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Abstract 

The recent trend in climate has shown that UK temperatures are increasing, 

summers are getting drier and winters are getting wetter. It is thought that this 

trend is set to continue for the foreseeable future and that this will have an 

impact on the growth and quality of timber in the UK. Sitka spruce (Picea 

sitchensis (Bong.) Carr) is one of the most widely planted and important 

commercial tree species in the UK but our knowledge of tree growth and wood 

properties is based on tree growth in the climate of the past 40 – 80 years. The 

rotation time for Sitka spruce is approximately 40 years so trees planted now 

will mature in the 2050s, when the climate could be different from today 

leading to impacts on the quality and quantity of the wood being produced. This 

project aims to predict the effect that changes in climate will have on Sitka 

spruce, by looking not only at growth but also at different properties of the 

wood and their susceptibility to any change in climate. This information could 

then be used to help make decisions as to whether Sitka spruce is the best tree 

to be planting now, at any specific site in the UK, to obtain the best quality 

wood in the future. 

The effect of seasonally changing weather on growth was measured at two sites 

by the use of LVDT point dendrometers to record changes in the radius of the 

tree stems. The data were compared to meteorological data collected from the 

site and from local weather stations, to determine how weather affected the 

growth of the trees. Data collection from the site at Griffin Forest near 

Aberfeldy was initiated in 2008 as part of a long term project at that site. 

Measurements taken during 2008 and 2009 were used as part of a previous PhD 

study and continued as part of the present study from 2010. The second site was 

newly established at Harwood Forest in Northumberland, northern England. At 

both sites the onset of growth at the beginning of the season was found to 

correspond to temperature >5°C. Deficit of soil moisture was found to decrease 

the growth rate during the peak growth period. 

Radial density, radial growth and the radial profile of longitudinal stiffness were 

investigated by analysing increment core samples taken from sites covering the 

full latitudinal range that Sitka spruce grows in Great Britain, with the aim of 
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quantifying the effect of site factors such as latitude, longitude, initial spacing 

and elevation. The cores were measured from density and ring width using an 

ITRAX x-ray densitometer and analysed using Windendro software. Stiffness was 

investigated using acoustic velocity measurements taken directly on the 

increment cores using an ultrasonic scanner, modified to measure cores.    

A wide range of published radial growth models and a smaller number of radial 

density models were explored to see which were able to describe the data and 

compared to simpler linear segmented models. The sample population was found 

to be highly variable and the ability of the models to predict ring width or 

density from ring number alone was limited. Improved prediction of density was 

possible when ring width was included along with ring number as a predictor. 

The linear segmented models were found to be able to predict growth and 

density from ring number alone and this provides a useful and powerful tool. In 

practice ring width may not always be available and so there is a need for 

models which can predict density from ring number alone. Ring width was found 

to be negatively correlated with density, although the nature of the relationship 

was different between juvenile and mature wood.    

Most of the variation in both density and growth was between trees at the same 

site. Initial spacing was found to be the only significant effect on growth and 

then only by having a positive effect on the growth rate of the juvenile wood, 

which had a knock on effect on the size of the trees at the end of the juvenile 

phase. Both spacing and latitude were found to have significant effects on the 

mean density of the juvenile wood with spacing having a negative effect and 

latitude a positive effect. In the mature wood, cambial age was found to be the 

only significant effect on radial density. 
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Definitions/Abbreviations 

Acoustic Velocity: refers to the speed that sound travels through a piece of 

wood. The velocity at which sound travels through wood is dependent on its 

modulus of elasticity, i.e. stiffness, and its density. 

DBH: Diameter at breast height (1.3 m). 

ESC: Ecological Site Classification. 

GYC: General Yield Class. The measure of forest growth used in Britain, 

expressed as m3 ha-1 yr-1 

LVDT: Linear Variable Displacement Transducer. The type of probe used by point 

dendrometers to measure radial growth. 

MFA: Micro fibril angle. The angle of the cellulose microfibril helix in the S2 

layer of the wood cell wall. 

MoE: Modulus of Elasticity. A measure of wood stiffness. 

Ring density: refers to the average ring density measured as kilograms of mass 

per cubic metre (kg m-3) at 4% moisture content. 

Radial growth: refers to secondary growth, that is, radial growth from the 

vascular cambium. All measurements of secondary growth were at breast height 

(approximately 1.3 m). 

QCI: Queen Charlotte Island. A source of Sitka spruce seed imported into the UK. 

UKCP09: the working name given to the UK Climate Projections website, user 

interface and reports. 
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1 Introduction 

The climate of the UK is projected to change in the future (UKCP09, 2009a) and 

although there is huge uncertainty about the manner and scale of this change it 

is predicted that in the UK there could be warmer, drier and longer growing 

seasons during the summer, and wetter, warmer winters (UKCP09, 2009a, 

Murphy et al., 2009a) and although this is likely to have an effect on both tree 

growth and timber quality (Broadmeadow, 2002b, Ray, 2008b, UKCP09, 2009a), 

the nature of this effect is still largely unknown in the UK.  

According to (Broadmeadow, 2002b) and (Ray, 2008b) possible effects could 

include: 

 Higher temperatures during the growing season would increase 

productivity if water is not limited, which in turn could lead to a decrease 

in construction grade timber due to a decrease in density. 

 Longer growing seasons could lead to early bud burst and later dormancy, 

which could lead to higher risks of frost damage. However there is 

evidence that tree species with a high chilling requirement that was no 

longer met would be subject to a delay in bud burst and so may not 

benefit from a longer growing season (Cannell and Smith, 1983, Murray et 

al., 1989).  

 Milder winters could lead to trees not entering full dormancy resulting in 

damage due to the cold and also the trees not reaching their chilling 

requirement. Increased temperatures during winter could also mean a 

decrease in mortality of disease and pests during winter which could lead 

to an increase in damage to the trees (Proe et al., 1996).  

 Lower precipitation in summer, especially in the east, could lead to 

drought conditions that can cause stem cracking in susceptible conifers 

 Wetter winters could lead to a higher water table damaging and killing 

roots. 
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 Trees could be left vulnerable to pathogens due to being weakened by 

these effects of climate 

As well as having an effect on the amount of wood produced, a change in 

climate could also have an effect on the quality of wood produced (Zobel and 

Buijtenen, 1989). To qualify as construction grade timber the main quality 

criteria looked at are stiffness, strength, and dimensional stability. There are 

various properties of wood that affect these including: knots, grain angle, 

density, tracheid length, microfibril angle, juvenile wood and compression wood 

(MacDonald and Hubert, 2002, MacDonald et al., 2010). In addition stem 

straightness affects the out-turn of construction-grade timber. Silviculture, i.e. 

the way a forest is managed, can have a big influence on these properties 

(MacDonald and Hubert, 2002) as competition between trees for sunlight, water 

and nutrients can have an effect on tree growth. For example the initial spacing 

(planting distance) can have an effect on the number of knots, the amount of 

juvenile wood, stem straightness and to a lesser extent density (Brazier and 

Mobbs, 1993), and these can also be influenced by the practice of thinning 

(Kilpatrick et al., 1981, Savill and Sandels, 1983). Genetics can also have an 

effect on wood properties (Lee, 1999, McLean, 2008, Moore et al., 2009b) with 

lower density generally being found in faster growing trees (Brazier, 1967) as 

shown by a negative correlation between ring width and density (Dutilleul et al., 

1998, Saranpaa, 1994). This correlation has been explained by an increase in the 

amount of earlywood and a reduction in the density of the earlywood (Brazier, 

1970). Selecting and breeding the fastest growing trees may therefore have an 

adverse effect on the properties that are being looked for in the quality of 

timber and this is a major challenge for future breeding programs (Lee and 

Connolly, 2010). As well as silviculture and genetics, characteristics of the stand 

can have an influence on the amount and quality of wood produced including soil 

type, elevation, latitude and differences in climate between sites (Moore et al., 

2009a, Vihermaa, 2010). 

1.1 Sitka Spruce  

Sitka spruce (Picea sitchensis (Bong.)Carr) is one of the most commercially 

important tree species in the UK. 
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The Forestry Commission in the UK carries out woodland surveys at 10 to 15 year 

intervals to compile forest inventories, with the next cycle due for completion in 

2014. The most recent report on the volume of coniferous timber in Britain 

(Forestry_Commission, 2011) estimated that conifer trees covered approximately 

1.4 million hectares (ha) of which almost half (682,100 ha) consisted of Sitka 

spruce and approximately 523,300 ha was in Scotland. Other notable conifer 

species in Britain are Scots pine (Pinus sylvestris) (241,000 ha), Larches (133,300 

ha), lodgepole pine (Pinus contorta) (106,400 ha), Norway spruce (Picea abies 

[L.] Karst.) (61,600 ha), Corsican pine (Pinus nigra) (48600 ha) and Douglas fir 

(Pseudotsuga menziesii) (45,400 ha) with a further 39,400 ha made up of other 

conifers (Forestry_Commission, 2011). Sitka spruce originates from the west 

coast of North America where it grows in a mild, moist climate. It was first 

introduced to the UK in the 19th century where it found the climate and 

conditions favourable. Following the setting up of the Forestry Commission after 

World War I, Sitka spruce quickly became popular as it not only out-grew the 

native UK conifer species Scots pine but also the European species Norway 

spruce and European larch (Larix decidua) (Cannell, 1984). The rotation time for 

Sitka spruce is approximately 40 years so trees being planted now will mature in 

the 2050s/2060s when the climate could be different from what it is currently 

(UKCP09, 2009a). This could have an impact on the quality and quantity of the 

wood being produced.  

1.2 Climate 

Tree growth is influenced by climate, site factors and competition in a complex 

way. Therefore in a given location the limiting factors may vary. The effects of 

climate change in UK are foreseen to influence tree growth (Read et al., 2009, 

Ray, 2008a, Ray, 2008c, Ray et al., 2008, Broadmeadow, 2002a). Alteration in 

growth is expected to have implications for timber properties as these are 

strongly linked (Makinen et al., 2007, Guilley et al., 2004, Berges et al., 2008). It 

has been predicted that rising CO2 and increasing temperatures in the future will 

increase the average yield class of Sitka spruce from YC 14 to YC 16 (Ray et al., 

2008). Since 1930s there has been an increase in General Yield Class (GYC), 

which in percent terms corresponds to 20-40 % increase (Cannell et al., 1998). 

Approximately half of this increase was thought to be due to combined effects of 

increases in N deposition, CO2 and temperature (Cannell et al., 1998).  



Chapter 1  29 

1.3 UK climate predictions 

UKCP09 is the working name given to the UK Climate Projections website, user 

interface and reports which have been created, based on data from the Met 

Office, to help people who want to consider possible impacts of a changing 

climate (UKCP09, 2009b). It gives details on projected climate changes for the 

whole of the UK as well as on the level of administrative regions. It provides 

projections of changes in different climate variables for 30-year periods until the 

year 2099. These variables include projected changes in precipitation and 

temperature at yearly, seasonal or monthly timescales. 

UKCP09 projections are based on Low, Medium or High greenhouse gas emission 

scenarios that in turn are based on the Special Report on Emissions Scenarios 

(SRE) from the Intergovernmental Panel on Climate Change, IPCC, (Nakicenovic 

and Swart, 2000). These scenarios take into account changes in global 

population, economy, amount of energy use, and type of energy use (e.g. the 

proportion from fossil fuels compared to nuclear). It also states that there is 

considerable uncertainty about future emissions, which has an effect on the 

uncertainty of predicting climate change. A recent study published in 2014 

states that estimates for future warming using current climate models vary from 

approximately 1.5oC to 5oC if carbon dioxide concentration in the atmosphere is 

doubled (Sherwood et al., 2014). They were able to show that about half of the 

variance is due to differences in the feedback effect from clouds which changes 

as temperature rises and their observations implied a temperature rise of more 

than 3oC for a doubling of carbon dioxide concentration in the atmosphere.  

UKCP09 provides predictions on different levels of certainty. For example a 

probability level of 10% means that there is a 10% chance that the change will be 

less than that predicted (i.e. unlikely to be less). A probability level of 90% 

yields a value where there is a 90% chance that the change will be less than that 

predicted (i.e. unlikely to be higher than). The 50% value presents the central 

estimate within the prediction range. 
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1.3.1 Climate Change to Date 

As part of UKCP09 historical data was analysed and a report was published on 

the recent trends in UK climate (Jenkins et al., 2009b). Table 1-1 below shows a 

summary of the key findings with regards to recent changes in climate. 

Table  1-1: Data taken from UKCP09 showing key finding in observed trends in climate in the 
recent past. © UK Climate Projections 2009 (Jenkins et al., 2009b). 

Global average temperatures having risen by nearly 0.8 ºC since the late 19th century, and 

rising at about 0.2 ºC/decade over the past 25 years. 

Central England Temperature has risen by about a degree Celsius since the 1970s, with 

2006 being the warmest on record. It is likely (>66% probability, IPCC) that there has been 

a significant influence from human activity on the recent warming. 

Temperatures in Scotland and Northern Ireland have risen by about 0.8 ºC since about 

1980, but this rise has not been attributed to specific causes.  

Annual mean precipitation over England and Wales has not changed significantly since 

records began in 1766. Seasonal rainfall is highly variable, but appears to have decreased 

in summer and increased in winter, although with little change in the latter over the last 50 

years. 

All regions of the UK have experienced an increase over the past 45 years in the 

contribution to winter rainfall from heavy precipitation events; in summer all regions 

except NE England and N Scotland show decreases. 

Severe windstorms around the UK have become more frequent in the past few decades, 

though not above that seen in the 1920s. 

All regions of the UK have experienced an increase in average temperatures between 1961 

and 2006 annually and for all seasons. Increases in annual average temperature are 

typically between 1.0 and 1.7 °C, tending to be largest in the south and east of England and 

smallest in Scotland. 

The annual number of days with air frost has reduced in all regions of the UK between 

1961 and 2006. There are now typically between 20 and 30 fewer days of air frost per year, 

compared to the 1960s, with the largest reductions in northern England and Scotland. 

There has been a slight increase in average annual precipitation in all regions of the UK 

between 1961 and 2006, however this trend is only statistically significant above 

background natural variation in Scotland where an increase of around 20% has been 

observed. 

There has been an increase in average winter precipitation in all regions of the UK between 

1961 and 2006, however this trend is only statistically significant above background 

natural variation in Northern England and Scotland where increases of 30 to 65% have 

been experienced. 

There has been a slight decrease in average summer precipitation in most regions of the 

UK between 1961 and 2006, however this trend is not statistically significant above 

background natural variation. 

Average annual and seasonal relative humidity has decreased in all regions of the UK, 

except Northern Ireland, between 1961 and 2006, by up to 5%. 

There are no statistically significant trends in the average number of rain days or mean sea 

level air pressure for any region of the UK between 1961 and 2006.  
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1.3.2 Climate Change in the Future 

The UKCP09 user interface is a tool that allows predictions of projected future 

climate change using a number of scenarios, probability levels and climate 

variable as well as being able to split the UK into administrative regions. The 

tool produces output data based on the IPCC (Nakicenovic and Swart, 2000) low, 

medium or high emission scenarios.  

Figure 1-1 to Figure 1-4 show the difference between the ranges for each of 

these scenarios for summer and winter temperature and precipitation in the UK 

as a whole with each figure showing the 10%, 50% and 90% probability level for 

each emission scenario, i.e. it is unlikely that any future change will be less than 

the 10% value and unlikely that it will be higher than the 90% value, with 50% 

being the central estimate.  

The time periods shown represent a thirty-year average where the decade shown 

is the centre. For example 2020 is the decade centred on the period of 2010 to 

2039, 2050 is the decade centred on the period of 2040 to 2069 and 2080 is the 

decade centred on the period of 2070 to 2099. The period from 1961 to 1990 was 

used by UKCP09 as the baseline period, with projections of changes reported 

relative to the average climate of this period. 

1.3.3 Emission Scenarios 

UKCP09 is based around three projected scenarios involving low, medium and 

high emission of greenhouse gases. It states that due to the uncertainty of future 

emissions, projections used should include all three scenarios. This section 

compares the difference in the projected change for both winter and summer 

temperature and precipitation for the UK as a whole. 

Both summer and winter temperature are projected to rise no matter which 

emission scenario is used, with summer temperatures projected to rise by 

approximately 0.5 ºC - 3ºC by 2020 and between 1ºC and 8ºC by 2080 

(Figure 1-1). Winter temperatures are projected to rise by between 

approximately 0.2 ºC and 2.2ºC by 2020 and between approximately 1ºC and 

4.7ºC by 2080 (Figure 1-2). 
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The projected data for precipitation show that there is more uncertainty, 

especially with summer precipitation (Figure 1-3), where the output ranges from 

an increase of approximately 25% to a decrease of up to approximately 60%. 

Winter precipitation (Figure 1-4) is mostly projected to increase especially by 

the year 2080 but again there is a wide range in the projected change within 

each scenario. These graphs show that there is a general trend for decreased 

precipitation in the summer and increased precipitation in the winter. 

 

Figure  1-1: Predicted range of changes in summer temperature in the UK, using 10%, 50% 
and 90% probability levels for low, medium and high emission scenario. © UK Climate 
Projections 2009 
 



Chapter 1  33 

 

Figure  1-2:Predicted range of changes in winter temperature in the UK, using 10%, 50% and 
90% probability levels for low, medium and high emission scenario. © UK Climate 
Projections 2009. 
 

 

Figure  1-3:Predicted range of changes in summer precipitation in the UK, using 10%, 50% 
and 90% probability levels for low, medium and high emission scenario. © UK Climate 
Projections 2009 
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Figure  1-4:Predicted range of changes in winter precipitation in the UK, using 10%, 50% and 
90% probability levels for low, medium and high emission scenario. © UK Climate 
Projections 2009 
 

1.3.4 Temperature 

Figure 1-1 to Figure 1-4 show that while there is uncertainty about future 

changes in climate due to the wide range shown within each emission scenario, 

there are similar trends under the different scenarios. To look at each area 

within the UK separately, the output for only the medium emission scenario is 

used in Table 1-2 to Table 1-5, to show the range of the projected change in 

climate broken down into different areas. These tables show that the 

projections for each region of the UK follow a similar pattern, with temperatures 

in all regions for all seasons projected to increase, although there is a slight 

north south difference. 

As can be seen in Table 1-2 each region shows a similar range in the projected 

increase in summer temperature with the south of England showing the largest 

projected rise, and Northern Ireland showing the smallest rise. Whilst higher 

than the increases for Northern Ireland, the projected increases in temperature 

in Scotland are consistently lower than that of North England and Wales, which 

in turn are lower than that projected for South England. This pattern is repeated 
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in Table 1-3 and Table 1-4, which show the projected change in temperature for 

winter and spring respectively. 

Table  1-2: Projected mean change in summer temperature for regions of the UK for the 
decades of the 2020’s, 2050’s and 2080’s. Showing the range between 10% - unlikely to be 
lower than, to 90% - unlikely to be higher than, as well as the central estimate (50%). © UK 
Climate Projections 2009 

 
 

Table  1-3: Projected mean change in winter temperature for regions of the UK for the 
decades of the 2020’s, 2050’s and 2080’s. Showing the range between 10% - unlikely to be 
lower than, to 90% - unlikely to be higher than, as well as the central estimate (50%). © UK 
Climate Projections 2009 

 
 

Table  1-4: Projected mean change in spring temperature for regions of the UK for the 
decades of the 2020’s, 2050’s and 2080’s. Showing the range between 10% - unlikely to be 
lower than, to 90% - unlikely to be higher than, as well as the central estimate (50%). © UK 
Climate Projections 2009 

 
 

As part of the Weather Generator report for UKCP09 (Jones et al., 2009) models 

were run to analyse statistically what might happen to certain variables in a 

particular climate across various locations (Figure 1-5) in the UK. Table 1-5 

shows the results from this report for observed and future projected number of 

frost days using the medium emission scenario. As a control the number of frost 
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days was predicted for the period of 1961 to 1990 and this was compared to the 

mean observed data for the same period. The projections for the 2080s show 

that there are large decreases in the number of frost days across all of the UK 

with the greatest reductions in absolute terms being where the number of frost 

days is currently highest. 

Table  1-5: Observed and modelled changes, for control period (1961-1990) and future period 
(2080), of number of frost days across various sites in the UK. © UK Climate Projections 
2009. 

 
 

 

Figure  1-5: Locations of sites for Weather Generator projected change analysis. © UK 
Climate Projections 2009. 

 

1.3.5 Precipitation 

There was uncertainty about the changes in precipitation (Jones et al., 2009) 

with the projections ranging from a decrease in precipitation to an increase, for 

all seasons. The projected change in precipitation is shown as a percent change 

from the baseline so any change is relative to the amount of precipitation each 
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region currently receives. Although there is uncertainty within the wide range of 

projections, Table 1-6 shows that the projected change in summer precipitation 

is centred on a decrease in precipitation, with the range showing a downward 

trend over the periods shown. As with temperature, there seems to be a north – 

south difference in the projected change with the data showing that the 

projected change in summer precipitation is lowest in Scotland and highest in 

the south of England. Conversely, Table 1-7 shows that there is a projected 

increase in winter precipitation over the periods shown with the south of 

England again having the biggest change. The projected change in spring 

precipitation is less certain (Table 1-8) with the range neither showing a strong 

bias towards increasing or decreasing precipitation throughout all of the time 

periods. 

Table  1-6: Projected mean change in summer precipitation for regions of the UK for the 
decades of the 2020’s, 2050’s and 2080’s. Showing the range between 10% - unlikely to be 
lower than, to 90% - unlikely to be higher than, as well as the central estimate (50%).%). © 
UK Climate Projections 2009 

 

Table  1-7: Projected mean change in winter precipitation for regions of the UK for the 
decades of the 2020’s, 2050’s and 2080’s. Showing the range between 10% - unlikely to be 
lower than, to 90% - unlikely to be higher than, as well as the central estimate (50%).%). © 
UK Climate Projections 2009 
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Table  1-8: Projected mean change in spring precipitation for regions of the UK for the 
decades of the 2020’s, 2050’s and 2080’s. Showing the range between 10% - unlikely to be 
lower than, to 90% - unlikely to be higher than, as well as the central estimate (50%).%). © 
UK Climate Projections 2009 

 

1.3.6 Thermal Growing Season 

In 2002 a set of climate change scenarios were released under UKCIP02 (Hulme 

et al., 2002) which has now been superseded by the projections made in 

UKCP09. The study in 2002 did, however, use observed data to report on changes 

to the length of the thermal growing season that have happened in the recent 

past and also attempted to give projections on changes in the future. They 

described the thermal growing season as:  

“The longest period within a year that satisfies the twin requirements 

of: (i) beginning at the start of a period when daily-average 

temperature is greater than 5.5°C for five consecutive days; and (ii) 

ending on the day prior to the first subsequent period when daily-

average temperature is less then 5.5°C for five consecutive days” 

(Hulme et al., 2002). 

This therefore is only dependant on temperature and does not take into account 

water availability or day length. The report concluded that the thermal growing 

season in Central England had increased by about one month during the 20th 

century. This had taken place in two phases; 1920 to 1960 there was an average 

of 0.7 days increase per year due to both an earlier onset of spring and later 

onset of winter; and in 1980 to 2000 which had an average increase of 1.7 days 

per year, mostly attributed to an earlier onset of spring (Hulme et al., 2002). 

Using models they projected that by the year 2080 the length of the thermal 

growing season in Scotland could have increased by 20-60 days and in England by 

40-100 days. They also projected that by 2080 the south of England may 

experience years with year round thermal growing seasons. 
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1.3.7 Storminess  

Projections made by running models for UKCIP02 suggested that winter 

depressions would become more frequent due to the depression tracks moving 

further south (but reversed in summer when there would be less depressions). It 

also suggested that the North Atlantic Oscillation (NAO) would become more 

positive which would result into wetter, windier, but milder winters (Hulme et 

al., 2002). This differs from the models for UKCP09 which project that while the 

storm tracks will move south, this will occur south west of the UK and hence 

have little effect on the frequency and intensity of storms in the UK (Murphy et 

al., 2009b). 

Due to these discrepancies and the differences between individual models run 

for UKCP09 and the observed data, there is a great deal of uncertainty about 

future projections on storms and robust projections were not currently possible 

(Jenkins et al., 2009a). Similarly, model projections for anticyclones, which are 

often associated with low wind and clear skies, do not give clear results of a 

particular direction of change (Jenkins et al., 2009a). 

1.3.8 Windiness 

There were attempts made in UKCIP02 to try and model projected changes in 

wind and while results were obtained it was also stated that due to lack of 

consistency between different models the authors were unable to give any level 

of confidence to the results and they should only be used with extreme caution 

(Hulme et al., 2002). 

UKCP09 did not attempt to project changes to wind speed, as this was not 

available from the multi-model system used for the other variables such as 

temperature and precipitation. When different models were compared there was 

a great deal of variation in the projected changes to wind with little evidence of 

a systematic change (Murphy et al., 2009b). A separate study was done to 

evaluate alternative sources to model changes in wind, which reported that the 

most suitable data may be obtained from “an 11-member ensemble of variants 

of the Met Office regional climate model” (Brown et al., 2009). 
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1.4 Relationship between climate and tree growth 

When no other factors are limiting, in a temperate climate, tree growth usually 

responds positively to an increase in temperature. However, if summer 

temperatures increase, the rate of evaporation and transpiration will also 

increase, which in turn will decrease the amount of water available to plants at 

a time when the requirement for water is increasing. In areas where summer 

rainfall is forecast to decrease drought conditions may result and this can 

damage trees either directly or by making them more at risk from diseases 

(Green and Ray, 2009). In eastern Scotland, where there are soils with poor 

water holding capacity, the conditions may become unfavourable to drought 

sensitive species such as Sitka spruce (Ray, 2008a).  

Any increase in the frequency of extreme winds may also lead to more damage 

(Ray, 2008a, Broadmeadow, 2002a). However, since the trees are thought to be 

better anchored in the autumn rather than after repeated wind exposure in late 

winter the timing of the occurrence of the high winds is important 

(Broadmeadow, 2002a). In Scandinavia, milder conditions during the winter 

might make trees more susceptible to windthrow during winter and spring as 

they lose additional support provided by frozen ground (Peltola et al., 1999) and 

a study in Finland suggested the risk of trees being uprooted is increased by 

strong winds occurring during times when the soil is unfrozen (Vitasse et al., 

2011). The climate predictions discussed in this section did not include wind but 

generally extreme weather events are expected to increase in frequency 

(Broadmeadow, 2002a). Large parts of the Sitka spruce plantations in the UK are 

located in the Scottish highlands were strong winds are common and plantations 

on higher ground are already subjected to windthrow, so if strong winds become 

more common the problems are likely to increase both in frequency and in 

severity. Wind could influence timber properties in less extreme events as well, 

by inducing compression wood formation.  

Using a process model analysis of Sitka spruce grown at different UK sites Waring 

(2000) concluded that whilst poor soil nutrition was an issue in limiting growth at 

several sites, drought and vapour pressure deficit were not imposing major 

limitations to growth. However, variation in solar radiation was found to be the 

most influential factor governing growth. An earlier study by Ford et al. (1978) 
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also found a significant positive correlation between earlywood cell production 

and daily solar radiation. However, it has also been reported that Sitka spruce is 

very sensitive to vapour pressure deficit and may close its stomata even before 

soil water availability becomes limiting (Read et al., 2009). According to Jarvis 

et al. (1983) in Sitka spruce the net photosynthesis is only reduced by vapour 

pressure deficit after 1.2 kPa. Drought conditions may alter the allocation 

patterns with more carbon used for root growth which can affect the stem wood 

production (Jarvis et al., 1983).  

Care has to be taken when investigating the effect of site factors on tree growth 

as a number of factors can interact to give a different effect. For example both 

elevation and latitude are correlated with factors which affect tree growth such 

as accumulated temperature and rainfall, and so the relationship between yield 

class and elevation of Sitka spruce in Britain is not constant and varies between 

different meteorological regions (Mayhead, 1973). Investigating the effect of site 

factors on dynamic modulus of elasticity (MOE) of standing Sitka spruce trees 

Moore et al. (2009a) found a negative relationship with elevation and with 

latitude, but no effect of accumulated temperature or soil moisture, which may 

have been due to the relatively limited range in the study. A study into the 

effect of Norway spruce growing at an altitude of 580m and 1260m in Austria 

found that timber grown at lower elevation had thicker cell walls and wider 

growth rings (Gindl et al., 2001). Rossi et al. (2007) investigated growth of 

different species of conifers (Norway spruce, larch and Stone pine (Pinus pinea)) 

at high altitudes and found that xylogenesis occurred for all three species only 

when air temperatures reached 5.6 to 8.5oC suggesting that temperature at high 

altitude limits growth. Low temperatures were found to be the limiting factor at 

high altitude sites and more northern sites in a study on Norway spruce in 

Finland, while precipitation was important at more southern and lower altitude 

sites (Makinen et al., 2002). General Yield Class (GYC) has been found to 

decrease with elevation at the rate of 3.2-4.0 m3 ha-1 yr-1 per 100 m and at the 

same time productivity was found to be highly correlated with temperature and 

windiness (Worrell and Malcolm, 1990a). Proe et al. (1996) predicted that GYC 

would increase by 2.8 m3 ha-1 yr-1 for each degree of rise in temperature if the 

increase was uniform over the year. However, if greater warming took place 

during the winter months, the growth increase would only amount to 2.4 m3 ha-1 
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yr-1 due to a negative correlation between winter temperature and growth rate 

(Proe et al., 1996). Allison et al. (1994) analysed the distribution of yield classes 

across Scotland and reported that an increase in summer rainfall would have a 

positive influence on the GYC unless it was accompanied with a decrease in 

temperature, and that high winter temperatures had a negative effect. They 

concluded that GYC estimates were more sensitive to temperature than rainfall. 

No effect of increased temperature was detected on radial growth in a whole 

tree chamber experiment on Norway spruce in Sweden (Kostiainen et al., 2009), 

but they found that elevated temperature led to an increase in earlywood cell 

wall thickness and wood density and also observed an increasing trend in 

microfibril angle under elevated temperature, although this was not found to be 

statistically significant (Kostiainen et al., 2009). Larger earlywood cells were 

found in Norway spruce from a cool-humid site in Germany compared with trees 

from warm-dry site which had a higher number of latewood cells and thicker cell 

walls (Park and Spiecker, 2005).  

An increase in mean temperature could potentially increase the length of 

growing season in Britain; however, there is evidence that Sitka spruce has a 

high chilling requirement which may negate the effect of any increase in 

temperature. Sitka requires 140 days at temperatures less than 5ºC during the 

winter preceding the growing season in order to fulfil the chilling requirement 

(Cannell and Smith, 1983, Murray et al., 1989). When this requirement was met, 

growth would start when the lowest temperature sum was reached, but when 

chilling requirement was only partially fulfilled a higher temperature sum was 

required for bud burst (Cannell and Smith, 1983). In Britain, these conditions 

may currently only be met at high altitude and during particularly cold winters. 

Due to the high chilling requirement increased temperature might only shift bud 

burst a few days earlier or might even lead to a delay in bud burst (Cannell and 

Smith, 1986). This would protect Sitka against spring frosts but it also means 

that Sitka would not benefit from any increase in the length of the growing 

season (Murray et al., 1989). Among provenances of Sitka spruce that all come 

from fairly maritime climates, the southern origins flushed early and all Island 

provenances (except one from Prince of Wales Island) flushed later (Burley, 

1966). 
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A study investigating the effect of a changing climate on Cajander larch (Larix 

cajanderi Mayr) and Scots Pine found that over the past 120 years the date when 

mean daily temperature rises above 0oC has moved approximately 10 days 

earlier and the onset of growth in both species has moved by a similar amount 

(Nikolaev et al., 2011). However this study was of trees growing in Eastern 

Siberia where winter temperatures are colder for a longer period than in Great 

Britain and so any winter chilling requirement was easily met. Using microcores 

taken from different provenances of Norway spruce in a trial in southern Finland 

(Kalliokoski et al., 2012) found that while there were large differences between 

the onset of tracheid formation between years there was no significant 

difference between the provenances. The thermal growing season is widely 

accepted as when temperatures are above a 5oC threshold (Sarvas, 1972), but 

Kalliokoski et al. (2012) found that mean air temperatures had been above 5oC 

for a number of weeks before tracheid formation begun, although cambial 

activity was detected earlier. The same study found that highest tracheid 

formation rates were around the time of the summer solstice, coinciding with 

the period of highest temperatures and that a mid-summer drought slowed down 

and stopped tracheid formation earlier compared with years where there was no 

drought. There was no difference found in cessation date between the 

provenances (Kalliokoski et al., 2012). Investigating Black spruce (Picea mariana 

(Mill.) BSP) at two locations in Quebec, Canada, Lupi et al. (2010) found no 

causal link between the onset and cessation of xylem formation. They found that 

cambial reactivation in spring was influenced by temperature, but also that 

growth did not start until snow had melted and the soil had thawed which 

occurred at different times between the two sites investigated. Strimbeck and 

Kjellsen (2010) investigated the hypothesis that single freezing events late in the 

growing season can be the trigger by which Norway spruce trees begin the 

process of acclimatising to low temperature. However, no effect was found and 

even after repeated and prolonged freezing events there were no consistent 

effects. They suggested that for this species decreasing day length or 

temperature was the driver for low temperature acclimation. 

Macdonald (1979 ) recommended that in areas of Southern Scotland where 

annual rainfall is less than 900 mm Sitka spruce should not be planted. However, 

annual total is not always sufficient guidance for suitability in the future since 
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sites with impeded drainage are more vulnerable to the forecasted wet winters 

and dry summers regime (Hendry, 2009). Currently drought may cause cracking 

and ring shake in Sitka spruce mainly in eastern Scotland but in the future the 

risk area may spread to southern Scotland as well (Ray et al., 2008). The sites 

types predisposing Sitka to drought cracking vary geographically. In the east 

cracking typically occurs at sites with impeded drainage where under normal 

conditions water is present in surface layers of the soil and the rooting depth is 

restricted (Hendry, 2009). In the west cracking occurs in freely draining soils 

where prolonged drought leads to drying of the entire soil profile (Hendry, 

2009). Vigorously growing trees that have high water demand and produce low 

density earlywood are particularly susceptible (Brazier, 1970). Cherubini et al. 

(1997) studied drought cracks in Norway spruce in the Italian Alps. They 

concluded that the drought cracks had been formed when the cambium had 

been inactive because there was no increase in the frequency of traumatic resin 

canals connected with the cracks. They postulated that transpiration losses 

combined with inadequate water supply from very cold roots in the spring 

caused the cracking. In contrast Grabner et al. (2006) concluded on Larch that 

the drought cracks are usually initiated during the growing season but typically 

occur in rings formed 1 to 2 years earlier since newly tracheids in the newly 

formed ring tend to be more elastic and hence protected against cracking. 

Larch, as a deciduous species, is not subjected to spring transpiration losses and 

the cracking in older rings would explain the absence of traumatic resin channels 

(Grabner et al., 2006).  

In Deeside in eastern Scotland a drought in 2003 caused on average 

approximately 20% mortality in 420 studied trees across 3 sites (Hendry, 2009, 

Green et al., 2008), but within these sites there were areas where the mortality 

locally reached 60-70%. Green et al. (2008) investigated damage in Sitka spruce 

after the drought year, 2003, and concluded that all the lesions occurred after 

the end of the 2003 growing season. Traumatic resin canals were observed 

around the entire circumference of the 2004 tree ring. These resin canals had 

formed early in the season 2004 and in some cases they were still formed in 

2005. Xylem cells in these damaged rings contained almost solely latewood type 

cells with thickened walls and very small lumens (Green et al., 2008). 
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In Norway spruce growing in France it was observed that wood density was 

strongly positively correlated with soil water deficit, which the authors 

attributed to reduction in tracheid enlargement (Bouriaud et al., 2005). 

Therefore in less extreme conditions decreased water availability might increase 

density; as the ring width of Sitka increases this mainly occurs as an increase in 

earlywood width and hence leads to larger earlywood proportion and lower 

density (Brazier, 1970). Aakala and Kuuluvainen (2011) also found a relationship 

between radial growth and moisture deficit during the summer in Norway spruce 

in northwest Russia, with periods of low soil moisture having a negative impact 

on growth. Comparing properties of Norway spruce rings with climate in 

Germany, Wimmer and Grabner (2000), found that ring width had no relationship 

with monthly climate but latewood density and maximum density were highly 

correlated with temperature and precipitation.  

In a study investigating the effect of temperature on latewood formation in 

Momi fir (Abies firma) in its native Japan, Begum et al. (2012) found that 

artificially heating the stems could induce growth. Stopping the artificial heat 

led to a rapid decrease in temperature which resulted in cells being produced 

which had latewood characteristics, i.e. smaller diameter with thicker walls. 

Investigating the relationship between cell characteristics and climate in both 

black spruce and balsam fir (Abies balsamea) in Canada, Krause et al. (2010) 

found that temperature was an important factor on the cell size of earlywood, 

with less effect on latewood. However in this part of Canada temperatures 

during the earlywood phase can still be cold and often below 0oC, whereas 

during the latewood phase (August-September) temperatures are generally 

warmer with less freezing events. 

In an experiment in Canada on Black spruce Lupi et al. (2012) found that 

artificially heating the soil had no effect on xylem production and concluded 

that air temperature was the limiting factor for the formation of wood. However 

a study on Scots pine growing in southern Finland found that air temperature 

was the limiting factor in autumn, winter and early spring but that soil 

temperature was the limiting factor in late spring (Wu et al., 2012), especially 

during warm springs where low soil temperature could affect moisture 

availability.  
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In northern Arizona Kerhoulas and Kane (2012) investigated the effect of climate 

on wood properties at different heights in the stem of Ponderosa pine (Pinus 

ponderosa  Dougl.) and found that correlations between climate and radial 

growth increased with height suggesting that higher positions in the tree are 

more sensitive to stresses caused by climate. 

Studies into growth and the effect that climate has on it have often been 

focussed on dominant trees as this minimizes any effect that competition from 

larger trees may have. However, forests are made up of dominant, co-dominant 

and sub-dominant trees and how these different groups react to climate is 

important as the dominant trees may not be fully representative of the site.  By 

splitting trees within a stand into different size classes, Merian and Lebourgeois 

(2011) studied the effect of climate and size on tree growth at sites throughout 

France. They found that there was no difference in the sensitivity to either 

temperature or water availability between the size classes for species which are 

shade intolerant or moderately shade tolerant, such as Norway spruce, Scots 

pine and Sessile oak (Quercus petraea Liebl.). However, larger trees of shade 

tolerant species such as silver fir (Abies alba) and European beech (Fagus 

sylvatica) were more sensitive to drought during the summer than smaller trees. 

From this they recommended that to study the relationship between growth and 

climate it would be sufficient to sample only the larger trees of species which 

are shade intolerant or moderately shade tolerant, whereas sampling of only 

larger trees of shade tolerant species could result in the sensitivity to climate 

being over estimated (Merian and Lebourgeois, 2011). Sitka spruce is described 

as a moderately shade tolerant species which is able to grow in partial shade 

(Cannell, 1984). Conversely, a study in Germany into the response to summer 

drought by trees of different sizes found that larger Norway spruce trees were 

limited more by hot dry summers than smaller trees (Zang et al., 2012). In 

contrast they found that smaller Scots Pine trees were more limited by high 

temperatures and low moisture than larger trees. Similarly, in Spain growth of 

dominant Aleppo pine (Pinus halepensis) trees showed less sensitivity to 

environmental conditions than suppressed trees with lack of precipitation being 

the biggest influence in line with other Mediterranean species (Olivar et al., 

2012)  
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Due to its high chilling requirement Sitka spruce of the provenances currently 

planted may fail to benefit from earlier onset of growth (Cannell and Smith, 

1983, Cannell and Smith, 1986). However, in terms of growth rate Sitka will 

benefit from higher temperatures during the growing season, which has been 

forecast to increase the GYC from 16 to 18 (Ray et al., 2008). Faster growth may 

be accompanied with reduction in density (Brazier, 1970, Makinen et al., 2007). 

Any increase in windiness (Broadmeadow, 2002a) may particularly influence 

Sitka spruce as large areas in the exposed areas on Scottish Highlands have been 

planted with Sitka spruce (Worrell and Malcolm, 1990b). Also increasing vapour 

pressure deficit may influence growth of Sitka spruce (Read et al., 2009) and 

drought cracking may increase in drier areas. 

1.4.1 Management  

Silviculture practices are well known to have an impact on Sitka spruce growth, 

with factors such as initial spacing and thinning having major effects. A recent 

review summarized the effects that these factors can have on tree growth and 

wood properties (MacDonald and Hubert, 2002). A recent study has found that 

the initial spacing at which a Sitka spruce site is planted can have an effect on 

the spiral grain angle, which can lead to increased distortion in the wood 

produced (Fonweban et al., 2013). This study found that sites planted at wider 

spacings as well as those which had received heavy thinning or are exposed to 

strong winds can increase the grain angle significantly. They recommended that 

closer spacing, delayed or less thinning and planting on less exposed sites may 

help to reduce spiral grain. 

Thinning is also a forest management tool that can have an impact on growth 

and quality. A 2002 review into the practice in Britain suggested that a decline 

in selective thinning may have had an impact on the quality of logs in recent 

years (Cameron, 2002). More recently there has been a trend to move towards 

continuous cover forests which would have more irregular and diverse structures 

and this would have an impact on the quality of the wood produced (MacDonald 

et al., 2010). 

By heavily thinning a Norway spruce forest in Belgium Herman et al. (1998) 

showed that increasing the radial growth rate by 1.7 to 2.7 cm per year had a 
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limited negative effect on density. Similarly, again in Belgium, Dutilleul et al. 

(1998), investigating whether thinning affected the correlation between ring 

width and density, found that when the growth rate of Norway spruce was more 

than 2.2 cm per year the negative correlation between ring width and density 

disappeared. Sohn et al. (2012) investigated the impact of drought on growth 

under different thinning regimes and at different heights in the stem. They 

found that the response to drought was similar at different heights in trees that 

had been heavily thinned but was different in trees that had only been 

moderately thinned. They also found that moderately thinned trees were more 

sensitive to variations in climate and took longer to recover after drought events 

than trees on heavily thinned sites. This may be due to the increased 

competition for both sunlight and moisture. 

A recent study into the effect of rotation length on wood properties found that 

longer rotation lengths could result in timber with improved properties since 

timber taken from the outer section of the tree had higher stiffness and bending 

strength than that near the pith (Moore et al., 2012) however they also point out 

that longer rotation lengths can increase the risk of windthrow and may not be 

of economic benefit. 

1.4.2 Provenance 

Growth and the quality of the wood produced depend on how well trees are 

adapted to their local environmental conditions, and trees originating from 

different provenances can react in different ways. Originating from the west 

coast of North America, when Sitka spruce seeds were brought to Britain in the 

1920s at the start of the period of widespread afforestation, the seed was from 

the Queen Charlotte Islands, which by chance rather than design had a very 

similar climate to upland western Britain, and so seed of this provenance was 

well suited to grow here (Cannell, 1984). Since the last ice age Sitka spruce has 

expanded its range (Mimura and Aitken, 2010) running south to north along a 

narrow band of the east coast of North America. This almost linear range makes 

it an ideal species in which to study the change in genetic structure and 

different phenotypic traits among populations and to understand how it has 

adapted to local changes in the environment. Mimura and Aitken (2007) observed 

large differences in the way populations have adapted to environmental 
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conditions along this distribution. For example, they found that while southern 

populations grew taller, those from the north grew faster per day, which seems 

to be a strategy adapted to a shorter growing season. Investigating the genetic 

structure, the same study suggested that there was a large amount of adaptive 

divergence amongst all populations and that the local adaptation can occur over 

just a few generations (Mimura and Aitken, 2007). A more recent study found 

that Sitka spruce has adapted locally throughout its natural range in response to 

the current local climate conditions (Mimura and Aitken, 2010). Whilst they 

found differences within populations, bud break was earlier in southern 

populations and was later with progress north, due to differences in heat sum 

accumulation. Conversely bud set occurred earlier in northern populations and 

later in the southern ones, leading to a shorter growing period for more northern 

trees (Mimura and Aitken, 2010). Holliday et al. (2010) were able to study the 

phenotype and genotype on the same range of trees and found 28 candidate 

genes which explained 28% of the variance in cold hardiness and 34% of the 

variation in bud set, among which were 5 genes involved in the pathway 

regulating the end of growth in autumn.   

Since a changing climate is likely to have some impact on other plantation tree 

species, recent studies in Europe have also been carried out investigating the 

effect of climate on different provenances of species such as Norway spruce 

(Kapeller et al., 2012) and Scots pine (Taeger et al., 2013). Selecting the right 

provenance for the right environment may become important in the future with 

any change in climate. Both of these studies found that the response to climate 

was different between provenances. Norway spruce populations from areas in 

Austria which are currently warm and dry were seen as being already better 

adapted to these conditions, and so may be better suited elsewhere if conditions 

are to get drier and warmer (Kapeller et al., 2012). Similarly, in Germany 

differences were found between provenances of Scots pine in their response and 

recovery to drought conditions. Choosing these provenances for future forests 

may help if, as projected in that area, the climate were to get warmer and drier 

(Taeger et al., 2013). McLane et al. (2011) investigated the climate effect on 

different provenances of lodgepole pine growing in western Canada. They found 

that in general growth was positively correlated with temperature and 

negatively with moisture deficit, although this differed between the different 
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provenances. The biggest effects were seen in trees from populations originating 

from warmer provenances growing in colder sites, and vice versa. This indicates 

that sensitivity to climate can be genetically controlled and that the provenance 

of the trees is important when planting them elsewhere. Using trees grown in a 

trial in Kershope Forest in northern England, McLean (2008) investigated the 

variation in wood properties between three selectively bred progeny of Sitka 

spruce and compared this to control trees of a Queen Charlotte Island (QCI) seed 

origin. The QCI control was found to have significantly higher stiffness than the 

other genotypes and while in general it seemed to have higher density, this was 

not significant. The same study found a relationship between density and growth 

though suggested that this relationship may be different between the progeny. 

1.5 Aims 

The overall aim of this study is to predict the future impacts of climate change 

on growth and timber quality of Sitka spruce. This was approached in two ways; 

Firstly using data collected as part of a resource evaluation study which looked 

at the broad geographic variation in wood properties spanning the full latitudinal 

range of Britain and secondly through dendrometer experiments where the 

variation was coming from year-to-year changes in weather. 

One of the aims of the resource evaluation study is to explore a number of new 

and existing models which describe radial growth and wood density in Sitka 

spruce and to examine the linkage between these two parameters. Using a more 

complete dataset than has hitherto been available, this study aims to investigate 

which empirical models best describe radial growth with age as well as the 

radial profile of ring density, to examine whether these parameters can be 

modelled using a segmented linear approach, and to compare this approach to 

other empirical models describing the radial profile of growth with age within 

the sampled trees. These models were then used to investigate differences in 

growth rate and wood density due to altitude, latitude and longitude, which all 

can be linked to climate, and due to management effects such as initial spacing. 

A further aim of the resource evaluation study is to investigate a method of 

measuring the radial profile of longitudinal stiffness directly on 12mm increment 

cores using acoustic velocity, by making use of a purpose built acoustic scanner 
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at The University of Canterbury, Christchurch, New Zealand, and to model the 

pith to bark radial profile.  

This study also aims to investigate seasonal variation in tree growth and to 

examine how climate effects such as temperature and soil moisture influence 

the growth of Sitka spruce. By using LVDT point dendrometers to record changes 

in the radius of the tree stem, growth was investigated at two Sitka spruce 

plantation sites; at Griffin Forest near Aberfeldy where measurements were 

initiated in 2008 as part of a long term project and continued as part of this 

study, and at a newly established at Harwood Forest in Northumberland, 

northern England. The dendrometer data were compared to meteorological data 

collected from the site and from local weather stations, to determine how 

weather affected the growth of the trees.  
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2 Variation in Wood Properties 

In order to investigate the national range of variation in wood properties such as 

radial growth, radial density and the radial profiles of longitudinal stiffness, 

samples were collected from a number of sites throughout Great Britain. This 

section describes the method of collecting and preparing the samples which 

were used for this analysis. 

2.1 Resource Evaluation Study 

The “Benchmarking Study” was a resource evaluation survey started in 2006, and 

led by John Moore of Napier University, in collaboration with Forest Research 

and the University of Glasgow, to look at the variation in wood properties of 

Sitka spruce (specifically bending strength, stem straightness and form, stiffness 

and density) and to try to identify the site and stand factors which could be the 

source of this variation (Moore et al., 2009a). The initial study investigated 64 

sites across Scotland and in Northern England which were selected on the basis 

of yield class (i.e. productivity), elevation, latitude, longitude, initial spacing 

and thinning history. A portable acoustic tool was used to measure modulus of 

elasticity (MOE), i.e. stiffness on standing trees and sample cores were taken for 

detailed analysis. Data from this study have been published by Moore et al. 

(2009a) and also looked at in further detail by Vihermaa (2010) as part of a Ph.D. 

thesis. Moore et al. (2009a) found that 55% of the variation in standing-tree MOE 

was due to differences between individual trees within a site and 36% was due to 

differences between sites, with elevation and yield class being the most 

important site factors for MOE.  

The sample cores were analysed by Vihermaa (2010), with the aim of using the 

tree ring data to carry out climatic analysis; however, due to problems with the 

sampling technique (the outer rings were often missing or damaged) accurate 

dating and ring identification was not always possible. The analysis was able to 

show a negative correlation between ring width and density, which was stronger 

in mature wood than juvenile wood showing that an increase in growth is often 

accompanied by a reduction in density in Sitka spruce.  
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2.2 Extension of Resource Evaluation Study 

The study by Moore et al. (2009a) did not find a significant relationship between 

latitude and stiffness whereas previous studies had found a relationship between 

latitude and density (Bryan and Pearson, 1955). Stiffness and density are not 

always linked, but this observation was explained by the relatively small range in 

latitude covered in the study. To determine if latitude does have an effect on 

wood properties, a wider range of latitude would have to be covered, such as 

sites in northern Scotland, Wales, and southwest of England. Also, the study by 

Vihermaa (2010) was unable to come to any conclusions regarding the variation 

in density due to the problems encountered with the samples. 

The objectives of this study were to examine radial density, the radial variation 

in longitudinal stiffness and detailed radial growth by extending the evaluation 

study to cover areas of Scotland, England and Wales which were not included in 

the original survey. It is hoped that this „Benchmarking Extension‟ study will give 

further information on the variation in wood properties covering the whole 

latitudinal range of Sitka spruce in Great Britain. At the same time it would also 

provide valuable information on how growth and wood properties could change 

in a changing climate, by the detailed analysis of cores for density, ring width 

and stiffness considered alongside with the varying climatic data covering the 

whole latitudinal range of the UK. 
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2.2.1 Extension Sites 

Table  2-1: Details of the sites sampled in the extension of the resource evaluation study 

Site Region 
Elevation 

(m) 
Yield 
Class 

Spacing 
(m) 

Age 
(Years) 

Easting Northing 

4301 England (NE) 196 14 2.0 35 488364 852801 

7643 England (NE) 240 16 2.0 36 488167 494894 

9004 England (NE) 350 12 2.0 41 461550 499113 

9008 England (NE) 340 16 1.7 44 461860 499401 

2013 England (NW) 320 22 1.7 38 320670 524315 

2042 England (NW) 280 12 2.0 47 318585 524934 

2304 England (NW) 200 14 1.7 45 316766 531911 

86 England (NW) 250 22 1.7 43 374912 458152 

FERN England (SW) 425 18 2.0 40 266004 082670 

5234 England (SW) 225 12 2.0 41 322227 133764 

EXM7 England (SW) 183 18 2.0 41 269680 133212 

QUA6 England (SW) 285 14 2.0 40 316574 135751 

2723 Mid Wales 495 14 1.8 43 278407 259628 

3237 Mid Wales 467.5 18 2.0 39 274058 255893 

1390 N Wales 337.4 18 2.0 43 284047 230734 

1600 N Wales 278 20 2.0 45 285688 329686 

303 N Wales 411 14 2.0 43 300342 352019 

54 N Wales 291 10 2.0 40 273287 329315 

2142 S Wales 484.3 10 1.7 43 290043 198669 

2185 S Wales 280.7 16 2.0 39 280759 188300 

2436 S Wales 484.3 14 1.7 45 283204 208079 

2559 S Wales 102 24 2.0 41 247662 229775 

2789 S Wales 190.5 14 2.0 40 272116 224383 

2191 S Wales 312.4 18 2.0 40 298434 191990 

461 Kintyre 78 14 2.0 47 172576 651283 

6619 Kintyre 191 12 2.0 46 175038 666632 

6630 Kintyre 137 18 2.4 40 172430 613881 

6874 Kintyre 278 16 1.9 40 171198 615589 

278 Sutherland 99 18 2.4 49 256817 902996 

279 Sutherland 155 14 1.8 48 257262 914870 

280 Sutherland 155 12 2.5 36 252241 923791 

281 Sutherland 139 20 2.0 39 268494 936248 

 

In the original study there were a number of areas of Scotland that did not get 

covered; these included Northern Scotland, and the Kintyre peninsula. As part of 

the extension to the study four sites each on the Kintyre peninsula and in 

Sutherland were sampled during spring 2010 by Napier University. Sample cores 

were collected and passed to Glasgow University to be analysed as part of the 

current study. A further 12 sites were selected in Wales and 12 in England and 

these were visited during the summer and autumn of 2011 (Table 2-1). 
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Table  2-2: Sites from the original study chosen to be analysed as part of this study 

Site Region 
Elevation 

(m) 
Yield 
Class 

Spacing 
(m) 

Age 
(Years) 

Easting Northing 

226 NE England 232 14 1.6 36 373769 583997 

64 NE England 316 16 2.5 40 365546 577797 

155 SE Scotland 300 18 2.5 35 346800 656100 

243 SE Scotland 225 16 1.8 37 372359 614649 

23 
SW 

Scotland 
344 14 1.8 39 251212 595342 

55 
SW 

Scotland 
142 22 2.5 37 229592 551367 

63 
SW 

Scotland 
151 12 2.0 37 229701 568442 

72 
SW 

Scotland 
156 14 1.8 45 245997 570481 

80 
SW 

Scotland 
125 18 2.1 45 237781 578876 

5565 NC Scotland 338 20 1.8 43 294407 754285 

5945 NC Scotland 410 14 2.0 40 309477 753584 

1211 NE Scotland 444 12 1.5 45 342422 831547 

1251 NE Scotland 394 12 1.6 45 337580 807464 

3323 NE Scotland 290 10 2.0 46 370839 785121 

339 NE Scotland 356 18 2.0 37 353213 810020 
 

As well as the 32 sites selected for the extension study, for the purposes of 

measuring wood properties a selection of 15 sites were chosen from the original 

study which would give further coverage of areas within the UK such as North 

East Scotland, South West Scotland, South East Scotland and North East England. 

These sites are detailed in Table 2-2 and the location of all the sites used in this 

study can be seen in Figure 2-1 along with the location of the sites used in the 

original study. 
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Figure  2-1: Location of the sites sampled in the extension study (red) and the original study 
(green). The sites from the original study which were used to examine wood properties in 
the current study are shown in blue. 
  



Chapter 2  57 

2.3 Method 

2.3.1 Site Selection 

The sites chosen for this study were selected at random from a list of suitable 

sites, from the Forestry Commission‟s sub-compartment database, which were 

close to felling age of around 35 to 45 years old. In order to get a representative 

sample three factors were used (Yield Class, Elevation and Latitude) and these 

were divided into low or high level. The combinations of these can be classified 

into 8 categories in a factorial design with three conditions and two levels as 

shown in Table 2-3. 

Table  2-3: Conditions and levels of the experimental factorial design 

Factor Low Level High Level 

Yield Class <=14 >14 

Elevation <=280 >280 

Latitude >300 <=300 
 

The combination category of the chosen sites along with the level of each 

condition is shown in Table 2-4 along with the site location. 
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Table  2-4: Combination class for each site, listed by region, along with the experimental 
design conditions. 

Combination Latitude Yield 
Class 

Elevation Wales England 
(SW) 

England 
(NW) 

England 
(NE) 

Scot-
land 

1 HIGH LOW LOW 54 - 2304 4301 279 
280 
6619 
461 

2 

 

HIGH LOW HIGH 303 - 2042 9004 - 

3 HIGH HIGH LOW 1600 - 86 7643 278 
281 
6630 
6874 

4 

 

HIGH HIGH HIGH 1390 - 2013 9008 - 

5 LOW LOW LOW 2436 
2789 

5234 - - - 

6 LOW LOW HIGH 2142 
2723 

5223 - - - 

7 LOW HIGH LOW 2185 
2559 

4117 - - - 

8 LOW HIGH HIGH 2191 
3237 

8027 - - - 

 

As part of the desk study, once the sites had been selected a 0.2 hectare (ha) 

plot within each site was randomly selected from Forestry Commission maps 

using GPS co-ordinates avoiding features such as streams and rock formations.  

2.3.2 Field Work 

At each site a circular sample plot of 0.02 ha (radius 8 metres) was set up in 

accordance with the pre-determined GPS location again avoiding features such 

as forest edges, streams and other geological features which may not have been 

seen on a map when determining the GPS location. The trees within the plot 

were assessed for stem straightness and stem form (which included other 

physical attributes such as forks, ramicorn branches, broken tops and stem 

scarring) using a scoring system described by MacDonald et al. (2000). The height 

of ten trees within the site was measured using a Vertex III Hypsometer and 

Transponder T3 (Haglöf Sweden AB) to give an average height for the plot. The 

diameter at breast height (DBH) of every tree over 7 cm diameter within the 

plot was measured. DBH is a measure of tree size and to standardize it across 

different sites the measurement is taken around the trunk at a height of 1.3 
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metres in accordance with Forestry Commission standard operating procedure 

SOP 094. 

At each site ten experimental trees were randomly selected using randomly 

generated number sequences and tested for Modulus of Elasticity (MOE) on both 

the north and south side of each standing tree using the portable IML Electronic 

Hammer, (Instrumenta Mechanik Labor GmbH) which measures the velocity of a 

stress wave between two probes inserted into the tree at a vertical distance of 1 

metre and centred on breast height.  

The output from the standing tree acoustic measurements along with the site 

measurements of stem straightness and form were published as part of an 

internal report for the Strategic Integrated Research in Timber group (SIRT) and 

Forest Research (McLean, 2012). 

Using a Tanaka TED-250RS, (Tanaka Kogyo Co., Ltd.) increment corer 

(Figure 2-2) 12 mm increment cores (Figure 2-3) were taken bark to bark, as 

near as possible through the pith at breast height starting from the north side 

each of the ten experimental trees. The 10 cores from each site were taken to 

the University of Glasgow and the bark to pith section of the northern part of 

the core were analysed for ring width and density as part of this study. Starting 

the coring from the north side of the tree and analysing the northern part of the 

core solved the problem of missing outer rings and bark encountered by 

Vihermaa (2010). A quirk of using the increment corer meant that the bark on 

the side of the tree where the corer entered (north side) was left intact and in 

good condition. However when the corer was pushed through the tree and exited 

on the south side, often the bark and some wood would become detached from 

the core and remain attached to the tree. Visually it was impossible to tell how 

many rings were lost from the core. Unlike Vihermaa (2010) who analysed the 

south section of the cores, with missing bark, this study analysed the northern 

section where the bark was still intact. 
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Figure  2-2: Taking a 12mm increment core from a tree in Site 303 on North Wales using a 
Tanaka increment corer. 
 

 

Figure  2-3: 12 mm increment core taken at site 303 in North Wales. A standard sized pen is 
added for scale. 

 

2.3.3 Density and Ring Width Analysis 

2.3.3.1 Preparation of Sample strips 

The ITRAX requires the samples to be in the form of thin (approx 2mm) radial 

strips. To prepare the cores for analysis, they were first glued on to pre-

prepared sections of MDF board; care was taken to ensure that the core samples 

were glued to the MDF board s with the grain running horizontal (Figure 2-4). 

This is to ensure that the grain is perpendicular to the direction of the saw as 
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density measurements are made on the ITRAX in the same direction as the grain. 

The consequences of misalignment were explored by Vihermaa (2010). The 

purpose of the MDF board is to be able to clamp the sample in place during 

milling without damaging the sample (Figure 2-5). The sample was then milled 

to 2mm thick strips taken in the radial direction along the centre of the core 

(Figure 2-6 and Figure 2-7). 

 

Figure  2-4: Sample core glued to an MDF 
holder. 

 

Figure  2-5: MDF and core clamped in 
position in the mill. 

 

 

Figure  2-6: The sample core after 
milling with the 2 mm strip along the 
centre of the core. 

 

Figure  2-7: Sample strips ready for analysis on 
the ITRAX. 

 

2.3.3.2 Analysis of Samples Using the ITRAX Densitometer 

The sample strips were analysed for density and ring width by x-ray 

densitometry using an ITRAX Density Scanner built by Cox Analytical System, 

Gothenburg which uses a Cu source to produce an x-ray beam which is focussed, 
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using a slit system, to 22 mm wide and 25 µm high. The optimal settings used for 

the analysis for these type of samples has previously been developed by 

(McLean, 2008) and subsequently used by (Vihermaa, 2010): 10 mA, 20kV, 40 

second exposure time and a step size of 50 µm and run alongside a Walesch 

Electronics cellulose propionate calibration wedge of known density. 

A digital micrometer (Powerfix Profi Digital Caliper) was used to measure the 

thickness of the strips, to 0.001 mm, at four points along the strip and averaged 

to give a value that is input as the sample thickness when analysing the images 

using Windendro to calculate density (Section 2.3.3.3). The strips were fixed to 

mounting needles using double sided sticky tape along one edge and then 

mounted onto the movable rack within the ITRAX densitometer ready for 

analysis (Figure 2-8). Each run of samples on the Itrax also included a cellulose 

propionate calibration wedge (Section 2.3.3.3). 

 

Figure  2-8: Sample strips in position in the ITRAX densitometer 
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It is known that extractives can influence density and some species such as Scots 

pine have to have these extracted before they can be analysed by densitometry 

(McLean, 2008). However, Sitka spruce has a low extractives content (<2%) 

(Caron-Decloquement, 2010) therefore extraction of these prior to analysis was 

deemed unnecessary. 

Wood density can be affected by moisture content and so humidity within the 

ITRAX instrument should be kept to below 30% (Bergsten et al., 2001) and here 

was kept between 5% and 15%. Vihermaa, 2010 found that while humidity had an 

effect on density at 28% it had little effect below 15% and below this gave a 

sample moisture content of 4%. The ITRAX chamber was brought to 15% relative 

humidity by pumping in dry air using a Jun Air 2000 compressor which had been 

dried using an attached Dominick Hunter CO2 R280 drier unit. The sample strips 

were placed within the conditioned ITRAX chamber and allowed to stabilise for 

24 hours before starting the scan. 

2.3.3.3 Windendro 

Grey scale images are produced by the ITRAX densitometer and these were 

analysed using Windendro software, produced by Regent Instruments Quebec, in 

which the shades of grey from light to dark correspond to increasing levels of 

density. Calibration was carried out for each sample run using a stepped 

calibration wedge made of cellulose propionate, manufactured by Walesch 

Electronics. The thickness of each step of this calibration wedge is input by the 

operator and thickness of the wedge is divided by the density of the wedge 

(1.240 g cm-3), by the software, to produce a density value in per mm of 

thickness along with the corresponding grey scale image (Figure 2-9). The 

software relates the grey scale image of the samples to density by measuring the 

grey scale image of the calibration wedge of known thickness. The calibration 

was done for each run of samples on the ITRAX. The Windendro software allows 

a path to be drawn onto the sample image (Figure 2-10) in which it calculates 

the corresponding density value for each pixel along the path which is then 

divided by the thickness of the sample strip as input by the operator to give a 

radiographic density profile.  
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Figure  2-9: Grey scale image of the 
calibration wedge which was 
calibrated for each run of samples. 

 

Figure  2-10: Greyscale image of a sample 
with path and density profile calculated by 
Windendro.  

 

There are differences in the way that different materials absorb x-rays therefore 

a conversion has to be made to correct the density measured by the ITRAX (the 

radiographic density described above) in kg m-3 to gravimetric density (oven dry 

wood density) also in kg m-3. The process for this correction was discussed by 

both (McLean, 2008) and (Vihermaa, 2010) and similar values were derived 

empirically by both with slight differences seen due to moisture content during 

the scans. Since the method used in this study was based on that described by 

Vihermaa, 2010 the conversion factor used in this study was also that derived by 

Vihermaa, 2010, and was of the form: 
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ρwood  = 0.7739 * ρrad + 40.9949 

Where ρwood is the gravimetric density of the wood in kg m-3 and ρrad is the 

radiographic density as measured by the ITRAX also in kg m-3  

Windendro identifies the ring boundaries by variation in the intensity of the grey 

scale. In this experiment to ensure that a representative sample of the density 

was taken, three paths of 2 mm width were drawn with the average taken of the 

resulting output. An example of the ring width and density output from 

Windendro is shown in Figure 2-11. Here the ring width and the radiographic 

density are plotted alongside the ITRAX grey scale image of the corresponding 

sample. Windendro also calculates an average ring density value as well as 

supplying output values for earlywood width, latewood width, early and 

latewood width percentage, earlywood density, latewood density, maximum 

density and minimum density. Within this study the boundary between early 

wood and latewood was defined as 50% of the maximum density value. 

 

 

Figure  2-11: The grey scale image of sample 2723-31 along with the corresponding density 
and ring width output calculated using Windendro 
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2.4 Climate Data 

2.4.1 Weather Station Data 

The Weather station data used in this study was from the UK Meteorological 

Office downloaded from the “Met Office Integrated Data Archive System (MIDAS) 

Land and Marine Surface Stations Data (1853-current)” database obtained from 

the British Atmospheric Data Centre (BADC) website which is the Natural 

Environment Research Council's (NERC) Designated Data Centre for the 

Atmospheric Sciences (UK_Meteorological_Office, 2012). The data were obtained 

from the weather station positioned closest to the Griffin site (Aberfeldy, Dull) 

using the ordinance survey grid references as a guide.  

2.4.2 Ecological Site Classification 

The Ecological Site Classification (ESC) is a tool developed by Forest Research 

and described in Forestry Commission Bulletin 124 by (Pyatt et al., 2001) which 

allows the user to get climate and soil data for sites by inputting a six figure 

Ordnance Survey grid reference (i.e.100m resolution). Climate data for ESC was 

obtained from the UK Meteorological Office and is based on climate recorded 

during the period of 1961 to 1990. The purpose of this tool is to help forest 

practitioners in make planning decisions regarding planting of tree species in 

specific locations such that the species could cope with the location‟s climate 

and soils. This system is based around two soil properties (soil moisture regime – 

SMR  and soil nutrient regime – SNR) and four main climatic variables: 

Accumulated temperature which describes the warmth of a site and is measured 

in day degrees above 50C; Moisture deficit describes the dryness of a site with 

higher values indicating drier sites and considers potential precipitation and 

evaporation; DAMS (Detailed Aspect of Scoring) looks at the exposure of a site 

and is a measure of windiness with higher scores being more exposed; 

Continentality is a score given to a site which is a measure of the climatic 

seasonal variability based on distance from the sea along with northing and 

easting (oceanic climates which have precipitation evenly spread throughout the 

year, have low continentality scores).  

Plotting the sites used in this study against the climate variables in ESC shows 

some interesting patterns of climate variation in Britain and shows how there are 
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numerous interactions which can govern the climate of each site. That is, 

accumulated temperature, measuring the number of day degrees above 50C, 

decreases with increasing latitude (Figure 2-12), and although not significant 

there may be a slight tendency to decrease with increasing longitude 

(Figure 2-13) and decreases with increasing altitude (Figure 2-14). The same 

pattern is seen for rainfall with latitude and longitude (i.e. decreases 

northwards and eastwards). Moisture deficit which links potential evaporation 

and rainfall during the growing season decreases with altitude higher sites are 

generally wetter. Even though rainfall decreases in these directions increasing 

moisture deficit may be due to lower evaporation due to lower temperatures. 

Rainfall decreases in an eastwardly direction showing that more eastwardly sites 

are generally drier. 

 

Figure  2-12: Accumulated temperature, rainfall, moisture deficit and DAMS score from ESC 
plotted against latitude shown as an OS grid reference and fitted with a linear trendline. 

 

(m
m

) 

y = -0.0005x + 1470.2 

R² = 0.3469    P<0.001 
y = -0.0008x + 1734.2 
R² = 0.197    P=0.002 
 

y = -3E-05x + 102.96 
R² = 0.0642   P=0.086 
 

y = -2E-07x + 15.258 
R² = 0.0005   P=0.854 
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Figure  2-13: Accumulated temperature, rainfall, moisture deficit and DAMS score from ESC 
plotted against longitude shown as an OS grid reference and fitted with a linear trendline. 
 

 

Figure  2-14: Accumulated temperature, rainfall, moisture deficit and DAMS score from ESC 
plotted against elevation shown as an OS grid reference and fitted with a linear trendline. 
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y = -0.9974x + 1479.2 
R² = 0.2789   P<0.001 
 

y = 0.7972x + 1128 
R² = 0.0471  P=0.143 
 

y = -0.1574x + 131.84 
R² = 0.4414   P<0.001 
 

y = 0.0065x + 13.367 
R² = 0.119   P=0.018 
 

y = 7E-05x + 68.754 
R² = 0.0342   P=0.213 
 

y = -0.0008x + 1448.8 
R² = 0.0799    P=0.054 
 

y = -0.0025x + 2098.7 
R² = 0.2022   P<0.002 
 

y = -6E-06x + 17.05 
R² = 0.048   P=0.139 
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Continentality is a score given which measures how evenly precipitation is 

distributed throughout the year where sites with low continentality values have 

more evenly distributed rainfall than high score sites. Figure 2-15 shows that 

more southern and eastern sites have higher continentality scores meaning that 

they have less evenly distributed rainfall throughout the year i.e. colder, wetter 

winters and warmer, drier summers. 

 

Figure  2-15: Continentality of sites from ESC plotted by longitude and latitude fitted with a 
linear trendline. 
 

The ESC tool is also able to be used to generate future accumulated temperature 

and moisture deficit predictions based around the climate scenarios (UKCP09, 

2009a), described in Chapter 1. Using the “Low Scenario” Figure 2-16 shows the 

current accumulated temperature compared with that predicted in 50 and 80 

years. In most cases accumulated temperatures are predicted to rise with sites 

in the north of Scotland getting close to those currently being experienced by 

sites in southern England and Wales. Whilst the difference in moisture deficit 

(Figure 2-17) between now and what is predicted in 50 and 80 years looks more 

variable than accumulated temperature there does seem to be an effect 

whereby the more westerly sites are predicted to get wetter (lower moisture 

deficit) while those in the east are predicted to get drier (higher moisture 

deficit) 

y = 1E-05x + 3.2398 
R² = 0.3948   P < 0.001 
 

y = -4E-06x + 8.6101 
R² = 0.5597   P<0.001 
 



   

 

Figure  2-16: ESC 
data on current 
accumulated 
temperature, 
along with the 
accumulated 
temperature 
predicted by the 
low scenario after 
50 and 80 years 
of UKCP09 
(2009a) for the 
sites used within 
this study to 
measure ring 
growth and ring 
density.  

  



   

 
 

Figure  2-17: Current 
ESC moisture deficit 
data, along with the 
moisture deficit 
predicted by the low 
scenario after 50 and 
80 years of UKCP09 
(2009) for the sites 
used within this study 
to measure ring 
growth and ring 
density. 
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2.5 Categorical Groups 

As discussed in Section 2.3.1, in the initial design of this experiment the sites 

were chosen according to criteria of latitude, elevation and yield class and from 

within these groupings it is also possible to get the longitude and initial spacing 

of the sites. Although the nature of these means that they are capable of being 

expressed as continuous variables, in order to get a sense of how wood 

properties varied throughout Great Britain they were also investigated as 

categorical variables. The following section describes how these groups were 

constructed. 

2.5.1 Longitude and Latitude as Categorical Variables 

 

Figure  2-18: The Ordnance Survey British National Grid. Each 100 km x 100 km grid is 
described by a pair of letters which have been translated into numbers based on columns 
and rows. Also shown is the location of the sites used in this study in relation to the grid 
squares.  
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Latitude and longitude were measured using the Ordnance Survey National Grid 

Reference system. This uses alphanumeric references based on a grid system 

within the British Isles whereby the first two letters indicate a 100 x 100 km grid 

square within the UK (Figure 2-18) followed by a grid reference denoting the 

location within the grid square. This system allows for the first two letters to be 

substituted by numbers based on rows (or eastings) and columns (or northings). 

For example grid square SH becomes 23, where 2 is the progress west to east 

and 3 is the progress south to north. The numbers of the columns and rows are 

also shown in Figure 2-18 along with the position of each site positioned within 

its respective grid square. These data were used in the categorical analysis 

within this study. Table 2-5 gives a list of sites and the categorical groups for 

longitude and Table 2-6 gives the groups for latitude. 

Table  2-5: The number of sites along with the site name sorted into the relevant Easting 
group 

Easting Group No. Sites Site 

1 4 461, 6619, 6630, 6874 

2 23 
FERN, EXM7,  2723, 3237, 1390, 1600, 54, 
2142, 2185, 2436, 2559, 2789, 2191, 278, 

278, 280, 281, 23, 55, 63, 72, 80, 5565 

3 16 
2013, 2042, 86, 5234, QUA6, 303, 226, 64, 

155, 243, 5945, 1211, 1251, 3323, 339 

4 4 4301, 7643, 9004, 9008 

 

Table  2-6: The number of sites along with the site name sorted into the relevant Northing 
group 

Northing 
Group 

No. Sites Site 

0 1 FERN 

1 6 EXM7, 2142, 2185, 2191, 5234, QUA6, 

2 6 2723, 3237, 1390, 2436, 2559, 2789 

3 3 1600, 54, 303,  

4 4 86, 7643, 9004, 9008 

5 10 23, 55, 53, 72, 80, 2013, 2042, 2304, 226, 64 

6 6 461, 6619, 6630, 6874, 155, 243 

7 3 5565, 5945, 3323 

8 4 1211, 1251, 339, 4301 

9 4 278, 279, 280, 281 
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2.5.1.1 Longitude and Latitude as Continuous Variables 

This numerical system also allows for the grid reference to be used as a 

continuous numerical parameter. Since grid references are split into an easting 

and northing which denotes a position within a 100 x 100 km grid, the addition 

of the numerical grid parameter to the beginning of each allows a continuous 

position within Great Britain to be calculated. For example, OS Grid Reference 

SH 85688 29686 becomes 285688 329686 where the first set of 5 numbers are the 

easting value and the second set the northing value. 

2.5.2 Elevation Groups  

Elevation is able to be expressed as a continuous variable as altitude above sea 

level in metres and these were grouped in 50 m increments from lowest (Group 1 

to highest (Group 9). The number of sites per elevation group along with the site 

number is shown in Table 2-7.  

Table  2-7: The number of sites along with the site name sorted into the relevant elevation 
group. 

Elevation 
Group 

Elevation (m) No. Sites Sites 

1 50 - 100 2 461, 278 

2 100 - 150 5 2559, 80, 6630, 281, 55 

3 150 - 200 8 63, 279, 280, 72, EXM7, 2789, 4301, 2304 

4 200 - 250 5 243, 5234, 226, 7643, 86 

5 250 - 300 7 1600, 6874, 2042, 2185, QUA6, 3323, 54 

6 300 - 350 8 155, 2191, 64, 2013, 1390, 5565, 9008, 23 

7 350 - 400 3 9004, 339, 1251 

8 400 - 450 4 5945, 303, FERN, 1211 

9 450 - 500 4 3237, 2436, 2142, 2723 
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2.5.3 Spacing Groups 

Spacing is measured in metres and is the initial distance that the trees were 

planted and has been the subject of many studies investigating its effect on tree 

properties, and was the subject of a review by MacDonald and Hubert (2002). 

The nature of the spacing whereby there were a limited number of spacings used 

meant that the groups were the same as the actual spacing. By far the most 

predominant spacing group in this study is 2m as shown in and a non-random 

distribution such as this complicates analysis of the effects of spacing on wood 

properties.  

Table  2-8: The number of sites along with the site name sorted into the relevant spacing 
group. 

Spacing 
(m) 

No. 
Sites 

Site 

1.5 1 1211 

1.6 2 226, 1251 

1.7 6 9008, 2013, 2304, 86, 2142, 2436 

1.8 6 2723, 279, 243, 23, 72, 5565 

1.9 1 6874 

2.0 24 
4301, 7643, 9004, 2042, FERN, 5234, EXM7, 

QUA6, 3237, 1390, 1600, 303, 54, 2185, 2559, 
2789, 2191, 431, 6619, 281, 63, 5945, 3323, 339 

2.1 1 80 

2.4 2 6630, 278 

2.5 4 280, 64, 155, 55 
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3 Modelling Radial Growth of Sitka Spruce 

3.1 Introduction 

Using the data collected from the sample cores taken as part of the resource 

evaluation study described in Chapter 2, this chapter aims to investigate the 

radial growth of Sitka spruce across the full latitudinal and longitudinal range of 

Great Britain. Empirical models were used to examine radial growth by age and 

to investigate which parameters such as latitude, longitude, altitude and spacing 

are having an effect on this growth. 

3.1.1 Definitions 

In this section when growth is discussed it is referring only to secondary growth, 

that is, radial growth from the vascular cambium. All measurements of 

secondary growth were at breast height (approximately 1.3 m). 

Ring number is counted from the pith and is a measure of cambial age in years. 

For the purposes of this chapter the terms “Ring Number” “Age” and “Cambial 

Age” are interchangeable. 

3.1.2 Outline 

The core samples used in the section were taken from the 32 Extension 

Benchmark sites which covered a range from Sutherland in the north of Scotland 

down to Devon in the south west of England as described in the method section 

of Chapter 2. As well as these, samples from a further 14 sites were selected 

(See Map in Figure 2-1) from the original Benchmark study to cover a larger 

range of the UK including north east Scotland, south east and south west 

Scotland and north east England. Due to time constraints it was not possible to 

analyse all of the original benchmark sites and a subset of 14 were chosen which 

increased the range within Great Britain. At each of the 46 sites it was intended 

to take 10 core samples but due to damage and the condition of some of the 

cores (e.g. knots) this number varied between 8 (4 sites), 9 (12 sites), 10 (28 

sites) and 11(2 sites) (Table 3-1).  



Chapter 3  77 

Table  3-1: Number of samples per site. 

Site 23 54 55 63 64 72 80 86 155 226 

No.Samples 10 10 9 10 10 10 10 10 10 10 

           Site 243 278 279 280 281 303 339 461 1211 1390 

No.Samples 10 10 10 10 10 9 9 9 9 10 

           Site 1600 2013 2042 2142 2185 2191 2304 2436 2559 2723 

No.Samples 10 9 11 8 9 10 9 10 8 11 

           Site 2789 3237 3323 4301 5234 5565 5945 6619 6630 6874 

No.Samples 9 8 10 10 9 9 10 10 10 10 

           Site 7643 9004 9008 EXM7 FERN QUA6 
    No.Samples 10 10 10 8 9 10 
     

Each core was split at the pith and analysis was made from pith to bark on the 

core to give a radial profile. 

 Ring width data was produced using the Itrax densitometer along with 

Windendro (see methods in Chapter 2) software and a simple calculation was 

used to calculate accumulated growth by ring for each tree: 

Accumulated Growth(i) = ∑RW(1:i)      Equation 3.1 

Where RW is ring width measured by Windendro and i is the cambial age in years 

and the number of annual rings (counting from the pih) that correspond to that 

age. 

3.1.3 Aim 

The aim of this section is to investigate which empirical models best describe 

radial growth with age of the sampled trees and to examine whether the radial 

profile of growth can be modelled using a segmented linear approach and to 

compare this to other empirical models which describe the radial profile of 

growth with age within the sampled trees. These models can then be used to 

investigate any difference in growth rates by altitude, latitude, longitude and 

initial spacing. 
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3.2 Radial Variation in Growth 

 

Figure  3-1: Radial growth plotted by cambial age with a LOWESS trend line 
 

Figure 3-1 shows that there is a clear radial trend in radial growth with a greater 

rate near the pith which decreases between years 10 and 20. Thus growth rates 

were higher in the younger part of the tree (juvenile wood) compared with the 

older part of the tree (mature wood). This general trend in growth is similar to 

that described in previous literature for Sitka spruce (McLean, 2008, Moore, 

2011) and may be linked to canopy closure in the forest which usually happens 

around 10 to 12 years depending on spacing (Kilpatrick et al., 1981, Savill and 

Sandels, 1983). The growth pattern also conforms to the generally accepted 

juvenile and mature wood periods for Sitka spruce plantations (Cameron et al., 

2005, Brazier and Mobbs, 1993, Schaible and Gawn, 1989). 

To ensure an even end point for each sample and since the rate of growth can be 

affected by silviculture practices, such as thinning (MacDonald and Hubert, 

2002), it was decided that an upper limit of ring 25 (counting out from the pith) 

would be used in the model analysis. Typically thinning takes place sometime 

after age 20 (Deans and Milne, 1999) and as a result the tree will have a period 

of faster growth later in its lifetime (Methley, 1995) determined by when 

thinning took place. Setting an upper age limit therefore reduced the effect that 

Cambial age (years) 
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any thinning would have on the mature section of the growth rate. As well as 

this, the number of trees with rings beyond this point decreases rapidly with age 

(Table 3-2). 

Table  3-2: The number of trees being analysed decreases as ring number increases 

Ring Number of 
Trees 

1 442 

12 442 

20 438 

25 428 

30 342 

35 192 

 

 

Figure  3-2: Distribution of sample length measured from pith to bark (radius) on the core 
samples 

 

The length of the radial profile of each core was found to be fairly evenly 

distributed though there were a few larger samples (Figure 3-2). A total of 434 

samples were measured and these had a mean length of 120.3 mm with a 

standard deviation of 37.9 mm. The largest sample was 266.7 mm in length with 

the shortest being just over36.2 mm. This difference in size may reflect in the 

difference in age at felling as well as growth rate, and setting an upper limit of 

25 years removes any age bias. 
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Figure  3-3: Boxplot showing the radius of the samples at cambial age 25 plotted by site 
running sequentially from furthest south (left) to furthest north (right). 
 

When the length of the samples at cambial age 25 is plotted by site (Figure 3-3) 

it shows that whilst there would seem to be some differences between some of 

the sites there is also a large spread in radius within each site. The site with the 

lowest mean radius is site no. 2436 and the site with the highest mean radius is 

site 2789. Both of these sites are in South Wales showing that region alone would 

not be a good indicator of tree growth. Similarly sites 6619 and 6630 have very 

different mean radii even though both are in Kintyre in the west of Scotland. 

To be able to visualize how the radius is affected by latitude, longitude, spacing 

and altitude these variables were split into groups as described in the method in 

Chapter 2. The latitude groupings progress from furthest south (Grp 0) to 

furthest north (Grp 9), longitude groupings run from west (Grp 1) to east (Grp 4), 

altitude groupings run from lowest elevation (Grp 1) to highest elevation (Grp 9) 

and Spacing is grouped by the measured distance in metres. The number of 

samples in each of these groupings is shown in Table 3-3. 
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Table  3-3: The number of samples and sites per group 

Northing Group 0 1 2 3 4 5 6 7 8 9 
No. Samples 10 54 46 39 50 98 59 29 18 40 

No. Sites 1 6 5 4 5 10 6 3 2 4 

  
         

  

Easting Group 1 2 3 4 
     

  

No. Samples 39 218 145 40 
     

  

No. Sites 4 23 15 4 
     

  

  
         

  

Altitude Group 1 2 3 4 5 6 7 8 9   

No. Samples 19 47 77 58 80 78 19 37 27   

No. Sites 2 5 8 6 8 8 2 4 3   

  
         

  

Spacing (m) 1.5 1.6 1.7 1.8 1.9 2 2.1 2.4 2.5   

No. Samples 9 10 66 60 20 208 10 20 39   

No. Sites 1 1 7 6 2 22 1 2 4   

 

 

Figure  3-4: Radius of samples at cambial age 25 plotted against longitude, latitude, spacing 
and altitude 

 

Figure 3-4 shows the radius at cambial age 25 plotted by latitude, longitude, 

spacing and altitude. With the exception of altitude there do not seem visually 

to be any obvious trends when plotted by groups. There may be a slight 
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tendency for the radius to decrease with increasing elevation and this was 

confirmed by fitting a linear model, which indicates that elevation is having a 

significant, negative effect on the size of the core (p < 0.001). A similar linear 

model applied to spacing indicates that it was having a positive effect on the 

core length (p< 0.001) but there was no effect of northing or easting. 

3.3 Fitting Models to Radial Growth 

In order to model radial growth a number of statistical models were explored to 

see how well they describe the growth trend of these data. A review in 1993 

(Zeide, 1993) listed several statistical models that are commonly used to 

describe growth (Table 3-4) and these were examined to investigate which 

would best fit this data set. 

Table  3-4: Growth equations for statistical models from (Zeide, 1993), where RG = radial 
growth, t is cambial age. a, b, c and d are parameters estimated from the data 

Model Name Equation Equation No. 

Hossfeld 4 RG=tc/(b+tc/a) 3.2 

Gompertz RG=a*exp-b*exp-ct 3.3 

Logistic RG=a/(1+c*exp-bt) 3.4 

Monomolecular RG=a*(1-c*exp-bt) 3.5 

Bertalanffy RG=a*(1-exp-bt)3 3.6 

Chapman-Richards RG=a*(1-exp-bt)c 3.7 

Levakovic1 (Modified) RG=a*(td/(b+td))c 3.8 

Levakovic3 RG=a*(t2/(b+t2))c 3.9 

Korf RG=a*exp-bt^-c 3.10 

Weibull RG=a*(1-exp-bt^c) 3.11 

Yoshida1 RG=a*td/(b+td)+c 3.12 

Sloboda RG=a*exp-b*exp-ct^d 3.13 

 

As well as the growth models listed in Table 3-4 three separate models used to 

describe curves were explored to see how these compare with the growth 

models (Table 3-5). Along with these a segmented linear model which 

investigates whether there are two separate linear sections to the growth with a 

defined split point between the two sections using a Davies test (Davies, 1987) 
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to test for a significant change in gradient. Each linear section follows the form 

of a linear equation where there is a slope parameter and an intercept 

parameter. For both the juvenile and mature segments the intercept is 

interpreted as the value at year 0. 

Table  3-5: Equations for the three statistical models describing curves and the two 
segmented model, where RG = radial growth, t is cambial age. a, b and c are parameters 
estimated from the data 

Model Name Equation Equation No. 

Segmented linear model:    

Juvenile Segment RG= a1*t + b1          t≤11 3.14 

Segmented linear model:    

Mature Segment RG= a2*t + b2          t>11 3.15 

Michaelis Menten (MM) RG= (a*t)/(b+t) 3.16 

Exponential (Exp) RG=-a*exp (-b*t) +c 3.17 

Logarithmic (Log) RG=a*log(t) +b 3.18 

 

To visually inspect the models they were fitted to the data in R using non linear 

least squares (nls) to find the best fit curve. The result of this can be seen when 

the fitted line for the models are plotted against the mean line (Figure 3-5) 

Figure 3-5 shows visually that whilst most of these models fit quite well to the 

mean of the data there are a couple of exceptions (Logistics and Logarithmic) 

which do not fit the data as well as the others and do not need any further 

investigation. 

.
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Figure  3-5: The fitted line for each of 
the growth models (red) plotted 
against the mean of the observed 
data (blue) by ring number from the 
pith.
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3.3.1 Model Parameters 

When each of the rest of the models are fitted to all of the data (global data), 

the coefficients that were estimated are presented in Table 3-6. This shows that 

all of the growth models plus the curve models and the segmented model are 

able to explain a similar amount of the variation (69% for all the models). The 

residual standard error is also very similar for all models at with the lowest 

being 20.12 mm and the highest being 20.25 mm. 
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Table  3-6: Parameter estimates along with Standard Errors, residual standard error and R-
squared value for the statistical model equations. Also shows the number of trees and the 
percent of the total that the model was unable to fit. 

Model Parameter Estimate Std Error Residual Std 
Error 

R-Squared No.Trees 
Not Fit 

% Total Not 
Fit 

Hossfeld4       

a 149.1 4.7 20.13 0.6942 9 2 

b 0.3 0.02     

c 1.4 0.04     

Gompertz       

a 106.3 39 20.22 0.6914 1 0.2 

b 3.04 0.06     

c 0.15 0.003     

Monomolecular       

a 139.9 2.9 20.14 0.6938 22 5 

b 0.055 0.021     

c 1.05 0.006     

Bertalanffy       

a 168 4.1 20.24 0.6921 44 10 

b 0.013 0.00045     

Chapman-Richards       

a 121.8 2.44 20.13 0.6940 26 6 

b 0.08 0.004     

c 1.42 0.05     

Levakovic1 Modified Equation     

a 27.9 5.4 20.12 0.6943 186 43 

b 70.9 25.3     

c 0.5 0.04     

d 2.8 0.1     

Levakovic3       

a 128.96 1.99 20.14 0.6939 19 4 

b 309.6 27.9     

c 0.6 0.02     

Korf       

a 294.5 26.7 20.13 0.6941 31 7 

b 5.4 0.09     

c 0.5 0.03     

Weibull       

a 116.5 2.5 20.14 0.6939 10 2 

b 0.033 0.0013     

c 1.27 0.027     

Yoshida1       

a 156.9 8.8 20.13 0.6942 45 10 

b 39.8 4.6     

c -1.6 1.3     

d 1.3 0.07     

Sloboda       

a 162.1 21.9 20.13 0.6943 338 78 

b 18.1 13.9     

c 1.5 0.7     

d 0.3 0.1     

Segmented - Split point 11.6 years     

a1 5.87 0.09 20.14 0.6936   

b1 -3.25 0.63     

a2 2.91 0.06     

b2 31.21 0.11     

Michaelis Menten       

a 285.12 8.74 20.25 0.6915 41 9 

b 43.25 1.86     

Exponential       

a 147.4 2.492 20.14 0.6938 27 6 

b 0.055 0.002     

c 139.9 2.938     
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When the models were fitted to individual trees, in the R statistical program 

(R_Core_Team, 2013), there were two models which were unable to fit to a high 

proportion of the samples, the Levakovic1 model which couldn‟t fit to 43% of the 

trees and the Sloboda model which couldn‟t fit to 78% of the trees. These were 

discounted from further investigation. The Bartalanffy (10%) model, Yoshida1 

(10%) and Michaelis Menten (9%) models were also discounted as these were also 

unable to fit to a substantial number of trees. 

3.4 Comparing Models of Radial Growth 

3.4.1 Hossfeld4 Model 

Although the segmented analysis may indicate that growth can be split into two 

separate segments with a specific change point between the two forms of 

growth, it is also possible that there may be a gradual change from juvenile to 

mature growth. This being the case models which describe juvenile and mature 

growth together as a curve may fit the data better. Therefore as well as looking 

at juvenile and mature wood as two separate segments this section looks at a 

selection of different curves to see which function fits the data the best and 

how these compare with the segmented model. 

 

Figure  3-6: Observed V Predicted for the 
Hossfeld4 model on the global data. 

 

Figure  3-7: Residuals plotted against 
cambial age for the Hossfeld4 model on the 
global data. 

 

The Hossfeld4 model was able to predict growth from cambial age, describing 

the age related trend in growth reasonably well (Figure 3-6). There was still 

variation between trees and the spread of the observations tended to increase 

with increasing growth. Similarly when the residuals are plotted against cambial 

Cambial Age (Years) Predicted 
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age they show a reasonably good fit. There is a trend for the residuals to 

increase with age but we should expect this as the tree growth is increasing from 

zero at different rates (Figure 3-7) so that the divergence tends to increase with 

increasing growth. 

3.4.1.1 Hossfeld4 Model Fitted to Individual trees 

 

Figure  3-8: Observed Vs Predicted for the Hossfeld4 model when fitted to individual tree. 
 

When observed versus the predicted growth values are plotted for the Hossfeld4 

model fitted to individual trees (Figure 3-8), it looks to be predicting very well 

(R-squared = 0.998). There does not seem to be any curve to the data with an 

even spread throughout the data and the LOWESS trend line sitting almost 

exactly on the line of equality. 

When the residuals for the Hossfeld4 model are plotted against cambial age 

there may be a slight curved pattern to the data (Figure 3-9) although the 

spread looks fairly even throughout. When the residuals are plotted against 

distance from the pith (Figure 3-10) they again show a fairly even spread and 

there does not look to be a problem at values close to the pith as seen with 

some of the other models. 
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Figure  3-9: Residuals of Hossfeld4 model when fitted to individual trees, plotted against 
cambial age with LOWESS trend line (red). 

 

 

Figure  3-10: Residuals of Hossfeld4 model when fitted to individual trees, plotted against 
growth with LOWESS trend line (red). 

 

Cambial Age (Years) 
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While the two segment linear model was able to produce clear coefficients 

(slope and intercept) which could be plotted against the treatments, the other 

growth models produced coefficients which had an interaction between each 

other and it is difficult to interpret the effect that each single parameter is 

having on the slope. Thus it is very difficult to get a clear picture of the effect 

of the treatments on one of the coefficients on its own. For this reason the 

coefficients for each treatment were input onto the respective curved model 

equation and plotted. Figure 3-11 shows the effect of the different treatments, 

when grouped as categorical variables, on the Hossfeld4 Model. It looks as if 

longitude (b) had little effect but there were differences in the latitudinal 

groups (a) with a difference in accumulated growth at year 25 of around 30mm 

between the highest and lowest groups. There may be a positive effect of 

spacing (c) and again there is a large spread of accumulated growth at year 25 

with a difference of approximately 70 mm between the highest and lowest 

groups. There may be a negative effect of elevation (d) with the lowest altitude 

groups showing the highest accumulated growth at year 25, approximately 30 – 

40mm higher than the highest altitude grouping. 

 

Figure  3-11: Coefficients of the Hossfeld4 model plotted by northing group, easting group, 
spacing and elevation group. 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 
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When the Hossfeld4 model was fitted to individual trees it was unable to fit to 9 

trees (2%) and the growth rate for these are shown (Figure 3-12). Eight of the 

trees shown in Figure 3-12 were the same ones which both the Chapman-

Richards and Levakovic3 models were unable to fit (only Tree 9008/35 is unique 

to the Hossfeld4 model).  

 

Figure  3-12: Growth rates of the 9 trees that the Hossfeld4 model couldn't fit. 

 

The Hossfeld4 model also produced some extremely high figures (relative to the 

other values) for the coefficients a and b as shown in the histograms in 

Figure 3-13. Coefficient a ranges from a minimum value of 43 to a maximum of 

10950 with the majority of values falling at the lower end of the scale (median = 

139). Similarly, coefficient b has a minimum of 0.048 and a maximum of 14 but 

again most values fall at the lower end of the scale (median = 0.4). 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) 

Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) Cambial Age (Years) 
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Figure  3-13: Histogram showing the large range in the coefficients a and b for the Hossfeld4 
model. 
 

When the samples which produced the highest coefficients are plotted they give 

a reasonably good fit to the growth of the respective tree and coefficient “a” 

could be described as the asymptote, i.e. maximum value. The trees with the 

highest coefficient “a” are plotted in Figure 3-14. This seems to be an effect of 

fitting to samples which have a high linear growth rate compared to those with 

the lowest calculated coefficient “a” which produce a slower, curved growth 

rate. 
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Figure  3-14: The growth rate and fitted line for the three samples which the Hossfeld4 model 
predicts the highest values for coefficient a (top row) and lowest values (bottom row). 
 

Coefficient “a” from the Hossfeld4 model shows very little correlation with 

either coefficient “b” (correlation coefficient = -0.09) or coefficient “c” 

(correlation coefficient = 0.27). 

Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 
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Figure  3-15: The growth rate and fitted line for the three samples which the Hossfeld4 model 
predicts the highest values for coefficient b (top row) and lowest values (bottom row). 

 

The trees with the highest coefficient “b” are plotted in Figure 3-15 along with 

the samples with the lowest “b” coefficient. A high “b” coefficient seems to be 

associated with samples which have a sigmoid (s-shaped) growth rate. Although 

coefficient “c” does not have the same large range as the other two coefficients 

it was found to be relatively correlated with coefficient “b” (correlation 

coefficient = 0.66) and two of the samples with the highest “b” coefficient are 

also the two with the highest “c” coefficient (80/11 and 1390/13). Similarly one 

of the samples with the lowest “b” coefficient also has the lowest “c” 

coefficient (sample 243/22). This shows that both of these parameters are 

involved in the rate of growth and so it is difficult to determine the effect that 

each has individually on the slope. 

3.4.2 Other Growth Models 

When the remainder of the growth models shown in Table 3-4 were fitted 

against the global data the predicted values and the residuals were very similar 

Cambial Age (Years) 

Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 
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to those shown by the models in the previous section. When fitted to individual 

trees three of the models (Chapman-Richards, Levakovic3 and Yoshida1) showed 

similar residuals to the Hossfeld4 model, but these models were unable to fit to 

as many trees as the Hossfeld4 model as shown in Table 3-6. For this reason it 

was determined that the Hossfeld4 model would be most suitable out of these 

curvilinear models for this data set. When examined further, the remainder of 

the growth models all seemed to have problems when trying to fit to individual 

trees and so were deemed unsuitable for modelling the data.  

Of the three “curve” models tested (Table 3-5), the Logarithmic Model was 

discounted as it did not give a good fit to the data. The Exponential model 

looked to give a slightly better fit to the data and was also able to fit more trees 

than the Michaelis Menten model.  

3.4.3 Exponential Model 

 

Figure  3-16: Observed Vs Predicted for Log 
model on the global data. Red line shows the 
line of equality 

 

Figure  3-17: Residuals plotted against 
cambial age for the Log model on the global 
data. Also showing the LOWESS trend line 
in red 

 

When the residuals and predicted growth were plotted for the Exponential (Exp) 

model they were shown to be very similar to that for the Hossfeld4 model. The 

Exp model was also able to predict growth from cambial age describing the age 

related trend in growth reasonably well (Figure 3-16) and when the residuals are 

plotted against cambial age they show a reasonably good fit (Figure 3-17). As 

with the other models looked at, there was a trend for the spread in predicted 

growth as well as the variation in residuals to increase with cambial age but 

again, this should be expected as the tree growth is increasing from zero at 

different rates causing the variance to increase with increasing cambial age. 

Cambial Age (Years) Predicted 
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3.4.3.1 Exponential Model Fitted To Individual Trees 

When the Exp model was fitted to individual trees it was unable to fit to 27 trees 

(6.2%), which are shown in Figure 3-18. It also produced some extremely high 

figures for the coefficients “a” and “c” though not for “b” as shown in the 

histogram in (Figure 3-19). In the Exp model coefficients “a” and “c” are highly 

correlated (Pearson correlation = 1.0), but neither are highly correlated to b1 

(Pearson correlation of approx. 0.5 for both). When the samples which produced 

the highest coefficients are plotted they give a reasonably good fit to the growth 

of the respective tree (Figure 3-20) and, as before, seem to be an effect of 

fitting the curved model to the trees with no change in their growth rate. 

 

Figure  3-18: Growth rate of 27 trees which the Exp model could not fit. 

 

Cambial Age (Years) 
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Figure  3-19: Histogram showing the frequency of the fitted coefficients for the Exponential 
Model 

 

 

Figure  3-20: The 9 trees for which the Exponential model fitted the highest coefficients 

 

Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) 

Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 
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Table  3-7: The nine highest coefficients that the Exp model fitted to the samples, where b1 is 
the rate parameter, b0 and b2 are constants estimated from the data. 
Tree ID b0 b1 b2 

226/5 2069.6 0.001424 2070.4 

4301/6 1743.0 0.003553 1737.7 

FERN/1 1659.6 0.004356 1657.7 

5565/13 1420.8 0.004193 1413.6 

279/41 1202.6 0.002664 1200.7 

2013/28 892.9 0.010073 883.1 

226/14 886.5 0.005393 898.9 

2789/3 745.8 0.012352 740.3 

1211/5 740.3 0.006477 739.9 
 

 

Figure  3-21: Observed Vs Predicted for Exp model when fitted to individual tree. R squared 
0.9961 

 

When observed versus the predicted growth values are plotted for the Exp model 

(Figure 3-21) it looks to be predicting very well (R-squared = 0.9961) when fitted 

against individual trees, except right at the pith (i.e. 0 mm) where it looks to be 

predicting negative values for growth. There may be a very slight curve to the 

data but this is not as pronounced as seen in both the MM and linear models.  

When the residuals for the Exp model are plotted against cambial age any 

pattern to the data looks to have been smoothed out (Figure 3-22). When the 

residuals are plotted against distance from the pith it shows that there may be a 
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problem with this model right at the pith (Figure 3-23). As seen with the 

segmented models when the baseline was corrected to zero it made little 

difference to the residuals close to the pith (not shown). 

 

Figure  3-22: Residuals of Exp model when fitted to individual trees plotted against cambial 
age 
 

 

Figure  3-23: Residuals of Exp model when fitted to individual trees plotted against growth 

Cambial Age (Years) 

Cambial Age (Years) 
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Figure  3-24: Coefficients of the Exp model plotted by northing, easting spacing and 
elevation groups 
 

The graphs for the Exp model (Figure 3-24) seem to follow a very similar pattern 

to that of the Hossfeld4 model. Latitude may be having an effect but there does 

not seem to be any pattern to this effect. Longitude may be having a smaller 

effect. As before, spacing could be having a positive effect and elevation could 

be having a negative effect. Spacing looks to be having the largest effect with a 

difference of approximately 60 mm in growth between the highest and lowest 

group at year 25 which could translate to a difference of 12 cm to the diameter 

of the trees. 

3.4.4 Segmented Model - Split between Juvenile and Mature 
Growth 

In order to determine if there were two separate linear segments in the growth 

function, a Davies‟ test was carried out, indicating here that there was a 

significant change in the growth rate across the whole data set (p-value < 

0.0001). Using the Segmented package in R (Muggeo, 2008) a regression model 

with segmented relationships was used to determine the parameters of the 

different slope segments (i.e. slope, intercept and break point). The result of 

this test gave an estimated mean split point between the juvenile and mature 

Cambial Age (Years) 

Cambial Age (Years) Cambial Age (Years) 

Cambial Age (Years) 
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growth segments at 11.6 years with a standard error of 0.26 and residual 

standard error of 20.14 mm.  

3.4.4.1 Factors Affecting the Split Point 

The effect that each treatment had on the split point between juvenile and 

mature growth can be seen in Figure 3-25 and Figure 3-26. Whilst there are some 

differences in the split point there does not seem to be any visible trend to 

these differences. These also show that the fits to individual trees included 

some high split points (>20 years) and some low split points (<5 years) which 

could be due to the sensitivity of the method to local fluctuations or could be 

indicative of the natural variation between trees in the position of the boundary 

between juvenile and mature growth. In a study on juvenile wood in Norway 

spruce Lindstrom states that juvenile (or core) wood in conifers could be 

anywhere between the first 3 to 32 rings (Lindstrom, 2002) so the range in split 

points found here could be feasible.  

 

Figure  3-25: The split point between juvenile and mature growth segments plotted by 
Northing, Easting Spacing and Elevation. The dashed line shows the value (11.6 years) 
when modelled against the global data. 
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Figure  3-26: The split point between juvenile and mature slopes plotted by Site and radius. 
The dashed line shows the value (11.6 years) when modelled against the global data. 
 

Figure 3-26 shows that there are visible differences in the split points between 

sites (a) and also a large variation within some sites. A slight decrease in split 

point with increasing length of samples is suggested but analysis of variance 

(ANOVA) shows that this was not significant ( p=0.069) indicating that the age 

where there is a change from juvenile to mature growth is not dependent on the 

amount of growth.  

3.4.4.2 Split Point Fitted to Individual Trees 

A segmented model seems to work well when fitted against the global data and 

also when fitted against individual trees to give the growth rates, intercepts and 

split point for each. By calculating the Davies Test for each tree individually it 

was determined whether or not there was a significant change in slope. If the 

Davies Test was not significant then only one slope was calculated for that tree 

i.e. with no break point (e.g. sample 1211-22-A in Figure 3-27). 
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Figure  3-27: Observed growth and breakpoint fitted by the segmented model on a selection 
of benchmark trees 

 

On this data set the segmented model was unable to fit a split point to 10 of the 

442 samples, the growth of which are shown in Figure 3-28. There were also 16 

trees where the juvenile growth rate was found to be lower than the mature 

growth rate (Figure 3-29) but where the difference was still found to be 

significant. 

Cambial Age (Years) 
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Figure  3-28: Growth rates for trees which the segmented model couldn’t fit a split point. 
 

 

Figure  3-29: Growth of trees where the segmented model fitted the mature growth rate to be 
greater than the juvenile growth rate 
 

When the observed values are plotted against the predicted values for individual 

trees Figure 3-30 it shows there is a very good fit with an R-Squared value of 

0.99.  
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Figure  3-30: Observed Vs Predicted for the two segment model when fitted individual trees. 
 

While the two segment model gives a good fit when modelled against the global 

data, the sensitivity when it is modelled against individual trees produced some 

very low estimates for the split point as well as some high estimates 

(Figure 3-31) indicating that this method of calculating the split point on 

individual trees may be too sensitive to local fluctuations in growth. However, 

further investigation would indicate that the model may in fact be fitting the 

lowest (Figure 3-32) and highest (Figure 3-33) split points correctly in most of 

the cases.  
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Figure  3-31: Histogram showing the distribution of split points between the juvenile and 
mature growth segments fitted by the segmented model on growth. 
 

 

Figure  3-32: Growth of the nine trees with the lowest split points fitted by the segmented 
model. 
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Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  
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Figure  3-33: Growth of the nine trees with the highest split points fitted by the segmented 
model 

  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  



Chapter 3  108 

3.4.5 Segmented Model - Juvenile and Mature Growth 

Before going on to use the models to test statistically which treatments, if any, 

are having an effect on growth rate, this section will test how each model fits 

the global data and how the models fit to individual trees.  

 

Figure  3-34: All benchmark growth data with red line showing where segmented model fitted 
the split between juvenile and mature wood (cambial age 11.6) and the upper limit of ring 25 
(blue).  
 

When the segmented model was fitted against the global data it gave a split 

between juvenile and mature growth at between year 11 and 12 with two 

separate linear segments: the juvenile section before the split point (cambial 

age 1 to 11 years) and the mature section (cambial age 12 to 25 years). 

Therefore it may be possible to use a fixed split point to examine the growth of 

the different segments separately, i.e. the growth rate up to cambial age 11 and 

the growth rate over cambial age 12 but below cambial age 25 as shown in 

Figure 3-34. When looked at separately growth appears linear up until year 11 

(Figure 3-35) and also looks relatively linear between year 12 and 25 

(Figure 3-36) so it would appear reasonable to continue analysing growth under 

year 12 and between year 12 and 25 using  two linear models. 

Cambial Age (Years)  
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Figure  3-35: Growth up to year 11 (juvenile 
growth) with LOWESS trend line 

 

Figure  3-36: Growth from year 12 to year 25  
(mature growth) with LOWESS trend line 

 

3.4.5.1 Juvenile Growth: Site Effects 

In order to get a visual impression of how the different treatment variables 

affect the model, the coefficients for the two segments were plotted. The 

intercept of the juvenile growth rate is shown in Figure 3-37 and would seem to 

indicate that there was not much effect of latitude (a) or longitude (b) on the 

intercept and analysis of variance shows that there are no significant differences 

due to either of these effects (p=0.21 and 0.54 respectively). Although there 

may be an increase in the spread with increasing spacing (c) there does not seem 

to be any increase or decrease with increasing spacing. Statistical analysis using 

ANOVA showed that there is no difference between the spacing groups (p=0.47) 

There may be a slight increase in the juvenile intercept with increasing 

elevation (d) but analysis showed that this was not significant ( p=0.079). 

Cambial Age (Years)  Cambial Age (Years)  
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Figure  3-37: Intercept coefficients of the juvenile growth section plotted by northing, easting 
spacing and elevation groups 
 

 

Figure  3-38: Slope coefficients of the juvenile growth section plotted by northing, easting 
spacing and elevation groups 
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Although there may be differences in the juvenile growth rate Figure 3-38 with 

latitude (a) (p<0.0001 when tested with ANOVA) there does not seem to be any 

pattern to the differences. Spacing (c), however, does appear to have an effect 

on the juvenile growth rate with the rate increasing as spacing increases, but 

the very irregular distribution of sites between spacing groups means that this 

should be regarded with caution. The juvenile growth rate appears to decrease 

as elevation increases and again analysis of variance shows there are differences 

between the elevation groups (p<0.0001). 

 

Figure  3-39: Residuals for the linear model of rings 1 to 11 
 

When a linear model was fitted to the first 11 rings of all the data together it 

gave a reasonably good fit with an R-squared of 0.68. The residual plots for the 

linear model on the juvenile growth Figure 3-39 show there may be a problem as 

the variance in residuals increases as the fitted values increase. This, however, 

may be due to the fact that growth measurements are starting at zero and the 

variance is increasing as the magnitude of difference increases.  
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Figure  3-40: Observed Vs predicted growth for the juvenile segment of the linear model. Red 
line shows the line of equality 
 

Although the linear model was able to describe the age related trend in growth 

for the juvenile segment reasonably well there is a lot of variation between 

trees when the observed values are plotted against those that the model 

predicts (Figure 3-40). 

3.4.5.2 Linear Model Fitted to Individual Trees - Juvenile Growth 

 

Figure  3-41: Intercept and Slope coefficients fitted by a linear model to growth between 
cambial age 0 to 11 years old for each sample. 
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When a linear model was fitted to the juvenile growth section of each tree 

individually the fitted coefficients, i.e. slope and intercept, showed wide 

variation (Figure 3-41) with the intercept ranging from approx. -16 to 16 mm and 

the slope (i.e. growth rate) ranging from approx. 2mm to 12mm per year. The 

residuals no longer had the same spread with increasing age (Figure 3-42), but it 

appeared that a straight line was being fitted to a curve. This is also evident 

when the observed data is plotted against that predicted by the linear model 

(Figure 3-43) where there is a slight curve from years 1 to 11. 

 

Figure  3-42: Residuals of linear model when fitted to the juvenile growth of each tree with 
LOWESS trend line (red). 
 

 

Figure  3-43: Observed Vs predicted for the juvenile linear model giving an R-squared of 0.99 

Cambial Age (Years)  
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3.4.5.3 Mature Growth Segment 

 

Figure  3-44: Intercept coefficients of the mature growth section plotted by northing, easting 
spacing and elevation groups. 
 

Figure 3-44 shows that spacing (c) may have a positive effect on the mature 

intercept and statistical analysis shows that there are differences between the 

groups (p<0.0001). This makes sense since there is a relationship between the 

mature intercept and the juvenile growth rate on which spacing also looked to 

be having an effect. While statistical analysis also shows that there are 

differences between the groups for latitude and elevation (p<0.0001 for both) 

and also longitude (p=0.01) it is difficult to see any logical pattern for these 

effects. 
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Figure  3-45: Slope coefficients of the mature growth section plotted by northing, easting 
spacing and elevation groups. 
 

The plots in Figure 3-45 show that there does not seem to be any pattern to the 

effect of any of the treatments on the mature growth rate. There may be a 

slight negative effect of elevation but it is difficult to see from these graphs 

alone and statistical analysis using ANOVA shows that there are differences 

between the elevation groups (p<0.001). Northing groups (p=0.039) and spacing 

groups (p<0.0001) are also significantly different but again it doesn‟t look like 

there is any pattern to the differences. The easting groups are not significantly 

different (p=0.59). 
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Figure  3-46: Residuals for the linear model of rings 12 to 25. 

 

Fitting a linear model to growth of rings 12 to 25 gives an R-squared of 0.19 

which may be a reflection of the large amount of variation in the intercept. The 

residuals for the linear model (Figure 3-46) also are showing an increase in 

magnitude with age which may be due to the growth rates increasing at 

different rates. If the intercept is set to zero (by subtracting year 11 growth 

from all subsequent years) the R-squared is improved to 0.47 but further analysis 

of this method (not shown here) showed no improvement in the overall model. 
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Figure  3-47: Observed Vs predicted growth for the mature segment of the linear model. Red 
line shows the line of equality, R squared = 0.1856 

 

As with juvenile growth, in the mature segment the model was able to describe 

the age related trend reasonably well although again there is a lot of variation 

between trees in the observed versus predicted growth (Figure 3-47) tending to 

increase with increasing growth. 

3.4.5.4 Linear Model Fitted to Individual Trees - Mature Growth 

The coefficients derived by fitting the linear model to each individual tree in the 

mature section of growth show that there is considerable variation in both the 

intercept and the growth rate between trees. Figure 3-48 shows that the fitted 

intercepts varied from approx. -20mm to just over 80 mm, and the growth rate 

fitted by the model varied from approx. 0 mm per year to approx. 8 mm per 

year. 
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Figure  3-48: Intercept and Slope coefficients fitted by a linear model to growth between 
cambial age 12 to 25 years old for each sample. 
 

When the model was fitted to each tree individually the residuals (Figure 3-49) 

no longer had the same spread with increasing age that was seen when modelled 

against the global data but, as with the juvenile segment, the residuals may 

indicate that a linear model is being fitted to a curve. This is not as obvious 

when the predicted values are plotted against the observed (Figure 3-50) which 

do not show the same curved pattern as seen in the juvenile section due to the 

small magnitude of the residuals relative to the observed values. 
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Figure  3-49: Residuals for the mature growth section when linear model is fitted to each tree 
individually. 

 

 

Figure  3-50: Observed Vs predicted for the mature linear model fitted to individual trees, 
giving an R-squared of 0.99 

 

 

Cambial Age (Years)  
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When the linear model residuals plotted against the observed values for juvenile 

and mature segments are combined it shows that there may be a discrepancy at 

the region close to the pith (Figure 3-51) where the model is under predicting. 

Many trees had 1-3 narrow rings close to the pith which led to a small negative 

intercept in the juvenile segment, and hence to the residuals shown. 

 

Figure  3-51: Residuals for linear model on the juvenile and mature segments combined 
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3.4.6 Linear Mixed Effects Models 

3.4.6.1 Mixed Effects Model of Juvenile Growth 

Due to the unbalanced nature of this data set and to account for the hierarchical 

experimental design a mixed effects model was used to analyse the variation in 

growth of both the juvenile and mature growth linear sections. In this analysis 

site and tree within site were the random effects: 

Yijk=µ + Si + Tij + Єijk       (Equation 3.19) 

Where Yijk is radial growth, µ is the overall mean, Si is the random effect of site, 

Tij is the random effect of tree within site and Єijk is the residual error which is 

attributed to within tree variation. 

When the mixed effects model was fitted without fixed effects a variance 

components analysis showed that approximately 82% of the variation in growth 

was within tree variation, 7% was between trees in the same site and 10% was 

between sites. Once age has been taken into account the model predicted an 

intercept of -3.2mm and a growth rate of 5.9 mm/year with the within tree 

variation reduced to approximately 24%, just over 44% of the variation being 

between trees at the same site and approx. 31% being between sites. 

However, this is fitted with only the intercept as a random effect and so 

predicts how each site and tree differs from the intercept. Examination of the 

residuals show that this may be not quite right (Figure 3-52). In this case a 

random slope would also be appropriate as this also changes with tree. If the 

mixed effects model is updated from only having a random intercept to also 

having a random slope then the residuals, while still not looking quite right are 

looking better (Figure 3-53). The residuals still indicate that there is a problem 

of trying to fit a straight line to a curve, although the magnitude of the residuals 

is very small compared to the fitted values  
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Figure  3-52: Residuals of mixed effects model on the juvenile segment with random 
intercept only 

 

 

Figure  3-53: Residuals of mixed effects model on the juvenile segment with random 
intercept and slope 
 

The residuals in (Figure 3-53) may indicate a problem concerning measurement 

of the first ring but the magnitude of the residuals is very small relative to the 
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fitted values. When the first ring was removed from the analysis (not shown 

here) the residual plot remained the same, although this did have the effect of 

reducing within tree variation to approx 18%. 

A log likelihood ratio was carried out on the two models and showed the second 

model (random slope and intercept) to be a better model, as it has a lower AIC 

value (25735.28 compared with 32538.77) and the L.Ratio (6811.49) is significant 

(p < 0.0001). 

When observed versus the predicted values are plotted for the mixed effects 

model (Figure 3-54) it indicates that model is predicting very well (R-squared = 

0.99) when fitted against individual trees, though there is the same problem as 

seen before, associated with fitting narrow rings at the pith by the negative 

juvenile intercept, and a slight curvature of the observed values still appears. 

 

Figure  3-54: The relationship between the predicted values and observed growth values for 
the mixed effects model on the juvenile segment of growth. The red line represents the line 
of equality. 
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3.4.6.2 Mixed Effects Model of Mature Growth 

When the mixed effects model was fitted to the whole data set without fixed 

effects, variance components analysis showed that approximately 24% of the 

variation is within tree variation, almost 41% being between trees in the same 

site and approximately 35% of the variation being between sites. Once age has 

been taken into account then the within tree variation was reduced to just over 

5% and most of the variation (51%) was then between trees within the same site. 

This left almost 44% of the variation being between sites. This is important as 

the variables being tested, such as northing, easting, elevation or spacing, are 

based on site data rather than individual tree data.  

When the mixed effect model was run with the intercept as the only random 

effect it gave an intercept of 31.4 mm and a growth rate of 2.9 mm per year. 

However, due to the large amount of variation seen in the growth this model 

may also need a random slope (i.e. slope changes with tree). 

The residuals for the model which includes only a random intercept are shown in 

Figure 3-55 and there would seem to be a curved pattern so this may not be 

quite right. When a random intercept and slope is included in the model the 

residuals look better (Figure 3-56) indicating that including a random slope 

would be correct. 
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Figure  3-55: Residuals of mixed effects model on the mature growth segment with only 
random intercept. 
 

 

Figure  3-56: Residuals of mixed effects model on the mature growth with random intercept 
and slope. 
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The results of log likelihood ratio test of the two models indicates that the 

second model (including random intercept and slope) is a better model i.e. AIC is 

lower (29058 compared with 40333) and the L.Ratio of 11283.2 is significant, so 

in this case adding a random slope produces the best model. 

 

Figure  3-57: Observed Vs Predicted for Mixed Effects Model on the mature segment of 
growth, showing line of equality (red). 
 

When the observed growth is plotted against that predicted by the model 

(Figure 3-57) it shows a very good fit (R-squared =0.996) indicating that when 

fitted against individual trees the mixed effects model is predicting very well. 
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3.4.7 Discussion on Growth Models 

Observation of the growth data obtained from this experiment indicated that 

growth could be described as having two different sections. This pattern was 

implemented in the linear segmented model. Typically there is juvenile phase 

which is characterised by faster growth, followed by mature phase where there 

is a visible decrease in the rate of growth. Statistical analysis of growth showed 

that two distinct phases were indeed present and gave a split point between 

juvenile and mature wood at a mean of between 11 and 12 years. 

Due to the sensitivity of the segmented model to noise it did not always work so 

well when fitted to individual trees, where it was found to give some extremely 

low (ring 2) and extremely high (above ring 20) fitted split points, although when 

examined further some of these extreme points did look to be fitted correctly. 

When fitted to the global data the segmented model gave a good fit similar to 

that found in a previous study by (Vihermaa et al., 2014). It should therefore be 

justifiable to examine juvenile and mature wood using linear mixed effects 

models on each section separately, that is, one linear model describing growth 

of the juvenile wood from cambial age 1 to 11 and a separate linear model 

describing growth from cambial age 12 to 25 years old. Although this model 

implies that radial growth can be split into two separate segments with a 

reasonably abrupt change point between the two, this was not always the case 

and there was usually a more or less gradual change from the juvenile to mature 

growth segments. This being the case then models which describe juvenile and 

mature growth together as a curve might fit the data better.  

Different forms of curves were looked at in this section and the R-squared values 

and residual standard errors show them to be relatively similar when fitted to all 

of the data together. Of the growth models tested, the Hossfeld4 model gave 

the best fit to the data when fitted to individual trees and the sigmoid form of 

this model meant it was able to describe growth even at the area close to the 

pith where most of the other models (including the Exponential and segmented 

models) had a problem. Although the Hossfeld4 model looked to be the best fit 

to this data set the parameters are difficult to understand due to the sigmoid 

nature of the curve and the interaction between the coefficients to describe the 

rate of growth.  
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The Exponential model produced a similar R-squared value (0.69) and residual 

standard error (20 mm) to the Hossfeld4 model when fitted to all of the data and 

this was also very similar to that of the segmented model. Whilst not as good a 

fit to individual trees as the Hossfeld4 model, it was found to be a reasonable fit 

to the data and the effect of each parameter on the curve is easier to 

understand. However this model looked to have a problem with values near the 

pith when fitted to individual trees.  

The segmented model also looked to be a reasonable fit to the data and 

although there may also be a problem at the pith with this model, it was a good 

fit to the mature section of the slope. This model has the advantage of having 

easy to understand parameters. Analysis of the linear phases of the segmented 

models using mixed effects analysis showed that most (44%) of the variation in 

the juvenile growth rate was between trees within the same site with less 

variation between sites (31%). Similarly in the mature growth phase most of the 

variation was between trees in the same site (51%) indicating that it may be 

difficult to determine any site effects on growth and that within site effects may 

be more important. 

All of the other models seemed to have slight problems either with the fit, the 

number of trees able to be fitted to or the predicted values and residuals. Non-

linear residuals were also evident for the linear segmented model and it may 

suggest that there may be a slight curve to the juvenile segment rather than 

being straight, which may be a consequence of (a) the split point between the 

two segments varying between trees and/or (b) fitting a straight line with a 

negative intercept to the short curved section that results from narrow rings 1-3 

(so outside this region the fitted line is curving gently to catch up).  

Many of the models tested had problems with predicting values very close to the 

pith and this may have been due to the growth data not starting from zero. 

When the data was baseline corrected it made little difference and problems 

were still seen at the pith with these models. However examination of juvenile 

and mature growth separately entailed no loss of fit to the experimental data.   
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3.5 Factors Affecting Growth 

As described in Section 3.4 visually there appeared to be two separate segments 

of growth and segmented analysis showed that growth could indeed be described 

as having a split point between the two segments with two distinct periods of 

growth before and after this point. When applied to the full data set this model 

fitted a value of 11.6 years as the split point between the two segments of 

juvenile and mature growth. Making use of the split into two segments, this 

section aims to determine by regression whether the rates of growth of the two 

segments are affected by latitude, longitude, elevation or spacing, considering 

these effects as continuous variables. 

3.5.1 Regression Analysis 

In order to estimate if there is a relationship regression analysis was carried out 

on the coefficients for the juvenile growth rate and mature growth rate. For the 

juvenile section latitude, spacing and elevation all came out as significant with 

latitude and elevation having a negative effect: 

Juvenile Slope = 2.18 - 0.000001*Northing + 2.47*Spacing - 0.00263*Elevation 

When regression analysis was carried out on the mature section of growth only 

spacing was significant: 

Mature Slope = 1.4 + 0.77*Spacing 

However, this does not take into account the nested structure of the data. For 

this mixed effects models are required which allows the model to vary by tree 

within site.  

3.5.2 Mixed Effects Model Structure 

In order to test the significance of treatment, a linear mixed effects (lme) model 

was used with a nested error structure for the random effects where the nested 

structure consisted of site and tree within site as shown in Equation 3.20 

Yijk=µ + b0 + b1 + b2 +b3 + b4 + Sij + Tij + Єijk   (Equation 3.20) 
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where Yijk is radial growth, µ is the overall mean, b0 is cambial age in years, b1 is 

northing based on the UK grid reference, b2 is easting based on the UK grid 

reference, b3 is initial spacing at planting in metres, b4 is the altitude above sea 

level in metres, Si is the random effect of site, Tij is the random effect of tree 

within site and Єijk is the residual error which is attributed to within tree 

variation. 

3.5.3 Factors Affecting Juvenile Growth 

A linear mixed effects model was run on the juvenile growth section, i.e. 

cambial age of 1 to 11 years, with the fixed effects of northing, easting, 

elevation and spacing as continuous variables (Table 3-8). Spacing was found to 

have a significant effect on the growth rate (p=0.001) and both Spacing and 

Elevation significantly affected the intercept.  

Table  3-8: Result of linear mixed effects model testing the effect of northing, easting, 
spacing and elevation on the juvenile segment of growth 
              numDF   denDF      F-value     p-value 

(Intercept)     1     4335        6.8766     0.0088 

Age             1     4335     1123.3033     <.0001 

Northing        1       41        0.4774     0.4935 

Easting         1       41        1.5454     0.2209 

Spacing         1       41        4.7437     0.0352 

Elevation       1       41        5.8151     0.0205 

Age:Northing    1     4335        0.1194     0.7297 

Age:Easting     1     4335        1.5162     0.2183 

Age:Spacing     1     4335       14.1422     0.0002 

Age:Elevation   1     4335        0.4286     0.5127 
 

When the non-significant terms were removed from the equation Spacing 

remained a significant effect on the growth rate and intercept and elevation 

became non-significant (Table 3-9). 

Table  3-9: Result of linear mixed effects model on juvenile growth with the non-significant 
terms of northing and easting removed 
              numDF    denDF      F-value    p-value 

(Intercept)     1      4337        9.0126    0.0027 

Age             1      4337     1152.7629    <.0001 

Spacing         1        43        6.0844    0.0177 

Elevation       1        43        3.7516    0.0593 

Age:Spacing     1      4337       15.4020    0.0001 

Age:Elevation   1      4337        0.2858    0.5929 
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When the non-significant terms (i.e. elevation) were removed again this left the 

model with just cambial age and spacing as the variables. Spacing then had a 

significant effect on the growth rate but not the intercept (Table 3-10) i.e. its 

effect was on the rate of growth but not on the starting point.  

Table  3-10: Summary of linear mixed effects model on juvenile growth with all non-
significant terms removed 
                Value  Std.Error     DF   t-value      p-value 

(Intercept) -4.769604   2.486065   4338  -1.9185353    5.510873e-02 

Age          0.235773   1.438948   4338   0.1638509    8.698562e-01 

Spacing      0.765032   1.255456     44   0.6093660    5.454158e-01 

Age:Spacing  2.874140   0.726250   4338   3.9575072    7.694726e-05 
 

If a linear model is set up with cambial age and spacing as the variables the 

coefficients, in Table 3-11, show that spacing had a positive effect on the rate 

of growth, equal to2.95 mm per m spacing per year (Figure 3-58). 

Table  3-11: Effect of a linear model on the juvenile growth  
            Estimate   Std. Error  t value   Pr(>|t|)     

(Intercept) -3.25027    0.36538    -8.896   <2e-16 *** 

Age          0.06531    0.21527     0.303    0.762     

Age:Spacing  2.95319    0.10605    27.846   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 11.77 on 4771 degrees of freedom 

Multiple R-squared: 0.726,      Adjusted R-squared: 0.7259  

F-statistic:  6322 on 2 and 4771 DF,  p-value: < 2.2e-16 
 

The form of the linear model obtained from these data was: 

RG = 0.06531*x + 2.95319*(x*s)-3.25027    (Equation 3.21) 

Where RG = radial growth, x is the cambial age and s is the initial spacing. 



Chapter 3  132 

 

Figure  3-58: Linear model on juvenile growth showing the effect of  1.5m, 2.0m and 2.5m 
spacing 
 

3.5.3.1 Discussion of factors Affecting Juvenile Wood Growth 

Analysis of these data showed that radial growth from cambial age 1 to 11 could 

be classed as linear and that the initial spacing at which the trees are planted is 

had significant and positive effect on the rate of growth i.e. as initial spacing is 

increased then the rate of growth also increases. When spacing was included in 

the model then the R-squared improved from 0.68 to 0.73. However it is 

important to note the limitations of this model due to the uneven distribution of 

spacings, dominated by 2m (208 of 442). 

When tested, neither Northing, Easting or Elevation were seen to have a 

significant effect on the rate of growth suggesting that at this age competition 

has more of an effect than climate within the climatic range of Great Britain.  

 

  

Cambial Age (Years)  
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3.5.4 Factors Affecting Mature Growth 

A linear mixed effects model was run on the mature growth segment i.e. from 

cambial age 12 to 25 years, with the fixed effects of northing, easting, elevation 

and spacing as continuous variables (Table 3-12). Spacing was found to have a 

significant effect on the overall mean radius between years 12 and 25, with all 

other effects being non-significant (p-values for the interaction are all greater 

than 0.05).  

Table  3-12: ANOVA of lme model testing the effect of northing, easting, spacing and 
elevation on the mature segment of growth 
              numDF denDF    F-value   p-value 

(Intercept)     1    5591    829.2073  <.0001 

Age             1    5591    640.1380  <.0001 

Northing        1      41      0.0988  0.7548 

Easting         1      41      2.2660  0.1399 

Spacing         1      41     17.2725  0.0002 

Elevation       1      41      0.0794  0.7796 

Age:Northing    1    5591      0.0250  0.8744 

Age:Easting     1    5591      0.2907  0.5898 

Age:Spacing     1    5591      2.2490  0.1338 

Age:Elevation   1    5591      0.4524  0.5012 
 

In order to test if spacing was significant, the non-significant terms were 

removed and this confirmed that spacing had a significant effect on the overall 

mean radius, due to the earlier effect on (juvenile) growth but had no 

significant effect on the growth rate during the mature segment (Table 3-13). 

Table  3-13: ANOVA of lme model on mature growth with the non-significant terms of 
northing, easting and elevation removed 
            numDF   denDF   F-value    p-value 

(Intercept)     1   5594   856.4042     <.0001 

Age             1   5594   679.4354     <.0001 

Spacing         1     44    19.3883     0.0001 

Age:Spacing     1   5594     2.6711     0.1022 
 

As before, the interaction is non-significant and so can be removed from the 

model. A test of this model shows that on its own spacing still had a significant 

effect on the intercept (Table 3-14). 

Table  3-14: ANOVA of lme model on mature growth with all non-significant terms removed. 
            numDF   denDF    F-value   p-value 

(Intercept)     1    5595   856.6950   <.0001 

Age             1    5595   654.9129   <.0001 

Spacing         1      44    19.3904    1e-04 
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This shows that Spacing has a significant effect on the intercept but not on the 

growth rate, and none of the other variables are having an effect. This effect on 

the intercept would be expected as the growth rate of the juvenile wood was 

affected by spacing therefore would affect the starting point for mature growth. 

Again it is important to point out the limitations of this analysis due to the lack 

of replicates at spacing‟s other than 2m.  

Also, the intercepts are different, as we would expect, but the growth rate of 

the radius stays similar throughout, i.e. if it was high at year 12 then it is likely 

to be high at year 25. The correlation between radii at different ages can be 

seen in Figure 3-59 which compares radius at year 12 to radius at the first ring 

and then at year 25, 30 and 35. This shows that there is a good correlation 

between the size of the radius at year 12 and later years. This was confirmed by 

the results of a Pearson correlation test (Table 3-15) which shows correlation of 

0.86, 0.81 and 0.78 between radius at year 12 and radius at years 25, 30 and 35 

respectively. This observation does not necessarily imply that juvenile and 

mature growth were correlated, but only that by year 25 juvenile growth still 

made up a sufficient proportion of the radius to influence the total radius 

reached. Table 3-15 also shows that there is little correlation between year 1 

and later years with a Pearson‟s correlation of 0.21 between year 1 and year 35 

and 0.45 for year 1 and 12.  

 

Figure  3-59: Scatterplot showing the correlation between accumulated growth at ring 12 
versus accumulated growth at rings 1, 25, 30 and 35.  
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Table  3-15: Pearson correlation coefficients between growth at ring numbers 1, 12, 25, 30 
and 35 which all had significant p-values (<0.0001) 

Ring 
No. 

1 12 25 30 

12 0.445    

25 0.361 0.863   

30 0.321 0.810 0.985  

35 0.212 0.782 0.955 0.989 

 

Analysis of the linear model shows that when spacing was included in the model 

the R-squared value increased from 0.19 to 0.31. 

3.5.5 Effect on Mature Growth When Spacing is taken into 
Account 

In Section 3.5.3 on juvenile wood growth it was shown that spacing was the 

dominant factor affecting the rate of growth (i.e. the slope) up to year 12. This 

therefore would have an effect on the intercept of the mature growth rate, as 

confirmed by the above models. Because of the dominating effect of spacing it is 

difficult to see any effect of the environment on growth. Taking this a step 

further, to investigate whether Northing, Easting and Elevation were having a 

direct effect the data were separated to include only trees spaced at 2m as this 

was the group with the largest number of replicates (208 trees out of 442) 

3.5.5.1 Effect of latitude, Longitude and Elevation on mature Wood Growth 

The same form of linear mixed effects model as Equation 3.20 was used with the 

spacing term removed as shown in Equation 3.22 

Yijk=µ + b0 + b1 + b2 + b4 + Tij + Tij + Єijk    (Equation 3.22) 

where Yijk is radial growth, µ is the overall mean, b0 is cambial age in years, b1 is 

northing based on the UK grid reference, b2 is easting based on the UK grid 

reference, b4 is the altitude above sea level in metres, Si is the random effect of 

site, Tij is the random effect of tree within site and Єijk is the residual error 

which is attributed to within tree variation. 
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Analysis of variance on the model shows that easting, northing and elevation 

(Table 3-16) had no significant effect on the mature growth rate when spacing 

was equal, with p-values for all effects being greater than 0.05. 

Table  3-16: Anova of lme model on mature growth at 2m initial spacing showing no 
significant effects 
            numDF    denDF    F-value      p-value 

(Intercept)     1     2610    178.7695     <.0001 

Age             1     2610    342.9810     <.0001 

Easting         1       18      3.1420     0.0932 

Northing        1       18      0.0079     0.9304 

Elevation       1       18      0.6803     0.4203 

Age:Easting     1     2610      0.1424     0.7060 

Age:Northing    1     2610      2.2215     0.1362 

Age:Elevation   1     2610      2.2624     0.1327 
 

As shown earlier in Section 3.5.3 spacing had the biggest effect on the intercept 

of the mature growth rate. This was to be expected as it also had the biggest 

effect on the rate of the juvenile growth. The intercept coefficients of the 

mature growth are shown in Figure 3-60 and like the growth rate there is so 

much variation within each level of northing, easting and elevation that it is very 

difficult to see any effect. 

 

Figure  3-60: The effect of Northing (A), Easting (B) and Elevation (C) on the intercept 
coefficients when fitted to each tree 
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Figure  3-61: The effect of Northing (A), Easting (B) and Elevation (C) on the slope 
coefficients when fitted to each tree 
 

Figure 3-61 shows visually that there is as much variation within each level of 

northing, easting and elevation as between the levels which make it very 

difficult to see any effect of these factors and so it is not surprising that they 

are not significant in mixed effect model analysis.  

3.5.5.2 Effect of Climate on Mature Wood Growth 

Section 3.5.5.1 looked at the geographical variables of Northing, Easting and 

Elevation to see if these had a direct effect on mature growth once spacing had 

been taken into account, and the analysis showed that this was not the case. It 

might be suggested that northing, easting and elevation could be used as proxies 

for temperature and rainfall. Rainfall and temperature variation are not equally 

distributed throughout the year and northing confounds temperature with day 

length.  

Using ESC data (as described in Chapter 2) this section will now look at climate 

data specifically to see if they have any effect on mature growth. 
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Within the ESC data summer rainfall and winter rainfall are shown to be highly 

correlated at each site (Figure 3-62) and have been combined to give a total 

annual rainfall. As well as rainfall and accumulated temperature (AT5) other 

variables looked at include moisture deficit (MD), continentality (Cont), DAMS (a 

measure of windiness), soil moisture regime (smr) and soil nutrient regime (snr). 

 

Figure  3-62: Correlation between winter and summer rainfall taken from ESC Data 

 

Using the same form of linear mixed effect model as in the previous sections 

showed that if all the ESC Data are included in the model (Table 3-17), then 

there are no climatic effects which are significant. This agrees with the previous 

section (3.5.5.1) which showed that there is so much variation on tree growth 

within a site that it is very difficult to see any site effect. As well as this, since 

most of the variance of the mature segment is in the intercept, it is essentially 

the effects of climate on juvenile growth that are being tested here. 
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Table  3-17: Summary of mixed effects model which includes accumulated temperature, 
Moisture Deficit, Summer rainfall, continentality, DAMS, soil moisture regime and soil 
nitrogen regime 
                 Value    Std.Error   DF    t-value    p-value 

(Intercept)      21.5027   34.0871   2606    0.6308    0.5282 

Age              -3.7851    2.7667   2606   -1.3681    0.1714 

AT5               0.0160    0.0203     14    0.7905    0.4424 

MD               -0.1364    0.2042     14   -0.6684    0.5147 

AnnualRainfal     0.0061    0.0067     14    0.9145    0.3759 

Cont              0.8535    1.9492     14    0.4379    0.6681 

DAMS             -0.2759    1.3311     14   -0.2073    0.8387 

smr              -2.6686    2.1898     14   -1.2187    0.2431 

snr               0.9425    3.4057     14    0.2767    0.7860 

Age:AT5          -0.0016    0.0016   2606   -1.0026    0.3161 

Age:MD            0.0290    0.0166   2606    1.7505    0.0801 

Age:AnnualRainfal 0.0009    0.0005   2606    1.6335    0.1024 

Age:Cont          0.1021    0.1571   2606    0.6498    0.5158 

Age:DAMS          0.1458    0.1078   2606    1.3524    0.1763 

Age:smr           0.2898    0.1776   2606    1.6318    0.1028 

Age:snr           0.4663    0.2757   2606    1.6913    0.0909 
 

3.5.5.3 Discussion of Mature Growth 

As with the juvenile growth, mature growth from ring 12 to 25 was seen to 

follow a linear pattern and mixed effects models showed that spacing was having 

a significant positive effect on the overall mean but not on the rate of growth. 

None of the other variables (Northing, Easting or Elevation) had a significant 

effect on the growth rate or the overall mean when included in the same model 

as spacing. When spacing was included in the linear model the R–squared was 

increased from 0.19 to 0.31 showing that more of the variation is described 

when spacing is added to the model.  

To test if any variables were having an effect once spacing had been accounted 

for the model was run only on trees at those sites where spacing was 2m. Again 

this showed that none of the variables of Northing, Easting or Elevation were 

having a significant effect. A 2010 study on Sitka spruce in Wales (Murphy and 

Pommerening, 2010) found that using a modified version of the Gompertz 

function (Gompertz, 1825), soil moisture regime, DAMS and soil nutrient regime 

had the strongest relationship to growth out of the environmental factors 

measured though the R-squared values were still not significant. Similarly here, 

when the ESC climatic data was run in the model no variables were shown as 

significant.  

The models showed that growth rates of the mature segments varied hugely 

between trees and most of the variation in growth was between trees within the 
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same sites (51%) which made it difficult to see any difference in growth rates 

between sites. This shows that the local growing environment and genotype play 

a huge role in tree growth. 

This section has shown that tree growth can be measured in two separate linear 

segments. The first segment of juvenile growth takes place from the cambial age 

of 0 to approximately 11 years old and the second segment of mature growth 

from approximately ring 12 onwards. Models of juvenile growth showed that 

initial spacing had the biggest effect on the rate of growth and this translated to 

having the biggest effect on the overall mean of the mature phase. High 

correlations between the radius at year 12 and in subsequent years suggest that 

(if there is no thinning) if a tree is larger at cambial age 12 then it is highly likely 

to be larger at year 25 or 35. Therefore initial spacing at planting is the biggest 

effect on the amount of growth at later years. 
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4 Modelling Ring Density of Sitka Spruce 

4.1 Introduction 

Using the data collected from the sample cores taken as part of the study 

described in the methods section of Chapter 2, the present chapter describes 

the variation in density in radial profiles of Sitka spruce across the full 

latitudinal and longitudinal range in which Sitka spruce grows in Great Britain. 

The radial trend in density was examined to investigate how this compares with 

previous studies on Sitka spruce. Various empirical models were examined to 

investigate which were able to fit to this data set and used to investigate 

variation in density based on site and climate factors.  

4.1.1 Definitions 

In this section, unless otherwise stated, when density is discussed it refers to the 

average ring density measured as kilograms of mass per cubic metre (kg m-3) at 

4% moisture content. 

Ring number is counted from the pith and is a measure of cambial age in years. 

For the purposes of this chapter the terms “Ring Number” “Age” and “Cambial 

Age” are interchangeable. 

4.1.2 Outline 

The core samples used in this section were taken from 32 sites which covered a 

range from Sutherland in the north of Scotland down to Devon in the south west 

of England, as described in the method section of Chapter 2. As well as these, 

sample cores from a further 15 sites were selected from the original resource 

evaluation study to cover a larger range of the UK including north east Scotland, 

south east and south west Scotland and north east England. At each of the 47 

sites it was intended to take 10 core samples but due to damage when taking 

and preparing the cores this number varied between 8 and 11. Added to this, 

during preparation some samples were found to have knots which would affect 

the density readings and so these cores were removed. The number of cores per 

site used in the analysis is shown in Table 4-1.   
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Table  4-1: The number of samples per site measured for density 

Site 23 54 55 63 64 72 80 86 155 226 

No.Samples 10 10 9 10 10 10 10 10 10 10 

  
         

  

Site 243 278 279 280 281 303 339 461 1211 1251 

No.Samples 10 10 10 10 10 9 9 9 9 8 

  
         

  

Site 1390 1600 2013 2042 2142 2185 2191 2304 2436 2559 

No.Samples 10 9 10 11 8 9 10 9 10 8 

  
         

  

Site 2723 2789 3237 3323 4301 5234 5565 5945 6619 6630 

No.Samples 11 9 8 10 10 9 9 10 10 10 

  
         

  

Site 6874 7643 9004 9008 EXM7 FERN QUA6 
  

  

No.Samples 10 10 10 10 8 10 10       

 

Each core was split at the pith and analysis was made from pith to bark on the 

northern side of each core to give a radial profile. 

 Ring density data was produced using the ITRAX densitometer to measure 

density in 50 µm steps and by using Windendro (see methods in Chapter 2) 

software to identify ring boundaries and average the density values by ring. 

4.1.3 Aim 

The aim of this section is to investigate whether the radial profile of ring density 

can be modelled using a segmented linear approach and to compare this to other 

empirical models which describe the variation of density with age within the 

sampled trees. Existing density models are tested using a more complete dataset 

than has hitherto been available, so that such models can be used for timber 

quality modelling across Britain. By fitting a split point and linear models in the 

juvenile and mature wood phases of density, this section then aims to 

investigate if site characteristics such as elevation, latitude, longitude and 

initial spacing have any influence on spruce wood density.  
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4.2 Radial Variation in Density 

 

Figure  4-1: Radial profile of mean ring density plotted by cambial age with a LOWESS trend 
line 

 

The radial profile in density (Figure 4-1) fits the same basic trend as we would 

expect to see in Sitka spruce (Brazier, 1970). This trend, which is also seen in 

other spruce species such as Norway spruce (Lindstrom, 1996) and Black spruce 

(Alteryrac et al., 2006A) as well as Douglas fir (Kennedy, 1995), shows density 

that is high at the pith (juvenile wood) and decreases for several rings before 

increasing again in the mature wood. The transition zone between the juvenile 

and mature phases occurs approximately between rings 7 to 12. This generally 

conforms to the accepted boundary between the juvenile core and mature wood 

(Cameron et al., 2005, Brazier and Mobbs, 1993) although the age at which this 

boundary varies depending on the parameter being measured (Mansfield et al., 

2009, Alteyrac et al., 2006B). Although previous studies have shown that the 

Sitka spruce density profile can be fitted used curved models (Gardiner et al., 

2011, Lindstrom, 2000, McLean, 2008) the LOWESS trend line in Figure 4-1 

suggests that the trend could perhaps also be described as having two segments 

Cambial Age (Years)  
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and so it is of interest to investigate whether a simpler linear segmented model 

could fit the data and how this compares with previous models. 

 
Figure  4-2: Histogram of mean ring density 

Investigation by Vihermaa (2010) showed that the method of analysis used in this 

experiment results in samples with 4% moisture content and the analysis carried 

out here was based on the 4% moisture content values. The density measured in 

this data set ranged from a minimum of 248 kg m-3 to 883 kg m-3 with a mean 

value of 461 kg m-3 which is similar to that found by McLean (2008) (456 kg m-3) 

and Vihermaa (2010) (447 kg m-3) in previous studies on Sitka spruce using the 

same method. The overall range is fairly evenly distributed with perhaps a slight 

skew towards the higher end of the range as shown in Figure 4-2. 

Figure 4-3 shows the radial pattern of density when split by the different sites 

that were sampled. This shows that while most sites follow a similar trend to the 

overall trend there are differences at certain sites with some, e.g. sites 281 and 

6874, having a higher than average density, and others following a slightly 

different trend. For example whereas sites EXM7, 261 and 1251 have higher 

density and a steeper decline in the juvenile wood than most other sites, other 

sites such as 5234 may have more of an increase in the mature wood. This shows 

that there may be some site factors at work which are influencing the density. 



   

Figure  4-3: Observed density of 
each tree plotted by site. Showing 
the LOWESS trend by site (red 
line) compared to the LOWESS 
trend for the full data set (blue 
line) 

Cambial Age (Years)  
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Table  4-2: The number of samples and sites for each group when measured for density. 
Northing groups are based on the 100km OS grid square, where 0 is south and 9 is furthest 
north. Easting is also based on the 100km OS grid square with 1 being west and 4 being 
east. Spacing is based on the initial spacing in metres and Elevation is grouped in 50 metre 
increments from 50 to 500 metres above sea level. A total of 47 sites were tested covering a 
combination of these factors. 

Northing Group 0 1 2 3 4 5 6 7 8 9 

No.Samples 10 54 46 38 50 99 59 29 26 40 

No.Sites 1 6 5 4 5 10 6 3 3 4 

  
         

  

Easting Group 1 2 3 4 
     

  

No.Samples 39 218 154 40 
     

  

No.Sites 4 23 16 4 
     

  

  
         

  

Spacing Group 1.5 1.6 1.7 1.8 1.9 2 2.1 2.4 2.5   

No.Samples 9 18 57 60 20 218 10 20 39   

No.Sites 1 2 6 6 2 23 1 2 4   

  
         

  

Elevation Group 1 2 3 4 5 6 7 8 9   

No.Samples 19 47 77 48 79 79 27 38 37   

No.Sites 2 5 8 5 8 8 3 4 4   
 

In order to visualise how density may be affected by site factors, latitude 

(Northing), longitude (Easting), spacing and Elevation were grouped as described 

in Chapter 2. The number of samples and sites per group are shown in Table 4-2 

and the spread of density values in each group is plotted in Figure 4-4. The 

spread of values is large within each group due to the fact that all of the density 

measurements for each radius are included. However, the overall mean values 

may give an indication that there may be differences between these groups. This 

is especially the case with Easting where there seems to be a decrease in mean 

density from west to east. However to see if there is any real effect the trend in 

the data will first have to be modelled and then the effect of site or 

geographical location investigated.   
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Figure  4-4: Boxplot showing the spread of density when grouped by longitude, latitude, 
spacing and altitude 
 

4.3 Fitting Models to Ring Density 

The aim of this section is to test a selection of published models and to build a 

final model which can not only be used to investigate the variation in radial 

density in Sitka spruce throughout its growing range in Great Britain, but also to 

investigate the effect of site characteristics on the density of the wood. 

In order to model ring density a number of statistical models were explored to 

investigate how well they describe the trend in the data. The forms of these 

models are shown below. They include a density model for British grown Sitka 

spruce developed by Gardiner et al. (2011) which was based on earlier models to 

describe the variation in density of Norway spruce in France (Leban et al., 

1997). Also explored was a model derived from Lindstrom (2000) who modelled 

density in Swedish grown Norway spruce. McLean (2008) found this model to be a 

good fit to Sitka spruce observed values. However both the Gardiner and 

Lindstrom models require ring width as a parameter along with ring number so in 

this study an exponential model based on cambial age alone was explored along 

with a segmented linear model to investigate how these compare with the 

previous published models.  
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1. Segmented Linear Model – Using the segmented package in R (Muggeo, 

2008) this model investigates whether there are two separate linear 

sections to the density radial profile, with a split point between the two 

sections, using a Davies test (Davies, 1987) for a significant change in 

gradient. Each linear section follows the form of a linear equation where 

there is a slope parameter and an intercept parameter. For both the 

juvenile and mature segments the intercept is interpreted as the value at 

year 0: 

Juvenile Phase:  ρ = a1*CA + b1 for   CA ≤ δ  (Equation 4.1) 

Mature Phase: ρ = a2*CA + b2 for   CA > δ  (Equation 4.2) 

Where is ρ the radial profile of ring density, a1 and a2 are the rate of the 

slope, CA is the cambial age in years (i.e. the ring number from the pith), 

b1 and b2 are the intercept of the respective sections and δ is the break 

point between the two slopes derived from the segmented analysis.  

2. Gardiner3 Model: 

ρ =c1(1+c2*exp CA/c3)(1+c4*RW)  (Equation 4.3) 

Where ρ is the radial profile of density, CA is cambial age in years, RW is 

ring width in mm and c1, c2, c3 and c4 are parameters estimated from the 

data fitted in R using non linear least squares regression (nls function) to 

find the best fit curve. 

3. Lindstrom Model:  

ρ = d1*log(RW)+d2*(1/CA)+d3  (Equation 4.4) 

Where ρ is the radial profile of density, CA is cambial age in years, RW is 

ring width in mm and d1, d2 and d3 are parameters estimated from the 

data fitted in R using non-linear least squares regression (nls function) to 

find the best fit curve. 
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4.  Exponential Model: 

ρ = exp(z1/CA) + z2   (Equation 4.5) 

Where CA is the cambial age in years, z1 the rate value, z2 is the 

asymptote parameter estimated from the data and fitted in R using non-

linear least squares regression (nls function) to find the best fit curve. 

4.3.1 Density Model Parameters 

The fitted models are shown against the observed data in Figure 4-5 which shows 

that visually the exponential model, which is based on age alone, is the worst 

fitting as it does not pick up the increase in density from approximately ring 7 

onwards. This is reflected in it having the lowest R-squared value of the models 

tested (Table 4-3). Both the Gardiner3 and Lindstrom models show a reasonably 

good fit to the data with R-squared of 0.44 and 0.48 respectively and similar 

residual standard errors (64.1 kg m-3 and 61.6 kg m-3). The R-squared for the 

segmented model (0.14) was lower than the two published models but higher 

than the Exponential model. Its residual standard error of 79.2 kg m-3 was the 

highest of the models tested but since this model has easier to understand 

parameters and uses cambial age alone it may be a useful tool. 

Table  4-3: Parameter estimates for the density models along with Standard Errors, residual 
standard error and R-squared values. 

Model 
Parameter 

Estimate Std Error Residual 
Std Error 

R-
Squared 

Segmented - Split point 7.4 years   

a1 -24.9 0.89 79.15 0.14 

b1 586.9 4.3   

a2 3.9 0.17   

b2 374.8    

Gardiner3     

c1 507.2 1.27 64.08 0.44 

c2 0.645 0.0171   

c3 -3.85 0.142   

c4 -0.0412 0.000437   

Lindstrom     

d1 -90.0 0.97 61.55 0.48 

d2 384.57 5.88   

d3 514.12 1.31   

Exponential     

z1 9.48 0.069 21.78 0.07 

z2 439.5 0.818   
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Figure  4-5: The form of the density models plotted along with the mean density for each 
ring. 

 

As stated previously, the Gardiner and Lindstrom models both require ring width 

as a parameter, however this may not always be known and so these models of 

density would also have to include a tree growth model. This has the problem of 

compounding any errors. In this study ring width is known.  Figure 4-6 shows that 

it is almost a mirror image of the density profile and examination shows that 

density and ring width are significantly (negatively) correlated (Pearson 

Correlation Coefficient -0.473). This agrees with previous studies which have 

shown wider rings to be accompanied by lower ring density (Petty et al., 1990, 

Gardiner et al., 2011, Kennedy et al., 2013) and may be due to the higher 

percentage of less dense early wood (Rathgeber et al., 2006) as the amount of 

latewood is constant irrespective of ring width (Moore, 2011), however the full 

range of circumstances where this relationship holds has not yet been defined. 

In this dataset the correlation between density and percent of a ring that is 

early wood is significant (Pearson Correlation Coefficient -0.362) and shows a 

similar relationship in both juvenile and mature wood (Figure 4-7). 

Cambial Age (Years)  
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Figure  4-6: Ring width by cambial age (as measured by ring number from the pith) with the 
mean value for each ring plotted 
 

 

Figure  4-7: The relationship between density and early wood percentage. Pearson 
correlation coefficient for juvenile wood (i.e. less than or equal to ring 7) is -0.597 and for 
mature wood (i.e. greater than ring 7) is -0.671. 

When density is measured there is a clear change point at around cambial age 7 

where density starts to increase. Here this is used as the boundary between 

juvenile and mature wood with regards to density. Although there is an overall 

Cambial Age (Years)  
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relationship between density and ring width this differs between the juvenile (<= 

ring 7) and mature wood (> ring 7) (Figure 4-8) and when these are looked at 

separately the density has a higher correlation with ring width (Pearson 

correlation coefficient of -0.597 and -0.671 respectively) than when they are 

taken together. This changing relationship highlights the difficulty in using ring 

width as a model parameter and it may be more suitable to use two models; one 

for below or equal to cambial age 7 and one for over cambial age 7. However for 

this data set ring width was measured as part of the density analysis so this can 

be used to parameterize the existing models to investigate which gives the best 

fit.  

 

Figure  4-8: Relationship between density and ring width showing these are different 
between juvenile and mature wood 

 

 

4.3.2 Gardiner3 Model 

Although the fitted lines in Figure 4-5 may indicate that density can be modelled 

as two separate segments with a specific change point between the two phases, 
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it is more commonly thought that the change between the juvenile and mature 

phases is a gradual process so that models which fit a curve to the whole data 

set may be more appropriate. Therefore as well as looking at juvenile and 

mature wood as two separate segments this section looks at a selection of 

different curves, as described in section 4.3, to see which function fits the data 

the best and how these compare to a segmented linear model. 

4.3.2.1 Update to Existing Density Model Parameters 

The fit of the Gardiner3 model to the current data set was first investigated 

using the parameters estimated by Gardiner et al. (2011) These were originally 

derived from two sites (Clocaenog in North Wales and Kershope in North 

England). That study also tested two further models (here called Gardiner1 and 

Gardiner2) from which the final model (Gardiner3) was derived.  

The measure of density used by Gardiner et al. (2011) was basic specific gravity 

which is dry weight/green volume/(density of water at 40 C). In order to 

compare data the density data measured in this study at 4% moisture content 

first had to be converted to basic specific gravity using the following equation: 

Equation 4.6: 

SGB = (SGm/(1+MC/100))/(1+0.265*((30-MC)/30)*SG/(1+MC/100)) 

Where MC is moisture content percent of the sample, SGB is basic specific 

gravity, SGm is density measured by the ITRAX in kg/m3 divided by 103 to give 

specific gravity (ratio of wood density to the density of pure water at 40C) which 

is dimensionless. The relationship between SGB and SGm calculated for this data 

set is shown in Figure 4-9. 
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Figure  4-9: Relationship between specific gravity measured as calculated from the ITRAX 
density data and basic specific gravity. The dashed line shows the line of equality. 

 

Once the data have been converted to basic specific gravity the original 

parameters described by Gardiner et al. (2011) are plotted against the data in 

Figure 4-10 using the mean ring width for each ring as the ring width parameter. 

This shows that the original parameters still a very good fit to this data set and 

are very closely matched to the parameters derived in this study, especially with 

the Gardiner3 model. The new parameters which were derived for the three 

density models using the data collected from 47 sites in this study are shown in 

Table 4-4 using the same scale as that used in Gardiner et al. (2011). 
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Figure  4-10: Fitted lines for the three models from Gardiner et al. (2011), using the 
parameters which were derived from the original data and the parameters derived from the 
data in this study converted at 4% moisture content. 
 

Table  4-4: Parameter estimates for the density models from Gardiner et al. (2011) along with 
Standard Errors, residual standard error and R-squared values. Where rd is ring density, rn 
is ring number from the pith, rw is the ring width of each ring and ai, bi and ci are the 
parameters estimated from the data when converted to basic specific gravity. 

Model Estimate Std Error 
Residual 
Std Error 

R-Squared 

Gardiner1: 
rd=exp(a1/rn)*(a2+a3/rw) 

a1 0.5982 0.01228 0.05383 0.3607 

a2 0.3252 0.00095   

a3 0.1049 0.00148   

Gardiner2: 
rd=b1*(1+b2*exp(rn/b3))*(1+b4*rn+b5*rw) 

b1 0.5344 0.003196 0.05027 0.4365 

b2 0.0262 0.002883   

b3 6.7633 0.119118   

b4 -0.0218 0.000528   

b5 -0.0299 0.000471   

Gardiner3: 
rd=c1*(1+c2*exp(rn/c3))*(1+c5*rw) 

c1 0.4385 0.001000 0.05026 0.4374 

c2 0.5748 0.015079   

c3 -3.9136 0.143626   

c5 -0.0383 0.000410   

Cambial Age (Years)  
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4.3.2.2 Fitting Gardiner3 Model 

Although in the previous section density was converted to basic specific gravity, 

in order to be comparable to previous work done on Sitka spruce in Scotland 

(McLean, 2008, Vihermaa, 2010) all further analysis was carried out using the 

density values as measured by the ITRAX densitometer at 4% moisture content in 

kg m-3.  

When the new parameters, estimated from the current data set are used the 

Gardiner3 model performs reasonably well with an R-squared value of 0.44 

although there does seem to be a large spread in the values predicted by the 

model compared with the observed values and there may be a suggestion that it 

is over predicting at lower values and under predicting at higher values 

(Figure 4-11). There also seems to be a discontinuity at the predicted value of 

approx. 500 kg m -3, although the reasons for this division are unclear. It may 

represent the predicted density at the upper age limit modelled. The residuals 

when plotted against cambial age (Figure 4-12) are evenly distributed with no 

major trend observed though there may be a tendency for the model to under 

predict around the break in the slope. When the residuals were plotted against 

the observed values (Figure 4-13) there was a strong trend of over predicting at 

lower density values and under predicting at higher values. When plotted against 

ring width (Figure 4-14) there again was a tendency to under predict at higher 

ring width values though this may be influenced by the lack of data points at 

higher ring widths. 
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Figure  4-11: Observed Vs Predicted for the Gardiner3 model on all of the density data. Red 
line shows the line of equality. 

 

 

Figure  4-12: Residuals for the Gardiner3 model plotted against cambial age on all of the 
density data. Red line shows the LOWESS trend line. 

Cambial Age (Years)  
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Figure  4-13: Residuals for the Gardiner3 model plotted against observed values on all of the 
density data. Red line shows the LOWESS trend line. 

 

 

Figure  4-14: Residuals for the Gardiner3 model plotted against ring width on all of the 
density data. Red line shows the LOWESS trend line. 
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4.3.3 Lindstrom Model 

The Lindstrom model had a slightly higher R-squared (0.48) and slightly lower 

residual standard error (61.55 kg m-3) than the Gardiner3 model and a plot of the 

observed density versus those fitted by the model (Figure 4-15) shows that while 

there may be a more even spread it may still be over predicting at lower values. 

Plotting the residuals by cambial age (Figure 4-16) shows a relatively even 

distribution and again there may be a tendency for this model to under predict 

around the break in the slope. When the residuals were plotted against the 

observed values (Figure 4-17) there was a strong trend of over predicting at 

lower density values and under predicting at higher values. When plotted against 

ring width (Figure 4-18) there again was a tendency to over predict at higher 

ring width values though again this may be influenced by the lack of data points 

at higher ring widths. 

 

Figure  4-15: Observed Vs Predicted for the Lindstrom model on all of the density data. Red 
line shows the line of equality. 
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Figure  4-16: Residuals for the Lindstrom model plotted against cambial age on all of the 
density data. Red line shows the LOWESS trend line. 

 

 

Figure  4-17: Residuals for the Lindstrom model plotted against the observed values on all of 
the density data. Red line shows the LOWESS trend line. 

 

Cambial Age (Years)  
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Figure  4-18: Residuals for the Lindstrom model plotted against ring width on all of the 
density data. Red line shows the LOWESS trend line. 

 

4.3.4 Exponential Model 

The exponential model was seen to be the worst fitting of the models tested and 

analysis showed it had the lowest R-Squared out of those tested (Table 4-3). It 

also seems to have problems predicting density from cambial age (Figure 4-19) 

with a division between the prediction for ring number 2 and other rings at the 

asymptote. Although the residuals (Figure 4-20) are fairly evenly distributed with 

age the model over predicts between approximately rings 8 and 18, suggesting 

there may be a problem fitting this model to the data. 
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Figure  4-19: Observed Vs Predicted for the Exponential model on all of the density data. Red 
line shows the line of equality. 

 

 

Figure  4-20: Residuals for the Exponential model on all of the density data. Red line shows 
the LOWESS trend line. 

 

Cambial Age (Years)  
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4.3.5 Linear Segmented Model – Split Point between Juvenile and 
Mature Phase of Density 

In order to determine if there are two separate linear segments in the density 

radial profile a Davies‟ test was carried out on the entire data set, indicating 

that there was a significant change in the slope (p-value < 0.0001). Using the 

Segmented package in R (Muggeo, 2008) a regression model with segmented 

relationships was used to determine the parameters of the different slope 

segments (i.e. slope, intercept and split point). The result of this test gave an 

estimated mean split point between the juvenile and mature segments of the 

radial profile of density at 7.4 years with a standard error of 0.89 and a residual 

standard error of 79.15 kg m-3. 

4.3.5.1 Fitting the Density Profile Split to Individual Trees 

A segmented model seems to work well when fitted against the global data and 

this model can also be fitted against individual trees to give the density rate of 

change, intercepts and split point for each. When performing the Davies Test for 

each tree individually the algorithm looks for a significant change in slope. If the 

Davies Test is not significant then only one slope was calculated for that tree 

i.e. with no break point, for example sample 1600-22-A in Figure 4-21. This plot 

also shows the fluctuation in density in each tree and the difficulty faced when 

trying to fit a split point to each tree. 
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Figure  4-21: Example of the observed density profiles for a selection of trees with the split 
point fitted by the segmented model 

 

While the two segment model gives a reasonable fit when modelled against the 

global data, the sensitivity when it is modelled against individual trees produced 

some very low estimates (<5 years) as well as some high estimates (>20 years) 

(Figure 4-22) indicating that this method of calculating the split point on 

individual trees may be too sensitive to local fluctuations in density.  

Cambial Age (Years)  
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Figure  4-22: Histogram showing the distribution of split points for the density segmented 
model. The minimum split point was 3.0 years, the maximum was 23.9 years and the mean 
was 8.7 years. 
 

On this data set the segmented model was unable to fit to 7 (1.5%) of the 451 

trees (Figure 4-23). Of the remaining 444 trees the Davies Test found no 

significant change of slope and therefore no split point in 84 of the trees. 

 

Figure  4-23: The density profile of the 7 trees that the segmented model could not fit 
 

Cambial Age (Years)  
Cambial Age (Years)  

Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  
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When the observed values are plotted against the predicted values for individual 

trees (Figure 4-24) there is a relatively good fit and an R-Squared value of 0.83. 

 

Figure  4-24: Observed Vs Predicted for the density segmented model when fitted to 
individual trees. R-squared = 0.83 

 

4.3.5.2 Factors Affecting the Split Point 

In order to visualise if there is a site or climate effect, the position of the split 

point fitted to individual trees was compared with the site characteristics and 

with the climate parameters for each site (Figure 4-25). Analysis showed that 

the only significant correlation was with rainfall (Pearson correlation coefficient 

-0.117) with the rest being non-significant. However it is difficult to draw any 

conclusions from this since the correlation coefficient is so low as well as due to 

the difficulty of inter correlations. Since a number of the site variables are 

correlated with the climate variables e.g. elevation with moisture deficit 

(Pearson correlation coefficient -0.703) and a number of the climate variables 

are correlated with each other, e.g. accumulated temperature with moisture 

deficit (Pearson correlation coefficient 0.788), this could cause problems with 

any regression analysis. As well as this the sensitivity of the segmented model to 

local changes in the density profile means it is difficult to know if any effect is 

real or if it is due to the method. 



   

 

Figure  4-25: The effect of the 
different variables on the density 
profile split point, with the black 
line showing the regression fitted 
to the data for each. Ring number 
is measured from the pith. 
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When the split point is plotted by site (Figure 4-26) the large amount of within 

site variation can be seen and although there seems to be variation between 

sites it is difficult to identify the reasons for this variation, which could be due 

to localised factors within each site. However it would be expected that within 

an even aged plantation the transition between the juvenile and mature phases 

of the density profile would be less variable than is seen here and so this is more 

likely to be due to the sensitivity of the segmented model to small changes in 

gradient. Not only does this sensitivity, when measured on individual trees, 

make it difficult to investigate and model any effect on the split point, but also 

this will lead to a large variation in the slope and intercepts of the different 

segments. This means that to use the segmented model it may be more 

appropriate or useful to group the data. For example the split point on the full 

data set is 7.4 years which could be used as the division between the juvenile 

and mature phases of the density profile, with each segment before and after 

this transition having a separate linear model to describe it.  



   

Figure  4-26: The segmented 
model split plotted by site in 
order from south (left) to north 
(right) with ring number 
measured from the pith. 
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4.3.6 Density Segmented Model – Juvenile and Mature Segments 

 

Figure  4-27: Density data showing the mean line (green), the LOWESS trend line (red), the 
line where the segmented model fitted the split (cambial age 7.4 years) and the upper age 
limit (25 years) used in this analysis. 

 

As mentioned in 4.3.5, when the segmented model is fitted against the global 

data it gives us a split between the juvenile and mature segments of the density 

radial profile at between years 7 and 8, with two separate linear segments: the 

juvenile section before the split point (cambial age 2 to 7 years) and the mature 

section (cambial age 8 to 25 years) after the split point (Figure 4-27).Therefore 

it may be possible to separate the data on either side of this split point and 

examine the density of the two different segments separately.   

When the segments are examined separately for the whole data set density 

appears linear up until year 7 and also looks relatively linear between year 8 and 

25 so it would appear reasonable to continue analysing growth under year 7 and 

between year 8 and 25 using two separate linear models. 

Cambial Age (Years)  



Chapter 4  171 

4.4 Factors Affecting the Density Radial Profile 

As described in Section 4.3 visually there could be two separate segments in the 

density profile and segmented analysis showed that density could indeed be 

described as having a split point between the two segments with two distinct 

periods before and after this point. When applied to the full data set this model 

fitted a value of 7.4 years as the split point between the two segments of 

juvenile and mature density. This section aims to use this split point and two 

separate linear models to investigate whether the density profile of the two 

segments are influenced by site effects with the hypothesis being that density 

variation in the juvenile and mature wood are functions of the site 

characteristics such as latitude, longitude, elevation or spacing. 

4.4.1 Juvenile Density Segment 

A linear model was fitted to rings 2 to 7 of the full data set using ordinary least 

squares regression, performed by the “lm” function in R producing a significant 

p-value of < 0.0001, indicating that this segment could be described as linear 

with a slope of -24.8 kg m-3 per year and an intercept of 587 kg m-3. An R-

squared value of 0.19 may indicate that while a linear model can be fitted, 

there is a lot of variation about the slope. The residual plots for the juvenile 

segment (Figure 4-28) show that the linear model has a relatively even 

distribution of residuals with cambial age, and the spread of the predicted 

values is similar throughout the range of observed values (Figure 4-29). 
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Figure  4-28: Residual plots for the density juvenile segment linear model 

 

 

Figure  4-29: Observed versus predicted density values for the juvenile segment linear 
model. The red line shows the line of equality. 
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4.4.1.1 Linear Model of Juvenile Density Segment Fitted to Individual Trees 

 

Figure  4-30: Slope and intercept coefficients fitted by the linear model to the density profile 
up to year 7 for each sample 

 

A linear model fitted to rings 2 to 7 of individual trees shows that there is a lot 

of variation in both the slope and intercepts (Figure 4-30), although both follow 

a normal distribution. The slope of this segment ranged from -72 kg m-3 per year 

to 37 kg m -3 per year with a mean of -25 kg m -3 per year. When modelled 

against the full dataset the juvenile segment showed a negative slope, as would 

be expected with Sitka spruce, but when modelled against individual trees 32 of 

the 444 samples had a positive slope in this phase (Figure 4-31). These samples 

were investigated and nothing unusual was found, indicating this is just natural 

variation in the density profiles. This highlights the difficulty in modelling this 

phase of tree growth in Sitka spruce where there is a variable trend of 

decreasing density in the first few rings from the pith. The mean intercept for 

the linear model of the juvenile segment was 586 kg m-3 and the intercepts for 

individual trees ranged from 214 kg m-3 to 907 kg m-3. 
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Figure  4-31: The density profiles from rings 2 to 7 of the samples which the linear model 
predicted a positive slope for density in the juvenile phase. 

 

To test the effectiveness of the model it was fitted against the individual trees. 

This shows that the residuals have a reasonable fit (Figure 4-32) with a relatively 

even distribution of residuals with cambial age, though there may be a slight 

tendency to over predict at lower values and under predict in the middle values. 

The degree of fit is shown when the observed data are plotted against that 

predicted by the linear model (Figure 4-33) giving an R-squared of 0.91.  

Cambial Age (Years)  



Chapter 4  175 

 

Figure  4-32: Residuals of linear model when fitted to the density profile of the juvenile 
segment of each tree, with LOWESS trend line (red) 

 

 

Figure  4-33: Observed Vs predicted for the juvenile density linear model giving an R-
Squared of 0.91. 

 

Cambial Age (Years)  
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In order to get a visual impression of how the different treatment variables 

affect the different parameters of the linear model, the coefficients for the two 

segments (when fitted to individual trees) were plotted against the northing, 

easting, spacing and elevation groups discussed in Chapter 2.   

Although there may be differences in the mean rate at which density in the 

juvenile segment changes from the pith (Figure 4-34), between northing groups 

(p=0.001 when tested with ANOVA) and between spacing groups (p =0.04), visibly 

there does not seem to be any trend to the differences. There were no 

significant differences between the easting groups nor between the elevation 

groups (p>0.05). 

 

Figure  4-34: The effect of northing, easting, spacing and elevation on the juvenile segment 
linear model slope coefficient. 

 

The intercept of the juvenile segment of the density profile is shown in 

Figure 4-35 and would seem to indicate that there are differences between the 

means for the northing groups (p<0.0001) and visually there may be a slight 

tendency for density to increase with increasing latitude. There may also be an 

effect of spacing (c) on the mean intercept as analysis of variance shows that 
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there are significant differences between the groups (p<0.0001) and visually 

there may be a trend for the mean intercept to decrease with increasing spacing 

group. As with the slope, there were no significant differences found in the 

means between the easting groups and the elevation groups (p>0.05 for both). 

 

Figure  4-35: The effect of northing, easting, spacing and elevation on the juvenile segment 
linear model intercept coefficient. 

 

4.4.1.2 Mixed Effects Model of Juvenile Segment of Density Profile 

Due to the unbalanced nature of this data set and to account for the hierarchical 

experimental design a mixed effects model was used to analyse the variation in 

density across the radial profile of both the juvenile and mature growth linear 

sections. In this analysis site, and tree within site, were considered as random 

effects: 

RDijk=µ + Si + Tij + Єijk     (Equation 4.7) 



Chapter 4  178 

Where RDijk is the radial profile of density, µ is the overall mean, Si is the 

random effect of site, Tij is the random effect of tree within site and Єijk is the 

residual error which is attributed to within tree variation. 

To carry out a variance components analysis the model was fitted without 

including fixed effects (Equation 4.7) which showed that approximately 43% of 

the variation was within tree variation, 32% was between trees at the same site 

and 25% was between sites.  

RDijk=µ + a0 + Si + Tij + Єijk     (Equation 4.8) 

Once the fixed effect of cambial age has been taken into account (Equation 4.8) 

the within tree variation reduced to 25.5%, just over 44% of the variation being 

between trees in the same site and 30.5% being between sites. When the fixed 

effects were included the model predicted an intercept of 587 kg m-3 with 

density decreasing by 25 kg m-3 per year. This shows that if the fixed effect of 

age is included in the model it does a reasonable job of describing within tree 

variation but, as would be expected, it does not describe between tree 

variations.  

The linear model was first fitted with the intercept as a random effect while 

slope was fixed, allowing the intercept of each site and tree within site to vary 

from the mean intercept. Examination of the residuals shows that this approach 

may be adequate (Figure 4-36). A random slope might also be appropriate as 

slope also changes with tree. However, if the mixed effects model is updated 

from having only the intercept as a random term to also having a slope as a 

random term, then the residuals show a similar amount of variation as when 

slope is not included (Figure 4-37) indicating that it is perhaps not needed in this 

case. 
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Figure  4-36: Residuals of mixed effects model on juvenile density segment with random 
intercept only. 

 

 

Figure  4-37: Residuals of mixed effects model on density segment with random intercept 
and slope. 
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The residuals in Figure 4-36 and Figure 4-37 indicate that the linear mixed 

effects model is fitting to the juvenile segment with a random scattering of the 

residuals in both versions. To test the suitability of the model when adding the 

random effect of slope, Akaike‟s information criterion (AIC) (Akaike, 1974) was 

used to compare the suitability of nested models fitted from the same data set 

and to see whether adding extra parameters to the model would be justified. 

The model with the lowest AIC value is deemed to be most suitable. The AIC 

values produced here indicate that the models are very similar. The model which 

included a random term for both slope and intercept performed slightly better 

than that which only had the intercept as a random term (the AIC value is very 

slightly lower (28997 compared to 29466)). 

The mixed effects model was then fitted to the juvenile segments of individual 

trees. Figure 4-38 indicates that model is predicting very well (R-squared = 0.91) 

when fitted against individual trees although it may over predict at higher 

values, perhaps due to lack of data points. 

 

Figure  4-38: The relationship between the observed density and the predicted values for the 
juvenile density linear mixed effects model giving an R-Squared of 0.91 
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4.4.2 Mature Segment 

Fitting a linear model to the density profiles of rings 8 to 25, for the whole data 

set, gave a low R-squared of 0.0659, which is a reflection of the large amount of 

variation in the intercept and the variation in density both between and within 

each tree. Nevertheless the p-value was less than 0.0001 indicating that a linear 

model can be fitted to this segment. The residuals for the linear model 

(Figure 4-39) also show a relatively even spread in magnitude with increasing 

values. 

As with the juvenile phase of density, for the mature segment the model was 

able to describe the age related trend reasonably well despite a lot of variation 

between trees in the observed versus predicted growth (Figure 4-40) which tends 

to increase slightly with increasing values. 

 

Figure  4-39: Residual plots for the density mature segment linear model 
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Figure  4-40: Observed versus predicted density values for the mature segment linear model. 
The red line shows the line of equality. 
 

4.4.2.1 Linear Model of Mature Density Segment Fitted to Individual Trees 

When a linear model was fitted to the mature segment of each tree individually 

the coefficients that were fitted show that there is quite a bit of variation in 

both the intercept and the rate of change in density. Figure 4-41 shows that the 

slope, i.e. rate of change in density, fitted by the model varies from –17 kg m-3 

per year to 22 kg m-3 per year with a mean value of 3.9 kg m-3 per year 

indicating that in these data there are samples where the density is increasing 

towards the bark and others where the density is decreasing. Of the 451 trees 

tested 96 returned a negative slope, the most extreme of which are shown in 

Figure 4-42. This could indicate that the split point of 7.4 years may be too early 

for some trees where the initial decrease in density of the juvenile wood may 

not have ended by this point. The fitted intercepts for the mature segment 

linear model varied from approx. 140 kg m-3 to 697 kg m-3 and have a normal 

distribution with a mean of 374 kg m-3.  
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Figure  4-41: Slope and intercept coefficients fitted by the linear model to the density profile 
of years 8 to 25 for each sample 

 

 

Figure  4-42: The density profiles from year 2 to 25 of the samples which the linear model 
fitted a negative slope for density in the mature phase. The blue dashed line indicates the 
split point of 7.4 years showing the cut off between the juvenile and mature phases 
calculated on the full data set. 

Cambial Age (Years)  
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When the model was fitted to each tree individually the spread of the residuals 

(Figure 4-43) look fairly evenly distributed and when the predicted values were 

plotted against the observed (Figure 4-44) though an R-squared of 0.77 may 

indicate a large amount of variation in each density profile. 

 

Figure  4-43: Residuals of linear model when fitted to the density profile of the mature 
segment of each tree, with LOWESS trend line (red) 

 

Cambial Age (Years)  
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Figure  4-44: Observed Vs predicted for the mature density linear model giving an R-Squared 
of 0.7675. 

 

 

Figure  4-45: Residuals for linear models of the juvenile and mature segments together 
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As in the previous section on the juvenile phase, in order to get a visual 

impression of how the different treatment variables affect the different 

parameters of the linear model; the coefficients for the mature density segment 

have been plotted by the northing, easting, spacing and elevation groups. 

Although there may be differences in the mean slope (Figure 4-46) between the 

northing groups (p<0.0001 when tested with ANOVA), visibly there does not seem 

to be any trend to these differences and may be due to Group 8 being lower 

than the rest. There were no significant differences found between the mean 

slope coefficients for the easting groups. However, both spacing and elevation 

groups did have significant differences in slope, which may have a tendency to 

increase by spacing group and decrease by elevation group. 

 

Figure  4-46: The effect of northing, easting, spacing and elevation on the mature segment 
linear model slope coefficient. 

 

The intercept of the mature segment of density is simply a measure of the 

density reached at the end of the juvenile phase Figure 4-47 and would seem to 

show differences between the means of the northing groups (p<0.0001) but it is 

difficult to see any trend with increasing latitude. There does not look to be any 
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effect of easting (longitude) on the intercept and analysis of variance shows that 

there are no significant differences between the easting groups (p=0.18). 

Statistical analysis using ANOVA showed that there are significant differences 

between the means of the spacing groups (p<0.0001) and also the elevation 

groups (p<0.0001). 

 

Figure  4-47: The effect of northing, easting, spacing and elevation on the mature segment 
linear model intercept coefficient. 
 

4.4.2.2 Mixed Effects Model of Mature Segment of Density Profile 

The same form of Equations 4.7 and 4.8, shown in the previous section, were 

used for the analysis of the mature segment of density. When the mixed effects 

model was fitted without fixed effects (Equation 4.7) a variance components 

analysis showed that 44% of the variation was within tree variation, 36% was 

between trees at the same site and 20% was between sites. When the fixed 

effect of age was taken into account in the model it had very little overall 

effect.  Within tree variation was reduced slightly to 39%, variation between 

trees in the same site was increased slightly to 39% and now 22% of the variation 

was between sites. 
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When the mixed effect model was run with the intercept as the only random 

effect it gave an intercept of 374 kg m-3 and a slope where the density increased 

by 3.9 kg m-3 per year. However, due to the large amount of variation seen in 

the density this model may also need a random term for the slope (i.e. changing 

with tree). The residuals for the model which includes only a random term for 

intercept (Figure 4-48) are fairly randomly distributed though there may be a 

suggestion of them being grouped in the middle. When a random intercept and 

slope is included in the model the residuals again look randomly distributed 

though there may be slightly less variation throughout (Figure 4-49). 

 

Figure  4-48: Residuals of mixed effects model on density velocity segment with random 
intercept only. 
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Figure  4-49: Residuals of mixed effects model on mature density segment with random 
intercept and slope. 

 

The suitability of the model with and without the random effect of slope was 

again determined using Akaike‟s information criterion (AIC) i.e the model which 

only the intercept has a random term compared with the model which both the 

slope and the intercept have random terms. The results of this test indicate the 

second model (which includes random terms for slope and intercept) to be 

slightly better as it has a lower AIC value (84703 compared to 86582).  

When the observed density is plotted against that predicted by the model 

(Figure 4-50) it shows a good fit (R-squared =0.77) indicating that when fitted 

against individual trees the mixed effects model is predicting reasonably well. 
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Figure  4-50: The relationship between the observed density and the predicted values for the 
juvenile density linear mixed effects model giving an R-squared of 0.7647 

 

4.4.3 Mixed Effects Model Structure 

In order to test the significance of treatment, a linear mixed effects (LME) 

model was used with a nested error structure for the random effects where the 

nested structure consisted of site and tree within site as shown in Equation 4.9: 

Zijk=µ + b0 + b1 + b2 +b3 + b4 + Sij + Tij + Єijk   (Equation 4.9) 

where Zijk is the radial profile of longitudinal density, µ is the overall mean, b0 is 

cambial age in years, b1 is northing based on the UK grid reference in km, b2 is 

easting based on the UK grid reference in km, b3 is initial spacing at planting in 

metres, b4 is the altitude above sea level in metres, Si is the random effect of 

site, Tij is the random effect of tree within site and Єijk is the residual error 

which is not accounted for by age. 
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4.4.4 Regression Analysis – Juvenile Segment 

In order to estimate if there is a relationship regression analysis was carried out 

on the coefficients for the juvenile and mature segments of density. The rate of 

change in density in the juvenile section had significant negative correlation 

with northing (correlation coefficient = -0.121). Easting, spacing and elevation 

came out as non-significant (Figure 4-51). The intercept for the juvenile segment 

had a significant positive correlation with northing (correlation coefficient = 0.2) 

and negative correlation with spacing (correlation coefficient = -0.213). Neither 

easting nor elevation had a significant correlation with the intercept of the 

linear model of the juvenile segment (Figure 4-52). However, even though these 

values are significant, they are still low and describe little of the data. 

 

Figure  4-51: Correlation between the linear model slope of the juvenile density segment and 
northing, easting, spacing and altitude. Only northing was found to have a significant 
correlation. 
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Figure  4-52: Correlation between the linear model intercept of the juvenile density segment 
and northing, easting, spacing and altitude. Northing and spacing were found to have a 
significant correlation. 

 

When regression analysis was carried out on the juvenile section the effect of 

latitude on the slope was significant and both latitude and spacing significantly 

affected the intercept in accordance with the following equations:  

Juvenile Slope = -20.4 – 0.00867*(Northing/1000)   Eqn 4.10 

Juvenile Intercept = 760 + 0.112*(Northing/1000) – 117*Spacing Eqn 4.11 

In order to make the parameter estimates for the above equations reasonable 

the northing value was expressed in kilometres by dividing the value by 1000. 

Carrying out regression analysis on these data does not take into account the 

nested structure of the data. For this mixed effects models are required, which 

allow the model to vary by tree within site. 
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4.4.5 Factors Affecting the Juvenile Density Profile 

A linear mixed effects model was run on the juvenile density segment, i.e. 

cambial age of 2 to 7 years, with the fixed effects of northing, easting, elevation 

and spacing as continuous variables (Table 4-5). Northing and spacing were 

found to have a significant effect on the intercept (usually interpreted as having 

an effect on the overall value) but not on the slope; no variables tested 

significantly affected the slope in the juvenile segment.  

Table  4-5: Result of linear mixed effects model testing the effect of northing, easting, 
spacing and elevation on the juvenile segment of the density profile. Age is cambial age. 
              numDF denDF  F-value p-value 

(Intercept)       1  2249 7073.535  <.0001 

Age               1  2249  486.132  <.0001 

NorthingKM        1    42    8.637  0.0053 

EastingKM         1    42    0.219  0.6423 

Spacing           1    42   19.238  0.0001 

Elevation         1    42    1.214  0.2768 

Age:NorthingKM    1  2249    3.346  0.0675 

Age:EastingKM     1  2249    0.400  0.5273 

Age:Spacing       1  2249    0.226  0.6342 

Age:Elevation     1  2249    0.059  0.8088 
 

When the non-significant terms were removed from the equation Northing and 

spacing still had a significant effect on the intercept and not the rate 

(Table 4-6). 

Table  4-6: Result of the linear mixed effect model on juvenile density profile with the non-
significant interaction terms removed. Age is cambial age. 
            numDF denDF  F-value p-value 

(Intercept)     1  2253 6923.003  <.0001 

Age             1  2253  486.239  <.0001 

NorthingKM      1    44    8.519  0.0055 

Spacing         1    44   17.086  0.0002 
 

A linear model with spacing and northing as the variables shows that northing 

had a positive effect on the overall mean by 0.07136 kg m-3 per km of northing, 

and spacing had a negative effect on the overall mean by - 104.8 kg m-3 per m 

spacing. 

The form of the linear model obtained from these data was: 

Equation 4.12: 

Juvenile Radial Density = -24.8*Age+(0.07136*Northing/1000)-104.8*Spacing)+756 
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4.4.6 Regression Analysis – Mature Segment 

The slope coefficient for density in the mature segment (Figure 4-53) had a 

significant positive correlation with spacing (Pearson correlation coefficient = 

0.2) and a significant negative correlation with elevation (Pearson correlation 

coefficient = -0.126), but no significant correlation with either northing or 

easting. The intercept for the mature segment (Figure 4-54) had a significant 

positive correlation with spacing (correlation coefficient = 0.170) but not with 

northing, easting or elevation. However, even though these correlation 

coefficients are significant they are extremely low and care should be taken 

before drawing any conclusions. 

 

Figure  4-53: Correlation between the linear model slope of the mature density segment and 
northing, easting, spacing and altitude. Spacing and elevation were found to have a 
significant correlation. 

 



Chapter 4  195 

 

Figure  4-54: Correlation between the linear model intercept of the mature density segment 
and northing, easting, spacing and altitude. Only spacing was found to have a significant 
correlation. 
 

When regression analysis was carried out on the mature section of density, only 

spacing was found to be having a significant effect, on both the slope and 

intercept in accordance with the following equations: 

Mature Slope = -4.73 + 4.40 * Spacing (m)   Equation 4.13 

Mature Intercept = 570 – 99.7 * Spacing (m)   Equation 4.14 

However, this does not take into account the nested structure of the data. For 

this mixed effects models are required which allows the model to vary by tree 

within site. 

4.4.7 Factors Affecting the Mature Density Profile 

A linear mixed effects model was run on the mature density segment i.e. from 

cambial age 8 to 25 years, with the fixed effects of northing, easting, elevation 

and spacing as continuous variables (Table 4-7). None of the variables tested 

were found to have a significant effect (p-values are all greater than 0.05). 

However spacing is close to being significant at the 5% level on the intercept and 

slope, as was Northing on the intercept. 
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Table  4-7: Result of linear mixed effects model testing the effect of northing, easting, 
spacing and elevation on the mature segment of density. 
              numDF   denDF    F-value   p-value 

(Intercept)       1    7606   6874.052    <.0001 

Age               1    7606     56.771    <.0001 

NorthingKM        1      42      3.808    0.0577 

EastingKM         1      42      1.116    0.2967 

Spacing           1      42      3.772    0.0588 

Elevation         1      42      2.110    0.1538 

Age:NorthingKM    1    7606      0.677    0.4108 

Age:EastingKM     1    7606      0.031    0.8596 

Age:Spacing       1    7606      3.722    0.0538 

Age:Elevation     1    7606      0.467    0.4944 
 

When the non-significant effects are removed only cambial age is a significant 

factor (Table 4-8)  

Table  4-8: Result of linear mixed effects model on the mature segment of density once the 
non-significant terms have been removed. 
            numDF denDF  F-value p-value 

(Intercept)     1  7610 5988.592  <.0001 

Age             1  7610   55.731  <.0001 
 

A linear model with cambial age as the only significant variable shows that it has 

a positive effect on the overall mean: by 3.89 kg m-3 per year. The form of the 

linear model for the mature phase of density obtained from this data was: 

Mature Radial Density = 374.77* Cambial Age+3.89   Equation 4.15 

This shows that whilst latitude and spacing may have an effect on the radial 

density in the juvenile core, only cambial age is having an effect in the mature 

wood. Correlations carried out on different ring numbers suggests that density 

between rings are correlated, and while the correlation decreases with 

increasing numerical distance between rings the correlations are still significant 

(Figure 4-55). Correlations are highest between rings which are fully in the 

juvenile core e.g. rings 2 and 7 (Pearson correlation coefficient = 0.548) or rings 

fully in the mature wood e.g. rings 12, 20 and 25 with lower correlations 

between rings which are in the different phases. However, rings 7 and 12 which 

straddle the transition zone also have a high correlation as they are numerically 

close to each other. 
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Figure  4-55: Correlation between density measured on different ring numbers where rings 
are counted from the pith. 

 

4.5 Discussion 

4.5.1 Discussion of Density Models 

Initial observation of the radial density data obtained from this experiment 

indicated the data followed the radial trend that would be expected with Sitka 

spruce (Brazier, 1970) i.e. high wood density at the pith, which decreases 

outwards for a number of rings reaching a minimum at around ring 7 to 12 before 

increasing again into the mature wood. In this data set the density measured 

ranged from 248 kg m-3 to 883 kg m-3 with a mean of 461 kg m-3 which is similar 

to that found by McLean (2008) and Vihermaa (2010) who found mean values of 

456 kg m-3 and 447 kg m-3 respectively in previous studies on UK grown Sitka 

spruce. 

Examination of the density profiles showed that while there was a lot of 

variation between trees within sites, there was a suggestion that there were also 

differences between sites both in the radial trend and in the mean values, 

although the exact reason for these differences were unclear. Grouping the 

overall density measurements based on site characteristics such as northing, 
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easting, spacing and elevation also showed that there could be some differences 

in overall mean density between the different groups but the differences were 

very small and it was difficult to determine any trend between groups. An 

investigation into the effect of altitude on Sitka spruce (Mayhead, 1973) found 

that the relationship with yield class was not constant throughout Great Britain 

with considerable variation between and within various regions. This shows the 

difficulty in drawing conclusions from grouped effects due to the complex 

interactions (both known and unknown) that often exist.  

In order to investigate the radial trend further, this study used a number of 

published models along with developing a segmented linear model to describe 

radial density with the aim of identifying which models not only describe the 

data the best but also which are simple and intuitive to use. Previous studies 

have shown that there are a number of models which include ring width as an 

input parameter along with ring number, which can be fitted to the Sitka spruce 

density profile (Lindstrom, 2000, Gardiner et al., 2011). These models were 

fitted to this data set along with the two segment linear model, as well as a 

simple exponential model based only on ring number. As would be expected the 

exponential model was the poorest fit as it was not able to deal with increasing 

density in the mature wood. The Gardiner3 and Lindstrom were the best fitting 

models but this would be expected as these models included ring width which is 

inversely correlated with ring density (Pearson correlation coefficient -0.473) 

and accounts for a lot of the variation in density between trees. 

Using the segmented model allowed a transition point between juvenile and 

mature phases of the density profile to be investigated. When fitted to the full 

data set the split point between juvenile and mature wood was estimated to be 

between rings 7 and 8 (global mean was 7.4 years). This is similar to that found 

by Harvald and Olesen (1987) who investigated Sitka spruce in Denmark and 

found that density decreased from the pith to a minimum at approximately ring 

8 to 12 before starting to increase again. When the segmented model was fitted 

to individual trees, although the overall R2 value was high (0.83), the sensitivity 

of the model to local fluctuations meant that there was a great deal of variation 

in the split points. This problem made it difficult to ascertain if any other 

factors were having an effect on the split point. For example, plotting the split 

point by site showed that the trees in some sites had similar transition points 



Chapter 4  199 

whereas at other sites there was a large spread which may be attributed to 

random variation between trees, perhaps amplified by dominance. Simplifying 

the process by fixing the transition point at a constant between rings 7 and 8, 

allowed the two segments to be examined as two separate linear models and 

when fitted to individual trees they gave R2 values of 0.91 and 0.77 for the 

juvenile and mature segments respectively.  

Although the Gardiner3 and Lindstrom models fitted the data well and allowed 

for a year to year variation around the fitted line, leading to higher R2 values, 

the segmented model has simple and intuitive parameters and does not require 

ring width as an input parameter. Ring width data may not always be available 

so there is a benefit to having models which are able to predict density from ring 

number alone. 

4.5.2 Discussion of Modelling Factors Affecting Ring Density  

While Section 4.3 was concerned with building and testing the models, 

section 4.4 used these models to explore the effect of different site 

characteristics on the model parameters. Since the linear models have simple to 

understand parameters (i.e. a slope and intercept) and does not require ring 

width as an input parameter these models were used to investigate the site 

effects.  

Analysis of the linear phases of the segmented models using mixed effects 

analysis showed that most of the variation in juvenile density was between trees 

at the same site (44%) with 30.5% of the variation being between sites and the 

remaining 25.5% being within tree variation. In the mature phase within tree 

variation was 39%, variation between trees in the same site was also 39% and 

only 22% of the variation was between sites. This within site variation shows the 

difficulty in trying to investigate effects which are measured at site level and 

indicates that there are other factors such as micro-site climate effects, for 

example soil moisture, which may be having an impact on the tree properties.  

The initial design of the original resource evaluation study (Moore et al., 2009a) 

meant that sites were grouped according to a combination of latitude, 

longitude, spacing and elevation. However within this investigation these site 
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effects were expressed as continuous variables and were analysed using linear 

mixed effects models on the linear segmented models for each tree with 

latitude, longitude, spacing and elevation being fixed effects. 

Preliminary analysis of the site effects on the juvenile segment of density 

indicated that there was a small negative correlation between the rate of 

change in density and northing. There was also a small but positive correlation 

between the overall mean and northing and a negative correlation with spacing 

and this was confirmed by regression analysis. Regression analysis of the mature 

phase suggested that spacing was the only significant effect on density and had a 

positive effect on the slope but a negative effect on the mean. However, 

regression analysis does not take account of the structured nature of the data 

and so mixed effects models that allow the models to vary by tree within site 

were used. Mixed effects modelling suggested a positive effect of northing and a 

negative effect of spacing on the overall mean density in the juvenile section, 

but not on the rate of change i.e. the mean density of the juvenile segment 

increases with progress north and decreases with increased spacing. There were 

no significant site effects on the mature phase of density with cambial age being 

the only significant effect.  
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5 Radial Profiles of Longitudinal Acoustic Velocity 

5.1 Introduction 

This chapter will report on the method and results of an experiment to measure 

acoustic velocity from pith to bark on the samples taken as part of this resource 

evaluation study, paralleling the density and ring width measurements 

performed at The University of Glasgow. This gave the radial profile of 

longitudinal acoustic velocity on the samples. The velocity at which sound 

travels through wood is dependent on its modulus of elasticity (MoE), i.e. 

stiffness, and its density (Evans and Ilic, 2001) provided that the orientation of 

the grain is parallel to the direction of measurement (Beall, 2002, Suzuki and 

Sasaki, 1990, Kabir et al., 1997). Therefore, theoretically, given the wood 

density and the velocity of sound it is possible to determine the MoE of wood 

(Evans and Ilic, 2001). 

The most straightforward way of determining acoustic velocity is by measuring 

the transit-time of a sound (stress) wave from one point to another, known as 

time of flight. Most time of flight acoustic devices are designed for longer pieces 

of timber (>30cm). Devices of this type have been used to measure acoustic 

velocity on both standing trees (Chauhan and Walker, 2006, Mochan et al., 2009, 

Auty and Achim, 2008) and logs (Farrell et al., 2012, Tsehaye et al., 2000) and 

studies have been done on the alternative methods for doing this e.g. (Schimleck 

et al., 2010, Knowles et al., 2004). These methods have limitations with very 

short samples. A short term scientific mission (STSM), funded by COST Action 

FP0802 gave access to a purpose built acoustic scanner, based on time of flight 

ultrasound, located at the New Zealand School of Forestry, University of 

Canterbury, making it possible to measure radial sound velocity profiles on tree 

cores as little as 10 mm thick on samples which radial profiles of density was 

also measured which had not previously been available for experiments of this 

kind. Combining these measurements with radial density profiles produced from 

the same cores would theoretically allow determination of MoE profiles on an 

annual growth ring basis. The acoustic velocity measurements are useful 

themselves as an indicator of MFA (Evans and Ilic, 2001). 
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The objective of this experiment is, by using ultrasonic scanning, to obtain the 

radial profile of longitudinal acoustic velocity directly from cylindrical increment 

cores. However this is a new method that has not yet been fully tested on large 

numbers of samples. Therefore this section also aims to evaluate the potential 

of this system as a method for obtaining acoustic velocity profiles on increment 

cores and the problems therein.  

Although this section points out certain issues with the method and the quality 

of the results obtained, empirical models were explored which investigate the 

variation in longitudinal acoustic velocity across the radial profile of Sitka spruce 

trees, allowing comparison between juvenile wood and mature wood as well as 

between trees growing in different silviculture, site and climatic conditions in 

the UK. 

5.2 Materials and Method 

Approximately 1000 (Table 5-1) 12mm diameter increment cores were obtained 

from 32 sites in Scotland, England and Wales as described in Chapter 2, as well 

as from 69 sites used in a previous resource evaluation study (Moore et al., 

2009a) (Figure 5-1).  

Table  5-1: Number of sites and cores used in the acoustic velocity measurements 

 Previous Sites Current Sites Total 

No. Sites 69 32 101 

No. Cores 681 313 994 
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Figure  5-1: Map showing the location of the sites used in this study (red) and the sites from 
a previous evaluation study (green). 
 

5.2.1 Description of Work 

Prior to shipping to New Zealand the Sitka spruce cores were heat treated at 

70oC for 8 hours to comply with the strict New Zealand bio security rules. Since 

temperature (Baechle and Walker, 2006) and moisture content (Kabir et al., 

1997, Sakai et al., 1990, Chan et al., 2011, Ilic, 2001b) have been shown to have 

an effect on acoustic velocity, once in New Zealand the samples were stored at 

25oC and 60% humidity for 1 week prior to and up until use to give a moisture 

content of approximately12% (Ilic, 2001a). 

The acoustic scanner (Figure 5-2) was originally developed for scanning full disks 

but has been modified to be able to hold and scan increment cores. Initially the 

cores are marked to show the orientation of the grain as they are placed in the 

scanner with the grain running vertically. This ensures that the ultrasonic wave 
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travels in the same direction as the grain giving the fastest path. The cores are 

held in place by a single pin at one end and a double pin at the other, 

preventing the core from twisting as it is being measured (Figure 5-3). 

 

Figure  5-2: Ultrasonic Scanner at University of Canterbury, Christchurch, New Zealand 
 

 

Figure  5-3: 12mm Sitka spruce increment core clamped into the ultrasonic scanner 
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The scanner consists of a signal probe and a receiving probe, which, using a 

system of pneumatics, come together with the core pressed in between. An 

attached camera and computer allow instructions to be input as to where the 

measurements should start and stop on the core, the location of the pith and the 

distance between each measurement (i.e. the resolution). In this case the scan 

pattern was set to measure every 2mm along the core as shown in Figure 5-4.  

 
Figure  5-4: Computer photographic output showing position of pith (red dot), the start and 
end points (yellow dots) and scan pattern (blue line) 

Once the run is started the instrument automatically moves the sample 

horizontally. Every 2mm the probes come together, measure the thickness of the 

sample and a 1.84 kHz sound wave is passed through the core between the 

probes. The computer program records the distance between the probes and the 

time the sound wave took to travel that distance giving a velocity output in 

metres per second for every 2 mm increment (Figure 5-5). In this instrument the 

head of the probe is 9mm in diameter, so in effect the measurements are an 

average of a circular area of 9 mm diameter measured every 2 mm with 

adjacent measurements overlapping. 

 

Figure  5-5: Computer output showing the core thickness (top) and the acoustic velocity 
(bottom) produced by the ultrasonic scanner. 
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5.3 Method Testing 

In total over 1100 analyses were made using this method. Of these 

approximately 100 were testing the system to investigate how different step 

sizes would effect the quality of the data, the effect of having the core held at a 

slight angle so that the grain was not running vertical, and to investigate the 

effect of sanding the cores, to give a better contact with the probes. 

5.3.1 Measurement Resolution 

The instrument being used at University of Canterbury is set up so that the step 

size and therefore the resolution can be manipulated. Due to the number of 

cores to be measured it was considered whether it would be possible to change 

the step size to decrease the time spent measuring each core, without 

compromising the amount and quality of the data. The result of this, shown in 

Figure 5-6, show that there is little difference between the measurements at 

2mm, 3mm and 4mm step sizes. However, it was decided, since density will be 

measured at a resolution of 50 µm steps, to give as high a resolution and as 

many data points as possible the acoustic measurements would be continued at 

2mm. 

 

Figure  5-6 - The effect of different step sizes on acoustic velocity. Velocity was measured at 
2mm, 3mm, and 4mm to determine if this would have an effect 
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5.3.2 Effect of Grain Orientation on Acoustic Velocity 

Since this system was originally set up to measure discs there are a number of 

sources of error when trying to measure cores. One of these is the orientation of 

the grain in the sample. 

The stiffness and hence acoustic velocity is strongly dependent on the grain 

angle (i.e. longitudinal velocity >> tangential velocity)(Mishiro, 1996, Suzuki and 

Sasaki, 1990, Bucur and Bohnke, 1994). Therefore as pointed out by Bucur (1983) 

it is very important that when clamping the core in the instrument it is at the 

correct orientation with the grain running vertically, thus ensuring that the same 

measurement is being made on each core. To test the effect of changing the 

orientation of the grain a selection of cores were scanned with the grain running 

vertical, and then turned 100 and 200 clockwise and the same anticlockwise 

(Figure 5-7) being scanned at each step. 

 

Figure  5-7: Schematic showing the change in grain angle from vertical. 

 

Figure 5-8 shows the effect of turning the core and clearly shows that even a 

small difference in the orientation of the grain can have a big effect on reducing 
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the acoustic velocity measurement. When the core is positioned correctly with 

the grain direction running vertical acoustic velocity was seen to be lowest at, or 

near the pith, increasing towards the bark. However when the grain was not 

vertical there not only was an overall reduction in acoustic velocity, the radial 

trend was for a higher velocity at the pith decreasing towards the bark.  

 

Figure  5-8 - The effect of turning the core by 10
o
 and 20

o
 clockwise and anticlockwise on the 

acoustic velocity on three separate tree cores 
 

One of the main difficulties found with this method is aligning the cores parallel 

to the grain. Most of the cores were taken from bark to bark with an attempt 

made to go through the pith and where possible the bark is left on the core as 

this helps date the rings when analysed using the ITRAX Densitometer. This 

means that both ends of the core can be obscured by bark making it very 

difficult to see the direction of the grain (Figure 5-9). Although every care was 

taken to ensure that the grain for each sample was completely vertical in some 

cases this was only able to be done using the direction of the pith or if necessary 

cutting the cores at the pith to see the direction of the grain. One problem is 

that this does not take account of any change in grain angle within the core 

which could be caused by the natural spirality of the grain or the cores twisting 

or bending when they are drying. If the cores were misaligned within the scanner 

then this would cause problems with the data as shown in Figure 5-8.  
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Figure  5-9: Examples of cores taken as part of this study 
 

Another source of error not measured here is the angle between the grain and 

the axis of the core. The cross sectional view (b) in Figure 5-10 shows the core 

being taken perfectly perpendicular to the direction of the grain, but it is easy 

to see how if the core was taken at a slight up or down angle then this would 

have an effect on the angle of the grain within the core. While every care was 

taken to ensure the cores were taken perpendicular to the grain the very nature 

of the shape and direction of growth of trees means that this may not have 

always been the case. This means that this could be another unknown, but 

random source of error. 

 

Figure  5-10: Schematic showing direction from which the cores were taken. 
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5.3.3 Effect of the Physical Condition of the Cores 

Another source of error found when using this instrument was the physical 

condition of the core. The scanner was originally set up to measure the flat 

surface of a disc and has been adapted to be able to hold and measure cores. 

However, since the acoustic probe is 9mm in diameter the curved, rough edge of 

a core could be another source of error. As well as this, the distance that the 

sound wave has to travel can also have an effect whereby the smaller the 

measurement distance the larger any error will be. 

During the analysis of the cores it was noticed that some of the older cores were 

in a poor state with rougher surfaces and areas of the surface which were 

crumbling into powder (Figure 5-11). This may have been caused by degradation 

in storage or been caused as a result of the corer being blunt. 

 

Figure  5-11: Older cores from the original study showing the rough surface which in some 
cases has crumbled into powder 
 

When these cores were run through the scanner it was observed that the velocity 

readings seemed to be more erratic than the cores which were in good 

condition, and this was put down to the state of the core. To try and counter 

this any cores which were deemed to be in a poor condition were sanded along 

the top and bottom to give a smooth surface on the faces that the scanner 
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probes would be in contact with (Figure 5-12). A total of 551 samples were 

analysed unsanded (i.e. not sanded) along with 540 sanded cores.  

 

Figure  5-12: Examples showing the rough surface of the core (bottom) and a smoothed 
surface once sanded (top) 

 

5.3.3.1 Sanded Versus Unsanded Acoustic Velocity Global Data 

Overall results of the acoustic velocity measurements showed that while there is 

a high variability between trees there is a general trend whereby acoustic 

velocity increases from pith to bark (Figure 5-13). Although this trend was 

consistent between unsanded and sanded cores, the range of the sanded cores 

was narrower and at the same time the overall mean was lower. 
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Figure  5-13: Acoustic velocity measurements on the full data set showing a LOWESS 
trendline for the unsanded and sanded data 

 

5.3.3.2 Sanded Versus Unsanded Cores 

In order to investigate if sanding the cores was having an effect, the acoustic 

velocity of 72 samples was measured on unsanded cores which were then sanded 

and re-analysed so that a direct comparison of the effect of sanding could be 

made. As with the global data, when the acoustic velocity measured on the 72 

cores is plotted together it follows the same general trend of increasing from 

pith to bark for both the unsanded and sanded cores (Figure 5-14) and as before 

the LOWESS trendline for the sanded cores is lower than that for the unsanded 

cores.  
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Figure  5-14: Acoustic velocity of the 72 samples where acoustic velocity was measured 
unsanded and then sanded.  

 

The overall mean acoustic velocity for all 72 cores together is reduced from 5213 

m s-1 for the unsanded cores to approximately 4502 m s-1 for the sanded and the 

overall measurements for the unsanded cores tended to be slightly higher 

(Figure 5-15). 

 

Figure  5-15: Histogram showing the frequency and range of acoustic velocity 
measurements on the 72 cores which were measured unsanded (red) and then sanded 
(black). 
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This would indicate that sanded and unsanded cores can not be directly 

compared and while in general sanding the cores seemed to have a negative 

effect on acoustic velocity (Figure 5-16) the magnitude of this effect was not 

consistent across samples or within sample making it difficult to convert, 

mathematically, from one to another. 



   

 

Figure  5-16: Acoustic velocity for 
the 72 samples which were 
measured both unsanded and 
sanded. 
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When the full subset of sanded v unsanded cores are examined (Figure 5-17), the 

relationship between measurements on the same core is poor (R squared = 0.34) 

due to the fact that the relationship between sanded and unsanded varies 

between (and within) cores. If the intercept and gradient are allowed to vary by 

sample there is a much better relationship (R squared = 0.87). For a lot of 

samples there was then a strong linear relationship, but for others there was no 

relationship (Figure 5-18) therefore this does not allow for a global conversion 

between one state and the other. 

 

Figure  5-17: Scatterplot of acoustic velocity measured on the same cores unsanded and 
then sanded. Also shown is the line of equality (black). R-squared =0.34  

 



   

Figure  5-18: 
The 
relationship 
between 
unsanded 
and sanded 
acoustic 
velocity on 
the same 
cores.



Chapter 5  218 

 

Figure  5-19: Schematic showing how the distance measured could be affected by the shape 
of the core. 

 

One reason that this may be happening is due to the contact being made 

between the core and the scanner‟s probes. Figure 5-19 shows how the probes 

are held within a rubber seal, as contact is made with the unsanded core the 

rubber seal would curve round the core slightly. This may have the effect of 

reducing the distance that the sound wave has to travel although the system still 

measures the distance as between probes. Conversely, the sanded core has a flat 

surface where the probe and rubber seal sit flush to the sample which while 

eliminating this potential error, when the cores were sanded the distance 

measured would have decreased and as the measured distance gets smaller any 

error would increase as a proportion of the distance.  

The cores were sanded using a large belt sander making it difficult to control the 

sanding process. The distance measured at each 2mm increment by the scanner 

ranged from 10.6 mm to 13.5 mm with a mean of approximately 12.6 mm for the 

unsanded raw cores while the sanded cores ranged from as low as 7.3 mm to 

12.8 mm with a mean of 11.3 mm (Figure 5-20).  
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Figure  5-20: The variation in the thickness of the increment cores measured by the acoustic 
scanner. 

 

There is a significant but small correlation (p<0.0001) between the thickness 

measured and acoustic velocity for both the unsanded cores (correlation 

coefficient = 0.087) and the sanded cores (correlation coefficient = 0.277) but 

these correlations are low and may be due to the number of data points and so it 

is difficult to draw any conclusions. When the thickness is plotted against 

acoustic velocity (Figure 5-21) visually there does not look to be a trend due to 

the distance measured, especially in the unsanded cores, but the slope of the 

regression lines are similar with the slope of the unsanded cores being 274.4 m s-

1 per mm and the sanded cores being 260.2 m s-1 per mm. However since the 

average difference between the unsanded and sanded core thickness is 

approximately 1 mm, the difference in velocity caused by the thickness of the 

core is not enough to account for the differences seen in the velocity between 

the two physical states (Figure 5-13). 
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Figure  5-21: Thickness measured by the acoustic scanner for each 2mm increment plotted 
against the acoustic velocity. 

 

In order to see the direct effect of the reduction in thickness caused by sanding 

the subset of 72 cores which were analysed both sanded and unsanded were 

investigated. Analysis shows that the thickness of the unsanded cores ranged 

from 11.5 mm to 13.1 mm with a mean of 12.6. The thickness of the sanded 

cores ranged from 10.0 mm to 12.7 mm with a mean thickness of 11.7 mm 

(Figure 5-22).  

For this subset of cores, velocity and the distance measured are significantly 

correlated (correlation coefficient=0.5, p<0.0001). The average velocity 

measured on the sanded cores is 4492 m s-1 and 5232 m s-1 on the unsanded cores 

making a mean difference of 740 m s-1. When the lines are plotted separately 

(Figure 5-23) the regression slopes are 125.8 m s-1 per mm and 209.4 m s-1 per 

mm for unsanded and sanded cores respectively which suggests that some of the 

difference between the acoustic velocity can be accounted for by the difference 

in thickness alone. Conversely it also suggests that there is more than just 

thickness which is affecting the acoustic velocity. 
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Figure  5-22: The variation in the thickness of the 72 increment cores which were measured 
by the acoustic scanner both unsanded and sanded. 

 

 

Figure  5-23: Distance measured by the acoustic scanner plotted against the acoustic 
velocity for the 72 increment cores which were measured by the acoustic scanner both 
unsanded and sanded. 
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5.4 Discussion of Method for Measuring Acoustic 
Velocity on Cores 

With a capability of scanning over 100 core samples per day the scanner used in 

this project provides a quick method for obtaining acoustic velocity 

measurements, but since the system was originally set up to measure discs there 

are a number of sources of error when measuring cores.  

The mean velocity for the full data set was 4616 m s-1 though this includes both 

sanded and unsanded cores, as well as cores where the grain orientation may not 

be vertical which would have the effect of reducing the overall mean value. 

Although the utmost care was taken when positioning the cores within the 

scanner, subsequent analysis of the form of each profile suggested that a 

number of them showed the same profile as those where the grain angle was 

deliberately altered i.e. lower at the bark and increasing towards the pith. 

These cores were then deemed to be mis-orientated and so were removed along 

with the sanded cores. The effect of this meant that the mean velocity 

increased to 5230 m s-1 which is slightly lower than that found by Ilic (2003) who 

reported the velocity on Sitka spruce from Canada at 5770 m s-1. This was 

measured on small beam samples which were 150 mm in the longitudinal 

direction and 20 mm radially and it was not stated where in the radius of the 

tree the samples came from.  

The acoustic velocity is strongly dependent on the orientation of the grain and 

fastest in the longitudinal direction (Bucur and Bohnke, 1994, Bucur, 1983) i.e. 

the same direction as the grain. As was shown here even a small change in the 

orientation can have an effect on the velocity. This is consistent with work done 

on Norway spruce by Niemz et al. (1999) who found that a change in angle of 

only 100 could reduce velocity by 20%. This investigation showed that the 

orientation of the grain in an increment core can be extremely difficult to 

determine in cores especially with the bark intact and that a great deal of care 

has to be taken when positioning the cores within the scanner.  

This system has been used successfully in the past to measure acoustic velocity 

on Sitka spruce samples (Vihermaa, 2010), but these measurements were on disc 

samples where the orientation of the grain and the surface finish of the samples 
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was less of an issue. Tests on the orientation of the core samples showed the 

radial profile of longitudinal acoustic velocity to follow a general trend of 

increasing from the pith, if the orientation of the grain was completely vertical; 

but if this was moved then the shape of the radial profile was altered 

dramatically to the point where acoustic velocity was seen to decrease from the 

pith. 

The physical condition of the core was also found to be an issue when using this 

technique. The surface finish of some cores was found to be quite rough and in 

some cases, especially with the older cores, some degradation had taken place 

which seemed to be having an effect on the readings. Sanding the “bad” cores to 

give smooth surface allowed measurements to be made but this change means 

that no direct comparison between the full dataset can be made. Bucur (1983) 

also found issues with coupling of the probe to the sample in 5mm diameter 

cores and used Vaseline as a medium to ensure there was a good bond between 

the transducer and the wood. 

This suggests that if this instrument is to be used in future the cores may need 

to be in perfect condition on the surface as well as ensuring that the pith is in 

the core so that the orientation can be adjusted to be perfectly vertical. This 

issue is known by the University of Canterbury and research is ongoing into a 

new system involving a smaller probe and rotating the core  
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6 Modelling Radial Profiles of Longitudinal 
Acoustic Velocity 

6.1 Introduction 

Using the data collected from the sample cores described in Chapter 2 this 

chapter explores the radial profile of longitudinal acoustic velocity in Sitka 

spruce and how this changes across the full geographical range in which Sitka 

spruce grows in Great Britain. The radial trend in acoustic velocity was examined 

to investigate how this matches the known profiles of stiffness and MFA for Sitka 

and empirical models were created with cambial age as the explanatory 

variable. These models were then used to investigate whether parameters such 

as latitude, longitude, altitude and spacing were having an effect.  

6.1.1 Definitions 

When acoustic velocity is discussed in this section it is referring to the velocity 

of sound measured in a longitudinal direction (up and down the tree) which was 

measured in 2mm increments across a radial core (from pith to bark) taken from 

the tree. 

Ring number is counted from the pith and is a measure of cambial age in years. 

For the purposes of this chapter the terms “Ring Number” “Age” and “Cambial 

Age” are interchangeable. 

6.1.2 Outline 

The sample cores were collected as described in Chapter 2. As described in 

Chapter 5 there were a number of issues relating to the method of analysis of 

the increment cores. To minimise any discrepancy caused by the physical 

condition of the cores (i.e. sanded or unsanded), only those cores that were 

unsanded were used in the modelling analysis. 

Since the effect of cambial age was being investigated and acoustic velocity was 

measured by distance from pith, in order to model acoustic velocity by age the 

measurements had to be converted from distance from pith to ring number.  
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This was done using the accumulated ring width measurements for individual 

samples collected during the density analysis on the ITRAX densitometer 

(Chapter 2). Acoustic velocity for each sample was designated a ring number as a 

function of its distance from the pith. A mean value of the acoustic velocity was 

then assigned to each ring. This had the disadvantage that some rings of less 

than 2mm had no values assigned. 

In order to keep this section comparable with the growth and density modelling 

sections the ring number had an upper limit of 25 years old. 

As discussed in Chapter 5 there were a number of problems associated with 

measuring acoustic velocity on these cores leading to unreliable results, so at 

this stage any samples which looked to have had a problem with the acoustic 

velocity measurement due to the orientation of the core were removed. To do 

this, the radial profile of acoustic velocity for each core was examined and 

compared to profiles where the grain orientation was known to be vertical and 

also compared to profiles that were deliberately misaligned (as described in 

Section 5.3.2 of Chapter 5). Although there is variation between the profiles of 

each core the main feature of a properly aligned core is higher acoustic velocity 

at the bark which decreases towards the pith. Those that were deliberately 

misaligned showed a profile that was higher at the pith and decreased towards 

the bark. For the purposes of modelling acoustic velocity the cores which 

showed a profile where the acoustic velocity was higher at the pith and 

decreased towards the bark were removed from the analysis.   

6.1.3 Aim 

The aim of this section is to investigate which empirical models best describe 

the radial profile of acoustic velocity with age of the sampled trees. These 

models can then be used as an indication of MFA in these profiles and to 

investigate any difference in acoustic velocity by altitude, latitude, longitude 

and initial spacing. 

A method for analysing the radial profile of acoustic velocity by these models is 

presented, but due to the uncertainty in the grain angle it is difficult to 
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determine where any differences may come from and so any findings would 

reflect this uncertainty.  

6.2 Radial Variation in Acoustic Velocity 

 
Figure  6-1: Acoustic velocity of all data plotted by ring number with a LOWESS trend line 

The radial trend in acoustic velocity could be described as being a curve with an 

initial increase from the pith to between year 12 and 18 which then levels out to 

a plateau (Figure 6-1) mirroring the radial pattern of MFA found in Sitka spruce 

(McLean, 2008). As with radial growth this general trend could be described as 

conforming to the generally accepted juvenile and mature phases of growth 

(Cameron et al., 2005, Brazier and Mobbs, 1993, Schaible and Gawn, 1989) and 

can be linked to radial variation in MFA (Evans and Ilic, 2001). 

A total of 279 samples across 37 sites were used in this analysis with the total 

number of samples per site ranging from 3 to 10 (Table 6-1).  

  

Cambial Age (Years)  
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Table  6-1: Number of samples per site. 

Site 1390 155 1600 2013 2042 2142 2185 2191 23 2304 

No.Samples 9 9 10 5 5 6 7 9 9 7 

           Site 2436 2559 2723 278 2789 279 280 281 303 3237 

No.Samples 9 5 9 3 8 9 6 4 7 6 

           Site 339 4301 461 5234 54 5945 6619 6630 6874 72 

No.Samples 8 8 7 7 10 9 8 9 4 10 

           Site 7643 86 9004 9008 EXM7 FERN QUA6 
   No.Samples 10 7 9 9 8 6 8 
    

When each site is looked at separately, even though the acoustic velocity follows 

the same general trend of increasing from pith to bark (Figure 6-2) within each 

site there seems to be a large spread in values for each ring between each tree. 

Although there are differences between sites, especially near the pith, this does 

not seem to follow any trend in latitude. To be able to visualize how the 

acoustic velocity is affected by latitude, longitude, spacing and altitude these 

variables were split into groups as described in the method in Chapter 2. The 

data were fairly unbalanced due to the problems encountered with the method. 

The latitude (Northing) groupings run from furthest south (Grp 0) to furthest 

north (Grp 9), longitude (Easting) runs from west (Grp 1) to east (Grp 4), altitude 

runs from lowest elevation (Grp 1) to highest elevation (Grp 9) and Spacing is 

grouped by the measured distance in metres. The number of samples in each of 

these groupings is shown in Table 6-2. 
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Table  6-2:: The number of samples and sites per group 

Northing Group 0 1 2 3 4 5 6 7 8 9 

No. Samples 6 45 37 36 43 36 37 9 8 22 

No. Sites 1 6 5 4 5 5 5 1 1 4 
  

         
  

Easting Group 1 2 3 4 
     

  

No. Samples 28 143 72 36 
     

  

No. Sites 4 19 10 4 
     

  
  

         
  

Altitude Group 1 2 3 4 5 6 7 8 9   

No. Samples 10 18 57 33 51 50 17 22 21   

No. Sites 2 3 7 4 7 6 2 3 3   
  

         
  

Spacing (m) 1.7 1.8 1.9 2 2.4 2.5 
   

  

No. Samples 43 37 8 164 12 15 
   

  

No. Sites 6 4 2 21 2 2         
 

 

 

 



   

 

Figure  6-2: Acoustic 
velocity and LOWESS 
trend line plotted by site 
in order from south 
(bottom left) to north 
(top right) 

 

Cambial Age (Years)  



230 
 

6.3 Modulus of Elasticity (MoE) 

One of the main quality parameters of Sitka spruce in Britain is its stiffness (also 

known as Modulus of Elasticity, MOE or Young‟s modulus) and strength 

(MacDonald and Hubert, 2002). 

The stiffness of wood is dependent on the microfibril angle (MFA) of the S2 cell 

wall layer and its density (Evans and Ilic, 2001, Cave and Walker, 1994) and 

relationships have been found between MFA and stiffness in Sitka spruce 

(Cowdrey and Preston, 1966, McLean et al., 2010) as well as between MFA and 

acoustic velocity (Koponen et al., 2005), though determination of MFA can often 

be an expensive process. The speed at which sound travels through a material is 

related to its stiffness and density therefore given the wood density and the 

velocity of sound it is possible to predict the stiffness of wood from the following 

equation: 

dMoE = ρV2
       Equation 6.1 

Where dMoE is the dynamic modulus of elasticity, ρ is density in kg/m3 and V is 

acoustic velocity in metres per second. 

 

Figure  6-3: Dynamic MoE by ring for the set of data that was measured for acoustic velocity 
and density. 

Cambial Age (Years)  
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For this data set, dynamic MoE was calculated on a ring basis from the above 

equation (6.1) using the mean ring density and mean ring acoustic velocity and 

the general trend when the data is plotted together is for MoE to increase from 

the pith (Figure 6-3). However, when individual trees are plotted (Figure 6-4) it 

shows that for some of the samples the dynamic MoE decreases from the pith for 

a number of rings before starting to increase. This trend in some of the trees is 

similar to that found by Vihermaa (2010) using a similar method to calculate 

dynamic MoE but when McLean et al. (2010) measured static MoE on small defect 

free samples they were all found to increase from the pith. The discrepancy in 

the trend seen here may be due to the high density core wood seen in Sitka 

spruce where density decreases to approximately ring 7 (see Chapter 4) and so it 

may be that this method of calculating MoE is not suitable for Sitka spruce in the 

first few rings. 

From the calculation of dMOE it is therefore possible that the velocity of sound 

through wood itself is a good predictor of MFA (Koponen et al., 2005) and so is 

interesting in itself. 
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Figure  6-4: Dynamic MoE 
by ring for a selection of 
trees 

Cambial Age (Years)  
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6.4 Fitting Models to Acoustic Velocity 

Four statistical models were explored to see how well they described the trend. 

The form of these models was as follows: 

1. Segmented Linear (Seg) Model – Using the segmented package in R 

(Muggeo, 2008) this model investigates whether there are two separate 

linear sections to the radial profile of acoustic velocity with a split point 

between the two sections, using a Davies test (Davies, 1987) to test for a 

significant change in gradient. Each linear section follows the form of a 

linear equation: 

Juvenile Slope:  ACV= m1x + c1  x≤13  (Equation 6.2) 

Mature Slope: ACV = m2x + c2  x>13  (Equation 6.3) 

Where ACV is the radial profile of acoustic velocity, m1 and m2 are the 

slopes, x is the cambial age and c1 and c2 are the intercepts of the 

respective sections. In this model, although it is a parameter of the 

mature section, c2 is a measure of the intercept at year zero.  

2. Michaelis Menten (MM) Model - based on the Michaelis Menten equation 

ACV = (a0*x)/ (a1+x)   (Equation 6.4) 

Where ACV is the radial profile of acoustic velocity, x is cambial age, a0 is 

the maximum acoustic velocity towards which the observed data tend, 

and a1 is a constant estimated from the data which is equal to the age at 

half of a0 This function was fitted in R using non linear least squares 

regression (nls function) to find the best fit curve.  

3. Exponential (Exp) Model – using a variation of an exponential function 

which can be used to model MFA in Sitka spruce (Jordan et al., 2005) but with a 

positive rate component: 

ACV =-b0*exp (-b1*x) +b2   (Equation 6.5) 
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Where b0 is the initial value, b1 is the rate parameter and b2 is the 

asymptote parameter estimated from the data and fitted in R using non-

linear least squares regression (nls function) to find the best fit curve. 

4. Logarithmic (Log) Model 

ACV =d0*log(x) +d1   (Equation 6.6) 

Where d0 is the gradient, d1 is the intercept and x is the cambial age and 

fitted in R using non-linear least squares regression (nls function) to find 

the best fit curve. 

6.5 Comparing Models Fitted to Acoustic Velocity 

6.5.1 Model Parameters 

Table  6-3: Parameter estimates along with Standard Errors, residual standard error and R-
squared value for the four model equations. Also shown is the number of trees and the 
percent of the total that the model wouldn’t fit to. 

Parameter Estimate Standard 
Error 

Residual 
Std Error 

R-
Squared 

No. Trees 
Not Fit 

% Total 
Not Fit 

Segmented Split Point: 13.28 years     

c1 0.094 0.0023 0.4541 0.3955 4 1.4 

m1 4.222 0.0194     

c2 0.003 0.0026     

m2 5.427 0.0491     

Michaelis 
Menten 

      

a0 5.666 0.011 0.2869 0.3454 0 0 

a1 0.806 0.017     

Exponential       

b0 1.725 0.315 0.2844 0.3858 43 15 

b1 0.131 0.007     

b2 5.642 0.218     

Logarithmic       

d0 0.531 0.009 0.2828 0.3751 0 0 

d1 3.932 0.022     
 

Each of the models was fitted to as many of the samples as possible (global 

data). The coefficients that were estimated for the four models are presented in 

Table 6-3 and are plotted along with the LOWESS trend lines of the observed 

data in Figure 6-5. Of the curved models, visually the Exponential model would 
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seem to give the best fit and this model was able to explain more of the 

variation (38.6%) than both the Logarithmic (37.5%) and Michaelis Menten Models 

(34.5%). The segmented model was able to explain slightly more of the variation 

(39.6%) and visually this was also a good fit to the data on the juvenile (initial 

increase) phase and mature (plateau) phase. The residual standard error was the 

similar for the Exponential (0.28 km/s), Logarithmic (0.28 km/s) and Michaelis 

Menten (0.29 km/s) models with the segmented model being higher at 0.45 

km/s.  

Although the Exponential model looked to give a good fit to the data when the 

models were fitted to individual trees, in the R statistical program 

(R_Core_Team, 2013), it was unable to fit to 15% but this may be due to the 

many profiles which are atypical and may be symptomatic of the grain angle 

issues described in Chapter 5. Both the Logarithmic and Michaelis Menten models 

were able to fit to all trees and the segmented model was only unable to fit to 4 

samples (1.4% of the total). 

 

Figure  6-5: The fitted line for each of the statistical models plotted against the LOWESS 
trend line. 

 

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  
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Of the three curved models tested to fit the acoustic velocity data, the Michaelis 

Menten model had a similar R-squared and residual standard error (Table 6-3) to 

the other curve models and was also able to fit to all of the trees, however, 

visually it had the worst fit to the data (Figure 6-5). The Logarithmic model also 

had a similar R-squared and residual standard error to the other curved models 

tested (Table 6-3). Visually it looked to have a better fit than the Michaelis 

Menten model but not quite as good a fit as the Exponential model (Figure 6-5). 

Although there is a lot of uncertainty about the where the noise is coming from 

in the data, the segmented and exponential models would seem to give the best 

fit and the result of fitting these to the data were examined further to 

demonstrate the analysis that could have been done. 

6.5.2 Segmented Model - Split Point between Juvenile and Mature 
Phases in Acoustic Velocity 

In order to determine if there are two separate linear segments in the acoustic 

velocity radial profile a Davies‟ test was carried out, indicating here that there 

was a significant change in the rate (p-value < 0.0001). Using the Segmented 

package in R (Muggeo, 2008) a regression model with segmented relationships 

was used to determine the parameters of the different slope segments (i.e. 

slope, intercept and split point). The result of this test gave an estimated split 

point between the juvenile and mature segments of acoustic velocity at 13.28 

years with a standard error of 0.26 and residual standard error of 0.45 km/s.  

6.5.2.1 Split Point Fitted to Individual Trees 

A segmented model seems to work well when fitted against the global data and 

this model can also be fitted against individual trees to give the acoustic velocity 

rate, intercepts and split point for each. The Davies Test algorithm for each 

individual tree looks for a significant change in slope. If the Davies Test is not 

significant then only one slope was calculated for that tree i.e. with no break 

point, for example sample 2142-29-A in Figure 6-6. This plot also shows the 

fluctuation in acoustic velocity within each tree and the difficulty faced when 

trying to fit a split point to each.  
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Figure  6-6: Observed acoustic velocity and the split point fitted by the segmented model on 
a selection of trees 
 

While the two segment model gave a good fit when modelled against the global 

data, the sensitivity when it is modelled against individual trees produced some 

very low estimates (<5 years) as well as some high estimates (>20 years) 

(Figure 6-7) indicating that this method of calculating the split point on 

individual trees may be sensitive to local fluctuations in acoustic velocity.  

Cambial Age (Years)  
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Figure  6-7: Histogram showing the distribution of split points between the two segments 
fitted by the segmented model. 
 

On this data set the segmented model was unable to fit to 4 of the 279 trees 

(Figure 6-8). Of the remaining 275 trees the model found no change of gradient 

and therefore no split point in 59 of the trees (21.5%). A selection of these are 

shown in Figure 6-9 and again these show the difficulty in fitting any model to 

these data due to the local fluctuations in acoustic velocity. 

 

Figure  6-8: Acoustic velocity measurements of the 4 trees that the segmented model 
couldn’t fit to. 

Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  
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Figure  6-9: Acoustic velocity curves for 6 of the 59 trees that the segmented model couldn't 
fit a split point. 
 

When the observed values are plotted against the predicted values for individual 

trees (Figure 6-10) it shows there is a relatively good fit with an R-Squared value 

of 0.94.  

 

Figure  6-10: Observed Vs predicted for the two segmented model on acoustic velocity when 
fitted to individual trees. R-squared =0.9389 

 

Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  
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6.5.2.2 Factors Affecting the Split Point 

In order to visualise if there is a treatment effect on the split point, the 

treatments were arranged into groups as discussed in Chapter 2 and as shown in 

Figure 6-11. This shows that whilst there were differences in the mean split 

point between the different groups there does not seem to be any visible trend 

to these differences. Analysis of variance on carried out on the split points 

showed that there were no significant differences between groups and 

regression analysis carried out on the individual values returned no significant 

effect. 

 

Figure  6-11: Split point between the two phases of the acoustic velocity curve plotted by 
northing, easting, spacing and elevation groups. Dashed line shows the value (13.3 years) 
that the model fitted to the global data. 
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Not only does there appear to be a lot of variation in the split point between 

sites (Figure 6-12) there is also a large variation within some of the sites with 

some, e.g. site EXM7, having a within site range as large as the overall range. 

However, this variation may be due to the sensitivity of the technique to local 

fluctuations within each radial profile making it difficult to determine what 

proportion of the variation between trees is due to the method and what is due 

to actual variation between the samples. 

 

Figure  6-12: The split point between the juvenile and mature phases of acoustic velocity 
plotted by Site organised from south (left) to north (right). The dashed line shows the value 
(13.3 years) when modelled against the global data. 
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6.5.3 Segmented Model – Juvenile and Mature Segments 

 

Figure  6-13: Acoustic Velocity data with blue lines showing where the segmented model 
fitted the split (age 13.2) and the upper limit of ring 25. Also shown is the LOWESS trend line 
(red line). 
 

When the segmented model is fitted against the global data it gives us a split 

between the juvenile and mature segments of the radial profile of acoustic 

velocity of between year 13 and 14 with two separate linear segments: the 

juvenile section before the split point (cambial age 2 to 13 years) and the 

mature section (cambial age 14 to 25 years) after the split point (Figure 6-13). 

Therefore it may be possible to use this split point to examine the radial 

variation in acoustic velocity of the different segments separately.  

When the segments are examined separately acoustic velocity appears linear up 

until year 13 (Figure 6-14) and also looks relatively linear between year 14 and 

25 (Figure 6-15) so it would appear reasonable to continue analysing growth 

under year 14 and between year 13 and 25 using a linear model. However 

Figure 6-13 may also suggest that while up to year 13 appears linear the segment 

after year 14 may become a plateau with no slope in which case a linear model 

of this segment may not be appropriate as there is no effect of age.  

Cambial Age (Years)  
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Figure  6-14: Acoustic velocity up to year 13, 
with LOWESS trend line 

 

Figure  6-15: Acoustic velocity year 14 to 25, 
with LOWESS trend line 

 

6.5.4 Juvenile Segment of Acoustic Velocity 

A linear model was fitted to rings 2 to 13 of all the data using ordinary least 

squares regression, performed by the “lm” function in R. This produced a 

significant p-value of < 0.0001, indicating that this segment is linear with a slope 

of 0.094 km/s/year and an intercept of 4.22 km/s. An R-squared value of 0.40 

may indicate that while this is linear, there is a lot of variation about the slope. 

The residual plots for the juvenile segment (Figure 6-16) show that the linear 

model is a reasonable fit with a relatively even distribution of residuals with 

cambial age. 

Cambial Age (Years)  Cambial Age (Years)  
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Figure  6-16: Residual plots for the linear model of rings 2 to 13 
 

Although the linear model was able to describe the age related trend in acoustic 

velocity for the juvenile segment reasonably well there is a lot of variation 

between trees when the observed values are plotted against those that the 

model predicts (Figure 6-17). 

 

Figure  6-17: Observed Vs Predicted acoustic velocity for the juvenile segment of the linear 
model. The line of equality is shown in red 
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6.5.4.1 Linear Model on Juvenile Segment Fitted to Individual Trees 

 

Figure  6-18: Slope and Intercept coefficients fitted by a linear model to the acoustic velocity 
up to cambial age 13 year for each sample 

 

When a linear model is fitted to the juvenile segment of each tree individually, 

the coefficients show quite a bit of variation in normal distributions (Figure 6-18) 

with the slope ranging from just below 0 km/s per year to just under 0.3 km/s 

per year indicating that acoustic velocity increased with age in the juvenile 

segment of almost all trees but decreased in a small number (Figure 6-19). The 

mean intercept for this segment is approximately 4.2 km/s and the range is from 

approx 2.6km/s to 5.7 km/s. 
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Figure  6-19: Samples with a negative juvenile slope (top row) compared to those with the 
highest positive slope (bottom row). 

 

The residuals, when taking account of individual trees, have a reasonable fit 

(Figure 6-20) with a relatively even distribution of residuals with cambial age. 

This is also shown when the observed data against plotted against the fitted 

linear model (Figure 6-21) giving an R-squared of 0.91, although there may be a 

slight curve at the highest and lowest values. 

Cambial Age (Years)  

Cambial Age (Years)  

Cambial Age (Years)  

Cambial Age (Years)  
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Figure  6-20: Residuals of linear model when fitted to the acoustic velocity of the juvenile 
segment of each tree, with LOWESS trend line (red) 

 

 

Figure  6-21: Observed Vs predicted for the juvenile linear model giving an R-Squared of 
0.91. 

Cambial Age (Years)  
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In order to get a visual impression of how the different treatment variables 

affect the different parameters of the linear model, the coefficients for the two 

segments were plotted by the northing, easting, spacing and elevation groups 

discussed in Chapter 2.   

Although there may be differences in the rate that acoustic velocity is changing 

from the pith (Figure 6-22) with (a) latitude (p<0.0001 when tested with ANOVA) 

and (b) longitude (p =0.04), visibly there does not seem to be any trend to the 

differences. There are also differences between the (c) Spacing groups 

(p<0.0001), and (d) Elevation groups (p =0.001) but again it is difficult to see any 

trend in the differences. 

 

Figure  6-22: Slope coefficients for the juvenile segment of acoustic velocity plotted by 
northing, easting, spacing and elevation groups. Also shown is the overall mean (red line). 
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Figure  6-23: Intercept coefficients for the juvenile segment of acoustic velocity plotted by 
northing, easting, spacing and elevation groups. Also shown is the overall mean (red line). 

 

The intercept of the juvenile segment of acoustic velocity is shown in 

Figure 6-23. It would seem that there are differences between the Northing 

groups (p=0.006) but again there is no indication of a trend due to latitude (a). 

There may be a slight positive effect of longitude (b) on the intercept and 

analysis of variance shows that there are significant differences between the 

groups (p=0.003). Statistical analysis using ANOVA showed that there were 

differences between the spacing groups (p=<0.0001) and also elevation groups 

(d) (p= 0.002) The unbalanced nature of this data set, with a small number of 

replicates in some of the groups, and pseudo replication due to trees being 

treated as individuals rather than as components of sites upon which the data 

are based are weaknesses in interpreting this data in this way. 
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6.5.4.2 Mixed Effects Model of Juvenile Segment of Acoustic Velocity 

Due to the unbalanced nature of this data set and to account for the hierarchical 

experimental design a mixed effects model was used to analyse the variation in 

acoustic velocity across the radial profile of both the juvenile and mature 

growth linear sections. In this analysis site and tree within site were the random 

effects: 

AVijk=µ + Si + Tij + Єijk     (Equation 6.7) 

where AVijk is the radial profile of acoustic velocity, µ is the overall mean, Si is 

the random effect of site, Tij is the random effect of tree within site and Єijk is 

the residual error which is attributed to within tree variation. 

When the mixed effects model was fitted without fixed effects a variance 

components analysis showed that approximately 54% of the variation is within 

tree variation, 36% was between trees at the same site and 10% was between 

sites. Once age has been taken into account the model predicted an intercept of 

4.2 km/s and the acoustic velocity increasing by 0.9 km/s per year with the 

within tree variation reduced to approximately 28%, just over 58% of the 

variation being between trees in the same site and 14% being between sites. This 

shows that if the fixed effect of cambial age is included in the model it does a 

reasonable job of describing within tree variation but, as would be expected, 

this does not describe between tree variation. Again it must be noted that there 

is a lot of uncertainty in the analysis of this data due to the grain orientation 

problems and this is reflected in the uncertainty of any findings.    

The linear model is fitted with the intercept as a random effect while slope is 

fixed, this allows the intercept of each site and tree within site to vary from the 

mean intercept and examination of the residuals show that this may be adequate 

(Figure 6-24). A random slope may also be appropriate as this also changes with 

tree. However, if the mixed effects model is updated from only having a random 

intercept to also having a random slope then the residuals show a similar amount 

of variation as when it is not included (Figure 6-25). 
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Figure  6-24: Residuals of mixed effects model on juvenile acoustic velocity segment with 
random intercept only. 

 

 

Figure  6-25: Residuals of mixed effects model on juvenile acoustic velocity segment with 
random intercept and slope. 
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The residuals in Figure 6-24 and Figure 6-25 indicate that the linear mixed 

effects model is fitting to juvenile segment quite well with a random scattering 

of the residuals in both versions. A likelihood ratio carried out in R on the two 

models and the AIC values produced indicates that the model which included 

random slope and intercept to be better as the AIC value is lower (17.2 

compared with 1020.6). 

When observed versus the predicted values are plotted for the mixed effects 

model (Figure 6-26) it indicates that model is predicting very well (R-squared = 

0.91) when fitted against individual trees, though there is same problem as seen 

before whereby there may be a slight curvature of the values at low and high 

values due to the lack of data points. 

 

Figure  6-26: Observed Vs predicted for the juvenile mixed effects model giving an R-
Squared of 0.91 
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6.5.5 Mature Segment of Acoustic Velocity 

Trying to fit a linear model to acoustic velocity of rings 14 to 25 gives an R-

squared of 0.0004 and a p-value of 0.146 which is a reflection of the fact that 

there is a slope of zero in this segment indicating that there is no relationship 

between acoustic velocity and cambial age in the mature zone. This is not a 

surprise as this is a mirror of what we would expect the profile of MFA to look 

like which also reaches a plateau (McLean, 2008). In effect this means that the 

level of acoustic velocity that the profile reaches (i.e. the intercept of the 

mature phase) is controlled by the rate in the juvenile phase and therefore any 

analysis of the mature intercept would only duplicate the juvenile phase 

analysis. Similarly, any analysis of the mature phase slope would be just looking 

at noise.  

6.5.6 Exponential Model of Acoustic Velocity 

Although the segmented analysis may indicate that acoustic velocity can be split 

into two separate segments with a specific change point between the two 

phases, it was shown, when looking at the full data set together, that it was 

difficult to extract a value for the slope of the mature segment, that was 

significantly different from zero difficult to fit a linear model.  

Fitting a LOWESS trend line to this data set (shown in Figure 6-1), indicates 

there may be a gradual change from juvenile to mature phases of acoustic 

velocity. This being the case models which describe the juvenile and mature 

phases together as a curve may fit the data better. Therefore as well as looking 

at juvenile and mature wood as two separate segments this section looks at a 

selection of different curves to see which form fits the data the best and how 

these compare to the segmented model. 
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Figure  6-27: Observed Vs Predicted for the 
Exponential model on all of the acoustic 
data. Red line shows the line of equality. 

 

Figure  6-28: Residuals for the Exponential 
model on all of the acoustic data. Red line 
shows the LOWESS trend line. 

 

The Exponential model was able to predict acoustic velocity from cambial age, 

describing the age related trend in acoustic velocity reasonably well 

(Figure 6-27). There is a lot of variation between trees and the spread of the 

observations tends to stay the same with increasing levels of acoustic velocity. 

Similarly when the residuals are plotted against cambial age they show a 

reasonably good fit. The residuals (Figure 6-28) are evenly distributed with 

cambial age though there may be a slight curve between rings 12 to 19 

suggesting the model may have a problem fitting the data around the point 

where the curve levels off to its asymptote. 

6.5.6.1 Exponential model Fitted to Individual Trees 

When fitted to individual trees the Exponential model (Figure 6-29) it looks to be 

predicting reasonably well (R-squared = 0.91) though there may be a slight curve 

to the data caused by the lack of data in these areas where it may be over 

predicting at lower values and slightly under predicting at higher values. 

Cambial Age (Years)  Predicted 
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Figure  6-29: Observed vs predicted for exponential model of acoustic velocity when fitted to 
individual trees. R-Squared = 0.9127. 
 

The residuals for the Exponential model, plotted against cambial age, shows 

there may be a non-random pattern to the data (Figure 6-30) suggesting that the 

model is not explaining everything and may be that the observed data lie 

somewhere between the segmented and exponential models, and this is 

reflected in the residuals.  

When the residuals are plotted against the observed values (Figure 6-31) it again 

shows a fairly even spread and there may be a slight tendency to increase with 

increasing acoustic velocity. 
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Figure  6-30: Residuals of Exponential model of acoustic velocity when fitted to individual 
trees, plotted against cambial age. 
 

 

Figure  6-31: Residuals of Exponential model of acoustic velocity when fitted to individual 
trees, plotted against acoustic velocity. 
 

When the Exponential model was fitted to individual trees it was unable to fit to 

43 trees (15%). The radial profile of acoustic velocity for a selection of these is 

Cambial Age (Years)  
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shown in Figure 6-32 and show the difficulty of trying to fit a model to these 

samples due to the variation in the acoustic velocity and shape of the radial 

profiles. Due to the problems with the grain orientation in the method 

(Chapter 5) it is difficult to tell whether this variation in the profile is due to 

real variation in acoustic velocity profiles among different samples or it if it is 

due to problems with the grain orientation.  

 

Figure  6-32: Acoustic velocity of 15 of the 43 trees (15% of the total) which the Exponential 
model couldn’t fit. 
 

The Exponential model produced some extremely high figures (relative to the 

other values) for the coefficients b0 (initial value), b1 (rate) and b2 (asymptote) 

as shown in the histograms in Figure 6-33. Coefficient b0 ranges from 

approximately 0.4 km s -1 to a maximum of just over 33 km s -1, with the 

majority of values falling at the lower end of the scale. Similarly, coefficient b1 

has a minimum of 0.003 km s -1 per year and a maximum of 0.9 km s -1 per year 

but again most values fall at the lower end of the scale. Coefficient b2 ranges 

from just above 4 km s -1 to approximately 36 km s -1 again with most values at 

the lower end of the scale.  

Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  
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Figure  6-33: Coefficients for the exponential model for acoustic velocity when fitted to 
individual trees. 
 

When a sample of the most extreme values of each of the coefficients are 

plotted (Figure 6-34) it shows that these values come as a result of trying to fit 

an exponential curve to data that may not be curved within this range. The 

samples which produced the highest b0 coefficient also produced the highest b2 

coefficient and these two coefficients are highly correlated to each other 

(correlation coefficient = 0.96) and the same samples also produced the lowest 

b1 coefficient (indicating a flat slope) although this shows little correlation with 

either of the other coefficients.  

In this model coefficient b0 is the starting point, i.e. the intercept, and b2 is the 

maximum value so a correlation between these coefficients shows that samples 

with high acoustic velocity at the pith are likely to have the higher maximum 

values in later rings within this range. The b1 coefficient is the rate of change in 

the slope, with higher values producing a lower rate. 



Chapter 6  259 

 

Figure  6-34: Top row shows trees which the Exponential model fitted the highest b0 and b2 
coefficients. These also correspond to the lowest b1 coefficients. Also shown are the 
samples with the lowest b0 coefficient (2

nd
 top row), the samples with the lowest b2 

coefficients (3
rd

 row) and the samples with the highest b1 coefficient (bottom row). 
 

Each of these model parameters is involved in producing a fit to the acoustic 

velocity profile so it is difficult to determine the effect that each site or 

environmental factor is having on the curve because of some of the extreme 

values produced. For this reason the coefficients for each treatment were input 

onto the respective curved model equation and plotted. Figure 6-35 shows the 

effect of the different treatments, when grouped as categorical variables, on 

the Exponential model and it looks like longitude (b) may be having an effect 

with the values at year 25 decreasing in order from west to east. There are also 

differences in the latitudinal groups (a) with a difference in acoustic velocity at 

year 25 of just over 0.5 km/s between the highest and lowest groups, with the 

highest velocity seen at the furthest north groups. It is difficult to see any trend 

of spacing (c) although there is a large spread of acoustic velocity at year 25 

with a difference of approximately 0.7 km/s between the highest and lowest 

groups. It is also difficult to see any effect of elevation (d) which also shows less 

of a spread of values at year 25 than the other groups.  

Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  
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It would be difficult to attempt a rigorous statistical treatment of these data 

due to the problems described previously and also difficult to draw conclusions, 

except perhaps that exponential functions give fitted coefficients that are linked 

to one another and vary non-linearly, which makes them difficult to deal with. 

 

Figure  6-35: Coefficients of the Exponential model plotted by latitude, longitude, spacing 
and altitude groups. 
 

Although the reliability of these data is questionable, this shows how the 

acoustic velocity can be modelled and how the model can then be used to 

determine what is having an effect on it. Because of the large range found in the 

coefficients when modelled against individual trees the coefficients were also 

calculated at a site level. When tested no significant correlations were found 

with the spacing groups or the elevation groups. There was a significant 

correlation between latitude and the intercept coefficient b0 (correlation 

coefficient = 0.41) but not for the rate (b1) or asymptote (b2) (Figure 6-36). 

There was also a correlation between coefficient b1 and longitude (correlation 

coefficient = 0.43) though this may be the result of one high value skewing the 

data (Figure 6-37). 

Cambial Age (Years)  

Cambial Age (Years)  Cambial Age (Years)  

Cambial Age (Years)  
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Figure  6-36: Correlation between the Exponential model coefficients, calculated by site, and 
latitude. Showing a significant correlation between latitude and b0, but no significant 
correlation between either b1 or b2 and latitude. 
 

 

Figure  6-37: Correlation between the Exponential model coefficients, calculated by site, and 
longitude. Showing a significant correlation between longitude and b1, but no significant 
correlation between either b0 or b2 and longitude. 
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6.6 Discussion of Acoustic Velocity models 

McLean (2008) measured static MOE by bending tests on small clear samples of 

Sitka spruce and found that there is a non-linear increase in MOE with cambial 

age from the pith similar to that found in other softwood species such as Norway 

spruce (Koponen et al., 2005). However the samples used by McLean (2008) were 

small clear batons measuring 20mm in the radial and transverse direction. This 

means that only one measurement was taken every 20mm in the radial direction 

and so it is unknown what happens to MOE within those 20mm blocks. Acoustic 

velocity and density in this study were measured every 2mm from the pith which 

allowed dynamic MOE to be calculated in much finer resolution and this 

indicated that dynamic MOE in some samples decreased for the first few rings, 

before increasing towards the bark. This trend is similar to that found by 

Vihermaa (2010) who measured acoustic velocity on Sitka spruce discs also in 2 

mm increments and found that when dynamic MOE was calculated by tree from 

the acoustic velocity and density data in some cases it would decrease from the 

pith in the core wood before increasing after approximately ring 5. This 

discrepancy between static MOE measured on small clears and the calculated 

dynamic MOE here would suggest that further research is required in this area to 

determine the static MOE by bending tests at a finer resolution and to compare 

that to dynamic MOE calculated from density and acoustic velocity on the same 

samples.  

The initial decrease found in the dynamic MOE is due to Sitka spruce core wood 

having high density, along with shorter tracheids, at the pith which decreases in 

the first few rings. The length of tracheids has been found to influence the 

velocity of sound with it being faster in longer tracheids (Burmeste, 1965). 

Keunecke et al. (2007) found the velocity of ultrasound was lower in yew than in 

Norway spruce which they attributed to the shorter tracheids in yew. However, 

acoustic velocity itself may be a good estimator of micro fibril angle 

(Lachenburch et al., 2011, Evans and Ilic, 2001) as well as a proxy for cell wall 

longitudinal stiffness and so it is valuable to measure and model this parameter 

on its own.  

As with the growth data investigated in Chapter 3 observation of the acoustic 

velocity data indicated that it could be described as having two different 
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sections. Firstly there is juvenile phase which is characterised by an increase in 

acoustic velocity which is then followed by mature phase where the acoustic 

velocity reaches a plateau. Statistical analysis of the radial profile showed that 

there was evidence that this was the case and gave a split point between the 

two segments of between 13 and 14 years. 

Analysis of the acoustic velocity data showed that when each tree is looked at 

individually there is a lot of noise within each radial profile making it difficult to 

distinguish between noise and an actual change in slope. The sensitivity of the 

segmented model to changes in the slope means that, as a means to define the 

position of the split point, this method may not work well when fitted to 

individual trees and this was shown by the range of split points found. When 

fitted to the global data the segmented model gave a reasonable fit and gave 

similar split point to that found by (Vihermaa et al., 2014) who measured 

acoustic velocity on Sitka spruce discs. This suggests that it should be possible to 

examine juvenile and mature wood using a two segmented model to look at each 

phase separately with the split between the two segments set between year 13 

and 14. However the acoustic velocity in the mature segment had reached a 

plateau and therefore there is no effect of age on the slope in this phase. 

Therefore the level of acoustic velocity in the mature phase is dependent only 

on the juvenile segment. 

A linear model was fitted to the juvenile segment and indicated that there is a 

significant positive linear slope to this phase, although a lot of variation about 

this was found. R was unable to fit a linear model to the mature phase of 

acoustic velocity and this is mainly due to the fact that there was no slope and 

so no effect of age. 

As well as this, the first 3 or 4 rings of the mature phase were made up of the 

deceleration from the increasing juvenile phase to the plateau mature phase and 

this could suggest that there may be a more gradual change in acoustic velocity 

rather than the quick change that the segmented model is looking for. This being 

the case this data may be better suited to models which describe the radial 

profile as a curve. Different forms of curves were looked at in this section and 

the R-squared values and residual standard errors show them to be relatively 

similar when fitted to all of the data together. Of the curve models tested, all 



Chapter 6  264 

had similar residual standard errors (0.28 to 0.29 km/s) and while both the 

Michaelis Menten and Logarithmic models could fit to every sample the 

Exponential couldn‟t fit to 15%. However the Exponential model gave the best fit 

to the data when fitted to individual trees (R-squared = 0.39) both visually and 

by the residuals, with the Michaelis Menten model especially giving a poor fit.  

The segmented model looked to be a reasonable fit to the data and though there 

may be a problem around the area where there is a change in acoustic velocity, 

the R-squared was the highest of the models tested (although as was the residual 

standard errors) and it was able to fit to almost 99% of the trees.  

Analysis of the linear phases of the segmented models using mixed effects 

analysis showed that most (58%) of the variation in the juvenile profile of 

acoustic velocity was between trees within the same site and a large proportion 

of the variation being within tree variation (28%) with less variation between 

sites (14%). Similarly in the mature phase most of the variation was also between 

trees in the same site (69%) indicating that it may be difficult to determine any 

site effects on the acoustic velocity and that within site effects may be more 

important. 

All of the other models seemed to have slight problems either with the fit, the 

number of trees able to fit to or with the predicted values and residuals. This 

was also the case when plotted for the linear segmented model and it may be as 

a result of the variation in the acoustic velocity profile of each sample and this 

may be a consequence of the problems encountered with the method as 

discussed earlier in the chapter. The next stage in this process would be to 

analyse the juvenile portion of the profile using a linear mixed effects model or 

the whole profile using non-linear mixed effect to investigate any site factors 

that are having an influence on acoustic velocity, however analysis shows that 

there a lot of within site variation and since there is uncertainty with this data 

as to whether the variation is real or caused by the method it is difficult to 

discern what is noise and what is actual acoustic velocity and so to take it 

further would be flawed.
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7 Within Season Variation in Tree Radial 
Expansion 

There have been various studies which investigated the influence that the 

environment has on tree growth, focussing on productive conifers in the UK with 

some focus on Sitka spruce. Studies have investigated the growth response of 

trees to silvicultural practices such as weed control and fertiliser (McIntosh, 

1981) and how this response can be modelled (Snowdon, 2002) to estimate the 

long term effects. Further studies have examined the gross response using CO2 

exchange to measure the productivity of a forest (Clement et al., 2003) and how 

this can be modelled to assess the impact of the environment on this exchange 

(Clement et al., 2012). Wang et al. (1991) investigated photosynthetically active 

radiation (PAR) and how this could be related to biomass production and 

Beauchamp et al. (2013) were able to relate the timing of seasonal growth to 

sap flux. However, although these studies are able to relate the growth response 

to these factors they are limited as a method of measuring tree growth and how 

it responds to changes in the environment. Feliksik and Wilczynski (2008) 

reported on the effect of climate on Sitka spruce in Poland and found a positive 

correlation between winter and early spring temperature and growth and a 

negative correlation between early summer temperature and growth. The same 

study also found that winter frost and dry summers are the main limiting factors 

for growth, and increased growth depended on high precipitation not only during 

the growing season but also during the latter stages of the previous year. Feliksik 

and Wilczynski (2009) reported a further study that suggested that the coastal 

area of the Baltic Sea low temperature was the main limiting factor for growth 

of Sitka spruce. In a different study, which used micro-cores to measure the 

relationship between growth and climate in Black spruce and Balsam fir, it was 

found that precipitation and humidity can influence the cell area and diameter 

in earlywood, but had less of an influence on latewood (Krause et al., 2010). 

Summer droughts and so low soil moisture due to high summer temperatures 

were the most important factors in limiting radial growth in a study into Norway 

spruce in Russia (Aakala and Kuuluvainen, 2011). 

To investigate the effect of seasonal climate on the radial expansion of trees 

this study utilised a long term experimental site at Griffin Forest near Aberfeldy, 

in Scotland, which has been used in previous studies (Beauchamp, 2011, 
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Wingate, 2003, Vihermaa, 2010), as well as a new control site which was 

established in Harwood Forest in the North East of England. At these sites, radial 

expansion was measured using point dendrometers, which record any change in 

the diameter of the tree (Drew and Downes, 2009, Irvine and Grace, 1997). 

Additional supporting meteorological climatic measurements of air temperature, 

relative humidity, and soil moisture were recorded at both Griffin and Harwood, 

with Met Office weather data obtained for Aberfeldy from a local Met-Office 

weather station at Dull. These climate variables were then compared to the 

radial expansion measurements to investigate the interactive effects on 

temporal growth dynamics and the timing of radial expansion events such as 

when radial expansion start/ends, when latewood growth starts, daily 

fluctuations in radial expansion and annual variation in radial expansion. Various 

studies have shown that while dendrometers can give measurements of stem 

size, they can be of limited value for measuring the timing of growth and the 

„type‟ of wood being produced (Baucker et al., 1998, Makinen et al., 2003, 

Turcotte et al., 2009) due to water movement causing a natural shrinkage and 

swelling of the stem giving a false impression of when growth starts in the spring 

(Turcotte et al., 2009) and when it ends in the autumn (Makinen et al., 2003). 

5oC is widely accepted as a threshold for the thermal growing season (Sarvas, 

1972), and photosynthetic production can occur in spruce any time that 

temperature is above 5oC (Jarvis and Leverenz, 1982), although during the 

winter this may produce stored carbohydrate reserves rather than growth 

(Collakova et al., 2013, Dauwe et al., 2012). The aim of this study was to take 

radial expansion measurements at a high temporal resolution at the Griffin site 

by dendrometers to determine the variation in radial expansion, and therefore 

growth, at a within site level and to investigate the influence of the local 

climate on growth through comparison with simultaneous investigations at 

Harwood.  

Although growth may be controlled by a number of factors there is doubt as to 

which responses are more closely controlled by genotype and day length and 

what is controlled by climate. By taking radial expansion measurements at very 

fine time resolution (at two minute intervals) along with background 

meteorological data this study investigated and reports on how changing daily 

and seasonal conditions can effect growth. 
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7.1 Griffin Site 

 

Figure  7-1: Map of Scotland and Northern England showing locations of the Griffin and 
Harwood sites. 

 

The study investigated the radial expansion of trees at two location: Griffin 

Forest near Aberfeldy in Perthshire, Scotland (grid reference NN 289809 747485) 

(Figure 7-1) and Harwood Forest (in Northumberland in the North East of 

England, grid reference NY 398510 591340). The Griffin site was chosen as this 

forest has previously been used for long term monitoring by previous PhD studies 

from the University of Edinburgh (Wingate, 2003, Beauchamp, 2011) and the 

University of Glasgow (Vihermaa, 2010), and also had other studies being 

undertaken concurrently within this experimental forest. This investigation‟s 

primary focus was to build on work done in of these previous studies, especially 

those reported by Vihermaa (2010), to provide high-resolution data and 

improved understanding of the triggers for radial expansion of Sitka spruce. 
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Griffin Forest site is an even-aged plantation of Queen Charlotte Islands 

provenance Sitka spruce that was planted in 1981 on an area that was previously 

moorland with soil at the site being peaty gley and peaty podsols. It is situated 

at an elevation of 340m, has an average temperature of 8.2oC and a mean 

annual precipitation of 1200mm (Wingate, 2003). The forest was planted at 2200 

trees per hectare (Wingate, 2003) and has since been thinned, with every 5th row 

being removed (Vihermaa, 2010).  

7.1.1 Tree Selection 

Table  7-1: Tree and dendrometer (LVDT) number, diameter at breast height (DBH) and height 
of the trees selected at Griffin forest in April 2008 (Vihermaa, 2010) and the DBH of the same 
trees measured in July 2012 towards the end of the current experiment. 

Tree 
Number 

LVDT Number DBH (cm) 
April 2008 

DBH (cm) 
July 2012 

Height (m) 
April 2008 

08 3 30.4 35.5 18.8 

15 4 28.0 32.8 18.7 

43 2 27.6 34.4 17.9 

48 1 36.7 44.3 20.6 

66 5 26.0 28.3 15.7 
 

Within the Griffin site, the radial expansion of 5 trees was monitored. The initial 

selection and set up of these trees was carried out by Vihermaa, (2010), during 

2008, by randomly selecting 5 dominant trees within a sampling plot. The details 

of the 5 trees are shown in Table 7-1. The diameter at breast height (DBH) was 

measured at the beginning of the experiment (April 2008) and again towards the 

end of the experiment (July 2012) using a DBH tape, which calculates the DBH 

from the circumference, providing an independent check on the dendrometer 

measurements. Figure 7-2 shows a detailed schematic site diagram of the Griffin 

site. At the site a gentle 50 slope is downhill from left to right and also from top 

to bottom giving an overall diagonal from the top left to the bottom right of 

Figure 7-2. There is a small stream at the western side of the plot which is also 

the lowest point. Thinning has taken place at this site and the positions of trees 

which have been cut down are marked on the schematic site diagram (with 

yellow dots). This shows that two full rows of trees have been removed adjacent 

to trees 48, 43 and 8. The positions of all the other trees in the plot provide an 

indication of the competition for the experimental trees. 
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Figure  7-2: Plan of the experimental site within Griffin Forest. Showing the position of the 
trees used within the experiment along with the position of the other trees and where trees 
have been thinned. This plan is an approximation and not to scale. 

 

7.1.2 Methods 

At the Griffin site radial expansion was measured using point dendrometers, 

consisting of LVDT (Linear Variable Displacement Transducer) probes which, by 

using the change in an applied voltage, record variations in the tree diameter at 

very fine time resolutions (2 minute intervals). The LVDT probes were held in 

place on the northern side of the tree by two stainless steel beams which are 

insulated by Styrofoam and attached to each other at 900. One beam is attached 

to the eastern face of the tree with a screw and the LVDT is attached to the 

other beam enabling measurements to be made on the northern face 

(Figure 7-3). A spirit level attached to the second beam adjacent to the LVDT 

ensures that the LVDT is positioned correctly after any adjustment and any 

movement can be detected (Figure 7-4). To measure changes in temperature 

between the tree wood and the steel beams two thermistor temperature sensors 

were used. One was attached to the steel beam beneath the insulation and the 

other was inserted into a small hole drilled into the tree. The data were 

collected using a Campbell Scientific CR23X datalogger, powered by two 12v car 

batteries, which collected growth data from the LVDT at 2 minute intervals and 

averaged to 15 minutes. As well as tree growth measurements, background 

meteorological data at the site was also recorded including air temperature (oC) 

and relative humidity (%) using a Campbell Scientific CS215 probe placed at 1.3 
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m above the ground, and soil moisture using TDR (Time Domain Reflectometry) 

probes (which measure the time taken for an electromagnetic wave to travel 

between needles embedded in the soil and then expressed as percent moisture) 

at 4 points within the experimental plot, logged every 15 minutes (Figure 7-2).  

Site visits took place every two weeks during the growing season and three 

weeks during the winter. During the visits the data was downloaded using the 

Campbell Scientific Loggernet computer program to a laptop computer and 

during the growing season the LDVT were readjusted to take account of any 

radial expansion that had taken place.  

During site visits two small micro-cores (1.5 mm in diameter) were taken from 

each tree, using a Trephor Microcorer. Though not described within this study it 

is intended that in the future these micro-cores can be used to determine the 

type of cells being produced at specific times which could be compared to the 

dendrometer data to give a detailed pattern of wood growth throughout the 

year. 

 

Figure  7-3: Picture of an LVDT dendrometer and insulated steal beam supports measuring 
tree growth on Tree 8 at Griffin Forest. 
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Figure  7-4: Picture of an LVDT dendrometer and spirit level attached to Tree 8 at Griffin 
Forest. 

 

7.1.3 Results 

7.1.3.1 Griffin Climate 

While there are significant correlations between the measurements of soil 

moisture where all four probes follow the same  trend (Pearson Correlation 

coefficients range from 0.95 to 0.99 between the four probes) there are 

differences in the absolute values measured (p < 0.0001) when tested with 

ANOVA. The 5 year profile of the soil moisture probes is shown in Figure 7-5. 

Since the soil moisture of all four probes fluctuate at the same time the effect 

of changing soil moisture can still be compared to the growth to see if there is a 

connection. To do this the mean value for the 4 probes was used. 
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Figure  7-5: Comparison of soil moisture probes showing how the soil moisture can change 
over a short distance on one site. 
 

As well as the measurements being taken at the Griffin site weather station data 

was also obtained from the Aberfeldy Dull Met Office weather station. This is 

approximately 8 km from the Griffin site (grid ref: NN 281964 749289) at a 

height of 100 metres. Comparison of the weather station data to that measured 

at Griffin shows that there is quite a strong agreement between rainfall events 

and soil moisture as shown in the 2010 example in Figure 7-6 and this was similar 

across all the years measured. Figure 7-6 also gives an indication of how quickly 

soil moisture is depleted after rainfall events, especially during the growing 

season (approx. days 90 to 270) with only sustained rain resulting in increased 

soil moisture over longer periods.  
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Figure  7-6: Comparison of soil moisture measured at Griffin site during 2010 with rainfall 
measured at Aberfeldy, Dull weather station. 
 

The temperature measured at Griffin shows a very similar pattern to that 

measured at the weather station in Aberfeldy where the minimum daily 

temperature follows an almost exact pattern and scale (Figure 7-7) and the two 

measurements were found to be highly correlated (Pearson correlation 

coefficient 0.918). Although the mean daily temperatures measured in Aberfeldy 

are consistently higher and the range is larger than those at the Griffin site they 

both follow a very similar pattern with the peaks and troughs occurring at the 

same time (Figure 7-8) and again both were found to be highly correlated 

(Pearson correlation coefficient 0.935). The larger range found in the 

temperatures measured at Aberfeldy weather station indicates that the 

temperature within the forest does not fluctuate as much as those out in the 

open but may be more indicative of the type of fluctuation in temperature 

which could be expected in the canopy of the trees. The examples shown in 

Figure 7-7 and Figure 7-8 are for 2010 but the pattern was similar across all 

years measured.  
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Figure  7-7: Comparison of minimum daily temperature measured at Griffin site during 2010 
with that measured at Aberfeldy Dull weather station. 

 

 

Figure  7-8: Comparison of mean daily temperature measured at Griffin site during 2010 with 
that measured at Aberfeldy Dull weather station. 
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To be able to visually compare the data the daily temperature data were 

smoothed (by taking a 30-day moving average) and there were some differences 

between years found in mean temperature measured at Griffin site (Figure 7-9). 

This is especially true during the winter periods which saw two extremely cold 

winters (2009-2010 and 2010-2011) and is also evident in early spring. The 

summer temperatures are similar throughout as are the autumn temperatures 

when temperature begins to decrease again. 

 

Figure  7-9: Comparison of daily mean air temperature by year measured at the Griffin site 

 

To be able to compare soil moisture across years (Figure 7-10) the data were 

also smoothed using a 30-day moving average. Differences in soil moisture 

between the years are apparent with 2008 and 2010 notably drier years and 2012 

being a wetter year. Apart from 2012 the other years show a tendency for the 

summer months to be the period of lowest soil moisture, while the winter 

periods show similar levels of soil moisture between the years. 
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Figure  7-10: Comparison of the daily mean soil moisture by year measured at the Griffin site  

 

7.1.3.2 Variation in Radial Expansion 

At the Griffin site radial expansion of the tree stem starts each year around the 

beginning of April and ends in mid-September and as expected this period 

corresponds to the time when temperatures start to increase in spring and 

carries on until temperatures start to drop again in autumn (Figure 7-11). This 

period also corresponds to the drier summer period when relative humidity and 

soil moisture are low and less water is available to the trees. The timing of 

radial increment is similar in trees 43 and 48 (red and black line respectively) 

and the magnitude of radial expansion is similar until the final two growing 

periods (2011 and 2012). Radial expansion is slightly less in tree 15 (blue line) 

and through the first 4 years and in 2012 there was a malfunction of the 

dendrometer for this tree resulting in no radial expansion measured. Tree 66 

(grey line) shows very little response over the whole time period and 

examination of the site shows that this tree is no longer one of the dominant 

trees in the area. Tree 8 (green line) initially showed a large increase but wildly 

fluctuating results can be seen since the summer of 2010 into 2011 and these are 

put down to problems with the data-logging cabling at the site. 

 



   

 

Figure  7-11: Griffin site measurements from June 2008 to October 2012. The top panel of the graph shows air temperature (
o
C, black) and relative humidity 

(%, blue), soil moisture (%) is shown in the middle and radial expansion of the five trees, as measured by LVDT dendrometers in the bottom panel. 
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The results shown in Figure 7-11 also show large decreases in stem size on all 

trees during the winter of 2009/2010 and then again in 2010/2011. Closer 

inspection of the measurements at this time reveals that the dips in readings 

occur at the same time as extreme cold periods (e.g. Figure 7-12). The reasons 

for this dip are unclear but similar effects have also been seen in other studies 

(Winget and Kozlowski, 1964, Zweifel et al., 2000, Devine and Harrington, 2010) 

and it has been proposed that this phenomenon may reflect changes in the bark 

water content as water moves inwards due to a water potential gradient 

developing as water freezes in the outer section of the tree? (Zweifel et al., 

2000). Low temperatures around this time also caused the power source to fail 

leading to a short term loss of data. 

 

Figure  7-12: Measurements for tree 48 during the winter of (a) 2009/2010 and (b) 2010/2011 
showing a big dip in readings corresponding to extreme cold events. 

 

Table  7-2: Comparison between manual DBH measurements and the radial expansion 
measurements taken by the dendrometers 

Griffin Tree 
No. 

Growth by DBH 
(Diameter cm) 

Expansion by  
Dendrometers (Radius cm) 

48 7.6 4.0 

43 6.8 3.4 

8 5.1 3.6 

15 4.8 2.1 

66 2.3 0.7 
 

DBH measurements were taken at the beginning of the experiment and also 

towards the end of the experiments (as shown earlier in Table 7-1) and these 

can be used to confirm the dendrometer readings for each tree. The difference 

between the beginning and end DBH measurements are shown in Table 7-2 along 

with the overall measurement of radial expansion calculated from the 

dendrometer data. From this it can be seen that both methods give similar 
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results though there were differences. Tree 48 would appear to have the most 

radial expansion, with agreement by both assessment methods, with an increase 

in DBH of 7.6 cm and radius of 4.0 cm. Whilst tree 43 has the second most radial 

expansion by DBH (6.8 cm) the radial increment (3.4 cm) is slightly smaller than 

that for tree 08 (3.6 cm) and this anomaly is likely to be due to the equipment 

failure on tree 08 during 2010. Tree 15 shows slightly higher growth by DBH than 

dendrometer (4.8 cm compared with 2.1 cm) but again this may reflect a period 

of equipment failure in 2012. Tree 66 shows the least radial expansion by both 

methods with the dendrometer readings slightly smaller than the DBH readings. 

Figure 7-11 provides clear evidence that whilst there are similarities in the 

timing of commencement and cessation of radial expansion there are clear 

differences between individual trees in the amount of radial expansion that 

takes place each year. This intra-site variability highlights the difficulty in 

measuring and predicting growth with a site factor such as climatological data 

when micro site factors, genetics and other within site factors clearly have 

influence. In order to compare the radial expansion of each tree the values for 

each year were standardised by subtracting the baseline value which had the 

effect of zeroing the starting point of radial expansion each year. Figure 7-13 

attempts to show this by plotting the amount of radial expansion by each tree 

for each year. As mentioned previously the 2010 season for tree 8 (blue) can be 

ignored since this was an equipment malfunction. As well as this there were 

problems with equipment for tree 15 at the beginning of 2010 and in 2012.  
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Figure  7-13: Comparison by year of the radial expansion curves of the 5 trees at Griffin 
when radial expansion is reset to zero each year  

 

Figure 7-13 shows that tree 48 has the highest radial expansion most years and 

tends to increase each year for the first 4 years, with a radial increment of 

approximately 5mm in 2008 increasing to approximately 11.4 mm in 2011, and 

then a drop in 2012. Although at a different magnitude, trees 43, 15 and 66 show 

a similar pattern to tree 48 in the first 3 years with an increase in the amount of 

radial expansion each year. However trees 43 and 15 then show less radial 

expansion in 2011 than they did in previous years and then a slight increase 

again in 2012. Tree 8 shows the most radial expansion in the first year but less in 

the second year before increasing again in 2011. However problems developed 

with the cable connecting the logger to the dendrometer means that 

measurements at the end of 2009, through 2010 and the beginning of 2011 can 

be discounted. Tree 66 shows the least radial expansion out of all the trees and 

in fact shows very little expansion overall in any of the years measured. The 

amount of radial expansion shown by each tree for each year is shown in 

Table 7-3. This shows that although there are some similarities in the yearly 

trends, and also some differences, each tree also has a different magnitude of 

radial expansion.  
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Table  7-3: Amount of radial expansion achieved by each tree each year measured by point 
dendrometers. 

Max Radial Expansion by Year (mm) 

Tree 2008 2009 2010 2011 2012 

48 5.0 8.3 10.3 11.4 8.6 

43 7.1 7.9 9.25 5.2 6.5 

8 9.7 6.8 n/a 9.4 7.8 

15 3.7 6.1 7.3 4.3 n/a 

66 1.2 1.2 2.0 2.4 1.6 

 

7.1.3.3 Temperature and Soil Moisture Effect on Radial Expansion 

In order to investigate the effect of temperature and soil moisture on tree radial 

expansion the maximum daily dendrometer value was used to give an integrated 

daily radial expansion curve. In order to determine a radial expansion trend the 

noise seen with the raw data was removed using 30 day moving average. The 

first derivative of radial expansion with respect to day (i.e. daily radial 

expansion rate) was calculated by subtracting each daily value on the smoothed 

curve from the following daily value on the same curve to give a radial 

expansion rate for each day. An example of this is shown in Figure 7-14 for tree 

48 during the growing period of 2011. 



Chapter 7  282 

 

Figure  7-14: Example of calculating the radial expansion rate for tree 48 during the growing 
season of 2011. The rate value was calculated by subtracting each daily value from the 
following daily value. 
 

The main points of interest from this experiment are to investigate when radial 

expansion starts and ends each year, the amount of radial expansion each year 

as well as when growth switches from early to late wood and what are the 

climatic controls of this process and transition. By plotting soil moisture and air 

temperature against the daily radial expansion rate patterns starts to emerge. In 

this series tree 48 is used as the main example and this is looked at for each 

year followed by the four other trees for the same year. The soil moisture and 

temperature readings were done on a site basis so are the same for each year 

across the different tree graphs.  

In general there does seem to be more instrumental noise in the winter months 

which could indicate freeze-thaw impacts on the outer layers of the tree during 

extreme cold weather events or could be evapotranspirational demand when the 

soil-plant-atmosphere continuum is perturbed by lack of soil water availability 

(due to frozen soil) but this reduces as the trees start to expand.  

Although there are slight differences in the trees the radial expansion of each 

tree is characterised by distinct periods during the growing season similar to that 

seen in Figure 7-14. This includes a period of slow expansion of the stem during 
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early spring followed by a period of rapid expansion. The expansion rate then 

peaks and is followed by a period where the rate of radial expansion slows, 

which may be linked to the tree switching from earlywood growth to latewood 

growth characterised by smaller cells with denser walls. 

Figure 7-15 shows the measurements for tree 48 in 2008. Although 

measurements did not commence until April of that year they coincided with the 

start of the growing season. Distinct periods of radial expansion can be observed 

and how these can be related to the climate variables, which are consistent 

across most of the trees and can be described in the following steps: 

1. When the mean temperature is above approximately 3oC a period of slow 

expansion of the trunk begins. This temperature may also correspond to 

minimum temperatures rising above 0 oC. 

2. Once the mean temperature is consistently above 5oC there is a rapid 

increase in the expansion rate. 

3. As summer progresses and temperatures reach a peak the radial expansion 

rate starts to decrease.  

4. Radial expansion stops as temperatures are decreasing in the autumn but 

before the mean temperature reaches 5oC. 

The same basic features of points 1 – 4 above can be seen in the four other trees 

during the same year (Figure 7-16) although tree 66, which had very little radial 

expansion, has a different timing for the decrease in rate and cessation of active 

radial expansion. 

Another feature which appears in the rate of radial expansion of some trees is a 

plateau or hump in the radial expansion rate during the growing season e.g. 

trees 43 and 8 in 2008 (Figure 7-16) which would suggest that in these trees the 

rate of radial expansion slows and then speeds up again. 

 



   

 

Figure  7-15: The 
effect of soil 
moisture and 
temperature on the 
rate of expansion 
of Tree 48 at 
Griffin during 
2008. 
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The rate of radial expansion of tree 48 during 2008 is shown in Figure 7-15. Mean 

temperature rose above 5oC on day 115 (15th April) and this corresponds to an 

increase in the radial expansion rate of the tree. The expansion rate slows from 

approximately day 143 (23th May) until day 163 (June 12th) forming a “hump” 

before rising again until day 197 (16th July). Following this the expansion rate 

decreases sharply until radial expansion stops on day 270 (27th Sept). Towards 

the end of the year mean temperature drops below 5oC around day 292 (19th 

Oct). Soil moisture measurements commenced on day 148 (27th May) and was 

followed by a period of decreasing soil moisture during late summer 

(corresponding to the slowing of the rate of radial expansion) before rising again 

in autumn. The first drop in soil moisture seems to have little effect on the 

radial expansion rate which continues to rise. The second dip in soil moisture 

(approximately day 180 to 220), however, corresponds to the period of highest 

radial expansion rate which for tree 48 starts to decline as soil moisture reaches 

approximately 30%.  

 

The radial expansion rate during 2008 of trees 43, 8, 15 and 66 are shown in 

Figure 7-16 below. While the temperature and soil moisture measurements are 

the same as in Figure 7-15 there are differences in the radial expansion rate of 

the individual trees. Trees 43 and 8 show similar initial increases in radial 

expansion rate but tree 15 has a much slower rate. All three trees show a 

levelling of the radial expansion rate, as seen for tree 48 before, at around day 

145 before rising again at approximately day 185. The radial expansion rate of 

trees 43, 8 and 15 all start to decrease in summer at around day 200 and have all 

stopped expanding by day 270 similar to tree 48. Tree 66 shows a different 

pattern to the other trees. Radial expansion starts later, has a much slower rate 

and stops expanding before the other trees with radial expansion finished by 

about day 190. Similar to that seen in tree 48 Figure 7-16 shows the same dip in 

soil moisture around day 180 to 220, which corresponds to the period of highest 

radial expansion rate for all trees except tree 66. The radial expansion rate of 

trees 43, 8 and 15 all start to decline as soil moisture reduces to 30%. 
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Figure  7-16: The effect of soil moisture and temperature on the radial expansion rate of 
Trees 43, 8, 15 and 66 at Griffin during 2008. 

 



   

 

Figure  7-17: The 
effect of soil 
moisture and 
temperature on 
the radial 
expansion rate of 
Tree 48 at Griffin 
during 2009. 
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The radial expansion rate of tree 48 during 2009 is shown in Figure 7-17. The 

rate of radial expansion first starts to increase around day 82 (23rd March). Mean 

temperature rose above 5oC on day 98 (8th April) which corresponds to a period 

of increased radial expansion rate. The rate of radial expansion continues to 

increase until approximately day 165 (14th June) when a loss of power meant no 

measurements were taken until day 171 when radial expansion rate had already 

started to decrease. This also corresponds to a period of decreasing soil 

moisture. Radial expansion stops on for tree 48 on approximately day 269 (26th 

Sept).  

 

The radial expansion rate during 2009 of trees 43, 8, 15 and 66 are shown in 

Figure 7-18 below. The initial increase in the radial expansion rate for trees 43, 

8 and 15 starts at around day 79 (20th March) followed by a slight increase in the 

rate at around day 94 (4th April). As in Figure 7-17 a loss of power at around day 

165 makes it difficult to determine when the peak radial expansion rate was 

reached and when it started to decline and at approximately day 150 problems 

occurred with the cable of tree 8 causing problems with the readings. As before, 

tree 66 shows very little increase in the radial expansion rate, which starts after 

and finishes before the other trees. 
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Figure  7-18: The effect of soil moisture and temperature on the rate of radial expansion of 
Trees 43, 8, 15 and 66 at Griffin during 2009. 

 



   

 

Figure  7-19: The 
effect of soil 
moisture and 
temperature on 
the radial 
expansion rate of 
Tree 48 at Griffin 
during 2010. 
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Prior to the growing season starting in 2010 there was a sustained period of 

extremely cold weather which caused large fluctuations in the size of the tree 

stems and this is reflected in the radial expansion rate of tree 48 at the 

beginning of the year shown in Figure 7-19. After the cold period slow expansion 

starts at around day 90 (31st March) and starts to increase more rapidly at day 

103 (13th April) around the same time which mean temperature rose above 5oC. 

The radial expansion rate continues to increase until approximately day 181 (30th 

June) when it starts to decrease again and radial expansion stops around day 

274. During the growing season of 2010 there was a marked decrease in soil 

moisture corresponding to the period of highest radial expansion rate and also 

corresponds to the time when the radial expansion rate starts to decline. When 

soil moisture decreases to 30% there seems to be a corresponding dip in radial 

expansion rate in tree 48, although there is a slight recovery after this before 

radial expansion rate starts to decline towards the end of the growing season. 

Since there were problems with the equipment during 2010 on tree 8 the 

measurements are not shown along with the other trees in Figure 7-20.In this, 

following a similar trend to tree 48, tree 43 starts to slowly expand at around 

day 88 (29th March) before radial expansion rate increases rapidly at around day 

122 (2nd May). Radial expansion rate peaks at day 165 (14th June) and stops at 

day 269 (26th September). Tree 15 starts a period of rapid expansion around day 

90 (31st March) which peaks at day 116 (26th April) followed by a sudden drop in 

the radial expansion rate until about day 126 (6th May). The rate then increases 

again and peaks at day 169 (18th June) before decreasing and radial expansion 

stops around day 268 (25th September). Although tree 66 starts to increase at 

around the same day as the other trees the rate of radial expansion is much 

slower starts to decrease earlier in the year (day 185) and radial expansion stops 

earlier in the year (approximately day 240). Similar to tree 48, when soil 

moisture decreases to 30% the radial expansion rate of trees 43 and 15 starts to 

decline, but unlike tree 48 they continue to decline until radial expansion stops 

at the end of the season. This is the same effect as seen earlier in 2008. 
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Figure  7-20: The effect of soil moisture and temperature on the rate of radial expansion of 
Trees 43, 15 and 66 at Griffin during 2010. 

 

 



   

 

Figure  7-21: The 
effect of soil 
moisture and 
temperature on 
the radial 
expansion rate of 
Tree 48 at Griffin 
during 2011
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The rate of radial expansion of tree 48 during 2011 is shown in Figure 7-21. The 

stem starts to expand on day 70 (11th March) before radial expansion rate 

increases rapidly on day 88 (29th March) corresponding to the same day that 

mean temperature rose above 5oC. The radial expansion rate slows slightly from 

approximately day 127 (7th May) to 146 (26th May) before rising again and peaking 

around day 181 (30th June). Following this the radial expansion rate decreases 

sharply until radial expansion stops on day 265 (22nd Sept). Towards the end of 

the year mean temperature drops below 5oC around day 325 (21st Nov). Although 

relatively high for the remainder of the year, soil moisture deceases early in the 

growing season which corresponds to the time when a decrease in radial 

expansion rate is seen, around day 127. 

 

Problems continued with the equipment on tree 8 during 2011 and Figure 7-22 

shows the radial expansion rate for trees 43, 15 and 66 during 2011. The radial 

expansion rate for tree 43 and 15 are lower than seen in previous years leading 

to lower radial expansion in these trees. Expansion starts for all three trees 

around the same time around day 70 (11th March) and there are increases in the 

radial expansion rate around day 90 (31st March). Tree 43 radial expansion rate 

peaks around day 140 (20th May) then slows slightly and remains relatively 

constant until decreasing again in late summer (day 203 – 22nd July) and stopping 

around day 260 (17th Sept). The radial expansion rate for tree 15 also peaks and 

reaches a plateau between days 125 to 199 (5th May to 18th July) before 

decreasing and stops expanding around day 249 (6th Sept).   

Although tree 66 starts to increase at around the same day as the other trees the 

rate of radial expansion is much slower starts to decrease earlier in the year 

(approx. day 163 – 12th June) and radial expansion stops earlier in the year 

(approximately day 240 – 28th Aug).  
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Figure  7-22: The effect of soil moisture and temperature on the radial expansion rate of 
Trees 43, 15 and 66 at Griffin during 2011. 
 

 



   

 

Figure  7-23: The 
effect of soil 
moisture and 
temperature on 
the radial 
expansion rate 
of Tree 48 at 
Griffin during 
2012. 
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The beginning of 2012 shows a slightly different pattern of temperature than the 

previous years. Not only was the preceding winter period milder there was a 

period of increasing temperature early in the year before temperatures dropped 

again. This resulted in mean temperatures being above 3oC consistently from 

mid February although temperatures were not consistently above 5oC until the 

beginning of May. Figure 7-23 shows that this resulted in a much longer period of 

slow increment gain, from approximately day 75 (16th March) to day 128 (8th 

May), before the period of rapid radial expansion when mean temperatures 

eventually rose above 5oC. The radial expansion rate for tree 48 peaked then 

continued at a steady rate from day 157 (6th Jun) before starting to slow down 

after day 218 (7th August). However the time when tree 48 stopped expanding 

was similar to that seen in previous years (day 255 – 13th Sept) leading to a 

shorter growing season and to the decrease in the amount of radial expansion 

seen on the tree.  

 

This same effect can be seen in the radial expansion of trees 43 and 15 during 

2012 shown in Figure 7-24.Both have a longer period of slow expansion at the 

beginning of the season which lasts through the dip in temperature until mean 

temperature consistently rises above 5oC on at day 130 (10th May). Both trees 

start to slow down around day 190 (9th July) and growth stops around day 250 

(7th Sept) which is similar to that seen in previous years. As seen in previous 

years, tree 66 has a much slower radial expansion rate than the other trees, 

although in 2012 the increase in radial expansion rate, decline in radial 

expansion rate and the date that radial expansion stops occur at a similar time 

to the other trees investigated. 
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Figure  7-24: The effect of soil moisture and temperature on the radial expansion rate of 
Trees 43, 8, and 66 at Griffin during 2012. 
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The day of the year when trees start expanding are plotted against the day of 

the year that the mean temperature is consistently above 5oC in Figure 7-25. 

This shows that trees start to expand at a similar time to each other which 

coincide with when temperatures rise above 5oC each year. Since this is 

different for each of the years investigated it suggests that the main driver for 

the start of the growing season is temperatures rising above 5oC.  

 

Figure  7-25: Shows the day of the year that the radial expansion rate starts to rapidly 
increase along with when temperature is greater than 5 

0
C  

 

At Griffin the day the mean air temperatures reach 3oC was also plotted for each 

year against the day that the trees showed a slow increase in size (Figure 7-26) 

and again there are not only similarities as to when this occurs between trees 

but also occurs at a similar time to minimum temperatures rising above 3oC.  

The day that radial expansion stops was also plotted for each tree (Figure 7-27) 

showing that it not only occurs at a similar time for each tree but also occurs at 

a similar time each year and this is before the mean temperature drops below 

50C.  
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Figure  7-26: Shows the day of the year that the slow expansion of the trees starts and when 
the mean temperature is greater than 3

0
C 

 

 

Figure  7-27: Shows the day of the year that the radial expansion stops along with the days 
that the mean temperature is consistently below 5

0
C. 
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Although there are some differences between years in the timing of when the 

radial expansion rate starts to decrease it is similar between the different trees 

each year (Figure 7-28).  

 

Figure  7-28: Shows the day of each year that the radial expansion rate of the trees at Griffin 
starts to decrease. 

 

7.1.3.4 Soil Moisture and Precipitation Effect on Maximum Daily Expansion 

In order to investigate the effect of soil moisture further, the radial expansion 

data for the period when radial expansion was taking place was detrended by 

subtracting the smoothed 30 day moving average value from the maximum daily 

radial expansion value. This allowed the daily maximum value to be plotted 

without the influence of the radial expansion trend. An example of how this was 

done is shown for tree 48 in 2011 is shown in Figure 7-29. 

Decrease in Rate of Radial Expansion 
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Figure  7-29: Example of detrending the radial expansion curve for tree 48 in during the 
growing season of 2011. The detrended value was calculated by subtracting the 30 day 
moving average smoothed radial expansion value from the radial expansion value for the 
same day. 

 

Once the maximum daily expansion of the stem has been detrended in this way a 

comparison was made to soil moisture for the period of radial expansion of each 

tree for each year. The daily changes in the maximum stem size appear to 

coincide with changes in soil moisture with a lot of the peaks in both (though not 

all) occurring at the same time. Examples of this for each tree each year are 

shown in Figure 7-30 to Figure 7-39. 
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Figure  7-30: The detrended maximum daily expansion measured for each tree plotted 
against the mean daily soil moisture value for the period where growth was occurring 
during 2008. 
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During the growing season of 2008 (Figure 7-30), the maximum daily expansion 

of each tree is closely aligned, with peaks occurring at the same time (although 

to different magnitudes). There are two periods where soil moisture declines 

(from approximately day 150 to 175 and from day 200 to 210). The first of these 

dips during the season leads to little effect on the maximum daily expansion in 

tree 43, 15 and 66, but trees 43 and 8 show an increase during this period. For 

the second dry period, later in the season, most trees show a dip in the 

maximum expansion as the soil moisture reaches a level of 30%. This is followed 

by an increase which starts prior to the recovery of soil moisture. At the end of 

the growing period there is a time where soil moisture and the expansion look to 

be linked (from approximately day 220 to day 270).    

In some years soil moisture is seen to decline during the period when radial 

expansion rate starts to decline although may be connection is unclear 

(Section 7.1.3.3). However, since low soil moisture could be caused by tree 

uptake or lack of rain during the summer soil moisture for 2008 was plotted 

against rainfall for the same period (Figure 7-31) and shows that the drop in 

moisture seen at approximately day 210 may have been due to a period of low 

rainfall which would be compounded by the fact that this is also a period of high 

water uptake by the tree. Periods of low rainfall outside the growing season do 

not show this same drop in soil moisture e.g. days 320 to 340 in Figure 7-31.  

 

Figure  7-31: Soil moisture measured at Griffin plotted against rainfall at Aberfeldy for year 
2008. A period of low soil moisture at approximately day 210 corresponds to a period 
relatively low rainfall. 
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By superimposing the rainfall data on to the maximum daily expansion data it 

shows that the peaks in daily expansion occur at similar times in each tree and 

these often correspond closely to rainfall events (Figure 7-32) 

 

Figure  7-32: Rainfall measured at Aberfeldy weather station compared to the maximum daily 
expansion of trees for the same period during 2008. 
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Figure  7-33: The detrended maximum daily expansion measured for each tree plotted 
against the mean daily soil moisture value for 2009. 
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Figure 7-33 shows there are no clear impact as moisture does not reach a sub 

optimal level. However peaks in soil moisture do, again, appear to correspond to 

peaks in the maximum daily expansion of the trunk. When the maximum daily 

expansion is plotted against rainfall (Figure 7-34), it shows again that many of 

the peaks in daily expansion correspond to rainfall events.  

 

Figure  7-34: Rainfall measured at Aberfeldy weather station compared to the maximum daily 
expansion of trees for the same period during 2009. 
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Figure  7-35: The detrended daily maximum expansion measured for each tree plotted 
against the mean daily soil moisture value for 2010. 
 

2010 saw the largest dip in soil moisture seen in any of the years investigated at 

Griffin, however this does not seem to have an effect on the overall amount of 

radial expansion as this was one of the most productive years, as shown earlier 
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(Figure 7-13), and also does not seem to have had an impact on the daily 

expansion which, although there were fluctuations remained relatively 

consistent throughout (Figure 7-35). There does, however, seem to be another 

signal at approximately day 135 where there is a consistent dip across all trees. 

Although the reason for this dip is unclear it may coincide with a period of low 

precipitation (Figure 7-36).  

 

Figure  7-36: Rainfall measured at Aberfeldy weather station compared to the maximum daily 
expansion of trees for the same period during 2010. 
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Figure  7-37: The detrended daily maximum expansion measured for each tree plotted 
against the mean daily soil moisture value for 2011. 
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There appears to be a clear linkage between the maximum daily expansion and 

soil moisture during 2011 from approximately day 130 onwards (Figure 7-37) 

which is consistent across all trees measured and this is also translated into a 

link with rainfall events (Figure 7-38) which seem to be higher and more 

consistent than the other years investigated.  

 

 

Figure  7-38: Rainfall measured at Aberfeldy weather station compared to the maximum daily 
expansion of trees for the same period during 2011. 
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Figure  7-39: The detrended daily maximum expansion measured for each tree plotted 
against the mean daily soil moisture value for 2012. 
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Figure 7-39 shows a dip in the daily expansion around day 145 and again on 

approximately day 175 consistently across all trees although this does not seem 

to be connected to soil moisture. When plotted against rainfall (Figure 7-40) the 

first dip corresponds to a period of low rainfall, consistent with previous years. 

However for the dip around day 175 corresponds to a period of relatively high 

rainfall.  

 

Figure  7-40: Rainfall measured at Aberfeldy weather station compared to the maximum daily 
expansion of trees for the same period during 2012. 
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7.2 : Harwood Site 

Since Griffin site was already set up at the beginning of this study, it was 

decided that a new “control” site would be set up using the same measurements 

so that any variability between the sites could be evaluated. 

7.2.1 Site Selection 

The second site used was at Harwood Forest in Northumberland in the North East 

of England (NY 398510 591340) (Figure 7-1). Harwood was chosen as it has 

previously been used for a number of studies by The University of Edinburgh 

(Zerva and Mencuccini, 2005, Mojeremane et al., 2010, Ball et al., 2007). 

Harwood is a plantation dominated by different aged Queen Charlotte Islands 

provenance Sitka spruce that was first established in the 1930s with further 

planting in the 1950s and 1980s (Mojeremane et al., 2010). It is planted on an 

area that was previously upland rough pasture with soil at the site being peaty 

gley. The sample site within this forest consists of approx. 30-year-old trees and 

is situated at an elevation of 309m. The average temperature is 7.6 0C and a 

mean annual precipitation of 950 mm (Zerva and Mencuccini, 2005). The site 

characteristics of Griffin compared with Harwood site are shown in Table 7-4. 

Table  7-4: Comparison of characteristics of Griffin and Harwood sites 

Site Griffin Harwood 

Age (Years) 30 27 

Soil Type Peaty gley / podsols Peaty gley 

Trees Ha-1 2200 1600 

Average Tree Height (m) 18.3 22.48 

Average DBH (cm) 29.7 36.26 

Elevation (m) 340 309 

Mean Annual Temperature (OC) 8.2 7.6 

Mean annual Precipitation (mm) 1200 950 
 

Within the site chosen there was currently no research being undertaken and 

therefore a new sample area had to be set up, although as a result of the 

previous studies there was mains electricity. The electricity connected to a shed 

was able to be used to ensure that the batteries from which the instruments and 

loggers run were constantly recharged negating the loss of power problems 

experienced at Griffin. 
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7.2.2 Tree Selection 

Tree selection was done during April 2010 by plotting a rectangular area (20m x 

50m) within the forest of approximately 100 trees (total number of trees in the 

area discounting dead trees was 92). Within this plot the trees were numbered 

from 1 to 92 and the diameter at breast height (DBH) of all the trees measured. 

The trees were then divided into quartiles dependant on the DBH and 5 trees 

from the dominant quartile (i.e. largest DBH) which had no major physical 

defects were randomly selected to be used for dendrometer measurements. 

Dominant trees are selected so that the effect of competition from other trees is 

minimised. Details of the 5 trees selected are shown in Table 7-5.  

Table  7-5: Number, diameter at breast height (DBH) and height of the trees selected at 
Harwood forest in April 2010 

Tree Number LVDT Number DBH (cm) Height (m) 

19 1 36.5 23.1 

1 2 38.3 22.8 

41 3 34.3 25.0 

28 4 41.0 21.0 

14 5 31.2 20.5 
 

7.2.3 Method 

The Harwood site was set-up to run a series of measurements similar to those 

recorded at Griffin including radial expansion of the trees, tree wood and metal 

beam temperatures, soil moisture, air temperature, relative humidity.  

Whilst the Griffin site was already set-up before the current study started and 

measurements have been taken since 2008 (Vihermaa, 2010), the Harwood site 

looked to replicate the set up of Griffin, but since it was a new experiment all of 

the equipment had to be sourced, built, programmed and installed from the 

beginning. A full list of equipment used can be found in Appendix 1. 

Tree radial expansion was measured using Linear Variable Displacement 

Transducer (LVDT) probes (one per tree), fixed to the tree using stainless steel 

beams, which are then insulated with Styrofoam. Since there are differences in 

the thermal expansion of wood compared to the steel beams this has to be taken 

into account as it could have an effect on the measurements being taken 
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(Sevanto et al., 2005a). In order to calculate the difference in thermal 

expansion, the temperature of each is measured using one thermistor 

temperature sensor attached to the steel beam and another inserted a small 

hole drilled in the tree. The measurements can then be corrected using the 

linear thermal expansion co-efficient for wet wood and that for the steel beam 

(Sevanto et al., 2005a, Vihermaa, 2010). Using this method Vihermaa (2010) 

reported that there was no effect due to no difference between the expansion 

of the wood and the steel beam. 

Soil moisture was measured using 3 ThetaProbe ML2x soil moisture sensors 

placed within the plot area at a depth of 30 cm. Sap flow was measured using 

Dynamax, Inc. TDP30 Thermal Dissipation Sap Velocity Probe. Each tree had two 

probes, one placed on the north side of the trunk and the other on the south 

side. Each probe consists of two probes (one of which is electrically heated) 

inserted into the trunk and measures sap flow by heat dissipation in the sapwood 

which increases with sap flow (Granier, 1985). However, there was a problem 

getting the logger systems to work in the initial stages which was found to be 

caused by the sap flow sensors drawing too much power. It was therefore 

decided to discontinue the sap flow measurements so that radial expansion 

measurements could be obtained. 

Harwood tree radial expansion was measured and logged every two minutes, 

with the data then being averaged to every 15 minutes once downloaded. 

Temperature, humidity and soil moisture was measured and logged every 15 

minutes. The site was visited every two weeks during the growing season to 

download data from the dataloggers, reset the dendrometers and also to take 

microcores as described for Griffin. 

Whereas the Griffin site had one datalogger to cover the measurements of all 

five trees, at Harwood there were four Campbell CR1000 data loggers (Appendix 

2 shows an example schematic for logger 1 and 2), which were be placed to 

record data from no more than two trees each. The original design and initial 

programming of the loggers was put together with the help of Dr. Kevin Scott of 

Meteormetrics Ltd.  A schematic drawing of the Harwood site is shown in 

Figure 7-41 and each datalogger was set up as follows: 
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 Logger 1 (Trees 1 and 41): 2 dendrometers, 4 thermistors, 4 sap flow 

sensors, and 1 soil moisture. Total 11 channels. (See Appendix 2)  

 

 Logger 2 (Trees 14 and 28): 2 dendrometers, 4 thermistors, 4 sap flow 

sensors, and 1 soil moisture. Total 11 channels. (See Appendix 2) 

 

 Logger 3 (Tree 19): 1 dendrometer, 2 thermistors, 2 sap flow sensors, 1 

soil moisture, 1 temperature and 1 humidity. Total 8 channels.  

 

 Logger 4 (Tower): 1 temperature, 1 humidity, 1 rainfall, 1 PAR 

(photosynthetic active radiation), 1 wind speed (counter) and 1 wind 

direction. Total 6 channels.  

 

 

Figure  7-41: Schematic of Harwood field site showing position of trees, tower, soil moisture 
probes and air temperature/ relative humidity probes and the associated dataloggers. 

 

7.2.4 Results 

Results were obtained from the Harwood site from the beginning February 2012 

until the middle October 2012 when the growing season had ended. 

 Harwood Plot Area

(Not to Scale)

Tree 19

Logger 3

Soil Moisture

Air Temp/ RH

Tree 14

Tree 28 Logger 2 50 m

Tree 41

Logger 4

Logger 1 Tower

Tree 1 Shed

20 m
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7.2.4.1 Site Climate Comparison 

Harwood forest in Northumberland has a similar climate to Griffin forest in 

Perthshire. During this study the air temperature was monitored at both 

locations and a comparison of these are shown in Figure 7-42. Temperatures at 

both of the sites are extremely well matched especially in the first half of the 

year where it is difficult to see any difference. In the second half of the year 

these is a slight difference in the range of temperatures with Harwood getting 

slightly higher temperatures, but the highs and lows of the temperature profiles 

occur simultaneously. 

 

Figure  7-42: Comparison of temperatures measured at Griffin and Harwood during 2012. 

 

Soil moisture was also measured at both sites which show a similar overall level 

of soil moisture with Harwood being slightly higher (Figure 7-43). Some of the 

peaks in soil moisture occur at the same time, but this is not as clear as seen 

with temperature. 
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Figure  7-43: Comparison of soil moisture measured at Griffin and Harwood during 2012. 

 

7.2.4.2 Growth at Harwood 

Problems with the dendrometer for tree 1 meant that, although it was 

measuring growth it wasn‟t doing so correctly until a new replacement 

dendrometer was installed at the end of July. Therefore the results for tree 1 

before this point can be ignored.  

At the Harwood site radial expansion of the tree stem starts each year around 

the beginning of April and ends at the beginning of September (Figure 7-44). As 

with Griffin this period corresponds to the time when temperatures start to 

increase in spring and carries on until temperatures start to drop again in 

autumn.  
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Figure  7-44: Harwood site radial expansion measurements from February 2012 showing 
radial growth of the five trees, as measured by LVDT dendrometers.  

 

The period of expansion for Griffin and Harwood were also found to be very 

similar for 2012. On average trees started expanding at Griffin on day 127 of the 

year (7th May) and at Harwood on day 128. Similarly at Griffin radial expansion 

stopped on average at day of year 245 (2nd September) while at Harwood radial 

expansion stopped on average at day 243. A full list of days when radial 

expansion starts and stops is shown in Table 7-6.    

Table  7-6: Comparison between Griffin and Harwood sites of the days when radial 
expansion started and stopped. 

Griffin vs Harwood radial expansion Period 2012 

Griffin 
Tree 

Start Day 
of Year 

Stop Day 
of Year 

Harwood 
Tree 

Start Day 
of Year 

Stop Day 
of Year 

48 127 254 14 127 258 

43 127 242 28 130 189 

8 126 250 1   266 

15    41 125 235 

66 129 233 19 131 266 

Average  127 245 Average  128 243 
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Although Table 7-6 shows that the date when radial expansion starts and stops is 

very similar between the two sites measured, the overall radial expansion during 

2012 was found to be higher at Griffin. The amount of radial expansion 

measured at Griffin during 2012 varied from almost 2 mm to almost 9 mm with 

an average radial expansion of 6.4 mm. The radial expansion between the 

Harwood trees was more similar ranging from 2.3 mm to 3.7 mm and an average 

of 2.7 mm (Table 7-7).  

Table  7-7: Comparison between Griffin and Harwood sites of total radial expansion for each 
tree during 2012  

Griffin vs Harwood Total radial expansion 2012 

Griffin Tree Expansion (mm) Harwood Tree Expansion (mm) 

48 8.82 14 3.67 

43 6.81 28 2.44 

8 7.97 1  
15  41 2.27 

66 1.98 19 2.49 

Average 6.40 Average 2.72 

 

The same distinct periods of radial expansion that were seen at Griffin can also 

be seen at Harwood. The radial expansion rate for tree 14 at Harwood can be 

seen in Figure 7-45 which shows that early in the season when mean 

temperatures start to increase there is a slow expansion in the stem (1). Once 

temperatures are consistently above 50C there is a rapid increase in the radial 

expansion rate (2) from around day 129 (9th May) which speaks at approximately 

day 160 (9th June) before decreasing again in late summer (3). Similar to Griffin 

radial expansion stops at around day 260 (17th Sept) (4) before temperatures 

drop below 50C. 



   

Figure  7-45: The 
effect of soil 
moisture and 
temperature on 
the radial 
expansion rate of 
Tree 48 at 
Harwood during 
2012. 
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Figure  7-46: The effect of soil moisture and temperature on the radial expansion rate of 
Trees 28, 41, and 19 at Harwood during 2012. 
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The effects seen in Figure 7-45 can also be seen in the other trees at Harwood 

(Figure 7-46). In this, trees 28 and 19 show a period of slow expansion at the 

early part of the growing season, followed by a more rapid radial expansion rate 

starting at approximately day 130 (10th May). This period of rapid radial 

expansion rate can also be seen in tree 41 though data for earlier in the season 

is missing. The radial expansion rate of all three trees shown starts to decline 

around day 160 to 165 although this would seem to be a more gradual decrease 

in the rate than that seen at Griffin. Radial expansion seems to stop for tree 28 

at around day 190 and also tree 41 around day 244. However, both of these trees 

then appear to show a slight increase in the radial expansion rate after this time 

which may correspond to a period of increased soil moisture.   
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Figure  7-47: The detrended daily maximum expansion measured for each tree at Harwood 
plotted against the mean daily soil moisture value for 2012. 

 

As described with the Griffin growth data, the daily maximum radial expansion 

was detrended to allow a comparison to be made with soil moisture for the 

growth period. Like Griffin, the daily changes in the maximum stem size appear 

to coincide with changes in soil moisture with a lot of the peaks in both (though 

not all) occurring at the same time (Figure 7-47). This is especially true with 

trees 14 and 28 which appear to follow similar patterns to the soil moisture 

measurements. Soil moisture was higher at Harwood than at Griffin and this was 

maintained throughout the growing season and this would be unlikely to limit 

tree growth. 
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7.3 Variation in Stem Width - Diurnal / Seasonal Changes 
/ Amplitude 

As well as the seasonal trend in stem expansion there is also a daily trend with 

fluctuations of shrinking and swelling caused by water movement within the 

stem (Devine and Harrington, 2010, Abe and Nakai, 1999, Downes et al., 1999, 

Makinen et al., 2003, Turcotte et al., 2009, Irvine and Grace, 1997). It has been 

suggested that these daily fluctuations are a result of high transpiration rates 

during the day when absorption of water through the roots cannot supply enough 

water to the stem resulting in water being drawn from tissue causing the stem to 

shrink, and then swell again at night when the stem re-saturates with water 

(Herzog et al., 1995). A study by Duchesne and Houle (2011) found that stem 

diameter expansion occurred on rainy days when solar radiation was low and 

humidity was high whereas on dry periods with high solar radiation and low 

humidity the stem diameter decreased. Herzog et al. (1995) described the daily 

fluctuations in 5 phases: 1. Nightly re-saturation of the stem with water, there is 

no sap flow, 2. Delay between the increase in the flow and the shrinking of the 

stem, 3. The stem shrinks rapidly and the flow increases, 4. Delay between the 

maximum in the flow and the minimum in the radius, 5. Decrease in flow and 

radius increases. A later study then reduced to three distinct phases: 

1.contraction, 2.swelling, and 3.stem radius increase; which cycle in approx 24 

hrs (Downes et al., 1999) (see Figure 7-48). This three step daily stem cycle 

approach has been used by various studies for growth and climate analysis on 

various tree species (Downes et al., 1999, Deslauriers et al., 2003, Deslauriers et 

al., 2007, Turcotte et al., 2009).  
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Figure  7-48: The daily expansion and contraction of the tree trunk along with the radial 
increment (red). Here the radial expansion curve has also been detrended (blue) to take 
account of the seasonal increase in size allowing the amplitude of the diurnal variation to be 
measured. 
 

7.3.1 Analysis 

The dendrometer measurements taken at Griffin (discussed in section 7.1.2) give 

data on the annual increment of the radius of the trees being measured (as 

shown in Figure 7-11 but if looked at in more detail the measurements also give 

data on the daily fluctuations in the radius due to shrinking and swelling of the 

stem. In order to look at the diurnal shrinking and swelling in more detail and 

the amplitude of these changes the data must first be detrended to take out the 

natural seasonal variation. 

In order to remove the trend of increasing radial expansion the best fit linear 

line was calculated over a 2-day period using the “Trend” function in Excel. 

Next, to remove noise, a 60 point (2 hourly) moving average was taken.  

The amplitude of the diurnal change was calculated for each day between a 

maximum in the morning (when the stem is at its largest) and a minimum in the 

afternoon (when the stem has shrunk to its smallest). 
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7.3.2 Results 

Tree measurements at Griffin are recorded every two minutes giving information 

on stem radius at a very fine time resolution that has been ongoing with data 

available since 2008. Figure 7-49 shows a small portion of the data recorded over 

a twelve-day period in May/June 2010 showing an example of the radial 

expansion curves compared to the detrended data for the same period. The data 

collected at Griffin during the summer shows the natural trend as described by 

(Downes et al., 1999), where there is a daily cycle of shrinking, swelling and 

radial increase (Figure 7-49 ). This shows the difficulty in comparing diurnal 

changes and radial expansion between trees as each has a different starting 

point and a slightly different slope. Once the data have been detrended it is 

easier to see how each tree not only follows a similar pattern, but also have 

similar amplitudes each day. At Griffin the trees reach a peak in size each day at 

about 6 am and at a minimum size in the evening at about 6pm.  

 

Figure  7-49: Dendrometer data collected from Griffin in June 2010 showing the raw data (a) 
showing the upward trend and the detrended data (b) showing the daily variation in 
readings and so the diurnal variation in stem width 
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The diurnal variation data has been plotted for three separate months during the 

measurements to give an example of the effect of soil moisture and air 

temperature on the diurnal variation. Figure 7-50 shows an example from the 

summer of 2009 and although soil moisture is relatively steady during this period 

there were two slight rises which could correspond to changes in the diurnal 

amplitude. However this period also corresponds to changes in the normal 

temperature pattern for this period making it unclear the amplitude of shrinkage 

and swelling change as a result of temperature or soil moisture, or as a 

combination of these factors. 

 

Figure  7-50: Air temperature, soil moisture and detrended radial expansion logged at Griffin 
in June 2009. 
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Figure 7-51 shows the diurnal variation from a period in July and August 2010. 

During this period there were larger changes in soil moisture which may have an 

effect on the regular pattern of daily swelling and shrinking. For example on 

approx 15th and 22nd July when there was an increase in soil moisture the 

amount of shrinkage was reduced.  

 

Figure  7-51: Air temperature, soil moisture and detrended radial expansion logged at Griffin 
in July and August 2010 
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This same pattern seen in Figure 7-51 is repeated in Figure 7-52, that is that 

times of increased soil moisture seem to coincide with periods of irregular 

diurnal changes in the stem size. As with the previous examples this often occurs 

at the same time as the daily temperature patterns become irregular. There may 

also be a suggestion from all three graphs (Figure 7-50,Figure 7-51 and 

Figure 7-52) that some days where shrinkage is at a maximum corresponds to 

days when high temperatures were recorded. 

 

 

Figure  7-52: Air temperature, soil moisture and detrended radial expansion logged at Griffin 
in June and July 2011. 
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Whilst Figure 7-50, Figure 7-51 and Figure 7-52 show diurnal changes over a 

relatively short time period during the growing seasons Figure 7-53 shows a 

similar timescale but during the winter. This shows that there is still a diurnal 

variation in the stem size even though no growth is taking place. Although the 

trees are following similar pattern to each other during the winter the variation 

does not show the same regular pattern as during the summer.  

 

Figure  7-53: Air temperature, soil moisture and detrended radial expansion logged at Griffin 
in November and December 2009. 

 

Figure 7-54 shows the daily amplitude in stem size for the Griffin trees over the 

whole time period that data is available, from April 2008 to October 2012. 

Although there are high values seen in the winter periods this is explained by the 

shrinkage of the trees due to extreme cold conditions experienced at this time 

(as shown in Figure 7-12), which has also been noted in previous studies (Devine 

and Harrington, 2010, Zweifel and Hasler, 2000). The variation in the amplitude 

is relatively synchronised in all trees and shows there may be some indication 

that the amplitude is smaller in winter periods and largest during the summer. 
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Figure  7-54: The amplitude of the daily changes in radius of the trees at Griffin site from 
April 2008 to October 2012. 
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7.4 Discussion on Tree Growth at Griffin and Harwood 

Growth measurements at Griffin have been collected along with meteorological 

data since 2008 with the data being used in previous studies into the effect of 

site and climate on the growth of Sitka spruce (Vihermaa, 2010). This study 

aimed to build on this previous work by the collection of further measurements 

at Griffin site in the hope that a relatively long timeline of data over a number 

of seasons can yield more information on the effect that climate has on Sitka 

spruce. Along with the Griffin site measurements, a new experimental site was 

established at Harwood forest in Northumberland allowing growth for 2012 at 

the two sites to be compared. Although only one season of growth data was 

measured at Harwood it showed that although there were a lot of similarities in 

when growth started and stopped during the year the amount of growth varied 

within the sites but overall was lower at Harwood. The reasons for this are 

unclear as temperatures were very similar at both sites and soil moisture was 

slightly higher at Harwood but could be caused by the age of the crop, nutrient 

limitation or waterlogging at the site. At the Griffin site the growth in radius 

measured by dendrometers was compared with the change in DBH manually 

measured at the beginning and end of the experiment. Although there were 

slight differences between the two measurements this would be expected due to 

the different method used and both gave similar values. 

Analysis of tree growth at the Griffin site has shown that there is a lot of 

variation in the amount of growth measured between different trees. From this 

experiment it is difficult to ascertain the reason for these differences since 

detailed soil moisture and temperature readings were not made for each tree. 

However, soil moisture was measured at four different points within the site and 

these showed there was variation in soil moisture throughout the site. If this was 

extrapolated to the whole site then it is easy to see that different trees have 

different amounts of soil moisture available and this could have an effect on 

growth. Of the trees measured in this experiment, tree 66 had by far the least 

amount of growth and this may have been due to the management of this site. 

Thinning is known to have an impact on tree growth (Savill and Sandels, 1983, 

Deans and Milne, 1999, MacDonald and Hubert, 2002) and this may be a factor 

here. The trees which showed the most growth each year (48, 43 and 8) were all 

adjacent to a row where thinning had taken place and this may contribute to the 
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higher growth rate. Although some thinning had taken place near tree 66 there 

was still a lot of competition from other trees and this resulted in tree 66 no 

longer being a dominant tree. Tree 66 not only shows a slower growth rate, but 

also stops growing earlier in the season than the other trees and this may be due 

root competition for soil water and shading effects as this tree had become 

subdominant and therefore subject to crown competition for available incoming 

net solar radiation. Wang and Jarvis (1990) found that the total area of leaves 

and spatial distribution in the crown were the most important factors for 

radiation absorbance and photosynthesis. By becoming subdominant the sub-

canopy position of tree 66 could mean that the majority of its photosynthate is 

captured only when the sun is high in the sky (midsummer) and during the 

central part of the day which could lead to lower growth rates and a shorter 

growing season. 

Previous studies on other species in other countries have shown that the timing 

of the beginning of growth can vary between years (Deslauriers et al., 2003) and 

that temperature is the main factor determining when growth starts (Turcotte et 

al., 2009, Rossi et al., 2007, Rossi et al., 2008). In the current study at the 

beginning of each growing season there is a point where the mean temperature 

is consistently above 30C, which in most cases also corresponds to minimum 

temperatures rising above 00C. From the measurements made here this point 

coincides with a gradual increase in the stem size which could be related to 

spring rehydration which has been seen to occur before radial growth occurs in 

Black spruce in Canada (Turcotte et al., 2009). In a 2008 study comparing 

different methods of analysing wood formation (pinning, microcores and 

dendrometers) in Norway spruce and Scots pine in Finland, Makinen et al. (2008) 

found that dendrometers showed an increase in stem radius earlier in spring 

when no wood formation was detected by either microcores or by pinning. A 

study by Vihermaa (2010), which compared dendrometer readings with 

microcores taken in 2008 for the same five trees at Griffin used in this 

experiment, also found that dendrometers detected an increase in stem size 

earlier in spring than growth was detected by analysing microcores. Investigating 

Norway spruce growing in southern Finland using microcores Kalliokoski et al. 

(2012) found that tracheid formation did not occur until several weeks after 

mean air temperature had been above 5oC. In the Vihermaa (2010) study 
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dendrometers detected an increase in stem size at the end of April while growth 

was not detected in the microcores until the second half of May. This coincides 

with the period of rapid expansion seen in the stems in this study suggesting that 

the expansion seen in early spring may be due to reasons other than growth and 

is likely to reflect the onset of active evapotranspiration with enhanced 

hydraulic conductivity from the soil to leaf to support the onset of 

photosynthetic carbon gain. 

In this study, this period of rapid expansion coincides with the mean daily 

temperature rising above 50C. Rossi et al. (2007) found that growth of larch, 

Stone pine and Norway spruce in northern Italy occurred when air temperature 

was above 5.60C to 8.50C suggesting there was a thermal limit to wood 

formation. This was also seen in Scots pine in Austria by Swidrak et al. (2011) 

who found that there was an air temperature threshold of 5-60C for the start of 

xylem growth and also that air temperature rather than precipitation was the 

trigger for growth. By artificially heating localized areas of the stem of Norway 

spruce trees Gricar et al. (2006) were able to initiate cambial divisions earlier 

than that for a control tree with no heating which again suggests that 

temperature is the main driver for the onset of growth in spring. The onset of 

radial growth of the stem of the tree must be predicated by the fixing of CO2 in 

the needles, with the possibility that there may be some complex carbohydrate 

storage (starch or acylglycerols or sacchharides) (Dauwe et al., 2012, Collakova 

et al., 2013) which gene regulations onset by temperature (Joosen et al., 2006) 

may bring „out of store‟, therefore the likelihood is that cambial division onset 

by heating is accessing these stored compounds. 

Table  7-8: The number of days during the preceding winter that the mean temperature was 
below 5

0
C before the growing season at Griffin started. 

Growing Season 2008 2009 2010 2011 2012 

No. Days Previous Winter < 50C 
(Chill Days) 

NA 173 173 158 140 

 

It has been suggested that bud burst in Sitka spruce is subject to a high chilling 

requirement (i.e. the period preceding the growing season having 140 days less 

than 50C) (Cannell and Smith, 1983, Murray et al., 1989). In this study the mean 

temperature for the winters preceding the growing seasons of 2009, 2010 and 
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2011 all exceeded this requirement (Table 7-8) and growth started immediately 

when the temperature rose above 50C. However, the chill period preceding the 

growing season of 2012 initially did not meet this requirement as there was an 

early increase in temperature to approx 50C after only 96 days. There was then a 

period of mild temperatures with mean temperatures stabilising around the 50C 

mark for approximately 30 days before temperatures dropped below 50C again. 

There was then a second period of “chill days” lasting 44 days before mean daily 

temperature rose above (and stayed above) 50C. Growth for this period did not 

fully start until the mean temperatures rose above 50C for the second time 

which coincided with exactly 140 chill days. The lack of growth from the trees 

after only 96 days may suggest that there is some evidence for the chilling 

requirement in Sitka spruce meaning though this is difficult to confirm here with 

only one investigated year coming close to this requirement. Cannell and Smith 

(1986) suggested that an increase in temperature could lead to earlier budburst 

at the beginning of the growing season, which in turn could increase the risk of 

frost damage if the temperatures were to decrease again. In the one year that 

this happened in this study (2012) the evidence suggested that with regards to 

growth, the trees were able to cope with a drop in temperature in spring time 

after an initial warmer period. After an initial increase in stem size (maybe due 

to rehydration) growth was effectively put on hold until the temperature had 

increased again. However this did lead to a year with low growth rates.  

Antonova and Stasova (1993) suggested that water stress can determine the end 

of growth by affecting the wood production. In this study, throughout 2008 there 

are two periods where soil moisture decreased significantly. The second of these 

dry periods (approx. day 180 to 220 of Figure 7-15 and Figure 7-16) corresponds 

to the period of highest growth rate (with the exception of tree 66) which peaks 

around day 200. However once soil moisture reaches what could be described as 

the sub-optimal level of 30% (personal statement M.Perks) the growth rate of the 

trees starts to decline as the trees switch to producing latewood. There was a 

similar dry period during 2010 in which the 30% soil moisture was reached 

(Figure 7-19 and Figure 7-20) and although it happens slightly earlier (approx. 

day 150 to 200) it corresponds to the time when growth rate is at its peak in all 

of the trees (with the exception of tree 66). This may suggest that 30% soil 

moisture is a threshold below which growth of Sitka spruce starts to decline and 
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the slight differences between trees may be due to slight differences in soil 

moisture throughout the site due to competition from other trees. In two of the 

years where soil moisture did not decline to the same extent (2011 and 2012) 

the peak in growth rate was extended for a longer period of time and the 

decrease in growth rate happened later in the season.  

The effect of these dips in soil moisture, during 2008 and 2010 on the daily 

expansion of the stems can be seen in Figure 7-30 and Figure 7-35 and shows 

that the daily expansion is at its lowest is during the early part of the dry spell, 

but seems to increase before the recovery of soil moisture. This may reflect the 

localised relief of tension in water availability at the needle (rather than the 

soil) with local increase able to provide carbon substrate before whole-tree 

hydraulic architecture is „functioning‟ which was also noted in Scots pine which 

were subjected to drought conditions (Perks et al., 2002), and could be as a 

result of rainfall events which occur prior to soil water replenishment 

(Figure 7-6). This may provide some evidence that the tree is accessing water 

successfully during the summer period until soil moisture reaches a threshold of 

30%, but when favourable conditions return there is an increase in the maximum 

daily expansion and while this is getting to the time of year which is not peak 

photosynthetic period Sitka is able to thrive on diffuse radiation (Dengel et al., 

2009). 

Another feature which appears in the growth rate of some trees is a plateau or 

hump in the growth rate during the growing season between the initial rapid 

growth period at the beginning of the which would suggest that the rate of 

growth slows and then speeds up again and this may be due to a localised dry 

period for these trees however more soil moisture sensors positioned around 

each tree would be required to test this.  

Figure 7-14 showed that at Griffin the average daily growth is consistent across 

the season although further analysis showed that there were periods of 

maximum expansion i.e. from the start of the season into May and then again 

from day 180-190, with the second period being relatively consistent across 

years and the second short period is also reflected in Harwood around day 210. 

Rossi et al. (2006) found that maximum growth in conifers occurred around the 

time of year when day light hours are at a maximum and not necessarily the 
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warmest time. Again this is consistent with the findings here where the 

maximum growth rate was relatively consistent over the years occurring in 

June/July which corresponds to the days with the longest hours of daylight and 

although this corresponds to the time when temperature is at its highest and 

relatively constant, ultimately, growth is driven by photosynthetic carbon 

capture and not by temperature. Denne and Smith (1971) suggested a decrease 

in the growth rate corresponds to the decrease in daylight as the trees switch 

from producing large cells (earlywood) to producing cells with thicker walls 

(latewood). Figure 7-55 shows an example of the daylight hours throughout the 

year for Edinburgh in Scotland. Day 172 i.e. June 21st is the day with the most 

amount of daylight each year and the average day each year when the growth 

rate started to decrease varied between from day 168 in 2009 to day 196 in 

2012, which suggests that even though the longest day occurs at the same time 

each year, the change in growth is not quite as consistent 

 

Figure  7-55: The daily hours of daylight changes throughout the year, peaking at 
approximately 17.5 hours on 21

st
 June. 

 

This study also found that the trees stop growing before temperatures dipped 

below 50C suggesting again that temperature is not the controlling factor for the 

end of growth. A 2006 study into Scots pine found that dormancy in autumn 

occurred due to a combination of light availability and temperature where the 

initial phase of dormancy were in response to a decrease in day length and the 

second phase due to low temperatures (Joosen et al., 2006) and other studies 

have shown that this may be genetically controlled (Olsen, 2010, Gonzalez et 

al., 2012). To avoid damage when temperatures drop in the winter months the 

trees must have finished growth and secondary wall lignification before winter 



Chapter 7  340 

starts. This may suggest that trees would only take advantage of a longer 

growing season if the growing season is longer at the beginning of the season 

rather than the end. 

As shown by the measurements taken at Griffin Figure 7-11 there is a seasonal 

trend in the growth, with a steep increase during the summer period and 

levelling out during the winter. However, this is not just a case of growth 

causing an increase in width as shrinking and swelling can occur due to changes 

in water relations within the stem (Kozlowski and Winget, 1964) as well as other 

environmental factors including air temperature, humidity, soil moisture and 

precipitation (Deslauriers et al., 2003, Downes et al., 1999). This means that 

within the increasing trend being measured there is a seasonal trend where 

stems can shrink during summer, when there is little water available, and swell 

in autumn when there is more precipitation. This effect can mask the onset of 

growth as trees start to take up water again in the spring (Kozlowski and Winget, 

1964, Turcotte et al., 2009) and also mask the end of growth as trees rehydrate 

in the autumn (Makinen et al., 2003).  

Investigating Scots pine in Russia, Antonova and Stasova (1993) found that 

temperature was the main influence on xylem division and expansion in May to 

June and that precipitation had a bigger influence later in the season (July – 

August). Michelot et al. (2012) found that different species responded differently 

to precipitation and temperature at different times of year e.g. beech growth 

was positively correlated with May to July precipitation and Scots pine growth 

was sensitive to low soil moisture. A study on Balsam fir in Canada (Deslauriers 

and Morin, 2005) suggested that air temperature had a bigger influence on 

growth during the earlywood phase of growth. However a study by Oberhuber 

and Gruber (2010) found that radial increments during the growing season in 

Scots pine were related to precipitation and humidity and not to soil moisture 

and air temperature. In this study, although temperature seems to have an 

effect on the overall trend of when growth starts the short term changes in daily 

growth may be influenced by soil moisture (conversely soil moisture may depend 

on growth as the growing trees take up more water). Similarly Bouriaud et al. 

(2005) studying Norway spruce found that fluctuations in climate and soil 

moisture were related to short term variations in growth. At Griffin site, 

although soil moisture dropped during the summer months it never dropped 
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below 25% and was only close to this level for short periods before it rained 

again. This suggests that moisture at Griffin is not a limiting factor. However 

there was some correlation between increased growth and increased soil 

moisture which may be as a result of increased water uptake swelling the stem. 

It has been seen in previous studies that daily shrinking and swelling of a tree 

stem cannot only be greater than, but also mask any growth that is taking place 

(Kozlowski and Winget, 1964, Oberhuber and Gruber, 2010). Care has to be 

taken when using dendrometers to ensure that any increase in stem diameter 

being measured is due to growth and not due to swelling and shrinking (Devine 

and Harrington, 2010). Vihermaa (2010) found that stem expansion, measured by 

dendrometers on the same 5 trees as used in this experiment, started earlier in 

the season than growth measured by analysis of cells on microcores suggesting 

that there was some pre growth expansion in Sitka spruce early in spring. By 

using mathematical operations to smooth the data over extended periods (e.g. 

30 days) and to show the rate of growth throughout the year this study was able 

to indicate that there were distinct periods of growth during the year which 

could correspond to the periods of rehydration in early spring, rapid growth of 

early wood in early summer and a period of slower growth of latewood later in 

the summer.  

As well as the diurnal variation, seasonal changes in stem width also have been 

seen and these may also be affected variations in climate. The start and end of 

the growing season may be hidden when water movement can give a false 

impression of when growth starts in the spring (Turcotte et al., 2009) and when 

it ends in the autumn (Makinen et al., 2003). The study by Turcotte et al. (2009) 

was able to divide the year into three distinct phases of winter shrinkage, spring 

rehydration and summer transpiration and showed that the expansion of the 

stem during rehydration after winter can easily be confused with the start of 

growth, which is also confirmed in other studies (Makinen et al., 2008), and that 

climatic variables such as temperature is a major limiting factor to growth 

initiation. Makinen et al. (2003) showed that while changes in the radius 

measured by dendrometers were affected by changes in temperature and 

precipitation, the timing of the changes differed from actual xylem formation 

which again was put down to rehydration of the stem.  
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Previous studies on different tree species have shown a correlation between 

changes in daily stem radius with temperature and precipitation (Makinen et al., 

2003), precipitation and relative humidity, but not temperature or soil moisture 

(Oberhuber and Gruber, 2010) and vapour pressure deficit and soil moisture 

(Sevanto et al., 2005b). It has also been noted that during extended dry periods 

there may be net stem shrinkage even though growth is taking place (Kozlowski 

and Winget, 1964). The same study also saw that diurnal shrinkage was smaller 

in spring, when there was more soil moisture and less transpiration, and greater 

at the end of summer when there is less soil moisture with differences also being 

noted between cloudy humid days and clear dry days. Herzog et al. (1995) 

suggested that the stems shrunk during the day and swell at night time and this 

trend was shown with the Griffin trees which followed a regular pattern where 

the trees peaked at the maximum size at approximately 0600 hrs and were at 

their minimum size at around 1800 hrs. It also showed that stem radius increase 

was only seen on the Griffin trees between approximately midnight and 0600 hrs 

once the previous maximum stem size had been passed. This same pattern was 

found in Canadian Balsam fir by Deslauriers et al. (2003), which peaked at 

around 0800 to 0900 hrs and were at a minimum at around 1600 to 1700 hrs. The 

same study showed that the increment phase of the daily variation started at 

approximately 0000 hrs to 0200 hrs.  

The trees investigated at Griffin showed similar amounts of daily shrinking and 

swelling and these tended to be higher in the summer and lower in the winter 

though this is masked by large changes (relative to the normal daily changes) in 

stem size during extreme cold periods. Swelling and shrinking took place during 

the winter when no growth was taking place although the pattern was a lot less 

regular than during the summer and this may be due to soil water availability 

due to low temperatures, i.e. frozen water in the soil surface layers. There may 

have been a suggestion that the daily shrinking and swelling of the stem is 

related to soil moisture as there were fluctuations in the diurnal swelling and 

shrinking pattern when soil moisture increased, however, this also corresponded 

to periods when fluctuations in the normal daily temperature trend were seen. 

Within the time period of this study there were no extended periods of low soil 

moisture to examine the effect that this may have which may imply that 

moisture is not a limiting factor at this site. 
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8 Discussion 

The formation of the Forestry Commission after World War 1 led to significant 

afforestation, with Sitka spruce as the main species due to its ability to grow on 

a wide range of sites including upland areas with poor soils (Moore, 2011). 

However, rapid growth of Sitka can have consequences on the quality of wood 

produced, with faster growth associated with less dense wood. This coupled with 

rotation times of 30 to 40 years means that the less dense juvenile wood makes 

up a larger percent of the tree when processed. This can lead to wood of poorer 

quality being produced (Brazier, 1970). With the current focus on climate 

change in Britain there is a worry that any change could have an adverse effect 

on the quantity and quality of wood being produced. This study aimed to 

investigate how projected climate change in Britain could affect the growth and 

quality of wood being produced by Sitka spruce trees. This was done by looking 

at Sitka spruce in the full latitudinal range at which it grows in Britain to 

investigate if there are any site or climate effects. This study also investigated 

the within site variation in growth to see how Sitka spruce is affected at a more 

local level and to examine how changes in local climate at sub-annual timescales 

can affect growth. This section aims to discuss and summarize the findings of 

these investigations.  

8.1 Discussion of Method 

8.1.1 Resource Evaluation Study 

As part of this investigation sample cores were collected from sites across the 

full latitudinal range of Sitka spruce plantations in Great Britain, to be examined 

for radial wood density, radial growth and the radial profile of acoustic velocity. 

Sound travels through wood at a velocity that is dependent on its modulus of 

elasticity (MoE), i.e. stiffness, and its density so theoretically, given the wood 

density and the velocity of sound it is possible to determine the MoE of wood 

(Evans and Ilic, 2001). One of the main contributors to the stiffness of wood is 

the angle of the winding cellulose microfibril helix (MFA) within the S2 layer of 

the secondary cell wall (Barnett and Bonham, 2004). Wood secondary cell walls 

are made up of three layers (S1, S2 and S3) (Bailey and Kerr, 1935) with the S2 

layer being by far the thickest and therefore dominating the MFA in the cell wall 
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(Barnett and Bonham, 2004). In Sitka spruce MFA is initially higher at the pith 

and declines to around rings 6 to 9 before becoming more stable in the mature 

wood (Phillips, 1941). As MFA drops the cell wall becomes stiffer. Various studies 

have shown a relationship between wood stiffness and MFA in Sitka spruce 

(Cowdrey and Preston, 1966) and other species such as radiata pine (Cave, 1968, 

Walker and Butterfield, 1996). Although MFA is one of the main criteria for 

defining wood quality (MacDonald and Hubert, 2002) within this experiment MFA 

measurements were not feasible due to the expense of using the Silviscan 

instrument. However since acoustic velocity is a measure of stiffness this can 

also be used as an indirect measure of the MFA (Evans and Ilic, 2001). The 

experiments carried out by Vihermaa (2010) were among the first lab-scale 

measurements of acoustic velocity, but required samples 10 cm in axial length. 

Within the current study, there was a unique opportunity to take this concept 

further by making acoustic measurements on increment cores themselves using a 

facility available in Christchurch, NZ. Calculation of stiffness from acoustic 

velocity requires density measurements, which had not previously been available 

to the Christchurch group. By making use of the increment cores, this study was 

able to measure acoustic velocity and density on the same pieces of wood. 

 As part of a previous resource evaluation study, Vihermaa (2010) had collected 

cores for examination in a similar way, however the narrow geographical range 

of that experiment made it difficult to draw conclusions from comparisons 

between sites. A problem also arose because the southern half of the core was 

being used which, when taking the cores in a north to south direction, would 

often (though not always) leave the bark and a few rings attached to the tree 

when the increment corer exited on the south side (Vihermaa, 2010). In this 

study this problem was overcome by ensuring that all cores were taken north to 

south and the north half (bark to pith) of the core was used in the analysis. It 

was also often the case in the field that if damage occurred then a fresh core 

would be taken. In this way it was ensured that the bark was left intact on every 

core. This however does not alleviate the problem of the surface finish of the 

core (a problem when measuring acoustic velocity on the full core), breakages of 

the core, or other factors such as knots which are unknown until later when the 

core is analysed. The surface finish of the core depends on the sharpness of the 

corer tool being used. This is not an issue for density analysis using the ITRAX 
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densitometer as 2 mm sample strips, with extremely smooth surface finish, were 

milled from the middle of the cores. The original plan for these cores included 

the measurement of density and ring width only. However the opportunity arose 

to examine the cores for acoustic velocity and the surface finish of the core 

could then become an issue as the acoustic probes coupled with varying 

effectiveness to the core (see section 8.1.2 below). Knots were also a problem 

as these might not be seen in the field when the core was taken and it was only 

during the preparation that they were noticed. In this way 31 cores had to be 

discarded from the analysis. One further problem with using cores for analysis is 

the skill involved in managing to take the core so that it goes through the pith. 

Often the pith may not be exactly central in the tree so in some cases the pith 

was missed. This made numbering of rings more difficult and time consuming as 

each sample that had no pith had to be examined individually to ensure that the 

rings had been counted correctly.  

As well as being cost effective, taking radial increment cores from trees is a 

quick and non-destructive (Wunder et al., 2011) way of obtaining samples and 

thus acoustic testing of cores proved to be a very useful tool for the type of 

analysis carried out in this study. However, care must be taken when taking and 

preparing the cores as it is difficult to avoid any defects during the analysis.  

An ITRAX densitometer was used to analyse density and growth (by accumulated 

ring width). The method for this system was developed by McLean (2008) and 

refined by Vihermaa (2010) and comparison between these studies and the 

current investigation showed that the overall mean density was very similar for 

all three.  

8.1.2 Acoustic Velocity Method 

As part of this study, funding was secured from COST Action FP0802 for a short 

term scientific mission to The University of Canterbury in Christchurch New 

Zealand to investigate a system whereby the radial profile of longitudinal 

acoustic velocity could be measured directly from increment cores. The hope for 

this part of the experiment was to combine the acoustic velocity measurements 

with density measurements made on the same cores to give a radial profile of 

MOE and to consider if this changed throughout Britain. Previous trials had been 
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carried out on radiata pine in the Christchurch laboratory but the method could 

not be fully evaluated until comparable density measurements were available 

for the same material, as was the case here. However, there were a number of 

problems associated with the method which meant that much of the data were 

deemed to be unreliable. The two main issues found with this method were the 

orientation of the grain and the surface finish of the core. The grain orientation 

is important as the fastest path is in the same direction as the grain (Bucur, 

1983, Bucur and Bohnke, 1994) and as shown here any deviation from this can 

have an effect on the measurement. Identifying the grain direction on increment 

cores can be a difficult task, especially if the bark is intact at both ends of the 

core. As well as this, grain angle within a core can vary from ring to ring, or even 

within a ring. This makes it difficult to know if any variation in the measurement 

(both within a tree and between trees) is due to actual variation in acoustic 

velocity or if it is due to the way that it is being measured. This problem is 

something that the School of Forestry in The University of Canterbury were 

aware of and at the time of writing they are working on a new system to try and 

counter this problem.  

The second issue encountered with this method was to do with the surface 

condition of the core. Some of the older cores used in this study had rough 

surfaces and this seemed to cause problems with coupling with the acoustic 

velocity probes. This led to what seemed like more erratic readings than seen 

with cores that were in good condition. To counteract this, the offending cores 

were sanded to smooth the surfaces along which the measurements were taken, 

but examination of cores which were measured unsanded, then sanded and 

measured again showed that the sanding treatment had the effect of changing 

the result. There was also no universal conversion factor between the two 

states; in most cases the sanded cores had slower acoustic velocity 

measurements but this was not always the case and the magnitude of the 

difference varied between and even within each core. In this experiment, 

approximately half of the cores were measured without being sanded and the 

other half were measured after sanding but since no conversion procedure was 

available this meant that these two sets of measurements were not comparable.  



Chapter 8  347 

8.2 Discussion of Tree Growth and Wood Properties 

The growth rate of wood is known to affect wood properties such as density 

whereby wider rings tend to have low density (Petty et al., 1990, Herman et al., 

1998). It is possible to model the age related trends of these properties. There 

have been a number of models used to describe radial growth of trees, many of 

which have been modified from studies in other organisms. A number of these 

were described by Zeide (1993). There are also models that describe radial 

variation in the density of trees and a number of these, which have previously 

been used to describe the radial trend in density of spruce (Lindstrom, 2000, 

Gardiner et al., 2011), were explored in this study. Spruce wood along with 

other species such as Douglas fir (Kennedy, 1995) have densities that decreases 

in the first few rings from the pith before increasing again towards a plateau in 

the mature wood (Gardiner et al., 2011). On the other hand the rate of radial 

growth has a tendency to have two to three years of slow growth at the pith, 

occurring during establishment, which is then followed by faster growth in the 

juvenile phase before the rate slows in the mature wood. Both radial growth and 

radial density were modelled in this study and the age related trends found here 

conform to these generally accepted trends. 

Within this study a number of published growth models were explored with the 

aim of describing how age related trends are affected by site, management and 

location. Published density models were also explored and the parameters of 

these models updated to reflect the outcome of this investigation where a much 

larger data set than was previously available was used. Whilst the published 

models tend to describe the change in the radial trend of both growth and 

density as gradual (i.e. a curve) it was seen here that this trend may be able to 

be described as two separate phases with a defined split point between the two. 

With this in mind two-segment linear models were used to describe the radial 

trend in both density and growth separately to compare how these fared against 

the published models. The segmented models had the advantage that they had 

simple, intuitive parameters (i.e. a slope and intercept) and it was easy to 

understand how a change in these parameters changed the form of the 

relationship. 
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8.2.1 Radial Growth  

Visual examination of the growth trend showed what could be described as a two 

stage pattern with wider rings in the faster juvenile growth period up to 

approximately year 10 to 20, followed by a slower growth rate in the mature 

wood, in a similar pattern to that described for Sitka spruce previously (McLean, 

2008, Moore, 2011). To describe the growth trend 16 statistical models were 

compared, of which 14 were able to describe the trend reasonably well, with 

each model explaining approximately 69% of the variation and residual standard 

errors of 20.1 mm to 20.3 mm reflecting the scatter in the data. When the 

residuals were examined, the models which fitted a sigmoid function were able 

to describe the data slightly better, especially at the pith, as they are able to 

cope with the slight reverse curve in the first 2 to 3 years when growth is slower. 

Of these the Hossfeld4 model was deemed to be the best fit. However, because 

these models are describing a sigmoid shaped curve they are also more 

complicated with parameters which interact to describe the curve. Simpler 

models which described the trend as a smooth curve were also tested and an 

Exponential model was found to be the best of these. Although this was found to 

give reasonable fits it had problems describing growth at the pith, but had the 

advantage of having simple to understand parameters.  

The two-segment linear model also had slight problems at the pith due to the 

slower growth in the first couple of years after establishment, which appeared in 

the model as a small negative intercept at ring zero. However, this model fitted 

as well as most of the other models and because of its simplicity was used to 

predict the effect of site and geographical effects.  

Although there was a lot of variation between individual trees, when fitted 

against the full data set the segmented model predicted that the transition 

between the juvenile and mature phases of growth occurred between years 11 

and 12. This concurs with the generally accepted juvenile and mature phases of 

growth in Sitka spruce (Cameron et al., 2005, Brazier and Mobbs, 1993, Schaible 

and Gawn, 1989). The cambial age that this transition occurs may be linked to 

canopy closure which typically occurs between cambial ages 10 to 12 years 

depending on the initial spacing (Kilpatrick et al., 1981, Savill and Sandels, 

1983). Plotting the transition points by site showed that there was a lot of 
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variation between different sites, as well as within site variation. While some of 

the sites had a small range of transition points as would be expected if the 

timing of the transition was fully dependent on canopy closure (which would 

occur at approximately the same time for each tree at the same site) other sites 

had a large range in ages where the transition occurred. The variation between 

sites did not translate to any systematic variation when the transition age was 

looked at by the different site effects, suggesting that the amount of juvenile 

wood that a tree produces is not controlled by geographical location. 

To investigate the effect of site factors on growth the juvenile and mature 

phases of growth of each tree were separated at 11.6 years and linear mixed 

effects models were used to analyse the fitted coefficients of the linear 

segments separately. In the juvenile phase the fixed effects of longitude, 

latitude, elevation and initial spacing as continuous variables were included in 

the mixed effects model and when the non-significant effects were left out only 

spacing was found to be significant with 3mm of additional ring width per metre 

of spacing per year. Including spacing in the model increased the R-squared 

value from 0.68 to 0.73.  

The same fixed effects were included in the mixed effects model on the mature 

phase of growth (i.e. cambial age 12 to 25 years) and none were found to be 

significant on the rate of growth, although spacing had a significant effect on 

the overall mean. This would be expected as the rate of growth of the juvenile 

segment and the mean of the mature segment are linked so any effect on one 

has an effect on the other. It was also found that the radius of the trees at 12 

years old was positively correlated with the radius of the same tree in later 

years suggesting that the management of a site during planting will have a big 

effect on the radial growth in later years.  

The effect that initial spacing has on radial growth is well documented with 

increased growth being due to less competition for sunlight, water and nutrients 

(MacDonald and Hubert, 2002). However wider spacing can affect other 

properties such as the number and size of knots (Brazier, 1977) and may have a 

negative effect on the straightness of the stem (Brazier and Mobbs, 1993). 

Brazier et al. (1985) suggested that spacings of more than 2m would have a 

detrimental effect on wood quality and this was also found in a later study 
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(Brazier and Mobbs, 1993) which stated that spacing should not exceed 2m. This 

became the standard spacing regime promoted by the Forestry Commission and 

widely used throughout Britain (MacDonald and Hubert, 2002).   

Because of this practice most of the sites used in this study (22 of 47) had 2 m 

spacing. Therefore these sites were analysed separately to investigate if 

longitude, latitude or elevation was having an effect on growth when the spacing 

was the same. However when tested using mixed effects models none of these 

effects were significant. Similarly when using ESC climate data directly again no 

effects were significant.  

ESC data showed that there were differences between sites in accumulated 

temperature and moisture deficit according to latitude, longitude and elevation. 

However this was not translated into differences in tree growth within the 

geographical range over which Sitka has been commonly planted in GB. There 

did not seem to be any different effect on trees growing in southern England 

compared to those growing in northern Scotland, which covers the full UK range 

of accumulated temperature, suggesting that Sitka spruce is comfortable 

growing in the full range of temperatures in the UK. It may also mean that day 

length is unimportant over this range of latitudes, although there is a question of 

whether latitude would have been taken into account in the choice of seed 

provenance for any of the sites. The same applies to the east and west sites 

measured which again showed no difference. Elevation, over the range covered, 

was also seen to be having no significant effect on either juvenile or mature 

growth. This analysis may also show that there is so much within site variation 

that it is very difficult to see any environmental effects since these 

environmental effects are measured at a site level. 

8.2.2 Radial Density  

Traditionally density is seen as one of the most important and widely used 

factors to describe wood quality (MacDonald and Hubert, 2002) as although MFA 

may be a better guide to quality (due to its association with stiffness) it has 

been in general harder to measure and is still (via Silviscan) a very expensive 

measurement. In this study the pith to bark radial profile of density was 

measured on approximately 450 trees from 47 different sites across the full 



Chapter 8  351 

latitudinal range of Great Britain. The resulting data were used to evaluate 

existing density models, to explore how these fitted a much more representative 

national data set than has previously been available and to update the existing 

model parameters to reflect this. These models were then also compared with a 

segmented linear model that not only has parameters that are simple to 

understand, but also does not require ring width as an input and so may be a 

valuable analytical tool in circumstances, such as in timber processing, where 

ring width data are not available. 

In this investigation the overall mean radial density was similar to that found for 

Sitka spruce at a site in Kershope in North England (McLean, 2008) and at two 

Scottish sites (Vihermaa, 2010). The radial profile found here fitted the normal 

radial trend that would be expected with Sitka spruce (Brazier, 1970) i.e. 

density was high near the pith with a sharp decline in the first few rings to a 

minimum within the juvenile wood before increasing again towards the bark. 

Qualitatively this agrees with the profiles described in previous investigations 

(Bryan and Pearson, 1955, Brazier, 1967, Petty et al., 1990). This is a similar 

pattern to density found in other spruce species (e.g. Norway spruce (Lindstrom, 

1996) and Black spruce (Alteryrac et al., 2006A, Alteyrac et al., 2006B) and can 

also be found in some other conifer species for example Douglas fir (Kennedy, 

1995). Increasing density in mature wood has been linked to a higher latewood 

proportion (Jyske et al., 2008) and is due to smaller cells with thicker walls 

(Rathgeber et al., 2006). However the trend in the juvenile wood has always 

made it difficult to model density in Sitka spruce as the processes which cause 

the high density in the mature wood (i.e. smaller tracheids with thicker cell 

walls (Mitchell and Denne, 1997)) are thought to be different from those 

controlling density nearer the pith, where high density is associated with high 

microfibril angle and rapid radial change in grain angle (Moore, 2011) and this is 

one reason why density may be an unsatisfactory indicator of timber quality in 

spruces. Previous studies have shown that the radial density profile of Sitka 

spruce can be fitted using curvilinear models that include ring width as an input 

parameter along with ring number (Lindstrom, 2002, Gardiner et al., 2011) and 

these models were investigated as part of this study along with a simple 

exponential model that was based only on ring number and a two-segment linear 

model which also did not require ring width. The sites used by Gardiner et al. 



Chapter 8  352 

(2011) showed a similar radial pattern and similar values to that found here and 

the coefficients of the models developed in that study were re-parameterized to 

reflect the much larger dataset used in this study. 

Ring width is a measure of the growth rate during the year represented by the 

ring, and including this can increase the effectiveness of the model. The overall 

ring density is governed by the amount of less dense earlywood since the amount 

of latewood is roughly constant irrespective of ring width (Moore, 2011) and 

wider rings are associated with a decrease in density. If ring width is known then 

there is good reason to use it within a model. However, if ring width is not 

known then including it in the model would add an unnecessary step of having to 

model ring width, which can lead to propagation of error by adding steps in the 

analysis. For this reason, even though the models that include ring width give a 

better fit to the data, and although it may be argued that the change between 

the juvenile and mature phases of density is gradual rather than an abrupt 

change, a simple model such as the segmented linear model which uses just 

cambial age instead of both cambial age and growth is also a very useful tool.  

Fitting the two-segment linear model to the full data set indicated a transition 

point between the juvenile and mature phases at a cambial age of 7.4 years 

although when this was fitted to individual trees it was found to be extremely 

variable, due to the sensitivity of the model to local fluctuations. This variation 

in the split point of individual trees also made it difficult to determine if any site 

effects were having an influence on the transition between the juvenile and 

mature phases, and no significant effects were found. This suggests that the age 

when density changes from the juvenile to mature phase is not governed by 

overall site factors but may be governed by more local factors. 

In order to simplify the fitting process, the transition point was assumed to be 

constant at between years 7 and 8 and the two phases were analysed using 

separate linear models. This allowed site effects to be investigated on each of 

the phases individually. This analysis showed that much of the variation in 

density was within tree variation. Fitting models to the radial profile of density 

was made difficult by this variability and this is illustrated by the low R-squared 

values. There was also a large amount of variation in density between trees 

within the same site which makes it difficult to see the effect of site 
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characteristics, a point which was also made by Zobel and Buijtenen (1989) and 

which may indicate that more localised site effects impact on density. Genetics 

also play a large part in controlling wood properties (McLean, 2008, Kennedy et 

al., 2013). A study investigating the effect of genetics (Moore et al., 2009b) also 

found that the main sources of variation in density were within trees and 

between trees of the same treatment. This was put down to the fact that the 

trees were not clonal but highly diverse genetically. The trees used in this study 

are most likely grown from seed of Queen Charlotte Islands (Canada) origin 

collected from wild populations so that a large amount of between tree variation 

would be expected (Moore et al., 2009a).  

Using mixed effects models on the two segments separately indicated that in the 

juvenile segment mean density increased with increasing latitude but decreased 

with increasing spacing. Therefore higher density near the pith was most 

pronounced at more northern sites with close spacings and may be associated 

with slow establishment (Brazier, 1970). However unlike in the mature wood 

where high density might indicate better wood quality, high density at the pith 

is associated with high microfibril angle and a rapid change in grain angle 

(Moore, 2011) and therefore does not indicate high quality wood.  

In the mature segment there were no significant site effects, with cambial age 

being the only significant factor. Although a link was found between northing 

and the density of the juvenile wood, there was none found in the mature wood. 

Since temperature and northing are linked it suggests that the temperature 

range found within Great Britain is not having an effect on the density of mature 

wood. In fact in some cases trees grown in the south of England were found to 

have similar density to those grown in northern Scotland under very different 

climates.  

This shows that the latitude of the samples and silviculture may have an effect 

on the overall level of density but the initial decrease found in the juvenile 

wood of Sitka spruce was independent of any of these site effects. Once the 

trees have reached the mature phase mixed effects models indicated that there 

were no significant site effects on the density, although spacing was close to 

being significant at the 5% level. Investigating Sitka spruce and Norway spruce 

planted in southern Scotland, Petty et al. (1990) found little difference in 
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density at two different spacings (0.9m and 2.4m). In this study cambial age was 

found to be the only factor having a significant effect on density in the mature 

phase whereby density increased by 3.9 kg m-3 per year. 

8.2.3 Radial Profile of Longitudinal Acoustic Velocity  

This study also investigated the radial trend in longitudinal acoustic velocity. 

While there were problems associated with the method, models to describe the 

radial trend were also explored. As with growth and density, acoustic velocity 

was seen to follow a two stage pattern and so was investigated using both 

curved models and a linear segmented model. However due to uncertainty 

introduced by the surface finish of the cores and by the grain orientation, it was 

decided that to use the model to describe variation due to other factors would 

be wrong, since the variation might be coming from the measurement method 

itself.   

The radial trend in acoustic velocity shows a minimum at the pith with an initial 

sharp increase until approximately cambial age 10 to 20 years, where the rate of 

change slows and the acoustic velocity levels off towards the bark. As in the 

previous sections, this trend could be described as a two stage process although 

the transition between the two phases may be seen to be more gradual than 

with either growth or density. However, a segmented linear model fitted the 

data as well as the curvilinear models and indicated an overall transition point 

at between cambial ages 13 and 14 years, which is similar to that found in a 

previous study which measured acoustic velocity of Sitka spruce disks (Vihermaa 

2010). 

Although this indicates that it is possible to model acoustic velocity using both 

curvilinear and segmented linear models, the use of these models was taken no 

further in this study due to the complications that arose with the method and 

led to the unreliability of the data. 

8.2.4 Comparing Growth and Wood Properties 

This study indicated that there is an inverse relationship between ring width and 

radial density (Pearson correlation coefficient -0.473) (Figure 4-8) agreeing with 

previous studies which have suggested that faster growth is associated with low 
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density (Petty et al., 1990, Kennedy et al., 2013). The Pearson correlation 

coefficient between ring width and density in the juvenile wood up to ring 7 was 

-0.671 compared with -0.597 in the wood from ring 8 onwards. This suggests that 

the relationship is slightly different in the juvenile core than in the mature wood 

and the full range of conditions where the relationship holds is not fully 

understood. Caution is required because both correlations are likely to be 

affected by slope and scatter as well as the nature of the underlying 

relationship. 

The coefficients from the linear models also allowed comparisons to be made 

between juvenile and mature segments. For example a correlation was found 

(Pearson correlation coefficient -0.549, p = 0.001) between density modelled at 

the pith (i.e. juvenile density intercept) and the small negative growth intercept 

(Figure 8-1). This small negative intercept corresponds to slow growth of the 

stem during the first 2 to 3 years after it has reached breast height, where the 

cores were taken, and the high density near the pith therefore appears 

connected with delayed establishment (Brazier, 1970), or more precisely with 

slow radial growth after the tree reaches breast height. Also a correlation was 

found (Pearson correlation coefficient -0.517, p = 0.001) between the intercept 

of the mature phases of density and growth (Figure 8-2), which may imply that 

around the 7 to 12 year old cambial age period the density of wood being formed 

is less in the bigger trees  

 

Figure  8-1: Correlation between the intercept coefficient of the juvenile linear models of 
growth and density 
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Figure  8-2: Correlation between the intercept coefficient of the mature linear models of 
growth and density 

 

Correlations were also seen when both density and growth were examined 

individually across the age range of the trees. For example, density of ring 2 was 

correlated with density of ring 7 and also less so with rings 20 and 25. Similarly, 

growth rate was correlated between rings across the same age range. For both 

growth rate and density, correlations were highest between rings within either 

juvenile or mature wood and lower between rings in the different phases. For 

example high correlations were found between density at cambial age 12 and 

density at cambial age 25 (Pearson correlation coefficient 0.510) and also 

between growth rate at cambial age 12 and growth rate at cambial age 25 

(Pearson correlation coefficient 0.863). This suggests that the juvenile stage of 

tree growth is very important in determining the properties of the mature wood, 

whether due to the establishment of dominance or for other reasons such as 

genes for density expressed throughout both growth phases. 

8.2.4.1 Transition from Juvenile to Mature Wood 

As discussed previously, transitions between juvenile and mature phases were 

evident in ring width, density and acoustic velocity data and although these 

could also be described as gradual, fitting a segmented model to the data 

allowed a transition point to be predicted. When fitted to the full data set the 

linear segmented model predicted a different transition point depending on the 
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property being measured. The split point for density was between 7 and 8 years, 

for growth it was between 11 and 12 years and for acoustic velocity it was 

between 13 and 14 years (Figure 8-3). This agrees with previous studies 

indicating that the boundary varies depending on the parameter being measured 

(Mansfield et al., 2009, Alteyrac et al., 2006B) and with estimates that the 

boundary between the juvenile core and mature wood occurs at about ring 7 to 

12 (Brazier and Mobbs, 1993, Cameron et al., 2005).  

 

Figure  8-3: The transition point between the juvenile and mature phases when fitted by 
density, growth and acoustic velocity 
 

However the transition points that the linear segmented models predicted for 

density and growth had a very small but significant correlation (Pearson 

correlation coefficient 0.168 P= 0.002) as seen in Figure 8-4, indicating that 

there may be a weak connection between the transition from juvenile to mature 

phases of these two properties although since it is so small it is difficult to draw 

any conclusion. Acoustic velocity showed no such correlation with either density 

or growth and although the transition points for growth rate and acoustic 

velocity are not significantly different, the fact that they are uncorrelated may 

suggest that it is not a single process which controls them. Conversely the 

transition points for density and growth are quite a bit apart, but there is this 

weak correlation between them. 
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Figure  8-4: Relationship in the transition points between juvenile and mature phases when 
modelled by density, growth and acoustic velocity. 

 

Although this may seem to indicate that separate physiological processes are at 

work, care must be taken before any conclusions are drawn from differences 

between the mean transition points, since the transitions between the two 

phases in the radial profiles of these properties are curvilinear, which may not 

be accurately fitted by the abrupt change of the segmented linear model. For 

example, the break in the slope of the growth model coincides well with the 

apparent midpoint in the transition of the growth rate, but the break in slope of 

the density model is at a lower ring number than the minimum of the mean 

density curve which is also not a close match to the LOWESS trend line (which 

changes slope at around ring 12 to 13).  

8.3 Discussion on Seasonal Variation in Tree Growth 

In this study most of the variation in all three properties modelled was between 

trees at the same site. This shows the difficulty in trying to predict the effect 

that a site factor can have when there are many within site factors that 

seemingly have an influence. To investigate the within site variation and the 

influence that climate has on growth at a fine time scale, two sites were used 

and at each site 5 trees were measured continuously for growth using LVDT point 

dendrometers.  
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The data used in this study were initiated in 2008 as part of a long term project 

at Griffin Forest near Aberfeldy in Perthshire, Scotland, with measurements 

during 2008 and 2009 being taken and used as part of a previous PhD study 

(Vihermaa, 2010) and continued as part of this study. The second site was a new 

site established at Harwood Forest in Northumberland, northern England. 

 It was seen that there were differences in growth between the trees within a 

site. Although not measured specifically for each tree, soil moisture was shown 

to vary within the site and this could have a more local effect on tree growth. 

Competition for sunlight would also have an effect on growth and at the Griffin 

site it was noticeable that the tree with the least amount of growth was no 

longer a dominant tree and was also not next to a row that had been thinned, so 

this tree may only have been getting enough sunlight at certain times of day and 

year. However the effect of thinning (or lack of it) applies equally to 

competition for water, and it is difficult to distinguish between competition for 

light and competition for water without data on crown dimensions.  

The yearly pattern of growth followed the usual pattern that would be expected 

for Sitka spruce during the yearly growing season. That is, initial radial 

expansion of the tree started in spring around the end of March, followed by a 

period of rapid expansion through spring and into early summer as the trees 

produced large earlywood cells, peaking around mid summer. After this the 

growth rate started to decrease as the tree switched from producing earlywood 

to latewood, characterised by smaller cells with thicker cell walls. Growth 

stopped around mid to late September. There then followed a period of 

dormancy where no growth occurred during the winter period. 

The onset of growth in spring was found to be influenced by mean temperature 

rising above 5oC although some radial expansion occurred before this when mean 

temperatures rose consistently above about 3oC (which coincided with minimum 

temperatures rising above 0oC). Similarly Vihermaa (2010) found that radial 

expansion occurred prior to growth starting when dendrometer readings were 

compared to actual cell production on microcores. Sitka spruce may be subject 

to a high chilling requirement whereby bud burst will not occur until after 140 

days of temperatures below 50C during the preceding winter (Cannell and Smith, 

1986), and this may have been the case here as growth started as soon as 



Chapter 8  360 

temperatures rose above 5oC in years where this requirement was met. In the 

one year where this requirement was not met there was a delay in the onset of 

growth when temperature initially rose above the 50C threshold. Temperatures 

then dropped again in early spring fulfilling the requirement for 140 days below 

5oC and growth started once the temperature rose again. Since it is thought that 

this chilling requirement is an adaptation to stop frost damage if bud burst was 

to occur too early in spring (Cannell and Smith, 1986) then in this case, when 

there was a late drop in temperatures, the mechanism worked. However, it is 

difficult to draw overall conclusions from this since only 4 years of data for the 

previous winters was measured, of which only one winter did not meet the 

chilling requirement.  

The decrease in growth rate is assumed to be when production switches from 

early to latewood and is thought to be connected to a decrease in day length 

(Denne and Smith, 1971, Rossi et al., 2006) and although the switch was seen 

here occurring around the same time as maximum daylight hours, there were 

some differences between years in the date when it occurred. A decrease in soil 

moisture was found to affect the growth rate if a dry period occurred at the 

period of peak growth rate. Soil moisture falling below 30% coincided with the 

peak growth rate in two of the years measured and on both occasions the growth 

rate started to decline as this threshold was met and continued to decline for 

the remainder of the growing season even when soil moisture recovered. In two 

years where soil moisture did not fall below this 30% threshold the peak in 

growth rate continued for a longer period until later in the growing season 

before starting to decline. This suggests that the amount of moisture available 

will have an influence not only on the amount of growth but also on the type of 

growth that takes place. If seasons with less available moisture lead to an earlier 

switch from early to latewood then this would lead to an increase in the 

latewood proportion of the ring and therefore to increased average ring density. 

The date of final cessation of growth was relatively constant in each year and 

occurred before temperature fell below 5 C, (except tree 66) suggesting that 

this was controlled by day length. Therefore since the length of the growing 

season is the same, any decrease in growth rate would correspond to a decrease 

in growth. Seasons with abundant moisture may lead to an increased proportion 

of earlywood which in turn would lead to less dense wood. This ties in with the 
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good performance of density models that included a term for ring width as well 

as terms for ring number.  

8.4 How will projected climate affect Sitka spruce 

According to climate change projections, temperatures in Britain are set to rise 

throughout and this should be accompanied by drier summers and wetter winters 

(UKCP09, 2009a). However since this is projecting into the future there is huge 

uncertainty. Projections used in this study for specific sites indicated that 

accumulated temperatures are set to rise throughout the country but that there 

may be an east west split with regards to moisture. That is, the west is 

projected to get wetter and the east drier. Sitka spruce enjoys a wet climate 

(Cannell, 1984, Moore, 2011) and for this reason Sitka spruce plantations in the 

east of Britain are already limited to more northern and upland areas.  

With the east projected to become drier during the summer this will limit the 

locations suitable for Sitka further. This study found no effect of longitude on 

growth or density and this may be due to the fact that the sites where Sitka is 

grown in the east are those in which soils are suitable for growth. However, the 

moisture deficit for the eastern sites used in this study is projected to increase 

leading to drier soil conditions. This study investigated growth at very fine time 

resolution and found that if water was limited during the height of the growing 

season then this could trigger a decrease in the growth rate. This would 

potentially lead to denser wood as the latewood percentage would be increased. 

However the adverse effect of this is that there would be less radial growth. 

Conversely an increase in moisture leads to increase in early wood growth but 

the amount of latewood stays the same, so although there will be an increase in 

the wood produced this will be accompanied by a decrease in density.  

In general the productivity (i.e. general yield class) of forests in northern Britain 

has increased substantially over the past three to four decades and this is 

attributed to a combination of elevated CO2 levels and improved nutrient status 

(Cannell et al., 1998). From the inverse correlation between growth rate and 

density observed in this study this change in productivity may be expected to 

have reduced wood density. However we can not be certain without having 

observed the effects of these environmental variables directly and potentially 
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future changes in management (e.g. spacing) could be enough to offset any such 

effect. 

Temperature projections suggest that there will be an increase in accumulated 

temperatures throughout the latitudinal range of Britain (Figure 2-16), with 

future temperatures in the north projected to increase until they are similar to 

those found in the south today. This study found no difference in the amount of 

growth between trees growing in the south of Wales and England compared with 

those in the north of Scotland, with silviculture having a bigger influence on the 

growth rate. However there was an effect of latitude on wood density with 

density of the juvenile core increasing in a northward direction and there was 

also a correlation between the density at the end of the juvenile core and in the 

mature wood. This may suggest that density of wood could be adversely affected 

if temperatures in the north were to increase and at the same time moisture 

deficit decreased. 

Increasing temperature can affect tree growth in a number of ways. It can have 

an effect on moisture availability by increasing evapotranspiration and it can 

have an effect on the length of the growing season. This study found no reason 

to disagree with previous studies suggesting that Sitka spruce has a winter chill 

requirement of 140 days of temperatures below 5oC before bud burst will occur. 

At the Griffin site where growth was measured, the chilling requirement was 

easily met on most years and so growth occurred as soon as temperatures rose 

above a 5oC threshold. However if winter temperatures rise then this 

requirement may not be met, leading to a delay in the onset of growth as was 

seen at Griffin. This led to a shorter growing season and therefore less growth 

for Sitka of a given provenance. This study also found no indication that Sitka 

spruce, of the provenances currently planted, would be able to take advantage 

of an extension to the growing season in autumn. Growth rate decreased and 

growth stopped at roughly the same time every year and this was always before 

temperatures dropped below 50C. It has been suggested that the termination of 

growth at the end of the season is triggered by the amount of daylight hours and 

if this is the case and is genetically controlled then the trees will not take 

advantage of a longer growing season. 
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8.5 Conclusion 

Several models used to describe growth were tested within this study, the best 

of which were able to describe about 69% of the variation. Of these, a 

segmented linear model fitted no better than the other models tested but met 

other intended criteria i.e. simplicity, intuitive parameters and reversibility 

whereby it can be expressed as distance from pith. 

Due to the negative correlation between growth rate and density, including ring 

width as a variable along with ring number improved the prediction capabilities 

of the density models. Linear segmented models were able to predict density 

from ring number alone and this provides a powerful tool. In practice ring width 

may not always be available and so there is a need for models which can predict 

density from ring number alone. The reversibility of the linear segmented 

growth model permits the linear segmented model for density to be expressed in 

terms of distance from pith rather than ring number and in that form it may be 

of more interest for timber processing. 

Although a great deal of variation between sites in both growth and density was 

observed, most of the variation was between trees in the same site. Initial 

spacing was found to be the only significant effect on growth and then only by 

having a positive effect on the growth rate of the juvenile wood. This had a 

knock on effect on the mature wood as trees were larger by the time they 

reached the end of the juvenile phase, and tended to stay larger throughout the 

mature phase. The latitude, longitude and altitude that the trees were growing 

at were found to have no significant effect on growth. Both spacing and latitude 

were found to be having a significant effect on the mean density of the juvenile 

wood with spacing having a negative effect and density a positive effect. In the 

mature wood, cambial age was found to be the only significant effect. This 

suggests that within the geographical range over which Sitka spruce is grown in 

Britain, climate is not yet a limiting factor, with site management, especially 

around the time of planting, having a bigger influence. 

Examination of seasonal variation in growth found that the start of growth is 

associated with mean temperature rising above 5oC and that during the growing 

season the expansion of the stem can be affected by soil moisture. Competition 
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within a site can greatly influence trees growth and again forest management 

can have a big effect on competition for both soil moisture and sunlight. Soil 

moisture deficit was seen to influence the growth rate with 30% soil moisture 

seeming to be a threshold below which the growth rate is affected especially at 

the time of peak growth. The cessation of growth was similar in date throughout 

the years measured and happened before temperatures dropped below 5oC. This 

suggests that it is not temperature controlled and may indicate that if potential 

growing seasons are extended due to a changing climate then trees such as Sitka 

spruce may not take advantage of it.
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Appendices 

Appendix1: List of equipment used at the Harwood site: 
Item Model/Serial No. Qty Supplier/Location 

12V power supply PS100 4 Campbell Scientific 

AC-AC 
adaptor/charger unit 

AC-ADAPT2 4 Campbell Scientific 

5V power supply unit 
(for mains failure 
detection) 

Convel 41000 Model 
41052 

4 Farnell 

Thermistor Therm107 12 Campbell Scientific 

Lightning 
arrestor/surge 
protector 

Furse ESP 15E 4 RS  
Stock No. 456-8162 

Terminal block/fuse 
holder 

Camden CFTBN-1 10 Farnell  
order code 3882792 

AVRD voltage 
regulator 

 Version 3.1 4 Dynamax 

Resistors (pull-up type 
for dendrometers) 

1K, 0.1% tolerance ?  

Resistors (pull-up type 
for dendrometers) 

249K, 0.1%  ?  

Resistors (pull-up type 
for rain gauge and 
anemometer) 

MULTICOMP  
MF50 1K5 

? Farnell  
order code 9339990 

Cable glands Bulgin BE123461 ? Farnell  
order code 1701598 

Datalogger Cr1000 4 Metrometrics(x1)/ 
NRS (x3) 

Sap flow sensor TDP30 10 AH 

Soil moisture sensor ThetaProbe ML2x 3 AH 

Rain gauge  1 AH 

PAR Sensor  ? NRS 

Temperature probe  1 AH 

Humidity probe  1 AH 

Anemometer   1 NRS 

Wind vane  1 NRS 

AH = Alice Holt, NRS = Northern Research Station 

 

http://uk.farnell.com/belden/8451-010u100/cable-8451-1pair-30-5m/dp/1182118
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Appendix 2: Schematic plan 

of loggers 1 and 2
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