 

absorbance of brain lysates.   

 

 

2.5.2.3  Gel Electrophoresis 

Protein concentrations obtained from the Bradford assay were normalised and made 

up to equal working concentrations of known protein content ranging from 10-15 µg of 

protein and loaded onto gels.  Protein samples (prepared as: 65 % protein sample, 25 % 

sample buffer and 10 % reducing agent (Life Technologies, Paisley, UK)) were heated in a 

water bath for 10 min at 70°C to denature the proteins.  10 µl SeeBlue pre-stained standard 

(Life Technologies, Paisley, UK) was loaded onto each gel, serving as a molecular weight 

marker, while 15 µl of the protein samples were loaded onto NuPAGE 4–12 % Bis-Tris (1.0 

mm) 15-lane polyacrylamide gels (Life Technologies, Paisley, UK) to separate proteins 
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according to their molecular weight.  4–12 % gels were selected since many of our proteins of 

interest separate at a molecular weight rage of 28–60 kDA, while 4–12 % polyacrylamide gels 

provide the greatest separation in this range.  Gels were run in running buffer (50 ml NuPage 

MOPS/MES running buffer (Invitrogen), 950 ml dH2O) for the outer compartment and 

running buffer with 0.5 ml antioxidant buffer (Invitrogen) for the central compartment, and 

run at 150 V for 80 min at 240 mAmp for two gels in the unit.  

 

  2.5.2.4  Gel Transfer 

Separated proteins were transferred onto Invitrolon poly(vinylidene difluoride ; 

PVDF) membranes (Life Technologies, Paisley, UK).  PVDF membranes were soaked in 

methanol for 1 min, then immersed and soaked alongside six sponges and filter paper in 

transfer buffer (50 ml NuPage MOPS/MES transfer buffer (Invitrogen), 1 ml sample 

antioxidant, 200 ml methanol for transferring two gels and 750 ml dH2O).  Gel cassettes were 

cracked open exposing the inner polyacrylamide gel where a filter paper was placed over, with 

a PVDF membrane placed over the other side of the gel, and another filter paper placed over 

the PVDF membrane.  Air bubbles were removed and each ‘membrane sandwich’ was placed 

in between two sponges at either side.  Following this arrangement, each gel tank contained 

two PVDF membranes to transfer in between a total of 6 sponges that were held in place by 

the inner transfer chamber.  This inner chamber was filled with transfer buffer (50 ml NuPage 

transfer buffer (Invitrogen), 1 ml sample antioxidant, 200 ml methanol for transferring two 

gels and 750 ml dH2O), while the outer compartment of the gel tank was filled with dH2O 

only.  Gel transfer was set at 30 V for 70 min at 450 mAmp. 

 

2.5.2.5  Penceu Staining 

Uniformity of protein loading and the quality of gel transfer was ascertained by 

staining membranes with penceu solution for 5 min on a shaker with slight agitation.  The 

solution was then rinsed with dH2O to view the quality of protein bands and transfer 

efficiency.  Membranes were then rinsed in 0.1 M sodium hydroxide (NaOH) to remove the 

staining effect of the solution, rinsed in dH2O, then washed in Tris-buffered saline containing 

0.05 % Tween (TBST ; 100 ml 10 x TBS stock, 900 ml dH2O, 0.5 ml Tween-20, pH  adjusted 

to 7.6 by adding drops of 18 M HCL).   
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2.5.2.6  Antibody Incubation 

Membranes were blocked for 1 h at room temperature in 5 % milk solution (5 g non-

fat dried milk (Invitrogen) dissolved in TBST), prior to overnight incubation at 4°C with the 

appropriate primary antibody (see table 2-2) prepared in 5 % milk-TBST solution incubated 

on a shaker with slight agitation.  Membranes were then washed 3 times for 15 min with 

TBST, then incubated with the appropriate horseradish peroxidase (HRP) conjugated 

secondary antibody (see table 2-3), prepared in 5 % milk-TBST solution, for 1 h at room 

temperature on a shaker with slight agitation.  Following incubation with the secondary 

antibody, membranes were washed 3 times for 15 min each to remove excess unbound 

antibody. 

 

 

Table 2-2.  Table of primary antibodies used in western blotting. 

Primary Antibody   Dilution   Source 

   Embryo Tissue  Postnatal Tissue  

GluN1   1 : 500   1 : 1000  Millipore, UK 

DISC-1  1 : 500   1 : 1000  Santa Cruz, UK 

PSD-95  1 : 10,000  1 : 10,000  Cell Signalling, UK 

TH   1 : 10,000  1 : 1000  Santa Cruz, UK 

5HT-2C  1 : 1000  1 : 1000  Santa Cruz, UK 

A-Syn   1 : 1000  1 : 1000  Santa Cruz, UK 

DCC   1 : 5000  1 : 5000  BD Biosciences, UK 

Unc5-H1  1 : 1000  1 : 1000  Santa Cruz, UK 

Unc5-H3  1 : 1000  1 : 1000  Santa Cruz, UK 

SynT         -   1 : 5000  R & D Systems 

SynPhy         -   1 : 40,000  Millipore, UK 

VAMP-1  1 : 10,000  1 : 10,000  R & D Systems 

RhoA   1 : 5000  1 : 1000  Santa Cruz, UK 

RhoB   1 : 5000  1 : 1000  Santa Cruz, UK 

DCX   1 : 20,000  1 : 1000  Santa Cruz, UK 

Actin   1 : 20,000  1 : 1000  Santa Cruz, UK 
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Table 2-3.  Table of secondary antibodies used in western blotting. 

Secondary Antibody   Dilution   Source 

Goat anti-mouse HRP   1 : 5000   Santa Cruz, UK 

Goat anti-rabbit HRP   1 : 5000   Millipore, UK 

Donkey anti-goat HRP   1 : 5000   Santa Cruz, UK 

 

 

 

2.5.2.7  Antibody Optimisation 

To optimise the performance of antibodies in western blotting, the antibodies 

purchased were carefully selected after a review of the literature, and antibodies having most 

success in western blots and rat brain tissue were selected.  All primary antibody dilutions 

were determined individually for each antibody by testing a range of dilutions on our samples 

based upon the published dilutions from other laboratories.  Antibody dilutions that produced 

optimal signal strength with minimal background noise were selected for use.  Once antibody 

dilutions were established for a particular set of samples, further optimisation was required for 

use in different brain regions at P60.  Since some developmentally regulated proteins are more 

prevalent during development and decline with age, like DCX, RhoA and RhoB, antibody 

dilutions were also adjusted for experiments in embryo tissue, since the signal strength 

produced by the standard dilutions were either too strong or too weak.  

 

2.5.2.8  Chemiluminescence  

HRP-conjugated secondary antibodies were visualised using Enhanced 

Chemiluminescence Plus (ECL plus ; 6 ml solution A, 150 µl solution B ) detection kit (GE 

Healthcare, UK) or Imobilin Western Chemiluminescent HRP Substrate (using equal volumes 

of luminol and peroxide solution ; Millipore, UK) for 5 min on the shaker shielded from light 

with slight agitation.  Both chemiluminescent products oxidise the HRP substrate tagged to 

the secondary antibody, thereby emitting a signal from the membranes.  Membranes were 

placed inside a cassette and exposed to radiographic x-ray films under red light and developed 

using a Kodak X-OMAT 2000 processor.  Exposure times varied depending on the antibody 

used, its working dilution and signal strength, while the principal aim remained to achieve an 

optimal balance between signal-background ratios. 
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  2.5.2.9  Data Analysis and Statistics 

Western blots were quantified using Image J software (https://rsb.info.nih.gov/ij/) 

where optical densities of individual bands were measured.  In order to control for variations 

in the total amount of protein loaded onto gels, the actin housekeeping gene was processed in 

parallel and examined.  All results are expressed as a ratio taken of the intensity of the target 

protein to the intensity of the actin housekeeping gene.  Statistical comparisons were made 

using Graphpad InStat software between groups of animals born to mothers treated with 

saline and groups of animals born to mothers treated with poly(I:C) or Ro61-8048.  Since 

multiple protein markers were examined in the same samples obtained from the same animals, 

a one-way ANOVA with Bonferoni correction for multiple comparisons was performed.  All 

graphical data was generated using Prism 5 software.  

 

 

2.5.3  Immunocytochemistry 

  2.5.3.1  Injection Schedule and Perfusions 

Timed pregnant rats were injected with 100 mg/kg Ro61-8048 at gestation days E14, 

E16 and E18.  Pups were allowed to survive until P60, and then perfused with 4 % 

paraformaldehyde (PFA).  Brains were removed and post-fixed for 4 h, then stored in 30 % 

sucrose.  A total of 8 animals (both males and female) were randomly selected across 4 litters 

per treatment group for saline and Ro61-8048 

   

  2.5.3.2  Methods 

Brains were cut into 60 µm thick coronal sections using a Leica VT1200 series 

vibratome (Leica, UK), where the inner chamber was filled with 0.1 M phosphate buffer (PB), 

and sections were collected in tubs containing 0.1 M PB.  Sections were immersed in 50 % 

ethanol solution for 30 min to enhance antibody penetration, then rinsed 3 times 10 min each 

in 0.3 M phosphate buffered saline (PBS).  Free-floating sections were incubated in a cocktail 

of primary antibodies (see table 2-4) for 72 h at 4°C with slight agitation.  Sections were rinsed 

3 times for 10 min each in 0.3 M PBS to remove excess unbound primary antibody, before 

being incubated in a cocktail of secondary antibodies (see table 2-5) overnight at 4°C with 

slight agitation.  The secondary antibodies consisted of anti-goat, anti-rabbit and anti-mouse 

IgGs conjugated to Rhodamine Red, Dylight 649, Alexa 488 and Alexa 647 flurophores.  All 

antibody solutions were made up in PBS containing 0.3% Triton X-100 (PBST; Sigma, UK).  

Following incubation with the secondary antibodies, sections were shielded from light, rinsed 

3 times for 10 min each in 0.3 M PBS, to wash away excess unbound antibody, and mounted 

in anti-fade vectorshield H-1000 medium (Vector Laboratories Inc, Burlingame, CA, USA) on 
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glass slides and stored at -20°C.  Sections were then ready to be visualised with a confocal 

microscope.   

 

 

 

Table 2-4.  Table of primary antibodies used in immunocytochemistry. 

Primary Antibody    Dilution Source 

VAMP-1      1 : 250  R & D Systems, UK 

VGLUT-1     1 : 500  Synaptic Systems, Germany 

VGLUT-2     1 : 500  Synaptic Systems, Germany 

VGAT      1 : 1000 Synaptic Systems, Germany 

 

 

 

 

Table 2-5.  Table of secondary antibodies used in immunocytochemistry. 

Secondary Antibody    Dilution Source 

Alexa 488 (donkey anti-goat)   1 : 500  Molecular Probes, UK 

Dylight 649 (donkey anti-rabbit)  1 : 500  Molecular Probes, UK 

Alexa 647 (donkey anti-rabbit)   1 : 500  Molecular Probes, UK 

Rhodamine Red (donkey anti-mouse)  1 : 500  Jackson Laboratories, UK 

 

 

 

2.5.3.3  Preparation of Buffers 

Buffers and solutions used for immunohistochemistry were prepared as follows: 

 

 0.2 M PB (1120 ml solution A (37.44 g NaH2PO4(2H2O) (Fisher Scientific) in 1200 ml 

dH2O), 2880 ml solution B (84.90 g Na2HPO4 (Fisher Scientific) in 3000 ml dH2O), 

and adjusted to pH 7.4. 

 

 0.3 M PBS (50 ml 0.2 M PB, 18 g NaCl (Fisher Scientific), 950 ml dH2O) 

 

 4 % paraformaldehyde (PFA ; 40 g PFA (Sigma, UK) in 400 ml dH2O heated to 68°C, 

a few ml 1 M NaOH to aid dissolving of PFA, all of which was done in the fume 
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hood, 500 ml 0.2 M PB, 100 ml dH2O to make it up to 1 L, then filtered through a 

watmans filter paper. 

 

 Mammalian Ringer Solution (45 g NaCL (Sigma, UK), 2 g KCL (Sigma, UK), 1.25 g 

CaCL (Sigma, UK), 0.025 g MgCL (Sigma, UK), 2.5 g NaHCO3 (Sigma, UK), 0.25 g 

NaH2PO4 (Sigma, UK), 5 g glucose (Sigma, UK), 5 L dH2O). 

 

  2.5.3.4  Confocal Microscopy and Image Acquisition 

For the VAMP-1, VGLUT-1/2 and VGAT series of experiments, three to four 

hippocampal sections per animal were examined using a BioRad Radiance 2100 confocal laser 

scanning system equipped with lasers: Argon (488 nm), Green Helium Neon (543 nm) and 

Red Diode (637 nm), in conjunction with Lasersharp 2000 software.  Pyramidal cell bodies in 

the stratum pyramidale of the CA1 region of the hippocampus were scanned using a 60 x oil 

immersion objective lens (numerical aperture 1.4, and an image size of 1024 x 1024) with a 

zoom factor of 3 (yielding a pixel size of 0.07 µm).  Each field consisted of 30 optical sections 

at an increment of 0.3 µm z-separation.  In an attempt to count the individual punctate 

staining for analysis, the contrast of each colour channel was manually adjusted within the 

maximum range to minimise the fusion of puncta.  Individual punctate staining was manually 

counted in every third subfield in an area measuring 50 µm x 50 µm from the 1024 x 1024 

pixel images.  Each channel for VAMP-1, VGLUT-1/2 and VGAT was analysed separately to 

identify and count manually immunopositive puncta.  Co-localisation of VAMP-1 with 

VGLUT-1/2 was analysed by merging the two channels together and manually counting the 

number of co-localised puncta.  Co-localisation of VAMP-1 with VGAT was also measured in 

the same way.  The criterion by which punctate staining was considered to be co-localised was 

when the overlap was complete or occupied most of the puncta, while also exhibiting 

morphological similarity.  The manual counting of punctate staining was performed using 

ImageJ software. 

 

  2.5.3.5  Statistical Analysis 

Statistical comparisons were made using Graphpad InStat software, between groups of 

animals born to mothers injected with saline and groups of animals born to mothers treated 

with Ro61-8048.  This protocol allowed the use of an unpaired t-test to examine differences 

between the two for each target protein of interest.  A probability value of 0.05 was adopted 

as the working criterion for significance.  All graphical data was generalted using Prism 5 

software. 
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2.5.4  Golgi Staining 

  2.5.4.1  Injection Schedule 

Timed pregnant rats were injected with 100 mg/kg Ro61-8048 at gestation days E14, 

E16 and E18.  Pups were allowed to survive until P60, and then euthanized with sodium 

pentobarbitone.  Brains were rapidly removed, briefly rinsed in dH2O, then immersed in the 

impregnation solution.  A total of 9 animals (both male and female) were randomly selected 

across 3 litters per treatment group for saline and Ro61-8048. 

 

  2.5.4.2  Methods 

Golgi staining was performed using the FD Rapid GolgiStain Kit (FD 

NeuroTechnologies, USA) and tissue was processed according to the manufacturer’s 

instructions.  Freshly dissected rat brains were rinsed briefly in dH2O and immersed in the 

impregnation solution (in equal volumes of solution A and B prepared 24 h in advance) at 

room temperature for 2 weeks, while shielded from light. The impregnation solution was 

replenished after the initial 24 h of immersion. Brains were then removed from the 

impregnation solution, transferred into solution C and stored at 4°C for at least 48 h, while 

shielded from light.  Solution C was replenished after the initial 24 h of immersion.  Brains 

embedded in 4 % agar (4 g agar (Sigma, UK), 100 ml dH2O) were cut into 200 µm thick 

coronal sections using a Leica VT1200 series vibratome (Leica, UK), where the inner chamber 

was filled with solution C, and mounted onto gelatin-coated slides.  Sections were dried at 

room temperature, while being shielded from light, rinsed in dH2O twice for 2 min each while 

renewing the dH2O after every wash, then stained in an equal mixture of solution D and E 

with twice the volume of dH2O (ratio of 1:1:2) for 10 min, then rinsed in dH2O 2 times for 4 

min each, continually renewing the dH2O after every wash.  Sections were dehydrated serially 

in 50 % ethanol for 4 min, 75 % ethanol for 4 min, 95 % ethanol for 4 min, followed by 

absolute ethanol 4 times for 4 min each, before being cleared in histoclear solution 

(ThermoFisher Scientific) 3 times for 4 min each, and a coverslip mounted using histomount 

(ThermoFisher Scientific).   

 

  2.5.4.2.1  Method of Coating Glass Slides with Gelatin 

Normal glass slides were inserted in slide racks and immersed in liquid detergent and 

left for 24 h to clean the slides of any bacteria or contaminant. Slides were rinsed in water 

repeatedly to remove the detergent then rinsed in dH2O, before being immersed inside dH2O 

containing cold fish skin gelatin (Sigma, UK) and chrome allum (Sigma, UK), an antibacterial 

agent used to prevent bacterial growth, and placed inside a drying cabinet to dry.  Once dried, 

about 1 h later, slides were dipped inside the gelatin solution again and left to dry.  This 
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procedure of immersing the slides in gelatin solution and being left to dry was repeated 3-4 

times.  Upon the final wash, slides were left to dry in a drying cabinet for 72 h before use. 

 

  2.5.4.3  Microscopy 

Secondary oblique dendrites on pyramidal neurons from the CA1 region of the 

hippocampus were observed by an investigator blind to the treatment group under a Nikon 

Eclipse E400 microscope where dendritic spines were traced and counted on a 2-dimensional 

plane by using a 100 x objective lens with oil immersion.  Only fully impregnated neurons and 

dendritic spines, as ascertained by microscopic observation, in the absence of obscured 

dendritic branches due to neighbouring cells, blood vessels or precipitate were selected.  To 

ensure relatively complete cells were used, the chosen cells were located close to the centre of 

the section while superficial cells, with significant processes cut at the surface of the section, 

were excluded from analysis.  The identification of thick and thin spines were based upon the 

criterion of Harris et al., 1992, where spines were judged to be mushroom if the diameter of 

the head was greater than the diameter of the neck, while spines were judged to be thin if the 

length was greater than the neck diameter and if the diameter of the head and neck were 

similar.  Dendritic spines were assessed while remaining within the same plane of focus for the 

analysis.  3 dendritic segments per cell and a total of 4 cells per animal from 9 animals per 

treatment group contributed towards the analysis.   

 

  2.5.4.4  Statistical Analysis 

Morphological data was analysed using an unpaired t-test to compare differences in the 

overall density of mushroom spines and thin spines between control and Ro61-8048-treated 

groups of animals.  A probability value of 0.05 was adopted as the working criterion for 

significance.  All graphical data was generated using Prism 5 software. 

 

 

2.6 Parallel Studies 

 Since this project constituted towards a larger study within the laboratory, it is 

often required to discuss the results presented in this thesis in conjunction with results 

obtained from others within the laboratory.  Therefore, throughout this thesis, where the 

discussion has involved the results produced from experiments performed by other 

individuals, they have been collectively referred to as ‘in a parallel study’.  The individual 

contributions can be seen in the table 2-6.  Cytokine and HPLC analysis was performed by Dr. 

Forrest to validate the efficacy of the two drugs employed in this study.  While ELISA assays 

were used to confirm the ability of poly(I:C) to activate the immune response, HPLC analysis 
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was used to confirm the efficacy of the KMO inhibitor, Ro61-8048, in elevating the levels of 

KYNA in the CNS.  Electrophysiological experiments were performed by Prof. Stone to 

investigate changes in synaptic plasticity and transmission in animals born to mothers treated 

with Ro61-8048.  Furthermore, Mrs. Pisar performed experiments using the same 

experimental protocols and techniques, as presented within this thesis, but assessed the 

protein expression of a different set of molecular targets.  

 

 

Table 2-6. The contributions of others referred to ‘in a parallel study’. 

Experiment       Performed by 

Cytokine analysis (ELISA) studies    Dr. Forrest 

HPLC analysis       Dr. Forrest 

Electrophysiology      Prof. Stone 

Western blotting      Mrs. Pisar 

Immunocytochemistry      Mrs. Pisar 
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3.1  Prenatal exposure to poly(I:C) in a rat model of maternal infection induces significant 
alterations in neurodevelopmental proteins widely associated with the emergence of 
schizophrenia symptoms 
 

Since the initial report by Mednick (Mednick et al., 1988) proposing an elevated risk in 

development of psychopathology in humans during adulthood born to mothers exposed to 

the influenza virus, several studies have replicated this finding with a variety of infectious 

agents.  Conclusive serological evidence confirms the hypothesis that maternal exposure to a 

bacterial or viral infection during pregnancy can increase the risk of schizophrenia developing 

in the offspring during adulthood (Brown et al., 2009).  Animal models have been developed 

to understand the molecular mechanisms and pathophysiological alterations taking place 

within embryo brains that may be responsible for its abnormal development and subsequent 

onset of schizophrenia-associated symptoms.  Studies using poly(I:C) and LPS have 

demonstrated a range of abnormalities in mice and rats closely resembling the endophenotype 

of schizophrenia, such as impairments in prepulse and latent inhibition, enhanced sensitivity 

to dopamine–stimulating treatment with amphetamine or to NMDA receptor blockade by 

dizocilpine (MK-801), and cognitive deficits including impairments in working memory and 

significantly reduced intelligence rates (Brown et al., 2004; Buka et al., 2008; Brown et al., 2009; 

Meyer et al., 2007).  While many laboratories have focused on identifying behavioural 

abnormalities following infection in utero, and examining the efficacy of current anti-psychotics 

in alleviating these symptoms, few laboratories have assessed the molecular changes in protein 

expression taking place that may account for such observations.  Indeed, if novel therapies are 

to be developed to correct for the abnormalities induced by infection or to prevent 

neurodevelopmental disorders like schizophrenia, importance falls upon identifying molecular 

alterations induced by infectious agents in either the mother, foetus or neonate, and 

elucidating how these changes may influence subsequent brain development.  Since 

schizophrenia is not characterised as a neurodegenerative disorder, with the progressive loss 

of neurons, but increasingly becoming viewed as a neurodevelopmental disorder, with 

problems in synaptic communication and an abnormal wiring of cortical neurocircuitry, 

proteins known to be involved in all aspects of these processes including neurogenesis, cell 

growth and migration, axonal guidance and synaptogenesis were carefully selected and 

examined.  Microarrays show genes coding for many of these processes are involved in the 

pathophysiology of schizophrenia (reviewed in Feldon and Folsom, 2009), further confirming 

the relevance of our selection of proteins that span a wide spectrum based upon their 

Results 
Part One 

Poly(I:C) Data: Western Blotting 
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developmental function, while taking into consideration their trajectory timescale of 

appearance and the quality of antibodies commercially available.  To this end, we selected the 

ubiquitously expressed core subunit of the NMDA receptor, GluN1, DISC-1 and the Rho 

GTPases: RhoA and RhoB for their involvement in mediating many actions downstream of 

the NMDAR, while DISC-1 was selected for its association with schizophrenia.  The netrin 

family of proteins: Unc5H1, Unc5H3 and DCC were selected for their role in axonal guidance 

and close relationship with dopaminergic neurons.  α-synuclein (α-Syn) was examined for its 

role in Parkinson’s disease and its close association with dopaminergic neurons, while 

dopaminergic and serotonergic transmitter systems were examined using tyrosine hydroxylase 

(TH) and the serotonin 5HT-2C receptor (5HT-2c) as molecular targets.  Doublecortin (DCX) 

was used as a molecular marker of neurogenesis while synaptic proteins including: 

synaptophysin (SynPhy), synaptotagmin (SynT) and vesicle associated membrane protein 

(VAMP)-1 (synaptobrevin) were monitored as an indication of synaptic function.    

 

Since many laboratories have consistently replicated behavioural deficits reminiscent 

of schizophrenia in both adult mice and rats when exposed to the viral mimetic poly(I:C) 

prenatally, including at the dosage used in our experiments, the aims of these experiments 

sought to investigate the immediate acute effects of prenatal exposure of poly(I:C) on the 

relative or absolute levels of protein expression in the embryo brains as a direct consequence 

to an immunological challenge.  Therefore, 10 mg/kg poly(I:C) was administered via an 

intraperitoneal injection to pregnant dams on gestation day E18 and euthanized 5 h later with 

CO2.  Embryos were removed, whole brains were extracted and western blotting was 

performed on brain lysates.   
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3.1.1  Prenatal exposure to poly(I:C) in a rat model of maternal infection 
does not alter protein expression of markers in embryos at 5 h 

 

 

ELISA analysis in a parallel study showed the elected dose of 10 mg/kg poly(I:C) treatment 

induced activation of the maternal immune response since monocyte chemoattractant protein-

1 (MCP-1) was significantly increased following treatment (figure 3-1) 

 

The quantified protein expression from the western blots showed no change was observed in 

embryo brains 5 h post-treatment with poly(I:C) in the expression of  GluN1 , DISC-1, RhoA 

and RhoB (p=>0.05, figure 3-2).   

 

When the netrin family of proteins were examined in the embryo brains, the quantified 

protein expression from the western blots showed no change was observed in Unc5H1, 

Unc5H3, and DCC (p=>0.05, figure 3-3).   

 

The quantified protein expression of tyrosine hydroxylase (TH), serotonin 5HT-2C receptor 

(5HT-2C) and α-synuclein (α-Syn) were unchanged (p=>0.05, figure 3-4).   

 

Since synaptic markers are present in great abundance during development, in the acute 

experiments, only VAMP-1 (synaptobrevin) was examined to find no change in protein 

expression between treatment groups, while similarly no change was seen in the neurogenesis 

marker doublecortin (DCX ; p=>0.05, figure 3-5). 
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Figure 3-1.  Poy(I:C) increases the expression of MCP-1. 
Bar chart shows the maternal blood levels of (A) monocyte chemoattractant protein-1 (MCP-1) and 
(B) MIP-1α measured at 5 h following poly(I:C) injection.  Results are displayed as =/- s.e.mean (n = 
3) in arbitrary units of optical density.  Statistical comparisons were made using an unpaired t test 
between groups of animals treated with saline and groups of animals treated with poly(I:C).  A 
probability value of 0.05 was set as the criterion for significance. 
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Figure 3-2. GluN1, DISC-1, RhoA and RhoB expression in poly(I:C)-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of the embryo following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) 
on gestation day E18.  Pregnant mothers were euthanized 5 h post-injection and embryo brains 
analysed by western blotting for any relative or absolute changes in protein expression.  Results are 
expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of 
target protein to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni 
correction for multiple comparisons between groups of embryos whose mothers were treated with 
saline and groups of embryos whose mothers were treated with poly(I:C).  Representative examples of 
typical protein bands obtained from the western blots along with their corresponding actin, which was 
used as a loading control, are presented above each bar chart. 
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Figure 3-3. Unc5H1, Unc5H3 and DCC expression in poly(I:C)-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC, in 
the brains of the embryo following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) on 
gestation day E18.  Pregnant mothers were euthanized 5 h post-injection and embryo brains analysed 
by western blotting for any relative or absolute changes in protein expression.  Results are expressed as 
+/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of target protein 
to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of embryos whose mothers were treated with saline and groups 
of embryos whose mothers were treated with poly(I:C).  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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Figure 3-4. TH, 5HT-2C and α-synuclein expression in poly(I:C)-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c and (C) A-Syn in the 
brains of the embryo following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) on gestation 
day E18.  Pregnant mothers were euthanized 5 h post-injection and embryo brains analysed by western 
blotting for any relative or absolute changes in protein expression.  Results are expressed as +/- 
s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of target protein to 
actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of embryos whose mothers were treated with saline and groups 
of embryos whose mothers were treated with poly(I:C).  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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Figure 3-5. VAMP-1 and doublecortin expression in poly(I:C)-treated embryo brains.  
Bar charts illustrate the quantified protein expression of (A) VAMP-1 and (B) DCX in the brains of the 
embryo following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) on gestation day E18.  
Pregnant mothers were euthanized 5 h post-injection and embryo brains analysed by western blotting 
for any relative or absolute changes in protein expression.  Results are expressed as +/- s.e.mean (n = 
6) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of embryos whose mothers were treated with saline and groups of 
embryos whose mothers were treated with poly(I:C).  Representative examples of typical protein bands 
obtained from the western blots along with their corresponding actin, which was used as a loading 
control, are presented above each bar chart. 
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3.2.  Examination of Protein Markers in P21 Animals 

Since poly(I:C) treatment in the pregnant mother induced no specific alterations in protein 

expression in the offspring at 5 h, this was compared with P21 animals.  While the effects of 

cytokine activation during infection are relatively transient (Cunningham et al., 2007), long-

term consequences of an inflammatory challenge on protein expression were assessed in 

postnatal day 21 animals to potentially reflect the long-term deficits in behaviour following 

immune challenge.  Furthermore, poly(I:C) is able to mimic the maturational delay in the 

onset of full blown schizophrenia symptoms, only emerging during early adolescence and 

progressively worsening until adulthood (Weinberger, 1987), suggesting poly(I:C) exposure in 

utero triggers a cascade of events persisting in postnatal animals.  Therefore, it was 

hypothesised further deficits in neurodevelopmental proteins would be observed during later 

stages of development.  To identify these changes, pregnant rats were injected with 10 mg/kg 

poly(I:C) at gestation days E14, E16 and E18 in order to extend the temporal impact of 

maternal immune activation on embryos.  Gestation was then allowed to proceed normally 

with a full-term delivery, and animals were euthanized at P21 and brains were removed and 

separated into two cerebral hemispheres, then processed for western blotting.   
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3.2.1  Prenatal exposure to poly(I:C) in a rat model of maternal infection alters  
the expression of proteins relevant to schizophrenia in P21 neonatal brains 

 
 

When protein expression was compared in postnatal animals, DISC-1, RhoA and RhoB 

remained unchanged in the poly(I:C)-treated group, while there was a significant decrease in 

the protein expression of GluN1 (p=<0.01**) in groups of animals born to mothers treated 

with poly(I:C) prenatally (figure3-6). 

 

No significant changes were seen in the netrins including Unc5H1, Unc5H3 and DCC 

(p=>0.05, figure 3-7). 

 

At P21, no changes were seen in DCX, TH, and 5HT-2C, while the protein expression of α-

synuclein (α-Syn) was substantially reduced in groups of animals born to poly(I:C)-treated 

mothers (p=<0.01**, figure 3-8). 

 

When the protein expression of synaptic markers: VAMP-1 (synaptobrevin), synaptotagmin 

(SynT) and synaptophysin (SynPhy) were examined, no significant differences existed between 

treatment groups (p=>0.05) as seen in figure 3-9. 
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Figure 3-6. GluN1, DISC-1, RhoA and RhoB expression in poly(I:C)-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of rat offspring following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) 
on gestation days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to 
examine any relative or absolute changes in protein expression analysed in half of the cerebral 
hemisphere by immunoblotting.  Results are expressed as +/- s.e.mean (n = 5-6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
poly(I:C).  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 
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Figure 3-7. Unc5H1, Unc5H3 and DCC expression in poly(I:C)-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) on gestation 
days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to examine any 
relative or absolute changes in protein expression analysed in half of the cerebral hemisphere by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical 
density expressed as the ratio of target protein to actin.  Statistical comparisons were made using a one 
way ANOVA with Bonferoni correction for multiple comparisons between groups of animals born to 
mothers treated with saline and groups of animals born to mothers treated with poly(I:C).  
Representative examples of typical protein bands obtained from the western blots along with their 
corresponding actin, which was used as a loading control, are presented above each bar chart. 
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Figure 3-8. TH, 5HT-2C, α-Syn and DCX expression in poly(I:C)-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c, (C) A-Syn and (D) DCX 
in the brains of rat offspring following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) on 
gestation days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to 
examine any relative or absolute changes in protein expression analysed in half of the cerebral 
hemisphere by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
poly(I:C).  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 
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Figure 3-9. Expression of synaptic proteins in poly(I:C)-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) SynT, (B) SynPhy and (C) VAMP-1 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 10 mg/kg poly(I:C) on gestation 
days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to examine any 
relative or absolute changes in protein expression analysed in half of the cerebral hemisphere by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 5-6, except for VAMP-1 where n = 6) 
displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  Statistical 
comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with poly(I:C).  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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A summary of all changes in protein expression following poly(I:C) treatment in embryo 

brains and P21 animals can be seen in table 3-1. 

 

 

 

Table 3-1. Summary of protein changes following poly(I:C) treatment. 

Protein Marker Embryo E18 5h Postnatal Day 21 

GluN1 x p=<0.01** 
(dec. in poly(I:C) 

DISC-1 x x 
RhoA x x 
RhoB x x 
   
Unc5H1 x x 
Unc5H3 x x 
DCC x x 
   
TH x x 
5HT-2C x x 
Α-Syn x p=<0.01** 

(dec. in poly(I:C)) 
DCX x x 
   
VAMP-1 x x 
SynT - x 
SynPhy - x 
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3.3  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats induces significant delayed 
alterations of neurodevelopmental proteins in postnatal animals, associated with axonal 
guidance, neurogenesis and schizophrenia 
 
 
Since immune activation is accompanied by increased activity of the kynurenine pathway with 

the induction of IDO, subsequently elevating neurotoxic metabolite concentrations in the 

CNS (Saito et al., 1992), it was hypothesised that induction of the kynurenine pathway during 

maternal immune activation may partly be responsible for the emergence of psychotic-like 

symptoms during adulthood.  Since the kynurenine pathway is of considerable interest as a 

drug target for treatment of various hyperexcitability disorders (Vamos et al., 2009) aimed at 

reducing neurotoxic kynurenines while promoting the neuroprotectant kynurenic acid 

(KYNA) attenuating excitotoxic damage, it is predicted that such a mechanism during 

maternal infection may offer significant protection to the developing offspring potentially 

lowering the risk of schizophrenia.  This suggests alterations in kynurenines during 

development may provide a convergent intracellular pathway whereby environmental factors, 

including infection and stress, may exert neurodevelopmental damage.  Therefore, the effects 

of modifying the normal physiological activity of the kynurenine pathway during prenatal 

development may be predictive of a subsequent increased risk in schizophrenia developing 

during adulthood.  Since cellular polarity and tissue formation may largely be determined in 

response to a gradient of signal antagonists (Gurdon & Bourillot, 2001) as opposed to an 

agonist, this would therefore support the concept of a developmental role for KYNA.  In 

order to test this hypothesis, and to evaluate the role of the kynurenine pathway on brain 

development, timed pregnant rats were administered an intraperitoneal injection of 100 mg/kg 

Ro61-8048, a selective kynurenine monooxygenase (KMO) inhibitor, on gestation day E18 

and embryo brains were collected 5 h later.  We sought to examine any immediate effects of 

Ro61-8048 on protein expression in the embryo brains as a direct consequence to changes in 

levels of kynurenines during development.   

 

 

 

 

 

 

Results 
Part Two 

Ro61-8048 Data: Western Blotting 
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3.3.1  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats does not alter  
the expression of the selected proteins in the embryo brains at 5 h 

 
 

Ro61-8048 treatment in the pregnant mother increases the levels of kynurenine and 

kynurenine acid in the mother and embryos, confirming the efficacy of the selected dose and 

elevation of central kynurenines.  Kynurenic acid was significantly elevated in the maternal 

plasma and brain at 5 h, including in the embryo brains at 5 and 24 h (figure 3-10) 

 
 
The quantified protein expression from western blots showed no change in the brains of 

embryos 5 h post-treatment with Ro61-8048 in the expression of GluN1, DISC-1, RhoA and 

RhoB (p=>0.05, figure 3-11).   

 

When the netrin family of proteins were examined in embryo brains, the quantified protein 

expression also showed no changes in Unc5H1, Unc5H3 and DCC (p=>0.05) following 

Ro61-8048 treatment, as seen in figure 3-12.   

 

Similarly, the quantified protein expression of tyrosine hydroxylase (TH), serotonin 5HT-2C 

receptor (5HT-2C) and α-synuclein (α-Syn) also revealed no changes in the embryos at 5 h 

(p=>0.05, figure 3-13).  

 

Since synaptic markers are present in great abundance during development, in the acute 

experiments only VAMP-1 (synaptobrevin) was examined to find there was no change in 

protein expression between the treatment groups (p=>0.05), while the neurogenesis marker 

doublecortin (DCX) also showed no significant change following maternal treatment with 

Ro61-8048 (p=>0.05, figure 3-14). 
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Figure 3-10.  Ro61-8048 administered to the pregnant mother induces changes in kynurenines. 

Bar charts illustrate the concentration of kynurenine and kynurenic acid in (A) maternal plasma at 5 h, 

(B) maternal brain at 5 h, (C) maternal brain at 24 h, (D) embryo brain at 5 h and (E) embryo brain at 

24 h.  Results are displayed as =/- s.e.mean (n = 3).  Statistical comparisons were made using an 

unpaired t test between groups of animals treated with saline and groups of animals treated with Ro61-

8048.  A probability value of 0.05 was set as the criterion for significance. 
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Figure 3-11. GluN1, DISC-1, RhoA and RhoB expression in Ro61-8048-treated embryo brains. 

Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of the embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-
8048 on gestation day E18.  Pregnant mothers were euthanized 5 h post-injection and embryo brains 
analysed by western blotting for any relative or absolute changes in protein expression.  Results are 
expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of 
target protein to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni 
correction for multiple comparisons between groups of embryos whose mothers were treated with 
saline and groups of embryos whose mothers were treated with Ro61-8048.  Representative examples 
of typical protein bands obtained from the western blots along with their corresponding actin, which 
was used as a loading control, are presented above each bar chart. 

 

DISC-1 

actin 

B 

GluN1 

actin 

A 

RhoA 

actin 

C 

RhoB 

actin 

D 



85 

 
 

 
 
 
 
 
 
 
 
 
 

Saline Ro61-8048
0.0

0.1

0.2

0.3

0.4

0.5

P
ro

te
in

 /
 A

c
ti

n

Saline Ro61-8048
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

te
in

 /
 A

c
ti

n

 
 
 
 
 
 
 
 
 
 
 
 
 

Saline Ro61-8048
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

te
in

 /
 A

c
ti

n

 
 
Figure 3-12. Unc5H1, Unc5H3 and DCC expression in Ro61-8048-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of the embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation day E18.  Pregnant mothers were euthanized 5 h post-injection and embryo brains analysed 
by western blotting for any relative or absolute changes in protein expression.  Results are expressed as 
+/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of target protein 
to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of embryos whose mothers were treated with saline and groups 
of embryos whose mothers were treated with Ro61-8048.  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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Figure 3-13. TH, 5HT-2C and α-synuclein expression in Ro61-8048-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c and (C) A-Syn in the 
brains of the embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation day E18.  Pregnant mothers were euthanized 5 h post-injection and embryo brains analysed 
by western blotting for any relative or absolute changes in protein expression.  Results are expressed as 
+/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of target protein 
to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of embryos whose mothers were treated with saline and groups 
of embryos whose mothers were treated with Ro61-8048.  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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Figure 3-14. VAMP-1 and doublecortin expression in Ro61-8048-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) VAMP-1 and (B) DCX in the brains of the 
embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on gestation day E18.  
Pregnant mothers were euthanized 5 h post-injection and embryo brains analysed by western blotting 
for any relative or absolute changes in protein expression.  Results are expressed as +/- s.e.mean (n = 
6) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of embryos whose mothers were treated with saline and groups of 
embryos whose mothers were treated with Ro61-8048.  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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3.4  Examination of Protein Markers in Embryo Brains at 24 h 

Since Ro61-8048 produced no acute changes in the embryos at 5 h post-treatment, this 

suggests Ro61-8048 may induce a more delayed response.  This may be due to time 

requirements needed for the homeostatic shift in kynurenine levels and to allow time for 

subsequent changes to occur.  Therefore, to address this issue, timed pregnant rats were 

administered an intraperitoneal injection of 100 mg/kg Ro61-8048 on E18 and embryo brains 

were collected at 24 h post-injection at E19, and any changes in protein expression were 

examined in brain lysates. 
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3.4.1  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats does  
not alter the expression  of the selected proteins in the embryo brains at 24 h  

 
 

The quantified protein expression from western blots showed no changes in the embryo 

brains at 24 h post-treatment with Ro61-8048 in GluN1, DISC-1, RhoA and RhoB (p=>0.05, 

figure 3-15).   

 

When the netrin family of proteins were examined, the quantified protein expression from 

western blots showed no changes in Unc5H1, Unc5H3 and DCC (p=>0.05) following Ro61-

8048 treatment (figure 3-16).   

 

Similarly, the protein expression of tyrosine hydroxylase (TH), serotonin 5HT-2C receptors 

(5HT-2C) and α-synuclein also remained unchanged (α-Syn ; p=>0.05, figure 3-17).  

 

Since synaptic markers are present in great abundance during development, in the acute 

experiments, only VAMP-1 (synaptobrevin) was examined to find no change in protein 

expression between treatment groups (p=>0.05), while the neurogenesis marker doublecortin 

(DCX) also showed no change following maternal treatment with Ro61-8048 (p=>0.05, figure 

3-18). 
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Figure 3-15. GluN1, DISC-1, RhoA and RhoB expression in Ro61-8048-treated embryo brains. 

Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of the embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-
8048 on gestation day E18.  Pregnant mothers were euthanized 24 h post-injection and embryo brains 
analysed by western blotting for any relative or absolute changes in protein expression.  Results are 
expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of 
target protein to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni 
correction for multiple comparisons between groups of embryos whose mothers were treated with 
saline and groups of embryos whose mothers were treated with Ro61-8048.  Representative examples 
of typical protein bands obtained from the western blots along with their corresponding actin, which 
was used as a loading control, are presented above each bar chart. 
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Figure 3-16. Unc5H1, Unc5H3 and DCC expression in Ro61-8048-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of the embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation day E18.  Pregnant mothers were euthanized 24 h post-injection and embryo brains analysed 
by western blotting for any relative or absolute changes in protein expression.  Results are expressed as 
+/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of target protein 
to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of embryos whose mothers were treated with saline and groups 
of embryos whose mothers were treated with Ro61-8048.  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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Figure 3-17. TH, 5HT-2C and α-synuclein expression in Ro61-8048-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c and (C) A-Syn in the 
brains of the embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation day E18.  Pregnant mothers were euthanized 24 h post-injection and embryo brains analysed 
by western blotting for any relative or absolute changes in protein expression.  Results are expressed as 
+/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as the ratio of target protein 
to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of embryos whose mothers were treated with saline and groups 
of embryos whose mothers were treated with Ro61-8048.  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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Figure 3-18. VAMP-1 and doublecortin expression in Ro61-8048-treated embryo brains. 
Bar charts illustrate the quantified protein expression of (A) VAMP-1 and (B) DCX in the brains of the 
embryo following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on gestation day E18.  
Pregnant mothers were euthanized 24 h post-injection and embryo brains analysed by western blotting 
for any relative or absolute changes in protein expression.  Results are expressed as +/- s.e.mean (n = 
6) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of embryos whose mothers were treated with saline and groups of 
embryos whose mothers were treated with Ro61-8048.  Representative examples of typical protein 
bands obtained from the western blots along with their corresponding actin, which was used as a 
loading control, are presented above each bar chart. 
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3.5  Examination of Protein Markers in P21 Animals 

Since Ro61-8048 failed to induce significant alterations in the acute experiments, postnatal 

changes were examined in animals at 21 days of age.  Since schizophrenia symptoms usually 

exacerbate with age progression until adulthood (Weinberger, 1987), it was expected that more 

profound changes may be seen in postnatal animals.  Therefore, we sought to examine 

whether inhibiting the kynurenine pathway prenatally could induce delayed changes in brain 

development.  To this end, timed pregnant rats were administered an intraperitoneal injection 

of 100 mg/kg Ro61-8048 on gestation days E14, E16 and E18.  A triple injection schedule 

was selected to maximise the duration the kynurenine pathway was disrupted, and to examine 

its subsequent effects upon brain development.  Brains of P21 animals were removed and 

dissected separating the two cerebral hemispheres and processed for western blotting.  While 

the examination of whole half brain lysates could limit the effectiveness of identifying  

changes in protein expression, as subtle changes in particular markers such as tyrosine 

hydroxylase and α-Synuclein may be more relevant to more localised regions like the striatum 

and substantia nigra, since these markers are also abundantly expressed in many other regions 

of the brain, including α-synuclein being a synaptic protein, it could be that examining the 

protein expression in limited areas of the striatum would prevent the identification of an 

overall change.  Furthermore, the majority of markers evaluated serve predominant roles in 

neurite development, axonal growth, neuronal migration, synaptogenesis and transmitter 

release, largely relevant to neuronal process.  Since these proteins are located throughout the 

brain, we sought to examine if Ro61-8048 could induce overall gross changes in these markers 

to alter overall brain function.   
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3.5.1  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats alters the 
expression of proteins associated with the function of NMDA receptors in P21  
brains 

 
 
When protein expression was compared in postnatal animals, GluN1, DISC-1 and Post-

Synaptic Density (PSD)-95 levels were comparable with control values (p=>0.05), as seen in 

figure 3-19. 

 

While Ro61-8048 produced no change in the overall protein content of RhoA (p=>0.05), 

interestingly, there was a selective decrease in the protein expression of RhoB (p=<0.05*, 

figure 3-20). 

 

No significant changes were seen in the netrins including: Unc5H1, Unc5H3 and DCC 

(p=>0.05) in P21 animals as seen in figure 3-21. 

  

Similarly at P21, the levels of doublecortin (DCX), tyrosine hydroxylase (TH), 5HT-2c and α-

synuclein (α-Syn) remained comparable with controls (p=>0.05), as seen in figure 3-22. 

 

When the protein expression of VAMP-1 (synaptobrevin) was assessed, its expression 

remained comparable with controls (p=>0.05).  Protein expression of synaptic markers 

synaptotagmin (SynT) and synaptophysin (SynPhy) were also examined to find no significant 

difference existed between treatment groups (p=>0.05) as seen in figure 3-23. 
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Figure 3-19. GluN1, DISC-1 and PSD-95 expression in Ro61-8048-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1 and (C) PSD-95 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to 
examine any relative or absolute changes in protein expression analysed in half of the cerebral 
hemisphere by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
Ro61-8048.  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 
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Figure 3-20. RhoA and RhoB expression in Ro61-8048-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) RhoA and (B) RhoB in the brains of rat 
offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on gestation days E14, 
E16 and E18. Neonates were sacrificed at P21 and their brains removed to examine any relative or 
absolute changes in protein expression analysed in half of the cerebral hemisphere by immunoblotting.  
Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical density expressed as 
the ratio of target protein to actin.  Statistical comparisons were made using a one way ANOVA with 
Bonferoni correction for multiple comparisons between groups of animals born to mothers treated 
with saline and groups of animals born to mothers treated with Ro61-8048.  Representative examples 
of typical protein bands obtained from the western blots along with their corresponding actin, which 
was used as a loading control, are presented above each bar chart. 
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Figure 3-21. Unc5H1, Unc5H3 and DCC expression in Ro61-8048-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to 
examine any relative or absolute changes in protein expression analysed in half of the cerebral 
hemisphere by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
Ro61-8048.  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 
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Figure 3-22. TH, 5HT-2C, α-Syn and DCX expression in Ro61-8048-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c, (C) A-Syn and (D) DCX 
in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to 
examine any relative or absolute changes in protein expression analysed in half of the cerebral 
hemisphere by immunoblotting.  Results are expressed as +/- s.e.mean (n= 6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
Ro61-8048.  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 
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Figure 3-23. Expression of synaptic proteins in Ro61-8048-treated neonatal brains. 
Bar charts illustrate the quantified protein expression of (A) SynT, (B) SynPhy and (C) VAMP-1 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Neonates were sacrificed at P21 and their brains removed to 
examine any relative or absolute changes in protein expression analysed in half of the cerebral 
hemisphere by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
Ro61-8048.  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 

SynT 

actin 

A 

SynPhy 

actin 

B 

VAMP-1 

actin 

C 



101 

 
 

3.6  Examination of Protein Markers in P60 Animals 

While RhoB was affected in P21 animals, demonstrating Ro61-8048 treatment affects brain 

development, we sought to compare this change in older animals during early adulthood.  

Firstly, we sought to identify whether this change persisted into adulthood, and secondly, 

since this is around the time the full blown symptoms for schizophrenia become apparent, it 

was hypothesised this time period may be associated with more dramatic alterations in protein 

expression.  As prenatal inhibition of KMO with Ro61-8048 demonstrated a clear efficacy in 

precipitating changes in protein expression, in P60 animals it was attempted to localise where 

some of these changes may be occurring.  While it is possible identifying gross changes in half 

brain lysates may be compromised as the effects of subtle changes in opposite directions in 

different brain regions would yield no overall net change in protein expression, or that subtle 

changes are masked by other regions thereby out-with the limit of detection with the western 

blots, P60 rat brains were dissected into regions of the hippocampus, cortex, midbrain and 

cerebellum.   
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3.6.1  Examination of Protein Markers in the P60 Hippocampus 

The hippocampus of P60 animals was examined since it is identified as one of the central 

regions involved in the neuropathology and neurophysiology of schizophrenia.  This evidence 

comes from a range of sources including in vivo models showing neurophychological, 

structural and functional deficits, including from post-mortem brains of schizophrenia 

patients demonstrating deficits in histology, morphometry, gene expression and hippocampal 

neurochemistry (Reviewed in Harrison, 2004).  Neuropathological deficits largely illustrate 

abnormalities in neuronal morphology, while the organisation of presynaptic and dendritic 

parameters appear to be largely dis-regulated, suggesting altered synaptic neurocircuitry of 

hippocampal ‘wiring’ in its extrinsic connections.  Glutamatergic signalling is prominently 

affected with a loss in excitatory transmitter receptors and transporters (Harrison et al., 1999; 

Harrison et al., 2006; Shan et al., 2013), while alteration in GABAergic signalling is also 

implicated (Heckers, 2002, 2004; Perez and Lodge, 2013).  Since the hippocampus is largely 

responsible for higher cognitive functions including plasticity, learning and memory, the 

involvement of the hippocampus in schizophrenia is predictive to be associated with 

neuropsychological impairments as opposed to psychotic symptoms.  Interestingly, a large 

proportion of hippocampal dysfunction, including reductions in hippocampal volume 

(Johnson et al., 2013), has been attributed to aberrant glutamatergic signalling as a principal 

driver behind these impairments (Schobel et al., 2013).  Therefore, we sought to examine any 

changes in protein expression of neuronal markers following Ro61-8048 treatment in utero, in 

the hippocampus of P60 animals that may potentially precipitate hippocampal pathology 

leading to heightened risks of schizophrenia.   
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3.6.1.1  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats  
significantly increases the protein expression of doublecortin (DCX) in  
the hippocampus of postnatal day 60 animals 

 
 

Examination of the hippocampus by immunoblotting in P60 animals revealed no changes in 

the protein expression of GluN1, DISC-1, RhoA and RhoB (p=>0.05, figure 3-24). 

 

Similarly, no significant changes were seen in the netrin proteins: Unc5H1, Unc5H3 and DCC 

(p=>0.05) in the hippocampus of P60 animals, as seen in figure 3-25. 

  

Interestingly, while the protein expression of tyrosine hydroxylase (TH), 5HT-2c and α-

synuclein (α-Syn) remained comparable with controls (p=>0.05), doublecortin (DCX) was 

significantly elevated in groups of animals born to Ro61-8048-treated mothers (p=<0.05*), as 

seen in figure 3-26. 

 

When the protein expression of VAMP-1 (synaptobrevin) was assessed in the hippocampus, 

its expression remained comparable with controls (p=>0.05).  Synaptic markers 

synaptotagmin (SynT) and synaptophysin (SynPhy) were also examined to find no significant 

difference existed between treatment groups (p=>0.05) as seen in figure 3-27. 
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Figure 3-24. GluN1, DISC-1, RhoA and RhoB expression in the P60 hippocampus. 

Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-
8048 on gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed 
and dissected to examine any relative or absolute changes in protein expression analysed in the 
hippocampus by immunoblotting.  Results are expressed as +/- s.e.mean (n = 4 for saline, n = 6 for 
Ro61-8048) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-25. Unc5H1, Unc5H3 and DCC expression in the P60 hippocampus. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the 
hippocampus by immunoblotting.  Results are expressed as +/- s.e.mean (n = 4 for saline, n = 6 for 
Ro61-8048) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-26. TH, 5HT-2C, α-synuclein and DCX expression in the P60 hippocampus. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c, (C) A-Syn and (D) DCX 
in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the 
hippocampus by immunoblotting.  Results are expressed as +/- s.e.mean (n = 4 for saline, n = 6 for 
Ro61-8048) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-27. Expression of synaptic proteins in the P60 hippocampus. 
Bar charts illustrate the quantified protein expression of (A) SynT, (B) SynPhy and (C) VAMP-1 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the 
hippocampus by immunoblotting.  Results are expressed as +/- s.e.mean (n = 4 for saline, n = 6 for 
Ro61-8048) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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3.6.2  Examination of Protein Markers in the P60 Cortex 

Schizophrenia has long been attributed to significant impairments within the cortex.  Animal 

models, post-mortem studies and microarrays reveal significant abnormalities in gene and 

protein expression of a variety of receptor and transmitter systems including: dopamine, 

glutamate and GABA (reviewed in Feldon and Folsom, 2009).  Specifically, regions of the 

prefrontal cortex including the prelimbic, infralimbic, orbitofrontal and cingulate cortex 

appear to be mostly affected.  Other cortical areas involved in schizophrenia include the 

sensory cortex, in addition to cerebellar involvement via cortico-cerebellar tracts involved in 

precipitating deficits in sensorimotor gating (Teale et al., 2013), while auditory and visual 

cortices, including the hippocampus, are important for mediating symptoms of hallucinations.  

Neuroanatomical studies reveal altered cortical organisation of neuronal networks with 

abnormalities in functional connectivity (Kannan et al., 2009; Chen et al., 2013), thought to 

underlie deficits in higher cognitive functions including altered patterns of thought processes.  

Since the frontal cortex is predominantly responsible for cognitive processes, in addition to 

hippocampal involvement, cortical deficits during schizophrenia mediate significant cognitive 

abnormalities and reduced intelligence rates (Rusch et al., 2007; Brown et al., 2009; Eriksen et 

al., 2009).  Therefore, alterations in cortical function and development were assessed by 

examining changes in protein expression following treatment with Ro61-8048. 
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3.6.2.1  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats 
significantly increases the protein expression of DISC-1in the cortex of  
postnatal day 60 animals 

 
 
Examination of the cortex by immunoblotting in P60 animals revealed no changes in protein 

expression of GluN1, RhoA and RhoB (p=>0.05), while DISC-1 was significantly elevated in 

groups of animals exposed to Ro61-8048 prenatally, when compared with controls (p=<0.05* 

figure 3-28). 

 

The cortex revealed no significant changes in Unc5H1, Unc5H3 and DCC (p=>0.05), as seen 

in figure 3-29. 

  

Interestingly, while DCX was a significantly increased in the hippocampus, no change was 

seen in the cortex (p=>0.05).  Similarly, tyrosine hydroxylase (TH), 5HT-2c and α-synuclein 

(α-Syn) also remained unchanged (p=>0.05), as seen in figure 3-30. 

 

When the protein expression of VAMP-1 (synaptobrevin) was assessed in the cortex, its 

expression remained comparable with controls (p=>0.05).  Synaptic markers synaptotagmin 

(SynT) and synaptophysin (SynPhy) were also examined to find no significant difference 

existed between treatment groups (p=>0.05) as seen in figure 3-31. 
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Figure 3-28. GluN1, DISC-1, RhoA and RhoB expression in the P60 cortex. 
Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-
8048 on gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed 
and dissected to examine any relative or absolute changes in protein expression analysed in the cortex 
by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6, except RhoA Ro61-8048 where n = 
5) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-29. Unc5H1, Unc5H3 and DCC expression in the P60 cortex. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the cortex by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 6, except Unc5H3 Ro61-8048 where n = 
5) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-30. TH, 5HT-2C, α-synuclein and DCX expression in the P60 cortex. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c, (C) A-Syn and (D) DCX 
in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the cortex by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 6, except TH Ro61-8048 where n = 5) 
displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  Statistical 
comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-31. Expression of synaptic proteins in the P60 cortex. 
Bar charts illustrate the quantified protein expression of (A) SynT, (B) SynPhy and (C) VAMP-1 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the cortex by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical 
density expressed as the ratio of target protein to actin.  Statistical comparisons were made using a one 
way ANOVA with Bonferoni correction for multiple comparisons between groups of animals born to 
mothers treated with saline and groups of animals born to mothers treated with Ro61-8048.  
Representative examples of typical protein bands obtained from the western blots along with their 
corresponding actin, which was used as a loading control, are presented above each bar chart. 
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3.6.3  Examination of Protein Markers in the P60 Midbrain 

Midbrain pathology is seen in Parkinson’s disease (PD) with a loss of catecholaminergic 

neurons in the substantia nigra including acetylcholine and dopamine, accompanied by deficits 

in the basal ganglia.  Although Huntington’s disease (HD) involves deficits in the 

hippocampus and cortex during later stages of the disease (Cowan and Raymond, 2006; Roze 

et al., 2008), the predominant region affected includes lesions within the striatum (Heng et al., 

2009).  Therefore, since the kynurenine pathway is intimately involved in the disease 

progression of these disorders, and may be involved in the initiation of Huntington’s disease, 

the midbrain from P60 animals was dissected and processed for western blotting to examine 

changes in protein expression as an indication of developmental damage induced within this 

region following prenatal treatment with Ro61-8048.  Although HD and PD remain 

neurodegenerative conditions as opposed to neurodevelopmental in origin, increasing 

evidence is beginning to associate the enhanced susceptibility to postnatal insults with the 

earlier onset of Parkinson’s disease during adulthood when exposed prenatally to 

environmental factor such as infection or toxins (Fan et al., 2011; Bobyn et al., 2012).  

Furthermore, schizophrenia pathology involves an over-activity of the dopaminergic system 

within the substantia nigra, with neurochemical changes in the ventral tegmental area (VTA) 

and nucleus accumbens, making the midbrain a primary region for investigagtion.  Therefore, 

since the kynurenine pathway is involved in a variety of disorders, the midbrain was examined 

for changes in protein expression  
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3.6.3.1  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats 
induces no changes in protein expression in the midbrain of postnatal day 60 
animals 

 
 
Examination of the midbrain by immunoblotting in P60 animals revealed no changes in the 

protein expression of GluN1, DISC-1, RhoA and RhoB (p=>0.05, figure 3-32). 

 

Similarly, no significant change was seen in the protein expression of Unc5H1, Unc5H3 and 

DCC (p=>0.05, figure 3-33). 

  

The protein expression of tyrosine hydroxylase (TH), 5HT-2c, α-synuclein (α-Syn) and 

doublecortin (DCX) also remained unchanged in the midbrain (p=>0.05) as seen in figure 3-

34. 

 

When the protein expression of VAMP-1 (synaptobrevin) was assessed, its expression 

remained comparable with controls (p=>0.05).  Synaptic markers synaptotagmin (SynT) and 

synaptophysin (SynPhy) were also examined to find no significant difference existed between 

treatment groups (p=>0.05) as seen in figure 3-35. 
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Figure 3-32. GluN1, DISC-1, RhoA and RhoB expression in the P60 midbrain. 

Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-
8048 on gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed 
and dissected to examine any relative or absolute changes in protein expression analysed in the 
midbrain by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6, except RhoA and RhoB 
saline where n = 5) displaying arbitrary units of optical density expressed as the ratio of target protein 
to actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of animals born to mothers treated with saline and groups of 
animals born to mothers treated with Ro61-8048.  Representative examples of typical protein bands 
obtained from the western blots along with their corresponding actin, which was used as a loading 
control, are presented above each bar chart. 
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Figure 3-33. Unc5H1, Unc5H3 and DCC expression in the P60 midbrain. 

Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the midbrain by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 6, except Unc5H1 and Unc5H3 saline 
where n = 5) displaying arbitrary units of optical density expressed as the ratio of target protein to 
actin.  Statistical comparisons were made using a one way ANOVA with Bonferoni correction for 
multiple comparisons between groups of animals born to mothers treated with saline and groups of 
animals born to mothers treated with Ro61-8048.  Representative examples of typical protein bands 
obtained from the western blots along with their corresponding actin, which was used as a loading 
control, are presented above each bar chart. 
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Figure 3-34. TH, 5HT-2C, α-synuclein and DCX expression in the P60 midbrain. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c, (C) A-Syn and (D) DCX 
in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the midbrain by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 6, except for TH and 5HT-2C where n = 
5-6) displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  
Statistical comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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Figure 3-35. Expression of synaptic proteins in the P60 midbrain. 
Bar charts illustrate the quantified protein expression of (A) SynT, (B) SynPhy and (C) VAMP-1 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the midbrain by 
immunoblotting.  Results are expressed as +/- s.e.mean (n = 5, except for SynT where n = 6) 
displaying arbitrary units of optical density expressed as the ratio of target protein to actin.  Statistical 
comparisons were made using a one way ANOVA with Bonferoni correction for multiple 
comparisons between groups of animals born to mothers treated with saline and groups of animals 
born to mothers treated with Ro61-8048.  Representative examples of typical protein bands obtained 
from the western blots along with their corresponding actin, which was used as a loading control, are 
presented above each bar chart. 
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3.6.4  Examination of Protein Markers in the P60 Cerebellum 

While the cerebellum has widely been associated in controlling motor co-ordination, it is 

increasing becoming more apparent that the cerebellum may also mediate non-motor brain 

functions (Konarski et al., 2005) involved in the pathophysiology of schizophrenia (Reviewed 

in Kyosseva, 2004; Andreasen and Pierson, 2008).  This is supported by clinical evidence and 

structural neuroimaging studies associating cerebellar deficits to cognitive-related symptoms of 

schizophrenia (Lungu et al., 2001).  Predominant cerebellar hypoactivation has been reported, 

with the majority localised in the medial portion of the anterior lobe and lateral hemispheres 

of lobules IV-V of the cerebellum, and is proposed to contribute towards cognitive, emotional 

and executive functional processes in schizophrenia.  The altered connectivity of neuronal 

connections identified in the cortex and hippocampus of schizophrenia patients have been 

extended to include the altered functional connectivity and organisation (Kannan et al., 2009) 

of cortico-cerebellar connectivity, while the cerebellar-thalamic neuronal connections appear 

to be predominantly affected (Chen et al., 2013).  Neurochemically, transcription factors 

regulating genes in dopamine and glutamate pathways, including subunits of the NMDA 

receptor, are significantly altered in the cerebellum, inversely correlating with the negative 

symptoms in schizophrenia (Pinacho et al., 2013).  Disruptions in glutamate and GABA 

receptors and transmission have also been reported in the lateral cerebella of subjects with 

schizophrenia (Bullock et al., 2008; Fatemi et al., 2013), while these changes are attributed to 

contribute towards deficits in motor learning in patients with schizophrenia (Roder et al., 

2013).  Interestingly, deficits in GABAergic signalling within the cerebellum may be partly 

responsible for disturbances in motor behaviour thought to result from abnormalities in the 

brain’s timing mechanisms, due to reductions in GABAergic inhibitory interneuronal control 

of cellular activity (Teale et al., 2013), and may contribute towards deficits in sensorimotor 

gating in schizophrenia.  Since mounting evidence suggests cerebellar involvement in motor 

and non-motor brain functions during schizophrenia, we sought to examine protein changes 

within this region to see whether Ro61-8048 could adversely affect cerebellar function during 

adulthood.   
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3.6.4.1 Prenatal inhibition of KMO with Ro61-8048 in pregnant rats alters 
the expression of proteins related to axonal guidance in the cerebellum of  
postnatal day 60 animals 

 
 
Examination of the cerebellum by immunoblotting revealed no changes in the protein 

expression of GluN1, DISC-1, RhoA and RhoB (p=>0.05), as seen in figure 3-36. 

 

While prenatal treatment to Ro61-8048 substantially reduced the protein expression of 

Unc5H3 (p=<0.01**) in the cerebellum, Unc5H1 and DCC expression remained comparable 

with conrols (p=>0.05, figure 3-37). 

 

The protein expression of tyrosine hydroxylase (TH), 5HT-2c, α-synuclein (α-Syn) and 

doublecortin (DCX) remained unchanged in the cerebellum following prenatal treatment of 

Ro61-8048 (p=>0.05), as seen in figure 3-38. 

 

When the protein expression of VAMP-1 (synaptobrevin) was assessed in the cerebellum, its 

expression remained comparable with controls (p=>0.05).  The protein expression of synaptic 

markers synaptotagmin (SynT) and synaptophysin (SynPhy) were also examined to find no 

significant difference existed between treatment groups (p=>0.05), as seen in figure 3-39. 
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Figure 3-36. GluN1, DISC-1, RhoA and RhoB expression in the P60 cerebellum. 
Bar charts illustrate the quantified protein expression of (A) GluN1, (B) DISC-1, (C) RhoA and (D) 
RhoB in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-
8048 on gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed 
and dissected to examine any relative or absolute changes in protein expression analysed in the 
cerebellum by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary 
units of optical density expressed as the ratio of target protein to actin.  Statistical comparisons were 
made using a one way ANOVA with Bonferoni correction for multiple comparisons between groups 
of animals born to mothers treated with saline and groups of animals born to mothers treated with 
Ro61-8048.  Representative examples of typical protein bands obtained from the western blots along 
with their corresponding actin, which was used as a loading control, are presented above each bar 
chart. 
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Figure 3-37. Unc5H1, Unc5H3 and DCC expression in the P60 cerebellum. 
Bar charts illustrate the quantified protein expression of (A) Unc5H1, (B) Unc5H3 and (C) DCC in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the cerebellum 
by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical 
density expressed as the ratio of target protein to actin.  Statistical comparisons were made using a one 
way ANOVA with Bonferoni correction for multiple comparisons between groups of animals born to 
mothers treated with saline and groups of animals born to mothers treated with Ro61-8048.  
Representative examples of typical protein bands obtained from the western blots along with their 
corresponding actin, which was used as a loading control, are presented above each bar chart. 
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Figure 3-38. TH, 5HT-2C, α-synuclein and DCX expression in the P60 cerebellum. 
Bar charts illustrate the quantified protein expression of (A) TH, (B) 5HT-2c, (C) A-Syn and (D) DCX 
in the brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the cerebellum 
by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical 
density expressed as the ratio of target protein to actin.  Statistical comparisons were made using a one 
way ANOVA with Bonferoni correction for multiple comparisons between groups of animals born to 
mothers treated with saline and groups of animals born to mothers treated with Ro61-8048.  
Representative examples of typical protein bands obtained from the western blots along with their 
corresponding actin, which was used as a loading control, are presented above each bar chart. 
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Figure 3-39. Expression of synaptic proteins in the P60 cerebellum. 
Bar charts illustrate the quantified protein expression of (A) SynT, (B) SynPhy and (C) VAMP-1 in the 
brains of rat offspring following maternal exposure to 0.9 % saline or 100 mg/kg Ro61-8048 on 
gestation days E14, E16 and E18. Animals were sacrificed at P60 and their brains removed and 
dissected to examine any relative or absolute changes in protein expression analysed in the cerebellum 
by immunoblotting.  Results are expressed as +/- s.e.mean (n = 6) displaying arbitrary units of optical 
density expressed as the ratio of target protein to actin.  Statistical comparisons were made using a one 
way ANOVA with Bonferoni correction for multiple comparisons between groups of animals born to 
mothers treated with saline and groups of animals born to mothers treated with Ro61-8048.  
Representative examples of typical protein bands obtained from the western blots along with their 
corresponding actin, which was used as a loading control, are presented above each bar chart. 
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A summary of all changes in protein expression in embryo brains, P21 and P60 animals 

following prenatal treatment with Ro61-8048 can be seen in table 3-2 and table 3-3. 

 

Table 3-2. Summary of protein changes following Ro61-8048 treatment until P21 

Protein Marker Embryo 
E18 5h 

Embryo 
E18 24h 

Postnatal Day 
P21 

GluN1 x x x 
DISC-1 x x x 
PSD-95 - - x 
RhoA x x x 
RhoB x x p=<0.05* 

(dec. in Ro61-8048) 
    
Unc5H1 x x x 
Un5H3 x x x 
DCC x x x 
    
TH x x x 
5HT-2C x x x 
Α-Syn x x x 
DCX x x x 
    
VAMP-1 x x x 
SynT - - x 
SynPhy - - x 
 
Table 3-3. Summary of protein changes following Ro61-8048 treatment at P60 

Protein Marker Hippocampus Cortex Midbrain Cerebellum 

GluN1 x x x x 
DISC-1 x P=<0.05* 

(inc. in Ro61-
8048) 

x x 

RhoA x x x x 
RhoB x x x x 
     
Unc5H1 x x x x 
Un5H3 x x x p=<0.01** 

(dec. in Ro61-
8048) 

DCC x x x x 
     
TH x x x x 
5HT-2C x x x x 
Α-Syn x x x x 
DCX P=<0.05* 

(inc. in Ro61-
8048) 

x x x 

     
VAMP-1 x x x x 
SynT x x x x 
SynPhy x x x x 
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3.7  Prenatal inhibition of KMO with Ro61-8048 in pregnant rats affects glutamatergic 
transporters and spine density in the CA1 hippocamus during adulthood 
 
 
Several groups have provided evidence of altered excitatory and inhibitory signalling during 

schizophrenia occurring within the hippocampus during adulthood, with reports of 

neurochemical changes in gene and protein expression.  The initial hypothesis remained that 

altered activity along the kynurenine pathway prenatally would induce significant alterations in 

the concentrations of kynurenic acid thereby affecting NMDA receptor activation during 

development.  Since this mechanism proposed a loss of NMDA function during development, 

a phenomenon associated with abnormalities in behaviour and changes in excitatory and 

inhibitory neuronal function (Harris et al., 2003; Uehara et al., 2009), the relative densities of 

excitatory (VGLUT-1, VGLUT-2) and inhibitory (VGAT) transporters were examined as well 

as their co-localisation with the synaptic marker vesicle associated membrane protein 

(VAMP)-1, to identify whether prenatal interference with kynurenines could modify neuronal 

function during adulthood.  Furthermore, since the hippocampus is a principal region affected 

during schizophrenia (Harrison et al., 2006; Shan et al., 2013), the relative densities were 

examined in the stratum pyramidale layer of the CA1 region. This location can be seen in 

figure 3-40.  Images were acquired using a x60 objective lens with oil immersion and a zoom 

factor of 3.  Parameters controlling for the contrast and laser power of each channel were 

adjusted within the maximum range to prevent fusion of puncta.  Technical replicates were 

taken to control for the variation in counting the number of transporters per section, and a 

total of 3 technical replicates (sections) were averaged per biological replicate (animal).  A t test 

was then performed on the average of 8 biological replicates (animals) to observe whether 

differences in the number of transporters represented a true change between treatment 

groups.   

 

 
 
 
 
 
 
 
 
 
 

Results 
Part Three 

Ro61-8048 Data: Microscopy 
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Figure 3-40.  The CA1 region of the hippocampus analysed for punctate staining. 
Punctate staining for VGLUT-1, VGLUT-2, VGAT and VAMP-1 were counted manually within the 
CA1 region of the hippocampus as an indication of glutaminergic signallying within the hippocampus.  
Images were acquired using a x60 objective lens with oil immersion and a zoom factor of 3. 
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3.7.1 Prenatal inhibition of KMO with Ro61-8048 in pregnant rats increases the 
density of excitatory transporters in nerve terminals of the stratum pyramidale 
layer of the hippocampus in postnatal day 60 animals 

  
 
Confocal analysis of hippocampal sections in the CA1 region revealed a highly significant 

increase in the densities of excitatory  VGLUT-1 and VGLUT-2 transporters (P=0.0003*** ; 

figure 3-41) in the stratum pyramidale of P60 animals born to mothers treated prenatally with 

Ro61-8048, while the relative density of inhibitory VGAT transporters remained unchanged 

(p=0.41, figure 3-42).  To ascertain that changes in transporters were not due to changes in 

synaptic connections, the relative density of VAMP-1 was also examined to reveal no change 

between the treatment group and control animals (p=0.58, figure 3-43).  Finally, no changes 

were seen in co-localisation between VAMP-1 and VGLUT-1 and VGLUT-2 (p=0.22, figure 

3-44) and co-localisation between VAMP-1 and VGAT (p=0.82, figure 3-45). 
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Figure 3-41. VGLUT-1/2 immunoreactivity in the CA1 region of the hippocampus. 
A representative image of the staining obtained from vesicular glutamate transporters-1 and 2 
(VGLUT-1/2) in the stratum pyramidale layer of the hippocampus.  Punctate staining was counted 
manually within a box size of 50µm x 50µm.  3 sections per animal from a total of 8 animals 
contributed towards the statistical analysis (n = 8 animals) where results are expressed as +/- s.e.mean.  
The data was analysed using an unpaired t test and a probability value of 0.05 was adopted as the 
working criterion for significance.  Scale bars are set to 2µm.   
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Figure 3-42. VGAT immunoreactivity in the CA1 region of the hippocampus. 
A representative image of the staining obtained from vesicular GABA transporters (VGAT) in the 
stratum pyramidale layer of the hippocampus.  Punctate staining was counted manually within a box 
size of 50µm x 50µm.  3 sections per animal from a total of 8 animals contributed towards the 
statistical analysis (n = 8 animals) where results are expressed as +/- s.e.mean.  The data was analysed 
using an unpaired t test and a probability value of 0.05 was adopted as the working criterion for 
significance.  Scale bars are set to 2µm. 
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Figure 3-43. VAMP-1 immunoreactivity in the CA1 region of the hippocampus. 
A representative image of the staining obtained from vesicle-associated membrane protein-1 (VAMP-
1) protein in the stratum pyramidale layer of the hippocampus.  Punctate staining was counted 
manually within a box size of 50µm x 50µm.  3 sections per animal from a total of 8 animals 
contributed towards the statistical analysis (n = 8 animals) where results are expressed as +/- s.e.mean.  
The data was analysed using an unpaired t test and a probability value of 0.05 was adopted as the 
working criterion for significance.  Scale bars are set to 2µm. 
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Figure 3-44. VAMP-1 co-localisation with VGLUT-1/2 in the CA1 region of the hippocampus. 
A representative image of the staining obtained from vesicle-associated membrane protein-1 (VAMP-
1) co-localised with vesicular glutamate transporters 1 and 2 (VGLUT-1/2) in the stratum pyramidale 
layer of the hippocampus.  Images for VAMP-1 and VGLUT-1/2 were merged to assess their co-
localisation and punctate staining was counted manually within a box size of 50µm x 50µm.  Punctate 
staining was considered double-labelled when the overlap was complete or occupied most of the 
puncta while maintaining morphological similarity.  3 sections per animal from a total of 8 animals 
contributed towards the statistical analysis (n = 8 animals) where results are expressed as +/- s.e.mean.  
The data was analysed using an unpaired t test and a probability value of 0.05 was adopted as the 
working criterion for significance.  Scale bars are set to 2µm. 
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Figure 3-45. VAMP-1 co-localisation with VGAT in the CA1 region of the hippocampus. 
A representative image of the staining obtained from vesicle-associated membrane protein-1 (VAMP-
1) co-localised with vesicular GABA transporters (VGAT) in the stratum pyramidale layer of the 
hippocampus.  Images for VAMP-1 and VGAT were merged to assess their co-localisation and 
punctate staining was counted manually within a box size of 50µm x 50µm.  Punctate staining was 
considered double-labelled when the overlap was complete or occupied most of the puncta while 
maintaining morphological similarity.  3 sections per animal from a total of 8 animals contributed 
towards the statistical analysis (n = 8 animals) where results are expressed as +/- s.e.mean.  The data 
was analysed using an unpaired t test and a probability value of 0.05 was adopted as the working 
criterion for significance.  Scale bars are set to 2µm. 
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3.7.2 Prenatal inhibition of KMO with Ro61-8048 in pregnant rats affects 
hippocampal spine density 

 
 
 
Many disorders involving a neurodevelopmental aetiology appear to be associated with 

significant impairments in neuronal morphology including alterations in dendritic spines.  

Since many changes in protein expression in postnatal animals, induced by Ro61-8048, have 

known roles in neuronal maturation and development, while some are directly related to 

regulate spine density, we sought to examine whether these changes in protein expression 

were also accompanied by alterations in dendritic spines.  Furthermore, since dendritic spines 

represent the majority of excitatory inputs into a cell, and the examination of VGLUT-1 and 

VGLUT-2 staining in the dendritic layer of the CA1 region of the hippocampus was not 

feasible due to the extremely high density of punctate staining observed, the relative densities 

of dendritic spines were assessed as an indication of the level of excitatory input received in 

these cells.  The CA1 region of the hippocampus analysed for spine density measurements can 

be seen in figure 3-46.  Therefore, pregnant rats were administered an intraperitoneal injection 

of 100 mg/kg Ro61-8048 during E14, E16 and E18 and allowed to litter normally.  Animals 

were taken from the home cage at P60, euthanized and had their brains extracted for 

processing by golgi analysis. 
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Figure 3-46.  CA1 region of the hippocampus for golgi analysis of dendritic spines. 
Since dendritic spines represent the majority of excitatory inputs into a cell, their relative densities were 
assessed, using the golgi impregnation method, as an indication of the level of excitatory input received 
in these cells.   
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3.7.2.1 Prenatal inhibition of KMO with Ro61-8048 in pregnant rats 
reduces spine density of pyramidal cells in the CA1 region of the 
hippocampus in postnatal day 60 animals 

 
 
Analysis of spine density on pyramidal cells in the CA1 region of the hippocampus revealed 

no change in apical dendritic spines (p=0.08), however, when thick mushroom and thin spines 

were analysed separately, a significant reduction was seen in mushroom spines (p=0.007**) 

while the relative density of thin spines remained comparable with controls (p=0.54), as seen 

in figure 3-47. 

 

Analysis of basal dendrites on pyramidal cells displayed significantly reduced densities of 

dendritic spines (p=0.035*) in groups of animals born to mothers treated prenatally with 

Ro61-8048.  However, when mushroom and thin spines were analysed alone, no significant 

difference existed between the two subtypes (p=0.75 and p=0.07 respectively), as seen in 

figure 3-48. 
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Figure 3-47. Relative spine density of apical dendrites in the CA1 hippocampus. 
Dendritic spines were manually counted under a light microscope using a x100 objective lens.  Spine 
densities of mushroom spines (thick arrows) in apical dendrites were significantly reduced in drug-
treated animals while thin spines (thin arrows) remained unchanged.  Spines were counted per 10µm 
length of dendrite, while 3 dendritic segments per cell and a total of 4 cells per animal from 9 animals 
per treatment group (n = 9 animals) contributed towards the analysis.   The results are expressed as 
+/- s.e.mean.  The data was analysed using an unpaired t test and a probability value of 0.05 was 
adopted as the working criterion for significance.  Scale bar is set to 2µm.   
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Figure 3-48. Relative spine density of basal dendrites in the CA1 hippocampus. 
Dendritic spines were manually counted under a light microscope using a x100 objective lens.  Overall 
spine densities of basal dendrites were significantly reduced in drug-treated animals, while the selective 
density of mushroom (thick arrows) and thin spines (thin arrows) remained comparable with controls.  
Spines were counted per 10µm length of dendrite, while 3 dendritic segments per cell and a total of 4 
cells per animal from 9 animals per treatment group (n = 9 animals) contributed towards the analysis.   
The results are expressed as +/- s.e.mean.  The data was analysed using an unpaired t test and a 
probability value of 0.05 was adopted as the working criterion for significance.  Scale bar is set to 2µm.  
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1.0  Overview 

Correct neuronal development in the developing foetus is paramount to the health and 

well-being of the offspring, critically dependent upon accurate neuronal differentiation, 

migration and precise axonal guidance leading to the formation of functional synapses on 

dendritic spines.  However, maternal pregnancy (gestation) is a very vulnerable period for the 

developing embryo, and several risk factors have been identified capable of interrupting these 

physiological processes and damaging foetal development resulting in changes in brain 

neurochemistry, neuronal morphology and behaviours during adulthood (Schlotz and Phillips, 

2009).  While the effects of maternal smoking (Lobel et al., 2008) alcohol (Sayal et al., 2007; 

Haley et al., 2006) and drug exposure (Bennet et al., 2008; Goldschmidt et al., 2008) as risk 

factors for neurodevelopmental disorders are widely appreciated, risk factors including 

maternal malnutrition, stress and infection (Mednick et al., 1988; Adams et al., 1993; Brown et 

al., 2009; Eriksen et al., 2009) are increasingly become more prevalent.  Indeed, the influenza 

epidemic saw the subsequent rise in schizophrenia which has been associated with pregnant 

mothers contracting the virus, while the epidemic of encephalitis lethargica may have been a 

contributing factor for the increased incidence of Parkinson’s disease.  The effects of maternal 

immune activation as a risk factor for schizophrenia is now accepted suggesting an 

increasingly popular theory of a neurodevelopmental aetiology for psychiatric disorders like 

schizophrenia.  While many studies have clearly demonstrated in rodent models, cognitive and 

behavioural abnormalities emerging from immune-challenged mothers (Zuckerman and 

Weiner, 2005; Romero et al., 2007; Meyer et al., 2007; Meyer et al., 2008a; Lipina et al., 2013), 

often subtle but reminiscent of those observed in schizophrenia (Fatemi and Folsom, 2009), 

very little is known regarding the mechanisms involved and the neurochemical alterations 

underlying these deficits.  Although cytokines are noted for mediating the link between 

maternal immune activation and the subsequent risk in schizophrenia (Smith et al., 2007; Cui et 

al., 2009), it fails to explain how a relatively transient inflammatory reaction during pregnancy, 

rarely persisting beyond 24 h (Cunningham et al., 2007), is capable of precipitating long-term 

changes in brain and behaviour.  Alongside cytokines producing a short-term direct action on 

the developing embryo, it is most likely that long-term alterations are due to the subsequent 

sequence of events involving alterations in intracellular signalling cascades, receptor and 

transmitter systems are initiated by the initial insult.  To identify some of these neurochemical 

changes, this study sought to examine alterations in protein expression following maternal 

immune activation.  Poly(I:C) substantially reduced the major NMDA receptor subunit GluN1 

Chapter Four D i s c u s s i o n 
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and α-synuclein in P21 animals, while no changes were seen in the embryos.  These alterations 

may underlie cognitive and synaptic deficits (Forrest et al., 2012, 2013, Khalil et al., 2013, 2014) 

and provide an understanding of the molecular alterations induced by poly(I:C) and are likely 

to mediate some of the deficits in brain and behaviour reported previously (Meyer et al., 2007).    

This suggests therapies aimed at correcting abnormalities in protein expression following 

maternal immune activation may prove fruitful in developing novel therapeutics to treat 

complex psychiatric disorders.  Since glutamate receptors appear to be intimately involved in 

many of the effects of maternal immune activation, along with general neurodevelopmental 

processes, while also recognised as a major contributor towards schizophrenia, it was 

hypothesised that activation of the kynurenine pathway following infection may mediate a link 

between cytokine action and glutamate receptor dis-regulation contributing towards the 

increased incidence of neurodevelopmental disorders.  Indeed, such a mechanism could 

account for, at least in part, the long-term effects of infection since studies show the dis-

regulation of kynurenines are maintained for extended periods prolonging the effects of the 

initial infectious insult.  For this reason, a parallel study within the laboratory examined the 

ability of maternal immune activation with poly(I:C) to activate the kynurenine pathway.  

Furthermore, since many CNS disorders during adulthood involve changes in kynurenine 

metabolites contributing towards disease progression (Giulian et al., 1993; Pemberton et al., 

1997; Power and Johnson, 1995; Sei et al., 1996; Heyes et al., 1998), by mechanisms of 

neuroinflammation, it raises the possibility that changes in kynurenines early in life, or even 

prenatally by conditions affecting the pregnant mother, may affect cognitive and behavioural 

functions in the offspring later in life.  Therefore, neurochemical changes in protein 

expression were examined following maternal disruption of the kynurenine pathway, to find 

selective delayed alterations.  RhoB was reduced at P21 while Unc5H3 was reduced in the P60 

cerebellum and may underlie the altered neuronal organisation frequently reported in 

schizophrenia.  Furthermore, DCX was increased in the P60 hippocampus suggestive of an 

increase in postnatal hippocampal neurogenesis, while DISC-1 was increased in the P60 cortex 

and may be associated with behavioural and cognitive deficits.  These changes in protein 

expression demonstrate the pathway to be highly active during development that may 

contribute towards the onset of neurodevelopmental disorders later in life.   

 

 

1.1  Poly(I:C) Induced MCP-1 in Maternal Blood 

The selective increased expression of chemokine monocyte chemoattractant protein-1 

(MCP-1) in the maternal blood at 5 h post-injection with poly(I:C) confirms the efficacy of the 

selected dose to induce immune activation, while the absence in any change in IL-1β or TNF-
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α levels confirms the transient nature of immune activation.  Consistent with our findings, 

studies show maternal plasma levels of TNF-α are significantly elevated above control levels in 

as little as 2 h post-injection of pregnant rats with poly(I:C) at E16, while this significant 

increase returned to normal when examined at 8 h.  This transient profile of TNF-α is 

confirmed by others where TNF-α was found to return to control levels by 4-6 h post-

injection with poly(I:C) in mice (Cunningham et al., 2007). Furthermore, poly(I:C) 

administration in mice increased plasma levels of IL-1β at 3 hours, while other groups, 

including ours, have failed to show an increase in this cytokine following poly(I:C) treatment 

(Fortier et al., 2004; Mclinden et al., 2012).  The lack of any change in other cytokines confirms 

no long-lasting or persistent inflammation that may confound the interpretation of the results, 

therefore, changes in protein expression reported here are in response to the acute maternal 

immune activation during gestation.  Interestingly, there is a strong correlation between the 

levels of MCP-1 in the amniotic fluid and the subsequent appearance of autism spectrum 

disorders (Abdallah et al., 2012), which may be related to the finding that MCP-1 can induce a 

cytokine expression profile resembling those observed in the disorder (Patterson, 2011).  

While the present study failed to measure the levels of inflammatory mediators in the maternal 

brain, several groups have shown the induction of both cytokines and chemokines following 

systemic injection of poly(I:C) in the pregnant mother.  Intraperitoneal injections of poly(I:C) 

at comparable doses used in our experiments, have reported increased concentrations of 

chemokine genes including Cxcl9, Cxcl10, Cxcl11, Ccl2, Ccl7, Ccl5, and Ccl12 among others, 

including increased concentrations of the classical infection-induced cytokines (Konat et al., 

2009).  Other studies show similar doses of poly(I:C) to increase the central expression of 

INF-α, INF-β, IL-1β, IL-6 and TNF-α (McLinden et al., 2012), while central microglial 

activation is also promoted by systemic treatment with poly(I:C).   

 

1.1.1  Changes in Feotal Brain Cytokine Levels Following poly(I:C) Treatment 

While our experiments failed to assess the levels of cytokines in the embryo brains, a 

large study examined whether prenatal infection with poly(I:C) in mice could induce changes 

in levels of cytokines within the foetal brain.  This study demonstrated poly(I:C) exposure 

during gestation day E9 was associated with increased levels of pro-inflammatory cytokines 

IL-1β, IL-6 and TNF-α, while poly(I:C) exposure during E17 increased IL-1β and IL-6.  

Interestingly, foetal brain expression of the anti-inflammatory cytokine IL-10 was decreased 

following poly(I:C) exposure at gestation day E9, but significantly increased following 

poly(I:C) exposure during E17 (Meyer et al., 2006b), suggesting a loss in its ability to 

antagonise the actions of pro-inflammatory cytokines during earlier stages of gestation.  

Recent reports show similar elevations in levels of pro-inflammatory cytokines in foetal brains 
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following maternal immune activation with poly(I:C) (Abazyan et al., 2010), however, a 

limitation applying to all embryo studies on foetal brains is that the analysis was performed on 

whole foetal brains, while changes in cytokine levels, and their effects on neuronal 

populations, may likely be region specific.   

 

To address the question whether maternally produced cytokines undergo 

transplacental transport to affect foetal development, laboratories employed the use of 

injecting radiolabelled cytokines into the pregnant rodent.  IL-6 was shown to undergo 

transplacental transport since radiolabelled IL-6 (125I-IL-6) was detected in the foetus in as 

little as 30 min following injection in pregnant rats on E11-E13 and E17-E19 (Dahlgren et al., 

2006).  Of interest, foetal levels of 125I-IL-6 were higher in embryos exposed to the 

radiolabelled cytokine in earlier stages of gestation (E11-13) when compared to later stages 

(E17-19).  This demonstrates IL-6 can readily cross the placenta during early/middle gestation 

but not so easily during late gestation.  Furthermore, while an in vitro preparation of human 

placenta at term has shown IL-6 to undergo transplacental transfer, minimal transfer of IL-1β 

and TNF-α was noted (Zaretsky et al., 2004).  The variability in transplacental transport of 

cytokines throughout gestation may be important in identifying critical time points of 

vulnerability to prenatal immune challenge. This shows maternally produced cytokines 

undergo transplacental transfer, gaining entry into the foetal compartment, while 

transplacental transfer of cytokines is at a maximal rate during earlier stages of gestation as 

opposed to later stages, a factor that may contribute to prenatal infection during early stages 

of gestation as being associated with greater brain and behavioural deficits including the 

greatest risk for schizophrenia (Brown et al., 2004; Meyer et al., 2007, 2006, 2009).  Therefore, 

despite cytokine concentrations being elevated in the foetal brain, much evidence suggests 

maternally produced cytokines may be transported via the maternal circulation through an 

immune compromised blood placental barrier (BPB). 

 

The placenta itself may constitute a second source of cytokines affecting the foetal 

system.  Cells of the placental barrier, including trophoblasts, uterine epithelial cells and 

chorionic villi express a variety of TLRs (Abrahams and Mor, 2005; Krikun et al., 2007).  It is 

therefore likely, in the event of maternal infection; cells of the placental barrier may mount an 

additional cytokine response leading to altered levels of cytokines in the foetal compartment.  

Additionally, the foetus itself may produce and secrete its own cytokine proteins following 

maternal infection, however, this would largely depend upon the developmental stage of the 

foetus since a functional immune system requires a series of well-coordinated developmental 

events beginning early in foetal life.  In most mammals during early or middle stages of 
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pregnancy the foetal immune system is relatively underdeveloped, while functional maturity is 

only achieved during late gestation and postnatal stages of development (Holsapple et al., 

2003).  Therefore, the ability for the foetus to initiate its own cytokine response as a reaction 

to maternal infection would critically depend upon the gestational stage of the foetus.   

 

1.1.2  Direct Action of Virus  

Although the majority of studies demonstrate the deficits in behaviour during 

adulthood, caused by prenatal infections, are most likely mediated by indirect mechanisms due 

to altered balances of pro-inflammatory cytokines, there remain a few infectious pathogens 

that may induce neurodevelopmental deficits in the foetal brain by accessing the foetal 

environment and exerting a direct action on the foetal brain.  While LPS cannot cross the 

placental barrier, it is widely established the rubella virus can readily cross the placental barrier 

and enter the foetal brain (Fatemi, 2005).  Apart from activating specific pro-inflammatory 

cytokine reactions, the rubella virus can exert other consequential effects including inhibiting 

mitosis and myelination (Boue´ and Boue´, 1969).  Specific strains of the influenza virus have 

also been shown to undergo transplacental transfer, where pregnant mice infected with the 

influenza A/WSN/33 strain enters the foetal brain and persists even at postnatal stages.  

Furthermore, the resulting offspring exhibit altered patterns of gene expression in the CNS 

(Asp et al., 2005), indicating that the influenza A/WSN/33 strain effects on the offspring may 

also be a contributing factor towards the neuropathology observed during adulthood.  On the 

contrary, maternal infection with the influenza A/NWS/33 strain does not cross the placenta 

and is not found in the foetal brain (Shi et al., 2005), however, the resulting offspring exhibits 

pharmacological and behavioural deficits similar to schizophrenia during adulthood (Shi et al., 

2003).  Firstly, this demonstrates the strain or type of infectious pathogen is important since 

not all cross the placental barrier, and secondly, even in the absence of a virus undergoing 

transplacental transfer, it is still capable of producing behavioural deficits in the offspring.  It 

may be expected that infectious agents capable of both triggering the maternal immune 

response and crossing the placental barrier, to gain access to the foetal brain, may contribute 

to greater neurodevelopmental deficits precipitating in the offspring during adulthood.  This 

may explain why the greatest risk of schizophrenia is observed with the rubella virus in the 

first trimester of pregnancy, since cytokine passage to the embryo is at a maximal rate, while 

the virus also enters the foetal compartment (Dahlgren et al., 2006; Zaretsky et al., 2004; 

Fatemi, 2005; Asp et al., 2005).   
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1.1.3  Cytokine Actions via Sickness Behaviour 

Another mechanism involves the induction of sickness behaviour, a behavioural 

complex typically observed following acute infections and tissue injury in many mammalian 

species, often resembling depressive-like symptoms.  The behavioural characteristics often 

accompanied with sickness behaviour include behavioural and physiological changes in the 

host and in rodents.  These effects are characterised by a fever response, malaise, reduced 

exploratory and social investigation and a decrease in food and water intake frequently leading 

to weight loss (Dantzer, 2001).   There is evidence sickness behaviour is mediated through the 

effects of pro-inflammatory cytokines, including IL-1, TNF-α and IL-6 (Qin et al., 2007; 

Dantzer et al., 2008; Burton et al., 2011).  Furthermore, the effects of inflammation-induced 

anorexia is directly proportional to the severity of the initial insult (Lennie, 1998), a 

mechanism which may limit the intake of dietary iron, a nutrient employed by bacteria for 

bacterial growth, and dietary zinc.  Pro-inflammatory cytokines mediate the reduction in the 

circulation of iron (Lee et al., 2005), via a mechanism involving the pro-inflammatory cytokine 

IL-6 (Nemeth et al., 2004).  Although this inflammation–induced state of hypoferremia is a 

protective mechanism limiting its availability to invading pathogens, iron is an essential 

nutrient for neurodevelopment where a reduction during several stages of development result 

in long-term alterations in dopaminergic neurotransmission (Kwik-Uribe et al., 2000).  Within 

the context of maternal infection, this may be relevant in contributing towards the prolonged 

actions of cytokines while providing a mechanism for affecting dopaminergic systems in the 

offspring.   

 

Similarly, pregnant mice fed a high zinc (Zn) diet prevent deficits in object recognition 

in adult offspring when compared to control animals prenatally exposed to LPS alone (Coyle 

et al., 2009), implying a decrease in maternal or foetal zinc levels induced by LPS.  Cytokines 

induce the synthesis of metallothionen (MT), a zinc-binding protein thereby reducing 

circulating levels of zinc.  Wild-type mice treated with LPS decrease circulating levels of zinc, 

an effect preceded by the induction of MT, whereas LPS treatment in MT-knockout mice 

produced no change (Carey et al., 2003).  Therefore, the infection-induced reduction of zinc in 

the mother and potentially the foetus, through a reduced maternal transport, results in 

developmental abnormalities in the offspring.  Consistently, supplementation with higher 

levels of zinc in the maternal diet, normalising zinc levels in the CNS, protects against birth 

defects (Chau et al., 2006).  Immune-induced malnutrition observed during the sickness 

behaviour is important since several groups have demonstrated a positive association between 

prenatal malnutrition and the subsequent development of schizophrenia in the offspring 

during adulthood (Susser et al., 1996; Brown et al., 1996).   
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 Interestingly, changes in feeding activity during maternal infection may also be due to 

alterations in kynurenines.  The concentration of KYNA is significantly decreased in patients 

with anorexia while the concentration of QUIN is significantly increased (Demitrack et al., 

1995).   QUIN reduces feeding behaviour via activation of NMDA receptors since the 

glycine-2-site agonist D-serine induces the same response (Sorrels and Bostock, 1992), while 

administration of the KYNA analogue, 7-chlorokynurenic acid, reverses this effect 

subsequently enhancing feeding behaviour.  This suggests that brain concentrations of 

kynurenines, may be an important regulator of feeding activity, and may contribute towards 

the malnutrition observed during the sickness behaviour reported following LPS or poly(I:C) 

exposure.  

 

 

1.2  Poly(I:C) Failed to Induce Activation of the Kynurenine Pathway 

Persuing the hypothesis that activation of the kynurenine pathway following poly(I:C) 

exposure in the pregnant mother may be a mechanism underlying the molecular alterations 

observed in the offspring, a parallel study within the laboratory assessed whether poly(I:C) 

activated the kynurenine pathway.  Interestingly, in our animals, poly(I:C) failed to activate the 

kynurenine pathway and induced no changes in KYN or KNYA in the maternal blood or 

embryos (Khalil et al., 2014), suggesting that changes in protein expression or general sickness 

behaviours are not dependent upon changes in kynurenines.  In contrast to this are several 

groups showing infection with HIV or influenza or toxoplasma gondii induces activation of 

the kynurenine pathway in astrocytes and fibroblasts, while increasing IDO and TDO activity 

in mice and in human neuroepithelial cells (Fujigaki et al., 2001; Fox et al., 2013; Huang et al., 

2013; Xiao et al., 2013).  However, discrepancies in IDO activation following infection have 

also been reported (Niño-Castro et al., 2013) suggesting it may be related to species and 

pathogen specificity.  In support of this are reports that while viral infection with HIV-1 strain 

induced the activation of IDO and QUIN in human foetal brain tissue (Kerr et al., 1997), and 

an increase in IDO and KYN in cultured human monocyte-derived macrophages when 

infected with HIV-1, HIV1-JRFL and HIV1-631 viral strains (Grant et al., 2000), no changes 

where seen in IDO activation or kynurenine metabolites following infection with the HIV1-

BaL strain.  Since the ability of HIV-1 strain to activate the kynurenine pathway appears to be 

due to the conservation of key amino acids in the third hypervariable region (V3) of 

glycoprotein (gp)-120 (Korber et al., 1994; Power et al., 1994), and viruses are known to mutate 

and evolve, mutations in this region may underlie its loss in ability to activate the kynurenine 

pathway, and may account for why only 30% of AIDS patients later develop dementia 

involving kynurenine input.   



147 

 
 

In vitro studies show LPS also activates the kynurenine pathway in human foetal brain 

tissue accompanied with a rise in QUIN concentration (Kerr et al., 1997), while recent reports 

extend this finding to whole blood cultures (Krause et al., 2012).  Recently, in vivo models of 

infection demonstrate that peripheral treatment with LPS results in the activation of IDO 

(O’Connor et al., 2011; Walker et al., 2012; Salazar et al., 2012), and intracerebrovascular 

injection of LPS in mice also induces central activation of IDO with a rise in brain levels of 

KYN (Lawson et al., 2013).  Similarly, poly(I:C) administered to rats activated the kynurenine 

pathway and was associated with the induction of IDO expression and an increase in KYN 

(Gibney et al., 2013).  However, activation of the kynurenine pathway was noted at around 24 

h post-treatment, while our assessment was restricted to 5 h post-injection.  Furthermore, 

HIV-1 infection in an in vitro experiment also noted increased IDO and KYN synthesis after 

48 h (Grant et al., 2000), while an in vivo mouse model of early postnatal infection with the 

influenza virus during P3, showed activation of the kynurenine pathway during P7 and P13 

(Holtze et al., 2008).  Together, these studies imply the activation of the kynurenine pathway is 

likely to constitute a more delayed response following exposure to infection, as opposed to an 

immediate effect.   This suggests that while the kynurenine pathway is not involved in any 

changes in protein expression in the embryo brains at 5 h following prenatal administration of 

poly(I:C), alterations detected at P21 may involve changes in kynurenines, although this was 

not sufficiently addressed nor confirmed in our experiments.   

 

 

1.3  Ro61-8048 Does Not Cross the Blood-Brain-Barrier 

Despite several studies showing the KMO inhibitor Ro61-8048 to offer 

neuroprotection in a variety of in vitro and in vivo models of stroke, cerebral ischemia, epilepsy 

and Parkinson’s disease, it is surprising Ro61-8048 is claimed to be impermeable to the BBB 

(Schwarcz et al., 2009).  Therefore, the central effects of Ro61-8048 achieved in vivo following 

oral administration (Rover et al., 1997) are attributed to changes in kynurenine levels 

peripherally with subsequent changes occurring in the brain.  Although Ro61-8048 cannot 

penetrate the BBB, the subsequent rise in KYN can readily cross the BBB where it is taken up 

by glial cells and converted into QUIN and KYNA.  This is demonstrated experimentally 

where systemic administration of KYN increases KYNA in the brain (Miller et al., 1992; 

Nozaki and Beal, 1992), illustrating that KYNA was increased as a direct result of KYN 

entering the CNS following systemic injection.  Moreover, tryptophan, KYN and 3-HK 

readily cross the BBB due to simple diffusion across vascular membranes while they are also 

actively transported into the CNS via large neural amino acid transporters (Speciale and 

Schwarcz, 1990), leading to the elevation of these compounds, including QUIN, in the brain 
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(Juach et al., 1993), presumably due to the further metabolism of KYN and 3-HK.  In addition 

to the ability of endothelial transporters to increase kynurenine metabolites in the CNS, 

endothelial cells may also determine the amount of tryptophan metabolism and dictate the 

levels of kynurenine metabolites available for transport.  One group showed KYN taken up by 

vascular endothelial cells was converted to KYNA via KAT (Wejksza et al., 2004), and there is 

ample evidence suggesting changes in vascular kynurenine metabolites may play a role in 

modulating blood pressure (Wang et al., 2010).  Furthermore, since IDO activation in 

endothelial cells, in response to pro-inflammatory mediators, will increase kynurenine 

metabolites and alter local tryptophan levels, it is likely that these changes will induce changes 

in CNS tryptophan and kynurenine levels, especially since studies suggest that the kynurenine 

synthesised is secreted primarily from the basolateral pole of the endothelial cells, thereby 

gaining direct access to the cerebral aspect of the BBB (Owe-Young et al., 2008).  This may 

particularly be important in the context of immune activation where the integrity of the BBB 

is compromised, permitting many compounds not normally penetrable, including QUIN and 

KYNA, entry into the CNS.   

 

1.3.1  Ro61-8048 Increased Central Kynurenine and Kynurenic Acid 

While events may be restricted to the periphery, changes in tryptophan/kynurenine 

ratios in the blood by IDO or TDO can produce marked secondary changes in the 

concentration of kynurenine metabolites in the CNS.  This was confirmed for our 

experiments in a parallel study where HPLC analysis examined changes in kynurenines, to 

reveal an intraperitoneal injection of Ro61-8048 in the pregnant dam substantially increased 

the levels of KYN and KYNA in the maternal plasma and brain at 5 h, while these changes 

were mirrored in the embryo brains.  Maternal levels of KYN and KYNA in the blood and 

brain returned to control values at 24 h, while they remained substantially elevated in the 

embryo brains (Forrest et al., 2013).  This confirmed the ability of Ro61-8048 to inhibit KMO 

in our experiments, and that changes seen in animals born to mothers treated with Ro61-8048 

are due to alterations in kynurenine metabolites, since to date, Ro61-8048 is reported to be a 

selective KMO inhibitor while other actions of the drug have not been identified.  

Interestingly, Ro61-8048, while increasing KYNA levels appeared to produce no effect on the 

levels of QUIN.  This may be due to compensatory mechanisms increasing enzyme 

expression and activity, or due to the synthesis of QUIN via an alternative route.  Since KYN 

can be metabolised to anthranilic acid then oxidised to produce 3-hydroxyanthranilic acid (3-

HAA) and converted to QUIN, this may account for the lack of change in QUIN levels 

following KMO inhibition.  Indeed, this route of QUIN production is increasingly becoming 

recognised as being recruited in a range of inflammatory conditions where levels of anthranilic 
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acid are substantially increased (Darlington et al., 2010).  Furthermore, the lack of change in 

QUIN demonstrates that deficits observed in our experiments following Ro61-8048 treatment 

in rats and those reported in alleviating symptoms in a variety of CNS disorders, are mediated 

by the rise in KYNA as opposed to a reduction in QUIN. 

 

 

1.4  Discussion of Results 

1.4.1  Poly(I:C) Decreases GluN1 Expression 

Schizophrenia has long been attributed to abnormal alterations in dopaminergic 

signalling within the mesolimbic cortex, however, the dopamine hypothesis for schizophrenia 

has failed to account for all the symptoms observed.  The first line of evidence involving a 

reduced activity state of glutaminergic transmission was provided when low levels of 

glutamate were found in the cerebrospinal fluid (CSF) from schizophrenia patients (Kim et al., 

1980).  This provided a shift in the way schizophrenia was viewed, ultimately proposing a 

hypofunction of the glutamate transmitter system may contribute to the symptoms of 

schizophrenia.  This was strengthened by later findings that pharmacological blockade of 

NMDA receptors by phencyclidine (PCP) and ketamine in both animal models and humans, 

were capable of inducing profound symptoms reminiscent of those observed in schizophrenia 

(Javitt & Zukin, 1991; Krystal et al., 1994), thereby implicating disturbances in NMDA 

receptor activity with the emergence of psychiatric symptoms.  Interestingly, neureglin-1 

(NGR1), a schizophrenia susceptibility gene, and its receptor erB, is implicated in the 

pathophysiology of schizophrenia where its stimulation supresses NMDA receptor activation 

in the human prefrontal cortex as examined in post-mortem tissue.  Since schizophrenia is 

accompanied by enhanced NRG1-erB signalling, it is proposed this may be a mechanism 

contributing towards NMDA receptor hypofunction.  The reduced activity of NMDA 

receptors during schizophrenia is now a well-established phenomenon, and forms an 

interesting parallel to this study where GluN1 was down-regulated in P21 groups of animals 

born to mothers treated with poly(I:C).  The duration of GluN1 down-regulation in these 

experiments is unknown, but since no change was seen in the embryos at 5 h, it may represent 

a more delayed effect of poly(I:C).  GluN1 is encoded by a single gene while differential 

splicing of three exons can generate up to eight GluN1 splice variants producing molecularly 

diverse forms of the NMDA receptor, presumably contributing towards their wide range of 

properties in different neuronal populations (Zukin and Bennett, 1995).  However, the 

antibody elected for use in this study detects all known splice variants; therefore, the reduction 

of GluN1 reflects an overall change of NMDA receptor number or function. 
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Consistent with our finding, one group showed a reduction in the transcript 

expression of GluN1 receptor subunit in the thalamus of schizophrenia patients that was 

limited to exon 22-containing isoforms only, and did not involve exon 5 or exon 21-

containing isoforms (Clinton et al., 2003).  Another independent study reported a 30% 

reduction in GluN1 mRNA expression in tissue homogenates of the superior temporal cortex 

of patients with schizophrenia who exhibited cognitive impairments (Humphries et al., 1996).  

Furthermore, a 30% reduction of hippocampal expression of GluN1 was enough to produce 

deficits in sensorimotor gating while spatial memory remained unaffected (Inada et al., 2003).  

Consistently, a mouse model engineered to express low levels of GluN1 subunit also displayed 

deficits in sensorimotor gating as examined in the paradigm of prepulse inhibition (Duncan et 

al., 2004).  The GluN1 receptor subunit is crucial for every functional NMDA receptor, and 

GluN1-knockout studies in mice prove fatal ultimately leading to death around 8-15 h after 

birth (Forrest et al., 1994).   

 

Animal models of prenatal infection have also reported neuropathological effects that 

resemble some of the neuroanatomical and neurochemical deficits associated with 

schizophrenia.  Prenatal exposure to poly(:IC) during E9 reduced GluR1-IR in the NAc shell 

of female adult offspring, while no change was observed in GluN1-IR (Meyer et al., 2008c).  It 

is likely no change was found in the immunoreactivity of GluN1 since it was examined in a 

highly localised region of the brain, while our experiments examined the entire half of the 

cerebral hemisphere to find an overall reduction in GluN1.  Additionally, this group employed 

a single poly(I:C) injection during E9 which differs from the triple injection schedule on E14, 

16 and 18 employed in our experiments.  Poly(I:C) disrupts GABAergic markers in the 

hippocampus and prefrontal cortex, while a significant reduction is found in the expression of 

GluN1 in the hippocampus (Meyer et al., 2008b), resembling the abnormalities of human 

schizophrenia (Hashimoto et al., 2008; Gao et al., 2000).  Similar work on neonatal 

inflammation shows LPS exposure at P5, P30 and P77 reduces mRNA levels of GluN1 in the 

hippocampus of adult rats accompanied by behavioural deficits (Harre et al., 2008).   

 

mRNA expression of the GluN1 subunit is present at low levels during embryonic day 

14 and gradually increases during development.  A substantial increase is observed in the 

cerebral cortex, hippocampus and cerebellum between postnatal days 7 and P20 (Zhong et al., 

1995), after which there is a slight decline to adult levels (Laurie and Seeburg, 1994).  The time 

period at which GluN1 was significantly reduced in our experiments corresponds directly with 

the end of the developmental increase that normally occurs, therefore, it may be that an 

absence in this increase during development, in response to poly(I:C), may be equally as 



151 

 
 

important and pharmacologically as relevant as the effects of an antagonist blocking the 

receptor during this period.  Indeed, MK-801-treated rats on P7 exhibit reduced neuronal 

numbers and volume within the hippocampus, including an altered expression of GluN1 

during adulthood accompanied with impairments in PPI and increased locomotor activity 

during adolescence and early adulthood (Harris et al., 2003; Uehara et al., 2009).  Therefore, the 

present finding of a reduction in the overall number or function of NMDA receptors, during a 

period that should be accompanied by a developmental rise, may contribute towards some 

behavioural abnormalities during adulthood in response to poly(I:C).   

 

Within a developmental context, since neurogenesis and synaptogenesis crucially 

depend upon the activity of NMDA receptors, these processes are sensitive to disturbances in 

NMDA function, where alterations can induce excitotoxic and apoptotic neurodegeneration 

(reviewed in Olney, 2002).  This is especially important in the developing brain with respect to 

the growth spurt that is known to occur and varies between different brain regions, species 

examined and trajectory timescales.  In rodents, it occurs from around birth until two-three 

weeks after birth, while in humans the growth spurt exists during the last three months of 

gestation until around three years after birth (reviewed in Dobbing, 1974; Rice & Barone, 

2000).  A reduction in NMDA receptor number or function during this period is critical since 

the pharmacological blockade of NMDA receptors in neonatal rodents induces massive 

neuronal loss and apoptotic neurodegeneration (Ikonomidou et al., 1999) with brain and 

behavioural deficits becoming evident during adulthood (Harris et al., 2003, Kawabe et al., 

2007; Kawabe & Miyamoto, 2008), many of which strikingly resemble the abnormalities 

occurring in schizophrenia.  Alterations in GluN1 here may induce substantial abnormalities 

in neuronal integrity and synaptogenesis, since NMDA receptors are involved in all aspects of 

neuronal development.  Although GluN1 did not change in the embryos, a parallel study in 

the laboratory found a significant increase in protein expression of the NMDA receptor 

subunit GluN2B which is likely to perturb NMDA function since different subtypes confer 

different properties upon the receptor.  Interestingly, an increase in GluN2B expression is 

reported in schizophrenia patients, and contributes towards cognitive deficits (Baraldi et al., 

2002).  Furthermore, there is a critical period of programmed cell death that occurs during 

development up until the third year of life, which shapes the nervous system by inducing 

apoptosis to eliminate a large proportion of neurons.  Therefore, an induced change in 

NMDA receptor function during this period of development could be involved in either 

accelerating or slowing, amplifying or supressing the rate of developmental apoptosis.  These 

studies illustrate the essential role of NMDA receptors and demonstrate that activation of the 

immune system can interfere with their normal functioning during brain development, and 
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may account for some of the neurochemical and behavioural abnormalities reported following 

maternal infection.   

 

1.4.2   Ro61-8048 Induces no Change in GluN1 and PSD-95 Expression 

Owing to the crucial link between NMDA receptors and schizophrenia, the expression 

of GluN1 was examined following prenatal disruption of the kynurenines.  Since KMO 

inhibitors produce changes in kynurenine levels thereby regulating NMDA receptors, it was 

expected that prenatal administration of Ro61-8048 may alter the protein expression of 

GluN1, however, no significant changes were seen in the embryo brains at 5 or 24 h post-

treatment.   Similarly, when compared with the protein expression in the P21 animals, GluN1 

protein expression remained comparable with control animals.  Since the full blown spectrum 

of schizophrenia symptoms become apparent during early adulthood, GluN1 protein 

expression was examined in P60 animals in the hippocampus, cortex, midbrain and 

cerebellum.  Similarly, no significant changes were noted in any of these regions, suggesting 

prenatal inhibition of KMO does not affect the total number of NMDA receptors. 

 

PSD-95 was examined since it can regulate the activity of NMDA receptors.  PSD-95 

is a large protein complex containing PDZ (Postsynaptic density-95, Discs large, and Zonula 

occludens-1) binding domains located on postsynaptic sites where NMDA receptors are 

clustered and anchored to postsynaptic membrane via the C-terminal of GluN2 subunits (Ziff, 

1997; Cousins et al., 2008).  PSD-95 localise and form clusters at synapses early during synapse 

formation, regulating the recruitment of many proteins to the macromolecular complex 

(Morabito et al., 2004), contributing towards synapse development, maturation (El-Husseini et 

al., 2000; Chetkovich et al., 2002) and plasticity (Guan et al., 1996).  Apart from PSD-95 

serving a scaffolding role for NMDA receptors, it is an essential regulator of ionotropic 

glutamatergic neuronal signalling (Schluter et al., 2006; Xu et al., 2008), and also involved in the 

trafficking and internalisation of receptor complexes. Although changes in PSD-95 may be 

linked with depression (Toro and Deakin, 2005; Kristiansen and Meador-Woodruff, 2005; 

Beneyto and Meador-Woodruff, 2008) and KYNA is elevated during depression, no changes 

were seen in the protein expression of PSD-95. 

 

The concept of prenatal changes in kynurenines altering the function of NMDA 

receptors in the offspring was confirmed in a parallel study which examined the relative 

protein expression of the NMDA receptor subunits, GluN2A and GluN2B.  Interestingly, 

when examined in the embryo brains at 5 h, Ro61-8048 induced highly selective alterations in 

opposite directions, while other proteins specific to neurodevelopment remained unaffected.  
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This suggests Ro61-8048 does not produce immediate deficits in neurodevelopmental 

processes like neurogenesis, neurite outgrowth and axonal guidance, but selectively alters the 

function of NMDA receptors.  Embryo brains at 5 h were characterised by a reduction in 

GluN2A protein expression, while GluN2B was substantially increased thereby altering their 

relative ratios.  Usually GluN2B mRNA levels are highest at P1 while declining to 

undetectable levels around P28 (Zhong et al., 1995), while GluN2A rises rapidly around early 

development reaching adult levels by P22 (Wang et al., 1995).  This phenomenon, referred to 

as the developmental switch, is thought to confer different properties to NMDA receptors 

during development and adulthood.  GluN2A and GluN2B are implicated in a range of CNS 

functions including learning and plasticity (Lemay-Clermont et al., 2011; Rammes et al., 2009), 

while the relative ratios between them are proposed as central to some aspects of brain 

development, neuronal function (Brightman et al., 2010; McKay et al., 2012), cell viability, 

degeneration and protection (Hardingham and Bading, 2010; Vasuta et al., 2007; Hu et al., 

2009).  Therefore, Ro61-8048 alters the developmental ontogenic profiles of these subunits 

which could prove deleterious to early postnatal development.  These alterations would 

significantly perturb the function of NMDA receptor during critical periods of brain 

development, and may be related to changes in behaviour and synaptic plasticity during 

adulthood (Traynelis et al., 2010).  Interestingly, changes in GluN2A and GluN2B had 

normalised by 24 h, suggesting rapid compensatory physiological adaptions, however, 

alterations in these subunits also became apparent in P21 and P60 animals, suggesting these 

physiological adaptions are poorly maintained.  GluN2B and GluN2A were both significantly 

increased in P21 animals, while only GluN2A remained affected in the hippocampus and 

cortex of P60 animals.  The increase in GluN2A following Ro61-8048 treatment may be 

related to schizophrenia, since elevations in GluN2A protein transcripts are reported in the 

dorsolateral prefrontal cortex and the occipital cortex of patients with schizophrenia 

(Dracheva et al., 2001).  GluN2A is also important in LTP, where an increase induces LTP 

(Baez et al., 2013), therefore, the reduced expression of GluN2A in the P60 hippocampus is 

consistent with reduced LTP noted in these animals from a parallel study.  The role of 

GluN2B in cognition and plasticity has also been confirmed in mice overexpressing GluN2B 

where animals display alterations within these parameters (Cui et al., 2011).  Although our 

experiments show GluN2B levels normalise by P60, since it is considerably important in 

cerebral development, the early embryonic and postnatal changes in its expression may have 

permanently altered the sequence of events leading to new neuronal formation.   
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1.4.3  DISC-1 Expression Remains Unaffected by poly(I:C) Treatment  

DISC-1 is important in neuronal development during embryogenesis and is identified 

as a candidate gene for schizophrenia.  Transient knockdown of DISC-1 in mice, during 

prenatal development, produces dopaminergic and behavioural deficits in the adult offspring 

(Niwa et al., 2010).  Therefore, it is entirely possible that if genes like DISC-1 were to be dis-

regulated, even for a short period during prenatal development, it could potentially account 

for a mechanism by which prenatal infection induces long-term changes in the adult CNS by 

causing disruptions in dopaminergic systems. While a plausible theory, since no significant 

changes were found in the embryos or at P21, it suggests that abnormalities in the 

dopaminergic system and behaviour, reported from other studies, do not involve the altered 

expression of DISC-1 during prenatal development.  Although it remains possible that 

environment-immune interactions may respond differently during the first or second trimester 

of pregnancy, since the strongest association of DISC-1 with schizophrenia appears to be 

largely genetic, as opposed to environmental, it seems unlikely DISC-1 is involved.  

Environmental interactions only appear to be relevant in the presence of mutant forms of 

DISC-1 genes, resembling those involved in schizophrenia.  In support of this, a significant 

interaction is reported where prenatal infection with poly(I:C) during E9 interacted with a 

mutant form of DISC-1 (mhDISC-1) producing elevated anxiety levels, depression-like 

responses, altered patterns of sociability and attenuated reactivity to stress (Abazyan et al., 

2010).  Interestingly, behavioural abnormalities were dependent upon the continuous 

expression of mhDISC-1, suggesting the reversibility of such effects.  Another study showed 

prenatal exposure to poly(I:C) in mice genetically modified to exhibit a point mutation in the 

DISC-1 gene, were more sensitive to the effects of maternal immune activation than wild-type 

mice (Lipina et al., 2013).  Similarly, mice neonates constitutively expressing mutant DISC-1 

also reported behavioural abnormalities including deficits in object recognition and fear 

conditioning when treated with poly(I:C) (Ibi et al., 2010).  These studies demonstrate 

significant environment-gene interactions in the presence of mutant forms of DISC-1 genes, 

likely to resemble conditions of immune challenge in individuals possessing schizophrenia 

susceptibility genes like DISC-1.  The presence of susceptibility genes offer an explanation as 

to why most humans exposed to infection alone fail to develop schizophrenia during 

adulthood.   

 

The relationship between NMDA receptors and DISC-1 has also been examined, 

focussing on the effects on synaptic density as a consequence to NMDA hypofunction in a 

genetic mouse model in which levels of GluN1 was reduced by 10%.  These experiments 

reported a reduction in synapse number in an age-dependent manner observed at the post-
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pubertal age of 6 weeks.  Interestingly, in an attempt to identify the biochemical basis of this 

effect, synapse-specific reductions in the protein expression of DISC-1 were found.  

Furthermore, the pharmacological blockade of the NMDA receptor with MK-801 produced a 

similar reduction in both spine density and DISC-1, indicating that levels of DISC-1 are 

regulated by NMDA receptor function (Ramsey et al., 2011).  However, since our experiments 

showed that although there was a significant reduction in the major NMDA receptor subunit 

GluN1, no change was seen in DISC-1 suggesting that DISC-1 is not dependent upon the 

expression of GluN1. 

 

1.4.4  Ro61-8084 Increases DISC-1 Expression in the Cortex of P60 Animals 

Accumulating evidence from genetic studies have linked DISC-1 not only with 

schizophrenia and depression, but also other psychiatric disorders of neurodevelopmental 

origin including depression, autism and Asperger syndrome (Kilpinen et al., 2008; Song et al., 

2008, 2010; Osebun et al., 2011).  Since the initial hypothesis remained that changes in 

kynurenines during development may affect neurological outcome in the offspring leading to 

CNS disorders, we sought to examine the expression of DISC-1 following Ro61-8048 

treatment.  Furthermore, as changes in kynurenines regulate NMDA receptors, and a parallel 

study showed changes in NMDA receptor subunits, it seemed appropriate to examine its 

effect upon DISC-1 expression.   DISC-1 plays a critical role in regulating cellular proliferation 

in the developing cerebral cortex (Mao et al., 2009), however, when examined in the embryo 

brains at 5 and 24 h, no significant changes were noted.  Therefore, although NMDA receptor 

function is greatly altered, DISC-1 is not involved in inducing abnormalities during 

embryogenesis and cellular proliferation in the developing brain controlled by DISC-1 

occurred normally.  These findings were extended with no changes observed in P21 animals, 

further confirming the lack of developmental abnormalities produced by DISC-1, however, 

Ro61-8048 produced a delayed increase in the expression of DISC-1 in the P60 cortex.  Since 

changes in DISC-1 protein expression were only observed in young adult rats, this shows 

while DISC-1 does not influence development, it may well affect multiple cellular processes 

after brain development thereby influencing brain maturational processes (Chubb et al., 2008; 

Brandon and Sawa, 2011).  The prime location of DISC-1 also appears suited for a prominent 

role in schizophrenia pathology.  While nuclear, cytoplasmic and actin-associated locations are 

evident, DISC-1 expression is predominantly expressed in mitochondria (James et al., 2004), 

which is of interest since several mitochondrial deficits are found in schizophrenia 

 

Neurogenesis in the adult brain is restricted to two primary locations, in the 

subgranular zone of the dentate gyrus and the subventricular zone of the cerebellum.  In these 
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regions, developing neurons are guided largely along pre-existing neuronal networks migrating 

to limited areas of the cortex.  Neuronal migration is a fundamental cellular process required 

for optimal cortical organisation; therefore the significant impairment observed in the cortex 

suggests DISC-1 may be involved in inducing deficits in neuronal migration of newly 

developing neurons.  This is supported by consistent reports showing alterations in DISC-1 

function, produce deficits in neuronal migration, aberrant integration and misfiring (Kubo et 

al., 2010; Singh et al., 2010; Ishizuka et al., 2011).  Some disruptions to DISC-1 appear to alter 

the rate and speed of neuronal migration substantially thereby producing aberrant synaptic 

connections.  While the functional activity of these synaptic connections is unknown, this may 

produce incorrect neuronal connections thereby contributing to the ‘mis-wiring’ of synaptic 

connections observed in schizophrenia.  Although current evidence links early development to 

schizophrenia, the function and dis-regulation of adult-born neurons in the pathophysiology 

of schizophrenia is an intriguing new hypothesis.  Intriguingly, these neuronal processes 

mediated by DISC-1 involve GTPase-dependent signalling mechanisms (Chen et al., 2011), 

and since RhoB was significantly down-regulated in the P21 animals, this may further induce 

deficits in neuronal migration.   

 

The finding that prenatal modification of the kynurenine pathway during development 

regulates the expression of DISC-1 is one of the major findings providing a mechanism by 

which elevation of KYNA during development may serve to increase the incidence of 

schizophrenia.  Indeed, the substantial elevation of DISC-1 protein expression in the P60 

cortex would be predictive of a substantial loss of AKT function in the cortex of these 

animals, a very consistent finding in schizophrenia.  KIAA1212, a girdin protein regulating the 

actin cytoskeleton, binds to and increases AKT signalling activity in the absence of DISC-1, 

while in its presence, DISC-1 binds to its effector protein KIAA1212 thereby reducing AKT 

activity (Kim et al., 2009b).  Therefore, the substantial increase in DISC-1 measured in the 

cortex would be associated with a substantial loss of AKT activity.  Consistently, this 

signalling pathway is reduced in post-mortem brains of schizophrenia patients (Arguello and 

Gogos, 2008), and is also considered a risk factor for the disease.  Rodent models of maternal 

immune activation provide evidence of reduced AKT signalling, while mechanisms to supress 

pro-inflammatory cytokines alleviate schizophrenia symptoms (Smith et al., 2007; Cui et al., 

2009).  It is therefore interesting to note that while rapamycin enhances AKT signalling, it is 

also a potent immunosuppressant, suggesting neuroinflammation may contribute towards the 

down-regulation of AKT following maternal immune activation.  The cognitive and 

behavioural abnormalities precipitated by alterations in DISC-1 (Kvajo et al., 2008), resembling 

cognitive deficits observed during schizophrenia, may be related to the loss of AKT function.   
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Akt1 knockout mice display behavioural deficits associated with schizophrenia, including 

impaired prepulse inhibition of the startle response.  Reduced AKT signalling is also 

associated with deficits in synaptic plasticity and cognitive behaviour, while brief treatment 

with rapamycin rescued these deficits in a mouse model of tuberous sclerosis (Ehninger et al., 

2008).  Clinical data may also lend support to the theory that AKT enhancement is associated 

with increased neurological outcomes during schizophrenia, since typical and atypical anti-

psychotics, in addition to targeting specific receptor systems, also enhances AKT signalling.   

 

While there is considerable evidence associating heightened levels of KYNA during 

schizophrenia, given that prenatal modification of central kynurenines induces significant 

impairments in the protein expression of DISC-1, a prime candidate gene for schizophrenia, 

this suggests the kynurenine pathway may be involved in the initiation of schizophrenia, as 

opposed to representing secondary changes to the disease.  While current research suggests 

the increase in KYNA is associated with the reduced activity of NMDA receptors, thereby 

relating kynurenine levels with schizophrenia, the present data clearly demonstrates that 

elevations in KYNA can induce changes in gene expression of candidate genes for 

schizophrenia thereby accounting for the increase in their protein expression.   DISC-1 

represents one of these genes that can be regulated by KYNA.  While schizophrenia pocesses 

a maturation delay in the disease onset where the full blown spectrum of symptoms only 

emerges after post-pubertal maturity until early adulthood (Weinberger, 1987), intriguingly, 

changes in DISC-1 appear to coincide with this since no change was seen in adolescent P21 

animals, and only became apparent during early adulthood, in P60 animals.  This further 

emphasises a potential developmental role for the kynurenine pathway, while demonstrating 

the pathway can mirror the maturational delay seen in the disorder.  Together, this lends 

support to extend the observations of KYNA in schizophrenia, to suggest changes in 

kynurenines prenatally may indeed serve a developmental model for schizophrenia.  

Furthermore, since a variety of environmental risk factors can affect the pregnant mother to 

induce changes in central kynurenines, the kynurenine pathway may represent a convergent 

intracellular pathway linking environmental interactions with the subsequent risk in 

schizophrenia. 

 

 

1.4.5  Poly(I:C) Administration is not Associated with RhoB Activation 

RhoGTPase enzymes RhoA and RhoB have consistently been associated with changes 

in synaptic plasticity and many aspects of neuronal development (Koh, 2006; Chen et al., 2007) 

and neurogenesis, including being major contributing factors in disease.  Rho proteins and 
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signalling pathways are intimately involved in processes including: axon growth cone 

dynamics, neurite outgrowth and extension, dendritic arborisation, cell morphology, cell 

division, membrane trafficking and cancers (Esteve et al., 1998; Chaung et al., 1997; Charest 

and Firtel, 2007; Jaffe and Hall, 2005; Ellis and Mellor, 2000; Ridley, 2006; Huang et al., 2007).  

Since these enzymes exert many of their actions via regulation of the cytoskeleton to modify 

neuronal structure and function, they are often found to mediate actions of the NMDA 

receptor.  However, although poly(I:C) reduced the expression of GluN1, no changes where 

seen in Rho proteins in the embryo brains or in P21 animals, suggesting they do not 

contribute towards brain and behavioural deficits following prenatal immune challenge.   

 

Resting levels of RhoB remian low and are regulated in response to a variety of growth 

and stress signals including: epidermal growth factor (EGF), transforming growth factor-β 

(TGF-β), platelet-derived growth factor (PDGF), UV irradiation and genotoxic stress. (Cox 

and Der, 1997; Fritz and Kaina, 1997; Fritz et al., 1995; Lebowitz et al., 1997).  RhoB plays a 

vital role in the signal transduction of damaged neurons where its expression is dramatically 

increased following CNS trauma, to selectively mediate apoptosis via activation of caspase-3 

(Lakhani et al., 2006).  Indeed, Rho  signalling following spinal cord injury contributes towards 

the inability of the adult CNS to regenerate by inducing neurite retraction and apoptosis, while 

inhibition of RhoA and RhoB or its downstream target Rho-associated kinase (ROCK), 

promotes growth of neurites and injured axons in vivo (Dergham et al., 2002).  These findings 

have been extended to models of focal cerebral infarctions and ischemia, associated with the 

activation of RhoB thereby resulting in widespread neuronal death, restricted to the infarct 

and ischemic hemisphere (Brabeck et al., 2003).  Similarly, in a murine model of stroke, up-

regulation of RhoB was observed preceding the apoptosis of hippocampal neurons.  Clinical 

studies also provide evidence that Rho proteins may have a role in mediating brain damage 

following stroke, since statins not only reduce cholesterol and low-density lipoprotein (LDL) 

levels in stroke patients, but are also potent inhibitors of RhoGTPases, raising the possibility 

that statin-induced neuroprotection may be mediated in part via inhibition of RhoB (Hess et 

al., 2000).  Collectively, these studies recognise RhoB as an early predictor of cell death, 

prompting intense interest in developing RhoB inhibitors as promising targets for limiting 

neuronal apoptosis following CNS trauma, with some compounds having entered clinical 

trials (Appels et al., 2005).  Models of CNS trauma conclude damaged neurons in a noxious 

environment of neuroinflammation with the induction of cytokines, chemokines, nitric oxide 

and oxidative stress, triggers the rapid induction of RhoB, therefore, it is surprising RhoB did 

not change in the embryo brains following poly(I:C) treatment in our experiments.  It is likely 

since no actual mechanism of CNS trauma or neuronal damage was present, poly(I:C) 
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injection did not trigger an inflammation-induced RhoB induction.  This is consistent with 

studies showing RhoB induction is largely dependent upon cell cycle arrest of damaged 

neurons, where RhoB inhibits Cyclin B1 (Kamasani et al., 2004), a regulatory protein involved 

in mitosis, to induce apoptosis via JNK signalling pathways (Kim et al., 2009a) and P53-

dependent mechanisms, as opposed to responding to mere activation of toll like receptors by 

a synthetic compound.  Although the expression of RhoA and RhoB did not change in our 

experiments, it is likely other GTPases, including Rac1 and Cdc42, may be involved in 

mediating some of the effects of maternal infection.  This is supported by in vitro studies 

demonstrating TNF-α-induced reduction in neurite outgrowth and branching of hippocampal 

neurons involved RhoGTPase-dependent mechanisms (Neumann et al., 2002).   

 

1.4.6  Ro61-8048 Down-Regulates RhoB in Postnatal Day 21 Animals 

Despite a lack of change in RhoB in animals prenatally treated with poly(I:C), prenatal 

administration of Ro61-8048 significantly down-regulated its protein expression in P21 

animals.  This may represent a delayed change since RhoB expression measured in embryo 

brains at 5 and 24 h were comparable with controls.  Cognitive function is dependent upon 

normal neuronal development, and since Rho proteins are involved in many aspects of these 

processes, the normal functioning of RhoGTPases are essential for normal cognitive 

development.  There appears to be an intricate relationship between different members of the 

GTPase superfamily in regulating neuronal development, since Rac1 and Cdc42 promote 

dendritic growth and dynamics, while RhoA and RhoB inhibit dendritic growth and 

remodelling (Li et al., 2000; Wong et al., 2000).  Axon growth cones respond to a variety of 

signals before extending their projections during neural development, and depend upon the 

relative ratio of these GTPases in determining dendritic growth, length and maturity.  This 

suggests a reduction in RhoB during early postnatal development would be associated with a 

loss of inhibitory function upon dendritic growth and result in an overgrowth of dendrites and 

their projections.  This is supported by genetic analysis where null mutations in Rho proteins 

in mosaic Drosophila brains resulted in neurons with over-extended dendrites (Lee et al., 2000).  

Along with Rho proteins affecting dendritic arborisation, they are also important regulators of 

spine morphology, all of which contribute towards cognitive development.  Collectively, the 

loss of RhoB may contribute towards the effects observed in disorders such as mental 

retardation, which is characterised by a reduction in spine density with abundance of long thin 

immature spines, at the expense of mature mushroom-like spines (Ramakers, 2002; Newey et 

al., 2004).  This is supported by the finding that many genes mutated in non-specific X-linked 

mental retardation (XMR) are indeed components of RhoGTPase signalling cascades 

(Linseman and Loucks, 2008).   



160 

 
 

Interestingly, these deficits related to a defective Rho signalling appear to resemble the 

reductions in dendritic arborisation and spine density (Diaz-Cintra et al., 1990) induced by 

protein deprivation.  Since protein deprivation is a form of malnutrition, this forms an 

interesting parallel as maternal malnutrition is linked with an increased incidence of 

neurodevelopmental disorders, and lends support to the hypothesis that Ro61-8048-induced 

down-regulation of RhoB may precipitate deficits in neuronal morphology relevant to 

developmental disorders.  This is further strengthened by a neurodevelopmental model of 

schizophrenia, where maternal exposure to LPS in rats decreases dendritic length, arborisation 

and spine density in the hippocampus and medial prefrontal cortex at various postnatal ages 

(Baharnoori et al., 2009), while prenatal infection with poly(I:C) reduces myelin thickness with 

a reduction in the immunostaining of myelin basic protein in the hippocampus (Makinodan et 

al., 2008).  Interestingly, these effects can also be produced by deficits in Rho signalling, since 

the loss of Rho proteins, including RhoB, induces abnormalities in hippocampal pyramidal 

cells in primary cultures (Linseman and Loucks, 2008), and evidence implicates Rho proteins 

in the formation of myelin sheaths (Angelica et al., 2007), since oligodendrocytes and schwann 

cells lacking Rho proteins display defective thinner myelin sheaths coating axons (Benninger et 

al., 2007).  Since the pathology of schizophrenia includes deficits in hippocampal myelin 

including neuronal morphology, these studies lend support to the hypothesis that prenatal 

disruption of the kynurenine pathway may be important in the subsequent development of 

schizophrenia, and that a reduction in RhoB may precipitate morphological abnormalities 

within the hippocampus.  However, despite the well-known roles of Rho proteins in cognition 

and cellular hippocampal morphology, changes in RhoB have not been reported in 

schizophrenia. 

 

 As dendritic spines form the major site of excitatory input to cells, and spine 

shape and function are intricately linked (Yuste et al., 2000), abnormalities in spine density and 

shape are likely to produce impairments in synaptic transmission and plasticity. Indeed, RhoA 

and RhoB are involved in synaptic plasticity following activation of glutamate receptors.  

While RhoA supresses synaptic plasticity, RhoB enhances the extent of neuronal plasticity in 

response to activation of NMDA receptors to induce long-term potentiation (LTP; O’Kane et 

al., 2003).  Consistent with the role of RhoB involved in mediating LTP in response to 

NMDA receptor activation, inhibition of its downstream signalling target ROCK, modifies 

the induction of LTP.  Therefore, the decrease in RhoB at P21 observed here may be involved 

in mediating a reduction in LTP following NMDA receptor activation, which may also 

contribute towards deficits in plasticity observed in schizophrenia. 
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 The role of Rho proteins appear to be of considerable importance within 

cancers where overexpression of RhoA, RhoC, Rac1 and Cdc42 result in their constitutive 

activation thereby rendering them insensitive to regulatory signals (Vega et al., 2008; Wu et al., 

2004).  This ultimately results in reduced cell apoptosis while promoting cell growth, survival 

and malignant cell transformation, invasion and metastasis leading to tumour development 

and progression (Puitt and Der, 2001; Ellenbroek and Collard, 2007).  Since overexpressed 

Ras proteins are found in 30% of all cancers, farnesyltransferase inhibitors (FTIs) were 

developed as anti-cancer drugs to exploit the farnesylation requirement of Ras for its 

oncogenic activity.  Surprisingly, FTIs were found to inhibit malignant cell growth and induce 

apoptosis in tumour cells via the inhibition of farnesylated-RhoB (RhoB-F), which 

subsequently increased the geranylgeranylated-RhoB (RhoB-GG) isoform thereby selectively 

inducing apoptosis of cancer cells while decreasing tumour progression (Prendergast, 2000).  

Furthermore, studies in transformed murine fibroblasts and in human carcinoma cells show 

enhancing the levels of RhoB-GG is sufficient in mediating the effects of FTI treatment (Du 

et al., 1999; Du and Prendergast, 1999).  The role of RhoB in cancers was confirmed with the 

finding that RhoB expression is dramatically down-regulated during cancers, often mediated 

by increases in other Ras proteins via phosphatidylinositol 3-kinase (PI3K) and Akt-dependent 

mechanisms.  While this down-regulation of RhoB correlates well with cancer progression, 

ectopic expression of RhoB inhibits Ras, PI3K and Akt-mediated malignant transformation 

(Jiang et al., 2004). Collectively, these studies suggest Ras-related cancers are largely due to the 

loss of RhoB-GG as opposed to the increase of other Rho proteins as demonstrated in a 

variety of cancer cell lines (Mazieres et al., 2004; Sato et al., 2007; Mazieres et al., 2007).  

Therefore, considering the significant involvement of the kynurenine pathway during cancer, 

it is not surprising that prenatal disruption of this pathway produces changes in RhoB that 

may contribute towards the onset or progression of cancers in susceptible individuals already 

vulnerable to the disease due to health, environmental or genetic predispositions.   

 

 Interestingly, the loss of RhoB seen in our experiments appears to be important 

only at P21 since at P60, RhoB levels return to normal.  While this suggests no further deficits 

induced by RhoB, it is likely to have produced several changes in other Rho proteins, not 

measured here, due to compensatory adaptions, since Rho proteins tend to function as 

collective groups of signalling molecules as opposed to in the form of single gene transcripts.  

Furthermore, despite similarities between RhoA and RhoB sharing a high sequence homology 

and can activate many of the same signalling transduction systems, Ro61-8048 produced a 

highly selective change in RhoB, and RhoA remained unaffected.  While the functions of 

RhoA and RhoB are closely related, they are often observed to produce opposing effects.  
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These opposing roles may be due to their post-translational modifications at the C-terminal, 

where they are prenylated to form farnesylated (FF) or geranylgeranylated (GG) isoforms of 

RhoB, while RhoA exclusively exists as RhoA-GG.  These post-translational modifications 

enhance their interaction with specific membrane compartments (Ridley, 2006), often 

restricting RhoA to cytosolic membranes while RhoB is largely localised in early-endosomes 

and nuclear membranes.  Therefore, this difference in post-translational modification and 

localisation may provide a mechanism by which RhoA and RhoB occasionally exert selective 

and differential roles. 

 

 

1.4.7  Poly(I:C) Induces no Changes in the Netrin Protein  

Netrins are a family of developmentally regulated proteins involved in axonal guidance 

of developing neurons.  They are responsible for controlling cell and axon migration 

throughout the embryonic CNS (Cirulli and Yebra, 2007) by activating a variety of netrin 

receptors.  In mammals, three netrins have been identified including: netrin-1, netrin-2 and 

netrin-3, in addition to gylcosylphosphatidylinositol (GPI)-anchored membrane proteins, 

netrin-G1 and netrin-G2.  Netrin ligands bind to receptors which include DCC (Deleted in 

Colorectal Cancer) family, the DSCAM (Down’s Syndrome Cell Adhesion Molecule) family 

and the Unc5 homologue family, Unc5H1, Unc5H2, Unc5H3 and Unc5H4.  Floor plate cells 

at the central midline of the embryonic neural tube secrete netrin-1 thereby forming a gradient 

of netrin proteins in the neuroepithelium.  A growing axon either moves away from or 

towards a higher concentration of netrins (Rajasekharan and Kennedy, 2009), attracting some 

axon growth cones via activation of DCC receptors, while repelling others via activation of 

Unc5 receptors (Moore et al., 2007).  This bi-functional gradient guides growing axons to their 

ultimate target leading to the formation of synapses.  DCC appears to be more important 

during development, while during puberty Unc5 homologues remain the predominant netrin 

receptors.  DCC expression may be integral to dopamine function since highest levels are 

located in cell bodies and terminal regions of developing and adult dopaminergic neurons, 

suggesting a role for DCC in their organisation and function.  Heterozygous mice expressing 

reduced levels of DCC, or its ligand netrin-1, exhibit profound abnormalities within 

mesocorticolimbic dopamine circuitry and function accompanied by behavioural abnormalities 

emerging after puberty (Manitt et al., 2010; Xu et al., 2010; Grant et al., 2009).  Therefore, given 

the close relationship between DCC and dopaminergic neurons, and that maternal infection 

substantially compromises the integrity of this system, we sought to examine whether 

poly(I:C) could induce changes in netrin receptors.  However, protein expression for Unc5 



163 

 
 

homologues and DCC in embryos and P21 animals remained comparable with controls, 

implying deficits in dopaminergic pathways are not related to dis-regulated netrin receptors.   

 

 

1.4.8  Ro61-8048 Reduces Unc5H3 in the Cerebellum of P60 Animals 

Several reports of schizophrenic brains consistently and frequently observe substantial 

re-organisation of neuronal connections (Kannan et al., 2009; Chen et al., 2013), implying 

altered signalling of netrins and their receptors, since their primary developmental role exists 

in guiding axons to their target thereby forming normal functional connections.  Consistently, 

altered expression of netrins is reported in the temporal lobe and hippocampus in 

schizophrenia and bipolar disorder (Eastwood et al., 2008).  Therefore, we sought to examine 

whether disruption of the kynurenine pathway could affect netrin receptors.  Assessment of 

netrin proteins in embryo brains at 5 and 24 h showed no significant changes, while P21 

animals similarly showed no change.  However, consistent with Ro61-8048 inducing delayed 

changes, Unc5H3 was substantially reduced in the cerebellum of P60 animals.  This 

demonstrates Ro61-8048 can induce significant impairments in netrin receptors during 

adulthood, suggestive of deficits in neuronal connectivity.  Since the relative expression of 

netrin receptors determines the ultimate direction a developing axon will take during axonal 

guidance, the significant loss of Unc5H3 receptors imply reduced repelling rates of the axon 

growth cone thereby precipitating a ‘mis-wiring’ of the cerebellar cortex, which is consistent 

with similar reports of altered neuronal connectivity reported within schizophrenic brains, 

including cortical, hippocampal and cerebellar regions (Harrison, 2004; Kannan et al., 2009; 

Chen et al., 2013), contributing towards cognitive deficits.   

 

 

1.4.9  PolyI(:C) Administration Induces no Change in TH Protein Expression 

Tyrosine hydroxylase is an enzyme continuously being utilised as an indication of 

dopaminergic activity, with increased levels expressed in schizophrenia.  This is consistent 

with other groups reporting increases in DA and TH when treated with poly(I:C) (Meyer et al., 

2008c; Vuillermot et al., 2010) and LPS (Romero et al., 2008; Fan et al., 2011b), while another 

independent group found an increase TH, DA and its metabolites including 

dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens 

(Aguilar-Valles et al., 2010), suggesting the increase in TH is involved in the increased 

synthesis of DA and its turnover rate, as opposed to NA synthesis.  This predisposed 

dopaminergic damage, producing compromised neurological responses, may also enhance 

adult susceptibility to develop neurodegenerative disorders, like PD, triggered by 
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environmental insults later in life, since LPS and poly(I:C) treatment in rodents enhances the 

vulnerability of nigrostriatal dopaminergic neurons to non-toxic doses of commonly used 

pesticides during adulthood (Fan et al., 2011a; Bobyn et al., 2012; Tien et al., 2013).  This may 

be mediated by increased oxidative metabolism of DA producing a highly reactive metabolite, 

a dopamine quinone, which induces cell death by covalently modifying parkin (LaVoi et al., 

2005), a ubiquitin E3 ligase enzyme, leading to the selective degeneration of dopaminergic 

cells in the substantia nigra (Petrucelli et al., 2002) by increasing oxidative stress and 

mitochondrial dysfunction (Lo Bianco et al., 2004; Yasuda et al., 2007; Rothfuss et al., 2009),  a 

mechanism thought to contribute to the early onset of Parkinson’s disease (reviewed in von 

Coelln et al., 2004).  However, in contrast to previous studies, we failed to show an increase in 

protein expression of TH following prenatal treatment to poly(I:C) in embryo brains at 5 h or 

in P21 animals.  The lack of change here may be related to examination of whole halves of the 

cerebral hemispheres, where subtle localised changes, in discrete brain regions, remain out-

with the level of detection by western blotting.   

 
1.4.10  Prenatal Disruption of Kynurenines has no Effect on TH Expression 

Similarly when the protein expression of TH was examined following prenatal 

treatment with Ro61-8048, no changes were found in the embryos or at P21.  The expression 

of TH is abundant in many regions of the brain including in most regions of the midbrain, 

cerebral cortex, basal ganglia, hippocampus, hypothalamus and cerebellum, therefore, the 

analysis was restricted to more regional areas in P60 animals.  However, the protein content of 

TH remained comparable with controls when examined in the hippocampus, cortex, midbrain 

and cerebellum.  This does not seem consistent with the hypothesis that maternal alterations 

of kynurenine levels may predispose the developing offspring to heightened risks of 

psychiatric disorders developing during adulthood, since prenatal disruption of kynurenines 

fail to precipitate one of the most basic deficits underlying schizophrenia, an increased activity 

in TH.  While it may be argued should disruption of kynurenine metabolites during 

development be proposed as a neurodevelopmental model for schizophrenia, it should be 

efficacious in, and have a propensity towards, disrupting the dopaminergic transmitter system.  

Therefore, considering the current finding that the KMO inhibitor, Ro61-8048, failed to 

regulate the activity of TH, in addition with no change in the expression of GluN1 reported 

previously, this suggests that modulation of the kynurenine pathway during development may 

likely be involved in more subtle aspects of schizophrenia including cognition, neurogenesis 

and mild behavioural deficits, as opposed to modulating transmitter systems.  This is 

supported since most changes observed with Ro61-8048 treatment are associated with 

neurodevelopmental proteins largely involved in neurogenesis, axonal guidance and 

synaptogenesis, aspects with a primary concern in cognition (Feldon and Folsom, 2009).   
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It must be considered however, that although no change was observed in TH, this does not 

necessarily mean no changes occurred in the dopamine transmitter system, since TH is also 

relevant to the synthesis of norepinephrine (NE) and may have little relevance to dopamine in 

our study, even though it is being utilised as a measure of dopaminergic activity.  A limitation 

here is the present study failed to examine other dopamine related molecular targets including 

DA breakdown enzymes, metabolites or dopamine transporters to conclusively evaluate the 

role of DA following disruption of kynurenines.  Furthermore, since considerable variations 

have been reported in the expression pattern of TH and DA even in subcellular locations of 

the striatum (Romero et al., 2008; Meyer et al., 2008c; Aguilar-Valles et al., 2010; Vuillermot et 

al., 2010) often in opposite directions, a measure of their immunoreactivity using 

immunocytochemistry as the principal technique may be more useful in localising these 

changes as opposed to examining the overall protein content 

 

 

1.4.11  Poly(I:C) Induces no Change in the Serotonin (5HT-2C) Receptors 

Schizophrenia is recognised as a disorder involving alterations in many transmitter 

systems including dopamine, glutamate and serotonin.  Since the initial dopamine hypothesis 

failed to account for all the symptoms of schizophrenia, the importance of the serotonin 

receptors became increasingly recognised when atypical second-generation anti-psychotics like 

clozapine, frequently considered the ‘gold standard’ amongst anti-psychotics, were associated 

with significant improvements in negative symptoms, while inducing negligible extrapyramidal 

side effects and tardive dyskinesia (Miyamoto, 2005; Newman-Tancredi and Kleven, 2010), 

were found to antagonise serotonin receptors (Meltzer and Massey, 2011).  It is now widely 

accepted that a variety of serotonin receptors are involved in schizophrenia, including 5HT-1 

and 5HT-2 receptors.  While 5HT-1A receptors have received most attention in their 

relationship with schizophrenia, the serotonin 5HT-2C receptor is responsible for producing 

hallucinations.  In vivo models of schizophrenia induced by PCP show significant 

improvements in response to the 5HT-2C receptor agonist, WAY-163909 (Dunlop et al., 

2006), while inverse agonists restore novel object recognition in PCP-treated rats (Meltzer et 

al., 2011).  Models of maternal immune activation, capable of precipitating schizophrenia-like 

symptoms in vivo, have demonstrated a range of behavioural abnormalities including 

neurochemical alterations of the serotonergic system.  Prenatal LPS exposure reduces cortical 

mRNA levels of 5HT-1A and 5HT-1B receptors in neonatal pups at P3 (Baharooni et al., 2010), 

while a similar report of prenatal stress showed schizophrenia-like alterations in 5HT-2A 

(Holloway et al., 2013).  We therefore sought to examine if prenatal exposure with poly(I:C) 
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could induce any changes in 5HT-2C receptors that may be involved in mediating 

schizophrenia-like behavioural abnormalities in the offspring.  When its protein expression 

was examined in the embryos at 5 h following treatment and in P21 animals, the levels of 

5HT-2C remained comparable with control animals.  Since LPS down-regulated 5HT-1A and 

5HT-1B mRNA transcripts in neonatal animals at much earlier time point of P3 (Baharooni et 

al., 2010), it remains plausible that maternal immune activation with poly(I:C) may induce 

similar changes in 5HT-2C receptors during early postnatal development as opposed to later 

stages.   Furthermore, changes in the serotonin system appear to have a complex set of 

interactions where differential changes are reported in highly localised regions, and therefore 

may be undetectable with the simple examination of entire halves of the cerebral cortices.  

 

  Although the results from the present study imply 5HT-2C is not responsible for 

mediating deficits in behaviour following maternal immune activation with poly(I:C), this does 

not categorically exclude it from being involved since maternal exposure to poly(I:C) during 

gestation day 9, decreased 5-HT in the nucleus accumbens (NAc) by 38%, lateral global 

pallidus (LGP) by 30% and in the hippocampus by 42% in the adult offspring, including 

reductions in 5-hydroxyindoleacetic acid (5-HIAA), a major metabolite of 5-HT breakdown, 

in the lateral global pallidus and hippocampus (Winter et al., 2009).  Also, in animal models of 

immunologically-induced fatigue, poly(I:C)-treated rats show increases in mRNA  of serotonin 

transporters (5-HTT) on days 1 and 8 following treatment, while extracellular concentrations 

of 5-HT decrease in the medial prefrontal cortex (Katafuchi et al., 2005), presumably 

accounted for by the increase in 5-HTT.  It is likely the kynurenine pathway may be a major 

contributor towards the loss of 5-HT observed in these studies, since activation of the 

maternal immune response induces activation of indoleamine-2,3 dioxygenase (IDO) to 

initiate the metabolism of tryptophan, an essential amino acid required for 5-HT synthesis.  

Studies have consistently shown an increase in IDO activity during infectious conditions 

depletes tryptophan levels as a protective mechanism.  However, this negatively impacts the 

serotonin system by inducing a loss in central 5-HT, a proposed mechanism increasingly 

becoming recognised as mediating the link between immune activation and the subsequent 

depressive-like symptoms occurring in humans and rodents.   

 

Depressed patients display a correlation for an increase in pro-inflammatory cytokines, 

like IL-6 and c-reactive protein, with the symptoms of major depression (Dobos et al., 2012), 

while inflammation within the periphery induced by LPS, in human volunteers and rodent 

models, precipitates profound changes in cognitive function, mood and behaviour relevant to 

depression (Reichenberg et al., 2001; Krabbe et al., 2005; O’Connor et al., 2009).   Furthermore, 
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increased IDO enzyme activity and kynurenine concentrations have been correlated with 

inflammation-associated depression (Dantzer et al., 2011; Christmas et al., 2011; Myint, 2012; 

Maes et al., 2012).  This is further supported by studies demonstrating the genetic deletion of 

IDO abrogates inflammation-dependent behavioural changes that model depression in 

models of acute inflammation with LPS, while these observations have been extended to 

models of chronic inflammation induced by peripheral infection (O’Connor et al, 2009; Salazar 

et al., 2012).  Intracerebroventricular injection of TNF-α and LPS induces depressive-like 

behaviours in rodents associated with the induction of cytokines and IDO expression (Kaster 

et al., 2012; Dobos et al., 2012).  This has been confirmed recently where a single LPS 

intracerebroventricular injection in mice increase central kynurenine and IDO activation 

associated with the subsequent development of depressive-like behaviours.  The role of IDO 

in mediating this response was confirmed in IDO knockout mice or wild-type mice pre-

treated with the IDO inhibitor 1-methyl-tryptophan (1MT), as mice failed to develop 

depressive-like symptoms when compared with control animals administered LPS alone 

(Lawson et al., 2013). 

 

Collectively, these studies illustrate that poly(I:C) and LPS, whether exposed prenatally 

or in neonatal rats, is efficacious in inducing a reduction in the neurotransmitter 5-HT in many 

cortical regions, via activation of IDO and an increase in central kynurenines, thereby 

accounting for the onset of depressive-like behaviours.  The significance here is that although 

no change in 5HT-2C was found in our experiments following prenatal exposure to poly(I:C), 

the reduced availability of 5-HT may equally be as significant and physiologically relevant as a 

decrease in the receptor, since a decrease in 5-HT would ultimately lead to reduced activation 

of its receptors, including the 5HT-2C receptor.  Reduced activation of 5HT-2C receptors may 

underlie the increased susceptibility of neuropsychiatric disorders including major depression 

and schizophrenia, since both disorders principally rely upon the reduced activity of 5HT-2C 

(Dunlop et al., 2006; Miyamoto, et al., 2005; Newman and Kleven, 2010).  Furthermore, 

behavioural deficits in prepulse inhibition (PPI) during schizophrenia, and following maternal 

immune activation with poly(I:C) or LPS, may be due to the loss of central 5-HT, since 

serotonin in the nucleus accumbens plays an essential role in the regulation and modification 

of PPI (Swerdlow et al., 2001), while central 5-HT depletion is known to disrupt PPI in rats 

(Prinssen et al., 2002).   
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1.4.12  Ro61-8048 has no Effect on Serotonin (5HT-2C) Receptor Protein Expression 

5HT-2C receptors may be of considerable interest in relation to schizophrenia, since their 

primary location appears to be the choroid plexus, striatum and hippocampus (Clemett et al., 

2000; López-Gimenez et al., 2002), where in vivo studies show 5HT-2C is an important 

regulator of LTP and behaviour (Tecott et al., 1998).  Since such abnormalities are likely to 

contribute towards subtle dificits in cognitive abilities, and the developmental effects of Ro61-

8048 have not been documented, we sought to examine whether modification of the 

kynurenine pathway during development may induce changes in serotonin systems.  However, 

no changes were detected in embryo brains at 5 and 24 h.  When examined in P21 animals 

including in the hippocampus, cortex, midbrain and cerebellum of P60 animals, 5HT-2C levels 

remained comparable with controls.  It is therefore unlikely 5HT-2C receptors are involved in 

contributing towards deficits in brain and behaviour following disruption of the kynurenine 

pathway, and further supports the theory that developmental changes in kynurenines may be 

involved in subtle aspects of schizophrenia including cognition and plasticity, as opposed to 

more overt aspects of hallucinations.   

 

 

1.4.13  α-Synuclein (α-Syn) is Substantially Reduced by poly(I:C) 

α-Synuclein is heavily implicated in the formation of lewy bodies observed in 

neurodegenerative disorders including Parkinson’s and Alzheimer’s disease, where α-synuclein 

monomers abnormally processed along the ubiquitin-proteosome pathway are rendered 

insoluble forming oligomer aggregates.  Synucleinopathies are toxic to dopaminergic neurons 

and can induce neuronal loss either directly or indirectly via oxidative stress and mitochondrial 

dysfunction (Chinta et al., 2010).  Lewy body pathology is associated with deficits in synaptic 

proteins including reductions in syntaxin and SNAP-25 in the neocortex, while SNAP-25 and 

α-synuclein are reduced in the medial temporal lobes (Mukaetova-Ladinska et al., 2009).  Large 

oligeromeric or protofibril forms of α-synuclein inhibit neuronal SNARE-mediated vesicle 

lipid mixing by preferentially binding to the N-terminal domain of synaptobrevin-2 (VAMP-2) 

thereby blocking the formation of the SNARE complex (Choi et al., 2012).  Therefore, since 

synucleopathies can induce deficits in the SNARE complex, this may be a mechanism that 

may contribute towards a reduced dopamine (DA) and acetylcholine (Ach) release observed in 

Parkinson’s disease.   Interestingly, another study suggested SNARE dysfunction itself may be 

the initial trigger of mislocalisation and accumulation of α-synuclein (Nakata et al., 2012).  

However, since the involvement of α-synuclein in these neurodegenerative disorders appear 

largely due to its increase, while our experiments detected a substantial loss, α-synuclein is not 

involved in such processes.   
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However, this may be an overly simplistic analysis of the data as to what is considered 

an increase or decrease in real physiological terms.  For example, α-synuclein forms a pool of 

soluble proteins representing the total pool of physiologically active proteins contributing 

towards physiological functions, while α-synuclein that becomes insoluble and a component 

of lewy bodies becomes physiologically inactive and is removed from the active pool.  

Therefore this rise in ‘dead’ insoluble α-synuclein detected in lewy bodies will subsequently 

lead to the overall decline in the physiological active soluble forms of α-synuclein, which is 

consistent with our result.  This would largely depend upon whether the antibody used 

recognises mutant forms of insoluble α-synuclein or if it is limited to detecting the 

physiologically active soluble form.  However, in spite of the antibody specificity, which is 

speculative in the context of our experiments, Parkinson’s disease can be considered in terms 

of both an increase and a decrease in α-synuclein relating to their relative forms in which they 

exist.   This is consistent with the majority of reports detecting an increase in α-synuclein in 

Parkinson’s disease localised within lewy bodies, thereby accounting for an increase of inactive 

α-synuclein, while a 50% reduction in mRNA expression of α-synuclein at the cellular level of 

neurons in the substantia nigra and of the frontal cortex in Parkinson’s disease (Kingsbury et 

al., 2004) may be accounted for by the physiologically active pool of soluble α-synuclein 

remaining.  Both of these mechanisms can contribute to the pathophysiology of Parkinson’s 

disease and not only due to the presence of lewy bodies.  Indeed, a decline in striatal 

dopamine release may be in part due to the selective neurodegeneration exerted on 

dopaminergic neurons, as induced by lewy body synucleopathy, but may also be due to the 

reduced pool of soluble presynaptic α-synuclein.  Particularly relevant to this, are studies in 

transgenic mice lacking the α-synuclein gene, which show changes in activity-dependent 

modulation of neurotransmitter release (Abeliovich et al., 2000) and a reduced 

neurotransmitter release in response to repeated stimulation (Cabin et al., 2002), thereby 

linking soluble presynaptic α-synuclein with synaptic transmission (Gitler and shorter, 2007).  

These studies suggest a reduced expression of α-synuclein may contribute to deficits in 

transmitter release.  Furthermore, since one study reported a 50% reduction in mRNA 

expression of α-synuclein in neurons of the substantia nigra and frontal cortex in Parkinson’s 

disease (Kingsbury et al., 2004), this may function to reduce dopamine and acetylcholine 

neurotransmission within these regions, thereby contributing towards the cognitive decline 

associated with Parkinson’s disease.   

 

Despite substantial links with α-synuclein in the pathology of Parkinson’s and 

Alzheimer’s disease, emerging studies are increasing linking α-synuclein as a biomarker of 
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schizophrenia and bipolar disorder.  This may not be surprising, since α-synuclein is a synaptic 

protein and many synaptic proteins are dis-regulated during these disorders including VAMP-

1 (synaptobrevin), synaptophysin, syntaxin and SNAP-25.  Although the precise function of α-

synuclein is unknown, biochemical studies show a reduction in α-synuclein in Broadman’s area 

9 in both chronic schizophrenia and bipolar disorder (Bernstein et al., 1998).  Similarly, 

another independent group found α-synuclein was significantly reduced in post-mortem brain 

tissue of patients with bipolar disorder (Gray et al., 2010), while another group showed down-

regulation in mRNA levels of α-synuclein in lymphocytes of schizophrenia patients (Noori-

Daloii et al., 2010).  These results are entirely consistent with our finding of a reduced 

expression of α-synuclein in a developmental model of schizophrenia.  On the contrary, one 

proteomic analysis reported a significant increase in α-synuclein in layer 2 of the insular cortex 

in schizophrenia (Pennington et al., 2008b), suggesting changes are likely to be region specific 

and may correspond to disease progression.  While these alterations may perturb synaptic 

function, the precise role of α-synuclein during these disorders remains unclear.  Since α-

synuclein can affect dopamine homeostasis, and maternal immune activation induces changes 

within the dopaminergic system, the poly(I:C)-induced down-regulation of α-synuclein during 

development may be involved in the loss of this homeostatic control over dopaminergic 

neurons, and may account for  another mechanism by which prenatal infection induces 

significant alterations within the dopaminergic system. 

 

1.4.14  Changes in Kynurenines do not Regulate the Activity of α-Synuclein  

Due to the significant involvement of the kynurenine pathway in Parkinson’s disease, 

and the finding that infections and pro-inflammatory cytokines can induce significant 

nigrostriatal degeneration (Chakrabarty et al., 2011), the protein expression of α-synuclein was 

examined following prenatal treatment with Ro61-8048.  Interestingly, although poly(I:C) 

substantially reduced its protein expression, Ro61-8048 produced no effect in the embryos 

when examined at 5 and 24 h.  Since Ro61-8048 usually produces delayed alterations during 

later stages of development, its expression was examined in P21 and P60 animals.  Similarly, in 

P21 animals the expression of α-synuclein remained comparable with control animals, 

implying that the reduction seen in poly(I:C) at P21 is not mediated by the kynurenine 

pathway.  Furthermore, regional experiments in the hippocampus, cortex, midbrain and 

cerebellum of P60 animals also produced no effect on the expression profile of α-synuclein.  

This demonstrates the role of the kynurenine pathway in Parkinson’s disease does not regulate 

α-synuclein activity, and since this is a downstream target comprising an end product 

producing synucleopathies, kynurenine involvement may regulate neuronal activity and 

neurodegeneration, as opposed to the formation of large protofibril deposits.  Therefore, the 
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absence of a change here is in conformity with the hypothesis that kynurenines may be at the 

forefront of cognitive dysfunction thereby regulating neuronal activity.  

 

1.4.15  Poly(I:C) does not Affect DCX Protein Expression 

Doublecortin is a microtubule-associated protein commonly used as a marker of 

neurogenesis due to its primary location in newly formed neurons (Couillard-Despres et al., 

2005).  DCX is required for the normal migration of differentiating neurones in the cerebral 

cortex, and since this process declines with age, due to much lower levels of neurogenesis and 

neuronal migration, the expression of DCX also declines, detecting low levels of this protein 

in the adult brain.  Deficits in neurogenesis and neuronal migration during development is 

associated with significant abnormalities in cortical development (Reiner et al., 1993; Gleeson 

et al., 1998; Francis et al., 1999), and disruption of DCX protein expression may contribute to a 

variety of diseases including mental retardation (Gleeson and Walsh, 1997; Berg et al., 1998; 

Gleeson et al., 1999).  Since reduced levels of neurogenesis occurs in schizophrenia, possibly 

accounting for reduced cortical and hippocampal volume, we sought to examine the level of 

neurogenesis following treatment with poly(I:C), to find DCX protein expression remained 

unchanged in embryo brains and P21 animals.  This is in contrast to other groups reporting 

reduced levels of hippocampal neurogenesis in postnatal animals following prenatal or 

neonatal treatment to LPS and poly(I:C) (Ekdahl et al., 2003; Cui et al., 2009; Graciarena et al., 

2010; Wolf et al., 2011).  The lack of change of DCX in our experiments, in contrast to other 

groups, may be attributed to differences in the strain of animals used in these studies, or 

differences in timing and the level of severity of infection and dosage of immunogenic 

stimulants administered.   

 

1.4.16  Ro61-8048 Administered Prenatally Affects Adult Neurogenesis 

When the protein expression of DCX was examined in Ro61-8048-treated animals, no 

changes were seen in the embryo brains at 5 and 24 h, suggesting Ro61-8048 does not induce 

deficits in neurogenesis or neuronal migration during embryogenesis.  However, while no 

changes were seen in the protein expression of DCX at P21, it was significantly increased in 

the hippocampus of P60 animals only.  Although post-mortem studies indicate a reduction in 

the number of diving cells in the subventricular zone of the dentate gyrus of individuals with 

schizophrenia, suggesting that deficits in neurogenesis in the adult hippocampus may be 

involved in the disorder, in contrast to these reports, the increase in DCX in the P60 

hippocampus implies the increased rate in new neurogenesis within Ro61-8048-treated 

offspring.  However, a parallel study in the laboratory indicated no change in the 

immunoreactivity of doublecortin-positive cells in the dentate gyrus of the hippocampus, with 
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a decrease in the number of neurons bearing complex dendrites, suggesting that the overall 

levels of neurogenesis within the dentate gyrus remained comparable with control animals.  

Therefore, the increase in expression of DCX in the P60 hippocampus may reflect an increase 

of recently generated neurons migrating to other regions of the hippocampus.  This is 

supported by an increase in Neu-N staining observed in the CA1 region, implying an increase 

in the total neuronal number, thereby potentially accounting for the increased protein 

expression.   

 

This increase may be related to electrophysiological changes observed in the CA1 

hippocampus of these animals, measured alongside in a parallel study.  While no overall 

changes in long-term depression (LTD) were found, the delayed recovery from low frequency 

stimulation may be related to the link between doublecortin and GABAergic function.  

Indeed, mutations or loss of doublecortin to produce neuronal hyperexcitability is caused by 

the reduction of synaptic inhibition (Kerjan et al., 2009).  Since doublecortin is co-localised 

with GABA, its synthetic enzyme glutamate decarboxylase, or parvalbumin, a marker for 

GABA-releasing neurons (Cai et al., 2009), this lends support to the proposal that neurons 

expressing doublecortin may be primarily destined to differentiate into GABAergic 

interneurons (Wu et al., 2008; Xiong et al., 2008), while doublecortin may also mediate the early 

migration of inhibitory interneurons in the cortex (Kappeler et al., 2006; Friocourt et al., 2007).  

Therefore, the increase in doublecortin observed in the hippocampus at P60 may represent an 

increase in the number of GABAergic interneurons in the CA1 region thereby affecting 

neuronal hyperexcitability by reducing synaptic inhibition.  This is also consistent with reports 

suggesting increased hyperexcitability in the CA1 hippocampus may contribute towards its 

volume loss and shrinkage, while being involved in core symptoms of schizophrenia including 

hallucinations and delusions (Zierhut et al., 2012).  Furthermore, since newly generated 

neurons are linked to the functioning of the hippocampus, critically involved in certain aspects 

of cognition, including learning and memory, these processes may also be adversely affected. 

 

 

1.4.17  Poly(I:C) has no Effect on the Expression of Synaptic Proteins  

Normal synaptic function is imperative for the normal development of the brain and is 

dependent upon a wide array of protein interactions forming a network which together 

function collectively to mediate the transport, fusion and recycling of synaptic vesicles.  These 

protein networks bring together vesicular and presynaptic membranes within close proximity 

to drive fusion pore formation and expansion facilitating vesicular fusion and release of their 

luminal content (Lynch et al., 2008).  This process occurs in the release of transmitters from 
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nerve terminals, while the same protein complexes are increasingly becoming recognised for 

their roles during endocytosis, to recover and recycle synaptic vesicles (Schwartz, 2004).  The 

aetiology of psychiatric disorders including schizophrenia and bipolar disorder are believed to 

involve the aberrant regulation of synaptic function, since many components of the SNARE 

complex and other proteins relating to this complex are significantly altered in post-mortem 

brains, including VAMP-1 and synaptophysin (Eastwood and Harrison, 2001; Vawter et al., 

2002; Halim et al., 2003; Beasley et al., 2005; Scarr et al., 2006).   However, in contrast, our 

experiments failed to detect any change in the protein expression of synaptic proteins in the 

embryos or at P21.  It should be noted that the lack of or exaggerated changes reported for 

VAMP-1 in post-mortem tissue may be related to the fact that protein content degrades 

rapidly following death.  Furthermore, confounding factors apply to most post-mortem 

studies of bipolar disorder, since patients received anti-psychotic, lithium or anti-depressant 

drug treatment, while the latter treatment affects synaptic proteins including the expression of 

VAMP-2, which may induce compensatory adaptions in VAMP-1.   

 

Although our experiments detected no change in synaptophysin in the embryos or 

P21 animals following poly(I:C), this result is consistent with a similar study of prenatal stress, 

where maternal restraint or corticosterone injections reduced synaptophysin expression in P7 

and P14 animals only (Afadlal et al., 2010), and not at later stages.  Other models of restraint 

stress have similarly reported reductions in VAMP-1 or synaptophysin in the hippocampus of 

rodents (Thome et al., 2001; Xu et al., 2004; Muller et al., 2011).  Furthermore, since most 

studies identified changes in discrete regions of the brains, it is likely that discrete changes are 

masked in our experiments since the entire half of the cerebral hemisphere was examined.  

Therefore, even if there was a decrease in the hippocampus, as seen following prenatal stress, 

and an increase in another region, overall this would show no net change in protein expression 

in our experiments.  This may account for why no change was seen in synaptophysin despite a 

reduction in GluN1, since the pharmacological blockade of the NMDA receptor with MK-

801 during P7 is associated with reduced synaptophysin mRNA levels in the thalamus during 

adulthood (Harrison et al., 2003).   

 

1.4.18  Ro61-8048 Induces no Change in the Expression of Synaptic Proteins 

Synaptic dysfunction is a prominent pathology in schizophrenia, and the 

pharmacological blockage of NMDA receptors during development produce a substantial 

synaptic loss; therefore, since Ro61-8048 treatment significantly increases central levels of 

KYNA capable of antagonising the NMDA receptor, the subsequent effect upon synaptic 

development was assessed by examining changes in protein expression.  However, no changes 
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were seen in the embryos or postnatal animals of synaptic proteins suggesting synapse 

machinery and transmitter release remains unaffected.  This is consistent with the lack of 

change in VAMP-1 reported in post-mortem brains in the anterior frontal cortex (Honer et al., 

2002), the frontal, temporal and parietal cortices (Gabriel et al., 1997), the cerebellum 

(Mukaetova-ladinska et al., 2002) and Broadman’s area 9 in schizophrenia patients (Scarr et al 

2006).  However, since one post-mortem study reported a loss of VAMP-1 in schizophrenia 

patients (Halim et al., 2003), this suggests alterations in VAMP-1 are not a global change but 

may only be relevant in distinct regions of the brain critically depending upon the relative 

stage of the disease.  Clinical studies may also provide support for the general loss of VAMP-1 

during schizophrenia, since anti-psychotic drug treatment regulates synaptic protein 

expression (Barr et al., 2006).  Clozapine, an atypical anti-psychotic, increases VAMP-1 in 

human brain aggregates, rodent models (Chana et al., 2009), and the rat striatum (Barakauskas 

et al., 2010).  Therefore, it is possible anti-psychotic treatment during schizophrenia may also 

serve to restore neuronal and synaptic function by correcting deficits in synaptic proteins that 

are disrupted. 

 

 

1.4.19  Ro61-8048 Increases VGLUT Terminals While VGAT Remains Unaffected 

Since several reports show altered signalling pathways in the hippocampus including a 

range of neurochemical alterations in GABA and glutamate systems in schizophrenia, the 

function of excitatory and inhibitory neuronal function was examined in the hippocampus of 

P60 animals.  Synaptic release of glutamate is the major pathway of excitatory 

neurotransmission in the mammalian brain, where glutamatergic neurons express the vesicular 

glutamate transporters VGLUT-1, VGLUT-2 and VGLUT-3 within axon terminals.  The 

expression of vesicular transporters for glutamate are primarily responsible for the uptake of 

glutamate into synaptic vesicles, a process driven by a proton electrochemical gradient 

generated by the vascular H+-ATPase (Kaneko et al., 2002).  The presence of transporters 

within nerve terminals of neurons define the glutamatergic phenotype since forced expression 

of VGLUT-1 and VGLUT-2 in inhibitory neurons induces quantal glutamate release 

(Takamori et al., 2001).  Despite close similarities between excitatory glutamate transporters in 

substrate specificity, kinetics and pharmacology, they differ in their expression profiles.  

VGLUT-1 and VGLUT-2 are predominantly expressed in the adult brain, displaying a roughly 

complementary expression profile where they exist on separate neurons or co-expressed on 

the same neuronal populations. This is supported by VGLUT-1 knockout mice showing 

continued glutamate release due to the presence of VGLUT-2 in the hippocampus.  While the 

expression of VGLUT-1 is more important in the cerebral and cerebellar cortices including 
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the hippocampus (Balschun et al., 2010), VGLUT-2 is mainly located in the diencephalon, 

brain stem, thalamus and midbrain (Moechars 2006; Kubota 2007).  Interestingly, a 

developmental switch between the expression of VGLUT-1 and VGLUT-2 occurs within the 

hippocampus, cortex and cerebellum.  While VGLUT-2 is especially important during 

embryonic and neonatal development, it is largely replaced by the expression of VGLUT-1 

during adulthood (Fremeau et al,. 2004).  Due to the regulatory roles of these transporters on 

transmission, VGLUT-1 and VGLUT-2 have been widely adopted as indicators of excitatory 

glutamatergic transmission, where the relative densities of these transporters are indicators of 

quantal size and transmitter release.   

 

Interestingly, the relative density of the excitatory vesicular transporters VGLUT-1 

and VGLUT-2 were substantially increased in the CA1 hippocampus at P60, demonstrating 

Ro61-8048 treatment during development significantly alters excitatory glutamatergic 

transmission during adulthood.  The relative density of VGLUT-3 was not since this isoform 

is less widely expressed, and often located in cholinergic, serotonergic and GABAergic 

neurons, suggesting involvement in unconventional glutamate transmission.  The significant 

increase in VGLUT-1 and VGLUT-2 in the CA1 hippocampus could be predictive of an 

increase in the quantal size of glutamate release increasing glutamatergic transmission.  This is 

supported by VGLUT-1 knockout mice showing reduced excitatory postsynaptic potentials, 

with reduced glutamate release and synaptic transmission in the stratum radiatum, presumably 

resulting from the loss of glutamate uptake (Fremeau et al., 2004).  This is consistent with 

another study where the targeted deletion of VGLUT-1 drastically reduces glutamate 

transmission, with a specific reduction in quantal size (Wojcik et al., 2004), an effect rescued by 

overexpression of VGLUT-1.  Therefore, since excitatory glutamate transporters determine 

the amount of glutamate loaded into vesicles and released, the highly significant increase of 

VGLUT-1 and VGLUT-2 in the P60 hippocampus may be predictive of an enhanced 

excitatory glutamatergic transmitter release.   

 

Although the initial hypothesis proposed that alterations in kynurenines during 

development may enhance the risk of schizophrenia during adulthood, the increase in 

glutamate transporters, suggestive of an increase in glutamate activity, is not consistent with 

findings of a reduced excitatory activity, especially within the hippocampus during 

schizophrenia (Harrison et al., 2006).  In contrast, mRNA levels of VGLUT-1 are reduced in 

the hippocampus in schizophrenia (Eastwood and Harrison, 2004), an effect becoming more 

pronounced with age progression.  Similarly, a reduced VGLUT-1 expression is reported in 

the caudate nucleus (Nudmamud-Thanoi et al., 2007) and anterior cingulate cortex in 
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schizophrenia, while VGLUT-2 remains unaffected (Oni-Orisan et al., 2008).  However, since 

anti-psychotics regulate VGLUT activity (Nudmamud-Thanoi, et al., 2007), the loss of 

VGLUT terminals in schizophrenia may be related to the use of anti-psychotic treatment, 

since haloperidol treatment in rats significantly reduces VGLUT-1 mRNA expression in the 

temporal cortex (Uezato et al., 2009).  This suggests the therapeutic efficacy of anti-psychotics 

in treating schizophrenia may also function to restore the balance of excitatory glutamate 

transporters, implying schizophrenia may indeed be associated with an increase in VGLUT 

transporters, which is consistent with our findings.  This may potentially explain the 

conflicting reports of why reductions and increases are reported in schizophrenia for VGLUT 

transporters (Talbot et al., 2004; Eastwood and Harrison, 2005; Fung et al., 2011b).  

Furthermore, the effects of anti-psychotics on reducing VGLUT terminals is also consistent 

with the finding that VGLUT reduction is enhanced with age and disease progression 

(Eastwood and Harrison, 2004; Harrison et al., 2006), which is consistent with the long-term 

use of anti-psychotics.  It remains possible that during schizophrenia, VGLUT transporters 

may function to reduce overall glutamatergic activity, since uptake of glutamate into nerve 

terminals from the synaptic cleft, following glutamate release, is a mechanism terminating the 

excitatory actions of glutamate.  The increase in VGLUT terminals in schizophrenia may 

reflect the enhancement of glutamate activity termination thereby contributing towards a 

reduced overall excitatory function in the hippocampus, a theory more consistent with 

schizophrenia.  Therefore, since prenatal modification of the kynurenine pathway induces 

substantial increases in the expression of VGLUT-1 and VGLUT-2 terminals, this further 

supports a developmental role for the kynurenine pathway in schizophrenia.  While no 

attempt was made in the present study to determine the individual isoform of VGLUT that 

may be elevated following Ro61-8048, since VGLUT-1 is more prevalent in the hippocampus, 

the increase in glutamate transporters may relate towards the VGLUT-1 isoform, as opposed 

to VGLUT-2.  Although the anatomical origin of VLGUT-positive terminals were not 

assessed in this study either, since different groups of afferent neurons project onto different 

regions of the dendritic surface (Ferrante et al., 2013; Gidon & Segev, 2012), it is possible the 

increase in VGLUT terminals may be confined to a limited number of afferent sources.  

 

The increase in the number of VGLUT terminals may also contribute to the findings 

in a parallel study, of a reduced paired-pulse inhibition in the CA1 region of the hippocampus 

of P21 animals following Ro61-8048 treatment (Forrest et al., 2013).  Although paired-pulse 

inhibition and facilitation are largely determined presynaptically (Rosenmund and Stevens, 

1996; Zucker et al., 1991), the final level of paired-pulse interaction in partly influenced by the 

number of excitatory and inhibitory terminals on the neurons being recorded.  Therefore, the 
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substantial increase in excitatory VGLUT terminals may account for the reduced paired-pulse 

inhibition. 

 

In order to confirm the increase in VGLUT terminals were not due to increases in 

synaptic contacts, VAMP-1 staining was assessed.  Interestingly, since no change occurred in 

VAMP-1, this confirmed that the increase in VGLUT transporters represented an increase in 

their relative numbers while there is no change in the total number of synaptic contacts.  The 

lack of change in VAMP-1 reported here is also consistent with no change seen in the protein 

expression of VAMP-1 in the P60 hippocampus.  When co-localisation was assessed, there 

was no change in the co-localisation of VAMP-1 with VGLUT terminals or VAMP-1 with 

VGAT.  Furthermore, the increase in VGLUT-1 and VGLUT-2 staining occurred in the 

absence of any change in the GABA vesicular transporters VGAT.  Since VGAT is located on 

nerve terminals of GABA and glycinergic neurons responsible for the uptake of GABA 

(Chaudhry et al., 1998; Minelli et al., 2003; Bragina et al., 2010), the absence of a change here 

not only suggests that changes in VGLUT terminals are a highly specific phenomenon, but 

also confirms the absence of a global gain or loss of synapses.  This may therefore be a 

consequence of an increased ratio of dendritic branches available for synaptic contact since a 

parallel study showed primary and secondary dendrite lengths were significantly increased.  

The lack of change in VGAT suggests GABAergic signalling in the hippocampus remains 

unaffected, a finding conflicting with the reduced densities of GABA uptake sites and 

GABAergic parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia 

(Reynolds et al., 1990; Zhang and Reynolds, 2002), suggesting that Ro61-8048 cannot recreate 

all the deficits in hippocampal transmission relevant to schizophrenia.  However, it is possible 

that while GABA transporters remained the same, there may be impairments in the levels of 

GABA synthesis, receptors or the rate of metabolism.  Since this was not addressed in the 

present study, the current result assumes no alterations in GABAergic signalling following 

prenatal modification of the kynurenine pathway.   

 

 

1.4.20  Ro61-8048 Reduces Hippocampal Spine Density 

Dendritic spines are tiny protrusions emerging from the dendrites of most neurons in 

the brain.  Classical dendritic spines consist of a head and a postsynaptic density connected to 

the dendritic shaft by a narrow neck, representing the main input for neurons behaving as 

subcellular compartments locally controlling signalling mechanisms, and involved in receiving 

and processing synaptic information (Fiala et al., 2002).  Spine density relates to the amount of 

connectivity between neurons with dendritic spines and the axons emerging from other 
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neurons thereby forming synaptic contacts.  Dendritic spines are critically involved in 

establishing and maintaining these connections for neurons to accurately receive excitatory 

input, and are imperative for the normal functioning of neurons.  Furthermore since dendritic 

spines compartmentalise calcium and other signalling components, they are known to be 

involved in synaptic efficacy (Nimchinsky et al., 2002).   

 

Hippocampal spines vary considerably in size and shape along dendritic segments, 

however, most spines have constricted necks with either larger mushroom heads or thin 

shaped with smaller heads (Harris et al., 1992).  Other spines include stubby protrusions 

emerging from the dendritic segment maintaining a head width equal to that of the neck width 

and length.  Mushroom spines exhibit larger more complex postsynaptic densities with a 

higher density for glutamate receptors (Nicholson et al., 2006), suggesting these spines are 

functionally stronger in their response to glutamate and local regulation of intracellular 

calcium, while smaller spines may be more flexible, enlarging or shrinking in response to 

subsequent activation (Bourne and Harris, 2007).   

 

Since Ro61-8048 produced a variety of changes in the expression levels of proteins 

with known functions in neuronal development, we sought to examine whether these changes 

in protein expression, as induced by Ro61-8048, were also accompanied by alterations in spine 

density.  Interestingly, when dendritic spines of pyramidal cells were examined in the P60 

hippocampus, a significant reduction was seen in apical and basal dendrites, demonstrating the 

developmental regulation of kynurenines substantially reduces hippocampal spines, and may 

potentially reduce cognitive abilities during adulthood.  Since NMDA receptors are intimately 

involved in spine and synapse formation, and knocking down NMDA receptors through RNA 

interference (RNAi) results in increased spine mortality and eventually elimination (Alvarez et 

al., 2007), it may be predicted that elevation of KYNA during development, induced by Ro61-

8048, may directly account for the loss of spines seen here.  However, since blocking NMDA 

receptor signalling during development does not affect the emergence or density of spines 

(Alvarez et al., 2007), changes in NMDA activity as a consequence to the increased 

concentrations of KYNA may have induced the loss of spines via changes in protein 

expression or the altered function of the NMDA receptor.  In support of this is that spine 

density is affected by the GluN2B subunit of the NMDA receptor (Brigman et al., 2010.), 

which was increased in the P21 animals (Forrest et al., 2013), and this could affect the relative 

densities of mushroom and thin spines on apical and basal dendrites.  Furthemore, the 

metabotropic glutamate receptor mGluR5 also regulates spine density, while its loss is 

associated with an increase in spine density in the neocortex (Chen et al., 2012.).  However, 
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since mGluR5 receptors affect the developmental switch from GluN2B-containing NMDA 

receptors to those expressing GluN2A subunits, this suggests that the NMDA may be the 

final convergent pathway in mediating the effects on spine density.  Furthermore, the loss of 

RhoB in P21 animals may also contribute towards the loss of spines, as well as the increase in 

DISC-1 in the P60 cortex since they exert regulatory roles over spine formation, development 

and morphology (Ramsey et al., 2011). 

 

Hippocampal spines show structural plasticity as the basis for physiological changes in 

synaptic efficacy that underlie learning and memory.  Long-term potentiation (LTP) alters 

spine number, shape and the subcellular composition of dendritic spines in the immature 

(Nagerl et al., 2007) and mature hippocampus (Stewart et al., 2005), while the converse 

phenomenon of long-term depression (LTD) decreases spine number and size (Zhou et al., 

2004).  Spine plasticity in the hippocampus involves changes in the size and composition of 

the postsynaptic density, actin filaments and activity of glutamate receptors and ion channels.  

Dendritic spines play a prominent role in neuronal plasticity where several forms of learning 

are associated with increased numbers of dendritic spines (Leuner and Shors, 2004).  Spatial 

training of adult rats increases learning ability associated with increased spine densities of 

pyramidal neurons in the CA1 region of the hippocampus (Moser et al., 1994).  Environmental 

enrichment during development also results in increased spine and synapse density on 

pyramidal cells in the occipital cortex and CA1 region of the hippocampus (Berman et al., 

1996).  Since learning is associated with enhanced spine densities, the converse phenomenon 

remains true; showing the loss of spine density is associated with cognitive decline.  While 

learning, memory and cognition are impaired with age progression, reduced spine densities in 

CA1 pyramidal neurons also occurs (von Bohlen und Halbach et al., 2006; von Bohlen und 

Halbach et al., 2010).  Similarly, layer I of the prefrontal cortex is significantly thinner due to a 

30-60% reduction in the density of synapses and apical and basal spines in old monkeys, 

indicating age-related degenerative changes of pyramidal cells.   

 

Interestingly, the degree of cognitive decline associated with age progression or as a 

result of neurodegenerative conditions like Huntington’s disease may be related in part to 

increases in KYNA thereby inducing a loss of dendritic spines.  The role of KYNA in 

cognitive decline was initially suggested since KYNA antagonism of NMDA receptors could 

be overcome by not only serine, glycine or D-cycloserine, but also the cognitive enhancing 

drugs aniracetam and oxiracetam (Pittaluga et al., 1997), suggesting these drugs may aim to 

increase NMDA function during cognitive decline.  The significance for enhancing NMDA 

function becomes apparent since in vivo studies in rats show KYN and KYNA to increase with 
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age progression (Gramsbergen et al., 1992; Wada et al., 1994), while in human patients, KYNA 

and IDO is increased in the blood and brain with their levels correlating to the degree of 

cognitive decline (Pertovaara et al., 2006).  Interestingly, animal models where kynurenine has 

been injected to artificially elevate KYNA levels show a range of cognitive deficits when the 

animals were tested in a range of tasks (Alexander et al., 2012; Pocivavsek et al., 2012).  

Furthermore, knockout studies of the isoenzyme encoding for KAT II, which is responsible 

for the transamidation of KYN to KYNA, in a rat model showed a highly significant 

reduction in central levels of KYNA accompanied with improved cognitive scores in a range 

of behavioural testing paradigms including exploration, object recognition and passive 

avoidance learning tests (Potter et al., 2010).  These changes were confirmed to be due to 

reductions in KYNA since no change was seen in the levels of QUIN (Sapko et al., 2006).  

Together, these studies suggest the gradual increase in KYNA with age progression may serve 

to increase NMDA receptor blockade causing a generalised disruption of synaptic 

transmission within the CNS.  Since Ro61-8048 reduces spine density, presumably due to the 

increase in KYNA and its effects upon NMDA receptors, this suggests a potential mechanism 

whereby the continual increase in KYNA may contribute towards normal age-related 

cognitive decline.  This process may be accelerated in neurodegenerative conditions such as 

Huntington’s disease where advanced stages show significantly higher levels of KYNA.  It is 

possible this potentiated increase may partly be responsible for the enhanced cognitive deficits 

observed in this fatal disorder.  In support of this, it is interesting to note that Huntington’s 

disease is also characterised by a significant reduction in dendritic spine density.  A loss of 

spines is also reported in Alzheimer’s disease (Ferrer et al., 1990) from dentate granule cells 

(Einstein et al., 1994) and neocortical and hippocampal pyramidal neurons (Fiala, et al., 2002), 

and in Parkinson’s disease where striatal neurons normally receiving dopaminergic projections 

(McNeill et al., 1988) and neurons of the locus ceruleus and substantia nigra (Patt and 

Gerhard, 1993) display fewer dendritic spines.  Since alterations in kynurenine metabolites are 

prominent during these disorders contributing towards the severity of the disease, the 

kynurenine pathway represents a common factor that may contribute towards cognitive 

decline by reducing spine density.   

 

Interestingly, since schizophrenia is accompanied by a range of cognitive deficits with 

impairments in learning abilities, analysis of dendritic spines in schizophrenia subjects also 

reveal a significant reduction of spine density (Bennett, 2011) in pyramidal cells of the 

temporal and frontal cortex, while smaller spines have been reported in the striatum (Roberts 

et al., 1996).  However, the finding that chronic exposure to haloperidol in rats reduces spine 

density (Kelley et al., 1997) confounds the reports obtained from schizophrenia subjects due to 
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the use of anti-psychotics during the disease.  Although in a study with controls for the effects 

of anti-psychotic medication, spine loss was still evident in the dorsolateral prefrontal cortex 

(Glantz and Lewis, 2000), suggesting that schizophrenia itself including anti-psychotic 

treatment are both associated with a reduction in spine density.  Since schizophrenia is 

accompanied by a range of cognitive deficits, and a reduced spine density will likely contribute 

to the emergence of these deficits, this highlights that although anti-psychotic treatment is 

efficacious in treating some of the symptoms for schizophrenia, their long-term use is likely 

precipitating deficits in neuronal morphology and brain volume previously attributed to the 

disease alone (Lieberman et al.., 2005; Moncrieff and Leo, 2010; Cacabelos et al.., 2011).  Such 

observations warrant further research into new drugs that may correct for the abnormalities in 

spine deficits as oppose to contributing towards them.  Furthermore, since environmental risk 

factors for schizophrenia such as maternal stress, prenatal infection and malnutrition (Fiala et 

al., 2002; Benitez-Bribiesca et al., 1999) are also associated with the permanent loss of dendritic 

spines, and the kynurenine pathway may be the linking convergent pathway, this further 

suggests that a kynurenine based therapy may be of benefit in reversing some of these deficits. 

 

Since oxidative stress is involved in schizophrenia and may contribute towards the 

disease progression of a range of neurodegenerative diseases (Gilgun-Sherki et al., 2001), it is 

interesting to note that reactive oxygen species also induce spine pathology.  Pyramidal 

neurons in the CA1 hippocampus of rats display significantly reduced densities of dendritic 

spines 1 day after oxidative stress was induced by a 4 h exposure to ozone (Avila-Costa et al., 

1999).  Also, a similar spine loss is seen in the prefrontal cortex, striatum and olfactory bulb, 

with vacuolation of dendrites and spines (Avila-Costa et al., 2001), suggesting the loss of 

spines may be related to the levels of oxidative stress.  This is of interest since a parallel study 

showed the protein expression of NFkB to be significantly increased in P21 animals when 

treated with Ro61-8048, implying that this may also contribute towards reduced spine density.  

Interestingly, this may be involved in meditating spine loss during maternal infection, since the 

reduced spine density following maternal infection may be related to the increase in markers 

indicative of oxidative stress together with reduced levels of glutathione at various postnatal 

ages ranging from P9-P510 (Paintlia et al., 2008).  Consistently, activated protein C, an anti-

coagulant with anti-oxidant, anti-inflammatory and anti-apoptotic actions, administered to 

pregnant dams with LPS reversed the increase in white matter apoptosis and myelin deficits in 

P7 offspring (Yesilirmak et al., 2007), while N-acetylcysteine, an anti-oxidant and NFkB 

inhibitor, administered 4 h post LPS treatment in pregnant rats prevented deficits in LTP and 

spatial learning (Lante et al., 2008).  This further emphasises the potential impact of oxidative 
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stress on cognitive deficits and spine loss, and suggests the kynurenine pathway may be 

involved in mediating a reduction in spine density following maternal immune activation. 

 

 

 

1.5  General Conclusion and Significance of Study 

The general theme of this project was to examine the role of the kynurenine pathway 

on brain development, to understand whether manipulations in this pathway during 

development could enhance the subsequent onset of schizophrenia during adulthood.  This 

theory was based upon findings showing environmental factors including stress, malnutrition 

and infection could adversely affect the pregnant mother and foetus thereby increasing the 

risk for neurodevelopmental disorders later in life (Meyer et al., 2008d; Meyer and Feldon, 

2009, 2012, Meyer, 2013).  Maternal infection can produce a variety of cognitive and 

behavioural deficits in the offspring during adulthood, resembling those seen in schizophrenia 

(Brown et al., 2009), however, the molecular basis for these behavioural abnormalities remain 

poorly understood.  It is believed bacterial or viral infectious agents activate the maternal 

immune response to increase the concentration of pro-inflammatory cytokines which is 

believed to mediate developmental damage.  Indeed, pro-inflammatory cytokines including IL-

1β, TNF-α and IL-6 amongst others, can impair cellular differentiation and negatively regulate 

the survival of neurons within the CNS (Ling et al., 1998; Potter et al., 1999; Jarskog et al., 

1997).  A pro-inflammatory cytokine response produces a variety of noxious metabolites 

thereby increasing the levels of oxidative stress which can also regulate cell survival during 

development.  Interestingly, some of the most convincing data to emerge from the cytokine 

literature are reports demonstrating the prenatal administration of rodents with the pro-

inflammatory cytokine IL-6, is capable or recreating the cognitive and behavioural deficits 

resembling those associated with poly(I:C) or LPS treatment (Smith et al., 2007).  While there 

is convincing evidence implicating a role for cytokines in mediating developmental damage, 

since the immune activation as evidenced by an increase in pro-inflammatory cytokines are a 

relatively transient phenomenon, rarely persisting beyond 24 h, this fails to explain the long-

term changes in brain and behaviour precipitated by the initial insult.  It is therefore likely that 

activation of the maternal immune response triggers a variety of signalling changes that may 

continue once the cytokine profile returns to normal.  Furthermore, although reports 

suggesting novel anti-inflammatory treatment to prevent the effects of maternal infection, 

anti-inflammatory agents administered to the pregnant mother is also associated with the rise 

in the risk of schizophrenia (Sorensen et al., 2004).  Therefore, novel treatments for such 

conditions will likely arise from the identification of biochemical pathways that are activated 
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and dis-regulated during maternal infection that may contribute to developmental damage.  

One such biochemical pathway that may mediate this link between immune activation and the 

subsequent psychopathology may be the kynurenine pathway since this is activated by pro-

inflammatory cytokines, and is involved in a range of affective and neurodegenerative diseases.  

Indeed, infectious agents inducing IDO activation can result in persistent changes in 

kynurenine levels for substantial periods, and may be involved in mediating part of the 

developmental damage induced by pro-inflammatory cytokines (Alberati-Giani and Cesura, 

1998).  The persistent increase in the neurotoxic kynurenine metabolite QUIN during 

infection can induce excitotoxic damage via the activation of the NMDA receptor, production 

of reactive oxygen species and by inducing mitochondrial dysfunction (Ma et al., 1997; 

Bordelon et al., 1997; Santamaría et al., 2003), effects antagonised by its antagonist, KYNA.  

These principal mechanisms mediate much damage in neurodegenerative conditions such as 

Alzheimer’s, Parkinson’s and Huntington’s disease.  Therefore, since the kynurenine pathway 

can be activated by a range of environmental factors, including infection and stress, it is a 

plausible hypothesis that the effects of maternal immune activation on mediating the 

subsequent risk in schizophrenia may be mediated in part by the activation and dysfunction of 

the kynurenine pathway.  This implies that modifying the activity of the kynurenine pathway 

during development, in the absence of maternal immune activation, may also precipitate 

developmental damage that may be of relevance to schizophrenia.  Since this pathway may 

provide a convergent mechanism by which environmental factors such as stress or infection 

may enhance the susceptibility to schizophrenia or related disorders, this further suggests that 

drugs capable of correcting kynurenine concentrations during development may be of benefit 

for the novel treatment of developmental disorders.   

 

1.5.1  Main Findings – Prenatal Treatment With poly(I:C) 

In the poly(I:C) model of maternal immune activation, we have reported molecular 

changes occurring in P21 animals.  While some changes including a reduced GluN1 

expression is generally recognised as major contributors towards the pathophysiology of 

schizophrenia, interestingly, we have shown maternal infection is not associated with changes 

in protein markers important in neuronal development and axonal guidance, suggesting that 

the overall cortical neuronal connections may largely be unaffected.  The range of protein 

changes during maternal infection provides a mechanism by which environmental factors such 

as stress and infection may increase the susceptibility of schizophrenia.  A major finding is the 

substantial reduction in α-synuclein following poly(I:C) treatment at P21 suggesting, that 

although Parkinson’s disease is considered a neurodegenerative as opposed to a 

neurodevelopmental disorder, it is plausible that developmental damage may predispose 
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individuals to a heightened risk of developing Parkinson’s disease following subsequent 

exposure to environmental toxins (Tien et al., 2013; Bobyn et al., 2012).  Therefore, although 

maternal infection increases the risk for schizophrenia, in light of the substantial loss of α-

synuclein, it is proposed that maternal infection may also predispose individuals to a 

heightened susceptibility for developing Parkinson’s disease during adulthood. 

 

1.5.2  Main Findings – Prenatal Treatment With Ro61-8048 

To examine the effects of the kynurenine pathway on brain development, we sought 

to assess the potential consequences of disrupting kynurenine metabolites prenatally on the 

normal physiological activity of the kynurenine pathway and its subsequent role in 

developmental disorders.  Therefore, Ro61-8048 was used to inhibit KMO thereby increasing 

the transamidation of KYN to KYNA, since studies suggest cell polarity and development is 

largely controlled by the gradient of signal antagonists as opposed to an agonist.  

Administration of Ro61-8048 during pregnancy has shown to produce a variety of protein, 

electrophysiological and morphological changes in rodents during adulthood, emphasising the 

great importance of this pathway on brain development.  Indeed, our results suggest the 

kynurenine pathway is constitutively active during foetal development and is intimately 

involved in normal brain development.  This marks a minor breakthrough within the field of 

kynurenine research since its role has not been assessed during development.  While KMO 

inhibitors are investigated as potentially novel therapeutics for the treatment of Parkinson’s, 

Alzheimer’s and Huntington’s disease, if such therapy were to successfully complete clinical 

trials, the data presented in this thesis strongly suggest that the use of KMO inhibitors could 

prove deleterious in pregnant women suffering from such diseases.  Furthermore, the 

significance of this research is not only restricted to the actual inhibition of KMO, or any 

other enzyme in the pathway, since these compounds were used experimentally to induce 

alterations in kynurenine metabolites only, to reflect changes that may be caused due to 

environment factors.  Indeed, since infection and stress can induce activation of the 

kynurenine pathway, the results presented in this thesis lend support to the theory that the 

kynurenine pathway may be a convergent mechanism by which environmental factors such as 

infection and stress induce developmental abnormalities in the offspring during adulthood.  

This also implies that a novel kynurenine based therapy may be of major benefit in treating 

such conditions circumventing the detrimental effects of employing agents to block 

inflammatory agents or to increase anti-inflammatory cytokines.  Further research into the 

developmental role of the kynurenine pathway is warranted considering current anti-

psychotics may be responsible for reductions in cortical and hippocampal volume (Lieberman 

et al., 2005; Moncrieff and Leo, 2010; Cacabelos et al., 2011), implying significant toxicity of 
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these drugs.  Also, since the widespread use of NMDA antagonists are associated with 

significant side effects, due to the non-specific inhibition of all its receptors, contributing 

primarily to the principal reason for their failures in clinical trials, the kynurenine pathway 

represents an attractive drug target in localising effects to specific regions.  This is achieved 

since basal levels of kynurenines are usually low and principally change in localised regions 

affected by damage only.  This may be a predominant reason underlying the increased 

patenting of compounds related to these disorders (Muchowski et al., 2011; Zisapel et al., 2012; 

Andersen et al., 2012).   

 

The results presented within this thesis strongly suggest that disruption of the 

kynurenine pathway during development may be related to the onset of schizophrenia later in 

life.  The results demonstrate changes in kynurenines prenatally may alter the function of the 

NMDA receptor permanently, since Ro61-8048 induced significant impairments in the 

protein expression of the NMDA receptor subunits GluN2A and GluN2B in embryo brains 

as early as 5 h post-treatment, while persisting into P60 young adult rats.  Interestingly, while 

Ro61-8048 induces significant impairments in the NMDA receptor, it does not alter the 

immediate expression profiles of protein markers related to neuronal development and axonal 

guidance.  Interestingly, Ro61-8048 precipitates delayed effects in the expression of these 

proteins primarily becoming evident at P60, including substantial changes in the netrin family 

of proteins.  Since these proteins are intimately involved in axonal guidance, their altered 

expression profiles may likely induce significant impairments in the neuronal connections 

made during adulthood following neurogenesis in the hippocampus and cerebellum in the 

adult brain.   

 

Perhaps one of the most convincing finding linking the altered activity of the 

kynurenine pathway with schizophrenia, is the significant change in the protein expression of 

DISC-1 in the cortex.  DISC-1 is heavily linked with the emergence of schizophrenia and is 

identified as a schizophrenia susceptibility gene.  Also, cognitive deficits following increases in 

KYNA may be related to its propensity to substantially elevate the levels of excitatory 

glutamate transporters that may be involved in enhancing the rate of glutamate activity 

termination in the hippocampus, since studies of altered glutamate signalling in the 

hippocampus are associated with cognitive deficits.  This increase in glutamate transporters 

was also a highly selective change, since Ro61-8048 treatment did not affect the density of 

GABA transporters.  Furthermore, considering the major deficits in cognition during 

schizophrenia, that are accompanied by a reduction in spine density, it is an interesting parallel 

with the present study reporting a significant reduction in dendritic spine density in the P60 
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hippocampus following prenatal treatment with Ro61-8048.  A reduction in spines were 

observed in both apical and basal dendrites and may be of relevance to schizophrenia, but also 

to other neurodegenerative conditions like Parkinson’s and Alzheimer’s disease that are also 

characterised by reductions in spine density.  Considering the principal parameters affected by 

Ro61-8048 treatment, including the NMDA receptor, glutamate transporters and spine 

density, this suggests that the kynurenine pathway may principally disrupt cognitive abilities 

during schizophrenia.   

 

 

1.6  Limitations of the Present Study and Future Work 

One of the major limitations of the present study is that although a range of changes 

have been noted at various time points, it failed to establish a mechanism underlying these 

changes, resulting in the discussion of these protein alterations being largely descriptive in 

nature.  Therefore, future work should have a greater focus on the mechanism that may 

underlie these neurochemical alterations, and experiments on neuronal cell cultures would 

provide the best means to do that.  Indeed, cell cultured experiments should also examine the 

relative role of some of these proteins changes.  For example, the deletion of doublecortin or 

DISC-1 and the effects it has upon cerebellar and cortical neurons should be examined to see 

in what way their development or function may be affected.  To examine the interaction of 

poly(I:C) on kynurenines, cell cultures using both embryonic and adult neuronal cell lines 

should be used to investigate the consequence of immune activation in the absence of IDO or 

QUIN, and to see whether it is associated with a reduction in neurotoxicity.  The effects of 

Ro61-8048 should also be examined upon immune stimulation in cultured experiments to see 

whether it offers any protection against infection.  Since Ro61-8048 appears to mainly 

produce delayed effects, it would be useful to pre-treat neuronal cultures before applying 

poly(I:C).  The effects of Ro61-8048 in inducing developmental damage should be compared 

with another model where KYNA is increased via an alternative mechanism.  Either 

kynurenine could be administered with probenecid to increase central KYNA during 

development.  The principal reason for this is to verify that the changes reported in this study 

are only attributed to changes in kynurenines during development and not due to other 

actions of the drug.  Although Ro61-8048 is reported to be a selective inhibitor of KMO, 

whether there exist other mechanisms of action, this remains unreported and therefore 

unknown. 

 

Since some of the protein markers examined vary considerably during development 

and adulthood, and while every effort was made to optimise the antibody dilutions to either 
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substantially reduce its dilution for proteins such as doublecortin, RhoA, RhoB and DCC for 

the embryo work since these proteins are present at much higher levels, or increase the 

antibody dilution for doublecortin and DCC during the P60 experiments, occasionally the 

western blotting still produced a strong signal, sometimes appearing overexposed.  In the case 

of synaptic protein markers including VAMP-1, synaptophysin and synaptotagmin, the lack of 

changes following poly(I:C) and Ro61-8048 administration may be related to the fact that 

since these proteins are expressed in very high amounts, subtle changes in their protein 

expression may be out-with the detection limit for the western blotting technique, but they 

may also be related to the fact that these blots, usually producing very strong signals, may have 

been overexposed thereby compromising their integrity in demonstrating a clear change.  This 

is especially important for synaptophysin, since loss of GluN1 and poly(I:C) administration is 

associated with a reduction in synaptophysin, while in the presence of both these factors, our 

experiments revealed no change.  For this reason, the assessment of synaptic proteins may 

have been better suited for examination by a quantitative method using real-time polymerase 

chain reaction.   

 

Another major limitation of the experiments is that for P21 animals, protein 

expression was examined in the entire halves of the cerebral hemisphere as opposed to 

regions like the P60 experiments.  Therefore, discrete changes occurring in some brain regions 

may have been masked, or that changes occurring in different regions and in opposite 

directions, as often noted in other studies, would produce no overall net change in our half 

brain lysates.  Therefore, for these experiments a more accurate conclusion of the results 

would be that there was no overall net change in protein expression when examined in the 

half brains, while subtle more localised changes may exist.  This limitation may also apply to 

the P60 midbrain regions since this region is of interest to a range of disease including 

schizophrenia, Parkinson’s and Huntington’s disease, and most studies have reported 

neurochemical alteration within this region to be changing in highly localised regions of the 

substantia nigra or in the nucleus accumbens, often in opposite directions.  Since this would 

reduce the ability for a real change to be detected in the western blotting technique, the 

subcellular examination of critical markers including tyrosine hydroxylase and 5HT-2C, may be 

better suited for assessment with immunocytochemistry.   

 

Since the data from the present study implies alterations in kynurenines during 

development may be involved in schizophrenia, P60 animals should be tested in a range of 

cognitive, learning and behavioural paradigms including examination of prepulse inhibition, 

latent inhibition, enhanced sensitivity to NMDA channel blockers or amphetamine and 
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anxiety.  Furthermore, depending upon the deficits, the therapeutic efficacy of anti-psychotic 

medication should be assessed to examine whether the animals are responsive to treatment.  

Some of the most exciting work remains in comparing the effects of disrupting the kynurenine 

pathway in genetic models of schizophrenia.  This would be useful in identifying interactions 

between genetic and kynurenine-based environmental factors in an attempt to identify how 

these factors influence vulnerability towards schizophrenia.  These experiments could involve 

Ro61-8048 treatment in wild-type animals which is then compared with the effects of Ro61-

8048 treatment in animals genetically modified to exhibit one or many schizophrenia 

susceptibility genes. Some of the major susceptibility genes worth examining in this model 

include neureglin-1 (NRG-1), catechol-O-methyltransferase (COMT) and disrupted in 

schizophrenia-1 (DISC-1).   
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