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Abstract

The relation between shift-invariant preduals of the space of summable sequences `1(Z) and

the dual Banach algebra `1(Z) equipped with the convolution product have resulted in recent

development of research on preduality of this space. According to the survey paper entitled ’Shift

Invariant Preduals of `1(Z)’, written by Matthew Daws, Richard Hadon, Thomas Schlumprecht

and Stuart White, we know that there exists an uncountable family
{
F (λ)

}
λ∈C of shift-invariant

preduals of `1(Z) and all these preduals F (λ) constructed in the above paper are isomorphic to

c0(Z), the space of sequences converging to zero. This conclusion is based on an abstract theory

of the Szlenk index, without stating the explicit form of that isomorphism. This thesis will

make an attempt to define this sort of isomorphism. In other words, I will form an isomorphism

between c0(Z) and F
(λ)
+ , which is a subspace of F (λ).
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Chapter 1

Introduction

1.1 Overview

The Banach space `1(Z) is a very standard sequence space and is defined as a space of those

elements x = (xn)n∈Z satisfying
∑
n∈Z |xn| < ∞, where each xn belongs to the field of real

numbers R or complex numbers C. The standard norm for which `1(Z) becomes a Banach space

is ‖x‖ =
∑
n∈Z |xn|, (x ∈ `1(Z)). The initial, result familiar to most of the undergraduate

students concerning the study of preduality of `1(Z), says that the sequence space c0(Z) is an

isometric isomorphic predual of `1(Z). In other words, we say that the dual space of c0(Z) is

simply `1(Z). For the sake of completeness, we recall the proof of this fact in the next section.

It is important to note that in the study of preduality of `1(Z) mathematicians very often call a

space E a predual of `1(Z), if there is an isomorphism between the dual space of E and `1(Z),

which does not have to be isometric. This definition also applies to this thesis. There are many

examples of predual spaces of `1(Z) and some of them are included in the next section. A short

review of other, more sophisticated examples of preduals of `1(Z) is given in the introduction of

[7].

As it will be made precise later in Lemma 3.2.4 of this thesis, every predual E of `1(Z) can

be canonically viewed as a subspace of `∞(Z) just as the canonical predual c0(Z) naturally sits

inside `∞(Z). Therefore, it makes a sense to consider the behaviour of the bilateral shift on

`∞(Z) on E. We say that the predual E of `1(Z) is shift-invariant, if for any x ∈ E the elements

σ(x) and σ−1(x) also lie in E, where σ is the bilateral shift operator on `∞(Z). Certainly, as

it will be seen in the next section, c0(Z) is an example of such a predual. Yet, to provide more

shift-invariant preduals of `1(Z), a more elaborate construction is required. For example, in [7]

the authors construct an uncountable family of shift-invariant preduals and set up systematic

study of those preduals.

One of the reasons why we are interested in shift-invariant preduals of `1(Z) is hidden behind

the dual Banach algebra theory. Recall that a Banach algebra A, which is also the dual space

of some Banach space E, is called a dual Banach algebra, if the multiplication product on A is

1



CHAPTER 1. INTRODUCTION 2

separately weak*-continuous, with respect to E. As explained in section 3.3 of this project if E

is a shift-invariant predual of `1(Z), then the convolution product on `1(Z) given by

(f ∗ g)(n) =
∑
k∈Z

f(k)g(n− k) f, g ∈ `1(Z), n ∈ Z (1.1.1)

is separately weak*-continuous and so E turns `1(Z) into a dual Banach algebra. By the research

paper [7] we know that there exists an uncountable family of such shift-invariant preduals.

Moreover, each of the preduals constructed in that paper is isomorphic as a Banach space to

c0(Z). As it often happens in Banach space theory, although we now know that two spaces are

isomorphic, it can sometimes be difficult to find an explicit form of isomorphism. My thesis will

make some attempts in the direction of constructing an isomorphism between these preduals

and c0(Z). Another important result from [7] is that, despite the fact that two shift-invariant

preduals may be isomorphic as a Banach spaces, they may induce different weak*-topology.

This interesting outcome may also initiate further development of the theory of shift-invariant

preduals of `1(Z), but this time, from the Banach space perspective.

Now let us discuss the content of this thesis. Chapter two is preliminary and presents the

Čech-Stone compactification of Z. The crucial result here is that the space βZ of ultrafilters on

Z with the Stone topology is the Čech-Stone compactification of Z. At the end of this chapter

I describe a very useful approach to examine convergence of sequences in terms of ultrafilters.

The theory presented in this part of my thesis will have an application further, in chapters 4

and 5.

An introduction to the study of preduals of `1(Z) is included in chapter 3. I review there the

most important tools of functional analysis, which are required for the thesis. This include the

Hahn-Banach theorem, the Banach Isomorhphism theorem and the concepts of the weak and

weak*-topology. In the next two sections we focus directly on the core knowledge concerning

preduals of `1(Z) and we put particular emphasis on the aspect of concrete preduals. In particu-

lar, I describe the connection between concrete shift invariant preduals of `1(Z) and dual Banach

algebra `1(Z) mentioned before. The research paper [7] is the main reference in this part of my

thesis.

In chapter 4, based on chapter 3 of [7], I construct the family of shift-invariant preduals

{F (λ)}|λ|>1. The shift-invariant predual F (λ) is described as follows: fix λ ∈ C such that |λ| > 1,

and for n ≥ 1 in Z, b(n) denote the number of ones in the binary expansion of n, for n < 0 we

set b(n) =∞. Then, define an element x0 ∈ `∞(Z) by x0(n) = λ−b(n) with the convention that

λ−∞ = 0. Hence, x0 is the element of the form x0 = (..., 0, 0, 1, λ−1, λ−1, λ−2, λ−1, ...) with 1 on

the n = 0 position of Z. Finally, the space F (λ) is the closed shift-invariant subspace of `∞(Z)

generated by x0. In other words

F (λ) := span {σn(x0) : n ∈ Z},
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In that section I also define a space F
(λ)
+ which is a subspace of F (λ). This space is defined as

span {σn(x0) : n ≥ 0} and will be my main object of research.

One of the most important results in [7], also described in this thesis, is Theorem 3.4 which

says that the preduals F (λ) are G-spaces. Because of that, using the main result of [1] we know

that each F (λ) is isomorphic as Banach space to some C(L) space for some compact Hausdorff

space L. This work was a guideline for my attempts in finding an explicit isomorphism between

F
(λ)
+ and c0(Z), which is the content of the last chapter. First, in section one of this chapter I

explain why the space F (λ) is isomorphic with c0(Z). This is caused by the fact that indices of

these spaces, called Szlenk index, are the same. I calculate, by definition of the Szlenk index of

c0(Z) and then I rely on Theorem 3.8 of [7], where it was proved that the Szlenk index of F (λ) is

equal to ω. The last section summarizes all the information gathered and allows us to define a

function between F
(λ)
+ and c0(N) which, by using fundamental theorems of functional analysis,

proved to be an isomorphism.

1.2 Basic preduals of `1(Z)

Now we look at two important examples of predual spaces of `1(Z). First, we ”review the proof”

that the space c0(Z) is a shift-invariant predual of `1(Z) and then show that this predual really

makes the convolution product separately continuous. To prove these facts we need to recall

some very basic facts of functional analysis.

Definition 1.2.1. Let X and Y be two vector spaces over the field K of either real numbers or

complex numbers. A map T : X → Y is called a linear operator, if for all x, y ∈ X and α, β ∈ K

we have

T (αx+ βy) = αT (x) + βT (y). (1.2.1)

Definition 1.2.2. Let X and Y be two normed spaces. A map T : X → Y is called a bounded

linear operator, if it is linear and there exists a constant M > 0 such that, for all x ∈ X,

‖Tx‖ ≤M‖x‖. (1.2.2)

The set of those T : X → Y satisfying (1.2.1) and (1.2.2) with respect to the standard

pointwise definitions of additions and scalar multiplications of functions forms a vector space

and is denoted by B(X,Y ). Theorem 4.1 in [18] shows that for every T ∈ B(X,Y ) we can assign

a number

‖T‖ := sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1},

and this definition of ‖T‖ turns B(X,Y ) into normed space. In fact, from linearity of T we have

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1} = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}. (1.2.3)
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A very standard fact in the theory of bounded linear operators is that every T ∈ B(X,Y ) is

continuous and each continuous linear operator T : X → Y belongs to B(X,Y ). The next

important fact to recall is that if Y is a Banach space, then B(X,Y ) is also a Banach space (see

Theorem 4.3 in [18]). Now, let us assume that Y is the scalar field (R or C). In this case, the

space of bounded linear operators B(X,Y ) is called the dual space of X and is simply denoted

by X∗. For our convenience we denote the elements of X∗ by x∗ and for x ∈ X instead of

writing x∗(x) we often write 〈x∗, x〉. The elements of X∗ are called bounded linear functionals

or, simply, functionals.

Lemma 1.2.3. The dual space of c0(Z) is canonically isometrically isomorphic with `1(Z).

Proof. To prove that our statement is true we need to find a bijective, linear and continuous

map between c0(Z)∗ and `1(Z) which is also norm-preserving. Let (e(n))n=+∞
n=−∞ be the standard

basis for c0(Z), defined by e
(n)
k = δn,k, where k ∈ Z and

δn,k =

 1 if n = k;

0 if n 6= k.
(1.2.4)

Let us define the map T in the following way:

T : c0(Z)∗ 3 x∗ 7−→
(
...,
〈
x∗, e(−1)

〉
,
〈
x∗, e(0)

〉
,
〈
x∗, e(1)

〉
, ...
)
∈ `∞(Z). (1.2.5)

Linearity of this map follows directly from the fact that c0(Z)∗ is a vector space. Now, for any

x∗ ∈ c0(Z)∗ we define x(l) = (x
(l)
n ) ∈ c0(Z), where l ∈ Z by setting

x(l)n :=


|〈x∗,e(n)〉|
〈x∗,e(n)〉 if n ≤ |l| ,

〈
x∗, e(n)

〉
6= 0;

0 if n > |l| or
〈
x∗, e(n)

〉
= 0.

We see that ‖x(l)‖ = 1 for each l and also

∣∣∣〈x∗, x(l)〉∣∣∣ =

∣∣∣∣∣
∣∣〈x∗, e(−l)〉∣∣〈
x∗, e(−l)

〉 〈x∗, e(−l)〉+ ...

∣∣〈x∗, e(0)〉∣∣〈
x∗, e(0)

〉 〈x∗, e(0)〉+ ...+

∣∣〈x∗, e(l)〉∣∣〈
x∗, e(l)

〉 〈x∗, e(l)〉∣∣∣∣∣
=
∣∣∣〈x∗, e(−l)〉∣∣∣+ ...+

∣∣∣〈x∗, e(0)〉∣∣∣+ ...+
∣∣∣〈x∗, e(l)〉∣∣∣ .

Therefore,

∞∑
|i|=0

∣∣∣〈x∗, e(i)〉∣∣∣ = lim
|l|→∞

∣∣∣〈x∗, x(l)〉∣∣∣ ≤ lim
|l|→∞

(
‖x∗ ‖‖x(l)‖

)
= ‖x∗‖ <∞. (1.2.6)

Hence, we see that defined map T is into `1(Z) and, moreover, it is continuous. To show that T

is norm preserving, we present x ∈ c0(Z) such that x =
∑∞
|i|=0 αie

(i) for some unique sequence



CHAPTER 1. INTRODUCTION 5

of scalars (αi) and a base (e(n)) defined by (1.2.4). Then for x∗ ∈ c0(N)∗ we have

|〈x∗, x〉| =

∣∣∣∣∣∣
∞∑
|i|=0

αi

〈
x∗, e(i)

〉∣∣∣∣∣∣ ≤ sup
i∈N
|αi|

∣∣∣∣∣∣
∞∑
|i|=0

〈
x∗, e(i)

〉∣∣∣∣∣∣ ≤ ‖x‖
∞∑
|i|=0

∣∣∣〈x∗, e(i)〉∣∣∣ . (1.2.7)

In particular, considering only these elements x ∈ c0(N) such that ‖x‖ = 1 we obtain

‖x∗‖ ≤ 1 ·
∞∑
i=1

∣∣∣〈x∗, e(i)〉∣∣∣ = ‖Tx∗‖ .

Together, combining (1.2.7) and (1.2.6) gives us ‖Tx∗‖ = ‖x∗‖, which also implies that T is injec-

tive. Now we show that T maps onto `1(Z). Let β = (..., β(−2), β(−1), β(0), β(1), β(2), ..) ∈ `1(Z).

We define a map g : c0(Z)→ Z by setting g(e(n)) = β(n) for each n ∈ Z, where (e(n)) is defined by

(1.2.4). Then for any x ∈ c0(Z) we have |g(x)| = |
∑∞
|n|=0 αnβ

(n)| ≤ (supn∈Z |αn|)
∑∞
|n|=0 |β(n)| <

+∞. Hence, g ∈ c0(Z)∗ and so Tg = β.

In a similar vein, we can show that the dual space of `1(Z) is isometrically isomorphic with

`∞(Z) (See subsection 2.10-6 in [12]). It is easy to see that c0(Z) is shift-invariant since shifting

position of any x ∈ c0(Z) one position to the left or one position to the right does not change

the limit of x. This fact, as mentioned above, implies that the convolution product on `1(Z) is

separately weak*-continuous and so c0(Z) turns `1(Z) into a dual Banach algebra. Let us make

this calculation by hand. Let (fi)i∈Z ⊂ `1(Z) and f ∈ `1(Z) be such that fi −→ f weak*, with

respect to c0(Z) (see section 3.1 for information about weak*-convergence). Fix g ∈ `1(Z) and

take any a ∈ c0(Z). We want to show that

〈fi ∗ g, a〉 −→ 〈f ∗ g, a〉 , (i −→∞), (1.2.8)

where ∗ denotes the convolution product on `1(Z) defined by formula (1.1.1). Fix i ∈ N, then

we have

〈fi ∗ g, a〉 =
∑
n∈Z

(fi ∗ g)(n)a(n) =
∑
n∈Z

∑
k∈Z

fi(k)g(n− k)a(n).

Notice, that since the element (fi ∗ g) is in `1(Z) and a ∈ c0(Z) the series
∑
n∈Z(fi ∗ g)(n)a(n)

is absolutely convergent and, therefore, we can interchange the order of summation in the above

equation. Hence,

∑
n∈Z

∑
k∈Z

fi(k)g(n− k)a(n) =
∑
k∈Z

∑
n∈Z

fi(k)g(n− k)a(n) =
∑
k∈Z

fi(k)
∑
n∈Z

g(n− k)a(n).

Since, for every k ∈ Z, we have

|
∑
n

g(n− k)a(n)| ≤ ‖g‖`1‖a‖c0 ,
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hence, by the Dominated Convergence Theorem for Sums, as i −→∞ we obtain

∑
k∈Z

fi(k)
∑
n∈Z

g(n− k)a(n) −→
∑
k∈Z

f(k)
∑
n∈Z

g(n− k)a(n).

Again, since f ∈ `1(Z) this must be equal to

∑
k∈Z

∑
n∈Z

f(k)g(n− k)a(n) =
∑
n∈Z

∑
k∈Z

f(k)g(n− k)a(n) =
∑
n∈Z

(f ∗ g)(n)a(n).

Therefore, we see that if i→∞, then

〈fi ∗ g, a〉 =
∑
n∈Z

(fi ∗ g)(n)a(n) −→
∑
n∈Z

(f ∗ g)(n)a(n) = 〈f ∗ g, a〉 ,

which, since the convolution product on `1(Z) is commutative, implies separate weak*-continuity

of that product with respect to c0(Z).

Here is another important example of a space which is a predual of `1(Z).

Lemma 1.2.4. Let C(K) be a space of continuous functions on a countable, infinite, compact

Hausdorff space K. Then the dual space of C(K) is isometrically isomorphic with `1(Z).

Proof. Indeed, the result of the Riesz Theorem (see Theorem 7.4 in [10]) states that the dual

space of C(K) is isometrically isomorphic with M(K) the space of all finite, signed Borel measure

on K. As K is countable, write K = {x1, x2, x3, ...}, where xn are distinct. Since every {xn}

is a Borel set, for every µ ∈ M(K) we can assign the sequence (an)∞n=1, where an = µ({xn}).

Furthermore, since µ is countably additive and finite we obtain

‖µ‖ = |µ(K)| =

∣∣∣∣∣µ(

∞⋃
n=1

{xn})

∣∣∣∣∣ =

∞∑
n=1

|an| = ‖(an)∞n=1‖ .

Hence, we see that M(K) ∼= `1(K). The last thing to notice is that `1(K) = `1(Z), but this

simply follows from the fact that both K and Z are countable and so bijective.

The example shown above can never be shift-invariant and explanation of that fact will be

given later in Example 3.2.7, since more advanced theory will be required. In understanding,

which preduals of `1(Z) are and which are not shift-invariant, it would be useful to refer to [8],

where the authors were investigating possible preduals of the measure algebra M(G), where G

is a locally compact group.



Chapter 2

The Čech-Stone compactification

βZ

The Čech-Stone compactification is an important tool in examining many mathematical prob-

lems. The concepts of duality and preduality of some Banach Spaces are among them. Therefore,

to understand the main theme of my thesis we present this compactification at the beginning of

my work.

2.1 Filters and ultrafilters

In the first section we introduce the definition of a filter and an ultrafilter on the set of integers

Z. We give also some examples and present some basic facts related to these concepts. All of

the results provided in this section are very standard and can be found for example in [11], [6]

as well as [24].

Definition 2.1.1. A subset F ⊂ P (Z) is said to be a filter if:

a) Z ∈ F and ∅ /∈ F;

b) If A ∈ F and B ∈ F, then A ∩B ∈ F;

c) If A ∈ F and the set B ∈ P (Z) is such that B ⊇ A, then B ∈ F.

The reader can easily see from this definition that filter on Z is a non-empty and proper

collection of subsets of Z, which is closed under finite intersection and supersets. We proceed

now to the two important types of filters that are related.

Definition 2.1.2. A filter F is said to be principal if it is generated by a single, non-empty set.

In other words, there exist a single, non-empty set A such that F = {B : B ⊇ A}. A filter which

is not principal, is called non-principal.

An example of a non-principal filter is the family Fr of subsets of Z such that

Fr := {X ⊆ Z : Z \X is finite } .

7
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The filter Fr is called Frechet filter.

Now we shall introduce the definition of an ultrafilter which plays a crucial role in this chapter.

Definition 2.1.3. A filter F on Z is said to be an ultrafilter if for each A ⊆ Z, either A ∈ F or

Z \A ∈ F.

To have better understanding of the idea of filters and ultrafilters we prove some basic facts

that refer to them. First, we recall that a family G ⊂ P (Z) has the finite intersection property

if each finite subfamily of G has a non-empty intersection. Now we can start with the following

lemma.

Lemma 2.1.4. Every subset G ⊂ P (Z) with the finite intersection property can be extended to

a filter.

Proof. Let G = {Gi}i∈I be a family with the finite intersection property and let

F :=

{
A ⊆ Z : ∃ finite E ⊆ I such that A ⊇

⋂
i∈E

Gi

}
.

We prove that F is a filter. It is easy to see that the whole space Z does belong to F and,

since, G has the finite intersection property, the empty set does not belong to F. If A and B

belong to F, then there exist finite sets E and F included in I such that A ⊇
⋂
i∈E Gi and

B ⊇
⋂
i∈F Gi. But this implies that A ∩ B ⊇

⋂
i∈E∪F Gi. Now, if A ∈ F then A ⊇

⋂
i∈E Gi for

some finite set E ⊆ I, then
⋂
i∈E Gi is included in any set B ⊇ A and so F is a filter. The fact

that G ⊆ F follows by definition of G.

Lemma 2.1.5. A filter F is an ultrafilter if and only if F is a maximal filter.

Proof. (=⇒) If F is not a maximal filter, then there exists a filter G such that G ⊃ F and a set

A such that A ∈ G and A /∈ F. If F were an ultrafilter then Z \ A ∈ F, also since A ∈ G then

Z \A /∈ G which is impossible so F is not an ultrafilter.

(⇐=) Let us assume that F is not an ultrafilter. Then there exists a set A ⊂ Z such that

A /∈ F and Z \ A /∈ F. Now, we define the family G := F ∪ {A}. I show that G has the finite

intersection property. First we notice that if B ∈ F then B ∩ A 6= ∅. Otherwise B ⊆ Z \ A, but

Z\A /∈ F and we get a contradiction. Therefore, A∩B 6= ∅. Now we consider any finite family of

sets B1, B1, ..., Bn ∈ F. Then of course B1∩B1∩ ...∩Bn ∈ F and so A∩ (B1∩B1∩ ...∩Bn) 6= ∅.

We see now that the family G has the finite intersection property and so by Lemma 2.1.4 it can

be extended to a filter F
′
. Hence, we obtain that F ⊂ G ⊂ F

′
and so F is not maximal.

Before we state the last lemma in this section we recall from the set theory Zorn’s Lemma

which is equivalent to the axiom of choice. Zorn’s lemma says that if in any non-empty, partially

ordered set X, every non-empty, linearly ordered set C has an upper bound, then in X there

exists at least one maximal element.
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Lemma 2.1.6. Every filter F can be extended to an ultrafilter.

Proof. Let us consider the set

F =
{
F
′

: F
′

is a filter and F ⊆ F
′
}
.

It is easy to observe that the set F is partially ordered by the inclusion relation ′ ⊆ ′. Now let

C be a non-empty, lineary ordered set in F and let U =
⋃

C. We show that U must be a filter.

By contradiction, if U were not a filter then there would exist two different sets A and B from

U such that A ∩B = ∅. Since A,B ∈ U there exist filters F ∈ C and G ∈ C such that A ∈ F and

B ∈ G. Since C is a linearly ordered, we obtain that A ∈ F and B ∈ F or A ∈ G and B ∈ G. But

this implies that intersection of the sets A and B cannot be empty. Therefore we see that U is

an filter and, hence, an upper bound for C in F. Now, applying Zorn’s Lemma, we obtain the

existence of a maximal element in F which, by Lemma 2.1.5, must be an ultrafilter.

2.2 The topological space βZ

In this section we define the topological space βZ. We show that this space is compact and

satisfies some separation axioms. At this point we will need certain basic topological definitions

and facts, which are not included in my thesis but can easily be found, for example, in any basic

undergraduate course of topology, or in [11]. In the beginning we introduce the definition of the

space βZ and distinguish some sets in this space.

Definition 2.2.1. The space βZ is defined as the space of all ultrafilters on Z. Thus,

βZ := {p ⊆ P (Z) : p is an ultrafilter on Z} .

Also for each non-empty set A ⊆ Z we define the corresponding base set, denoted by A, as the

set of those ultrafilters which contain the set A. Hence,

A := {p ∈ βZ : A ∈ p} .

From this definition we see that p ∈ A if and only if A ∈ p.

Now we prove a lemma that shows us some basic properties of base sets which are very helpful

in defining the topology on βZ.

Lemma 2.2.2. Let A and B be any non-empty subsets of Z. Then for the corresponding base

sets A and B the following holds:

1. A ∩B = A ∩B;

2. βZ \A = (Z \A);

3. Z = βZ.
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Proof. (1) Let p ∈ βZ be such that p ∈ A ∩B. Using the definition of a base set and a filter we

obtain

(A ∈ p) ∧ (B ∈ p)⇐⇒ A ∩B ∈ p,

which is equivalent with the fact that

(p ∈ A) ∧ (p ∈ B)⇐⇒ p ∈ A ∩B.

(2) If an ultrafilter p ∈ βZ is such that p /∈ A, then according to the definition of base set A /∈ p.

Since p is an ultrafilter, we have Z \A ∈ p, but this says that p ∈ (Z \A).

(3) Since for every filter p on Z we have Z ∈ p we obtain our equality.

We shall now introduce the topology on βZ and we do it by using a collection of base sets.

First, we recall that if the collection of sets B of a space X satisfies the following conditions:

1.
⋃
B = X;

2. if B1, B2 ∈ B, then there exist B ∈ B such that B ⊂ B1 ∩B2,

then there exists a unique topology O on X such that B is a base for X, and so every open

set in X is in fact the union of the sets from B. In connection with this topological fact our

situation is as follows. If we put B =
{
A : A ⊂ Z

}
where A is a base set introduced above, then,

from Lemma 2.2.2 (1), we get that B is closed under finite intersections. Also, Lemma 2.2.2 (3),

implies that B contains the whole space. Therefore, we obtain that B is the base of a topology

on βZ. Now we summarize our discussion in the following definition.

Definition 2.2.3. (topological space βZ) The space of ultrafilters βZ is a topological space

where the topology on βZ is generated by the base B =
{
A : A ⊆ Z

}
where A is the set of all

ultrafilters containing A.

We finish this section with lemma that says that base sets are also closed. As a consequence,

we obtain the characterisation of closed sets in the topological space βZ.

Lemma 2.2.4. The set A ⊆ βZ is closed for any A ⊆ Z. In particular, each closed subset of

βZ can be written as an intersection of sets from B =
{
A : A ⊆ Z

}
.

Proof. The fact that A is closed follows directly from point (2) of lemma 2.2.2 which says that

βZ \A = (Z \A) ∈ B.

Now, let C denote a closed set in βZ. Then, for some open set O in βZ, we get

C = βZ \O = βZ \
⋃
A∈A

A,
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where A is a subset of B. Then

C =
⋂
A∈B

βZ \A =
⋂
A∈B

(Z \A).

Thus we see that each closed set must be an intersection of a family of closed (and, at the same

time, open) sets from B.

2.3 Properties of the topological space βZ

In this section we present some basic properties of the topological space βZ. We start with the

presentation of the theorem which tells us that βZ is a compact space and also highlights some

separation properties.

Theorem 2.3.1. The topological space βZ is a compact Hausdorff space.

Proof. We first show that βZ is a Hausdorff space. If p and q are two different ultrafilters, then

there exists a set A ⊆ Z such that A ∈ p and A /∈ q. Using the definition of the base set we see

that this is equivalent with the fact that p ∈ A and q ∈ Z \A. Hence, the ultrafilters p and q

can be separated by two open sets.

Now we turn to the compactness of βZ. Firstly, we recall the condition that helps us to

identify the compactness property of topological spaces. This condition says that a topological

space X is compact if and only if every collection of closed sets with the finite intersection

property has a non-empty intersection. Applying this fact to the basic closed sets Ai where i ∈ I,

let us assume that
{
Ai : i ∈ I

}
is a collection with the finite intersection property. According to

Lemma 2.2.2 (1) for each finite set E ⊆ I we have:

∅ 6=
⋂
i∈E

Ai =
⋂
i∈E

Ai.

However, this implies that
⋂
i∈E Ai 6= ∅. Hence, the family of sets {Ai : i ∈ I} has the finite

intersection property. By Lemma 2.1.4 we know that such a family generates a filter F which,

according to the Lemma 2.1.6, can be extended to an ultrafilter p. Let us notice that each Ai

belongs to p, so p ∈ Ai for each i ∈ I, but this implies that p ∈
⋂
i∈I Ai. So now,

⋂
i∈I Ai 6= ∅,

since each closed set in βZ can be written as the intersection of basic closed sets (as explained

in Lemma 2.2.4), we see that our condition holds also for any collection of closed sets with the

finite intersection property. Therefore, we obtain that the space βZ is compact.

Now, we prove that the space Z is densely embedded in βZ. Let us first define the natural

embedding of Z into βZ. Since for each number n ∈ Z there is exactly one principal ultrafilter

containing the singleton {n}, we can define the map β : Z −→ βZ such that

Z 3 n 7−→ β(n) := {A ⊆ Z : n ∈ A} ∈ βZ. (2.3.1)



CHAPTER 2. THE ČECH-STONE COMPACTIFICATION βZ 12

I show that the map β is a homeomorphism onto its range and that the image β (Z) ⊆ βZ of the

set Z is dense in βZ.

Theorem 2.3.2. The topological space βZ contains a homeomorphic copy of Z as a dense subset.

Proof. First, we have to show that the map β defined above is a homeomorphism onto its range.

It is easy to see that β is injective and also, since Z carries the discrete topology, the map β

must be continuous. To prove that β is a homeomorphism onto its range, it remains to show

that β is open. Because Z is equipped with discrete topology it will be suffice to show that the

image of every singleton in Z is open in βZ. Let n ∈ Z and we obtain

{β(n)} = {p ∈ βZ : {n} ∈ p} = {n} ∈ B.

We see that {β(n)} is open in βZ. Hence, we obtain that β (Z) is a homeomorphic copy of Z.

Now we explain why β(Z) is dense in βZ. I use the definition of density, which says that

subset D of a topological space X is dense in X if every non-empty open subset in X contains

some element of D. In our case it will be enough to consider open sets from the base B. Let then

A ∈ B, we find an element of β (Z) in A. Since A 6= ∅ we can pick some n ∈ A. By definition,

{n} ∈ β(n), hence, {n} ⊆ A ∈ β(n), but this yields that β(n) ∈ A.

2.4 The Čech-Stone compactification βZ

Now we present the main essence of this chapter, namely, the fact that the space βZ is a Čech-

Stone compatification of Z. We start with the definition of Hausdorff compactification.

Definition 2.4.1. Let X be a topological space. A compact Hausdorff space C is said to be a

Hausdorff compactification of X if C contains a homeomorphic copy of X as a dense subset.

Before we state the definition of Čech-Stone compactification we recall a few more topological

facts.

Definition 2.4.2. A topological space X is called Tychonoff space if it is Hausdorff and for any

closed set F and any point x that does not belong to F there is a continuous function f from X

to the real line R such that f(x) = 0 and, for every y in F , f(y) = 1.

Remark 2.4.3. A standard topological fact concearning Tychonoff space says that a topological

space has a Hausdorff compactifcation if and only if it is Tychonoff.

Definition 2.4.4. Let X be a Tychonoff space, then the Čech-Stone compactification βX of X

is a Hausdorff compactification with an embedding β : X → βX and in addition the following

universal property is satisfied: for each compact Hausdorff space Y and continuous map f : X →

Y , there exist a uniquely determined continuous map f̃ : βX → Y such that f̃ restricted to X

equals to f .
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This definition can be illustrated by the following diagram.

X

f ""

β // βX

∃!f̃
��
Y

Remark 2.4.5. A standard topogical argument proves that the Čech-Stone compactification of

a Tychonoff space is unique in the sense that every compactification which satisfies the above

property is homeomorphic to βX.

Lemma 2.4.6. Let f be a function from Z to a compact Hausdorff space Y and let p be an

ultrafilter on Z. Let also for y ∈ Y the set U(y) denote the collection of neighbourhoods of y in

Y . Then

f−1(U) ∈ p for all U ∈ U(y)⇐⇒ y ∈
⋂
A∈p

f(A).

Proof. (=⇒) If we assume that y /∈
⋂
A∈p f(A), then we can choose a U ∈ U(y) such that for

some A ∈ p we get U ∩ f(A) = ∅. But this implies that f−1(U) ∩ A = ∅, so f−1(U) can not be

in p.

(⇐=) Similarly, if we assume that for some y ∈
⋂
A∈p f(A) and U ∈ U(y) we have f−1(U) /∈ p.

Then Z \ f−1(U) ∈ p, but this implies

U ∩ f(Z \ f−1(U)) 6= ∅,

which is not possible.

Before we present the main result of this chapter we recall another topological fact. If Y is a

Hausdorff topological space, then the value of a continuous function f : X −→ Y is completely

determined by the value of f on a dense subset D of X. To see this suppose that f and g are two

functions that agree on a dense subset D of X, and let u ∈ X \D. If f(u) 6= g(u), then there exist

open neighbourhoods U and V of f(u) and g(u), respectively, such that U∩V = ∅. Then f−1(U)

is an open neighbourhood of u and g−1(V ) is an open neighbourhood of u. Their intersection

must be an open neighbourhood of u, and, therefore, must contain elements of D; but then any

e ∈ D in the intersection has f(e) = g(e), with f(e) ∈ U and g(e) ∈ V , contradicting that

U ∩ V = ∅. Therefore, f(u) = g(u) for each u ∈ X. Hence f = g.

Theorem 2.4.7. The topological space βZ is the Čech-Stone compactification of Z.

Proof. Let f : Z → Y be a function (which is obviously continuous) from Z to an arbitrary

compact Hausdorff space Y . We are going to define a continuous function f̃ : βZ → Y which

extends f . Notice that Y is a Hausdorff space and, since Z is a dense subset of βZ, therefore, as

explained above, the function f̃ has prescribed values on Z so it is uniquely determined.
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Now, for each ultrafilter p ∈ βZ we consider the expression:
⋂
A∈p f(A), where f(A) denotes

the closure in Y of the pointwise image of the set A. We show that for each ultrafilter p ∈ βZ

the set
⋂
A∈p f(A) consists of a single point. First, notice that since each filter has the finite

intersection property, the family
{
f(A) : A ∈ p

}
has also the finite intersection property. Since

Y is a compact space the set
⋂
A∈p f(A) is non-empty.

Now we prove that for each ultrafilter p ∈ βZ the expression
⋂
A∈p f(A) cannot contain two

different points. Let assume that y1 and y2 are two distinct points contained in
⋂
A∈p f(A).

Using the fact that Y is Hausdorff we can find neighbourhoods U1 ∈ U(y1) and U2 ∈ U(y2) such

that U1 ∩ U2 = ∅. From the last lemma we get that f−1(U1) ∈ p and f−1(U2) ∈ p, which is

impossible. Hence, we proved that the set
⋂
A∈p f(A) consists of a single point. Therefore, our

function f̃ : βZ→ Y can be defined by

p 7−→ f̃(p) ∈
⋂
A∈p

f(A),

for each p ∈ βZ.

The remaining thing is to show that the function f̃ : βZ→ Y is continuous and agrees with f

on Z. First, let us show continuity. Let p ∈ βZ and V ∈ U(f̃(p)). Since Y is a compact Hausdorff

space we can find a closed set V
′ ∈ U(f̃(p)) such that V

′ ⊆ V . I want to find a neighbourhood

of p such that its image under f̃ is contained in V
′ ⊆ V . If we define A0 := f−1(V

′
) ⊆ Z, then

by Lemma 2.4.6, this set is in p so the corresponding basic set A0 is a neighbourhood of p. Now

we can see the following

f̃(p) ∈
⋂
A∈p

f(A) ⊆ f(A0) = f(f−1(V ′)) ⊆ V
′
.

Hence, we obtain continuity of f̃ .

To show agreement between f̃ and f on Z we notice the following. For any n ∈ Z and for a

principal ultrafilter β(n) = { A ⊆ Z : n ∈ A} we have

f̃(β(n)) ∈
⋂

A∈β(n)

f(A) ⊆ f({n}) = {f(n)} = {f(n)} ,

since {n} ∈ β(n) and each singleton in Y is closed. Hence we obtain f̃(β(n)) = f(n) for each

n ∈ Z which finishes the proof of the theorem.

2.5 Convergence along an ultrafilter.

In the last short section of this chapter we examine the convergence of sequences in terms of

ultrafilters. Given an ultrafilter p defined on Z and a sequence {xn}n∈Z on a topological space

X, we can consider the limit of {xn} along p. The details are as follows.
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Definition 2.5.1. For a topological space X let {xn}n∈Z be a sequence in X and let x ∈ X.

Moreover, let p be an ultrafilter defined on Z. We say that a sequence {xn}n∈Z converges to x

along p (denoted by lim
n→p

xn = x) if for each neighbourhood U of x, the set {n ∈ Z : xn ∈ U} is

in p.

The most fascinating aspect of this method of convergence is that if the topological space X

is compact, then any sequence has limit along p.

Lemma 2.5.2. For a compact Hausdorff space X and an ultrafilter p on Z let {xn}n∈Z be any

sequence taking values in X. Then there exists exactly one point x ∈ X such that lim
n→p

xn = x.

Proof. Let {xn}n∈Z be a sequence in X and p be an ultrafilter on Z. First, we prove the existence

of x ∈ X such that lim
n→p

xn = x. By contradiction, suppose that such x does not exists. Then,

for each point y ∈ X there is an open neighbourhood Uy of y such that {n ∈ Z : xn ∈ Uy} /∈ p.

By construction the family {Uy}y∈X of subsets of X is a cover for X. Since X is compact there

exist a finite collection of points y1, ..., yk in X such that the family {Uyi}
k
i=1 is a finite subcover

for X. Now we partition Z into finitely many disjoint pieces Ki (i ≤ k) in the following way

l ∈ Ki ⇔ xl ∈ Ui.

Let us notice that for some l ∈ Z we may have that the element xl belongs to more than one

element of the finite subcover. In this case we choose the element of the subcover where xl

belongs arbitrarily. By construction, no piece in this partition is in p, so we can easily see that

this contradicts the fact that p is an ultrafilter.

To prove uniqueness of the limit of a sequence {xn}n∈Z we assume that there exist two

different points x and y in X such that

( lim
n→p

xn = x) ∧ ( lim
n→p

xn = y).

Since X is a Hausdorff space we can choose two disjoint neighborhoods Ux and Uy of x and y

respectively. The sets {n : xn ∈ Ux} and {n : xn ∈ Uy} constructed like above are also disjoint

and so they can not both be in p. Hence, we see that points x and y can not be the limit of the

same sequence {xn}.



Chapter 3

Duality and Preduality

In this chapter of my thesis we focus on the concepts of duality and preduality. I divide this

chapter into three parts. The first part recalls basic tools of functional analysis. In the second

part I introduce the idea of concrete preduals and in the last part I reveal the connection between

shift-invariant preduals and dual Banach algebras. I assume that reader has basic knowledge

about topological, metric and normed spaces which can be found, for example, in [11], [22] and

in [18].

3.1 Review of basic tools of functional analysis

Research on duality and preduality demands wide knowledge of functional analysis. This section,

mainly based on [18] and [10], presents the core knowledge of this area of mathematics with

emphasis on the parts that are extensively used in my thesis. Since these concepts are also very

basic they are stated without proofs.

The very standard facts of the theory of bounded linear operators were introduced at the

beginning of Section 1.2. Here, we begin with the concept of isomorphic spaces.

Definition 3.1.1. Let X and Y be two normed spaces. We say that X and Y are isomorphic

if there exists a linear operator T : X → Y such that

1. T ∈ B(X,Y ),

2. T is bijective,

3. T−1 is bounded.

The following theorem gives sufficient conditions for a map between Banach spaces to be

an isomorphism. In particular, we only have to show that if a bijective map T : X → Y is

continuous, then continuity of the inverse is given for us for free.

Theorem 3.1.2. Let X and Y be two complete normed spaces and let T ∈ B(X,Y ) be a bijection.

Then T−1 is bounded and so T is an isomorphism.

16
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The next theorem is also helpful in examining the isomorphic structures of two normed spaces.

Theorem 3.1.3. Let X be a Banach space, Y be a normed space and T ∈ B(X,Y ). If T is

bounded below, in other words there exists M > 0 such that

‖Tx‖ ≥M‖x‖, x ∈ X, (3.1.1)

then T (X) is complete and so closed in Y .

Now we present one of the most important tool of functional analysis, namely, the Hahn-

Banach Theorem. This theorem allows us extend functionals from a subspace to the entire space

without increasing the norm. We present here the version for normed spaces. (See Theorem

4.3-2 in [12].)

Theorem 3.1.4. Let X be a normed space and Y be a subspace of X. Let also X∗ denote the

dual space of X, and Y ∗ denote the dual space of Y. Then for any y∗ ∈ Y ∗ there exists x∗ ∈ X∗

such that

〈x∗, y〉 = 〈y∗, y〉 , y ∈ Y, (3.1.2)

and

‖x∗‖ = ‖y∗‖. (3.1.3)

There are many important implications of this theorem and among them are the following

two corollaries.

Corollary 3.1.5. Let X be a normed space and X∗ its dual space. Then for any x ∈ X

‖x‖ = sup{| 〈x∗, x〉 | : x∗ ∈ X∗, ‖x∗‖ = 1}. (3.1.4)

Corollary 3.1.6. Let X be a normed space, F be a subspace of X and X∗ be the dual of X. Let

also x0 ∈ X be such that x0 /∈ F , where F denotes the closure of F . Then there exists x∗ ∈ X∗

satisfying the following conditions

〈x∗, x0〉 = 1 and 〈x∗, y〉 = 0, y ∈ F. (3.1.5)

The proof of the first corollary can be found in Lecture 12 of [10] and Theorem 3.5 in [18]

proves the second corollary.

Another important for us space is called the second dual space of X. Let X be a Banach

space. Since the normed dual space X∗ of X is itself a Banach space it has a normed dual space

denoted by X∗∗. Then every x ∈ X defines a unique functional κx ∈ X∗∗ given by the equality

〈κx, x∗〉 := 〈x∗, x〉 , x∗ ∈ X∗. (3.1.6)
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Moreover, by Corollary 3.1.5, we have

‖κx‖ = ‖x‖. (3.1.7)

The reader can easily see that by (3.1.6) we obtain a linear map κ : X → X∗∗ which by property

(3.1.7) is an isometry. The map κ is called the canonical embedding of X in X∗∗. For the reason

that X is a complete normed space we conclude that κ is an isometric isomorphism from X onto

its range κ(X) ⊆ X∗∗ (see subsection 4.5 in [18] for discussion about the second dual space). In

the case when κ(X) = X∗∗ the space X is called reflexive.

Now, let us draw our attention to the following theorem describing the concept of adjoint

operators. For proof of this theorem check Theorem 4.10 in [18].

Theorem 3.1.7. Let X and Y be a two normed spaces with dual spaces X∗ and Y ∗, respectively.

For each T ∈ B(X,Y ) there exist exactly one operator T ∗ ∈ B(Y ∗, X∗), called the adjoint of T

satisfying

〈T ∗y∗, x〉 = 〈y∗, Tx〉 , (3.1.8)

for each y∗ ∈ Y ∗ and x ∈ X. Moreover we have ‖T ∗‖ = ‖T‖.

In the next chapter we will also require some knowledge about quotient spaces. Let us now

recall this concept.

Definition 3.1.8. Let F be a subspace of a linear space X. For every x ∈ X we define the

coset π(x) of x in X by

π(x) := x+ F.

The set {π(x) = x + F : x ∈ X}, together with addition and scalar multiplication operations

defined respectively as follows

π(x) + π(y) = π(x+ y) and απ(x) = π(αx) x, y ∈ X, α ∈ C (or R),

forms a linear space called the quotient space of X modulo F and is denoted by X/F . The map

π is very often called the quotient map from X onto X/F . Note also that if X is a normed space

then X/F is as well and the required norm on X/F is defined by

‖π(x)‖ := inf {‖x− z‖ : z ∈ F} , x ∈ X.

Every normed space X is naturally equipped with topology given by a norm. Nevertheless,

we often need to consider other topologies on X. These are usually the weak and the weak*-

topologies. We now recall these ideas. Let X be a vector space over the field K of either real

numbers or complex numbers. Recall that a function p : X → R is called a seminorm if the

following condition holds
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• p(x) ≥ 0, x ∈ X;

• p(αx) = |α|p(x), x ∈ X, α ∈ K;

• p(x+ y) ≤ p(x) + p(y), x, y ∈ X.

Recall also that we say that a family P of seminorms on X is separating if p(x) = 0 for all p ∈ P

implies that x = 0, (x ∈ X). Such a family of seminorms P gives rise to a topology τp on X.

The details are as follows. For a ∈ X, p ∈ P and ε > 0 we define a set

N(a; p, ε) := {x ∈ X : p(x− a) < ε}.

A subset G of X is τp open if for any a ∈ G there exist seminorms p1, ..., pn ∈ P and scalars

ε1, ...εn > 0 such that
n⋂
j=1

N(a; pj , εj) ⊆ G.

Definition 3.1.9. Let X be a normed space and X∗ its dual. For each f ∈ X∗ we define a

seminorm pf on X by pf (x) = |f(x)|, where x ∈ X. Then the family

PX∗ := {pf : f ∈ X∗}

is separating and the corresponding topology, obtained as described above, is called the weak

topology of X and is usually denoted by σ(X,X∗). Similarly, for x ∈ X let us define a seminorm

qx on X∗ by qx(f) = |f(x)|, where f ∈ X∗. Again, the family

Qx := {qx : x ∈ X}

is separating and the corresponding topology on X∗, obtained as described above is called the

weak∗ − topology of X∗ and is usually denoted by σ(X∗, X).

Remark 3.1.10. We can also think about weak and weak*- topologies in the follownig way.

Let X be a normed space. Then the weak topology on X is the coarsest topology such that

all elements of its dual space X∗ are continuous in this topology. Similarly, the weak*-topology

on X∗ is the coarsest topology such that for each x ∈ X the functional x∗ 7→ 〈x∗, x〉 on X∗ is

continuous in this topology.

With the weak and weak*-topologies, we very often combine the ideas of weak and weak*

convergence.

Definition 3.1.11. (Weak and weak* convergence) Let X be a vector space and X∗ its

dual. We say that a sequence (xn)n∈N ⊂ X is convergent to the point x ∈ X in the weak

topology σ(X,X∗) if for each x∗ ∈ X∗

〈x∗, xn〉 −→ 〈x∗, x〉 as (n −→∞). (3.1.9)
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In this case, we often say that a sequence (xn)n∈N is weakly convergent to x. In a similar vein,

we define weak*-convergence on X∗. We say that a sequence of functionals (x∗n)n∈N ⊂ X∗ is

weak*-convergent to x∗ if for each x ∈ X

〈x∗n, x〉 −→ 〈x∗, x〉 as (n −→∞). (3.1.10)

The last fact in this section is more advanced. (See Item 45.2 in [4] for a proof.)

Lemma 3.1.12. Let X be a normed space, X∗ its dual and X∗∗ its second dual. Let also

κ : X → X∗∗ be the canonical embedding. Then κ(X) is dense in X∗∗ for the weak*-topology

σ(X∗∗, X∗).

3.2 Concrete Preduals

This part of my thesis focuses on informations about concrete preduals. The content of the

material included here is almost entirely based on section 2 of [7]. Here we will use the concepts

and notations introduced in the previous section of this chapter where we reviewed the basic

tools of functional analysis. Nevertheless, before we start learning about concrete preduals let

us recall one more fact concerning dual spaces. (See Theorem 4.9 in [18]).

Fact 3.2.1. For a closed subspace F of a Banach space X its dual space F ∗ is isometrically

isomorphic to the quotient space X∗/F⊥, where

F⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0, for all x ∈ F} .

Definition 3.2.2. Let F be a closed subspace of `∞(Z) and r be the restriction map from

`∞(Z)∗ to F ∗. Let also κ`1(Z) : `1(Z) → `1(Z)∗∗ = `∞(Z)∗ be the canonical embedding. We

define a map ιF as the composition of the map κ`1(Z) and r. Thus,

ιF := r ◦ κ`1(Z) : `1(Z) −→ F ∗. (3.2.1)

The following diagram illustrates the above definition of the map ιF combined with Fact

3.2.1.

`1(Z)

κ`1(Z) &&

ιF // `∞(Z)∗/F⊥

`∞(Z)∗

r

OO

Hence, for x ∈ F and a ∈ `1(Z) we have

〈x, a〉 =
〈
κ`1(Z)(a), x

〉
=
(
κ`1(Z)(a)

)
(x) = κ`1(Z)(a)|F (x) = 〈ιF (a), x〉 . (3.2.2)

Now we present the definiton of a concrete predual of `1(Z). This is a very useful concept
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since the work on concrete preduals, as will be explained below, gives identical results as the

work on the standard preduals. Moreover, concrete preduals are easier to explore, which gives

an advantage over the standard definition of preduality.

Definition 3.2.3. Let F be a closed subspace of `∞(Z) and let ιF be the map introduced above.

We say that F is a concrete predual of `1(Z) if the map ιF is an isomorphism.

In the next lemma I show how we may obtain a concrete predual having predual E ∼= `1(Z)∗.

This Lemma is based on Lemma 2.1 of [7], where the authors also included facts that weak*-

topologies included by preduals and associated with them concrete predual are the same. I

added more theoretical details to make this proof more convenient to read. The facts concerning

weak*-topologies are explained in the Corollary 3.2.5.

Lemma 3.2.4. Let E be a Banach space and κE be the canonical embedding of E into E∗∗. Let

also θ : `1(Z) → E∗ be an isomorphism and θ∗ : E∗∗ → `1(Z)∗ = `∞(Z) be its adjoint map.

Then the map

T := θ∗ ◦ κE : E −→ `∞(Z), (3.2.3)

is an isomorphism onto its range F := T (E). Moreover, the map ιF introduced in Definition

3.2.2 is an isomorphism and so the subspace F is a concrete predual of `1(Z).

Proof. Let a ∈ `1(Z), x ∈ E and κ`1(Z) : `1(Z) → `∞(Z)∗ be the canonical embedding.

Then using formulas (3.1.6) and (3.1.8) from the previous section for the adjoint operator

T ∗ : `∞(Z)∗ → E∗ we have

〈
T ∗ ◦ κ`1(Z)(a), x

〉
=
〈
T ∗(κ`1(Z)(a)), x

〉
=
〈
κ`1(Z)(a), Tx

〉
= 〈Tx, a〉 . (3.2.4)

Now, by (3.2.3),

〈Tx, a〉 = 〈θ∗ ◦ κE(x), a〉 = 〈θ∗(κE(x)), a〉 = 〈κE(x), θ(a)〉 = 〈θ(a), x〉 . (3.2.5)

Hence, we see that (3.2.4) and (3.2.5) imply

〈Tx, a〉 = 〈θ(a), x〉 , a ∈ `1(Z), x ∈ E (3.2.6)

and, in particular,

T ∗ ◦ κ`1(Z) = θ. (3.2.7)

Now, let us observe the following. Since θ is an isomorphism, for any e∗ ∈ E∗ we have

θ(θ−1(e∗)) = e∗ and ‖θ−1(e∗)‖ ≤ ‖θ−1‖‖e∗‖. For a ∈ `1(Z) this gives us

{θ(a) : ‖a‖ ≤ 1} = {e∗ ∈ E∗ : ‖θ−1(e∗)‖ ≤ 1} ⊇
{
e∗ ∈ E∗ : ‖e∗‖ ≤ 1

‖θ−1‖

}
. (3.2.8)

Using this observation we show that T is bounded below.



CHAPTER 3. DUALITY AND PREDUALITY 22

Let x ∈ E, then

‖Tx‖ = sup{| 〈Tx, a〉 | : a ∈ `1(Z), ‖a‖ ≤ 1},

which, by equation (3.2.6), is equivalent to

‖Tx‖ = sup{| 〈θ(a), x〉 | : a ∈ `1(Z), ‖a‖ ≤ 1}.

Applying (3.2.8) and Corollary 3.1.5, we finally obtain

‖Tx‖ = sup{| 〈θ(a), x〉 | : a ∈ l1(Z), ‖a‖ ≤ 1} ≥ sup

{
|〈e∗, x〉| : ‖e∗‖ ≤ 1

‖θ−1‖

}
=
‖x‖
‖θ−1‖

.

As a result, we obtain that ‖Tx‖ ≥ ‖x‖
‖θ−1‖ , which implies that T is bounded below and, thus, is

an isomorphism onto its range F . Hence, by (3.2.1) and (3.2.6), for a ∈ `1(Z) and x ∈ E we

have

〈T ∗ιF (a), x〉 = 〈T (x), a〉 = 〈θ(a), x〉 ,

which gives T ∗ιF = θ. Since T ∗ is an isomorphism we obtain that ιF = (T ∗)−1θ must also be

an isomorphism, but this, by Definition 3.2.3, yields that F is a concrete predual of `1(Z).

Now let us turn to the weak*-topologies on `1(Z) induced by predual E and the corresponding

concrete predual.

Corollary 3.2.5. In the situation described in Lemma 3.2.4 the weak*-topologies induced by the

pairings (`1(Z)
θ∼= E∗, E) and (`1(Z), F ) agree. In other words for any net (aα) ∈ `1(Z) we have

(lim
α
〈θ(aα), x〉 = 0 for all x ∈ E)⇐⇒ (lim

α
〈y, aα〉 = 0 for all y ∈ F ).

Proof. Indeed, let us consider (aα), a null net in `1(Z) for the σ(`1(Z), F ) topology. This means

that

lim
α
〈Tx, aα〉 = 0, x ∈ E.

By (3.2.6) this is equivalent to

lim
α
〈θ(aα), x〉 = 0, x ∈ E.

which is equivalent to the fact that the net (θ(aα)) is weak*-null for the σ(`1(Z) ∼= E∗, E)

topology.

The next lemma shows us when two concrete preduals induce the same weak*-topologies on

`1(Z). This lemma is based on Lemma 2.2 of [7].

Lemma 3.2.6. Let E1 and E2 be two preduals of `1(Z) and let F1 and F2 be concrete preduals

of `1(Z) obtained respectively from E1 and E2 as explained in Lemma 3.2.4. Then the weak*-

topologies on `1(Z) induced by E1 and E2 agree if and only if F1 = F2.
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Proof. (⇐=) Let F1 and F2 be concrete preuals of `1(Z) associated respectively with preduals E1

and E2. If F1 = F2 then the topologies σ(`1(Z), F1) and σ(`1(Z), F2) agree, hence by Corollary

3.2.5 the topologies (E∗1 , E1) and (E∗2 , E2) must agree as well.

(=⇒) Let E1 and E2 be preduals of `1(Z) with its dual spaces E∗1 and E∗2 . Let also θ1 : `1(Z)→

E∗1 and θ2 : `1(Z)→ E∗2 be isomorphisms. (We know that such an isomorphisms exist since E1

and E2 are preduals of `1(Z)). Let us assume that E1 and E2 induce the same weak*-topology

on `1(Z), but there exists x ∈ `∞(Z) such that x ∈ F1 and x /∈ F2. Then by Corollary 3.1.6 we

can find Λ ∈ `∞(Z)∗ such that

〈Λ, x〉 = 1 and 〈Λ, y〉 = 0, y ∈ F2. (3.2.9)

Now, by an application of Lemma 3.1.12, there exists a bounded net (aα) ⊂ `1(Z) converging

weak* to Λ in `∞(Z)∗ = `1(Z)∗∗. For such a net

lim
α
〈y, aα〉 = 〈Λ, y〉 = 0, y ∈ F2.

By Corollary 3.2.5 this is equivalent with the fact that

lim
α
〈θ2(aα), z〉 = 0, z ∈ E2,

which, by assumption, implies that

lim
α
〈θ1(aα), z〉 = 0, z ∈ E1,

Now, again by Corollary, 3.2.5 this is equivalent with

lim
α
〈y, aα〉 = 〈Λ, y〉 = 0, y ∈ F1,

which can not be true since, by (3.2.9), there exists x ∈ F1 such that 〈Λ, x〉 = 1. This implies

that we must have F1 ⊆ F2. The same proof occurs if we suppose that x ∈ F2 \ F1 and then

F2 ⊆ F1. Hence, ultimately we obtain F1 = F2.

Notice that this lemma shows why we care about exactly what subspace of `∞(Z) we get -

not just the Banach space isomorphism class of the predual. The following example shows how

the theory presented in this section works if we consider E as the Banach space of continuous

functions C(K), where K is a countable, infinite and compact Hausdorff space. In Lemma 1.2.4

we have shown that C(K) is a predual of `1(Z), but here we present C(K) as a concrete predual

F , and then we show that concrete predual obtained that way can not be shift-invariant. This

is an easier way to prove so and does not require to refer to the more advanced theory included

in [8], as we mentioned at the end of section 1.2.
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Example 3.2.7. Take a countable infinite compact Hausdorff space K and enumerate K as

{xi : i ∈ N}. Let us define an isomorphism θ : `1(Z) −→ C(K)∗ = M(K) by assigning to every

(an) ∈ `1(Z) to the unique measure µ ∈ M(K) such that µ({xn}) = an, where {xn} is a Borel

set. According to the above lemma the map

T = θ∗ ◦ κC(K) : C(K) −→ T (C(K)) ⊆ `∞(Z),

where κC(K) is a canonical embedding and θ∗ is adjoint to θ, is an isomorphism from `1(Z) onto

F = T (C(K)) and so F is a concrete predual of `1(Z). Let us write the map T more explicitly.

We claim that

(Tf)(n) = f(xn), f ∈ C(K), n ∈ Z. (3.2.10)

Indeed, let f ∈ C(K) and xn ∈ K

(Tf)(n) = (θ∗κC(K)f)(n) =
〈
θ∗κC(K)f, δn

〉
=
〈
κC(K)f, θ(δn)

〉
= 〈θ(δn), f〉 = f(n). (3.2.11)

Hence, we see that the concrete predual of `1(Z), associated with C(K), has a form

F = T (C(K)) = {Tf : (Tf)(n) = f(xn), f ∈ C(K)} ⊆ `∞(Z).

We now explain why the concrete predual F cannot be shift-invariant. By contradiction let

us assume that F is shift-invariant. Since K is a infinite, countable and compact, by the Baire

category theorem there exists at least one isolated point in K. Without loss of generality, assume

that x0 ∈ K is an isolated point and define a function f : K −→ C by setting

f(x) =

 1 if x = x0;

0 if x 6= x0.

Because x0 is isolated, the function f is continuous on K and so Tf = δ0. This implies that

δ0 ∈ F and by shift-invariance for all n the element δn is in F. Hence, we see that c0(Z) is

included in F . On the other hand, if c0(Z) ⊆ F , then necessarily c0(Z) = F , but we know that

it never happens. The obtained contradiction proves that C(K) is not a shift-invariant predual

of `1(Z).

3.3 Relation between shift-invariant preduals and dual Ba-

nach algebras

In this section we reveal the connection between shift-invariant preduals of `1(Z) and a dual

Banach algebra `1(Z) mentioned in the introduction. First, we recall the definition of Banach

algebra which readers should know from a basic course of functional analysis and then we present

the definition of dual Banach algebra. Readers interested more in the theory of dual Banach
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algebras I refer to [16] and [17]. For information about the foundations of Banach algebras I

refer to the very beginning of chapter 10 in [18].

Definition 3.3.1. Let X be an algebra and let ∗ denote a multiplication product on X. If X

is at the same time a Banach space with norm ‖ · ‖ satisfying for each x, y ∈ X the following

condition

‖x ∗ y‖ ≤ ‖x‖‖y‖,

then X is called Banach algebra.

Definition 3.3.2. A Banach algebra X is said to be a dual Banach algebra if there exists a

Banach space Y which is a predual of X and moreover the multiplication operation on X is

separately weak*-continuous, with respect to Y .

We now present the definition of the bilateral shift.

Definition 3.3.3. Let KZ denotes the vector space of all sequences of scalars indexed by Z, where

K is the field either of real or complex numbers. Then the bilateral shift operator σ : KZ → KZ

is defined as follows

σ : KZ 3 x = (..., x−2, x−1,

(0)︷︸︸︷
x0 , x1, x2, ...) −→ σ(x) = (..., x−2,

(0)︷︸︸︷
x−1 , x0, x1, x2, ...) ∈ KZ.

(3.3.1)

Remark 3.3.4. We see that the bilateral shift operator defined above has the property of

shifting elements x ∈ KZ one position to the right. Also notice that the formula (3.3.1) may

also be written as σ(x)(n) = x(n − 1). In a similar, vein we can define bilateral shift which

changes position of any x ∈ KZ one position to the left. This operator is σ−1 and the formula

σ(x)−1(n) = x(n+ 1) describes this operator explicitly. Note that σ restricts to a map on `1(Z),

which we also denote by σ.

Fact 3.3.5. Let σ the bilateral shift on `1(Z) introduced in Definition 3.3.3, then the adjoint

operator σ∗ is the bilateral shift operator on `∞(Z) going in the opposite direction.

Proof. Indeed, by Theorem 3.1.7 for the bilateral shift operator σ : `1(Z) → `1(Z) there exists

exactly one adjoint operator σ∗ : `∞(Z)→ `∞(Z) such that

〈σ∗(y∗), x〉 = 〈y∗, σ(x)〉 , y∗ ∈ `∞(Z), x ∈ `1(Z). (3.3.2)

Hence, for

y∗ = (..., y∗−2, y
∗
−1,

(0)︷︸︸︷
y∗0 , y∗1 , y

∗
2 , ...) ∈ `∞(Z)

x = (..., x−2, x−1,

(0)︷︸︸︷
x0 , x1, x2, ...) ∈ `1(Z)

σ(x) = (..., x−2,

(0)︷︸︸︷
x−1 , x0, x1, x2, ...) ∈ `1(Z),
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we have

〈y∗, σ(x)〉 = ...+ y∗−2x−3 + y∗−1x−2 + y∗0x−1 + y∗1x0 + y∗2x1 + ... =
∑
k∈Z

y∗kxk−1.

On the other hand,

〈σ∗(y∗), x〉 = ...+ σ∗(y∗)(−1)x−1 + σ∗(y∗)(0)x0 + σ∗(y∗)(1)x1 + ... =
∑
k∈Z

σ∗(y∗)(k)xk.

Hence, we must have

∑
k∈Z

y∗kxk−1 =
∑
k∈Z

σ∗(y∗)(k)xk, (xk) ∈ `1(Z),

and so σ∗(y∗)(k − 1) = y∗k, which is equivalent to σ∗(y∗)(k) = y∗k+1. Notice that analogical

proof holds for the bilateral shift operator σ−1(see Remark 3.3.4) and in this case we obtain

(σ−1)∗(y∗)(k) = y∗k−1.

The following two lemmas reveal the connection between shift-invariant preduals of `1(Z)

and dual Banach algebra `1(Z). These are based on Lemma 2.3 of [7], but we added here more

details for better understanding of the material. In particular, the authors in [7] prove these

lemmas by working only with the bilateral shift σ considering this operator as invariant in both

directions, left and right. Here we make an additional effort and for purpose of this thesis we

distinguish left and shift invariance (See definition below).

Definition 3.3.6. Let σ, σ−1 be the bilateral shift operators on `1(Z) described by Remark

3.3.4, and let σ∗, (σ−1)∗ be associated with them the bilateral shift operators on `∞(Z). (See

Fact 3.3.5). We say that a concrete predual F of `1(Z) is left shift-invariant if σ∗(F ) ⊆ F .

Similary, we say that a concrete predual F of `1(Z) is right shift-invariant if (σ−1)∗(F ) ⊆ F . A

predual F it is said to be shift-invariant if is both right and left shift-invariant.

Lemma 3.3.7. Let F ⊆ `∞(Z) be a concrete predual of `1(Z) and let σ and σ−1 be the bilateral

shift operators on `1(Z). Then σ is weak*-continuous, with respect to F if and only if the space

F is left shift-invariant. Similary, σ−1 is weak*-continuous, with respect to F if and only if the

space F is right shift-invariant.

Proof. (=⇒) Let σ be the bilateral shift operator on `1(Z) and let σ∗ be the adjoint operator

which, by Fact 3.3.5, is the bilateral shift on `∞(Z) going in the opposite direction. Suppose

that the space F is not left shift-invariant. Hence, there exists x ∈ F \σ∗(F ) which implies that

(σ∗)−1(x) /∈ F . Now, in according to Corollary 3.1.6, we have the existence of Λ ∈ `∞(Z)∗ such

that 〈
Λ, (σ∗)−1(x)

〉
= 1 and 〈Λ, y〉 = 0, y ∈ F.
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Let (aα) ⊆ `1(Z) be a net convergent weak* to Λ in `∞(Z)∗. Hence,

lim
α
〈y, aα〉 = 0, y ∈ F.

Therefore, we see that (aα) is weak*-null for the weak*-topology given by F . This implies that

the sequence (σ−1(aα)) is also weak*-null for the weak*-topology given by F . Hence, for any

x ∈ F we have

0 = lim
α

〈
x, σ−1(aα)

〉
,

which is equivalent with

0 = lim
α

〈
(σ∗)−1(x), aα

〉
,

and so

0 =
〈
Λ, (σ∗)−1(x)

〉
= 1.

This contradiction gives σ∗(F ) ⊆ F and so F is left shift-invariant. A similar proof holds when

we will try to show that (σ−1)∗(F ) ⊆ F , whence σ−1 is weak*-continuous, with respect to F

then the space F is right shift-invariant.

(⇐=) Let (aα) be a weak*-null net in `1(Z), σ the bilateral shift on `1(Z) and σ∗ the adjoint

operator of σ. Let x ∈ F , then by assumption

lim
α
〈σ∗(x), aα〉 = 0,

which implies

lim
α
〈x, σ(aα)〉 = 0.

Hence, we see that (σ(aα)) is weak*-null, which automatically gives the weak*-continuity of the

bilateral shift operator σ with respect to F . Similary we can prove that, if F is right shift-

invariant, then σ−1 is weak*-continuous, with respect to F .

Lemma 3.3.8. Let F ⊆ `∞(Z) be a concrete predual of `1(Z). Then F is shift-invariant if and

only if `1(Z) is a dual Banach algebra with respect to F .

Proof. (⇐=) Let (fi) ⊂ `1(Z) be a sequence which converges weak* to f ∈ `1(Z), with respect

to F and let also δ1 ∈ `1(Z) be such that δ1 = (...0, 0,

1︷︸︸︷
1 , 0, 0, ..). Then by assumption for any

x ∈ F we have

〈fi ∗ δ1, x〉 −→ 〈f ∗ δ1, x〉 , (i→∞). (3.3.3)

Now, notice that for any g ∈ `1(Z) and n ∈ Z we have

(g ∗ δ1)(n) =
∑
k∈Z

g(k)δ1(n− k) = g(n− 1) = σ(g)(n), (3.3.4)

where σ is the bilateral shift on `1(Z). Hence, σ is the operator of convolution by δ1, so by
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assumption in (3.3.3) we obtain

〈σfi, x〉 = 〈fi ∗ δ1, x〉 −→ 〈f ∗ δ1, x〉 = 〈σ(f), x〉 (i −→∞). (3.3.5)

Now, we see that σ is weak*-continuous what by the previous lemma implies that F is left

shift-invariant. Notice that the analogous calculation applied to δ−1 in (3.3.4) implies that F is

right shift-invariant. Therefore the predual F is both, left and right shift-invariant and so by

Definition 3.3.6 is shift-invariant.

(=⇒) Let (fi) ⊂ `1(Z), f ∈ `1(Z) and suppose that for any x ∈ F we have 〈fi, x〉 −→ 〈f, x〉

as i → ∞. Now fix g ∈ `1(Z). We want to show that 〈fi ∗ g, x〉 −→ 〈f ∗ g, x〉 as i → ∞.

First, notice that g can presented as g =
∑
n∈Z αnδn, where δn = (..., 0, 0,

n︷︸︸︷
1 , 0, 0, ...) for some

sequence of scalars (αn)n∈Z such that
∑
n∈Z |αn| <∞. Moreover, since the convolution product

on `1(Z) is commutative, by applying δn in (3.3.4) in the previous lemma we obtain

f ∗ g = g ∗ f =
∑
n∈Z

αnδn ∗ f =
∑
n∈Z

αnσ
n(f), (3.3.6)

where σ is the bilateral-shift operator on `1(Z). Notice, that since there exists a constant

M > 0 such that for each i ∈ N we have ‖σ(fi)‖ < M the expressions
∑
n∈Z αn 〈σn(fi), x〉 are

uniformly bouned. Thus, since F is shift invariant, by the previous lemma and by the Dominate

Convergence Theorem we obtain, as i→∞ that

〈fi ∗ g, x〉 =
∑
n∈Z

αn 〈σn(fi), x〉 −→
∑
n∈Z

αn 〈σn(f), x〉 = 〈f ∗ g, x〉 , x ∈ F. (3.3.7)

Hence, the convolution product on `1(Z) is separately weak*-continuous what implies that `1(Z)

is a dual Banach algebra.



Chapter 4

The Predual F (λ)

This chapter of my thesis focuses on the definition and basic properties of the space F (λ). I

follow the construction of this space from chapter 3 of [7]. The space F (λ) constructed in that

paper proved to be a shift-invariant predual of `1(Z). In my work I add some new elements to

that paper, such as a space F
(λ)
+ and examine some properties of this space. In this chapter we

also use the theory of Čech-Stone compactification introduced in chapter 2 to show that F (λ)

is a G − space - a fact needed in [1] to obtain non-constructive isomorphism between F (λ) and

c0(Z).

4.1 Necessary instruments for defining the space F (λ)

In this section I introduce some notation and make some provisions which will be used throughout

this chapter and then in the rest of this thesis. We start with the following two definitions, which

can be found at the very beginning of chapter 3 in [7].

Definition 4.1.1. Let n ∈ Z, then the function b defined on Z takes the following values

b(n) :=


k if n > 0;

0 if n = 0;

−∞ if n < 0.

(4.1.1)

where k denotes the number of ones in the binary expansion of n.

Having defined the value b(n), we may now introduce an important for us an element x0 ∈

`∞(Z).

Definition 4.1.2. Let λ denotes a complex scalar with absolute value |λ| > 1. Then, the

element x0 ∈ `∞(Z) is defined by the formula x0(n) = λ−b(n), where n ∈ Z and b(n) is defined

29
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above. Writing more explicitly, we obtain

x0(n) =


λ−b(n) if n > 0;

1 if n = 0;

0 if n < 0.

(4.1.2)

Hence,

x0 = (..., 0, 0,

0︷︸︸︷
1 , λ−1, λ−1, λ−2, λ−1, λ−2, λ−2, λ−3, λ−1, ...).

The definition of the element is crucial for us since as it will be clear in the next section we

use this element to define the space F (λ). Now, we introduce a bounded linear operator acting

between `∞(Z) space. This operator and the bilateral shift operator by Definition 3.3.3 satisfy

interesting equation given in Lemma 4.1.5. The material which will be presented here is taken

form the beginning of chapter 3 of [7].

Definition 4.1.3. A bounded linear operator τ : `∞(Z)→ `∞(Z) is defined by the formula

τ(x)(n) =

 x(n/2) n even;

0 n odd,
(4.1.3)

where n ∈ Z and x ∈ `∞(Z).

It is easy to observe that the operator τ has the property of spreading out elements of

x ∈ `∞(Z). For example, application of this operator to the element x0 gives:

x0 = (..., 0, 0,

0︷︸︸︷
1 , 0, λ−1, 0, λ−1, 0, λ−2, 0, λ−1, 0, λ−2, 0, λ−2, 0, λ−3, 0, λ−1, 0, ...).

Recall also that the bilateral shift operator σ, introduced in Definition 3.3.3, which has the

formula

σ(x)(n) = x(n− 1), (4.1.4)

where x ∈ `∞(Z) and n ∈ Z. The next short lemma shows a relation between the operators τ

and σ.

Lemma 4.1.4. For the operators σ and τ defined above the following equation holds

τσ = σ2τ. (4.1.5)

Proof. Let n ∈ Z be even. Starting from the lefthand side for any element x ∈ `∞(Z), applying

formulas (4.1.4) and (4.1.3) we obtain

τσ(x) = σ(x)(n/2) = x(n/2− 1) = τ(x)(n− 2) = σ2τ(x)(n).
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In the case when n is odd it is easy to see that both sides are equal to zero. Hence, our equation

is satisfied for all n ∈ Z.

Using this easy result, we now prove a more complicated formula, which is based on Lemma

3.1 in [7]. We add here more theoretical details to make this proof more convenient for under-

standing. This lemma will be very valuable in proving the fact that τ(x0) is the element of F
(λ)
+

(see Lemma 4.2.5).

Lemma 4.1.5. Let id : `∞(Z) −→ `∞(Z) be the identity operator. Then for the element x0,

scalar λ and operators σ, τ introduced above, the following equation holds:

(id− λ−1σ)(x0)(n) = (λ− 1)

∞∑
j=1

λ−jτ j(x0)(n) n ∈ Z. (4.1.6)

Proof. To obtain the above equation for any n ∈ Z we subdivide its proof into three cases,

namely: a) n < 0, b) n = 0 and c) n > 0.

a) If n < 0, then on the left-hand side of the equation (4.1.6) we have

(id− λ−1σ)(x0)(n) = x0(n)− λ−1σ(x0)(n) = x0(n)− λ−1x0(n− 1) = 0− 0 = 0.

On the right-hand side of (4.1.6), since τ j(x0)(n) = 0 for any j ∈ N we obtain

(λ− 1)

∞∑
j=1

λ−jτ j(x0)(n) =

∞∑
j=1

λ−j+1τ j(x0)(n)−
∞∑
j=1

λ−jτ j(x0)(n) = 0− 0 = 0.

Therefore, we see that the equation (4.1.6) holds for n < 0.

b) Very similarly to the previous case we prove the case with n = 0. Here, on the lefthand side

of (4.1.6) we get

(id− λ−1σ)(x0)(0) = x0(0)− λ−1σ(x0)(0) = x0(0)− λ−1x0(−1) = 1− 0 = 1.

Since for all j ∈ N we have τ j(x0)(0) = 1 we see that

(λ− 1)

∞∑
j=1

λ−jτ j(x0)(n) =

∞∑
j=1

λ−j+1τ j(x0)(n)−
∞∑
j=1

λ−jτ j(x0)(n) =

∞∑
j=2

λ−j −
∞∑
j=1

λ−j = 1.

And so the equation (4.1.6) also holds for n = 1.

c) The last case is a bit more complicated. Let us first write a given natural number n > 0 in

the binary expansion form. Therefore, there exists a natural number l such that

n = ε020 + ε121 + ...+ εj2
j + ...+ εl2

l, where εj ∈ {0, 1} and j ∈ {0, 1, ..., l}.

Now, let k be the smallest number from the set {0, 1, ..., l} such that εk = 1. Since 2k − 1 =
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∑k−1
j=0 2j , we obtain that the binary expansion of n− 1 is

n− 1 = 20 + 21 + ...+ 2k−1 + εk+12k+1 + ...+ εl2
l.

In other words,

n− 1 =

k−1∑
j=0

2j +

l∑
j=k+1

εj2
j .

Which immediately implies that

b(n− 1) = b(n)− 1 + k. (4.1.7)

Now let us make the following observation. For a natural number n, the number k mentioned

above can be also viewed as the largest one such that 2k|n. This fact yields that 2j |n for any

natural number j ≤ k. As an easy consequence of this fact, we obtain that b(n) = b( n
2k

) and so

τ j(x0)(n) =

 x0(n) if j ≤ k;

0 if j > k.
(4.1.8)

Having all this information presented we check the equation (4.1.6) starting from the left-hand

side. Firstly using the equation (4.1.7) we obtain:

(id− λ−1σ)(x0)(n) = x0(n)− λ−1σ(x0)(n) = λ−b(n) − λ−b(n)−k = (1− λ−k)x0(n).

For the reason that (1− λ−k) = (λ− 1)
∑k
j=1 λ

−j we have that

(id− λ−1σ)(x0)(n) = (λ− 1)

k∑
j=1

λ−jx0(n).

Finally, applying (4.1.8), we receive

(1− λ−k)(x0)(n) = (λ− 1)

k∑
j=1

λ−jτ j(x0)(n) = (λ− 1)

∞∑
j=1

λ−jτ j(x0)(n).

Hence, we see that the equation (4.1.6) is satisfied for n > 0.

4.2 The Space F (λ)

Now we introduce the main object of our study, namely, the space F (λ). At this point, we will

need to recall the definition of linear span introduced, for example, during the course of linear

algebra. We also mention here an important concept of shift-invariant space.

Definition 4.2.1. For a vector space X and subset A ⊆ X the space span(A) is defined as the
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set of all finite linear combinations of the elements of A. Hence,

span(A) :=

{
k∑
i=1

λivi | k ≥ 1, vi ∈ A, λi ∈ K

}
.

Definition 4.2.2. Let σ be the bilateral shift operator introduced in Definition 3.3.3. A linear

subspace A of a vector space `∞(Z) is said to be shift-invariant if for each element a ∈ A, the

element σn(a) ∈ A, for any n ∈ Z.

Now we present the definitions of the space F (λ) and F
(λ)
+ .

Definition 4.2.3. Let us define the sets A := {σn(x0) : n ∈ Z} and A+ := {σn(x0) : n ≥ 1},

then the spaces F (λ) and F
(λ)
+ are defined as the closure of span(A) and span(A+), respectively,

with the norm inherited from `∞(Z). Hence,

F (λ) := span(A) = span {σn(x0) : n ∈ Z}, (4.2.1)

F
(λ)
+ := span(A+) = span {σn(x0) : n ≥ 0}. (4.2.2)

Fact 4.2.4. From the definition of a subspace, spaces F (λ) and F
(λ)
+ are subspaces of `∞(Z).

Also, since F
(λ)
+ ⊂ F (λ), we obtain that F

(λ)
+ is a subspace of F (λ). The reader can easily see

from the fact that the operator σ is bounded and linear, both F (λ) and F
(λ)
+ are shift-invariant.

The next two lemmas show from what elements we can expect to be in F
(λ)
+ and so in

F (λ) space. These are based on the second part of Lamma 3.1 in [7], where was shown that

τ(x0) ∈ F (λ). We change the proof of this lemma a little showing, in the first Lemma that τ(x0)

is in F
(λ)
+ and, in the second Lemma, that τk(x0) is in F

(λ)
+ , for any k ≥ 1.

Lemma 4.2.5. With the notation introduced above, τ(x0) ∈ F (λ)
+ .

Proof. To prove that our statement is true let σ and τ be the operators defined by the formulas

(4.1.4) and (4.1.3) respectively. Let also id be the identity operator on `∞(Z) and let λ ∈ C be

such that |λ| > 1. Multiplying (id− λ−1τ) by (id− λ−1σ) we receive

(id− λ−1τ)(id− λ−1σ)(x0) = (id− λ−1σ)(x0)− λ−1τ(id− λ−1σ)(x0). (4.2.3)

By the result of Lemma 4.1.5 we obtain

(id− λ−1σ)(x0)− λ−1τ(id− λ−1σ)(x0) = (λ− 1)

∞∑
j=1

λ−jτ j(x0)− λ−1τ(λ− 1)

∞∑
j=1

λ−jτ j(x0).

But this implies

(id− λ−1τ)(id− λ−1σ)(x0) = (λ− 1)(

∞∑
j=1

λ−jτ j(x0)−
∞∑
j=2

λ−jτ j(x0)).
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Hence, we obtain that

(id− λ−1τ)(id− λ−1σ)(x0) =
λ− 1

λ
τ(x0).

Now we solve this equation for (id− λ−1σ)(x0). We see that by (4.2.3)

(id− λ−1σ)(x0) =
λ− 1

λ
τ(x0) + λ−1τ(id− λ−1σ)(x0). (4.2.4)

Since

λ− 1

λ
τ(x0) +λ−1τ(id−λ−1σ)(x0) =

λ− 1

λ
τ(x0) +λ−1τ(x0)−λ−2τσ(x0) = τ(x0)−λ−2τσ(x0),

by the result of Lemma 4.1.4, we ultimately obtain

(id− λ−1σ)(x0) = (id− λ−2σ2)τ(x0). (4.2.5)

My intention is to find the formula for τ(x0) from the equation (4.2.5). Notice, that this will be

possible if the operator (id− λ−2σ2) will be invertible. The well known fact from the theory of

operators, which can be found for example in Theorem 10.7 of [18], explains that this is the case

if
∥∥λ−2σ2

∥∥ < 1, which is true since ‖σ‖ = 1 and |λ| > 1. Also, from the same theorem, we get

(id− λ−2σ2)−1 =
∑∞
j=0 λ

−2jσ2j . This immediately implies that

τ(x0) = (id− λ−2σ2)−1(id− λ−1σ)(x0) =

∞∑
j=0

λ−2jσ2j(id− λ−1σ)(x0). (4.2.6)

Since the space F
(λ)
+ is shift-invariant for the shift operator σ the element (id − λ−1σ)(x0) is

in F
(λ)
+ . Moreover, since by definition F

(λ)
+ is closed, we obtain that the series in (4.2.6) is

convergent in F
(λ)
+ , which implies that τ(x0) ∈ F (λ)

+ .

As an easy consequence of this lemma we get the following important result.

Lemma 4.2.6. With the notation introduced above, the element τk(x0) ∈ F (λ)
+ , for any k ≥ 1.

Proof. We conduct the proof of this lemma by induction. The case with k = 1 is the result of

the last lemma, therefore, let us assume that for k ≥ 2 the element τk−1(x0) is in F
(λ)
+ . I show

that τk(x0) is also in F
(λ)
+ . By the equation (4.2.6) we obtain

τk(x0) = τk−1τ(x0) = τk−1

 ∞∑
j=0

λ−2jσ2j(id− λ−1σ)(x0)

 ,

which implies

τk(x0) =

∞∑
j=0

(
λ−2jτk−1σ2j(x0)− λ−2j−1τk−1σ2j+1(x0)

)
. (4.2.7)
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Now notice the following. The formula proved in Lemma 4.1.4 implies that for any k, l ≥ 1 we

have τkσl = σ2klτk. Indeed, let k = 1 and l ≥ 1, then by Lemma 4.1.4 we have

τ ◦σl = (τ ◦σ)◦
l−1︷ ︸︸ ︷

σ ◦ ... ◦ σ = σ2◦(τ ◦σ)◦
l−2︷ ︸︸ ︷

σ ◦ ... ◦ σ = σ2+2◦(τ ◦σ)◦
l−3︷ ︸︸ ︷

σ ◦ ... ◦ σ = ... = σ2(l−1)◦(τ ◦σ),

which implies that

τ ◦ σl = σ2l ◦ τ. (4.2.8)

Using formula (4.2.8), let k ≥ 1 and l ≥ 1, then

τkσl =

k−1︷ ︸︸ ︷
τ ◦ ... ◦ τ ◦τ ◦ σl =

k−1︷ ︸︸ ︷
τ ◦ ... ◦ τ ◦σ2l ◦ τ =

k−2︷ ︸︸ ︷
τ ◦ ... ◦ τ ◦σ2·2l ◦ τ2 = ... = τ ◦ σ2k−1l ◦ τk−1,

which ultimately implies that

τkσl = σ2klτk. (4.2.9)

Now applying (4.2.9) for (4.2.7), we obtain

τk(x0) =

∞∑
j=0

(
λ−2jσ2k−12jτk−1(x0)− λ−2j−1σ2k−1(2j+1)τk−1(x0)

)
.

By the assumption the element τk−1(x0) belongs to F
(λ)
+ , also since F

(λ)
+ is shift-invariant the

elements σ2k−12jτk−1(x0) and σ2k−1(2j+1)τk−1(x0) are in F
(λ)
+ . Finally, since F

(λ)
+ is closed we

obtain required result.

Remark 4.2.7. Note now that, since the operator τ is bounded and linear, we obtain τ(F
(λ)
+ ) ⊆

F
(λ)
+ .

4.3 F (λ) as a predual of `1(Z)

In chapter 2 we introduced the concept of Čech-Stone compactification, mentioning the usefulness

of this theory in examining of preduality of `1(Z) space. Now we utilise this theory to show that

the space F (λ) from Definition 4.2.3 is a predual of `1(Z). In other words, we show that the map

ιF (λ) : `1(Z) −→ (F (λ))∗, introduced in Definition 3.2.2, is an isomorphism. Just as in the last

two sections, this part of my thesis is based on chapter 3 of [7]. Throughout this section we use

the notation concerning the theory of Čech-Stone compactification from chapter 2.

First, we recall the definition of spaces F (λ) and F (λ) and then we apply this definitions to

the context of ιF map introduced in Definition 3.2.2. Spaces F (λ) and F (λ) are defined as

F (λ) = span(A) = span {σn(x0) : n ∈ Z},

F
(λ)
+ = span(A+) = span {σn(x0) : n ≥ 0}.
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Hence, the map ιF has a form

ιF (λ) = r ◦ κ`1(Z) : `1(Z) −→ (F (λ))∗,

for the space F (λ), and

ι
F

(λ)
+

= r ◦ κ`1(Z) : `1(Z) −→ (F
(λ)
+ )∗,

for the space F
(λ)
+ , where r is the restriction map from `∞(Z)∗ to (F (λ))∗ and (F

(λ)
+ )∗, respec-

tively, and κ`1(Z) : `1(Z)→ `1(Z)∗∗ = `∞(Z)∗ is the canonical embedding.

Now we show that the map ιF (λ) is injective (see Lemma 3.2 in [7]).

Lemma 4.3.1. Let F (λ) and ιF (λ) be like above, then the map ιF (λ) is injective.

Proof. Let τ be the operator introduced in Definition 4.1.3 and let a = (an) ∈ `1(Z). According

to the definition the map ιF (λ) will be injective if ιF (λ)(a) = 0 implies a = 0.

First, fix k ∈ N and notice that

τk(x0)(n) =

 0 if |n| < 2k and n 6= 0,

1 if n = 0,
(4.3.1)

where x0 is the element defined by the formula (4.1.2). This implies that

lim
k→∞

τk(x0)(n) =

 0 if n 6= 0,

1 if n = 0.
(4.3.2)

Hence, by Lemma 4.2.6, since τk(x0) and a ∈ `1(Z) are in duality we have

lim
k→∞

〈
τk(x0), a

〉
= lim
k→∞

n=+∞∑
n=−∞

τk(x0)(n)a(n) =

 0 if n 6= 0,

a0 if n = 0.
(4.3.3)

which implies that if limk→∞
〈
ιF (λ)(a), τk(x0)

〉
= 0 then a0 = 0.

Similarly, by shift-invariance of F (λ), for any l ∈ N we have

lim
k→∞

σl(τk)(x0)(n) =

 0 if n 6= l,

1 if n = l.
(4.3.4)

where σ is the bilateral shift operator defined by the formula (4.1.4). Hence

lim
k→∞

〈
σl(τk)(x0), a

〉
= lim
k→∞

n=+∞∑
n=−∞

σlτkx0(n)a(n) =

 0 if n 6= l,

al if n = l.
(4.3.5)

Therefore, if limk→∞
〈
ιF (λ)(a), σl(τk)(x0)

〉
= 0, then al = 0 for any l ∈ N ∪ 0. Hence, we see

that ιF (λ)(a) = 0 implies a = 0.

Let us turn our attention towards surjectivity of ιF (λ) . Before we do that, we add some
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informations about ultrafilters. The next definition and following the definition remark can be

found before Lemma 3.3 in [7].

Definition 4.3.2. Let t ∈ Z and k ≥ 1. We define subsets X
(k)
t and X(∞) of the space of

non-principal ultrafilters Z∗ as follows

X
(k)
t := {U ∈ Z∗ : ∀m>0 {2n1 + 2n2 + ...+ 2nk + t : m < n1 < n2 < ... < nk} ∈ U} , (4.3.6)

X(∞) := Z∗ \
⋃

t∈Z,k≥1
X

(k)
t . (4.3.7)

Remark 4.3.3. Let us notice that if U is a non − principal ultrafilter containing the set

{2n + t : n > 0}, then U must be in X
(1)
t . To see it we suppose by contradiction that for some

m > 0 the set {2n + t : n > m} /∈ U then we get that Z \ {2n + t : n > m} ∈ U since U is an

ultrafilter. But the set

({2n + t : n > 0}) ∩ (Z \ {2n + t : n > m})

is finite and must lie in U. As the ultrafilter U is non− principal this can not be true.

The next lemma shows a relation between the sets X
(k)
t defined above (See Lemma 3.3 in

[7]).

Lemma 4.3.4. Let s, t ∈ Z and let k, l ≥ 1. In addition, let s 6= t or k 6= l. Then X
(k)
s ∩X(l)

t = ∅.

Proof. Let s, t ∈ Z and k, l ≥ 1. We prove the contradictive statement which says that

(X(k)
s ∩X(l)

t 6= ∅) =⇒ (k = l ∧ s = t).

If X
(k)
s ∩ X(l)

t 6= ∅, then there exist a non-principal ultrafilter U ∈ Z∗ such that U ∈ X(k)
s and

U ∈ X(l)
t . This implies that for all natural numbers n,m > 0 the intersection

{2n1 + ...+ 2nk + s : n < n1 < ... < nk} ∩ {2m1 + ...+ 2ml + t : m < m1 < ... < ml}

belongs to U. In particular, we can choose n = m such that 2n > |s− t|. Now, suppose that for

such n and natural numbers n1, ..., nk,m1, ...,ml such that n < n1 < ... < nk,m < m1 < ... < ml,

we have

2n1 + ...+ 2nk + (s− t) = 2m1 + ...+ 2ml .

Since
∑k−1
j=1 2mj ≥ 2m1 > 2m we get

2ml =

k∑
i=1

2ni + (s− t)−
k−1∑
j=1

2mj < 2nk+1 + |s− t| − 2m < 2nk+1,

which gives ml < nk + 1 and so ml ≤ nk. By symmetry, we also obtain that 2nk < 2ml+1, which
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yields nk ≤ ml and so nk = ml. The reader can now see that the same process can be made for

numbers 2n1 + ...+2nk−1 +s and 2m1 + ...+2ml−1 + t to obtain that nk−1 = ml−1. Consequently,

we may proceed in this way to get n1 = m1. Therefore, we must have k = l and so ni = mi for

all i ≤ k . As a result, we also obtain s = t.

Fact 4.3.5. As an easy consequence of this lemma and Definition 4.3.2 we see that the set of

non-principal ultrafilters Z∗ is a disjoint union of X(∞) and the sets X
(k)
t .

Remark 4.3.6. In section 3 of chapter 2 we showed that the topological space βZ is the Čech-

Stone compactification of Z. In the proof of Theorem 2.4.7 we explained why every bounded

function f : Z → R can be uniquely extended to a continuous function f̃ : βZ → R. Let us

define the following map I

I : `∞(Z) 3 f −→ f̃ ∈ C(βZ), (4.3.8)

where f̃ is the unique extension of f such that f̃(U) = limn→U f(n). Since ‖I(f)‖ = ‖f‖ we

see that I is a isometry between `∞(Z) and C(βZ) and so I is injective. Now, let f̃ ∈ C(βZ).

Taking f = f̃|(βZ\Z∗), we obtain I(f) = f̃ , hence I must be also surjective. Therefore, I is an

isometric isomorphism between `∞(Z) and C(βZ) spaces and so we can consider these spaces as

the same.

The following theorem proves surjectivity of the map ιF (λ) and also indicates this elements

of `∞(Z) which also lie in F (λ). This theorem is entirely based on Theorem 3.4 of [7], but in

addition gives more detailed explanantion of the facts presented there.

Theorem 4.3.7. Let us identify the space `∞(Z) with C(βZ) as described above and let G be

the closed subspace of those elements f ∈ `∞(Z) ∼= C(βZ) which satisfy the following condition

f(U) =

 λ−kf(t) if U ∈ X(k)
t ;

0 if U ∈ X(∞).
(4.3.9)

Then G = F (λ), where F (λ) is the space introduced in Definition 4.2.3.

Proof. We subdivide the proof of this theorem into three steps.

a) We show that the space G is shift-invariant,

b) We show the inclusion that F (λ) ⊆ G,

c) We show that F (λ) = G.

a) Let U ∈ Z∗ and s ∈ Z. For A ⊂ Z, define A + s := {a+ s : a ∈ A} ⊆ Z. Then define the

expression U + s such that

U + s := {A+ s : A ∈ U} .

For the reason that ⋂
A∈U

A = ∅ ⇐⇒
⋂
A∈U

A+ s = ∅
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we see that U is a non-principal ultrafilter if and only if U + s is a non-principal ultrafilter.

Moreover, for t, s ∈ Z and k > 0 we have U ∈ X(k)
t if and only if U + s ∈ X(k)

t+s . To see this let

A be any subset of Z such that A ∈ U. Since every n ∈ A is represented as

n = 2n1 + ...+ 2nk + t for some n1 < n2 < ... < nk,

we can observe that

n+ s = 2n1 + ...+ 2nk + t+ s

belongs to A+s. But since A+s is an element of U+s we see that if U ∈ X(k)
t , then U+s ∈ X(k)

t+s.

Now, let us assume that U ∈ X(∞). According to the Definition 4.3.2 for each k ≥ 1 and t ∈ Z

there exist n > 0 such that

{2n1 + 2n2 + ...+ 2nk + t : n < n1 < n2 < ... < nk} /∈ U.

But this implies that for any s ∈ Z we have

{2n1 + 2n2 + ...+ 2nk + t+ s : n < n1 < n2 < ... < nk} /∈ U + s.

Hence, we see that U + s can not belong to any of the sets X
(k)
t+s and so, by the Definition 4.3.2,

the set U + s ∈ X(∞).

Therefore, if f ∈ G then for any s ∈ Z we have

σsf(U) = f(U + s) =

 λ−kf(t+ s) if U + s ∈ X(k)
t ;

0 if U + s ∈ X(∞),
(4.3.10)

which implies that σs(f) is in G and so G is shift-invariant.

b) To prove the inclusion F (λ) ⊆ G, we notice that F (λ) is the smallest shift-invariant subspace

containing the set A = {σnx0 : n ∈ Z}. Since we know that G is shift-invariant it will be enough

to show that the element x0 defined by (4.1.2) is in G. For this purpose we need to prove that

x0 satisfies the equation (4.3.9).

First, we prove that for any t ∈ Z and k > 0 if U ∈ X(k)
t , then we have x0(U) = λ−kx0(t). Let

us notice that if k = 1 and t ≥ 0 then for n sufficiently large we have b(2n + t) = b(t) + 1. This

fact implies that λ−b(2
n+t) = λ−b(t)−1 and so by the Remark 4.3.6 and the Definition 2.5.1

x0(U) = lim
n→∞

x0(2n + t) = lim
n→∞

λ−b(2
n+t) = lim

n→∞
λ−b(t)−1 = λ−1x0(t).

Hence, x0(U) = λ−kx0(t) for t ≥ 0 and k = 1.

Now, let k = 1 and t < 0. Writing t in the binary expansion form ,we obtain −t =
∑p
j=0 εj2

j
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where εj ∈ {0, 1}. Consequently, if we define ε
′

j := 1− εj , we have

p∑
j=0

εj2
j +

p∑
j=0

ε
′

j2
j = 2p+1 − 1.

For the reason that not every εj = 0, we also obtain the following inequality

1 +

p∑
j=0

ε
′

j2
j ≤ 2p+1 − 1. (4.3.11)

Now we notice that for n > p+ 1 we obtain

2n + t = 2n − 2p+1 + (2p+1 −
p∑
j=0

εj2
j) = 1 +

n−1∑
j=p+1

2j +

p∑
j=0

ε
′

j2
j .

Using this expression and inequality (4.3.11) we obtain b(2n + t) ≥ n− k, which gives

lim
n→∞

x0(2n + t) = lim
n→∞

λ−b(2
n+t) = 0 = x0(t).

Now, using the case when k = 1 we show that equation (4.3.9) holds for any U ∈ X(k)
t , where

k ≥ 2, t ∈ Z. Notice, that if U ∈ X(k)
t , then according to Definition 4.3.2 and Definition 2.5.1

we have

lim
n→U

x0(n) = lim
n1→∞

lim
n2→∞

... lim
nk→∞

x0(t+ 2n1 + 2n2 + ...+ 2nk), (4.3.12)

which implies that

lim
n→U

x0(n) = lim
n1→∞

(
lim

n2→∞
...

(
lim

nk→∞
x0(t+ 2n1 + 2n2 + ...+ 2nk)

)
...

)
. (4.3.13)

Since, by the case with k = 1, we already know that

lim
nk→∞

x0(t+ 2n1 + 2n2 + ...+ 2nk) = λ−1x0(t+ 2n1 + 2n2 + ...+ 2nk−1), (4.3.14)

we obtain

lim
n→U

x0(n) = lim
n1→∞

(
lim

n2→∞
...

(
lim

nk−1→∞
λ−1x0(t+ 2n1 + 2n2 + ...+ 2nk−1)

)
...

)
. (4.3.15)

We now see that we can repeat this way of calculation for nk−1, nk−1, ... and finally for n1, which

will imply

lim
n→U

x0(n) = lim
n1→∞

λk−1x0(n)(t+ 2n1) = λ−kx0(t). (4.3.16)

Hence, the equation (4.3.9) is satisfied for any U ∈ X(k)
t , k ≥ 1, t ∈ Z.

Now, we take into account ultrafilters U ∈ X(∞) and we check that for them we have x0(U) =

0. By contradiction, suppose that for some U ∈ X(∞) we get x0(U) 6= 0. As on the set Z the
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element x0 takes value from the set {0} ∪
{
λ−k : k ≥ 0

}
there must exist k ≥ 0 such that

x0(U) = λ−k. Since, by Definition 2.5.1, the set

{n > 0 : b(n) = k} =
{
n ∈ Z : x0(n) = λ−k

}
∈ U, (4.3.17)

we obtain that the set

{2n1 + 2n2 + ...+ 2nk : n1 < n2 < ... < nk} ∈ U (4.3.18)

For the reason that U /∈ X(k)
0 , there exists m1 > 0 such that

{2n1 + 2n2 + ...+ 2nk : m1 < n1 < n2 < ... < nk} /∈ U. (4.3.19)

Hence, the set

Z \ {2n1 + 2n2 + ...+ 2nk : m1 < n1 < n2 < ... < nk} ∈ U. (4.3.20)

Now the intersection of the sets (4.3.18) and (4.3.20) gives the set

{2n1 + 2n2 + ...+ 2nk : n1 < n2 < ... < nk, n1 ≤ m1} , (4.3.21)

which also must be in U. Now, setting any `1 ∈ {1, ...,m1}, we obtain that for t1 = 2`1 the set

{t1 + 2n2 + ...+ 2nk : `1 < n2 < ... < nk} ∈ U. (4.3.22)

Similarly, since U /∈ X(k−1)
t1 , there exists m2 > 0 such that

{t1 + 2n2 + ...+ 2nk : l1 < n2 < n3 < ... < nk,m2 < n2} /∈ U, (4.3.23)

which implies that

Z \ {t1 + 2n2 + ...+ 2nk : l1 < n2 < n3 < ... < nk,m2 < n2} ∈ U. (4.3.24)

The intersection of (4.3.22) and (4.3.24) implies that

{t1 + 2n2 + ...+ 2nk : `1 < n2 < ... < nk, n2 ≤ m2} (4.3.25)

belongs to U. We see that, setting l2 ∈ {`1 + 1, ...,m2}, we obtain that for t2 = 2`1 + 2l2

{t2 + 2n3 ...+ 2nk : l2 < n3 < ... < nk, n2 ≤ m2}

is in U. As, again U /∈ X(k−2)
t2 , we proceed consequently in the same way to obtain finally that
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for tk−1 = 2l1 + 2l2 + ...+ 2lk−1 the set

{tk−1 + 2nk : lk−1 < nk}

must be in U. But this shows that an ultrafilter U must be in X
(1)
t , contradicting with the fact

that U ∈ X(∞).

c)Let us notice that by Hahn-Banach Theorem (see Theorem 3.1.4) and by Riesz Theorem

(see Theorem 7.4 in [10]) every µ ∈ G∗ can be extended to an element of M(βZ), where G∗ is the

dual space of G and M(βZ) denotes the family of signed Borel measures on βZ. Since we know,

by Definition 4.3.2 and Lemma 4.3.4, that the sets X(∞), (X
(k)
t )t∈Z, k>0 are pairwise disjoint,

by countable additivity for every x ∈ G we obtain

〈µ, x〉 =

∫
βZ
xdµ =

∫
X(∞)

xdµ+
∑
t∈Z

(
x(t)µ({t}) +

∞∑
k=1

∫
X

(k)
t

xdµ

)
=

=
∑
t∈Z

x(t)

(
µ({t}) +

∞∑
k=1

λ−kµ(X
(k)
t )

)
.

If we put at = µ({t}) +
∑∞
k=1 λ

−kµ(X
(k)
t ), where t ∈ Z we obtain that the element a = (at) is

in `1(Z). To see this we evaluate ‖a‖. The triangle inequality guarantees that

‖a‖ =
∑
t∈Z
|at| =

∑
t∈Z
|µ({t}) +

∞∑
k=1

λ−kµ(X
(k)
t )| ≤

∑
t∈Z
|µ({t})|+

∑
t∈Z
|
∞∑
k=1

λ−kµ(X
(k)
t )|.

Since µ is finite and countably additive we have

∑
t∈Z
|µ({t})| = |µ(Z)| <∞. (4.3.26)

Also by countable additivity and by the facts that
∑∞
k=1 |λ|

−k
is a geometric series and µ({t}) = 0

for any t ∈ Z, we obtain

∑
t∈Z
|
∞∑
k=1

λ−kµ(X
(k)
t )| =

∑
t∈Z

(λ− 1)−1|µ(
⋃
k>0

X
(k)
t )| = (λ− 1)−1|µ(

⋃
k>0,t∈Z

X
(k)
t )| <∞. (4.3.27)

Hence, combining (4.3.26) and (4.3.27) we obtain that ‖a‖ < ∞ and so a ∈ `1(Z). This fact

implies that 〈µ, x〉 = 〈x, a〉 for each x ∈ G and, as a result of that, we obtain that ιG must be

surjective. Now, since we know by part b) of this proof that F ⊆ G we obtain that ιF is simply

the composition of ιG and the restriction map form G∗ onto F ∗ and so must be surjective as

well. Moreover, for the same reason and by Lemma 4.3.1, we obtain injectivity of ιG. Finally,

by the Banach Isomorphism Theorem (see Theorem 3.1.2) we obtain that both ιF and ιG are

isomorphisms and so both F and G are preduals of `1(Z).

Now we show that F = G. Suppose that there exists x ∈ G \ F . Then, by Corollary 3.1.6 there
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exists a ∈ `1(Z) such that

〈x, a〉 6= 0 and 〈y, a〉 = 0 for each y ∈ F.

This implies that a = 0 and so `1(Z) separates points of F . Since a = 0 this automatically

contradicts with the fact that 〈x, a〉 6= 0. Hence, by the part b), we obtain that F = G.



Chapter 5

Isomorphism

Since the predual F (λ) of `1(Z) from the last chapter can be regarded as subspace of `∞(Z) and

the space `1(Z) has a canonical predual c0(Z) we may suspect that F (λ) could be isomorphic with

the c0(Z). The first section of this chapter shows that this is really the case although without

stating the explicit form of that isomorphism. This sections relies mostly on the discussion

following Remark 3.7 and Theorem 3.8 in [7]. In the second section we present an explicit

isomorphism between F
(λ)
+ and c0(N) with the hope for further development of this theory. In

this chapter we use all the notations introduced in the previous chapters of this thesis.

5.1 Isomorphic spaces F (λ) and c0(Z)

In the first section of this chapter we present the main motivation for writing the thesis. As

explained in the discussion in section 3 of [7], by using results of [1] and [19], the predual F (λ)

described in the previous chapter has an interesting property which enables us to classify this

predual as isomorphic to c0(Z). We start describing this outcome by recalling the definition of

a G− space (see for example very beginning of [1]).

Definition 5.1.1. Let H be a compact Hausdorff space. Then a closed subspace X of C(H) is

said to be a G− space if there exists an index set A and for each α ∈ A, there exist xα, yα ∈ H

and λα ∈ C such that

X = {f ∈ C(H) : f(xα) = λαf(yα)}. (5.1.1)

Remark 5.1.2. Theorem 4.3.7 describing the predual F (λ) as a closed subspace of C(βZ) space

shows in particular by condition (4.3.9) that F (λ) is aG-space. Indeed, by Theorem 2.3.1 we know

that βZ is a compact Hausdorff space, moreover, by Definition 3.2.2, F (λ) is closed. Therefore,

for an index set A = N× Z ∪ {∞}, if α = (k, t) ∈ A, then we can choose xα = U ∈ X(k)
t ⊂ βZ,

yα = {t} ∈ βZ and scalar λα = λ−k and then, by Theorem 4.3.7, the equation (5.1.1) is satisfied.

Also, if α =∞ ∈ A, then for xα = U ∈ X(∞) ⊂ βZ, scalar λα = 0 and any element yα ∈ βZ the

equation (5.1.1) holds as well. Hence, we obtain that F (λ) is a G− space.

44
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Now, let us refer to [1] where Benyamini proved that every separable G-space is isomorphic

to a C(L) space for some compact Hausdorff space L. Clearly, by the above remark, the space

F (λ) is a G-space. It is easy to see that it is also separable. To find the space L for which the

spaces F (λ) and C(L) will be isomorphic we need to use a useful tool called the Szlenk index.

Here we present an equivalent definition of the Szlenk index which can be found, for example,

in [14]. In this definition, a basic notation about ordinals is used and so an ordinal α denotes

the set of all ordinals β such that β < α. By α+ we denote the successor ordinal of α and an

non-zero ordinal number, which is not a successor, is called a limit ordinal. Moreover ω denotes

the first countable limit ordinal and ω1 denotes the first uncountable limit ordinal. More very

useful information about ordinal numbers can be found in [11] or in [20].

Definition 5.1.3. Let X be a separable Banach space and let us fix ε > 0. For an ordinal

number α < ω1 we inductively define sets Pα(X, ε) as follows

• If α = 0, then

P0(X, ε) = BX∗ := {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}.

• If α ≥ 0 is a non-limit ordinal, then

Pα+(X, ε) := {x∗ ∈ Pα(X, ε) : for all weak*neighbourhoods U of x∗, diam(U∩Pα(X, ε)) > ε}.

• If α is a limit ordinal, then

Pα(X, ε) :=
⋂
β<α

Pβ(X, ε).

We next set

η(ε,X) = sup{α : Pα(X, ε) 6= 0}.

The Szlenk index of X is defined as

η(X) = sup
ε>0
{η(ε,X)}.

Remark 5.1.4. One of the most important properties of the Szlenk index is that for Banach

space X its value η(X) < ω1 if and only if X∗ is separable. In fact, the possible countable values

of the Szlenk index are ordinals of the form ωω
β

for β < ω1. (See section 3 in [14] for more

details)

From our perspective, it would be useful to calculate the Szlenk index for c0(N) space. The

following lemma and corollary are a modified version of the example given at the very beginning

of section 3 in [14] where the author explained how to calculate the Szlenk index for the space

`1(N).

Lemma 5.1.5. Let X = c0(N) then, with the notation introduced above, for ε > 0 and any
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n ∈ N ∪ {0}, we have

Pn+1(c0(N), ε) ⊆ (1− n ε
2

)B`1(N). (5.1.2)

Proof. Notice that if n = 0, then the above formula takes the form

P1(c0(N), ε) ⊆ B`1(N), (5.1.3)

which, by Definition 5.1.3, must be true. Now, by induction, assume that

Pn(c0(N), ε) ⊆ (1− (n− 1))
ε

2
)B`1(N). (5.1.4)

Fix ε > 0 and let

x∗ ∈ Pn+1(c0(N), ε) =

= {y∗ ∈ Pn(c0(N), ε) : for all weak*-neighbourhoods U of y∗, diam(U ∩ Pn(c0(N), ε) > ε} .

(5.1.5)

For δ such that 0 < δ < ‖x∗‖, where x∗ = (ai)i∈N we can choose n0 ∈ N so that

n0∑
i=1

|ai| > ‖x∗‖ −
δ

2
.

Then, for δ1 := δ
2n0

, we define U, a weak*-neighbourhood of x∗, by

U := {y∗ = (bi)i∈N ∈ `1(N) : |ai − bi| < δ1 for i ≤ n0}.

In particular, for any z∗ = (ki)i∈N ∈ U ∩ Pn(c0(N), ε), we have

n0∑
i=1

|ki| >
n0∑
i=1

(|ai| − δ1) =

n0∑
i=1

|ai| − n0δ1 >
n0∑
i=1

|ai| −
δ

2
> ‖x∗‖ − δ.

Hence, by the inductive hypothesis

(1− (n− 1)
ε

2
) ≥ ‖z∗‖ =

n0∑
i=0

|ki|+
∞∑

|i|=n0+1

|ki| > (‖x∗‖ − δ) +

∞∑
|i|=n0+1

|ki|.

Which implies
∞∑

i=n0+1

|ki| < (1− (n− 1)
ε

2
)− (‖x∗‖ − δ). (5.1.6)

In particular, for any two elements z∗1 = (ki)i∈N, z∗2 = (li)i∈N of U ∩ Pn(c0(N), ε) we have

‖z∗1 − z∗2‖ =

n0∑
i=1

|ki − li|+
∞∑

i=n0+1

|ki − li| ≤
n0∑
i=1

|ki − ai|+
n0∑
i=1

|ai − li|+
∞∑

i=n0+1

|ki|+
∞∑

i=n0+1

|li|.
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Hence,

‖z∗1 − z∗2‖ ≤ 2n0δ1 +

∞∑
i=n0+1

|ki|+
∞∑

i=n0+1

|li|. (5.1.7)

By (5.1.6) we obtain

‖z∗1 − z∗2‖ ≤ δ + 2
(

1− (n− 1)
ε

2
− (‖x∗‖ − δ)

)
= 3δ + 2(1− ‖x∗‖)− (n− 1)ε. (5.1.8)

Now, since 0 < δ < x∗ in (5.1.8) is arbitrary, we obtain

‖z∗1 − z∗2‖ ≤ 2(1− ‖x∗‖)− (n− 1)ε. (5.1.9)

On the other hand, since for any weak*-neighbourhood U of x∗ we have diam(U∩Pn(c0, ε)) > ε

then there exist z∗1 , z
∗
2 ∈ U ∩ Pn(c0, ε)) such that ε < ‖z∗1 − z∗2‖ and then applying (5.1.9) we

obtain

ε < ‖z∗1 − z∗2‖ ≤ 2(1− ‖x∗‖)− (n− 1)ε,

which ultimately yields

‖x∗‖ < 1− n ε
2
.

Hence, we see that

Pn+1(c0(N), ε) ⊆ (1− n ε
2

)B`1(N).

which finishes the proof for any n ∈ N. Therefore, by induction the above formula is true for

any n ∈ N ∪ {0}.

Corollary 5.1.6. The Szlenk index of c0(N) is equal to ω.

Proof. The formula which was proved in the previous lemma says that for ε > 0 and any

n ∈ N ∪ {0} we have

Pn+1(c0(N), ε) ⊆
(

1− n ε
2

)
B`1(Z). (5.1.10)

Hence, we can see that for some n
′ ∈ N we have n

′ ε
2 > 1 and, therefore, the set Pn′ (c0(N), ε) must

be empty. Now, the fact implying that the Szlenk index of c0(N) equals to ω is a consequence

of the result of Remark 5.1.4 which says that the Szlenk index of separable Banach space must

be a limit ordinal.

The result saying that the Szlenk index of the space c0(Z) equals to ω may also be obtained

indirectly by result of Samuel’s work [19], where he proved that the Szlenk index of C(ωω
α

+ 1)

space is ωα+1. The identification of c0(Z) with C(ω1 + 1), where ω1 + 1 is equipped with order

topology yields this result immediately. On the other hand, the earliest result proved by Bessaga

and Pelczynski in [3] shows that for an infinite countable compact metric space K the space C(K)

is isomorphic to C(ωω
α

+ 1) for some α and moreover two spaces C(ωω
α

+ 1) and C(ωω
β

+ 1)

are isomorphic only if α = β. This implies that two C(K) spaces are isomorphic if they have
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the same Szlenk index.

Remark 5.1.7. By Theorem 3.8 in [7] the Szlenk index for the predual F (λ) is ω. This fact

combined with the above discussion implies that spaces F (λ) and c0(Z) are isomorphic. Moreover,

since by Fact 4.2.4 the space F
(λ)
+ is the subspace of F (λ), by Remark 5.1.4 we obtain that the

Szlenk index of F
(λ)
+ also must be equal to ω.

5.2 Explicit isomorphism between F
(λ)
+ and c0(N)

The previous section was ended with the remark that predual F (λ) of `1(Z) is isomorphic to

c0(Z) unfortunately without showing an explicit form of that isomorphism. In this section I

make a movement in direction of defining such a map, namely, I present an explicit form of an

isomorphism between the spaces F
(λ)
+ and c0(N).

Definition 5.2.1. Let us define a map r : N ∪ {0} → N ∪ {0} in the following way. If n ∈ N

then the number r(n) that is obtained by deleting the largest one from the binary expansion of

n and if n = 0, then we put r(n) = 0.

Fact 5.2.2. In the last definition we can observe that every number n ∈ N can be uniquely

presented as n = 2p + r(n) for some p ∈ N. On the other hand for k ∈ N, let p ∈ N be such that

2p > k. If we put n = 2p + k, then we obtain r(n) = k and so r is surjective.

Definition 5.2.3. Let r be the map introduced above. We define a map S in the following way

S : F
(λ)
+ 3 f 7−→ f − λ−1(f ◦ r) ∈ `∞(Z). (5.2.1)

In other words,

(Sf)(n) := f(n)− λ−1f(r(n)), (n ∈ N). (5.2.2)

In the next few lemmas we show a couple of properties of the map S which will contribute to

the final theorem proving that S is an isomorphism between F
(λ)
+ and c0(N). First, we show that

S maps into c0(Z). To prove this we need to add some theory concerning filters and ultrafilters.

Lemma 5.2.4. Let U be a non-principal ultrafilter on Z. Then the family

F := {B ∈ P(Z) : ∃A ∈ U such that r(A) ⊆ B} (5.2.3)

is a filter.

Proof. Let U ∈ Z∗. To prove that the family F is a filter we need to check three conditions

of Definition 2.1.1. Firstly, we notice Z ∈ F and ∅ /∈ F. This is because for any A ∈ U we

have r(A) ⊆ Z and A 6= ∅ respectively. Now, assume that B1 and B2 are in F. Then there

exist corresponding sets A1 and A2 belonging to the ultrafilter U such that r(A1) ⊆ B1 and

r(A2) ⊆ B2. Since r(A1 ∩A2) ⊆ r(A1)∩ r(A2) ⊆ B1 ∩B2 we obtain that B1 ∩B2 ∈ F. The fact
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that the family of subsets F on Z is closed under supersets follows from the fact that if B1 ∈ F

and r(A) ⊆ B1 for some set A ∈ U than r(A) ⊆ B2 for any subset B2 ⊇ B1 and so B2 ∈ F.

Remark 5.2.5. Notice that for the element x0 ∈ F (λ)
+ and an ultrafilter U ∈ X(∞) the number

of ones b(n) in the binary expansion of n tends to infinity if n goes to infinity through the

ultrafilter U. This follows directly from Theorem 4.3.7 as according to that theorem we have

lim
n→U

x0(n) = lim
n→U

λ−b(n) = 0.

Because |λ| > 1 this can happen only if b(n) → ∞. Now, since b(r(n)) = b(n) − 1, we obtain

that the number of ones in the binary expansion of r(n) tends to infinity as n goes to infinity

through the ultrafilter U.

Now we refer to Definition 4.3.2 where we have defined subsets X
(k)
t (k ≥ 1, t ∈ Z) of the

space of non-principal ultrafilters Z∗. If in this definition we consider k = 0, then as a result, for

fixed t we obtain a subset X
(0)
t ⊆ βZ, which is in fact a set of the principle ultrafilers. In other

words,

X
(0)
t := {U ∈ βZ : {t} ∈ U} . (5.2.4)

We apply this result to the following important lemma where we use the above definition of X
(0)
t

and also the definitions of sets X
(k)
t and X(∞) introduced in Definition 4.3.2.

Lemma 5.2.6. Let U be a non-principal ultrafilter on Z and let V be an ultrafilter obtained from

U by some extension of the filter F from the previous lemma (See Lemma 2.1.6). Then if U is

in X(∞), then V is in X(∞) and if U is in X
(k)
t then V is in X

(k−1)
t , where k ≥ 1 and t ∈ Z.

Proof. Let U ∈ Z∗, r be the map introduced in Definition 5.2.1, F be the filter obtained from U

by Lemma 5.2.4 and V an ultrafilter extending the filter F. First suppose that U ∈ X(∞). We

show that V ∈ X(∞). Since if U ∈ X(∞) then, by the above remark, we have that b(n)→∞ as

n→ U. But according to Definition 2.5.1 this implies that

∀K>0 {n : b(n) > K} ∈ U.

Fix K > 0 and notice the following

r({n : b(n) > K + 1}) ⊆ {r(n) : b(r(n)) > K} = {n : b(n) > K} .

Hence, we see that {n : b(n) > K} ∈ F. Therefore, extending F to an ultrafilter V, we obtain

that V ∈ X(∞).

Now suppose that U ∈ X(k)
t for some k ≥ 1 and t ∈ Z. According to Definition 2.5.1 for any

m > 0 the set

{n : n = 2n1 + 2n2 + ...+ 2nk + t : m < n1 < n2 < ... < nk} ∈ U.
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Applying the map r to this set we see that, if k > 1 then

{r(n) : r(n) = 2n1 + 2n2 + ...+ 2nk−1 + t : m < n1 < n2 < ... < nk−1} ∈ F,

which shows that F ⊆ V ∈ X(k−1)
t . If k = 1, then application of the map r to the set

{n : n = 2n + t : m < n} ∈ U,

implies that {t} ∈ F and the only ultrafilter extending F is the principal ultrafilter V = {t} ∈

X
(0)
t .

Lemma 5.2.7. Let S be the map introduced in Definition 5.2.3 then S maps F
(λ)
+ into c0(N).

Proof. Let f be any element of F
(λ)
+ . We need to show that Sf ∈ c0(N). In other words,

according to the definition of convergence introduced in Definition 2.5.1, we must show that

for each non-principal ultrafilter U ∈ Z∗ we have limn→U(Sf)(n) = 0. Indeed, if this is not

the case, then there exists ε > 0 and a sequence (ni)i∈N ⊂ N such that n1 < n2 < n3 < ...

and |Sf(ni)| > ε. We choose a non-principal ultrafilter U containing {n : |Sf(n)| > ε} and

then limn→U(Sf)(n) 6= 0. As if limn→U Sf(n) = 0, then {n : |Sf(n)| < ε} ∈ U we obtain

contradiction since the intersection {n : |Sf(n)| > ε} ∩ {n : |Sf(n)| < ε} is empty and can not

belong to U.

Let then U ∈ Z∗. From Definition 5.2.3 we have

lim
n→U

(Sf)(n) = lim
n→U

f(n)− λ−1 lim
n→U

f(r(n)).

First, I show that limn→U f(r(n)) = limn→V f(n), where V is an ultrafilter obtained from U by

extending the filter F as in Lemma 5.2.4. Suppose that L = limn→U f(r(n)). This means that

for each ε > 0 we have

{n : |f(r(n))− L| < ε} ∈ U.

Fix ε > 0 and then we get

r({n : |f(r(n))− L| < ε}) = {r(n) : |f(r(n))− L| < ε} ∈ F ⊆ V.

Since the map r is surjective we obtain that

{n : |f(n)− L| < ε} ∈ F ⊆ V.

In particular, L = limn→V f(n). By Fact 4.3.4, the set of non − principal ultrafilters Z∗ is a

disjoint union of X(∞) and sets X
(k)
t where k ≥ 1 and t ∈ Z. Suppose that a non− principal ul-

trafilter U is in X(∞). Since f is in F
(λ)
+ we have limn→U f(n) = 0. Also, since limn→U f(r(n)) =

limn→V f(n) and by Lemma 5.2.6 the ultrafilter V ∈ X(∞) we obtain that limn→V f(n) = 0. It
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follows that limn→U(Sf)(n) = 0.

Now, suppose that U ∈ X
(k)
t , where k and t are any numbers such that k ≥ 1 and t ∈

Z. By Lemma 5.2.6 we have limn→U f(r(n)) = limn→V f(n) = λ−k+1f(t). Hence, we have

limn→U(Sf)(n) = λ−kf(t)− λ−1λ−k+1f(t) = 0.

Therefore, for any non-principal ultrafilter U we have

lim
n→U

(Sf)(n) = lim
n→U

f(n)− λ−1 lim
n→V

f(n) = λ−kf(t)− λ−1λ−k+1f(t) = 0,

which implies that

lim
n→∞

(Sf)(n) = 0,

i.e. Sf ∈ c0(N).

Lemma 5.2.8. Let S be the map introduced in Definition 5.2.3 then S is continuous and bounded

below, so injective.

Proof. According to the definition of the map S for each f ∈ F (λ)
+ and n ∈ N we have:

|(Sf)(n)| =
∣∣f(n)− λ−1f(r(n))

∣∣ ≤ ‖f‖+ λ−1 | f(r(n))| ≤ ‖f‖+ λ−1 ‖f‖ = (1 + λ−1) ‖f‖ .

Hence, S is bounded and so continuous.

We show that S is bounded from below. Fix ε > 0 and find n ∈ N such that |f(n)| ≥ ‖f‖ − ε.

Now, we obtain

|(Sf)(n)| =
∣∣f(n)− λ−1f(r(n))

∣∣ ≥ ∣∣f(n)− λ−1 ‖f‖
∣∣ ≥ |f(n)| − |λ|−1 ‖f‖ .

Hence

|(Sf)(n)| ≥ ‖f‖ − ε− |λ|−1 ‖f‖ ≥ (1− |λ|−1) ‖f‖ − ε.

Since ε is arbitrary we get

‖Sf‖ ≥ (1− |λ|−1) ‖f‖ .

The fact that S is bounded from below tells us also that S is an injective operator with closed

range.

Before we present the next lemma let us observe the following fact.

Fact 5.2.9. Write a given natural number m in the form m = 2k+l, (2k ≤ l). Then for n ≤ k and

2n ≤ l we have 2n|(2k+ l)⇔ 2n|l, which is equivalent to the statement that 2n - (2k+ l)⇔ 2n - l.

Let us now recall the definitions of the operators σ and τ introduced in the last chapter.
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These operators for x ∈ `∞(Z) and n ∈ Z were defined respectively by the formulas

σ(x)(n) = x(n− 1) and τ(x)(n) =

 x(n/2) n even;

0 n odd.

Now we can state the following lemma.

Lemma 5.2.10. For operators σ, τ and n ∈ N the element fn = σnτnx0 belongs to F
(λ)
+ . Also

for this element and for the function S introduced in Definition 5.2.3 the following condition

holds:

S(fn)(m) =

 1 if m = n,

0 if m 6= n.
(5.2.5)

Proof. The fact that fn is an element of F
(λ)
+ for n ∈ N is a consequence of Lemma 4.2.6 and

the fact that F
(λ)
+ is a one-sided shift-invariant subspace of F (λ).

Now we check that for the element fn the above condition is satisfied for any n ∈ N. The

proof of this will be divided into two parts a) and b). In part a) I show that equation (5.2.5) is

satisfied for n = 1. This give us the idea of the proof for the general case when n ∈ N and this

will be the content of part b).

a) Let n = 1. We need to show that

S(f1)(m) =

 1 if m = 1,

0 if m > 1.
(5.2.6)

Let m = 1, then we have

S(f1)(1) = S(στx0)(1) = στx0(1)− λ−1στx0(0) = τx0(0)− λ−1τx0(−1) = 1− 0 = 1.

Hence, we see that (5.2.6) is satisfied for m = 1. Now we check another case.

Let m > 1 and let m be odd, then writing m in the form m = 2p + r(m) we have

S(f1)(m) = S(στx0)(2p + r(m)) = στx0(2p + r(m))− λ−1στx0(r(m)),

which consequently gives

S(f1)(m) = τx0(2p + r(m)− 1)− λ−1τx0(r(m)− 1).

Since 2p + r(m) − 1 is even by Fact 5.2.9 we obtain that 2|(r(m) − 1). As a result, continuing

our calculations we have

S(f1)(m) = x0

[
2p + r(m)− 1

2

]
− λ−1x0

[
r(m)− 1

2

]
= λ−b(2

p−1+
r(m)−1

2 ) − λ−1λ−b(
r(m)−1

2 ).

The fact that 2p + r(m) − 1 is even yields in particular that b(2p + r(m) − 1) = b( 2p+r(m)−1
2 )
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and so we get b(2p−1 + r(m)−1
2 ) = 1 + b( r(m)−1

2 ). Hence we finally obtain

S(f1)(m) = λ−b(2
p−1+

r(m)−1
2 ) − λ−1λ−b(

r(m)−1
2 ) = λ−1λ−b(

r(m)−1
2 ) − λ−1λ−b(

r(m)−1
2 ) = 0.

Therefore condition (5.2.6) holds for odd natural numbers n > 1. Now we check the last case.

Let m > 1 and let m be even, then writing m in the form m = 2p + r(m) we have

S(f1)(m) = S(στx0)(2p + r(m)) = στx0(2p + r(m))− λ−1στx0(r(m)).

Similarly like in the previous case, since 2p + r(m) − 1 is odd then by Fact 5.2.9, because

2 - (2p + r(m)− 1) then 2 - (r(m)− 1) and so from Definition 4.1.3 we obtain

S(f1)(m) = τx0(2p + r(m)− 1)− λ−1τx0(r(m)− 1) = 0− 0 = 0.

Now we see that (5.2.6) is satisfied when n = 1. Let us then move on to the general case.

b) Let n ∈ N such that n > 1. We show that the element fn = σnτnx0 satisfies condition (5.2.5).

We first consider the case when m = n. As σnτn(x0(n)) = τnx0(0) = 1 and σn(τn(r(n)) =

τn(r(n)− n) = 0, as r(n) < n, we obtain

(Sfn)(n) = σnτnx0(n)− λσnτnx0(r(n)) = 1− 0 = 1.

Therefore, we see that condition (5.2.5) is satisfied when m = n. Let us consider another case.

Let m > n be such that 2n|(m− n) and write m in the form m = 2p + r(m) then we have

S(fn)(m) = σnτnx0(2p+r(m))−λ−1σnτnx0(r(m)) = τnx0(2p+r(m)−n)−λ−1τnx0(r(m)−n).

This gives us by Fact 5.2.9

S(fn)(m) = x0

[
2p + r(m)− n

2n

]
− λ−1x0

[
r(m)− n

2n

]
= λ−b(2

p−n+
r(m)−n

2n ) − λ−1λ−b(
r(m)−n

2n ).

Notice that the binary expansion of 2p−n consists of 1 on the (p−n)−th position and 0 elsewhere.

This implies, in according to operation on binary numbers that b(2p−n+ r(m)−n
2n ) = 1+b( r(m)−n

2n ).

Hence, we obtain

S(fn)(m) = λ−b(2
p−n+

r(m)−n
2n ) − λ−1λ−b(

r(m)−n
2n ) = λ−1λ−b(

r(m)−n
2n ) − λ−1λ−b(

r(m)−n
2n ) = 0.

And so condition (5.2.5) holds for all m > n such that 2n|(m− n).

Let m > n be such that 2n - (m − n) and let m = 2p + r(m) then likewise in the previous case

we have

S(fn)(m) = σnτnx0(2p+r(m))−λ−1σnτnx0(r(m)) = τnx0(2p+r(m)−n)−λ−1τnx0(r(m)−n).
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By Fact 5.2.9, since 2n - (2p + r(m)− n), we obtain that that 2n - (r(m)− n) and so we get

S(fn)(m) = τnx0(2p + r(m)− n)− λ−1τnx0(r(m)− n) = 0− 0 = 0.

Hence, we see that the condition S(fn)(m) = 0 is also satisfied for m > n such that 2n - (m−n).

Now let us have a look on the case when m < n. In this case we obtain

S(fn)(m) = σnτnx0(m)− λ−1σnτnx0(r(m)) = τnx0(m− n)− λ−1τnx0(r(m)− n).

We can observe that since for all negative arguments n ∈ Z the element x0(n) = 0 and since the

operator τ spreads out the elements of x0 the value S(fn)(m) = 0 for all m < n. Thus, we have

proved the last case which finishes the proof of our lemma.

Now we sum up the discussion in this section in the following theorem.

Theorem 5.2.11. Let S be the map introduced in Definition 5.2.3. Then S is a linear isomor-

phism between F
(λ)
+ and c0(N).

Proof. Linearity of the map S is very straightforward. The fact that S maps into c0(Z) is the

result of Lemma 5.2.7. On the other hand, by Lemma 5.2.8 we have that S is continuous and

bounded from below. This implies that S is an isomorphism between F
(λ)
+ and its closed image

S(F
(λ)
+ ) ⊆ c0(N). The remaining thing is to show that S(F

(λ)
+ ) = c0(N). Let (ei)i∈N be the

canonical base for c0(N), hence, for y = (ai)i∈N ∈ c0(N) we have y =
∑∞
i=1 aiei. By Lemma

5.2.10 for each i ∈ N there exists fi = aiσ
iτ i(x0) ∈ F (λ)

+ such that S(fi) = (..., 0, ai, 0, ...) where

ai appears on the i− th position. Hence, by linearity the image of S contains the dense subspace

of finitely supported sequences. Since S(F
(λ)
+ ) is a closed we see that S is onto c0(N) and so

describes isomorphism between F
(λ)
+ and c0(N).

5.3 Outlook

In the previous section we presented an explicit form of an isomorphism between the space F
(λ)
+

and c0(Z). The map S defined as

S : F
(λ)
+ 3 f 7−→ f − λ−1(f ◦ r) ∈ `∞(Z), (5.3.1)

where r is defined by Definition 5.2.1, proved to be that isomorphism. As the predual F (λ) is

two-sided shift-invariant space, finding an isomorphism between F (λ) and c0(Z) proves to be

much more difficult. Nevertheless, this work does show the potential for achieving this aim. It

should rather be possible to use the explicit form of the presentation of F (λ) as a G − space

in the proof in [1] to shed light on an isomorphism. Analogical strategy, but applied to the

simpler space F
(λ)
+ , led to the isomorphism I constructed in this thesis. However, many of the
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spaces produced in the shift-invariant preduals papers are not presented as G−spaces, therefore

despite the fact that the Szlenk index of most of these spaces is ω (in [7], considerable effort is

expended to produce an example of a shift-invariant predual whose Szlenk index exceeds ω, and

hence is not isomorphic to c0(Z)) this doesn’t help us determine the Banach-space isomorphism

type of these preduals. New methods will be needed to understand these problems, and a better

understanding of the isomorphisms between the original spaces F (λ) and c0(Z), will surely be of

help.
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