
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Cahir, Conor (2014) Approaches to adaptive bitrate video streaming.
MSc(R) thesis.

http://theses.gla.ac.uk/5093/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5093/

APPROACHES TO ADAPTIVE BITRATE
VIDEO STREAMING

CONOR CAHIR

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science by Research

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

MARCH 2014

c© CONOR CAHIR

Abstract

In this work, I use ns-3 simulations to compare and evaluate different approaches to web
based adaptive bitrate (ABR) video streaming. In particular, I look at the difference between
client pull and server push based approaches, the effects of media formatting parameters such
as chunk duration and number of encoding rates, and the implementation of bandwidth esti-
mation and request scheduling strategies. I find that client pull applications with a 2 second
chunk duration are very inefficient with bandwidth compared to applications using a server
push based approach. The reasons for this stem from the effect of frequent idle periods at
chunk boundaries, which are absent with server push, on the behaviour of TCP. Increasing
the chunk duration to 10 seconds makes a significant difference to client pull applications
and allows them to perform at a level much more comparable with server push applications.
I also find that ABR applications in general are vulnerable to suffering from encoding rate in-
stability, a result that echoes findings from a number of recent studies. This problem seems to
stem from the difficulty of selecting a suitable encoding rate based on transfer rates observed
at the application layer. Effective remedies for encoding rate instability include ensuring
that the system is not over provided for in terms of the number of available encoding rates,
and using an averaging function, such as the harmonic mean, over a series of recent transfer
rates in order to filter out short term fluctuations in the estimate of available bandwidth. I
also show that a simple request scheduling strategy can be used to avoid over buffering and
the associated problems, but that periodic request scheduling can introduce further problems
related to fairness when multiple ABR flows compete. Finally, I show that a hybrid of client
pull and server push, which I call pull selective, can offer a useful compromise between the
two, by matching the performance characteristics of server push whilst maintaining the low
server overheads and scalability attributes of client pull.

Acknowledgements

First and foremost I would like to thank my supervisor, Dr Colin Perkins, for his patience
and expert guidance throughout this project. Secondly, I would like to thank Morag and
Michael Cahir, for being good parents and for supporting me through university. I would
then like to thank all of the teaching, administrative, and technical staff from the University
of Glasgow’s School of Computing Science and College of Science and Engineering, for all
of their excellent work. Finally, this project has been made possible in part by a gift from
The Cisco University Research Program Fund, a corporate advised fund of Silicon Valley
Community Foundation. Thank you to Cisco, and in particular Ali C. Begen, for giving me
this opportunity.

This work is dedicated to my girlfriend Neetu, who has been waiting patiently.

Table of Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Document Outline . 2

2 Background 5

2.1 Web Based Video Streaming . 5

2.2 Adaptive Bitrate Streaming . 7

2.3 Application Components . 9

2.4 Media Format . 11

2.5 Commercial Systems using ABR . 12

2.6 Summary . 13

3 Survey Methodology 15

3.1 Simulation . 15

3.2 Software . 17

3.3 Variables . 17

3.4 Network and Traffic Models . 20

3.5 Evaluation . 22

3.5.1 Calculating Fairness . 23

3.5.2 Calculating Stability . 25

3.5.3 Encoding Rate Distributions . 26

3.5.4 Playback Buffer Occupancy Distributions 26

3.6 Outline of Simulations . 27

3.7 Summary . 29

4 Baseline Simulations 31

4.1 Details . 31

4.2 Fairness . 33

4.3 Stability . 34

4.4 Encoding Rate Distributions . 35

4.5 Playback Buffer . 36

4.6 Discussion . 37

4.7 Summary . 38

5 Media Formatting Parameters 45

5.1 Details . 45

5.2 Fairness . 47

5.3 Stability . 48

5.4 Encoding Rate Distributions . 49

5.5 Playback Buffer . 50

5.6 Discussion . 50

5.7 Summary . 52

6 Bandwidth Estimation 63

6.1 Details . 63

6.2 Fairness . 65

6.3 Stability . 65

6.4 Encoding Rate Distributions . 66

6.5 Playback Buffer Occupancy Distributions 67

6.6 Discussion . 67

6.7 Summary . 68

7 Request Scheduling Strategies 79

7.1 Details . 79

7.2 Fairness . 81

7.3 Stability . 82

7.4 Encoding Rate Distributions . 82

7.5 Playback Buffer Occupancy Distributions 83

7.6 Competing ABR Flows . 84

7.7 Discussion and Summary . 86

8 Conclusion 103

8.1 Summary of Findings . 103

8.2 Recommendations to Developers . 106

8.3 Scope for Future Work . 108

8.4 Conclusion . 110

Bibliography 112

List of Figures

3.1 Application implementation space . 19

3.2 Network setup . 21

3.3 Behaviour of Jain’s index for a distribution with two values 25

4.1 Baseline - Fairness . 40

4.2 Baseline - Stability . 41

4.3 Baseline - Encoding Rate Distributions . 42

4.4 Baseline - Playback Buffer Occupancy Distributions 43

5.1 Media Parameters - Fairness (2 flows) . 53

5.2 Media Parameters - Fairness (3 flows) . 54

5.3 Media Parameters - Fairness (4 flows) . 55

5.4 Media Parameters - Stability (2 flows) . 56

5.5 Media Parameters - Stability (3 flows) . 57

5.6 Media Parameters - Stability (4 flows) . 58

5.7 Media Parameters - Encoding Rate Distributions (2 flows) 59

5.8 Media Parameters - Encoding Rate Distributions (3 flows) 60

5.9 Media Parameters - Encoding Rate Distributions (4 flows) 61

5.10 Media Parameters - Playback Buffer Occupancy Distributions (2 flows) . . 62

6.1 Bandwidth Estimation - Fairness (2 Flows) 69

6.2 Bandwidth Estimation - Fairness (3 Flows) 70

6.3 Bandwidth Estimation - Fairness (4 Flows) 71

6.4 Bandwidth Estimation - Stability (2 Flows) 72

6.5 Bandwidth Estimation - Stability (3 Flows) 73

6.6 Bandwidth Estimation - Stability (4 Flows) 74

6.7 Bandwidth Estimation - Encoding Rate Distributions (2 Flows) 75

6.8 Bandwidth Estimation - Encoding Rate Distributions (3 Flows) 76

6.9 Bandwidth Estimation - Encoding Rate Distributions (4 Flows) 77

6.10 Bandwidth Estimation - Playback Buffer Occupancy Distributions (2 Flows) 78

7.1 Request Scheduling - Fairness (ABR vs ABR) 89

7.2 Request Scheduling - Fairness (ABR vs TCP) 90

7.3 Request Scheduling - Stability (ABR vs ABR) 91

7.4 Request Scheduling - Stability (ABR vs TCP) 92

7.5 Request Scheduling - Encoding Rate Distributions (ABR vs ABR) 93

7.6 Request Scheduling - Encoding Rate Distributions (ABR vs TCP) 94

7.7 Request Scheduling - Playback Buffer Occupancy Distributions (ABR vs ABR) 95

7.8 Request Scheduling - Playback Buffer Occupancy Distributions (ABR vs TCP) 96

7.9 Request Scheduling - Fairness (ABR vs ABR, parameters matching [1]) . . 97

7.10 Request Scheduling - Fairness (ABR vs ABR, parameters matching [1] with
4 mbps bottleneck) . 98

7.11 Encoding rates and playback buffer occupancy over time (original parame-
ters, pull multiple, 2 ABR flows, 0 - 700s). 99

7.12 Encoding rates and playback buffer occupancy over time (parameters match-
ing [1], pull multiple, 3 ABR flows, 0 - 700s). 100

7.13 Encoding rates and playback buffer occupancy over time (original parame-
ters, pull multiple, 2 ABR flows, 120 - 160s). 101

7.14 Encoding rates and playback buffer occupancy over time (parameters match-
ing [1], pull multiple, 3 ABR flows, 120 - 160s). 102

1

Chapter 1

Introduction

This dissertation describes the results of a series of experiments looking at adaptive bitrate
(ABR) video streaming applications using the ns-3 network simulator. The aim of these
experiments was to compare and contrast different approaches to implementing ABR video
streaming systems, and discover what the advantages and disadvantages are of each. In this
chapter I outline the motivations behind this project, present a formal thesis statement, and
give a brief outline of the remaining chapters.

On demand video streaming services have become immensely popular on the web and video
content now accounts for the dominant share of traffic on the Internet [2]. Users flock to
sites such as YouTube, BBC iPlayer, and Netflix, where they can access a back catalogue of
content at their leisure, without having to leave home or wait for downloads, and often for
free or at little cost. Rather than waiting for an entire file to download then opening it with a
media player, streaming allows the user to begin watching almost immediately by playing the
content back as it is downloaded. When the user hits play the client will start downloading
frames until it has buffered up a small duration of content locally, enough to last only until
new frames can be fetched, then playback will begin. Assuming the rate at which content
can be downloaded is greater than or equal to that at which it is consumed during playback,
the playback buffer will not shrink and the user will be able to watch the entire video this
way without interruption. However, a problem arises when the previous condition is not met
and the player is unable to retrieve content fast enough to keep up with playback. This can
be a common issue due to the high-volume nature of video content and especially in areas
where Internet connections are slow or multiple users share a single connection.

To avoid frequent playback interruptions and give users the opportunity to stream videos
even when their network is congested, many service providers now offer players which use
ABR streaming. ABR systems trade video quality in return for playback fluency. When

2 CHAPTER 1. INTRODUCTION

frames are not being fetched fast enough to maintain playback, lower quality video is used
and therefore less data sent for the same duration of content. To achieve this effect, content
is split into chunks of a few seconds duration and each chunk encoded at multiple bitrates.
After each chunk is transferred either the client or server, depending on the implementation,
can select a suitable encoding rate the for the next chunk by using previous transfer rates to
gauge the state of the network.

But ABR streaming is still a relatively new technology, and one which comes with its own
set of problems. Along with the proliferation of ABR video players on the web there are now
also a number of studies highlighting areas where they fall short. Common issues include
unfair sharing of bandwidth and highly fluctuating video quality. From the many options
available, it is not yet clear what are the best approaches to implementing an ABR system
that mitigate these problems. The motivation for this project is therefore to use simulations
to model and investigate the properties of different approaches in an attempt to shed some
light on the area, and in a way that might not be feasible using a lab setup.

1.1 Thesis Statement

Despite becoming a popular way to deliver video over the web, there are no clear guidelines
available for developers who are faced with a myriad of design choices when implement-
ing an ABR video streaming service. On top of this, recent studies have shown that ABR
systems are prone to suffering from issues concerning stability and fairness when multiple
streams compete over a bottleneck [3, 1, 4, 5, 6]. I assert that a systematic survey of ABR sys-
tems, exploring the advantages and disadvantages of different implementation approaches, is
needed as a step towards tackling this situation. I will to carry out this survey using network
simulation software to model and evaluate various ABR applications. In particular, I will
investigate the tradeoffs between client pull and server push systems, bandwidth estimation
techniques, download request scheduling strategies, and media formatting parameters. The
results of this survey will provide guidance to help developers make educated choices in
these areas when implementing an ABR video streaming system.

1.2 Document Outline

Chapter 2 gives a summary of the relevant background knowledge, along with a survey of
some recent literature in the field. In Chapter 3 I describe the tools and methodology I use,

1.2. Document Outline 3

and outline specifically what simulations I will be looking at. Chapters 4, 5, 6, and 7 each
look at a different set of simulations, including an overview of the simulations, their results,
and a discussion followed by conclusions. Finally, in Chapter 8, I conclude with a recap of
the project and a summary of my results and contributions.

4 CHAPTER 1. INTRODUCTION

5

Chapter 2

Background

Streaming video content has become one of the most common applications of the Internet,
and web based systems are a popular way to deliver this service. Many of these systems
use ABR streaming, which varies the video encoding rate according to changing network
conditions, in order to overcome the limitations of streaming over TCP and allow streams to
continue, without playback interruptions, in the presence of congestion. ABR streaming is
now a popular research topic and many studies have found problems with existing solutions,
but it is not yet clear how best to implement an ABR system that avoids these problems. This
dissertation describes a survey of ABR streaming approaches that I have carried out as an
effort to help answer that question.

In this chapter I will describe how ABR streaming systems work and discuss previous stud-
ies that have looked at them. I will give an overview of Internet video services in general,
expand on the brief explanation of ABR streaming given in the introduction, discuss some
of the different ways these systems can be implemented, and outline areas where previous
studies have found issues. In the end I will show that it is not yet clear what is the best way
to implement an ABR system.

2.1 Web Based Video Streaming

Internet video streaming services come in various flavours. Broadly speaking, two types of
service are common today, each with advantages and disadvantages in terms of both end user
experience, deployment, and infrastructure costs. These are managed services running over
dedicated networks, and ‘over-the-top’ web based streaming services.

6 CHAPTER 2. BACKGROUND

Many Internet Service Providers (ISPs) now offer commercial video streaming services de-
signed to compete with traditional cable and satellite television. These use dedicated network
infrastructure and protocols and are managed by the ISP from end to end to ensure that per-
formance and Quality of Service (QoS) demands are met. Examples include BT Vision [7]
and Virgin Media’s TiVo service [8]. Video content is transferred using UDP, with multicast
for live broadcasting and unicast with caching for video on demand. Video traffic can also
be prioritised over other network traffic, for example using DiffServ [9]. This is an all-out
approach to Internet video that allows the ISP to offer a very similar experience to what users
have become familiar with through traditional broadcast television. The predictability of us-
ing UDP over a managed and optimised network allows for fast channel changes and high
quality video delivery. However, this service can only be offered by ISPs since they have
the access to underlying network infrastructure needed to implement many of the features
described above. In particular, this approach requires deployment of IP multicast, which is a
non-trivial change for many networks.

The second approach to Internet video, which is popular amongst many content providers,
is ‘over-the-top’ web based streaming. These services deliver content over existing, unman-
aged, best effort IP networks, using standard web protocols. This approach has much lower
implementation costs than a managed service, requiring only that the service provider deploy
standard web distribution infrastructure, which users can then access via their web browser
to stream content. Examples include Netflix, BBC iPlayer, and YouTube. Many over the
top services use the Hypertext Transfer Protocol (HTTP) to deliver content. This allows
existing infrastructure, such as web caches and content delivery networks (CDNs), to be
reused, and also provides easy traversal of the Network Address Translation (NAT) devices
that are common in home users’ networks. The downside of this approach is that the net-
works can be unpredictable and TCP, which is the underlying transport protocol for HTTP,
was never designed with high performance real time applications in mind. TCP comes with
built in congestion control mechanisms [10]. On the one hand this is an advantage since it
removes that burden from the service provider, but it also affects performance. TCP flows
begin slowly and build up speed gradually as acknowledgements are returned from the client.
When packet loss is detected, the lost packets must be retransmitted, and the loss is taken
as a sign of congestion so the sending rate is lowered again. This leads to unreliable timing
and will often have the effect of causing playback stalls, leaving the user with the option of
either watching a ‘jumpy’ video, or pausing playback to wait while more content is buffered
up. Both are detrimental to the user’s viewing experience. Relatively long startup buffering
times also mean this approach is ill suited for both live content and services wishing to offer
fast channel switches.

2.2. Adaptive Bitrate Streaming 7

But the flexibility and low entry costs of HTTP based video streaming have driven a surge
in popularity amongst content providers, leading researchers to look for ways to overcome
TCP’s restrictions and improve the performance of these systems. One effort that stands out
is the trend towards using bitrate adaptation, where the encoding rate of content can vary
to accommodate the current conditions on the network. Such systems are beginning to co-
alesce under the banner of Dynamic Adaptive Streaming over HTTP (DASH) [11], a new
ABR standard that provides a framework for implementing adaptive bitrate players capable
of talking to any server that also implements the standard.

2.2 Adaptive Bitrate Streaming

Outlined briefly in the introduction, ABR video streaming is a technique that allows streamed
video quality to vary over the lifetime of a stream to meet changing conditions on the net-
work. This allows users to maintain their viewing, at a lower quality, even when networks are
congested. ABR streaming, therefore, trades video quality in return for continuous playback
in the face of congestion. Many different types of system fall under this description, since
all that is required to meet the definition of ABR video streaming is that the video encoding
rate can vary over the lifetime of a stream. In this work, however, I only consider systems
using HTTP to transfer content that is pre-encoded at several discrete rates, since that is the
approach that fits best with the needs of on demand web based video streaming and is gaining
traction with commercial services. Other use cases for ABR include live streaming, where
content can be encoded on the fly at any chosen rate, for example, or in systems running over
managed networks where more information might be available to help guide the choice of
encoding rate.

For ABR systems using HTTP with pre-encoded content, the basic approach is to split con-
tent into a series of small consecutive files (chunks), each encoded beforehand at multiple
rates, then select an appropriate encoding of each chunk when the time comes. This can
be achieved either by having the client monitor playback and transfers, then request each
chunk from the server at the desired rate, or with a server monitoring transfers and pushing
each chunk out to the client after the initial request is received. I refer to these paradigms as
client pull and server push throughout. Monitoring transfer rates allows the client or server
to gague network conditions and estimate the available bandwidth in order to choose an ap-
propriate rate for each chunk. When the network is congested, chunks encoded at a lower
rate will be used. This means that the video quality is reduced, but less data needs to be
sent for the same duration of content and hopefully the client can receive more frames before

8 CHAPTER 2. BACKGROUND

running out of buffered content to play, thus avoiding a playback interruption.

Whether to adopt the client pull or server push approach is one of the first decisions that has
to be made when implementing an ABR system. Both approaches have inherent advantages
and disadvantages, however there is a trend towards client pull. This can be seen in many
commercial systems and is also evidenced in the development of the DASH standard, which
implies a client pull based system [11]. Because of this, many studies have focused on client
pull, and the properties of server push systems are less well known [1, 3, 12, 4]. As of yet
there have been no useful direct comparisons of the two, despite the interesting tradeoffs that
exist. Implementing a client pull based system requires only a basic web server hosting the
content chunks, along with a manifest file. A client can then provide a streaming service by
simply downloading consecutive chunks for playback at suitable rates. This is a very flexible
approach, enabling seamless server migration in case of failure for example, and has rela-
tively low implementation costs. A server push implementation on the other hand requires a
server that is modified to accommodate push streams and ABR logic. In this case, the client
makes a single request for the stream and the server then pushes consecutive chunks out to
the client while monitoring transfers and handling rate adaptation. This approach is natu-
rally less scalable since the server must now maintain extra state and perform calculations
for each connected client. However, as I will later demonstrate, server push systems can also
have a significant performance advantage over client pull systems. Client pull flows tend to
be characterised by ‘on-off’ behaviour. New TCP connections are created, or old ones left
idle, while requests are sent to the server between chunk downloads. Both result in TCP
re-entering its slow start phase and thus reducing any throughput that had been built up. The
server push approach avoids these idle periods, since the server can always begin sending the
next chunk immediately, and a single continuous flow will make much more efficient usage
of the network for the same volume of data.

For client pull systems there is also the option to use a separate TCP connection for every
chunk or request each chunk through a single long lived connection. Although each chunk
does not imply a new TCP handshake with the latter approach, connections left idle for long
enough will still lower their congestion window and have to build up speed when they begin
sending again. It is not clear how this will affect the dynamics of an ABR flow. Finally, a
third approach, which can be viewed as a hybrid of client pull and server push, is to have the
client make requests only when a rate change is necessary. In this case the server continues
sending at the previous rate until it receives a request for a new rate, which will be used
after the next chunk boundary. This approach offers the scalability of client pull with less
TCP connection overhead, and also allows the server to continue sending data without idle
periods spent waiting for new requests. I refer to this approach as client pull with selective

2.3. Application Components 9

requests.

After choosing between these options, developers can then take a number of paths to imple-
menting an ABR system, depending on other important design choices that have to be made.
These include the implementation of various components required to perform bitrate adap-
tation and an appropriate way of formatting content into chunks. Again, the implications
of these choices for performance and user experience are not well understood and I use this
survey as a chance to investigate some of the key decision areas.

2.3 Application Components

An ABR system can be viewed a set of components that work together to perform adaptation
logic and provide a streaming service to the user. The transfer mechanism being used will
determine whether certain tasks are handled by the client or the server, and therefore which
set of components are required and how they should be implemented. Core components in-
clude a bandwidth estimator, to monitor transfers and calculate rates, and a rate chooser, to
select a suitable encoding rate given the current state of the system. For client pull systems
a request scheduler is also needed to handle the timing and sending of requests to the server.
Each of these components are described in more detail, along with common implementation
approaches, in the following:

Bandwidth Estimation

The simplest and most obvious approach to bandwidth estimation is to base estimates
on the transfer rates for each chunk, and this is what most commercial systems appear
to do. At the client, this can be achieved by simply monitoring download rates, and
on the server by timing the interval between TCP’s data acknowledgements for the
first and last packets of a chunk. However, TCP’s behaviour, mostly stemming from
congestion control mechanisms, hides much of the network’s true state and leads to
a number of issues for rate based bandwidth estimation. Two problems in particu-
lar are instability and underestimation, which are the focus of much of the discussion
in [3]. Underestimation of the available bandwidth occurs as a result of TCP’s cau-
tious approach to sending data, starting off slowly and only increasing the sending rate
gradually as packets are acknowledged by the client. The problem is worse for smaller
chunks, which have less time to build up and maintain a higher sending rate, so that

10 CHAPTER 2. BACKGROUND

selecting a lower rate due to underestimating the bandwidth only compounds the issue.
This is referred to as the ‘downward spiral effect’ in [3].

Instability results from the tendency for TCP’s sending rate to vary over time, even
in the steady state but particularly when competing flows are present and packets are
being lost regularly. This means transfer rates observed over short time spans will fluc-
tuate, which could also translate into unnecessary fluctuations in video quality if the
developer is not careful. A simple measure to counteract this problem is to introduce
an averaging function over recent transfer rates to smooth out the bandwidth estimate.
For example, [1] consider using the harmonic mean of the 20 most recent transfer
rates, and it seems likely that some commercial systems will take a similar approach.
There is a downside to smoothing the bandwidth estimate like this, however, which is
that genuine changes in network conditions will take longer to filter through, and the
system may not be able to react in time to prevent a stall.

Encoding Rate Selection

Having estimated the bandwidth, the next step is to consider the overall state of the
system and choose a suitable encoding rate for the next chunk. A basic approach is
to choose the highest available rate that is lower than or equal to the bandwidth esti-
mate. A more sophisticated approach might consider recent changes and whether the
rate is increasing or decreasing. For example, one may wish to lower the rate more
aggressively and back off exponentially while growing linearly, allowing for steady
growth when conditions are favourable while ensuring that the system reacts quickly
to congestion when it is detected.

In [1], the authors suggest a statefull approach to encoding rate selection, which tries
to mitigate the problems associated with underestimation and the bias towards lower
encoding rates. With this approach, the number of bandwidth estimates required to
trigger an up-switch is proportional to the current encoding rate. It should therefore be
easier for the system to move away from lower encoding rates, where smaller chunk
sizes can make it difficult to get a high bandwidth estimate. On top of this, each up or
down switch can only be to the next rung on the ladder, even when bandwidth estimates
suggest a greater change is possible. On the client there is also playback information
available to help guide this decision. If the playback buffer is small then the situation
is more urgent and the rate should be lowered immediately, despite the risk of making
an unnecessary change.

2.4. Media Format 11

Request Scheduling

For client pull based systems a request scheduling strategy is also needed. The impa-
tient approach of requesting each new chunk immediately after the previous one has
finished downloading may not be optimal. It is easy to imagine a situation where a
client greedily buffers up lots of content at a low encoding rate when it could have
waited a little longer to find better network conditions and use a higher rate. On top
of this, over buffering can be considered wasteful from the hosts point of view if a
user decides to leave prematurely. This issue is also considered in [1], which suggests
scheduling requests periodically to maintain a certain duration of playback buffer. The
authors find, however, that the periodic nature of requests, resulting from this schedul-
ing approach, can lead to synchronisation issues and unfair allocation of encoding
rates between competing ABR flows. In the end they show that introducing a small
random offset to the target duration on each request is enough to mitigate this problem.

These are the main components required to implement and ABR streaming system, and I
have only given a brief overview of some of the different options available. Due to limi-
tations on the number of simulations I can run and cover adequately in this dissertation, I
have chosen to focus on investigating the implementation of both bandwidth estimation and
request scheduling components. I describe in more detail exactly which implementations I
consider in Section 3.3.

2.4 Media Format

A final aspect of the system requiring careful consideration is media formatting. When
preparing content for ABR streaming one must choose a chunk duration and a suitable set of
encoding rates to make available. Both choices can affect the systems behaviour, however
there have been no studies looking specifically at these parameters and how they impact the
dynamics of an ABR stream.

From the information that is available, most commercial systems use a chunk duration in the
2 second to 10 second range. Using a short chunk duration makes sense, since the system
must be able to react quickly to congestion, but making it too short, less than 2 seconds
for example, can leave the system bogged down with overhead traffic generated from the

12 CHAPTER 2. BACKGROUND

requests. A shorter chunk duration will also result in more idle periods as the server waits
for requests, which I will later demonstrate are damaging to performance in a client pull
based system, and exacerbate the problem of bandwidth underestimation. Longer chunks,
on the other hand, will have time to settle at a higher rate and make better use of band-
width. Due to the way video encoding schemes work, longer chunks will also achieve better
compression ratios and result in less network traffic overall. Video content is compressed
by selecting landmark frames and then storing only the changes found in successive frames.
The landmarks, called I-frames, are sent periodically and contain information for an entire
frame. Compression is then achieved by sending deltas, called P-frames, which only store
information on what has changed since the previous frame. Since TCP provides lossless
transport, I-frames are only required at the beginning of a chunk. This means doubling the
chunk duration will halve the number of I-frames required, resulting in greater compression.
Having a chunk duration much longer than 10 seconds, however, starts to defeat the purpose
of adaptation since the system must be able to switch rate quickly, if needed, and that can
only happen at chunk boundaries.

The set of encoding rates that are available will also affect the dynamics of an ABR stream.
More rates might mean a more granular system that is able to react to changes on the net-
work, or it could just lead to more unnecessary rate switches. There are also practical con-
cerns since the volume of content hosted on the server is proportional linearly to the number
of encoding rates available. The content is duplicated once for each available rate.

2.5 Commercial Systems using ABR

HTTP adaptive bitrate streaming has become a popular approach to delivering video over the
Internet and many content providers now offer such a service. These include; Netflix [13],
Hulu [14], Vudu [15], YouTube [16], and BBC iPlayer [17]. Several well known software gi-
ants have also implemented ABR enabled players, including Microsoft’s Smooth Streaming
[18, 19], Apple’s Quicktime [20], and HTTP Dynamic Streaming from Adobe [21]. Imple-
mentation details vary. For example, [3] presents a detailed study of three of these services.
Each uses a different set of encoding rates, and chunk durations vary between four and eight
seconds. All three use a client pull mechanism. However, only one client requests each
chunk through a new connection while the other two maintain a persistent TCP connection
between client and server. Further implementation details are not clear, but it can only be
assumed that similar differences exist. Recent studies have shown that many of these exist-
ing ABR systems suffer from problems relating to fairness and encoding rate stability when

2.6. Summary 13

clients compete for bandwidth on a congested network [3, 1, 4, 5, 6].

2.6 Summary

In this chapter I have discussed various Internet video architectures and outlined the motiva-
tions behind the development of HTTP based adaptive bitrate streaming technologies. I also
discussed some of the ways in which ABR systems can be implemented and how different
approaches have the potential to affect the overall system performance. This included the
tradeoffs between client pull and server push implementations, the importance of different
components required for rate adaptation, and the effects of content formatting parameters.
Many commercial players using ABR streaming are now available, with various approaches
to implementation, and studies have shown that a number of them suffer from issues relating
to fairness and stability when networks are stressed and multiple flows compete. Underlying
many of these issues is the fundamental difficulty of estimating bandwidth on top of TCP.
Yet despite much interest and a catalogue of observed problems, the effects of certain design
choices on the systems’ performance are still not well understood. In particular, there has
been very little focus on studying server push based systems, and likewise for the conse-
quences of decisions concerning media formatting parameters. In short, there does not exist
any kind of concrete guidance for those wishing to implement an ABR system, who will at
some point have to make these types of decision.

To tackle this problem I have carried out a survey of the area using simulation software. In
the next chapter, I outline my approach to carrying out this survey, describe precisely which
areas I will investigate, and outline the simulations I will look at in later chapters.

14 CHAPTER 2. BACKGROUND

15

Chapter 3

Survey Methodology

ABR streaming is becoming a popular way to deliver video content over the Internet, but
there are many ways to implement these systems and no clear guidelines exist for develop-
ers. To tackle this I have carried out a survey of the area, using the ns-3 network simulator
to evaluate and compare different approaches. The four main areas I will investigate are the
tradeoffs between push and pull based systems, the effects of media formatting parameters,
bandwidth estimation techniques, and different request scheduling strategies. Systems are
evaluated according to measures of their fairness, encoding rate stability, and efficiency.

In this chapter I describe the methods I used to carry out this survey. I will discuss the merits
of a simulation approach, along with its limits and the need for validation, and the software
I use. I then outline the simulations covered in later chapters, including detailed descriptions
of the variables I investigate, how simulations are setup, and how their output is analysed.

3.1 Simulation

There are a number of ways to carry out a survey like this, each with advantages and disad-
vantages. One approach would be to study existing commercial ABR systems, possibly with
additional monitoring and reporting functions added to the client, as in [3] and [1]. This has
the advantage of being genuine. There is no need to worry about creating an accurate model
of the properties of the network, its traffic, or the applications themselves. The downside
is that having little control over the network can make it difficult to find suitable conditions
for experiments that can be easily repeated. On top of this, experiments run in real time,
lasting for the same duration as the content, and cannot easily be parallelised. Running two
experiments simultaneously means setting up and managing two separate physical clients

16 CHAPTER 3. SURVEY METHODOLOGY

on appropriate networks. Another issue is that this approach is restricted to investigating
existing services, and there may not be perfect information available on how these are im-
plemented.

A second option is to create a laboratory setup, using software to imitate network properties
such as bandwidth and end to end delay, then write and investigate your own applications.
This gives the experimenter full control over both the network and the applications being in-
vestigated. Experimenters using this approach will be responsible for generating all network
traffic, including competing flows and realistic background traffic, but applications still run
on a real network stack. Since the experimenter is in control of the traffic, conditions can be
tweaked to analyse different scenarios and experiments can easily be repeated. But physical
restraints on what can be achieved remain. Parallel instances require more machines and
experiments still run in real time.

A third approach, which I have chosen, is to run experiments using network simulation soft-
ware. With simulation, rather than probing something that already exists, the idea is to recre-
ate a detailed enough model of it in a software environment that still displays the relevant
properties of the original and so can be studied with relevance. The advantage of simulation
is that the entire process can be controlled programmatically, the difficulty is creating suf-
ficiently accurate models to study. Using network simulation software means experiments
can easily be automated and repeated. Thousands of simulations can be run with a single
command, and in parallel using multiple cores or distributed over a network. Experiments
run inside a simulated time frame and can be made faster in real time by applying more
processing power. Since large scale repetition is now feasible, statistics can be used to filter
out noise and make results more robust. Finally, in a simulation, any interesting aspect of
the environment can easily be monitored and traced, with the output piped through further
analysis scripts or stored for later processing. But simulation is also well known to be dif-
ficult [22, 23]. Failure to accurately model the subtleties of network protocols such as TCP
will render the simulator ineffective and its results irrelevant. This means it is necessary
to validate simulations by comparing results with other studies and examining the simula-
tor’s behaviour under well known conditions. It is also important to remember the role of
simulation and how it can fit into a bigger picture, and be honest and forthright about its
limitations. I present validation arguments throughout the later chapters by referring back to
other studies in this area and discussing how my results compare to theirs whenever possible.

3.2. Software 17

3.2 Software

For simulation software I have chosen ns-3, a discrete event network simulator written in
C++ [24]. Open source, extendible, and actively maintained, ns-3 allows researchers to
write networked applications through a non blocking sockets interface. These can then be
‘installed’ on nodes connected together to form the desired network with Python or C++ pro-
grams. Ease of use and active development, with a large open source community surrounding
it, make ns-3 a suitable choice for this project. Its popularity in the research community also
means the existing models in ns-3, such as TCP implementations and queueing algorithms,
have evolved under scrutiny and are already well tested.

For my work, I have extended ns-3 with a module containing generic client and server appli-
cation models and various implementations of the core ABR system components. Different
ABR systems can be created by matching clients and servers with the appropriate compo-
nents plugged in. I also use a scripting tool that allows me to specify network and application
parameters in external text files, which are then parsed inside ns-3 to create and run the cor-
responding simulation. To facilitate the running and analysis of several thousand simulations
I have developed a set of python and shell scripts. These include a framework for running
simulations in parallel, over multiple machines or a single machine with many cores, and a
set of scripts for processing and analysing the output of simulations to produce graphs and
summary statistics. Graphs are generated using the matplotlib Python plotting library [25].

3.3 Variables

In the previous chapter I introduced the various components and parameters of an ABR
streaming system. These included the client and server transfer mechanism, bandwidth es-
timation and rate selection, request scheduling, and media formatting. I will now define
specifically which components and parameters I investigate, and how they can be combined
together in different ways to implement an ABR system.

For transfer mechanism I define four separate cases: client pull through a single connection
(pull single), client pull through multiple connections (pull multiple), server push (push),
and client pull with selective requests (pull selective). These allow me to demonstrate the
effects of both push versus pull and using a single TCP connection versus multiple TCP con-
nections with client pull. I also hope to demonstrate that the hybrid pull selective approach
shares the performance advantages of server push, with lower overheads and the scalability

18 CHAPTER 3. SURVEY METHODOLOGY

of client pull. Existing ABR systems favour the client pull approaches and there is relatively
little work available on server push. The flexible nature and scalability of client pull may
outweigh performance advantages of server push, but the hybrid approach could offer an
attractive compromise between the two.

The application components I consider are bandwidth estimation and request scheduling.
For bandwidth estimation I compare three alternatives: using the previous chunk’s rate esti-
mate as the bandwidth estimate (previous chunk), using an exponentially weighted moving
average (EWMA) of all previous chunk estimates, and using the harmonic mean of the last
20 chunk estimates (HM20). A previous study has already shown that smoothing the rate
estimate, using the harmonic mean of the 20 most recent chunk transfer rates, can improve
encoding rate stability [1]. This offers an opportunity both to validate that conclusion and
test the method under new conditions. At the client, transfer rates are obtained by simply
measuring the download rate directly. On the server the task is more complicated, and mea-
suring the time between successive writes at the application layer is not accurate enough. If
there is sufficient space in the TCP send buffer then a large volume of data can be sent in a
single write at the application layer, but only a fraction of this is actually forwarded on to the
network immediately. Instead I measure the time between TCP’s data acknowledgements for
the first and last packets of a chunk, which is more accurate since the acknowledgements are
clocked by the network. This is not difficult to implement in ns-3, but could also feasibly be
implemented in a real world scenario by adding a kernel module that notifies the application
layer when TCP’s acknowledgements arrive. For example, [26] discusses similar ideas, and
[27] explores the concept of integrated layer processing.

For the request scheduling component, again, I compare three implementations. One that
sends each request immediately after the previous chunk has downloaded (immediate), one
that send requests periodically to maintain a 30 second playback buffer (periodic), and one
that sends requests periodically, as above, but with a small random offset introduced to avoid
repetitive cycles and synchronisation problems (random periodic). Periodic request schedul-
ing is designed to try to avoid problems associated with over buffering, but has also been
found to cause further issues relating to fairness when ABR flows compete. This is demon-
strated in [1], which also shows that random periodic request scheduling can help to mitigate
these issues. In Section 2.3, I also discussed different strategies for selecting an encoding
rate given the bandwidth estimate. For practical reasons, I was not able to investigate any
of the different approaches described there, and all applications studied in this dissertation
simply select the highest rate that is less than or equal to the most recent bandwidth estimate.

All three bandwidth estimation approaches are applicable under the four transfer mecha-

3.3. Variables 19

nisms. Request scheduling components only apply with pull single and pull multiple. For
server push there is only the initial request from the client and with pull selective the flows
behaviour is not tied to the arrival of new requests, which are likely to be well spaced since
they only occur when a rate change is needed. Figure 3.1 summarises the different ways in
which these approaches can combine to form an ABR streaming system. Each cell in the
diagram represent one feasible implementation of an ABR system.

Application Protocol

* Request Scheduling

harmonic mean

exponentially
weighted
moving average

previous chunk

pull multiple pull single server push pull selective

I = immediate

P = periodic

RP = random periodic

*I *P *RP *RP*P*I

Bandwidth
Estimation

Figure 3.1: Application implementation space

The final set of parameters I investigate concern media formatting. The effects of chunk
duration and encoding rate spacings have not been well researched, and different approaches
can be seen in the wild. I compare 2 and 10 second chunk durations to highlight the benefit
of increasing chunk duration with client pull systems. Longer transfers reach higher speeds
and give more reliable rate estimates. The values used were chosen to match the lower and
upper end of both what seems sensible and what can be found in commercial systems. For
encoding rates I have chosen a set of 7 linearly spaced rates (600, 1200, 2000, 3000, 4000,

20 CHAPTER 3. SURVEY METHODOLOGY

5000, 6000 kbps) and a smaller set of 4 exponentially spaced encoded rates (600, 1200,
3000, 6000 kbps). More choice intuitively sounds better, but more rates means more space
on the server and more opportunities to change rate. Linearly spaced rates are an obvious
first choice, but I also felt that it would be interesting to try covering the same range with a
smaller set of rates, spaced exponentially. Exponential spacing should mean that the system
is naturally more cautious at lower rates, always requiring more of a change to switch up
than to switch down. The precise values are chosen to coincide with those available in a data
set containing real content prepared for ABR streaming [28]. Both chunk durations and sets
of encoding rates are interchangeable giving four sets of media parameters. All four sets of
media parameters can be used along with any of the applications described above.

3.4 Network and Traffic Models

In order to properly evaluate and compare different ABR systems, they each need to be tested
under the same set of scenarios reflecting typical real world usage. This means defining an
accurate model of the network, and realistic cross traffic models to compete against ABR
flows in different scenarios. Background noise traffic can also be used to introduce some
randomness and make simulations less deterministic. In this section I describe the network
used in my simulations and how it is configured, then discuss the different types of artificial
traffic that I generate.

The network setup I use, shown in Figure 3.2, is intended to model the typical conditions
found when users stream video to a machine on their home network. On the far right I have
a number of potential clients connected via 100 mbps Ethernet cables to the home router
device. The bottleneck link connects the home router via and 8 mbps ADSL line to the local
exchange. The UK average is slightly higher, at around 12 mbps [29], but 8 mbps provides
a nice bottleneck width for the range of encoding rates I am using. To select an appropriate
delay for the bottleneck, I measured round trip times to the next hop beyond the router from
machines on three different home networks. Beyond the exchange lies a long, high capac-
ity link representing the backbone network connecting outlying regions to a major Internet
exchange center, for example Glasgow to London. Various potential content hosting servers
are then connected to this second routing point via high capacity links, each to be matched
with a single client at the other end. Necessarily, this model hides much of the complexity
of the network beyond the local exchange. However, the focus is on what happens when
streams compete over a bottleneck link, and it is assumed that the upstream network can
easily handle the load.

3.4. Network and Traffic Models 21

pc1

pc2
home routerexchangeinternet router

server1

server2

100Mbps / 0.25ms

8Mbps / 10ms

1Gbps / 1ms

1Gbps / 5ms

servern
pcn

Figure 3.2: Network setup

Queues on routers are sized according to the bandwidth delay product rule and handle pack-
ets using a tail drop algorithm [30, 31]. ns-3 is relatively new and has limited TCP models,
with some features still missing such as SACK and Nagle’s algorithm [32, 33]. The most
modern implementation available, which I use in all simulations, is TCP New Reno [34].
New Reno contains most of the core features of modern TCP responsible for its effects
on network traffic, including the four standard congestion control mechanisms (slow start,
congestion avoidance, fast retransmit, and fast recovery [10]). More information on the im-
plementation and verification studies can be found on the ns-3 website [35].

Having modelled the network, I need to generate realistic traffic to send over it. My simula-
tions use three main types of traffic: traffic generated by ABR streams, continuous and long
lived TCP flows imitating large file transfers, and randomised ‘bursty’ flows to mimic the
effects of background noise. Each application is tested in six different scenarios. This covers
two different types of competition traffic, separate instances of themselves and continuous
long lived TCP flows, each with one, two, and three flows competing against the main ABR
flow. Each flow is between a single client and server, as depicted at either end of Figure 3.2.
More competition traffic models are possible, and ideally traffic could be generated based
on a broad study of the characteristics of home user network traffic, but with the time and
resources available these scenarios make for a sensible starting point.

The final ingredient for a useful simulation is background noise. On its own, the simulator
is completely deterministic, and a simulation run twice with the same parameters will yield
identical results on both occasions. This makes repetition and statistical analysis impossible,
which in turn makes it very difficult to trust the results as being representative of reality.
To solve this issue I have taken two steps. The first is to add a small random offset to the

22 CHAPTER 3. SURVEY METHODOLOGY

starting times defined for applications inside simulation scripts. This allows me to define
roughly when an application will start in a given simulation, but ensures they do not always
start at exactly the same time relative to one another. Randomised start times is enough to
make repetitions of the same simulation behave differently, but the destiny of every flow is
still predetermined at the beginning of a simulation. The second step I have taken to reduce
determinism is to add an extra flow, with randomly determined behaviour, to every simula-
tion. These are lightweight, sending only enough packets to interfere at the routers but not
dominate other flows, and generated by a simple client continually requesting a random num-
ber of bytes with random length idle intervals between. The number of bytes and length of
interval are both bound by maximum and minimum values, which can be modified to tweak
the volume and behaviour of flows. With some basic calibration I found that 1 to 10 kilobyte
transfers at 1 to 10 second intervals is enough to add some non-deterministic variation to sim-
ulations, without having a noticeable effect on the overall outcome. However, this also ties
in with my previous point about possibilities for further competition traffic models. A better
approach would be to generate this kind of cross traffic statistically, based on a study of real
traffic, but with the time and resources available my solution offers a reasonable compromise.

3.5 Evaluation

The output of simulations is analysed to characterise each application in terms of fairness,
stability, and efficiency. In this section I describe the various traces produced by each simu-
lation, and how multiple traces from repetitions of a single simulation can be analysed and
collapsed into summary statistics that describe the behaviour of that application.

The two main types of output I consider for each simulation are packet traces at endpoints
and chunk records from each of the clients involved. A packet trace is simply a record of the
times at which packets were received by the client along with their size. This can be used
to plot the throughput for each client over the course of the stream, but more importantly by
considering the number of bytes received by two or more competing clients over a fixed time
interval a measure of fairness can be generated. Each client also maintains a record for every
chunk in the stream. This includes the encoding rate that the chunk was sent at, along with a
note of the times at which the request was sent (for client pull), the first bytes were received,
and the last bytes were received. Looking at the pattern of values for consecutive chunks’
encoding rates offers a way to calculate stability. Chunk records can also be used to generate
encoding rate distributions that give further insight into the stream’s behaviour.

3.5. Evaluation 23

In addition to packet traces and chunk records it is also possible to measure and plot a num-
ber of interesting aspects of the system for extra insight. A record of packets being enqueued,
dequeued, and dropped at the incoming interface is available for each node. Of particular
interest here is that of the node representing the local exchange where we expect to find the
queue filling up and packets being dropped as competing streams reach the bottleneck. It is
also possible to plot the value of TCP’s congestion window at each of the server nodes, use-
ful for validating the behaviour of ns-3’s TCP models as well as understanding the behaviour
of flows.

Finally, I trace playback buffer occupancy over time for each ABR client, and use this in-
formation to verify that adaptation is working and applications are not stalling in situations
where fixed rate flows would. Buffer occupancy increases whenever a new frame is received,
whilst also decreasing at a constant rate to simulate playback. In a real system, with content
encoded using I-frames and P-frames, I-frames will be larger than P-frames and each P-
frame will also vary in size depending on what is happening on screen during those frames.
Since I use dummy data and do not consider real content, these effects are not simulated
and it is assumed that each frame is the same size and so each byte corresponds to the same
increase in playback buffer occupancy. This simplification should not have enough of an
effect to undermine the usefulness of my results, since the model still captures the behaviour
of the system at the chunk level fairly accurately. With real content, the size of chunks will
also vary, since the duration of each chunk is fixed but the actual encoding rate achieved will
depend on what is happening on screen. I therefore have to assume that the average chunk
size will normally be a good reflection of the targeted encoding rate. It would be difficult to
simulate the latter effect accurately, using dummy data, without making some assumptions
about the nature of the variance anyway, and I maintain throughout that future work using
real content is needed to fully corroborate my results.

3.5.1 Calculating Fairness

Throughput records from two competing clients can be used to calculate a fairness value for
that simulation. In a completely fair system we would expect to see two competing flows
receive roughly the same number of bytes over any reasonable length of time. Fairness can
therefore be measured by comparing the number of bytes received by each flow during the
common interval in which all flows compete for bandwidth. Jain’s fairness index provides
a way of doing this, and is a commonly used metric for this type of work [36]. When a
resource is shared amongst N competing users, each receiving xn units, Jain’s index allows
us to calculate the fairness of that distribution using the formula shown in Equation 3.1:

24 CHAPTER 3. SURVEY METHODOLOGY

J(x1, x2, · · · , xN) =
(
N∑
i=1

xi)
2

N ∗
N∑
i=1

x2i

(3.1)

This can be applied by treating the number of bytes received by each stream during the
competition interval as the resource distribution. After repeating a simulation with the same
parameters many times, I calculate a Jain’s index value for each repetition and present the
results as a boxplot for those parameters.

It is worth highlighting some issues regarding the behaviour of Jain’s index. The first thing
to note is that Jain’s index for N values is bound between 1 and 1/N . For example, for
two competing flows, a Jain’s index value of 0.5 represents the worst possible distribution of
resources. For three competing flows, the worst possible distribution returns a Jain’s index
of 0.333... and so on. A Jain’s index of 1 occurs when each value in the distribution is equal.
The different lower bounds for different values of N mean that it is difficult to use Jain’s
index to compare two distributions with a different number of values, or in my case, two
simulations with a different number of competing flows. A second issue with Jain’s index
is that it requires a significant disparity between the values in the distribution for the index
to fall noticeably lower than 1. Figure 3.3, showing how the Jain’s of two values behaves
as the ratio of one value to the other changes, highlights this issue. For the index to fall to
0.9 requires that one value be half that of the other. This means that Jain’s index values are
often bunched near the top, and can be difficult to compare even when there are significant
differences. To help tackle this I plot Jain’s index values between 0.8 and 1 on the y-axis,
since I never see it fall below 0.8 in any of my simulations.

3.5. Evaluation 25

10-3 10-2 10-1 100 101 102 103

Ratio of values in the distribution

0.0

0.2

0.4

0.6

0.8

1.0

Ja
in

's
 in

de
x

Jain's Fairness Index

Figure 3.3: Behaviour of Jain’s index for a distribution with two values

Despite these issues, Jain’s index is widely used and easy to implement, and it would require
a lot of work to validate an original metric. A final point to make about my approach to
measuring fairness is that it will naturally report unfairness when a flow that is rate limited
at the application layer, such as an ABR flow with idle periods between requests, competes
against one that is not, such as a long lived TCP flow. In this case, it could be misleading to
simply state that the ABR flow and long lived TCP flow do not compete fairly. However, I
can still use this approach to highlight and quantify the difference between two types of ABR
flow, one that is rate limited at the application layer and one that is not. The former should
result in a lower Jain’s index value when competing with a long lived TCP flow than the latter.

3.5.2 Calculating Stability

The stability of a stream refers here to a measure of how the encoding rate varies throughout
the duration the stream. It is not enough to simply calculate some measure of the variance
in rates seen, such as the standard deviation, since this does not take into account a chunk’s
location in the stream. For example, imagine a stream resulting in an even distribution be-
tween two different encoding rates. Such a distribution could be produced by a stream that
only changes rate once in the middle, with the first half of chunks using one rate and the
second half using the other, or by a stream where every chunk alternates between the two
encoding rates. Clearly one is stable and one is highly unstable, but both would return the

26 CHAPTER 3. SURVEY METHODOLOGY

same standard deviation. Instead, I use the following formula where Nswitches is the number
of rate switches and Nchunks the number of chunks:

S = 1− Nswitches

Nchunks − 1
(3.2)

If every new chunk switches rate from the previous, the fraction becomes 1 and the index is
0. Conversely, if there are no rate switches the fraction evaluates to 0 and the index will be
1. Note that the maximum number of rate switches is equal to Nchunks − 1, since the first
chunk does not count as a switch. To evaluate stability, I apply this index to the main ABR
flow of each simulation. Again, values for repetitions of a single simulation are collapsed
into a boxplot showing the range of values seen for those parameters.

3.5.3 Encoding Rate Distributions

Despite not being sufficient on their own to gauge stability, for reasons explained above, en-
coding rate distributions can complement both the stability and fairness indexes and provide
useful insight into what happened during the simulation. For example, it occurs later that
a simulation gives an unexpectedly high stability index, but on inspection of the encoding
rate distribution it becomes clear that this is only because the system performed so poorly
that it rarely used anything other than the lowest possible rate. Encoding rate distributions
are calculated by counting the number of chunks seen at each rate, over all repetitions of a
simulation, then normalising to give the value for each encoding rate as a percentage of the
total number of chunks transferred in all repetitions. A favourable distribution should have a
narrow peak close to the fair share bandwidth.

3.5.4 Playback Buffer Occupancy Distributions

It is no good highlighting that a particular modification improves fairness or stability, with-
out also demonstrating that it does not affect the system’s ability to adapt and avoid playback
interruptions. For this purpose, I calculate distributions of the amount of time the playback
buffer occupancy spent in eight different states over the lifetime of a stream. The possible
states considered are equals zero, greater than 60 seconds, and anywhere in one of the six

3.6. Outline of Simulations 27

10 second intervals between those two. After tallying the amount of time spent in each of
these states, over all repetitions of a single simulation, the results are presented as a distribu-
tion over all eight states, with height on the y-axis showing the time spent in that state as a
percentage of the total duration of all simulations. For a simulation that continues to buffer
without ever stalling, we expect to see no bar in the equals zero state, followed by a roughly
even spread over the next six states, and a peak in the greater than 60 seconds state. This
pattern arises as a result of the playback buffer spending roughly an equal amount of time in
each of the 10 second interval states as it rises steadily. The peak in the final state happens
because the values for several 10 second intervals are combined into a single value (i.e., (60s,
70s], (70s, 80s], and so on.)

3.6 Outline of Simulations

The remainder of this dissertation presents five different groups of simulations, each with a
specific set of purposes. These are: calibration and demonstration of initial performance is-
sues, investigation of the effects of chunk duration and encoding rate spacing, demonstrating
the positive effects of using a smoothing function on bandwidth estimates, investigation of
the effects of different request scheduling strategies, and finally a comparison of selected im-
plementations chosen to combine the best features or match the parameters of systems stud-
ied in previous work. I will also explore and discuss the push vs pull tradeoffs throughout
all of these chapters and try to highlight the benefits of the hybrid pull selective approach.
The final chapter will recap the motivations and aims of the project, discuss what simula-
tions from each chapter have shown, and summarize the conclusions and contributions of
this work. The following list gives a more detailed overview of each of the five simulation
chapters:

Chapter 4 - Baseline Simulations

In Chapter 4, I present the first set of simulations, which are chosen to highlight prob-
lems and set a baseline from which to improve. Four applications are tested covering
each of the four transfer mechanism, but using only the most basic ABR components
where they are applicable (previous chunk bandwidth estimation and immediate re-
quest scheduling). A two second chunk duration is used with the set of seven linearly
spaced encoding rates. By competing each of these applications against both separate
instances of themselves and long lived TCP flows, with varying numbers of flows, I

28 CHAPTER 3. SURVEY METHODOLOGY

will introduce three distinct points. The first is that client pull approaches are less ef-
ficient than the server push and hybrid approaches, and are noticeably discriminated
against when competing with long lived TCP flows. The second is that all four mech-
anisms behave poorly in terms of stability and exhibit highly variable video quality.
The final point is that there is little noticeable performance difference between server
push and pull selective.

Chapter 5 - Media Formatting Parameters

Chapter 5 extends the baseline simulations by simulating the same four applications
studied in Chapter 4, under the same scenarios, using different media parameters. In
this chapter I introduce the ten second chunk duration and smaller set of encoding
rates. Simulations from chapter 4 will be repeated using each of the three new com-
binations this gives. Here I hope to demonstrate two things. The first is that using a
longer chunk duration can improve the performance of client pull and help mitigate
the problems it has regarding fairness and bandwidth efficiency. The second aim of
this chapter is to make the point that using fewer encoding rates will naturally lead to
more stable streams.

Chapter 6 - Smoothing Functions

In Chapter 6, I begin looking at the implementation of different ABR components,
starting with bandwidth estimation. Here, I will demonstrate the effect of applying
averaging functions over a series of recent transfer rates, in order to smooth bandwidth
estimates, and show how this can improve poor encoding rate stability witnessed in
previous chapters. I will consider both a harmonic mean of the 20 most recently ob-
served transfer rates, and an exponentially weighted moving average of all previous
transfer rates.

Chapter 7 - Request Scheduling Strategies

In Chapter 7, I continue looking at ABR components, this time investigating the use
of more sophisticated request scheduling strategies with client pull based systems. I
consider both periodic request scheduling, which is intended to avoid over buffering,
and random periodic request scheduling, which is intended to mitigate fairness and
synchronisation issues introduced by periodic request scheduling. In the beginning,

3.7. Summary 29

I have difficulty reproducing results from [1], but after changing my parameters to
match those used in that study more closely, I am able to replicate their results more
closely, and also provide evidence to suggest that the problems they encounter may be
sensitive to certain parameters.

In Chapter 8, I present validation arguments for my simulations, and discuss how my results
relate to other work in this field. Chapter 9 ends with a summary of my findings and conclu-
sion of the project.

3.7 Summary

In this chapter, I introduced my methods for carrying out a survey of different approaches to
ABR video streaming. I chose to use simulation software, as an alternative to lab methods,
because of the opportunities it offers to run large scale experiments, and the ns-3 network
simulator was an attractive choice mainly due to its open source nature, ease of use, and
popularity amongst other researchers. I then discussed the specific implementations of ABR
systems that I will investigate, and how my survey will help developers make informed de-
cisions when implementing ABR systems by shedding light on three key areas where little
information is currently available. These were, the tradeoffs between client pull based sys-
tems and server push based systems, the effects of more sophisticated ABR components such
as bandwidth estimators and request schedulers, and the effects of media formatting param-
eters. I also introduced a hybrid option to the push versus pull decision, which I hope to
demonstrate can match the performance of server push with the scalability of client pull. I
then discussed the output of simulations, and explained how I evaluate them using Equations
3.1 and 3.2 to measure fairness and stability. Encoding rate distributions and playback buffer
occupancy distributions are also used to give further insight and detect playback interrup-
tions. Finally, I outlined the simulations that are covered in each of the following chapters.
In the next chapter I begin my survey with the first set of simulations, setting a baseline by
investigating the four most basic applications with a 2 second chunk duration and linear en-
coding rates.

30 CHAPTER 3. SURVEY METHODOLOGY

31

Chapter 4

Baseline Simulations

Before setting out to suggest ways to improve ABR systems, I first need to demonstrate
that problems exist. In this chapter I investigate and compare the most basic applications
that can be implemented under each of the four transfer mechanisms described in Chapter
3, using a default set of media parameters, in order to demonstrate the inadequacy of these
simplistic approaches. These results will then act as a benchmark for applications, against
which applications studied in later chapters will try to improve, by using different parameters
and introducing more sophisticated ABR components. Throughout the chapter, I will try to
emphasize three key points that the simulations presented in this chapter demonstrate. The
first is that the two client pull applications are less efficient than the server push and pull
selective approaches, and are noticeably discriminated against when competing with con-
tinuous TCP flows. The second point I will demonstrate is that all implementations suffer
from poor encoding rate stability, and the final one is that the hybrid pull selective approach
behaves almost identically to server push and shares its performance advantages over client
pull. I will demonstrate these points by analysing the output of 2,400 simulations using a
combination of encoding rate distributions, fairness box plots, and stability box plots. In the
following sections I describe the specific details of the simulations covered in this chapter,
before presenting their results and ending with a discussion and summary of my findings and
conclusions.

4.1 Details

I begin by comparing four application models representing the most basic implementations
under all four transfer mechanisms. These are: client pull through multiple connections
(pullm-i-prev), client pull through a single connection (pulls-i-prev), server push (push-
prev), and client pull with selective requests (pullsl-prev). Each application uses ‘previous

32 CHAPTER 4. BASELINE SIMULATIONS

chunk’ bandwidth estimation and, where applicable, ‘immediate’ request scheduling. This
accounts for the applications represented by the first, fourth, seventh, and eighth cells from
the left in the top row of Figure 3.1 in Chapter 3, and allows me to make an initial compari-
son of different transfer mechanisms and demonstrate areas where all approaches fall short.
Smoothing functions and periodic request scheduling strategies will be explored in Chapters
6 and 7.

Simulations in this chapter all use the same set of default media parameters. These are the 2
second chunk duration and linear encoding rates (600, 1200, 2000, 3000, 4000, 5000, 6000
kbps). For applications, choosing a default implementation comes naturally. The most basic
implementation under each transfer mechanism, with only basic ABR components (i.e., im-
mediate request scheduling and previous chunk bandwidth estimation), is the obvious choice
for a starting point, but the same logic does not apply to media formatting parameters. With-
out knowing how the applications will behave beforehand, there is no compelling reason to
begin with a 2 second chunk duration rather than 10 second chunk duration or vice versa.
Likewise for the available encoding rate sets. These default media parameters were chosen
simply because they seemed like an intuitive place to begin, but this decision proves useful
in the end since the small chunk duration and linear encoding rates exacerbate stability and
fairness problems. This means I can more clearly demonstrate the differences between client
pull and server push, and the positive effects of using better ABR components in later chap-
ters. In the next chapter I will extend these simulations to use the 10 second chunk duration
and exponential encoding rates.

Each application model is simulated competing against both one, two, and three separate
instances of itself, and one, two, and three continuous TCP flows. Note that in plot titles,
‘N flows’ means that there are N total flows competing. This means either N ABR flows,
or 1 ABR flow and N − 1 continuous TCP flows. All ABR streams transfer 10 minutes
worth of content, which is 300 chunks at 2 seconds per chunk, and long lived TCP flows run
until all ABR flows have stopped. Four applications models, tested in six different scenarios,
with each individual simulation scenario repeated 100 times, gives 2,400 simulations in total.
Output from all repetitions of a single simulation scenario is then collapsed into summary
statistics characterising the behaviour of that application in that scenario. In the following
sections I present three different analyses of these simulations, looking at fairness, stability,
and encoding rate distributions.

4.2. Fairness 33

4.2 Fairness

Figure 4.1, on page 40, shows six graphs comparing the fairness of my first four applications
under six different scenarios. Figure 4.1a shows applications competing against separate in-
stances of themselves, with increasing number of competing flows moving down. In Figure
4.1b applications compete against continuous TCP flows, again with increasing number of
competing flows going down the column. Fairness is calculated using the Jain’s index, Equa-
tion 3.1, applied to the total number of bytes transferred by each competing flow during the
interval when all flows are competing. Since each simulation is repeated 100 times, the in-
dex is calculated once for each repetition and the result for that simulation given as a box plot.

For ABR vs ABR simulations in Figure 4.1a, with 2, 3, and 4 competing flows, there is no
obvious sign of any discrimination, with a Jain’s index of close to 1.0 for every application.
This is not surprising, since all applications are doing the same thing and Jain’s index re-
quires a lot of discrimination for the value to fall noticeably lower than 1. However, for ABR
flows competing against continuous TCP flows, it is clear that the two client pull applications
have a noticeably lower Jain’s index than the others, which remain close to 1.0. Since server
push and pull selective flows always send continuously, it makes sense that there is no dis-
crimination when competing against other continuous TCP flows. TCP is designed to allow
multiple flows to compete fairly over a bottleneck, assuming they have a similar round trip
time and use the same variant of TCP. But for pull multiple and pull single, the idle periods
between chunks damage efficiency and allow the continuous flows to dominate. This seems
to be due to the fact that TCP’s congestion control mechanisms will lower the sending rate
by resetting the congestion window, putting TCP back into the slow start phase, after a suf-
ficiently long idle period or when a new connection is created [37]. In the slow start phase,
a TCP flow has to build up its sending rate by increasing the congestion window each time
a packet is acknowledged by the receiver. The congestion window determines how many
packets can be in flight at a given time, and therefore increasing congestion window means
TCP can send data at a higher rate. But while the ABR flow is in slow start, any continuous
TCP flows sharing the link will now increase their sending rate to fill the extra capacity that
now exists since the ABR flow lowered its rate.

This has two consequences. The first is that the interaction between the ABR flow and the
continuous TCP flows can damage the initial re-growth of the ABR flow. While the ABR
flow is idle, the continuous TCP flows will continue sending packets and filling the buffer
at the exchange router. When the ABR flow starts sending again it is likely to experience
packet loss because of this, making it more difficult for it to increase its congestion window
and become established again. The second consequence, which is more obvious, is that the

34 CHAPTER 4. BASELINE SIMULATIONS

time spent idle and time spent increasing the rate again, during all of which competing flows
have maintained their rate, immediately results in fewer bytes being sent by the ABR flow,
compared to the continuous flows, over the same period of time. Even without considering
the possibility of continuous flows expanding their rate and actively damaging the growth
of an ABR flow in slow start, the on-off nature of the ABR flow makes them inherently
less efficient. With a chunk duration of only 2 seconds the idle periods are both frequent,
and significant compared to the overall duration of each chunk transfer, and TCP never has
enough time to settle at a high rate for any length of time. In Chapter 3 I will demonstrate
that increasing the chunk duration has a significant positive effect on the efficiency of client
pull ABR flows and their ability to compete with continuous TCP flows.

A final point worth noting from these graphs is that there is very little difference between the
server push and pull selective applications in any of the scenarios. This is not surprising be-
cause both approaches maintain a continuous TCP flow and the only real difference between
them is where adaptation logic is handled. This does not seem to change the dynamics of the
flow, but does make the pull selective approach, where the client handles ABR calculations,
much more scalable than server push.

4.3 Stability

Figure 4.2, on page 41, shows stability box plots given in the same format as the graphs from
Section 4.2. Each compares four applications, competing against themselves in Figure 4.2a
and against continuous TCP flows in Figure 4.2b, with increasing amounts of cross traffic
going down the columns. Stability is calculated for the main ABR flow in each simulation,
using Equation 3.2. Again, a value is calculated for each repetition of a simulation and the
result for that simulation given as a box plot of 100 different values.

The first thing to notice from these graphs is that no application performs terribly well under
any circumstances. The most stable simulation sits at just above 0.8, giving an average of
one rate switch for every 5 to 10 chunks. This is a fundamental problem with ABR stream-
ing systems, and has been observed by a number of studies looking at existing commercial
solutions [1, 4, 5, 6]. The issue arises from the fundamental difficulty of estimating the avail-
able bandwidth above the HTTP layer [3]. At this level the network is opaque, and TCP’s
congestion control mechanisms mean that transfer rates only give a rough view of what is
happening. Rates are likely to fluctuate over short time scales, making it difficult to choose
a suitable encoding rate for the future based on only the transfer rate of the previous chunk.

4.4. Encoding Rate Distributions 35

Poor decisions can also exacerbate the problem and set up a negative feedback loop. For
example, underestimating the available bandwidth and choosing a low rate will result in a
shorter transfer, making it more difficult to get an accurate bandwidth estimate. For client
pull systems shorter transfers also suffer more from the problems described in Section 4.2,
which can only make things worse. This is referred to as ‘the downward spiral effect’ in [3],
which investigates the problem and finds that it is exhibited by several commercial players.

Again, server push and pull selective behave very similarly throughout, and both are less
stable than the client pull applications. At first this may seem like a victory for client pull,
but encoding rate distributions in the next section reveal a different story. In reality, the client
pull applications often are only more stable in some circumstances due to their poor perfor-
mance imposing limitations on their choice of encoding rate. There is less variation since
those systems rarely achieve the higher rates.

4.4 Encoding Rate Distributions

Figure 4.3, on page 42, shows encoding rate distributions for all the simulations in this chap-
ter. The rows and columns are as before, with a colour coded distribution for each of the
four basic applications inside each graph. Each individual distribution shows the normalised
distribution of encoding rates for chunks transferred in 100 repetitions of that simulation.

Encoding rate distributions give further insight into the trends witnessed in fairness and sta-
bility plots. For example, although graphs in the Section 4.3 showed that the pull multiple
and pull single applications were more stable in many scenarios, the distributions in Figure
4.3 show that this is mainly because they achieve a much smaller range of encoding rates, at
the lower end of the spectrum, due to their poor performance. Pull multiple is particularly
stable in the top two graphs of Figure 4.2, but the corresponding encoding rate distributions
suggest that this is an anomaly of the particular conditions in those simulations. The bot-
tleneck bandwidth and competing traffic are just so that pull multiple applications easily
achieve 2000 kbps, but rarely any higher. When more competing flows are introduced sta-
bility worsens as the application spends more time using 1200 kbps and 600 kbps chunks.
In the following chapter I will demonstrate that improving the efficiency of client pull, by
using a longer chunk duration, also results in lower stability since the flows can more easily
achieve higher encoding rates.

The distributions also reaffirm that client pull applications are less efficient than the server

36 CHAPTER 4. BASELINE SIMULATIONS

push and hybrid pull selective applications, which always achieve higher averages, and that
they perform even worse when competing against continuous TCP flows. Yellow and red
distributions consistently peak further left than blue and green, and yellow and red distri-
butions in Figure 4.3b are all shifted left of their counterpart in Figure 4.3a. Client pull
applications make less efficient use of available bandwidth than continuous flows for the
reasons discussed in Section 4.2. There is also a smaller, but noticeable, difference between
pull multiple and pull single. The latter has marginally better distributions in all but one
scenario (2 flows vs TCP). The difference stems from the different ways TCP reacts at chunk
boundaries in the two systems, depending on whether a new connection has been made or an
old one has been left idle, and may suggest a small efficiency advantage for pull single over
pull multiple. Each time a new connection is created TCP resets its congestion window to
the initial value. On the other hand, when a connection is left idle, the congestion window
will only be reset after a certain period of time, meaning there may be cases in which the
window is not reset and TCP can continue sending the new chunk at its previous rate.

Again, the pull selective and server push applications have very similar distributions in each
scenario. This supports the theory that changing where ABR calculations are performed
alone does not have a significant effect on the dynamics of an ABR flow, so long as a con-
tinuous TCP flow is maintained between the client and server.

4.5 Playback Buffer

Figure 4.4, on page 43, shows the behaviour of the playback buffer over time for each sim-
ulation, and verifies that adaptation is working. In these graphs, each distribution shows the
amount of time spent by an application, over the course of all repetitions for those parame-
ters, in 8 discrete states of playback buffer occupancy. The important thing to notice is that
none of the distributions in any of these graphs have a bar in the zero state. This shows that,
after startup buffering, buffer occupancy did not fall back to zero in any of these simulations.
Since it would not be possible for all ABR flows to stream consistently at the highest possi-
ble rate in these scenarios, without consuming content faster than it is being downloaded and
eventually stalling while content re-buffers, rate adaptation is working as intended.

The remainder of theses distributions follow roughly a similar pattern. For a playback buffer
increasing at a steady rate, we would expect to see roughly equal height bars in each of the
10 second interval states, since as the buffer occupancy grows linearly it will spend roughly
the same amount of time in each of these states, followed by a peak in the final state, which

4.6. Discussion 37

covers an open ended interval. The only application that deviates noticeably from this pattern
here is the pull selective application. Instead of showing an even spread over the 10 second
interval states with a peak in the last state, the distributions for the pull selective applications
show a much less even distribution over the 10 second interval states, with a peak around the
(10s, 20s] state, and little or no time spent with more than 60 seconds of content buffered.
This is one of the only areas where results for server push and pull selective applications are
significantly different in my simulations, and suggests that the growth of the playback buffer
for pull selective applications was slower and less linear than for the other applications, with
more time spent with a smaller buffer occupancy. The rate of growth of playback buffer is
linked with the size of the difference between encoding rate and throughput, but it is not
clear in particular why there is such a difference between distributions for server push and
pull selective applications.

4.6 Discussion

These results highlighted two important issues which later simulations will try to address.
The first is that client pull applications are discriminated against when competing against
long lived TCP flows, and are less efficient in general compared with server push and pull
selective applications. The second is that no application performs very well in any scenario
in terms of stability. The results also showed that the hybrid pull selective application per-
forms as well as server push, confirming that where ABR calculations take place has little
effect on the stream, as was hoped. Finally, encoding rate distributions suggested a slight
efficiency advantage for pull single over pull multiple, due to the difference in how the two
applications behave on chunk boundaries, but not enough to make pull single comparable
with server push or pull selective.

The discrimination seen by pull multiple and pull single applications competing against long
lived TCP flows stems from the on-off nature of client pull flows, and highlights a major
difference between pull and push based implementations. Server push and pull selective ap-
plications both result in a continuous TCP flow, which has time to settle in the steady state
and compete well with other TCP flows, making good use of the available bandwidth. How-
ever, pull multiple and pull single applications send a new request to the server after each
chunk has downloaded. The resulting idle periods, during which the client is not receiving
data, make client pull flows naturally less efficient, and continuous cross traffic flows make
it more difficult for TCP to build up its rate again after re-entering the slow start. For ABR
flows competing against ABR flows, there is no discrimination between competing flows

38 CHAPTER 4. BASELINE SIMULATIONS

in Figure 4.1a. However, encoding rate distributions in Figure 4.3a show that the client pull
flows are still less efficient than server push and pull selective when two ABR flows compete,
with much lower average rates achieved. Server push and pull selective applications settle at
encoding rates closer to the fair share bandwidth. The short TCP transfers in client pull flows
find it difficult to build up to a high throughput, which leads applications to underestimate
their share of available bandwidth and select too low an encoding rate. For example, in each
scenario in Figure 4.3a, client pull applications should, in theory, be able to average at least
one rate higher without going above the fair share bandwidth and making it impossible to
continue indefinitely without re-buffering. Choosing a low rate also means that chunks, and
therefore transfers, will be shorter and the problem compounds itself. Similar problems with
client pull flows were observed in [3], where throughput falls drastically and client pull flows
settle at well below the expected encoding rate after a competing continuous TCP flows is
started. In Chapter 5 I will demonstrate that increasing the chunk duration is one effective
approach to counteracting this problem for client pull applications.

The second point, regarding poor stability, demonstrates a common problem that other stud-
ies have found with ABR systems. Instability arises from the difficulty of estimating band-
width above the HTTP layer, and is evident in every scenario, for all applications. Client pull
applications are more stable than server push in most scenarios, but encoding rate distribu-
tions show that this is due to limitations imposed on their choice of rate by low throughput.
This is confirmed in Chapter 5, when using a longer chunk duration, which improves the
efficiency of client pull, also results in a lower stability score for client pull applications. In
later chapters, I will show how stability can be improved in all applications, simply by using
fewer encoding rates, and also by applying a smoothing function on transfer rates to give
more stable bandwidth estimates.

4.7 Summary

The simulations and results outlined in this chapter have highlighted both inherent stability
issues with all ABR applications and the efficiency advantage of server push applications
over client pull applications. They have also shown that the hybrid pull selective application
performs as well as server push. Client pull applications are less efficient and receive lower
rates than server push and pull selective, performing even worse when competing against
continuous TCP flows. This was shown both in fairness plots using Jain’s index and through
encoding rate distributions. Stability plots showed that all of these basic implementations
suffer from poor stability due to the difficulty of estimating bandwidth above HTTP using

4.7. Summary 39

only a 2 second sample of the network. All three analyses gave similar results for server
push and pull selective in every scenario, and encoding rate distributions showed a slight ad-
vantage for pull single over pull multiple. In the next chapter I will extend these simulations
to include a longer chunk duration and a new set of encoding rates, in order to backup my
findings and show how some of the problems can be alleviated.

40 CHAPTER 4. BASELINE SIMULATIONS

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 2 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 3 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 4 Flows (ABR vs ABR)

(a) ABR vs ABR

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 2 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 3 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 4 Flows (ABR vs TCP)

(b) ABR vs TCP

Figure 4.1: Baseline - Fairness

4.7. Summary 41

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 2 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 3 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 4 Flows (ABR vs ABR)

(a) ABR vs ABR

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 2 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 3 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 4 Flows (ABR vs TCP)

(b) ABR vs TCP

Figure 4.2: Baseline - Stability

42 CHAPTER 4. BASELINE SIMULATIONS

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

(a) ABR vs ABR

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs TCP)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs TCP)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs TCP)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

(b) ABR vs TCP

Figure 4.3: Baseline - Encoding Rate Distributions

4.7. Summary 43

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

(a) ABR vs ABR

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs TCP)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs TCP)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs TCP)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

(b) ABR vs TCP

Figure 4.4: Baseline - Playback Buffer Occupancy Distributions

44 CHAPTER 4. BASELINE SIMULATIONS

45

Chapter 5

Media Formatting Parameters

In Chapter 4 I introduced the first set of simulation results, using the most basic applications
possible under each of the four transfer mechanisms, with a 2 second chunk duration and 7
linearly spaced encoding rates. This allowed me to demonstrate two main points, that client
pull applications were less efficient than the server push and hybrid applications, especially
when competing with continuous TCP flows, and that all of these simplistic approaches per-
formed poorly in terms of encoding rate stability due to the difficulty of picking a suitable
encoding rate from bandwidth estimates based on transfer rates seen at the application layer.
I also showed that the hybrid pull selective application behaved very similarly to server push,
despite maintaining the natural scalability of client pull applications.

In this chapter I extend those simulations by repeating them with different media formatting
parameters. I will introduce a 10 second chunk duration and a new set of encoding rates to
show how changing these parameters can affect the systems and help to solve some of the
problems identified in Chapter 4. In particular I show that a longer chunk duration improves
the performance of client pull applications, and using fewer encoding rates can make streams
more stable whilst still allowing the system to adapt and avoid playback stalls.

5.1 Details

In the previous chapter I began by comparing four application models representing the most
basic implementations under all four transfer mechanism. These were: client pull through
multiple connections (pullm-i-prev), client pull through a single connection (pulls-i-prev),
server push (push-prev), and client pull with selective requests (pullsl-prev). In this chapter
I continue with the same four application models and evaluate them using different media

46 CHAPTER 5. MEDIA FORMATTING PARAMETERS

parameters. In addition to the 2 second chunk duration and linear encoding rates (600, 1200,
2000, 3000, 4000, 5000, 6000 kbps) used previously, I will now introduce a 10 second chunk
duration and a smaller set of exponentially spaced encoding rates (600, 1200, 3000, 6000
kbps). In Chapter 4 I argued that the performance hit on client pull came largely from the
effects of frequent idle periods on TCP flows. I will now bring evidence to support this con-
clusion by showing that client pull applications perform much better when using a 10 second
chunk duration. This is expected, since as the chunk duration increases the individual trans-
fers tend more towards behaving like long lived continuous TCP flows, but increased chunk
duration also has drawbacks and using anything much greater than 10 seconds would risk
not allowing the application to react in time to congestion. In ideal circumstances, I would
like to be able to simulate more chunk durations between 2 and 10 seconds, to find out how
increasing the chunk duration affects the systems behaviour with more granularity, but time
constraints on running simulations prevent me from doing so here. I will also demonstrate
that using a smaller set of encoding rates makes ABR streams more stable, mainly because
there are fewer rates available and the system will be less likely to switch rate due to short
term fluctuations in throughput.

Applications using 2 second chunk durations will send 600 seconds worth of content over
300 chunks, those using 10 second chunks send 1000 seconds worth of content over 100
chunks. The reason for the extra content duration with 10 second chunks is to help ensure
that there are enough chunks in the stream for clear stability patterns to emerge. For example,
there will be rate switches at the start of most streams, as the system increases its rate ini-
tially, and these shouldn’t necessarily be taken as a sign of instability. However, with fewer
chunks in the stream, these initial rate switches will skew the stability index. Each ABR
application from the same simulation will use the same media parameters, and continuous
TCP flows run while any ABR applications are still running. The simulations from Chapter
4 are repeated using each of the three new possible combinations of media parameters. Each
application is tested against both itself and continuous TCP flows with 2, 3, and 4 competing
flows, giving 72 new simulations repeated 100 times. This gives 9,600 simulations covered
in total, including the results repeated from the previous Chapter. The results are presented
this time to highlight differences between those in the previous chapter, with old results in
the first column of each figure and new ones in the second.

5.2. Fairness 47

5.2 Fairness

Figures 5.1, 5.2, and 5.3, starting on page 53, show fairness plots for the four basic appli-
cations with 2, 3, and 4 flows competing. Each figure is split into four subfigures, showing
applications tested under each of the four combinations of media parameters, going across
the page. The top graph in each subfigure shows ABR flows competing against ABR flows
while the bottom shows ABR flows competing with long lived continuous TCP flows. This
presentation format is designed to make it easy to compare like for like simulations across
the rows, where only the media parameters change. Fairness is calculated using Jain’s index,
given in Equation 3.1 from Chapter 3, and each individual box plot shows the spread of val-
ues calculated for 100 repetitions of a single simulation.

In Chapter 4 I showed, using linear encoding rates and a 2 second chunk duration, that client
pull applications perform poorly in some scenarios compared to server push and pull selec-
tive in terms of both fairness and overall bandwidth efficiency. Fairness plots in 4.2 clearly
showed discrimination against the ABR flow when client pull applications competed against
continuous long lived TCP flows. I argued that the reason for this is that frequent idle periods
at chunk boundaries cause TCP’s congestion window to reset, putting the flow back into the
slow start phase, and making it very difficult for it to compete with a flow that sends con-
tinuously at a high rate. Towards the end of that chapter I hinted that using a longer chunk
duration can improve client pull’s performance in this regard.

Figure 5.1a recaps the fairness results from Chapter 4. In the top graph ABR flows compete
against identical instances of themselves, with no noticeable discrimination, however, when
competing against long lived TCP flows in the bottom graph, both client pull applications are
discriminated against. Figures 5.1b, 5.1c, and 5.1d extend these results to show applications
tested in the same situations using different media parameters. The bottom graphs of Figures
5.1b and 5.1d highlight the benefit of using a longer chunk duration for client pull applica-
tions competing with long lived TCP flows. In these graphs, both showing applications using
a 10 second chunk duration, the Jain’s index is much closer to 1.0 for pull multiple and pull
single applications. In the bottom graphs of figure 5.1c, using a 2 second chunk duration,
this time with the exponential encoding rates, the fairness index is still relatively low. This
pattern is repeated in Figures 5.2, and 5.3. Client pull applications have a low Jain’s index
when competing against continuous TCP flows using a 2 second chunk duration, and a much
higher value when a 10 second chunk duration is used in the same scenario.

The reason behind these observations follows on from the explanation of why client pull
applications are less efficient in the first place. In Section 4.2 I described how idle periods

48 CHAPTER 5. MEDIA FORMATTING PARAMETERS

between chunk boundaries affect client pull flows, making them less efficient than server
push and pull selective, which both maintain a continuous TCP flow. But when the chunk
duration is increased, idle periods become fewer and less significant. They are fewer simply
because a longer chunk duration means fewer chunks for the same duration of content, and
less significant, because the amount of time spent idle or back in slow start after each chunk
does not change, while the overall duration of each transfer increases. As the chunk duration
increases, the ABR flow tends more towards behaving like a regular long lived continuous
TCP flow, and transfers have more time to build up and maintain a high rate between the idle
periods. This effect will also be witnessed in the encoding rate distributions in Section 5.4.
The distributions show that, not only do client pull flows compete better against continuous
TCP flows when using a longer chunk duration, but they also achieve better rates on average
in any given scenario than the same application using a 2 second chunk duration.

5.3 Stability

Figures 5.4, 5.5, and 5.6, starting on page 56, show stability plots in a similar format to the
fairness plots from Section 5.2. Media parameters vary from left to right across the page,
with ABR vs ABR on top and ABR vs TCP beneath. Stability is calculated using Equation
3.2 from Chapter 3, and each individual box plot shows the spread of values calculated for
100 repetitions of a single simulation.

The stability plots in this chapter demonstrate two main things. The first, is confirmation of
an explanation given in Chapter 4 as to why client pull applications are significantly more
stable than server push and pull selective in some situations. I suggested that this was sim-
ply because poor efficiency was limiting the choice of rates for those applications. I have
already demonstrated, in Section 5.2, that increasing chunk the duration has a strong positive
effect on the performance of client pull applications. Now notice how, in all three figures,
stability across the four applications is always more evenly matched in the second and fourth
subfigures than in the first and third. In other words, whenever a 10 second chunk duration is
used, client pull applications are much more efficient with bandwidth and therefore able to
achieve higher encoding rates, more similar to server push and pull selective. The downside
is that this means they also have more opportunity to switch rate and naturally become less
stable. This is not necessarily a disadvantage for client pull, since they are not significantly
less stable than server push or pull selective, but it does rule out increased stability as an ad-
vantage for client pull systems. One could easily draw such a false conclusion from results
in Chapter 4. Therefore, the observation from Section 4.3 holds, that all applications have

5.4. Encoding Rate Distributions 49

poor stability, and none on their own seem to have any great advantage over the others.

The second thing that can be seen in these graphs is a slight trend towards increased sta-
bility when the smaller set of exponentially spaced encoding rates are used. In each figure,
application for application, stability is always at least slightly higher, and sometimes signif-
icantly higher, in graphs from subfigure c than in those subfigure a, and likewise in graphs
from subfigure d than those from subfigure b. This is comparing like for like with only the
available encoding rates changing. The reason for this seems to concern the number of rates
available. When fewer rates are available there are simply fewer opportunities to switch rate.
Intuitively, one might think that more rates would make for a more granular system, able to
react better to congestion. More granularity means the system is more likely to be able to
use the highest possible encoding rate for the given bandwidth constraints, but the drawback
is that more rates will also result in more rate switches. The developer’s job here is to find an
appropriate balance. Having more encoding rates available also means more space is taken
up on the server. However, there is a caveat with this result, and further work is required to
confirm whether the effect is due solely to the decreased number of rates, or to the different
spacing between rates, or some combination of both. Larger spacing between the higher
rates could also account for some of the extra stability, and re-running these simulations with
four linearly spaced rates would help to clarify the result.

5.4 Encoding Rate Distributions

The layout of graphs in Figures 5.7, 5.8, and 5.9, starting on page 59, follow the same format
as graphs from the previous two sections, this time with four distributions per graph, one for
each application showing the distribution of encoding rates chosen over 100 repetitions of
that simulation. Two observations from these distributions support claims made regarding
both stability and fairness in Sections 5.2 and 5.3.

The first observation is that, in all three figures, the pull multiple and pull single applications
have much better distributions in subfigures b and d, where a 10 second chunk duration is
used, than those in subfigures a and c where the original 2 second chunk duration is still used.
When a 10 second chunk duration is used the client pull applications achieve higher average
rates, with distributions that are much more comparable to those for server push and pull
selective. They are often still not quite as efficient, but the effect is definitely noticeable. As
well as achieving higher average rates, the client pull applications also show more variation
in encoding rates when using a 10 second chunk duration, which relates back to the point

50 CHAPTER 5. MEDIA FORMATTING PARAMETERS

regarding stability of client pull applications. Their lack relatively high stability with a 2 sec-
ond chunk duration is a symptom of poor efficiency rather than a natural advantage for the
client pull approach. Again, increasing the chunk duration makes the client pull applications
more efficient by reducing the number of idle periods and allowing them more time to send
at a higher rate in between.

The second observation is that the distributions for all applications always show less varia-
tion in subfigures c and d, where the smaller set of exponential encoding rates are used, than
in a and b where the larger set of linear encoding rates are used. This is simply a direct con-
sequence of having fewer rates to choose between. For all applications, in all six scenarios,
the most favourable distributions come in subfigure d, where the exponential encoding rates
are used in conjunction with a 10 second chunk duration. Here we see the highest average
rates along with the lowest variation, for reasons described above.

5.5 Playback Buffer

Although I showed in Section 5.2 that increasing the chunk duration improves the efficiency
of client pull flows, there is also a danger that in creasing the chunk duration can damage the
system’s ability to react quickly to changes on the network and avoid playback interruptions.
Playback buffer occupancy distributions in Figure 5.10, on page 62, show that using a 10
second chunk duration still allows the system to successfully adapt to prevent stalls. The
top row shows ABR flows competing with ABR flows and the bottom shows ABR flows
competing with continuous TCP flows, while each column uses a different set of media pa-
rameters. Figures 5.10c and 5.10d both use 10 second chunk durations and neither show
any applications spending time with an empty playback buffer. There are other noticeable
differences between distributions for each of the four sets of media parameters, but this is
less important here and reasons behind them are not clear. Playback buffer occupancy distri-
butions for simulations involving 3 and 4 competing flows follow similar patterns, with no
stalls, but are not shown here for brevity.

5.6 Discussion

Results in this chapter have highlighted two important tradeoffs to consider when decid-
ing how to format media content for ABR streaming. I have shown that, for a client pull
based system, increasing the chunk duration from 2 seconds to 10 seconds can significantly

5.6. Discussion 51

improve the efficiency of client pull flows. With a longer chunk duration, idle periods are
less frequent, and transfers for individual chunks achieve and maintain a higher through-
put as they start to behave more like long lived transfers. This results in better bandwidth
estimates, meaning that a system using rate based adaptation will be able to reach higher en-
coding rates and stream at a rate that is closer to their fair share of the available bandwidth.
Similar results have come from other recent studies, suggesting that a longer chunk duration
is beneficial for client pull systems. While investigating the efficiency problems with client
pull flows, [3] finds a correlation between the size of a chunk and the throughput achieved
when sending it across the network. The authors do this by demonstrating from their exper-
iments both that the size of a chunk is proportional to the encoding rate, and chunks with
higher encoding rates achieve better throughputs on average. They also suggest that using
a longer chunk duration will improve the performance of client pull systems. The tradeoff
with chunk duration, however, is that using too long a chunk duration will impact the sys-
tems ability to react quickly to congestion and avoid playback interruptions. In Section 5.5
I showed that using a 10 second chunk duration does not prevent adaptation from achieving
its goals in my simulations. Further work in this area could investigate the effects of varying
the chunk duration in more detail, both by simulating more intermediate durations between
2 and 10 seconds, and by simulating durations longer than 10 seconds to find out at what
point increasing the chunk duration becomes detrimental to the system’s ability to react to
congestion. This is also mentioned later in Section 8.3, when I discuss scope for future work.

The second tradeoff highlighted by these results concerns the encoding rates that are avail-
able for use. Stability plots in Section 5.3 showed a trend towards increased stability when-
ever the smaller set of four exponentially spaced rates were used rather than the set of seven
linearly spaced rates. Encoding rate distributions in Section 5.4 also showed much less vari-
ation when the exponential rates were used. It is not clear what difference the spacing makes,
and whether the effect on stability is due to mainly to the different number of rates or the
different spacing between rates. Further work is needed to clarify this point, by simulating
four linearly spaced rates, but having fewer rates available seems to improve stability by
reducing the number of opportunities to switch rate. However, having fewer available rates
increases the possibility that the system is in a position where the current encoding rate is
considerably lower than the available bandwidth, simply because a higher rate that is still
lower than the bandwidth is not available. In this case the user experiences lower quality
video playback than what the bandwidth conditions will allow. The values of suitable en-
coding rates will always depend on a number of circumstantial factors, such as the intended
content and target device, but developers considering what rates to make available should
be aware of these tradeoffs. Although having more options will maximise the chances of
streaming at the highest possible rate, not only does that mean more space is required to host

52 CHAPTER 5. MEDIA FORMATTING PARAMETERS

the content on the server, but more options will also lead to more fluctuation and a less stable
stream, unless further steps are taken to ensure stability.

5.7 Summary

In this chapter I investigated the effects of changing media formatting parameters, and found
two important tradeoffs in this area. I showed that increasing the chunk duration from 2 to 10
seconds can improve the performance of client pull applications, and that having fewer en-
coding rates available naturally makes for a more stable stream. However, too long a chunk
duration risks not allowing the system to react properly to congestion, and too few encoding
rates makes it difficult to stream at the highest possible rate in any given situation. If taken
too far, both undermine the purposes of ABR streaming.

In the next chapter I begin looking into more sophisticated application models, starting with
bandwidth estimation techniques. I will extend the four application models used so far to
incorporate bandwidth estimators that use averaging functions to estimate bandwidth from
transfer rates, and show how this approach can significantly improve stability in all applica-
tions.

5.7. Summary 53

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

TC
P)

(a
)L

in
ea

r/
2s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

10
s

/ 2
 F

lo
w

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

10
s

/ 2
 F

lo
w

s
(A

BR
 v

s
TC

P)

(b
)L

in
ea

r/
10

s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
TC

P)

(c
)E

xp
/2

s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
10

s
/ 2

 F
lo

w
s

(A
BR

 v
s

AB
R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
10

s
/ 2

 F
lo

w
s

(A
BR

 v
s

TC
P)

(d
)E

xp
/1

0s

Fi
gu

re
5.

1:
M

ed
ia

Pa
ra

m
et

er
s

-F
ai

rn
es

s
(2

flo
w

s)

54 CHAPTER 5. MEDIA FORMATTING PARAMETERS

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 2s / 3 Flow
s (ABR vs TCP)

(a)L
inear/2s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 10s / 3 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 10s / 3 Flow
s (ABR vs TCP)

(b)L
inear/10s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Exp. / 2s / 3 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Exp. / 2s / 3 Flow
s (ABR vs TCP)

(c)E
xp

/2s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Exp. / 10s / 3 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Exp. / 10s / 3 Flow
s (ABR vs TCP)

(d)E
xp

/10s

Figure
5.2:M

edia
Param

eters
-Fairness

(3
flow

s)

5.7. Summary 55

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

TC
P)

(a
)L

in
ea

r/
2s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

10
s

/ 4
 F

lo
w

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

10
s

/ 4
 F

lo
w

s
(A

BR
 v

s
TC

P)

(b
)L

in
ea

r/
10

s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
TC

P)

(c
)E

xp
/2

s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
10

s
/ 4

 F
lo

w
s

(A
BR

 v
s

AB
R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Ex
p.

 /
10

s
/ 4

 F
lo

w
s

(A
BR

 v
s

TC
P)

(d
)E

xp
/1

0s

Fi
gu

re
5.

3:
M

ed
ia

Pa
ra

m
et

er
s

-F
ai

rn
es

s
(4

flo
w

s)

56 CHAPTER 5. MEDIA FORMATTING PARAMETERS

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 2 Flow
s (ABR vs TCP)

(a)L
inear/2s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 10s / 2 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 10s / 2 Flow
s (ABR vs TCP)

(b)L
inear/10s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 2s / 2 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 2s / 2 Flow
s (ABR vs TCP)

(c)E
xp

/2s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 10s / 2 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 10s / 2 Flow
s (ABR vs TCP)

(d)E
xp

/10s

Figure
5.4:M

edia
Param

eters
-Stability

(2
flow

s)

5.7. Summary 57

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

2s
 /

3
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

2s
 /

3
Fl

ow
s

(A
BR

 v
s

TC
P)

(a
)L

in
ea

r/
2s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

10
s

/ 3
 F

lo
w

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

10
s

/ 3
 F

lo
w

s
(A

BR
 v

s
TC

P)

(b
)L

in
ea

r/
10

s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Ex
p.

 /
2s

 /
3

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Ex
p.

 /
2s

 /
3

Fl
ow

s
(A

BR
 v

s
TC

P)

(c
)E

xp
/2

s

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Ex
p.

 /
10

s
/ 3

 F
lo

w
s

(A
BR

 v
s

AB
R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Ex
p.

 /
10

s
/ 3

 F
lo

w
s

(A
BR

 v
s

TC
P)

(d
)E

xp
/1

0s

Fi
gu

re
5.

5:
M

ed
ia

Pa
ra

m
et

er
s

-S
ta

bi
lit

y
(3

flo
w

s)

58 CHAPTER 5. MEDIA FORMATTING PARAMETERS

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 4 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 4 Flow
s (ABR vs TCP)

(a)L
inear/2s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 10s / 4 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 10s / 4 Flow
s (ABR vs TCP)

(b)L
inear/10s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 2s / 4 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 2s / 4 Flow
s (ABR vs TCP)

(c)E
xp

/2s

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 10s / 4 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Exp. / 10s / 4 Flow
s (ABR vs TCP)

(d)E
xp

/10s

Figure
5.6:M

edia
Param

eters
-Stability

(4
flow

s)

5.7. Summary 59

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(a
)L

in
ea

r/
2s

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

10
s

/ 2
 F

lo
w

s
(A

BR
 v

s
AB

R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

10
s

/ 2
 F

lo
w

s
(A

BR
 v

s
TC

P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(b
)L

in
ea

r/
10

s

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
TC

P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(c
)E

xp
/2

s

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
10

s
/ 2

 F
lo

w
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
10

s
/ 2

 F
lo

w
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(d
)E

xp
/1

0s

Fi
gu

re
5.

7:
M

ed
ia

Pa
ra

m
et

er
s

-E
nc

od
in

g
R

at
e

D
is

tr
ib

ut
io

ns
(2

flo
w

s)

60 CHAPTER 5. MEDIA FORMATTING PARAMETERS

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 2s / 3 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(a)L
inear/2s

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 10s / 3 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 10s / 3 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(b)L
inear/10s

600
1200

-

3000

-

-

6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Exp. / 2s / 3 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

600
1200

-

3000

-

-

6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Exp. / 2s / 3 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(c)E
xp

/2s

600
1200

-

3000

-

-

6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Exp. / 10s / 3 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

600
1200

-

3000

-

-

6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Exp. / 10s / 3 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(d)E
xp

/10s

Figure
5.8:M

edia
Param

eters
-E

ncoding
R

ate
D

istributions
(3

flow
s)

5.7. Summary 61

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(a
)L

in
ea

r/
2s

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

10
s

/ 4
 F

lo
w

s
(A

BR
 v

s
AB

R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

10
s

/ 4
 F

lo
w

s
(A

BR
 v

s
TC

P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(b
)L

in
ea

r/
10

s

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
TC

P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(c
)E

xp
/2

s

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
10

s
/ 4

 F
lo

w
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

-

30
00

-

-

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Ex
p.

 /
10

s
/ 4

 F
lo

w
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(d
)E

xp
/1

0s

Fi
gu

re
5.

9:
M

ed
ia

Pa
ra

m
et

er
s

-E
nc

od
in

g
R

at
e

D
is

tr
ib

ut
io

ns
(4

flo
w

s)

62 CHAPTER 5. MEDIA FORMATTING PARAMETERS

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 2s / 2 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(a)L
inear/2s

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 10s / 2 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 10s / 2 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(b)L
inear/10s

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Exp. / 2s / 2 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Exp. / 2s / 2 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(c)E
xp

/2s

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Exp. / 10s / 2 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Exp. / 10s / 2 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(d)E
xp

/10s

Figure
5.10:M

edia
Param

eters
-Playback

B
ufferO

ccupancy
D

istributions
(2

flow
s)

63

Chapter 6

Bandwidth Estimation

So far I have demonstrated some of the inherent problems many ABR systems face, and
shown how tweaking media formatting parameters can help to tackle these issues. This has
been done by considering only the most basic application implementations possible under
each of the four transfer mechanisms described in Section 3.3. In this chapter I extend these
applications with more sophisticated bandwidth estimation techniques, in order to address
the poor encoding rate stability exhibited by all applications in previous chapters. Until now
my applications have used the transfer rate of the previous chunk as a bandwidth estimate.
Here I will introduce two new approaches, using different averaging functions to smooth
a series of recently observed transfer rates, and show that both improve stability across all
applications. The averaging functions I use are the exponentially weighted moving average
and the harmonic mean.

6.1 Details

Simulations in Chapters 4 and 5 have shown that all basic application models exhibit poor
encoding rate stability. This stems from the difficulty of estimating bandwidth above the
HTTP layer, where observed rates do not necessarily represent the true network state, and
are likely to fluctuate over time when applications compete with other flows. Given that con-
secutive transfer rates fluctuate significantly, using the transfer rate of the previous chunk as
a bandwidth estimate is bound to result in encoding rate instability. A simple idea to tackle
this problem is to use an averaging function on a series of recent rate estimates. This should
mean that short term fluctuations are filtered out to give a more stable set of rate estimates
over time, which in turn will result in less variation in encoding rates. The tradeoff, however,
is that abrupt changes in the available bandwidth (as opposed to fluctuations in the observed
rate estimates) will now take longer to be noticed, which may hamper the system’s ability to

64 CHAPTER 6. BANDWIDTH ESTIMATION

react and prevent stalls.

The averaging functions I investigate are the exponentially weighted moving average of all
previously observed rates (EWMA), and the harmonic mean of the previous 20 chunks’ rate
estimates (HM20). The exponentially weighted moving average is a rolling average that is
updated each time a new chunk is downloaded, using the formula shown in Equation 6.1.
This is trivial to implement on top of previous chunk bandwidth estimation, and only re-
quires the system to remember what the last value calculated was. The harmonic mean is
only slightly more complicated, requiring the previous N (in this case 20) transfer rates to be
remembered, to which the formula in Equation 6.2 is applied to give an average rate. The ex-
ponentially weighted moving average was chosen mainly for its simplicity, and the harmonic
mean was chosen to mirror the approach taken in [1], which finds that using the harmonic
mean of 20 previous transfer rates improves encoding rate stability. A value of 0.1 for the α
parameter, in Equation 6.1, was chosen as a conservative starting point for the investigation,
since the function discounts old values faster with a higher α.

Estimatei = α ∗Ratei + (1− α) ∗ Estimatei−1 (6.1)

(with α = 0.1)

HM(r1, r2, · · · , rN) = (
1

N
∗

N∑
i=1

ri
−1)−1 (6.2)

I now have three bandwidth estimation approaches, each applicable to all four transfer mech-
anisms. That gives 12 application models investigated in this chapter, 8 of which are being
introduced for the first time. Applications using previous chunk bandwidth estimation are, as
before, client pull through multiple connections (pullm-i-prev), client pull through a single
connection (pulls-i-prev), server push (push-prev), and client pull with selective requests
(pullsl-prev). Following the same naming scheme, applications using EWMA bandwidth
estimation are labelled pullm-i-ewma, pulls-i-ewma, push-i-ewma, and pullsl-i-ewma.
Similarly, those using harmonic mean bandwidth estimation are pullm-i-hm, pulls-i-hm,
push-i-hm, and pullsl-i-hm. For brevity, I can only afford to show simulations using a sin-
gle set of media parameters in this chapter, and to maintain the theme of improving on the

6.2. Fairness 65

baseline simulations presented in Chapter 4 I revert back to using the default media param-
eters. These are the 2 second chunk duration and linear encoding rates (600, 1200, 2000,
3000, 4000, 5000, 6000 kbps). Each ABR flow transfers 600 seconds worth of content over
300 2 second chunks. Again, each application is tested competing against both separate
instances of itself and long lived continuous TCP flows, in scenarios with 2, 3, and 4 com-
peting flows in total. This gives 12 applications tested under 6 different scenarios, with each
simulation repeated 100 times, giving a total of 7200 simulations represented in total.

6.2 Fairness

Figure 6.1, on page 69, shows fairness plots for all applications competing against both ABR
and TCP flows, with only two flows running. Figures 6.1a, 6.1b, and 6.1c show applications
using previous chunk, exponentially weighted moving average, and harmonic mean band-
width estimation respectively. Each individual boxplot shows the spread of values for 100
repetitions of a single simulation. Figures 6.2, and 6.3 follow the same format as Figure 6.1,
showing results for 3 and 4 competing flows.

At a glance, it is easy to see that the new bandwidth estimation approaches do not have any
significant effect on an applications fairness. In Figure 6.1 each subfigure is almost identical,
with the top figure showing no discrimination in any case when ABR flows compete against
similar ABR flows and the bottom showing significant discrimination when ABR flows com-
pete against long lived continuous TCP flows. Figures 6.2, and 6.3 follow a similar pattern.
This is because the new bandwidth estimation approaches do not have any effect on the per-
formance of client pull. The chunk duration is still small and idle periods between chunks
still exist, so that the reasons for poor performance described in Section 4.2 still apply. This
was expected, and any slight differences in fairness that can be seen with the new applica-
tions can be accounted for by considering that the new bandwidth estimation techniques will
affect the encoding rates chosen, which in turn will affect the number of bytes transferred for
each chunk.

6.3 Stability

Figures 6.4, 6.5, and 6.6, starting on page 72 show stability plots for all 12 applications,
competing against ABR and TCP flows, with 2, 3, and 4 flows competing. The format is
the same as that of figures in Section 6.2. Stability calculated again using Equation 3.2 from

66 CHAPTER 6. BANDWIDTH ESTIMATION

Chapter 3, with each boxplot showing the spread of values for 100 repetitions of a single
simulation.

This time, the effect of using an averaging function with bandwidth estimation is signifi-
cant. In each scenario, applications using EWMA and harmonic mean bandwidth estimation
are far more stable, with a stability index close to 1.0, than their counterparts using previous
chunk bandwidth estimation in the same scenario. As hypothesised in the introduction to this
chapter, using averaging functions such as these dampens fluctuations in observed transfer
rates to give a smoother and more more stable series of bandwidth estimates. This, in turn,
naturally leads to less unnecessary encoding rate switches, resulting in a more stable stream.
Encoding rate distributions in the next section add more evidence to support this conclusion.

6.4 Encoding Rate Distributions

Figures 6.7, 6.8, and 6.9, starting on page 75,follow the same format as those in the previous
two sections. In this section each graph contains 4 distributions, one per application, each
showing the distribution of encoding rates observed over 100 repetitions of a single simula-
tion of that application in the given scenario.

Two important observations can be drawn from studying these distributions. The first is con-
firmation that using an averaging function to dampen bandwidth improves the stability of
all four basic application models. Distributions in the second and third columns, showing
applications using EWMA and harmonic mean bandwidth estimation, have noticeably less
variation than those in the first column of each figure. For server push and pull selective
applications the effect is obvious in Figure 6.7, but less so for pull multiple and pull single
applications. This is because poor efficiency with a 2 second chunk duration has already
restricted these applications’ choice of encoding rates in those scenarios, as I have shown in
chapters 4 and 5, however, in Figures 6.8 and 6.9 the effect can be seen more clearly for pull
multiple and pull single applications.

The second observation that can be drawn from these graphs is a tentative advantage for the
EWMA over the harmonic mean. In each figure, distributions in the second column, for
applications using EWMA bandwidth estimation, are at least slightly better than those for
the corresponding application using harmonic mean bandwidth estimation in the third col-
umn, and often significantly better. Although both show far less variation than applications
using previous chunk bandwidth estimation, distributions for applications using the EWMA

6.5. Playback Buffer Occupancy Distributions 67

are always weighted more to the right than their counterparts for applications using the har-
monic mean. At this stage more research would be required to strengthen this conclusion,
but it seems that the harmonic mean, which favours smaller values in the list, gives a more
conservative average than the EWMA.

6.5 Playback Buffer Occupancy Distributions

The danger of dampening the bandwidth estimate using an averaging function is that signals
from genuine changes of conditions on the network will take longer to filter through, which
could potentially result in a playback interruption if there not enough content buffered al-
ready. It is important, therefore, to demonstrate that using an averaging function to smooth
the bandwidth estimates does not solve one problem and introduce another. Figure 6.10, on
page 78, confirms that using harmonic mean and EWMA bandwidth estimation techniques
does not lead to playback interruptions. Figure 6.10 shows playback buffer occupancy dis-
tributions for scenarios with 2 competing flows, none of which show any time spent with an
empty buffer. Figures for scenarios with 3 and 4 competing flows are not shown for brevity,
but they do follow similar patterns. Again, other differences between the shapes of these
distribtions are less important and the reasons for those differences are not entirely clear.

6.6 Discussion

Stability plots and encoding rate distributions from this chapter show that using an averaging
function, over a series of recent transfer rates, results in a much more stable bandwidth esti-
mate than simply using the transfer rate of the previous chunk. Transfer rates observed above
the HTTP layer hide complexity beneath, and fluctuate over short time scales due to the be-
haviour of the underlying TCP protocol and its congestion control mechanisms. Using an
averaging function can dampen these fluctuations to give a more stable series of bandwidth
estimates, which in turn leads to less variation in encoding rate choices and fewer unnec-
essary rate switches, and a more stable stream gives the user a better viewing experience
[38]. Both [3] and [1] also suggest filtering bandwidth estimates, and [1] shows a similar im-
provement in stablity from their experiments. The tradeoff, however, is that dampening the
bandwidth estimates may risk not allowing signals, from genuine changes on the network,
to reach the application in time for it to react before stalling. Figure 6.10 confirms that this
does not happen in any of my simulations.

68 CHAPTER 6. BANDWIDTH ESTIMATION

Of the averaging functions used in these simulations, using the EWMA of all previous
chunks’ transfer rates seems to give better results than using the harmonic mean of the
last twenty chunks’ transfer rates. Both have a similarly positive effect on stability, but the
EWMA approach allows the applications to achieve higher average rates. However, it is not
clear how changing the parameters of these functions will affect things, and being more con-
servative could be argued to be a safer approach. Although applications using the EWMA
achieved higher average rates than their counterparts using the harmonic mean, this could
prevent the system from building an adequate safety net in the playback buffer, thus leaving
it at a higher risk of stalling in the future. In this case we trade quality for safety, and finding
the correct balance is likely to be a case of trial and error. One thing that remains clear is
that using some form of smoothing function with bandwidth estimation based on transfer
rates will yield better results than none at all. Further work is needed to understand in detail
the effect of both the α parameter in Equation 6.1, and the number of samples averaged in
equation Equation 6.2, and to understand better how these functions compare.

6.7 Summary

In this chapter I have demonstrated that my original four basic application models can be
improved by using a more sophisticated approach to bandwidth estimation. Using an aver-
aging function over a series of recent chunks’ transfer rates to estimate bandwidth dampens
out short term fluctuations, resulting in much more stable streams than simply using the pre-
vious chunks transfer rate as the bandwidth estimate. I showed this using both an EWMA of
all previous chunks’ transfer rates and the harmonic mean of the previous 20 chunks’ trans-
fers rates. The EWMA gave marginally higher average encoding rates in my simulations,
but this is not conclusive. There also exists a fundamental tradeoff between smoothing the
bandwidth signal to achieve better encoding rate stability, and being able to react quickly to
genuine congestion. Finding the correct balance will probably require an element of experi-
mentation for the parameters any given system.

In the following chapter I investigate another component involved in adaptation logic, this
time considering the effects of different request scheduling strategies for client pull based
applications. Until now all client pull applications have sent requests for the next chunk to
the server immediately after each previous chunk has finished downloading. I will explore
the reasons why a different approach may be desirable, what better approaches might look
like, and how applications using them compare to those tested so far.

6.7. Summary 69

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness
Li

ne
ar

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

TC
P)

(a
)P

re
vi

ou
s

C
hu

nk

pu
llm

-i-e
wma pu

lls
-i-e

wma
pu

sh
-ew

ma
pu

lls
l-e

wma

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-e
wma pu

lls
-i-e

wma
pu

sh
-ew

ma
pu

lls
l-e

wma

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness
Li

ne
ar

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
TC

P)

(b
)E

W
M

A

pu
llm

-i-h
m

pu
lls

-i-h
m

pu
sh

-hm

pu
lls

l-h
m

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-h
m

pu
lls

-i-h
m

pu
sh

-hm

pu
lls

l-h
m

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

TC
P)

(c
)H

M
20

Fi
gu

re
6.

1:
B

an
dw

id
th

E
st

im
at

io
n

-F
ai

rn
es

s
(2

Fl
ow

s)

70 CHAPTER 6. BANDWIDTH ESTIMATION

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00
Fairness

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 2s / 3 Flow
s (ABR vs TCP)

(a)Previous
C

hunk

pullm-i-ewmapulls-i-ewma
push-ewma
pullsl-ewma

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm-i-ewmapulls-i-ewma
push-ewma
pullsl-ewma

Application

0.80

0.85

0.90

0.95

1.00
Fairness

Linear / 2s / 3 Flow
s (ABR vs TCP)

(b)E
W

M
A

pullm-i-hm
pulls-i-hm

push-hm

pullsl-hm

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm-i-hm
pulls-i-hm

push-hm

pullsl-hm

Application

0.80

0.85

0.90

0.95

1.00

Fairness

Linear / 2s / 3 Flow
s (ABR vs TCP)

(c)H
M

20

Figure
6.2:B

andw
idth

E
stim

ation
-Fairness

(3
Flow

s)

6.7. Summary 71

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness
Li

ne
ar

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

TC
P)

(a
)P

re
vi

ou
s

C
hu

nk

pu
llm

-i-e
wma pu

lls
-i-e

wma
pu

sh
-ew

ma
pu

lls
l-e

wma

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-e
wma pu

lls
-i-e

wma
pu

sh
-ew

ma
pu

lls
l-e

wma

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness
Li

ne
ar

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
TC

P)

(b
)E

W
M

A

pu
llm

-i-h
m

pu
lls

-i-h
m

pu
sh

-hm

pu
lls

l-h
m

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-h
m

pu
lls

-i-h
m

pu
sh

-hm

pu
lls

l-h
m

Ap
pl

ic
at

io
n

0.
80

0.
85

0.
90

0.
95

1.
00

Fairness

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

TC
P)

(c
)H

M
20

Fi
gu

re
6.

3:
B

an
dw

id
th

E
st

im
at

io
n

-F
ai

rn
es

s
(4

Fl
ow

s)

72 CHAPTER 6. BANDWIDTH ESTIMATION

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0
Stability

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 2 Flow
s (ABR vs TCP)

(a)Previous
C

hunk

pullm-i-ewmapulls-i-ewma
push-ewma
pullsl-ewma

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm-i-ewmapulls-i-ewma
push-ewma
pullsl-ewma

Application

0.0

0.2

0.4

0.6

0.8

1.0
Stability

Linear / 2s / 2 Flow
s (ABR vs TCP)

(b)E
W

M
A

pullm-i-hm
pulls-i-hm

push-hm

pullsl-hm

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm-i-hm
pulls-i-hm

push-hm

pullsl-hm

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 2 Flow
s (ABR vs TCP)

(c)H
M

20

Figure
6.4:B

andw
idth

E
stim

ation
-Stability

(2
Flow

s)

6.7. Summary 73

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability
Li

ne
ar

 /
2s

 /
3

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-p
rev

pu
lls

-i-p
rev

pu
sh

-pr
ev

pu
lls

l-p
rev

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

2s
 /

3
Fl

ow
s

(A
BR

 v
s

TC
P)

(a
)P

re
vi

ou
s

C
hu

nk

pu
llm

-i-e
wma pu

lls
-i-e

wma
pu

sh
-ew

ma
pu

lls
l-e

wma

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

2s
 /

3
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-e
wma pu

lls
-i-e

wma
pu

sh
-ew

ma
pu

lls
l-e

wma

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability
Li

ne
ar

 /
2s

 /
3

Fl
ow

s
(A

BR
 v

s
TC

P)

(b
)E

W
M

A

pu
llm

-i-h
m

pu
lls

-i-h
m

pu
sh

-hm

pu
lls

l-h
m

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

2s
 /

3
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-h
m

pu
lls

-i-h
m

pu
sh

-hm

pu
lls

l-h
m

Ap
pl

ic
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability

Li
ne

ar
 /

2s
 /

3
Fl

ow
s

(A
BR

 v
s

TC
P)

(c
)H

M
20

Fi
gu

re
6.

5:
B

an
dw

id
th

E
st

im
at

io
n

-S
ta

bi
lit

y
(3

Fl
ow

s)

74 CHAPTER 6. BANDWIDTH ESTIMATION

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0
Stability

Linear / 2s / 4 Flow
s (ABR vs ABR)

pullm-i-prev
pulls-i-prev
push-prev
pullsl-prev

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 4 Flow
s (ABR vs TCP)

(a)Previous
C

hunk

pullm-i-ewmapulls-i-ewma
push-ewma
pullsl-ewma

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 4 Flow
s (ABR vs ABR)

pullm-i-ewmapulls-i-ewma
push-ewma
pullsl-ewma

Application

0.0

0.2

0.4

0.6

0.8

1.0
Stability

Linear / 2s / 4 Flow
s (ABR vs TCP)

(b)E
W

M
A

pullm-i-hm
pulls-i-hm

push-hm

pullsl-hm

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 4 Flow
s (ABR vs ABR)

pullm-i-hm
pulls-i-hm

push-hm

pullsl-hm

Application

0.0

0.2

0.4

0.6

0.8

1.0

Stability

Linear / 2s / 4 Flow
s (ABR vs TCP)

(c)H
M

20

Figure
6.6:B

andw
idth

E
stim

ation
-Stability

(4
Flow

s)

6.7. Summary 75

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%
Li

ne
ar

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(a
)P

re
vi

ou
s

C
hu

nk

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
ew

m
a

pu
lls

-i-
ew

m
a

pu
sh

-e
w

m
a

pu
lls

l-e
w

m
a

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%
Li

ne
ar

 /
2s

 /
2

Fl
ow

s
(A

BR
 v

s
TC

P)

pu
llm

-i-
ew

m
a

pu
lls

-i-
ew

m
a

pu
sh

-e
w

m
a

pu
lls

l-e
w

m
a

(b
)E

W
M

A

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
hm

pu
lls

-i-
hm

pu
sh

-h
m

pu
lls

l-h
m

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

2
Fl

ow
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
hm

pu
lls

-i-
hm

pu
sh

-h
m

pu
lls

l-h
m

(c
)H

M
20

Fi
gu

re
6.

7:
B

an
dw

id
th

E
st

im
at

io
n

-E
nc

od
in

g
R

at
e

D
is

tr
ib

ut
io

ns
(2

Fl
ow

s)

76 CHAPTER 6. BANDWIDTH ESTIMATION

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100
%

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 2s / 3 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(a)Previous
C

hunk

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm
-i-ew

m
a

pulls-i-ew
m

a
push-ew

m
a

pullsl-ew
m

a

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100
%

Linear / 2s / 3 Flow
s (ABR vs TCP)

pullm
-i-ew

m
a

pulls-i-ew
m

a
push-ew

m
a

pullsl-ew
m

a

(b)E
W

M
A

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 2s / 3 Flow
s (ABR vs ABR)

pullm
-i-hm

pulls-i-hm
push-hm
pullsl-hm

600
1200
2000
3000
4000
5000
6000

Encoding Rate (kbps)

0 20 40 60 80

100

%

Linear / 2s / 3 Flow
s (ABR vs TCP)

pullm
-i-hm

pulls-i-hm
push-hm
pullsl-hm

(c)H
M

20

Figure
6.8:B

andw
idth

E
stim

ation
-E

ncoding
R

ate
D

istributions
(3

Flow
s)

6.7. Summary 77

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%
Li

ne
ar

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
AB

R)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
pr

ev
pu

lls
-i-

pr
ev

pu
sh

-p
re

v
pu

lls
l-p

re
v

(a
)P

re
vi

ou
s

C
hu

nk

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
ew

m
a

pu
lls

-i-
ew

m
a

pu
sh

-e
w

m
a

pu
lls

l-e
w

m
a

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%
Li

ne
ar

 /
2s

 /
4

Fl
ow

s
(A

BR
 v

s
TC

P)

pu
llm

-i-
ew

m
a

pu
lls

-i-
ew

m
a

pu
sh

-e
w

m
a

pu
lls

l-e
w

m
a

(b
)E

W
M

A

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

AB
R)

pu
llm

-i-
hm

pu
lls

-i-
hm

pu
sh

-h
m

pu
lls

l-h
m

60
0

12
00

20
00

30
00

40
00

50
00

60
00

En
co

di
ng

 R
at

e
(k

bp
s)

02040608010
0

%

Li
ne

ar
 /

2s
 /

4
Fl

ow
s

(A
BR

 v
s

TC
P)

pu
llm

-i-
hm

pu
lls

-i-
hm

pu
sh

-h
m

pu
lls

l-h
m

(c
)H

M
20

Fi
gu

re
6.

9:
B

an
dw

id
th

E
st

im
at

io
n

-E
nc

od
in

g
R

at
e

D
is

tr
ib

ut
io

ns
(4

Fl
ow

s)

78 CHAPTER 6. BANDWIDTH ESTIMATION

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100
%

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 2s / 2 Flow
s (ABR vs TCP)

pullm
-i-prev

pulls-i-prev
push-prev
pullsl-prev

(a)Previous
C

hunk

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm
-i-ew

m
a

pulls-i-ew
m

a
push-ew

m
a

pullsl-ew
m

a

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100
%

Linear / 2s / 2 Flow
s (ABR vs TCP)

pullm
-i-ew

m
a

pulls-i-ew
m

a
push-ew

m
a

pullsl-ew
m

a

(b)E
W

M
A

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 2s / 2 Flow
s (ABR vs ABR)

pullm
-i-hm

pulls-i-hm
push-hm
pullsl-hm

0
(0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60

Playback Buffer O
ccupancy (seconds)

0 20 40 60 80

100

%

Linear / 2s / 2 Flow
s (ABR vs TCP)

pullm
-i-hm

pulls-i-hm
push-hm
pullsl-hm

(c)H
M

20

Figure
6.10:B

andw
idth

E
stim

ation
-Playback

B
ufferO

ccupancy
D

istributions
(2

Flow
s)

79

Chapter 7

Request Scheduling Strategies

In the previous chapter I looked at different approaches to bandwidth estimation, and showed
that applying an averaging function over a series of recent transfer rates, in order to estimate
bandwidth, results in a much more stable system than simply using the most recent transfer
rate. I will now investigate another important component of some ABR systems, which is
the request scheduling strategy used in client pull systems. I will describe three separate
strategies for scheduling requests to the server, and investigate their effects on the behaviour
of client pull ABR flows. I will also compare my results with those from another recent study
that looked at the same three strategies [1].

7.1 Details

In a client pull based system, after each chunk has finished downloading, the client must
send a request to the server for the next chunk at the desired encoding rate. Server push and
pull selective applications gain some advantage from being able send each chunk after the
previous without any delay, thus maintaining a high throughput on the TCP connection, it
would also be difficult for a server to know when a client might want to wait before receiving
the next chunk or how long it should wait. But for client pull applications more options are
available, and it makes sense to give careful consideration to the request scheduling strat-
egy. An obvious approach is to simply schedule each request to happen as soon as possible,
building up locally buffered content indefinitely in order to safeguard against future conges-
tion and possible stalls, but this approach is far from optimal in most situations. If a client
leaves prematurely then buffered content will be discarded and bandwidth has been wasted,
and there is also the risk of downloading chunks at an unnecessarily low rate when there
is no rush and conditions may well improve later. Taking these types of concern into ac-
count, other approaches revolve around the idea of scheduling requests to maintain a target

80 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

volume of buffered content. This approach could also be implemented with a server push
based approach by having the server estimate the client’s playback state given the encoding
rates and number of chunks it has sent. However, this is more complicated to implement
and there is scope for problems arising if the estimates deviates significantly from the true
playback state, which is why I only consider scheduling strategies for client pull applications.

On top of the basic immediate request scheduling strategy, I first consider a periodic request
scheduling strategy that tries to avoid over buffering by maintaining a target playback buffer
occupancy. This works by first selecting a target duration of playback buffer occupancy, then
scheduling requests to be sent when the current buffer occupancy falls just below that target.
When the chunk has finished downloading, the buffer occupancy jumps up beyond the target
occupancy again and the next request is scheduled. Eventually the system should fall into
a repetitive pattern with buffer occupancy hovering above and below the target occupancy.
The formula used to calculate the request scheduling delay in this case is shown in Equation
7.1, where C is the current buffer duration and T is the target duration.

Delay =

0, if C < T.

C − T, otherwise.
(7.1)

The periodic request scheduling strategy avoids over buffering, but has also been shown to
introduce synchronisation issues that lead to unfair allocation of encoding rates, depending
on the relative starting times of competing ABR flows. The authors of [1] demonstrate this
effect and refer to it as the application starting time bias. Long delays between requests
mean applications can see a biased view of the network while other applications are idle,
thus overestimating their share of the available bandwidth, and the periodic timing of trans-
fers can result in a pattern of repetition where one application consistently overestimates
bandwidth while another competing application consistently underestimates. In this situa-
tion the relative starting time for each flow determines how they are biased for the rest of the
stream. Synchronisation issues are not uncommon in computer networking applications, see
[39] for example, and a common solution is to introduce a small element of random jitter to
remove the repetitive behaviour. In [1], introducing a small random offset to the target buffer
occupancy for each chunk is found to be enough for the application starting time bias and
synchronisation problems. For the random periodic request scheduling strategy, a similar
formula to the one in Equation 7.1 is used to calculate the request scheduling delay after each
chunk has been downloaded. In Equation 7.2,R is a small randomly chosen offset calculated

7.2. Fairness 81

after each chunk has finished downloading.

Delay =

0, if C < (T +R).

C − (T +R), otherwise.
(7.2)

My implementations of periodic and random periodic request scheduling both use a 30 sec-
ond target buffer, as suggested in [1], with the value of R chosen randomly to lie between 0
and 5 seconds. The value for R used in [1] is not given, but the authors suggest that only a
small offset is required.

Combining three different request scheduling strategies with both pull multiple and pull sin-
gle applications, all using previous chunk bandwidth estimation, gives the following six ap-
plications tested in this chapter: pullm-i-prev, pullm-p-prev, pullm-rp-prev, pulls-i-prev,
pulls-p-prev, and pulls-rp-prev. In this notation, ‘i’, ‘p’, and ‘rp’ each stand for ‘imme-
diate’, ‘periodic’, and ‘random periodic’. As before, applications are simulated competing
against both ABR flows and long lived TCP flows, with varying amounts of cross traffic, and
using the original set of 7 linear encoding rates (600, 1200, 2000, 3000, 4000, 5000, 6000
kbps) and 2 second chunk duration. The analysis of these simulations is given in the follow-
ing four sections by fairness plots, stability plots, encoding rate distributions, and playback
buffer occupancy distributions.

7.2 Fairness

Figures 7.1 and 7.2, starting on page 89, show fairness plots for all six applications compet-
ing against both ABR flows and long lived TCP flows. Figure 7.1a shows graphs with three
pull multiple applications competing against increasing numbers of ABR cross flows, using
immediate, periodic, and random periodic request scheduling. Figure 7.1b shows the same
for three pull single applications, and likewise for Figures 7.2a and 7.2b with long lived TCP
cross flows.

Plots in Figure 7.1 show little difference between applications using immediate, periodic,
and random periodic request scheduling, for both pull multiple and pull single. Experiments
in [1] suggest both that periodic scheduling results in unfair allocation of resources between

82 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

competing ABR flows, and that random periodic scheduling solves the problem. This means
there seems to be a conflict between the two sets of results, which I will discuss further in
Section 7.6.

The plots in Figure 7.2, however, where applications compete against long lived TCP flows,
show lower Jain’s index values for applications using periodic and random periodic request
scheduling. This is expected given the way fairness is calculated. Jain’s index is applied to
the total number of bytes sent by each competing flow during the time in which the main
ABR flow is active on the network. Increasing the length of idle periods between transfers
for the ABR flow, during which long lived TCP flows continue to send data, will clearly
result in more discrepancy between the ABR flow and competing long lived TCP flows.

7.3 Stability

Figures 7.3 and 7.4, starting on page 91, show stability plots in the same format as the fairness
plots discussed in the previous section. Plots in Figure 7.3a show pull multiple applications
using the three different request scheduling strategies, competing against increasing numbers
of ABR flows, and likewise with Figure 7.3b for pull single applications. Figures 7.4a and
7.4b show the same for applications competing against long lived TCP flows.

Neither sets of plots show any consistent effect on stability between the immediate, periodic,
and random periodic request scheduling strategies. The top left plot in Figure 7.3 appears to
show some increase in stability when the two periodic strategies are used, and the top left plot
in figure 7.4 appears to show a decrease. However, I have discussed in previous chapters how
stability measurements can be thwarted by poor efficiency for client pull applications using
a short chunk duration, and there is no noticeable difference between the three approaches in
any scenario involving three or four competing flows. Periodic and random periodic request
scheduling were never postulated to improve stability, and these results also show that they
do not seem to have any obvious negative effect either.

7.4 Encoding Rate Distributions

Figures 7.5 and 7.6, starting on page 93, show encoding rate distributions for all six applica-
tions again competing in different scenarios, with individual plots laid out in the same format

7.5. Playback Buffer Occupancy Distributions 83

as the previous two sections. This time, each plot contains three distributions, one for each
variant off either pull multiple or pull single, using a different request scheduling strategy.
Each distribution shows the distribution of encoding rates chosen over 100 repetitions of that
simulation.

The red distributions in each scenario follow the same pattern that has been observed in pre-
vious chapters for client pull applications using a short chunk duration. Distributions average
below the fair share value for an 8Mbps bottleneck, and those in the top row of each figure
show less variance than those below where there is more competing traffic and more rates
become available at the low end of the spectrum. Introducing periodic and random periodic
request scheduling, whose distributions are shown in yellow and green, does not have any
noticeable or consistent effect. This is not surprising, given that plots in the previous two
sections have also shown little difference between the three strategies, but playback buffer
occupancy distributions in the following section will highlight the real reason for wanting to
adopt the periodic approach.

7.5 Playback Buffer Occupancy Distributions

Figures 7.7 and 7.8, starting on page 95 show playback buffer occupancy distributions for
all six applications in the same set of scenarios as have been shown throughout this chapter.
None of the distributions in either Figure have any bars in the equals 0 state. This is good
and shows that adaptation is working, applications are avoiding stalling by using lower rates
when it would not be possible for each application to stream at the highest possible rate.
However, there is a significant noticeable difference between applications using immediate
request scheduling and those using periodic or random periodic request scheduling. The
red distributions, for applications using immediate request scheduling, show a roughly equal
amount of time spent in each of the first six states after equals 0, with a slight peak in the over
60 seconds state. This is the pattern that would be expected for an application that continues
to build up its playback buffer indefinitely at a steady rate, while spending roughly the same
amount of time in each state as it builds up buffer, then again as it falls to 0 when all content
has been downloaded.

But yellow and green distributions follow a distinctly different pattern in every plot. Instead
of continuing to build up buffer indefinitely, they peak either in the (30s, 40s] or (40s, 50s]
states, with very little time spent beyond them. In other words, applications using periodic
and random periodic request scheduling strategies spend most of their time with a playback

84 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

buffer occupancy of somewhere between 30 and 50 seconds, thus avoiding any of the prob-
lems associated with over buffering. The difference between where distributions for the two
strategies tend to peak can be accounted for by the extra random offset that is added to the
target each time a request delay is calculated with the random periodic strategy.

7.6 Competing ABR Flows

In Section 7.2, I found that periodic scheduling did not result in any unfairness between com-
peting ABR flows in my simulations, which is at odds with findings from [1]. In that study,
the authors find that synchronisation issues with periodic scheduling lead to an application
starting time bias resulting in unfair allocation of encoding rates between competing ABR
flows, and also that random periodic scheduling remedies the problem. My first thought in
trying to understand this conflict was that differences between analysis techniques used in
my work and theirs may be the cause. I measure fairness by considering the difference in
bytes transferred by competing flows, over the entire course of both flows, whereas in [1],
fairness is measured over time by comparing the difference in encoding rates used by each
competing flow at discrete intervals over the course of the flows. Considering the difference
between encoding rates versus number bytes sent should not be a significant problem, since
if one application is consistently getting higher encoding rates then it will also send more
bytes and the two indexes should agree. But it could be that while my simulations are unfair
at certain points over the lifetime of a stream, this averages out for the entire stream so that
my measure of fairness does not highlight the discrepancies. However, after examining time
series graphs from my own simulations, it became clear that this was not the problem, and
that my simulations of competing ABR flows using periodic request scheduling really were
fair for most of the duration of the streams, with no significant or long lived periods of un-
fairness. This can be seen in Figure 7.11, on page 99, which shows chunk encoding rates and
transfer durations, along with playback buffer occupancy over time, for a single repetition
of two competing ABR flows using my original parameters and periodic request scheduling.
Periodic scheduling kicks in just as the buffer occupancy begins to level out, but both flows
settle at around 2000 kbps for most of their duration.

To investigate the issue further, I then set about listing the differences between parameters
used in both sets of studies, so that I could run more simulations matching their parameters
in an attempt to replicate their results better. The differences that I was able to pin down
and remove included the encoding rates used, the bottleneck bandwidth, and bandwidth es-
timation techniques. In the experiments in question from [1], 3 ABR flows compete over a 3

7.6. Competing ABR Flows 85

mbps bottleneck link, using 2 second chunks encoded at 8 different rates ranging from 350
kbps to 2750 kbps (Assuming they are evenly spaced, I estimate these to be 350, 690, 1030,
1370, 1710, 2050, 2390, and 2750 kbps). On top of this they use harmonic mean bandwidth
estimation looking at the 20 most recently observed transfer rates. Figure 7.9, on page 97,
shows fairness results for simulations I ran using the parameters matching those used in [1]
as closely as possible. Looking at the two graphs in the middle row with three ABR flows
competing, as was done in [1], it is immediately obvious that something interesting is hap-
pening. The boxplots for applications using periodic and random periodic request scheduling
are showing much more variation than before, with the average fairness index lying well be-
low that of applications using immediate request scheduling. There is also a slight hint of
improvement for the pull multiple application using random periodic request scheduling, in
the middle row of Figure 7.9a, but nothing drastic or conclusive, and the same cannot be said
of the corresponding application in Figure 7.9b. To backup these results, Figure 7.12 shows
the same thing as Figure 7.11, but for 3 competing ABR flows, using parameters matching
those used in [1] along with periodic request scheduling. Here, there is far more discrepancy
amongst encoding rates used by the three competing flows.

I had originally thought that the use of previous chunk bandwidth estimation, rather than
harmonic mean bandwidth estimation, might be why my original results for this chapter did
not show any unfairness between competing ABR flows using periodic request scheduling.
If the problem concerns falling into bad patterns of over estimation and under estimation
of available bandwidth, then it could have been that harmonic mean bandwidth estimation
was to blame, since once the system finds itself in that situation then using smoothed band-
width estimates will make it more difficult to escape with just one or two good estimates.
However, I also ran simulations using the same parameters as my original ones, but using
harmonic mean bandwidth estimation instead, and found no difference in the results. Instead,
the findings represented in Figure 7.9 suggest that the problem is sensitive to the combination
of bottleneck bandwidth, available encoding rates, and number of competing flows. To gain
an intuition for why this might be the case, consider Figures 7.13 and 7.14, starting on page
101. These show zoomed-in versions of Figures 7.11 and 7.12, and give a clearer picture
of what is happening for individual chunks. The location of the bars on the x-axis shows
the times at which chunks were being transferred, with the gaps between showing periods
where that flow was idle. In Figure 7.14 the idle periods are much more apparent, and often
comparable in duration to the chunk transfers themselves.

To understand the importance of this, refer back to the explanation, given in Section 7.1, as to
why periodic scheduling is thought to cause problems in the first place. The problem has to
do with one application seeing a biased view of the network while other applications are idle,

86 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

thus overestimating the available bandwidth and selecting a higher rate than it should. The
higher encoding rate chunks take longer to transfer, so that competing flows do not see this
biased view of the network, and instead are likely to underestimate bandwidth since transfers
are shorter for chunks with lower encoding rates and therefore find it more difficult to reach
a high sending rate. It follows that when idle periods are more prominent, then the problem
will be more likely to manifest. Now consider what determines the length of idle periods
between chunks when periodic request scheduling is used. When chunks are encoded at a
rate just below the bandwidth seen by that flow, transfers will take almost the same length
of time as the chunk duration. If C is the current playback buffer occupancy, and a request
is sent when C equals 30 seconds, a 10 second chunk might complete downloading by the
time C has fallen to 21 seconds. C will then jump by 10 seconds to 31 seconds, and the next
request is scheduled to take place after 1 second. On the other hand, if the encoding rate is
well below the bandwidth seen by a flow, then transfers will be relatively quick. This time,
by the time the chunk has finished downloading C might only have fallen to 25 seconds,
so that it will then become 35 seconds and the next request is scheduled to happen after 5
seconds.

In other words, when the encoding rate is close to the available bandwidth the idle periods
are shorter, and vice versa. Since idle periods are the cause of fairness issues, it follows
that those issues could well be sensitive to the relationship between encoding rates, avail-
able bandwidth, and number of competing flows. Figure 7.9 supports this theory, since the
problems only appear noticeably with one combination of those parameters. Going one step
further, Figure 7.10, on page 98, shows that tweaking the bottleneck bandwidth from 3 mbps
to 4 mbps is enough to change the results so that the fairness issues between competing
ABR flows no longer transpire. Graphs in the middle row of Figure 7.10, which shows
simulations using a 4 mbps bottleneck link, show very little difference in fairness between
competing ABR flows for applications using periodic scheduling and those using immediate
scheduling, unlike the corresponding graphs from Figure 7.9, which show simulations using
a 3 mbps bottleneck link. This supports the idea that the problem is sensitive to certain pa-
rameters, and introduces scope for further work to investigate why that is the case.

7.7 Discussion and Summary

In this chapter I have looked at the effects of introducing different request scheduling strate-
gies to client pull applications. Greedily downloading each chunk immediately after the
previous one has finished can lead to over buffering, which risks wasting bandwidth and

7.7. Discussion and Summary 87

downloading chunks at a low encoding rate prematurely. For client pull applications, other
options are available. One approach, referred to as periodic request scheduling, tries to avoid
over buffering by timing requests to maintain a target duration of playback buffer. This is
done by selecting a target playback buffer occupancy, then timing chunk requests to occur
when occupancy has fallen just below that target. My simulations show that this works as
intended. Applications build up their buffer occupancy initially, then hover around the 30
second mark, which is the target duration used, and never have more than 50 seconds worth
of content buffered. On top of this, they still manage to avoid ever having any playback inter-
ruptions. Fairness plots also revealed a hit on performance when applications using periodic
request scheduling compete against long lived TCP flows, but this was expected, given the
way fairness is calculated, with longer delays between chunk transfers and continuous cross
traffic.

My original results, however, did not show any adverse effect on fairness when two or more
ABR flows compete using periodic request scheduling, which contradicts experiments de-
scribed in [1]. The authors of that study hypothesised that using periodic request scheduling
would lead to unfair bitrate allocation between competing ABR flows, due to the introduc-
tion of a starting time bias that affects each application’s bandwidth estimates, and also gave
evidence through experiments that this was the case. They also showed that a common solu-
tion to this type of problem, which is to introduce a small random offset to the target buffer
duration for each round, referred to as periodic request scheduling, is an effective remedy.
After trying to pin down the differences between my experiments and theirs, and running
more simulations to try to match what they had done more closely, I was able to show that
periodic request scheduling could lead to unfairness between competing ABR flows in some
situations. According to my results, this seems to be sensitive to certain parameters, in partic-
ular the relationship between encoding rates, available bandwidth, and number of competing
flows. I was not, however, able to conclusively show any positive effect of using random pe-
riodic request scheduling. There is scope for further work here to understand why I was not
able to do this, and why the original problem only seems to manifest itself in some situations.

Where over buffering is to be avoided in client pull based applications, a periodic request
scheduling approach is a good solution. However, developers should be aware of other prob-
lems that can be introduced by this technique, and take careful steps to be sure to avoid those
problems. Scheduling strategies could also feasibly be considered for server push based
applications, though this is less straightforward and I do not study the effects of such an
approach in this work. In the next chapter, I bring the dissertation to a conclusion with a
summary of my results and discussion of areas where my work has highlighted scope for
further research.

88 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

7.7. Discussion and Summary 89

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 2 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 3 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 4 Flows (ABR vs ABR)

(a) Pull Multiple

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 2 Flows (ABR vs ABR)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 3 Flows (ABR vs ABR)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 4 Flows (ABR vs ABR)

(b) Pull Single

Figure 7.1: Request Scheduling - Fairness (ABR vs ABR)

90 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 2 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 3 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 4 Flows (ABR vs TCP)

(a) Pull Multiple

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 2 Flows (ABR vs TCP)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 3 Flows (ABR vs TCP)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Linear / 2s / 4 Flows (ABR vs TCP)

(b) Pull Single

Figure 7.2: Request Scheduling - Fairness (ABR vs TCP)

7.7. Discussion and Summary 91

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 2 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 3 Flows (ABR vs ABR)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 4 Flows (ABR vs ABR)

(a) Pull Multiple

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 2 Flows (ABR vs ABR)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 3 Flows (ABR vs ABR)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 4 Flows (ABR vs ABR)

(b) Pull Single

Figure 7.3: Request Scheduling - Stability (ABR vs ABR)

92 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 2 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 3 Flows (ABR vs TCP)

pu
llm

-i-p
rev

pu
llm

-p-
pre

v

pu
llm

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 4 Flows (ABR vs TCP)

(a) Pull Multiple

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 2 Flows (ABR vs TCP)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 3 Flows (ABR vs TCP)

pu
lls

-i-p
rev

pu
lls

-p-
pre

v

pu
lls

-rp
-pr

ev

Application

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ili
ty

Linear / 2s / 4 Flows (ABR vs TCP)

(b) Pull Single

Figure 7.4: Request Scheduling - Stability (ABR vs TCP)

7.7. Discussion and Summary 93

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs ABR)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs ABR)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs ABR)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

(a) Pull Multiple

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs ABR)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs ABR)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs ABR)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

(b) Pull Single

Figure 7.5: Request Scheduling - Encoding Rate Distributions (ABR vs ABR)

94 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs TCP)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs TCP)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs TCP)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

(a) Pull Multiple

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs TCP)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs TCP)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

60
0

12
00

20
00

30
00

40
00

50
00

60
00

Encoding Rate (kbps)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs TCP)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

(b) Pull Single

Figure 7.6: Request Scheduling - Encoding Rate Distributions (ABR vs TCP)

7.7. Discussion and Summary 95

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs ABR)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs ABR)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs ABR)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

(a) Pull Multiple

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs ABR)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs ABR)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs ABR)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

(b) Pull Single

Figure 7.7: Request Scheduling - Playback Buffer Occupancy Distributions (ABR vs ABR)

96 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs TCP)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs TCP)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs TCP)

pullm-i-prev
pullm-p-prev
pullm-rp-prev

(a) Pull Multiple

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 2 Flows (ABR vs TCP)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 3 Flows (ABR vs TCP)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

0
(0,

 10
]

(10
, 2

0]

(20
, 3

0]

(30
, 4

0]

(40
, 5

0]

(50
, 6

0]
> 60

Playback Buffer Occupancy (seconds)

0

20

40

60

80

100

%

Linear / 2s / 4 Flows (ABR vs TCP)

pulls-i-prev
pulls-p-prev
pulls-rp-prev

(b) Pull Single

Figure 7.8: Request Scheduling - Playback Buffer Occupancy Distributions (ABR vs TCP)

7.7. Discussion and Summary 97

pu
llm

-i-h
m

pu
llm

-p-
hm

pu
llm

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 2 Flows (ABR vs ABR)

pu
llm

-i-h
m

pu
llm

-p-
hm

pu
llm

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 3 Flows (ABR vs ABR)

pu
llm

-i-h
m

pu
llm

-p-
hm

pu
llm

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 4 Flows (ABR vs ABR)

(a) Pull Multiple

pu
lls

-i-h
m

pu
lls

-p-
hm

pu
lls

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 2 Flows (ABR vs ABR)

pu
lls

-i-h
m

pu
lls

-p-
hm

pu
lls

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 3 Flows (ABR vs ABR)

pu
lls

-i-h
m

pu
lls

-p-
hm

pu
lls

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 4 Flows (ABR vs ABR)

(b) Pull Single

Figure 7.9: Request Scheduling - Fairness (ABR vs ABR, parameters matching [1])

98 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

pu
llm

-i-h
m

pu
llm

-p-
hm

pu
llm

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 2 Flows (ABR vs ABR)

pu
llm

-i-h
m

pu
llm

-p-
hm

pu
llm

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 3 Flows (ABR vs ABR)

pu
llm

-i-h
m

pu
llm

-p-
hm

pu
llm

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 4 Flows (ABR vs ABR)

(a) Pull Multiple

pu
lls

-i-h
m

pu
lls

-p-
hm

pu
lls

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 2 Flows (ABR vs ABR)

pu
lls

-i-h
m

pu
lls

-p-
hm

pu
lls

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 3 Flows (ABR vs ABR)

pu
lls

-i-h
m

pu
lls

-p-
hm

pu
lls

-rp
-hm

Application

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

Custom / 2s / 4 Flows (ABR vs ABR)

(b) Pull Single

Figure 7.10: Request Scheduling - Fairness (ABR vs ABR, parameters matching [1] with 4
mbps bottleneck)

7.7. Discussion and Summary 99

0 100 200 300 400 500 600 700
Time (s)

0

1000

2000

3000

4000

5000
E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(a) ABR client 1

0 100 200 300 400 500 600 700
Time (s)

0

1000

2000

3000

4000

5000

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140
P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(b) ABR client 2

Figure 7.11: Encoding rates and playback buffer occupancy over time (original parameters,
pull multiple, 2 ABR flows, 0 - 700s).

100 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

0 100 200 300 400 500 600 700
Time (s)

0

200

400

600

800

1000

1200

1400

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(a) ABR client 1

0 100 200 300 400 500 600 700
Time (s)

0

200

400

600

800

1000

1200

1400

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(b) ABR client 2

0 100 200 300 400 500 600 700
Time (s)

0

200

400

600

800

1000

1200

1400

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(c) ABR client 3

Figure 7.12: Encoding rates and playback buffer occupancy over time (parameters matching
[1], pull multiple, 3 ABR flows, 0 - 700s).

7.7. Discussion and Summary 101

120 125 130 135 140 145 150 155 160
Time (s)

0

1000

2000

3000

4000

5000
E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(a) ABR client 1

120 125 130 135 140 145 150 155 160
Time (s)

0

1000

2000

3000

4000

5000

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140
P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(b) ABR client 2

Figure 7.13: Encoding rates and playback buffer occupancy over time (original parameters,
pull multiple, 2 ABR flows, 120 - 160s).

102 CHAPTER 7. REQUEST SCHEDULING STRATEGIES

120 125 130 135 140 145 150 155 160
Time (s)

0

200

400

600

800

1000

1200

1400

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(a) ABR client 1

120 125 130 135 140 145 150 155 160
Time (s)

0

200

400

600

800

1000

1200

1400

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(b) ABR client 2

120 125 130 135 140 145 150 155 160
Time (s)

0

200

400

600

800

1000

1200

1400

E
n
co

d
in

g
 R

a
te

 (
kb

p
s)

0

20

40

60

80

100

120

140

P
la

y
b
a
ck

 B
u
ff

e
r

O
cc

u
p
a
n
cy

 (
s)

(c) ABR client 3

Figure 7.14: Encoding rates and playback buffer occupancy over time (parameters matching
[1], pull multiple, 3 ABR flows, 120 - 160s).

103

Chapter 8

Conclusion

In this chapter, I present a summary of my findings and discuss their relevance to developers.
I then suggest areas where there is scope for future research and continuation of my work, as
well as areas where my methods could be improved. In the final section I end the dissertation
with some concluding remarks and a summary of my contributions.

8.1 Summary of Findings

The main findings of my research fall broadly into three sets of related results. The first set
of results are concerned with efficiency problems with client pull applications and how they
can be tackled. These are summarised in the following list:

• The on-off nature of client pull flows results in poor bandwidth efficiency, and makes
it difficult for those flows to achieve high throughput and encoding rates, especially
when competing with other traffic.

• Server push applications, which maintain a continuous TCP flow between client and
server, do not exhibit these problems and behave much like any other long lived TCP
flow.

• Increasing the length of chunk duration largely mitigates the efficiency problems in
client pull applications.

• Pull selective applications perform as well as server push applications, but scale like
client pull applications.

104 CHAPTER 8. CONCLUSION

In chapter 4 I observed efficiency problems for client pull applications with a 2 second chunk
duration, using both multiple and single TCP connections. There was noticeable discrimi-
nation against client pull applications competing against continuous TCP flows, and client
pull applications achieved lower average rates than server push and pull selective counter-
parts in the same scenarios. The inefficiency, highlighted and discussed in previous chapters,
is caused by frequent idle periods at chunk boundaries and the on-off nature of client pull
flows. The same behaviour is observed in [3], much of which is devoted to investigating the
underlying cause of the problem. They also conclude that idle periods at chunk boundaries
are at the root of the problem. Transfers for short chunks never have time to build up to
and maintain a high throughput before the transfer is complete. When the next chunk starts,
TCP’s congestion window will have been reset, either because the connection was left idle or
because a new connection was created. Meanwhile any competing flows will have continued
to fill the queueing buffer at the bottleneck router so that the new flow is likely to experience
increased packet loss, which only makes it more difficult to escape slow start and reach the
steady state phase.

Two effective ways to counteract this problem are to increase the chunk duration, or to avoid
using the client pull approach altogether. In chapter 5 I showed that with a 10 second chunk
duration the difference between client pull and server push applications is much smaller. This
is because the longer transfers have more time to increase throughput and reach the steady
state. From chapter 4 it was also clear that the problem did not exist with server push or pull
selective applications, since these maintain a continuous TCP flow between client and server
with no idle periods at chunk boundaries. The downside of using server push is that it is
a less scalable approach, however, the hybrid pull selective approach scales like client pull,
since adaptation logic is handled by the client, but performs like server push on the network
since it is able to maintain a continuous TCP flow.

The next set of results relate to encoding rate stability, and the difficulty of choosing a suit-
able long term encoding rate:

• ABR applications are liable to suffering from poor encoding rate stability, unless steps
are taken to address the issue.

• Having fewer available encoding rates naturally makes for more stable streams, with
fewer rate switches.

• Dampening bandwidth estimates by using an averaging function to filter out short term
fluctuations can significantly improve encoding rate stability.

8.1. Summary of Findings 105

In my benchmark simulations, applications using all four transfer mechanisms exhibited poor
encoding rate stability. This has also been observed in a number of recent studies [1, 3, 12].
Instability seems to arise from the difficulty of picking a suitable encoding rate, that can be
sustained for a reasonable period of time, above the HTTP layer. At this level, TCP hides
much of the complexity of what is really happening on the network. Observed rates fluctu-
ate over short time spans and make it difficult for an application to accurately estimate the
bandwidth it has available. In chapter 5 I observed that the problem was less severe when
using the smaller set of exponentially spaced rates. Although it is not clear what difference
the spacing makes, when there are fewer rates available the system is less likely to switch
rate due to small throughput fluctuations. In chapter 6 I showed that filtering bandwidth es-
timates, by applying an averaging function to recently observed transfer rates, will also help
significantly to improve encoding rate stability. Short term fluctuations are dampened and
the bandwidth estimate won’t change by much unless changes in network conditions persist.
I demonstrated this using both the harmonic mean of 20 recent transfer rates and an expo-
nentially weighted moving average of all transfer rates. Using an averaging function like this
is not a new idea, and is also suggested in both [3] and [1]. In [1], the authors also show with
their experiments that using the harmonic mean improves encoding rate stability.

In chapter 7 I investigated different approaches to request scheduling for client pull systems,
and compared the obvious immediate scheduling approach with two periodic approaches in-
tended to avoid the problems of over buffering. The two main outcomes of this chapter can
be summarised as follows:

• Periodic request scheduling can be used to avoid over buffering and the problems as-
sociated with it.

• In some circumstances, periodic request scheduling can result in unfair allocation of
resources between competing ABR flows.

Service providers may wish to avoid over buffering, since it can be both wasteful of band-
width and achieve suboptimal results. If a user leaves the stream prematurely then over
buffered content will have been wasted, and over buffering also runs the risk of downloading
chunks hastily at a lower rate when conditions may improve later. To avoid over buffering,
periodic request scheduling times requests for new chunks to be sent just as the buffer oc-
cupancy drops below a target duration. This allows the system to maintain a safety net of
buffered content, which can absorb the affects of any sudden changes on the network, with-
out having to buffer content indefinitely. My experiments described in Chapter 7 showed
that periodic request scheduling can successfully avoid over buffering without introducing

106 CHAPTER 8. CONCLUSION

playback interruptions. However, my original results from this chapter were in conflict with
the results of experiments from [1], which showed that periodic request scheduling can lead
to fairness issues between competing ABR flows. After tweaking my parameters to match
the ones in experiments from [1] more closely, I was able to reproduce their results, but
changing the bottleneck bandwidth from 3 mbps to 4 mbps was enough to make the effect
disappear again. This suggests that the problems of unfair allocation of resources between
competing ABR flows using periodic request scheduling is sensitive to the relationship be-
tween certain parameters. In [1] the authors also showed that introducing a small element of
random jitter to the periodic request scheduling strategy was enough to avoid the repetitive
patterns and synchronisation effects that cause this problem. I was unable to reproduce that
result conclusively, in part due to the fact that I could only produce the original problem with
one set of parameters.

Some of my results are new contributions to the field and some help to strengthen conclu-
sions that other studies have also reached. The comparison between server push and client
pull approaches, for example, is a novel contribution, as is the evaluation of the pull selec-
tive approach. The effects of changing chunk duration and number of available encoding
rates have not been widely studied,though some recent studies have touched on these less di-
rectly. For example, [3] considers chunk duration briefly at one point. On the other hand, my
results highlighting instability, and those demonstrating that filtering bandwidth estimates
can improve stability, are not new, but instead serve both to help validate my simulations
and support the conclusions already reached by researchers. Similarly, my investigation
of request scheduling parameters was not original work, but did help to support findings by
researchers whilst also adding an extra dimension and showing that the picture is incomplete.

8.2 Recommendations to Developers

I have said from the beginning that my results are trying to shed light on some poorly under-
stood tradeoffs in ABR streaming. The intended outcome was not necessarily to find the best
way to implement an ABR system, but to help developers make more informed decisions for
themselves when it comes to implementing an ABR system. In this section I will discuss the
main tradeoffs that I have investigated, and suggest how I think developers can interpret my
results usefully.

The first problem that developers will need to consider is which transfer mechanism to adopt,
and how to address the inefficiency of the client pull approach if they take that option. Choos-

8.2. Recommendations to Developers 107

ing between client pull and server push and pull selective will involve considering more than
just how well they perform on the network. There are other fundamental tradeoffs involved
in this decision, and developers must consider practical issues such as ease of implemen-
tation and deployment. Server push and pull selective applications do not suffer from the
same inefficiency problems as client pull applications, and while server push does not scale
very well, pull selective does scale well and offers an interesting option that is worth careful
consideration. Both server push and pull selective, however, are more difficult to implement
and less flexible than a client pull based system. Server push and pull selective each require a
modified server, for example, and make it more difficult for a client to switch host easily. On
top of this, it is more difficult to implement a periodic scheduling strategy with a server push
based approach, since it requires having the server estimate the client’s playback state. This
makes it more difficult to avoid over buffering, which is discussed later in this section, with
a server push based system. Other modifications that require playback state information,
such as always selecting the lowest rate when there is less than a certain duration of content
buffered locally for example, are also more difficult to implement with server push for the
same reason.

If developers choose to use client pull, then a second option for tackling the inefficiency is
to select the chunk duration carefully. In my experiments, changing the chunk duration from
2 seconds to 10 seconds was enough to make a significant difference. There is, however, a
danger of making the chunk duration too long and hampering the system’s ability to react
and avoid congestion. It is not clear where the boundary lies here, and the answer will de-
pend on things like content buffering and request scheduling strategies, but most commercial
systems seem to use a chunk duration of between 2 and 10 seconds [1, 3].

The second important issue that developers should be aware of is encoding rate instability.
This problem manifested with every application in my initial experiments, and has also been
observed in a number of other studies recently. The first thing to consider here is bandwidth
estimation and using an averaging function to dampen the estimate and filter out short term
fluctuations. This was shown to work in my experiments, and has also been suggested or
demonstrated to work in other studies. There is also a concern here that too much dampen-
ing will make it difficult for the application to learn quickly of any genuine changes in the
network it needs to react to. Secondly, developers should consider carefully which encoding
rates to make available for ABR streaming. This will depend on a number of factors, includ-
ing the content itself and intended target device, but my simulations indicate that more is not
better. Fewer encoding rates means fewer opportunities for rate switches, though providers
should be careful to ensure that enough rates are made available to make adaptation effec-
tive. After deciding on the desired range of rates, I would suggest that just one or two in the

108 CHAPTER 8. CONCLUSION

middle should be enough to cover most scenarios. This will also means less space is taken
up on the disk, and less time spent encoding each file that is uploaded to a site like YouTube,
for example.

Finally, developers wishing to avoid over buffering will want to select a suitable request
scheduling strategy, possibly in conjunction with a client pull based system. Again, this is
not just an engineering decision, and will depend on the intended use case of the system. For
example, for a movie streaming website such as Netflix, it can probably be assumed that if
the user watches the first 5 minutes then they will continues to watch the rest of the movie
in most cases. For a site like YouTube, on the other hand, the user’s attention span is likely
to be much lower and the provider may wish to consider using a periodic request scheduling
strategy to avoid over buffering and wasting bandwidth. Where periodic request scheduling
is used, developers should be aware of the potential for this to cause synchronisation prob-
lems and lead to unfairness between competing ABR flows. If problems like this do occur,
then introducing a small element of random jitter to the scheduling strategy looks to be a
simple counter measure.

Hopefully this will be a useful set of guidelines to help developers who are making these
choices. In the next section I will discuss scope for future work and areas where my methods
could be improved.

8.3 Scope for Future Work

This work has highlighted a number of areas where there is scope for further research. There
is also scope to directly continue and build on my work in some areas, as well as to improve
on the methods I used. I will start here by being critical of my own work, and suggesting
things that I would change were I to continue with the simulation approach. The first thing
I would do, were I to continue this work, is spend time improving the competition traffic
models. First of all, more realistic competing traffic scenarios are needed in order make
my results more relevant and valid. Currently I have two competing traffic models, long
lived TCP flows and other ABR flows. Although these are a good starting point, they both
represent fairly artificial situations, which are not typical of those found when users stream
videos over the web in real life. A third traffic model could be constructed by analysing
real world network traces, and using this would add a lot of credibility to my experiments
by demonstrating that the results also appear in real life scenarios. On top of this, I would
spend time improving the randomised background traffic model that I use in a similar way,

8.3. Scope for Future Work 109

and in particular pay more attention to how the parameters of this traffic affect the behaviour
of simulations.

A second area where I could improve my results is by using more complicated scenarios,
and spending more time inspecting time series graphs to better understand what is happen-
ing. For example, it would be useful to be able to set up experiments where a competing
flow starts after an ABR flow has become established, then carefully analyse in detail what
happens immediately before and after the new flow starts. I could also spend time looking
at the relationship between queue occupancy on the bottleneck router, congestion window
behaviour, and throughput. Finally, there is scope to extend my results by considering the
effect of changing parameters on the network which have remained static in my work. In par-
ticular, I would want to make my results more robust by showing that they can be replicated
with different end-to-end delays and bottleneck bandwidths. It would also be interesting to
study how buffer bloat is affecting the behaviours I observe and compare simulations using
under buffered and over buffered queues, or to play with different TCP models and tweak the
initial congestion window. Since TCP’s behaviour was responsible for both the stability and
inefficiency problems that I observed, it would make sense to check if these can be solved
simply by using a newer TCP model, or tweaking the parameters of the model currently in
use. For example, increasing the initial congestion window from 1 packet to 10 packets, as
discussed in [40], would benefit short transfers and may help client pull flows with a short
chunk duration. Using simulation software makes it possible to study things such as TCP
parameters, which may not be easy to change on a real network.

Areas where my work has introduced scope for further research include the behaviours of
server push and pull selective systems, the cause of unfairness between competing ABR
flows using periodic request scheduling, and the effects of media formatting parameters.
Server push and pull selective systems have not been widely studied in other works, and
their is definite scope to look at these systems more closely. For example, although it can
be inferred that server push does not scale as well as client pull, due to the extra process-
ing required on the server for each client, my simulations did not and were not expected
to capture this. Ns-3 does not model application running times, and my simulations do not
stress the servers with multiple concurrent clients. It would, however, be useful to be able
to observe and quantify these differences. For a client pull system using a single long lived
TCP connection, the server already keeps per client state, but it is difficult to say how much
difference the extra state and server side calculations required for server push flows really
makes. This could be investigated with a more sophisticated simulator, or by studying a real
life system running on lab machines.

110 CHAPTER 8. CONCLUSION

In Chapter 5 I showed how tweaking media formatting parameters can benefit the design
of an ABR system, but that picture is still incomplete and there are unanswered questions
remaining. It’s not clear what is a safe limit for a chunk duration that doesn’t endanger the
system ability to react to congestion. It would also be useful to investigate further how the
range and spacing of encoding rates affects a system’s performance. Running experiments
using intermediate chunk durations between 2 and 10 seconds would help to understand the
effect at a finer level of granularity. Again in Chapter 5, although I suggested that using fewer
rates resulted in more stable streams, it was unclear what effect if any the difference between
linearly and exponentially spaced rates had. Repeating the experiments from this chapter
using a set of four linearly spaced rates, for example, would show more clearly whether hav-
ing fewer rates or having different spacing between rates was responsible for the effect on
stability. In Chapter 6, I demonstrated that introducing an averaging function to bandwidth
estimates can improve stability, but further work is needed to investigate the effects of both
the α parameter in Equation 6.1, for EWMA, and the number of samples averaged in Equa-
tion 6.2, for harmonic mean. Finally, my results from Chapter 7 suggested that the problems
with periodic request scheduling are sensitive to the relationship between certain parameters
including bottleneck bandwidth, number of competing flows, and available encoding rates.
There is scope to investigate this further to try to understand why that is the case and how
common the problem is.

8.4 Conclusion

In this project I set out to investigate the effects of various parameters on ABR video stream-
ing systems, in order to shed light on areas that are well understood and guide developers
faced with making difficult decisions when implementing ABR systems. I used network sim-
ulation software to model and compare different application models, looking at the difference
between client pull and server push approaches, the effect of media formatting parameter
such as chunk duration and number of available encoding rates, and the implementation of
various system components that implement ABR logic.

In the end I found that client pull systems can be inefficient and find it difficult to achieve
their fair share of available bandwidth, due to the effect of frequent idle periods on TCP’s
behaviour. This result mirrors findings from a number of previous studies. I also found that
two effective approaches to countering this problem are to use a longer chunk duration, or to
avoid client pull altogether and implement a server push based system. Increasing the chunk
duration from 2 seconds to 10 seconds gives the short transfers for each individual chunk

8.4. Conclusion 111

a better chance to build up and maintain a high throughput in a client pull based system.
Server push systems maintain a continuous TCP flow between client and server, so behave
more efficiently than client pull systems, but the server must keep extra per client state and
perform ABR calculations for each client, meaning that this approach is also less scalable
than client pull. As a novel contribution of this work, I found that pull selective applications,
which which are a hybrid of client pull and server push, putting the responsibility for ABR
calculations back on the client whilst maintaining a constant TCP flow between client and
server, offer another alternative to developers wishing to avoid the efficiency problems of
client pull applications. Pull selective systems perform as well as server push and scale as
well as client pull.

I also found that ABR systems in general are vulnerable to encoding rate instability, unless
measures are taken to address the issue. Again, this is a problem that other studies have
found, and arises from TCP behaviours that make it difficult to select and maintain a suit-
able encoding rate using application layer transfer rate estimates. Effective counter measures
include carefully choosing what rates are available in order to make sure there are not too
many, and using an averaging function on bandwidth estimates to filter out short term fluc-
tuations. Finally, I also found that periodic request scheduling can avoid over buffering in
client pull systems, but can also lead to unfair sharing of resources between competing ABR
flows.

In this chapter I summarised these findings and their relevance to developers, before setting
the stage for further research or a direct continuation of this work. My project has uncovered
new results, validated and reproduced results from other studies, and highlighted areas where
more work is needed to understand conclusively what is happening. Web-based, on-demand
adaptive bitrate video streaming systems have become very popular with content providers
in recent years, and do not seem to be going away for the foreseeable future. Hopefully the
findings of this work will help developers to make better systems for people to use.

112 CHAPTER 8. CONCLUSION

BIBLIOGRAPHY 113

Bibliography

[1] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in HTTP-
based adaptive video streaming with FESTIVE,” in Proceedings of the 8th International

Conference on Emerging Networking Experiments and Technologies, 2012.

[2] Cisco Visual Networking Index: Forecast and Methodology, 2012-2017.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/
white paper c11-481360 ns827 Networking Solutions White Paper.html. [accessed
21-December-2013].

[3] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Confused, timid,
and unstable: picking a video streaming rate is hard,” in Proceedings of the 2012 ACM

Conference on Internet Measurement, 2012.

[4] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP,” in Proceedings of the 2nd

Annual ACM Conference on Multimedia Systems, 2011.

[5] Akhshabi, Anantakrishnan, Begen, and Dovrolis, “What happens when HTTP adaptive
streaming players compete for bandwidth?” in Proceedings of The 22nd ACM Work-

shop on Network and Operating Systems Support for Digital Audio and Video, 2012.

[6] R. Houdaille and S. Gouache, “Shaping HTTP adaptive streams for a better user ex-
perience,” in Proceedings of the 3rd Annual ACM Conference on Multimedia Systems,
2012.

[7] BT Vision. http://www.btvision.bt.com/. [accessed 21-December-2013].

[8] Virgin Media’s TiVo service. http://store.virginmedia.com/digital-tv/set-top-boxes/
tivo.html. [accessed 21-December-2013].

[9] B. Clouston and B. Moore, “RFC 2475 - An architecture for differentiated services,”
http://www.ietf.org/rfc/rfc2475.txt.

114 BIBLIOGRAPHY

[10] M. Allman, V. Paxson, and E. Blanton, “RFC 5681 - TCP Congestion Control,” http:
//www.ietf.org/rfc/rfc5681.txt.

[11] T. Stockhammer, “Dynamic adaptive streaming over HTTP - standards and design prin-
ciples,” in Proceedings of the 2nd Annual ACM Conference on Multimedia Systems,
2011.

[12] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dynamic HTTP
streaming,” in Proceedings of the 8th International Conference on Emerging Network-

ing Experiments and Technologies, 2012.

[13] Netflix. http://www.netflix.com. [accessed 21-December-2013].

[14] Hulu. http://www.hulu.com. [accessed 21-December-2013].

[15] Vudu. http://www.vudu.com. [accessed 21-December-2013].

[16] YouTube. http://www.youtube.com. [accessed 21-December-2013].

[17] BBC iPlayer. http://www.bbc.co.uk/iplayer. [accessed 21-December-2013].

[18] Smooth Streaming Experience. http://www.test.org/doe/. [accessed 21-December-
2013].

[19] Smooth Streaming Protocol. http://msdn.microsoft.com/en-us/library/ff469518.aspx.
[accessed 21-December-2013].

[20] Apple Quicktime. http://www.apple.com/quicktime. [accessed 21-December-2013].

[21] Adobe HTTP Dynamic Streaming. http://www.adobe.com/products/
hds-dynamic-streaming.html. [accessed 21-December-2013].

[22] V. Paxson and S. Floyd, “Why we don’t know how to simulate the Internet,” in Pro-

ceedings of the 29th Conference on Winter Simulation, 1997.

[23] M. Ammar, “Why We STILL Don’t Know How to Simulate Networks,” in Proceedings

of the 13th IEEE International Symposium on Modelling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2005.

[24] ns-3 Network Simulator. http://www.nsnam.org. [accessed 21-December-2013].

[25] matplotlib Python graph plotting library. http://www.matplotlib.org. [accessed 21-
December-2013].

[26] J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and J. Moore, “Unveiling the Trans-
port,” SIGCOMM Computer Communications Review, vol. 34, 2004.

Bibliography 115

[27] D. D. Clark and D. L. Tennenhouse, “Architectural Considerations for a New Genera-
tion of Protocols,” SIGCOMM Computer Communications Review, vol. 20, 1990.

[28] ITEC - Dynamic Adaptive Streaming Over HTTP (Dataset). http://www-itec.uni-klu.
ac.at/dash/?page id=207. [accessed 21-December-2013].

[29] Ofcom - UK fixed-line broadband performance, November 2012. http://stakeholders.
ofcom.org.uk/market-data-research/other/telecoms-research/broadband-speeds/
broadband-speeds-nov2012. [accessed 21-December-2013].

[30] V. Jacobson and R. Braden, “RFC 1072 - TCP Extensions for Long-Delay Paths,” http:
//www.ietf.org/rfc/rfc1072.txt.

[31] Wikipedia article - Tail drop queue. https://en.wikipedia.org/wiki/Tail drop. [accessed
21-December-2013].

[32] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “RFC 2018 - TCP Selective Ac-
knowledgment Options,” http://www.ietf.org/rfc/rfc2018.txt.

[33] J. Nagle, “RFC 896 - Congestion Control in IP/TCP Internetworks,” http://www.ietf.
org/rfc/rfc896.txt.

[34] S. Floyd, T. Henderson, and A. Gurtov, “RFC 3782 - The NewReno Modification to
TCP’s Fast Recovery Algorithm,” http://www.ietf.org/rfc/rfc3782.txt.

[35] TCP Models in ns-3. http://www.nsnam.org/docs/release/3.11/models/html/tcp.html.
[accessed 21-December-2013].

[36] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Computer Systems,” Tech. Rep.,
1984.

[37] M. Handley, J. Padhye, and S. Floyd, “RFC 2861 - TCP Congestion Window Valida-
tion,” http://www.ietf.org/rfc/rfc2861.txt.

[38] N. Cranley, P. Perry, and L. Murphy, “User perception of adapting video quality,” In-

ternational Journal of Human-Computer Studies, vol. 64, 2006.

[39] Wikipedia article - TCP global synchronization. https://en.wikipedia.org/wiki/TCP
global synchronization. [accessed 21-December-2013].

[40] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and N. Sutin,
“An argument for increasing TCP’s initial congestion window,” SIGCOMM Computer

Communications Review, vol. 40, 2010.

