
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Hanvey, Scott Lewis (2013) Magnetic resonance imaging to improve 
structural localisation in radiotherapy planning. PhD thesis. 
 
 
http://theses.gla.ac.uk/5117/ 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5117/


 
 

 

 

Magnetic Resonance Imaging to    
Improve Structural Localisation in 

Radiotherapy Planning 

 

Scott Lewis Hanvey, M.Sci., M.Phil., M.Sc. 

 

Thesis submitted in fulfilment of the requirements for the             
degree of Doctor of Philosophy 

 

University of Glasgow 

 

 

 

 

 

 

 

 

School of Medicine 

Department of Clinical Physics 

October 2013



ii 

Abstract  

The purpose of this thesis is to develop the role of magnetic resonance imaging 

(MRI) in the radiotherapy (RT) planning process. This began by assessing a 

prototype inline three-dimensional distortion correction algorithm. A number of 

quality assurance tests were conducted using different test objects and the 3D 

distortion correction algorithm was compared with the standard two-dimensional 

version available for clinical use on the MRI system. 

 

Scanning patients using MRI in the RT position within an immobilisation mask can 

be problematic, since the multi-channel head coils typically used in diagnostic 

imaging, are not compatible with the immobilisation mask. To assess the image 

quality which can be obtained with MR imaging in the RT position, various MRI 

quality assurance phantoms were positioned within an immobilisation mask and a 

series of image quality tests were performed on four imaging coils compatible 

with the immobilisation mask. It was shown that only the 4-channel cardiac coil 

delivered comparable image quality to a multi-channel head coil.  

 

An investigation was performed to demonstrate how MRI patient position 

protocols influence registration quality in patients with prostate cancer 

undergoing radical RT. The consequences for target volume definition and dose 

coverage with RT planning were also assessed. Twenty patients with prostate 

cancer underwent a computed tomography (CT) scan in the RT position, a 

diagnostic MRI scan and an MRI scan in the RT position. The CT datasets were 

independently registered with the two MRI set-ups and the quality of registration 

was compared. This study demonstrated that registering CT and MR images in 

the RT position provides a statistically significant improvement in registration 

quality, target definition and target volume dose coverage for patients with 

prostate cancer. 

 

A similar study was performed on twenty-two patients with oropharyngeal 

cancer undergoing radical RT. It was shown that when patients with 

oropharyngeal cancer undergo an MRI in the RT position there are significant 

improvements in CT-MR image registration, target definition and target volume 

dose coverage. 
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1 The integration of MRI into the radiotherapy 
planning process 

1.1 Motivation and Aims 

The motivation for this thesis was to evaluate and develop the use of magnetic 

resonance imaging (MRI) in radiotherapy (RT). Analysis of a three-dimensional 

(3D) distortion correction algorithm was assessed since geometric distortion is an 

important consideration when implementing MRI into the RT planning process. 

The primary aim of the thesis was to develop a technique to enable patients to 

be scanned in the RT position when undergoing an MRI which would be used for 

RT planning. The secondary aim was to evaluate the clinical impact of 

positioning patients in the RT position and whether it affected the planning 

process. 

These studies help to improve the integration of MRI into RT and improve the 

accuracy of the volume and location of target structures and organs at risk. 

There are no other studies in the literature which compare the effects of patient 

set-up on dose received by the gross tumour volume during RT. Using the results 

of this work, this thesis should inform on the optimal patient set-up for future 

clinical trials involving MRI for RT. 

The following chapter investigates current publications via a systematic 

literature review to explain how MRI is used in the field of RT. This literature 

review begins by exploring geometric distortion and the two main types of 

geometric distortion are explained, namely object induced and system related 

distortion. Distortion correction algorithms are considered and a quality 

assurance program explained. CT-MR image registration in RT is then discussed, 

including manual, automated and deformable registration. The effect of the 

differences in patient positioning is also explored since this is one of the main 

themes of this thesis. Finally, the role of MRI in RT is placed in the context of 

the current ongoing work in this field. This begins with a review of the 

publications showing that MRI offers an improved tumour definition over CT. The 

subject of MRI only RT planning is reviewed, followed by a discussion on an 

integrated MRI and linear accelerator (linac). This chapter closes by investigating 
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the use of functional MRI in RT, including diffusion-weighted imaging, dynamic 

contrast enhanced MRI and proton MR spectroscopy.  

In this literature review special emphasis was placed on studies related to the 

areas of research relevant to the anatomical sites examined via experimentation 

in this thesis, namely, the brain; prostate and head and neck. Greater 

importance was also given to the studies related to the field of RT. 

1.2 Geometric Distortion 

1.2.1 Search strategy used and sources of informati on 

Databases PubMed and SciVerse ScienceDirect were searched with no restrictions 

set on date range, document type or subject areas. English only articles were 

assessed. The following search terms were used ‘magnetic resonance imaging’ 

(or ‘magnetic’ and ‘resonance’ and imaging’ or ‘MRI’) and ‘radiotherapy’ and 

‘geometric’ and ‘distortion’; ‘magnetic resonance imaging’ (or ‘magnetic’ and 

‘resonance’ and imaging’ or ‘MRI’) and ‘radiotherapy’ and ‘distortion’; 

‘magnetic resonance imaging’ (or ‘magnetic’ and ‘resonance’ and imaging’ or 

‘MRI’) and distortion. The objectives of this literature review were to determine 

what are the essential components of geometric distortion in MRI; to establish 

which distortion correction algorithms are available and how is geometric 

distortion measured by means of a quality assurance program. 

1.2.2 Introduction 

Image distortion has always been an inherent challenge of MRI (Fransson et al. 

2001). The production of geometrically accurate images in MRI depends on the 

precisely specified linear variation in the magnetic field across the sample being 

imaged and throughout the imaging process. It is not always possible to achieve 

this in practice because of differing material susceptibility, shim imperfections 

of the static field or tissue dependent chemical shift artefacts. Inhomogeneities 

in the static magnetic field lead to geometric distortion, since accurate image 

reconstruction on the resonance frequency of a spin depends on a homogeneous 

external field and a spatially linear gradient. If a spin experiences a magnetic 

field that is different from the value expected by the reconstruction algorithm, 

this results in its spatial position being incorrectly located in the image 
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(Reinsberg et al. 2005). The geometric distortions can appear both as in-plane 

distortions in the MR image and as slice position errors. 

Geometric distortions may be acceptable for purely diagnostic purposes, 

however, if MRI is to be used in RT for the delineation of the planning target 

volume and organs at risk the image distortion in these images must be reduced 

to a minimum to maintain geometric accuracy.  

MRI distortion correction becomes increasingly relevant with modern MRI 

scanners, since higher field MRI scanners results in larger susceptibility effects 

and shorter bore magnets compromises gradient linearity. Current wide bore MRI 

scanners have gradient rise times of less than 200 µs. To achieve such short rise 

times, manufacturers have restricted the length of the gradient coils and used 

fewer turns, since it takes longer to turn on a large coil than a small coil. The 

quality of the gradient amplifier must also be considered for gradient rise times 

as a large voltage is required to overcome the inductance of the coil. This 

increased use of stronger gradient coils with fast slew rates (short gradient rise 

times), has led to an increase in gradient field nonlinearity, which results in 

increased geometric distortion. As well as image distortion, gradient field 

nonlinearity has an effect on MRI applications such as diffusion-weighted MRI 

(Bammer et al. 2003) and phase contrast MRI (Markl et al. 2003). 

1.2.3 Types of geometric distortion in MRI  

There are two major types of geometric distortion in MRI: those related to the 

magnetic properties of the imaged object and those related to the imaging 

hardware. The impact of these types of distortion varies with magnetic field 

strength and with imaging protocol.  

It is possible to subdivide the hardware related errors leading to geometric 

distortion into two categories: inhomogeneities in the static magnetic field B0 

and errors in the field provided by the magnetic field gradient coils. Hardware 

related distortions increase with distance from the magnet isocentre (Wang et 

al. 2004b). 
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The homogeneity of the static magnetic field B0 can be optimised by active 

and/or passive shimming. Active shimming is achieved using special shim coils 

inserted in the magnet system. Passive shimming is performed by positioning 

pieces of ferromagnetic metal around the magnet bore. Shimming technologies 

in recent magnets enable the field homogeneity inside the diameter spherical 

volume to be within a few hertz at 1.5T, which is likely to result in a geometric 

error of less than 0.2 mm. In today’s superconducting MRI systems with 

sophisticated shimming coils, geometric distortion from the inhomogeneity of 

the static field is small when compared to the gradient field nonlinearity (Wang 

et al. 2004b). 

Chemical shift is an object-induced distortion. This shift is generated because 

protons bound in carbon-hydrogen chains in fatty tissue have a slightly different 

resonance frequency than tissue with water protons. Since the spatial encoding 

cannot distinguish between the signal from fat and water and because the water 

frequency is the reference frequency, the signal from fat will be incorrectly 

positioned. The higher the magnetic field the more pronounced the chemical 

shift effect. While increasing the readout bandwidth can help reduce the effect 

of chemical shift this leads to a decrease in the signal to noise. In RT treatment 

planning the effects of chemical shift is most pronounced in anatomical regions 

with extensive fatty tissue, such as the patient outline.  

Another common object-induced distortion is susceptibility. This is the measure 

of the ability of a material to become magnetised in an external magnetic field. 

Local field changes occur at the interface between tissues with different 

susceptibility as a result of the magnetisation of the tissue. This causes 

geometric distortions, since the magnetic field strength at a given location has a 

different from expected field strength at this location. Distortion of the signal 

intensity can also occur at regions of differing susceptibility. These intensity 

distortions are pronounced when using a gradient-echo protocol. 

Susceptibility artefacts are most prominent at tissue-air interfaces, such as the 

nasal cavities or the patient outline or for example at air pockets in the rectal 

cavity. These susceptibility artefacts can result in field changes in the order of 9 

ppm which can create position errors in the mm range (Schenck 1996). As with 

chemical shift effects, susceptibility-induced distortions are more prominent at 
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higher field strength and can be reduced by increasing the bandwidth of the 

readout gradient.  

1.2.4 Distortion correction 

A method for correcting B0 inhomogeneities by acquiring two images of the same 

slice with forward and reverse frequency-encoding gradients has been 

documented, as shown in Figure 1.1 (Chang et al. 1990). This post-processing 

technique involves a two step process. Firstly, corresponding features in the 

forward and reverse read gradient images are identified. Secondly, the 

corrected intensity at the average position of the identified corresponding 

features is calculated. Mapping the forward gradient image onto the reverse 

gradient image is essential for good image quality. This method corrects for the 

inhomogeneity of the main field and corrects these distortions to a maximum 

error of 1.2 mm after correction. Edge ringing artefacts are introduced by this 

approach in regions of chemical shift, since the pixels containing fat are shifted 

onto the pixels containing water. The pixel intensities are thus added or void 

pixels occur when encoded by forward or reverse read gradients. A disadvantage 

with this technique is the imaging time is doubled because of the requirement 

for two image sets to perform the correction.  

Another group presented an automatic tool for correcting the effects of B0 

inhomogeneities based on the gradient-reversal technique of Chang and 

Fitzpatrick (Reinsberg et al. 2005). This uses the mutual information 

maximisation for the mapping of the pixel locations in the forward and reverse 

frequency-encoding gradient polarity images. This technique performed better 

with chemical shift artefacts than using the Chang and Fitzpatrick method. 

However, the chemical shift artefact observed in echo planar imaging is still too 

large to be corrected by this process.  
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Figure 1.1 Grid phantom showing (a) image acquired with the readout gradient in the right to 
left direction; (b) image acquired with the readout  gradient acquired left to right ; (c) the 
superimposition of the first two images and (d) the  rectified image. Reproduced from 
(Chang et al. 1992). 
 

Other publications describe the correction of gradient induced distortions using 

specially constructed phantoms (Doran et al. 2005; Schad et al. 1992). In the 

publication by Doran the methodology involves acquiring a distorted MR and 

undistorted CT images of a linearity test object of volume 440 × 270 × 360 mm3. 

The corresponding marker positions are then identified in the two image sets. 

Using a finite number of discrete markers, distortion maps are produced giving 

distortion values at each voxel. Finally, these maps are used to perform a 3D 

correction of the MR datasets. The advantage of this technique is that through 

plane distortion can be quantified and corrected. At the edges of the phantom, 

however, where the through plane distortion is extreme, this method provided 

only partial correction, since some markers were distorted completely out of the 

image. Doran argues that this could be rectified by acquiring the data using a 

larger field of view. Actively shielded gradient designs are often employed in 

modern MRI systems to reduce gradient nonlinearity (Fransson et al. 2001).  

Schad (Schad et al. 1992) used a water filled cylindrical phantom 17 cm in radius 

10 cm in depth to measure two-dimensional (2D) geometric distortion. This 

phantom consisted of plastic rods spaced 2 cm apart. This 2D distortion was 
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corrected by modelling the distortion as a fourth order 2D polynomial. After 

performing 2D correction, a 3D distortion correction was performed using a 3D 

phantom. This phantom comprised of a grid of regular water filled boreholes, 

with oblique water filled boreholes in between. This produced datasets 

containing reference points (regular boreholes) and measurement points (oblique 

boreholes) from which the 3D position of the imaging plane was reconstructed. 

Through plane distortion was corrected by adjusting the gradient shimming 

current. While this technique corrected the image distortion to around 1 mm, it 

is a time consuming process requiring the manufacture and imaging of two 

phantoms. It also relies on a manual adjustment of the shimming gradients 

which would introduce subjective errors. Additionally, the shim correction 

required is likely to be different when imaging a phantom than when imaging a 

subject. 

The use of 3D phantoms to measure and correct for geometric distortions has 

also been developed (Breeuwer et al. 2001; Wang et al. 2004a). Breeuwer’s 

phantom contained 427 reference structures for the head phantom and 793 for 

the body phantom. The reference structures are automatically detected in the 

scanned images and a higher-order 3D polynomial distortion correction 

transformation is calculated. This transformation is then applied to the images 

to correct for the measured distortion. Using this phantom the distortion was 

corrected from a mean error of 2.08 mm and maximum error of 4.31 mm to a 

mean of 0.28 mm and a maximum of 1.05 mm. Wang’s phantom contained 

10,830 control points (see Figure 1.2). This phantom was an improvement on 

Breeuwer’s phantom since instead of using point like objects for control points, 

which has limitations on the numbers that can be introduced, a set of three 

orthogonal points were employed. The positions of the control points are 

determined automatically using edge detection software of the interfacial 

boundaries formed between the surface of the grid sheet and the water. A 

trilinear interpolation was used to map the uncorrected pixels to their correct 

position. After correction this resulted in a mean error in the order of 0.1 mm 

and a maximum error of ~0.6 mm. 
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Figure 1.2 Image of a 3D phantom consisting of grid  sheets aligned in parallel filled with 
water. Reproduced from (Wang et al. 2004a).   
 

Patients with implanted metal objects (such as hip prostheses, dental amalgam, 

surgical pins etc.) demonstrate enhanced susceptibility distortions close to these 

objects. Imaging near metal with MRI results in image artefacts largely due to 

the inhomogeneous static magnetic field generated. This can result in signal loss 

due to dephasing, failure of fat suppression and displacement artefacts 

(Hargreaves et al. 2011). Close to metal objects the magnetic field variation can 

be very rapid. This leads to dephasing which manifests as signal loss. However, 

dephasing effects can be almost completely avoided by using spin-echo 

protocols. Advanced imaging techniques such as multi-acquisition variable-

resonance image combination (MAVRIC) can correct in-plane and through-plane 

displacement artefacts from metal (Koch et al. 2009). MAVRIC limits the range of 

frequency offsets imaged at one time by using a frequency-selective excitation. 

By limiting the range of frequencies the in-plane displacement is also limited.  

One publication has recorded a correction method taking into account both 

machine and object-related distortions for applications in RT planning (Moerland 

et al. 1995). The first step was to correct for machine related distortions which 

arise from gradient non-linearity and static magnetic field inhomogeneity. Error 

maps of a grid phantom of known dimensions were determined by varying the 

direction of the read-out gradient. 3D error maps were inferred by bicubic 
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interpolation and the required correction was applied to patient data. 

Correcting for chemical shift and susceptibility induced distortions was achieved 

by the Chang and Fitzpatrick technique (Chang et al. 1990). Using this method 

both machine and object related distortions can be corrected. A disadvantage of 

this technique is that it requires the additional step of generating field maps and 

applying a correction. This would make it more time consuming than the Chang 

and Fitzpatrick process, which already involves acquiring two image sets. 

There are several publications which have investigated measuring distortion in 

MRI, using test objects of known geometry, (Wang et al. 2004a; Wang et al. 

2004b) and have applied corrections as a result of these measurements (Doran et 

al. 2005; Reinsberg et al. 2005; Wang et al. 2004c). As well as in-house 

distortion corrections, manufacturers have developed 2D and 3D correction 

algorithms as part of their acquisition and evaluation software to improve the 

geometrical accuracy of MR images (Karger et al. 2006). Another approach is to 

correct for hardware related geometric distortions by acquiring a magnetic field 

map (Irarrazabal et al. 1996). This method involves acquiring a local field map, 

finding the best fit to a linear map and using it to correct the image distortions 

due to local frequency variations. The linear field map is calculated using a 

maximum likelihood estimator with weights proportional to pixel intensity.  

Object-induced distortions are not accounted for by these procedures.  

Correction of susceptibility effects have been successfully applied using field 

mapping techniques (Weis et al. 1998). In this paper techniques that enable a 

correction of chemical shift effects have also been presented. Static magnetic 

field distributions are measured by a spectroscopic imaging technique based on a 

radiofrequency (RF) spoiled gradient echo sequence. Spectroscopic imaging is 

inherently robust against many artefacts because the magnetic field deviations 

are determined from the shift of voxel water or fat spectral lines. Therefore, 

effects that influence the amplitude but not the position of the spectral lines 

are not considered. These effects include spatial RF inhomogeneity, steady state 

effects, movement artefacts and flow artefacts. An automated geometrical 

interpolation corrects the distorted images. Since this technique is fully 

automated, it is not user dependent. However, while it is feasible that the 

magnetic field distribution measurement could be extended to 3D, this was not 

demonstrated in this paper.   
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Table 1.1 illustrates the results from publications in MRI geometric distortion 

correction. These results mainly demonstrate distortion correction for machine 

related errors such as magnetic field inhomogeneities and gradient 

nonlinearities. One of the publications in this table attempted to correct for 

both machine-related distortions (gradient non-linearity and static magnetic 

field inhomogeneities) and object-induced distortions (chemical shift and 

susceptibility distortions) (Moerland et al. 1995).  

The two publication which demonstrated the greatest distortion correction 

(Doran et al. 2005; Wang et al. 2004a) recorded uncorrected distortion error 

value of 25 mm and greater than 9 mm being corrected to a mean error of 0.6 

mm and an approximate error of 0.6 mm respectively. Both authors used large 

phantoms (for example Figure 1.2) to map the distortion errors and then 

interpolated the uncorrected pixel locations to the known corrected positions. 
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Table 1.1 Summary of results from MRI distortion co rrection publications 
 

Paper Field 

strength 

(T) 

Study 

medium 

Max error 

prior to 

correction 

(mm) 

Max error 

post 

correction 

(mm) 

Distortion 

correction 

technique 

(Chang et al. 

1990) 

1.5 2-D grid 

immersed in 

water. 

Water filled 

centrifuge 

tube 

structure. 

Computer 

simulations. 

Computer 

simulation

: 20 pixels  

Computer 

simulation: 

1 pixel 

Acquire two 

images with 

reversed slice 

selection & 

read-out 

gradients.   

(Chang et al. 

1992) 

1.5 Grid in 

CuSO4. 

Figure 1.1 

5.8 1.2 Acquire two 

identical pulse 

sequences 

images with 

altered 

gradients. 

(Sumanaweera 

et al. 1994) 

1.5 Tissue 

phantom 

(hen in 

acrylic 

plastic box 

with CuS04 

capillary 

tubes). 

1.88 0.25 Magnetic field 

inhomogeneities 

were corrected 

using B0 maps. 
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Paper Field 

strength 

(T) 

Study 

medium 

Max error 

prior to 

correction 

(mm) 

Max error 

post 

correction 

(mm) 

Distortion 

correction 

technique 

(Moerland et 

al. 1995) 

1.5 Grid 

phantom. 

Fluid filled 

tubes on a 

localisation 

frame and 

cast for 10 

patients 

with brain 

cancer 

2 

(chemical 

shift); 4 

(static 

magnetic 

field); 3.5 

(gradient 

non-

linearities) 

1.3 Grid phantom 

corrected 

machine errors 

by varying read-

out gradient. 

Object errors 

were corrected 

using 

anatomical 

landmarks 

(Irarrazabal et 

al. 1996) 

Not 

stated 

T2- 

weighted 

breath held 

spiral image 

of patient 

with liver 

metastases. 

320 x 320 

field of 

view 

Visually 

inspected 

reduction in 

blurring 

Acquire local 

field map to 

find best fit to 

linear map and 

use it to correct 

blurring due to 

frequency 

variation 

(Breeuwer et 

al. 2001) 

1.5 Spheres and 

rod spaces 

filled with 

CuSO4 in a 

260 mm 

diameter 

cylinder. 

4.31 1.05 Interpolation of 

pixel values 

from distorted 

position to 

known values in 

3D 
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Paper Field 

strength 

(T) 

Study 

medium 

Max error 

prior to 

correction 

(mm) 

Max error 

post 

correction 

(mm) 

Distortion 

correction 

technique 

(Wang et 

al. 2004a) 

1.5 310 x 310 x 

310 mm3 

phantom 

containing 

10,830 

control 

points 

Figure 1.2. 

> 9.0 ~ 0.6 Trilinear piecewise 

interpolation of pixel 

values from distorted 

control points to 

known corrected 

points in 3D   

(Doran et 

al. 2005) 

1.5 440 x 270 x 

360 mm3 

phantom of 

132 crossed 

fluid filled 

tubes. 

25 Mean error 

0.6 mm 

Distortion maps were 

generated in 3D using 

2 scans with opposing 

read gradient to 

allow for gradient 

nonlinearity and 

inhomogeneities in 

the main magnetic 

field. Interpolation 

corrected the image 

set. 
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Paper Field 

strength 

(T) 

Study medium Max error 

prior to 

correction 

(mm) 

Max error 

post 

correction 

(mm) 

Distortion 

correction 

technique 

(Karger 

et al. 

2006) 

3 and 1.5 A phantom of 

length 230 mm 

and diameter 

230mm containing 

5 cylindrical target 

points and 4 linear 

tubes. 

5.8 (3T) 

2.8 (1.5T) 

1.2 (3T) 

2.3 (1.5T) 

Gradient 

nonlinearities 

are corrected in 

3D using a 

manufacturer 

supplied 

correction 

algorithm. 

 

1.2.5 Quality assurance program 

Since the geometric properties of MR data are closely connected with the 

performance of hardware components, such as the magnet, gradient and RF 

systems, a QA program should be established to monitor the long-term system 

functionality. In this regard, the reproducibility of the MR data can be evaluated 

and deviations from acceptable limits can be identified early. Geometric 

distortion should be periodically tested as part of the regular QA program that is 

conducted on an MRI scanner (Firbank et al. 2000). As well as recommendations 

for image quality tests such as SNR, and image uniformity, Firbank’s group 

proposes monthly geometric distortion measurements. The suggested method 

involves comparing the known diameter of a phantom with that measured using 

the distance measurement on the scanner console. The Eurospin TO2 phantom 

can also be used to measure plates of known dimensions. The mean length and 

coefficient of variation can then be calculated. At our centre we complete the 

QA tests recommended in IPEM Report 81 (IPEM 1999) which stipulates that 

geometric distortion checks should be performed on a weekly basis. The 

geometric distortion and linearity tests performed measure known distances of 

spaced Perspex rods in a phantom (see section 4.5.4 of Chapter 4). 
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1.3 Image Registration 

1.3.1 Search strategy used and sources of informati on 

Databases PubMed and SciVerse ScienceDirect were searched with no restrictions 

set on date range, document type or subject areas. The following search terms 

were used ‘registration’ and ‘MR*’ and ‘radiotherapy’; ‘registration’ and ‘MR*’ 

and ‘radiation’; ‘image’ and ‘registration’ and ‘quality assurance’; ‘fusion’ and 

‘MRI’ and radiation’; ‘magnetic resonance’ and ‘treatment planning’; ‘image’ 

and ‘registration’ and ‘radiation’. 

1.3.2 Introduction 

MRI and CT are being increasingly employed in the RT planning process. There 

are a number of advantages to incorporating MRI into RT. MRI offers superior 

soft-tissue contrast over CT allowing tumour and normal tissue to be 

distinguished more accurately. MRI has the ability to provide a range of image 

contrast specific to the anatomy and pathology being imaged, by varying the 

weighting of the sequence from T1-weighted and T2-weighted to proton density 

scans. Unlike CT, MR can image in any plane enabling a better assessment of 

tissue boundaries. Despite this, a large variability in delineations of the 

prostate, and in particular the seminal vesicles, was observed in a multi-centre 

trial with which this author participated (Nyholm et al. 2013). Metal artefacts 

such as dental amalgam or hip prostheses are localised in MRI often allowing 

accurate tumour delineation where it would not be possible using CT alone 

(Charnley et al. 2005). Better target delineation with MRI could lead to improved 

tumour control rates and reduced normal tissue complications (Tanaka et al. 

2011). It may be possible to reduce the dose received by healthy tissue since 

margins will be more conformed to the “true” target volume. MRI can also 

provide physiological and biochemical information which may lead to improved 

treatment. 

Image registration is the method of determining the geometric transformation 

required to relate the spatial coordinates of two imaging datasets. Registration 

of MRI to CT is an effective method of gaining both the improved target 

definition of MRI and the geometric accuracy and electron density of CT. 

However, although MRI provides improved soft tissue contrast, there are several 
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challenges with integrating MRI into the RT planning process. MRI is known to 

suffer from geometric distortion due to the non-linearity of the imaging 

gradients over large fields of view (Doran et al. 2005). This has largely been 

managed through the provision of in-plane distortion correction by most MRI 

vendors (Khoo et al. 2006). Due to the lengthy scan times of MRI, motion 

artefacts can diminish the image quality and alter the accuracy of target 

localisation. Today, advanced MR sequences can minimise motion related 

artefacts. Magnetic susceptibility can affect the main magnetic field 

homogeneity resulting in further localised distortion (Fransson et al. 2001; 

Schenck 1996) and so should be considered when outlining tumours close to, for 

example, the nasal cavities. Patient preparation must also be considered, since, 

for example, changes in bowel and bladder filling can adversely affect CT-MR 

registration (Brunt 2010).   

When registering an MR scan to CT it can be expected that the MR will possess 

some degree of geometric distortion, will vary in slice angulation and coordinate 

origin position, that there are likely to be differences in slice number, thickness 

and spacing and that the image matrix size and pixel dimensions will not be the 

same. While it may not be possible to correspond all of these factors with a 

planning CT scan, it would be feasible to match the slice angulation, thickness 

and spacing of an MRI scan to that of a planning CT scan, if the MRI scan was 

undertaken as part of a RT planning protocol. 

Various review articles exist on medical image registration (Balter et al. 2007; 

Brunt 2010; Crum et al. 2004; Hill et al. 2001; Maintz et al. 1998). Many of the 

papers in these review articles discuss the application of image registration to 

RT and most are concerned with rigid body transformations. Rigid body 

transformations shift the MR slices by rotation and translation to match the CT.  

The following studies published investigate rigid registration accuracy (Li et al. 

2008; Moore et al. 2004; Mutic et al. 2001; Veninga et al. 2004). In the study by 

Mutic, a QA method is presented to determine the accuracy of multimodality 

image registration. They used an anthropomorphic head phantom filled with 

water and containing CT, MR and PET visible targets. This phantom enabled the 

verification of the accuracy of the registration software by the correlation of 

anatomic landmarks. Moore et al. assessed the registration accuracy of their 
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treatment planning system by outlining structures on a registered phantom. 

Veninga’s group validated a 3D fully automated registration procedure for RT 

planning of brain tumours. The normalised mutual information method was used 

for image registration. Registration accuracy was estimated by measuring the 

differences between CT and MRI anatomical landmarks. Finally, Li et al. 

examined a 3D volumetric image registration method. This technique aligns the 

images using anatomic structure volumes and surfaces.  

A multi-centre study found that a registration accuracy of approximately 2 mm is 

achievable for cranial CT-MR image registration (Ulin et al. 2010). This study also 

showed that manual registration performed significantly better than automatic 

registration. 

1.3.3 Patient Positioning 

The feasibility of achieving accurate image registration is strongly reliant on the 

similarity of patient positioning across the modalities. Many publications detail 

the importance of patient positioning in MRI because of the effect it has on 

image registration (Ahmed et al. 2010; Brunt 2010; McJury et al. 2011; Prestwich 

et al. 2012; Webster et al. 2009). 

One of the first patient positioning challenges that must be considered is the 

difference in the table top. CT planning scans are typically obtained using a flat 

table, whereas MRI scanners generally use a concave shaped table with padded 

patient support to maximise patient comfort because of the long scan times 

involved. MR scanner manufacturers are beginning to provide RT tables which 

are flat, contain integrated coils and are compatible with BDS base frames. It is 

also feasible to use flat table top inserts manufactured in-house (Brunt 2010; 

Hanvey et al. 2012; McJury et al. 2011). 

Standard head coils are often used in the RT planning of patients with brain 

cancer. CT-MRI image registration is improved when the neck flexion is similar in 

both modalities (Brunt 2010). However, these head coils are usually not 

compatible with immobilisation beam directional shells (BDS) or stereotactic 

head frame. It has been shown that it is possible to image brain cancer patients, 

in the RT position within an immobilisation mask, without loss of image quality 
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over standard imaging methods using surface coils (Hanvey et al. 2009). An 

approximate image registration uncertainty of 2 mm occurs when registering CT 

image sets in the treatment position to a diagnostic MRI for patients with brain 

cancer (Kenneth et al. 2010) and this has led to RT centres routinely registering 

these scans for RT planning.  

For patients with head and neck cancer consideration of the similarity of neck 

flexion between modalities becomes even more important to ensure accurate 

image registration. It is achievable to image this patient group within a BDS for 

MRI provided the BDS and base frame fit within the scanner bore (Webster et al. 

2009). The base frame of some commonly used immobilisation masks can be 

wider than 60 cm which exceeds the bore size of many MR scanners. However, 

there is a trend among manufacturers towards MRI scanners with increased bore 

diameters, so this issue may be redundant in the near future.  

While it could be anticipated that imaging patients with head and neck cancer in 

the treatment position would result in improved registration and target volume 

definition, there was no published evidence, prior to the work of this thesis, 

(Chapter 5 and (Hanvey et al. 2013)) to suggest that registering a planning CT 

scan with a diagnostic MRI provides results to the contrary. In addition, no other 

publications analysed the dosimetric consequences of patient positioning during 

MRI scan acquisition, for patients with head and neck cancer. This study contains 

a practical methodology for imaging head and neck patients within an 

immobilisation mask using laterally positioned surface coils.  

Typically, pelvic patients are imaged in MRI using a diagnostic scanner. 

Therefore, patients would be positioned on a curved table with curved and 

padded imaging coils positioned posteriorly and another imaging coil positioned 

on the anterior surface of the patient. Pelvic patients undergoing a diagnostic 

MR would not be positioned in the same plane as their CT using patient 

positioning lasers. Bladder and bowel preparation is not regarded in the 

diagnostic MR process.  

To improve CT-MR image registration when imaging the pelvis, the ideal patient 

set-up in MR is on a flat table with phased array surface coils positioned beneath 

the table and directly above on the anterior surface of the patient. Wall 



Scott Hanvey 2013     Chapter 1: The integration of MRI into the radiotherapy planning process 19 
 

mounted lasers must also be considered in MRI to ensure the patient is imaged in 

the same plane as their planning CT. Similarity of bowel and bladder filling 

should also be considered to aid in accurate image registration (Brunt 2010). 

Taking the prostate as an example, while it may be feasible to detect 

translations in the gland using image-guided RT, rotations are harder to detect, 

potentially resulting in significant underdosing when treatments with high dose 

gradients are employed (Litzenberg et al. 2011; Zaorsky et al. 2013).  

By ensuring similarity of patient set-ups between modalities for RT,  

misalignments in registration, which can result in uncertainties in the location 

and magnitude of the GTV and thus the dose received by the patient, may be 

minimised (Hanvey et al. 2013; Hanvey et al. 2012). Patient positioning should 

also be considered when designing an MR simulator for radiotherapy planning 

using MR alone (section 1.4.3).   

1.3.4 Manual rigid registration 

Modern registration software typically provides manual registration methods. 

One of the earliest methods was to use fiducial markers, which are chosen to be 

reliable surrogates for anatomic or pathological structures. These fiducials can 

be externally positioned markers or implanted. Anatomical landmarks can also 

be chosen to perform manual image registration. While it may be possible to 

perform a registration with only three fiducials identified on both modalities, it 

is common to use at least seven to minimise the error from a misplaced point. 

This technique is discussed by (Hill et al. 1994) who registered 35 patients MR 

and CT datasets with errors of 1-2 mm. At the time of Hill’s publication the most 

common method was to position fiducial markers to the skin surface as 

implanting markers is not always possible or desirable. Hill argued that the use 

of skin markers can lead to registration errors because of skin movement 

between images. MR distortions are pronounced at the patient outline due to 

both hardware and object related effects. This is because the static magnetic 

field inhomogeneity and gradient non-linearity increases with distance from 

isocentre and chemical shift and susceptibility artefacts are prominent at the 

patient outline (section 1.2.3).  
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Point-based registration requires the user to identify suitable points on the 

image sets being registered. The algorithm performs the translation by aligning 

the centroids of the identified points and the rotation uses a method to minimise 

the sum of the squares of the distance between corresponding registration points 

(Hill et al. 1994).  

Line or surface matching techniques can also be applied. For this technique a 

strict one to one correspondence of specific points is not required, instead the 

method attempts to maximise the overlap between corresponding lines and 

surfaces from the two images by an iterative process (Balter et al. 2007). These 

structures can be obtained using automatic segmentation algorithms with minor 

editing. As with defining pairs of points this may be time consuming to 

accurately delineate corresponding lines and surfaces in both image sets. 

The interactive manual registration method enables the user to apply shift and 

rotations to the MR to overlay this accurately with the CT. Anatomical landmarks 

should then be checked for accuracy of registration. This is discussed in more 

detail in the next section. 

1.3.5 Automated rigid registration 

Today, commercial software provides automatic registration, which reduces the 

necessity for user interaction with the registration process. All the major RT 

treatment planning software manufacturers provide automatic registration as 

standard. One such automatic technique utilises implanted fiducial markers 

which are identified in CT and cone-beam CT image sets for prostate patients 

(Koch 2008). Another group used fiducial stereotactic markers for registering MR 

to CT images in a phantom and patient study (Kremser et al. 1997). 

Mutual information algorithms are among the most successful in use today 

(Veniga et al. 2004) and it was this technique that is employed in the studies 

described in Chapter 5 and 6 with the treatment planning system Eclipse (Varian 

Medical Systems, Inc. CA, USA). The mutual information procedure is based on 

information theory and calculates the required 3D transformation by maximising 

the amount of information that is common between two datasets. This 

technique eliminates the requirement to identify equivalent structures on 
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corresponding image sets, which can be manually intensive (Balter et al. 2007). 

When the two datasets are properly registered the mutual information of the 

pair of images is at a maximum. This technique is useful since it does not depend 

on the absolute intensity values and is robust to missing or limited data. Over 

the tumour volume the mutual information is low, but this does not incur a great 

penalty since the mutual information will be high in the surrounding tissue and 

so this becomes the dominant factor in the registration (Kessler 2006). 

Most registration software enables the user to define the volume within which 

the automated method will operate. This enables regions where the registration 

may contain significant errors, but are irrelevant to treatment, to be 

disregarded (Jonsson et al. 2011).  

Rigid body registration is most useful in registering anatomy which is either bone 

or encased in bone. The head, and in particular the brain, is the most commonly 

registered structure for this reason. While rigid registration is used for structures 

outside the head (e.g. the pelvis, neck or spine) the errors are expected to be 

larger (Hill et al. 2001). 

While automated image registration is useful in eliminating the observer 

dependent interaction, manual adjustment may still be required based on visual 

verification using anatomical and physiological knowledge (Li et al. 2005; Sarkar 

et al. 2005).  

1.3.6 Affine registration 

When a registration includes scaling and shearing, as well as rigid body 

transformations, it is referred to as affine. This type of transformation can be 

described in matrix form and all parallel lines are preserved. A rigid registration 

can be considered to be a special type of affine, whereby the scaling value are 

unity and skews are zero. 

The use of affine registration does not provide a great advantage over rigid 

registration since organs do not typically stretch or shear, but rather deform in a 

more complicated manner. However, geometric distortion can result in scaling 
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and skewing of the image sets which may be represented by an affine 

transformation (Hill et al. 2001; Maintz et al. 1998).  

1.3.7 Deformable registration 

Rigid body registration is only applicable when organ motion during MR and CT 

examinations can be disregarded. If the patient’s weight changes between 

examinations or if there are changes in anatomy (for example, weight loss due 

to therapy) then rigid registration is unable to take this into account. In 

deformable registration correspondence between structures in two images 

cannot be achieved without some localised warping of the images. 

Deformable registration continues to be an active area of research, but has 

largely been unused clinically in RT centres. One of the reasons why deformable 

registration has not been adopted is because it is difficult to validate its 

reliability, although there have been developments in this area (Brock 2010; 

Varadhan et al. 2013). While rigid registration generally involves 6 degrees of 

freedom (translation and rotation), deformable registration involves a 

deformation field of vectors, indicating the association between each voxel in 

the first image and each corresponding voxel in the second (Sarrut 2006).  

Differences in images that require deformable registration can occur due to 

several reasons: changes in patient anatomy (intra-subject registration), images 

from different modalities (multimodality registration), images from different 

patients (inter-subject registration) and dynamic motion, such as breathing 

(intra-fraction motion).  

Deformable registration algorithms involve the combination of several 

components: a feature space, a similarity measure, a transformation model 

(which specifies the way in which the source image can be changed to match the 

target) and an optimisation algorithm (Sarrut 2006). The optimisation process 

varies the parameters of the transformation model to maximise the matching 

criterion (Crum et al. 2004). Registration based on patient image content can be 

divided into either feature-based or intensity-based methods. Feature-based 

methods use landmark points (Li et al. 2003), organ contours (Schaly et al. 

2004), or segmented surfaces.  
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Intensity-based methods match intensity patterns over the whole image and 

have the advantage of being almost entirely automatic; however, they are 

affected by image artefacts. This algorithm works by increasing the intensity 

similarity between the two images.  

One of the most important families of transformation models used in deformable 

registration is the spline-based registration algorithms. This group of algorithms 

use control points in both image sets and a spline function to relate the 

correspondences outside of these points. For the B-splines algorithms a 

perturbation in an individual control point affects the transformation only within 

the vicinity of the point. B-spline deformable registrations are popular due to 

their computational efficiency and applicability (Crum et al. 2004). 

It may be necessary with deformable registration to impose some form of 

regularisation to prohibit unreasonable deformations such as the warping of 

bones or the folding of tissue. This problem can be dealt with by including a 

regularisation term that penalises non-physical deformations using known or 

estimated tissue properties (Ruan et al. 2006). 

1.3.8 Validating registration accuracy 

Registration accuracy assessment is important when performing image 

registration for RT. It is desirable to know the expected accuracy of a technique 

and the registration accuracy achieved on an individual set of images. With 

landmark registration, the associated error is inherent in the registration process 

and an average registration error for the entire volume can be estimated 

(Fitzpatrick et al. 2001). For other registration methods, such as intensity-based 

methods, the algorithms do not provide a measure of accuracy as the image 

similarity measure is not related to error in a way which can be described 

simply. Validation of the quality of registration may also be completed by 

making additional measurements on landmarks or regions post-registration. 

Visual assessment by a trained user is generally the best method for ensuring 

acceptable accuracy prior to using registered images in RT. 

The purpose of quantifying registration accuracy is to determine whether an 

algorithm is accurate enough for a particular clinical application or to compare 
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one algorithm with another. It is also useful to ascertain whether the 

registration accuracy of a particular subject is satisfactory prior to being used 

clinically. 

The accuracy of a registration transformation cannot be measured by a single 

number since it varies spatially across the image. It is possible to use fiducial 

markers to determine the error in a registration. However, fiducials are not 

generally located at positions of interest, and so do not always give a true 

reflection of the registration accuracy. In most instances, the only practical 

means of estimating the registration accuracy is to visually assess the images. An 

observer investigates the registered images and using tools such as colour 

overlay or split views determines whether the registration is within the required 

accuracy. Split screen or chequerboard displays should be visualised in the axial, 

coronal and sagittal views to aid assessment (Kessler 2006). Visual assessment of 

image registration has been investigated and was found to perform well at errors 

of 2 mm and greater (Fitzpatrick et al. 1998). 

Other groups (Hanvey et al. 2013; Hanvey et al. 2012; Veninga et al. 2004) used 

discrepancy in coordinate locations of anatomical landmarks in CT and MRI to 

determine registration accuracy. In addition the Dice coefficient has been used 

to determine the spatial overlap of these landmarks. 

Different techniques have been suggested for validating deformable registration 

algorithms, such as computer modelling and a deformable phantom (Brock 2010; 

Kashani et al. 2008; Kaus et al. 2007; Zhong et al. 2010). Another publication 

(Varadhan et al. 2013) used commercial software, ImSimQA (Oncology Systems 

Limited, Shrewsbury, UK) to assess deformable registration quality by simulating 

organ deformations in image sets. 

1.3.9 Image registration quality assurance 

When using the fiducial point method of image registration, information on the 

quality of registration is inherently available. For automated registration, 

anatomical landmarks can be used to check for errors. Landmarks are defined 

for a corresponding set of anatomic points on both datasets and the distances 

between the location of the points on the fixed image set and the transformed 
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locations of the points in the second image set are computed. It may be 

challenging to accurately define corresponding landmarks, especially when 

registering multimodality data. If there has been a significant time interval 

between imaging morphological changes may have occurred which could result 

in inaccuracies in registration. The choice of landmarks should be widely spaced 

around the imaged anatomy.  

It is possible to use test objects to determine the quality of registration, 

however, these do not present the same challenges to the registration software 

as patients. An alternative method is to use software generated DICOM image set 

and computationally apply known shifts, rotations or scaling. This data can be 

exported to the registration software and then re-imported to a software 

package for quantifiable analysis (OSL 2012; Varadhan et al. 2013). Pseudo-

anthropomorphic and anthropomorphic physical test objects have been 

investigated for registration quality assurance (QA) (Kashani et al. 2007; Moore 

et al. 2004; Mutic et al. 2001; Shmueli et al. 2007). Serial acquisitions of 3D 

image series also require image registration QA (Sharpe et al. 2008).  

1.4 MRI in Radiotherapy 

1.4.1 Search strategy used and sources of informati on 

Databases PubMed and SciVerse were searched with no restrictions set on date 

range, document type or subject areas. The following search terms were used 

‘MRI’ and ‘radiotherapy’; ‘MRI’ and ‘radiotherapy’ and ‘planning’; ‘MRI’ and 

‘radiation’; ‘MRI’ ‘radiotherapy’ and ‘quality assurance’; ‘magnetic resonance’ 

and ‘treatment planning’. 

For the MRI only RT planning and integrated MRI linear accelerator sections of 

this chapter (sections 1.4.3 and 1.4.4) the following search terms were 

employed ‘magnetic resonance imaging’ (or ‘magnetic’ and ‘resonance’ and 

imaging’ or ‘MRI’) and ‘only’ and ‘radiotherapy’; ‘magnetic resonance imaging’ 

(or ‘magnetic’ and ‘resonance’ and imaging’ or ‘MRI’) and ‘radiotherapy’ and 

‘linear’ and ‘accelerator’. 
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For the functional section of this chapter (section 1.4.5) the following search 

terms were included ‘magnetic resonance imaging’ (or ‘magnetic’ and 

‘resonance’ and imaging’ or ‘MRI’) and ‘radiotherapy’ and ‘diffusion weighted 

imaging’ (or ‘DWI’); ‘magnetic resonance imaging’ (or ‘magnetic’ and 

‘resonance’ and imaging’ or ‘MRI’) and ‘radiotherapy’ and ‘dynamic contrast 

enhanced’ (or ‘DCE’); ‘magnetic resonance imaging’ (or ‘magnetic’ and 

‘resonance’ and imaging’ or ‘MRI’) and ‘radiotherapy’ and ‘spectroscopy’ (or 

‘MRS’). 

1.4.2 Tumour delineation with MRI 

The increased use of RT planning techniques with steep dose gradients, such as 

intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy 

(VMAT), necessitates improved target volume definition. MRI offers improved 

soft tissue contrast and visualisation of the tumour extent enabling the 

delineation of more accurate target volumes (Khoo 2000). Tumours often possess 

similar electron densities to the surrounding soft tissue making it difficult to 

distinguish using CT unless there is a fat, air or bone interface between these 

structures. With MRI, however, there is the capacity to manipulate the imaging 

parameters allowing discrimination between the extent of the tumour and its 

boundaries of infiltration and the adjoining healthy tissue. 

Another benefit to more accurate target volume delineation is the increased 

reliability and consistency of tumour definition. This improves both the inter-

observer and intra-observer variability which is important in multi-centre trials 

(Khoo et al. 2006). 

A further consideration to incorporating MRI into the RT planning process is that 

Oncologists have undergone suitable training and that there is close 

collaboration with MR Radiologists (Sundar et al. 2002). 

MRI has been used extensively in the treatment of brain tumours with RT. 

Changes in the target volume have been shown at this site by including MRI into 

the planning process (Khoo et al. 2000; Prabhakara et al. 2007). In one 

publication, MRI was able to improve tumour delineation at the base of skull 

where X-ray attenuation at this site can obscure soft tissue using CT alone (Khoo 
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et al. 2000). However, CT gave additional information on the extent of bony 

erosion from tumour that was not available with MRI, therefore despite the 

many advantages of MRI over CT there are occasions when CT provides 

complimentary information to MRI. 

Head and neck tumour delineation can also benefit from the addition of MRI in 

RT planning (Ahmed et al. 2010; Chung et al. 2004; Emami et al. 2003; Newbold 

et al. 2006). MRI has the advantage of reduced artefacts from dental amalgam, 

which can be particularly problematic in CT imaging, making it the imaging 

modality of choice for soft tissue oropharyngeal cancers (ENT UK 2011). 

Changes in anatomical and tumour definition using MRI data instead of CT have 

also been reported in the pelvis and, in particular, the prostate (Charnley, et al. 

2005; Khoo et al. 2006; Rasch et al. 1999; Sannazzari et al. 2002; Sefrova et al. 

2012; Smith et al. 2007). One of the main advantages of using MRI in the pelvis is 

the potential to provide superior target volume delineation over CT due to the 

reduced interference from prosthetic hips or gold seed implants which are 

commonly used in image guided prostatic RT. 

1.4.3 RT planning using MRI alone 

MRI is the imaging modality of choice for many tumours, but the lack of electron 

density information and potential for geometric inaccuracy, has resulted in MRI 

most commonly being implemented in conjunction with CT images via image 

registration. Therefore, if MR images alone are to be used for RT planning any 

image distortion must be measured and corrected if necessary and the electron 

density information must be assigned to the MRI dataset. Issues related to 

patient set-up must also be overcome if MRI only simulation is to be a viable 

treatment option. 

There are three main advantages with MRI only RT planning. Firstly, the image 

registration procedure introduces a systematic error, which can potentially 

compromise tumour control probability. Secondly, there is the advantage of the 

reduced imaging costs (Beavis et al. 1998), which will also ease patient 

discomfort related to multiple scans. The increased RT planning time required 

for organ segmentation on the MRI to assign electron density information must 
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be considered in this cost evaluation. It is likely that auto-segmentation tools 

will play a greater role in the near future and will facilitate a reduction in the 

time required to assign bulk density to MR data. Thirdly, by removing the CT 

there is a reduced dose burden on the patient. However, it could be argued that 

this advantage is negated by the much large doses associated with RT. 

Intracranial 

One of the first anatomical sites to be investigated using MRI alone for RT 

planning was the brain. It has been shown that the geometric distortion was less 

than 2 mm over a range of 24 cm and so no further distortion correction was 

deemed necessary (Beavis et al. 1998). One publication performed an in-house 

distortion correction and assigned bulk electron density values to the brain, 

bone and scalp to obtain good agreement in isodose distribution, dose-volume 

histograms and tumour-control probability based procedure. Another study found 

distortion errors of less than 1.5 mm within radial distances of 12 cm (Kristensen 

et al. 2008). This group recommended that MRI bone segmentation should be 

performed when using beam energies of 4 MV to avoid deviations in dose larger 

than 2% compared to CT.  

Prostate 

There have also been many publications of MRI only RT planning investigating 

the prostate. An absolute dose agreement of 2% was found between CT-based 

and MR-based prostate RT plans with bulk density assigned datasets (Chen et al. 

2004; Lee et al. 2003). One publication found that MRI only RT planning of the 

prostate using bulk electron density for the bone and tissue resulted in an 

average dose error of 1.3% from CT planning (Lambert et al. 2011). If uniform 

density MRI based planning is performed this error increased to 2.6%. This group 

attributed the dose errors to the differences in the patient external contours 

introduced by changes in the patient set-up between modalities. Another group 

delineated the external patient contour, the femur, femoral heads and hipbone 

on the MRI only RT plans and found that the mean number of monitor units 

required to reach the prescribed dose was within 0.2% of CT based RT plans 

(Jonsson et al. 2010). 
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Relevant bony structures can be delineated to create MRI-derived digitally 

reconstructed radiographs (DRRs) for patient set-up. In one publication, 

deviations between CT and MRI-derived DRRs were measured across the image 

sets and the maximum difference observed was 3 mm (Chen et al. 2007). 

Another group compared the spatial uncertainties associated with an MRI-based 

workflow for external RT of patients with prostate cancer to a standard CT-

based workflow (Nyholm et al. 2009). In this study, patients were set-up for 

treatment at the MRI scanner and transported to the treatment unit in the same 

position. The MRI-based methodology resulted in spatial uncertainties of 2-3 mm 

versus 3-4 mm with the CT-based workflow. The main reason for this 

improvement was credited to the exclusion of the CT-MR registration in the 

planning phase.  

A recent publication demonstrated a method to convert MRI intensity values to 

Hounsfield units (HU) for the pelvic bones. By manually segmenting the bones of 

the pelvis these authors showed the mean prediction error of the conversion 

model was 135 HU. This method creates pseudo-CT data which can be used for 

dose calculation and to generate DRRs (Kapanen et al. 2012).   

1.4.4 Integrated MRI and Linear Accelerator or 60Co source 

Currently, several groups are investigating the integration of a megavoltage 

radiation therapy source with MRI to allow real-time adaptive RT. Researchers 

have proposed merging a 60Co source or a linac with an MRI system (also known 

as an MRI-linac).  

The group at the University Medical Center Utrecht has built a prototype hybrid 

MRI-linac by adapting a 1.5T closed bore MRI scanner and a single energy (6MV) 

linac (Figure 1.3). Their design uses active magnetic shielding to create a zero 

magnetic field at the location of the gun of the accelerator and to minimise the 

magnetic field along the accelerator tube. By magnetically decoupling the linac 

and the MRI system they are able to minimise the accelerator induced geometric 

distortions in the MR images (Lagendijk et al. 2008). Two RF cages are placed at 

both sides of the MRI bore. Thus, the inner wall of the MRI cryostat is part of the 

RF cage, and the MRI is RF shielded from the rest of the room, including the 

accelerator (Raaymakers et al. 2009).  
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Figure 1.3 (a) Diagram of the integrated MRI linear  accelerator (MRI-linac) concept, where (1) 
is the 1.5T MRI scanner, (2) is the 6 MV accelerato r in a ring around the MRI scanner, (3) is 
the split gradient coil. (4) are the superconductin g coils, (5) is the low magnetic field toroid 
in the fringe field around the MRI scanner. (b) A p hotograph of the prototype MRI-linac 
showing the accelerator on a wooden stand with the MRI situated behind it and the copper 
RF cage of the MRI is visible. Reproduced from (Raa ymakers et al. 2009). 
 

Since a closed bore MRI system is used this requires transmission of the radiation 

beam through the MRI. To accomplish this beam transmission the group have put 

aside the superconducting coils and have split the gradient coil to allow a non-

distorted beam passage. Stripline technology is used to minimise the thickness of 

the RF coils thereby reducing radiation absorption. To overcome the RF 

interference between the linac and the MRI, the researchers synchronised the 

MRI RF acquisition and the accelerator pulses to give intermittent imaging and 

irradiation on a millisecond scale. This enables intrafraction imaging with the 

beam on (Lagendijk et al. 2008).  

(a) 

(b) 
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The researchers have also considered the dose distribution in the MRI-linac. The 

scatter induced by the beam transmitting through the MRI components has been 

determined by Monte Carlo simulations. The impact of the Lorentz force on 

secondary electrons due to the presence of the 1.5T field has also been 

investigated using Monte Carlo simulations. This has been shown to result in a 

decreased build-up distance and a shifted and asymmetrical penumbra 

(Raaymakers et al. 2004). In addition, at tissue-air interfaces, the Lorentz force 

can cause electrons to re-enter the tissue, however, this effect can be reduced 

by using opposing beams (Raaijmakers et al. 2005). 

One of the most recent developments from this group has been gated radiation 

delivery where the gating signal is derived from on-line MR imaging (Crijns et al. 

2011), which enables treatment where respiration induced target motion exists. 

This study demonstrates its capability using a phantom with a one-dimensional 

(1D) periodic motion. The phantom’s position is established using fast 1D MR 

imaging and the radiation delivered is gated based on this signal. 

Another prototype MRI-linac design uses a 6MV linac but directs the beam 

through the opening of a biplanar 0.2T permanent magnet system. The linac, 

magnet structure and gradient coils rotate in unison about a single axis. A 

conventional Faraday cage surrounds the magnet to prevent RF interferences 

(Fallone et al. 2009). The rotation of the magnet around a patient would 

introduce magnetic susceptibility related distortion. At 0.2T, this distortion was 

shown to be less than 0.5 mm given an encoding gradient strength of 5mT/m or 

higher (Wachowicz et al. 2010). 

The effect of radiation induced currents in the RF coils caused by pulsed 

irradiation has been investigated. It was shown that by using a teflon and copper 

build up material radiation induced currents can be reduced by up to 60% (Burke 

et al. 2012). It has also been demonstrated that the RF noise from the motors of 

the multi-leaf collimators (MLC) can be effectively shielded to avoid signal-to-

noise degradation (Lamey et al. 2010). 
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1.4.5 Functional MRI in RT 

Diffusion-weighted imaging 

Diffusion-weighted imaging (DWI) is a functional MRI technique that gives 

information on the microscopic motion of water molecules. The degree of 

restriction of water diffusion is related to the integrity of cell membranes. 

Cancerous tissue tends to have more restricted diffusion due to an increase in 

cellularity. DWI is performed by applying two opposing field gradients around the 

refocusing pulse. Water molecules are dephased by the first gradient and 

rephased by the second. If the water molecules move between the opposing 

gradients this will result in dephasing which is seen as signal loss. The strength 

and duration of the applied gradients is expressed by the b-value. By repeating 

the DWI sequence with different b-values the apparent diffusion coefficient 

(ADC) value is computed. The ADC provides an assessment of the velocity and 

distance a water molecule has moved during the DWI sequence.  

Evaluation of tumour response during RT opens up the possibility to adaptive RT 

such as changing the target volume or dose escalation to nonresponding tumour 

subvolumes.  

One study investigated the feasibility of using DWI as a measure of treatment 

response in patients receiving RT for prostate cancer. This study showed a 

significant increase in the mean ADC of tumours before treatment and after 1 

week of therapy. This type of information may in the future enable changes to 

treatment during the course of RT (Park et al. 2011).  

In head and neck cancer, a significant difference in ADC-values has been 

measured between responding and non-responding tumours 1 week after the 

start of RT (Kim et al. 2009).  

Dynamic contrast enhanced MRI 

Dynamic contrast-enhanced MRI (DCE-MRI) involves the acquisition of images 

before during and after the injection of a contrast agent. A rapid series of T1-

weighted images are acquired to observe the passage of the contrast media 
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intravascularly and as it leaks into the extravascular extracellular space (EES). 

For quantitative analysis of DCE-MRI data it is necessary to know the arterial 

input function (AIF). The AIF is the rate of arrival of contrast medium at a tissue.  

With quantitative analysis DCE-MRI can provide information related to tissue 

blood volume, perfusion and permeability.  The most widely used method of 

measuring vessel permeability changes is based on the Tofts two-compartment 

model. In this model the contrast agent leaks into the EES and the tissue 

perfusion and permeability can be assessed from the wash-in and wash-out 

phases of the signal intensity-time curves.  

Using compartmental modelling, DCE-MRI can be used to generate quantitative 

parameters which reflect tumour vascularity. These parameters include: Ktrans, 

which describes the forward leakage rate of the contrast medium, the fractional 

EEP (ve), the wash out rate (kep) and the plasma volume fraction (vp) (Li et al. 

2012). 

A recent study found that a pre-treatment DCE-MRI can be used to predict the 

outcome in head and neck squamous cell carcinoma patients undergoing 

chemoradiotherapy. This study showed that the skewness of Ktrans was a 

predictor of outcome in these patients (Shukla-Dave et al. 2012).  

Another group showed a significant difference between the benign peripheral 

zone and tumour for the parameters Ktrans, ve and kep in patients with prostate 

cancer. They also demonstrated that DCE-MRI was more sensitive than T2-

weighted images for prostate cancer localisation (Jackson et al. 2009). 

Proton MR spectroscopy 

The metabolite composition of tissue can be uncovered using in-vivo 

spectroscopy. This technique uses gradients to selectively excite a voxel of 

tissue, then record the free induction decay to produce a spectrum. Proton MR 

spectroscopy (1H-MRS) is employed most widely in the clinical setting. 

Metabolites appear as peaks in the spectrum and the area under each peak is a 

measured of the relative number of protons in the metabolites environment.   
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One of the metabolites commonly used in tumour localisation is choline (Cho), 

since elevated levels of Cho-containing compounds in tumours is believed to 

reflect membrane synthesis and therefore, indirectly, elevated cell proliferation 

rate (Aboagye et al. 1999). In the brain, n-acetyl aspartate (NAA) indicates 

neuronal integrity and is reduced if neurons are being destroyed by a disease 

process.  

In general, low-grade lesion and meningiomas show reduced NAA and elevated 

Cho and this becomes more prominent with increasingly malignant disease. A 

correlation has been shown between the NAA and Cho levels and the tumour 

grading (McRobbie et al. 2003).  

A significant positive correlation has been shown, in patients with head and neck 

cancer, between Cho relative to water (Cho/W) and the total lesion glycolysis 

using 18F-labelled fluorodeoxyglucose positron emission tomography (FDG-PET). 

This result implies that increased glucose metabolism is related to increased 

cellular proliferation.  

In the same study, a significant negative correlation was observed between 

Cho/W and the standard deviation of Kep and between Cho/W and the standard 

deviation of ve. The standard deviation describes the width of the distribution 

and is indicative of the heterogeneity of the tumour. These results suggest that 

heterogeneous head and neck tumours contain regions of low proliferation and 

are highly necrotic which is demonstrated by significantly lower Cho 

concentrations. 

The significance of the correlation between 1H-MRS, DCE-MRI and FDG-PET to 

RT, is that it could be used in treatment planning, in the prediction of short-

term treatment response or outcome, and in monitoring treatment (Jansen et al. 

2012).  

Using receiver operating characteristic (ROC) curves to assess the diagnostic 

performance of imaging, another group assessed the use of MRI parameters 

(including 1H-MRS) for the detection of locally recurrent prostate cancer after 

external beam RT. By comparing the MRI data with a transrectal ultrasound 

biopsy, this study demonstrated that the area under the ROC curve for T2-
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weighted imaging was 61.6% (95% confidence interval [CI] = 51.1-73.2), for DWI 

it was 75.5% (95% CI = 61.0-85.3) and for 1H-MRS it was 83% (95% CI = 75.5-89.1). 

Combining 1H-MRS with and DWI data resulted in significantly improved accuracy 

(86.3%; 95% CI = 77.5-93.3) than DWI alone. However, the area under the ROC 

curve for T2-weighted imaging did not change significantly from when combined 

with 1H-MRS data. The combination of all three parameters gave the best results 

with the area under the ROC equal to 86.9% (95% CI = 77.6-93.4), although this 

was not a significant improvement over 1H-MRS alone (Westphalen et al. 2012).  

It has also been shown that spectroscopic imaging can offer a solution to the 

geometric deficiencies of MRI. The use of spectroscopy for geometric distortion 

correction has typically been unachievable due to the length of scan times. It is 

hoped that by using recent developments to reduce scan time, such as parallel 

imaging and compressed sensing, this may soon be a practical solution (Bakker et 

al. 2012). 

1.5 Overview of chapters 

The remaining chapters of this thesis are organised as follows: 

The principles of radiotherapy planning and magnetic resonance imaging 

Chapter 2 begins with an overview of the RT workflow employed at the Beatson 

West of Scotland Cancer Centre. The RT planning techniques IMRT and VMAT are 

described. Following this, the fundamental principles underlying MRI are 

explained. This includes the effect on spins within a magnetic field, the use of 

magnetic field gradients and the process of image reconstruction. Pulse 

sequence diagrams relevant to this thesis are also described. 

Evaluation of an inline three-dimensional MRI geometric distortion correction 

algorithm for radiotherapy 

Chapter 3 describes a study evaluating a 3D distortion correction algorithm for 

MRI. This study compares the 3D distortion correction algorithm with the 

standard 2D distortion correction algorithm. Various test object were used, 

including the TO3 Eurospin phantom (Diagnostic Sonar Ltd., Livingston, UK), the 
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MagNet (MagNET, London, UK) slice position phantom and a bespoke phantom 

constructed from LEGO® bricks. The purpose of this study was to investigate the 

accuracy of an inline 3D distortion correction algorithm and to determine a safe 

scanning range for RT planning. 

Patient immobilisation in MRI 

In Chapter 4 the benefits and problems of incorporating patient immobilisation 

in MRI for RT planning are discussed. Since it was known that future experiments 

were going to involve orientating patients in the RT position within the MRI 

scanner, a test object study was conducted to determine whether similar image 

quality could be achieved in the RT position. For the first time, quality 

assurance MRI phantoms were used to assess the image quality of different 

image coils which could be used to scan patients in the RT position within an 

immobilisation mask. The following tests were performed: normalised signal to 

noise ratio; resolution; fractional uniformity; geometric linearity and distortion; 

multiple slice position error; slice width and contrast to noise. Amongst the 

image coils tested was the 4-channel cardiac coil which was used for the clinical 

experiments in later chapters.  

The influence of the MRI scan position on patients with prostatic cancer 

undergoing radiotherapy 

Chapter 5 explores the effect of MRI scan position in patients with prostate 

cancer. In this experiment three patient position protocols are compared for 

twenty patients with prostate cancer: a CT scan with a diagnostic MRI scan 

viewed on a separate console, a CT scan registered with a diagnostic MRI scan 

and a CT registered with an MRI in the RT position. To scan patients in the RT 

position a surface coil was positioned beneath a Perspex plate to give a flat 

surface and an in-room laser positioning device was used to align the patients in 

the same way as their CT. The target volume was delineated by a Consultant 

Clinical Oncologist using all three patient position protocols with a week 

between outlining on the same patient. Delineations were made on three rigid 

landmarks: the femoral heads and the symphysis pubis to determine the CT-MRI 

registration quality. Changes in the target volume were compared for the 

different protocols. Finally, the effect on the quality of the RT plan for the CT 
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registered to the RT positioned MRI, which was the presumed gold standard, was 

compared with the other two patient set-ups. This was achieved by generating 

RT plans for the target volume of the CT registered to the MRI in the RT position 

while investigating the dose received by the other two target volumes. This is 

the first time this study had been investigated in the literature.  

The influence of the MRI scan position on patients with oropharyngeal cancer 

undergoing radiotherapy 

A similar experiment to the previous chapter was conducted for patients with 

oropharyngeal cancer in Chapter 6. As with the prostate study three patient 

position protocols were used: a CT scan with a diagnostic MRI scan viewed on a 

separate console, a CT scan registered with a diagnostic MRI scan and a CT 

registered with an MRI in the RT position within an immobilisation mask. Changes 

in the target volume and quality of registration were again examined. Optimising 

the RT plan for the presumed gold standard of the CT registered with the MRI 

scan in the RT position, the dose to the target volumes for the other two set-ups 

was investigated. This work had not been investigated prior to being described in 

this thesis. 

Final conclusions 

Chapter 7 is the final chapter and summarises the original contributions of this 

thesis to the field of MRI within RT as well as the limitations of the studies. 

Future work following on from this thesis is discussed.  
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2 The principles of radiotherapy planning and 
magnetic resonance imaging 

2.1 Introduction 

The following chapter describes the radiotherapy (RT) workflow for the 

treatment of patients with prostate and head and neck cancer at the Beatson 

West of Scotland Cancer Centre (Beatson). The principles of RT planning and 

planning algorithms are described. Intensity modulated radiotherapy (IMRT) and 

volumetric modulated arc therapy (VMAT) planning methods are considered, 

since these techniques are applied in the two clinical studies of Chapters 5 and 6 

respectively. Finally, the fundamentals underlying image formation in magnetic 

resonance imaging (MRI) are described in this chapter, including pulse sequences 

employed in this thesis.  

2.2 Radiotherapy workflow 

The RT process workflow is the path a patient and their scan information follow 

when the decision to treat with RT is taken. The following workflow diagram 

(Figure 2.1) outlines this process from the point of booking to treatment. 

From Figure 2.1 it can be seen that the patient is fitted for a custom 

immobilisation mask prior to receiving a computed tomography (CT) scan at the 

CT simulator. Immobilisation masks are made using thermoplastic sheets which, 

after placing in warm water, become pliable and are positioned over the 

patients head and shoulders (see Figure 6.2, Chapter 6). These masks are then 

moulded to the patient’s contours and adhered to locking devices that are used 

daily to lock the mask in place. Immobilisation devices ensure reproducible 

patient positioning between simulation and subsequent treatments. It also 

prevents patient movement during treatment (Levitt et al. 2008). The purpose 

of the CT scan is to enable target volumes and critical structures to be outlined 

on the CT axial images within the RT planning software. The dose received by 

the patient can then be modelled using the RT planning software and virtual 

simulation can be performed three-dimensionally (3D). Additionally, the CT 

information can be used to display any beam’s eye view on a digitally 

reconstructed radiograph (DRR). A DRR is a ray-line reconstruction through a 3D 
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volumetric CT dataset. The DRR is equivalent to a conventional radiograph using 

a virtual source and the geometry of the planned RT beam (Sherouse et al. 

1990). The introduction of DRRs significantly improved the accuracy of field 

placements and enabled shielding to be designed with more accurate conformity 

to the target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Radiotherapy workflow diagram at the Bea tson. 
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The CT images are then imported into the RT planning system along with any 

other additional datasets, such as MR images. The MRI may be registered to the 

CT for the purposes of aiding in target definition. For more information on image 

registration please refer to Chapter 1, Section 1.3.  

Once all target volumes and critical structures have been outlined, RT planning 

in accordance with the Physician’s intent can begin. This planning may be 

conformal RT, where multiple beams are directed towards the target with static 

multi-leaf collimators (MLCs) positioned to provide shielding for healthy tissue. 

The RT planning methods used in the clinical studies of this thesis are IMRT and 

VMAT. These techniques are described later in Section 2.5.  

Before the plan is checked by a RT planner a monitor unit (MU) check is 

performed by software independent to the RT planning system. This independent 

MU check is recommended as best practice (RCR 2008).  

Pre-treatment checks ensure that the correct patient is being treated, for a 

given course, in accordance with the Physician’s intent and that the correct 

anatomical site has been planned. At pre-treatment the Physician will review 

the plan and, provided all is correct, will approve the plan for treatment. The 

patient then receives pre-treatment imaging in accordance with the imaging 

protocol for the anatomical site being treated. The purpose of pre-treatment 

imaging is to ensure that the patient is correctly set-up and positioned in 

relation to the treatment fields to within specified tolerances. The protocol 

defines to what extent changes can be performed. If the patient set-up is 

outwith this defined range, any change may require authorisation from the 

Physician which may result in a re-scan and re-plan. Changes can occur when a 

patient loses weight during treatment or when the target volume or critical 

structures move. Some structures, such as the prostate, are subject to 

movement based on the volume of the bladder and rectum. It is generally the 

practice in RT centres to perform bladder preparation to maintain a 

reproducible prostate position. At the Beatson three gold seeds are implanted 

into the prostate and can be imaged prior to treatment using an electronic 

portal imaging device (EPID). A couch shift may then be applied to bring the 

target to within an acceptable tolerance.  
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2.3 Radiotherapy planning introduction 

RT planning is the process by which the therapeutic prescribed dose of the 

radiation oncologist is accomplished accurately via a set of treatment 

instructions and a physical description of the dose to the patient is prepared. 

The aims of RT planning are as follows: 

• To determine the tumour volume in the patient and to define the target 

volume for treatment. 

• To define the patient data (e.g. the body outline, dimensions, tissue 

densities) and to locate within it the target volume and other anatomical 

structures which may affect the dose distribution or for which it may be 

necessary to apply dose constraints. 

• To determine the optimum treatment configuration required to irradiate 

the target volume to the prescribed dose within clinical constraints (+7% 

and – 5% of the prescribed dose). 

• To calculate the dose distribution in the patient, which is displayed in a 

single or multiple planar view, to allow assessment of the plan and 

adjustment of field parameters to achieve optimisation. 

• To prepare a set of treatment instructions to allow the plan to be 

delivered. (Williams et al. 2000). 

The International Commission on Radiation Units and Measurements (ICRU) has 

provided definitions related to RT planning in ICRU Report 50 (ICRU 1993). The 

terminology in ICRU Report 50 is summarised as follows: 

• Gross Tumour Volume (GTV) – the gross palpable or visible extent and 

location of the malignant growth. The purpose of defining the GTV is to 

ensure an adequate dose is delivered to the entire GTV to achieve local 

control and to record the tumour response to the delivered dose.  
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• Clinical Target Volume (CTV) – the GTV and any subclinical microscopic 

spread of the disease.  In external beam RT, it is necessary to treat the 

CTV sufficiently to achieve the aim of the therapy, whether a local cure 

or palliation. The CTV usually has a high tumour cell density close to the 

demonstrated tumour with decreasing density towards the periphery 

(often a margin of about 1cm).  

• Planning Target Volume (PTV) – the CTV with additional margins for 

movement of internal organs (Internal Margin) and geometrical variations 

and inaccuracies in the patient set-up (Set-up Margin). The PTV is a 

geometrical concept and takes into account the net effect of all 

geometrical variations. The definition of the PTV is dependent on the 

precision of tools such as immobilisation devices and lasers, but does not 

include a margin for the dosimetric characteristics of the radiation beam 

(i.e. penumbral areas and build-up region), as these require an additional 

margin during treatment planning and shielding design. Conceptually the 

dose to the PTV should be considered representative of the dose to the 

CTV. 

• Treated Volume - the volume enclosed by an isodose surface, selected 

and specified by the radiation oncologist as being appropriate to achieve 

the purpose of treatment (e.g. tumour eradication or palliation). 

• Irradiated Volume - the volume of tissue that receives a dose that is 

considered significant in relation to normal tissue tolerance. 

• Organs at Risk (OARs) – normal tissues whose radiation sensitivity may 

significantly influence the treatment planning and may possibly require a 

change in the beam arrangement or a change in the dose. Potential 

movement of OARs and set-up uncertainties must be considered.  

OARs may be considered as serial (e.g. spinal cord), parallel (e.g. lungs) or a 

combination of serial and parallel (e.g. heart). If any part of a serial organ 

receives a dose above its threshold then there will be total loss of function, for 

example, in the case of the spinal cord this may result in total paralysis. With a 

parallel organ part of the organ may be severely damaged but the remainder of 
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the organ can continue to function. In a serial organ it is important to consider 

the volume of the organ that is receiving a dose above a threshold (Symonds et 

al. 2012).  

Figure 2.2 is a schematic of how the ICRU terms are related to one another.  

 

Figure 2.2 Schematic illustration of ICRU volumes. 
 

ICRU 50 also recommends the selection of a point within the PTV, known as the 

ICRU Reference Point, for the purpose of dose reporting. The ICRU Reference 

Point is chosen according to the following criteria: 

• The dose at the point should be clinically relevant and representative of 

the dose throughout the PTV. 

• The point should be easy to define in a clear and unambiguous way. 

• The point should be selected where the dose can be accurately 

determined. 

• The point should not be selected where there is a steep dose gradient. 

These criteria will be fulfilled if the ICRU Reference Point is located at the 

centre or central parts of the PTV and near the central axis of the beam(s). In 

certain circumstances the ICRU Reference Point cannot be defined at or near the 

centre of the PTV. In these situations it should be selected inside the tissues 

represented by the PTV where the dose is considered to be meaningful. This 

should be in a region where the tumour cell density is at a maximum.  
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Optimisation of a RT plan may be limited by a number of factors. Physical 

constraints are defined by the fundamental nature of the radiation and 

limitations of the RT equipment. Limited resources of a department may mean it 

is necessary to compromise the treatment provided. It may also be inappropriate 

to use a more sophisticated treatment when the patient will not gain any 

significant clinical benefit. Non-standard and complex plans can also increase 

the risk of errors. 

Dose distributions are calculated using simulation software to provide the 

oncologist with a physical description of the prescribed treatment and to record 

the treatment. 

Finally a prescription sheet is given to the radiographer, which is a set of 

instructions to enable them to deliver the treatment as described by the dose 

distribution. These instructions are required to be both unambiguous and 

accurate. Checks throughout the planning process ensure accuracy, and these 

checks should be included in a fully documented quality assurance (QA) system.  

2.4 Radiotherapy planning algorithms 

When modelling the dose distribution through a structure, the RT planning 

system must account for the primary and scattered components of dose. The 

primary dose can be calculated from experimental measurements of the dose 

distribution in air or by modelling the geometry of the head of the linear 

accelerator (linac), which includes the position and shape of the radiation 

source. Dose calculation is performed using the percentage depth dose (PDD) 

and the tissue maximum ratio (TMR) and can be applied using the inverse square 

law and phantom scatter corrections. The PDD is defined as the dose at depth in 

a phantom expressed as a percentage of the dose at a reference depth (usually 

the position of the peak absorbed dose) on the central axis of the beam. TMR is 

defined as the dose at a given depth in a phantom expressed as a ratio of the 

maximum dose on the central axis of the beam.  

For homogeneous absorbers the scattered component of dose can be calculated 

using tables of scatter-air ratios which have been previously derived from depth-
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dose data. The curvature of the surface of the subject being modelled must also 

be considered. 

A further consideration in the RT planning system is secondary electrons, 

generated as a result of the photon beam passing through the subject. This can 

again be experimentally measured in a homogeneous medium and determined by 

deconvolving the primary distribution.  

The dose in a heterogeneous medium can be modelled by calculating pencil 

beam kernels for the primary, singly scattered and multiply scattered 

components of the dose and then convolving each separately with the primary 

fluence. Pencil beam algorithms integrate pencil beams over the entire beam. 

This enables an irregularly shaped field to be irrelevant to the calculation. The 

effect of the heterogeneity is accounted for by scaling the kernels by the 

physical density of the medium at the point of interaction (Williams et al. 2000). 

One of the limitations of the pencil beam method is that the side scatter 

produced in the calculation of the dose to lung is not accurately modelled.  

The Eclipse RT planning system (Varian Medical Systems, Inc. CA, USA) was 

employed for dose calculations in this thesis. This RT planning system uses the 

anisotropic analytical algorithm (AAA) which is a 3D pencil beam 

convolution/superposition algorithm that uses separate Monte Carlo derived 

modelling for primary photons, scattered extra focal photons and electrons 

scattered from the beam limiting devices. The AAA model provides a fast and 

accurate dose calculation for photon beams, even in regions of complex tissue 

heterogeneities. Tissue heterogeneities are accounted for anisotropically in 3D 

using photon scatter kernels in multiple lateral directions. This is achieved by 

using a radiologic scaling of the dose deposition functions and the electron 

density based scaling of the photon scatter kernels independently in four lateral 

directions. Finally, the dose distribution is acquired by the superposition of the 

dose calculated with the photon and electron convolutions (Varian Medical 

Systems 2008).  

Configuration of the AAA model is based on Monte Carlo determined physical 

parameters that are adapted to measured clinical beam data. These are used to 

define the fluence and energy spectrum of the beam specific to each treatment 
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unit. Beam modifying accessories such as blocks, dynamic wedges and MLCs are 

supported in the dose calculation.  

The AAA dose calculation model is comprised of two main components: the 

configuration algorithm and the actual dose calculation algorithm. The 

configuration algorithm is used to determine the basic physical parameters to 

characterise the fluence and energy spectra of the photons and electrons in the 

beam and their scattering properties in a water equivalent medium. While some 

of the parameters used in the dose calculation algorithms could be determined 

by measuring depth dose and lateral dose profiles in a water equivalent 

phantom, is not possible to determine all parameters experimentally. The AAA 

model pre-computes all the parameters using Monte Carlo simulation and then 

modifies these parameters to match the measured beam data. This enables a 

quick and highly accurate determination of all the basic physical parameters 

required for the AAA dose calculation.  

The dose calculation is based on separate convolution models for the primary 

photons, scattered photons and electrons scattered from the beam limiting 

devices. The beam is divided into small beamlets to which the convolutions are 

applied. The final dose distribution is determined by the superposition of the 

dose calculated with photon and electron convolutions for the individual 

beamlets. The absorbed energy E(X,Y,Z) at an arbitrary calculation point in the 

patient is obtained by a superposition of the separate energy contributions from 

the primary photons (ph1), the extra focal photons (ph2) and the contaminating 

electrons from all individual beamlets denoted by index β: 

Equation 2.1 

( ) ( ) ( ) ( )( )∑ ++=
β

βββ ZYXEZYXEZYXEZYXE contphph ,,,,,,,, ,,, 21  

Finally, the absorbed energy distribution is converted to a dose. The different 

homogeneities are modelled as scaled water and electron densities are used to 

convert the energy to dose (Varian Medical Systems 2008). 

Monte Carlo techniques predict dose distribution by simulating the behaviour of 

a large number of photons that contribute to the beam. This algorithm 

encompasses the random nature of the interacting photons, the distance that 
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the photon will travel and the manner in which a photon is finally absorbed. The 

secondary electrons produced as a result of the photon interactions is also 

considered. Due to the complexity of this technique much simplification is 

required. However, Monte Carlo techniques require a very large number of 

random samples to achieve an acceptably accurate dose distribution (Williams et 

al. 2000).  

The calculated dose distribution is displayed as isodose curves by the treatment 

planning system. Isodose curves are lines which join points of equal dose and 

provide a means of mapping the dose distribution as a function of depth and 

transverse distance from the central axis of the beam. The isodose distribution is 

affected by beam energy, field size, source-to-surface distance, attenuators and 

source/collimation geometry.  

2.5 Radiotherapy planning techniques 

2.5.1 Intensity modulated radiotherapy introduction  

IMRT is the delivery of fields with a non-uniform fluence and provides highly 

conformal radiation doses to target volumes with steep dose gradients (Webb 

2003). Greater conformity to the target can lead to reduced radiation toxicity 

and therefore fewer side-effects for the patient. It was first shown by Brahme 

that if the intensities can be modulated across a radiation field, the increased 

freedom would enable a greater ability to conform the volume of the high dose 

to the target than with 3D conformal RT (Brahme 1988). Inverse planning 

algorithms and iterative computer driven optimisation techniques are employed 

to generate radiation treatment fields with a varying intensity beam profile. To 

deliver these spatially modulated beams requires the motorised field shaping 

capabilities of MLCs to operate either dynamically, whereby the MLCs move 

while the radiation beam is on, or in a static step-and-shoot mode (Spirou et al. 

1994). 

IMRT is a development on the traditional practice of three-dimensional 

conformal RT and uses non-uniform radiation beam intensities determined using 

computer based optimisation techniques. IMRT is delivered using static gantry 

angles while the beam is on. The radiation fields in IMRT are modulated in 
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intensity to shape the dose distributions to the desired target. This requires 

additional linac capabilities to be installed, commissioned and maintained. 

Additional requirements are also necessary for treatment planning programs to 

compute the more complex intensity patterns. Commissioning to verify the 

dosimetric accuracy of the computer algorithms used by the treatment planning 

system would also be required.  

2.5.2 Intensity modulated radiotherapy optimisation  and 
calculation 

Forward planning begins with a selection of field specifications, for example the 

beam direction, weight, shape and wedges. These beam parameters are 

subsequently adjusted using trial and error until a satisfactory dose distribution 

is achieved. Inverse planning, on the other hand, requires user-predefined 

criteria for dose to target volumes and surrounding healthy structures. The 

inverse planning algorithm then attempts to find the optimum solution based on 

the predefined dose-volume constraints (Chui et al. 2001).  

While conformal RT planning techniques use forward planning to obtain an 

acceptable dose distribution, IMRT employs inverse planning. Inverse planning is 

the process by which the intensity distribution for each beam is determined to 

best meet the criteria specified by the user. These criteria include the beam 

directions and dose-volume objectives. The PTV is typically given a minimum 

and maximum dose constraint within which the entire target tissue should exist. 

The OARs are generally specified a maximum dose-volume constraint, with the 

intention of limiting the highest dose to the organ and an intermediate 

constraint to minimise the dose to a particular volume of the organ (Cherry et 

al. 2009). Priority factors are used to alter the relative weight given to different 

objectives. The RT planning system represents these objectives as a cost 

function. To change the dose calculation outcome the planner must alter the 

objectives and re-optimise, thereby changing the cost function. It is possible for 

the user to choose dose objectives which are impossible to achieve, or, 

conversely, that are so relaxed that they do not sufficiently guide the optimiser. 

Optimiser algorithms cannot guarantee a globally optimum solution or a 

clinically acceptable result. Generally, several attempts are required before an 

acceptable outcome is achieved (Leibel et al. 2002). 
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The dose constraints may be violated with a penalty and the penalties are 

specified in accordance with the relative importance of meeting each constraint, 

which the user defines by assigning each structure with a priority value. The 

computer driven optimisation algorithm divides each radiation field into a series 

of smaller segments with varying intensities, known as beamlets, and iteratively 

alters the weights until the composite 3D dose distribution corresponds to the 

defined objectives (Leibel et al. 2002). The treatment planning system achieves 

this by making an initial estimation at the required beamlet intensities and then 

calculating the dose distribution. An optimisation (or cost) function quantifies 

the difference between the calculated and the desired dose distribution. The 

beamlets within each field are then adjusted and the dose distribution is 

recalculated. If the cost function is a lower value than the initial value the new 

intensities are accepted, otherwise they are rejected. This iterative process 

continues to adjust the intensities until the constraints are met, the user 

interrupts the process or no further reduction in the cost function can be 

achieved. User interaction to adjust the constraints is possible during the inverse 

planning process (Cherry et al. 2009).  

The result of the optimisation process is a fluence map for each beam, which is 

a 2D matrix of beamlet intensities for each beam (Hendee et al. 2005). The 

combination of each of the field’s final beamlet intensities represents the 

fluence required to deliver the dose distribution. While the solution to the cost 

function from the optimisation is the ideal fluence map, physical restrictions of 

the linac usually require a conversion to a deliverable dose distribution (Cho et 

al. 2000), such as when the leaf transmission sets a lower limit on the minimum 

deliverable intensity. Finally, a forward dose calculation is performed to 

determine the dose distribution that will be delivered. A flow diagram of the 

IMRT optimisation and calculation process is shown in Figure 2.3. 
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Figure 2.3 Flow diagram of the intensity modulated radiotherapy optimisation and 
calculation process. 
 

User specifies beam directions 
and dose objectives 

The user defines the weighting 
applied to dose objectives 

The optimisation algorithm divides each 
radiation field into a series of beamlet 
intensities and makes an estimate at 
the required beamlet intensities 

A cost function quantifies the 
difference between the calculated 
and desired dose distribution 

The beamlets are adjusted 
and the dose distribution is 
recalculated 

Cost function 
is lower 

Cost function 
is higher 

Rejected 

The dose constraints 
are met or cost function 
cannot be lowered  

The dose constraints 
are not met or the cost 
function can be lowered 

Iterative 
process 

Iterative 
process 

Forward dose 
calculation 



Scott Hanvey 2013                  Chapter 2: The principles of RT planning and MRI 51 
 

A leaf-sequencing algorithm determines the MLC movements that best 

correspond to the desired intensity patterns. This algorithm approximates the 

fluence map by dividing the beam into a number of MLC patterns or segments.   

In the step and shoot method, segments are delivered by the linac by setting a 

segment shape, turning the beam on for an appropriate number of MUs, then 

turning the beam off and moving the MLCs to the next segment. IMRT plans 

delivered at the Beatson use the MLCs in a dynamic mode. Each pair of opposing 

leaves travel under computer control as a sliding window during radiation 

delivery. The window width and leaf speed are continuously adjusted to achieve 

the required intensity profile. A computer program translates the intensity 

profiles of each intensity modulated beam into leaf sequences, and this 

information is subsequently transferred to the treatment machine (Spirou et al. 

1994). The sliding window approach requires a more stringent MLC QA protocol, 

since the leaf speed must also be considered.  

Different RT planning systems control the interaction between inverse planning, 

leaf sequencing and dose calculation differently. Some, such as the Eclipse RT 

planning system (Varian Medical Systems, Inc. CA, USA), used in the experiments 

of this thesis, employ a different algorithm for optimisation than the final dose 

calculation. This can help speed up the planning process. While the final dose 

calculation is the most important, the accuracy of the intermediate calculation 

can affect the optimisation results. If, for example, the optimisation calculation 

over- or underestimates the penumbra or scatter dose then the dose after the 

final calculation may be affected, generating suboptimal results (Ezzell et al. 

2003). There is typically a compromise between speed and accuracy for dose 

calculation by the RT planning system. 

As well as delineating targets, all OARs should be contoured. If a structure, 

required to be kept within a certain dose, is not identified and objectives set for 

it then the optimisation process may deposit unacceptably high doses in that 

region. Once delineated and optimised the dose-volume histograms (DVHs) for 

all structures can be evaluated. 
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2.5.3 Intensity modulated radiotherapy machine requ irements 

In conformal RT the outer aperture of the beam shape is defined by the MLC. 

Tolerances of around 1 to 2 mm in leaf position are acceptable, since the 

uncertainty is small compared to the aperture size and is likely to be 

inconsequential to the output and clinical outcome. In IMRT it has been shown 

that for beam widths of 1 cm, uncertainties of a few tenths of a millimetre can 

result in dose uncertainties of several percent (Ezzell et al. 2003). In addition, 

the beam edges are required to move to many locations to achieve the intensity 

profile, so high positional accuracy of the MLCs is required so that the sum of 

their contributions may be known. Physicists must therefore determine the MLC 

leaf position accuracy during IMRT commissioning and develop rigorous tests as 

part of the regular QA.  

As well as positional accuracy the transmission characteristics of the MLC are 

more significant for IMRT than for conformal RT. This is because the leaves 

shadow the treatment area for a large proportion of the delivered MUs. A leaf 

transmission measurement should span a large enough area to adequately 

sample leaf leakage and intraleaf transmission. 

Since the dimensions of the small segment beamlets may be too small, 

traditional calculation methods are not sufficient. Instead methods which 

integrate pencil beams or dose kernels may be used (Philips et al. 1999) or 

Monte Carlo techniques applied.  

Using conformal RT techniques the transmission through collimators and the 

penumbra affect the edge and outside of fields and so are not as clinically 

important. While with IMRT beamlet intensities vary through the irradiated 

beam, therefore modelling of the penumbra and transmission of the MLCs is 

essential. For example, a five field prostate IMRT plan shields a point within the 

prostate for more than 60% of the MUs and leaf transmission contributes up to 4% 

of the entire dose (Ezzell et al. 2003) 

It may be necessary to upgrade a linac to be able to provide IMRT, for example, 

by changing MLCs to have dynamic capability. Additionally, computer programs 

used for an independent MU check may need to be upgraded for IMRT 
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functionality. New requirements could be necessary for the computer networks 

to enable the required file transfers. Additional dosimetry equipment is likely to 

be required for the commissioning and regular QA of IMRT. The RT planning 

system will perhaps need upgraded to have IMRT planning capabilities and this 

may have consequences on the computational processing time required across 

the network.  

2.5.4 Intensity modulated radiotherapy further cons iderations 

Caution is required when target volumes are delineated in the build-up region. 

This is because the inverse planning algorithm will try to increase the intensities 

of the beamlets responsible for the low doses in the build-up region. Potentially, 

these high intensity beamlets will result in a poor overall plan quality, or cause 

hot spots in the target or elsewhere. The solution to this problem is to remove a 

margin of the PTV from the body contour. If, however, the target is required to 

be in the build-up region then a bolus may be required (Leibel et al. 2002).  

At the plan evaluation stage, examining DVHs is a useful, but not comprehensive 

method, since DVHs contain no spatial information. It is possible for IMRT plans 

to have hot or cold spots in unexpected regions. In 3D conformal RT where 

beams are defined using the beam’s eye view to contain the PTV on each field, 

it is often the case that the low dose on a DVH corresponds to the penumbra at 

the periphery. Using IMRT, low doses may occur within the PTV, or, conversely, 

high doses may exist well outside the target. For this reason, when planning with 

IMRT, isodoses must be inspected on every image slice to ensure erroneous dose 

regions do not exist. 

IMRT can be used to increase the homogeneity of the dose distribution to the 

target volume over conventional 3D conformal RT. However, there is a greater 

potential for a geographical miss of the target volume using IMRT because of the 

increased PTV conformity of the dose distribution and delivery times can be 

longer than with 3D conformal RT (Staffurth 2010). The reason for the increased 

treatment times using IMRT is that the radiation beam is switched off after the 

delivery of each treatment field as the linac is moved to the next treatment 

angle and there are a typically a greater number of radiation beams used than 

with conformal RT. 
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The use of margins within IMRT is of the utmost importance due to the rapid 

dose gradients produced (Manning et al. 2001). When steep dose gradients are 

used, the consequence of localisation errors is of a higher significance. This 

highlights the need for accurate localisation in RT which can be provided by, for 

example, registering CT with MRI or using image guidance at treatment, such as 

cone-beam CT.  

IMRT results in greater volumes of tissue receiving a low dose, but it is not yet 

fully understood the likely clinical effect of these doses. Some studies have 

estimated that IMRT may increase the risk of a secondary fatal cancer by a 

factor of around 2-5 (Hall et al. 2003; Kry et al. 2005). These studies 

investigated the carcinogenic implications of IMRT by considering DVHs or 

thermoluminescent dosimeter (TLD) measurements. Another study using both 

DVHs and TLD measurements concluded that the risk associated with IMRT is 

comparable to 3D conformal RT (Ruben et al. 2008). 

IMRT requires more MUs than conformal treatment by a factor of around 2 to 10, 

so room shielding should be reassessed. Primary barriers are not usually 

affected, however the periods of use should be re-evaluated since IMRT typically 

uses many more gantry angles than conformal RT treatments. Greater workloads 

affect the leakage radiation reaching secondary barriers and so the dose through 

these barriers must be investigated.  

In the inverse planning process, the additional dose calculations after each 

iteration must be performed more rapidly than with conventional algorithms. 

This places greater computational demands on the RT planning system. An 

additional processing burden on the planning system is the frequent use of very 

small field segments which requires the dose calculation algorithms to 

accurately model the penumbra. 

Due to the complexity of IMRT treatments, further QA measurements are 

required to ensure the dose distribution is calculated accurately. Verification of 

the delivered dose can be achieved by comparing the calculated dose from the 

RT planning system with measurements using film, detector array phantoms, 

ionisation chambers or EPIDs (Cherry et al. 2009).  
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With IMRT the gantry angles are user defined and therefore the optimum 

treatment angles are not always considered (Palma et al. 2010). Selecting the 

most appropriate angles to use for IMRT can be challenging (Wang et al. 2004d). 

Typically, more beams are required for an IMRT plan than with conventional 3D 

conformal RT. For example, in the treatment of head and cancer, 3D conformal 

RT would commonly employ lateral fields, whereas with IMRT seven or nine 

beams could be utilised. This would result in dose to structures which would 

have been blocked with conformal RT, such as the anterior portion of the mouth 

and the cerebellum. While the dose to these structures will be considerably 

lower than the target, careful monitoring of the patient during treatment is 

required to detect any unexpected side effects (Hendee et al. 2005).  

2.5.5 Arc therapy techniques 

Arc therapy began to be used with orthovoltage energies (200-500kV) because it 

was difficult to achieve a high enough target to non-target ratio to treat deep-

seated lesions. With the introduction of mega-voltage energies an acceptable 

target to non-target ratio became possible and so for many years arc therapy 

was not commonly used. Arc therapy then began to be utilised with megavoltage 

energies in the early 1990s, using dynamic MLCs (Williams et al. 2000). 

Megavoltage arc therapy can be broadly classified into two types: tomotherapy 

and VMAT. Tomotherapy machines are very much like a CT scanner and linac 

combined. Radiation is delivered in a thin fan-shaped distribution which can be 

adjusted by the opening and closing of the binary collimator. The radiation 

source continuously rotates while the patient is moved through the machine. 

VMAT is analogous to tomotherapy, since radiation can be delivered using up to 

360° beam angles (Otto 2008). However, VMAT can treat the whole tumour 

volume at once, rather than in slices or as a helix, and uses a standard linac. It is 

possible to treat a RT fraction using a single rotation, although additional arcs 

can sometimes be used to improve the dose distribution (Clivio et al. 2009; 

Verbakel et al. 2009a).  

VMAT delivers radiation with the MLCs in a continuous dynamic mode while the 

gantry of the linac rotates through one or more arcs. This method was first 

proposed as intensity modulated arc therapy (IMAT) and uses rotational cone 



Scott Hanvey 2013                  Chapter 2: The principles of RT planning and MRI 56 
 

beams of varying shapes to achieve intensity modulation (Yu 1995). IMAT 

converted intensity patterns into multiple segments and delivered the radiation 

using multiple overlapping arcs. This strategy was later developed to include a 

varying dose-rate and gantry rotation speed in order to deliver the radiation 

using a single arc algorithm, known as VMAT (Otto 2008).  

Arc therapy enables highly conformal dose distributions and is an alternative 

form of IMRT. The three main advantages of arc therapy over IMRT are: the 

superior dose distributions, the improved treatment time delivery and the 

reduction in MU requirements due to greater treatment efficiency, which may 

result in a reduction in the dose to normal tissues (Palma et al. 2010). Unlike 

IMRT, VMAT utilises all possible treatment angles to treat the target while 

avoiding critical structures (Palma et al. 2010; Teoh et al. 2011).  

The term VMAT in the published literature encompasses different computer 

algorithms developed by manufacturers. RapidArc (Varian Medical Systems, Inc, 

Palo Alto, CA, USA) is Varian’s optimisation algorithm developed from the 

research by Otto (Otto 2008) and is used in the clinical study in Chapter 6. 

Philips (Philips Healthcare, Eindhoven, Netherlands) markets a rotational IMRT 

solution with the trade name SmartArc and Elekta (Elekta AB, Stockholm, 

Sweden) uses the trade name VMAT. Since all algorithms are variations in the 

principle of IMAT, the generic term VMAT will be used to describe the technique 

in this thesis.   

2.5.6 Volumetric modulated arc therapy comparison s tudies 

Comparison studies have shown that VMAT produces similar or improved dose 

distributions to IMRT (Clivio et al. 2009; Palma et al. 2008; Vanetti et al. 2009; 

Wu et al. 2009), while reducing the treatment time by approximately 3 minutes 

for a standard 2 Gy treatment and reducing the number of MUs by around 50% 

(Shaffer et al. 2010). Stereotactic lung RT delivers up to 20 Gy per fraction to a 

moving target and the treatment times can be reduced from 30-45 mins using 

IMRT to 4-11 mins with VMAT (Verbakel et al. 2009b). Two studies evaluating 

head and neck cancer treatment found that VMAT gave equivalent or improved 

dose distribution to IMRT while lowering the monitor units by 50-60% and 
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significantly reducing the treatment times (Vanetti et al. 2009; Verbakel et al. 

2009a).  

Monitor units give a measure of the amount of radiation produced by the linac; 

therefore, an increase in the number of MUs is indicative of greater scatter 

radiation, which in theory could increase the risk of secondary malignancies. 

The reason why VMAT offers treatment time saving over IMRT is because with 

IMRT time is required to transfer the information to the treatment machine, 

reposition the gantry and to set the field to the correct shape at every field. 

With VMAT the radiation beam is continuously on during treatment and each arc 

is considered as one field so delivering the plan information to the treatment 

machine is only required once per arc. Furthermore, IMRT plans deliver a greater 

number of monitor units than with VMAT; therefore, the linac is turned on for a 

longer period of time.  

VMAT can be delivered with either a constant dose rate or a variable dose rate 

during gantry rotation. A variable dose rate enables improved dose conformity 

and therefore greater sparing of OARs over IMRT (Palma et al. 2008). 

2.5.7 Volumetric modulated arc therapy optimisation  and 
calculation 

VMAT uses an iterative inverse planning process in a similar way to IMRT. A 

treatment arc can be simulated by a number of equally spaced static beams. If a 

smaller angle is used between beams the accuracy of the calculation increases. 

It is believed that most VMAT planning algorithms calculate using static beams  

because the computational demands would be too great to trace the actual ray 

paths from a continuously moving source (Webb et al. 2009).   

RapidArc uses a stepwise optimisation of leaf position, which is divided into 177 

angles, known as control points (Verbakel et al. 2009a). Otto showed that 

instead of optimizing all the control points at once, which would be extremely 

time consuming, an optimal solution can be achieved by progressively increasing 

the number of control points to converge the optimisation in a short period of 

time (Otto 2008). The aperture shapes and weights are optimised initially for a 

number of coarsely spaced gantry angles, without a great consideration of 
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aperture connectivity. Since the connectivity of the aperture shape is ignored in 

the first instance, the optimiser has greater freedom to achieve an optimal dose 

distribution. As the solution converges, additional gantry angles are included. As 

the angular spacing gets smaller the optimiser considers the aperture shape 

connectivity both in the initialisation of the aperture shapes and during the 

optimisation. The shapes of the additionally inserted apertures are linearly 

interpolated from their neighbours. This course-to-fine sampling is known as 

progressive sampling and enables the optimisation to converge to a solution 

more quickly.  

As with IMRT, after optimisation, a leaf-sequencing algorithm determines the 

MLC movements required to correspond with the optimised intensity profiles.  

Beamlets from each control point are convolved to generate a final dose 

distribution. The data on the leaf movement required to achieve the desired 

dose distribution is then transferred to the linac for treatment.  

2.5.8 Volumetric modulated arc therapy further cons iderations 

One of the main advantages of VMAT over IMRT is the improved treatment 

efficiency and subsequently the reduced treatment times. Longer treatment 

times have several negative implications. Firstly, it limits the patient throughput 

per treatment unit per day. Secondly, it requires patients to spend longer on the 

treatment couch, which can increase patient discomfort and increase the risk of 

intra-fraction movement of the tumour or patient. Increased treatment times 

also results in a rise in the machine time required for quality assurance by 

physics staff to measure and confirm the delivered dose distribution. Finally, in 

addition to the practical considerations, prolonged treatment time may have 

detrimental radiobiological consequences. It has been shown using 

radiobiological calculations that treatment times greater than 15 minutes per 

fraction result in decreased tumour control probability (Wang et al. 2003). 

A concern with IMRT is the increased number of MUs delivered. While there is a 

larger volume of normal tissue receiving lower dose with VMAT than with 

conformal RT, there is a reduction in the number of MUs with VMAT compared to 

IMRT and therefore this theoretically reduces the associated risk of secondary 

malignancies (Hall 2006).  
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As with IMRT careful consideration of margins and excellent target localisation is 

required due to the steep dose gradients associated with VMAT. However, due to 

the reduced treatment time using VMAT, intrafraction motion, excluding 

respiratory or cardiac motion, is likely to be less of a concern than with IMRT.  

Upgrades to the linac will be necessary to enable VMAT to operate, and new 

software will be required for dose optimisation and calculation. New capabilities 

will also be required for software to perform an independent MU check on VMAT 

plans. It is likely that upgrades will be required to computer networks due to the 

greater computational demands of VMAT. New dosimetry equipment will be 

needed to perform the pre-treatment QA to ensure the measured and calculated 

dose distributions correspond. While QA for VMAT is more complex and therefore 

more time consuming than 3D conformal RT, it is likely to require less treatment 

machine time than IMRT due to the reduced treatment times.  

2.6 Magnetic resonance imaging 

MRI is used in the management of cancer patients for diagnosis, staging, RT 

planning and in response to therapy. The MRI technique maps the distribution of 

hydrogen nuclei (protons) in water molecules throughout the subject under 

examination. This method is possible since the protons possess both charge and 

spin. The combination of charge and spin produces a nuclear magnetic dipole; 

therefore the nuclei can be likened to microscopic magnets. Normally, the 

orientation of the magnetic moments is random, but by placing a subject in a 

high static magnetic field, the magnetic moments align with the direction of the 

applied field. Not only does the applied field cause the nuclei to align in the 

direction of the magnetic field, but the spinning nuclei precess about the 

applied field, in the same way as the earth’s gravitational field causes a 

gyroscope to precess about the vertical axis. The angular frequency, f, of the 

precession is governed by the Larmor equation, 

Equation 2.2 

   
π

γ
2

0B
f =  

where γ is the gyromagnetic ratio (a constant for a given nucleus) and B0 is the 

strength of the static magnetic field. This frequency is known as the Larmor 
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frequency and for a field strength of 1.5 T, the Larmor frequency is equal to 

63.87 MHz. 

There are two possible orientations of the spin angular momentum for protons 

with respect to the applied field: aligned with or against the field. These 

orientations correspond to different energy levels, and it requires slightly more 

energy for the proton to be aligned against the field. Only transitions between 

upper and lower energy levels are possible. At room temperature, a nucleus has 

a slightly greater chance of being in the lower energy state than the higher one. 

If you consider a large number of hydrogen nuclei (there are many millions of 

protons in the human body), when the field is applied, a small net magnetisation 

will result from the cancellation of the effects of all but a few of the precessing 

nuclei. At body temperature (37 °C), in a 1.5T MRI scanner, the ratio of protons 

aligned with the field to protons aligned against the field is about 1.000004. The 

vector sum of all the protons is called the net magnetisation vector, M0, and is 

aligned with the applied static magnetic field, B0, often denoted as the z 

direction.  

The magnetisation in the body is very small in comparison to the main magnetic 

field, so it is virtually impossible to measure this magnetisation while it is at 

equilibrium and parallel with B0. However, the net magnetisation vector can be 

rotated away from alignment with B0, by applying an oscillating magnetic field 

of the same frequency as the rate of precession, B1. This magnetic field is called 

a radiofrequency (RF) pulse, since the Larmor frequency for MRI is in the radio 

frequency (tens of MHz) range.  

If a static, instead of an oscillating, magnetic field was applied, the resultant 

net magnetisation would have a complicated movement because of the 

precession from the two static fields. However, by temporarily applying an 

oscillating magnetic field at the Larmor frequency, B1, this results in a rotation 

of the net magnetisation. The net magnetisation will rotate into the transverse 

(x-y) plane (Figure 2.4) when a “90° RF pulse” is employed. For a given magnetic 

field strength different nuclei precess at a different frequencies and so the 

effect of applying the RF pulse at the Larmor frequency of the hydrogen nuclei is 

to single out such nuclei to precess in the transverse plane. Using a detector 



Scott Hanvey 2013                  Chapter 2: The principles of RT planning and MRI 61 
 

which only measures magnetic fields in the transverse plane, M0, is now 

sufficiently significant that it can be measured. 

 

Figure 2.4 The net magnetisation vector, M 0, is orientated (a) along the direction of the 
applied static magnetic field, B0, at thermal equilibrium (b) in the transverse plan e following 
a 90°°°° radiofrequency pulse. This diagram is in the rotat ing frame at the precession of the 
Larmor frequency. The axes x ′′′′ and y ′′′′ represents the axes rotating at the Larmor frequen cy. 
 

B1 is turned on for only a few milliseconds to achieve the rotation. By applying 

the oscillating magnetic field for different durations, varying amounts of 

rotation can be achieved. Leaving a 90° RF pulse on for twice as long, or 

doubling its strength, would rotate M0 by 180° and the RF pulse would be called 

a 180° pulse. Since time saving is crucial in MRI, the strength of the pulse is 

usually changed to produce various flip angles. The RF pulse also brings the spins 

into phase coherence.  

When the RF pulse is turned off, the magnetisation vector emits a signal at the 

Larmor frequency and decays as spins lose phase coherence and begin to cancel 

each other out. This occurs because the spins experience slightly different 

magnetic field strengths due to interactions with their own oscillating magnetic 

fields and other nuclei. The rotating magnetisation can induce an alternating 

current in a coil which is tuned to resonate at the Larmor frequency, which 

generates a sinusoidal signal in the receiver coil, which is sensitive only to 

magnetisation perpendicular to B0. In a few milliseconds, the spins point in 

arbitrary directions and the transverse component of the net magnetisation 

vector is lost. Additionally, the magnetisation vector returns to being aligned 
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with the static field. This decaying, oscillating signal is known as the free 

induction decay.  

2.7 MRI relaxation times 

2.7.1 T2 and T1 relaxation times 

After the spins have been rotated into the transverse plane, they begin to relax 

back to their equilibrium position when the RF pulse is switched off. The 

recovery of the magnetisation vector to the equilibrium state can be considered 

in two parts: the dephasing of the spins in the transverse plane and the re-

growth of net magnetisation vector (M0) in the z-direction, as the spins lose the 

energy they absorbed from the pulse to the surrounding environment (or 

lattice). These processes are known as T2 (spin-spin or transverse) and T1 (spin-

lattice or longitudinal) respectively. Different tissues have different T1 and T2 

relaxation times, which can be used to generate contrast between different 

tissues in an MR image. 

As the spins interact with the nuclear spins of each other, they gradually 

dephase until there is no net magnetisation vector in the x-y plane. The T2 time 

relates to the monoexponential loss of phase coherence as the spins interact. 

After a time interval T2, 63% of the transverse magnetisation is lost. The rate of 

the transverse demagnetisation, following a 90° rotation of M0, is given by, 

Equation 2.3 
( ) ( ) ( )2exp0 TtMtM xyxy −=  

The T1 time constant describes the monoexponential recovery of the 

magnetisation to its original value. After applying a 90° RF pulse the longitudinal 

component of the magnetisation vector will regrow to 63% of its maximum value 

in a time T1. The molecular environment of the protons will dictate the exact 

rate of the longitudinal remagnetisation and will follow the first-order equation, 

Equation 2.4  
( ) ( ))1/exp(10 TtMtMz −−=  

The T1 and T2 relaxation times are represented by Figure 2.5. 
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Figure 2.5 (a) Decay of the M xy (time constant T2) after a given time and (b) reco very of the 
Mz (time constant T1) after a further time. This diag ram is in the rotating frame at the 
precession of the Larmor frequency. The axes x ′′′′ and y ′′′′ represents the axes rotating at the 
Larmor frequency. 
 

2.7.2 T2* decay 

The T2 time constant can be artificially shortened by the static magnetic field, 

B0, inhomogeneities and susceptibility effects. Magnetic susceptibility is the 

extent to which a material becomes temporarily magnetised when it is placed in 

a magnetic field. Between two boundaries of different susceptibility a small 

magnetic field gradient will exist. Magnetic field inhomogeneities and 

susceptibility effects also change the magnetic field experienced by the nuclear 

spins, which varies the frequency of precession, causing them to move out of 

phase more quickly resulting in a faster loss of signal. The additional dephasing 

effects gives a time constant T2*. By applying a 180° refocusing RF pulse the 

partially dephased magnetisations reverse the direction of the dephasing 

(rephase) so that spins with less phase difference than others now have more 

and vice versa. Dephasing due to the interactions between spins (T2 time 

constant) will still occur resulting in signal loss. This type of signal is called a 

spin-echo pulse sequence (see Section 2.10.1 for more information). Multiple 

180° RF pulses can be applied to repeatedly refocus the decaying transverse 

(Mxy) magnetisation and is called a multiple spin echo sequence. 
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2.7.3 Gadolinium contrast agent 

Gadolinium has strong paramagnetic properties meaning that it becomes strongly 

magnetised when placed in a magnetic field. Most body tissues are diamagnetic 

and only become weakly magnetised. When gadolinium is injected into the body 

the vascular system delivers it to all perfused tissues. It has the effect of 

decreasing the T2 and T1 relaxation times of protons in the immediate vicinity 

of the molecule. This shortening of the T1 means that tissues have greater signal 

intensity on T1-weighted images. Gadolinium rapidly accumulates in highly 

vascular tumours and so become brighter on post contrast T1-weighted images. 

A gadolinium contrast agent was used in the clinical study of Chapter 6 to give 

increased signal intensity to oropharyngeal lesions. 

2.8 Magnetic field gradients 

To localise the area to be imaged three magnetic field gradients are applied in 

the three orthogonal planes. By applying combinations of gradients at once, 

oblique angled planes may be obtained. Field gradients are alterations to the 

main magnetic field and are generated by coils of wire through which current is 

passed. These magnetic field gradients are called the slice selection, frequency 

encoding and phase encoding gradients.  

The slice selection gradient has the effect of changing the Larmor frequency 

across the subject in one direction. This enables a section to be excited by 

choosing the correct frequency range of RF excitation pulse. The section which 

contains the frequencies which match the frequencies of the oscillating 

magnetic field will respond and an MRI signal will be generated from that 

section. The position of the slice can be changed by modifying the frequency of 

the RF pulse, but using the same gradient strength. This changes the region 

which meets the resonant condition. Slice thickness can be modified by altering 

the slope of the gradient field or by changing the bandwidth of the RF excitation 

pulse. A stronger gradient will result in a thinner slice. Alternatively, using a 

narrower RF pulse bandwidth will equally deliver a thinner slice width. 

The frequency encoding gradient is a static gradient field just like the slice 

selection gradient. It causes a range of Larmor frequencies to exist in the 
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direction that it is applied. The range of frequencies is a mix of signals from a 

slice and can be separated using a Fourier transform. The frequency encoding 

gradient is switched on when the signal is being received and is therefore often 

referred to as the readout gradient. 

The signal must be encoded in the remaining axis of the image and this is called 

phase encoding. To create a single MRI signal the same signal measurement is 

repeated numerous times, but different phase relationships between different 

rows of voxels are introduced for each measurement. By comparing the rate of 

change of phase for each row, which is different for every row, the Fourier 

transform can separate out the rates of change of phase (frequencies) and signal 

intensity information can be discerned in the phase encoding direction.  

To introduce different amounts of phase encoding for each measurement a 

magnetic field gradient is temporarily turned on. As with the slice selection and 

frequency encoding gradients this causes a range of Larmor frequencies to exist 

in the direction it is applied. While the gradient is on spins precess faster at one 

end of the gradient than at the other end. After turning off the gradient the 

Larmor frequencies return to their original values and are all the same 

frequency, but a phase difference will exist in the direction that the gradient 

has been applied. This concept is illustrated in Figure 2.6 where in (a) the 

protons are in phase following an RF pulse. When a gradient is applied along the 

column of protons for a short period of time, as shown in (b), the protons speed 

up in their precession in accordance with the strength of the magnetic field they 

experience. In this illustration the speed and strength of the magnetic field is 

greatest from top to bottom. Finally, in (c), the gradient is switched off and the 

protons experience the same magnetic field again. The protons therefore have 

the same precession frequency but are now out of phase. By varying the strength 

of the magnetic field gradient in the phasing encoding direction for subsequent 

measurements, different phase relationships are established. By determining the 

rates of change of phase from all measurements the location of the pixels can be 

deduced by a Fourier transform. 
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Figure 2.6 Phase encoding (a) protons are in phase,  (b) a gradient field is applied changing 
the speed of the protons, (c) the gradient is turne d off again and the protons return to 
precessing at the original speed but with different  phase. 
 

2.9 k-space and image reconstruction 

The raw data in MRI is collected in a temporary data space, known as k-space, 

before reconstruction. The k-space is in two axes: the x-axis represents the 

frequency information and the y-axis represents the phase information. Each 

line of k-space is a digitised recording of the signal obtained per TR and every 

phase encoding gradient is a different line of k-space. The phase encoding 

gradient is then switched off and the frequency encoding gradient is switched on 

as a positive gradient which then moves the k-space coordinate horizontally 

across that line. For an N × N pixel image to be reconstructed, N different phase 

encoding steps must be applied. At the centre of the k-space, the data primarily 

determines the signal-to noise and contrast of an image, whereas data at the 

edges of the k-space contains the image resolution information. 

The signal obtained during the acquisition of an image is converted using an 

array processor or computer. The 2D Fourier transform is applied to the data 

stored in k-space, with a 1D Fourier transform applied in the frequency encoding 

direction and another in the phase encoding direction. The 2D Fourier 

transformation converts the signal which has been acquired in the time domain 

into the frequency domain. The free induction decay is the signal acquired and 



Scott Hanvey 2013                  Chapter 2: The principles of RT planning and MRI 67 
 

the Fourier transform separates the signal into its constituent frequency 

components, which contribute to the signal emitted from the image slice. While 

the spins in the frequency direction are shifted with respect to each other with 

frequency, the spins in the phase encoding direction are shifted with phase. A 

different rate of change of phase is applied for every line of k-space, and a rate 

of change of phase is equal to frequency. This enables the total signal from each 

pixel to be determined, which is used to generate a greyscale image.  

2.10 Pulse sequences 

The time interval between successive 90° pulses is known as the repetition time 

(TR). The TR controls the amount of T1 relaxation that has occurred. The time 

interval between the 90° pulse and the resulting echo is known as the echo time 

(TE). The TE determines the amount of T2 relaxation that has occurred. T1-

weighted images have a short TE (<<50 ms) and short TR (<<500 ms), whereas 

T2-weighted images have a long TE (>100 ms) and a long TR (>3 s). 

2.10.1 The spin echo pulse sequence 

The spin echo (SE) sequence consists of a selective 90° RF pulse followed by one 

or more selective 180° pulses. The amplitude of the echo is a function of TE and 

the spin-spin relaxation time T2. The 180° pulse has the effect of flipping the 

spins 180° about the y axis, reversing the phase angles of the spins. Spins which 

were dephasing clockwise will now be dephasing anticlockwise and vice versa. 

Provided the spins do not move too far within the imaging volume, they will 

continue to experience the same magnetic field inhomogeneities and dephase in 

the same direction. After a period of time equal to the delay between the 90° 

and 180° pulse, all the spins will come back in phase about the y-axis forming 

the spin echo. This phase reversal technique means that the echo height 

depends on T2, and not on the magnetic field inhomogeneities or tissue 

susceptibilities.  

A SE sequence acquires only a single echo from each excitation and is therefore 

intrinsically slow (in the order of minutes). Figure 2.7 is a schematic 

representation of the SE sequence. This diagram shows the 90° and 180° RF 

pulses and the timings of the encoding gradients.  
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Figure 2.7 A spin-echo pulse sequence diagram, wher e RF are the radiofrequency pulses, 
Gs is the slice selection gradient, Gp is the phase  encoding gradient and Gf is the frequency 
encoding gradient. 
 

2.10.2 The turbo spin echo sequence 

To speed up the SE sequence multiple echoes can be acquired from each single 

excitation pulse, as shown in Figure 2.8, and is known as a turbo spin echo (TSE) 

or fast spin echo sequence. In the TSE multiple 180° RF pulses are use to 

continually refocus the decaying transverse magnetisation to produce a train of 

echoes per TR interval. Each echo corresponds to one line of k-space but each 

successive echo in the train has increasing T2 weighting and a lower SNR. After 

each signal measurement the phase encoding is reset with an equal and opposite 

magnetic field gradient (known as a phase encoding rewinder pulse) and then a 

new phase encoding gradient is applied. The function of the rewinder pulse is to 

undo the phase change caused by the phase encoding gradient so that there is 

phase coherence between successive echoes. The group of signal echoes decay 
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with a time constant T2. The contrast and signal-to-noise ratio of an MR image 

are primarily determined at the position of the echo at which the phase 

encoding gradient has the smallest amplitude (i.e. at the centre of k-space). The 

time taken between the excitation pulse and this echo is known as the effective 

echo time (TEeff). It is possible to change the TEeff by changing the phase 

encoding pattern. The turbo factor is the number of echoes acquired per 

excitation. Therefore, Figure 2.8 would have a turbo factor of 4.   

 

Figure 2.8 A turbo spin echo pulse sequence diagram , where RF are the radiofrequency 
pulses, Gs is the slice selection gradient, Gp is t he phase encoding gradient, Gf is the 
frequency encoding gradient, M xy is the decaying transverse magnetisation and TE eff is the 
effective TE. 
 

With a TSE a significant reduction (up to the order of 10 fold) in scan time can 

be achieved. The TSE sequence is usually used for T2-weighted imaging only 

because of the subtle contrast behaviour of this sequence type. Images produced 
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with these sequences can be difficult to interpret since both lipid and water 

appear bright. 

2.10.3 The fast recovery fast spin echo sequence 

The fast recovery fast spin echo (FRFSE) sequence is a spin echo sequence which 

quickens the return of the transverse magnetisation to equilibrium in the 

longitudinal direction (Figure 2.9). It achieves this by the addition of a negative 

90° RF pulse after signal decay at the end of the echo train to refocus residual 

spins with long T2 from the transverse plane to the longitudinal axis, during the 

time when normal refocusing is occurring, as illustrated in Figure 2.10. This 

sequence results in a much faster recovery of tissues with a long T2, such as 

cerebrospinal fluid, to equilibrium enabling enhanced contrast resolution 

between tissues with long and short T2 or a shorter TR and therefore a 

significantly shorter scan time. This sequence can be used in conjunction with 

parallel imaging techniques for short breath hold imaging or with respiratory 

gating for free-breathing imaging.  

 

Figure 2.9 A fast recovery fast spin echo sequence,  where RF are the radiofrequency 
pulses, Gs is the slice selection gradient, Gp is t he phase encoding gradient and Gf is the 
frequency encoding gradient. Transverse magnetisati on still present at the end of the echo 
train is refocused back into the longitudinal axis by applying a negative 90 °°°° pulse. 
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Figure 2.10 (a) Normal refocusing of the transverse  magnetisation occurs at the end of the 
echo train prior to the negative 90 °°°° radiofrequency pulse. (b) After the application of  a 
negative 90 °°°° radiofrequency pulse the net magnetisation vector is refocused back into the 
longitudinal axis. 
 

2.10.4 The short inversion time inversion recovery sequence 

The short inversion time inversion recovery (STIR) sequence is a technique with 

specific timing to suppress the signal from fat and is suitable for large fields of 

view or in regions with varying magnetic susceptibility. This sequence uses a 

180° inversion preparation pulse to invert all magnetisation. Imaging begins after 

a delay to allow the longitudinal recovery of fat magnetisation to reach the null 

point so that there is no fat magnetisation which can be rotated into the x-y 

plane. The time between the 180° preparation pulse and the 90° excitation pulse 

is known as the inversion time (TI) and is chosen to be ln(2)T1fat, where T1fat is 

the T1 relaxation time for fat. Tissue other than fat still has signal since they 

have a T1 relaxation time which is different to fat and so have not yet reached 

the null point, or have recovered beyond it. The pulse sequence diagram for a 

STIR sequence is shown in Figure 2.11. 
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Figure 2.11 A short TI inversion recovery sequence,  where RF are the radiofrequency 
pulses, Gs is the slice selection gradient, Gp is t he phase encoding gradient, Gf is the 
frequency encoding gradient and TI is the inversion  time. 
 

Figure 2.12 illustrates the inversion of the net magnetisation vector by the 180° 

preparation pulse. After a period of time the net magnetisation vector returns to 

its equilibrium value in accordance with T1 relaxation. 

The TI is chosen such that there is no longitudinal magnetisation to be rotated 

into the x-y plane from fat, which can be considered the null point of fat. Fat 

reaches the null point more quickly than white matter, grey matter, water or 

oedema, and so there will still be signal from these structures, as shown in 

Figure 2.13. At 1.5T an approximate TI of around 140 ms will result in the 

suppression of fat. A STIR sequence can be used to reduce chemical shift 

artefact since fat is suppressed. 
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Figure 2.12 The net magnetisation vector, M 0, is orientated (a) along the direction of the 
applied static magnetic field, B0, at thermal equilibrium. (b) Following a 180 °°°° radiofrequency 
preparation pulse the net magnetisation vector is i nverted (c) After a time delay the net 
magnetisation returns to its equilibrium value (M 0) according to T1 relaxation. (d) After a 
further time delay the net magnetisation has recove red closer to M 0. This diagram is in the 
rotating frame at the precession of the Larmor freq uency. The axes x ′′′′ and y ′′′′ represents the 
axes rotating at the Larmor frequency. 
 

 

Figure 2.13 Recovery of the longitudinal magnetisat ion (M z) for a short TI inversion recovery 
(STIR) sequence. The inversion time (TI) is chosen to null signal from fat, while signal from 
tissue 1 and fluid is still available. TR is the re petition time. 
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It is possible to suppress any tissue by selecting the appropriate TI so that the 

90° RF pulse is applied at the null point of the tissue in question. The fluid 

attenuated inversion recovery (FLAIR) sequence is one which suppresses signal 

from fluid by having using a TI with a long time delay (Figure 2.14). 

 

Figure 2.14 Recovery of the longitudinal magnetisat ion (M z) for a fluid attenuated inversion 
recovery (FLAIR) sequence. The inversion time (TI) is chosen to null signal from fluid, while 
signal from fat and tissue 1 is still available. TR  is the repetition time. 
 

In inversion recovery sequences the MR signal from the magnetisation can be 

positive or negative. Typically, MR images are presented as a magnitude, 

without negative values, and the sign of the signal is not represented in the final 

image. In inversion recovery this could potentially lead to reduced contrast if 

different tissue types have a similar magnitude of signal, but a different sign. 

This can be overcome by a real-valued (true) inversion recovery sequence which 

reconstructs the image in a real instead of magnitude mode, presenting both 

positive and negative values. It achieves this by setting the background as mid-

grey and ranging the image values from black to white. This achieves extremely 

good contrast particularly in brain tissues (McRobbie et al. 2003).  

2.10.5 The gradient echo sequence 

The development of fast imaging techniques has the purpose of both improving 

the efficiency of the clinical MRI scanner and to decrease artefacts associated 

with patient motion such as cardiac, respiratory and gastrointestinal. Since long 
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imaging times were required for the early T2 SE sequences, gradient echo 

sequences have been developed. Radically reduced scan times may be achieved 

in gradient echo sequences by using smaller excitation pulses so that TR can be 

reduced. Gradient echo sequences have inherently lower signal-to-noise ratio 

than SE sequences, but have a greater SNR per unit time. In a gradient echo 

sequence an RF pulse (typically of a lower flip angle than 90°) is applied and an 

FID is generated. As only one RF pulse is applied, the echo can be recorded more 

quickly, resulting in a shorter TE. If a lower flip angle is used the TR can also be 

shorter. The flip angle should be chosen such that a significant magnetisation is 

maintained in the transverse plane, while allowing a short recovery in the 

longitudinal plane. The optimum angle, called the Ernst angle (αE), is given by, 

Equation 2.5 
)1/exp(cos TTRE −=α . 

The lower flip angle has the effect that the signal is smaller and so less time is 

allowed to pass before the signal is recorded, as shown in Figure 2.15.  

 

Figure 2.15 A gradient echo sequence, where RF is t he radiofrequency pulse, Gs is the slice 
selection gradient, Gp is the phase encoding gradie nt and Gf is the frequency encoding 
gradient. 
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It can be seen from this figure that there is a negative portion of the slice 

selection gradient. The purpose of this is to rephase the MR signal to maximise 

the available signal. During the selective excitation process, the signal is being 

dephased by the gradient. A rephasing gradient of half the slice selection 

gradient is required to finish with all the spins in phase throughout the slice. 

Most of the advanced pulse sequences are based on the gradient echo. This 

sequence is repeated for many different phase encoding gradients (e.g. 256 

times). A low angle gradient echo sequence is fast enough to enable the 

acquisition of several images in a single breath hold. 

Instead of applying a 180° pulse to form an echo signal, a gradient echo is 

formed by the reversal of the frequency encoding gradient following the 90° 

pulse.  

When a negative magnetic field gradient is applied in a gradient echo sequence 

the nuclei experience different magnetic field strengths and so precess at 

different rates, becoming dephased in a structured manner. The nuclei are then 

rephased by a positive frequency encoding gradient. 

Unlike the SE image contrast which is based on T2 decay, the gradient echo 

image contrast is dictated by T2*. The reason for this is the reversal of the 

polarity of the frequency encoding gradient in a gradient echo sequence, 

refocuses only the spins which have been dephased by the gradient itself, but 

does not reverse the spins dephased due to magnetic field inhomogeneities. In 

the SE sequence, these spins are reversed by the 180° pulse; therefore the 

signal-to-noise ratio is higher for SE sequence. Due to a greater dephasing of 

spins in gradient echo sequences than in SE techniques, gradient echo sequences 

possess a greater sensitivity to magnetic susceptibility effects. These 

susceptibility effects are most evident in the presence of metallic implants or a 

haemorrhage and at tissue-air interfaces. Magnetic susceptibility is discussed in 

more detail in Section 2.7.2. 
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2.10.6 The fast spoiled gradient echo sequence 

When TR is shorter than T1 and T2 there is not enough time between successive 

RF pulses for the transverse magnetisation to fully decay. Therefore, at the time 

of the next RF pulse there is remnant transverse magnetisation.  This can result 

in artefacts in gradient echo images as the transverse magnetisation in each 

successive TR interval contains different phase information. The fast spoiled 

gradient echo (FSPGR) sequence makes use of the spoiling technique, which 

eliminates the transverse magnetisation vector. RF spoiling is achieved by 

applying a phase offset to each successive RF pulse. This results in a 

corresponding phase shift in the transverse magnetisation vectors. A constant 

phase relationship between the transmitter and the receiver is possible via a 

phase-locked circuit and successive transverse magnetisation vectors cancel 

each other out. This is illustrated in the pulse sequence diagram Figure 2.16.  

 

Figure 2.16 A fast spoiled gradient echo sequence, where RF are the radiofrequency pulses, 
Gs is the slice selection gradient, Gp is the phase  encoding gradient and Gf is the frequency 
encoding gradient. 
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2.11 MRI instrumentation 

A GE Signa HDxt 1.5T MRI scanner (GE Medical Systems, WI, USA) was employed 

for the investigations conducted in this thesis. An image of the MRI system is 

shown in Figure 5.2 of chapter 5. The components required for an MRI system 

include: 

• A strong and homogeneous magnetic field to magnetise the subject 

• Rapidly changing linear magnetic field gradients operating in the x, y and 

z axes.  

• An RF system, which includes transmitting and receiving coils 

• A computer system 

The features of each of the components of an MRI system are discussed in the 

following sections. 

2.11.1 Magnet and shim system 

Requirements that determine the choice of magnet chosen are as follows: 

• To reach the required operating field with satisfactory homogeneity over 

the imaging volume. 

• Long and short term field stability 

• Patient access (bore size) 

• Cost (capital and operating) 

• Physical size and weight 

The basic MRI system architecture is illustrated in Figure 2.17. 
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An MRI system requires a static, stable and homogeneous magnetic field. The 

static magnetic field aligns the nuclei into low and high energy states. The 

magnet must provide a magnetic field of the required strength and must be 

uniform across the imaging volume required. The magnetic field can be 

produced by permanent, electromagnetic or superconducting magnets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Basic components and architecture of an  MRI system. 
 

To generate the high field strength of superconducting magnets electric current 

passes through large coils. The components of a superconducting magnet are 

illustrated in Figure 2.18. The conducting wires of the coils are made from a 

niobium-titanium (NbTi) alloy embedded in a copper matrix. NbTi wire loses 
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resistance to current flow when cooled close to absolute zero, i.e. they become 

superconducting. An electrical current flowing in a loop of superconducting wire, 

maintained below its transition temperature, will continue to circulate 

indefinitely. A cryogen bath containing liquid helium surrounds the coils to 

provide cooling. The liquid helium coolant slowly boils off over time and needs 

refilled. Superconducting magnets are expensive to purchase, but have low 

electrical power requirements because of the minimal electrical resistance.  

 

Figure 2.18 Cross sectional view of a superconducti ng magnet (Hornack 2000). 
 

The fringe field is the stray magnetic field which extends outside the magnet in 

all three directions. Its strength depends on the magnet type and the field 

strength, the higher the field strength, the larger the fringe field. Two methods 

are available to compensate for this effect: passive and active shielding. Passive 

shielding can be achieved by either lining the walls of the scan room in steel or 

enclosing the magnet within a steel cage. With active shielding, additional 

superconducting coils are positioned outside of the magnet. These coils produce 

a magnetic field to oppose the fringe field via destructive interference.  

To correct for magnetic inhomogeneities, other current carrying coils, known as 

shim coils, are positioned around the magnet in a process called active 

shimming. The shim coils can either be at room temperature or superconducting. 

Passive shimming is the method of mounting small ferromagnetic metal sections 

at appropriate positions around the magnetic bore, and a very homogenous field 

may be obtained. 
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2.11.2 Magnetic field gradients 

Magnetic field gradients are discussed in more detail in Section 2.8. Gradients 

coils are used to provide linear gradients in all three co-ordinate axes, to 

spatially encode the positions of the MRI spins by changing the magnetic field 

across the imaging volume such that the Larmor frequency varies as a function 

of position. To achieve accurate spatial encoding, linear variation in the gradient 

field is required. Linearity decreases towards the edge of an imaging volume 

resulting in geometric distortion. Some manufacturers warp images after 

reconstruction to correct for gradient nonlinearities (see Chapter 3).  

Gradient amplifiers generate the electrical currents and voltages needed to 

produce the pulsed gradient magnetic fields in the gradient coils. These pulses 

may induce eddy currents in the surrounding metallic structures of the magnet, 

which can introduce artefacts in the images unless they are controlled. The 

amplifier must be able to generate large electrical currents through the coils 

rapidly from zero to the maximum and then returning to zero. The pulse 

sequence control unit receives the scan details from the scanner software and, 

as well as controlling the gradients, controls the magnet, the RF transmitter and 

receiver and the RF coil switches.  

A pulse sequence control unit co-ordinates the complex timing control of 

sequences including the function of the gradient amplifier and coils. This 

programmer is typically a separate, microprocessor controlled array of 

sequencers and memory. It converts the user defined sequence parameters into 

a digital representation of the requested gradients and RF pulses.  

To achieve the switch in the direction of the linearly varying magnetic fields 

very quickly to implement certain pulse sequences, such as echo planar imaging, 

the gradients should be high power, with low inductance, to enable rapid 

switching, and be highly linear to minimise discrepancies in the spatial encoding 

of the MR image. The time taken for a field to change from zero to the peak 

amplitude is known as the rise time and is typically in range of 200 to 1000 µs. 

The gradient slew rate is calculated by dividing the peak gradient amplitude by 

the rise-time and is typically in the range of 20 to 150 Tm-1s-1. 
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2.11.3 Radiofrequency system 

The RF system comprises a transmitter, coil and receiver. The transmitter 

generates pulses of current at the Larmor frequency. When this current is 

applied to the RF coil, an alternating B1 field is generated, which rotates the net 

magnetisation vector. This small MRI signal needs to be boosted using a low-

noise preamplifier before it is sent to the receiver. The MRI signal contains a 

narrow frequency range, but is contained within the Larmor frequency. The 

receiver digitally demodulates this signal, by removing the high frequency 

carrier. The design of the RF coil can range from a simple circular single turn 

coil, to a birdcage arrangement or a multi-element array coil which increases 

the uniformity and homogeneity.  

The coils mainly used in the investigations of this thesis were surface coils. 

These RF coils are known for their improved signal reception since they are 

sensitive to signals close to the surface. They may, however, be optimised to 

image deep-body structures. These coils were multi coil array which means they 

contained a number of overlapping coils each with their own receiver detection 

circuitry. Multi-array coils increase the available imaging surface area, while 

maintaining the SNR obtainable equivalent to a single coil. Since acquisition 

occurs in each element simultaneously there is no increase in acquisition time 

required.  

An RF signal at the resonant frequency is transmitted by the RF transmit coil to 

the RF amplifier and then to the RF monitor. The received RF signal is amplified 

before being passed to the array processor for Fast Fourier Transform. Some 

coils operate as both a transmit and a receive coil. If the transmit and receive 

coils are different then the receive coil is required to be detuned and the 

preamplifier switched off so that the large transmit coil does not destroy the 

electronics. The transmit coil is separated from the gradient coils by an RF 

shield.  

The high power excitation of the nuclei is achieved by a short lasting RF pulse at 

a frequency close to or at the Larmor frequency. It should be noted that it is not 

the transmission and reception of radio waves which are used by the RF system, 

but the magnetic induction from the oscillating magnetic fields.  
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A Faraday cage is used to prevent interference from any external sources of RF. 

This consists of the room which houses the MRI scanner being lined on all sides 

with a copper, aluminium or steel sheeting. The electrical connections between 

the magnet and the electronic cabinets are connected via electrical filters 

through a panel in the RF shield. The windows in the MRI room are embedded 

with wire and the doors are required to make an electromagnetic seal with the 

frame. Tubes or fibre-optic cables can be passed into the MRI room via 

waveguides, which are metal pipes of a specific length and diameter through 

which RF signals below a certain frequency cannot pass.  

2.11.4 Image processor and computer system 

The data from the receive coils is then transmitted to an image processor which 

assigns a grey scale value in the image with a brightness relative to the nuclear 

spin density at the particular pixel location. A computer controls all the 

components of the MRI scanner and provides the user interface. The patient data 

and images are stored on the database before being stored on removable media 

or networked to a server for subsequent retrieval and analysis. 

2.12 Clinical MRI 

MRI is the imaging modality of choice for many clinical studies since it provides 

excellent soft tissue contrast to differentiate tissue types. In general, the more 

unbound water in a tissue the longer the T1 relaxation time. This is because, in 

fluids, the rapidly moving nuclei have fewer opportunities to interact and 

exchange energy. Different body tissues have different relaxation times, as 

shown in Table 2.1 (Atlas 1995, McRobbie et al. 2003, Reimer et al. 2010). For 

example, in the brain, the cerebrospinal fluid is mainly water and so has a very 

long T1, of the order of several seconds, whereas white matter has a great deal 

less water and so has a T1 of less than a second. Typically, tumours have more 

water than normal tissue and therefore have an intermediate T1 time constant. 

It is the difference in relaxation times that can be exploited to produce MR 

images which can be used in a clinical diagnosis. 
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Table 2.1 Selection of T1 and T2 values for tissues  at 1.5 T, measured in vivo from human 
tissues (Altas 1995; McRobbie et al. 2003; Reimer e t al. 2010). 
 

Tissue T1 (ms) T2 (ms) 

White matter 560 82 

Grey matter 1100 92 

Cerebrospinal fluid 2060 2200 

Muscle 1075 33 

Fat 200 165 

Liver 570 43 

Spleen 1025 62 

 

2.13 MRI Safety 

When undergoing an MRI scan there are three types of magnetic and 

electromagnetic fields which an individual will be exposed to: the static 

magnetic field, time-varying magnetic field gradients and RF magnetic fields 

produced by the RF coils. There is no evidence of any short or long term 

biological effects from MRI scanners up to field strengths of 8 T operating within 

safe exposure limits (MHRA 2007).  

The primary hazard associated with the static magnetic field is ferromagnetic 

attraction. When a ferromagnetic object (one containing iron or steel) is brought 

within close range of a magnet it will experience a force. If the object is brought 

sufficiently close, this can turn an object into a dangerous projectile. Scalpels, 

scissors, and wheelchairs can be of particular danger and a fatality has occurred 

when a patient was struck by an oxygen cylinder (McRobbie et al. 2003). The 

larger the object the stronger the forces involved. Even small object such as 

paper clips and hair pins have a terminal velocity of approximately 40 mph when 

pulled into a 1.5 T magnet and could inflict serious injury. A twisting force 

known as torque occurs when the magnet attempts to align the long axis of the 

object with the magnetic field lines and can also result in injury. 
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Surgical implants such as vascular aneurysm clips can move in vivo, which can 

have potentially life threatening consequences, since dislocation by magnetic 

attraction presents the risk of haemorrhage. This risk can be minimised by 

careful screening of patients, staff and equipment entering the MRI unit. When 

RT equipment such as immobilisation is to be brought into the MRI environment 

this equipment must be first checked using a strong hand held magnet outside of 

the MRI room. If RT staff are required to assist in patient set-up in MRI they must 

first be assessed to ensure they are safe to enter the MR controlled area. 

Certain implantable devices can be affected by the RF radiation of the MRI 

scanner, such as closing the reed relay of pacemakers switching it to the 

asynchronous mode. Magnetic attraction can also occur when implants contain 

ferromagnetic material.  

Foreign ferromagnetic bodies may be permanently residing in the body after an 

accident and could be potentially dangerous if they were to become dislodged 

when in a strong magnetic field. X-rays can be taken prior to an MRI to confirm 

the presence of such materials. Some cosmetics contain ferromagnetic pigments 

which can distort MR images and can cause irritation if attracted to the eye. Eye 

cosmetics should therefore be removed before undergoing an MRI scan.  

The main safety concern associated with the RF fields used in MRI is thermal 

heating, which can lead to heat stress induced current burns and contact burns. 

Induced currents can result in power dissipation within the body’s tissues and 

therefore the accumulation of energy over time and a rise in body temperature. 

Absorption of energy from MRI RF fields causes an increased oscillation of 

molecules and the generation of heat. In human tissue this will result in an 

increased blood flow to remove excess heat, which is dissipated mainly through 

the skin. When immobilisation masks are used in MRI this can reduce the body’s 

normal cooling mechanism and so such patients should be carefully monitored. A 

rise of 1°C is generally acceptable to a healthy person. Heat stress is of greater 

concern for patients suffering from hypertension, pregnant women, or those on 

certain drugs as it may impede their thermoregulatory response.  

MRI systems cannot monitor RF exposure; therefore, it is necessary to measure 

RF absorption. The specific absorption rate (SAR) is defined as the total power in 
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watts per kilogram of tissue. The scanner monitors its RF transmitter output and 

calculates an average SAR based on the patient’s weight. The exposure limits for 

SAR depend on the anatomy being imaged. For the whole body the SAR must be 

less than 0.4 Wkg-1. MRI scanners limit the temperature rise experienced by 

subjects by limiting SAR. Heat stress can also be controlled by considering the 

ambient temperature, air flow, clothing and humidity.  

There is also the risk that patients may receive burns through the coupling of RF 

energy through wires such as those used for ECG monitoring. Care must be taken 

to ensure cables are not formed into loops and that pads are positioned between 

cables and the patient prior to imaging.  

The time-varying magnetic fields generated by the gradients can induce 

electrical currents in conducting tissues, which may exceed the nerve 

depolarisation threshold, resulting in peripheral nerve stimulation (PNS). While 

this can cause discomfort it is not harmful when the stimulation occurs in motor 

nerves or skeletal muscle. There is the possibility, however, that it may 

stimulate cardiac muscle which would present a hazard. Animal studies have 

shown that respiratory stimulation occurs in the order of three times the PNS 

threshold, while cardiac stimulation requires 80 times that required for PNS. 

Some modern MRI scanners have a stimulation monitor which can alert operators 

of the likelihood of causing PNS (McRobbie et al. 2003). While there is no 

evidence that the time-varying magnetic field gradients can harm the foetus or 

embryo, it is considered prudent to avoid exposure of pregnant women during 

the first trimester. 

The switching of the gradient fields also results in acoustic noise. When the 

alternating low-frequency currents which flow through the gradient coils are 

immersed in the high static magnetic field, forces are exerted on the gradient 

coils, generating sound waves. The noise is caused by the movement of the coils 

against their mountings. The volume of the noise can reach uncomfortable or 

even dangerous levels to subjects undergoing an MRI scan (Price et al. 2001). 

Exposure to loud noise can result in a shift in the threshold of hearing which may 

be temporary or permanent if the exposure is very loud, prolonged or frequently 

repeated. Ear protection is required during MRI scanning to reduce the acoustic 

noise to acceptable levels.  
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The space within the magnet can be restrictive resulting in claustrophobia to the 

extent that it may require an examination to be terminated. This may be 

mitigated by optimising patient comfort and offering reassurance between scans 

by way of the audio equipment. RT immobilisation within MR is likely to increase 

the feeling of claustrophobia. It may be necessary to use light sedation or for a 

carer who has been appropriately screened to remain in contact with the subject 

during the MRI scan. Lighting and careful design of the MRI scanner can also help 

to reduce the effects of claustrophobia.  
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3 Evaluation of an inline three-dimensional MRI 
geometric distortion correction algorithm for 
radiotherapy 

3.1 Introduction 

This chapter comprised of a study evaluating a three-dimensional (3D) distortion 

correction algorithm and investigates the distortion error values in the context 

of defining a safe scanning range for radiotherapy (RT) planning.  

One of the most important aspects of RT is accurately defining the gross tumour 

volume and its relationship to organs at risk. Current external beam RT planning 

techniques normally use computed tomography (CT) datasets to obtain axial 

slices of the body. Due to the superior soft-tissue contrast of magnetic 

resonance imaging (MRI), many tumours are better visualised and there is 

improved localisation of adjacent soft tissue compared to CT. MRI is therefore 

recognised as being a useful addition to the RT process and many publications 

have reported modified tumour volumes using MR compared to CT in prostate 

carcinomas (Charnley et al. 2005; Khoo et al. 2006; Sannazzari et al. 2002) and 

for brain carcinomas (Khoo et al. 2000).  

A major challenge facing MRI is geometric distortion, which can have serious 

consequences if the images are used in therapy where geometric accuracy is 

very important, such as surgical guidance or RT planning. It is known that MR 

distortion effects are inversely proportional to the receiver bandwidth. A 

publication investigating the degree of bandwidth associated distortions 

recommends a receiver bandwidth of greater than or equal to ± 30 kHz to 

minimise distortion and chemical shift in MR images (Moore et al. 2004).  

Geometric distortion is also dictated by the magnitude of the magnetic field and 

the gradient of the magnetic field. Data on the peak magnetic field, peak 

gradient of the magnetic field and peak force product for the GE Signa 1.5 T HDx 

MRI scanner, which was used in the experiments of this thesis, is contained in 

Table 3.1. The location of the fringe field maximum for this table is shown in 

Figure 3.1 (General Electric Company 2009). 
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Table 3.1 Maximum magnetic field (B), maximum gradi ent of the magnetic field and the 
maximum force product data and their spatial locati ons for the Signa 1.5 T HDx series MRI 
scanner. R and Z locations shown in Figure 3.1. Rep roduced from (General Electric 
Company 2009). 

 

 

Figure 3.1 Location of fringe field maximum for dat a of Table 3.1. Reproduced from (General 
Electric Company 2009). 
 

Gradient non-linearity is the non-ideal nature of the magnetic field produced by 

a gradient coil. Gradient non-linearity results in spatial distortion of the images. 

GE (GE Healthcare, WI, USA) supplies the results of gradient linearity response 

for the Signa HDxt scanner. 

The differential linearity (DL) is defined as, 

Equation 3.1 

( )
%100max ×

−
=

ideal

idealactual

G

GG
DL  

Field R(m) Z(m) B field (T) Gradient 

(T/m) 

Product 

(T2/m) 

Peak B 0.319 0.627 1.9 3.4 6.5 

Peak gradient 0.391 0.807 1.4 7.4 10.5 

Peak product  

(B × Gradient) 

0.369 0.766 1.6 6.9 11.3 
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where Gactual is the calculated actual gradient strength at the spherical field of 

view (FOV) and Gideal is the calculated ideal gradient strength at the spherical 

FOV. 

The relative linearity (RL) is defined as, 

Equation 3.2 

( )
%100

.
max ×

−
=

RG

BB
RL

ideal

idealactual  

where Bactual is the calculated actual field strength at the spherical FOV due to 

the gradient coil, Bideal is the calculated ideal field strength at the spherical FOV 

due to the gradient coil and R is the radius of the spherical FOV.  

The gradient non-linearity values are recorded in Table 3.2. 

Methods of 3D distortion correction have been published (Breeuwer et al. 2001, 

Doran et al. 2005, Wang et al. 2004a); however, this requires lengthy 

measurements, exporting the data for offline manipulation and time consuming 

computer programming. The manufacturer Siemens provides a 3D distortion 

correction, although this has only been evaluated in the context of head imaging 

(Karger et al. 2006).  

The two-dimensional (2D) distortion correction algorithm on the MRI scanner at 

the Beatson West of Scotland Cancer Centre (Beatson) resolves volumes on a 

slice-by-slice approach and is applied automatically on all GE MRI systems (GE 

Signa HDx, 1.5T MRI scanner, GE Healthcare, WI, USA). Distortion is amended on 

each slice and applied independently of other slices. Therefore, with 2D 

correction there is no through-plane adjustment.  

A 3D distortion correction, known as 3D GradWarp, is applied as a post-

processing step and operates in the following way. The 2D corrected image 

dataset is read by the software and the 3D GradWarp corner points are 

calculated from the 2D image corner points to define the processing volume. 

Spatial error in the slice direction (through-plane) is determined from a look-up 

table. This table contains the gradient field maps measured at the design stages 
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of the system. The software determines the shift in each pixel due to the 

gradient nonlinearity. It then calculates the correct pixel location from 

measurements of the gradient field maps and uses a 4-point cubic spline to 

remap these pixels. Both distortion correction algorithms are gradient coil 

dependent and are therefore system-related distortion corrections. The 

correction is the same for all systems with the same gradient coil type.  

Table 3.2 Non-linearity results for the GE Signa HD Xt MRI scanner, where FOV is the 
spherical field of view. 
 

 

The purpose of this study was to investigate the accuracy of this inline 3D 

distortion correction algorithm, provided by the manufacturer (GE Healthcare, 

WI, USA) and define a safe scanning range for use in RT planning. A range of test 

objects were used to determine the accuracy of the 3D distortion correction 

algorithm.  

 Differential linearity Relative linearity 

FOV (cm) X Y Z X Y Z 

12 2.2% 2.1% 0.3% 0.7% 0.7% 0.1% 
14 3.1% 2.9% 0.5% 1.0% 1.0% 0.1% 
16 4.1% 3.9% 0.6% 1.3% 1.3% 0.2% 
18 5.2% 5.0% 0.9% 1.7% 1.6% 0.3% 
20 6.6% 6.3% 1.2% 2.1% 2.0% 0.3% 
22 8.1% 7.8% 1.5% 2.6% 2.5% 0.4% 
24 9.8% 9.5% 2.0% 3.1% 3.0% 0.5% 
26 11.8% 11.4% 2.6% 3.7% 3.6% 0.7% 
28 14.0% 13.5% 3.2% 4.4% 4.2% 0.8% 
30 16.4% 15.9% 4.1% 5.1% 4.9% 1.0% 
32 19.1% 18.6% 5.0% 5.9% 5.7% 1.2% 
34 22.1% 21.5% 6.2% 6.8% 6.5% 1.5% 
36 25.3% 24.7% 7.5% 7.7% 7.4% 1.8% 
38 28.8% 28.2% 9.1% 8.7% 8.4% 2.1% 
40 32.7% 32.0% 10.9% 9.8% 9.5% 2.5% 
42 36.8% 36.1% 13.0% 11.1% 10.7% 3.0% 
44 41.2% 40.5% 15.4% 12.4% 12.0% 3.5% 
46 45.9% 45.3% 18.1% 13.8% 13.4% 4.1% 
48 50.9% 50.3% 21.2% 15.3% 14.9% 4.7% 
50 56.2% 55.6% 24.6% 17.0% 16.6% 5.4% 
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3.2 Methods 

3.2.1 MRI test objects 

The first phantom used in the experiments of this chapter was the Eurospin TO3 

phantom (Diagnostic Sonar Ltd., Livingston, UK). This test object contains 16 

pairs of crossed Perspex rods in a solution of copper sulphate (CuSO4). A diagram 

of the phantom can be seen in Figure 3.2. 

 

Figure 3.2 The Eurospin TO3 test object in the (a) axial plane, (b) sagittal plane and (c) a 
close up of the rod separation, d. 
 

A slice position test object by MagNET (MagNET, London, UK) was also used in 

this study. This is a Perspex phantom filled with a paramagnetic solution (0.7 g 

CuSO4/litre distilled water) with two 90° angled glass rods and four parallel glass 

rods. A schematic diagram of this phantom is shown in Figure 3.3.  

Finally, a bespoke phantom was constructed using LEGO® bricks. LEGO® bricks 

are made from acrylonitrile butadiene styrene and are injection moulded to a 

tolerance of less than 20 µm (Hyer et al. 2012). It is an inexpensive phantom 

material and can be quickly and easily assembled into different shapes and sizes 

in a modular fashion. Therefore, when LEGO® bricks are immersed in fluid, they 

make an excellent building material for MRI test objects.  

A grid structure was formed by building LEGO® bricks in a simple layered 

structure on top of base-plates and affixed in position with bricks at the top. 
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This grid structure was positioned in a water tank. An image of the test object 

can be seen in Figure 3.4. 

 

Figure 3.3 Schematic of the MagNET slice position p hantom in the coronal (left) and axial 
(right). The axial plane is shown at the position o f the dashed line.  
 

 

Figure 3.4 Overhead view of LEGO ® phantom, with dimensions. Height of phantom is 23 cm.  
 

All MRI measurements in this study were made on a GE Signa HDxt 1.5T scanner 

(GE Healthcare, WI, USA).  

3.2.2 TO3 test object measurements 

A measurement of slice position error was performed in accordance with IPEM 

Report 80 (IPEM 1998) using the Eurospin TO3 phantom (Diagnostic Sonar Ltd., 

Livingston, UK) as shown in Figure 3.2. Measurements were taken comparing the 
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2D and 3D distortion correction algorithms. Rod separation was measured as the 

separation of each of the crossed Perspex rods using the tools on the GE 

Advantage Windows workstation (GE Healthcare, WI, USA). The slice position 

error can be calculated by taking the mean of the rod separation measurements 

and dividing by two. A T1-weighted SE sequence with a repetition time (TR) of 

1000 ms, an echo time (TE) of 30 ms, a FOV of 250 × 250 mm2 and a bandwidth 

of ± 11.9 kHz.  with an echo time (TE) of 30 ms and a repetition time (TR) of 

1000 ms with a slice thickness of 5 mm and no slice gap over a 250 × 250 mm2 

FOV, with a matrix size of 256 × 256 and bandwidth of ± 11.9 kHz was acquired 

in the axial plane with the centre of the Eurospin phantom positioned within 4.5 

mm of isocentre. This bandwidth was chosen since it is thought this would give a 

worst case scenario as it is less than the recommended ± 30 kHz to minimise 

distortion (Moore et al. 2004). Interleaved 5 mm thick slices with zero spacing 

between slices were taken with the central slice at the centre of the test 

object. The couch was moved to position the TO3 phantom 75 mm to 225 mm 

superior and inferior to the isocentre in increments of 25 mm. A two-tailed t-

test was performed to evaluate statistically significant differences between the 

2D and 3D distortion correction algorithms in this and other experiments in this 

chapter. The null hypothesis was rejected when the p value was less than 0.05. 

3.2.3 Slice position test object measurements 

To determine the distortion correction accuracy of 3D GradWarp with multiple 

slices the MagNET (MagNET, London, UK) slice position phantom was used (Figure 

3.3). The test object was positioned at the scanner isocentre and images were 

acquired using the same imaging parameters as section 3.2.2 except the FOV 

was 256 x 256 mm2 in accordance with the MagNET test instructions and IPEM 

Report 80 (IPEM 1998). The centre of the phantom was found by positioning the 

object until the rod separation was zero. Interleaved 5 mm thick slices with zero 

spacing between slices were taken with the central slice at the centre of the 

test object. The intersection of the two 90° angled rods was checked for 

coincidence with the scanner isocentre in three planes using the measurement 

tools on the scanner interface. The phantom was then repositioned as necessary 

until it was centred in all three planes. This was repeated with the centre of 

test object positioned at 50 mm increments up to 200 mm superior and inferior 
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to the scanner isocentre. With the phantom positioned at isocentre, the average 

distance between the four parallel glass rods was measured at isocentre and at 

70 mm inferior and superior to isocentre for the 2D and 3D corrected datasets. 

Dividing this average value by the true distance of the rod separation gave a 

correction factor.  

The measured slice position, SPmeas, was determined using the following 

expression, 

Equation 3.3 

( )
2

22
scd

SPmeas

−×
=  

where d is the measured separation of the angled rods, c is the correction factor 

and s is the rod separation which is equal to 6.5 mm.   

Finally, the magnitude of the slice position error for each slice was calculated by 

subtracting the actual slice position from the measured slice position. 

3.2.4 In-plane distortion measurements using the sl ice position 
test object 

Using the MagNET (MagNET, London, UK) slice position test object shown in 

Figure 3.3 the in-plane distortion was measured for the top left parallel rod. This 

was achieved using the report cursor tool on the GE (GE Healthcare, WI, USA) 

Advantage Windows workstation which indicates the coordinate location. The 

top left parallel rod location was measured at the scanner isocentre plane for 

both the 2D and 3D distortion corrected scans. At isocentre, distortion is at a 

minimum and so this coordinate location became a reference for all other 

measurements. Using the slice position datasets (of section 3.2.3) the location of 

the top left parallel rod was measured for slices with the phantom centred at 

isocentre and at 200 mm inferior and superior to isocentre. An in-plane error 

was calculated as the difference between the isocentre reference location and 

all other slice positions. This difference was measured in both the right-left and 

anterior-posterior directions. These measurements were possible since the test 

object was not adjusted between the scans acquired at the scanner isocentre 
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and those at 200 mm from isocentre. Certain slice positions gave more than one 

measurement and an average slice position error was calculated. 

3.2.5 LEGO® phantom measurements in the coronal plane 

To test the 3D GradWarp correction algorithm across a 33.5 × 48 cm FOV the 

bespoke LEGO® phantom was used Figure 3.4. The LEGO® dimensions were first 

measured using a digital calliper with an accuracy of ± 0.02 mm. These 

measurements were then confirmed by scanning the phantom in a GE Hi-Speed 

CT scanner (GE Healthcare, WI, USA). The phantom was aligned in the axial 

plane and aligned using the laser positioning system. Distances between the 

bricks were measured using the tools on the RT planning system Eclipse version 

8.6.15 (Varian Medical Systems Inc., CA, USA). These results were compared to a 

coronal T1-weighted MR dataset close to the isocentre plane with a bandwidth 

at a typical clinical setting of ± 31.2 kHz using the Eclipse treatment planning 

system.  

Using a T2-weighted short TI (inversion time) recovery (STIR) sequence the water 

was shown to be bright against the signal void of the bricks. Scans were acquired 

at a slice thickness of 10 mm with zero spacing, a TE of 37.7 ms, TR of 3660 ms 

and TI of 145 ms at maximum FOV of 48 × 48 cm2, resolution of 384 × 224 and a 

bandwidth of ± 31.2 kHz. This sequence was chosen because it was used 

clinically for whole body imaging. A clinical sequence was chosen for this 

phantom, rather than the settings used for the QA phantoms since this was a 

bespoke phantom and so a clinical sequence could be chosen.   

The extent of the warping at the central furthest edge superior and inferior to 

the isocentre was determined by imaging a catheter filled with saline within a 

recess of the table. This same catheter was first positioned at the isocentre 

plane where there is very little image distortion. Taking the difference between 

the slice positions at which the saline filled catheter was visible gave a measure 

of the coronal through-plane distortion. 
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3.3 Results 

3.3.1 TO3 test object measurements  

Figure 3.5 shows the slice position error values with the TO3 phantom positioned 

superior and inferior to isocentre. The error bars are given by the standard 

deviation of the slice position error measurements for the 2D and 3D distortion 

correction algorithms. 

From Figure 3.5 it can be seen that there is a general trend of increased slice 

position error with distance from isocentre, as expected. Slice position error is 

greater in the inferior than the superior direction. The reason for this may be 

due to differences in the gradient performance or shimming accuracy in the 

superior and inferior directions. A maximum slice position error of 2.3 mm was 

found at 175 mm inferior to isocentre for both the 2D and 3D correction. The 

largest slice position error superiorly was at the maximum extent of 225 mm 

from isocentre with a value of 1.7 mm for the 2D and 3D correction. A two tailed 

t-test gave a p value = 0.58 confirming that the difference between the 2D and 

3D distortion algorithms were not statically significant when imaging with three 

slices. 

Bland Altman plots were also graphed at 25 mm intervals from 75 mm to 225 mm 

superior and inferior to isocentre. Using this data the mean difference between 

the 2D and 3D correction algorithms was plotted along with the standard 

deviation (SD) of the difference between the two correction algorithms shown as 

the error bars (Figure 3.6). This shows the mean difference value for these 

graphs is approximately zero for all plots. The size of the SD of the difference 

between the two correction algorithms is approximately the same for all the 

plots except for the more extreme positions where the SD increases. This 

increase in SD is expected furthest from the isocentre since the geometric 

distortion is greatest at these positions.  

Since the mean difference between the 2D and 3D correction measurements is 

approximately zero from 225 mm inferior to 225 mm superior this is further 

evidence that the difference between the two correction algorithms is minimal 

in the axial plane using three slices. 
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Figure 3.5 Slice position error measurements at 75- 225 mm superior and inferior to the 
isocentre. The error bars are ± 1 standard deviatio n. Negative and positive values in the x-
axis represent inferior and superior distances from  isocentre respectively. 
 

  

Figure 3.6 Mean difference between the 2D and 3D di stortion correction algorithms. The 
error bars are ± 1 standard deviation. Negative and  positive values in the x-axis represent 
inferior and superior distances from isocentre resp ectively. 
 

3.3.2 Slice position test object measurements 

Since there was statistically no difference shown between the 2D and 3D 

distortion correction measurements in the axial plane with three slices (p value 
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= 0.58), it was expected that an increase in slice number would give a 

measurable difference. This is because, unlike the 2D correction algorithm, 3D 

GradWarp uses information from all the slices to determine the required pixel 

correction.  

The magnitude of the slice position error measurements was averaged over each 

dataset in 5 mm increments. The phantom was positioned in different locations 

both superior and inferior to the isocentre which gave more than one 

measurement at the same location. This resulted in one, two or three slice 

position error measurements at different slice positions, strengthening the 

reproducibility of this test, and these measurements were then averaged. In 

order to demonstrate the region where the data points begin to exceed an 

average slice position error of 1 mm, Figure 3.7 (b) shows the data of Figure 3.7 

(a) within a 5 mm error range. 

Typically, a 2 mm tolerance is used for most imaging parameters in RT. A 1 mm 

error tolerance was chosen to ensure the MRI does not exceed the tolerances 

required for RT. The average slice position error exceeds 1 mm at 195 mm 

inferior and superior to isocentre for the 2D correction and 90 mm inferior and 

110 mm superior to isocentre for the 3D correction as shown in Figure 3.7 (b). 

Images of the 2D and the 3D corrected slice position phantom at 270 mm 

superior to isocentre can be seen in Figure 3.8. This clearly shows the difference 

between the two distortion correction algorithms. A two tailed t-test resulted in 

a p value of < 0.01 confirming there is a statistically significant difference 

between the 2D and 3D distortion correction results. 3D GradWarp uses error 

measurements from the gradient field maps to calculate the correct pixel value. 

This algorithm appears to shift the pixels to an incorrect location based on a 

difference between the measured gradient field map at the design stage of the 

scanner and the gradient field map at the superior end of this scanner. To 

correct this inaccuracy a measurement of the field map for each scanner may be 

required. Another possibility for this error is that it is testing the 3D distortion 

correction algorithm beyond a volume that it had been designed to perform a 

correction. However, this does not explain why 3D Gradwarp is able to correct in 

the inferior direction. Figure 3.8 also shows that the 3D distortion algorithm 
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blurs the image of the crossed rods. This blurring altered the rod separation 

measurements and therefore affected the slice position results of Figure 3.7. 

 

 

 

Figure 3.7 (a) The magnitude of the slice position measurements averaged over each 

dataset in 5 mm increments and (b) the same data sc aled with a maximum slice position 

error of 5 mm. Negative and positive values in the x-axis represent inferior and superior 

distances from isocentre respectively.   

(a) 

(b) 
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Figure 3.8 Image of slice position phantom at 270 m m superior to isocentre with 2D (left) 
and 3D (right) distortion correction applied. 
 

3.3.3 In-plane distortion measurements using the sl ice position 
test object 

The in-plane error measurements in the right-left and anterior-posterior 

directions are shown in Figure 3.9 as a moving average trendline. These 

measurements show that 3D GradWarp reduces the in-plane error significantly in 

the superior direction, but has little effect in the inferior direction. At a slice 

position of 285 mm superior to isocentre the 2D distortion correction results in 

an error of 12.9 mm to the right and 2.6 mm anteriorly while 3D GradWarp 

reduces this error to 0.7 mm to the right and 1.6 mm posteriorly at the same 

slice position. The results for the slice position test object at 280 mm inferior 

show the 2D error is 6.4 mm to the right and 3.7 mm anteriorly while the 3D 

error is 6.5 mm to the right and 3.6 mm anteriorly.   

The 2D distortion correction error exceeds a 1 mm tolerance at 110 mm superior 

(error in posterior direction) and 180 mm inferior to isocentre (error in left 

direction), while the 3D correction algorithm exceeds the 1 mm tolerance at 120 

mm superior (error in posterior direction) and 180 mm inferior to isocentre 

(error in left direction). This shows that while the 3D GradWarp demonstrates 

improvements in the in-plane distortion at the edges of the field of view, it 

offers little benefit over the 2D distortion correction algorithm, in improving a 

clinically safe range for the use of MRI in RT. 
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Figure 3.9 In-plane distortion of the top left para llel rod from the isocentre position in the (a) 
left-right direction, where left is positive and ri ght is negative and (b) posterior-anterior 
direction, where posterior is positive and anterior  is negative. Negative and positive values 
in the x-axis represent inferior and superior dista nces from isocentre. 

(a) Left Right 

(b) 

Posterior Anterior 
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3.3.4 LEGO® phantom measurements in the coronal plane 

A total of 18 calliper measurements were made at different distances across 

different sections of the phantom in the vertical and horizontal directions. This 

gave an average measurement of 55.86 ± 0.02 mm from the centre-to-centre of 

two adjacent bricks. The total dimensions of the phantom are therefore (335.15 

mm × 502.72) ± 0.02 mm with a height of 23 cm. 

A CT scan of the phantom can be seen in Figure 3.10. Using the Eclipse 

treatment planning system, 30 measurements were made across different 

lengths of the phantom in both in-plane coordinate axes to give an average 

measurement from the centre-to-centre of two adjacent bricks 55.9 mm in 

agreement with the calliper measurements.  

 

Figure 3.10 CT scan of the LEGO ® phantom positioned in the axial plane. 
 

In total, 36 measurements were made of an MRI scan of the phantom near to the 

isocentre and across different lengths of the phantom using Eclipse, giving an 

average centre-to-centre brick measurement of 56.1 mm. This agrees closely 

with the measurements on the CT scan and with the digital calliper. This 
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suggests that any deviations due to the susceptibility difference of the plastic 

and water are minimal.   

A coronal slice near the base of the LEGO® phantom with 2D and 3D distortion 

correction applied is shown in Figure 3.11. This was a T1-weighted STIR scan 

using typical parameters for whole body imaging at the Beatson. From Figure 

3.11 it can be seen that the 2D correction fails to correct the through-plane 

distortion and the image is warped superior and inferior towards the isocentre. 

This accounts for a loss of 9 cm at the superior and inferior ends of the FOV. The 

3D correction is capable of correcting for this and the missing section of the 

phantom is shown in the post-processed image in Figure 3.11. The 3D corrected 

image does however demonstrate some in-plane warping. Furthermore, the 

inhomogeneity of the static magnetic field can again be seen as warping at the 

edges of the FOV. 

 

Figure 3.11 Coronal image of the LEGO ® phantom with the 2D (left) and 3D (right) distorti on 
correction algorithm applied. 
 

The through-plane distortion at the edges of the FOV was determined using a 

saline filled catheter. The difference between the slice positions through the 

catheter gave a distortion error of 4.0 ± 0.5 cm with the 0.5 cm uncertainty due 

to the slice thickness used. Therefore, 3D GradWarp can be considered to 

correct by as much as 4.0 ± 0.5 cm in the coronal plane. 
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3.4 Conclusions 

With only three slices 3D GradWarp behaves in the same way as the 2D distortion 

correction algorithm. Axial plane correction is relevant to the registration of MR 

images with CT for RT planning. Increasing the number of slices to 39 showed 

there was a large difference in geometric accuracy between the two distortion 

correction algorithms, particularly in the superior direction. The large difference 

between the correction algorithms in the superior direction is due to 

dissimilarity in the way in which 3D GradWarp corrects. A reason for the error 

may be due to the blurring shown in Figure 3.8. This blurring is perhaps because 

the phantom contains discrete points, resulting in inaccuracies in the 3D 

distortion correction algorithm. In a clinical setting when imaging a patient the 

algorithm may not suffer from this artefact. 

In-plane distortion measurements (Figure 3.9) show that the 3D distortion 

correction algorithm reduced the error on the left but not the right. The 

asymmetry of the correction again indicates the distortion correction has not 

been optimised for this scanner.  

The LEGO® phantom gives evidence of through-plane correction in the coronal 

plane using 3D GradWarp. Limitations with this phantom are the possibility of 

additional distortion from susceptibility differences between the plastic and 

water. However, the measurements of the MRI scan of the phantom using the 

Eclipse treatment planning system compared closely to the same measurements 

on a CT scan and with a digital calliper showing that any susceptibility deviations 

are small.  

It must be appreciated that the effect of 3DGradWarp is potentially greater for a 

3T scanner due to the increase in geometric distortion with the field strength of 

the main magnetic field. 3D distortion correction is of great importance as MRI 

becomes more heavily employed in RT. In the same way as the shimming of MRI 

systems improves the default settings on a scanner-by-scanner basis, there is 

scope for improvement with 3D GradWarp by enabling scanner specific distortion 

evaluation and correction. This will increase confidence in MRI-based RT 

planning in the future when even greater geometric accuracy will be required. 
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In its current form it would not be recommended that 3D GradWarp be used 

clinically. Since the completion of this study, GE (GE Healthcare, WI, USA) has 

released a clinical version of the 3D distortion correction algorithm. This version 

was not available for use on the MRI scanner at the Beatson and so no testing 

was possible.  

This study has shown that for multiple axial through plane measurements, the 2D 

correction algorithm does not exceed a 1 mm tolerance for a range of 195 mm 

superior and inferior from isocentre. For axial in-plane distortion the 2D 

distortion correction algorithm exceeds the 1 mm tolerance at 110 mm superior 

and 180 mm inferior to isocentre. While the 1 mm tolerance is exceeded at 110 

mm superior to the isocentre it does not exceed 1.1 mm until 180 mm superior 

to isocentre. In the coronal plane a range of approximately 150 mm superior and 

inferior to isocentre is achievable before the through-plane distortion becomes 

unacceptable. The results of this study demonstrate that, provided a small 

amount of in-plane distortion is acceptable, a clinically safe range to use the 2D 

distortion correction algorithm in MRI for critical structure delineation in RT is 

150 mm superior and inferior from isocentre.  
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4 Patient immobilisation in MRI 

4.1 Introduction 

Patient immobilisation is necessary in radiotherapy (RT) planning for certain 

anatomical sites. Immobilisation devices have three fundamental purposes: 

firstly to immobilise the patient during treatment, secondly to provide a reliable 

means of reproducing the patient’s position from simulation to treatment and 

from one treatment to another and finally to ensure accurate beam alignment.  

The following chapter describes the problems associated with incorporating 

immobilisation into the magnetic resonance imaging (MRI) environment as well 

as the benefits this provides for RT planning. A new technique is developed using 

surface coils to image brain cancer patients in a beam directional shell (BDS) and 

the following chapter contains the measurements of this study conducted using a 

variety of test objects. 

This work has been presented at a national and international level and published 

in a peer reviewed journal: 

• The Dorado laser in MR, Hanvey S, Glegg M, Foster J, Oral presentation, The 5th Annual 

Scientific meeting of Advanced Practices in Radiotherapy, Belfast 2008. 

• MR imaging of head and neck cancer patients in the radiotherapy treatment position 

without loss of image quality, Hanvey S, Glegg M, Foster J, Poster presentation, 17th 

Scientific Meeting of the International Society for Magnetic Resonance in Medicine 

(ISMRM), Honolulu, 2009. 

• Magnetic resonance imaging for radiotherapy planning of brain cancer patients using 

immobilization and surface coils, Hanvey S, Glegg M, Foster J, Physics in Medicine and 

Biology 54, 5381-5394, 2009 (Hanvey et al. 2009). 

4.2 The benefits and problems of patient immobilisa tion 
in MRI for RT planning 

The planning target volume (PTV) defined by International Commission on 

Radiation Units and Measurements, ICRU, (ICRU 1993; ICRU 1999) consists of a 

clinical target volume (CTV) with additional margins for movement of internal 



Scott Hanvey 2013       Chapter 4: Patient immobilisation in MRI  108 
 

organs (Internal Margin) and geometrical variations and inaccuracies in the 

patient set-up (Set-up Margin).  

Since the PTV must take into account the inaccuracies of the patient set-up it is 

dependent on the precision of tools such as immobilisation devices and lasers. It 

is therefore desirable to incorporate immobilisation into the RT planning process 

for all imaging techniques where immobilisation is used. 

It is standard practice to immobilise patients with brain cancer, being treated 

with RT, using a headrest and a thermoplastic BDS. At the Beatson, patients with 

head and neck cancer are immobilised using a 5-point fixation mask which 

immobilises the shoulders and cranium. Patients are immobilised during their 

simulator computed tomography (CT) scan, pre-verification imaging and 

subsequent RT.  

When additional imaging techniques are used for registration with CT, such as 

MRI or positron emission tomography (PET), it is beneficial to have patients 

positioned in the treatment position to minimise registration errors and to 

ensure the orientation of the MR imaging plane through the patient is coplanar 

with CT. Mismatches in the registration of CT and MRI data can result in changes 

to the PTV. 

While immobilisation in MRI reduces registration error with CT it can also result 

in reduced image quality. The diagnostic imaging coils used in MRI, such as the 

Head-Neck-Spine Array imaging coil (GE Healthcare, WI, USA), are not designed 

to incorporate a BDS and so surface coils must be used instead. The use of 

surface coils can result in a reduction in image quality due the reduced signal-

to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of these coils. If this 

reduced image quality occurs through the gross tumour volume or organs at risk 

then this can compromise an oncologist’s confidence in being able to delineate 

tumour boundaries.  
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4.3 MRI for radiotherapy planning of brain cancer 
patients using surface coils and immobilisation: A 
test object study 

4.4 Introduction 

Currently, at the Beatson, external beam RT planning for patients with brain 

cancer relies on CT and MR for target localisation. CT scans are taken with the 

patient immobilised using a thermoplastic face mask or BDS. All subsequent 

plans and treatment are performed with the patient held in the same position by 

the BDS. Contours are delineated around the CTV, which is expanded to a 

planning target volume to take into account set-up errors and positional errors. 

Pre-operative MR datasets are registered to the CT images using the Eclipse RT 

planning system (Varian Medical Systems, Inc. CA, USA). It is beneficial to use 

pre-operative MR images in the treatment position since it enables the clinician 

to clearly define the tumour extent at the planning process. If the MR images are 

able to give a better description of the CTV over the use of CT alone, then 

despite uncertainties in the MR dataset, there will be an overall improvement in 

target accuracy. For this reason, it is desirable to incorporate MRI into RT 

practice. 

In normal diagnostic MRI the patient is scanned in a multi-channel head coil. This 

head coil does not allow space for either a head rest or a thermoplastic face 

mask. The patient therefore receives their MRI scan in a different position to 

their CT scan and this can result in errors in the registration process which is 

evident as a mismatch between the image sets. Therefore, it is beneficial to 

image the patient in the same position for their MRI scan, CT scan and 

subsequent radiation treatment. In MRI, a 4-channel cardiac coil can be used 

with a thermoplastic head mask in-situ ensuring the same patient positioning. 

This new coil arrangement, ideally, should provide at least as much diagnostic 

detail as the multi-channel head coil. However, it may be necessary to 

compromise on image quality for the benefits of imaging in the RT position. 

4.5 Method and Materials  

Quality assurance MRI phantoms were used to determine the image quality of 

different available image coils. All phantom studies were conducted using the 
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MagNET test objects (MagNET, London). Scanning parameters and tolerances 

were chosen in accordance with the MagNET test instructions and IPEM Report 80 

(IPEM 1998). The MagNET test objects were used to assess the image quality of 

MR scans. These phantoms were positioned within the same thermoplastic face 

mask immobilisation device used in the treatment of patients and four imaging 

coils (the integrated body coil, the 8- and 12-channel body array coils and the 4-

channel cardiac coil) were tested and compared to the technical evaluation from 

the National Health Service (NHS) Purchasing and Supply Agency Report 06005 

(PASA 2006). This report provides information on image quality of available 

imaging coils, measured with the MagNET test objects, for a variety of 

manufacturers, including the GE Signa Excite HD. The GE Signa HDx 1.5T scanner 

was used for this assessment and can be compared to Report 06005 (PASA 2006) 

since the HDx is a software upgrade to the HD and does not adversely affect 

image quality. 

Set up of the integrated body coil provides no physical restrictions to positioning 

patients within the head rest and thermoplastic face mask. The 8-channel and 

12-channel body array coils are flexible enabling the lower anterior element to 

be wrapped around the patient’s head, as shown in Figure 4.1. The posterior and 

upper anterior sections of the coils are redundant and could be positioned on top 

of the patient’s chest and extended beyond the head respectively. To ensure 

close contact between the active section of the coil and the immobilisation 

mask, foam blocks were positioned laterally against the coil. Finally, a 4-channel 

cardiac coil was arranged laterally and again kept in close contact with the 

immobilisation mask using foam pads. 

 
 

Figure 4.1 Arrangement of 8- and 12-channel body ar ray coils 
 
For this study, image quality was assessed in terms of normalised signal-to-noise 

ratio (NSNR), resolution, fractional uniformity, geometric linearity and 
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distortion, multiple slice position error, slice width and the CNR. The filling 

factor of the coils was also considered. 

Since phased array coils have intrinsically poor uniformity the GE scanner is 

equipped with a uniformity correction algorithm known as Phased array 

Uniformity corREction (PURE). This algorithm reduces coil intensity variations by 

first performing a calibration scan prior to image acquisition.  

4.5.1 Normalised signal-to-noise ratio 

For all tests the phantoms were positioned at the isocentre of the scanner, using 

a spin echo (SE) sequence and with the parameters shown in Table 4.1. 

Table 4.1 Acceptance testing parameters. TR is the repetition time, TE is the echo time and 
FOV is the field of view. 
 

 
 
Image analysis was performed on both the GE Advantage Windows workstation 

(GE Healthcare, Waukesha) and using the Osiris software package (Osiris, 

Windows Version 4.19, Digital Imaging Unit, University Hospitals of Geneva, 

Radiology Department)  

The NSNR is dependent on a number of factors including the main magnetic field 

strength, the radiofrequency (RF) receive and transmit design and the choice of 

sequence and imaging parameters. An oil flood field phantom was positioned 

with the centre of the test object at the isocentre of the scanner using a foam 

block. Images were taken using the parameters shown in Table 4.1 with a field 

of view (FOV) of 250 mm. The signal was measured in five regions of interest 

(ROIs) of size 20 × 20 pixels on the flood field image as shown in Figure 4.2 (ROIs 

1-5). For each ROI the mean pixel value was measured using the computer 

analysis software and this value was averaged over the five regions. 

A nickel chloride filled phantom could have been used for the NSNR and 

uniformity tests. However, at 1.5T dielectric resonance effects can perturb 

uniformity profiles in water-based phantoms. The test object manufacturer 

TR (ms) TE (ms) FOV Resolution Slice Thickness 

1000 30 250/256 mm 256 × 256 5 mm 
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therefore recommends that the oil-filled flood field phantom is used if a 

comparison is being made with evaluation data as was the case in these 

experiments.     

To measure the noise, five ROIs of size 20 × 20 pixels were positioned as shown 

in Figure 4.2 (ROIs 6-10), in regions free from ghosting. The mean of the five 

standard deviation (SD) values was calculated and the noise, N, was measured 

using the following expression, 

Equation 4.1   

 
655.0SDN =  

The background noise follows a Rayleigh distribution rather than a Guassian 

distribution. In a Guassian distribution the mean of the background would be 

zero, however with MR images all the negative numbers are made positive and 

the mean is therefore greater than zero. This results in a smaller standard 

deviation and so a factor of 0.655 is applied as a correction (Kaufman et al. 

1989). The NSNR was calculated for the sagittal, coronal and axial views.  

 

Figure 4.2 NSNR regions of interest in flood field test object, where PE is the phase 
encoding direction. 
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Using IPEM Report 80 (IPEM 1998) the NSNR was calculated in the following way. 

First, the voxel volume was calculated using the expression, 

Equation 4.2 

    SW
N

FOV

N

FOV
Voxel

P

P

R

R
vol ××=               

where FOVR,P and NR,P are the FOV (in cm) and the number of pixels in the read 

and phase encodings respectively and SW is the measured slice width in cm.  

The scan time, tscan, is calculated as, 

Equation 4.3 
     TRNNt Pavscan ××=                             

where Nav is the number of averages, NP is the number of phase encoding steps 

and TR is the repetition time.  

Finally, the NSNR is calculated using the following formula, 

Equation 4.4 

    
0volscan BW

BW
SNR

Voxel

1

t

1
NSNR ×××=              

where SNR is the signal-to-noise ratio calculated for each view using ROI in the 

method described above, BW is the receiver bandwidth in kHz (11.9 kHz) and 

BW0 is arbitrarily chosen as 30 kHz for normalisation. 

An increase in the Quality- (Q) factor leads to an improvement in the SNR by a 

factor of √Q and produces a sharper frequency response. The Q-factor is a 

measure of the tuned circuit performance of an RF coil and is the ratio of stored 

energy to dissipated energy. Since this information is not readily accessible in 

clinical scanners the Q-factor was not considered in the findings.  

4.5.2 Resolution 

The resolution test object contains a square angled Perspex block and four 

groups of parallel glass plates. It is filled with a paramagnetic solution (0.7 
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grams CuSO4/litre of distilled water, pH 2). A diagram of the resolution test 

object can be seen in Figure 4.3. 

 

Figure 4.3 Axial plane through the resolution test object 
 

Using localisation pre-scans the resolution test object was positioned with its 

centre at the scanners isocentre. The scanning parameters were set up in 

accordance with Table 4.1, with a FOV of 250 mm and an image resolution of 

both 256 × 256 and 512 × 512 pixels in all planes.  

The MagNET resolution test object consists of plates with thickness and 

separation of 1 mm and 0.5 mm groups. Both the phase encode and the read 

encode directions were assessed with a single image since the sets of parallel 

bars were perpendicular to each other. To assess the resolution a line profile 

was drawn through the bars. The 50 % intensity line was used to determine the 

degree to which the bars were resolved.  

With a FOV of 250 mm and a matrix size of 256 × 256 the pixel resolution is 0.98 

mm therefore only the 1mm bars can be resolved. Similarly, a matrix size of 512 

× 512 gives a pixel resolution of 0.49 mm so the 0.5 mm bars can be resolved.  
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4.5.3 Fractional uniformity 

Image uniformity is affected by the RF homogeneity which is influenced by 

resonator design and set up, the magnetic field homogeneity and eddy current 

correction. The RF resonator is designed by the manufacturer to transmit and 

receive RF energy. RF noise spikes can be produced from poorly designed 

resonators and appear as light and dark stripes across the image. The design and 

orientation of the coil fundamentally determines uniformity.  

Uniformity measurements were performed on the NSNR datasets and analysed 

using the Osiris software package. Line profiles of 160mm were taken in the 

horizontal and vertical direction for each image set and centred over the centre 

of the object to avoid ringing at the edges of the phantom.  

Fractional uniformity was calculated using the equation, 

Equation 4.5 

100
Pixels

Pixels
Uniformity

T

R ×=                            

where PixelsR is the number of pixels within ±10 % of the mean value and PixelsT 

is the total number of pixels. It was multiplied by 100 to express the value as a 

percentage.  

4.5.4 Geometric linearity and distortion 

Distortion in MRI is a result of system induced effects, such as field 

inhomogeneity, gradient maladjustment or sampling irregularities and patient 

induced effects, namely chemical shift and magnetic susceptibility effects. 

Chemical shift has been investigated by previous authors and is not dependent 

on the imaging coil.  Moore et al measured a chemical shift of 0.46 pixels at a 

bandwidth of 62.5 kHz and 3.2 pixels at a bandwidth of 9 kHz. This paper 

recommends a minimum bandwidth of 30 kHz and taking a linear fit between 

these two measured points gives a shift of 1.5 pixels at this bandwidth. At our 

centre we have a standard FOV of 256 mm and a matrix size of 256 × 256 for our 

T1-weighted images and 512 × 512 for our T2-weighted scans. This would result 

in an approximate shift of 1.5 and 0.8 mm for T1- and T2-weighted images 
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respectively. It should be noted, however, that this error will be localised to 

areas such as the subcutaneous fat in the neck and scalp.  

Magnetic susceptibility effects have also been rigorously investigated and are not 

dependent on the imaging coil. A review paper (Fransson et al. 2001) noted that 

susceptibility effects are likely to be most pronounced at tissue-air interfaces, 

such as around the nasal cavities and along the patient outline and this is 

expected to generate field changes of up to ±  9 parts per million and a 

susceptibility shift of 0.2 pixels at a bandwidth of 30 kHz. This would result in a 

distortion of 0.15 and 0.08 mm at our centre for T1- and T2-weighted scans 

respectively. These distortions would be localised to regions of high magnetic 

susceptibility.  

To calculate system related errors in terms of geometric linearity and distortion 

the distances (centre-to-centre) between the glass rods in the geometric 

linearity test object were measured. Six distances of a known length of 120 mm 

were measured in both the horizontal and vertical positions as shown in Figure 

4.4. 

 

Figure 4.4 Geometric linearity measurements in the (a) horizontal and (b) vertical directions 
 

Geometric linearity is calculated by finding the error between the measured 

distance and the actual distance. These errors should be < 1 mm in accordance 

with the IPEM Report 80 (IPEM 1998).  
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Geometric distortion is the variation in errors between the measured and actual 

distance. The coefficient of variation, CV, is used to determine the distortion 

and is defined as, 

Equation 4.6 

     100%
mean

SD
CV ×=                             

The distortion is expected to fall within 1 % as an acceptable tolerance in 

accordance with the IPEM Report 80 (IPEM 1998). 

4.5.5 Multiple slice position error 

Multiple slice position error was measured using the MagNET slice position test 

object. This phantom is made of Perspex containing two angled glass rods and 

four parallel glass rods. It is filled with a paramagnetic solution and a diagram of 

its construction can be seen in Figure 3.1 of Chapter 3. 

The test object was positioned at the isocentre of the scanner and slice widths 

of 5 mm were acquired with the central slice at the centre of the test object 

using the scanning parameters of Table 4.1 and a FOV of 256 mm.  

A correction factor was determined by comparing the measured distance to the 

physical distance of the glass rods in the geometric linearity phantom of Figure 

4.4. This correction factor was then applied to the measured rod positions to 

give a true distance. Next, the distance (centre-to-centre) between the angled 

rods of the slice position object was measured. The measured slice position, 

SPmeas, was determined using the following expression, 

Equation 4.7 

     
2

sd
SP

22

meas

−=                

where d is the measured distance of the angled rods after an appropriate 

correction factor and s is the rod separation which is equal to 6.5 mm.   

The centre of the phantom was determined by positioning the object until the 

rod separation was zero. A scanning protocol with no spacing between the slices 
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was delivered and the scans were interleaved to prevent crosstalk between 

slices. Finally, the magnitude of the slice position error for each slice was 

calculated by subtracting the actual slice position from the measured slice 

position.  

4.5.6 Slice width 

Slice width is affected by the RF pulse shape, the magnetic field homogeneity, 

the gradient linearity and gain and the eddy current correction. The slice width 

object contains two angled 1mm thick glass plates in a paramagnetic solution. 

Using the Osiris software package a profile was created across the plates (as 

shown by the dashed lines in Figure 4.5). The full width at half maximum 

(FWHM) was measured from the profiles and the slice width was calculated using 

the following expression, 

Equation 4.8 
   Slice width = FWHM/Stretch factor    

 

Figure 4.5 Position of profiles through plates in i mage 
 

For this test object, the angle of the plates is 11.3°, giving a stretch factor of 5. 

The tolerance for the slice width error is less than or equal to ± 10 % of the 
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nominal slice width (i.e. for a 5 mm slice width, values should fall in the range 

4.5 mm to 5.5 mm).  

4.5.7 Contrast-to-noise ratio 

CNR measurements were taken using 5 different solutions and the MagNET oil 

uniformity phantom and were positioned in the same way for each coil. Contrast 

bottles contained NiCl2, NiCl2 loaded, CuSO4, H2O and a bottle from the GE 

Endorectal Phantom. These gave uniform signal measurements enabling the 

measurement of the CNR defined as, 

Equation 4.9 

    
( )
( )MinMax

 Min-Max 
CNR

+
=                                        

where Max and Min are the mean maximum and minimum signal intensity 

measurements in a ROI of 20 × 20cm. 

A T1-weighted spin echo (SE), a T2-weighted SE and a T2-weighted fast spin 

echo (FSE) scan was performed for each imaging coil and an average CNR was 

calculated. 

4.5.8 Filling factor 

The filling factor gives a measure of the geometrical relationship between the 

imaging coil and the object being imaged. This is related to the SNR since it is 

the fraction of the flux produced by the coil which passes through the sample. 

Using the oil phantom from the NSNR measurements it is possible to calculate 

relative filling factors for the coils by taking the ratio of the volume of the oil 

phantom to the volume of the active coil elements. 

4.6 Results  

4.6.1 Normalised signal-to-noise ratio 

The NSNR results averaged over the axial, sagittal and coronal planes for the 

four coils are shown in Figure 4.6. The error bars are the SD of the 

measurements over the three planes. These results were compared with 
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measurements made in the NHS Evaluation Report 06005 (PASA 2006) for the 

multi-channel head coil.  

 

Figure 4.6 NSNR measurements averaged over the axia l, sagittal and coronal planes for the 
four coils and comparison with the multi-channel he ad coil NSNR measurement from Report 
06005, with and without PURE applied 
 

From the results it can be seen that all coils tested fall below the NSNR values 

measured with the head coil. Although the 4-channel cardiac coil performs best 

it has a mean of 39.5 % below the mean of the multi-channel head coil. 

By applying PURE the NSNR for the 4-channel cardiac coil reaches 96.3 % of the 

head coil results averaged over the three planes. The 8- and 12-channel body 

array coils have a NSNR of 38.8 % and 23.0 % of the multi-channel head coil with 

PURE applied. 

4.6.2 Resolution 

By inspecting the profiles through the 1 mm and 0.5 mm bars it was found that it 

was always possible to resolve the 1 mm bars for the 256 × 256 matrix and the 

0.5 mm for the 512 × 512 matrix size for each of the four coils tested, so the 

resolution meets the minimum standard expected for RT planning. 
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4.6.3 Fractional uniformity 

Fractional uniformity measurements gave results shown in Figure 4.7 for the oil 

flood field phantom when averaged over the x- and y-axes and the axial, sagittal 

and coronal planes. Error bars represent the SD for the measurements in the two 

axes and three planes. 

 

Figure 4.7 Fractional uniformity results for the fo ur coils averaged over the x- and y- axes 
and the three planes showing the percentage of pixe ls ± 10% of the mean, with and without 
PURE applied. 
 

From Figure 4.7 it can be seen that only the integrated body coil has suitable 

uniformity before correction. Fractional uniformity measurements with the 

remaining three coils are less than ± 10 % of the mean. The 8-channel and 12-

channel body array coils gave the poorest uniformity in the vertical axis. This is 

because the unconventional arrangement of these coils causes the signal to drop 

off with distance from the coil surface (Figure 4.1). The difference between the 

vertical and horizontal measurements accounts for the large SD values for the 8- 

and 12-channel body array coils. 

Figure 4.7 also shows that when PURE is applied all pixels for each of the coils 

are within the mean ± 10 % tolerance, which is ideal for integration with RT. 
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4.6.4 Geometric linearity and distortion 

The results of the linearity and distortion tests can be seen in Table 4.2. This 

shows that the linearity and distortion measurements are all within the 1 mm 

and 1 % tolerance respectively. 

Table 4.2 Linearity and distortion measurements for  the four coils, where SD is the standard 
deviation and CV is the coefficient of variation. 
 

 

4.6.5 Multiple slice position error 

The physical distance between the rods in the geometric linearity phantom is 

120 mm, as shown in Figure 4.4. From the measurements shown in Table 4.2, 

this gave a correction factor of 0.997, 0.998, 0.999 and 0.999 for the integrated 

body coil, 8- and 12-channel body array coils and the four channel cardiac coil 

respectively. The corrected measured slice positions in the axial plane for the 

integrated body coil can be seen in Figure 4.8 and the slice position error 

measurements for the slice position test object are shown in Figure 4.9. Error 

bars correspond to the SD of the calculated error measurements. 

For diagnostic imaging the mean slice position error is expected to be < 2 mm, 

but for RT planning a tolerance of 1 mm is the ideal standard. All four coils 

demonstrated an average slice position error within this tolerance, regardless of 

whether PURE was applied. 

Coil Plane Average measured distance (mm) SD CV Distortion (%) 

Axial 120.2 0.3 0.26 0.3 

Sagittal 120.0 0.2 0.16 0.2 

Integrated 

body 

Coronal 120.9 0.4 0.34 0.3 

Axial 120.3 0.5 0.40 0.4 

Sagittal 120.0 0.3 0.27 0.3 

8-channel 

body array 

Coronal 120.4 0.5 0.42 0.4 

Axial 120.0 0.4 0.34 0.3 

Sagittal 120.1 0.3 0.23 0.2 

12-channel 

body array 

Coronal 120.1 0.5 0.45 0.4 

Axial 120.5 0.4 0.30 0.3 

Sagittal 119.7 0.2 0.20 0.2 
4-ch cardiac 

Coronal 120.2 0.6 0.47 0.5 
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Figure 4.8 Glass rod separation measurements for th e integrated body coil 
 

 

Figure 4.9 Average slice position error measurement s for the four coils, with and without 
PURE applied.  
 

To try and reduce the time required to analyse the multiple slice position error a 

Matlab code was written and this code can be seen in Appendix 1. There are, 

however, some limitations with the code in its current form. It is limited to a 

256 x 256 matrix size; if the matrix size is changed the image cropping must also 

be changed. The alignment of the phantom when it is scanned must be perfect. 

If the phantom is at an angle the code will fail to detect the rod positions. The 

code is only able to work with the phantom in one position. If the phantom is 

rotated by 90° a separate code would need to be written. 
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4.6.6 Slice width 

Using a slice thickness of 5 mm and 3 mm, and averaging over the three planes, 

gave slice width results shown in Figure 4.10 and Figure 4.11 respectively. The 

error bars are the SD of the slice width measurements over the three planes. 

These figures show that all the slice width measurements are within a tolerance 

of ± 10 % the nominal slice width, with and without PURE applied.  

 

Figure 4.10 Slice width values for 5 mm slices for the four coils averaged for both plates in 
the three planes with and without PURE applied.   
 

 

Figure 4.11 Slice width values for 3 mm slices for the four coils averaged for both plates in 
the three planes with and without PURE applied. 
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4.6.7 Contrast-to-noise ratio 

The CNR results of Figure 4.12 were obtained for a slice through the centre of 

the containers of solution and the oil phantom. Error bars denote the SD of the 

CNR measurements using the three scanning parameters recorded above. 

From these results it can be seen that there is acceptable CNR from each of the 

coils. By applying PURE it was found that there was a reduction in the CNR as 

variations in intensity were reduced. However, the CNR results with PURE 

applied are still greater than the multi-channel head coil values and therefore 

satisfactory for use in RT planning.  

 

Figure 4.12 Contrast-to-noise ratio results for the  four coils averaged over the T1-weighted 
SE, T2-weighted SE and T2 FSE sequences and compari son with the head coil NSNR 
measurements from Report 06005, with and without PU RE applied. 
 

4.6.8 Filling Factor 

The active volume of the integrated body coil is calculated using the bore 

diameter of 60cm and the length of the phantom of 21cm giving a volume of 

59376.1 cm3. The ratio of the volume of the oil uniformity phantom to the 

volume of active elements of the integrated body coil gives a filling factor of 

0.11. The volume of the 8- and 12-channel body array coils gives filling factors of 

0.78 for both coils. The filling factor for the 4-channel cardiac coil is equal to 
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0.69. The low NSNR of the integrated body coil is in accordance with its low 

filling factor.  

4.7 Discussion 

These results show that it is possible to incorporate a RT thermoplastic 

immobilisation mask into MRI for treatment planning purposes without 

compromising the image quality. Although the integrated body coil would offer 

the greatest flexibility and ease of use, it did not provide a high enough NSNR to 

match the multi-channel head coil which would potentially result in tumours 

being missed if used clinically. The integrated body coil with a thermoplastic 

face mask is therefore not the best available choice for RT. 

The only coil capable of matching or exceeding the image quality tests was the 

4-channel cardiac coil. It is necessary however to use this in conjunction with 

the uniformity correction algorithm (PURE) to bring the NSNR and the fractional 

uniformity to an acceptable tolerance. This coil is light-weight and can be easily 

wrapped around a face mask to give suitable images for registration with CT. It 

has been suggested that the reduction in SNR by a factor of four, demonstrated 

by the integrated body coil, is acceptable for the differentiation of anatomical 

detail since the CNR is comparable to the head coil (Moore et al. 2004). 

However, the drop in SNR diminishes the quality of MR and negates the 

diagnostic benefits that MRI provides over CT for discerning the subtle contours 

of the tumour extent. Furthermore, a drop in the NSNR may be problematic in 

the use of contrast enhanced imaging where small differences in signal intensity 

are of greater importance. We have presented a simple method whereby 

immobilisation may be incorporated in the MR imaging of brain or head and neck 

patients without losing the image quality which distinguishes MRI from other 

modalities.  

4.8 Conclusion 

This method will help to improve image registration of MRI with CT for RT 

planning. The 4-channel cardiac coil, when used with the uniformity correction 

algorithm, offers suitable image quality comparable with the multi-channel head 

coil. It also opens up the exciting possibility of using MRI alone for RT planning.
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5 The influence of MRI scan position on patients 
with prostatic cancer undergoing radiotherapy 

5.1 Introduction 

This chapter contains a study performed to investigate the effect of magnetic 

resonance imaging (MRI) scan position when integrated with the radiotherapy 

(RT) planning process for patients with prostate cancer.  

Although, it could be anticipated that imaging the patient in the same 

orientation as they receive their treatment would result in an improvement in 

the registration quality, many RT centres neither register the computed 

tomography (CT) datasets with MRI nor ensure the MRI positioning is consistent 

with treatment. Furthermore, no publication which tests how this assumption 

will affect the RT planning process could be found.  

The aim of this study was to determine how different patient positions in MRI 

affected the registration quality with CT. A further goal of this research was to 

examine the changes in the target volume and how this affects RT planning. It 

was the overall intention of this study to determine if it was necessary to obtain 

an MRI scan in the RT position for RT planning or whether a diagnostic MRI scan 

would suffice.  

It is anticipated, that by addressing the problems related to changes in the 

tumour volume, registration and importantly the subsequent effect on prostatic 

RT, this will facilitate an adjustment in current practice. 

This work has been presented at a national and international level and published 

in a peer reviewed journal: 

• Does setting up prostate patients in the radiotherapy position when using MRI affect 

radiotherapy planning?, Hanvey S, Sadozye A, Glegg M, Foster J, Oral presentation, 

Advanced Clinical MR in Oncology, Institute of Physics and Engineering in Medicine 

(IPEM), Leeds, 2011 

• Effects of MRI scan position on image registration accuracy, target delineation and 

calculated dose in prostatic IMRT, Hanvey S, McJury M, Sadozye A, Glegg M, Foster J, 
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Poster presentation, European Society for Radiotherapy and Oncology 31, Barcelona, 

2012. 

• The influence of MRI scan position on image registration accuracy, target delineation 

and calculated dose in prostatic radiotherapy, Hanvey S, Sadozye A, McJury M, Glegg 

M, Foster J, The British Journal of Radiology, 85, e1256-e1262 (2012). 

5.2 Methods 

5.2.1 Patient group and study overview 

Twenty patients with prostate cancer (age 56-75) due to undergo radical RT 

were selected for the study. This investigation was approved by the Local Ethics 

Committee. Informed consent was obtained from all patients before entering 

into this study. The patients received a CT planning scan, an MRI scan in the 

standard diagnostic position (denoted as MRID) and an MRI scan in the RT position 

(denoted as MRIRT) during the same scan session. Both MRI scans were registered 

separately with CT as shown in Figure 5.1. The gross tumour volume (GTV) was 

delineated on the CT dataset by a Consultant Clinical Oncologist using a 

treatment planning system, with the aid of viewing MRID on a separate computer 

console, as is the current practice at our centre. This patient position protocol is 

denoted as PC. Delineations of the GTV were then performed on the MRID 

registered to the CT, this is denoted as PD. The GTV was also delineated on the 

MRIRT registered to the CT image set, this is denoted as PRT.  

5.2.2 CT scanning protocol 

Patients were scanned on a GE Light-speed RT 16 CT scanner (GE Medical 

Systems, WI, USA) using the current clinical scanning protocol. All patients 

received three gold seed implants to the prostate for positioning adjustment at 

treatment. Patients were asked to empty their bladder before being given 200ml 

of water 30 minutes before their scan. To immobilise the patients a knee 

support and head rest was used. Using a LAP (LAP Laser, Lüneberg, Germany) 

laser positioning system the patients were aligned with the laser and lateral and 

anterior markers were placed on the patient. Following the scout scan, tattoos 

were located 1 cm below the superior border of the symphysis pubis and 1 cm 

anterior to half of the patient’s anterior-posterior separation. A scan extent of 
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inferior superior-inferior joints to 3 cm below inferior pubic ramus was used. A 

helical scan was acquired with a detector configuration of 16 × 1.25, pitch 

0.938: and speed 18.75 mm/rot with a slice thickness and interval of 2.5 mm.  

 

Figure 5.1 Split view showing the registration of ( a) the CT and MRI D and (b) the CT and 
MRIRT datasets. White arrows on image (a) indicate error s in registration which can be seen 
to be corrected on (b). MRI D: diagnostic MRI scan; MRI RT: MRI scan in the radiotherapy 
position. 
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5.2.3 MRI scanning protocol 

Patients received their MRI scans without contrast, in accordance with our 

centre’s current clinical protocol, on a GE Signa HDxt 1.5T MRI scanner (GE 

Medical Systems, WI, USA). Weekly geometric linearity and distortion 

measurements are conducted on this scanner. It was found that the linearity 

error did not exceed 0.3 mm and the distortion coefficient of variation was no 

more than 0.3 % over the last 12 months. In addition, monthly uniformity and 

slice position measurements are performed. The percentage image uniformity 

measurements were found to be at worst 96.0 % and the largest average slice 

position error was 0.6 mm for a given month over the previous 12 months. These 

results were within the tolerances defined in the IPEM report 80 (IPEM 1998) and 

American Association of Physicists in Medicine (AAPM) report 100 (AAPM 2010).  

The patients were scanned in two different positions. For the MRIRT scan, 

patients were positioned on a customised polymethyl methacrylate (PMMA) 

sheet, to simulate the treatment couch, with a 4-channel (4-ch) flexible surface 

cardiac coil beneath the PMMA positioned posterior to the prostate and another 

positioned on the anterior surface of the patient, as shown in Figure 5.2. The 

posterior section of the 4-ch cardiac coil was held flat against the underside of 

the PMMA using high density foam, to maximise the signal-to-noise ratio (SNR). 

The same knee rest immobilisation and a similar bladder preparation was used as 

their CT scan, except there was a delay of only 15 minutes after drinking the 

required volume of water for the MRI scans to take into account the longer scan 

times. Using the permanent skin markers the patients were firstly positioned 

with the markers at the centre of the 4-ch imaging coil to maximise the signal at 

the prostate. Patients were then aligned in the same way as their CT using the 

markers and a LAP laser positioning device and this became the isocentre plane 

and central slice. A similar scan extent was used as the CT scan. The imaging 

parameters for the T1 and T2-weighted scans are shown in Table 5.1. T1 and T2-

weighted scans were performed to enable visualisation of the bony anatomy and 

soft tissue for structure delineation. 
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Figure 5.2  MRIRT flat table set up. MRI RT: MRI scan in the radiotherapy position; 4-ch: 4-
channel; PMMA: polymethyl methacrylate. 
 

Table 5.1 MRI imaging parameters 
 

Scan type FOV 
(mm) 

Slice thick 
(mm) 

Spacing 
(mm) 

TE 
(ms) 

TR 
(ms) 

Matrix size 

2D driven-
equilibrium FSE  
(T2-weighted) 

480 2.5 0 93.9 2520 512 × 256 

3D FSPGR 
(T1-weighted) 

480 2.5 0 2.2 4.5 512 × 384 

FOV: Field of view; TE: echo time; TR: repetition t ime; FSE: Fast Spin Echo; FSPGR: Fast 
SPoiled GRadient echo. 
 

The patient was then removed from the table and a standard diagnostic scan 

was performed using a curved couch and 8-channel cardiac coil during the same 

scan session. This scan was repeated in the same way as the flat table MRI scan 

except that the patients were not aligned with the LAP laser positioning device, 

but were positioned in the magnet as they would be for a typical diagnostic MRI 

scan of the pelvis. The 8-channel cardiac coil was not used for the MRIRT scan 

because this coil is curved and rigid and so there would have been a greater 

distance between the patient and the posterior section of the coil than with the 

4-channel cardiac coil. This would have resulted in a reduced SNR of 
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approximately 14% (McJury et al. 2011) and could potentially have prevented 

very large patients participating in the study due to the restrictions of the 

magnet bore size.  

5.2.4 Image registration 

The CT data set was registered with the MRIRT and MRID T1 and T2-weighted 

scans using the treatment planning system Eclipse (Varian Medical Systems, Inc. 

CA, USA). This software performed a fully automatic, mutual-information based 

rigid registration. The entire scanned pelvis was used for the registration to 

provide as much information for the registration algorithm as possible. A fully 

automatic registration was used to keep user interaction to a minimum.  

An attempt was made to register the CT and MRI datasets using the prostate 

seeds as registration points to then transform the MRI coordinate system to the 

CT. The treatment planning system used in this study (Eclipse, Varian Medical 

Systems, Inc. CA, USA version 8.6.15) could not perform the registration because 

of the close proximity of the seeds to one another. Changing the volume of 

interest to include only the prostate so that the registration was performed 

using the pixel data within the volume of interest resulted in a poor registration. 

There was also no change to the registration results by prioritising the prostate 

volume. While deformable registration is available for Eclipse, it does not allow 

inter-modality registration. Since inter-modality deformable registration is 

generally not available, nor employed clinically at our centre, this was not 

subject to further investigation. Fully automated registration was used without 

manual adjustment since this would introduce subjective errors. 

To assess the registration accuracy three rigid volumes were outlined on the CT 

and MRI T1-weighted data sets. The volumes delineated were the symphysis 

pubis and three transverse sections of the left and right femoral heads. The 

transverse sections chosen for the femoral heads were at the most inferior level 

of the ischial tuberosity, the most inferior aspect of the symphysis pubis and the 

transverse section above the most proximal slice in which the femoral neck is in 

continuity with the femoral head. This bony anatomy was delineated firstly using 

PC and then repeated on the registered image sets PD and PRT for each patient.  
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The quality of registration was assessed in two ways. Firstly, the distance from 

the centre of bony anatomy drawn in CT to those delineated in MRI was 

measured using the coordinate location of the centre of the structures 

determined by the treatment planning system. Since this data was not normally 

distributed the geometric mean was calculated. Secondly, the spatial overlap of 

the structures drawn on CT and MRI was measured. The spatial overlap of the 

volumes contoured in CT and MRI was assessed by calculating the Dice 

coefficient (spatial overlap) for each volume, which is given by, 

Equation 5.1 

( ) 2/MRICT

 MRI CT 
overlap spatial

+
∩=                            

where CT ∩ MRI is the volume of intersection between the CT and MRI 

structures. The value of the spatial overlap ranges from zero, which indicates no 

spatial overlap between the CT and MRI volumes, to one, which is complete 

overlap (Zou et al. 2004). As volumes outlined on CT and MRI may differ, even 

with perfect registration, a spatial overlap of one may not be achieved in 

practice. However, comparisons of spatial overlap for the MRI volumes with 

different patient set-up and registration quality will show changes in spatial 

overlap, which are dependent on these differences.  

The assessment of registration quality was applied to the GTVs in the same way 

as the bony anatomy: by measuring the distance between GTVs and the spatial 

overlap of the GTVs delineated using PC, PD and PRT. 

5.2.5 Gross tumour volume, organs at risk and plann ing target 
volume delineation 

A trained Consultant Clinical Oncologist delineated two volumes for all patients; 

the prostate and the prostate plus seminal vesicles. The Oncologist delineated 

the two volumes using PC, PD and PRT. When delineating on the registered image 

sets, the clinician was able to view both the CT and MRI information at the same 

time. The clinician generally used the T2-weighted MRI datasets for contouring 

the prostate and seminal vesicles, although the T1-weighted images were also 

referenced. There was a period of at least a week between delineations of the 

same patient using a different imaging protocol and the Oncologist was blinded 
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to previous delineations. The organs at risk (OARs) for patients with prostate 

cancer are the rectum, bladder and femoral heads. It was known from previous 

experience that due to the orientation of the beams used in intensity modulated 

radiotherapy (IMRT) planning the dose to the femoral heads never reached the 

clinical dose constraint, therefore only the dose to the bladder and rectum was 

investigated. The OARs were outlined using the three patient position protocols 

PC, PD and PRT for each patient. 

Planning target volumes (PTVs) were generated from the Oncologist’s 

delineations of the GTV for the purposes of IMRT planning. PTV1 was the 

prostate plus the seminal vesicles with a margin of 10 mm isotropically. PTV2 

was the prostate plus a 10 mm margin in all directions except in the posterior 

direction where a margin of 5 mm was given. Finally, PTV3 was the prostate with 

a margin of 5 mm in all directions except in the posterior direction where there 

was no expansion from the prostate. PTV3 was not expanded into the rectum. All 

three PTVs were investigated but since a similar pattern was demonstrated for 

each PTV only the results of PTV3 are presented. PTV3 delineated with PC, PD 

and PRT will henceforth be denoted PTVC, PTVD and PTVRT respectively. 

5.2.6 Dose analysis 

To determine the effect changes in tumour volumes have on RT planning, IMRT 

plans were generated for each patient. For each patient three IMRT plans were 

calculated by optimising for PTV1, PTV2 and PTV3 generated from the prostate 

volumes delineated using the patient position protocols PC, PD and PRT.  

The IMRT plans were calculated in accordance with the Conventional or 

Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate 

Cancer (CHHiP) trial (Dearnaley et al. 2012) dose constraints using the pencil 

beam convolution algorithm in Eclipse (Varian Medical Systems, Inc) version 

8.2.23. At the time of the study using the CHHiP dose constraints for IMRT 

planning of prostatic cancer patients was the current clinical protocol. With this 

set of PTVs, we have taken each PTV in turn and assumed for analysis it is the 

volume for clinical planning, and optimised the plan for this volume.  



Scott Hanvey 2013                 Chapter 5: The influence of MRI scan position on prostatic RT 136 
 

Of particular interest in this study was to investigate the quality of the RT plan 

for PC and PD with reference to PRT, since our working hypothesis postulates that 

the optimum target volume definition is achieved with PRT. To achieve this IMRT 

plans were optimised for PTVC and PTVD while the dose coverage of PTVRT for 

these plans was investigated.  

To determine the quality of each RT plan a conformation number (CN) was 

calculated for PTVC, PTVD and PTVRT. The CN indicates the extent to which the 

target volume is being irradiated and healthy tissue is being spared. The CN is 

defined according to the following equation (Reit et al. 1997), 

Equation 5.2 

RI

RI

PTV

RI

V

TV

V

TV
CN ×=        

where TVRI = target volume covered by the reference isodose, VPTV = volume of 

the PTV and VRI = volume of the reference isodose. The reference isodose 

volume is defined as the volume receiving the therapeutic prescribed dose. 

The first fraction of the equation relates to the quality of the target coverage 

while the second fraction is an indicator of healthy tissue sparing. The CN varies 

from 0 to 1, where 1 is the ideal value and the target is covered completely with 

total sparing of the surrounding healthy tissue (Reit et al. 1997). The PTV for 

which the plan was optimised would be expected to have a high value of CN, 

whilst the CN for the other two non-optimised PTVs will reflect the impact of 

registration differences on the planning doses. With the working hypothesis 

stating that PTVRT is the gold standard, it was possible to determine the extent 

to which the PTVC and PTVD achieve a similar IMRT quality by optimising for PTVC 

and PTVD but investigating the CN of the non-optimised PTVRT. 

Two-tailed student t-tests were performed to examine the statistical 

significance of the differences of the registration quality and dosimetric indices, 

except for the differences in the geometric mean distances from the centre of 

the structures in CT and MR where a two-tailed Mann-Whitney test was used. 

The null hypothesis was rejected when the p value was less than 0.05. 
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5.3 Results 

While performing CT-MRI registration, qualitatively it was found that there was 

improved registration with MRIRT compared to MRID. An example of this is shown 

in Figure 5.1 where discrepancies in the registration can be seen for the CT-

MRID, as indicated by the arrows, but not with MRIRT. 

This is in agreement with the quality of registration measurements which show a 

reduction in the geometric mean distance from the centre of the CT to the MRIRT 

bony anatomy to that of the CT to MRID volumes (Table 5.2). This data showed a 

statistically significant improvement in the CT-MRI registration accuracy of each 

structure for the MRIRT over the MRID datasets (left femoral head, p value = 

0.049; right femoral head, p value = 0.003; symphysis pubis, p value < 0.001).  

The mean spatial overlap for the bony landmarks demonstrated an improvement 

between CT and MRIRT over MRID as shown in Table 5.2. Combining the spatial 

overlap results for the bony anatomy, by averaging the data for the left and 

right femoral heads and symphysis pubis gave a mean spatial overlap of 0.67 for 

the PD compared to 0.74 for the PRT (p value = 0.046). 

Table 5.2 Geometric mean error and mean spatial ove rlap of the bony anatomy. The 
geometric mean error is the geometric mean of the d istance from the centre of the CT 
structures to the centre of the MRI structures. The  error bars represent ± 1 standard 
deviation. 
 

 

MRID: diagnostic MRI scan; MRI RT: MRI scan in the radiotherapy position. 
 

Investigating the registration quality of the GTVs revealed that there was a 

decrease in the mean distance from the centre of the prostate and prostate plus 

seminal vesicles volumes delineated on PC to PRT compared to the volumes drawn 

on the PD (Table 5.3). There was a statistically significant difference in the mean 

error of the prostate and prostate plus seminal vesicles volumes delineated on PC 

and PD to those drawn using PC and PRT (p value = 0.021). 

 

CT to MRID 
geometric mean 

error (mm) 

CT to MRIRT 
geometric mean 

error (mm) 

Mean CT to 
MRID  spatial 

overlap 

Mean CT to 
MRIRT spatial 

overlap 
Left femoral head 2.4 ± 2.2 1.5 ± 1.6 0.77 0.85 
Right femoral head 3.0 ± 1.8 1.5 ± 1.2 0.72 0.81 
Symphysis pubis 4.2 ± 3.0 1.6 ± 1.1 0.52 0.56 
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There was also an improvement in the mean spatial overlap of the GTVs 

delineated using PC and PRT rather than the PD (Table 5.3). A significant 

difference was found in the spatial overlap between the prostate volumes 

delineated using PC and PD and those delineated on PC and PRT (p value = 0.045) 

but not for the prostate plus seminal vesicles (p value = 0.058).  

Table 5.3 Mean error and mean spatial overlap of th e prostate and prostate plus seminal 
vesicles. Mean error is the distance from the centr e of structures drawn using P C to those 
drawn using P D or PRT. 
 

 

PC: CT with the diagnostic MRI scan viewed on a separ ate console; P D: CT registered with 
the diagnostic MRI scan; P RT: CT registered with the MRI scan in the radiothera py position. 
 

In Table 5.2 and Table 5.3 the mean error results are presented with their 

standard deviations. It can be seen that the bony anatomy and prostate volumes 

show a reduction in the standard deviation values for the CT dataset registered 

to the MRIRT rather than the MRID. This is due to the use of patient positioning 

lasers to set-up the patients for their MRIRT scan. The lasers enabled the patients 

to be positioned for their MRIRT scan more closely to their CT set-up position and 

thereby resulted in a reduction in the set-up error, whereas for their MRID scan, 

the patients were not aligned with the positioning lasers and so were unlikely to 

be scanned in the same plane as their CT scan. However, the standard deviation 

for the prostate and seminal vesicles mean error results was seen to increase 

using PRT instead of PD. This is thought to be as a result of the challenges 

associated with delineating the seminal vesicles using CT. 

The mean prostate and prostate plus seminal vesicles volumes were significantly 

larger when the clinician contoured on PC rather than on PD or PRT as shown in 

Table 5.4. The p values in Table 5.4 refer to the differences in the prostate and 

prostate plus seminal vesicles volumes delineated on the PC to those drawn using 

the PD or PRT.  

Conformation number results for PTVC, PTVD and PTVRT are presented in Table 

5.5. It can be seen from the first three rows of Table 5.5 that an excellent CN of 

 
PC and PD mean 

error (mm) 
PC and PRT mean 

error (mm) 
Mean PC and PD 
spatial overlap 

Mean PC and PRT 
spatial overlap 

Prostate 5.0 ± 2.5 3.6 ± 2.2 0.70 0.74 
Prostate & 
seminal vesicles 5.2 ± 2.3 4.1 ± 2.6 0.64 0.69 
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average 0.98 can be achieved when evaluating the dose coverage of the PTV 

being optimised.  

Table 5.4 Mean volume of the prostate and prostate plus seminal vesicles in the different 
set-ups. The p values refer to the differences in the prostate an d prostate plus seminal 
vesicles volumes delineated on the P C to those drawn using the P D or PRT. 
 

 

PC: CT with the diagnostic MRI scan viewed on a separ ate console; P D: CT registered with 
the diagnostic MRI scan; P RT: CT registered with the MRI scan in the radiothera py position. 
 

Optimising the RT plan for PTVC but calculating the CN for PTVRT results in a 

mean CN of 0.80 (row 4 of Table 5.5). This is significantly different to the mean 

CN of 0.98 found when optimising for PTVC and calculating the dose coverage of 

PTVC (p value < 0.001). Similarly, optimising for PTVD but calculating the CN for 

PTVRT gives a mean CN of 0.85 (last row of Table 5.5) instead of the expected 

0.99 for PTVD (p value < 0.001). Only by optimising for the working hypothesis 

gold standard PTV, PTVRT, is it possible to achieve a mean CN of 0.98, since the 

mean CN is significantly lower for both PTVC and PTVD. All PTV optimisation 

combinations were assessed but are not recorded, because they are not 

clinically relevant. 

Table 5.5 Mean CN for PTV C, PTVD and PTVRT when optimised for PTV in the three set-ups. 
 

 

 

 
 

 

 

IMRT: intensity modulated radiotherapy; PTV: planni ng target volume; PTV C: PTV drawn on 
CT with the diagnostic MRI scan viewed on a separat e console; PTV D: PTV drawn on CT 
registered with the diagnostic MRI scan; PTV RT: PTV drawn on CT registered with the MRI 
scan in the radiotherapy position; CN: conformation  number. 
 

Structure 
Mean PC 

volume (cm3) 
Mean PD volume in 

cm3 (p value) 
Mean PRT volume 
in cm3 (p value) 

Prostate 36.3 ± 10.8 32.0 ± 11.1 (0.001) 31.4 ± 11.0 (0.001) 
Prostate & seminal vesicles 45.9 ± 12.0 41.2 ± 12.9 (0.001) 40.3 ± 12.5 (0.002) 

PTV for which the IMRT 
plan was optimised 

PTV under 
examination Mean CN 

PTVC PTVC 0.98 ± 0.03 

PTVD PTVD 0.99 ± 0.01 

PTVRT PTVRT 0.98 ± 0.06 

PTVC PTVRT 0.80 ± 0.11 

PTVD PTVRT 0.85 ± 0.13 
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5.4 Discussion 

This is the first study to compare CT-MR image registration accuracy and RT plan 

quality of a diagnostic versus RT positioned MRI scan for patients with prostate 

cancer. The results of this study have shown that prostatic patients undergoing 

RT should be positioned in the RT position when registering MR images to CT for 

RT planning, since this provides optimal registration and target delineation 

accuracy. 

The quality of registration to CT improved using the MRIRT instead of the MRID 

images. This was demonstrated by a statistically significant reduction in the 

geometric mean error of the rigid bony landmarks from CT to the MRIRT to that 

drawn on the CT and MRID datasets and an improvement in the spatial overlap of 

these structures (from a mean of 0.67 to a mean of 0.74; p value = 0.046). In 

this study the relative changes in the spatial overlap were assessed, since, as 

mentioned previously, a spatial overlap of 1 may not be attained because of the 

differences in the volumes delineated on MRI and CT.  

A reduction in the average distance of the prostate volumes was found when 

delineated on PC and PRT (5.0 ± 2.5 mm) rather than PC and PD (3.6 ± 2.2 mm). 

Similarly, for the prostate plus seminal vesicles volumes, there was a reduction 

in the average distance between PC and PRT (5.2 ± 2.3 mm) versus the distance 

between PC and PD (4.1 ± 2.6 mm). This improvement was found to be 

statistically significant when the results of both the prostate and prostate plus 

seminal vesicles were analysed (p value = 0.021).  

An improvement in the mean spatial overlap of the prostate was evident 

between PC and PRT (0.74) versus PD (0.70). There was also an improvement in 

the mean spatial overlap for the prostate plus seminal vesicles volumes between 

PC and PRT (0.69) over PD (0.64). This improvement in mean spatial overlap was 

significant for the prostate (p value = 0.045) but not the prostate plus seminal 

vesicle volumes (p value = 0.058), due to the difficulty in delineating the 

seminal vesicles, particularly on CT. The quality of registration results for the 

GTVs is in agreement with the improved registration accuracy demonstrated 

between CT and MRIRT for the bony anatomy. The reduced error and improved 

spatial overlap between CT and MRIRT for the prostate and seminal vesicles 



Scott Hanvey 2013                 Chapter 5: The influence of MRI scan position on prostatic RT 141 
 

offers the clinician greater confidence in the use of MRI for RT planning. 

Accurate target localisation becomes more important as RT planning moves 

towards dose escalation and dose painting techniques with high dose gradients. 

It was shown that the rigid landmarks and prostate results show a reduction in 

the standard deviation values for the CT dataset registered to the MRIRT rather 

than the MRID. This strongly implies that patients are positioned more closely to 

the CT set-up when using the RT positioned MRI rather than the diagnostic MRI. 

However, unlike the rigid landmarks and the prostate structures, the standard 

deviation of the prostate plus seminal vesicle volumes slightly increased from PD 

to PRT. An increase in the standard deviation of these volumes is due to the 

challenges associated with delineating the seminal vesicles.  

The importance of CT-MRI registration is demonstrated by a statistically 

significant difference between the prostate volumes when the clinician 

contoured using PC rather than the registered datasets, PD (p value = 0.001) and 

PRT (p value = 0.001). A significant difference was also found for the prostate 

plus seminal vesicles volumes between the unregistered imaging protocol, PC, 

and the registered set-ups, PD (p value = 0.001) and PRT (p value = 0.002). This 

significant difference is because the prostatic capsule cannot be distinguished 

from surrounding tissue on CT, but with T2-weighted MRI this can be seen as a 

thin rim of low signal intensity. MRI is also superior to CT in defining the 

prostatic apex and distinguishing the boundaries of the prostate with the base of 

bladder and anterior wall of the rectum.  

The changes in target volume in this study are in agreement with several other 

studies (Charnley et al. 2005; Khoo and Joon 2006; Rasch et al. 1999; Sannazzari 

et al. 2002; Sefrova et al. 2012; Smith et al. 2007), which have demonstrated 

that outlining prostate and seminal vesicles using MRI results in more accurate 

treatment volumes. One study (Rasch et al. 1999) has shown that outlining with 

MRI results in a smaller volume of rectal wall being included, potentially leading 

to a reduced risk of late toxicity. It may also help to reduce complications to 

important structures such as the penile bulb. 

Dosimetric results showed that it was possible to achieve an average CN of 0.98 

when optimising and investigating the dose coverage of PTVC, PTVD or PTVRT. 
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This shows that the planning methodology of this study results in excellent 

target coverage with minimal dose to the surrounding healthy tissue.  

It was the working hypothesis of this study to regard PTVRT as the gold standard. 

The results have demonstrated that PRT offers improved registration accuracy 

over PD. Registering CT with MRI has also been shown to result in significant 

differences in target delineation due to the improved soft tissue contrast 

provided by MRI. In light of this evidence, it is reasonable to assume that PTVRT 

is the gold standard.  

In this study we optimised the dose to the PTVC and PTVD while calculating the 

dose received by the gold standard PTVRT. There was a statistically significant 

difference between the mean CN values when optimising for PTVC and 

investigating the dose coverage of PTVC or PTVRT (p value < 0.001). Similarly, 

when optimising for PTVD the dose coverage was found to be significantly 

different for PTVD and PTVRT (p value < 0.001). The improvement in the quality 

of IMRT planning using the PTVRT demonstrates that it would be suboptimal to 

rely on the PTVC or PTVD for prostatic RT planning. 

Obtaining a second MRI in the RT position, rather than relying on the diagnostic 

MRI, clearly places greater financial demands on the healthcare service. This 

must be balanced with the improved registration and target definition and, as a 

result, superior dose coverage of the PTV, as demonstrated by this study. It may 

be possible to reduce the MRI scanning time by obtaining only the T2-weighted 

MRI scan in the RT position, which was the favoured MRI scan by the Oncologist 

due to anatomical detail of this sequence. Further research in this area could be 

to correlate the dosimetric results with clinical outcome data, which could give 

a clearer indication of the balance between cost and benefits. A study into the 

use of non-rigid registration to determine the effects on GTV localisation and 

subsequent RT plans is also warranted. 

5.5 Conclusion 

A practical methodology for obtaining prostatic MR images in the RT position for 

registration with CT planning images has been demonstrated. This study has 

shown that when MRI scans are performed in the RT position, significant 
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improvements in the quality of CT-MRI registration can be achieved. Significant 

changes have also been shown in the target definition and dose coverage of RT 

positioned MRI datasets, which may result in changes to patient outcomes. 
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6 The influence of MRI scan position on patients 
with oropharyngeal cancer undergoing 
radiotherapy 

6.1 Introduction 

The following chapter describes a study performed to demonstrate how 

magnetic resonance imaging (MRI) patient position protocols influence 

registration quality in patients with oropharyngeal cancer undergoing radical 

radiotherapy (RT). In addition, the consequences for gross tumour volume (GTV) 

definition and RT planning were examined.  

With intensity modulated radiotherapy and volumetric modulated arc therapy 

(VMAT) it is possible to deliver high doses of radiation to irregular volumes whilst 

sparing normal tissue, which can result in reduced severity of radiation toxicities 

in patients with head and neck cancer (Nutting et al. 2011). Increased dose 

delivery and dose conformity has led to a greater significance on the accurate 

localisation of the GTV and neighbouring structures. 

It has been shown that an approximate image registration uncertainty of 2 mm 

occurs when registering computed tomography (CT) image sets in the treatment 

position to a diagnostic MRI for patients with brain cancer (Kenneth et al. 2010). 

As a result of this small registration error, many RT centres routinely register a 

planning CT scan with a diagnostic MRI scan for RT planning of patients with 

brain cancer. Prior to this study, there was no published evidence investigating 

the errors associated with registering a planning CT scan with a diagnostic MRI 

scan, for patients with oropharyngeal cancer. Additionally, this experiment 

analyses the dosimetric consequences of patient positioning during MRI scan 

acquisition.  

The purpose of this study was to compare an MRI acquired with a diagnostic 

patient position on a standard MRI table to an MRI acquired on a flat table with 

custom immobilisation and to determine how this affects CT-MRI registration, 

GTV definition and the resulting VMAT RT plans. The magnitude of the 

associated geometric and dosimetric errors is discussed. The results obtained 

would then provide an answer to whether it was necessary to obtain a planning 
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MRI scan for patients with oropharyngeal cancer in the RT treatment position 

using an immobilisation mask or whether a diagnostic patient position protocol 

would provide similar results. 

This work has been presented at a national and international level and published 

in a peer reviewed journal: 

• MRI of head and neck cancer patients for radiotherapy planning, Hanvey S, Paterson 

C, Rizwanullah M, Thomson M, Glegg M, Foster J, Poster presentation, 19th International 

Society for Magnetic Resonance in Medicine (ISMRM), Montreal, 2011. 

• Effects of MRI scan position on CT image registration accuracy and target delineation 

for oropharyngeal cancer VMAT patients Hanvey S, McJury M, Paterson C, Rizwanullah 

M, Thomson M, James A, Tho LM, Grose D, Glegg M, Foster J, Poster discussion, European 

Society for Radiotherapy and Oncology (ESTRO) 31, Barcelona, 2012. 

• The influence of MRI scan position on patients with oropharyngeal cancer undergoing 

radical radiotherapy, Hanvey S, McJury M, Tho LM, Glegg M, Thomson M, Grose D, James 

A, Rizwanullah M, Paterson C, Foster J. Radiation Oncology, 28;8(1):129 (2013). 

6.2 Methods 

6.2.1 Patient group and study overview 

Twenty two patients with oropharyngeal cancer (age 37-72), being worked up for 

radical RT, were identified for the study, regardless of tumour or nodal stage. 

The study protocol was approved by Local Ethics Committee and informed 

written consent was obtained from all patients. Registration quality assessment 

was conducted on all patients, however, in three patients a GTV evaluation was 

not possible, since two patients had undergone primary surgical resection and 

another had received induction chemotherapy, resulting in complete response. 

Patients underwent a CT planning scan, and two MRI scans (patients scanned 

between February 2010 and January 2012; median time between CT and MRI 

scans = 5 days, range = 0 to 21 days). The first MRI scan was obtained with the 

patient in the standard diagnostic position (denoted as MRID) and the second 

with the patient in an immobilisation mask in the RT position (MRIRT). Both MRI 

scans were registered separately with the CT planning scan as shown in Figure 
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6.1. The GTV was delineated on the CT images by trained Consultant Radiation 

Oncologists using the treatment planning system, with the aid of viewing MRID on 

a separate console, as is the current practice at our centre. This patient position 

protocol is denoted as PC. For the purposes of this study, the GTV was delineated 

using two other patient set-ups. Firstly, the GTV was delineated on the MRID 

registered to the CT datasets, this is denoted as PD. The GTV was also delineated 

on the MRIRT registered to the CT image sets, this is denoted as PRT.  

 

 

Figure 6.1 Split view showing the registration in t he axial, coronal and sagittal planes of (a) 
the CT and MRI D and (b) the CT and MRI RT datasets. Arrows indicate regions where there is a  
registration mismatch between CT and MRI D. Typically, more discrepancies in registration 
occurred with MRI D than MRI RT. MRID: diagnostic MRI scan; MRI RT: MRI scan in the 
radiotherapy position. 
 

6.2.2 CT and MRI scanning protocol 

Patients were scanned on a GE Light-speed RT 16 slice CT scanner (GE 

Healthcare, WI, USA), using the current clinical scanning protocol, and 
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immobilised within a full face and neck five point fixation thermoplastic beam 

directional shell (BDS) with appropriate head rest (CIVCO Medical Solutions, IA, 

USA). The scan extent was from superior orbital ridge to carina. A helical scan 

was acquired with a detector configuration of 16 × 1.25, pitch 0.938, matrix 512 

× 512 and speed 18.75 mm/rot with a slice thickness of 2.5 mm. 

Patients underwent MRI scans in two different positions during the same scan 

session. For the MRIRT scan, patients were positioned on a flat MRI Oncology 

Table (GE Healthcare, WI, USA) within a BDS with a 4-channel flexible surface 

cardiac coil positioned laterally over the patient’s neck (Figure 6.2). The same 

scan extent as the CT scan was employed and the imaging parameters, chosen in 

accordance with local protocol, are presented in Table 6.1. Weekly and monthly 

quality assurance tests (described in Chapter 5, Section 5.2.3) ensured the MRI 

scanner performed within recommended image quality tolerances. 

 

Figure 6.2 MRI acquired in the radiotherapy positio n with a 4-channel flexible surface coil 
positioned laterally 

 
The scan was repeated for the MRID on a standard curved diagnostic table 

without BDS using a 16-channel head, neck and spine coil, with the CT scan 

extent. The 16-channel head, neck and spine coil was not used for the MRIRT 

scan since it is not compatible with the BDS. A previous investigation using test 

objects has shown the image quality obtained using the 4-channel cardiac coil is 

of diagnostic quality (Hanvey et al. 2009). 
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Table 6.1 MRI scanning parameters. 
 

 
FOV: field of view; TE: echo time; TR: repetition t ime. 

6.2.3 Image registration 

The treatment planning system (Eclipse, Varian Medical Systems, Inc. CA, USA 

version 10.0.39) was used to register the MRIRT and MRID T1 and T2-weighted 

scans to the CT data. This software enabled fully automated, mutual-

information based rigid registration to be performed. While deformable 

registration is available for Eclipse, it does not allow inter-modality registration. 

Since commercial inter-modality deformable image registration is generally not 

available, nor employed clinically in our centre at present, this was not subject 

to further investigation. The volume over which the registration was performed 

was centred over the oropharyngeal region and chosen to include as much 

information for the registration algorithm as possible (Ahmed et al. 2010). Fully 

automated registration was used without manual adjustment since, for this site, 

satisfactory registration for both target and nodes is not always achievable and 

would introduce subjective errors.  

To quantitatively assess the quality of registration the orbits and the odontoid 

process were outlined on the CT and T1-weighted MR image sets. These three 

structures were delineated on the CT, for each patient, and then repeated on 

the MR datasets registered to the CT.  

Two metrics determined the quality of registration. Firstly, the distance 

between the centres of the orbits and odontoid process drawn on the CT and the 

MRI datasets was calculated using the coordinate location of the centre of the 

structures determined by the treatment planning software. The geometric mean 

was calculated to ensure normality of the data. Secondly, the quality of 

Scan type FOV 
(mm) 

Slice thick 
(mm) 

Spacing 
(mm) 

TE 
(ms) 

TR 
(ms) 

Bandwidth 
(± kHz) 

Matrix size 

2D Driven-
equilibrium 
FSE  
(T2-weighted) 

400 2.5 0 94 2620 63 512 × 256 

3D Spoiled 
gradient echo 
(T1-weighted 
post-contrast) 

400 2.5 0 2 15 50 256 × 256 



Scott Hanvey 2013         Chapter 6: The influence of MRI scan position in oropharyngeal RT 149 
 

registration was assessed by measuring the spatial overlap of these structures 

drawn on CT and MRI. The spatial overlap was assessed by calculating the Dice 

coefficient (spatial overlap) for each structure, which is given by, 

Equation 6.1 

( ) 2/MRICT

MRI CT
overlap spatial

+
∩=   

where CT ∩ MRI is the volume of intersection between the CT and MRI 

structures. The value of the spatial overlap can range from zero, which indicates 

no spatial overlap between the CT and MRI volumes, to one, which indicates 

complete overlap (Zou et al. 2004). Since structures outlined on CT and MRI may 

differ, even with perfect registration, a spatial overlap of one may not be 

achieved in practice, but will still be dependent on different patient set-up and 

registration quality.  

6.2.4 Gross tumour volume, lower risk clinical targ et volume and 
organ at risk delineation  

Three Oncologists were assigned five patients each and a fourth was assigned 

four patients. The Oncologists delineated the GTV on their patients using the 

three set-ups PC, PD and PRT, which in this study are referred to as GTVC, GTVD 

and GTVRT respectively. Anonymised information sheets, containing the patient’s 

clinical history and radiology report, were available to the Oncologists. The 

clinicians generally utilised the T2-weighted MR datasets while contouring the 

GTV, although T1-weighted images were also referenced. A period of at least a 

week was given between delineations of the GTV for the same patient using a 

different imaging protocol and the Oncologists were blinded to previous 

delineations. Changes in the magnitude of the GTV were assessed. Contouring 

was also performed on the lower risk clinical target volume (CTV LR) of the 

nodal areas at risk of microscopic involvement for a randomly selected cohort of 

ten patients, in each of the set-ups. Nodal delineation was performed according 

to international consensus guidelines (Grégoire et al. 2003). For these patients, 

the organs at risk (OARs), which included the left and right parotids, larynx, 

spinal cord and the brainstem, were also contoured.  
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The GTV and CTV LR were expanded to obtain planning target volumes, (PTV) 

and lower risk planning target volumes (PTV LR) respectively. To create the 

clinical target volume (CTV) the GTV was expanded by 1 cm isotropically, 

removing any overlap with bone or air cavities. The CTV was then enlarged by 3 

mm isotropically and cropped from the external outline of the body to create 

the PTV. It is necessary to crop the PTV from the body outline to assist in the 

VMAT optimisation process. The PTVs were generated from the GTVs using the 

three set-ups PC, PD and PRT, which are denoted as PTVC, PTVD and PTVRT 

respectively. Similarly, to generate the PTV LR the CTV LR was expanded by 3 

mm isotropically and cropped by an appropriate margin from the body outline. 

Target volumes and OARs were generated in accordance with local protocol. 

6.2.5 Dose analysis 

VMAT plans were calculated for the ten patients for whom the GTV, CTV LR and 

OARs were contoured, to determine the impact that changes in target volume 

definition have on RT planning. The VMAT plans were calculated in accordance 

with our centre’s clinical dose constraints using the Anisotropic Analytical 

Algorithm and Progressive Resolution Optimiser VMAT algorithm in Eclipse 

(Varian Medical Systems, Inc, CA, USA) version 10.0.28. A VMAT plan was 

calculated for PTVC, PTVD and PTVRT. Dose volume histograms (DVHs) were 

generated for PTVC, PTVD and PTVRT. A mean DVH for all ten patients was then 

calculated for PC, PD and PRT. These results are presented using our centre’s dose 

constraint protocol i.e. D99 > 90%, D95 > 95%, D5 < 105 % and D2 < 107%, where D99 

> 90% means 99% of the total PTV volume should receive a dose > 90% of the 

prescribed dose. The other dose constraints are defined similarly.  

Of particular interest in this study was to establish the quality of the RT plan for 

PC and PD with reference to PRT, since our working hypothesis postulates that the 

optimum target volume definition is achieved with PRT. To achieve this we 

optimised for PTVC and PTVD but investigated the dose coverage of PTVRT at D99 > 

90%, D95 > 95%, D5 < 105 % and D2 < 107%.   

To determine the degree to which the RT plans conformed to the target volume 

a conformation number (CN) was calculated. The CN is a single numerical value 
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which indicates the extent to which the plan conforms to the target. The CN is 

defined according to the following equation (Reit et al. 1997), 

Equation 6.2 

RI

RI

PTV

RI

V

TV

V

TV
CN ×=        

where TVRI = target volume covered by the reference isodose, VPTV = volume of 

the PTV and VRI = volume of the reference isodose. The reference isodose 

volume is defined as the volume receiving the therapeutic prescribed dose. 

The first fraction of the equation refers to the coverage of the target volume 

and the second term indicates the volume of healthy tissue receiving a dose 

equal to or greater than the reference dose. The CN varies from 0 to 1, where 1 

represents a reference isodose which covers the target completely without any 

irradiation of healthy tissue and is therefore the optimal conformation. A value 

of 0 means no conformation at all, which would arise in the event of a 

geographical miss. Since the working hypothesis states that PTVRT is the true 

target volume, the quality of the RT plan for PTVC and PTVD was analysed with 

reference to PTVRT. This was accomplished by optimising for PTVC and PTVD 

while analysing the dose coverage for PTVRT. 

A quantitative comparison of the homogeneity of the dose to the PTV was 

completed using the sigma index. The sigma index was compared individually for 

PTVC, PTVD and PTVRT as well as for PTVC, PTVD with reference to PTVRT. The 

sigma index is equal to the standard deviation of the dose throughout the PTV, 

calculated on a voxel by voxel basis (Yoon et al. 2007), thus the higher the sigma 

index, the greater the dose inhomogeneity. 

Finally, the dose to the OARs was assessed by evaluating the mean received 

using PC, PD and PRT. The number of patients exceeding the local dose constraints 

was measured and compared with each patient position protocol.  

Two-tailed paired student t-tests were performed to examine the statistical 

differences of the registration quality and dosimetric indices, except for the 

geometric mean distance from the centre of structures in CT and MRI where 

two-tailed Mann-Whitney tests were performed. A Mann-Whitney test was used 
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to assess the geometric mean distance from the centre of the structures because 

the data was not normally distributed. The null hypothesis was rejected when 

the p value was less than 0.05.  

6.3 Results 

There was a reduction in the geometric mean distance from the centre of the 

orbits and odontoid process delineated on the CT and MRIRT to that delineated on 

the CT to MRID volumes (Figure 6.3) and this was significant (p value < 0.001) for 

each structure. Narrower error bars exist for the CT registered to the MRIRT 

versus the MRID, which strongly implies that the patients are positioned more 

closely to their CT set-up in the BDS than when using the ordinary diagnostic set-

up. No correlation was found between the time from the CT and MRI scan in days 

and the mean registration error for either MRID (R
2 = 0.06) or MRIRT (R

2 = 0.02). 

An improvement in the mean spatial overlap for the orbits and odontoid process 

was observed between CT and the CT-MRIRT over the CT to CT-MRID data sets as 

shown in Table 6.2. Analysing the difference between the spatial overlap of CT 

to CT-MRID versus CT to CT-MRIRT was shown to have a p value < 0.001 for both 

orbits and odontoid process (Table 6.2). The volume of the three structures 

delineated on CT was larger than those delineated on MRI; however, their mean 

difference was within one standard deviation. Therefore, the spatial overlap is 

expected to give a good measure of the quality of registration. 

The mean GTVC was significantly larger than the GTVD or GTVRT as shown in 

Table 6.3. The p values in Table 6.3 refer to the differences in the magnitude of 

the GTVC and the other two GTVs. There was no significant difference between 

GTVD and GTVRT (p value = 0.14). 
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Figure 6.3 Quality of registration results, where t he mean error is the distance from the 
centre of the CT structures to the centre of the MR I structures. Odontoid: odontoid process; 
CT-MRID: CT registered with the diagnostic MRI scan; CT-MR IRT; CT registered with the MRI 
scan in the radiotherapy position. 
 

Table 6.2 Mean spatial overlap of the anatomical la ndmarks for the two registration set-ups. 
 

 
 
 
 
 
 

CT-MRID: CT registered with diagnostic MRI; CT-MRI RT CT registered with the radiotherapy 

positioned MRI. 

Table 6.3 Mean GTV (cm 3) delineated with the different patient position pr otocols. 
 

 
 
 

 
The p value relates to differences in the magnitude of G TVC and the other two GTVs. 
GTV: gross tumour volume, GTV C: GTV delineated on CT with diagnostic MRI scan vie wed 
separately; GTV D: GTV delineated using the CT registered with diagn ostic MRI; GTV RT: GTV 
delineated using the CT registered with radiotherap y positioned MRI. 
 

Clinical dose constraints were met for the mean DVHs of PTVC, PTVD and PTVRT 

(columns 3-5 of Figure 6.4 (b)), which validates the planning methodology in this 

study. When optimising the RT plan for PTVC, or repeating the optimisation 

 
CT-MRID mean 
spatial overlap 

CT-MRIRT mean 
spatial overlap p value 

Left orbit 0.49 0.81 < 0.001 
Right orbit 0.48 0.81 < 0.001 
Odontoid process 0.37 0.67 < 0.001 

Mean GTVC Mean GTVD (p value) Mean GTVRT (p value) 
44.1 33.7 (0.027) 30.5 (0.014) 
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process for PTVD, the dose to PTVRT shows that neither the D99 nor the D95 dose 

constraints are met for the mean DVHs of PC or PD (the last 2 columns of Figure 

6.4 (a) and (b)). For example, for D99 mean dose to the PTV for PTVD : PTVRT is 

14.9 % rather than the 90 % required. Where the PTV left of the colon indicates 

the PTV for which the VMAT plan was optimised and right of the colon indicates 

the PTV under examination. Conformity to dose constraints is poorer for PTVD : 

PTVRT compared to PTVC : PTVRT (Figure 6.4 (b)). Only by using PRT can all dose 

constraints be achieved for PTVRT.  

The justification for choosing only ten patients to perform the dose analysis was 

that none of the ten patients met the 90 % dose constraint for PTVC : PTVRT and 

PTVD : PTVRT and only one of the ten patients met the 95 % dose constraint for 

both PTVC : PTVRT and PTVD : PTVRT. This relates to a 95 % confidence interval of 

0.0 % to 30.9 % and 0.3 % to 44.5 % respectively. These confidence intervals 

demonstrate that no further cases are statistically necessary in the analysis. 

The quality of the RT was also analysed using the CN, which gives a measure of 

the dose conformity to the target volume and the degree of sparing of healthy 

tissue. The mean CN was calculated for PTVC, PTVD and PTVRT optimising for 

each of these PTVs in turn. Next, the dose conformity for PTVRT, which the 

working hypothesis postulates is the optimal target, was calculated while 

optimising the plans for PTVC and PTVD. These results are shown in Table 6.4.   

It can be seen from Table 6.4 that a mean CN value of at least 0.8 is achievable 

when optimising for the PTV under examination. This is in agreement with Figure 

6.4 which shows that the dose constraints for the PTVs are met for these plans. 

When investigating the dose coverage of PTVRT while optimising the plans for the 

PTVC and PTVD the mean CN was shown to be significantly lower than when 

optimising for the same PTV under investigation with values of 0.53 ± 0.14 (p 

value < 0.001) and 0.54 ± 0.19 (p value = 0.001) respectively.  
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Figure 6.4 (a) Mean dose volume histogram values fo r each PTV optimised in turn and 
optimising for PTV C and PTVD but investigated the dose coverage of PTV RT and (b) mean 
dose volume histograms that were achieved optimisin g for PTV C, PTVD and PTVRT but 
investigated the dose coverage of PTV RT. The PTV left of the colon indicates the PTV for 
which the VMAT plan was optimised and right of the colon indicates the PTV under 
examination. PTV C: PTV delineated using the CT with the diagnostic M RI scan viewed on a 
separate console; PTV D: PTV delineated on the CT registered with the diag nostic MRI scan; 
PTVRT: PTV delineated on the CT registered with the MRI scan in the radiotherapy position. 
 

The mean sigma indices are shown in Table 6.5. In the first three columns of 

Table 6.5 the sigma indices are within 3.3% again validating the planning 

methodology in this study. The dose homogeneity becomes considerably poorer 

for PTVC : PTVRT and PTVD : PTVRT at 7.3 % and 9.1 % respectively. A statistically 

significant difference between the sigma indices was found between PTVC : PTVC 

  Mean dose to PTV (%) 
Ratio of 
total PTV 
volume (%) 

Dose 
constraint 
(%) PTVC : PTVC PTVD : PTVD PTVRT : PTVRT PTVC : PTVRT       PTVD :  PTVRT 

99 % > 90 90.8 91.4 90.9 58.8 14.9 

95 % > 95 95.3 95.7 95.3 84.7 66.2 
5 % < 105 104 104.4 104 103.8 104.1 
2 % < 107 105.7 105.4 105.1 104.7 105.1 

(a) 

(b) 
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and PTVC : PTVRT (p value = 0.004) and between PTVD : PTVD and PTVD : PTVRT (p 

value = 0.008). The mean sigma index for PTVD : PTVRT is poorer than for PTVC : 

PTVRT in agreement with the results of Figure 6.4 (a). 

Table 6.4 Mean conformation number (CN) for PTV C, PTVD and PTVRT when optimised for 
PTV in the three set-ups and optimising for PTV C, PTVD while analysing the dose to PTV RT. 
 

 

Table 6.5 Mean sigma indices for the PTVs. 
 

 
PTV left of the colon indicates the PTV for which t he VMAT plan was optimised and right of 
the colon the PTV under examination. 
PTVC: PTV delineated using the CT with diagnostic MRI v iewed separately; PTV D: PTV 
delineated on the CT registered with diagnostic MRI ; PTVRT: PTV delineated on the CT 
registered with radiotherapy positioned MRI. 

 
Figure 6.5 demonstrates for a typical patient the PTVRT and the dose 

distributions optimised for PTVC (left) and PTVD (right). This figure shows that 

the 95 % isodose line does not cover PTVRT entirely with a posterior proportion of 

the PTV receiving a dose less than 95 % of the prescribed dose. Figure 6.5 is in 

agreement with the results of Figure 6.4 which shows that when optimising for 

PTVC or PTVD not all the dose constraints are met for PTVRT. 

Results for parotid and larynx OAR dose analyses are presented in Table 6.6. In 

situations where there was overlap between a parotid and PTV, it was 

considered that dose sparing to that parotid was not possible without 

compromising PTV dose; hence it was excluded from the analysis. The results 

demonstrate that in planning PTVC, PTVD and PTVRT, in all 10 patients the mean 

dose to the parotid was < 2400 cGy which met clinical dose constraints. 

PTV for which the VMAT 
plan was optimised PTV under examination Mean CN 

PTVC PTVC 0.81 ± 0.02 

PTVD PTVD 0.85 ± 0.02 

PTVRT PTVRT 0.80 ± 0.03 

PTVC PTVRT 0.53 ± 0.14 

PTVD PTVRT 0.54 ± 0.19 

  PTVC : PTVC PTVD : PTVD PTVRT : PTVRT PTVC : PTVRT PTVD : PTVRT 

Mean sigma 
index (%) 3.0 3.1 3.3 7.3 9.1 
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However, when RT plans were optimised for PTVC and PTVD and the dose to the 

parotid for PRT were analysed (PTVC : PTVRT and PTVD : PTVRT) in 5 out of 10 

patients the parotid dose exceeded the tolerance. For the larynx, the tolerance 

of 4000 cGy was exceeded in 4 out of 10 for PC, 3 out of 10 for PD and 1 out of 10 

patients for PRT. However, as with the parotid, when RT plans were optimised 

for PTVC and PTVD and the dose to the larynx for PRT were analysed there were 

more instances of unmet dose constraints (5 out of 10 patients for both PTVC : 

PTVRT and PTVD : PTVRT).  

 

Figure 6.5 PTV RT in red and the dose distributions optimised for PT VC (left) and optimised 
for PTV D (right). PTV RT:  PTV delineated on the CT registered with the MRI  scan in the 
radiotherapy position; PTV C: PTV delineated using the CT with the diagnostic M RI scan 
viewed on a separate console; PTV D: PTV delineated on the CT registered with the 
diagnostic MRI scan. 
 

When the mean dose to the parotid and larynx for all 10 patients was calculated, 

an incrementally smaller value was seen for PTVC, PTVD and PTVRT (first 3 

columns of Table 6.6), which can be explained by the decrease in the magnitude 

of the GTV. Dose to the spinal cord and brainstem were also measured but were 

not found to exceed clinically relevant tolerances for any of the patient position 

protocols.  
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Table 6.6 Mean dose for the (a) parotid and (b) lar ynx. 
 

 

 
Parotid mean dose (cGy)  

Mean dose constraint 2400 cGy 

 PC : PC PD : PD PRT : PRT PC : PRT PD : PRT 
Mean 2179.6 1965.5 1820.3 2233.8 1992.4 
Number of patients which 
exceed the dose constraint 0 0 0 5 5 

 
 

 
Larynx mean dose (cGy)  

Mean dose constraint 4000 cGy 

 PC : PC PD : PD PRT : PRT PC : PRT PD : PRT 
Mean 3979.6 3892.3 3613.2 4108.8 4020.6 
Number of patients which 
exceed the dose constraint 4 3 1 5 5 

 
Where there was overlap between a parotid and the P TV the parotid dose was not included 
in the mean contralateral parotid dose. P left of t he colon indicates the patient position 
protocol for which the VMAT plan was optimised and right of the colon indicated the patient 
position protocol under examination. 
PC: Patient position protocol with CT and diagnostic MRI scan viewed separately; P D: patient 
position protocol with CT registered to the diagnos tic MRI; P RT: patient position protocol 
with CT registered to the radiotherapy positioned M RI. 

 
6.4 Discussion 

Advanced imaging techniques have been shown to improve tumour and nodal 

staging (Prestwich et al. 2012) and the benefits of integrating MRI are well 

known (Ahmed et al. 2010; Chung et al. 2004; Newbold et al. 2006; Prestwich et 

al. 2012; Rosenman et al. 1998). While the advantages in positioning patients in 

a similar way to their CT planning scan when acquiring MR images are also known 

(Ahmed et al. 2010; Hanvey et al. 2012; Prestwich et al. 2012), this is the first 

study to compare the CT-MRI registration accuracy and dosimetric effects of a 

diagnostic versus RT positioned MRI scan in patients with oropharyngeal cancer.  

During the process of registering CT to MR images, there was improved 

registration with fewer discrepancies using MRIRT compared to MRID, as 

demonstrated in Figure 6.1. In this example, there are registration discrepancies 

at the body outline and spinal cord for CT-MRID, as indicated by the arrows 

(Figure 6.1(a)), but not with MRIRT (Figure 6.1 (b)).  

(b) 

(a) 



Scott Hanvey 2013         Chapter 6: The influence of MRI scan position in oropharyngeal RT 159 
 

A significant improvement in the registration quality of CT to MRIRT versus the 

MRID was demonstrated by a reduction in the geometric mean distance from the 

centre of the orbits and odontoid process delineated on CT and the MRIRT and an 

increase in the spatial overlap of these structures. These results show that 

patient setup significantly influences CT-MRI registration accuracy. With 

increased interest in the use of dose escalation and dose painting techniques 

within RT planning the importance of improved image registration becomes ever 

more relevant. 

The significant difference between the magnitude of the GTVC and GTVD and 

between the GTVC and GTVRT implies that the GTV is significantly smaller when 

using registered rather than unregistered CT-MR images. This underlines the 

importance of registering CT to MRI for patients with oropharyngeal cancer, 

rather than viewing them separately. It also highlights the difficulty in 

delineating oropharyngeal cancers with CT due to the similarity in Hounsfield 

Units of tumour and surrounding tissue as well as artefacts caused by dental 

amalgam. While there was no significant difference between the mean GTVD and 

GTVRT, there were important differences in the VMAT plans, as discussed below. 

To achieve the clinical goal of reduced late toxicities and improved tumour 

control using dose escalation with tighter PTV margins, uncertainties in GTV 

delineation need to be minimised and our data suggest PRT offers the optimal of 

the three set-ups.  

The results reveal that there are potentially clinically relevant improvements to 

the quality of the VMAT plans when using PRT rather than PC or PD. This is 

demonstrated by the PTV dose coverage, PTV dose homogeneity and instances of 

unmet dose constraints by the OARs. Due to improved registration accuracy and 

MRI being the recommended imaging modality for soft tissue oropharyngeal 

cancers (ENT UK 2011), it may be assumed that PTVRT would be the gold 

standard PTV. To determine the dose received by the presumed gold standard, 

PTVRT, the plans were optimised for PTVC and PTVD while calculating the dose to 

PTVRT. When investigating the dose coverage of PTVRT it was shown that the 

mean DVH for PTVD had poorer dose coverage than PTVC (Figure 6.4). Despite the 

magnitude of the mean GTVRT and GTVD being similar there may be differences 

in the shape and location of the GTV using these patient set-ups which would 
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result in the DVHs of Figure 6.4. Neither the PC nor the PD VMAT plans were able 

to meet the clinical dose constraints of D99 and D95 for gold standard, PTVRT.  

This was supported by the results of Table 6.4 which showed that when 

optimising for PTVC and PTVD while analysing the CN for PTVRT, the gold standard 

PTV, the mean CN was significantly lower than when optimising and analysing 

the same PTV. These results show that while it may seem that a particular 

quality of RT plan can be achieved, if the plan is not optimised for the true PTV, 

the resultant dose coverage will be poorer than expected. 

When optimising for PTVD and investigating the dose to this structure this gave a 

higher CN (0.85 ± 0.02) than when optimising and analysing the dose to PTVC 

(0.81 ± 0.02) and PTVRT (0.80 ± 0.03). It is thought this is because of the low 

number of patients used for the dose analysis. With a larger number of patients 

it is expected that these values would be comparable.  

The CN for the patients with head and neck cancer can be seen to be lower than 

for the patients with prostate cancer (Chapter 5) when optimising and analysing 

the dose coverage of the same PTV. Averaging over the three set-ups the head 

and neck CN was 0.82 while the average prostate CN was 0.98. The reason for 

the lower CN for the head and neck group is the volume of the PTV was larger 

making it more challenging to achieve a conformal dose coverage than with the 

prostate group. The average volume of the PTV for the three set-ups in the head 

and neck group was 197.5 cm3, whereas for the prostate group it was 67.9 cm3. 

In addition, while the prostate follows a reasonably spherical shape the PTVs for 

the head and neck group were more complex. The complicated shape of the 

head and neck PTVs would also have contributed to a lower CN.  

Furthermore, this study shows that there is a significant increase in the mean 

sigma index when optimising for PTVC or PTVD while investigating the dose 

coverage of PTVRT rather than analysing the dose coverage of the PTV for which 

the RT plan has been optimised. It has been argued that tumour control 

probability can be considerably compromised by an inhomogeneous dose to the 

PTV (Goitein and Niemierko 1996). It is therefore suboptimal to use PC or PD 

rather than PRT for RT planning of patients with oropharyngeal cancer. 
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Finally, there were greater instances of unmet dose constraints for the parotids 

and the larynx when optimising for PC and PD but examining the dose sparing of 

PRT than when investigating the dose to the OARs for which the plan was 

optimised. While the dose to the parotids and larynx were within the dose 

constraints when averaged over all patients, the effect of exceeding dose 

constraints for individual patients could lead to unwanted side-effects. This 

shows that not only is the PTV compromised by using the sub-optimal set-ups of 

PC and PD but the dose to the OARs could also be different from the expected RT 

plan.   

Obtaining a further MRI in the RT position, rather than using the original 

diagnostic MRI, may place greater demands on increasingly stretched healthcare 

resources. However, this must be weighed against the potential advantages of 

improved image registration and, by consequence, superior target volume 

definition and dose coverage of the PTV, as these results have demonstrated. 

Our study suggests further research, particularly in correlating dosimetric 

investigations with clinical outcome data, would be warranted. 

6.5 Conclusions 

When MRI scans are performed in the RT position, as opposed to using diagnostic 

MR images not obtained in RT position, there are significant improvements in the 

quality of CT-MR registration. This study has also shown that RT positioned MRI 

scans offer improvements in target definition, dose coverage and dose 

homogeneity, which could have significant implications for tumour control rates. 

To the author’s knowledge, this is the first study in the literature to confirm 

these advantages. 
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7 Final Conclusions 

7.1 Conclusions from this thesis 

The aim of this thesis was to investigate the role of magnetic resonance imaging 

(MRI) in radiotherapy (RT). This began with a study comparing a two-dimensional 

(2D) with a three-dimensional (3D) distortion correction algorithm for RT. The 

results of this study showed that with only three slices there is little difference 

between the 2D and 3D distortion correction algorithms. However, when more 

slices are used the differences become apparent. Within a range of around 100 

mm superior and inferior from isocentre both algorithms perform with an 

accuracy of approximately 1 mm with regards the through-plane and in-plane 

distortion, using multiple slices. 

Following this, the image quality obtained using MR while immobilised within a 

beam directional shell (BDS) in the RT position was investigated using test 

objects. This work showed that, if the manufacturer-supplied uniformity 

correction algorithm is applied, surface coils can achieve the same or improved 

diagnostic image quality results as a standard multi-channel head coil, typically 

used for imaging brain patients. The parameters investigated were the signal-to-

noise ratio (SNR), spatial resolution, uniformity, geometric linearity and 

distortion, multiple slice position error, slice width and contrast-to-noise. These 

results were an important step in showing that it is possible to use surface coils 

to image patients with prostate and head and neck cancer in the RT position for 

MR imaging without compromising image quality.  

The next study investigated three set-ups for imaging patients with prostate 

cancer: viewing the computed tomography (CT) and MRI datasets on separate 

computer consoles (the current methodology at the Beatson); viewing the CT 

registered with a diagnostic MRI and viewing the CT registered with a RT 

positioned MRI. The benefits of registering MRI with CT were shown for imaging 

patients with prostate cancer by comparing the viewing of the CT and MRI 

datasets separately with CT-MRI registration. This was found to have a 

significant effect on the mean prostate and prostate plus seminal vesicles 

volumes in agreement with other published studies (Charnley et al. 2005; Khoo 

and Joon 2006; Rasch et al. 1999; Sannazzari et al. 2002; Sefrova et al. 2012; 
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Smith et al. 2007). It was also shown that there was a statistically significant 

improvement in the quality of registration between CT and the RT positioned 

MRI compared to the diagnostic MRI. This was shown as an improvement in both 

the geometric error of rigid landmarks and the spatial overlap of these 

landmarks. Similarly, this improvement in geometric error between CT and MRI 

was found for the prostate and prostate plus seminal vesicle volumes. Finally, 

intensity modulated radiotherapy (IMRT) plans were generated for all three set-

ups. When investigating the dose received by the planning target volume (PTV) 

generated using the RT positioned MRI, while optimising the IMRT plan for the 

PTVs of the other two set-ups, a significant difference in the mean conformation 

numbers was found. The conformation number is a measure of the dose received 

by the target volume and a measure of sparing of dose to the healthy tissue. This 

demonstrates that given there is an improved image registration between CT and 

MRI when the patients are positioned in the RT position then it is suboptimal to 

plan IMRT using CT and a diagnostic MRI dataset rather than use the CT 

registered to the RT positioned MRI.  

A similar study investigated patients with head and neck cancer with the same 

three set-ups except that patients imaged in the RT position were immobilised in 

a BDS. As with the prostate group, there was found to be an improvement in the 

CT-MRI registration accuracy of patients with head and neck cancer, when the 

patients are in the RT position. This was shown as a reduction in the geometric 

error of three rigid landmarks and as an improvement in the spatial overlap of 

these structures. The magnitude of the mean gross tumour volume (GTV) was 

shown to change significantly when the CT was registered with the MRI datasets 

rather than being viewed separately. Tumour definition has similarly been shown 

by other groups to be changed by the inclusion of MRI in patients with head and 

neck cancer (Ahmed et al. 2010; Chung et al. 2004; Emami et al. 2003; Newbold 

et al. 2006).  

Volumetric modulated arc therapy (VMAT) plans were performed on the three 

set-ups of a randomly selected cohort of the patients with head and neck 

cancer. It was shown that while investigating the dose coverage of the PTV 

generated using the RT positioned MRI but optimising for the PTVs of the other 

two set-ups, not all the clinical dose constraints were achieved. Only by 

investigating the dose coverage of the RT positioned PTV while optimising for 
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the RT positioned PTV were all the dose constraints met. A conformation number 

(CN) was calculated, which demonstrated the degree to which the dose 

conforms to the target. It was shown that when analysing the dose to the RT 

positioned PTV while optimising for the PTVs in the other two set-ups the mean 

CN was significantly lower than when optimising and analysing the CN for these 

set-ups. Since the working hypothesis states that the RT positioned PTV is the 

optimal of the three set-ups, this shows that optimising for the PTVs of the other 

two set-ups will significantly compromise the dose conformity to the true, RT 

positioned, PTV. The dose homogeneity received by the mean PTV is 

considerably poorer when analysing the dose to the RT positioned PTV but 

optimising the plan for the PTVs of the other two set-ups than when optimising 

and analysing the dose coverage of the same PTV. Tumour control probability is 

thought to be compromised considerably by an inhomogeneous dose to the PTV 

(Goitein and Niemierko 1996). For the parotids and larynx, two of the organs at 

risk (OARs) in the treatment of head and neck cancer, there were greater 

instances of unmet dose constraints when analysing the dose to the RT 

positioned set-up, while optimising for either of the other two set-ups. As with 

the patients with prostate cancer, these results show that it is suboptimal to use 

the CT or the diagnostic MRI instead of the RT positioned MRI when planning 

VMAT of patients with head and neck cancer. 

7.2 Study limitations 

7.2.1 Three-dimensional distortion correction algor ithm 

One of the limitations of the study comparing the 2D and 3D distortion 

correction algorithms is that the 3D algorithm was a prototype version made 

available as part of a research agreement with the manufacturer. This software 

has potentially been improved since it was tested; however, it is only available 

on newer MRI systems as a final product version.  

A high degree of asymmetry was demonstrated by the 3D distortion correction 

algorithm in the superior direction (Chapter 3, Figure 3.7). It was thought that 

the reason for this was because the prototype version had not been optimised 

for the MRI scanner used in the experiment. Blurring of the 3D corrected images 

made it challenging to identify the position of the error. It would have been 
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beneficial to have repeated the scanning with the polarity of the gradients 

reversed to determine whether the direction of the asymmetry reversed. 

It would also have been of benefit to compare the prototype distortion 

correction algorithm from GE (GE Healthcare, WI, USA) with an independent 3D 

distortion correction algorithm. This may have been challenging to accomplish 

since the GE distortion correction was based on gradient maps of the MRI 

system, while an independent distortion correction would not have this 

information available.    

7.2.2 Imaging coil 

The 4-channel surface coil used for the imaging of patients for the test object 

study and for the RT positioning of patients with prostate and head and neck 

cancer had a relatively small size. Although the image quality was not 

compromised close to the isocentre, the small size of the imaging coil, originally 

intended for cardiac imaging, resulted in a drop off in signal outwith the 

footprint of the coil. This coil was chosen because it is light and flexible and so 

could easily be positioned along the contour of the patient. In newer MRI 

systems, large flexible multi-channel coils, which can operate in conjunction 

with posterior elements, embedded in the table are now available and would 

potentially be better suited to these patient groups. 

7.2.3 Deformable Registration 

One of the limitations of the studies involving patients with prostate and head 

and neck cancer is the use of rigid registration. While intra-modality deformable 

registration is not generally available commercially and was not available 

clinically at the Beatson this may improve the registration accuracy between CT 

and MRI. This may make the positioning of the MRI less important if the 

deformable registration was able to accurately map the diagnostic MRI to the RT 

positioned CT. This would prevent the need to perform another MRI scan at the 

RT planning stage helping to reduce healthcare costs. This may also be useful for 

movable organs such as the prostate which can be affected by the bladder or 

rectum volumes. Deformable registration could be used in adaptive RT, where 

patients may experience weight loss. Adaptive RT is commonly used in the 
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treatment of head and neck cancer patients and deformable registration may 

allow the diagnostic MRI at the start of the treatment to be registered to a CT 

taken during treatment following weight loss. 

7.2.4 Patient numbers and treatment outcomes 

The patient numbers used in Chapters 5 and 6 are relatively small and could 

potentially be repeated with a larger patient group for the prostate and head 

neck studies. In the clinical studies of this thesis the quality of registration, 

gross tumour volume and dosimetric effects were examined for different patient 

position protocols. While a statistically significant effect was demonstrated in 

the dose analysis sections of these chapters, it is not yet known whether this 

would have a clinical effect. A randomised controlled trial examining changes in 

patient survival, toxicity and patient’s quality of life would possibly reveal the 

true clinical benefits of MRI patient positioning for RT.   

7.3 Future Work 

7.3.1 Imaging coil 

The imaging coil used for the prostate and head and neck studies was limited in 

size causing a drop off in the SNR outside the coil footprint. To improve the SNR 

for the patients with head and neck cancer it may be possible to incorporate the 

imaging coil with the BDS. This would enable the contact between the patient 

and the imaging coil to be maximised.  

It is also feasible that additional imaging coils could be positioned posterior to 

the patient head beneath the head rest, again improving the SNR. As a result of 

the studies conducted at the Beatson, GE (GE Healthcare, WI, USA) has designed 

new coils for RT planning which are available on newer MRI models, as shown in 

Figure 7.1.  These large, flexible coils, known as the GEM suite imaging coils, 

can be positioned around the patient’s immobilisation mask or body. 

Additionally, there are imaging coils integrated into the table to boost the signal 

posteriorly. There is also a removable flat table which can be used for imaging in 

the RT position. Using a GEM coil with the imaging coil integrated into the table 

enables good image quality for prostate patients in the treatment position. The 
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GEM coils can also be combined with other coils for head and neck imaging in 

the treatment position.  

 

Figure 7.1 GE Healthcare GEM suite coil, with immob ilisation and a flat table for 
radiotherapy positioned planning (used with permiss ion, GE Healthcare, WI, USA). 
 

7.3.2 Deformable Registration 

It would be beneficial to determine the limitations of a deformable registration 

algorithm for registering a planning CT with a diagnostic MRI scan. This could 

involve investigating how deformable registration affects the magnitude and 

position of the GTV and OARs after registration. It is known to be difficult to 

verify the accuracy of a deformable registration algorithm, but this could 

potentially be achieved by using the rigid landmarks of the previous studies to 

determine the quality of registration. It may be possible to use images of 

patients in the diagnostic position to achieve similar registration errors as when 

registering the RT positioned MRI to the treatment positioned CT. This could 

potentially reduce resource demands and costs by removing the requirement of 

a second RT positioned MRI.  
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Deformable registration could also potentially be used to reduce errors between 

the RT positioned MRI and CT. This may lead to improved accuracy in the tumour 

and OAR definition. Furthermore, it may be possible to reduce the geometric 

distortion errors found in MRI using deformable registration. If the MRI is 

registered to the geometrically accurate CT this may negate the requirement for 

distortion correction.  

7.3.3 Functional MRI 

Functional MRI techniques such as spectroscopy, diffusion weighted imaging and 

dynamic contrast enhanced imaging could be used to aid in tumour delineation 

for RT. These techniques have been shown to assist in the detection of tumours 

(Jackson et al. 2009; Kim et al. 2009; Westphalen et al. 2012). The addition of 

functional MRI in the RT planning process may lead to significant changes in the 

tumour volume over conventional MR imaging alone and may enable those 

patients who will not respond to treatment to be identified.  

It is possible that the reduced SNR from the imaging coil used for the RT 

positioned MRI scans would result in inaccuracies in any functional MRI results. 

This would particularly affect the head and neck group where the target volume 

often extended far from the isocentre where the SNR was reduced. Using the 

new coils available (see Section 7.3.1) it may be possible to achieve the image 

quality required to obtain useful functional MRI data.  

Functional MRI has also been shown to be useful in predicting the response of 

tumours to therapy both before treatment has been administered (DeVries et al. 

2003; Dzik-Jurasz et al. 2002) and in response to therapy (de Lussanet et al. 

2005; Kim et al. 2009; Liu et al. 2009). The purpose of this is to provide a 

patient specific treatment by determining the tumour response before or at an 

early stage of treatment to try and improve tumour control. The results of 

tumour response to therapy could be used in a randomised controlled trial to 

give an early indication of whether there is a difference in the tumour response 

of patients with a RT positioned MRI for tumour definition compared to using a 

diagnostic MRI scan. 
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7.3.4 Auto segmentation 

Developments in auto segmentation software for tumour volumes are underway. 

This may assist in a more objective comparison of different patient set-up 

protocols by removing the intra or inter clinician variability in the delineation of 

GTVs. It may also enable a quantitative measure of changes in GTV using 

deformable registration. Developments in tumour auto segmentation are 

expected to reduce clinician workload helping to reduce healthcare costs.  

Auto-segmentation would also have a role in outlining structures for MRI RT 

planning. One of the disadvantages of MRI only planning is that it can often 

require the time consuming delineation of structures to apply Hounsfield Units 

for dose calculation. If these structures could be delineated using auto-

segmentation then it would enable a quicker, more objective solution.  

7.3.5 Adaptive radiotherapy 

Adaptive RT is increasingly being employed by cancer centres as tools, such as 

functional MRI, enable the response of tumours to treatment to be assessed. 

Adaptive RT could also be used in instances where patients have lost weight 

throughout the course of their treatment, resulting in a change to the dose 

distribution. One of the key considerations before implementing adaptive RT in a 

busy centre is prioritising the patients that would benefit most from this form of 

treatment. At the Beatson, patients receiving RT to the head and neck are 

rescanned with CT at the sixteenth fraction. The dose distribution is reassessed 

on the new CT scan set and it is determined whether a new plan is required 

based on the dose to sensitive organs. This avoids the additional work of creating 

new plans for patients that do not require it.  

7.3.6 Radiotherapy planning using MRI alone 

The interest in MRI alone in RT planning is likely to increase in use over the 

coming years. However, there are a number of challenges which must be 

addressed for it to become a practical solution.  
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With the availability of new 3D distortion correction algorithms by MRI 

manufacturers, geometric distortion is no longer an insurmountable obstacle in 

the use of MRI alone for RT planning.  

Digitally reconstructed radiographs (DRRs) are a requirement for accurate RT 

planning, but this can be overcome by outlining bony anatomy in MRI to give 

beams eye view images similar to DRRs. Delineating bone on MRI can be time 

consuming but auto segmentation techniques along with special MRI sequences 

such as ultra short echo times should help to reduce this time. Similarly, the 

time taken to outline structures to assign electron density values should be 

considered. It is also possible to generate pseudo CT data from MRI by converting 

the MRI intensity values to Hounsfield Units by way of a conversion factor 

(Kapanen and Tenhunen 2012). This technique allows MRI datasets to be used for 

dose calculation and to generate DRRs.  

Finally, the cost of an MRI scan is much higher than CT and MRI scanners are 

generally more scarcely available, therefore, despite the advantages being 

offered from MRI alone RT planning, MRI scans will need to become less costly if 

they are to compete with CT in the near future. While MRI alone RT planning is 

not likely to be the mainstay procedure, this technique will possibly be used for 

specific sites where the advantages of MRI outweigh the challenges. The 

advantage of localised metal artefacts in MRI is likely to make it an attractive 

solution for RT planning, for example, in patients with abdominal cancer and 

bilateral hip replacements. Another example would be in patients with head and 

neck cancer where dental amalgam or metal from surgery would make 

delineation of tumour volumes less accurate using CT. Performing MR imaging of 

patients in the RT position at the diagnostic stage may prevent the requirement 

for a subsequent repeat scan and reduce costs. If the patients do not require RT 

it would still be possible to obtain diagnostic information of the required image 

quality using new manufacturer provided imaging coils. 

7.4 Recommended MRI protocol for radiotherapy 

On the basis of the work of this thesis this final section outlines a recommended 

MRI protocol for patients undergoing or likely to undergo radiotherapy. When MR 

images are used in RT planning, patients should be positioned in the RT position, 
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to ensure registration errors are kept to a minimum. However, there is evidence 

to suggest that patients with brain cancer may not require to be imaged in the 

RT position because of the small associated registration error (Kenneth et al 

2010). With the advent of improved imaging coils it may be possible to image 

patients at the diagnostic stage in the RT position which would help to reduce 

costs and resource demands. This would be easier to achieve in patients that do 

not require customised immobilisation, since it may not be feasible to 

immobilise all patients undergoing a diagnostic scan. Furthermore, the type of 

headrest used is dependent on the tumour extent, and this is unlikely to be fully 

known prior to imaging. Therefore, a second MRI in the RT position is a likely 

requirement for patients with head and neck cancer.  

The data from chapter 3 shows that in a range of 15 cm from isocentre, 

distortion errors can be kept to approximately 1 mm, using 2D distortion 

correction. This gives a range within which the MRI scan be used with 

confidence, for the purposes of target and OAR delineation. Careful 

consideration must be given when using data beyond this range and it may be 

necessary to extend PTV margins to compensate for this uncertainty. The 

availability of 3D distortion correction algorithms may extend the volume of 

tissue which can be used for delineation in RT planning, but this should be 

confirmed by local physicists. 

A receiver bandwidth greater than or equal to ± 30 kHz has been recommended 

to minimise distortion and chemical shift artefacts in MR images (Moore et al. 

2004). Using a slice width of the same thickness or thinner than the planning CT 

would also be considered best practice. T2-weighted MR images were found to 

be the most popular scan type with radiation oncologists in the studies of this 

thesis, but the exact sequence required may differ with oncologist, tumour type 

and anatomical site. The most appropriate set of MRI sequences should also be 

discussed with a radiologist. 

A uniformity correction algorithm was shown to be a requirement, when 

scanning with surface coils, to ensure the signal-to-noise and uniformity were 

within acceptable tolerances. It is likely that uniformity correction will continue 

to be a necessity, while surface coils remain popular for RT positioned MR 

imaging. 
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Rigid registration should minimise errors to an acceptable level for most sites, 

but once a registration has been performed it should be checked prior to use. A 

manual adjustment may be necessary in some cases. Deformable registration 

may provide further improvements in registration quality, but such algorithms 

should be tested to ensure that they give clinically acceptable results.  

This thesis has shown the advantages and limitations of incorporating MRI in the 

RT process. It has also demonstrated the benefits of imaging patients in the RT 

position. This has shown to offer improvements in the registration quality, target 

definition, dose coverage and dose homogeneity while minimising the dose to 

organs at risk. 
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Appendix 1 

% First it is necessary to rename files to add .dcm 

% Put files in separate folder from code 

% In command prompt, when in correct file path type: 

% ren * *.dcm 

 

% 3D Distortion Correction Analysis 

 

clear 

sequenceStartNo =7 ; 

sequenceEndNo =33; 

basename = ('IM'); 

fileExtension = ('.dcm'); 

Slice_No=(sequenceStartNo:sequenceEndNo); 

z=0; 

    for q=sequenceStartNo:sequenceEndNo 

 % convert a number to a character 

sequenceNo = num2str(q); 

% Concatenating information to generate image file information 

     filename=strcat(basename,sequenceNo,fileExtension);  

     % Reading the DICOM image 

     Im = dicomread(filename); 

     % Convert the DICOM image into an arithmetic matrix 

     Im = double(Im); 

 

% Crop the image 

Im = Im(85:174,54:204); 

% SPlit image into left and right 

Im_Lt=Im(1:42,1:151); 

Im_Rt=Im(43:90,1:151); 

 

% Filter image to give zero at the rod position and one elsewhere 

Im_Lt=imextendedmax(Im_Lt,850); 

Im_Rt=imextendedmax(Im_Rt,850); 
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% Looks for zeros in image 

[a, b]=find(Im_Lt==0); 

tb = [ a(:) b(:)]; 

T_Lt(q) = mean(b); 

[A, B]=find(Im_Rt==0); 

TB = [ A(:) B(:)]; 

T_Rt(q) = mean(B); 

% Calculates rod separation 

dist(q)= abs(T_Lt(q)-T_Rt(q)); 

% Stores value of rod separation as separate numbers 

z=z+1; 

dist2(z)=dist(q); 

    end 

 

% Values for calculating SP_meas 

CF=1; 

Rod_Sep=6.5; 

% Loop to compute SP_meas for each rod separation 

    for i=1:length(dist2) 

SP_meas(i)=sqrt((dist2(i)*CF).^2-Rod_Sep^2)/2; 

    end 

%SP_meas; 

 

% Error calculation 

SP_meas=real(SP_meas); 

r=0:5:130; 

SP_cal=abs(65-r); 

Error= SP_meas-SP_cal; save SC1 Error 

 

% Output the table of values 

fprintf( '\n\n   Slice No   Distance(mm)   SP_meas (mm)      Error \n'); 

fprintf( '\n %5.0f          %5.2f          %5.2f         %5.2f         ',[Slice_No; dist2; 

SP_meas; Error]) 
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