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Abstract 

Recent evidence suggests that stem cells are important for cancer metastasis 

and that the epithelial-to-mesenchymal transition also involves a transition 

toward stemness. Current thinking suggests that Lgr5, a 7-transmembrane 

spanning G-protein, also marks a certain population of stem cells capable of 

regenerating an intestinal crypt and that the specialised immune secretory 

paneth cell, is important for maintenance of the stem cell niche. We implicate 

fascin in regulating the balance of Lgr5 stem cells during acute small intestinal 

and colonic inflammation and in regenerating small intestinal and colonic tissue. 

Fascin is an actin bundling protein that drives the assembly of filopodia through 

the cross-linking of actin filaments into straight bundles. Conserved from 

amoebas to man, fascin was originally purified from extracts of sea urchin 

oocytes and coelomocytes and later found in Drosophila as the singed gene 

product. It is involved in the invasion and metastasis of multiple epithelial 

cancer types through stabilisation of actin in invadopodia, finger like protrusions 

used by cancer cells to invade into and degrade the extra-cellular matrix. 

Fascin, whilst normally low or absent from epithelia, localises to the leading 

edges of migratory cells and is over-expressed in many cancers of the same 

epithelial origin including lung, colorectal, pancreatic and liver. Fascin has also 

recently been shown to increase during inflammatory bowel disease (IBD) 

conditions such as diverticulitis, Crohn’s disease and ulcerative colitis. In this 

thesis I have investigated the role of fascin in murine models of IBD and have 

demonstrated that fascin is required for the haematopoietic production of 

leucocytes, in response to inflammation and that the loss of fascin, in the 

presence of high Wnt levels, results in enhanced proliferation of small intestinal 

and colonic epithelial cells.  

One of the serious consequences of IBD is the increased lifetime risk of the 

patient developing an intestinal malignancy secondary to the disease. The exact 

mechanism underlying the increase in malignancies has not yet been fully 

established, however it is postulated that chronic inflammation and the effect 

this has on the major molecular pathways involved in carcinogenesis underlies 

the transformation from benign to malignant disease. Highest fascin expression 

has been shown in the dysplastic, pre-malignant cells in human IBD tissues 
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indicating an important role of fascin in the transformation of benign to 

malignant cells. In this thesis, I have demonstrated that loss of fascin impairs 

tumour initiation in inflammatory driven and sporadic intestinal tumourigenesis 

models, which is likely, in part, to be as a consequence of reduced leucocytes, 

in particular neutrophils, which may be CXCL2 mediated. 
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EGF Epidermal growth factor 

Eif2s3y Eukaryotic translation initiation 

factor 2, subunit 3, structural gene 
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ELISA Enzyme-linked immunosorbent assay 

EMT Epithelial-to-mesenchymal transition 

Ephb3  Ephrin type-B receptor 3 

ERDR1 Erythroid differentiation regulator 1 

Ets2  v-ets avian erythroblastosis virus E26 

oncogene homolog 2 

F-actin Filamentous actin 

FACS Fluorescence-activated cell sorting 

FAK Focal adhesion kinase 

FAP Familial Adenomatous Polyposis 

FAPC Fascin-/- APCfl/fl p53fl/fl/p53R172H Ah-

cre 

FBC Full blood count 

FBS Fetal Bovine Serum 

FKC Fascin-/-, KRasG12D Pdx1-Cre 

FOV Field of view 

Fscn1  Fascin1 

GAPDH  Glyceraldehyde 3-phosphate 

dehydrogenase 

GI Gastro-intestinal 

GSK3 Glycogen synthase kinase 

H20 Water 

HCl Hydrochloric acid 

Hes Hairy/enhancer of split 

Het Heterozygous 
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HNPCC Hereditary non-polyposis colorectal 

cancer 

IBD Inflammatory bowel disease 

IEC Intestinal epithelial cell 

IF Immunofluorescence 

IHC Immunohistochemistry 

IKK IkB kinase 

Il-11 Interleukin-11 

IL-11b  Interleukin-11b 

IL-6  Interleukin-6 

IP Intra-peritoneal 

ISC Intestinal stem cell 

IκBα Nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 

inhibitor alpha 

JAK-STAT Janus kinase/signal transducers and 

activators of transcription 

Jak1  Janus Kinase1 

Jak2  Janus Kinase2 

Jak3  Janus Kinase3 

KCl Potassium chloride 

KO Knockout 

KPC KRasG12D p53R172H Pdx1-Cre 

LEF1  Lymphoid enhancer-binding factor-1 

Lgr5  Leucine-rich repeat-containing G-

protein coupled receptor 5 

LRP Lipoprotein receptor-related protein 

Ly6e Lymphocyte antigen 6 complex, 

locus E 

Min Multiple intestinal neoplasia 

MMP Matrix metalloproteinase 

MPO  Myeloperoxidase 

MRC-T Medical Research Council Technology 

mRNA Messenger ribose nucleic acid 

NaCl Sodium chloride 
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NaHCO3 Sodium bicarbonate 

NaOH Sodium hydroxide 

NBF Neutral buffered formalin 

NF-κB  Nuclear factor kappa-light-chain-

enhancer of activated B cells 

Nrn1  Neuritin 1 

Olfm4  Olfactomedin 4 

OSM Oncostatin M 

Paip1 Polyadenylate binding protein-

interacting protein 1 

PAK p21 activated kinases 

PanIN Pancreatic intra-epithelial neoplasia 

PBS Phosphate buffered saline 

PBT Phosphate buffered saline tween 

Pen-Strep Penicillin-streptomycin 

PFA Paraformaldehyde 

PI Propidium iodide 

PKC Protein kinase C 

PMN Polymorphonuclear neutrophils 

PP2A Protein phosphatase 2A 

PVDF Polyvinylidene difluoride 

qRT-PCR Quantitative real-time polymerase 

chain reaction 

Rac Ras-related C3 botulinum toxin 

substrate 1 

RBC Red blood cell 

Rgmb  RGM domain family, member B 

RIPA Radioimmunoprecipitation assay 

ROS Reactive oxygen species 

RPM Revolutions per minute 

S39 Serine 39 

shRNA Short hairpin RNA 

SI Small intestine 

Slc14a1  Solute carrier family 14 (urea 

transporter), member 1 
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Sox9  SRY (sex determining region Y)-box 9 

Stat3  Signal transducer and activator of 

transcription 3 

TA Transit amplifying 

TCF T cell factor 

TGF-β Transforming growth factor-β 

 

TIMP Tissue inhibitor of matrix 

metalloproteinase 

TJL The Jackson Laboratory 

Tnfrsf19  Tumor necrosis factor receptor 

superfamily, member 19 

TNFα Tumour Necrosis Factor alpha 

TSP Thrombospondin-1 

UC Ulcerative colitis 

WASP Wiskott-Aldrich syndrome family 

protein 

WB Western blot 

WBC White blood cell 

Wnt3a  Wingless-type MMTV integration site 

family, member 3A 

WT Wild-type 

Xist X specific transcripts 

Zfp68 Zinc finger protein 68 
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1 Chapter 1 – Introduction
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1.1 The Gastro-Intestinal (GI) Tract 

The gastro-intestinal (GI) tract, also known as the alimentary canal, is a hollow 

muscular tube that extends from the mouth to the anus (Fig. 1-1). The intestinal 

tract extends from the duodenum to the rectum and is anatomically divided into 

the small and large intestine (or colon). The small intestine can be further sub-

divided into the duodenum, jejunum and ileum, whilst the colon can also be sub-

divided into three parts namely the caecum, colon and rectum (Fig. 1-1). The 

principal role of the GI tract is the breakdown of foodstuffs, extraction of 

nutrients and the excretion of waste products. Given that it is essentially a 

hollow tube passing through our bodies, it also has an important immune role 

and barrier function preventing pathogens within the lumen entering the blood 

and lymph. The two processes are effectively dealt with by the epithelial cells, 

which form a selectively permeable membrane, and the gut mucosa, which 

creates a barrier whilst also participating in host defence through activation of 

the mucosal immune system (Shen 2009).  
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Figure 1-1 Anatomy of the gastro-intestinal (GI) tract 

The GI tract starts at the mouth and extends to the anus. The small intestine is divided into the 
duodenum, jejunum and ileum. The colon is divided into the caecum, colon and rectum. There are 
4 layers to the small intestine and colon namely the mucosa, submucosa, muscularis mucosa and 
serosa. Images shown with permission from Anatomisty.com and wikibooks.org. 
 

The small intestine and colon share many characteristics, but also differ 

significantly in some aspects. Microscopically, both have four layers in their 

wall: mucosa, submucosa, muscularis and adventitia (or serosa) (Fig. 1-1). The 

mucosa, composed of glandular epithelium, lamina propria and the muscularis 

mucosa, lines the intestinal lumen and is the innermost layer. Absent from the 

colon, but present in the small intestine, vaginations of the mucosa form villus 

structures which radically increase the surface area of the small intestine and 

thereby the absorptive capacity. The colon, in contrast has a flat epithelium. 

Common to both small intestine and colon, are invaginations of the mucosa 

(specifically the glandular epithelium), which form structures termed the Crypts 

of Lieberkühn wherein lie the proliferative cells of the small intestine. 

Pluripotent stem cells have long been established as the driving force behind the 

proliferative capacity of the self-renewing intestinal epithelium (Bjerknes and 
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Cheng 2006), which renews faster than any other tissue in the mammalian body 

(Crosnier, Stamataki et al. 2006). Located at the base of the crypts in the stem 

cell compartment, the stem cells undergo division and the resultant daughter 

cells exit the stem cell compartment into the adjacent transit-amplifying (TA) 

compartment (Munoz, Stange et al. 2012). Whilst in the TA, the cells undergo up 

to 5 divisions whilst moving up the crypt-villus axis whereby they subsequently 

terminally differentiate into 4 cell types: paneth cells, goblet cells, entero-

endocrine cells and enterocytes (Fig. 1-2). Goblet cells, entero-endocrine cells 

and enterocytes migrate upwards towards the tip of the villus where they 

undergo apoptosis and are shed into the intestinal lumen. In contrast, paneth 

cells migrate downwards where they reside, interspersed by crypt based 

columnar (CBC) cells at the base of the crypt for up to 8 weeks. CBCs were first 

identified almost 40 years ago (Cheng and Leblond 1974) and have recently been 

renamed as “small cycling cells” (Munoz, Stange et al. 2012). They are readily 

distinguishable through their expression of the Lgr5 gene (Barker, van Es et al. 

2007), an orphan G protein-coupled receptor (McDonald, Wang et al. 1998), 

lineage tracing of which has determined that these small cycling cells are 

capable of generating all differentiated intestinal epithelial cells (Blanpain and 

Simons 2013).    
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Figure 1-2 Murine small Intestine and colonic epithelium 

Haematoxylin and eosin (H&E) staining of mouse small intestine (A) shows characteristic mucosal 
vaginations of the mucosa termed villi with mucosal invaginations, termed crypts also labelled. The 
colonic epithelium differs in the absence of villi and harbours a flat epithelium (B). Alcian Blue 
staining of colonic goblet cells (C) which are mucin secreting. Lysosyme staining (brown) of small 
intestinal paneth cells with haematoxylin (blue) counterstain (D). Lgr5 stem cells (GFP labelled, 
green with DNA dye ToPro-3 (red)) at the base of a small intestinal crypt mark the small cycling 
cells capable of generating all intestinal epithelial cell types, (image adapted and reprinted by 
permission from Macmillan Publishers Ltd: Nature (Barker, van Es et al. 2007), copyright 2007). 
H&E staining of a small intestinal entero-endocrine cell (F). 
 

The function of each of the differentiated epithelial cell types is distinct: paneth 

cells, through their secretion of antimicrobial peptides are important in 

intestinal host defence (Wehkamp, Fellermann et al. 2005). It is interesting that 

paneth cells are present in the developing colon up to gestational age of 13.5 

weeks, after which time they are largely absent from the colon, but persist in 

the small intestine (Bevins and Salzman 2011). Exceptions to this exist, 

particularly in some chronic inflammatory disease states such as inflammatory 

bowel disease (IBD) and, under such circumstances, are termed metaplastic 

crypt
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paneth cells (Cunliffe, Rose et al. 2001). Goblet cells secrete mucin which forms 

a protective blanket throughout the intestine (Specian and Oliver 1991), 

enterocytes are involved in digestion and also have a barrier function (Snoeck, 

Goddeeris et al. 2005) whilst entero-endocrine cells have a hormone/peptide 

secretory role in response to intestinal contents (Krause, Yamada et al. 1985). 

The dynamic nature of epithelial cell motility is driven by the actin 

cytoskeleton, but it is also thought to be involved in regulating cell polarity, 

molecular signalling at cell:cell adhesion complexes and in the mechanisms 

underlying cellular proliferation and differentiation (Heath 1996). Fascin is a key 

actin bundling protein and is important for the regulation of cytoskeletal 

structures, motility and cellular signalling (Adams 2004a; Hashimoto, Skacel et 

al. 2005). The dynamic changes in motility, mediated by the actin cytoskeleton 

and governed by actin bundling proteins such as fascin, which cells undergo in 

wound healing, resemble in many respects those changes seen in invading 

tumour cells. The role of fascin with regard actin and cell motility has been well 

characterised, however the role of fascin in cellular signalling and proliferation 

is poorly understood. In this thesis, I aim to investigate the role of fascin in the 

molecular processes underlying epithelial cell proliferation and the 

transformation from benign inflammatory disease to a malignant process. 

 

1.2 Fascin 

1.2.1 Introduction to fascin 

Fascin is an evolutionarily conserved 55kDa actin-bundling protein that drives 

the assembly of filopodia through the cross-linking of actin filaments into 

straight bundles (Chen, Yang et al. 2010). Conserved from amoebas to man, 

fascin was originally purified from extracts of sea urchin oocytes and 

coelomocytes and later found in Drosophila as the singed gene product (Otto, 

Kane et al. 1979). It is involved in the invasion and metastasis of multiple 

epithelial cancer types through stabilisation of actin in invadopodia, finger like 

protrusions used by cancer cells to invade into and degrade the extra-cellular 

matrix (Li, Dawson et al. 2010). Fascin, whilst normally low or absent from 
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epithelia (Hashimoto, Skacel et al. 2006), localises to the leading edges of 

migratory cells and is over-expressed in many cancers of the same epithelial 

origin including lung, colorectal, pancreatic and liver (Qualtrough, Singh et al. 

2009). Fascin is expressed by fibroblasts and dendritic cells (Banchereau, Briere 

et al. 2000) and expression levels were recently shown to increase during 

inflammatory bowel conditions such as diverticulitis, Crohn’s disease and 

ulcerative colitis (Qualtrough, Smallwood et al. 2011). 

1.2.2 Structure of fascin 

In mammals, three isoforms of fascin exist: fascin 1 (studied in this thesis and 

from hereon described as “fascin”) is widely expressed throughout 

embryogenesis in neural and mesenchymal tissues, however in adults is confined 

to certain tissues such as brain, endothelium and testes (Machesky and Li 2010). 

Fascin 2 is only found in the retina and hair-cell stereocilia, whilst fascin 3 is 

testes specific (Wada, Abe et al. 2001; Tubb, Mulholland et al. 2002; Wada, Abe 

et al. 2003). The structure of fascin is composed of four β-trefoil domains and 

both N- and C- terminal residues are needed to preserve actin-bundling function 

(Fig. 1-3) (Yang, Huang et al. 2013). 
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Figure 1-3 Structure of fascin 

(A) Crystal structure of fascin demonstrating four β-trefoil domains (image courtesy of Andrew 
Pannifer, Beatson Drug Discovery). (B) Schematic representation of fascin again demonstrating 
four β-trefoil domains and selected binding partners. Red star asterisk indicates mutations on 
residues resulting in the loss of binding with each partner (image adapted from Dr. A Li).  
 

1.2.3 Regulation of fascin 

Fascin has previously been implicated, in colon cancer, as a potential target of 

β-catenin TCF signalling with expression levels often correlating with those of 

fascin, particularly at the invasive front of tumours (Vignjevic, Schoumacher et 

al. 2007). This, however, remains controversial and a recent paper, using 

comparative genomics to analyse the fascin promoter region demonstrated that 

the regulation of fascin is controlled by CREB (cAMP response element-binding 

protein) and AhR (aryl hydrocarbon receptor) transcription factors, with no 

A
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evidence to support the role of β-catenin in the regulation of fascin in human 

carcinoma cells (Hashimoto, Loftis et al. 2009).  

 
Figure 1-4 Regulation of fascin 

Schematic representation of the regulation of fascin. Extra-cellular membrane (ECM) components 
Thrombospondin-1 (TSP) and laminin are important for the organisation of the actin cytoskeleton 
through the integrins Syndecan-1 and α3β1 which are important for the bundling of Filamentous-
actin by fascin. Rab35 controls actin bundling through the recruitment of fascin as an effector 
protein. Ligation of the integrin α5β1 by fibronectin activates Rac and, through the effector Pak1 
regulates the formation of PKC/fascin complexes. Image adapted from Dr. A Li. 
 

Many proteins which bind actin can be negatively regulated by phosphorylation 

for example, phosphorylation of fascin at S39 (serine 39), near the N-terminus, 

can negatively regulate the actin bundling activity (Ono, Yamakita et al. 1997). 

It is thought that the formation of PKC/fascin complexes is under the control of 

the G protein Rac (Ras-related C3 botulinum toxin substrate 1) via Pak (Parsons 

and Adams 2008), although whether this is a direct or indirect regulation is 

unclear (Fig. 1-4). In Drosophila Ras-related protein Rab35 controls actin 

bundling through the recruitment of fascin as an effector protein (Zhang, 

Fonovic et al. 2009). In addition to PKC phosphorylation of S39, there may be 

other phosphorylation sites which are important for the regulation of fascin: 

there are 7 new sites listed on the Phosida database which may prove important, 

although currently our understanding of these is minimal. Lastly, components of 

the extra-cellular matrix (ECM) and certain extracellular signals have been 
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shown to regulate the phosphorylation status of fascin (and hence it’s actin 

binding/bundling activity) (Kureishy, Sapountzi et al. 2002; Adams 2004b).  

 

1.3 Inflammatory Bowel Disease (IBD) 

1.3.1.1 Overview 

Inflammatory Bowel Disease (IBD) is a term that encompasses autoimmune 

inflammatory conditions affecting the small intestine and colon (Baumgart and 

Carding 2007). Cases of IBD were first described by Italian anatomist Giovanni 

Battista Morgagni (1682-1771) and Scottish Physician Sir T. Kennedy Dalziel 

(1861-1924) (Kirsner 1988). Ulcerative colitis (UC) and Crohn’s disease (CD) are 

the two principle IBD conditions. Several other atypical forms also fall under the 

colitis umbrella, principally ischaemic colitis, indeterminate colitis, collagenous 

colitis, lymphocytic colitis, diversion colitis and Behçet’s disease, however these 

are not related to an underlying inflammatory pathogenesis. Whilst the 

morbidity associated with IBD is clearly adverse to a patient’s quality of life, one 

of the serious consequences is the increased lifetime risk of the patient 

developing an intestinal malignancy secondary to the disease. It is widely 

accepted that patients with IBD are at a significantly higher risk of developing an 

intestinal malignancy with figures often quoted of a 10-12 fold increased risk of 

small bowel adenocarcinoma in CD patients (Solem, Harmsen et al. 2004) and up 

to 20 fold risk of colon cancer in UC patients (Xie and Itzkowitz 2008). 

Furthermore, IBD patients develop these tumours at an earlier age (Munkholm, 

Loftus et al. 2006) than the general population. It is unsurprising, then, that 

patients with IBD are offered enhanced surveillance in an attempt to identify 

and treat tumours at an early stage (Cairns, Scholefield et al. 2010). The exact 

mechanism underlying the increase in malignancies has not been established. 

Genetic factors have been postulated, but not proven, and instead it is thought 

that oxidative stress, consequent to the chronic inflammation and the effect this 

has on the major molecular pathways involved in carcinogenesis (Itzkowitz and 

Yio 2004) underlies the transformation from benign to malignant disease. 
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Figure 1-5 Comparison of ulcerative colitis and Crohn’s disease and the expression of 
fascin in human samples 

(A) CD is typically asymmetrical with ‘skip lesions’ and ileal involvement. In contrast UC typically 
shows continuous involvement most commonly affecting the distal colon (Illustration by Michael 
Linkinhoker, used with permission, © Copyright 2013, Johns Hopkins Medicine, All rights 
reserved.). UC specimen (B) showing characteristic appearance with diffuse mucosal involvement 
(arrow indicates continuous area of ulceration) and CD colonic specimen (C) demonstrating 
serpiginous ulcers with macroscopically normal mucosa in-between ulcerated areas (arrows 
indicate the ulcerated areas in different sections of the specimen separated by areas of normal 
mucosa) . Histological sample of UC (D) demonstrating distortion of the normal crypt architecture 
with chronic inflammatory changes seen in the lamina propria (arrowed). Histological sample of CD 
(E) demonstrating appearance of granulomas (arrowed). Images B,C,D,E printed with permission, 
copyright "University of Washington 2004". Fascin has recently been shown to be expressed in 
human tissue samples of IBD with expression seen both in the base of regenerating crypts (F) and 
also at the leading edge of the ulcers (G) where changes in cell shape, mediated by the actin 
cytoskeleton are thought to be important in wound healing. Images F,G taken with permission from 
(Qualtrough, Smallwood et al. 2011). 
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1.3.1.2 Crohn’s disease 

The name, Crohn’s disease (CD) originated when first described in 1932 by an 

American Gastroenterologist, Burrill Bernard Crohn, who published a case series 

of fourteen patients with terminal ileitis (Crohn, Ginzburg et al. 2000). CD is a 

chronic relapsing, remitting disease affecting any part of the GI tract from 

mouth to anus (Fig. 1-5). Whilst the classical presentation is of a patient in the 

second or third decade of life with clinical symptoms of abdominal pain, altered 

bowel habit (often bloody) and concurrent weight loss (Lichtenstein, Hanauer et 

al. 2009), many patients display a heterogeneous pattern of localised and 

systemic symptoms. Histologically, it is characterised by focal, transmural 

inflammation with approximately 50% of patients demonstrating the diagnostic 

granulomatous formation (Lichtenstein, Hanauer et al. 2009). The precise 

aetiology is unknown, although lifestyle, dietary and genetic factors are thought 

to play an important role (Braat, Peppelenbosch et al. 2006).  

1.3.1.3 Ulcerative colitis 

Ulcerative colitis (UC) is an idiopathic chronic relapsing inflammatory disease 

affecting the colon and rectum (Fig. 1-5). First described as a clinical condition 

in 1859 (Sir Samuel Wilks, a British Physician) (Lukas, Bortlik et al. 2006), the 

aetiology of the condition remains unclear. Whilst a genetic component 

(Baumgart and Carding 2007) and an abnormality of the innate immune response 

to gut bacteria (Ardizzone and Porro 2002) are almost certainly pre-requisites 

for the condition, multiple environmental triggers have also been described. The 

clinical presentation of UC is similar to CD in that patients classically present in 

the second and third decade of life (Stange, Travis et al. 2008) with abdominal 

pain and altered bowel habit (bloody diarrhoea). Histologically, distinguishing UC 

from CD can be difficult (Seldenrijk, Morson et al. 1991). Whereas CD is 

transmural, UC is largely confined to the mucosa with features of gland 

distortion and the absence of granuloma (Feakins 2013). 

1.3.1.4 Intestinal restitution and regeneration in IBD 

A feature common to both UC and CD is the infiltration of leucocytes to the gut 

mucosa with resultant damage to epithelial cells. Macrophages, neutrophils, 

dendritic cells and T-lymphocytes, once migrated into the gut mucosa form 
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reactive oxygen species (ROS) which modulate the inflammation and resultant 

tissue damage (Xavier and Podolsky 2007). Mucosal surfaces, lined by epithelial 

cells, act as a barrier to pathogens and damage to this leads to a defect in the 

barrier function (Turner 2009). It is therefore important in patients with IBD that 

this barrier is restored in order that gut function and the immune response is 

optimised. Failure to do so may result in a ‘leaky barrier’, which may result in a 

chronic cycle of further immune cell infiltration, release of cytokines and 

consequent chronic impairment of barrier function (Clayburgh, Shen et al. 2004). 

The repair of the mucosa is classified in two phases, namely restitution and 

regeneration (Okamoto and Watanabe 2005). Restitution involves the migration 

of epithelial cells into the damaged mucosa where they de-differentiate, form 

similar structures to pseudopods through the re-organisation of their actin 

cytoskeleton then, upon closure of the barrier, re-differentiate to their original 

form (Sturm and Dignass 2008). Whereby restitution does not involve cellular 

proliferation (Taupin and Podolsky 2003), regeneration involves the rapid 

proliferation of epithelial cells and the formation of typical intestinal crypt 

structures (Qualtrough, Smallwood et al. 2011). Both restitution and 

regeneration are key steps in the physiological repair of the intestine and the 

transition from relapse to remission. The cellular and molecular processes 

responsible for these processes are as yet, not fully understood (Okamoto and 

Watanabe 2005) and further understanding of these is crucial in developing 

therapies for patients with IBD. Fascin, an actin bundling protein, has recently 

been shown to be expressed in human tissue specimens of UC and Crohn’s colitis 

with expression correlating with disease severity (Qualtrough, Smallwood et al. 

2011). Fascin was seen to be expressed both at the leading edge of the ulcerated 

area (where restitution takes place) and also at the base of the regenerating 

crypts. Furthermore, highest fascin expression was seen in the dysplastic, pre-

malignant cells indicating potentially multiple roles for fascin in the repair of 

IBD damaged tissue, proliferation of epithelial cells and also in the 

transformation of benign to malignant cells (Qualtrough, Smallwood et al. 2011). 

Given this exciting data, we wished to take advantage of the fascin knockout 

(KO) mouse, which we have at the Beatson Institute (through our collaboration 

with Dr. Shigeko Yamashiro, Rutgers NY) in order to further explore the role of 

fascin in IBD and the transformation from benign to malignant cells. 
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1.3.1.5 Animal models of IBD 

Animal models recapitulating small intestinal and colonic inflammation have 

been in practise for some time (Elson, Sartor et al. 1995). Whilst these animal 

models do not replicate the heterogenous nature of human IBD, nor do they 

replace studies on human samples, they have greatly advanced our 

understanding of many of the mechanisms underlying the pathogenesis of the 

disease in humans and potential therapeutic targets. 

The models broadly fall into four categories namely, (1) spontaneous models 

such as C3H/HeJBir mice (Sundberg, Elson et al. 1994) which develop 

spontaneous CD4+T-cell induced transmural colitis at around 3 weeks of age in 

response to antigens of commensal gut bacteria. (2) Inducible models are 

mediated through mechanical or chemical disruption of the mucosa leading to 

activation of the mucosal immune system (i.e. Dextran Sodium Sulphate (DSS), 

which is administered orally, and radiation induced small intestinal 

inflammation). (3) Genetically engineered models include transgenic mice which 

constitutively express TL1A (a TNF superfamily member and mediator of gut 

inflammation (Shih, Barrett et al. 2011)) and targeted gene deletions (such as Il-

2, Il-10 and TGF-β (Podolsky 1997)). (4) Adoptive transfer models such as T-cell 

transfer (Ostanin, Bao et al. 2009) involves the transfer of specific cells to 

animals which are immunocompromised (Wirtz and Neurath 2007) (Wirtz and 

Neurath 2000).  

In this thesis, I have made use of chemically induced models such as DSS and 

gamma irradiation in mice to induce acute colitis and small intestinal 

inflammation respectively. DSS is a non-genotoxic sulphated polysaccharide 

(Okayasu, Hatakeyama et al. 1990) which causes elevated levels of ROS, termed 

oxidative stress. Under normal circumstances, cells are able to defend 

themselves against ROS damage with various enzymes and antioxidants playing 

an important role. However, when the level of ROS exceeds the body’s capacity 

to neutralise it, harmful effects occur, notably DNA damage (Cooke, Evans et al. 

2003). The small intestinal stem cells, which reside at the base of the crypts, 

are thought to be more susceptible to high levels of oxidative stress than the 

other more differentiated cells in the crypt as a result of increased oxidized DNA 

pyrimidines (Oberreuther-Moschner, Rechkemmer et al. 2005) resulting in a 
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reduction in self-renewal and differentiation (Wang, Zhang et al. 2013). DSS 

functions in two distinct methods, first the colonic mucosa is damaged thereby 

disrupting the barrier function and secondly through the consequent localised 

inflammatory response and chemokine stimulation by epithelial cells (Ohtsuka 

and Sanderson 2003) (Laroui, Ingersoll et al. 2012). Clinically, rodents treated 

with DSS demonstrate features of UC namely bloody diarrhoea and weight loss, 

whilst the pathological features also show similar features to that of UC 

(Okayasu, Hatakeyama et al. 1990) with evidence of mucosal ulceration and 

colonic shortening (Erichsen, Milde et al. 2005).  

DSS specifically affects the colon, therefore, in order to investigate regeneration 

in the small intestine, we employed alternative methods. The use of whole body 

gamma (Υ) radiation in animal models does not recapitulate small intestinal 

inflammation as accurately as DSS does the colon, however it is an effective tool 

to investigate the mechanisms relevant to small intestinal regeneration. Rapidly 

cycling stem cells at the base of crypts are responsible for the proliferation and 

regeneration of epithelial cells and are sensitive to damaging genotoxic stimuli 

such as Υ-radiation, which results in stress-induced apoptosis (Watson and 

Pritchard 2000). Global apoptosis of a crypt cell population results in the 

disappearance of a crypt within 2 days, however if a single clonogenic cell within 

a crypt survives, it is able to repopulate the entire crypt within 3-4 days 

(Ottewell, Duckworth et al. 2006). 3-5 days following irradiation is the 

recognised time frame to examine regenerating crypts (Martin, Potten et al. 

1998). In this thesis, we used the 3 day time point, unless otherwise stated. 

1.3.1.6 Physiology behind intestinal regeneration 

The ability of crypt cells to survive inflammatory insults, proliferate, 

differentiate and regenerate the intestine are evidently key features. Various 

growth factors have been shown to be important for crypt survival and 

proliferation such as transforming growth factor-β (TGF-β) and Il-11 (both 

improve crypt survival (Potten 1995)), and keratinocyte growth factor (both 

protective and enhances epithelial cell proliferation (Potten, O'Shea et al. 

2001)). 
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The Wnt signalling pathway (Fig. 1-6) is important for the differentiation of 

pluripotent stem cells during intestinal embryogenesis (Gregorieff and Clevers 

2005) and is an essential regulator of intestinal homeostasis through downstream 

gene transcription effects (Gregorieff and Clevers 2005). The canonical Wnt 

signalling pathway begins with one of the Wnt proteins binding Frizzled receptor 

(Rao and Kuhl 2010), facilitated by other co-receptors such as LRP (lipoprotein 

receptor-related protein). Following this, a signal is passed through an 

interaction between LRP and Dsh (phosphoprotein Dishevelled) and Axin is 

recruited from the destruction complex. The destruction complex comprises 

Axin, PP2A (protein phosphatase 2A), GSK3 (glycogen synthase kinase), CK1α 

(casein kinase 1α) and Wnt signalling inhibitor APC (Adenomatous polyposis coli). 

Under physiological conditions, β-catenin undergoes proteosomal degradation by 

the destruction complex, however when Wnt signalling is activated and Axin is 

recruited, the destruction complex is inactivated. β-catenin subsequently 

accumulates in the cytoplasm before translocating to the nucleus and binding T 

cell factor (TCF) transcription factors with consequent activation of Wnt target 

genes such as Lgr5 (Leucine-rich repeat-containing G protein-coupled receptor 5) 

and c-Myc (Gregorieff and Clevers 2005).  
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Figure 1-6 The Wnt signalling pathway 

The Wnt pathway is an essential regulator of intestinal homeostasis with inactivating mutations in 
the Wnt signaling inhibitor, APC accounting for 80% of colorectal cancers (CRCs). (A), when Wnt is 
not activated, the APC destruction complex degrades β-catenin, however when Wnt is activated, it 
binds the LRP receptor, Axin is removed from the destruction complex allowing β-catenin to 
translocate to the nucleus where it binds to transcription factors and activates Wnt target genes 
such as Lgr5. Whilst the precise role of the Wnt pathway is unclear in intestinal regeneration, we 
know that high levels of β-catenin and the Wnt target gene c-Myc accumulate in regenerating 
intestinal crypts and that c-Myc is required to induce intestinal regeneration in the mouse. It has 
been suggested that, in CRCs, fascin is a target of β-catenin (as they are frequently expressed in 
the same locations with expression levels correlating), however it’s precise role remains unclear. 
Image reprinted by permission from Macmillan Publishers Ltd: Nature Clinical Practice 
Gastroenterology & Hepatology (McDonald, Preston et al. 2006), copyright 2006. 
 

1.3.1.7 Intestinal stem cells 

Intestinal epithelial cells (IECs) fall into two broad categories, namely secretory 

(paneth, goblet and entero-endocrine cells) and absorptive (enterocytes). The 

eventual outcome of an IEC exiting the transit-amplifying compartment is 

dependant upon the process of how each intestinal stem cell (ISC) differentiates 

and the various pathways involved regulating this at each step (Fig. 1-7). The 

Notch signalling pathway has a key role in regulating whether an ISC 

McDonald SAC et al. (2006) Mechanisms of Disease: from stem cells to colorectal cancer 
Nat Clin Pract Gastroenterol Hepatol 3: 267–274 doi:10.1038/ncpgasthep0473 
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differentiates into a secretory or absorptive lineage (van Es, van Gijn et al. 

2005). Specifically, it has been shown that active Notch signalling leads to 

transcription of Hes (Hairy/Enhancer of Split) genes which in turn code Hes 

repressors (Stanger, Datar et al. 2005) which have been shown to inhibit Math1 

(a basic helix-loop-helix (bHLH) transcription factor) thought to be expressed by 

a common progenitor required for the differentiation of the secretory cell 

lineage (Fig. 1-7) (Yang, Bermingham et al. 2001).  

 
Figure 1-7 Small Intestine and colonic crypt architecture 

(A) Schematic representation of small intestin and colonic crypts with stem cells located in the base 
of the crypts (image reprinted by permission from Macmillan Publishers Ltd: Nature Clinical 
Practice Gastroenterology & Hepatology (McDonald, Preston et al. 2006), copyright 2006. (B,C) 
Schematic representation of the asymmetric differentiation of Lgr5 small cycling stem cells (marked 
with yellow rectangles in (C)): towards the base of the crypts, the stem cells divide to give one 
daughter transit cell capable of differentiation and one daughter stem cell. The transit cells divide 
several times after which they undergo terminal differentiation into one of the four epithelial cell 
types. The Wnt and NOTCH signaling pathways are key in the determination of the cell fate. (B,C) 
images adapted with permission from Integrative Biology. 

McDonald SAC et al. (2006) Mechanisms of Disease: from stem cells to colorectal cancer 
Nat Clin Pract Gastroenterol Hepatol 3: 267–274 doi:10.1038/ncpgasthep0473 
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Inactivating mutations of the Wnt signalling inhibitor APC result in the formation 

of adenomas originating from the Lgr5 stem cells indicating that these small 

cycling cells not only function as the principal stem cell of the intestine, but also 

act as the origin of sporadic intestinal cancers (Barker, Ridgway et al. 2009). A 

technique used in this thesis whereby single Lgr5 cells can be isolated and 

cultured in-vitro to form organoids possessing all differentiated epithelial cell 

types is a novel method of investigating molecular mechanisms important in 

intestinal regeneration (Sato, Vries et al. 2009). A single Lgr5 stem cell can form 

an indefinite, self-renewing "minigut" in culture growing in a polarised sphere 

with their apical surfaces pointing into the lumen. This process works even more 

efficiently if a paneth cell and an Lgr5 cells are co-cultured to reconstitute a 

crypt (Sato, Vries et al. 2009). As previously mentioned, lineage tracing (a 

method which analyses the genetic component of marker proteins in stem cells 

and their progeny (Blanpain and Simons 2013)) has been used to determine 510 

signature genes isolated from the Lgr5 cells (Fig. 1-8) (Munoz, Stange et al. 

2012) which function as specific intestinal stem cell markers (for example, 

neuritin 1 (Nrn1) and olfactomedin 4 (Olfm4)). 
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Figure 1-8 Functional classification of genes derived from the Lgr5 stem cell signature 

A selection of genes separated into functional classes derived from the Lgr5 intestinal stem cell 
signature. A selection of genes highlighted in red were analysed, using qRT-PCR in this thesis and 
will be discussed in later chapters. Figure adapted and reprinted by permission from Macmillan 
Publishers Ltd: The EMBO Journal (Munoz, Stange et al. 2012), copyright 2012. 
 

1.3.2 Small Intestine and colorectal cancer 

Malignant tumours arising within the GI tract can be divided into those arising in 

the small intestine and those arising in the colon and rectum. Small intestinal 

cancers are relatively rare with approximately 1200 new cases/year in the UK. 

40% are adenocarcinomas, 30% neuroendocrine, 10% sarcoma and the remainder 

lymphomas. Patients with Crohn’s disease, familial adenomatous polyposis 

(FAP), hereditary non-polyposis colorectal cancer (HNPCC) and Peutz-Jeghers 

syndrome are at an increased risk. Colorectal cancers (CRC), in contrast are the 

3rd commonest cancer in the UK with approximately 41,000 new cases/year in 
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the UK. The vast majority are adenocarcinomas with the remainder either 

squamous, neuroendocrine, lymphomas or sarcomas (statistics taken from 

Cancer Research UK website: http://www.cancerresearchuk.org). Patients with 

IBD, FAP, HNPCC are all at significantly higher risk of developing CRC. 

Malignancies arising from the GI tract can be further categorised into sporadic 

(through genetic alterations (Kinzler and Vogelstein 1996)) and inflammation 

induced ((Coussens and Werb 2002)). Sporadic tumours themselves will also have 

an intrinsic inflammatory component and indeed have been shown to control 

aspects of the inflammatory response to enhance their progression (Coussens, 

Raymond et al. 1999).  

The Wnt signalling pathway, whilst essential for normal intestinal homeostasis, 

was first discovered for its role in CRC. Inactivating mutations in the Wnt 

signalling inhibitors APC (Powell, Zilz et al. 1992) and Axin2 (Liu, Dong et al. 

2000) or oncogenic mutations in β-catenin (Morin, Sparks et al. 1997) are 

responsible for the vast majority of CRCs (Fodde and Brabletz 2007). Loss of APC 

or Axin2 or oncogenic mutation of β-catenin results in nuclear accumulation of 

β-catenin whereby, through the eventual dis-regulated activation of TCF target 

genes, the dynamic interplay that exists between epithelial cells proliferating 

and differentiating is disrupted and the process of tumourigenesis is initiated 

(van de Wetering, Sancho et al. 2002). 

The importance of inflammation and cancer was first hypothesised by Rudolf 

Virchow in 1863 when he noted the presence of leucocytes in tumour samples 

(Balkwill and Mantovani 2001). The molecular pathways, which link inflammation 

and cancer are complex with various mechanisms postulated. Inflammatory 

mediators, through ROS production, damage cellular DNA whilst also being 

involved in the suppression of key pathways involved in DNA repair (Fig. 1-9) 

(Colotta, Allavena et al. 2009). Tumour necrosis factor alpha (TNFα) is an 

important cytokine and mediator of the inflammatory response (Locksley, 

Killeen et al. 2001). Produced primarily by macrophages (Olszewski, Groot et al. 

2007), TNFα is responsible for co-ordinating the acute phase of the inflammatory 

response through activation of NF-κB (nuclear factor kappa-light-chain-enhancer 

of activated B cells) (Fitzgerald, Meade et al. 2007). NF-κB is a transcription 

factor involved in the regulation of many different key immune system responses 
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(Ghosh, May et al. 1998), which are clinically significant with respect to both 

cancer (Rayet and Gelinas 1999) and inflammation (Tak and Firestein 2001). 

There are two recognised pathways involved in the activation of NF-κB, the 

canonical (classical) and non-canonical (alternative) (Karin 1999). In the 

canonical pathway, NF-κB in the inactivated state is bound to IκBα (nuclear 

factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha). 

Phosphorylation of IκBα (initiated by extra-cellular signals such as pro-

inflammatory cytokines) results in the activation of the enzyme IKK (IkB kinase), 

which phosphorylates IκBα resulting in its eventual degradation and subsequent 

activation of NF-κB. Once activated, NF-κB translocates to the nucleus where, 

either alone or in combination with other transcription factors (such as members 

of the JAK-STAT signalling pathway) it activates target genes and in doing so 

modulates cell function. The Janus kinase/signal transducers and activators of 

transcription (JAK-STAT) pathway is a key pathway in mammals and is involved 

in cellular processes such as proliferation, differentiation, apoptosis and 

migration (Rawlings, Rosler et al. 2004). STAT3 (signal transducer and activator 

of transcription 3) and NF-κB have been muted as one of the key links between 

inflammation and cancer (Bollrath and Greten 2009). STAT3 and NF-κB can 

interact with each other and in doing so affect their respective transcriptional 

functions (Yu, Zhang et al. 2002). Their co-operative binding can also induce 

certain target genes (Yang, Liao et al. 2007) and furthermore, they have been 

shown to co-operatively enhance tumourigenesis through the activation of 

certain genes involved in angiogenesis, apoptosis and transcription of 

immunosuppressive and pro-inflammatory cytokines (Fan, Mao et al. 2013). 

Fascin has been shown to be a potential target of both NF-κB (Kress, Kalmer et 

al. 2011) and STAT3 (Snyder, Huang et al. 2011). Given the recent published 

data showing the expression of fascin in human tissue samples of IBD 

(Qualtrough, Smallwood et al. 2011) and the well recognised roles of fascin in 

tumours (Gao and Wu 2008), we sought to investigate the role of fascin in 

murine models of IBD and intestinal tumourigenesis.  
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Figure 1-9 The role of inflammation and cancer 

In the majority of chronic inflammatory conditions (such as IBD), the accumulation of inflammatory 
and immune cells results in localised tissue damage through the production of ROS. Pro-
inflammatory mediators such as TNFα are regulated through a complicated positive and negative 
loop feedback by transcription factors such as NF-κB and members of the JAK-STAT pathway. 
Figure adapted with permission from IBWF website. 
 

1.3.3 Genetic modification of mice 

Experimental methods involving the genetic manipulation of mice, in isolation or 

in combination with chemicals have proven useful in developing models to study 

cancers arising in the GI tract. Whilst they do not replace studies on human 

cancers, they are valuable tools to replicate mechanisms key to the 

development of human cancers and provide a platform to both further our 

understanding of the mechanisms involved and to enable the testing of disease 

modifying drugs, which ultimately may be beneficial for use in humans.  

There are different techniques to produce genetic modifications in mice. One 

such technique, resulting in a transgenic mouse, involves the incorporation of a 

segment of foreign DNA into the host genome using techniques such as 

pronuclear injection (Gordon, Scangos et al. 1980) and retroviral vectors. 
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Another technique (used to generate the fascin knockout mouse used in this 

thesis), involves inducing genetic disruptions into embryonic stem cells through 

the use of DNA constructs. These cells are then injected into mice blastocysts 

(Thomas and Capecchi 1987) and the resultant progeny are bred with either a 

disrupted or deleted gene (termed “knockout” KO) or if it is inserted it is termed 

“knockin”.  

The introduction of the Cre/lox system (Fig. 1-10) heralded a new era in genetic 

mouse modelling whereby it was possible to (in)activate any gene in any tissue 

at any time (Sauer 1998). Constitutive models refer to the permanent disruption 

of a target gene in every cell of the body whereas conditional models can be 

either tissue specific or inducible (Bockamp, Sprengel et al. 2008). In the 

intestine, two Cre lines: Ahcre and villin-Cre-ER are commonly used for 

conditional recombination. Ahcre expression is mediated, in response to 

lipophilic xenobiotics such as β-napthoflavone, via the cytochrome P450 

promoter (Ireland, Kemp et al. 2004) whereas the villin-Cre-ER line is tamoxifen 

dependant.  

 
Figure 1-10 Cre-lox recombination 

Depending on the orientation and position of the flanking loxP sites, the final outcome of the floxed 
segment will be determined. (A) When loxP sites face each other, recombination results in 
Inversion. (B) When the loxP sites are on different chromosomes, recombination results in a 
chromosomal translocation whilst in (C), the loxP sites are aligned in the same direction on the one 
chromosome and recombination results in the deletion of the floxed segment. Figure courtesy of 
the Jackson Laboratory. 
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1.3.3.1 Murine models of small intestine and colorectal tumourigenesis 

Inactivating mutations in the APC gene leading to activation of the Wnt signalling 

pathway have been shown to result in the formation of multiple sporadic small 

intestinal adenomas in mice (Moser, Pitot et al. 1990). The Min (multiple 

intestinal neoplasia) mouse which harboured a heterozygous mutation in the APC 

gene was the first genetic mouse model which replicated the equivalent human 

hereditary disease Familial Adenomatous Polyposis (FAP) (Su, Kinzler et al. 1992) 

characterised by germline mutations of the APC gene. Further inducible models 

of APC loss in mice have since been developed (Sansom, Reed et al. 2004) using 

the technique of conditional targeting of APC (Shibata, Toyama et al. 1997). p53 

is a crucial tumour suppressor gene, frequently mutated in multiple human 

tumours (Olive, Tuveson et al. 2004). p53 loss of function in murine models can 

be achieved through a variety of models (Broz and Attardi 2010) such as the use 

of tissue specific conditional p53 knockout (KO) mice whereby the p53 sequences 

are floxed on either side by 2 LoxP sites (Broz and Attardi 2010).  

Chemically induced models of colonic tumourigenesis have been developed, for 

example using the genotoxic carcinogen Azoxymethane (AOM). AOM is a 

metabolite of 1,2-dimethylhydrazine (DMH) and causes mutations of β-catenin 

thereby activating Wnt signalling. It is a reproducible, highly potent chemical 

and has been used widely in rodents, in combination with DSS to induce multiple 

colonic tumours (De Robertis, Massi et al. 2011). 

 

1.4 Actin bundling proteins and cancer 

The following section is adapted from a review article we published in 2012 

(Stevenson, Veltman et al. 2012). 

1.4.1 Actin bundling proteins in tumourigenesis and cancer 
progression 

Cells use their cytoskeletons to move, polarise, divide and maintain organisation 

within multicellular tissues. Actin is a highly conserved essential building block 

of the cytoskeleton that forms cables and struts, which are constantly 
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remodelled by more than 100 different actin-binding proteins. The initiation of 

new actin filaments and their subsequent organization is a key step in the 

development of specialised cellular structures, such as filopodia (spikes), 

lamellipodia (sheet-like protrusions), stress fibres (elastic contractile bundles), 

microvilli (finger-like surface protrusions) and invadopodia (invasive cell feet) 

(see Table 1 for a more complete list). Whilst the cytoskeleton is important in 

normal cellular function, it is also often subverted in cancer cells and 

contributes to changes in cell growth, stiffness, movement and invasiveness (Fig. 

1-11). We hereby give an overview of the role of actin filament crosslinking or 

bundling in normal cellular structures and discuss how alterations in the activity 

or expression patterns of actin bundling proteins could be linked to cancer 

progression. 
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Figure 1-11 Structure and functions of filopodia, invadopodia and stress fibres 

Invadopodia are dynamic actin-rich membrane protrusions found only in invasive cancer cells, 
uniquely able to degrade the extracellular matrix (ECM) through proteolysis of its constituents. 
Filopodia are cytoplasmic spiky projections containing tight bundles of long actin filaments that 
sometimes originate within lamellipodia, as well as in cell-to-cell communication and cell positioning 
within tissues. Defined by their protrusive behaviour, they function in cell migration and contribute 
to cancer cell invasion at least in-vitro. Stress fibres are elastic contractile bundles often found to 
be increased in cancer and mesenchymal cells. Reproduced with permission (Stevenson, Veltman 
et al. 2012). 
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1.4.2 The actin cytoskeleton is regulated by multiple actin-binding 

proteins 

Actin is one of the most abundant proteins in mammalian cells and underpins the 

compartmentalisation of cellular contents and cell motile behaviour. 

Spontaneous nucleation or initiation of new filaments is crucial to cellular 

dynamics, so it is highly regulated. The main regulators are nucleation 

promoting proteins, such as the Arp2/3 complex and Wiskott-Aldrich syndrome 

family protein (WASP)-family proteins (Suetsugu, Miki et al. 2002) as well as 

WASP-homology containing proteins, such as protein spire homolog (Spire) and 

cordon bleu (Cobl) (Dominguez 2009). Nucleation of actin filaments generally 

takes place adjacent to a lipid bilayer, such as just underneath the plasma 

membrane or on internal endocytic vesicles, with the new ATP-bound actin 

subunits being added closest to the membrane surface. 

Filaments can be assembled into superstructures by various actin filament cross-

linking proteins and, depending on the relative concentrations of the crosslinker 

and the filament will either form bundles or gels. In general, crosslinking 

proteins have two actin binding sites, often because they dimerise, and the 

location of actin-binding sites determines the filament arrangement and 

subsequently the type of crosslinked structure formed. Actin bundles can be of 

either mixed or uniform polarity, depending on whether they are contractile, 

orthogonal or parallel. 

1.4.3 A role for actin bundling proteins in metastasis  

Cancer cells face many challenges for successful metastasis. They must break 

away from the primary tumour and invade through the surrounding tissue, which 

usually includes a basement membrane and extracellular stroma and sometimes 

also muscle. Metastatic cells then typically invade through the lymphatic or 

vascular endothelium including through their basement membrane, and into the 

circulation. They exit the lymphatic or vascular system and make their way into 

a new niche where they seed a new tumour, often after lying dormant for 

months or years. During this time, cells adapt their motility and adhesive 

capacity to suit their environment, much in the same way as embryonic cells do 
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during morphogenesis [recently reviewed in (Hanahan and Weinberg 2011; 

Roussos, Condeelis et al. 2011)]. 

The actin cytoskeleton serves many crucial functions for the metastatic cell, 

including acting as a scaffold for signalling, a connection with the extracellular 

environment, a mechanosensor and a regulator of the mechanical properties of 

the cell. Therefore, actin-bundling proteins, which modulate where and how 

cells form actin filament structures of varying geometries, can be hijacked by 

cancer cells as they face new challenges. However, there is no general rule 

whether actin bundling promotes or inhibits cancer metastasis; rather, cells can 

adjust the extent of actin bundling to alter their signalling, growth, or adhesion 

and mechanical properties and thus be selected for survival during tumour 

progression and metastatic spread. Typically, mechanical stiffness and increased 

contractility of a cancer cell is positively correlated with its ability to invade and 

metastasise (Narumiya, Tanji et al. 2009), but some studies suggest that 

exceptions exist (Swaminathan, Mythreye et al. 2011). 

As mentioned above, the actin cytoskeleton also maintains the 

compartmentalisation of cellular contents and thus is a major determinant of 

cell polarity. Polarity is essential for normal tissue homeostasis and when 

disrupted can lead to tumour promotion through the breakdown of cell-cell 

junctions and to epithelial-to-mesenchymal transition (EMT) (Royer and Lu 

2011). Cell divisions are also polarised within tissues, so if polarity is lost, tissue 

integrity can be compromised resulting in overgrowth, aberrant invasive 

behaviour and promotion of tumours. Actin bundling contributes to the polarity 

of epithelial cells by maintaining cell-cell adherens junctions, tight junctions, 

and microvilli, and to polarised trafficking of endosomal and exocytic 

components (Fig. 1.12). However, the picture of how exactly cells subvert actin 

bundling to succeed in metastasis is still very much emerging and represents an 

exciting area of future research for metastasis prevention. 
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Figure 1-12 The roles of actin bundling proteins in cell:cell junctions and microvilli 

Epithelial cells form junctions which break down when cells become cancerous and undergo EMT. 
Microvilli are finger-like projections of the plasma membrane that increase the surface area of cells 
to enhance absorption and secretion. Reproduced with permission (Stevenson, Veltman et al. 
2012). 
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1.4.4 Actin bundle-containing structures in normal and cancer 

cells 

1.4.4.1 Cell Cortex 

Underneath the plasma membrane lies a meshwork of actin filaments and 

crosslinking proteins termed the cortex that links the cytoskeleton to the plasma 

membrane (Fig. 1.13). A strong cortical attachment to the plasma membrane 

promotes protrusive motility, which is often referred to as ‘mesenchymal’. In 

contrast, a weak attachment of the cytoskeleton to the cortex coupled with 

increased contractility promotes blebs, which are detachments between the 

cortex and membrane, leading to a different type of motility sometimes called 

“bleb-based” (Friedl and Wolf 2010). Modulation of cortical stiffness thus 

changes how cells move in different environments. The cortex also provides a 

scaffold for the organisation of transmembrane receptors and glycoproteins into 

networks for effective signal transduction and coupling of mechanical stresses to 

signals. 
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Figure 1-13 Actin bundling proteins and the cell cortex 

The cell cortex regulates the ability of the cell to resist physical forces whilst also acting as a 
molecular scaffold and signal modulator. Reproduced with permission (Stevenson, Veltman et al. 
2012). 
 

Non-muscle myosin-IIa and –IIb are the main actin-based contractile myosin 

motors that crosslink actin filaments of the cell cortex and regulate cell 

stiffness. Phosphorylation of the myosin-II light chain triggers the contractile 
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activity of myosin-II and this increased contractility is associated with increased 

cancer cell invasion. When cells switch from a protrusive to a bleb-based 

motility, they increase their myosin-II activity and the added force is used for 

squeezing through tight spaces in the extracellular matrix (Friedl and Wolf 

2010). Not only do tumour cells increase their own contractility sometimes, but 

they can also influence the contractile properties of stromal cells, such as 

fibroblasts (Wyckoff, Pinner et al. 2006; Gaggioli, Hooper et al. 2007; Sanz-

Moreno, Gadea et al. 2008). Consequentially, as contractility increases, matrix 

stiffness also increases and this has tumour promoting properties (Samuel, Lopez 

et al. 2011). A stiff matrix can promote cancer cell growth through increased 

assembly of signalling platforms resulting from stronger contacts between 

integrins and the matrix, which leads to the activation of growth promoting 

signalling pathways such as via focal adhesion kinase (FAK) (Frame, Patel et al. 

2010). 

Spectrins are another class of important actin crosslinkers of the cell cortex and 

signalling scaffolds. In erythrocytes, they are crucial for the maintenance of 

integrity and shear forces in the blood, but non-erythroid spectrins have gained 

increased attention recently. In colorectal and pancreatic cancers, b2-spectrin 

sequesters transcriptional activators and its loss inappropriately activates Wnt 

signalling and promotes tumourigenesis by releasing components of the 

transforming growth factor beta (TGFβ) signalling pathway (i.e. Smad3 and 

Smad4) (Thenappan, Li et al. 2009; Jiang, Gillen et al. 2010). Embryonic spectrin 

(also called embryonic liver fodrin, ELF) shows altered expression in many 

cancer types (Table 1) and its loss causes deregulation of Cyclin D1 and aberrant 

cell cycle progression (Kitisin, Ganesan et al. 2007). Spectrin and the spectrin-

like fodrin proteins are also important for the establishment or maintenance of 

cell polarity, so their role in cancer may be tumour or tissue type dependent. 

1.4.4.2 Cell-cell contacts 

 Epithelia are held together by adherens junctions, which contain 

transmembrane cadherin receptors that interact extra-cellularly with the 

cadherins of neighbouring cells and intra-cellularly with the actin cytoskeleton 

(Schock and Perrimon 2002). Apical to adherens junctions are tight junctions, 

which regulate permeability of epithelia and maintain a separation between 
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luminal structures and the external space. Adherens junctions connect to the 

cell cortex and to actin filament bundles that are held in place by proteins, such 

as α-actinin and myosin-II. When epithelial cells become cancerous, adherens 

junctions break down, which releases β-catenin that then enters the nucleus to 

stimulate growth and also promote EMT via the canonical Wnt signalling 

pathway. Junctional breakdown also physically releases tumour cells, allowing 

them to escape from the primary tumour and migrate and invade the 

surrounding tissue (Fig. 1.11). 

 

1.4.4.3 Microvilli 

Microvilli are finger-like projections of the plasma membrane that increase the 

surface area of cells to enhance absorption and secretion. Small Intestinal brush-

border microvilli contain a parallel actin bundle core made up of about 40 actin 

filaments of uniform polarity that are cross-linked by at least three different 

actin-bundling proteins: T-plastin (also named T-fimbrin), villin and small espin 

(Bartles, Zheng et al. 1998; Loomis, Zheng et al. 2003). T-plastin is a monomeric 

protein, specifically expressed at high levels in the small intestine, that 

crosslinks F-actin into straight bundles (Delanote, Vandekerckhove et al. 2005; 

Brown and McKnight 2010). T-plastin (Table 1) expression is enhanced in some 

cancer cell lines that are resistant to treatment with the chemotherapeutic drug 

cisplatin (Delanote, Vandekerckhove et al. 2005). Villin has a role in the 

bundling, nucleation, capping and severing of actin filaments in a Ca2+ 

dependent manner, and was found to be highly expressed in a multitude of 

adenocarcinomas originating from epithelial cells of the small intestinal tract 

that bear brush border microvilli (Grone, Weber et al. 1986; Moll, Robine et al. 

1987; Suh, Yang et al. 2005). Small espin contributes to elongation of microvilli 

from the barbed end of the actin bundle, but has not yet been implicated in 

cancer. In malignant cells, an increased number of microvilli with irregular 

morphology correlate with metastatic status (Ren 1990; Ren 1991). This finding 

remains unexplained, but may in part reflect the increased metabolic activity of 

malignant cells and downstream effects on tumour growth (Zhang and Takenaka 

1995). Microvilli disorganization may also occur as a result of partial loss of 

differentiation and polarity and lead to aberrant cytoskeletal assemblies that 

contribute to invasive capacity. 
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1.4.4.4 Filopodia 

Filopodia are cytoplasmic spiky projections containing tight bundles of long actin 

filaments that sometimes originate within lamellipodia (Borisy and Svitkina 

2000). Defined by their protrusive behaviour, they function in cell migration and 

contribute to cancer cell invasion at least in-vitro (Nurnberg, Kitzing et al. 

2011), as well as in cell-to-cell communication and cell positioning within tissues 

(Mattila and Lappalainen 2008). Fascin is found in filopodia, but is normally 

expressed in mesenchymally and neurally derived cells rather than epithelia 

(Adams 2004a; Adams 2004b; Hashimoto, Kim et al. 2011). Upon transformation, 

fascin expression is often up-regulated, leading to increased cell motility and 

invasive potential (Machesky and Li 2010). Fascin forms parallel crosslinks 

between individual actin filaments located along the filopodial shaft and thus 

promotes filopodial protrusions (Fig. 1.11). Bundle formation strengthens 

filaments and increases the lifetime of both filopodia and invasive protrusions. 

Interestingly, fascin is highly expressed at the invasive front of tumours, at 

which the actively invading cells are located, and in-vitro reduction of fascin 

causes reduced motility and invasion (Hashimoto, Skacel et al. 2005; Hashimoto, 

Parsons et al. 2007; Li, Dawson et al. 2010; Schoumacher, Goldman et al. 2010).  

1.4.4.5 Invadopodia and podosomes 

Invadopodia are dynamic actin-rich membrane protrusions found only in invasive 

cancer cells (Weaver 2006). They contain a mixture of bundled and branched 

actin (Schoumacher, Goldman et al. 2010), but are uniquely able to degrade the 

extracellular matrix (ECM) through proteolysis of its constituents, such as 

fibronectin, laminin and collagen. Podosomes are similar structures also found in 

hematopoietic cells, endothelial cells and src-transformed fibroblasts (Murphy 

and Courtneidge 2011). Matrix degradation by podosomes and invadopodia is 

achieved through the secretion and membrane presentation of proteases such as 

the matrix metalloproteinases (MMPs), which are regulated by nitric oxide 

(increasing their activity) and by tissue inhibitor of matrix metalloproteinases 

(TIMPs) (inhibitory). The ability to migrate through the ECM is fundamental for 

the ability of cancer cells to invade adjacent tissues and subsequently 

metastasise to distant sites within the body. Invadopodia contain a number of 

actin bundling proteins, including fascin, which stabilises them and increases 
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their lifetime (Li, Dawson et al. 2010; Schoumacher, Goldman et al. 2010), α-

actinin, formin and Ena/VASP proteins (Fig. 1.11).  
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Table 1-1 Clinical correlation between actin bundling proteins and cancer 
Protein Structures and 

cells 
Function Role in cancer References 

T-plastin/ T-
fimbrin 

Microvilli of epithelial & 
mesenchymal cells 

Crosslinks F-actin into 
straight bundles 

T-plastin expression is 
enhanced in cisplatin-
resistant human cancer cell 
lines 

(Hisano, Ono et al. 
1996) 

L-plastin/ L-
Fimbrin 

Microvilli of 
haematopoietic cells 
and malignant human cells 
of non-haematopoietic 
origin1 

Crosslinks F-actin into 
straight bundles 

68% of epithelial 
carcinomas investigated 
and 53% of non-epithelial 
mesenchymal tumours 
examined expressed L-
plastin. 

L-plastin expression 
correlates positively with 
colorectal cancer stage and 
severity. 
 

(Delanote, 
Vandekerckhove et al. 
2005; Foran, 
McWilliam et al. 2006; 
Yuan, Zhao et al. 
2010) 

Villin Epithelial cells of the 
gastrointestinal tract that 
possess brush border 
microvilli 

Crosslinks filaments in 
low Ca2+ and severs 
filaments at high Ca2+ 

Expression altered in 
Barrett’s espophagus, 
bladder cancer, colorectal 
and small intestinal cancer. 

(Younes, Harris et al. 
1989; Sampson, Yeh et 
al. 2001; Zhang, Lin et 
al. 2007; Shi, 
Bhagwandeen et al. 
2008) 

Fascin Neurons, dendritic cells, 
endothelial cells and 
cancer cells.  Mainly in 
filopodia and invadopodia, 
but also at cell-cell 
contacts. 

Crosslinks actin into 
parallel bundles.  
Thought to be a 
monomer with two 
actin binding sites. 

Significant independent 
prognostic indicator of poor 
outcome in cancers of the 
liver, ovary, lung, pancreas, 
colon, head & neck 
squamous cell carcinoma 
and brain. 

Reviewed in 
(Machesky and Li 
2010) 

Alpha-
actinin-1 and 
-4 

Cellular protrusions, stress 
fibres, ,lamellipodia 
microvilli, invadopodia of 
multiple cell types. 

Crosslinks actin into 
parallel bundles by 
forming dimers head-
to-tail 

Expression in breast, ovary, 
pancreas, lung, astrocytoma 
cancers. Associated with 
poor prognosis and tumour 
chemoresistance (ovary) 

(Honda, Yamada et al. 
2004; Menez, Le Maux 
Chansac et al. 2004; 
Honda, Yamada et al. 
2005; Fu, Qin et al. 
2007; Yamamoto, 
Tsuda et al. 2007; 
Kikuchi, Honda et al. 
2008; Welsch, Keleg et 
al. 2009; Yamamoto, 
Tsuda et al. 2009; 
Hirooka, Akashi et al. 
2011) 

Myosin-I Microvilli of small 
intestinal epithelial cells 
and cortex of many cell 
types. 

Motor protein that 
connects membranes 
and actin and mediates 
transport of 
intracellular cargo 
vesicles as well as 
attaching actin 
filaments in microvilli 
to the plasma 
membrane. 

No clinical studies n/a 

Myosin-II Microvilli terminal web of 
small intestinal epithelia 
and stress fibres of 
multiple cell types. 

Actin-based motor that 
also bundles actin.  
Generates/maintains 
cortical tension, 
assembly of contractile 
structures.  Cell body 
translocation and 
retraction of the 
posterior of the cell 
during migration. 
 

Interacts with S100A4 (also 
known as metastasin), 
which is heavily associated 
with cancer invasion and 
metastasis. 

 

Significant positive 
correlation between 
expression levels of myosin 
light chain kinase (which 
activates myosin II) and 
likelihood of non-small cell 
lung cancer recurrence and 
metastasis. 

(Minamiya, Nakagawa 
et al. 2005) 
(Oslejskova, Grigorian 
et al. 2008) 

Myosin-X Localises to filopodia in 
multiple cell types. 

Unconventional 
myosin motor – 
transports cargo to 
filopodial tip 

No clinical studies.  n/a 

Spectrin 
(Fodrin) 

Microvilli and terminal 
web of small intestinal 
epithelial cells and cell 
cortex of many cell types. 

Crosslinks actin into 
orthogonal networks 
by forming tetramers.  
Forms a scaffold for 
signalling complexes 

Reduced expression of 
spectrin associated with 
poor prognosis in 
pancreatic cancer and 
progression in 

(Jiang, Gillen et al. ; 
Younes, Harris et al. 
1989; Simpson and 
Page 1992; Sormunen, 
Paakko et al. 1994; 
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and keeps Smad3/4 
inhibited.  Possible 
tumour suppressor and 
regulates cell polarity.  
Has also been 
proposed to be a 
differentiation marker 
in colonic neoplasia. 

hepatocellular cancer.  
Spectrin contributes to 
platinum chemotherapy 
resistance. 

Tuominen, Sormunen 
et al. 1996; Sormunen, 
Leong et al. 1999; 
Kitisin, Ganesan et al. 
2007; Thenappan, Li et 
al. 2009; Baek, 
Pishvaian et al. 2011; 
Maeda, Shibata et al. 
2011) 

Filamin-A Cell cortex, filopodia of 
many cell types. 

Crosslinks into 
orthogonal gels 

Prostate cancer metastasis 
correlates with low nuclear 
and high cytoplasmic 
filamin-A.  Aberrant 
association of filamin-A 
with the prion protein PrPA 
correlates with worse 
prognosis in pancreatic 
cancer.  A secreted variant 
of filamin-A in the blood 
correlates with high grade 
astrocytomas and 
metastatic breast cancer. 

(Anilkumar, 
Rajasekaran et al. 
2003; Loy, Sim et al. 
2003; Smith, Oxford et 
al. 2007; Kwon, Hanna 
et al. 2008; Alper, 
Stetler-Stevenson et al. 
2009; Bedolla, Wang 
et al. 2009; Li, Yu et 
al. 2009; Burton, 
Gaffar et al. 2010; Li, 
Xin et al. 2010; Li, Yu 
et al. 2010; Sy, Li et al. 
2010; Uramoto, 
Akyurek et al. 2010; 
Ai, Huang et al. 2011; 
Castoria, D'Amato et 
al. 2011; Zhou, Toylu 
et al. 2011) 

Mena Filopodia of many cell 
types and invadopodia of 
cancer cells. 

Related to VASP 
tetramerizes and 
bundles actin filaments 
while promoting 
elongation.  Occurs in 
several splice forms 
and some (i.e. 
Mena(INV) and 
Mena11a) increase 
cellular invasion. 

Mena is overexpressed in 
breast cancers that show 
anti-tumour immune 
response.  Expressed in 
colorectal polyps with high 
dysplasia and in 80% of 
colorectal lesions (n=36). 

(Di Modugno, Bronzi 
et al. 2004; Gurzu, 
Jung et al. 2008) 

Eplin Stress fibres of multiple 
cell types. 

Actin filament 
bundling and side-
binding 

Eplin downregulation 
correlates with progression 
and metastasis in prostate 
cancer and eplin may be 
anti-angiogenic.  Potential 
tumour suppressor in breast 
cancer. 

(Jiang, Martin et al. 
2008; Sanders, Ye et 
al. 2010; Zhang, Wang 
et al. 2010; Sanders, 
Martin et al. 2011) 

Lim domain 
proteins 
LMO2, 
LMO4, 
LMO7 

Found in stress fibres, 
focal adhesions and cell-
cell junctions of multiple 
cell types.  Nuclear 
transcription co-factor. 

May sequester 
transcription 
machinery and nuclear 
proteins in the 
cytoplasm.  May 
regulate 
communication 
between the nucleus 
and cytoplasm/ 
cytoskeleton. 

Correlated in multiple 
studies with cancer either 
as predictors of poor or 
better prognosis. 

(Visvader, Venter et al. 
2001; Mizunuma, 
Miyazawa et al. 2003; 
Wang, Kudryavtseva 
et al. 2004; Sum, 
Segara et al. 2005a; 
Sum, Shackleton et al. 
2005b; Ma, Guan et al. 
2007; Wang, Lin et al. 
2007; Yu, Ohuchida et 
al. 2008; Nakata, 
Ohuchida et al. 2009; 
Krcmery, Camarata et 
al. 2010; Kwong, 
Scarlett et al. 
2010)7(Hu, Guo et al. 
2011) 

Formins Stress fibres and filopodia 
of multiple cell types. 

Actin nucleation and 
parallel bundling.  
Also interacts with 
microtubules. 

Downregulation of formin-
like 2 correlates with a poor 
prognosis in hepatocellular 
carcinoma.  Higher 
expression correlates with 
tumour differentiation. 

(Liang, Guan et al. 
2010) 

Supervillin Stress fibres and focal 
adhesions of multiple cell 
types.  Implicated in 
nuclear architecture. 

Actin bundling into 
parallel bundles. 

Androgen receptor co-
regulator that may be 
important in androgen 
dependent prostate cancer. 

(Wulfkuhle, Donina et 
al. 1999; Sampson, 
Yeh et al. 2001) 
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1.4.5 Concluding remarks and future perspectives 

As we find out more about how tumours evolve, we are also humbled by the 

staggering complexity of cancer and of the body. The actin cytoskeleton 

represents a major network of proteins that impinge on motility, invasion, 

polarity, survival and growth of normal cells, and as such is often subverted by 

tumour cells. We are just starting to understand how tumours manipulate the 

cytoskeleton to gain advantage and to uncover those key proteins that may be 

future targets against invasion and metastasis. It seems unlikely that one 

particular actin-binding protein will ever rise above the rest as the most 

important target in metastasis, but rather, like signal transduction networks, we 

will find those hub proteins or key pathways that can promote tumour 

progression and develop therapies aimed at those. Actin bundling represents 

perhaps one of those hubs, but we still need to understand the contributions of 

mechanical regulation of cell stiffness, transcriptional control and maintenance 

of the cells ability to contact its neighbours and the matrix, before we are able 

to exploit it for therapeutic benefits. 

 

1.5 Thesis aims 

Actin bundling proteins are crucial in regulating the actin cytoskeleton, but are 

increasingly thought to be involved in molecular signalling and mechanisms 

involving cellular proliferation and differentiation. Fascin in particular, has 

recently been shown to have an as yet undetermined role in IBD. Fascin is also 

known to be expressed in tumours arising from the gastro-intestinal tract and, 

given the established link between inflammation and cancer, we hypothesised 

that fascin has a multi-faceted role in the immune response to inflammation, 

intestinal regeneration and promotion of tumourigenesis. We set out to achieve 

this with the following aims:  

1) To investigate the potential role of fascin in small intestinal and colonic 

epithelial regeneration. 
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2) To investigate the potential immunological role of fascin in response to small 

intestinal and colonic inflammation. 

3) To investigate the potential role of fascin in the transformation from benign 

to malignant disease in murine models of IBD. 

4) To investigate the potential role of fascin in sporadic murine models of 

tumourigenesis arising from the small intestine and colon. 
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2.1 Materials 

2.1.1 Reagents and Solutions 

Compounds/Reagents Type Manufacturer 

10X Modified Eagle Medium 

(MEM) 

 BD Biosciences 

4-Hydroxytamoxifen  Sigma 

4.0 vicryl sutures  Ethicon 

6xDNA loading dye  New England Biolabs 

Acetic Acid  Fisher Scientific 

Acetone  Fisher Scientific 

Actin  In house 

Adenoma culture media ADF supplemented with 

Glutamine 1:100, Hepes 

10mM, Pen/strep 1:100, 

N2 supplement 1:100, 

B27 supplement 1:50, 

murine recombinant EGF 

(50ng/ml), murine 

recombinant noggin 

(100ng/ml). 

In house 

Advanced Dulbecco’s 

Modified Eagle Medium 

(DMEM)/f12 (ADF) 

 Invitrogen 

Agarose  Melford 

Antibody Diluent  Dako 

Azoxymethane (AOM)  Sigma 

Β-naphthoflavone  Sigma 

b27 Serum supplement Invitrogen 

BrdU (Bromodeoxyuridine) 

solution 

 Sigma 

BSA (Bovine Serum 

Albumin) 

 Sigma 

Caerulein  Sigma 
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Chloroform  Fisher Scientific 

Citrate buffer, pH 6.4   Dako 

Crypt Culture Media (CCM) ADF supplemented with 

Glutamine 1:100, Hepes 

10mM, Pen/strep 1:100, 

N2 supplement 1:100, 

B27 supplement 1:50, 

murine recombinant EGF 

(50ng/ml), murine 

recombinant noggin 

(100ng/ml), human 

recombinant R-spondin1 

(500ng/ml) 

In house 

Dextran sodium Sulphate 

(DSS) 

 MP Biochemicals 

Dimethyl Sulfoxide (DMSO)  Sigma 

DL- dithiothreitol (DTT)  Sigma 

DMEM  Invitrogen 

DNA Ladders 1kb Invitrogen 

DNase I recombinant  Roche 

EGF (Epidermal Growth 

Factor) 

 Peprotech 

Etanercept  Pfizer 

Ethanol  VWR chemicals 

Ethidium bromide  Invitrogen 

Ethylenediaminetetraacetic 

acid (EDTA) 

 Sigma 

Extraction buffer 0.5M KCl, 0.1M K2HPO4. In house 

Fetal Bovine Serum (FBS)  PAA Cell Culture 

Company 

Fibroblasts (Human)  Dr. P Timpson 

Fibronectin  BD Biosciences 

Gelatin  Sigma 
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Glycine  Sigma 

Goat serum  Sigma 

Halt phosphatase inhibitor 

cocktail  

 Pierce 

Hepes Buffer PAA Cell Culture 

Company 

Hydrochloric Acid (HCl)  Fisher Scientific 

Il-11 (Interleukin-11)  Ass. Professor Mathias 

Ernst (The Walter and 

Eliza Hall Institute of 

Medical Research) 

L-Glutamine  Invitrogen 

LDS sample buffer  Life Technologies 

Matrigel (Growth factor 

reduced, phenol red free) 

10ml 

 BD Bioscience 

Methacarn 60% Absolute Methanol  

30% Chloroform 

10% Glacial Acetic Acid 

In house 

Methanol  Sigma 

n2 Supplement Invitrogen 

Neutral Buffered Formalin 

(NBF) 

 Leica 

Nicotinamide  Sigma 

NuPAGE MOPS SDS Running 

Buffer  

 Invitrogen 

NuPAGE Novex Bis-Tris Mini 

Gels 

10%, 12% and 4-12% gel  Invitrogen 

NuPAGE Sample Buffer (4X)  Invitrogen 

NuPAGE Sample Reducing 

Agent (10X)  

 Invitrogen 

NuPAGE Transfer Buffer  Invitrogen 

Paraformaldehyde (PFA)  EMS 

PBS (Phosphate Buffered 170mM NaCl, 3.3mM Beatson Institute 
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Saline) KCl, 1.8mM Na2HPO4, 

10.6mM H2PO4 

Central Services 

PBT (Phosphate Buffered 

Saline Tween) 

PBS, 0.5% BSA, 

0.1% Tween20 

In house 

Penicillin-Streptomycin 

(Pen/Strep) 

 Gibco 

Potassium Chloride (KCl)  Sigma 

Prolong Gold Antifade 

reagent with DAPI 

 Invitrogen 

Propidium Iodide (PI)  Sigma 

Protease inhibitor cocktail   Pierce 

R-spondin Wnt agonist R&D Systems 

Rat tail collagen  In house 

Recombinant human TNFα   R&D Systems 

Recombinant Mouse 

Oncostatin M (OSM) 

 R&D Systems 

Recombinant Murine 

Noggin 

Growth Factor Peprotech 

RIPA 

(Radioimmunoprecipitation 

assay buffer) Buffer 

 

50 mM Tris-HCl, 150 mM 

NaCl, 1% NP-40 and 

0.25% Na-deoxycholate 

In house 

RNAlaterTM RNA stabilisation 

reagent 

Life Technologies 

RNaseTM free water  Qiagen 

RNaseTM ZAP RNase cleaning reagent Sigma 

SDS (sodium dodecyl 

sulfate) Blotting buffer 

0.03% SDS 

25 mM Tris-HCl (pH 7.6) 

192 mM glycine 

20% methanol 

Beatson Institute 

Central Services 

SeeBlue Plus2 Pre-Stained 

Standard  

 Invitrogen 

Sodium Chloride (NaCl)  Fisher Scientific 
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Sodium Hydroxide (NaOH)  Fisher Scientific 

TAE 40mM Tris, 0.1% glacial 

acetic acid, 1mM EDTA 

Beatson Institute 

Central Services 

TBST 10mM Tris-HCl, pH 7.4, 

150mM NaCl 

Beatson Institute 

Central Services 

TE 10mM Tris-HCl, pH 8.0, 

1mM EDTA 

Beatson Institute 

Central Services 

Tris/Borate/EDTA (TBE) 

buffer 

Tris base: 108 g 

Boric acid: 55 g 

 0.5M EDTA: 40 mL 

Distilled H2O to 1L  

Beatson Institute 

Central Services 

Triton X-100  Sigma 

TrypLE  Life Technologies 

TrypLE 1X  Invitrogen 

Trypsin  Gibco 

Wnt-3a, recombinant 

mouse 

 Millipore 

y27632 rock inhibitor   Sigma 

Table 2-1 Reagents and Solutions 
 

2.1.2 Antibodies and Dyes 

Antibody/Dye Dilution Manufacturer 

Alcian Blue  Cell Path 

Anti-mouse IgG HRP 

linked 

WB (Western Blot) – 

1:5000 

Cell Signalling 

Anti-Rabbit IgG HRP 

linked 

WB – 1:5000 Cell Signalling 

Calcein  5µM Molecular Probes 

Caspase3 IHC 

(Immunohistochemistry) –

1:50 

Cell signalling 
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Eosin  Beatson Histology 

Services 

F4/80 IHC – 1:200 AbCam 

FITC-conjugated anti-

mouse 

 BD Biosciences 

Haematoxylin  Cell Path 

Mouse anti-BrdU IF (Immunofluorescence) 

– 1:100 

BD Bioscience 

Mouse anti-BrdU FC (Flow cytometry) – 

1:50 

Dako 

Mouse anti-Fascin  IHC – 1:100 Abcam 

Mouse anti-Fascin (55K2) WB – 1:500 Dako 

Myeloperoxidase (MPO) IHC – 1:200 Dako 

NIMP IHC – 1:50 AbCam 

Rabbit anti-Fascin IHC – 1:200 ATLAS antibodies 

Rabbit anti-GAPDH WB – 1:500 Cell Signalling 

Rabbit anti-Ki67 (SP6) WB – 1:500 Neomarkers 

Rhodamine Phalloidin IF – 1:200 Molecular Probes 

Von Willebrand Factor IHC – 1:400 AbCam 

Table 2-2 Antibodies and Dyes 

 
2.1.3 Primers 

Primer Type Manufacturer 

APC (Adenomatous Polyposis 

Coli) 

qRT-PCR QuantiTect Qiagen 

Ascl2 (Achaete-scute complex 

homolog 2) 

qRT-PCR QuantiTect Qiagen 

Axin2 (axis inhibition protein 

2) 

qRT-PCR QuantiTect Qiagen 

Bmi1 (Bmi1 polycomb ring 

finger oncogene) 

qRT-PCR QuantiTect Qiagen 

c-Myc qRT-PCR QuantiTect Qiagen 

Caspase 8  qRT-PCR QuantiTect Qiagen 

Caspase 9  qRT-PCR QuantiTect Qiagen 
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Cxcl1 (Chemokine (C-X-C 

motif) ligand 1) 

qRT-PCR QuantiTect Qiagen 

Cxcl2 (Chemokine (C-X-C 

motif) ligand 2) 

qRT-PCR QuantiTect Qiagen 

Cxcl5 (Chemokine (C-X-C 

motif) ligand 5) 

qRT-PCR QuantiTect Qiagen 

Cxcr2 (Chemokine (C-X-C 

motif) receptor 2) 

qRT-PCR QuantiTect Qiagen 

Cyclin D1  qRT-PCR QuantiTect Qiagen 

Cyclin D2  qRT-PCR QuantiTect Qiagen 

Ephb3 (Ephrin type-B receptor 

3) 

qRT-PCR QuantiTect Qiagen 

Ets2 (v-ets avian 

erythroblastosis virus E26 

oncogene homolog 2) 

qRT-PCR QuantiTect Qiagen 

Fscn1 (fascin1) qRT-PCR QuantiTect Qiagen 

GAPDH (Glyceraldehyde 3-

phosphate dehydrogenase) 

qRT-PCR QuantiTect Qiagen 

Il-11 (Interleukin-11) qRT-PCR QuantiTect Qiagen 

Il-11b (Interleukin-11b) qRT-PCR QuantiTect Qiagen 

Il-6 (Interleukin-6) qRT-PCR QuantiTect Qiagen 

Jak1 (Janus Kinase1) qRT-PCR QuantiTect Qiagen 

Jak2 (Janus Kinase2) qRT-PCR QuantiTect Qiagen 

Jak3 (Janus Kinase3) qRT-PCR QuantiTect Qiagen 

Ki67 qRT-PCR  Invitrogen 

LEF1 (Lymphoid enhancer-

binding factor-1) 

qRT-PCR QuantiTect Qiagen 

Lgr5 (Leucine-rich repeat-

containing G-protein coupled 

receptor 5) 

qRT-PCR QuantiTect Qiagen 

lysozyme  qRT-PCR QuantiTect Qiagen 

MPO (Myeloperoxidase) qRT-PCR QuantiTect Qiagen 

NF-κB (nuclear factor kappa-

light-chain-enhancer of 

qRT-PCR QuantiTect Qiagen 
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activated B cells) 

Nrn1 (neuritin 1) qRT-PCR QuantiTect Qiagen 

Olfm4 (olfactomedin 4) qRT-PCR QuantiTect Qiagen 

Rgmb (RGM domain family, 

member B) 

qRT-PCR QuantiTect Qiagen 

Slc14a1 (solute carrier family 

14 (urea transporter), member 

1) 

qRT-PCR QuantiTect Qiagen 

Sox9 (SRY (sex determining 

region Y)-box 9) 

qRT-PCR QuantiTect Qiagen 

Stat3 (Signal transducer and 

activator of transcription 3) 

qRT-PCR QuantiTect Qiagen 

Tnfrsf19 (Tumor necrosis 

factor receptor superfamily, 

member 19) 

qRT-PCR QuantiTect Qiagen 

TNFα (Tumour necrosis factor 

alpha) 

qRT-PCR QuantiTect Qiagen 

Wnt3a (wingless-type MMTV 

integration site family, 

member 3A) 

qRT-PCR QuantiTect Qiagen 

β-catenin qRT-PCR QuantiTect Qiagen 

Table 2-3 Primers 
 

2.1.4 Enzymes and kits 

Kit Manufacturer 

Alexa Fluor 546 protein 

labelling kit  

Invitrogen 

Amaxa Nucleofection Kit Lonza 

Click-iT EdU Alexa Fluor 

488 Flow Cytometry 

assay Kit 

Invitrogen 

DyNAmo SYBR Green 2-

Step qRT-PCR Kit 

Thermo Scientific 
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DAKO EnvisionTM Mouse, 

Rabbit Detection kit 

DAKO 

Lipofectamine 2000  Invitrogen 

Precision Red Advanced 

Protein Assay 

Cytoskeleton Inc. 

RNeasy mini kit Qiagen 

SimplyBlue SafeStain Invitrogen 

SuperSignal West Pico 

Chemiluminescent 

Substrate 

Thermo Scientific 

Table 2-4 Enzymes and kits 

 

 

2.2 Methods 

2.2.1 Cell culture 

Origin of cell lines 

HCT116 and HT29 cells were obtained from Dr. Ang Li, Beatson Institute for 

Cancer Research. 

Maintenance of cell lines 

All cell lines were cultured in sterile 10cm Falcon dishes in 5% CO2 at 37°C. The 

cell lines were maintained in DMEM supplemented with 2mM glutamine and 10% 

Fetal Bovine Serum (FBS). The cells were passaged every 3-4 days or when sub-

confluent with a 1:10 ratio. Passage involved aspiration of the medium, washing 

with PBS buffer then addition of 1ml of PE buffer containing 0.25% trypsin for 5 

minutes. The cells were then re-suspended in 10ml DMEM, 1ml of which was 

added to 20ml fresh DMEM and the suspension added to a new 10cm plate. 

Storage of cell lines 

Cells were trypsinised as described, pelleted by centrifugation, re-suspended in 

50% DMEM, 40% FBS and 10% DMSO and stored in cryotubes initially at -70°C 

overnight in Mr. Frosty containers before transfer to a liquid nitrogen tank. 
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Thawing of cell lines involved placing the cryotubes in a 37°C water bath then 

adding the thawed cells to a pre-warmed 10cm falcon plate containing DMEM. 

The following day the medium was aspirated and fresh DMEM was added. 

2.2.2 Crypt and adenoma culture 

2.2.2.1 Establishment of primary mouse small intestinal crypt cell lines 

The crypt culture method has previously been described (Sato, Vries et al. 

2009). Briefly, 6-8 week old C57Bl/6 mice were culled and the proximal 10cm of 

the small intestine was dissected and flushed with ice cold PBS. The small 

intestine was opened longitudinally and the villi were scraped off with a 

coverslip. The small intestine was then cut into 5mm pieces and transferred to a 

50ml Falcon tube containing ice cold PBS. The pieces were washed using a 25ml 

pipette and, once the supernatant had settled, this was replaced with fresh PBS. 

The washing was repeated approximately 10 times until the supernatant was 

clear. The small intestine was then incubated with 25ml PBS containing 2mM 

EDTA at 4°C for 30 minutes on a roller bank. The EDTA supernatant was 

discarded and the small intestine was washed with PBS to remove any traces of 

EDTA. The small intestine was again suspended in 10ml PBS and vigorously 

pipetted 10-15 times with the crypt rich supernatant removed and kept. This 

was repeated a further 3 times resulting in 4 crypt enriched fractions. The 3 

fractions containing the most crypts were then combined and diluted with 

Advanced DMEM/F12 (ADF) to 50ml and centrifuged at 1200rpm for 5 minutes. 

The pellets were re-suspended in 10ml ADF and passed through a 70µM cell 

strainer. A further 5ml ADF was then passed through the filter to ensure all 

crypts were collected. The tube was then centrifuged at 600rpm for 2 minutes. 

The ADF wash step was then repeated until no single cells could be seen. During 

this time, the number of crypts was counted and the number required 

determined. After further centrifugation, the pellet was re-suspended in growth 

factor reduced Matrigel at approximately 1000 crypts/ml. 50µl of Matrigel was 

seeded per well in a 24 well falcon plate and incubated at 37°C in 5% CO2 for 5 

minutes until the Matrigel had solidified. The plate was then removed and 500µl 

crypt culture medium (CCM) added.  
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The medium was replaced every second day and the crypts were passaged at 7-

10 days. Crypts could be frozen and thawed as described. 

In some experiments exogenous Wnt3a and Oncostatin M (OSM) were added to 

the medium for the stated length of time at concentrations of 100ng/ml and 

50ng/ml respectively. 

2.2.2.2 Establishment of primary mouse intestinal tumour cell lines 

The adenoma culture method has been described previously (Sato, Stange et al. 

2011). Briefly, the adenoma is cut from the intestine and then, using scissors cut 

into small pieces and washed 3-5 times in ice cold PBS to remove any debris. The 

adenoma was then incubated in ice cold PBS containing 5mM EDTA for 10 

minutes on a roller bank at 4°C. The EDTA supernatant was aspirated and the 

adenoma was then washed in PBS a further 3 times to remove any EDTA. The 

adenoma was next incubated in 5ml 10x Trypsin (5mg/ml) with 0.8µg DNase for 

30 minutes at 37°C. Following this, the falcon tube was shaken vigorously and 

the supernatant was collected in a 50ml falcon tube. The adenoma was then 

washed a further 3 times with 10ml ADF and the supernatant collected in the 

falcon tube. The supernatant was next centrifuged at 1200rpm for 5 minutes. 

The supernatant was removed and the pellet washed twice with ADF to remove 

any remaining trypsin. The number of cells was next counted and around 100 

cells were plated per well. These were re-suspended in Matrigel (50µl per well in 

a 24 well plate) and incubated at 37°C in 5% CO2 for 5 minutes before the 

adenoma culture medium was added. The medium was replaced every second 

day and the adenomas were passaged at 7-10 days. Adenomas could be frozen 

and thawed as described. 

 

2.2.3 Protein Immunoblotting 

2.2.3.1 Protein extraction from tissues or primary murine cell lines 

Freshly extracted tissue (homogenised using the Precellys®24-Dual tissue 

homogeniser) or cells, which had been cultured in-vitro, were washed in PBS and 

centrifuged at 1200rpm for 5 minutes. The supernatant was removed and the 
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pellet re-suspended in 300µl RIPA buffer supplemented with 10µl protease 

inhibitor cocktail and 10µl Halt phosphatase inhibitor cocktail for 10 minutes on 

ice. The solution was then centrifuged at 13000rpm for 5 minutes at 4°C and the 

supernatant aspirated and stored at -20°C. The pellet was discarded. The 

protein concentration was determined using Precision Red Advanced Protein 

Assay reagent. 

2.2.3.2 Western Blotting 

Proteins, separated using polyacrylamide gel electrophoresis, were transferred 

from the gel to PVDF membrane between Whatman 3MM paper at 200mA for 75 

minutes in 1x SDS blotting buffer. Membranes were blocked in 3% milk in 1XTBST 

for 1 hour at room temperature and incubated with the primary antibody at the 

appropriate concentration, for the required duration at the appropriate 

temperature as determined by the manufacturer. Following this, the membranes 

were washed in 1X TBST 3 times for 5 minutes and then incubated with the 

appropriate secondary antibody in 1X TBST for a minimum of 1 hour at room 

temperature and then again washed in 1X TBST 3 times for 5 minutes. All 

incubations and washes were performed on a rocking table or roller bank. The 

proteins were next visualised using supersignal west pico chemiluminescent 

substrate or supersignal west femto maximum sensitivity substrate. Using the 

GeneSnap software and Bio-imaging system the images were processed and 

recorded. Western blots found within this thesis are representative results 

obtained from at least 3 repeated experiments for each experiment shown, 

unless otherwise stated.  

2.2.3.3 Protein separation using polyacrylamide gel electrophoresis (SDS-
PAGE) 

Protein samples were diluted with NuPAGE LDS Sample Buffer (4X) and NuPAGE 

Reducing Agent (10X) resulting in a 1X solution which was heated at 70°C for 10 

min. The protein was then resolved on precast NuPAGE Novex Bis-Tris Mini Gels 

(4-12%) according to molecular weight by electrophoresis in gel tanks with 1X 

NuPAGE MOPS SDS Running Buffer at 150V for 2 hours. 7µl of SeeBlue Plus2 Pre-

stained Standard was used as the molecular weight marker. 
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2.2.4 Immunofluorescence (IF) 

Small intestinal crypts: coverslips were incubated in PBS supplemented with 1% 

BSA and 0.1% bovine gelatin for 30 minutes at 37°C in 5% CO2 in a 6 well falcon 

plate. 400µl of crypt culture medium was then added to each well and incubated 

for a further 20 minutes at 37°C in 5% CO2. The crypts were transferred to a 

15ml falcon and centrifuged at 1200rpm for 5 minutes. The supernatant was 

discarded and a drop of the crypts was seeded onto the coverslips and incubated 

for 1 hour at 37°C in 5% CO2. The medium was next aspirated and the crypts 

were next fixed in 4% PFA at room temperature for 20 minutes or in methanol 

(for the fascin antibody) at -20°C for 20 minutes. They were next washed 3 

times in PBS and permeabilised in PBS supplemented with 1% Triton X-100 for 10 

minutes. Following this they were incubated for 30 minutes in blocking buffer 

(PBS supplemented with 1% BSA, 3% goat serum, 0.2% Triton X-100). Next, they 

were incubated with the primary antibody at the appropriate concentration in 

working buffer (PBS supplemented with 0.1% BSA, 0.3% goat serum and 0.2% 

Triton X-100) overnight at 4°C. The following day the samples were washed 3 

times with working buffer before being incubated with the secondary antibody 

at the appropriate concentration in working buffer for 2 hours. They were again 

washed 3 times in working buffer before being mounted on slides with Prolong 

Gold Antifade reagent with DAPI. Crypts were then visualised with the Olympus 

FV1000 inverted laser scanning confocal microscope or the Zeiss Axioskop2 

microscope equipped with a digital camera C4742-95 (Hamamatsu). 

 

2.2.5 Histology and staining of tissue 

2.2.5.1 Immunohistochemistry (IHC) 

Formalin or methacarn fixed paraffin embedded sections were deparaffinised 

and rehydrated through immersion in xylene and a grade alcohol series before 

being washed in 1X TBST. Antigen retrieval was achieved through incubation of 

sections in microwave heated 1X citrate buffer (pH 6.0) in a pressure cooker 

(600ml water was added to the pressure cooker. A small container with 30ml 

citrate buffer diluted to 300ml were placed within the pressure cooker and pre-

heated on full power for 10 minutes. Slides were then added to the container 
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and heated on full power for 4 minutes following optimisation of the pressure). 

Sections were allowed to cool for 20 minutes before washing in 1X TBST for 5 

minutes before sections were blocked with Peroxidase (Envision kit) for 5 

minutes at room temperature. The sections were next washed 3 times with 1X 

TBST before they were incubated with the primary antibody at the appropriate 

concentration for 2 hours. They were again washed 3 times with 1X TBST before 

the peroxidase labelled polymer was added for 30 minutes. Sections were next 

washed 3 times with 1X TBST before the Substrate-chromagen was applied for 

the recommended length of time. Sections were next immersed in deionised 

water to terminate the reaction and were then counterstained with 

haematoxylin and mounted. For haematoxylin and eosin staining, standard 

protocols were followed and performed by C. Nixon and colleagues, Beatson 

Institute, Histology Services. 

 

2.2.6 Paraffin embedding of organoids 

2% Agarose gel (1g Agarose in 50ml 0.5x TBE Buffer) was prepared, added to a 

250ml conical flask and incubated at 55°C for a minimum of 30 minutes. The 

organoids were transferred out of Matrigel to a 15ml falcon tube and spun at 

600rpm for 3 minutes. The supernatant was aspirated and discarded and the 

pellet washed twice with PBS. The pellet was next fixed with 500µl 4% PFA 

(room temperature) or methanol (-20°C) for 20 minutes. The samples were 

centrifuged at 600rpm for 5 minutes. The pellet was re-suspended with 100µl of 

the warmed 2% Agarose and added to a 24 well falcon plate and sent to histology 

for processing.  

 

2.2.7 Testing of the fascin antibody 

Both fascin antibodies (DAKO and Sigma) were optimised and tested by Dr. Ang 

Li for use in Western blotting (1:500) and Immunohistochemistry (1:200). For 

both WBs and IHC sections, a positive and negative control was used in each 

instance to ensure the method worked, unless otherwise stated. 
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2.2.8 Anti-neutrophil antibodies 

Two different anti-neutrophil antibodies were used: NIMP and MPO. The MPO 

antibody is more specific for neutrophils, whereas the NIMP antibody does detect 

some other immune cells in addition to neutrophils. Where possible, the MPO 

antibody was used, however, when the tissue was fixed in methacarn, the NIMP 

antibody was preferred, as the MPO antibody did not work in these conditions. 

Quantification of neutrophils was carried out independently and only samples, 

which were processed and stained in identical fashion, were compared. 

Reference is made to the type of antibody used in each of the experiments. 

 

2.2.9 Generation, maintenance and treatment of mouse colonies 

2.2.9.1 Transgenic mice 

All experiments were performed in accordance with UK Home Office regulations. 

All animals were culled by Schedule 1 methods as per Home Office Guidelines. 

The fascin1 global knockout mouse (C57BL/6) has previously been described 

(Yamakita, Matsumura et al. 2009). They have been shown to be both healthy 

and to have no major developmental defects and, with the exception of a larger 

lateral ventricle of the brain is anatomically indistinguishable from wild-type 

(WT). 

Regarding the Fascin-/- APCfl/fl p53fl/fl and Fascin-/- APCfl/fl p53R172H Ah-cre (FAPC) 

mice, the APCfl mouse (Shibata, Toyama et al. 1997), p53fl (Jonkers, Meuwissen 

et al. 2001), p53R172H (Olive, Tuveson et al. 2004) and Ah-cre (Ireland, Kemp et 

al. 2004) have all previously been described. The crossings, maintenance, 

induction and culling of these mice was performed by Dr. Ee Hong Tan (post-

doctoral researcher, Professor Owen Sansom’s lab) using schedule 1 methods in 

accordance with Home Office guidelines. The experimental cohorts were 

generated by crossing AhCre+ APCfl/+ mice with p53fl/+ or p53R172H mice. The 

progeny were then interbred to yield the APCfl/+ p53fl/fl, APCfl/+ p53R172H and 

APC+/+ p53fl/fl, APC+/+  p53R172H cohorts. Mice were then mated to Fascin1 

deficient mice. Progeny from these crosses then were interbred to obtain 

Fascin1 homozygous or wild-type APCfl/fl p53fl/fl Ah-cre or APCfl/fl  p53R172H (FAPC). 
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The mice were genotyped by Transnetyx (Memphis, TN). AhCre expression was 

induced using 3 intra-peritoneal injections of β-naphthoflavone (80 mg/kg), 

separated by 8 hours, as has been described previously (Ireland, Kemp et al. 

2004). The mice were monitored regularly and upon developing signs of 

intestinal tumours were culled (using schedule 1 procedures in accordance with 

Home Office guidelines) and a full necropsy performed. Organs were fixed in 

either methacarn or 10% neutral buffered formalin (NBF).  

2.2.9.2 Genotyping 

Genomic DNA was prepared from tail biopsies and genotyping of the transgene 

was performed as previously described (Serrano, Lee et al. 1996; McClive and 

Sinclair 2001) by the company Transnetyx (Memphis, Tennessee).  

 

2.2.10 Mouse Models 

2.2.10.1 Irradiation model 

Prior to the movement to the new Biological Services Unit (BSU) at the Beatson, 

we used a cobalt source at a dose of 14Gy in 6-12 week old mice. In the new BSU 

we used the Xstrahl 232 X-Ray irradiator at a dose of 10Gy or 12Gy in 6-12 week 

old mice. Mice were culled (using a schedule 1 method in accordance with Home 

Office guidelines) at either 6, 12 or 72 hours post irradiation. 

The reduced dose using the Xstrahl 232 X-Ray irradiator was calculated by 

Rachel Ridgway (Beatson Institute) and was shown to give a similar level of 

damage to the 14Gy dose using the Cobalt source. She compared small intestine 

samples taken from WT mice irradiated at varying doses ranging from 10Gy – 

16Gy and calculated that the most similar level of damage and subsequent 

regeneration was caused by 10 – 12Gy. In experimental models, when comparing 

WT to fascin KO mice, the same source and dose of radiation was used to ensure 

validity of results. The mice had blood aspirated from the inferior vena cava and 

transferred to EDTA containing blood tubes. The small intestines were 

harvested, flushed, opened and fixed in 10% NBF. Prior to fixation, the proximal 
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5mm of the small intestine was transferred to RNAlaterTM and stored for future 

whole tissue extraction use in qRT-PCR. 

2.2.10.2 Colitis model 

The Dextran Sodium Sulphate (DSS) murine colitis model has previously been 

described (Okayasu, Hatakeyama et al. 1990). Briefly, 6-12 week old mice were 

weighed prior to having their standard water bottle replaced with either 2% or 

3.5% DSS. Mice were examined daily for clinical signs of sickness and weighed at 

regular intervals. After 5 days of DSS the drinking bottle was replaced with 

sterile water for 72 hours. Mice were culled (using a schedule 1 method in 

accordance with Home Office guidelines) at varying time points up until 72 hours 

following cessation of DSS. The mice had blood aspirated from the inferior vena 

cava and the colons were harvested, flushed, opened and fixed in 10% NBF. Prior 

to fixation, the proximal 5mm of the colon was transferred to RNAlaterTM and 

stored for future whole tissue extraction use in qRT-PCR. 

2.2.10.3 Regenerating crypts 

Both the irradiation and colitis models are useful to investigate small intestinal 

and colonic regeneration respectively. When quantifying the number of 

regenerating crypts we only counted crypts which had a minimum of 6 definite 

cells within the base of the crypt. 

 
Figure 2-1 A regenerating small intestinal crypt 

A WT regenerating small intestinal crypt demonstrating a minimum of 6 definite cells within the 
base of the crypt. 
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2.2.10.4 Colitis associated carcinogenesis (CAC) model 

The Azoxymethane/Dextran Sodium Sulphate (AOM/DSS) CAC model has 

previously been described (Greten, Eckmann et al. 2004). Briefly, 6-12 week old 

mice were weighed prior to AOM injection. Mice received a single intra-

peritoneal (IP) injection of 12.5mg/kg AOM on the Wednesday and then 

commenced their first 5 day 2% DSS course 5 days later on the following Monday. 

After 5 days of 2% DSS the mice were changed onto sterile drinking water, which 

they remained on until the Monday that is 21 days after the first cycle of 2% DSS 

began at which point the 2% DSS cycle was repeated. A third cycle of 2% DSS 

started 21 days after the second cycle commenced and the mice are then culled 

(using a schedule 1 method in accordance with Home Office guidelines) 70 days 

after the initial injection of AOM. The mice had blood aspirated from the inferior 

vena cava and the colons were harvested, flushed, opened and fixed in either 

10% NBF or methacarn. Prior to fixation, tumours were transferred to RNAlaterTM 

and stored for future whole tissue extraction use in qRT-PCR. 

2.2.10.5 Orthotopic caecal model 

Cell lines generated from the tumours of FAPC mice which were either WT or 

null for fascin were dissociated to single cells using TryPLE and re-suspended in 

Matrigel at 4°C. 50 spheres were injected per mouse which, once dissociated 

yielded approximately 5000 cells. 8-12 week old athymic nude mice (purchased 

from Charles River Laboratories) were anaesthetised using isofluorane and their 

abdomen washed with 70% ethanol. A 1-2cm skin incision was made over the 

caecum, the muscle layer identified and the peritoneum opened. The caecum 

was exteriorised and 50µl of the Matrigel containing cells was injected in the 

sub-serosal layer of the caecum. Any Matrigel that was spilt was mopped up 

using a cotton bud soaked in PBS. The caecum was returned, the peritoneal layer 

closed with interrupted 4.0 vicryl sutures and the skin closed with skin clips. The 

mice were culled (using schedule 1 procedures in accordance with Home Office 

guidelines) when they had lost 10% of their body weight or were showing clinical 

signs of ill health. After the mice were culled, a full necropsy was performed 

and the organs fixed in 10% NBF. 
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2.2.11 Blood counts 

Blood aspirated from the inferior vena cava of mice (1ml) was immediately 

transferred to a blood tube containing EDTA. The Glasgow Veterinary School 

Haematology laboratory performed analysis. 

 

2.2.12 Epithelial cell extraction 

10cm of the proximal small intestine (SI) or the whole colon was dissected, 

flushed and opened. The SI villi were scraped using a cover glass and discarded. 

The samples were incubated in 5mM EDTA/PBS (SI) or 25mM EDTA/PBS (colon) 

for 5 minutes at 4°C on a roller bank before the EDTA/PBS was discarded and 

the sample washed x1 in PBS to remove any trace of EDTA. 10ml of ice cold PBS 

was added and the sample vigorously shaken before the supernatant was 

collected. This was repeated to yield a total of 3 fractions that were combined 

and centrifuged at 600rpm for 3 minutes prior to storage in RNAlaterTM or RIPA 

buffer or fixation in 70% ethanol/30% PBS dependant on the purpose of the 

extract. 

 

2.2.13 Flow cytometry 

Mice received an intra-peritoneal injection of BrdU, two hours prior to culling 

(using a schedule 1 method in accordance with Home Office guidelines) and the 

cells were extracted using the whole tissue extraction previously described and 

fixed in 70% ethanol/30% PBS for 30 minutes at room temperature. The cells 

were centrifuged at 1200rpm and the ethanol aspirated and discarded. The 

pellet was washed once in 2ml of PBS to remove any trace of ethanol. The pellet 

was then re-suspended in 100µl of PBS and vortexed before 100µl of 4M HCl was 

added and the pellet vortexed and left for 15 minutes at room temperature. The 

pellet was next centrifuged at 1200rpm for 5 minutes at room temperature 

before being re-suspended in 1ml PBS and further centrifuged at 1200rpm for 5 

minutes. The pellet was next re-suspended in 1ml PBT and again centrifuged at 

1200rpm for 5 minutes prior to re-suspension in 100µl anti-BrdU antibody (1:20 
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dilution in PBT) and incubated for 30 minutes at room temperature. The sample 

was next centrifuged at 1200rpm for 5 minutes and the supernatant aspirated 

and discarded. The pellet was re-suspended in PBT and again centrifuged at 

1200rpm for 5 minutes. The supernatant was aspirated and discarded and the 

pellet re-suspended in 100µl FITC-conjugated anti-mouse secondary antibody 

(1:40 dilution in PBT) and incubated for 30 minutes at room temperature. The 

sample was centrifuged at 1200rpm for 5 minutes and the supernatant aspirated 

and discarded and the pellet re-suspended in 1ml PBT. The sample was again 

centrifuged at 1200rpm for 5 minutes and the pellet re-suspended in 250µl PBS 

containing 100µg PI and incubated for 30 minutes at room temperature before 

processing on BD FACS-Calibur (BD Bioscience). 

 

2.2.14 Clonogenicity assay 

The cultured small intestinal crypts were centrifuged at 600rpm for 5 minutes 

and the medium/Matrigel aspirated prior to re-suspension of the pellet in PBS, 

further centrifugation and aspiration of the supernatant. The pellet was re-

suspended in 1ml TryPLE and incubated at 37°C for 3 minutes. 5ml ADF was 

added to the sample and mixed through pipetting. The sample was centrifuged 

at 1200rpm for 5 minutes before being re-suspended in Matrigel and plating of 

the single cells in 6 well falcon plate at 200µl per well. The plate was incubated 

for 5 minutes at 37°C in 5% CO2 before the crypt culture medium (+/- exogenous 

Wnt3a at 100ng/ml) was added to each well. The crypts were photographed on 

day 5 and day 10 and the number of colonies determined. 3 independent 

experiments were performed in duplicate for each cell line. 

 

2.2.15 Cell adhesion assay 

We trypsinised the FAPC adenoma cell lines (which were either WT or null for 

fascin), plated them on fibronectin covered 6 well plates for 30 minutes, washed 

them with PBS 3 times to wash off any non-adherent cells then stained the 

remaining adherent cells with calcein in order to quantify the number of viable 
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cells. The number of fluorescent cells was determined per FOV and the results 

quantified. 3 independent experiments were performed in duplicate for each 

cell line. 

 

2.2.16 Quantitative Real-Time Polymerase Chain Reaction 
(qRT-PCR) 

2.2.16.1 RNA extraction 

For RNA extraction the RNeasyTM kit was used. Whole tissue extraction was 

performed on the proximal 5mm of the SI or colon or on whole tumours 

dissected from either the SI or colon which had previously been stored in 

RNAlaterTM at -80°C. The samples were removed from the RNAlaterTM, 

transferred to precellys pre-filled beads tubes and 350µl of Buffer RLT was 

added. The samples were homogenised using the Precellys®24-Dual tissue 

homogeniser and the resultant lysate aspirated, placed in an RNeasyTM spin 

column with 300µl of 70% ethanol added and mixed. The sample was centrifuged 

at 4°C at 10000rpm for 15 seconds and the flow-through discarded. 700µl Buffer 

RW1 was added to the spin easy column and the sample centrifuged for 15 

seconds at 10000rpm, flow through discarded. 500µl Buffer RPE was added to the 

spin column and centrifuged for 15 seconds at 10000rpm, flow through 

discarded. 500µl Buffer RPE was added to the spin column and centrifuged for 2 

minutes at 10000rpm, flow through discarded. The spin column was placed in a 

new 1.5ml collection tube and 30µl RNaseTM free water was added directly to the 

spin column membrane and centrifuged for 1 minute at 10000rpm. The elute 

from the previous step was again placed in the spin column and centrifuged for a 

further 1 minute. The resultant concentration of RNA was measured using the 

nanonvue (GE Healthcare) and stored at -80°C or was immediately used for 

reverse transcription to complement DNA (cDNA). 

2.2.16.2 Reverse transcription of RNA to cDNA 

Reverse transcription was performed using the Thermo Scientific DyNAmo SYBR 

Green 2-Step qRT-PCR Kit. 0.5µg of RNA was combined with 1µl Random 

Hexamer primer set (300ng/µl), 10µl 2x RT buffer, 2µl M-MuLV RNase H+ reverse 
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transcriptase and RNaseTM free water to a final volume of 20µl. The sample was 

placed in a PCR machine with a cycling protocol of 25°C 10 minutes, 37°C 30 

minutes, 85°C 5 minutes then held at 4°C. The resultant cDNA was stored at -

80°C or used immediately for qRT-PCR. 

2.2.16.3 qRT-PCR 

The cDNA was diluted with RNaseTM free water at a dilution of 1:10. 5µl cDNA 

was combined with 10µl 2x Master mix, 1µl primer mix and 4µl RNaseTM free 

water. The samples were then placed in the Chromo4 (Bio-Rad) real-time PCR 

Detection System. The cycling protocol is as follows: 95°C 15 minutes, 94°C 10 

seconds, X°C (5°C below lower primer Tm) 25 seconds, 72°C 30 seconds, 39 

cycles, 72-95°C 20 minutes. 

The analysis was performed using Opticon Monitoring Software. 3 independent 

experiments were performed in duplicate for each sample. 

 

2.2.17 Gene expression microarray 

1µg RNA (n=4 WT, n=4 fascin KO) extracted from cultured small intestinal crypts 

was sent to Richard Talbot (The Roslin Institute, Edinburgh) for analysis using 

the Illumina WG6 array. The un-normalised probe level data analysis was 

performed by Gabriela Kalna, Head of Computational Biology, Beatson Institute. 

Illumina gene expression data set was analysed in Partek Genomics Suite 

Software. Log2 transformation of the data and quantile normalisation was 

followed by the differential gene expression analysis using t-test. All p-values 

were corrected for multiple testing using Benjamini & Hochberg step up method 

that controls the false discovery rate. Finally, the fold change values were 

considered in ranking genes of interest. 
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2.2.18 Organotypic invasion model 

The organotypic model has previously been described (Timpson, McGhee et al. 

2011). 

2.2.18.1 Preparation of collagen 1 from rat tails 

12-15 juvenile rat-tails were washed in 70% ethanol and the tendons removed 

using toothed forceps. For every 1g of tendon, 250ml 0.5M acetic acid was added 

and stirred at 4°C for 48 hours. The solution was centrifuged at 10000rpm for 30 

minutes and the pellet discarded. An equal volume of 10% NaCl was added to the 

supernatant and stirred at 4°C for 60 minutes then centrifuged at 10000rpm for 

30 minutes. The supernatant was discarded and the precipitate re-dissolved in 

0.25M acetic acid at 1:1 ratio then stirred for 24 hours at 4°C. The collagen 

solution was next dialysed against 6-8 changes of 6L 17.5mM acetic acid over the 

next 3 days. The collagen was next centrifuged at 26400rpm for 90 minutes, the 

supernatant removed and the concentration adjusted to approximately 2mg/ml. 

2.2.18.2 Preparation of the 3D matrix 

25ml of the collagen was added to 3ml 10x MEM and the pH adjusted to 

approximately 7.2 with the addition of 0.22M NaOH. 1x106 human fibroblasts 

were trypsinised and centrifuged at 400rpm for 5 minutes. The fibroblasts were 

re-suspended with 3ml FBS and immediately added to the collagen mixture on 

ice. 2.5ml was plated onto a sterile 35mm falcon dish and incubated at 37°C in 

5% CO2 for 5 minutes. Once solidified, 1ml of DMEM supplemented with 10% FBS 

was added and the collagen/fibroblast matrix detached carefully using a 

pipette. The next day a further 1ml DMEM supplemented with 10% FBS was 

added and the matrix was allowed to contract over the next 7-10 days with the 

medium being changed every second day. 

2.2.18.3 Seeding of cells on matrix 

The adenoma cell line was centrifuged at 600rpm for 5 minutes, washed once in 

PBS and again centrifuged. The PBS was removed and the pellet re-suspended in 

1ml TryPLE and incubated at 37°C for 3 minutes. 5ml ADF was added and the 

number of cells counted. 1x105 cells were re-suspended in the adenoma culture 
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medium and added to the collagen/fibroblast matrix which had been placed in a 

24 well falcon plate and incubated at 37°C in 5% CO2 for 72 hours. 

2.2.18.4 Transfer of matrix to grid 

Stainless steel grids were cut using scissors to form a tripod and placed in a 

sterile 6cm falcon plate. The matrix was transferred onto the grid and adenoma 

culture medium was added so that the base of the matrix was submerged, but 

the top was not in order to generate a gradient promoting invasion. The cells 

were allowed to invade for 14 days with the medium being changed every second 

day. Once completed, the matrix was removed, cut longitudinally in half using a 

scalpel, fixed in 4% PFA at room temperature or methanol at -20°C for 30 

minutes. They were then transferred to 10% NBF and sent to histology for 

processing. 
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3 Chapter 3 – Fascin regulates small intestine 
regeneration and neutrophil recruitment in 
response to injury 



Chapter 3 – Small intestine model                                                                  96 
 
3.1 Summary 

Two of the key features in the pathogenesis of inflammatory bowel disease (IBD) 

are the histological changes to the intestinal epithelial barrier (Khor, Gardet et 

al. 2011), caused by the inflammation and the regenerative phase which follows. 

I demonstrate here that under normal homeostatic conditions, loss of fascin 

from the murine small intestine has no effect on small intestinal epithelial 

architecture or the number of proliferating cells on the crypt-villus axis. 

However, following irradiation of the mice, the degree of histological damage is 

mildly increased in the fascin KO, but also there is an enhanced number of 

proliferating cells in the crypt axis of the fascin KO regenerating crypts. This was 

further confirmed using the in-vitro crypt culture method, with enhanced 

expression of the intestinal stem cell gene Lgr5 shown to drive increased 

proliferation in the absence of fascin. 

Furthermore, there are fewer recruited neutrophils in the irradiated small 

intestines of the fascin KO mice compared with WT, and reduced levels of 

chemokines CXCL1 and CXCL2, with impaired dendritic cell function the likely 

cause.  

 

3.2 Introduction 

The expression of fascin in the GI tract appears to be transient, age and health 

status dependent. Fascin is present in cells of the GI tract during weeks 8-12 of 

embryogenesis in humans (Zhang, Tao et al. 2008), but absent in later weeks of 

gestation. Multiple studies have demonstrated either low levels or absence of 

fascin in normal adult epithelial tissue (Tan, Lewis et al. 2013) and, whilst fascin 

has been shown to be expressed in human samples of inflammatory conditions 

affecting the colon (Qualtrough, Smallwood et al. 2011), it is unknown whether 

fascin is expressed in small intestinal samples of IBD.  

One of the pathological hallmarks of IBD is the infiltration of polymorphonuclear 

neutrophils (PMN) into the inflamed tissue (Larmonier, Midura-Kiela et al. 2011) 

in both Crohn’s disease and ulcerative colitis (UC) specimens. The primary role 
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for neutrophils in the acute phase of inflammation involves the recognition and 

ingestion of extracellular pathogens. They are also crucial for the activation and 

regulation of both the innate and adaptive immune response, in particular the 

regulation of the immune cells (Mantovani, Cassatella et al. 2011). Fascin is 

expressed by dendritic cells (Pinkus, Lones et al. 2002), a key orchestrator of the 

immune response to inflammation through the production of chemokines upon 

maturation (McColl 2002). In this chapter I will show impaired recruitment of 

neutrophils in the fascin KO small intestine post irradiation.  I hypothesise that 

this may, in part, be as a result of impaired dendritic cell function and 

consequent chemokine production. 

The Wnt pathway is the principal regulator of intestinal physiology (Fevr, Robine 

et al. 2007) through β-catenin, which, once translocated to the nucleus, binds 

and activates transcription factors of the TCF/LEF family. The downstream 

effect on gene expression stimulates stem cell expansion and subsequent 

intestinal regeneration. In this chapter I will show that the loss of fascin permits 

enhanced intestinal proliferation through generic up regulation of Wnt members 

and targets, in particular the rapid cycling Lgr5 expressing stem cells located at 

the base of intestinal crypts (Barker, van Es et al. 2007).  

 

3.3 Results 

3.3.1 Characterisation of fascin KO small intestine with respect to 
WT 

In our experiments, we have compared fascin expressing “wild type” (WT) and 

fascin knockout (KO) mice. The fascin KO is a global KO mouse that has been 

shown to be both healthy and to have no major developmental defects 

(Yamakita, Matsumura et al. 2009) and, with the exception of a larger lateral 

ventricle of the brain, is anatomically indistinguishable from WT (Yamakita, 

Matsumura et al. 2009).  

We initially quantified the number and height of the crypts in the untreated 

small intestines of both WT and fascin KO mice and found no significant 

difference between the two (Fig. 3-1). 
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We next quantified the number of BrdU positive cells per crypt and the position 

of the highest BrdU positive cell in the crypt axis and also found no significant 

difference (Fig. 3-1).  

Lastly, we quantified the number of paneth cells using the lysosyme antibody in 

order to determine whether loss of fascin affected the number in each crypt. A 

gene expression microarray (Sato, van Es et al. 2011) of isolated paneth cells  

(available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25109) 

demonstrated that paneth cells express fascin, albeit at low levels at a level 3 

fold higher than that found in the isolated Lgr5 cells. As such, we wished to 

determine whether loss of fascin would negatively affect the number of paneth 

cells in the fascin KO small intestine, however we found no significant difference 

(p=0.700) (Fig. 3.1). This correlated with the qRT-PCR analysis of the whole 

tissue extract for lysosyme, which also showed no significant difference (not 

shown).  
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Figure 3-1 Characterisation of untreated fascin KO small intestine with respect to WT 

No difference between the number or height of crypts in WT (A) and fascin KO (B) untreated small 
intestine (H&E stained). WT (C) and fascin KO (D) BrdU stained small intestine demonstrating no 
difference (E) in the number or position of highest BrdU positive cell on the crypt axis 
(representative images of n=2 independent experiments with 25 crypts counted independently per 
sample. Error bars represent standard deviation (SD)). WT (F) and fascin KO (G) small intestines 
stained with lysosyme antibody demonstrating no significant difference in the number of paneth 
cells (H) (n=3, p=0.700 Mann-Whitney test. Error bars represent SD).  
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We first compared the gene expression levels of key genes, using qRT-PCR in the 

small intestines of untreated fascin KO and WT mice using whole tissue 

extracted from the mice. Interestingly, despite no microscopic change in the 

small intestines we found significantly lower levels of the proliferative marker 

Ki67 in the fascin KO and also significantly lower levels of the intestinal stem 

cell marker Lgr5 (p=8.29E-07) in the fascin KO compared with the WT (Fig. 3-2). 

Both Ki67 and BrdU are well-recognised proliferative markers, but they differ in 

key aspects. BrdU is a thymidine analogue and is incorporated into the DNA and 

typically marks only cells actively synthesising DNA (although it remains 

incorporated after synthesis and is passed down to the daughter cells). Ki67 is 

less specific and is a protein-based antibody therefore does not need to be 

injected into the mouse. It marks dividing cells throughout most of the mitotic 

process with the exception of the resting phase, G0.  

We also checked the levels of Olfm4 and Nrn1, two genes that were found from 

a mass spectrometry analysis of Lgr5 and their daughter cells (Munoz, Stange et 

al. 2012), however we found no significant difference (Olfm4 p=0.489. Nrn1 

p=0.395) between WT and fascin KO (Fig. 3-2). 

We wished to identify whether the lower levels of Lgr5 mRNA (in the fascin KO) 

was due to lower Wnt signalling in the fascin KO small intestine so we checked 

the levels of the Wnt ligand (Wnt3a), other Wnt pathway members Axin2, APC, 

β-catenin and Wnt targets c-Myc, LEF1, Cyclin D1 and Cyclin D2. β-catenin 

(p=0.000138), APC (p=0.0134) and c-Myc (p=0.0318) were significantly lower in 

the fascin KO whereas there was no significant difference with Wnt3a (p=0.421), 

Axin2 (p=0.113), LEF1 (p=0.163), Cyclin D1 (p=0.303) and Cyclin D2 (p-0.453) 

(Fig. 3-2). Given that Lgr5 is a target gene of NF-κB (Schwitalla, Fingerle et al. 

2013), we also looked at the level of NF-κB and the upstream cytokine TNFα to 

determine whether these correlated with the observed decrease in Lgr5 in the 

fascin KO. Both TNFα (p=0.0138) and NF-κB (p=0.00189) were significantly lower 

in the fascin KO (Fig. 3-2). None of the genes we looked at were expressed 

significantly higher in the untreated fascin KO small intestine. Lastly, we 

quantified the levels of chemokines CXCL1, CXCL2 and CXCL5 and CXC receptor 

CXCR2 in the untreated small intestine and found significantly reduced levels of 

CXCL1 (p=0.00384) and CXCL5 (p=0.0414) in the fascin KO, no significant 
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difference in CXCL2 (p=0.122) and no significant difference in the chemokine 

receptor CXCR2 (p=0.407) (Fig. 3.2). Thus, we conclude that, in physiological 

conditions fascin loss resulted in lower levels of basal TNFα and NF-κB mRNA, as 

well as lower levels of some CXCL chemokines. This may account for the lower 

overall proliferation rate and lower Lgr5 mRNA also detected in the fascin KO. 

However, the changes are complex, requiring further investigation to determine 

which may be causal of actual phenotype changes. 

 

 
Figure 3-2 qRT-PCR data of untreated whole tissue extraction comparing WT and fascin KO 
small intestines 

Logarithmic scales demonstrating significantly reduced levels of Ki67 (p=0.00436), Lgr5 (p=8.29E-
07) (A), TNFα (p=0.0138) and NF-κB (p=0.00189) (B) in the untreated fascin KO small intestine. 
There was no significant difference between Olfm4 (0=0.489) or Nrn1 (p=0.395). Examination of 
Wnt ligand (p=0.421) levels demonstrate no significant difference between WT and fascin KO and 
further analysis of Wnt members shows significantly reduced levels of APC (p=0.0134) and β-
catenin (p=0.000138) in the fascin KO (C). Wnt target c-Myc (p=0.0318) was significantly reduced 
in the fascin KO, whilst there was no significant difference with regards LEF1 (p=0.163), Cyclin D1 
(p=0.303) and Cyclin D2 (p=0.453). When we examined the various neutrophil related chemokines 
CXCL1 (p=0.00384) and CXCL5 (p=0.0414) were significantly lower in the fascin KO whilst there 
was no significant difference in CXCL2 (p=0.122) or the chemokine receptor CXCR2 (p=0.407) (E). 
Statistical analysis using Student’s t-test, n=3 for each sample. Error bars represent SD. 
Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
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3.3.2 Fascin expression in untreated and regenerating small 

intestine 

Multiple studies have demonstrated low levels or absence of fascin in normal 

epithelial tissue (Tan, Lewis et al. 2013), so we first characterised the 

expression of fascin in the small intestines of untreated WT mice using 

immunohistochemistry (IHC), Western blot (WB) and qRT-PCR. Fascin expression 

was absent from IHC using the fascin antibody – only non-specific background 

staining of the villi was seen which was also demonstrated in the fascin KO 

negative controls. Protein levels of fascin within the tissues were only 

demonstrable in WB with the use of the Femto substrate (Fig. 3-3). Low levels 

were also detected using qRT-PCR (Fig. 3-3). 72 hours post irradiation we 

repeated the qRT-PCR on whole tissue extracted from WT small intestine and 

found that the level of fascin mRNA had risen by almost 50% compared with 

untreated small intestine. Protein levels also appeared higher by IHC (Fig. 3.3). 
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Figure 3-3 Fascin expression in untreated and irradiated small intestine 

Only non-specific staining of fascin (brown) was detectable in the untreated WT villi (A) – this was 
also seen in the negative controls (fascin KO) and was deemed to be not significant.  Protein levels 
of fascin were only detected at low levels in WB using femto substrate (B). Images representative 
of 3 independent experiments. 72 hours post irradiation in the regenerating small intestine the level 
of fascin had risen by 50% compared with untreated tissue as demonstrated with qRT-PCR (C) and 
IHC (D). Error bars represent SD. 
 

3.3.3 Loss of fascin results in a mild increase in histological 
damage in small intestinal time course post irradiation 

In order to determine the effect loss of fascin has on radiation damaged small 
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Jackson Laboratory (TJL) scoring system developed at the Hannover Medical 

School (Bleich, Mahler et al. 2004). This incorporated four criteria which were 

subjectively used, microscopically to assess and compare the histological 

damage notably (1) severity, (2) degree of hyperplasia, (3) degree of ulceration 

and (4) percentage of area involved. A score of 0-3 was used (0 being no 

damage, 3 being maximal) for the four categories and the overall score was 

determined. At the 6 hour time point both WT and fascin KO scored 4 out of a 

maximal 16, whereas at the 24 hour time point the fascin KO scored 6/16 and 

the WT 5/16 indicating marginally increased damage in the fascin KO 24 hours 

post 12Gy irradiation (p=0.0791, Mann Whitney test). At the 72 hour time point 

both WT and fascin KO were assessed as 6/16 (n=3 for each time point) (Fig. 

3.4).  
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Figure 3-4 Small intestine irradiation time course 

A) Histological damage demonstrates a hint of more damage in the fascin KO small intestine at the 
24 hour time point (p=0.791), compared with WT: n=3 per time point. Error bars represent SD. B) 
Example of severity score of 1 and C) worsening severity scored as 3. D) Evidence (arrowed) of 
moderate hyperplasia (score of 1) and E) severe hyperplasia (arrowed) with a score of 3. F) 
Evidence of ulceration (arrowed) with score of 1 and G) vacuolated cell (arrowed) which were 
commoner in the fascin KO. 
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3.3.4 Loss of fascin results in enhanced proliferation after 

irradiation 

Given the enhanced levels of Lgr5 stem cells and other Wnt targets in the 

untreated WT small intestines we wished to determine whether this would 

positively or negatively affect proliferation in the WT regenerating small 

intestines in response to the irradiation. We first quantified the number 

(p=0.476) and height (p=0.264) of regenerating crypts in the mice 72 hours after 

irradiation, but found no significant difference between WT and fascin KO (Fig. 

3-5). We next quantified the number of and position of the highest BrdU positive 

cell in the crypt axis to examine any defect in proliferation in the fascin KO. 

Surprisingly, there were significantly higher numbers (p=0.0143) of BrdU positive 

cells in the KO and also the position (p=0.0143) of the highest BrdU positive cell 

in the crypt axis was significantly higher in the fascin KO indicating enhanced 

proliferation in the fascin KO (Fig. 3-5). We next wanted to determine whether 

there were any gene expression changes that might explain the observed 

phenotype. Using qRT-PCR of whole tissue extracted at the 72 hour time point 

from the irradiated small intestines, we examined the same gene set as for the 

untreated small intestines and found that, in contrast to the untreated data (in 

which there were significantly lower levels of Lgr5 and other Wnt targets in the 

fascin KO), we found the opposite in that there were significantly elevated 

levels of β-catenin (p=0.00904) and targets Lgr5 (p=0.00173) and c-Myc 

(p=0.0171) in the fascin KO (Fig. 3-5). It was notable that the level of Lgr5 was 5 

fold higher in the regenerating small intestine of the fascin KO. There was no 

significant difference in the levels of Wnt3a (not shown), Axin2 (p=0.262), Olfm4 

(p=0.293) or Nrn1 (p=0.348). We again looked at the levels of TNFα (p=0.170) 

and NF-κB (p=0.343) however, unlike the untreated small intestines, there was 

no significant difference in the irradiated small intestines (Fig. 3-5). Lastly we 

performed FACS cell cycle analysis of crypt cells extracted from small intestines 

72 hours following irradiation. This was, however inconsistent with our BrdU 

quantification data and demonstrated decreased numbers of fascin KO crypt 

cells in the S phase with more in G1 (Fig. 3.5). We predicted that, given that 

there were enhanced numbers of BrdU positive cells in the fascin KO 

regenerating small intestine, this would correlate with higher numbers of fascin 

KO crypt cells in the S-phase of the cell cycle when DNA is actively replicated. 

This, however was not the case, although the FACS results were not significant 
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so definitive conclusions cannot be made. The administered dose and duration 

from injection of BrdU to culling is very important in ensuring consistency of 

results. It must be stressed that there was considerable difficulty gaining 

sufficient cells to perform the FACS analysis. It was necessary to pool crypt 

extracts from 3 mice and, despite this there were often less than the required 

optimal number of cells in each phase of the cell cycle thereby affecting the 

accuracy and reliability of the final analysis. Despite this discrepancy, we 

conclude that fascin KO small intestines have an enhanced proliferative response 

following irradiation and show elevated levels of some Wnt signalling and target 

genes. 
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Figure 3-5 Enhanced small intestinal crypt proliferation in the fascin KO in response to 
irradiation 

72 hours post irradiation of the mice, there was no significant difference in either the number 
(p=0.476) or height (p=0.264) of regenerating crypts (A) between WT (B) and fascin KO (C). WT 
(D) and fascin KO (E) small intestines with BrdU staining demonstrating that both the number 
(p=0.0143) and position (p=0.0143) of the final BrdU positive cell in the crypt axis was significantly 
higher in the fascin KO (F) indicating enhanced proliferation in the absence of fascin (n=4 with 11-
23 crypts independently counted per sample, Mann-Whitney test. Images representative of 4 
independent experiments. qRT-PCR analysis of whole tissue extracted from small intestines 72 
post irradiation demonstrating a trend, albeit not significant, towards enhanced levels of Ki67 
(p=0.165) and significantly enhanced levels of Lgr5 (p=0.00173) in the fascin KO. There was no 
significant difference in either Olfm4 (p=0.293) or Nrn1 (p=0.348) (G). No significant difference in 
the levels of TNFα (p=0.170) or NF-κB (p=0.343) (H), however significantly elevated levels of β-
catenin (p=0.00904) and c-Myc (p=0.0171) in the fascin KO, whilst no significant difference in 
Axin2 (p=0.262) (I). FACS cell cycle analysis demonstrating a trend towards a lower percentage of 
fascin KO crypt cells in the S phase with higher numbers in G1, although not significant: n=3 each 
sample was made from 2 pooled epithelial extractions in age/sex matched mice. For qRT-PCR 
statistical analysis, n=3, student’s t-test. Error bars represent SD. Significance asterisks: * = <0.05, 
** = <0.01, *** = <0.001. 
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3.3.5 Loss of fascin results in impaired neutrophil recruitment in 

regenerating small intestines post irradiation 

The importance of the immune response to inflammation (Brown and Mayer 

2007) is well recognised. Dendritic cells are key mediators of this immune 

response (Banchereau and Steinman 1998) and are well known to express fascin 

(Pinkus, Pinkus et al. 1997). It was important, therefore to determine the effect 

that loss of fascin in-vivo had on the immune response in the small intestine post 

irradiation. We initially quantified the number of neutrophils (using the anti-

neutrophil antibody NIMP on IHC sections) in the regenerating small intestines of 

WT and fascin KO mice 72 hours post 12Gy irradiation. We demonstrated 

significantly reduced numbers of neutrophils in the fascin KO (p=0.0383) 

compared with WT (Fig. 3-6). We attempted on numerous occasions to optimise 

an anti-dendritic cell antibody for use in our mouse IHC samples, however we 

were unable to achieve positive staining even with positive controls. Given that 

dendritic cells express fascin, it would have been useful to double stain the 

regenerating intestines with an anti-fascin and an anti-dendritic cell antibody to 

further characterise the cells which express fascin in the tissue, however further 

work is needed to acquire a reliable anti-dendritic cell antibody. We next 

performed a Western Blot on isolated neutrophils (supplied by Dr. Philip 

Hawkins, University of Cambridge) to determine whether they expressed fascin, 

however no expression was seen (Fig. 3-6). We further wished to understand 

mechanistically the observed reduction in neutrophil recruitment in the fascin 

KO so, using qRT-PCR we quantified the levels of the CXCL ligands 1,2 and 5 and 

the chemokine receptor CXCR2 in whole tissue extracted from the irradiated 

small intestines at the 72 hour time point. We found significantly reduced levels 

of CXCL1 (p=0.0136) and CXCL2 (p=0.000879) and reduced levels of the receptor 

CXCR2 (p=0.0591) in the fascin KO (Fig. 3-6). There was no difference noted in 

CXCL5 (p=0.464) (Fig 3.6). Collectively, these findings indicate the phenotype 

seen may be in part CXC chemokine mediated. It would be desirable to have a 

time course of these levels to know whether the fascin KO showed a delayed or 

fully impaired response, but with the data currently available, we conclude that 

the neutrophil response is reduced. 
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Figure 3-6 Impaired neutrophil recruitment in the fascin KO is likely chemokine mediated 

Full blood count analysis of WT and fascin KO 72 hours post irradiation showing as expected 
global reduction in all blood cells (A) (n=3). We next quantified (B) the number of neutrophils 
recruited 72 hours post irradiation of WT (C) and fascin KO (D) small intestines and demonstrated 
a significant reduction of neutrophils in the fascin KO (p=0.0383, n=3 with 5 FOVs independently 
counted per mouse, Mann Whitney test. Images representative of 3 independent experiments. 
Western blot (E) showing that neutrophils do not express fascin, Image representative of 3 
independent experiments. qRT-PCR analysis (F) of whole tissue extracted from the small intestines 
of WT and fascin KO mice 72 hours post irradiation demonstrating a significant reduction in the 
levels of the chemokines CXCL1 (p=0.0136) and CXCL2 (p=0.000879) in the fascin KO. No 
significant difference in the level of CXCL5 (p=0.464). Reduced levels of CXCR2 (p=0.0591) in the 
fascin KO. qRT-PCR data statistical analyses, n=3, student’s t-test. Error bars represent SD. 
Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
 

3.3.6 Fascin KO crypts have impaired proliferation in-vitro in 
standard medium 
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growth of the WT crypts was significantly greater (p=3.26E-07 day 6) than the 

fascin KO and they also underwent significantly more fission events (p=0.00757  

day 4) (Fig. 3-7). It was noted that the difference in growth and fission was most 

apparent during the initial 6 days of culture. After this time point, the 

difference was less pronounced (Fig. 3.7). Ki67 staining was performed and this 

demonstrated an enhanced number of proliferating cells in the WT (Fig. 3-8). We 

also assessed the levels of stem cell markers and Wnt pathway members and 

targets in these cultured crypts. Using qRT-PCR, we demonstrated a trend 

towards lower levels of all stem cell markers in the fascin KO with Lgr5 

(p=0.0461) and Nrn1 (p=0.00443) significant (Fig. 3-8). The same Wnt members 

and targets were analysed as earlier, however there was no significant 

difference between WT and fascin KO (Fig. 3-8). We next looked at the levels of 

TNFα, NF-κB and other members of the jak-stat signalling pathway. Whilst all 

members showed a trend towards lower levels in the fascin KO, only NF-κB 

(p=0.0215), Il-11 (p=0.0279), Jak1 (p=0.0195) and Jak2 (p=0.0359) were 

significant (Fig. 3-8). 

FACS cell cycle analysis of the percentage of WT and fascin KO cells in each 

phase of the cell cycle demonstrated slightly higher numbers of fascin KO cells in 

the S phase and in G1, although this was not significant (Fig. 3.8). 
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Figure 3-7 Fascin KO small intestinal crypts have impaired proliferation and reduced crypt 
fission in standard medium 

When cultured in standard medium, the fascin KO crypts grew significantly slower (p=3.26E-07, 
day 6 student’s t-test) (A) and underwent significantly fewer crypt fission events than WT 
p=0.00757, day 4, student’s t-test) (B). WT (C) and fascin KO (D) crypts day 1. WT (E) and fascin 
KO (F) day 2. WT (G) and fascin KO (H) day 5. WT (I) and fascin KO (J) day 7. n=3 with a 
minimum of 40 crypts counted per time point. Images representative of 3 independent experiments. 
Error bars represent SD. Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001 
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Figure 3-8 Fascin KO crypts have impaired proliferation in-vitro in standard medium 

Ki67 staining of Agarose embedded WT (A) and fascin KO (B) crypts 4 days after culture 
demonstrating enhanced proliferation in the WT. Images representative of 3 independent 
experiments. FACS analysis of cell cycle (C) demonstrating higher numbers of fascin KO cells in 
the S phase and in G1, although not significant: n=3 independent experiments). qRT-PCR analysis 
of the WT and fascin KO crypts showing significantly lower levels of Lgr5 (p=0.0461) and Nrn1 
(p=0.00443) and lower levels of the majority of the other stem cells in the fascin KO compared with 
WT (D). qRT-PCR analysis of the Wnt members and targets showing no significant change 
between WT and fascin KO (E). qRT-PCR analysis of the jak-stat pathway demonstrating, in 
general, lower levels of the majority of members in the fascin KO with significantly lower levels of 
NF-κB (p=0.0216), O(p=0.0279), Jak1 (p=0.0195) and Jak2 (p=0.0359) (F). qRT-PCR data 
statistical analyses, n=3, student’s t-test. Error bars represent SD. Significance asterisks: * = <0.05, 
** = <0.01, *** = <0.001. 
 

3.3.7 Fascin KO crypts have enhanced proliferation upon addition 
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In order to replicate regeneration in-vitro, we added exogenous Wnt3a to the 
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Ascl2 (p=0.0498) (Fig. 3-9). We further analysed the Wnt members and targets 

we had looked at previously and this demonstrated a significant increase in the 

levels of β-catenin (p=0.0177) in the fascin KO, whereas APC (p=0.048) was 

significantly lower in the fascin KO (Fig. 3-9). There was no significant difference 

in the levels of c-Myc (p=0.152), LEF1 (p=0.426), TCF1 (p=0.108) or Axin2 

(p=0.726) (Fig. 3-9). We again looked at the levels of TNFα, NF-κB and other 

members of the jak-stat signalling pathway and this showed a trend, albeit not 

significant, towards increased levels of all markers in the fascin KO following the 

addition of Wnt3a to the medium in contrast to the standard medium conditions 

(Fig 3.9).  

We wished to determine whether fascin could be detected in WT crypts in 

standard medium, however a Western Blot demonstrated no expression (Fig. 3-

10). We further wished to examine whether fascin expression could be induced 

with either Wnt3a or the cytokine Oncostatin M (OSM). OSM has been shown (in 

breast cancer cells), through activation of Il-6 and Stat3 to directly regulate 

fascin expression (Snyder, Huang et al. 2011), however neither resulted in 

expression of fascin in the crypts, as demonstrated by WB (Fig 3.10). 
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Figure 3-9 Fascin KO crypts have enhanced proliferation upon addition of Wnt3a 

In contrast to the standard medium conditions, upon addition of exogenous Wnt3a to the standard 
crypt medium the fascin KO crypts grew significantly faster (p=5.45E-06, day 3, student’s t-test) (A) 
and undergo significantly more fission events (p=0.0290, day 4, student’s t-test) (B) compared with 
WT (n=3 independent experiments per time point). Ki67 staining of Agarose embedded WT (C) and 
fascin KO (D) crypts indicates enhanced proliferation in the fascin KO: images representative of 3 
independent experiments. FACS analysis of cell cycle (E) of crypts in Wnt3a conditioned medium 
demonstrating a higher percentage of fascin KO cells in S phase, although not significant, n=3 
independent experiments. qRT-PCR analysis of the crypts following 5 days of Wnt3a demonstrates 
that the majority of stem cell markers are now higher in the fascin KO crypts (F) with significance 
seen in Lgr5 (p=0.0489), Ets2 (p=0.0485), Rgmb (p=0.00872), Tnfrsf19 (p=0.00198) and Ascl2 
(p=0.0498). Wnt members analysis (G) shows a significant increase in the levels of β-catenin 
(p=0.0177) and Axin2 (p=0.0726) in the fascin KO, whereas APC (p=0.0484) was significantly 
lower in the fascin KO. Finally, analysis of the members of the jak-stat pathway shows increased 
levels of all markers in the fascin KO (H) following the addition of Wnt3a to the medium in contrast 
to the standard medium conditions, albeit not significant. Error bars represent SD. Significance 
asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
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Figure 3-10 No detectable fascin expression in small intestinal crypts on WB 

We found no detectable level of fascin on WB (HCT116 colon cancer cell line as positive control) in 
cultured small intestinal crypts (A), although the crypts had been in prolonged culture for several 
weeks and may have lost their expression or indeed may not express fascin at a detectable level 
on WB. We wished to determine whether Wnt3a or the cytokine Oncostatin M (OSM) could 
stimulate fascin, however we found no detectable band on WB (B). Images representative of 3 
independent experiments Immunofluorescence micrograph of a WT small intestinal crypt grown iin 
standard medium: green staining is phalloidin, the red is E-cadherin and the blue is nuclear (C).  
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3.3.8 Clonogenicity assay 

In order to determine whether the enhanced proliferation seen in the 

regenerating fascin KO crypts was as a result of an increased number of stem 

cells, we quantified the number of WT and fascin KO crypt colonies which 

formed from single cells with and without the addition of Wnt3a (Fig. 3.11). 

There was no significant difference in the number of colonies formed in either 

assay, which suggests that proliferation, rather than an increase in the number 

of stem cells, is responsible for enhanced growth of the fascin KO crypts in 

response to Wnt3a. 
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Figure 3-11 Clonogenicity assay 

WT (A) and fascin KO (B) crypts after 5 days. Quantification (C) of the number of colonies formed 
from WT and fascin KO crypts after 5 and 10 days of culture (n=3). WT (D) and fascin KO (E) 
crypts after 10 days of culture in standard medium. WT (F) and KO (G) crypts in medium with 
exogenous Wnt3a after 5 days and 10 days (WT (I), fascin KO (J)) and quantification (H) of the 
number of colonies formed. n=3 per condition with all colonies counted per 6 well plate. Images 
representative of 3 independent experiments. Error bars represent SD. 
 

3.3.9 Gene expression microarray WT vs. fascin KO crypts 

Given the changes seen in the qRT-PCR data between the WT and fascin KO 

crypts we used an expression microarray analysis to profile the differences in 
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The top 10 genes with the highest significant (p<0.05) fold change are 

demonstrated in Table 3.1 and significant networks involved detailed in Table 

3.2. The network score is derived from a p-value indicating whether the genes 

involved in the network are found together by random chance. A score of 2 or 

more indicates a 99% confidence interval of not being as a result of random 

chance (Long, Liu et al. 2004). 

It is interesting to note that Neuritin 1 (Nrn1) is significantly lower in the fascin 

KO which correlates with our own qRT-PCR data of crypts in standard medium. It 

would be important, in the next instance, to verify these targets, using qRT-PCR 

and then subsequently analyse these at the protein level to further determine 

their significance and role in the fascin KO crypts. 

 

Gene Fold change direction p-value 
erythroid differentiation regulator 1 6.3932 down <2e-16 
eukaryotic translation initiation factor 2, 
subunit 3, structural gene Y-linked 

3.687315634 up <2e-16 

erythroid differentiation regulator 1 2.9785 down <2e-16 
neuritin 1 2.7073 down <2e-16 
DNA segment, Chr 14, ERATO Doi 449, 
expressed 

2.624671916 up <2e-16 

inactive X specific transcripts 2.4878 down <2e-16 
zinc finger protein 68 2.248 down <2e-16 
DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 3, Y-linked 

2.207992934 up <2e-16 

polyadenylate binding protein-interacting 
protein 1 

1.833180568 up <2e-16 

lymphocyte antigen 6 complex, locus E 1.736412572 up <2e-16 

Table 3-1 Crypt gene expression microarray showing the top 10 genes with the highest fold 
change 
 

Associated Network Functions Score 
Cell Death, Cell Cycle, Cellular Growth and Proliferation 47 
Cellular Development, Cellular Growth and Proliferation, Reproductive System 
Development and Function 

43 

Gene expression, Organ Morphology, Vitamin and Mineral Metabolism 28 
Inflammatory Response, Cellular compromise, Drug Metabolism 23 
Amino Acid Metabolism, Endocrine System Development and Function, Molecular 
Transport 

22 

Table 3-2 Top 5 associated networks and network functions derived from small intestinal 
crypt gene expression array 
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Figure 3-12 Cell Death, Cell Cycle, Cellular Growth and Proliferation 

Pathway analysis of the gene expression microarray demonstrating the 1st associated network. 
Red symbols demonstrate genes which are higher in the fascin KO crypts, whilst green symbols 
demonstrate genes which are expressed at lower levels in the fascin KO. Grey symbols show no 
significant difference between WT and fascin KO. 
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Figure 3-13 Cellular Development, Cellular Growth and Proliferation, Reproductive System 
Development and Function 

Pathway analysis of the gene expression microarray demonstrating the 2nd most associated 
network. Red symbols demonstrate genes which are higher in the fascin KO crypts, whilst green 
symbols demonstrate genes which are expressed at lower levels in the fascin KO. Grey symbols 
show no significant difference between WT and fascin KO. 
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Figure 3-14 Gene expression, Organ Morphology, Vitamin and Mineral Metabolism 

Pathway analysis of the gene expression microarray demonstrating the 3rd most associated 
network. Red symbols demonstrate genes which are higher in the fascin KO crypts, whilst green 
symbols demonstrate genes which are expressed at lower levels in the fascin KO. Grey symbols 
show no significant difference between WT and fascin KO. 
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Figure 3-15 Inflammatory Response, Cellular compromise, Drug Metabolism 

Pathway analysis of the gene expression microarray demonstrating the 4th most associated 
network. Red symbols demonstrate genes which are higher in the fascin KO crypts, whilst green 
symbols demonstrate genes which are expressed at lower levels in the fascin KO. Grey symbols 
show no significant difference between WT and fascin KO. 
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Figure 3-16 Amino Acid Metabolism, Endocrine System Development and Function, 
Molecular Transport 

Pathway analysis of the gene expression microarray demonstrating the 5th most associated 
network. Red symbols demonstrate genes which are higher in the fascin KO crypts, whilst green 
symbols demonstrate genes which are expressed at lower levels in the fascin KO. Grey symbols 
show no significant difference between WT and fascin KO. 
 

3.4 Discussion 

3.4.1 Fascin is not required to maintain normal homeostatic small 
intestinal architecture 

Our studies suggest that fascin is not required to maintain the normal small 

intestinal architecture under homeostatic conditions. Indeed, the presence of 

very low levels of fascin in the WT small intestine and the lack of statistical 

difference in the number of BrdU proliferating cells or paneth cells in the fascin 

KO indicates that fascin does not play an important role in the development or 

maintenance of the small intestinal architecture under normal homeostatic 

conditions. It is interesting that, at the gene mRNA level, there is a significant 
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reduction in the majority of recognised stem cell markers in the fascin KO 

compared with WT and that this does not manifest itself in a difference at the 

microscopic level. Both paneth cells and Lgr5 cells express fascin at low levels as 

shown in a gene expression microarray of these isolated cells (Sato, van Es et al. 

2011) and available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25109. Therefore, 

absence of fascin in these cells in the fascin KO may result in an impairment of 

their function in situations of low Wnt levels during normal homeostasis resulting 

in reduced levels of stem cells, albeit to a level which does not result in a 

demonstrable difference at the microscopic level. It would be desirable to 

compare the position of Lgr5 cells and Ki67 cells in the WT and fascin KO mice 

using IHC. 

 
Figure 3-17 Schematic diagram demonstrating crypt architecture 

Diagram adapted from (Abo and Clevers 2012) demonstrating the position of the Lgr5 (yellow) 
crypt based columnar (CBC) cells which mark the active ISCs and are located between the paneth 
cells (green) at the base of the crypt. The “label retaining cells” (LRCs), so called because they 
label retain BrdU for a significantly longer period than the rapid cycling stem cells, are defined by 
their slow cycling nature and are located above the paneth cells at the +4 position: BMI1+ (red) 
marks these quiescent cells (Yan, Chia et al. 2012). The transit amplifying (TA) progenitor cells are 
located further up the crypt axis and arise from the stem cells.  
The higher level of NF-κB in the WT, may contribute to increased levels of Lgr5. 

NF-κB has been shown to enhance Wnt signalling (Schwitalla, Fingerle et al. 
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2013) and this may in part explain the lower levels of generic Wnt 

members/targets seen in the fascin KO in physiological conditions in which there 

is moderate or low levels of Wnt ligand circulating. This further correlates with 

levels of TNFα, which is involved in the activation of NF-κB (Malinin, Boldin et 

al. 1997) and again are shown to be lower in the fascin KO. 

 

3.4.2 Loss of fascin results in a mild increase in histological 
damage in a small intestinal time course post irradiation 

One of the key features of IBD is the histological damage caused by the 

inflammatory process. Given the structural importance of fascin as an actin 

bundling protein and in the formation of filopodia, the absence of fascin in cells 

subjected to irradiation and the subsequent inflammatory insult would, one 

would assume, result in enhanced damage as the intestinal epithelial cells (IEC) 

would be less able to maintain their cell structure or cell:cell adhesions. The 

irradiation time course seeks to identify any observed difference in the damage 

sustained following irradiation. Given the small sample size at each time point, 

it is difficult to draw definite conclusions, however our preliminary results 

indicate a slight increase in overall histological damage in the fascin KO small 

intestines at the 24 hour time point with a noted presence of vacuolated cells in 

2 out of the 3 fascin KO samples whereas this appearance was not seen in any of 

the WT samples.  

3.4.3 The absence of fascin allows enhanced small intestinal 
proliferation in the presence of high levels of Wnt ligand 

In both in-vivo and in-vitro experiments, in the presence of high levels of Wnt 

ligand, there is enhanced proliferation and higher levels of stem cell markers in 

the fascin KO small intestines and crypts. This is in contrast to the situation in 

which there are low levels of Wnt circulating as is seen under physiological 

conditions in the untreated tissue or in-vitro when the crypts are cultured in 

standard medium. Lgr5 has recently been shown to be a target gene of NF-κB 

(Schwitalla, Fingerle et al. 2013), which, in the same paper was shown to 

enhance Wnt signalling. Our data shows that in the presence of low Wnt levels, 

NF-κB and Lgr5 are lower in the fascin KO, whilst in high Wnt levels they are 
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higher in the fascin KO. This would suggest that loss of fascin deregulates Wnt 

signalling and causes an exaggerated response. The mechanisms are unclear, but 

might involve membrane trafficking changes, changes in interaction of the cells 

with the microenvironment or involvement of the immune system. We can 

speculate that this is important in acutely inflamed tissue where the presence of 

fascin allows cells to maintain their architecture thereby minimising the cellular 

damage whilst also facilitating the recruitment of neutrophils through the 

function of chemokine release from dendritic cells. When the inflammation 

reduces, the level of fascin would also reduce thereby allowing enhanced Wnt 

signalling and subsequent regeneration. In the fascin KO mice this process is 

abolished thereby allowing hyperactive Wnt signalling in the acutely inflamed 

tissue.  

The mechanism responsible for the enhanced proliferation is unlikely to be due 

to an increase in stemness given there was neither an increase in the number or 

height of the regenerating crypts in-vivo, nor an increase in the number of 

colonies formed by the dissociated crypts in-vitro. Rather, the phenotype we see 

is more likely a result of an increase in Wnt signalling driving the proliferative 

response. The mechanism behind the regulation of Wnt signalling may be 

through direct Wnt inhibition and/or indirectly through TNFα or NF-κB 

regulation. 

3.4.4 Fascin is required for optimal neutrophil recruitment 

The significant reduction in recruited neutrophils in the fascin KO mice is likely 

to be multi-factorial. Dendritic cells express fascin and, whilst they are not 

known to directly interact with neutrophils they may have some involvement in 

the orchestration of the immune response to inflammation through the 

production of chemokines upon maturation (McColl 2002). Both CXCL1 and CXCL2 

are known to be important mediators of neutrophil recruitment into areas of 

inflammation (Dhawan and Richmond 2002) (De Filippo, Dudeck et al. 2013). 

Indeed, dendritic cells have been specifically shown to express CXCL1 and CXCL2 

(Zaharik, Nayar et al. 2007), the two chemokines we found to be significantly 

reduced in the fascin KO irradiated tissue. Loss of fascin by dendritic cells may 

result in impairment of their function and subsequent expression of these crucial 

chemokines with downstream effects of reduced neutrophil recruitment.  
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Neutrophils themselves are not reported to express fascin nor did we see 

expression when we ran a western blot on isolated murine neutrophils, although 

the expression level may be too low to detect on WB.  

Lastly, fascin has been shown to be expressed by endothelial cells (Kureishy, 

Sapountzi et al. 2002) and therefore, a defect in the endothelial cytoskeleton 

could affect the transmigration of neutrophils.  

Interestingly, despite the fascin KO having fewer neutrophils recruited to areas 

of inflammation, there is increased damage. One of the paradoxical effects of 

neutrophils is that, despite their primary role to destroy pathogens, through the 

release of proteases and increased reactive oxygen species (ROS), they also 

directly damage the tissue itself (Segel, Halterman et al. 2011). This may mask 

the true level of damage that loss of fascin has on the small intestinal 

architecture and we can speculate that, were the levels of neutrophils to be on 

a par with that of the WT, the degree of damage may be significantly more in 

the fascin KO. 

3.4.5 Crypt gene expression microarray changes 

While the data from our microarray analysis may hold some clues as to how loss 

of fascin affects normal growth of small intestinal cells, we actually saw rather 

few genes changed in the absence of fascin. This may in part be due to the fact 

the crypts had been in culture for several weeks prior to analysis and may have 

compensated for the lack of fascin. This longer term culturing was necessary to 

gain enough material to isolate mRNA from the cultures, so a method that used 

less material would be desirable for future studies on earlier cultures. Secondly, 

the crypts themselves were cultured in standard medium, but actually we see 

the largest difference in growth in fascin KO crypts in the presence of Wnt3a.   

We would therefore ideally like to repeat the microarray with the crypts having 

been incubated with Wnt3a.  

The pathway analysis itself is interesting in that the top 2 pathways implicated 

involve cellular growth and proliferation. Whilst the pathway analysis must be 

interpreted with caution, it may point to the importance of fascin in these 

processes. 
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The top 10 genes which were found to have the greatest fold change difference 

are discussed here: 

Erythroid differentiation regulator 1 (ERDR1) was found to be the gene which 

had the greatest fold change (6.39 fold lower in the fascin KO) from the 

expression array. It has been shown that, under stressful situations cells release 

ERDR1 which consequently enhances the survival of stromal cells (Dormer, 

Spitzer et al. 2004). 

Eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked 

(Eif2s3y) was 3.69 fold higher in the fascin KO, however very little is known 

regarding this other than it is involved in translational initiation (reference: 

http://rgd.mcw.edu/rgdweb/report/gene/main.html?id=2314438).  

Neuritin 1 (Nrn1) was 2.7 fold lower in the fascin KO and is a recognised receptor 

gene identified as part of the small intestine stem cell signature classification 

(Munoz, Stange et al. 2012). 

DNA segment, Chr 14, ERATO Doi 449, expressed (D14Ertd449e) was 2.62 fold 

higher in the fascin KO and is known to be a transmembrane protein (ncbi). 

Inactive X specific transcripts (Xist) is an essential regulator of the x-inactivation 

process (ncbi). 

Zinc finger protein 68 (Zfp68) was 2.25 fold lower in the fascin KO and forms 

part of the zinc finger family. 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked (Ddx3y) is 2.21 fold higher in 

the fascin KO and is known to be a putative RNA helicase (ncbi) and is involved 

in a wide variety if cellular processes. 

Polyadenylate binding protein-interacting protein 1 (Paip1) was 1.83 fold higher 

in the fascin KO and is known to be involved in translational initiation and 

protein biosynthesis (ncbi). 
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Lymphocyte antigen 6 complex, locus E (Ly6e) was 1.73 fold higher in the fascin 

KO, however very little is known regarding this gene. 
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4.1 Summary 

In Chapter 3, I presented data on a small intestinal mouse model of 

regeneration. The colon differs from the small intestine in a number of ways; 

both the healthy tissue function and the disease states can be different from the 

small intestine. We showed that fascin plays a key role in small intestinal 

regeneration and is involved in the inflammatory response through neutrophil 

recruitment. As such, we wished to investigate whether a similar role could be 

found for fascin in a colonic model of regeneration.  

I demonstrate here that, under normal homeostatic conditions, loss of fascin 

from the colon has no effect on the architecture or cellular makeup of the 

colonic epithelial cells, however following the induction of colitis through the 

administration of Dextran Sodium Sulphate (DSS) we find, in a similar way to the 

small intestinal model, that loss of fascin results in mildly increased damage to 

the epithelium whilst simultaneously allowing enhanced proliferation. 

Furthermore, loss of fascin results in reduced numbers of circulating neutrophils 

and neutrophil recruitment to the inflamed colon, which may in part be 

chemokine dependent. 

 

4.2 Introduction 

As previously mentioned, fascin is largely absent from colonic epithelium under 

normal physiological conditions (Tan, Lewis et al. 2013), however a study 

published in 2011 demonstrated its expression in human histological samples of 

ulcerative colitis, Crohn’s colitis and diverticulitis (Qualtrough, Smallwood et al. 

2011). They demonstrated a correlation between expression of fascin and 

disease severity with strongest expression seen in the dysplastic pre-malignant 

cells. Furthermore, they demonstrated that fascin was expressed both at the 

edge of the ulcers and also in the crypt base of colonic samples with low-grade 

inflammation. Cells at the leading edge of the ulcers need to change their shape 

to enhance their motility in order to effectively complete the restitution phase 

of repair and it is likely that fascin plays an important role in this process given 

its actin bundling properties. 
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Fascin has previously been shown to have an important role in cell adhesion 

(Adams 2004) and this also could be a reason for the high expression in the 

inflamed tissue in order that cells maintain their architecture thereby 

minimising cellular damage.  

In chapter 3, I demonstrated that loss of fascin results in impaired neutrophil 

recruitment. The small intestinal model uses irradiation to induce genotoxic 

stress, a complication of which is transient pancytopaenia so we were unable to 

determine whether the reduction in the number of neutrophils was a 

consequence of impaired production, a failure in recruitment or both. In this 

chapter we again show reduced numbers of neutrophils in the fascin KO colitic 

tissue, but we further show that there are reduced circulating neutrophils in the 

fascin KO mice in response to colitis. 

 

4.3 Results 

4.3.1 Characterisation of untreated fascin KO colon with respect 
to WT 

In order to establish a baseline, we initially quantified the number and height of 

the colonic crypts in untreated WT and fascin KO mice and found no difference 

(Fig. 4.1). 

We next quantified the number and position of the final BrdU positive cell on the 

crypt axis of untreated WT and fascin KO colon crypts and again found no 

difference (Fig. 4.1). 

Lastly we quantified the number of goblet cells using the alcian blue stain and 

found no difference between WT and fascin KO (Fig. 4.1). 
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Figure 4-1 Characterisation of fascin KO colon with respect to WT 

We found no statistical difference in the number or height of colonic crypts in untreated WT (A) and 
fascin KO (B) colons (mice were age matched 6-10 weeks old). Furthermore, we found no 
difference in the number or position of the final BrdU positive cell in WT (C) or fascin KO (D) on the 
crypt axis (E): n=2, error bars represent SD based on 25 crypts on each of 2 samples. Lastly, there 
was no difference in the number of goblet cells in WT (F) or fascin KO (G) untreated colons (H): 
n=2, error bars represent SD based on 25 crypts on each of 2 samples. Images representative of 2 
independent experiments. 
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We then compared the gene expression profile using qRT-PCR of whole tissue 

extract in order to further compare untreated WT and fascin KO colons. As was 

the case in the small intestine, we found significantly lower levels of Lgr5 

(p=0.000367) in the fascin KO despite there being no microscopic difference in 

the crypt appearance (Fig. 4.2). There was no statistical difference in the levels 

of Olfm4 (p=0.346) or Nrn1 (p=0.0760) (Fig. 4.2). Given that Lgr5 was higher in 

the WT, we wished to determine whether this was as a result of higher levels of 

Wnt signalling which would result in up regulation of other Wnt members and 

targets. There was no significant difference between the levels of Wnt ligand 

(p=0.243), Axin2 (p=0.310) or β-catenin (p=0.148) although Wnt ligand was 

overall lower in the fascin KO (Fig. 4.2). Regarding Wnt targets, c-Myc 

(p=0.0003) and Cyclin D1 (p=0.0318) were significantly lower in the fascin KO, 

whereas Cyclin D2 (p=0.00106) was significantly higher in the fascin KO and 

there was no difference with LEF1 (p=0.445) (Fig. 4.2). Levels of TNFα 

(p=0.000151) were significantly lower in the fascin KO, whereas there was no 

significant difference in NF-κB (p=0.271) between WT and fascin KO (Fig. 4.2).  

Lastly, we quantified the levels of the chemokines CXCL1 (p=0.239), CXCL2 

(p=0.232) and CXCL5 (p=0.473) and the chemokine receptor CXCR2 (p=0.312), 

but found no significant difference between WT and fascin KO (Fig. 4.2).  
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Figure 4-2 qRT-PCR data of untreated whole tissue extraction comparing WT and fascin KO 
colons 

Logarithmic scale demonstrating significantly reduced levels of Lgr5 (p=0.000367) (A) TNFα 
(p=0.000151) (B), c-Myc (p=0.000276) and Cyclin D1 (p=0.0318) (D) in the fascin KO untreated 
colons. There was no significant difference in Olfm4 (p=0.346), Nrn1 (p=0.0760), NF-κB (p=0.271), 
Wnt ligand (p=0.243), Axin2 (p=0.310), β-catenin (p=0.148) or LEF1 (p=0.445). Cyclin D2 was 
significantly higher in the fascin KO (p=0.00106). Analysis of various neutrophil related chemokines 
demonstrated no significant difference in CXCL1 (p=0.239), CXCL2 (p=-.232) or CXCL5 (p=0.473) 
and there was no significant difference in the chemokine receptor CXCR2 (p=0.312) (E). Statistical 
analysis using Student’s t-test, n=3 for each sample. Error bars represent SD. Significance 
asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
 

4.3.2 No difference in histological damage between WT and fascin 
KO colons in response to DSS 

We initially compared the response of WT and fascin KO mice to a 5 day course 

of 3.5% DSS followed by 72 hours of normal drinking water. We used a modified 

clinical scoring method (Dohi, Borodovsky et al. 2009) (0-6, 0 being healthy, 6 

being moribund), which incorporated the consistency of the stool, the presence 

of blood in the stool, the appearance of the mouse’s coat and the mobility of 

the mouse. The fascin KO mice deteriorated to a significantly greater extent 

(p=0.00270) and also lost a higher percentage of their body weight following the 

treatment compared with WT (Fig. 4.3).  

In order to determine the effect of loss of fascin on the damage to the colons we 

set up 3.5% DSS time course whereby we culled the mice on each of the first 3 

days after starting treatment and again 72 hours after the 5 day DSS course had 
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completed. The histological damage was assessed, blind, by a pathology trainee 

using The Jackson Laboratory (TJL) scoring system developed at the Hannover 

Medical School (Bleich, Mahler et al. 2004). This incorporated four criteria which 

were subjectively used to assess and compare the histological damage notably 

(1) severity, (2) degree of hyperplasia, (3) degree of ulceration and (4) 

percentage of area involved in the proximal, mid and distal sections of the 

colon. A score of 0-3 was used (0 being no damage, 3 being maximal) for the 

four categories and an individual score out of 16 was calculated for each section 

of the colon and a combined overall score out of a maximum 48 was determined 

for the entire colon comprising proximal, mid and distal segments. Histological 

examination of colons sampled from a 3.5% DSS time course revealed no 

difference in histological damage between WT and fascin KO colons after 3 days 

of the DSS treatment (Fig. 4.3). We further quantified, using qRT-PCR of whole 

tissue extracted from the DSS treated colons the presence of the apoptotic 

marker caspase 8 and found there to be significantly higher levels of caspase 8 

(p=0.00208) in the fascin KO compared with WT (Fig. 4.3). 
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Figure 4-3 Fascin KO mice deteriorate clinically to a greater degree in response to DSS 
(compared with WT), however there is no difference in histological damage  

Using a standardised clinical scoring method, fascin KO mice deteriorated clinically to a 
significantly greater extent (p=0.00270 at day 7, Mann Whitney) over the course of 5 days of 3.5% 
DSS followed by 72 hours of normal drinking water (A) and also lost a greater percentage of their 
body weight 72 hours after completing the DSS treatment (B,C): n=6 WT, n=5 fascin KO). H&E of 
WT (D) and fascin KO (E) colons after 5 days of 3.5% DSS treatment. Images representative of 
minimum of 5 independent experiments. Quantification of histological damage of WT and fascin KO 
colons over a 5 day course of 3.5% DSS followed by 72 hours of normal drinking water 
demonstrating no significant difference in histological damage between WT and fascin KO (F): n=3 
mice/timepoint. qRT-PCR analysis of WT and fascin KO colons 72 hours after completing DSS 
treatment showing significantly greater expression of the apoptotic marker caspase 8 (p=0.00208) 
in the fascin KO colon indicating enhanced apoptosis in response to the DSS treatment. (G): 
statistical analysis using Student’s t-test, n=3 for each sample. Error bars represent SD. 
Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
 

4.3.3 Loss of fascin results in enhanced crypt proliferation in 
regenerating colons 

Given the enhanced levels of Wnt ligand, Lgr5 and certain Wnt members in the 

untreated WT colon we assumed there would be enhanced proliferation in the 

WT regenerating colon in response to the DSS. 72 hours after replacing the DSS 
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with normal drinking water we first quantified the number and height of 

regenerating crypts in the mice, but found no significant difference (not shown). 

We next quantified the number of and position of the highest BrdU positive cell 

in the crypt axis to examine any defect in proliferation in the fascin KO. 

Although not significant, there was a trend towards higher numbers (p=0.155) of 

BrdU positive cells in the fascin KO and also the position (p=0.0660) of the 

highest BrdU positive cell in the crypt axis that was higher in the fascin KO 

indicating enhanced proliferation in the absence of fascin (Fig. 4.4). FACS cell 

cycle analysis of crypt cells extracted from regenerating WT and fascin KO 

colons 72 hours after completing a 5 day 2% DSS course demonstrated no 

significant difference in the percentage of cells in each phase of the cell cycle 

(Fig. 4.4). It was necessary to pool crypt extracts from 3 mice and, despite this 

there were often less than the required optimal number of cells in each phase of 

the cell cycle thereby affecting the accuracy and reliability of the final analysis. 

 
Figure 4-4 BrdU analysis shows that loss of fascin results in enhanced crypt proliferation in 
regenerating crypts 

WT (A) and fascin KO (B) colons with BrdU staining 72 hours after completion of 5 day 2% DSS 
course and quantification (C) demonstrating a trend towards increased numbers (p=0.155, Mann 
Whitney) and higher position (p=0.0660) on the crypt axis of BrdU cells in the fascin KO colons: 
n=6 colons with 10-25 crypts independently counted/colon. Images representative of 6 independent 
experiments. FACS cell cycle analysis (D) demonstrating no significant difference in the 
percentage of WT and fascin KO colonic crypt cells in each phase of the cell cycle: n=3, each 
sample was made from 2 pooled epithelial extractions in age/sex matched mice. Error bars 
represent SD. 
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We next wished to determine whether there were any gene expression changes 

that could contribute to the observed phenotype. Using qRT-PCR of whole tissue 

extracted at the 72 hour time point from the colons we examined the same gene 

set as for the untreated colons and found that, in contrast to the untreated data 

(in which there were significantly lower levels of Lgr5 and other Wnt targets in 

the fascin KO), we found the opposite in that there were significantly higher 

levels of Lgr5 (p=3.03E-05), Nrn1 (p=0.0161) and other Wnt targets LEF1 

(p=0.00631), Cyclin D1 (p=0.0383) and Cyclin D2 (p=0.000368) in the fascin KO 

(Fig. 4.5). The proliferative marker Ki67 was also higher in the fascin KO 

indicating enhanced proliferation in the absence of fascin (Fig. 4.5). There was 

no significant difference in the stem cell marker Olfm4 (p=0.442) (Fig. 4.5). The 

levels of Wnt3a (p=0.280) and Axin2 (p=0.191), although not significant showed a 

trend towards being higher in the fascin KO whilst β-catenin (p=0.0465) was 

significantly higher in the fascin KO (Fig. 4.5). We next examined the levels of 

TNFα and NF-κB in the regenerating colons; there was no difference in TNFα 

(p=0.343), however NF-κB (p=0.0211) was significantly higher in the fascin KO 

(Fig. 4.5). Thus, we conclude that, in regenerative conditions in the presence of 

high Wnt signalling loss of fascin results in higher levels of basal NF-κB mRNA, 

which may account for the enhanced overall proliferative rate and higher Lgr5 

mRNA levels also detected in the fascin KO. 
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Figure 4-5 Enhanced levels of proliferation, stem cell and NF-κB markers in the fascin KO 
regenerating colons post DSS 

Logarithmic scale of qRT-PCR data of whole tissue extracted from the regenerating WT and fascin 
KO colons post DSS treatment demonstrating a trend towards enhanced levels of Ki67 (p=0.0543) 
in the fascin KO. Significantly greater levels of Lgr5 (p=3.03E-05) and Nrn1 (p=0.0161) in the fascin 
KO with no difference in Olfm4 (A). There was a trend towards higher levels of the Wnt ligand and 
Axin 2 in the fascin KO, although not significant, and significantly higher levels of β-catenin 
(p=0.0465) in the fascin KO (B). Analysis of Wnt targets demonstrates no significant difference in c-
Myc, however significantly higher levels of LEF1 (p=0.00631), Cyclin D1 (p=0.0383) and Cyclin D2 
(p=0.000368) in the fascin KO (C). Analysis of the jak-stat markers in whole tissue extracted 72 
hours following a 5 day course of 3.5% DSS demonstrates significantly higher levels of NF-κB 
(p=0.0211) in the fascin KO, however there was no statistical difference in TNFα. Error bars 
represent SD. Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
 

Given the enhanced expression of NF-κB and Lgr5 in the absence of fascin, we 

wished to further explore the possibility that fascin may act as a negative 

regulator, either directly or indirectly of either TNFα or Wnt ligand or conversely 

that TNFα or Wnt ligand regulate fascin expression. Consequently, we used a 

TNFα blocker, Etanercept (trade name Enbrel (Spencer-Green 2000)) on WT mice 

(daily intra-peritoneal injections one day prior and throughout a 5 day 3.5% DSS 

course followed by 72 hours of normal drinking water) to determine whether 

there was a resultant reduction in proliferation and change in fascin expression. 

The sections we stained showed no obvious difference in fascin expression (Fig. 

4.6). We then wished to determine whether there was any effect on 

proliferation, however, again using IHC we found no difference in the number of 

Ki67 cells in either the control or the Etanercept treated group (Fig. 4.6). Lastly, 
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we examined for differences in neutrophils and macrophages, but again found no 

difference in the control or the Etanercept treated (Fig. 4.6). We used the anti-

NIMP antibody to examine neutrophils, a feature common to this antibody is non-

specific background epithelial staining which is also seen in negative controls – 

this is indicated by arrows in the Fig. 4.6. 
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Figure 4-6 TNFα blocker has no demonstrable effect on the expression of fascin, 
proliferation of crypts or recruitment of neutrophils/macrophages in the colitis model 

WT mice were subjected to daily IP injections of 3mg/ml Etanercept one day prior and throughout 
the duration of a 5 day 3.5% DSS course followed by 72 hours of normal drinking water. The 
control WT mice (A) and the WT mice treated with Etanercept (B) demonstrated no obvious 
difference in the expression of fascin (fascin antibody, brown, with haematoxylin counterstain, blue) 
seen in the regenerating colons. Furthermore, we found no difference in the number of Ki67 (using 
the anti-Ki67 antibody, brown with haematoxylin counterstain, blue) cells in either the control (C) or 
the Etanercept treated (D). We also examined for differences in neutrophils (using the anti-
neutrophil NIMP antibody, brown with haematoxylin counterstain, blue) but found no difference 
between the control (E) or the Etanercept treated (F) group (non-specific background staining 
indicated with arrows). Lastly we found no difference in macrophages (using the anti-macrophage 
F4/80 antibody, brown with haematoxylin counterstain, blue) in the control (G) or the Etanercept 
treated (H). Images representative of 3 independent experiments.  
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4.3.4 Fascin expression in untreated and regenerating colons 

We found low, but detectable levels of fascin in untreated WT colon, both on WB 

(again, using Femto substrate), IHC and using qRT-PCR (Fig. 4.7). We extracted 

tissue from the DSS time course to determine how the level of fascin in the 

treated colon varied with time. Using qRT-PCR of whole tissue extract, we found 

the level of fascin peaked 24 hours after cessation of a 5 day 2% DSS course and 

this level decreased following transition to normal drinking water and the 

regenerative phase (Fig. 4.7). We correlated this with the level of Wnt ligand 

and found that as the expression of fascin reduced from Day 5 onwards, so the 

level of Wnt ligand dramatically increased indicating potentially a regulatory 

role for fascin on Wnt expression (Fig. 4.7). 

 
Figure 4-7 Fascin expression in untreated and regenerating colons 

Western Blot using femto substrate demonstrating higher levels of fascin in whole tissue extracted 
from colons 5 days after commencing DSS treatment (WT DSS) compared with untreated (WT) 
(A): WB representative of 3 independent experiments. WT colons stained with fascin antibody 
(brown) demonstrating low levels of fascin in untreated (B) and DSS treated colons (C): images 
representative of 3 independent experiments. The staining of fascin is predominantly stromal, with 
some epithelial cells in the base of the crypt and also some blood vessels. Logarithmic scale 
showing the expression of fascin in WT colons decreasing as the levels of Wnt ligand increase in 
the regenerating colons (D): n=1 mouse/time point. 
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4.3.5 Loss of fascin results in impaired neutrophil production and 

recruitment in regenerating colons  

In chapter 3, I demonstrated reduced numbers of neutrophils recruited in the 

fascin KO small intestine post irradiation and the associated reduction in 

chemokines in the fascin KO, which may in part explain the phenotype. As such, 

we wished to determine whether this would be replicated in our colitis model. 

We initially quantified the number of macrophages (using IHC with the anti-

macrophage antibody F4/80) and neutrophils (using IHC with the anti-neutrophil 

antibody NIMP) in the regenerating colon 72 hours after completing a 5 day DSS 

course. There was no difference in macrophages, however we again 

demonstrated significantly reduced numbers of neutrophils in the fascin KO 

compared with WT (p=0.00190) (Fig. 4.8). We further wished to understand 

mechanistically the observed reduction in neutrophil recruitment in the fascin 

KO so, using qRT-PCR we quantified the levels of the CXCL ligands 1,2 and 5 and 

the chemokine receptor CXCR2 in whole tissue extracted from the DSS treated 

colons at the 72 hour time point. We found significantly reduced levels of CXCL2 

(p=7.99E-05) in the fascin KO whereas there was no significant difference in the 

levels of CXCL1 (p=0.228) or CXCL5 (p=0.140) or the chemokine receptor CXCR2 

(p=0.475) (Fig. 4.8).  

There was no significant difference in the number of circulating neutrophils in 

the mice following irradiation: both WT and fascin KO had a significant 

pancytopenia as a consequence of the irradiation (Fig. 4.8). DSS, however does 

not affect haematopoiesis so we analysed the blood profile in both WT and 

fascin KO mice, before and following DSS treatment. In untreated mice there is 

no significant difference in the number of circulating white blood cells (WBCs) 

(p=0.337), neutrophils (p=0.146), lymphocytes (p=0.419), monocytes (p=0.172) 

or platelets (p=0.388) (Fig. 4.8). In blood collected from mice 72 hours after 

completing a 5 day DSS course we demonstrate here significantly reduced 

numbers of circulating WBCs (p=0.00300), neutrophils (p=0.00500) and 

lymphocytes (p=0.00700) in the fascin KO although there was no significant 

reduction in monocytes (p=0.0570) or platelets (p=0.482) (Fig. 4.8). We wished 

to further explore whether the expression of fascin correlated with neutrophil 

recruitment to the damaged colons. Using the CXCR2 mouse from Professor 

Owen Sansom’s lab, we performed fascin staining on IHC sections from both 
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CXCR2 WT and CXCR2 KO mice following DSS treatment, however we found 

similar expression of fascin staining in both cohorts (Fig. 4.8). Collectively, these 

findings indicate the phenotype seen may be in part CXC chemokine mediated.  
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Figure 4-8 Loss of fascin results in impaired neutrophil production and recruitment in 
regenerating colons 

There was no difference in the number of macrophages (F4/80 antibody, brown with haematoxylin 
counterstain, blue) in either WT (A) or fascin KO (B) colons following DSS damage. WT (C) and 
fascin KO (D) colons stained with MPO antibody (brown, with haematoxylin counterstain, blue) 
demonstrating significantly fewer recruited neutrophils to the fascin KO colons (p=0.00910, Mann 
Whitney) 72 hours after completing a 5 day 3.5% DSS course (E): n=11 WT, n=6 fascin KO with 
minimum of 5xFOVs per sample. Logarithmic scale of qRT-PCR data demonstrating significantly 
reduced levels of CXCL2 (p=7.99E-05) in the fascin KO colons, whilst no significant difference in 
levels of CXCL1 (p=0.228), CXCL5 (p=0.140) and CXCR2 (p=0.475) (F). FBC analysis of WT and 
fascin KO untreated mice (G) demonstrated no significant difference in WBCs (p=0.337), 
neutrophils (p=0.146), lymphocytes (p=0.419), monocytes (p=0.172)or platelets (p=0.388, not 
shown) whilst (H) shows significantly reduced levels of white blood cells (p=0.00300), neutrophils 
(p=0.00500) and lymphocytes (p=0.00700) in the fascin KO FBC 72 hours post 5 days of DSS. 
There was no significant difference in the number of monocytes (p=0.0570) or platelets (p=0.482, 
not shown). Statistical analysis using Student’s t-test, n=5 WT, n=3 fascin KO. There was no 
difference in the level of fascin staining (fascin antibody brown, with haematoxylin counterstain, 
blue) in CXCR2 WT (I) and CXCR2 KO (J) colons following a 5 days 2% DSS course indicating 
there is no correlation between fascin expression and neutrophils. Images representative of 3 
independent experiments. Error bars represent SD. Significance asterisks: * = <0.05, ** = <0.01, *** 
= <0.001. 
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4.4 Discussion 

4.4.1 Fascin is not required to maintain normal homeostatic 
colonic architecture 

Our studies suggest that, as was the case with the small intestine, fascin is not 

required to maintain the normal colonic architecture under homeostatic 

conditions. The presence of low levels of fascin in the colon and lack of 

statistical difference in the crypt size, number of BrdU positive cells or goblet 

cells indicates that fascin does not play an important role in the maintenance of 

colonic architecture under normal homeostatic conditions. 

In a similar pattern to the small intestinal model, at the mRNA level there is a 

significant reduction in the level of the stem cell marker Lgr5 with no apparent 

consequent reduction in crypt proliferation. Transcriptional profiling, using mass 

spectrometry of Lgr5 stem cells and their daughters revealed a multitude of 

unique genes (Munoz, Stange et al. 2012) including Olfm4 and Nrn1 which were 

not significantly different in the untreated colon. It would be interesting to 

determine the differences in the Lgr5 gene lineage between WT and fascin KO to 

further explore the differences seen; both in untreated tissue and also in the DSS 

treated colons. 

As was the case in the small intestinal model, in physiological conditions, the 

level of basal TNFα mRNA was lower in the fascin KO and this may be an 

explanation for the reduced levels of Lgr5 in the fascin KO. There was no 

difference in the level of NFκB, however it is the activation of NFκB that is 

important and it would be interesting to look at this. 

4.4.2 Fascin KO mice have greater clinical deterioration  

Using the DSS time course, the fascin KO mice showed significantly greater 

clinical signs of colitis compared with WT, however histologically there was no 

difference.  

The immune system plays a significant role in response to inflammation and this 

may be one explanation for the exaggerated deterioration in the fascin KO mice. 

We have demonstrated that there are significantly reduced levels of the 
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circulating immune cells in the fascin KO and reduced numbers of neutrophils 

recruited in the inflamed colons. A reduced ability to mount an adequate 

immune response to the colitis may result in an earlier clinical deterioration and 

enhanced histological damage, although the histological changes are likely to be 

multi-factorial. Furthermore, in the colitis associated carcinogenesis model, 

which I will discuss in chapter 5, there was a greater mortality in the fascin KO 

mice over the 70 days with the fascin KO mice not tolerating the milder 2% DSS 

as well as the WT. This reduced immunological response may result in more 

significant clinical signs of colitis and may in part, explain the phenotype seen 

with the fascin KO mice. 

 

4.4.3 Fascin KO have enhanced crypt proliferation in the DSS 
model 

As was seen in the small intestinal irradiation model, the level of Lgr5 (which in 

untreated colon is lower in the fascin KO) in the regenerating colon becomes 

significantly higher in the fascin KO resulting in a trend towards greater numbers 

of BrdU positive cells and indeed a higher position of the BrdU positive cells on 

the crypt axis indicating enhanced proliferation in the absence of fascin. Again, 

there is no difference in the number of regenerating crypts indicating a 

proliferative change as opposed to a mechanism dependant on stemness. As was 

the case in the Wnt3a conditioned crypt culture model, the levels of basal NFκB 

mRNA are significantly higher in the fascin KO regenerating colon, which may 

account for the enhanced overall proliferation rate and higher Lgr5 mRNA also 

detected in the fascin KO.  

It would have been interesting to further compare isolated Lgr5 cells from both 

WT and fascin KO mice, using gene expression analysis to explore the observed 

differences. We attempted to do this by introducing the EGFP reporter of the 

IRES (internal ribosomal entry site) cassette to the Lgr5 cells of the fascin KO 

mice. We would then be able to isolate individual Lgr5 cells using FACS analysis 

for use in gene expression characterisation. This technique had been successfully 

used with the WT mice, however when we crossed the WT with the fascin KO, 

we failed to get sufficient numbers of homozygous mice carrying the EGFP 
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reporter despite multiple matings over a 6 month period. Further work is needed 

to understand the reason behind the reduced number. One potential explanation 

could be a conflict in the positioning of the reporters on the chromosomes 

overlapping with that of the fascin KO mouse. 

The level of Wnt ligand is slightly higher in the fascin KO in the regenerating 

colon and it may be that fascin acts either as a direct or indirect regulator of 

Wnt signalling. In the time course we showed that as the level of fascin reduced 

following the cessation of DSS, the level of Wnt ligand increased by several 

magnitudes. In the fascin KO mouse, the absence of fascin permits higher levels 

of Wnt ligand and consequent higher levels of Wnt targets as was shown with the 

qRT-PCR data. Certainly, the role of fascin is not limited to the bundling of actin 

and it may be that the presence of fascin in the paneth cells (where Wnt ligand 

is secreted (Sato, van Es et al. 2011)) is important in the regulation of Wnt 

secretion. 

 

4.4.4 Loss of fascin results in impaired neutrophil production and 
recruitment in regenerating colons  

In the small intestinal model we demonstrated significantly reduced number of 

neutrophils recruited in the fascin KO regenerating small intestine, however it 

was not possible to determine whether this was a production or recruitment 

defect. Given there was no significant difference in the number of circulating 

neutrophils in the untreated mice, it was presumed to be recruitment related. 

DSS however does not impair haematopoiesis and it was interesting to note that, 

whilst again there were significantly fewer neutrophils recruited in the fascin KO 

colon, the full blood count analysis demonstrates significantly reduced numbers 

of circulating neutrophils and this may be solely responsible for the recruitment 

defect noted. In addition to the reduced circulating levels of neutrophils there 

was an overall reduction in the number of circulating white blood cells that may 

contribute to an ineffectual immune response to inflammation and consequent 

increased clinical susceptibility. 
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The mechanism behind the impaired neutrophil production is likely to be 

predominantly CXCL2 dependant. There were significantly reduced levels of 

CXCL1 and CXCL2 in the fascin KO regenerating small intestines, however in the 

regenerating colon it was solely CXCL2. It is reassuring to have consistently 

reduced levels of CXCL2 across the small intestinal and colonic model and, whilst 

other chemokines will likely play a part, it is possible to hypothesise that CXCL2 

is the chemokine that is responsible for the phenotype seen. As previously 

mentioned, dendritic cells have been shown to express CXCL1 and CXCL2 

(Zaharik, Nayar et al. 2007) and we hypothesise that there is some degree of 

dendritic cell impairment in the fascin KO mouse resulting in reduced levels of 

the aforementioned chemokines. 
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5 Chapter 5 – Loss of fascin results in an impaired 
inflammatory response and reduced 
tumourigenesis
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5.1 Summary 

Tumours arising within the GI tract may result from chronic inflammation 

(Coussens and Werb 2002) or sporadic genetic alterations (Kinzler and Vogelstein 

1996). Sporadic tumours themselves will also have an inflammatory component 

and indeed have been shown to control aspects of the inflammatory response to 

enhance their progression (Coussens, Raymond et al. 1999). I demonstrate here 

that in both inflammatory and sporadic murine models of small intestinal and 

colonic tumourigenesis, loss of fascin profoundly suppresses tumour formation 

and size. Furthermore, we demonstrate significantly reduced numbers of 

neutrophils in inflammatory driven and sporadic tumours and hypothesise that 

the mechanism behind the reduced tumour burden in the fascin KO, is a 

consequence of a reduced inflammatory response secondary to impaired 

dendritic cell function resulting in reduced circulating and subsequent recruited 

neutrophils. 

 

5.2 Introduction 

We have shown the expression of fascin increases, in both the stroma and 

epithelial cells, at certain times in both inflammatory models of the small 

intestine and colon, albeit to a small extent. It was further shown, in human 

samples, to be strongly expressed in ulcerative colitis (UC), Crohn’s colitis and 

diverticulitis human tissue samples with expression levels correlating with 

disease severity and strongest expression seen in the dysplastic pre-malignant 

cells (Qualtrough, Smallwood et al. 2011). Fascin is also highly expressed in 

tumours arising in the oesophagus (Hashimoto, Ito et al. 2005), stomach 

(Hashimoto, Shimada et al. 2004), small intestine (Ozcan, Karslioglu et al. 2011) 

and colon (Hashimoto, Skacel et al. 2006). Furthermore, high fascin expression 

has been shown to be an independent prognostic indicator of poor outcome in 

oesophageal, gastric and colon cancer (Tan, Lewis et al. 2013) (Kim, Kim et al. 

2012) and is associated with metastasis in stomach and colon cancers (Tan, 

Lewis et al. 2013). In this chapter I will show significantly reduced circulating 

and recruited neutrophils in a fascin KO colitis associated carcinogenesis (CAC) 

model with consequent reduction in tumour number and burden. I further 
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demonstrate reduced numbers of neutrophils in inducible APCfl/fl p53fl/fl fascin 

KO and APCfl/fl p53R172H Ah-cre fascin KO models with consequent reduction in 

tumour size and burden. Surprisingly, in the inducible model there was no 

associated increase in survival in the fascin KO, despite the reduced tumour 

number and burden. In both normal and fascin KO models, tumours still invaded 

into the surrounding tissue and stroma indicating that the primary role of fascin 

may be one of early tumour formation and not progression. 

 

5.3 Results 

5.3.1 Colitis associated carcinogenesis (CAC) model 

Following a single intra-peritoneal injection of Azoxymethane (AOM) and 3 

rounds of 2% DSS the mice were culled at 70 days (Fig. 5.1).  

5.3.1.1 Fascin KO mice have fewer colonic tumours and reduced tumour 
burden 

The fascin KO mice had significantly fewer polyps per colon with a mean number 

of 1.9 polyps per colon with the WT mean being 7.3 (p=0.000300) (Fig. 5.1). The 

tumour burden was also reduced (p=0.0550), although not significant (Fig. 5.1). 

The WT polyps strongly expressed fascin, predominantly in the stroma, but also 

in some epithelial cells and blood vessels (Fig. 5.1). Preliminary qRT-PCR 

analysis of the polyps suggests there may be reduced levels of Lgr5, Nrn1, 

Olfm4, Sox9, Ephb3 and Slc14a1 in the fascin KO whilst Ets2, Rgmb, Tnfrsf19, 

Ascl2 and Bmi1 were higher in the fascin KO (Fig. 5.1) (although these results are 

not yet significant, as RNA was only successfully extracted from one polyp per 

mouse). Subsequent analysis of the jak-stat pathway demonstrated lower levels 

of TNFα, NF-κB, Il-6, Il-11b, Jak1 and Jak2 in the fascin KO whereas Il-11, Jak3 

and Stat3 were higher in the fascin KO (Fig. 5.1). Further analysis of the Wnt 

members showed lower levels of APC and β-catenin in the fascin KO, whilst 

Axin2 was higher (Fig. 5.1). Lastly, Wnt targets c-Myc and TCF1 were lower in 

the fascin KO whilst LEF1 was higher in the fascin KO (Fig. 5.1). Quantification of 

the number of BrdU positive cells per tumour demonstrated no significant 

difference (p=0.393) between WT and fascin KO (Fig.5.1). 
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Figure 5-1 Fascin KO mice have reduced colonic tumour number and burden in the colitis 
associated carcinogenesis model 

The CAC model (A): reproduced with kind permission from Springer (Tian, Ye et al. 2011)). The 
fascin KO mouse had significantly fewer tumours than the WT (B) (n=9 WT, n=10 fascin KO, 
p=0.000300, Mann Whitney) and reduced tumour burden (C) (p=0.0550, Mann Whitney). The WT 
tumours expressed fascin strongly (fascin antibody, brown, with haematoxylin counterstain, blue) 
(C) within the epithelial cells, stroma and blood vessels. There was no significant difference 
(p=0.393) in the number of BrdU positive cells (E) in either WT (F) or fascin KO (G) tumours. 
Images representative of a minimum of 9 independent experiments. qRT-PCR logarithmic scale 
analysis of a single WT and fascin KO tumour shows a mixed picture regarding stem cell markers 
(H), jak-stat markers (I), Wnt members (J) and targets (K). Error bars represent SD. Significance 
asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
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5.3.1.2 Fascin KO mice have a reduced number of circulating leucocytes 

and recruited neutrophils to the tumour microenvironment 

It was important to quantify the immunological response to the treatment, in 

particular because we found the fascin KO mice to have enhanced mortality 

compared with the WT (Fig 5.2). We initially quantified the number of 

circulating immune cells in the mice at the end of the treatment. The full blood 

count demonstrated significantly fewer circulating WBCs (p=0.000440) and 

platelets (p=0.0340) in the fascin KO (Fig 5.2). There is a trend towards fewer 

circulating neutrophils (p=0.190) and lymphocytes (p=0.126) in the fascin KO, 

however this was not yet significant (Fig 5.2). There were significantly more 

monocytes in the fascin KO (p=0.019). Given the reduced immunological 

response it is perhaps unsurprising that the fascin KO mice had a higher 

mortality (40%) compared with WT (20%) in the number of mice which had to be 

culled prior to the 70 day time point (Fig 5.2). We subsequently wished to 

determine whether the reduced number of circulating leucocytes translated into 

fewer neutrophils recruited to the fascin KO tumour microenvironment. 

Immunohistochemical (IHC) analysis (using the anti-neutrophil NIMP antibody) 

demonstrated significantly fewer recruited neutrophils (p=0.000210) in the 

fascin KO tumours with respect to the WT (Fig 5.2). We also looked at the 

number of macrophages recruited (using the anti-macrophage F4/80 antibody) 

and also the anti-von willebrand factor (vWF) antibody to detect differences in 

angiogenesis (Fig. 5.2). We did not quantify this analysis, but there was no 

obvious difference in the density of macrophages or blood vessels (Fig. 5.2). 

Regarding the vWF antibody, there was a considerable degree of non-specific 

background epithelial staining that was present in negative controls.  
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Figure 5-2 Fascin KO mice have reduced numbers of circulating leucocytes and recruited 
neutrophils to the tumour microenvironment 

The fascin KO mice had an overall 40% mortality over the course of the treatment compared with 
WT having 20% (A) (n=5 WT, n=20 fascin KO). The full blood count analysis (B) of the mice at the 
end of the treatment course demonstrated significantly reduced numbers of circulating white blood 
cells (p=0.000440) and platelets (p=0.0340, not shown) in the fascin KO, with no significant 
difference in lymphocytes (p=0.126) or neutrophils (p=0.190). Significantly more monocytes in the 
fascin KO (p=0.019): n=4 WT, n=5 fascin KO. Given the reduced number of circulating leucocytes 
we next quantified the number of recruited neutrophils (using the NIMP antibody, brown, with 
haematoxylin counterstain, blue) to the WT (D) and fascin KO (E) tumour microenvironment. We 
found significantly reduced numbers of neutrophils in the fascin KO (tumour number n=11 (WT), 15 
(fascin KO): p=0.000210, Mann Whitney): graph shows the mean number of neutrophils/FOV 
(under 40X lens) incorporating tumour and stroma with minimum of 4 FOVs/tumour. We found no 
difference in either the number of macrophages (F4/80 antibody, brown, with haematoxylin 
counterstain, blue) recruited in the WT (F) or fascin KO (G) of in angiogenesis (von Willebrand 
factor vWF, brown, with haematoxylin counterstain, blue) in the WT (H) or fascin KO (I) tumours: 
note the non-specific background epithelial staining which was also present in negative controls. 
Images representative of a minimum of 3 independent experiments. Error bars represent SD. 
Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
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5.3.2 The role of fascin in sporadic and inducible tumourigenesis 

models 

5.3.2.1 Fascin expression in sporadic and inducible murine intestinal 
tumourigenesis models 

It has been well documented that fascin is expressed in human tumours arising 

from the GI tract (Hashimoto, Ito et al. 2005) (Hashimoto, Shimada et al. 2004) 

(Ozcan, Karslioglu et al. 2011) (Hashimoto, Skacel et al. 2006) so we initially 

wished to determine whether this was also true in our own murine models. Using 

the anti-fascin antibody on IHC sections of benign tumours arising from sporadic 

APCMin+ (Moser, Pitot et al. 1990) and APC1322t/+ (Pollard, Deheragoda et al. 2009) 

mice (bred in Professor Owen Sansom’s lab), we demonstrated moderate 

expression of fascin within the stroma and epithelial cells of the tumours (Fig 

5.3). 

We next stained malignant tumours arising from an APC flox inducible mutant 

p53 flox mouse (APCfl/fl p53fl/fl) and an APC flox inducible P53 flox with mutant 

Kras G12D (APCfl/fl p53fl/fl KrasG12D) mouse, and demonstrated strong fascin 

staining in both models with highest expression seen at the invasive front of the 

tumours (Fig. 5.3). 

 



Chapter 5 – Tumourigenesis models                                                               160 
 

 
Figure 5-3 Fascin expression in sporadic and inducible murine intestinal tumourigenesis 
models 

We found fascin (anti-fascin antibody, brown, with haematoxylin counterstain, blue) to be 
expressed moderately in the sporadic APCMin+ (A) and APC1322t/+ (B) benign intestinal tumours. In 
the inducible malignant models we found fascin to be strongly expressed in the APCfl/fl p53fl/fl (C,D) 
and APCfl/fl p53fl/fl KrasG12D  (E,F) tumours with strongest expression seen at the invasive front. 
Images representative of a minimum of 3 independent experiments. Images C-F kindly donated by 
Dr. Ee Hong Tan.  
 

Given the enhanced expression of fascin in these models, our initial thoughts 

were that fascin could be a Wnt target (Vignjevic, Schoumacher et al. 2007). We 

wished to explore this further in an inducible short-term model of proliferation 

using the AhCre+ APCfl/fl mouse. The AhCre+ is regulated through transcriptional 

control of the Ah promoter and also through the binding of tamoxifen (Kemp, 

Ireland et al. 2004). Following induction, the loss of APC causes hyperactive Wnt 
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signalling and consequent hyper-proliferation. In collaboration with Professor 

Owen Sansom’s lab, we stained sections of mouse small intestine 4 days 

following loss of APC, however there was no increase in fascin expression (Fig 

5.4). This indicates that fascin is not a simple Wnt target in the small intestine 

in response to short-term APC deletion. 

NF-κB can directly interact with fascin in breast cancer cells in a stat3 

dependent manner (Snyder, Huang et al. 2011). We thus explored the 

relationship between fascin with stat3 and NF-κB in polyps and carcinomas, as 

both stat3 and NF-κB have been heavily implicated in colon cancer and 

metastasis (Horst, Budczies et al. 2009) (Gavert, Ben-Shmuel et al. 2010). Again 

in collaboration with the Sansom lab, using IHC we stained sections of mouse 

small intestine which were either WT or homozygous for APC following a short 

term (4 day) treatment with the cytokine Il-11 in order to determine whether Il-

11 and its subsequent up-regulation of Stat3 (Bollrath, Phesse et al. 2009)) 

resulted in enhanced expression of fascin in the small intestines. There was, 

however no increase in the fascin expression (Fig 5.4). 
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Figure 5-4 Fascin is not a Wnt target, nor is its expression regulated by Il-11 or Stat3 

We obtained slides from Professor Owen Sansom’s lab of mice which were either WT or 
homozygous for APC which had been induced to lose APC (or in the case of the WT to retain APC) 
in the presence or absence of the cytokine Il-11 in order to drive proliferation. We wished to 
determine whether the loss of APC (resulting in hyperactive Wnt signalling) induced fascin 
expression and furthermore, whether the addition of Il-11 (which in turn up regulates Stat3 in small 
intestinal epithelial cells) drove fascin expression. As can be seen in the APC WT (A) mouse, there 
is very low expression of fascin, similar to the levels seen in untreated, homeostatic WT small 
intestines. Upon addition of Il-11 in the APC WT small intestine (B) there is no increase in the 
expression of fascin indicating that il-11/stat3 does not regulate fascin expression. We next 
determined whether loss of APC resulted in enhanced fascin expression, however, as can be seen, 
in the APC hom (C) mouse, there is no increased expression relative to (A) or (B), The final slide 
demonstrates an APC hom mouse with the addition of Il-11 (D) and again there is no increase in 
the expression of fascin indicating the fascin is not regulated directly by the Wnt signalling pathway 
or Il-11/Stat3. Images representative of a minimum of 3 independent experiments. 
 

5.3.2.2 Fascin-/- APCfl/fl p53fl/fl Ah-cre and Fascin-/- APCfl/fl p53R172H Ah-cre 
(FAPC) models 

In collaboration with Professor Owen Sansom’s lab, the APCfl/fl p53fl/fl Ah-cre and 

APCfl/fl p53R172H Ah-cre mice were crossed with our own fascin KO mouse (by Dr. 

Ee Hong Tan, post-doctoral researcher) to generate Fascin-/- APCfl/fl p53fl/fl Ah-

cre and Fascin-/- APCfl/fl p53R172H Ah-cre (FAPC) inducible mice. The cre is induced 

with 3 intra-peritoneal injections of β-naphthoflavone in a single day on mice 

aged between 6-8 weeks. Whilst there was no difference in the survival 

(p=0.207) of the fascin KO and WT mice, the fascin KO had significantly fewer 

tumours (p=0.0355) and reduced tumour burden (p=0.00980) than the WT (Fig 
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5.5). Both WT and fascin KO tumours were invasive, although there was no 

evidence of metastasis in the organs we examined. 

 
Figure 5-5 Reduced tumour number and burden in the inducible FAPC model 

In collaboration with our own lab, Dr. Ee Hong Tan, post-doctoral researcher in Professor Owen 
Sansom’s lab generated the FAPC mice. We initially compared the survival curve (A), but found no 
significant difference between WT and fascin KO (n=17 WT, fascin KO=21. Median survival 
WT=186 days, fascin KO 163 days. p=0.207, Wilcoxon). We next compared the tumour number (B) 
and found there to be significantly fewer tumours in the fascin KO (n=17 WT, fascin KO=20. 
Median tumour number WT=24, fascin KO=12. p=0.0355, Mann-Whitney). The tumour burden (C) 
was also significantly reduced in the fascin KO (n=17 WT, fascin KO=21. Median burden 
WT=148mm2, fascin KO=82mm2, p=0.00980, Mann-Whitney). We wished to determine whether, as 
was the case in the CAC model there were fewer neutrophils in the fascin KO. Using IHC, we 
stained the sections with the anti-neutrophil NIMP antibody (brown, with haematoxylin counterstain, 
blue) and found there was a trend towards fewer neutrophils in the fascin KO tumour 
microenvironment, although not significant (D) (n=27 WT tumours (E), 17 fascin KO tumours (F): 
p=0.0775, Mann-Whitney). We also stained the sections to look at macrophages with the anti-
macrophage F4/80 antibody (brown, with haematoxylin counterstain, blue), but found no difference 
between the WT (G) and fascin KO (H). Images representative of minimum of 3 independent 
experiments. Error bars represent SD. Significance asterisks: * = <0.05, ** = <0.01, *** = <0.001. 
All scoring was done blind. 
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We next wished to determine whether, as was the case in the CAC model, there 

were fewer neutrophils in the fascin KO tumours. Using the anti-neutrophil NIMP 

antibody, we found a trend towards reduced numbers of neutrophils in the fascin 

KO tumour microenvironment, although this was not significant (p=0.0775) (Fig 

5.5). We also looked at the number of macrophages recruited (using the anti-

macrophage F4/80 antibody). We did not quantify this analysis, but there was no 

obvious difference in the density of macrophages or angiogenesis (Fig. 5.5). 

5.3.2.3 Organotypic invasion model 

We generated and cultured cell lines from tumours arising from the FAPC mice 

which were either WT or homozygous for fascin. Interestingly, following several 

passages of these cells we checked for expression of fascin using western blot 

(WB) in the WT line, however fascin was undetectable (Fig 5.6). Although both 

WT and fascin KO tumours were noted to be invasive in-vivo, we wished to 

determine whether there was any demonstrable difference in-vitro. Using the 

organotypic invasive model, the cell lines were seeded on a collagen matrix, the 

base of which lies in standard growth medium thereby creating an air/liquid 

interface which in turn creates a gradient through which cells may invade 

(Timpson, McGhee et al. 2011). Both fascin KO and WT cell lines invaded to 

similar depths (Fig 5.6). Interestingly, whilst the WT cell line lost expression of 

fascin when cultured in Matrigel with the standard medium, they re-expressed 

fascin in the organotypic model indicating that one of the constituents of the 

matrix (notably collagen and fibroblasts) or their secreted factors may be 

responsible for the expression of fascin by tumour cells (Fig. 5.6).  
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Figure 5-6 Organotypic invasion model 

We wished to determine whether there was any difference in the invasive abilitiy of the APCfl/fl 
p53fl/fl cells, isolated from the tumours from the mice which were either WT or fascin KO. Cells were 
plated on a collagen matrix with an air/medium interface and we demonstrated that the WT (A) and 
fascin KO (B) invaded to a similar depth (C) over a 14 day incubation period (n=3). Interestingly, 
despite cell lines cultured in Matrigel from both CAC and inducible APCfl/fl p53fl/fl tumours not 
expressing fascin in WB (D: WB representative of 3 independent experiments), upon plating on the 
collagen matrix the APCfl/fl p53fl/fl fascin WT cells expressed fascin using IHC (fascin antibody, 
brown with haemostoxylin counterstain, blue) (E). Cell lines from CAC model were not used in the 
organotypic model. Images representative of minimum of 3 independent experiments. Error bars 
represent SD. 
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5.3.2.4 Orthotopic caecal model and cell adhesion assay 

Given the reduced incidence of tumours in both the CAC and inducible intestinal 

models, we wished to determine, using an orthotopic caecal model of 

tumourigenesis (Tan, Holyoke et al. 1977) whether the phenotype was as a result 

of an impairment of the fascin KO cells to survive anoikis and establish initial 

contact with the matrix. We again used the established FAPC cell lines, which 

were either WT or KO for fascin, dissociated them to single cells and injected 

them into the caecum of nude mice. We initially set up a pilot experiment with 

6 mice in each cohort. In the WT cohort, one of the 6 mice appeared to have a 

liver metastasis (or potentially it may have resulted from direct spread from the 

caecal tumour) and 50% of the mice survived less than 100 days (Fig 5.7). In 

contrast, none of the fascin KO mice developed metastasis and 80% of the mice 

survived greater than 100 days (Fig. 5.7). As such, we expanded the numbers, 

however, even though initially the nude mice with the WT tumours injected had 

enhanced mortality, only around 30% of the mice from both cohorts died with 

demonstrable tumours (Fig 5.7). 
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Figure 5-7 Orthotopic caecal model and cell adhesion assay 

We wished to determine whether there was any difference in the ability of the APCfl/fl p53fl/fl cells, 
isolated from the tumours from the mice which were either WT or fascin KO and their ability to form 
tumours in nude mice. Overall, there was no significant difference in the percentage survival of the 
mice (A) and furthermore, only 27.8% of mice injected with WT tumours and 31.6% mice injected 
with fascin KO tumours had demonstrable tumours upon culling (B). n=12 WT, n=7 fascin KO, 
Photo, taken with permission from (Cespedes, Espina et al. 2007) demonstrating the injection of 
tumour cells into an exteriorised caecum in a nude mouse (C). Representative photograph of a WT 
caecal tumour after dissection (D). Using a cell adhesion assay we compared the ability of FAPC 
cell lines, which were either WT (E) or KO (F) for fascin to adhere to a fibronectin coated plate after 
dissociation to single cells (cells are green). There was no difference in the number of cells 
adhering to the plate (G) (n=3 plates per WT and fascin KO, 10 frames (10x magnification) counted 
per plate). Images representative of minimum of 3 independent experiments. Error bars represent 
SD. 
 

We wished to further clarify, in-vitro, whether there was any difference in the 

ability of the APCfl/fl p53fl/fl cells, which were either WT or KO for fascin, to form 

adhesions. We thereby set up a cell adhesion assay whereby we trypsinised the 

adenomas to single cells, plated them on fibronectin covered plates for 30 

minutes, washed them with PBS 3 times to wash off any non-adherent cells then 

stained the remaining adherent cells with calcein (a fluorescent cell permeable 
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dye) so that we could quantify the number of viable cells. We quantified both 

WT and fascin KO cells and there was no difference in either cohort (Fig. 5.7). 

 

5.4 Discussion 

5.4.1 Loss of fascin results in an impaired immune response and 
reduced tumourigenesis in the colitis associated 
carcinogenesis (CAC) model 

Our studies suggest that, in response to the Azoxymethane and 3 rounds of 2% 

DSS, the fascin KO mice have globally reduced levels of circulating WBCs with 

consequent reduction in recruited neutrophils to the tumour microenvironment. 

It is unclear whether, in addition to a defect in the production of neutrophils in 

response to inflammation, there is also a defect in recruitment. Whilst we did 

not perform analysis of the chemokines or chemokine receptor in the CAC tissue, 

our data from the colitis model indicated that CXCL2 was significantly lower in 

the fascin KO in response to DSS and it is likely that the same mechanism is 

responsible in the CAC model. The reduced tumour number and burden in the 

fascin KO, may in part be related to the reduced neutrophil number as was seen 

in the CXCR2 KO mouse (Jamieson, Clarke et al. 2012), whereby reduced 

neutrophils in the colon resulted in profound suppression of tumours in the same 

CAC model. The relationship between inflammation and cancer initiation and 

maintenance has long been established with the infiltration of tumour promoting 

leucocytes thought to be of critical importance (Mantovani, Allavena et al. 

2008). Ulcerative colitis is associated with a 20 fold increased lifetime risk of 

developing CRC (Xie and Itzkowitz 2008) so it is important to have a greater 

understanding of the pathways and mechanisms involved in modulating this. We 

have demonstrated that fascin is required for an adequate immunological 

response and leucocyte production to inflammation with consequent enhanced 

leucocyte infiltration into the inflamed tissue likely contributing to enhanced 

tumourigenesis. Measures to modulate this, for example inhibiting fascin, may 

prove useful, particularly for patients at high risk of developing inflammatory 

related tumours. Consequently, the drug development work, which I have 

contributed towards at the Beatson Institute, will be discussed in chapter 6. We 
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have also demonstrated the adverse immunosuppressive effects (in terms of 

increased clinical deterioration and mortality) of loss of fascin and these would 

obviously need to be taken into account. The reduced immunological response to 

inflammation is likely to have contributed to the enhanced clinical deterioration 

and mortality in both the short term 3.5% DSS course and the 70 day CAC model. 

The presence of fascin in the stroma, epithelial cells and blood vessels of the WT 

CAC tumours is likely to be multi-factorial. The inflammatory nature of the 

tumours and the consequent damage the inflammation causes may necessitate 

the cells to express fascin in order to maintain the rigidity of their cytoskeleton 

to minimise apoptosis. The correlation we have demonstrated between fascin 

and circulating leucocytes may be a second reason, however as previously 

detailed fascin is likely to have multiple roles including cell adhesion and 

molecular signalling. 

It was unfortunate not to have more RNA isolated from the CAC tumours (several 

of the processed samples were contaminated) to further establish any 

mechanism that may be responsible for the reduced tumourigenesis in the fascin 

KO mice. The preliminary data we do have indicated a mixed picture in that, 

with regard to the stem cell markers, jak-stat markers, Wnt members and 

targets we looked at there was no definitive trend. It may be that the cells 

which had mutated to form the tumours had, in essence, escaped the normal 

pathways involved and hence the variation. 

5.4.2 Loss of fascin results in reduced tumourigenesis in the 
inducible Fascin-/- APCfl/fl p53fl/fl and Fascin-/- APCfl/fl p53R172H 
Ah-cre mice 

It was surprising that, whilst the fascin KO mice had significantly reduced 

tumour number and burden, there was no difference in survival indicating that 

the mice were dying as a result of a non-tumour related cause. We have 

previously shown that the fascin KO mice have a reduced immunological 

response to inflammation and, whilst the FAPC inducible model is not an 

inflammatory model, tumours themselves have been shown to be pro-

inflammatory (Coussens, Raymond et al. 1999) and we can hypothesise that the 

fascin KO mice are more susceptible to the immunological consequences of 
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tumourigenesis potentially resulting in enhanced susceptibility to opportunistic 

infections characteristic of an impaired immune state (Viget, Vernier-Massouille 

et al. 2008).  

The mechanism behind the reduced tumour number and burden in the fascin KO 

may, in part, be as a consequence of reduced neutrophils resulting in a 

reduction in the initiation of tumours, as was seen in the CAC model, however 

further studies would be required to verify this given the lack of significance in 

the FAPC model. The lack of significance in the number of recruited neutrophils 

in the tumour microenvironment in the fascin KO FAPC mouse may reflect the 

reduced inflammatory nature of the inducible model as opposed to the CAC 

model, which is principally inflammatory driven. The effect of the reduced 

number of neutrophils would likely account for a reduction in tumour initiation, 

number and burden. It is unfortunate that we do not have data relating to the 

full blood count and chemokine tissue data in this model when the mice were 

culled, as this may have added important data as to the mechanism behind the 

number of recruited neutrophils, but also the immune state of the mice when 

they were culled. Given the data we have presented from the colitis 

regenerative and CAC models, however, it is possible to hypothesise that the 

mechanism is similar. 

One point to note with regards the FAPC model is that the loss of p53 was 

mediated through either p53fl/fl or the mutant p53R172H model. Ideally, it would 

have been useful to use either one or the other, however, due to limited 

numbers the decision was made to combine the cohorts. 

5.4.3 The regulation of fascin expression in benign and malignant 
tumours is unclear 

We have demonstrated that fascin is expressed in murine models of both benign 

and malignant tumours with expression strongest at the invading edge. Given the 

high levels of Wnt signalling in the APCMin+, APC1322t/+, APCfl/fl p53fl/fl and APCfl/fl 

p53fl/fl KrasG12D models it was important to determine whether fascin was a Wnt 

target. The short-term proliferative model whereby APC is inducibly knocked out 

using tamoxifen is a useful method to determine whether loss of APC resulting in 

high levels of Wnt signalling affects the level of fascin. We demonstrated the 
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loss of APC and resultant increase in Wnt signalling does not result in increased 

fascin expression. This correlates with our colitis data whereby fascin levels 

inversely correlated with Wnt levels indicating that fascin is potentially a 

negative Wnt regulator, either directly or indirectly. NF-κB has previously been 

shown to bind fascin in breast cancer cells in a stat3 dependant manner (Snyder, 

Huang et al. 2011). We therefore wished to determine whether the expression of 

fascin increased in the short term APC proliferative model in response to 

treatment of the mice with the cytokine Il-11, which has previously been shown 

to up regulate Stat3 (Bollrath, Phesse et al. 2009). We did not, however see any 

increase in fascin in response to Il-11 which may indicate that the phenotype in 

breast cancer cells may be specific and not related to the small intestine. 

It was of great interest to note, in the organotypic model that the APCfl/fl p53fl/fl 

cells, which when cultured in Matrigel in standard medium lost their expression 

of fascin, regained this expression when cultured on the collagen matrix in the 

organotypic model. In the organotypic model, the same medium was used as 

when cultured in Matrigel, the only difference being the collagen matrix, which 

consists of collagen extracted from rat tails and fibroblasts which contract the 

collagen. It is likely that either the fibroblasts or one of the factors which 

fibroblasts secrete induce the expression of fascin by the tumour cells and may 

be required for its maintenance. This is interesting in light of the fact that 

several colorectal cancer tissue culture cell lines, such as HT-29, express fascin.  

It may indicate that fascin expression has several thresholds during tumour 

progression and can be induced by external signals or can be stably switched on.   
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6.1  Summary 

A key aim of this thesis was to further our understanding of the role of fascin in 

IBD, particularly in the regeneration of the small intestine and the molecular 

mechanisms which underpin this.  

In order to address this, in Chapters 3 & 4 we used the fascin KO mouse in 

chemically induced models affecting both small intestine and colon thereby 

recapitulating the human diseases of UC and CD. Given the histological 

differences in the small intestine and colon, it was important to determine 

whether the role of fascin was similar in both tissues. 

The data generated from the in-vivo work, and the realisation that the absence 

of fascin promotes an increase in stem cell marker levels resulting in greater 

crypt proliferation, was confirmed using the in-vitro crypt culture method. This 

was important, as the differences seen in the in-vivo data, whilst mostly 

significant, were small. This also suggested that fascin has an important role in 

the epithelial cells, as well as possibly in the stroma. The levels of fascin 

expression seen in the tissues, in particular in untreated conditions, are low and 

in many cases are only detectable at the gene level. We do know that fascin is 

expressed, albeit at low levels in both isolated paneth and Lgr5 cells, the 

expression being almost 3 times higher in the paneth cells compared to Lgr5 

cells. We know that the two factors important for Lgr5 expressions are Wnt 

signalling and NF-κβ (Schwitalla, Fingerle et al. 2013). In conditions of 

homeostasis (with consequent low levels of circulating Wnt ligand (Haegebarth 

and Clevers. 2009)), crypt proliferation will be driven predominantly by NF-κβ 

pathways. Fascin is known to be a modifier of NF-κβ (Kress, Kalmer et al. 2011) 

and, consequently, in the absence of fascin this would result in reduced NF-κβ 

activation and downstream Lgr5 transcription. Conversely, during intestinal 

regeneration, crypt proliferation is driven predominantly by high circulating Wnt 

levels (Haegebarth and Clevers. 2009). We propose that fascin acts as a negative 

regulator of Wnt and, in these conditions, absence of fascin allows enhanced 

Wnt signalling and downstream Lgr5 transcription (Fig. 6.1). Thus, fascin plays 

an active role influencing gene expression changes as demonstrated by our data. 

It would be useful to further characterise the gene signature of isolated Lgr5 and 

paneth cells from the fascin KO mouse and compare them to their WT 
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counterpart, both in untreated and regenerative conditions. This would then 

potentially aid our understanding of the role fascin plays in influencing gene 

expression changes in the presence of differing levels of circulating Wnt ligand. 

 
Figure 6-1 Proposed model of mechanism – the role of fascin in influencing gene 
expression changes  
 

It was also apparent from the in-vivo work, that the fascin KO mice were 

clinically more sensitive to colitis-inducing treatments, both in the acute setting 

and the chronic colitis associated carcinogenesis (CAC) model. Analysis of the 

differential blood counts showed that, in response to inflammation, fascin plays 

a key role in the haematopoietic generation of circulating leucocytes, in 

particular neutrophils and this may be CXCL2 mediated. We observed a 

reduction in the number of recruited neutrophils to the inflamed tissues, but 

also from a clinical perspective, the effects of reduced numbers of circulating 

leucocytes could account for the morbidity and mortality experienced by the 

fascin KO mice. The role of fascin in the immunological response to 

inflammation has only been touched on in this thesis and it is likely that aiding 

leucocyte production is not the sole function of fascin in this regard. We 

TNFα%

%NF&κB%

Recruitment%CBP%&%
binding%to%β&cat/TCF%

Enhanced%transcrip@on%
lgr5%

Enhanced%crypt%
prolifera@on%

Wnt%ac@va@on% •  Wnt$signaling$&$NF-κB$are$the$2$
factors$important$for$lgr5$expression$

•  Wnt$signalling$enhanced$by$NF-κB$via$
CBP$

•  Fascin$acts$as$a$modifier$of$NF-κB,$
without$fascin$!$reduced$NF-κB$
acEvaEon$&$reduced$downstream$
lgr5$transcripEon$

$
•  Presence$of$fascin$moderates$Wnt$

dependent$transcripEon$lgr5$

•  In$the$absence$of$fascin,$enhanced$
Wnt$signaling$leads$to$enhanced$
proliferaEon$in$the$Fascin$KO$mouse$

&% +
FascinFascin



Chapter 6 – Conclusions and Future Directions                                                177 
 
attempted to mechanistically understand how fascin enhanced haematopoiesis in 

response to inflammation through investigating chemokine signalling 

downstream of dendritic cells. Whilst it was encouraging to discover the 

observed phenotype may be in part CXCL2 mediated, it is likely that other 

immunological processes are also contributing and it would be interesting to 

explore this in greater depth. 

It was interesting that, despite fewer inflammatory cells recruited to the fascin 

KO tissues there was no associated increase in the histological damage. Fascin 

plays a key role in actin dynamics and loss of this protein may predispose the 

fascin KO tissues to inherent structural weakness, which, in response to an 

inflammatory insult results in exaggerated damage. We can speculate that, were 

the number of inflammatory cells stimulated and recruited to the fascin KO 

tissues on a par with that of the WT, the histological damage would be 

significantly greater in the fascin KO. Other actin bundling proteins, such as 

villin, may in turn compensate for the absence of fascin, as has been seen in 

Drosophila (Cant, Knowles et al. 1998) which may ameliorate the loss, however 

this would need to be investigated and is beyond the scope of this thesis. 

The second aim of this thesis was to explore the role of fascin in inflammatory 

driven and sporadic intestinal tumourigenesis, which was addressed in Chapter 

5. Regarding the CAC model, the reduction in tumour number and burden in the 

fascin KO is likely, in part, to be as a consequence of the reduced leucocytes, in 

particular neutrophils, given the importance of tumour promoting leucocytes and 

cancer initiation (Jamieson, Clarke et al. 2012). Our proposed mechanism is a 

result of impaired dendritic cell function secondary to loss of fascin, which 

impairs the production of chemokines CXCL1 and CXCL2 by dendritic cells in 

response to inflammation. This results in a reduction in the number of 

circulating immune cells and their consequent recruitment to damaged areas. 

This would result in reduced levels of reactive oxygen species (ROS) and DNA 

damage which would result in the phenotype we have demonstrated, namely 

reduced numbers of tumours in the fascin KO (Fig. 6.2). 
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Figure 6-2 Proposed mechanism – reduced tumour initiation in CAC model 

In the fascin KO mouse, we propose the reduced tumourigenesis is in part a consequence of 
impaired dendritic cell function, which in turn impairs chemokine production; the inflammatory 
response and downstream ROS production and DNA damage resulting in a reduction in tumour 
initiation. 
 

In the FAPC mouse model we used, loss of APC and p53 are the most important 

triggers for tumour initiation, however leucocytes, in particular neutrophils may 

also contribute to the reduced tumour number and burden in the fascin KO 

mouse. Given the innate pro-inflammatory nature of tumours (Coussens, 

Raymond et al. 1999), loss of fascin would disrupt the inflammatory loop, 

created and driven by the tumour microenvironment thereby resulting in 

reduced tumourigenesis (Fig. 6.3).  
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Figure 6-3 Proposed mechanism – reduced tumour initiation in FAPC mouse model 

In the fascin KO mouse, we propose the reduced tumourigenesis is in part a consequence of 
impaired dendritic cell function, stimulated via the tumour inflammatory micro-environment, which in 
turn impairs chemokine production, the inflammatory response and downstream ROS production 
and DNA damage resulting in a reduction in overall tumourigenesis. 
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addition to gene expression analysis of isolated neutrophils from WT and fascin 
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fascin did not play an obvious role in the subsequent proliferation of the 

tumours. This was true for both the colitis associated carcinogenesis and FAPC 

models and it would be interesting to further explore whether there were 

additional processes underlying this phenotype in addition to our proposed 

tumour promoting leucocyte mechanism. Given the well-publicised importance 

of fascin in invadopodia (see chapter 1) formation (finger like protrusions used 
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by cancer cells to degrade the ECM and invade), it was surprising that a similar 

proportion of the fascin KO tumours invaded to that in the WT FAPC mice. Again, 

this may reflect other actin bundling proteins compensating for the absence of 

fascin and that the principal role of fascin in tumourigenesis is one of tumour 

initiation.  

6.2 Future Directions 

We have presented in this thesis in-vivo and in-vitro data indicating a novel role 

of fascin in regulating intestinal epithelial cell proliferation, however we have 

been unable to delineate the mechanism behind this. It appears that NF-κB 

levels correlate with high Wnt signalling in the absence of fascin, whereas in the 

presence of low Wnt levels NF-κB levels are higher in the presence of fascin. 

This relationship appears complex and further mechanistic work would need to 

be undertaken to further explore this area. 

We have clearly demonstrated that loss of fascin compromises the initiation of 

tumours in inflammatory driven and sporadic mouse models. A goal of all cancer 

related research is ultimately one of patient benefit. Given the enhanced risk of 

patients with IBD developing inflammatory driven intestinal tumours, drugs that 

reduce fascin expression may be important in reducing the initiation of tumours 

in this high-risk group. One such drug commonly used as a treatment in IBD, 5-

aminosalicylate (5-ASA), has been shown to reduce the expression of fascin in 

the colorectal epithelial cell line HT29 (Qualtrough, Smallwood et al. 2011). It 

may be that reducing the level of fascin modulates the inflammatory process and 

the subsequent damage caused by tumour promoting leucocytes. Reducing the 

expression of fascin in the tissues, in addition to reducing the level of 

inflammation, would potentially reduce the transformation from benign disease 

to a malignant process. Animal models may be key to investigate this further for 

example, using 5-ASA in the AOM/DSS model and also in the sporadic FAPC model 

may prove useful in testing this hypothesis. 

Other actin bundling proteins, such as villin, have been shown to compensate for 

the loss of fascin in Drosophila (Cant, Knowles et al. 1998). As such, it would be 

useful to determine whether a similar phenomenon existed in the models used in 
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this thesis in particular, regarding restitution in the colitis model and tumour 

invasion in the FAPC model. 

The correlation between fascin and neutrophils presented in this thesis could be 

further explored through correlating the expression of fascin and neutrophils in 

human tissue microarrays (TMAs) of IBD specimens, and also in inflammatory-

driven and sporadic intestinal cancers. In order to understand the mechanism 

behind the correlation seen, it would be useful to analyse the CXCL chemokine 

makeup, using qRT-PCR, to determine whether the correlation is replicated in 

human data.  

The on-going collaborative work with the Beatson drug discovery in the 

development of a fascin inhibitor is an exciting project and it would be useful to 

test potential inhibitors in the in-vivo and in-vitro models used in this thesis. 

Should these prove successful in reducing the incidence of tumours in the various 

models, it would be necessary to characterise any off-target effects (such as 

immunosuppression) before contemplating clinical trials in humans.  

 

6.3 Conclusion 

This thesis has further added to the knowledge of the role of fascin in the 

intestinal regeneration key to the pathogenesis of IBD and the development of 

tumours in inflammatory driven and sporadic intestinal tumourigenesis. I will 

hereby clarify the definite conclusions that have been generated by this work. 

1. Loss of fascin in the presence of high Wnt levels, as seen in regenerating 

small intestines, results in enhanced proliferation of small intestinal 

epithelial cells. 

2. Loss of fascin does not profoundly affect the histological damage to the 

small intestine or colon in response to chemical induced inflammation. 

3. Fascin is required for the haematopoietic production of leucocytes in 

response to inflammation. 
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4. Loss of fascin impairs tumour initiation in inflammatory driven and 

sporadic intestinal tumourigenesis models. 
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Appendix A: Fascin1 is dispensable for 
developmental and tumour angiogenesis 
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Appendix B: Fascin is regulated by Slug, promotes 
progression of pancreatic cancer in mice, and is 
associated with patient outcome 
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