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Alzheimer’s disease is the most common of the degenerative brain diseases and is 

characterised by impairment of cognitive function. Patients with this disorder lose the 

ability to encode new memories. Eventually, both declarative and non-declarative memory 

is significantly impaired, resulting in the capacity for reasoning, abstraction and language 

becoming progressively reduced. Alzheimer’s disease and other dementias have 

devastating effects on families and caregivers, and is an increasing burden in an ageing 

society. It is estimated that 36 million people worldwide are living with dementia and this 

figure is expected to double every 20 years. The worldwide costs of dementia in 2010 were 

estimated to be $604 billion, an exorbitant figure that represents 1% of global GDP (World 

Alzheimer Report 2011).  

Alzheimer’s disease is the fourth leading cause of death in industrialised nations, preceded 

by cardiovascular disease, cancer and stroke. As yet there are currently no disease-

modifying drugs approved to treat Alzheimer’s disease. The therapeutics that are available 

only temporarily alleviate symptoms of cognitive impairment, however, they do not halt 

the inevitable progression of the disease. As such, major scientific efforts are underway in 

order to develop drugs which can help stabilise the disease. The publication of the 

“Amyloid Hypothesis” by Dennis Selkoe in 1991 helped to focus research efforts towards 

a causative protein involved in the disease, the amyloid β protein (Aβ). 

Aggregation and deposition of the Aβ protein is fundamental in the aetiology of 

Alzheimer’s disease and its importance has been demonstrated by a number familial 

heterogeneous mutations in the amyloid precursor protein that promote increased Aβ 

deposition, resulting in early onset phenotypes. There are several other aspects involved in 

disease progression such as neuroinflammation and aberrant neuronal signalling, however, 

therapies targeting amyloid β aggregation have the potential to slow or even halt further 

neurodegeneration  and anti-Aβ therapies are regarded as a logical approach to treating 

Alzheimer’s disease. 

Several endogenous pathways exist to prevent protein misfolding and subsequent 

aggregation following stressful cellular conditions. One pathway includes the amateur 

chaperones of the small heat-shock protein family, which have recently garnered interest 

due to their ability to inhibit the aggregation of amyloid-like proteins. In particular, Hsp20 

was previously identified as having the ability to inhibit the aggregation of Aβ and could 
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attenuate subsequent toxicity associated with Aβ peptides. Hsp20 was of particular interest 

to the Baillie group as it has well established cardio-protective functions, which are 

triggered by the phosphorylation of a serine residue (S16) at a consensus protein kinase 

A/G site. Hsp20 “activity” can therefore be readily modulated via inhibition of second 

messenger signal degradation by phosphodiesterases. 

The first part of this thesis investigated the interaction between Hsp20 and Aβ using 

Peptide Array technology. This technique allowed rapid characterisation of interacting 

domains and pinpointed key residues that mediated the protein-protein interaction. Using 

this approach, I demonstrated that the domain within Hsp20 that interacted with Aβ 

included the consensus PKA phosphorylation site (R-R-X-S). Upon introduction of a 

phospho-serine residue or a phospho-mimetic substitution, I was able to show that the 

binding of Aβ was enhanced. Reciprocal peptide array experiments highlighted that Hsp20 

bound to a domain within Aβ, which is key to the aggregation of the Aβ peptide and is 

required to produce the higher order toxic Aβ species. The Peptide Array data was then 

verified using full-length recombinant proteins and several Hsp20 mutants were developed 

including a phospho-mimetic. The phospho-mimetic Hsp20 was shown to outperform the 

wild-type variant in several assays such as, in vitro pull-down assays, Aβ aggregation 

measured using nuclear magnetic resonance spectroscopy, and also a novel Aβ aggregation 

assay which can differentiate between two distinct aggregation pathways, namely 

fibrillisation and oligomerisation. These data demonstrated for the first time how the 

interaction between Hsp20 and Aβ may be modulated by cell signalling cascades. 

I then moved to investigate the cytotoxicity of Aβ in order to investigate whether 

increasing Hsp20 expression in neuronal-like cells would confer protection against Aβ-

mediated toxicity. This was initially carried out using a standard MTT-based cell viability 

assay, before utilising a real-time cell monitoring device to develop a novel Aβ toxicity 

assay. In both assays, increasing Hsp20 expression was shown to be cytoprotective. The 

wild-type variant of Hsp20 was found to be more effective in cell-based assays due to 

increased levels of phosphorylated Hsp20. The real-time Aβ toxicity monitoring assay also 

gave me a platform for testing agents with potential neuroprotective properties. 

Given that increasing levels of phosphorylated Hsp20 could attenuate Aβ-mediated 

cytotoxicity, I logically was drawn to study ways that this event could be targeted 

therapeutically. Several drugs that target cAMP- and cGMP-dependent phosphodiesterases 

have been shown to be effective in alleviating symptoms of Alzheimer’s disease in rodent 
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models have also been studied here in cellular systems. These included the “blockbuster” 

PDE5 inhibitor Viagra® (sildenafil), two novel compounds which selectively inhibit 

PDE9, which were developed by the pharmaceutical company Lundbeck specifically as 

Alzheimer’s treatments, and rolipram, a well established cognitive enhancer that was 

developed originally as an anti-depressant. All of these compounds were shown to 

“activate” endogenous Hsp20 to varying degrees in neuronal-like cells and the levels of 

Hsp20 activation was found to correlate with both the level of induced Hsp20/Aβ co-

localisation, and subsequent attenuation of Aβ-mediated cytotoxicity. This suggests that 

this endogenous protection pathway can be targeted by currently available therapeutics in 

order to reduce the neurotoxic effects of Aβ. 

Finally, we wanted to develop novel agents of our own that could promote Hsp20 

phosphorylation. To do this, in silico docking of all FDA approved drugs against the 

catalytic domain of PDE4 was undertaken in an attempt to find a novel compound with the 

potential to reposition as an Alzheimer’s treatment. Using this methodology we discovered 

an angiotensin converting enzyme inhibitor, moexipril to be a PDE4 inhibitor in the low 

micro molar range. Unfortunately, moexipril works as an ACE inhibitor in the low nano 

molar range making repositioning unviable. However, moexipril treatment was more 

effective than rolipram in reversing Aβ toxicity and I speculate that this may be due to the 

sub-family selective nature of its (moexipril) PDE4 inhibition. Furthermore, the lack of 

emetic side effects associated with moexipril makes this compound an ideal starting point 

for the development of isoform selective and/or non-emetic PDE4 inhibitor. 

In summary, these studies describe a novel endogenous mechanism for combating the toxic 

effects of the Aβ protein, which underpins the development and progression of 

Alzheimer’s disease. Given that the interaction between Hsp20 and Aβ can be manipulated 

via cAMP/cGMP signalling, the interaction could be targeted therapeutically. As there are 

currently no effective drugs on the market for stabilising Alzheimer’s disease, I believe 

that the data presented here opens up a potential new avenue that could lead to the 

development of a new class of AD drugs. 
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1 Introduction 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is the most common form of dementia in the elderly and 

accounts for between 50-75% of all cases. By 2030 it is estimated that more than 65 

million people will be living with dementia, with projections almost doubling every 20 

years (Alzheimer’s report 2009). AD is a progressive neurological disease, which results in 

the loss of neurons, mainly in the cortex and the hippocampus (Nussbaum and Ellis 2003). 

The clinical symptoms of the disease include erosion of memory, reduction in decision-

making ability and a decline in cognitive capacity. AD is regarded as a disorder of 

cognitive awareness, one of the fundamental components of human consciousness (Carter, 

Simms et al. 2010). 

In addition to its role in neuro-degeneration, AD is the fourth leading cause of death in 

industrialised nations, preceded by cardiovascular disease, cancer and stroke. It affects all 

ethnic groups and occurs slightly more in females than males (Nussbaum and Ellis 2003). 

AD has become the most socially disruptive disease of the ageing population and has an 

associated socio- and economic- burden, which has resulted in major efforts by the 

scientific community to develop therapeutic agents to prevent the progression of the 

disease. However, as yet, there are no currently available drugs that can halt or even 

stabilise disease progression, though there is hope, as a number of potential treatments are 

currently undergoing clinical trials. 

1.2 Discovery of Alzheimer’s disease 

Senile dementia had been shown since the 1800’s to be associated with an obvious atrophy 

in the brain when compared with aged matched control brains. Historically, cerebral 

atrophy has been a consistent characteristic of demented brains and was associated with a 

gradual strangulation of the blood supply that resulted in a stroke-like pathology 

(Berchtold and Cotman 1998). Using an improved silver staining method, Bielschowsky 

(1903) visualised cellular components of neurons and was able to identify thread-like 

structures, which he named neurofibrils. In 1907, Alois Alzheimer also using 

Bielschowsky’s silver staining method described a new pathology in a woman who had 

died at the age of 51 after developing clinically unusual dementia. The novel pathological 

features observed by Alzheimer included tangles of fibrils within the cytoplasm of neurons 
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which accompanied neuronal cell death and a widespread plaque-like pathology similar to 

what had previously been described for senile dementia. At that time, the pathological 

presentations of the disease were distinct from any previously described because of the age 

of onset, rapid progression of the disease, unique neuropathological features and the 

severity of the lesions. In the years following Alzheimer’s findings, several cases of pre-

senile dementia were reported also presenting neuropathological features such as plaques 

and neurofibrillar tangles and several of these reports referred to the condition as 

“Alzheimer’s Disease”. However, official endorsement is often attributed to the most 

eminent psychiatrist in the world at that time, Emil Kraepelin (Berchtold and Cotman 

1998). 

The source and constitution of plaques and neurofibrillary tangles (NFTs) remained 

controversial for several decades, however, some advances were made in 1927 when the 

substance in plaques was identified as “amyloid” due to green birefringence of polarized 

light following Congo red staining (Divry 1927). Amyloids were already familiar with 

pathologists, with accumulation associated with age, chronic infection and chronic 

inflammation. With the onset of electron microscopy in the 1950’s ultrastructural studies 

of amyloid showed that plaques consisted of a central fibrillar core, whereas neurofibrillary 

tangles found in both senile dementia and AD represented neurofilaments joined together 

in a helical fashion. It was proposed that these twisted tubules interfered with normal 

neuronal function resulting in neuronal cell death (Berchtold and Cotman 1998).  

Despite ultrastructural analysis of plaques and NFTs suggesting cellular elements being 

involved, their constituent materials were not elucidated until the 1980’s. A study by 

Glenner & Wong (1984), isolated highly enriched amyloid fibres from meningeal vessels 

of AD patients. Using gel electrophoresis, they identified a unique protein band in the AD 

patients that was not present in aged matched controls. A protein of around 4.2 kDa was 

partially sequenced and residues 1-24 were identified. At that time the protein identified, 

named β-amyloid (Aβ) due to its partial β-pleated sheet structure, shared no homology 

with any protein sequence known (Glenner and Wong 1984). Further studies demonstrated 

that the protein was a monomer of about 40 residues. The self aggregating 4kDa monomer 

also termed A4 readily formed dimers A8, tetramers A16 and hexadecamers A64 (Masters, 

Multhaup et al. 1985; Masters, Simms et al. 1985). Another study which isolated the low 

molecular weight oligomers from amyloid plaques highlighted an amino acid composition 

which was approximately 50% hydrophobic. Plaque fibres were highly insoluble and 

resistant to a number of proteinases. In addition, antibodies raised against the low 
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molecular weight component of amyloid, selectively labelled plaques and vascular deposits 

from AD brains but did not stain NFTs. This gave rise to the suggestion that plaques and 

NFTs were distinct in their constituent parts (Selkoe, Abraham et al. 1986). The core 

component of NFTs was later found to be the microtubule-associated protein tau (Goedert, 

Wischik et al. 1988; Wischik, Novak et al. 1988; Wischik, Novak et al. 1988). 

The peptide isolated from the plaques of AD patients was shown to be homologous to the 

peptide seen in aged Down’s syndrome (DS) patients, a disease characterised by trisomy of 

chromosome 21. It was known that all DS patients over the age of 40 had almost 100% 

penetrance of Alzheimer’s related cerebral dysfunction and neuropathological lesions. 

Therefore trisomy 21 was seen as an early human model for AD and suggested that genetic 

defects initiating AD, whether acquired or hereditary, would localise to chromosome 21 

(Glenner and Wong 1984). Southern blotting experiments using cDNA from the amyloid 

peptide sequence found that trisomy 21 patients had 1.5-fold increase in gene dosage 

relative to normal patients (Podlisny, Lee et al. 1987). Indeed, subsequent cloning using 

cDNA probes based on the amyloid peptide sequence, identified the amyloid precursor 

protein (APP) which localised to human chromosome 21 and implied direct genetic linkage 

between AD and DS (Kang, Lemaire et al. 1987), (Tanzi, Gusella et al. 1987),(Goldgaber, 

Lerman et al. 1987) (Robakis, Ramakrishna et al. 1987). Further evidence of genetic 

linkage between AD and neuropathological lesions in trisomy 21 was highlighted in a rare 

case of DS where the distal location of chromosome 21q resulted in the patient being 

diploid for the APP gene. This individual showed no signs of dementia or deposition of 

amyloid upon their death at the age of 78 (Prasher, Farrer et al. 1998). 

1.2.1 Amyloid Precursor Protein  

APP is a type 1 trans-membrane glycoprotein with homologous proteins found in C. 

elegans, Drosophila, and highly conserved among mammals. APP is expressed in a variety 

of different tissues but is most abundant in the brain. There are three main splice variants 

that encode the Aβ peptide, APP695, APP751 and APP770. The latter two isoforms 

contain an extracellular Kunitz domain with protease inhibitor properties.  The APP695 

variant does not contain the Kunitz domain and is the form found predominantly in 

neurons (Zheng and Koo 2006). 

APP is sequentially processed by three main proteases known as α-, β-, γ-secretases. 

Cleavage by α- and β-secretase occurs in the extracellular domain, resulting in the release 
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of large soluble APP derivatives known as sAPPα and sAPPβ respectively. This process 

results in membrane-tethered α- and β- C-terminal fragments (CTFs). The main neuronal 

β-secretase is a transmembrane aspartyl protease known as β-site APP cleavage enzyme 

(BACE1). Cleavage at the α-site can be facilitated by several zinc metalloproteinases 

resulting in non-amyloidogenic processing of APP. Following the extracellular cleavage of 

APP at the c-terminal end of Aβ, γ-secretase is responsible for the processing of CTFs to 

produce either Aβ, in co-ordination with BACE1 cleavage, or a 3kDa product known as P3 

in co-ordination with α-secretase. γ-secretase cleavage is facilitated by a complex of 

proteins that includes; presenilin, nicastrin, anterior pharynx defective (APH1) and 

presenilin enhancer (PEN2). Finally, a neutral endopeptidase known as neprilysin can 

degrade monomeric Aβ peptides prior to aggregation (Zheng and Koo 2006) (Figure 1.1). 

 

Figure 1.1 – Amyloid Precursor Protein Processing. 
The sequential proteolytic degradation of APP which results in the release soluble APP peptides 
involved in signalling and the generation of Aβ peptides which ultimately lead to the progression of 
AD. Black arrows represent non-amyloidogenic processing of APP, red arrows represent 
amyloidogenic pathway.  

Soon after the discovery of the APP gene,  an autosomal dominant form of cerebral 

amyloid angiopathy (CAA), known as human hereditary cerebral haemorrhage with 

amyloidosis of the Dutch type (HCHWA-D),  pointed towards a polymorphism in the APP 

gene. This mutation results in missense, where glutamic acid at position 693 (APP770 

numbering) is substituted for glutamine (E693Q) (Van Broeckhoven, Haan et al. 1990). 
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Since this initial discovery, several other familial AD (FAD) associated with intra-Aβ 

mutations have been discovered including, E693K (Italian) (Tagliavani et al. 1999), E693G 

(Arctic) (Kamino, Orr et al. 1992), D694N (Iowa) (Grabowski, Cho et al. 2001), and 

A692G (Flemish) (Hendriks, van Duijn et al. 1992). While the Flemish mutation induces a 

two-fold increase in Aβ1-40 and Aβ1-42 production due to reduced α-secretase activity 

(Figure 1.2) the Dutch and Iowa mutations do not alter levels of Aβ1-40 or Aβ1-42 relative to 

wild-type APP but are associated with accelerated fibril formation and increased 

pathogenicity from the resulting Aβ peptides (Haass, Hung et al. 1994), (Wisniewski, 

Ghiso et al. 1991; De Jonghe, Zehr et al. 1998), (Van Nostrand, Melchor et al. 2001). 

Several other FAD associated missense mutations in APP have been characterised that 

induce changes in APP processing resulting in increased Aβ production (Figure 1.2). The 

most notable of these are the KM670/671NL (Swedish) mutation and mutations at valine 

717 which includes V717I (London) and V717F (Indiana) which frame the Aβ sequence 

(Mullan, Crawford et al. 1992), (Goate, Chartier-Harlin et al. 1991), (Murrell, Farlow et al. 

1991). The Swedish double mutation at the β-secretase cleavage site results in a 6-8-fold 

increase in secreted Aβ peptide levels compared to wild-type APP. This increase in Aβ 

production is associated with a shift away from α-secretase towards β-secretase cleavage, 

as both proteases directly compete for the APP substrate within the same cellular 

compartment. Increased β-secretase shifts the equilibrium towards amyloidogenic over the 

non-amyloidogenic processing of APP (Citron, Vigo-Pelfrey et al. 1994), (Haass, Lemere 

et al. 1995). Mutations in the vicinity of the γ-secretase cleavage site also result in 

increased Aβ1-42 production over the less toxic Aβ1-40. Intriguingly, an increase in the ratio 

of Aβ1-42 to Aβ1-40 has been shown to inversely correlate with the age of AD onset (De 

Jonghe, Esselens et al. 2001).  

In addition to missense mutations in APP that increase deposition of amyloid, there have 

been familial mutations characterised in components of the processing machinery that can 

promote increased production of Aβ1-42 peptides leading to aggressive early onset forms of 

AD. These include presenilins (Citron, Westaway et al. 1997) and neprilysin (Iwata, 

Higuchi et al. 2005). In light of the large number of mutations in FAD that are all directly 

associated with increased production of Aβ peptides and increased amyloid deposition, the 

“Amyloid hypothesis” was developed by Dennis Selkoe, an early pioneer in AD research 

(Selkoe 1991). 
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Figure 1.2 – Familial APP mutations that alter APP processing. 
Examples of APP mutations which alter its interactions with secretases leading to increased 
production of Aβ peptides. Familial mutations in the APP gene ultimately result in early onset AD.  

1.2.2 The Amyloid Hypothesis 

The amyloid cascade hypothesis was originally developed by Selkoe in 1991 and 

supported by Hardy & Allsop (1991). Both groups recognised that the deposition of 

amyloid is the key event in the aetiology of AD neuropathology (Summarised in figure 

1.3) (Hardy and Allsop 1991; Selkoe 1991). Prior to the discovery of Aβ and cloning of 

APP, scientists believed that amyloid deposition was a “tombstone” event rather than a 

causative factor of AD. There are several key factors which support the causative role of 

Aβ in the development of AD. First, is the localisation of the APP gene to chromosome 21 

with AD penetrance almost 100% in aged DS patients and this not being apparent in a rare 

form of DS (discussed previously). Secondly, synthetic Aβ peptides are toxic to 

hippocampal and cortical neurons in vivo and in vitro (Pike, Walencewicz et al. 1991; 

Lambert, Barlow et al. 1998; Hoshi, Sato et al. 2003; Deshpande, Mina et al. 2006). 

Thirdly, FAD associated mutations, which increase production of Aβ through altered 

processing (figure 1.2), all result in early onset AD (Wisniewski, Ghiso et al. 1991; De 

Jonghe, Zehr et al. 1998; Van Nostrand, Melchor et al. 2001). Fourth, familial mutations 

within presenilin 1 and 2 alter the ratio of Aβ1-42 to Aβ1-40 resulting in aggressive forms of 

AD (Bentahir, Nyabi et al. 2006) (Kumar-Singh, Theuns et al. 2006). Fifth, transgenic 
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mice carrying mutant human APP display a gradual increase in Aβ accumulation over time 

and have behavioural phenotypes similar to those seen in AD patients (Ashe 2005). Lastly, 

co-expression of mutant APP with mutant tau accelerates tau hyperphosphorylation leading 

to the development of neurofibrillary tangles (Oddo, Caccamo et al. 2003; Walsh and 

Selkoe 2007). 

 

Figure 1.3 – The Amyloid Cascade Hypothesis. 
The amyloid cascade hypothesis describes the sequence of events initiated by Aβ that ultimately 
proceeds to neuronal cell death and cognitive impairment associated with AD. Adapted from 
(Hardy and Selkoe 2002). 

Despite convincing evidence supporting the amyloid hypothesis, controversy surrounds the 

model, as there are several aspects that are not consistent with Aβ being the key causative 
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agent in AD progression. The main factor against the amyloid hypothesis is that the 

number of insoluble fibrillar plaques in the brain does not fully correlate with the severity 

of dementia. Instead, loss of synaptic density is the strongest marker for cognitive 

impairment. Surprisingly, in several studies, amyloid plaques are apparent in control 

samples from humans who display no evidence of cognitive decline (Katzman 1986; 

DeKosky and Scheff 1990; Terry, Masliah et al. 1991; Dickson, Crystal et al. 1995). Other 

investigations have also found stronger correlation with soluble Aβ peptide density and 

synaptic loss/severity of cognitive impairment suggesting that insoluble fibrils may not be 

the key mediators of toxicity (McLean, Cherny et al. 1999; Wang, Dickson et al. 1999).  

A major sticking point for the amyloid hypothesis is the lack of a way to isolate specific 

neurotoxic species of Aβ and characterise their effects in vivo. Early studies have 

demonstrated that aggregation of Aβ is essential to induce cytotoxic effects. Freshly 

prepared synthetic Aβ1-42 peptide is monomeric and has neurotrophic effects on 

hippocampal neurons whereas Aβ1-42 peptide aged for several days at physiological 

conditions, results in its aggregation and subsequent neurotoxicity (Pike, Walencewicz et 

al. 1991). Similar studies have been carried out on Aβ1-40 and the consensus is that 

experimental protocols that fail to induce the peptides to form amyloid deposits also 

demonstrate a lack of neurotoxicity. These results suggest that conformation of the Aβ 

peptides is the key determinant of neurotoxicity. It was also noted that differences in Aβ 

peptide preparation is likely to account for major variations in the peptide’s potency 

(Busciglio, Lorenzo et al. 1992). Another twist has been introduced more recently by 

studies which propose soluble oligomeric species of Aβ as being the main driver of 

neurotoxicity and synaptic dysfunction (Hardy and Selkoe 2002) as opposed to monomeric 

or insoluble amyloid fibrils.  

Soluble intermediate species of synthetic Aβ are made up of several distinct conformations 

that have differential neurotoxic effects on cultured neurons. These include, higher 

molecular weight complexes known as Aβ-derived diffusible ligands (ADDLs), oligomers 

composed of 15-20 monomers (AβOs), protofibrils, and dodecameric oligomers Aβ*56 

(Walsh, Lomakin et al. 1997; Lambert, Barlow et al. 1998; Kayed, Head et al. 2003; Lesne, 

Koh et al. 2006). The toxic effects of ADDLs, AβOs and Aβ fibrils were tested in parallel 

on human cortical neurons. The majority of ADDLs and AβOs were found to rapidly 

localise to synapses, while the remaining populations were found to co-localise with 

cellular membranes, suggesting that soluble Aβ species may initiate toxicity at multiple 

cellular locations. The acute toxic effect of AβOs resulted in the activation of 
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mitochondrial death pathways, caspase activation and nuclear condensation. Whereas 

ADDLs required five times longer to induce similar toxic effects and Aβ fibrils required 

chronic incubation for ten days  to trigger this response (Deshpande, Mina et al. 2006). 

Various endogenous Aβ species have been isolated from the human brain but their precise 

assemblies have not been fully characterised. Using a variety of size exclusion techniques, 

it has been shown that both control and AD patient’s brains contain a continuous 

distribution of Aβ species ranging from monomers to high molecular weight species over 

100 kDa (Roher and Kuo 1999). However, while low-n SDS-stable oligomers have been 

detected in the supernatant of AD brain tissue (McLean, Cherny et al. 1999), higher 

molecular weight SDS-stable Aβ species have not been reported in CSF or soluble extracts 

of the human brain. This suggests that SDS-stable low-n oligomers of Aβ are the smallest 

intermediate of insoluble amyloid deposits and may be the earliest mediators of neuronal 

dysfunction (Walsh and Selkoe 2007).  

Other issues with the amyloid hypothesis are related to the transgenic mouse models of 

AD. Despite increased Aβ deposition in these models, there appears to be lack of 

coincidental neuronal loss. This is thought to be mainly due to species differences in 

neuronal susceptibility to Aβ accumulation, a lack of the human tau protein in mice, and 

also the lack of a human-like inflammatory response, which also plays a pivotal role in the 

progression of the disease (Hardy and Selkoe 2002). In order to address the issues with 

transgenic mouse models of AD, a triple transgenic model was developed by inserting two 

transgenes containing the APP Swedish mutant and a tau mutant (P301L) into an embryo 

that was homozygous with a presenilin 1 mutant (M146V). This was the first AD mouse 

model to develop concomitantly senile plaques and neurofibrillary tangles. Synaptic 

dysfunction in this mouse progressed in an age-related manner but it was also shown that, 

in agreement with the amyloid hypothesis, extracellular Aβ deposition preceded tangle 

formation. Additionally, deficits in synaptic plasticity occurred prior to extracellular 

accumulation and such deficits were associated with intraneuronal accumulation of Aβ 

(Oddo, Caccamo et al. 2003). 

One of the advantages of developing the amyloid hypothesis was to focus AD research 

towards targets with therapeutic potential based on the understanding of the disease 

process (Hardy and Selkoe 2002). Despite some drawbacks with the hypothesis, alternative 

hypotheses that explain the pathogenesis of the disease have not been as robust. Therapies 

targeting Aβ amyloidogenesis have the potential to slow or even prevent further 
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neurodegeneration and the development of anti-Aβ therapeutics is regarded as a logical 

approach to treating AD (Hardy and Selkoe 2002; Walsh and Selkoe 2007). The National 

Institute on Aging (NIA) is currently supporting a number clinical trials that target the Aβ 

peptide in order to treat AD; these include immunotherapies such as intravenous 

immunoglobulin treatment using antibodies raised against Aβ (passive immunisation) 

(Relkin, Szabo et al. 2009); resveratrol, a polyphenol found in red wine which prevents Aβ 

aggregation (Ge, Qiao et al. 2012); carvediol, a β-blocker which lowers oligomeric Aβ 

levels (Wang, Ono et al. 2010), and thalidomide, a tumour necrosis factor TNFα inhibitor 

which down-regulates BACE1 and reduces Aβ generation (He, Cheng et al. 2013). Several 

more can be found at www.nia.nih.gov/alzheimers/clinical-trials. 

1.3 Small Heat Shock Proteins 

Small heat shock proteins (sHSPs) are a diverse class of molecular chaperones whose main 

role is to maintain protein homeostasis by binding proteins in their non-native 

confirmations to prevent aggregation (Haslbeck, Franzmann et al. 2005). sHSPs also 

undertake essential functions in a wide range of physiological processes and the ability of 

the each member of the family to form homo- and hetero-meric complexes underpins the 

large number of protein-protein interactions into which the sHSPs are known to enter. 

sHSPs have emerged as key therapeutic targets for a number of human diseases and can 

affect the rate of aging in tissue and entire organisms. Their regulation may have 

therapeutic implications for cancer, cardiovascular and neurodegenerative diseases 

(Kampinga and Garrido 2012). 

1.3.1 Discovery 

The heat shock response was originally discovered serendipitously in 1964 by the Italian 

geneticist Ferruccio Ritossa. While studying nucleic acid synthesis in chromosomes of the 

Drosophila melanogaster salivary glands, he noticed rapid transcriptional activity 

(observed as new chromosomal “puffs”) in response to elevated temperatures (Ritossa 

1964). The biological significance of this response was not realised at the time, however, a 

correlation between chromosomal puffs and protein synthesis was discovered in 

Drosophila in 1974 by Tissieres et al.  By injecting radio-labelled [
35

S] methionine into D. 

melanogaster and concomitantly increasing temperatures above optimal growth conditions 

(from 23°C to 37.5°C for 20 minutes), visualisation of several proteins bands that were 

rapidly upregulated (Tissieres, Mitchell et al. 1974) was possible. Mild heat shock 
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treatment was later shown to provide protection against thermal killing and increase 

survival of whole animals or various cell cultures of Drosophila (Mitchell 1979). The 

proteins up-regulated following heat shock were not identified until 1982 when Ignolia et 

al. characterised the primary amino acid sequence of 4 small heat shock proteins from 

Drosophila and found they were highly homologous and shared over 50% sequence 

similarity. Furthermore, the domains that shared the highest homology were found to be 

orthologous to mammalian α-crystallin protein, the most widely studied sHSP and a major 

constituent of the human eye lens (Ingolia and Craig 1982; Horwitz 2003). 

Although HSP levels had been shown to correlate with thermo-tolerance, evidence of  

sHSPs promoting thermo-protection directly  was not established until 1989 when Landry 

et al. demonstrated, through ectopic and constitutive expression of Hsp27, that Chinese 

hamster and mouse cells were protected against heat induced cell death without the need 

for prior heat shock pre-conditioning to upregulate endogenous HSPs  (Landry, Chretien et 

al. 1989). A further study revealed that expression of Hsp27 increased the stability of stress 

fibres during induced hyperthermia and could partially protect against actin 

depolymerisation following treatment with cytochalasin D (Lavoie, Gingras-Breton et al. 

1993). 

sHSPs had been suggested to maintain the conformation of native proteins following their 

induction by heat shock (Figure 1.4). They were confirmed as molecular chaperones when 

murine Hsp25, human Hsp27 and bovine αB-crystallin were shown to regulate folding and 

prevent aggregation of two proteins, citrate synthase and α-glucosidase in vitro. All 

recombinant sHSPs stabilised the target proteins under heat shock conditions and even 

promoted full functional re-folding following urea-induced denaturation. The mechanism 

was shown to be similar to Hsp90 mediated chaperone function; however the sHSPs did 

not require ATP to drive the refolding process (Jakob, Gaestel et al. 1993). 
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Figure 1.4 – Simplified Protein folding pathway. 
Under normal physiological conditions the majority of protein folding occurs spontaneously. 
However, upon heat stress proteins lose their native conformation which increases the levels of 
proteins tagged for degradation. Under these conditions transcription and translation of proteins is 
suppressed to allow heat shock protein levels to increase and stabilise denatured proteins. This 
allows the cell to function and protects against cell death until conditions are back at optimum.  

 

sHSPs are the most widespread family of molecular chaperones and are found throughout 

all kingdoms. Phylogenetic analysis uncovered early evolutionary divergence. Bacteria, 

Archea and single-celled eukaryotes typically contain one or two sHSPs. In higher 

organisms the number of sHSPs is higher, there are 4 in Drosophila Melanogaster, 16 in 

Caenorhabditis elegans, and 19 in Arabidopsis thaliana (Haslbeck, Franzmann et al. 

2005). Up until 2001, 9 α-crystallin related sHSPs had been identified in humans and these 

were given the formal names HspB1-HspB9 ascribed by the HUGO Gene Nomenclature 

Committee (Kappe, Verschuure et al. 2001). Following completion of the human genome 

project, human Hsp27 protein sequence was used to extensively search for any remaining 

sHSP from predicted coding gene sequences. 10 sHSP related genes were identified in 

total, including all previously characterised sHSPs, and also a novel protein known 

previously as outer dense fiber protein 1 (ODF1). The spread of the 10 sHSP genes over 9 

different chromosomes is evidence of ancient duplications that have created the human 

sHSP family of proteins (Kappe, Franck et al. 2003). A summary of all 10 sHSPs is given 

in Table 1.1. 
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1.3.2 sHSP expression profile 

Some of the sHSP family show restricted tissue expression, whereas others (including 

Hsp27, αB-crystallin, Hsp22 and Hsp20 (Table 1.1)) are expressed ubiquitously.  The 

expression profile of Hsp27, αB-crystallin, Hsp22 and Hsp20 has been studied extensively 

in developing pigs (from foetuses until adulthood). Initial studies looking at Hsp27 and 

αB-crystallin found strong expression of αB-crystallin in the eye lens, as expected, but also 

in the heart and skeletal muscle, while Hsp27 was expressed more strongly in heart and 

muscle tissue. Furthermore modulation of expression is observed in several tissues 

throughout development. In the lens, no change of expression of αB-crystallin was 

observed from foetal stage to the 3 year old adult as a constant level of expression is 

required to ensure normal vision. In whole brain, liver, kidney and lung, αB-crystallin 

expression increases with age, while Hsp27 increased only in the kidneys at later 

developmental stages (Tallot, Grongnet et al. 2003). In a related study by the same group, 

expression of Hsp20 and Hsp22 was found in porcine lens, brain, heart, liver, kidney, lung, 

skeletal muscle, stomach and colon. Hsp20 expression levels were found to increase with 

age in heart, kidney, hippocampus and striatum. Hsp22 expression remained constant in 

the heart but increased with age in the stomach, liver, kidney, hippocampus and striatum. 

Each tissue had a distinct expression profile of sHSPs that was modulated throughout 

development. Such data suggests that the individual roles of the different sHSPs in driving 

key functions at various stages of mammalian ageing (Verschuure, Tatard et al. 2003) are 

important for regulated development. 
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Table 1.1 - The human small heat shock proteins (HSPB family) 

Protein Name Alternative name Molecular mass  

(kD) 

Tissue Expression 

Profile 

Function Diseases 

HSPB1 Hsp27 22.3 Ubiquitous Cytoskeleton stabilization; chaperone and pro-refolding 

functions; anti-apoptotic function; anti-oxidant function 

Neuropathy, Cancer, 

Ischemia/Reperfusion 

HSPB2 MKBP 20.2 Skeletal and cardiac 

muscle 

Chaperone activity toward DMPK; enhance kinase activity of 

DMPK, maintaining myofibrillar integrity; anti-apoptotic 

function 

Myopathy, Ischemia/Reperfusion 

HSPB3  HspL27 17.0 Skeletal, cardiac and 

smooth  muscle 

Maintaining myofibrillar integrity  

HSPB4 αA-crystallin 19.9 Eye Lens Chaperone and pro-refolding functions; maintaining the proper 

refractive index in the lens 

Cataract 

HSPB5 αB-crystallin 20.2 Ubiquitous Chaperone and pro-refolding functions; cytoskeleton 

stabilization; maintaining the proper refractive index in the 

lens; anti-apoptotic function 

Neuropathy, Myopathy, 

Ischemia/Reperfusion, Cancer, cataract 

HSPB6 Hsp20 17.1 Ubiquitous Smooth muscle relaxation; cardioprotection; anti-aggregation; 

anti-apoptotic function 

Neuropathy, Ischemia/Reperfusion 

HSPB7 cvHsp 18.6 Skeletal and cardiac 

muscle 

Maintaining myofibrillar integrity; SC35 speckle resident; 

anti-aggregation 

 

HSPB8  H11, Hsp22 21.6 Ubiquitous Anti-aggregation; protein synthesis inhibition; induction of 

autophagy 

Neuropathy, Cancer, Ischemia 

HSPB9 CT51 17.5 Testis Cancer/testis antigen Cancer 

HSPB10 ODF1 28.4 Testis Cytoskeleton stabilization  

 Table adapted from Boncoraglio et al. 2012 & Garrido et al. 2012  
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1.3.3 Structure & Function of small Heat Shock Proteins 

The sHSP family of molecular chaperones are of low monomeric molecular weight, 

ranging between 16 and 30 kDa (Table 1.1). They are characterised by a highly conserved 

α-crystallin domain at the C-terminal region which consists of a β-sandwich and 2 anti-

parallel β-sheets (Figure 1.5). The α-crystallin domain mediates many intra- and inter-

molecular interactions that lead to the formation of dimers which have been proposed to be 

the active chaperoning unit of sHSPs (Benesch, Ayoub et al. 2008). The N-terminal region 

is more variable and can contain α-helical elements (Kappe, Franck et al. 2003).  The sHSP 

family can readily assemble into higher molecular weight homo- or hetero-meric 

complexes. These high molecular weight complexes are dynamic and can readily exchange 

subunits (van Montfort, Basha et al. 2001; Haslbeck 2002; Narberhaus 2002; Horwitz 

2003; Kappe, Franck et al. 2003). Hsp20 exists as a dimer of 43kDa or a large homo-meric 

470kDa multimer, depending on its concentration. Another noteworthy feature about 

Hsp20 is that it has a shorter, less polar C-terminal extension relative to the majority of 

sHSPs (van de Klundert, Smulders et al. 1998).  

The most important mechanism for regulating complex formation and client substrate 

specificity of the sHSPs is post-translation modification. The majority of sHSPs contain 

phosphorylatable serine residues. Hsp27 is phosphorylated at serine 15 (S15), S78 and S82 

by the MAPKAP Kinase 2/3, downstream of the p38 pathway (Rogalla, Ehrnsperger et al. 

1999). αB-crystallin is phosphorylated at S45 by p44/p42 MAPK, at S59 by MAPKAPK-2 

and at S19 by an unknown kinase (Kato, Goto et al. 1994). Hsp20 is phosphorylated at S16 

by cyclic nucleotide dependent kinases; protein kinase A (PKA) and protein kinase G 

(PKG) (Beall, Bagwell et al. 1999). Hsp22 is also phosphorylated by PKA at residues S24 

and S57 (Shemetov, Seit-Nebi et al. 2008) and HspB10 is phosphorylated at S193 by 

Cyclin-dependent kinase 5 and its activator p35 (Rosales, Sarker et al. 2007). 

Phosphorylation of sHSPs can occur in response to a variety of stress signals and can alter 

protein conformation from one that favours large multimeric complexes towards low-n 

conformations such as monomers and dimers (Figure 4). Conformation can be crucial for 

chaperone function as phospho-mimetic substitutions of Hsp27 and Hsp22 result in 

decreased oligomer formation and attenuated chaperone activity (Rogalla, Ehrnsperger et 

al. 1999; van Montfort, Basha et al. 2001; Shemetov, Seit-Nebi et al. 2008). Hsp20 is 

found predominately in its dimeric form and has been shown to be a relatively poor 

chaperone in comparison to αB-crystallin (van de Klundert, Smulders et al. 1998). 
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Figure 1.5 – Structure of Hsp20. 
The Hsp20 protein contains an α-crystallin domain at the C-terminal end which is highly conserved 
among small heat shock proteins. Hsp20 is unique in that it contains a troponin I motif within the α-
crystallin domain which regulates cardiomyocytes contractility. Hsp20 is phosphorylated at a 
consensus protein kinase site which results in its release from high molecular weight oligomers into 
monomeric and dimeric species which are the physiologically active subunits of Hsp20. The 
structures of an Hsp20 homolog from wheat, Hsp16.9 are shown in colour. The equilibrium 
between low molecular weight subunits and higher molecular weight oligomers is dependent on 
temperature and post translational modifications such as phosphorylation (van Montfort, Basha et 
al. 2001; Garrido, Paul et al. 2012). 

The family of sHSPs perform a number of physiological functions within cells. These 

include; chaperone-like activities (discussed previously), cytoskeletal stabilisation, anti-

apoptotic functions and regulation of protein quality control pathways. The ability of 

Hsp27, αA-crystallin, αB-crystallin and Hsp20 to modulate the structure of the 

cytoskeleton at the microfilament and intermediate filament level has been thoroughly 

investigated (Boncoraglio, Minoia et al. 2012). All of these sHSPs are known to interact 

with cytoskeletal elements and influence their stability. Hsp27 can directly stabilise actin 

filaments (Lavoie, Gingras-Breton et al. 1993). αA-crystallin and αB-crystallin have been 

shown to play important role in regulating actin dynamics and localise to lamellipodia in 

migrating lens epithelial cells (Maddala and Rao 2005). Reduced αB-crystallin expression 

has been shown to modify cell morphology, destabilise the microfilament network and a 

reduce cell adhesion (Iwaki, Iwaki et al. 1994). Hsp20 can bind to filamentous F-actin or 

globular actin depending on its phosphorylation status. The actin binding region of hsp20 

is homologous with the actin association motif in myofilament protein troponin I (figure 

1.5), which is important for cardiac contractility and relaxation (Rembold, Foster et al. 
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2000). Hsp20 also interacts with the scaffolding protein 14-3-3 which prevents the 

association of cofilin, an actin depolymerising protein (Dreiza, Brophy et al. 2005). 

Several sHSPs have potent cytoprotective properties and can protect against apoptosis 

induced via hyperthermia, oxidative stress or several cytotoxic compounds (Boncoraglio, 

Minoia et al. 2012). αB-crystallin protects against the actions of a range of apoptosis-

inducing agents and can sequester pro-apoptotic proteins such as p53 and the Bcl-2 family 

proteins, Bax and Bcl-Xs, preventing their translocation to the mitochondria (Mao, Liu et 

al. 2004; Liu, Li et al. 2007). Hsp20 regulates apoptosis in cardiomyocytes via an 

interaction with Bax, resulting in reduced caspase-3 activity following 

ischemic/reperfusion injury (Fan, Ren et al. 2005). Hsp20 can also inhibit apoptosis and 

cardiac remodelling, induced via chronic β-adrenergic stimulation, through regulation of 

apoptosis signal-regulating kinase 1 (ASK1) (Fan, Yuan et al. 2006). 

Another important cellular function ascribed to sHSPs is protein quality control via the 

partitioning of proteins towards either renaturation or proteosomal degradation. Referred to 

as protein triage, the process involves the ubiquitin-proteasome system which is an error-

checking pathway that directs incorrectly folded proteins towards degradation (Figure 1.3). 

The coordinated interaction between sHSP induced renaturation and proteasome 

degradation is not fully understood but several sHSPs have been shown to regulate several 

aspects of protein triage (Garrido, Paul et al. 2012). Hsp27 enhances the catalytic activity 

of the 26S proteasome, promoting increased degradation of ubiquitinated proteins. αB-

crystallin can interact with C8 subunit of the 20S proteasome and also the ubiquitin ligase 

FBX4, which drives the ubiquitination and subsequent degradation of protein substrates 

including cyclin D1 (Lanneau, Wettstein et al. 2010). Hsp22 is directly involved in 

regulating autophagy, a process of non-selective cellular recycling that sequesters the 

cytoplasm, cellular organelles and aggregated proteins into double membrane bound 

vesicles that are subsequently delivered to lysosomes for degradation (Carra, Brunsting et 

al. 2009). A non-phosphorylatable mutant of Hsp20 has also been shown to suppress 

autophagy leading to increased necrosis, suggesting that Hsp20 is also intrinsically 

involved in autophagy (Qian, Ren et al. 2009).  

The family of sHSPs perform a number of cellular functions that are vital for maintaining 

protein homeostasis in order to positively regulate the balance between life and death of a 

cell. Their ability to form homo- and hetero-meric complexes results in a vast interactome 

and this in turn, accounts for their involvement in diverse processes such as proteolysis, 
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apoptosis, proliferation, autophagy and smooth muscle relaxation. sHSPs are becoming 

attractive therapeutic targets for a number of human diseases, particularly disorders of 

aggregated protein deposition such as Alzheimer’s disease (Sun and MacRae 2005). 

1.3.4 sHSPs & Amyloids 

Several neurological diseases are characterised by accumulation of aggregation-prone 

proteins. This class of diseases include Aβ peptide in Alzheimer’s, huntingtin in 

Huntington’s and α-synuclein in Parkinson’s. The deposits associated with these diseases 

share a common feature in that they all contain amyloid fibrillar forms of the respective 

causative protein. Amyloid fibril formation can occur to any protein under certain 

physiological conditions (Chiti and Dobson 2006). sHSPs have been found to be up-

regulated in response to conditions associated with amyloid fibril formation and several 

sHSPs have been shown to co-localise with amyloid deposits (see below).  sHSPs are 

thought to play key roles in the protective response against  these diseases, as cells evoke 

the anti-aggregation and cytoprotective properties of sHSPs as an early defence mechanism 

against proteotoxic stress (Ecroyd and Carver 2009).  

One well studied example of a disease protein associated with amyloid fibril formation is 

α-synuclein protein in Parkinson’s. The protein α-synuclein forms intracellular fibrillar 

inclusions known as Lewy bodies and the aggregation of α-synuclein into these deposits 

plays a key role in the pathogenesis of this disease (Spillantini, Crowther et al. 1998). In 

brain tissue from Parkinson’s disease patients, Hsp27 and αB-crystallin co-localise with α-

synuclein in Lewy body deposits (Poutney 2005; Mclean 2002). Hsp27 can attenuate the 

aggregation potential of α-synuclein and subsequently inhibit its cytotoxic effects 

(Zourlidou, Payne Smith et al. 2004). The reduction in toxicity can be highly significant. In 

one study, Hsp27 was found to reduce toxicity of α-synuclein in a cell model by around 

80% compared to a 20% reduction induced by αB-crystallin (Outeiro, Klucken et al. 2006). 

Huntington disease is an inherited neurodegenerative disease that is caused by the triplet 

expansion CAG in the huntingtin gene. The resultant protein contains extended glutamine 

repeats of more than 40 residues (polyQ). The disease is characterised by protein 

misfolding and aggregation with a concurrent increase in proteotoxic stress (Orr 2012). 

sHSPs have been shown to differentially affect the aggregation propensity of mutant 

Huntington exon 1 (Htt). Hsp20, cvHsp, Hsp22 and HspB9 all strongly inhibit aggregation 

of Htt carrying 43 CAG repeats (HttQ43) whereas HspB2, HspB3, αB-crystallin and 



Chapter 1 

19 
 

HspB10 have no effect (Vos, Zijlstra et al. 2010). In a separate study both Hsp20 and 

Hsp22 where shown to interact with the co-chaperone Bag3, a regulator of autophagy, to 

prevent accumulation of aggregated HttQ43 by targeting the protein for degradation 

(Fuchs, Poirier et al. 2010). 

Alzheimer’s disease associated amyloid plaques are known to contain several other 

proteins in addition to the Aβ peptide. αB-crystallin and Hsp27 were the first sHSPs to be 

studied immunohistochemically in the cerebral cortex of human AD patients. αB-crystallin 

levels where found to be elevated in the temporal and frontal lobes and localised in 

astrocytes and oligodendrocytes. Hsp27, on the other hand, was elevated in the temporal, 

frontal and parietal lobes and presented in degenerating neurons in the cerebral cortex 

(Shinohara, Inaguma et al. 1993). Another study found that Hsp27, αB-crystallin, HspB2 

and Hsp20 were all detected extracellularly in classic senile plaques. Both Hsp27 and αB-

crystallin were also observed in astrocytes associated with senile plaques and cerebral 

amyloid angiopathy. Additionally, Hsp20 was also detected in diffuse senile plaques, 

suggesting that Hsp20 has certain affinity for non-fibrillar Aβ. Furthermore, Hsp20 levels 

in classic senile plaques in the hippocampus and neocortex correlated with age. As sHSPs 

are typically found intracellularly, their extracellular deposition is thought to result from 

necrotic cell-death associated with Aβ accumulation (Wilhelmus, Otte-Holler et al. 2006). 

1.3.5 sHSPs and Aβ 

The most widely studied target for sHSP chaperone activity associated with disease related 

fibrils is the Aβ peptide. There have been several conflicting reports regarding the effect 

sHSPs can have on amyloidogenesis particularly with respect to αB-crystallin. An initial 

study by (Kudva, Hiddinga et al. 1997), showed that Hsp27 dose-dependently inhibited the 

rate of Aβ1-42 amyloidogenesis measured through thioflavine T (ThT), a compound which 

selectively binds to aggregated Aβ resulting in a shift in its fluorescence spectrum (LeVine 

1993), while αB-crystallin had no effect on the rate of aggregation. Treatment of pre-

formed aggregates with Hsp27 also resulted in reduction in ThT fluorescence but to a far 

lesser extent, therefore it was deduced that the dominant effect of Hsp27 on aggregation 

was through inhibition of amyloid formation (Kudva, Hiddinga et al. 1997). Another study 

utilising ThT to characterise the effect of αB-crystallin on Aβ aggregation found that αB-

crystallin inhibited fibril formation of Aβ1-40 but in doing so created a non-fibrillar Aβ/αB-

crystallin complex that was highly toxic to cells. It was suggested that αB-crystallin was 

stabilising oligomers in a neurotoxic protofibrilar form and could therefore be 
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inadvertently exacerbating Aβ induced neuronal damage (Stege, Renkawek et al. 1999). 

αB-crystallin has also been shown to promote fibril formation of Aβ1-40 through the 

exchange of subunits of αB-crystallin and Aβ fibril intermediates. The dynamic interaction 

between αB-crystallin and Aβ was investigated using fluorescence resonance energy 

transfer (FRET) between pyrene-labelled Aβ1-40 and the tryptophan residues on un-labelled 

αB-crystallin (Liang 2000). 

Inhibition of fibril elongation by αB-crystallin was described by Raman et al. 2005. This 

group reported that αB-crystallin does not form a stable complex with Aβ1-40 and they went 

on to identify distinct mechanisms that distinguish amorphous aggregation and fibril 

growth. Notably, αB-crystallin preferentially interacts with the fibril nucleus and inhibits 

polymerisation of amyloid fibrils (Raman, Ban et al. 2005). Several mutations, and 

complete removal of the flexible C-terminal extension on αB-crystallin have also been 

shown drastically modulate chaperone activity towards either amorphous amyloid 

aggregates or fibrils (Treweek, Ecroyd et al. 2007).  

One study looking at αA-crystallin found that a domain within the α-crystallin domain 

shares homology with a site within Aβ which plays a key role in amyloidogenesis. This 

motif is known as the KLVFF domain. Utilising a “mini-αA-crystallin”, this 19 amino acid 

peptide was sufficient to block amyloidogenesis and attenuate subsequent cytotoxicity. 

However it did not work as well as full length αA-crystallin (Santhoshkumar and Sharma 

2004). 

Several sHSPs species have also been shown to inhibit in vitro amyloidogenesis 

(Wilhelmus, Boelens et al. 2006). The Verbeek group characterised the ability of five 

different sHSPs to affect fibril formation of Aβ1-42 and Aβ1-40 carrying the Dutch mutation 

(Q22G). The latter forms fibrils more readily than the WT Aβ1-40. αB-crystallin had the 

highest affinity for Aβ1-42 and Dutch Aβ followed by Hsp20 then Hsp27.  The co-oligomer 

HspB2/B3 which was found to co-localise with CAA had no detectable affinity for either 

Aβ peptide tested. The affinity of the sHSPs for Aβ was higher for Aβ1-42 than for Dutch 

Aβ1-40 which could possibly account for the severe early-onset form of AD, HCHWA-D 

(discussed previously) due to perturbation of the endogenous anti-aggregation effect of 

sHSPs. Co-incubating the various sHSPs with Aβ peptides resulted in attenuation of 

subsequent Aβ induced cytotoxicity when overlaid on cultured human brain pericytes. 

Hsp20 and αB-crystallin dose-dependently reduced Aβ induced cytotoxicity and the level 

of protection afforded by co-incubating the Aβ peptides and the various sHSPs correlated 
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with affinity. Furthermore, Hsp20 was the only sHSP that prevented accumulation of Aβ1-

40 at the cell surface (Wilhelmus, Boelens et al. 2006). 

The examples detailed above make a strong case to support the fact that sHSPs can inhibit 

amyloidogenesis of the Aβ peptide. The potential exploitation of this finding to create 

novel therapeutics is under way. One study has used a transgenic Caenorhabditis elegans 

strain expressing human Aβ1-42 and found this lead to increased expression of the Hsp16 

family of proteins, which are homologous to αB-crystallin. Hsp16 has been previously 

shown to co-localise intracellularly with human Aβ1-42 peptide (Fonte, Kapulkin et al. 

2002). In a follow-up study, the transgenic model of C. elegans was transfected with 

Hsp16.2 and this attenuated Aβ1-42 induced toxicity. Hsp16.2 reduced amyloid fibril 

formation but did not affect accumulation of Aβ suggesting that sHSPs reduce Aβ toxicity 

directly by modulating the oligomerisation pathways in order to reduce the formation of 

toxic intermediates in the amyloidogenic pathway (Fonte, Kipp et al. 2008). 

In light of the data described above, there appears to be two therapeutic avenues down 

which sHSP-related technology could be developed in order to protect against diseases 

such as AD. First would be to positively manipulate expression of sHSPs in order to 

prevent the formation of toxic Aβ species early in the disease process. This would mimic 

natural processes seen when sHSPs are upregulated in cells surrounding senile plaques and 

Aβ deposits. Additionally, sHSPs are found to co-localise with Aβ deposits in AD brain 

tissue suggesting a possible protective mechanism that becomes overwhelmed as the 

disease progresses. This is particularly evident in the study conducted by Wilhelmus et al. 

(2006c) where Hsp20 was protective against Aβ1-40 induced cell death at 1:1 molar ratios 

but not at 25:1 (Aβ1-40:Hsp20) (Wilhelmus, Boelens et al. 2006). The second strategy 

would be to mimic stress responses within the cell by altering sHSP function via 

conformational changes triggered by post-translational modifications such as 

phosphorylation. The effect of phosphorylation on the activity of various sHSPs in relation 

to Aβ aggregation has not previously been investigated, however, it is crucial in mediating 

cardio-protective effects (Edwards, Scott et al. 2012). If effective, this concept could serve 

as a more convenient and controllable way to amplify the neuro-protective functions of the 

sHSPs. 
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1.4 Second Messenger Signal transduction in Cognition 
& Disease 

Cell surface, 7-span, transmembrane (7TM) receptors recognise various extracellular 

ligands, known as ‘first messengers’, and transform them into intracellular signals. This 

allows cells to alter specific aspects of their homeostasis in response to physical or 

chemical challenges. As such, cellular signals propagated in this way must be highly 

regulated so that their amplitude and timing produce measured and appropriate responses. 

The signal must be strong enough to produce the desired effect but also be transient so that 

the cell can easily prepare for other potential inputs. Additionally, the signal must be 

targeted to the correct functional “machinery”, which often resides in discrete intra-cellular 

locations. To achieve all of these goals, cells have developed signalling molecules known 

as ‘second messengers’ to convey complex information from receptors, temporally and in 

three dimensions, into the cell to signalling nodes where functional decisions are made 

(Beavo and Brunton 2002).  

One of the prototypical, ubiquitous second messenger signalling systems uses the cyclic 

nucleotides cAMP and cGMP. Cyclic nucleotides undertake many important roles 

including the regulation of synaptic function. A super-family of enzymes called 

phosphodiesterases (PDEs) provide the sole means of hydrolysing cyclic nucleotides and 

thereby dictate the spatial and temporal aspects of cyclic nucleotide signalling processes. 

As a consequence PDEs have been targeted to treat a variety of neurological disorders 

including; AD, depression, schizophrenia and are seen as an amenable way to improve 

cognition and reverse synaptic dysfunction resulting from disease. Development of PDE 

inhibitors has seen significant scientific effort over the last few decades and several 

compounds have been discovered that have shown encouraging results in animal models of 

AD (Bales K. R. 2010). 

1.4.1 Cyclic Adenosine Monophosphate (cAMP) 

The second messenger 3’-5’-cyclic adenosine monophosphate (cAMP) was discovered by 

Sutherland et al. in 1958, during an investigation into how the hormone adrenaline 

activated glycogen phosphorylase to induce glycogenolysis in the liver. They found that a 

heat-stable factor containing adenine, ribose and phosphate at a ratio of 1:1:1, was stable to 

boiling in hydrochloric acid but could be inactivated enzymatically to 5’-AMP. Soon after 

this, it was discovered that cAMP was synthesised at the membrane by adenylyl cyclase 

(AC) in response to hormones and degraded to 5’-AMP by the action of cyclic nucleotide 
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phosphodiesterases (PDEs) in the cytoplasm. Discovery of cAMP second messenger 

system was deemed important enough for Sutherland and colleagues to win the Nobel 

prize some years later (Beavo and Brunton 2002). 

Even when the ubiquitous nature of cAMP signalling system had been established, it was 

still unclear how extracellular ligands could lead to increased intracellular cAMP. Several 

studies carried out by Birnbaumer and Rodbell found that hormone-sensitive cAMP 

synthesis required GTP.  This discovery led to the hypothesis that a ‘transducer’ must link 

receptors with AC. Birnbaumer and Rodbell also demonstrated that non-hydrolysable 

analogues of GTP could stimulate AC activity in the absence of an extracellular ligand. 

The transducer was later found to be the stimulatory G-protein Gsα. It is now dogma that 

ligands which target 7TM receptors, signal through cAMP using G-proteins that activate or 

inhibit AC. The consequences of increased synthesis of cAMP by AC are mediated 

through a variety of ‘effector’ proteins that become activated in response to increases in 

cAMP concentrations. One of the most important effector proteins for cAMP signalling is 

the cAMP-dependent protein kinase A (PKA), which once activated via cAMP can 

phosphorylate a large number of intracellular targets that are essential for regulating 

essential physiological functions (Figure 1.6A) (Beavo and Brunton 2002). Other 

molecular targets of cyclic nucleotides include, cGMP-dependent protein kinase G (PKG), 

exchange protein activated by cAMP (EPAC), cyclic nucleotide-gated ion channels 

(CNGs) and several PDEs through the binding to N-terminal GAF domains (Lugnier 

2006). 

The role of cAMP in learning and memory was pioneered in two separate invertebrate 

model organisms, Aplysia californica and Drosophila melanogaster. Synaptic connections 

between sensory neurons in Aplysia undergo a variety of plastic changes that are related to 

associative and non-associative forms of learning and memory storage, and this bolsters its 

attractiveness as a model system. Studies involving Aplysia synapses provided the first 

evidence that the cAMP second messenger pathway could regulate the strength of synaptic 

transmission via ion channel modulation and enhancement of neurotransmitter release. 

cAMP was implicated unequivocally in presynaptic facilitation following the observation 

that injection of cAMP or active PKA into presynaptic sensory neurons simulated the 

synaptic response to a level similar to that induced by serotonin. A similar response was 

also observed following the treatment of Aplysia sensory neurons with the adenylyl cyclase 

activator, forskolin. In addition, it was found that tail stimuli or shock of peripheral nerves 

produced an increase in cAMP levels in sensory neurons (Byrne and Kandel 1996). 
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Genetic screens in Drosophila that looked for mutants, which could affect learning and 

memory processes, further highlighted the involvement of cAMP second messenger 

pathway in memory formation. Drosophila exhibit strong olfactory learning and memory 

phenotypes and after exposure to two odours, one paired with an electric shock, the flies 

learn to avoid the odour which is paired with the negative response (Pavlovian 

conditioning) (Dudai, Jan et al. 1976). Two Drosophila mutants were isolated via this 

screening process. One of the mutant phenotypes resulted from disruption of a gene 

encoding Drosophila adenylyl cyclase (Rutabaga), while the other encoded a cAMP-

dependent phosphodiesterase (Dunce) (Silva, Kogan et al. 1998). Taken together these 

mutants highlighted the fundamental importance of cAMP metabolism in this invertebrate 

model of learning and memory.   

Figure 1.6 – Cyclic nucleotide second messenger signalling cascade. 
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Diagram illustrates the basic synthetic and regulatory pathways of cAMP (A) and cGMP (B) 
metabolism. A - The cAMP signalling pathway is activated following the binding of extracellular 
ligands which include hormones and neurotransmitters to 7TM receptors. The signal is transduced 
via the G-protein (Gsα) which stimulates adenylyl cyclase to convert ATP to cAMP (inset). 
Increases in intracellular concentration of cAMP leads to activation of Protein kinase A (PKA), the 
guanine-nucleotide exchange factor (GEF) EPAC and cyclic nucleotide gated (CNG) ion channels. 
cAMP specific phosphodiesterases hydrolyse cAMP into AMP (inset) in order to attenuate the 
second messenger signal. B – cGMP signalling pathway can commence via two inputs; either 
through atrial natriuretic peptides (ANPs) activating particulate guanylyl cyclase (pGC) or through 
the membrane permeable gas nitric oxide (NO) binding to soluble guanylyl cyclase (sGC) to induce 
cGMP synthesis. Both pGC and sGC convert GTP to cGMP in a process analogous to cAMP 
synthesis. Increased cGMP concentrations activate protein kinase G (PKG) and CNG channels as 
well as differentially regulating the activity of PDEs containing GAF domains. cGMP-dependent 
PDEs degrade cGMP into GMP in order reduce cGMP concentrations (Adapted from Beavo & 
Brunton 2002). 

 

1.4.2 Cyclic Guanosine Monophosphate (cGMP) 

Distinct from cAMP, the cyclic guanosine 3’, 5’ –monophosphate (cGMP) is also an 

important second messenger that regulates processes such as heart contractility and smooth 

muscle relaxation. cGMP is synthesised by particulate bound guanylyl cyclases (pGCs) 

and cytosolic soluble guanylyl cyclases (sGC) in response to natriuretic peptides and nitric 

oxide (NO), respectively. NO binds to a haem group on the β-subunit of sGC and induces 

up to a 200-fold increase in activity. Activation of sGC leads to the conversion of GTP to 

cGMP in a process analogous to cAMP synthesis (Figure 1.6A). The resultant elevation of 

cGMP leads to the activation of cGMP effector proteins such as; cGMP-dependent protein 

kinase (PKG), Cyclic nucleotide gated ion (CNG) channels and cGMP-regulated PDEs 

(Figure 1.6B) (Francis, Busch et al. 2010).  

The canonical NO/sGC/cGMP/PKG signalling cascade also plays a fundamental role in 

synaptic plasticity and learning. NO is generated by Ca
2+

/calmodulin-regulated neuronal 

NO synthase (nNOS) in the brain where it can be produced either in the postsynapses and 

diffuse into presynaptic terminals, (retrograde signalling) or vice versa (anterograde 

signalling). Functionally, NO stimulates sGC to synthesise cGMP. Increasing 

concentrations of cGMP activate PKG which can modulate the cytoskeleton and synaptic 

vesicle transport in neuronal cells (Kleppisch and Feil 2009). 

The past few years has seen renewed interest in cGMP signalling because of the 

therapeutic successes that have been achieved by targeting cGMP-dependent signalling 

pathway to treat erectile dysfunction and cardiovascular disorders. Furthermore, neuronal 

cGMP signalling has been targeted to treat neurodegenerative and psychiatric diseases with 

cognitive impairments including AD and schizophrenia (Kleppisch and Feil 2009). 
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1.4.3 PKA & PKG 

One of the most important discoveries surrounding second messenger signalling was the 

identification of cyclic nucleotide-dependent protein kinases. The first kinase to be 

discovered in this regard was cAMP-dependent protein kinase A (PKA), a heterotetrameric 

holoenzyme consisting of two regulatory subunits (R) and two catalytic subunits (C). The 

regulatory units of PKA are encoded by four genes; RIα, RIβ, RIIα and RIIβ, while the 

catalytic units are encoded by three genes; Cα, Cβ and Cγ. The various subunits are 

differentially expressed in cells and tissue and can form homo- and heterodimers. The R & 

C subunits are bound non-covalently and two cAMP molecules bind cooperatively to each 

R subunit. The binding of four cAMP molecules to the R subunits results in the release of 

two C subunit monomers which become catalytically active and phosphorylate serine and 

threonine residues on specific protein substrates (Tasken and Aandahl 2004). 

The cGMP-dependent protein kinase (PKG) is the main effector component of the 

NO/cGMP signalling pathway and regulates a number of cellular functions including; 

cardiac protection, smooth muscle relaxation, neuronal plasticity, endothelial permeability 

and gene transcription (Francis, Busch et al. 2010). PKG is a homodimer and all 

mammalian isoforms, PKGIα, PKGIβ and PKGII, have similar domain configurations. 

Coiled coils at the N-terminal promote homo-dimerisation of PKG with a parallel 

configuration, this is upstream an autoinhibitory domain and two tandem cyclic nucleotide 

binding sites which act cooperatively to regulate the catalytic activity of the C-terminal 

domain. The biggest structural distinction between PKA and PKG is that PKG has both its 

regulatory and catalytic domains together in a single polypeptide. The model of PKG Iα 

activation relies heavily on the auto-inhibitory domain at the N-terminal. This region acts 

as a pseudo substrate sequence that can inhibit the catalytic C-terminal when the enzyme is 

in an inactive state. Autophosphorylation at N-terminal residues weakens the inhibitory 

effect and only cGMP binding to both the A- and B- domains promotes the conformational 

change required for full kinase activity (Osborne, Wu et al. 2011).  

Both PKA and PKG are members of a subclass of serine/threonine specific protein kinases 

and share significant structural and functional similarities (Figure 1.7). An early study of 

substrate specificity showed that PKA and PKG can phosphorylate the same substrates in 

vitro (Lincoln and Corbin 1977).  PKA is known to phosphorylate the general sequence 

RRXS/T with the arginine residues acting as essential components of substrate specificity 

(Kemp, Graves et al. 1977). PKG can recognise both RRXS and RKXS with a stronger 
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preference for the latter sequence as demonstrated using in vitro peptide libraries (Tegge, 

Frank et al. 1995; Dostmann, Nickl et al. 1999).  

 

Figure 1.7 – Domain structures of PKA and PKG 
Cyclic nucleotide-dependent protein kinases show a high degree of structural and functional 
similarities. Numbering taken from RIα and Cα subunits of PKA and PKG Iα (Taken from 
Dostmann, Nickl et al. 1999). 

 

A common substrate of both PKA and PKG, which plays a key role in the regulation of 

cognitive processes, is the cAMP responsive element binding protein (CREB). CREB is a 

transcription factor that is activated via phosphorylation and regulates gene expression 

required for long-term memory storage. The cAMP/PKA/CREB pathway is involved in a 

model of synaptic plasticity known as long-term potentiation (LTP). LTP is the most 

comprehensively studied mechanism of learning and memory and is characterised by long-

lasting enhancement of synaptic transmission in hippocampal neurons  (Silva, Kogan et al. 

1998). LTP occurs in two phases; short-term LTP, which lasts less than three hours and is 

unaffected by inhibitors of protein synthesis, and long-lasting LTP which requires both 

gene transcription and protein synthesis (Nguyen 1994). Early studies found that analogues 

of cAMP can induce LTP while inhibitors of PKA attenuated this phenomenon (Frey, 

Huang et al. 1993). The requirement for CREB for controlling gene expression associated 

with LTP was demonstrated when mice carrying mutations in the CREB gene had deficient 

long-term memory capacity when measured using a Pavlovian fear conditioning tasks 

(Bourtchuladze, Frenguelli et al. 1994). Subsequent biochemical analysis of synaptic 

plasticity has uncovered components of cAMP/PKA/CREB pathway that may be targeted 
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therapeutically to treat diseases associated with memory decline such as AD (Tully, 

Bourtchouladze et al. 2003).  

The Aβ peptide has been shown to negatively regulate activity of this signalling cascade. 

Impairment of LTP was demonstrated using electrophysiological studies in mice 

overexpressing Aβ. However this impairment did not correlate with synaptic loss, amyloid 

deposition or cell-death, instead it led to a sustained decrease in PKA activity in cultured 

hippocampal neurons and also inhibited CREB phosphorylation in response to glutamate 

stimulation. The inhibition of PKA mediated CREB phosphorylation was reversible with 

the use of agents that can increase intracellular cAMP levels, namely the AC activator 

forskolin, and the PDE4 inhibitor rolipram. Rescue of LTP was also blocked using the 

PKA inhibitor H89 (Vitolo, Sant'Angelo et al. 2002). Although the direct mechanism by 

which Aβ  attenuates PKA activity was not established by Vitolo et al. , the study was 

valuable as it provided direct evidence that targeting cAMP signalling pathways in the 

brain may improve memory and alleviate  mild cognitive impairments associated with 

early stage AD. 

The NO/cGMP/PKG signalling cascade has been shown to work in parallel with 

cAMP/PKA pathway in order to maintain hippocampal and cortical LTP through 

convergent CREB activation (Lu, Kandel et al. 1999). This mechanism was investigated 

for its role in Aβ induced suppression of LTP (Puzzo, Vitolo et al. 2005). NO levels 

rescued impairment of LTP in hippocampal slices perfused with Aβ and this was consistent 

with previous studies of neuroprotective effects mediated by pharmacological NO donors. 

The neuroprotective effects of NO were blocked with an inhibitor of sGC, while activation 

of sGC rescued Aβ-induced impairment of LTP. Additionally, analogues of cGMP also 

reversed Aβ-induced LTP inhibition. Several agents were able to re-establish normal levels 

of phospho-CREB following treatment with Aβ1-42 and this was mediated through PKG as 

treatment with the PKA inhibitor KT5720 did not attenuate the beneficial effect whereas 

the PKG inhibitor KT5823 abrogated the effects of cGMP analogues (Puzzo, Vitolo et al. 

2005).  

Another substrate of both PKA and PKG that is involved in a number of key physiological 

processes is Hsp20. Hsp20 can be phosphorylated by either PKA or PKG at serine 16 at 

the consensus phosphorylation site 
13

RRAS
16

. Phosphorylation of Hsp20 by PKA has been 

studied extensively in cardiac tissue and is known to be protective in a number of 

pathophysiological cardiac processes. Transgenic mice with cardiac specific 
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overexpression of Hsp20 are protected against ischemia/reperfusion (I/R) induced 

myocardial infarctions and have improved contractile performance in the reperfusion phase 

which is often associated with apoptosis and necrosis of heart tissue. Phospho-mimetic 

substitutions at serine 16 confer protection against chronic β-adrenergic-induced apoptosis 

whereas non-phosphorylatable S16A substitutions fail to protect. Phosphorylation of 

Hsp20 also prevents cardiac remodelling events such as hypertrophy which can ultimately 

lead to heart failure (Edwards, Cameron et al. 2011).  

Hsp20 is also an important regulator of smooth muscle relaxation. Relaxation of various 

types of smooth muscle can be induced by forskolin and the NO donor sodium 

nitroprusside through the activation of either PKA or PKG, respectively (Beall, Kato et al. 

1997).  Phosphorylation of Hsp20 is essential for effective cyclic nucleotide mediated 

relaxation in human umbilical artery smooth muscle (HUASM) (Flynn, Brophy et al. 

2005). Hsp20 induced relaxation of arterial smooth muscle (ASM) has also been studied 

extensively. ASM contraction involves increased phosphorylation of myosin regulatory 

light chain (MRLC) at serine 19 by MRLC kinase following increased intracellular 

calcium. This process can be modulated via the NO/cGMP/PKG pathway and has been 

targeted therapeutically to treat erectile dysfunction by inhibiting of the cGMP specific 

phosphodiesterase 5 (PDE5) to increase cGMP levels and activate PKG (Beavo and 

Brunton 2002). However, a novel form of smooth muscle relaxation exists independently 

of MRLC phosphorylation and intracellular calcium changes. This phenomenon is known 

as force suppression and it directly correlates with levels of phosphorylated Hsp20. It is 

thought that Hsp20 mediates the relaxation process through a consensus sequence 

homologous to that seen in the thin filament protein troponin I. This motif interacts with 

the actin cytoskeleton in response to calcium changes and modulates structural changes 

within smooth muscle cells (Edwards, Cameron et al. 2011). 

The physiological functions of Hsp20 in the brain are only beginning to be investigated, 

however, several studies have revealed protective functions similar to that seen in the 

heart, and these may also be regulated via phosphorylation by PKA or PKG (Edwards 

2011). Given the multiple protective mechanisms employed by Hsp20, increasing its 

activity via the cyclic nucleotide second messenger cascade may be of therapeutic 

relevance in treating diseases such as AD. One existing mechanism to promote increased 

phosphorylation of PKA/PKG substrates such as CREB and Hsp20 is through inhibition of 

phosphodiesterases the sole mediators of cyclic nucleotide degradation (Tully, 

Bourtchouladze et al. 2003; Sin, Edwards et al. 2011).    
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1.4.4 Phosphodiesterases and Cognition 

Cyclic nucleotide phosphodiesterases (PDEs) were discovered soon after the discovery of 

cAMP and cGMP (Beavo and Brunton 2002). Early studies of cyclic nucleotides 

concentrated on their hydrolysis, as enzymatic processes were amenable to researchers via 

radio-labelled cyclic nucleotide substrates. The scale of the PDE superfamily of enzymes 

was fully recognised following the onset of new biochemical and molecular techniques 

(Bender and Beavo 2006).  

1.4.4.1 PDE Structure & Function 

All the different mammalian PDEs share common structural characteristics: a catalytic 

domain of about 270 residues that is conserved within each family; a regulatory domain 

between the N-terminus and the catalytic domain; and a domain between the catalytic 

domain and the C-terminus with, as yet, undefined function. The catalytic domain is the 

most highly conserved domain across all isoforms of PDEs, sharing between 20-45% 

sequence identity, and includes consensus metal binding motifs for Zn
2+

 and Mg
2+ 

which 

are essential for the hydrolysis of cyclic nucleotides (Fig. 1.6). PDEs are also characterised 

by their substrate specificity; PDE4, PDE7 and PDE8 are cAMP specific, PDE5, PDE6 and 

PDE9 are cGMP specific while the remaining ones have dual specificity and can hydrolyse 

both cAMP and cGMP (Lugnier 2006).  The specificity for cyclic nucleotides is governed 

by the “Glutamine switch”, a residue which is known to stabilise the binding of the purine 

ring within the catalytic pocket. For dual specificity PDEs this glutamine residue must be 

able to rotate freely so it can form hydrogen bonds with both cAMP and cGMP. For PDEs 

specific to one cyclic nucleotide, this glutamine residue is constrained by surrounding 

residues so that it adopts a highly selective orientation for either cAMP or cGMP (Bender 

and Beavo 2006). 

Each cell type can express several different PDEs and the enzymes’ sub-cellular 

localisation dictates local cyclic nucleotide concentrations within the cell. In addition to 

genetic regulation of PDE activity via expression level, PDE activity is also modulated via 

biochemical mechanisms such as phosphorylation, allosteric binding of cGMP or cAMP, 

binding of Ca
2+

/calmodulin, and through a vast array of protein-protein interactions. The 

role of PDEs is to shape the three-dimensional cAMP “cloud” formed after cell surface 

receptor activation. Fine control of the amplitude and duration of the cyclic-nucleotide 

second messenger response underpins the specificity of receptor function by modulating 

downstream signalling events (Bender and Beavo 2006). The complexity of cyclic 
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nucleotide signalling is exemplified by the diversity of the PDE superfamily of enzymes. 

There are 11 gene families of PDEs, PDE1-11, in humans and each family can be encoded 

by up to 4 distinct genes. Further diversity results from the fact that each gene produces 

multiple splice variants, resulting in more than 100 different PDE isoforms (Lugnier 2006). 

A summary of the human PDE superfamily is given in table 1.2. 
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Table 1.2 - The Phosphodiesterase (PDE) Superfamily 

Protein Name Isoforms Substrate Property Inhibitors Tissue Expression Profile  

       

PDE1 A, B & C cAMP, cGMP Ca-calmodulin-activated Vinpocetine, ICC224, IBMX Brain, smooth muscle, heart, lung, sperm  

PDE2 A cAMP, cGMP cGMP-activated EHNA, BAY60-7550, IBMX Brain, adrenal medulla,  heart, macrophages  

PDE3  A & B cAMP, cGMP cGMP-inhibited Cilostamide, Milrinone, IBMX Heart, vascular smooth muscle, platelets, oocyte 

kidneys 

 

PDE4 A, B, C & D cAMP cGMP-insensitive Rolipram, Rofumilast, Cilomilast, IBMX Ubiquitous   

PDE5 A  cGMP PKA/PKG-phosphorylated Sildenafil, Zaprinast, Tadalafil, IBMX, 

Dipyridamole 

Platelets, vascular smooth muscle, brain, lung, 

heart, kidney, skeletal muscle 

 

PDE6 A, B & C  cGMP Transducin-activated Dipyridamole, Sildenafil Retina  

PDE7 A & B cAMP Rolipram-insensitive IBMX Brain, immune cells, heart, liver skeletal muscle  

PDE8  A & B cAMP Rolipram-insensitive 

IBMX-insensitive 

Dipyridamole,  PF-04957325 Brain, testis, immune cells  

PDE9 A cGMP IBMX-insensitive BAY 73-6691, PF-04447943 Brain, spleen, gastrointensital, prostate  

PDE10 A cAMP, cGMP cAMP-activated Papaverine, Dipyridamole, PF-2545920 Brain, testis, Striatum  

PDE11 A cAMP, cGMP Unknown Dipyridamole, Tadalafil, BC11-38 Brain, skeletal muscle, prostate, testis  

Table adapted from Bender & Beavo 2006, Lugnier 2006. 
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1.4.4.2 PDE Expression in the Brain 

The characterisation of PDE isoform expression profiles has been a crucial step for the 

targeting of PDE inhibitors to different pathophysiological processes. A comprehensive 

study of PDE mRNA distribution in the brain was carried out (Lakics, Karran et al. 2010) 

and it showed that PDEs are broadly distributed in brain regions, which control higher 

cognitive functions, such as learning and memory. However, some isoforms are more 

restricted in their distribution and are far more abundant in specific brain regions (Lakics, 

Karran et al. 2010).  

PDE1 is found in several brain regions. PDE1B mRNA is found at high levels in caudate 

and nucleus accumbens, while PDE1C is found at high levels in the substantia nigra and is 

thought to play an important role in signal transduction in these regions (Lakics, Karran et 

al. 2010). PDE1B knockout mice have increased locomotor activity and in certain contexts 

decreased learning and memory. A role for PDE1B in dopaminergic signalling has also 

been suggested. PDE1C is highly expressed in olfactory sensory cilia and is thought to 

modulate signalling pathways involving odorant stimulation (Bender and Beavo 2006).  

The most prevalent PDE mRNA in the hippocampus is PDE2A. Studies using cultured 

rodent neurons have shown that PDE2A plays an important role in regulating cGMP levels 

in the hippocampal region, and inhibition of PDE2A leads to improved memory 

performance (Lakics, Karran et al. 2010). PDE2A expression in neuronal dendrites and 

axons, suggests that compartmentalisation of this isoform at the input/output regions of 

neurons and its localisation at synapses is thought to directly affect synaptic activation. 

PDE2A expression is also concentrated in the mossy fibres from hippocampal dentate 

granule cells and at the entorhinal cortex, one of the first regions to show morphological 

changes in AD (Bales, Plath et al. 2010). 

Ubiquitous distribution of PDE4A, B and D is found throughout the human brain, while 

low levels of PDE4C mRNA are detectable in cortex and cerebellar granule cells. Human 

genomic association analyses have identified fundamental roles of PDE4B and D in 

depression, schizophrenia and memory (Lakics, Karran et al. 2010). Several PDE4 

knockout mice have been created to facilitate characterisation of the physiological 

functions of different PDE4 isoforms. PDE4B knockout, for example, results in increased 

antidepressant and reduced anxiolytic behavioural phenotypes. PDE4D knockout mice 

display an increase in long-term memory and an increase in anti-depressant behavioural 
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phenotypes, and also a reduction in a behavioural correlate of emesis (Houslay, Schafer et 

al. 2005).  

PDE5A mRNA is detected at relatively low levels in all brain regions. High levels of 

expression have been detected in cerebellar Purkinje neurons but most of PDE5A mRNA 

is located in the vasculature (Lakics, Karran et al. 2010). A study using in situ 

hybridisation in aged human brains did not detect any PDE5A mRNA (Reyes-Irisarri, 

Markerink-Van Ittersum et al. 2007). Despite this, PDE5 inhibition has been shown to be 

neuroprotective in rodent models of AD and can modulate certain aspects of neurological 

processing in humans (Reneerkens, Rutten et al. 2009). 

The mRNA levels for PDE7A are lower in the brain than for other tissues such as spleen, 

skeletal muscle and heart. PDE7B expression is more prevalent in the CNS than PDE7A, 

and is most highly detected in nucleus accumbens, cortex and hippocampus (Lakics, 

Karran et al. 2010). The other high affinity cAMP-specific PDE, PDE8, is also detectable 

in the human brain. PDE8A mRNA levels are similar to PDE8B in cerebellum, dorsal root 

ganglion, spinal cord, thalamus and substantia nigra. PDE8B is strongly expressed in 

caudate, nucleus accumbens, cortex, hippocampus, thalamus and hypothalamus (Lakics, 

Karran et al. 2010). PDE7 and 8 have been shown to be upregulated in respect to AD 

progression, as classified through Braak and Braak staging (Braak and Braak 1991). 

PDE7A is upregulated in early stages of AD, whereas PDE8B transcripts increased 

significantly in more advanced stages of AD (Perez-Torres, Cortes et al. 2003). 

Significant levels of PDE9A mRNA are detectable in all regions within the CNS. This 

points to the importance of PDE9A in the regulation of basal cGMP levels within the brain 

(Lakics, Karran et al. 2010). PDE9A expression is readily detectable in the olfactory bulb, 

hippocampus and cortical layer V. PDE9A mRNA has also been detected in astrocytes and 

Scwann cells. In human post-mortem brain tissue, PDE9A mRNA was detected in the 

cortex, hippocampus and cerebellum, an expression profile similar to that in rodents. There 

were also no apparent differences in PDE9A expression profile in AD patients compared to 

healthy elderly controls. In PDE9A knockout mice, LTP was enhanced in hippocampal 

slices and this effect was repeated in rats using a highly selective PDE9A inhibitor (Bales, 

Plath et al. 2010). 

PDE10 has a more distinctive expression pattern, with high expression in caudate nucleus, 

nucleus accumbens, basal ganglia, cerebellum and cerebral cortex. Papaverine and more 
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selective inhibitors of PDE10 have shown efficacy in behavioural assays relevant to 

antipsychotic activity in wild-type but not PDE10 knockout mice. As a result of these 

findings, PDE10 has now become a major target for the treatment of schizophrenia 

(Lakics, Karran et al. 2010). 

1.4.4.3 PDE inhibition as a therapeutic strategy 

Soon after the original discovery of PDEs, caffeine was found to be an effective inhibitor 

of PDE activity and a number of related xanthines, such as theophylline, have been used 

therapeutically for many years (Bender and Beavo 2006). Sadly, most of the early PDE 

inhibitors had a narrow therapeutic window as they would be non-selective and inhibit a 

broad range of PDE types. Despite these early problems with non-selectivity, the principle 

of PDE inhibition became a widely accepted avenue for therapeutic intervention (Bender 

and Beavo 2006).  

There are a number of reasons that make PDEs such good therapeutic targets; firstly, the 

pharmacological premise that modulation of degradation of any signalling molecule often 

results in a more rapid and pronounced change in concentration compared to modulation of 

synthesis. It has been known for many years that most tissues contain at least an order of 

magnitude higher maximal cyclic nucleotide phosphodiesterase activity than for cyclic 

nucleotide cyclase activity. Secondly, the large numbers of different PDE isoforms 

expressed in mammalian cells are closely connected with various physiological processes 

in the body and presumably to various pathological conditions. It is widely believed that 

the development of isoform specific inhibitors can target specific pathophysiological 

conditions with a reduced chance of causing non-specific side-effects. The therapeutic and 

commercial success of the PDE5 inhibitor sildenafil (Viagra®) has been the proof of 

principle in this field. Thirdly, PDEs are good targets due to their substrate concentrations 

within cells. Cyclic nucleotide levels within cells typically range between 1 and 10µM. 

This means that a competitive inhibitor doesn’t have to compete with high concentrations 

of endogenous substrates to be effective. Evidence from the pharmacological landscape 

suggests that it is relatively straightforward to develop small molecules that are highly 

selective for different members of the PDE families (Bender and Beavo 2006). 

The prototypical PDE4 inhibitor rolipram has the longest established neuro-modulatory 

effects and has been shown to promote cognitive enhancement and neuroprotection. PDE4s 

have unique architecture consisting of a sub-family specific C-terminal domain, dual 



Chapter 1 

36 
 

regulatory domains called upstream conserved region 1 (UCR1) and upstream conserved 

region 2 (UCR2) together with an isoform specific N-terminal region which determines 

sub-cellular localisation (Houslay, Schafer et al. 2005). With over 25 different isoforms, 

PDE4 is the most common cAMP hydrolysing enzyme in the body. Selective inhibition of 

PDE4 with rolipram can produce behavioural and neuroprotective effects through the 

cAMP/PKA/CREB signalling cascade. Rolipram has been tested as a monotherapy for 

depression since its discovery, and rolipram’s effects have been suggested to be through its 

activity towards PDE4D in particular, as knockout mouse models have decreased 

immobility in tail suspension and forced-swim tests, which are predictive of depressive-

like behaviour. Furthermore, rolipram did not affect isoproterenol induced potentiation of 

cAMP signalling in PDE4D knockout mice. PDE4 predominately hydrolyses cAMP 

formed by the stimulation of β-adrenergic receptors, which are thought to mediate the 

effects of several anti-depressant drugs and may be indicative of a common mechanism of 

efficacy (Halene and Siegel 2007). 

Interestingly, Hsp20 directly interacts with the catalytic domain of PDE4D5 and disruption 

of this complex promotes phosphorylation of Hsp20 and promotes its protective effects in 

cardiomyocytes (Sin, Edwards et al. 2011). This interaction was discovered following 

experimentation on the ability of rolipram to induce Hsp20 phosphorylation in the absence 

of agents that increased synthesis of cAMP (such as forskolin or isoproterenol). Disruptor 

peptides targeting this interaction have been shown to protect against hypertrophic 

response induced via chronic β-adrenergic stimulation (Sin, Edwards et al. 2011). The 

functional consequences of targeting PDE4D5-Hsp20 interaction in the brain are discussed 

in subsequent chapters. 

In schizophrenia models, the disruption of cAMP signalling mimics many of the 

phenotypic markers for schizophrenia and treatment using receptor-independent 

mechanisms to potentiate cAMP signalling pathways has been predicted to have anti-

psychotic effects. Indeed, rolipram can alter markers of psychosis such as pre-pulse 

inhibition (PPI) of startle, event-related potentials and learning and memory. Rolipram is 

thought to mediate its anti-psychotic effects through inhibition of PDE4B, as the ED50 of 

rolipram in conditioned avoidance response was shifted threefold in PDE4B knockout 

mice. PDE4B is known to associate with DISC1 (Disrupted in Schizophrenia 1) and cAMP 

concentration regulates this association. Furthermore two mutant DISC1 proteins in mice 

had reduced ability to bind PDE4B and gave rise to phenotypes typical of schizophrenia 

and depression (Halene and Siegel 2007).  



Chapter 1 

37 
 

Interest in rolipram and PDE4 inhibition in general has resulted in the cAMP signalling 

system being regarded as a potential target for treating AD. The accumulation of Aβ 

peptides in AD animal models leads to inhibition of CREB activation and impairs LTP in 

the hippocampus. Therefore enhancing cAMP signalling to overcome Aβ-mediated 

inhibition of this pathway may be a novel way to treat cognitive deficits associated with 

the disease (Vitolo, Sant'Angelo et al. 2002).  

Unfortunately, the clinical efficacy of rolipram and other PDE4 inhibitors has been limited 

due to adverse side effects such as, nausea, emesis and diarrhoea. This is thought to be due 

to inhibition of PDE4 subtypes in the emetic centres of the brain (Houslay, Schafer et al. 

2005). Therefore the creation of subtype specific inhibitors or compounds without an 

emetogenic profile is highly desirable. 

More recently, PDE5 inhibition has emerged as a strategy to improve cognition via the 

cGMP/PKG/CREB pathway (Bales, Plath et al. 2010). Inhibition of PDE5 was 

successfully pursued as a treatment of erectile disorders and resulted in the creation of 

highly selective PDE5 inhibitors such as sildenafil (Viagra), vardenafil (Levitra) and 

tadalafil (Cialis). These compounds and in particular sildenafil, have recently been shown 

to be neuroprotective and enhance cognition in a variety of animal models. Sildenafil has 

been shown to improve memory consolidation and object recognition in mice, reverse NO 

synthase inhibitor effects in a complex learning paradigm, and affect active and passive 

avoidance learning in several animal models (Reneerkens, Rutten et al. 2009). Recently, in 

a study using an AD mouse model, sildenafil was shown to rescue synaptic and memory 

deficits associated with amyloid deposition. Sildenafil increased the phosphorylation of 

CREB and caused both an acute and long-lasting reduction in Aβ levels (Puzzo, 

Staniszewski et al. 2009).  

In the corpus cavernosum and vascular smooth muscle, sildenafil induces dose-dependent 

relaxation and has been associated with increases in Hsp20 phosphorylation. 

Phosphorylation of Hsp20 at serine 16 is necessary for smooth muscle relaxation, therefore 

Hsp20 is likely to be a major substrate of the NO/cGMP/PKG signalling cascade in this 

tissue (Tessier, Komalavilas et al. 2004). Whether sildenafil induced Hsp20 

phosphorylation plays any physiological role in the brain has not previously been 

investigated. 



Chapter 1 

38 
 

Finally, the highly specific cGMP-phosphodiesterase that has received attention from the 

pharmaceutical industry in recent years is PDE9. PDE9A has one of the lowest Km values 

of any cGMP hydrolysing phosphodiesterase (70-170nM). Its localisation to brain regions 

that also express sGC and NO synthase suggests that PDE regulates cGMP levels in the 

brain (Bender 2006). The first reported PDE9A selective inhibitor was BAY 73-6691 with 

an in vitro IC50 of 55nM. BAY 73-6691 has been shown to enhance early LTP in 

hippocampal slices from rats and enhanced acquisition, consolidation, and retention of 

long-term memory in preclinical behavioural paradigms such as; social recognition, 

scopolamine-disrupted passive avoidance, and MK-801-induced short-term memory 

deficits through mechanisms associated with cGMP/PKG/CREB signalling. PDE9 

inhibitors are currently undergoing clinical investigation by several companies and may 

provide therapeutic benefit for patients with AD (Bales, Plath et al. 2010). 

Inhibitors of these three PDE families (4, 5 and 9) are being actively pursued as cognitive 

enhancers and are regarded as putative treatments for AD. The key effector protein appears 

to be CREB, on which both the cAMP and cGMP signalling cascades converge to 

modulate synaptic plasticity. However, other substrate proteins of both PKA and PKG 

cannot be ruled out as mediating the neuroprotective and cognitive enhancing effects 

mediated by PDE inhibition. The heat-shock protein Hsp20 is a substrate that can be 

targeted by both PKA and PKG and plays a key role in several physiological systems 

including smooth muscle relaxation and contractility of the heart; however its role as a 

neuroprotective agent is only beginning to emerge.  

1.5 Thesis Aims & Hypothesis 

Alzheimer’s disease is a neurodegenerative disorder with high socioeconomic burden and 

unmet clinical need (Prince 2011). There are several endogenous pathways that can 

regulate the accumulation of toxic Aβ peptides; one of these includes the chaperone-like 

small heat-shock proteins. Heat-shock proteins can also regulate several key aspects of 

cellular homeostasis and attenuate cytotoxicity associated with aberrant protein folding, 

typical of Aβ amyloidogenesis. This makes sHSPs an attractive target as they orchestrate 

more than one protective pathway. 

The small heat-shock protein, Hsp20 was of particular interest to our group (Baillie) due to 

it being a small heat-shock protein with a consensus PKA and PKG phosphorylation site. 

Phosphorylation of Hsp20 evokes a number of physiological functions that have been well 
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characterised in heart and smooth muscle (Fan and Kranias 2011). Recent evidence 

suggested that Hsp20 could associate with Aβ in the brain of AD patient brain tissue and 

may possibly represent an endogenous protection mechanism in this tissue. Furthermore, 

previous studies have shown that Hsp20 can associate with Aβ and alter its aggregation 

dynamics and reduce subsequent cytotoxicity. 

Our hypothesis proposes that Hsp20 interacts with Aβ initially intracellularly were it acts 

primarily as an amateur chaperone to prevent Aβ misfolding. Through targeted 

phosphorylation of Hsp20, via activation of the second messenger signalling pathways; 

will further enhance Hsp20’s chaperone functions resulting in improved capacity to bind 

Aβ. This in turn should lead to improved inhibition of Aβ aggregation, a reduction in Aβ 

induced toxicity and attenuation of neuronal cell-death (Fig. 1.8). We believe that the 

modulation of the Hsp20/Aβ interaction may represent a novel neuroprotective mechanism 

that could be targeted to potentially treat AD. 

Figure 1.8 – Hypothesis – Phosphorylation of Hsp20 improves its ability to inhibit Aβ 
aggregation and attenuates Aβ toxicity. 
Hsp20 has been shown previously to inhibit Aβ aggregation and reduce Aβ toxicity when co-
incubated prior to overlaying cells. Furthermore, Hsp20 was shown to solubilise and clear Aβ that 
had accumulated and the cell membrane (Wilhelmus, Boelens et al. 2006). It has however been 
shown that Aβ intraneuronal accumulation occurs early in the aetiology of AD resulting in deficits in 
neurotransmission and precedes appearance of extracellular Aβ deposition (Oddo, Caccamo et al. 
2003). By targeting Hsp20 phosphorylation either through activation of the cAMP or cGMP second 
messenger signalling pathways we can promote Hsp20’s ability to interact with intraneuronal Aβ 
resulting in inhibition of Aβ aggregation, attenuation of Aβ induced toxicity and reduction in 
neuronal cell death. 
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In order to test this hypothesis we wanted to characterise the effect of Hsp20 

phosphorylation on the binding of Aβ and whether phosphorylation of Hsp20 can alter the 

aggregation dynamics of the Aβ peptide, a key process in the aetiology of AD. In order to 

do this we utilised peptide array technology to map the binding domains on both Hsp20 

and Aβ. We then developed several mutant of Hsp20, including a phosphomimetic where 

the serine at position 16 was mutated to an aspartic acid in order to mimic the charge of a 

phosphate group. Using these mutants we studied any differences in Hsp20’s 

characteristics relative to the wild-type Hsp20 in a number of Aβ binding and aggregation 

assays.  

Secondly, we wanted to develop a human-based cell model for characterising Aβ 

cytotoxicity. To do this we employed a novel real-time cell monitoring system to measure 

Aβ toxicity thereby providing a platform for testing agents with anti-AD potential. Using 

this platform we initially wanted to examine whether increasing intracellular expression of 

Hsp20 can attenuate Aβ-induced cytotoxicity and also whether activating the cAMP and 

cGMP second messenger pathways, promotes endogenous Hsp20 phosphorylation in 

human neuronal-like cells and promotes Hsp20’s protective effects which have already 

been established in the heart. This would represent a novel neuroprotective mechanism 

(distinct from CREB activation) that may be induced using readily available PDE 

inhibitors. 

As an aside we also wanted to develop novel inhibitors of PDE4 which lack the 

emetogenic profile typical of PDE4 selective inhibitors such as rolipram, which can 

promote Hsp20 phosphorylation and may also have repositioning potential for treating 

neurological conditions associated with pathophysiological changes in cAMP signalling 

pathways. 
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2 Materials & Methods 

2.1 Materials 

All chemicals used to conduct this research were of analytical grade and were supplied by 

Sigma-Aldrich, UK, unless otherwise stated. Compounds were typically dissolved in 

dimethyl sulfoxide (DMSO) and added to cells at a concentration no greater than 0.1% 

(v/v). For in vitro assays higher concentrations of DMSO were permissible alongside 

suitable controls. All aqueous solutions were prepared with deionised water (dH2O) 

(Millipore, USA).  

2.2 Preparation of Aβ 

For cell-based assays synthetic Aβ peptides were purchased from rPeptide
®
 (Georgia, 

USA). Aβ1-42 (A-1002) peptides are the recombinant form of the human Aβ peptide. Aβ1-42 

scrambled peptide (Aβscr) (A-1004) which is a rearranged version of the peptide that 

carries the overall weight and charge of Aβ1-42, was used as a control. Peptides were 

dissolved in DMSO at a concentration of 5mg/ml and sonicated in a water bath for 15 

minutes. Samples were aliquoted and stored at -20°C until required. To create neurotoxic 

Aβ1-42 derivatives a method similar to that described by Lambert et al. (1998) was used, 

where Aβ1-42 (or scrambled) peptides were brought to 100uM in cold PBS and incubated at 

4-8°C for 24 hours. The resulting aggregated peptides were added directly to cell culture 

medium typically at 1:10 dilution (Aβ: media). Samples from each 100µM stock added 

were taken for SDS-PAGE and western blotting analysis. 

For NMR assays 
15

N uniformly labelled Aβ1-40 (A-1101-2) was also purchased from 

rPeptide
®
 (Georgia, USA). In order to fully monomerise the peptide it was resuspended in 

1% NH4OH and sonicated in a water bath for 15 minutes. The peptide concentration was 

brought to 400µM with cold NMR buffer (50mM NaPi (Na2HPO4) pH 7.5). The peptide 

was then dialysed in 4 litres of cold NaPi for 2 hours to remove NH4OH and then added 

directly to Hsp20 containing NaPi buffer for immediate analysis. Aβ1-40 was maintained 

below 4
o
C in order to reduce aggregation. 

For real-time Aβ1-42 aggregation assays Synthetic A1-42 peptides were purchased from 

Anaspec Inc. (USA), suspended in 100% 1,1,1,3,3,3 hexafluoro-2-propanol (HFIP) at 5 

mg/mL and incubated for complete solubilisation at room temperature for 1.5 h. HFIP was 

subsequently removed by evaporation under vacuum for 4 h and stored at -20
o
C. 



Chapter 2 

42 
 

2.3 Plasmid DNA 

For mammalian expression of wild-type human Hsp20 (NM_144617.1), pcDNA3.1-

Hsp20-V5-His-TOPO was kindly provided by Dr Helen Edwards. For recombinant protein 

expression of human Hsp20, pET28c-His-Hsp20 was kindly provided by Dr Lucien 

Gibson. All plasmid work was carried out in sterile conditions and all buffers made in-

house were autoclaved prior to use. 

2.3.1 Site directed mutagenesis 

Site-directed mutagenesis of both Hsp20 plasmids was carried out in accordance with 

QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies) using the following 

primers: 

Hsp20-S16D –  Forward 5'-ttggctgcgccgcgccgatgccccgttgcccggac-3' 

   Reverse 5'- aaccgacgcggcgcggctacggggcaacgggcctg-3' 

Hsp20-S16A -  Forward 5'-ttggctgcgccgcgccgcggccccgttgcccgg-3' 

   Reverse 5'-aaccgacgcggcgcggcgccggggcaacgggcc-3' 

Hsp20-R13,14A Forward 5'-cagccgtcttggctggccgccgcctcggccccgtt-3' 

   Reverse 5'-gtcggcagaaccgaccggcggcggagccggggcaa-3' 

Hsp20-P20L  Forward 5'-cctcggccccgttgctcggactttcggcgcc-3 

   Reverse 5'-ggagccggggcaacgagcctgaaagccgcgg-3' 

In brief, Hsp20-WT constructs were used as the template DNA and standard Polymerase 

Chain Reaction (PCR) was conducted using the mutagenic primers noted above. Following 

PCR the methylated template strand was digested using Dpn I for a minimum of 4 hours 

prior to transformation into appropriate E. coli strains. 

2.3.2 Transformation 

For mammalian transfection purposes One Shot® TOP10 (Invitrogen, UK) chemically 

competent E. coli cells were used for plasmid production. For recombinant protein 

expression One Shot® BL21 (DE3) chemically competent cells were used as these strains 

are specifically constructed for high level protein production. 
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Chemically competent cells were stored at -80°C and thawed on ice immediately prior to 

use. Approximately 10ng of appropriate plasmid DNA was added per aliquot of cells and 

mixed gently. Cells were then incubated on ice for 20 minutes then heat-shocked for 30 

seconds at 42°C then returned to ice for 2 minutes before the addition of 500ul of SOC 

media (Invitrogen, UK) to the cells. Cells were then incubated at 37°C for 1 hour at 

300rpm to allow for recovery of the cells. 50-500ul of transformation mix was then added 

to pre-warmed agar plates made with sterile Luria-Bertani medium (LB) (1% tryptone 

(w/v), 0.5% yeast extract (w/v), 170mM NaCl) supplemented with appropriate antibiotic, 

typically kanamycin (50ug/ml) or ampicillin (100ug/ml). Plates were incubated upside 

down at 37°C overnight and colony growth indicated successful transformation. 

2.3.3 Amplification & Purification  

In order to amplify plasmid DNA, single colonies were picked from the agar plates using 

sterile pipette tips and grown overnight at 37°C in LB with appropriate antibiotic in an 

orbital shaker (220rpm). For colonies containing plasmid subjected to site-directed 

mutagenesis colonies were grown in 25ml of LB overnight. The culture was pelleted and 

plasmid DNA was purified in accordance with QIAprep Spin Miniprep Kit (Qiagen), in 

accordance with manufacturer’s protocol. The resulting plasmid DNA was performed by 

the University of Dundee DNA Sequencing and Services (www.dnaseq.co.uk) in order to 

verify that site-directed mutagenesis was successful. DNA was supplied as per website 

instructions and sequences were analysed using Sequence Scanner v1.0 (Applied 

Biosystems). 

For mammalian expression purposes where high concentration of high quality plasmid 

DNA is required, 500ml of LB supplemented with appropriate antibiotic was inoculated 

from either single colonies from agar plates or from frozen glycerol stocks (see 2.3.4) and 

grown overnight at 37°C, 220rpm. DNA was isolated using QIAprep Maxiprep kit 

(Qiagen) in accordance with manufacturer’s instructions. Purified DNA was then eluted 

using sterile dH2O and stored at -20°C. 

2.3.4 Quantification 

Purified plasmid DNA concentration was determined using a Nanodrop 3300 

spectrophotometer (Thermo-Scientific). The ratio of absorbance at 260nm and 280nm 

determines the purity of the DNA. The concentration is calculated using Beer-Lambert 

http://www.dnaseq.co.uk/
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law, where an optical density of 1 at 260nm is the equivalent of 50ug/ml of double-

stranded DNA; this is done automatically by the Nanodrop software. 

2.3.5 Plasmid Storage 

For long-term plasmid storage, 800ul of overnight culture was added to 800ul of glycerol 

in a sterile cryovial, snap-frozen on dry ice then stored at -80°C until required.  

For amplification of glycerol stocks, cryovials were placed on dry-ice to prevent thawing 

and frozen stocks were scraped using a sterile pipette tip and transferred to LB containing 

appropriate antibiotic. 

2.4 Expression and Purification of Recombinant Proteins 

2.4.1 Histidine purification 

The human Hsp20 sequence was cloned into the pET-28c in order to introduce an N-

terminal poly-histidine sequence and transformed into One Shot® BL21 chemically 

competent E. coli cells (Invitrogen, UK) for efficient expression of recombinant proteins. 

25ml of LB medium supplemented with 50ug/ml of kanamycin were inoculated with BL21 

cells containing the pET-28c plasmid and incubated overnight at 37°C at ~200rpm. 

Overnight cultures were then added to 500 ml of LB medium and grown until the optical 

density (OD600) reached between 0.6 and 1.0 which indicates that the bacterial cells are in 

the exponential growth phase. At this point 1mM of isopropyl-β-D-thiogalactopyranoside 

(IPTG) was added to induce recombinant protein expression. Cultures were then grown 

until the following morning at 25°C to help prevent aggregation of Hsp20. Cultures were 

centrifuged at 6000rpm for 10 minutes at 4°C in order to pellet the cells. Cell pellets were 

then resuspended in His purification Lysis Buffer - PBS, 360mM NaCl, 5mM imidazole, 

pH 8.0, and then snap frozen on dry ice. Cells were then thawed at room temperature and 

cell slurry was supplemented with 1mM dithiothreitol (DTT), mini-complete protease 

inhibitor tablet (Roche) and DNase with added 1mM Mg
2+

. Cells were then sonicated on 

ice at 40-60 kHz (Jencons, England) for 3 x 3 minute intervals to ensure sufficient lysis of 

cells. The slurry was then centrifuged at 50000xg for 30 minutes at 4°C to remove 

insoluble cell debris. The supernatant was then incubated with pre-equilibriated nickel-

nitrilotriacetic acid (Ni-NTA) beads (Qiagen) overnight at 4°C under gentle agitation to 

allow binding of his-tagged protein. The solution was then transferred to a gravity flow 

column (Biorad) to allow for collection of Ni-NTA beads with bound protein. Several 
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washes with buffer A was carried out to ensure all of the beads were transferred into the 

gravity flow column. After several washes 46ml of Lysis Buffer was combined with 4ml of 

Elution Buffer - PBS, 360mM NaCl, 250mM imidazole, pH 8.0, for two more stringent 

washes. Protein was then eluted with Elution buffer in 1ml fractions and samples were 

analysed using SDS-PAGE with one gel being used for Coomassie staining to check for 

purity and another gel used for western blot analysis.  

2.4.2 Protein concentration 

The concentrations of purified recombinant proteins and cell lysates were determined in 

accordance with the Bradford dye-binding method (Bradford 1976). The Bradford assay is 

a colourimetric assay based on the colour change of Coomassie Blue G-250 when it binds 

to various concentrations of protein. In brief, Bradford reagent was prepared using 1 part 

Bradford dye (Bio-Rad) and 4 parts dH2O. To generate a standard protein concentration 

curve bovine serum albumin (BSA) was used at concentrations ranging from 0 to 5 mg/ml. 

Protein samples were prepared at various dilutions, typically 1:10, 1:50 & 1:100, in a 96-

well microtitre plate. Following addition of Bradford reagent, 96-well plates were read at 

595nm on an MRX microplate reader (Dynex Technologies, UK). The standard curve of 

absorbance against protein concentration was plotted using least squares regression 

analysis to give linear regression and provide relative protein concentration. Dilution 

factors were then applied to the resulting protein concentration. 

2.5 Protein-Protein Interaction Studies 

2.5.1 Peptide Arrays 

Peptide arrays were developed in-house using the SPOT™-synthesis technique described 

by (Frank 2002) using the AutoSpot-Robot ASS 222 (Intavis Bioanalytical Instruments). 

Solid phase peptide synthesis is based on standard Fmoc (9-fluorenylmethoxycarbonyl) 

chemistry (Fields 1990) and peptides are synthesised directly onto Whatman 50 cellulose 

membranes. Peptide arrays are able to bind recombinant proteins of interest and allow for 

rapid identification of interaction domains and biologically active motifs. Typically, a 

library of overlapping 25mer peptides, shifted sequentially by 5 amino acids in an N- to C- 

terminal direction are synthesised in order to identify interaction domains.  

Following identification of possible binding sites, mutations can be introduced in order to 

ascertain the importance of a residue in mediating an interaction. In this case sequential 
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alanine scanning arrays were created to determine whether a residue is an essential 

mediator of an interaction. In the event of alanine being the native residue it is substituted 

for aspartic acid. However, any non-native amino acid can be readily introduced to a given 

peptide sequence in order to ascertain its effect on binding. Within this body of work I was 

able to introduce aspartic acid in place of serine as this can mimic the effect of introducing 

a negative charge to the peptide in a similar way as phosphorylation does in vivo, also 

referred to as a phospho-mimetic substitution. 

Prior to probing arrays, they were first activated by bathing in 100% ethanol for several 

minutes followed by a 5 minute wash in TBST (20mM Tris-HCl, 150mM NaCl, 0.1% 

Tween20, pH 7.6) this removes preservative material from the arrays. Arrays were then 

blocked in 5% milk/TBST (w/v) solution for 1 hour at room temperature under agitating 

conditions. 10ug/ml of recombinant protein diluted in a 1% milk/TBST (w/v) solution was 

then incubated with arrays overnight at 4
o
C with agitation. The following day arrays are 

washed 3 times for 10 minute intervals with TBST before being probed with the specific 

primary antibody raised against the recombinant protein or the fusion tag. Primary 

antibodies were diluted in 1% milk/TBST and left overnight at 4
o
C. After incubation arrays 

were washed 3 times for 10 minutes before incubating arrays with secondary antibodies 

conjugated with horse-radish peroxidise (HRP) diluted in 1% milk/TBST for 1 hour. 

Arrays were then subjected to a further 3 x 10 minute washes before being analysed using 

Western Blotting techniques (see 2.6.3). 
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Figure 2.1 – Schematic representation of peptide array methodology 
A general representation of peptide array design and screening. A protein-protein interaction is 
identified for analysis and one of the protein sequences are chosen to develop a peptide library (A). 
Initial array design is typically based on overlapping peptide sequences (≤ 25mers) that encompass 
the whole protein sequence (B). The scanning array requires incubation of the binding protein with 
the peptide array followed by several wash steps (C & D). Detection of the binding protein is done 
using an appropriate antibody which can subsequently be detected using enhanced chemi-
luminescent techniques. Each dark spot on a developed array illustrates binding of the protein to a 
specific peptide (E). Analysis of spots allow for the identification of domains responsible for 
mediating the interaction. Positively interacting sequences can then be tested in further arrays such 
as an alanine scanning arrays to determine key residues within a binding domain, a truncation 
library to determine the minimum interacting domain, and a positional scanning Library which 
allows for peptide sequence optimisation (F). Modified from  (Katz, Levy-Beladev et al. 2011). 
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2.5.2 In vitro pull-down assay 

In vitro pull-down assays were carried out in order to validate interactions resulting from 

the peptide array data. This would ensure that discrete changes within 25mer peptides 

would have an effect on the full-length protein. Using equimolar concentrations, various 

His-purified Hsp20 proteins and monomeric Aβ1-42 were co-incubated in PBS for more 

than 16 hours under agitating conditions. After incubation period insoluble aggregates 

were removed through centrifugation at 13000rpm. Hsp20 was then immunoprecipitated 

using His-agarose conjugated beads. Any complex between Hsp20 and Aβ1-42 are captured 

by the beads which were then sedimented by centrifugation at 6000rpm for 3 minutes, 

followed by several washes in PBS. Proteins were eluted from beads by boiling in 2x SDS 

sample buffer for 5 minutes. Any interacting Aβ1-42 was assessed using SDS-PAGE and 

Western Blotting techniques. 

2.6 Protein Analysis 

2.6.1 SDS-PAGE  

The Sodium dodecylsulphate – polyacrylamide gel electrophoresis (SDS-PAGE) method 

was used to resolve proteins by their molecular weight and charge. SDS-PAGE analysis 

was carried out on 4-12% NuPage® pre-cast gels using Invitrogen X-cell apparatus and 

NuPage® Novex gel system. Proteins samples were prepared for SDS-PAGE by boiling 

for 5 minutes in 2x Laemmli sample buffer or 5x SDS sample buffer (assay volume 

dependent) supplemented with reducing agent (5% β-mercaptoethanol (v/v)). Samples 

were loaded into gels immersed in either NuPage 1 x MES buffer to resolve proteins 

smaller than 50kDa, or 1 x MOPS for proteins larger than 50kDa. Precision Plus All Blue 

Standards (BIO-RAD, USA) was used as a molecular weight marker. Gels were subjected 

to electrophoresis at 180V for between 40 minutes and 1 hour to allow for adequate 

separation. 

2.6.2 Coomassie Staining 

Coomassie staining was carried out in order to visualise protein levels following SDS-

PAGE. Gels were removed from pre-cast NuPage cassettes and incubated in Coomassie 

staining solution (1.25g Coomassie Brilliant Blue R250, 444ml Methanol, 56ml acetic acid 

to a final volume of 1L with dH2O) at room temperature for 1-2hours under gentle 

agitating conditions. Gels were then incubated with a de-stain solution (444ml Methanol, 
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56ml acetic acid to a final volume of 1L with dH2O) for up to 16 hours at room 

temperature to remove the Coomassie stain. Coomassie Brilliant Blue R250 remains bound 

to all protein present in the gel and allows for identification of various proteins of interest. 

Gels were then scanned and saved as Jpeg or TIFF files for subsequent analysis. 

2.6.3 Western blotting 

SDS-PAGE gels were transferred to nitrocellulose membranes using an Invitrogen X-Cell 

apparatus (Invitrogen, Paisley) using Nupage® X-cell Blotting Module and 20x NuPage® 

transfer buffer containing 20% methanol (v/v) in 200ml of dH2O. Proteins were transferred 

at 28V for 1.5 hours and transfer efficacy was established through visualisation of 

molecular weight markers or Ponceau staining. Following transfer membranes were 

incubated in 5% milk solution (w/v) in 1x TBST (20mM Tris-Cl pH7.6, 150mM NaCl, 

0.1% Tween 20) for 1 hour at room temperature under agitating conditions to block non-

specific antibodies binding to the membrane. Membranes were then incubated in 1% milk 

solution with the appropriate primary antibody added  and incubated overnight at 4°C with 

agitation. The membrane was then washed for 3 x 10mins with 1x TBST, and incubated in 

fresh 1% milk solution containing appropriate horse-radish peroxidise (HRP)-conjugated 

secondary antibody for 1-2 hours at room temperature (details of antibodies and dilutions 

given in Table 2.1). After incubation membranes were washed for 3 x 10mins before 

adding Pierce enhanced chemi-luminescence (ECL) Western Blotting Substrate (Thermo 

Scientific, USA). Membranes were incubated in ECL substrate for 1 minute before 

transferring to a light-sensitive cassette. Autoradiographic film was used to detect any 

signals from membranes and films were developed on a Kodak X-omat Model 2000 

processer. Resulting images were quantified using Quantity One (BioRad, USA). 

2.6.4 Ponceau Staining 

Ponceau staining is a reversible way of visualising proteins on a nitrocellulose membrane 

following transfer. Membranes were incubated in Ponceau Staining solution (1g Ponceau 

S, 50ml acetic acid made up to 1L dH2O) for 30 minutes with gentle agitation. Blots were 

either scanned or washed in dH2O until staining was removed then used for Western 

blotting.  
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Table 2.1 – List of Antibodies 

Antibody Host Supplier Catalogue Number Dilution Application 

      

α-Hsp20 Rabbit Upstate 07-490 1:2500 WB 

α-pS16-Hsp20 Rabbit Abcam ab58522 1:2000 

1:500 

WB 

ICC 

α-Amyloid β Mouse Sigma-Aldrich A8354 1:5000 

1:500 

WB 

ICC 

Pan-PDE4A, B & D Sheep Scottish Antibody Production 

Unit (SAPU) 

Custom made 1:5000 WB 

α-polyHistidine-HRP Rabbit Abcam ab1187 1:10000 WB 

α-alpha-tubulin-HRP Mouse Abcam ab40742 1:10000 WB 

α-Mouse-HRP Sheep GE Healthcare NXA931 1:5000 WB 

α-Rabbit-HRP Goat Sigma-Aldrich A6154 1:5000 WB 

α-Sheep-HRP Donkey Sigma-Aldrich A3415 1:5000 WB 

α-PolyHistidine-Agarose Mouse Sigma-Aldrich A5713 1:25 IP 

α-Mouse-Alexa Fluor® 488 Goat Invitrogen A-11001 1:500 ICC 

α-Rabbit- Alexa Fluor® 594 Goat Invitrogen A-11012 1:500 ICC 
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2.7 Amyloid Aggregation Analysis 

2.7.1 NMR 

15
N-labelled Aβ1-40 samples were combined with 1mg/ml of various His-Hsp20 constructs 

to give a final concentration of 200µM of Aβ1-40 and 25µM of Hsp20 (4:1 molar ratio) in 

50mM NaPi buffer, 200µM Aβ1-40 only was used as a control.  

NMR spectra were recorded on Bruker AVANCE 600MHz spectrometer at 4°C to assess 

pre-aggregation spectra prior to incubating all samples at 37°C for 4 days under agitating 

conditions (300rpm). Samples were then reanalysed at 4°C to ascertain how much Aβ1-40 

peptide remained in solution. Following NMR analysis samples were centrifuged at 

13000rpm in order to remove insoluble aggregates that had formed during the aggregation 

process and supernatant was analysed using SDS-PAGE and western blotting to ensure any 

loss of signal was not due to proteolytic degradation of the 
15

N-labelled Aβ1-40 peptide. 

Supernatants from each sample were then used to undertake co-immunopurification using 

anti-polyhistidine-agarose conjugated beads (Sigma-Aldrich, UK). 20ul of His-agarose 

beads were added to 500ul of the Aβ1-40:Hsp20 solutions and incubated at 4°C overnight 

on a rotating wheel. Each sample was then spun at 6000rpm to isolate the beads. Following 

removal of supernatant beads were subjected to a further 3 washes in PBS prior to addition 

of 2 x SDS sample buffer. Samples were then run on an SDS-PAGE gel to verify the 

interaction between Aβ and Hsp20. 

2.7.2 Fluorescence quenching Aggregation Protocols 

To obtain HFIP-induced aggregates, pre-treated A1-42 monomers were resuspended in 

dimethylsulfoxide (DMSO) to a concentration of 2.5 mg/mL. A1-42  peptides were 

subsequently diluted in Tris-HCl buffer solution (50 mM, pH 7.9) to the final desired 

concentration and ≤ 4 % HFIP was added to induce aggregation (Nichols, Moss et al. 

2005). Incubation of the peptides for 1 hour at 4
o
C with vigorous agitation by continued 

vortexing results in the progressive formation of A1-42 globular structures.  

For oligomeric and fibril-like aggregates formed at pH 7.9, HFIP-pre-treated A1-42 

monomers were resuspended in DMSO to a concentration of 2.5 mg/mL and subsequently 

diluted to 7 M in 50 mM Tris-HCl buffer solution containing 150 mM NaCl and 

incubated at 37
o
C for 24 hours as reported previously (Jan, Hartley et al. 2010). Final A 
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concentrations were determined by absorbance spectroscopy using extinction coefficients 

of 150000 cm
-1

M
-1

 at 560 nm for A555 and 250000 cm
-1

M
-1

 at 653 nm for A647. Final 

concentrations of ThT were determined using an extinction coefficient of 36000 cm
-1

M
-1

 at 

412 nm (Qin, Vastl et al. 2010). 

2.7.2.1 Fluorescence Spectroscopy of A1-42 Aggregates 

Fluorescence emission spectra from N-terminally labelled A1-42 aggregates were obtained 

using a peltier-cooled Varian Eclipse fluorescence spectrophotometer during incubation. 

Cuvettes with 1 cm path length were used and agitation was achieved with the insertion of 

magnetic stirring bars. Spectra from A555 were recorded using excitation wavelengths of 

547 nm. Fluorescence spectra of ThT in the presence of unlabelled A were recorded using 

an excitation wavelength of 440 nm.  

2.7.2.2 Fluorescence Lifetime Measurements 

Fluorescence lifetime measurements were performed with a Hamamatsu C6860 

Synchroscan streak camera.  The 80 MHz, 100 fs (full width half maximum) 800 nm 

output of a Ti:Sapphire oscillator was frequency doubled with a beta barium borate crystal, 

giving 400 nm excitation pulses.  The 400 nm light, with an average power of less than 1 

mW, was subsequently focussed through the optical path length (1 cm) of the solution 

cuvette.  The photoluminescence from the sample was then collected and collimated with a 

lens before being focussed onto the entrance slit of a Chromex 250is imaging spectrograph.  

Excitation light was removed with a yellow schott glass filter that cuts all light below 420 

nm.  Spectral windows of 540-680 nm (single-colour quenching assay) and 540-590 nm 

(dual-colour FRET assay) were selected with the spectrograph before the light was directed 

into the streak camera.  Time resolved photoluminescence dynamics were then recorded 

over a number of time ranges, giving an ultimate resolution with deconvolution with the 

instrument response function of ~2 ps.  

2.7.2.3 Transmission Electron Microscopy  

The structures of Aβ1-42 amyloid aggregates were analysed by negative staining for 

transmission electron microscopy. Pioloform and carbon-coated 100-mesh copper grids 

(Agar Scientific, UK) were placed face down on droplets containing Aβ aggregates and 

incubated for 2 min at room temperature to allow binding of the protein structures to the 

grids. The grids were subsequently washed and stained twice on droplets of 3% aqueous 
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uranyl acetate for 2 min each followed by removal of excess staining solution by gently 

blotting the side of the grid with filter paper. The grids were then air dried and analysed in 

the electron microscope. Aβ amyloid structures were sampled by taking 5 micrographs per 

sample with a JEOL 1200 transmission electron microscope on Ditabis imaging plates 

(DITABIS Digital Biomedical Imaging Systems AG, Germany). Micrographs were 

selected to represent the average distribution, density and size of the Aβ aggregates 

(Goldsbury, Baxa et al. 2011). 

2.8 Mammalian Cell Culture 

All cell culture was carried out in Class II hoods using standard aseptic techniques and 

sterile equipment. Cell media was typically supplied by Sigma-Aldrich while culture 

flasks, plates, pipettes etc. were generally supplied by Corning. Cell cultures were 

examined using a phase contrast inverted microscope (Leitz Diavert, Germany) in order to 

analyse the condition of the cells and to monitor for contamination. SH-SY5Y cells were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM) and F12-Ham’s at a 1:1 ratio, 

media was supplemented with 10% (v/v) foetal bovine serum (FBS), 1% (v/v) L-

Glutamine, 1% (v/v) Minimum Essential Medium – With Non-essential Amino Acids 

(MEM-NAA) and 1% (v/v) Penicillin-Streptomycin. HEK293 cells were cultured in 

DMEM with the same supplements as SH-SY5Y media. Cells were cultured in a 

humidified, 5% (v/v) CO2, 37°C incubator.  

 

Culture media was routinely replaced every 3-4 days and upon reaching >80% confluency 

cells were passaged. To passage, cells were washed gently in warm, sterile PBS in order to 

remove culture media, cells were then treated with 1ml of trypsin-EDTA solution and 

incubated for more than 3 minutes to allow cells to disassociate from the culture flask. 5ml 

of culture media was then added to the flask to de-activate the trypsin and the cell/media 

solution was transferred to a 15ml falcon tube and cells were collected by centrifugation at 

1000rpm for 3 minutes at room temperature. The supernatant was then discarded and cell 

pellets were resuspended in fresh media and added to fresh culture flasks at the required 

dilution (typically 1:5, v/v). For long term storage of cells, cell pellets were resuspended in 

800ul of fresh media along with 800ul of cell freezing solution (20% DMSO in FBS) and 

stored at -80°C for a minimum of 24 hours before being transferred to liquid nitrogen. 
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2.8.1 Transfection of plasmid DNA 

For PDE assays HEK293 cells were transfected with various PDE isoforms using Fugene 

HD (Promega, UK) in accordance with manufacturer’s instructions. For the more difficult 

to transfect SH-SY5Y cells I used an electroporation method using Amaxa® Cell Line 

Nucleofector® Kit V (Lonza) in order to attain higher transfection efficiency. 

2.8.2 Stable cell-lines 

To create stably expressing SH-SY5Y cell lines the less efficient Fugene HD reagent was 

used to transfect cells. Cells were plated onto 100mm dishes and at confluency of 50% 

transfected with relevant plasmid containing a neomycin cassette. After 24 hours G418 

solution was added to culture media at a final concentration of 500ug/ml. After 10 days 

remaining single colonies were isolated using Cloning rings (Sigma-Aldrich) through 

trypsinisation and expanded into to further culture vessels. Once adequate quantities of 

cells could be harvested cell lysates were created and expression levels of each respective 

protein were analysed. G418 levels were maintained at 500ug/ml throughout all stable cell 

culture work in order to ensure appropriate selection of plasmid DNA. 

2.9 Preparation of Whole Cell Lysates 

Whole cell lysates were prepared using 3T3 cell lysis buffer (50mM NaCl, 50mM NaF, 

25mM HEPES, 5mM EDTA, 30mM sodium pyrophosphate, 10% glycerol (v/v), 1% 

Triton X-100 (v/v); pH 7.5) supplemented with protease inhibitor cocktail tablet (mini-

complete, Roche) and phosphatase inhibitor cocktail tablet (PhosSTOP, Roche). Cell 

culture media was removed and cells were washed 3 times with ice cold sterile PBS.  All 

remaining PBS was removed before the addition of 3T3 buffer and cells were incubated for 

a minimum of 1 hour before cells collected using a sterile scraper into 1.5ml eppendorfs. 

Cell lysate solution was then centrifuges at 13000rpm for 10 minutes in order to remove 

insoluble cellular components. Supernatants were then added to appropriate loading buffer 

and analysed using SDS-PAGE and Western Blotting techniques. 

For PDE activity experiments KHEM buffer (50mM KCl, 50mM HEPES pH7.2, 10mM 

EGTA, 1.9mM MgCl2) supplemented with protease inhibitor cocktail tablet (mini-

complete, Roche). Samples were then frozen on solid CO2, thawed and then manually 

homogenised, followed by passage through a 26-gauge needle several times to ensure 
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complete cell lysis. Cells were centrifuged at 13,000rpm for 10 min to remove insoluble 

membrane fraction. The resulting supernatant was frozen in solid CO2 and stored at −80ºC. 

2.10 Cell-Based Experiments 

2.10.1 Cell Viability Assays  

Cell viability assays were carried out using a standard colorimetric MTT-based assay, 

which measures viable cells through their ability to reduce MTT to insoluble formazan. 

This only occurs if the cell’s mitochondria are active and producing the specific enzymes 

to carry out this reaction.  

SH-SY5Y cells transfected with various Hsp20 plasmids were seeded at a density of 

5x10
3
/well into 96-well plates and left overnight to allow for cell attachment. The 

following day cells were incubated with 20µM Aβ1-42 or Aβscr control and incubated for a 

further 48 hours. After incubation period CellTiter 96® Non-Radioactive Cell Proliferation 

Assay (G4000, Promega, UK) was used to measure viability. MTT dye solution was 

incubated with cells for 4 hours prior to the addition of the Stop Solution. Plates were kept 

in a humidified container in the dark overnight to allow for complete solubilisation of the 

coloured formazan. Plates were then read at 595nm on an MRX microplate reader (Dynex 

Technologies, UK). 

2.10.2 Real-Time Cell Monitoring (xCELLigence) 

The xCELLigence system Real-Time Cell Analyzer RTCA-SP (ACEA Biosciences, USA) 

is an electrical impedance-based real-time cell monitoring system for detection of cellular 

viability (Fig. 2.2). The recording of cell index values (CI), normalisations and the 

monitoring of Aβ1-42 mediated cytotoxicity was performed using RTCA Software 1.2. The 

RTCA-SP device was calibrated using RTCA Resistor Plate 96 prior to each experiment 

and impedance measurements were carried out in 96-well E-plates (ACEA). The 

impedance readout is expressed as arbitrary cell index values. The normalisation of cell 

index arbitrarily sets cell index to 1 at a desired time point, which is typically the time of 

adding compounds. The background impedance caused by the media is measured using 

100ul in each well prior to seeding of cells and is automatically subtracted by the RTCA 

software using the following equation: CI – (Ζi – Ζo)/15 with Ζi as the impedance at any 

given time point and Ζo being the background signal (Diemert 2012). 
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Figure 2.2 – Schematic representation of xCELLigence Real-Time Cell Monitoring 
This schematic illustrates the principle of cellular impedance as a non-invasive method for 
measuring cell growth characteristics. A – Each well of a 96 well culture plate (E-plate) has gold 
electrodes embedded at the bottom. Each electrode array has a minimal distance of 30µM 
between adjacent electrodes. The right image is how electrodes appear at 10x magnification. B – 
Cells are seeded on top of the electrode-covered surface and upon adherence to the bottom of the 
well; the cells partially insulate the electrodes resulting in a rise in electrical impedance (Ζ). With 
increasing cell number cells have a greater insulating capability which correlates with an increase 
in impedance. Cell death causes changes in cellular morphology, cell shrinkage and detachment 
which results in a decrease in cellular impedance. Therefore the xCELLigence system is a highly 
sensitive system for measuring the effects of cytotoxic agents such Aβ1-42. Figure from Diemert 
2012. 

 

Prior to commencing experiments using SH-SY5Y cells, the cell density had to be 

optimised to ensure linear growth throughout the time-course of each assay. To do this I 

seeded SH-SY5Y cells at various densities and observed their growth characteristics, 

without any interventions such as changing media (Fig 2.3A). It was found that the density 

that gave the most linear growth over 72 hours was 5x10
3 

cells/well whereas all other 

densities tested resulted in peak Cell Index after 48 hours followed by growth inhibition or 
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a reduction in cell index as the wells became over-confluent. Therefore 5x10
3
 cells/well 

was used for all subsequent assays. Images of the cells were taken at the 48 hour time-

point in order to compare Cell Index with the confluency of each well (Fig 2.3B) 

 

Figure 2.3 – Cell number optimisation on xCELLigence system. 
A - SH-SY5Y cells were seeded into 96 well E-plates at several densities in order to determine 
which cell density would give linear growth throughout the time-course of a typical cytotoxicity 
assay.  After 48 hours the plate was removed briefly from incubation and several images were 
taken in order to compare cell density with Cell Index. This resulted in transient changes in Cell 
Index due to the changes in temperature of the E-plate (red circle). B - The images validated that 
cell number correlated with Cell Index. The 20000 cell wells were 100% confluent and no further 
growth was detected in these wells whereas 5000 cells continued to expand linearly when placed 
back in incubation. Arrows indicate gold electrodes integrated at the bottom of the E-plate. SH-
SY5Y cells observed under brightfield microscopy at 10x magnification. 
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SH-SY5Y cells transfected with various Hsp20 plasmids were seeded at a density of 

5x10
3
/well into 96-well E-plates and left overnight to allow for cell attachment and left 

until cell index of reached a value of 1 prior to addition of Aβ peptides and vehicle controls 

to ensure consistency of cell number and effect of Aβ peptides. Remaining cells were 

seeded into 6 well plates and harvested after 48 hours to confirm expression of the various 

Hsp20 proteins. The xCELLigence SP system (ACEA Biosciences, USA) was used for 

real-time monitoring of cell growth. For PDE inhibition assays non-transfected SH-SY5Y 

cell were seeded at the same density and treated with Aβ peptides, again once the average 

cell index reached a value of 1. PDE inhibitors were then added 6 hours post Aβ addition 

and monitored until the 48 hour time-point. The resulting data was exported to Microsoft 

excel using the RTCA software for further manipulation. 

 

2.10.3 Hsp20 phosphorylation assays 

SH-SY5Y cells were seeded at a density of 1x10
6
 cell per well onto 6 well plates for at 

least 16 hours prior to treatment with various PDE inhibitors. Compounds were diluted in 

media and added to cells for 0.5, 1, 2, 4 & 6 hours for time course assays or incubated for 

15 minutes for dose-response assays prior to harvesting using 3T3 lysis buffer 

supplemented with protease inhibitor Mini-Complete and phosphatase inhibitor phosSTOP 

(Roche, UK). Phospho-Hsp20 levels were analysed using standard SDS-PAGE and 

Western Blotting techniques described previously. 

2.11 Phosphodiesterase Activity Assay 

PDE activity was determined using a two-step radio-assay procedure as described 

previously by (Marchmont and Houslay 1980). The first step, samples are incubated with 

8-[3H]-labelled cAMP substrate, and PDEs in the sample hydrolyse this to [3H]-5’-AMP. 

The second step, uses snake venom (Crotalus Atrox) to hydrolyse the 5’AMP to [3H]-

adenosine, and subsequent incubation with anion exchange resin binds negatively charged, 

unhydrolysed cAMP, separating it from the adenosine. The amount of [3H]-adenosine is 

then calculated by scintillation counting, to determine the rate of cAMP hydrolysis.  

Various PDE isoforms were transiently over-expressed in HEK293 cells prior to lysis with 

KHEM buffer. For experimentation, the protein concentration of whole-cell lysate from 

transfected cells was equalized (typically to 1 μg/μl). Pilot assays were also carried out to 
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prior to inhibition to verify PDE activity and ensure activity fell within the linear range of 

6000-16000 counts.  

For inhibition assays various PDE cell lysates were incubated for 10 min at 30 °C in 20 

mM Tris, pH 7.4, 5 mM MgCl2, 0.1 μCi tritiated cyclic nucleotide, 0.1 or 1 μM unlabelled 

cyclic nucleotide the various inhibitors discussed in Chapter 5. The concentrations of PDE 

inhibitors used in experiments ranged from 1 nM to 200 μM. After incubation samples 

were boiled at 100°C for 1 min to terminate protein activity. Assays were cooled on ice for 

15 minutes then 25 μl of Crotalus Atrox venom (1 mg/ml) was added to each assay and 

incubated at 30 °C for 10 min. Then 400 μl of a 1:1:1 (v/v/v) slurry of Dowex 1X8 200–

400 MESH CI resin, ethanol and water were added, samples were vortexed and incubated 

on ice for 15 minutes. Samples were again vortexed then centrifuged at 13000rpm for 3 

minutes. 150 μl of supernatant was mixed with 1ml Opti Flow SAFE 1 scintillant and 

counted on a Wallac 1409 Liquid Scintillation Counter. The cyclic nucleotide 

concentration in each assay was typically 1/3 of the Km value for the substrate for each 

particular PDE family. Dose-response curves and IC50's were calculated using GraphPad 

Prism software. 

2.12 Microscopic Analysis 

2.12.1 FRET Imaging 

FRET imaging experiments were performed 24-48 h after SH-SY5Y cells stably 

expressing Epac1-camps FRET probe (REF) were seeded onto glass cover slips. Cells 

were maintained at room temperature in DPBS (supplier), with added CaCl2 and MgCl2, 

and imaged on an inverted microscope (Olympus IX71) with a PlanApoN, 60X, NA 1.42 

oil, 0.17/FN 26.5, objective (Japan). The microscope was equipped with a CCD camera 

(cool SNAP HQ monochrome, Photometrics), and a beam-splitter optical device (Dual-

channel simultaneous-imaging system, DV
2
 mag biosystem (ET-04-EM)). Imaging 

acquisition and analysis software used was Meta imaging series 7.1, Metafluor, and 

processed using ImageJ (http://rsb.info.nih.gov/ij/). FRET changes were measured as 

changes in the background-subtracted 480/545-nm fluorescence emission intensity on 

excitation at 430 nm and expressed as either R/R0, where R is the ratio at time t and R0 is 

the ratio at time = 0 sec, or ΔR/R0, where ΔR = R – R0. Values are expressed as the mean 

± SEM. 
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2.12.2 Immunocytochemical staining of SH-SY5Y cells 

SH-SY5Y cells (2 x 10
5
/well) were grown overnight in 6 well plates containing sterile 

coverslips. Coverslips were sterilised using an ethanol: ether solution (1:1, v/v) and air 

dried for a minimum 30 minutes in a cell culture hood. The following day cells were fixed 

on glass coverslips using -20°C methanol solution for 5 minutes, then washed twice for 5 

minutes in cold PBS with gentle agitation. Cells were permeabilised for 20 minutes at 

room temperature with PBST (0.1% Triton-X100 in PBS), then washed for 5 minutes in 

PBS alone. Nonspecific antibody binding sites were blocked by incubating with blocking 

buffer (0.5% BSA (w/v) in PBS) for either 30 minutes at room temperature, or overnight at 

4°C, coverslips were then washed twice in PBS for 5 minutes. One or two primary 

antibodies were diluted to the desired concentrations in blocking buffer, and coverslips 

were incubated with primary antibodies overnight at 4°C. Coverslips were then washed 

three times for 10 minutes in PBS, and incubated with 1:500 dilutions of appropriate 

fluorescently labelled secondary antibodies in a final volume of 500μl per coverslip and 

protected from light. This step took place for either 1 hour at room temperature, or 

overnight at 4°C. Following secondary antibody incubation, coverslips were washed once 

in PBS and mounted onto glass slides using ProLong Gold antifade reagent with DAPI 

(4’,6-diamidino-2-phenylindole) nuclear stain (Molecular Probes) and air dried for a 

minimum 48 hours prior to use. Coverslips were stored at 4°C, protected from light for up 

to 1 month. 

2.13 Statistical Analysis 

In this thesis all values are presented here as mean value ± standard error of the mean 

(SEM) from at least 3 independent experiments. Statistical significances between two 

groups of data were determined using paired, two-tailed Student’s t-test. Statistical analysis 

of several groups was carried out using one way analysis of variance (ANOVA) with 

Dunnett’s post test comparison against control experiments. A p-value greater than 0.05 

was not considered significant (NS), p-value < 0.05 was considered significant (*), p-value 

< 0.01 was considered highly significant (**), and p-value < 0.001 was considered 

extremely significant (***). 
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3 Hsp20 phosphorylation modulates its binding to 
Aβ and promotes neuroprotection 

3.1 Introduction 

One of the pathological hallmarks of Alzheimer’s disease (AD) is the extracellular 

disposition of amyloid-like filaments that form neuritic plaques in the brain. The principle 

component of amyloid plaques is a small peptide known as amyloid–β (Aβ), which is 

derived from sequential proteolytic cleavage of the amyloid precursor protein (APP) 

(Hardy and Selkoe 2002).  Increases in Aβ levels following an imbalance between the rates 

of production and clearance of the peptide, promote Aβ oligomerisation and lead to the 

formation of both insoluble fibrillar deposits and soluble Aβ oligomers. Various types of 

Aβ oligomers promote neuronal dysfunction and cell death leading to neurodegeneration 

(Harrison, Sharpe et al. 2007). This series of events is described as the “amyloid cascade 

hypothesis” and is supported by a wealth of biochemical and genetic data, though recent 

failures of a number of anti- Aβ aggregation drugs has recently cast some doubt on the 

hypothesis (Reitz 2012). The most abundant peptide fragment found in AD is Aβ1-40, 

which accounts for approximately 90% of amyloid plaques, whereas the remaining 10% is 

made up by the more amyloidogenic fragment Aβ1-42. These short peptides are unstable 

and readily aggregate to form fibrils and a variety of other aggregated species that have 

been shown to be highly cytotoxic (Morgan, Colombres et al. 2004). 

 

Small Heat Shock Proteins (sHSPs) are a group of ATP-independent chaperones that can 

prevent the aggregation of mis-folded proteins or peptides and as such, are protective 

against a number of protein aggregation diseases (Eyles and Gierasch 2010). This is 

particularly evident in the field of neurological disease where sHSPs have been shown to 

have a protective role against Alzheimer’s, Parkinson’s and Huntington’s disease 

(Brownell, Becker et al. 2012).  One of the ten known sHSPs, Hsp20, has been specifically 

linked with AD as it associates with pathological lesions in diseased brains (Wilhelmus, 

Otte-Holler et al. 2006). These included senile plaques (SP) and cerebral amyloid 

angiopathies (CAA) both of which consist mainly of aggregated Aβ (Wilhelmus, Boelens 

et al. 2009). Expression of Hsp20 has also been observed in reactive astrocytes and 

microglia found surrounding both SP and CAA (Wilhelmus, Otte-Holler et al. 2006). The 

co-localisation of Hsp20 with Aβ aggregates within AD brain tissue suggests that Hsp20 

may represent an endogenous neuronal protection mechanism to combat or prevent Aβ 

oligomerisation. Indeed, the physical interaction between Hsp20 and Aβ has been reported 
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to prevent Aβ oligomerisation and protect neuronal-type cell lines from Aβ mediated 

toxicity (Wilhelmus, Boelens et al. 2006), however, the molecular nature of the interaction 

is unknown.  

 

3.1.1 Experimental Aims 

Although an interaction between Hsp20 and Aβ has previously been reported (Wilhelmus, 

Otte-Holler et al. 2006) & (Wilhelmus, Boelens et al. 2006) the molecular nature of this 

interaction has yet to be established. The primary aim of experimental work carried out in 

this chapter was to map the protein-protein interaction between Hsp20 and the Aβ peptide 

to elucidate which domains within each respective protein are involved in binding. Upon 

identification of residues that facilitate binding, mutations were incorporated into full-

length Hsp20 sequences in order to validate the identified residues on Hsp20’s ability to 

bind Aβ. I investigated several mutants of Hsp20 in relation to; binding with Aβ, effect on 

Aβ aggregation, and protection against Aβ-induced cell-death.  

3.1.2 Experimental Procedure 

1 – Characterise the interaction between Hsp20 and Aβ using peptide array technology 

(Frank 2002). This in vitro method allows for rapid elucidation of key domains and 

residues responsible for protein-protein interaction using immobilised peptide libraries, 

pure proteins and detection methods analogous with Western Blotting. 

2 – Create mutants based on peptide array data using site-directed mutagenesis of Hsp20 

wild-type (WT) sequence and determine the impact on the protein’s characteristics, 

specifically its ability to interact with Aβ through co-immunoprecipitation. 

3 – The Hsp20 mutants described in 2 (above) were tested using two separate assays that 

were designed to monitor Aβ aggregation: (A) Nuclear Magnetic Resonance (NMR) 

spectroscopy with 
15

N-labelled Aβ1-40 peptide was used to assess what affect these 

mutations have on Hsp20’s capacity to bind to Aβ and affect its aggregation into higher 

molecular weight species. (B) A novel Aβ aggregation assay based on fluorescence self-

quenching of fluorophore-tagged Aβ1-42 that can differentiate between two distinct, 

physiologically relevant Aβ aggregation pathways, oligomerisation and fibrillisation was 

also used. 
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4 – Using xCELLigence technology, I developed and utilised a novel cell-based assay for 

monitoring Aβ1-42 induced cytotoxicity in real-time. This validated complementary 

experimentation using more traditional methods for measuring viability of the human 

neuroblastoma cell-line SH-SY5Y (MTT assay). Various constructs of Hsp20 were 

expressed in this cell-line and their ability to attenuate Aβ1-42 induced cytotoxicity was 

established. 

3.2 Results 

3.2.1 Mapping the interaction between Hsp20 and Aβ1-42 using 
Peptide Array 

As the interaction between Hsp20 and Aβ1-42 had previously been demonstrated through 

immuno-histochemical and co-incubation techniques (Wilhelmus, Otte-Holler et al. 2006) 

& (Wilhelmus, Boelens et al. 2006), I decided to use synthetic peptide array technology in 

order to map the interaction domains between Hsp20 and Aβ. This method has been used 

successfully to characterise the molecular interactions between Hsp20-PDE4D5 (Sin 

2011). The entire Hsp20 sequence was divided into overlapping 25mer peptides that shift 

sequentially in amino- to carboxyl-terminal direction, in 5 amino acid increments and 

SPOT synthesised onto cellulose membranes (Figure 2.1) (Frank 2002). The arrays were 

then incubated with either Aβ1-42 or a scrambled version of Aβ1-42 (Aβscr) that has the same 

overall molecular weight and charge but does not possess the aggregation or cytotoxic 

properties of Aβ1-42. Following incubation, arrays were probed with an anti-Aβ antibody to 

see which Hsp20 domains had a positive interaction with Aβ1-42 (Fig. 3.1B). The intensity 

of any resultant chemiluminescent signal directly correlates with the levels of protein 

bound to each 25mer spot. There was non-specific antibody binding observed at the α-

crystallin domain of Hsp20 when the arrays were overlaid with both Aβ1-42 and Aβscr, 

however, positive interactions were detected between Hsp20 peptides 1, 2 and 3 and Aβ1-

42 (Fig. 3.1B) that were not apparent on arrays overlaid with Aβscr.  Peptides 1, 2 and 3 

span the amino acid sequence M
1
-E

35
 within the N-terminal domain of Hsp20 (Fig. 3.1A), 

which contains the PKA/PKG consensus site at serine 16 (Fan, Chu et al. 2004).  

 

To gain further insight into which amino acids within the N-terminal domain of Hsp20 

might be critical in binding to Aβ1-42, I focussed on the W
11

-E
35

 region and produced an 

alanine scanning array, where each residue was sequentially substituted for an alanine. In 

the event that alanine was the endogenous residue, it was substituted with aspartic acid. 



Chapter 3 

 

64 
 

This library of peptides was again incubated with Aβ1-42 (Fig. 3.1C: upper panel) or Aβscr 

(Fig. 3.1C:lower panel) and subsequent western blotting undertaken. This procedure 

identified a region of Hsp20 likely to be important for association with Aβ1-42, namely the 

double arginine (R
13

, R
14

) that forms part of the PKA/PKG consensus (RRAS). As the 

original array (Fig. 3.1B) suggested that the PKA/PKG site may be involved in facilitating 

the binding of Aβ1-42 I included either a phospho-serine (pS16) residue or a phospho-mimic 

substitution (S16D) in position 16 of the Hsp20
11-35 

peptide (Fig. 3.1C, lower panels). 

Significantly more Aβ1-42 bound to the 25mers that included pS16 or S16D when compared 

to the native sequence. This result suggests that PKA/PKG phosphorylation of serine 16 

may regulate the association of Hsp20 with Aβ1-42.  
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Figure 3.1 – Mapping the interaction between Hsp20 and Aβ1-42. 
Peptide array was used to map the domains responsible for Hsp20/Aβ1-42 interaction. A – Structure 
of Hsp20 highlighting the PKA/PKG site located in the N-terminal domain of Hsp20 and the 
conserved α-crystallin domain is located between residues 70 and 144. B - The entire sequence of 
Hsp20 was fragmented into overlapping 25mer peptides and the probed with either Aβ1-42 or Aβscr   
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the domains found to have a positive interaction with Aβ1-42 all included the consensus PKA/PKG 
phosphorylation site (RRAS) proximal to serine 16. C - Subsequent alanine scanning arrays 
demonstrated that the arginine residues are essential for facilitating Aβ1-42 binding. Furthermore, 
substitution of serine 16 with a phospho-serine or phospho-mimetic substitution (serine changed to 
aspartic acid) significantly increased the association of Aβ1-42 suggesting a mechanism by which 
this interaction may be regulated in vivo. 

We then undertook reciprocal peptide array analysis to determine which sites on Aβ1-42 are 

required for Hsp20 interaction. The Aβ1-42 arrays were incubated with His-tagged purified 

Hsp20 (His-Hsp20) or as a control, His-tagged purified RACK1 (His-RACK1) (Fig. 3.2B). 

We observed strong association of Hsp20 (but not RACK1) to the first 3 spots of the Aβ1-42 

array (representing amino acids 1-35).  Alanine scanning analysis of the first 25 amino 

acids of Aβ1-42 (Fig. 3.2C) showed that the tri-peptide spanning H
14

, Q
15

 and K
16 

was 

important for Hsp20 binding, with the latter lysine residue being essential (Fig. 3.2C).  

Interestingly, this region abridges the K
16

LVFF
20

 oligomerisation domain of Aβ1-42. This 

region is known as the pathogenic aggregation site of the peptide and is essential for beta-

sheet formation and subsequent amyloidogenesis (Hilbich, Kisters-Woike et al. 1992), 

(Tjernberg, Naslund et al. 1996). Taken together (Fig. 3.1 and 3.2), our peptide array data 

suggests a mechanism where phospho-Hsp20 binds more avidly to Aβ1-42 in order to 

prevent the self-association of the peptide. 

 

3.2.2 In vitro pull-down of Aβ1-42 with His-Hsp20 

The peptide array data highlighted that the introduction of a phospho-mimetic substitution 

(S16D) may increase the avidity of the full-length Hsp20 protein towards Aβ1-42. 

Identification of the Hsp20 binding site on Aβ1-42 also suggested that mutating both 

arginine residues at position 13 & 14 should ablate Hsp20’s ability to bind Aβ1-42 (Fig. 

3.1C). In order to validate the peptide array data, we initially cloned the wild-type Hsp20 

construct into the pET28c vector and expressed it in BL21 cells. The purified His-Hsp20-

WT plasmid was then subjected to site directed mutagenesis in order to create the His-

Hsp20-S16D and His-Hsp20-R13A,R14A (arginine double mutant, ADM). Purified His-

Hsp20 was predominately found in its monomeric form, pre- and post- incubation, but 

stable dimers and tetramers are also apparent across all the Hsp20 variants (Fig. 3.3: lower 

panel), demonstrating that the S16D or the R13A,R14A mutations have no apparent effect 

on the proteins ability to form stable quaternary structures. 
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Figure 3.2 – Mapping the interaction between Aβ1-42 and Hsp20. 
A – Structure of Aβ1-42 peptide with oligomerisation domain highlighted. B - The Aβ1-42 sequence 
was fragmented into overlapping 25mer peptides and the probed with either His-Hsp20 or His-
RACK1. Strong association of His-Hsp20 was detected in spots 1-3 while no signal was detected 
with arrays overlain with His-RACK1. C – Alanine scanning array shows that only the lysine residue 
at position 16 is essential for mediating binding of His-Hsp20. However, densitometry analysis 
suggests that histidine at position 14 and glutamine at position 15 also play a role in mediating 
binding of His-Hsp20. 

Primary data in Figure 3.2 B & C was generated by Ruth MacLeod 

To characterise any changes in avidity for Aβ1-42, I conducted in vitro pull-down assays 

with the various His-tagged Hsp20 proteins by co-incubating either Hsp20-WT, Hsp20-

S16D or Hsp20-ADM with Aβ1-42 at 1:1 molar ratio in PBS. Samples of Aβ1-42 were 

incubated overnight at 37°C under agitating conditions which typically promotes the 

aggregation of Aβ1-42 into insoluble fibril-like structures prior to immunopurification with 
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α-His-agarose conjugated beads. Hsp20 successfully bound to Aβ1-42 at a variety of 

molecular weights reflecting the various SDS-stable species of Aβ1-42 formed during 

aggregation. All Hsp20 variants bound monomeric Aβ1-42, demonstrating that the Hsp20 

variants were able to bind to low molecular weight species of Aβ1-42. The phospho-mimetic 

variant Hsp20-S16D showed the greatest avidity for higher molecular weight oligomers of 

Aβ1-42 (Fig. 3.3).  

 

 

Figure 3.3 – Co-immunoprecipitation of Aβ1-42 with His-Hsp20 
Pure protein co-immunoprecipitation experiment using purified His-Hsp20 and Aβ1-42 peptides. 
Peptides were incubated at 37°C under agitation for > 16 hours prior to immunopurification with 
His-agarose conjugated beads. All Hsp20 variants effectively pulled-down low molecular weight 
Aβ1-42 however, Hsp20-S16D was most effective at pulling down Aβ1-42 oligomers. Data is 
representative of three separate experiments. 
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3.2.3 Hsp20 phosphorylation alters Aβ aggregation dynamics 

3.2.3.1 Nuclear Magnetic Resonance Spectroscopy to monitor Aβ1-40 
aggregation 

Nuclear magnetic resonance (NMR) spectroscopy is a tool that has been used for more 

than 20 years to examine the structure of proteins in solution. NMR works on the principle 

that stable isotopes, such as 
1
H, 

13
C and 

15
N, carry magnetic dipoles. These dipoles take up 

different orientations in a magnetic field, and each orientation has a different energy. By 

applying pulses of electromagnetic radiation at precise frequencies, the transitions between 

the energy states can be observed, thus giving rise to the NMR signal. Nuclei in different 

environments, such as different 
1
H nuclei in a protein, resonate at different frequencies and 

the intensity of each proton is plotted against resonance frequency. The most useful NMR 

spectra are the 1D 
1
H-NMR spectra, which show the signals for each hydrogen atom 

(proton) in a protein, and the 2D-
15

N-HSQC (heteronuclear single-quantum coherence) 

spectra, which give a signal for each covalently bonded 
1
H-

15
N group. Typically a 2D-

15
N-

HSQC spectrum is displayed topographically and contains one peak for each residue in the 

protein, therefore providing a high-resolution ‘fingerprint’ of a protein. The process of 

assigning a particular peak to a specific residue is essential for elucidating any structural or 

functional information about the protein (Kwan, Mobli et al. 2011). 

NMR has been used extensively to characterise synthetic Aβ peptides. In solution, the Aβ 

peptide can fold into either α-helical, random chain or soluble β-sheet structures. The 

abundance of each structure depends on the solution conditions; hydrophobic lipid-like 

environments promote the α-helical structure, which is the principal role of the Aβ 

sequence as part of the transmembrane domain of APP, whereas high ionic strength and 

pH ranging from 4-7 favours formation of β-sheets. The α-helical and random extended 

chain structures are monomeric while β-sheet structures in solution are oligomeric and 

eventually precipitate as amyloid. Due to the β-sheet structure being neurotoxic, 

therapeutically useful inhibitors of amyloidogenesis should bind to and stabilise the α-

helical, random extended chain or early formed, non-toxic β-sheets (Hilbich, Kisters-

Woike et al. 1991), (Zagorski and Barrow 1992), (Zeng, Zhang et al. 2001). Several natural 

exogenous compounds have been identified as being inhibitors of amyloidogenesis 

including; nicotine from tobacco (Salomon, Marcinowski et al. 1996), curcumin from the 

spice turmeric (Reinke and Gestwicki 2007), and resveratrol a polyphenol found in red 

wine (Ge, Qiao et al. 2012). NMR studies have shown that these compounds interact 

directly with Aβ peptides preventing oligomerisation into fibril structures, and as 
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consequence these compounds are now being pursued as potential therapeutics for treating 

AD. 

I have used NMR spectroscopic analysis to examine the effect of Hsp20 on the 

oligomerisation of synthetic 
15

N-labelled Aβ1-40 peptide. I had originally tried 
15

N-Aβ1-42 

but found the aggregation kinetics too fast, even when maintained at low temperatures, and 

I was not able to detect any signal. However insoluble Aβ1-42 aggregates were visible in 

each sample immediately after peptide preparation. Initial analysis of the 
15

N-Aβ1-40 was 

carried out at 4°C to prevent oligomerisation of the peptide and to quantify uniformity of 

the starting product prior to commencing aggregation. Each assay contained 200µM of 
15

N 

-Aβ1-40 peptide incubated with 50µM of either, Hsp20-WT, Hsp20-S16D, Hsp20-ADM 

(molar ratio 4:1, Aβ: Hsp20), while the 
15

N-Aβ1-40 peptide on its own served as a control. 

As planned, the starting concentrations of 
15

N-Aβ1-40 were identical across all samples (Fig. 

3.4). Small changes in chemical shifts were detectable across all residues compared to 
15

N-

Aβ1-40 only control, but the largest changes are seen at the region proximal to the 

oligomerisation domain (Fig 3.5), spanning the sequence H
13

HQKL
17

, which includes the 

same region identified in the peptide array experiments (Fig. 3.2B). Hsp20-ADM induced 

the largest changes in chemical shift for residues within this region, while Hsp20-S16D 

increased the shift distance across 80% of the assigned residues relative Hsp20-WT.  
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Figure 3.4 – NMR Analysis of 
15

N-Aβ1-40 co-incubated with Hsp20 pre-aggregation 
Partial [

1
H,

15
N]-HSQC spectra of recombinant 

15
N-Aβ1-40 peptide (200µM) in 50mM sodium 

phosphate buffer (NaPi) at pH 7.5 and 4°C and 14.1 T. 
15

N-Aβ1-40 only peptide (black), 
15

N-Aβ1-40 

and 50µM His-Hsp20-WT (green), 
15

N-Aβ1-40 and 50µM His-Hsp20-S16D (blue) & 
15

N-Aβ1-40 and 
50µM His-Hsp20-ADM (red). All samples show similar pattern of peaks that are similar to previous 
reported assignments of 

15
N-Aβ1-40 (Hou, Shao et al. 2004). NMR spectra recorded on a Bruker 

AVANCE 600 MHz spectrometer. 

Following initial 1D 
1
H-NMR and 2D 

15
N-HSQC spectral analysis each sample was 

incubated at 37°C for 4 days under agitating conditions (300rpm) to promote 

oligomerisation of 
15

N-Aβ1-40. Samples were then re-analysed in order to determine how 
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much 
15

N-Aβ1-40 peptide would still be visible in solution given that aggregated species 

larger than 50kDa are not detected using NMR spectroscopy (Kwan, Mobli et al. 

2011)(Fig. 3.6). As expected the 
15

N-Aβ1-40 only control had significantly reduced peak 

intensities suggesting reduced concentration of monomeric Aβ peptide. The same was also 

true for the 
15

N-Aβ1-40 peptide co-incubated with Hsp20-ADM although to a lesser extent. 

However, both the Hsp20-WT and the Hsp20-S16D co-incubations maintained 

significantly more 
15

N-Aβ1-40 in its monomeric form when compared to both 
15

N-Aβ1-40 

control and Hsp20-ADM (Fig. 3.6).  
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Figure 3.5 – Chemical Shift Difference Analysis of 
15

N-Aβ1-40 co-incubated with Hsp20  
Top panels - 2D HSQC experiments showing 

15
N-Aβ1-40  (black); co-incubated with either Hsp20-

WT (green), Hsp20-S16D (blue) or Hsp20-ADM (red) at 4°C prior to aggregation. B – Chemical 
shift perturbation plot from the same experiment, relative to 

15
N-Aβ1-40 only control.  
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Figure 3.6 – NMR Analysis of 
15

N-Aβ1-40 co-incubated with Hsp20 post-aggregation 
Partial [

1
H,

15
N]-HSQC spectra of recombinant 

15
N-Aβ1-40 peptide (200µM) in 50mM sodium 

phosphate buffer (NaPi) at pH 7.5 and 4°C and 14.1 T. 
15

N-Aβ1-40 only peptide (black), 
15

N-Aβ1-40 

and 50µM His-Hsp20-WT (green), 
15

N-Aβ1-40 and 50µM His-Hsp20-S16D (blue) & 
15

N-Aβ1-40 and 
50µM His-Hsp20-ADM (red). Samples were re-analysed at 4°C following 4 days incubating under 
aggregating conditions (37°C at 300rpm). There is a marked reduction in signal intensity in both 
15

N-Aβ1-40 only peptide (black) and 
15

N-Aβ1-40 and 50µM His-Hsp20-ADM (red) suggesting a lack of 
aggregation inhibition. NMR spectra recorded on a Bruker AVANCE 600 MHz spectrometer. 

In order to confirm that any loss in signal was the result of Aβ1-40 aggregation and not 

proteolytic degradation, the samples were subjected to western blotting analysis (Fig 3.7). 

Samples were initially spun at 13,000rpm to remove the insoluble amyloid fibrils that had 
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formed during the aggregation process. Samples were then taken from each supernatant for 

western blotting analysis. From this, I found that in the 
15

N-Aβ1-40 only control sample, the 

levels of monomeric Aβ1-40 had virtually disappeared. Co-incubation with His-Hsp20-

S16D resulted in the highest levels of monomeric and low molecular weight species 

remaining in solution, followed by His-Hsp20-WT. The Aβ binding mutant His-Hsp20-

ADM maintained no detectable levels of monomeric Aβ1-40 in solution; however various 

low molecular weight species were detectable between 10-25 kDa (Fig. 3.7:top left panel). 

 

Figure 3.7 – Co-immunoprecipitation of NMR 
15

N-Aβ1-40/Hsp20 co-incubations. 
Following NMR spectral analysis samples were spun down to remove insoluble Aβ1-40 aggregates 
and then analysed using SDS-PAGE to ensure that loss of signal was due to aggregation and not 
degradation. Very little signal was detected in Aβ1-40 only input due to its aggregation into insoluble 
aggregates. Hsp20-S16D maintained more monomeric Aβ1-40 in solution followed by Hsp20-WT, 
while monomeric Aβ1-40 levels in Hsp20-ADM co-incubation were undetectable. This was in 
agreement with previous NMR analysis. Samples were then incubated with His-Agarose beads for 
16 hours at 4°C in order to test if the various Hsp20 proteins could pull-down Aβ1-40. Again Hsp20-
S16D was the most effective at pulling down both low and high molecular weight species of Aβ1-40. 

The NMR samples were then subjected to co-immunoprecipitation studies analogous to 

experiments carried out in figure 3.3. This confirmed that Hsp20-S16D was able to pull-

down more monomeric Aβ1-40 than the WT variant. Interestingly, Hsp20-S16D was also 

able to coIP an Aβ1-40 species around the size expected for Aβ tetramers (16kDa) (Fig 

3.7:upper right). This Aβ species was not detected in the Hsp20-WT IP despite there being 

species of this size in solution with Hsp20-WT post aggregation (Fig 3.7:upper left). 

Despite similar levels of Hsp20-ADM precipitating with the His-agarose beads (Fig 

3.7:lower right), there were no low molecular weight species of Aβ1-40 detected in this coIP 

(Fig 3.7:upper right). 
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Taken together, the NMR data and subsequent in vitro pull-down analysis shows that 

Hsp20 interacts with Aβ1-40 and prevents it from aggregating into higher molecular weight 

oligomers, even at a molar ratios of 1:4 (Hsp20:Aβ). Both Hsp20-WT and –S16D 

maintained significantly more LMW species of Aβ1-40 in solution than the Aβ1-40 only 

control. The interaction between all Hsp20 variants and Aβ1-40 was strongest at domains 

important for beta-sheet formation and oligomerisation of Aβ. Finally, the introduction of 

the phospho-mimetic S16D increased the chemical shifts at a number of residues and 

maintained the Aβ1-40 peptide in its non-toxic, random coil conformation more so than 

Hsp20-WT. This data backs up findings from the array data to suggest that the 

phosphorylation of Hsp20 enhances its interaction with Aβ to inhibit amyloidogenesis.   

3.2.3.2 A morphology-sensitive assay for Aβ1-42 aggregation based on 
fluorescence self-quenching 

A variety of techniques such as NMR (discussed previously), atomic force microscopy 

(Mastrangelo, Ahmed et al. 2006) and x-ray diffraction (Sunde, Serpell et al. 1997), have 

allowed for the molecular analysis of Aβ related polymorphisms. Optical based techniques 

such as green birefringence of the Congo red dye (Howie and Brewer 2009) and the 

fluorescent enhancement of Thioflavin T (ThT) upon binding to Aβ aggregates (LeVine 

1993) have been the most widely employed methods to monitor the real-time kinetics of 

Aβ aggregation. However, neither of these optical based assays can differentiate between 

the various amyloid morphologies that can exist. In addition, the mechanisms by which 

these optical probes interact with Aβ are not yet fully understood. These limitations have 

hampered both the understanding of Aβ aggregation and the elucidation of the 

pathophysiologically relevant Aβ species. 

Here we have utilised a novel morphology-sensitive assay, developed by Quinn et al. 

(2013) that exploits the phenomenon of fluorescence quenching of fluorophore labelled 

Aβ1-42. Aggregation of HiLyte Fluor 555 conjugated to the N-terminal of Aβ1-42 (Aβ555) 

organizes the covalently attached fluorophores in to close enough proximity that it triggers 

a self-quenching process (Fig. 3.8A). This allows for real-time monitoring of the Aβ1-42 

aggregation process and is unique in that it can distinguish between two physiologically 

relevant amyloid morphologies. It has previously been shown that addition of dilute 

hexafluoroisopropanol (HFIP) (1-4% v/v) rapidly promotes the formation of soluble ring-

like and globular structures of Aβ (Nichols, Moss et al. 2005) via a mechanism involving 

the formation of HFIP micro-droplets that act as interfaces to promote Aβ1-42 aggregation 
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(Quinn 2013). Whereas insoluble fibril-like morphologies can be promoted by incubating 

Aβ at 37°C in the presence of physiological NaCl concentrations (150mM) (Fig 3.8E). 

 

Figure 3.8 – Fluorescence quenching for real-time analysis of two distinct Aβ1-42 aggregation 
pathways. 
A – Schematic illustrating the principles of the fluorescence self-quenching assay. N-terminally 
attached HiLyte Fluor 555-Aβ1-42 (Aβ555) peptides are progressively quenched as monomers 
aggregate, resulting in combinations of partially quenched and fully quenched (non-emissive) 
fluorophores. The range and form of the morphologies are illustrative only, and not to scale. B- 
Normalised variation in fluorescence intensity of 7µM freshly prepared non-aggregated sample of 
Aβ555 as a function of time at 4°C following injection of 1.5% HFIP to promote oligomerisation. The 
sold line fits a biexponetial decay function.  Inset: Normalised fluorescence enhancement of 
Thioflavin T (ThT) obtained with identical experimental conditions. Dotted grey lines represent the 
results from a global fit of both ThT and Aβ555 assays. C – Transmission electron micrograph (TEM) 
of Aβ555 aggregates obtained following addition of 1.5% HFIP (v/v). D – Normalised variation in 
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steady-state fluorescence emission as a function of time obtained during the aggregation of a 7µM 
sample of Aβ555 at 37°C (pH 7.9, 150mM NaCl) to promote fibrillisation. Inset: Normalised 
fluorescence enhancement of ThT obtained with identical experimental conditions. E – TEM of 
aggregated Aβ555 obtained at pH 7.9 and 150mM NaCl. The kinetics of the fluorescence self-
quenching method and the more common ThT binding assays were identical under both 

conditions. F - Unlabeled A1-42 and A555 show almost identical distribution of amyloid 
morphologies. Amyloid aggregates generated by injection of 1.5 % (v/v) HFIP were imaged and 
quantified using TEM (Quinn, Dalgarno et al. 2014).  

This work was published by Quinn, Dalgarno et al. 2014.  

The self-quenching and kinetic properties of the two aggregation pathways vary 

considerably. For example, the addition of 1.5% (v/v) of HFIP to a fresh non-aggregated 

solution of Aβ555 in aqueous buffer (pH 7.9) induced a 62 (±4) % decrease in the 

fluorescence intensity over a 30 min time window (Fig. 3.8B). However, conditions that 

promote fibril-like morphologies only induced a 25 (±3) % decrease in fluorescence 

intensity and the kinetics of fibril growth is much slower and measured over 800 minutes 

(Fig. 3.8D). Both aggregation pathways were validated by testing the aggregation of Aβ555 

in parallel with the commonly used ThT binding assay. The kinetics of aggregation 

measured by either fluorescence self-quenching or ThT were found to be almost identical 

(Fig. 3.8B&D inset). The morphologies resulting from these two independent aggregation 

pathways were evaluated using transmission electron microscopy. TEM images of freshly 

prepared HFIP-induced aggregates of Aβ555 (Fig 3.8C) and fibril-like structures (Fig 3.8E) 

allowed visualisation of the different aggregate morphologies. Furthermore, these 

morphologies are identical to those produced by Aβ1-42 aggregated under the same 

conditions, and in agreement with previous studies (Nichols, Moss et al. 2005). This 

confirmed that the conjugation of HiLyte Fluor 555 at the N-terminal has negligible effects 

on the aggregation behaviour of Aβ1-42. 

This novel assay was used to investigate the inhibitory properties of Hsp20 against Aβ1-42 

aggregation. When we incubated Aβ555 in the presence of Hsp20-WT, we observed a 

significant inhibition of amyloid growth under fibril-like conditions when using a molar 

excess of Hsp20-WT (i.e., 1:2 molar ratio A:Hsp20), the efficiency of the self-quenching 

process decreasing by 5-fold from 25 ± 3 to 5 ± 1 % (Fig. 3.9B). In contrast, no significant 

inhibition was detected under HFIP-induced aggregation or at any experimental conditions 

when using a 4:1 molar excess of A over Hsp20-WT (Fig. 3.9A & B). We then tested 

several variants of Hsp20 to gain further insights into the mechanistic details of Hsp20 

modulating Aβ aggregation. The Hsp20 variants tested in the fluorescence quenching 
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assays included Hsp20-WT, -S16D, -ADM and a polymorph of Hsp20 which changes a 

highly conserved proline to leucine at position 20 (P20L) (Nicolaou, Knoll et al. 2008).  

The Hsp20-P20L mutant has been shown to induce secondary structure alterations that lead 

to a reduced capacity to be phosphorylated by PKA at serine 16. The P20L mutation has 

also been shown to perturb the ability of Hsp20 to attenuate apoptosis in cardiomyocytes 

following simulated ischemia/reperfusion injury. This rare substitution is found 

heterozygously in the general population and has been hypothesised to adversely affect 

carrier’s ability to deal with cellular stress (Nicolaou, Knoll et al. 2008). Because of this 

we decided to characterise whether this missense mutation, which is in close proximity to 

the Aβ binding site, would alter Hsp20’s ability to inhibit Aβ aggregation and possibly 

represent a novel biomarker for detecting the risk of developing AD. 

The phospho-mimetic variant Hsp20-S16D exhibited higher inhibition efficiency (~50%) 

of globular- (Fig. 3.9A) and fibril-like (Fig. 3.9B) structures than Hsp20-WT, even at 

molar ratios of 4:1 (A:S16D), whereas Hsp20-WT showed no significant inhibitory 

effect. The inhibition of fibrils was also strongly increased as reflected by the relative 

decrease in fluorescence quenching from 13 ± 5 % for 4:1 molar ratio (A:S16D) to a 

practically undetectable level (4 ± 1%) when using a 1:2 molar ratio (A:S16D) (Fig 3.9A 

& B). In agreement with the peptide array and NMR data, these results also demonstrate 

that replacing serine 16 by aspartic acid promotes the Hsp20/A interaction and decreases 

the effective concentration of Hsp20 required to disrupt the formation of amyloid 

aggregates. However, the effect was more pronounced under fibril forming conditions.  

For Hsp20-ADM and Hsp20-P20L variants the deviation in fluorescence self-quenching 

also showed a remarkable dependence on type of aggregate and the molar ratio. P20L 

failed to inhibit the formation of globular structures at both molar ratios investigated (Fig. 

3.9A). Actually, we observed a significant increase in fluorescence quenching from 62 ± 4 

% in the absence of P20L to values of 85 ± 3 % and 75 ± 3 % at 4:1 and 1:2  molar ratios 

(A:P20L), respectively. In contrast, P20L was able to inhibit the formation of fibrillar 

structures (Fig. 3.9B), although even at the highest molar ratio the self-quenching 

efficiency was only 9 ± 5 % as opposed to 5 ± 1 % for –WT, and 4 % for the ADM and 

S16D variants. The ADM behaviour under fibril forming conditions was similar to that 

observed for S16D (Fig. 3.9B), whilst its ability to disrupt the formation of globules was 

slightly lower than for S16D at the 1:2 molar ratios (Aβ: ADM) (Fig. 3.9A). However at 
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the 4:1 molar ratio (Aβ: ADM) behaved in a similar manner to the P20L mutant in that it 

appeared to promote the aggregation of Aβ555.  

 

Figure 3.9 – Morphology specific inhibition of Aβ1-42 aggregation by Hsp20 using 
fluorescence self-quenching 
The interaction between Hsp20 variants and Aβ1-42 labelled at the N-terminus with HiLyte Fluor 555 
(Aβ555) was monitored using fluorescence self-quenching under globular (A) and fibrillar (B) 
growing conditions. No variation in self-quenching efficiency (~60%) was observed upon incubation 
of Hsp20-WT with Aβ555 at 4:1 and 1:2 (Aβ:Hsp20) molar ratios, suggesting that Hsp20-WT does 
not inhibit the formation of globular structures induced by 1.5% (v/v) HFIP. Under fibril growing 
conditions (37°C, pH 7.9, 150 mM NaCl), Hsp20-WT had no effect on the aggregation of Aβ555 at 
4:1 molar ratios (Aβ:Hsp20) but induced a significant decrease at 1:2 molar ratios. Hsp20-S16D 
was the most potent at inhibiting aggregation of globular Aβ555 while Hsp20-ADM and Hsp20-P20L 
appear to promote aggregation at 4:1 molar ratios. All Hsp20 variants were able to inhibit fibril 
growth of Aβ555. Mean values ±SEM, p-values - * < 0.05, ** <0.01; ANOVA, n = 3. 

These aggregation assays were conducted by Steven Quinn, analysis, interpretation 

and figure created by myself. 

We then repeated experiments using 25-mer peptide analogues of Hsp20 sequences. We 

used the N-terminal domains of Hsp20-WT, S16D and ADM that incorporate the 
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Hsp20/A interaction motifs identified from peptide array studies (Fig. 3.1 peptide 2). The 

most significant differences between experiments using full length proteins and peptide 

analogues were that the 25-mer S16D variant is approximately 2-fold less efficient in 

disrupting the formation of fibrils and globular structures than the full-length form (Fig. 

3.10A and B).  In the globular aggregation assay, the 25mer peptides derived from the 

Hsp20-WT sequence performs better than the full length protein (Fig. 3.10A). Both the 

S16D and ADM 25mers displayed partial inhibition of globular aggregation when the 

molar ratios were 1:2 (Aβ:Hsp20). With regard to performance in fibrillar assays, the S16D 

25mer inhibited aggregation more efficiently than the WT 25mer at 1:2 molar ratios (Aβ: 

Hsp20), 8 ± 4 % vs. 22 ± 7 %, respectively. However, this represented a ~50% reduction in 

inhibition efficiency compared to their respective full-length proteins. Interestingly, whilst 

the full-length Hsp20-ADM mutant protein was capable of efficiently inhibiting the 

formation of fibrillar structures, the 25-mer version of the ADM variant was unable to do 

so at both molar ratios. In fact, we observed a pronounced increase in fluorescence self-

quenching (64 ± 15 %) with the 25-mer ADM at 4:1 molar ratio compared to 25 ± 2 % 

with the Aβ555-only control experiment, which was indicative of higher levels of 

aggregation. When a 1:2 molar ratio of A:ADM was used, the fluorescence self-

quenching returned to values similar to those obtained in the Aβ-only controls (Fig. 

3.10B). 

This novel, morphology sensitive assay for monitoring Aβ1-42 aggregation has allowed us 

to observe the differential effects of various Hsp20 constructs, including a polymorphism 

that could potentially involved in AD susceptibility. Consistent with previous results, we 

have shown that introduction of a phospho-mimetic substitution increases the ability of 

Hsp20 to effect Aβ aggregation. This assay has also allowed us to establish the efficacy of 

Hsp20 inhibition of Aβ aggregation in two distinct pathways and has demonstrated 

selectivity for Hsp20 in modulating the growth of insoluble fibril-like species of Aβ. This 

is in general agreement with the finding that Hsp20 co-localises with insoluble amyloid 

fibrils in post-mortem brain tissue (Wilhelmus 2006). 
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Figure 3.10 - Morphology specific inhibition of Aβ1-42 aggregation by 25-mer peptides based 
on Hsp20 N-terminal domain. 
The interaction between Hsp20 N-terminal 25mers and Aβ1-42 labelled at the N-terminus with 
HiLyte Fluor 555 (Aβ555) was monitored using fluorescence self-quenching under globular (A) and 
fibrillar (B) growing conditions. Significant reduction in self-quenching efficiency (~60%) was 
observed upon incubation of WT-25mer with Aβ555 at 4:1 and 1:2 (Aβ:Hsp20) molar ratios. The 
S16D and ADM 25mers performed similarly in globular assay and did not inhibit the formation of 
globular structures induced by 1.5% (v/v) HFIP at 4:1 molar ratios but did attenuate aggregation at 
molar ratios of 1:2 (Aβ:Hsp20). Under fibril growing conditions (37°C, pH 7.9, 150 mM NaCl), S16D 
25mers preformed significantly better than the WT 25mer at molar ratios of 4:1 but inhibition 
efficiency was similar at 1:2 molar ratios. The ADM 25mer was able to enhance the aggregation of 
Aβ555 at 4:1 molar ratios but this returned to control levels when 1:2 molar ratio was used. Mean 
values ±SEM, p-values - * < 0.05, ** <0.01, *** <0.001; ANOVA, n = 3 
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These aggregation assays were conducted by Steven Quinn, analysis, interpretation 

and figure created by myself. 

3.2.4 Hsp20 overexpression attenuates Aβ1-42 induced cytotoxicity 

Previous studies looking at Hsp20 protection against Aβ1-42 induced cytotoxicity have 

concentrated on co-incubation of Hsp20 with Aβ1-42 prior to overlay onto various neuronal-

like cells (Wilhelmus, Boelens et al. 2006; Wilhelmus, Boelens et al. 2006; Wilhelmus, 

Otte-Holler et al. 2006) (Lee, Carson et al. 2006). I wanted to assess whether over-

expression of Hsp20 would confer protection against Aβ1-42 induced cytotoxicity given that 

Aβ1-42 intraneuronal accumulation has been shown to be an early event in the aetiology of 

AD that leads to synaptic dysfunction and LTP deficits well in advance of extracellular 

deposition (Oddo, Caccamo et al. 2003). Furthermore, previous studies have shown that 

soluble Aβ peptides can diffuse across the cell membrane and accumulate intracellularly 

(Lambert, Barlow et al. 1998). Soluble Aβ is readily taken up by SH-SY5Y and 

accumulates in lysotracker positive acidic vesicles within 4 hours. Furthermore, SH-SY5Y 

cells incubated with Aβ1-42 for several days, display time-dependent increases in 

intracellular HMW Aβ aggregates (Hu, Crick et al. 2009). Fibril accumulation results in 

cell-death and amyloid structures being released into the extracellular space (Friedrich, 

Tepper et al. 2010).  

By increasing the concentration of Hsp20 within neuronal-like SH-SY5Y cells I 

hypothesised that the accumulation of cytotoxic species of Aβ would be reduced due to the 

molecular interaction between Hsp20 and Aβ described earlier in this chapter. 

 

To determine whether the ability of Hsp20 to protect neuronal cells from Aβ is enhanced 

following phosphorylation at serine 16, I set up a MTT reduction based viability assay 

using SH-SY5Y neuroblastoma cells (Fig. 3.11A). Addition of 20 µM Aβ1-42 but not Aβscr, 

resulted in a significant (# = p < 0.001) reduction in cell viability (69 ± 2% Vs 92 ± 3%, 

respectively) when compared with vehicle only control (Fig. 3.11A). Aβ1-42-mediated 

reduction in cell viability was less pronounced in cells transfected with Hsp20-WT (88 ± 

8%) or the phospho-mimic Hsp20-S16D (80% ± 6%). A phospho-null Hsp20 mutant 

where the serine at position 16 is mutated to alanine (S16A) did not confer any protection 

against Aβ1-42 (68 ± 7%) suggesting that phosphorylation enhances Hsp20-mediated 

protection (*=p<0.05: comparing Aβ1-42 treated, transfected cells with Aβ1-42 treated, empty 

vector transfected cells). Although the MTT assay is the most common means of assessing 
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Aβ1-42 cytotoxicity in neuronal cells (Datki, Juhasz et al. 2003; Lee, Carson et al. 2006), the 

assay is limited by its sensitivity (Mozes, Hunya et al. 2012) and lack of ability to detect 

neuroprotective effects (Lobner 2000). Also, the fact that it is an endpoint assay supplies 

limited information about the temporal nature of the cytotoxic effect of Aβ1-42. 

 

Figure 3.11 – Cell viability assays to monitor Aβ1-42 mediated cytotoxicity. 
A - Initial studies using MTT cell viability assays showed that addition of Aβ1-42 but not Aβscr resulted 
in significant reduction in cell viability. This reduction in viability was significantly attenuated by 
overexpressing either Hsp20-WT or the phospho-mimic Hsp20-S16D, but not by a phospho-null 
mutant Hsp20-S16A, Mean values ±SEM, p-values - * < 0.05, *** <0.001, NS – not significant; 
ANOVA, n = 3. B – Direct comparison of dose-dependent reduction in cell viability as measured 
with MTT or a reduction in cell index using the xCELLigence real-time monitoring system following 
treatment with Aβ1-42 and normalised to non-treated (NT) control. SH-SY5Y cells were treated in 
with Aβ peptides for 48 hours in triplicate, n=1. 
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To gain further insights into the temporal nature of Aβ-mediated cytotoxicity I have 

utilised the xCELLigence system (ACEA Biosciences) a novel, real-time, non-invasive cell 

monitoring tool which tracks cellular responses and growth through the measurement of 

electrical impedance. Gold electrodes integrated at the bottom of 96-well tissue culture 

plates (E-Plates) exquisitely measure changes in resistance induced by changes in cell size 

and shape. The signal produced by the cell impedance measurements is extrapolated as 

‘Cell Index’, which is used to measure cell growth and monitor cytotoxicity (Fig. 2.2). This 

technique has been shown to be an accurate and reliable method by which to decipher the 

kinetics of cell death in neuronal cultures (Mosse, Laudenslager et al. 2008; Diemert, 

Dolga et al. 2012), something that cannot be achieved using discontinuous methods such as 

MTT. By comparing the cytotoxicity dose-response of Aβ1-42 in SH-SY5Y neuroblastoma 

cells (Figure 3.11B) it was apparent that impedance was a more sensitive readout of Aβ-

induced cytotoxicity than MTT, especially at Aβ1-42 concentrations of 5µM and above (Fig. 

3.11B). 
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Figure 3.12 – Real-time cell monitoring of Aβ1-42 mediated cytotoxicity. 
A – Average growth curves of cells treated with either Aβ1-42 or Aβscr control. Aβscr had no effect on 
the growth characteristics of SH-SY5Y cells whereas Aβ1-42 treatment resulted in a significant 
reduction in cell index. B – Comparison of average growth curves following treatment of cells 
overexpressing Hsp20-WT or transfected with the empty vector (pcDNA3.1). Hsp20 
overexpression delays the cytotoxic effects of Aβ1-42 and attenuates the overall reduction in cell 
index (n=3). 

Given that the data using the xCELLigence platform appeared to be more robust in 

comparison to well established cell viability assays, I decided to establish our own in vitro 

assay for monitoring Aβ1-42 induced cytotoxicity. This was an assay derived for using 

human SH-SY5Y cells, human derived synthetic Aβ1-42 and human Hsp20 constructs. For 
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all cell-based Aβ1-42 cytotoxicity assays I have used the protocol developed by Lambert et 

al. 1998 ,where they established that diffusible, non-fibrillar ligands, referred to as Aβ-

derived diffusible ligands (ADDLs), are potent neurotoxins. ADDLs can be formed by 

incubating monomeric Aβ1-42 at low temperatures (4-8°C) for 24 hours. The toxicity of 

Aβ1-42 prepared in this manner is demonstrated in our xCELLigence assay, where 10µM of 

Aβ1-42 induced approximately 50% reduction in Cell Index after 48 hours (Fig. 3.11B). 

Analysis of SH-SY5Y cell growth in real-time following the treatment with either Aβ1-42 or 

Aβscr ,revealed that addition of the Aβ1-42 peptide had no effect on cell growth for the first 

6 hours, but was then followed by a constant reduction in Cell Index (Fig. 3.12A) that is 

characteristic of cell-death (Diemert, Dolga et al. 2012). Treatment with Aβscr had no effect 

on cell growth when compared to either non-treated wells or cells treated with PBS 

(vehicle) (Fig 3.12A). As expected, transfection of Hsp20-WT into SH-SY5Y cells delayed 

the cytotoxic effect of Aβ1-42 and slowed the decrease in Cell Index (Fig 3.12B). 

To further assess any attenuation in Aβ1-42 cytotoxicity induced by Hsp20 over-expression, 

SH-SY5Y cells were transfected with either pcDNA3.1 vector (control), Hsp20-WT, -

S16D, or -S16A. Following transfection, cells were seeded into a 96 well E-plate and 

incubated for 24 hours prior to allow for cell adhesion and expression of the Hsp20 

constructs, prior to addition of 10 µM Aβ1-42, Aβscr control peptide (10µM) or PBS vehicle 

control (Fig. 3.12). Cell growth was monitored at 15 minute intervals for 48 hours post 

addition of the Aβ peptides (Fig 3.13). All SH-SY5Y cells, no matter what they were 

transfected with, displayed no significant differences in cell growth when treated with 

Aβscr. (Fig 3.13, upper graph). However, following addition of Aβ1-42 the Cell Index of 

control transfected cells displayed the most pronounced decrease in Cell Index at 48 hours, 

reducing to 0.27 ± 0.02. Compared with control, SH-SY5Y cells expressing Hsp20-WT 

exhibited more than a 2-fold increase in Cell Index (0.56 ± 0.14, p-value < 0.03) following 

Aβ1-42 treatment. Furthermore, both Hsp20-S16D and –S16A expressing cells prevented 

the extent of reduction of Cell Index to 0.37 ± 0.06, p-value < 0.05, and  0.49 ± 0.1, p-

value < 0.03, respectively, after addition of Aβ1-42. The average expression level of Hsp20 

also found Hsp20-S16D expression to be the lowest of the three variants. 
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Figure 3.13 – Hsp20 overexpression attenuates Aβ1-42 mediated cytotoxicity. 
SH-SY5Y cell growth monitored using xCELLigence real-time cell monitoring system. Cells were 
transfected with either pcDNA3.1 vector (control) or Hsp20 constructs 24 hours prior to treatment 
with 10µM of Aβscr (A) or Aβ1-42 (B). Expression levels of Hsp20 were assessed from a parallel 
culture of cells from the same transfection and harvested at the start of each experiment. The 
average Cell Index at 48 hour time-point highlighted that only Hsp20-WT transfection significantly 
attenuates Aβ1-42 induced cytotoxicity, Mean values ±SEM, p-values - * < 0.05, *** <0.001; ANOVA, 
n = 3. 

The cytotoxicity of Aβ1-42 is known to be highly variable and dependent on concentration 

and methods of preparation. The various multimeric conformations that Aβ1-42 can 

generate, such as oligomers, fibrils and Aβ-derived diffusible ligands (ADDLs) also 

produce differing levels of toxicity (Datki, Juhasz et al. 2003; Klein, Stine et al. 2004) . I 

have defined the cytotoxicity of low molecular weight soluble Aβ1-42 known as ADDLs 

(Lambert et al. 1998), by analysing the inhibitory affect of non-fibrillar Aβ1-42 on cellular 

growth. Initial studies treated cells with insoluble fibrillar aggregates but I found no 

detectable changes in cell viability, via MTT or inhibition of cell growth using 
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xCELLigence (data not shown). I utilised the xCELLigence system to assess the IC50 value 

of Aβ1-42 prepared in accordance with Lambert et al. 1998 (24 hour incubation at 4-8°C) on 

SH-SY5Y cells stably expressing either  pcDNA3.1 construct as a control or Hsp20-WT. 

Several different concentrations of soluble Aβ1-42 (500nM – 50µM) were incubated with 

cells for 48 hours. For controls Aβscr was used and had little effect on cell growth. As 

expected there was a dose-dependent reduction in Cell Index which correlated with Aβ1-42 

induced cytotoxicity. The calculated IC50 values for Aβ1-42 treatment were 5.97µM (± 1.1) 

for pcDNA3.1 expressing SH-SY5Y cells compared with 9.61 (± 0.29) for cells stably 

expressing Hsp20-WT. The increase in IC50 value in the Hsp20-WT expressing cells was 

statistically significant, p-value = 0.0086. A significant right-shift in dose-response curve 

in Hsp20 expressing cells was also apparent at certain concentrations (Fig. 3.14A). When I 

examined the differences in Hsp20 protein levels by western blotting analysis (Fig. 3.14B), 

Hsp20 was readily detectable in the SH-SY5Y stables. This also resulted in higher basal 

levels of phospho-Hsp20 without the need for exogenous induction by artificially raising 

cAMP. 

 
Figure 3.14 – Aβ1-42 Dose-Response Analysis 
A – SH-SY5Y cells stably expressing either Hsp20-WT (Hsp20-WT st.) or pcDNA3.1 incubated with 
various concentrations (0.25 – 50µM) of Aβ1-42 for 48 hours. The average IC50 value for Aβ1-42 on 
pcDNA3.1 stables was 5.97µM (± 1.1µM) compared to 9.61µM (± 0.29µM) for Hsp20-WT stables 
(P-value = 0.0086, n = 3). IC50 values were calculated using Real-Time Cell Analyzer (RTCA) 
software (ACEA). Mean values ±SEM, * = p-value < 0.05, Student-T-test. B – Western blotting 
analysis of endogenous Hsp20 and phospho-Hsp20 (pS16-Hsp20) expression in respective SH-
SY5Y stable cell-line. 
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3.3 Discussion 

Small heat-shock proteins have been shown for some time to have the capacity to bind Aβ 

peptides and inhibit aggregation and subsequent cytotoxicity in vitro (Kudva, Hiddinga et 

al. 1997) (Lee, Carson et al. 2006) (Wilhelmus, Otte-Holler et al. 2006). In particular, 

Hsp20 has been shown to interact with soluble Aβ and inhibit its aggregation and 

optimisation of the interaction between sHSPs and Aβ has been identified as a potential 

therapeutic target (Wilhelmus, Boelens et al. 2006). Here I have shown for the first time a 

mechanism of how the interaction between Aβ and Hsp20 may be regulated in vivo. 

Importantly, the phosphorylation of Hsp20 at serine 16 by PKA/G has established effects 

in a number of physiological processes (Edwards, Cameron et al. 2011). The data 

presented here also uncovers a novel neuroprotective role for Hsp20 that functions 

specifically to attenuate the cytotoxic effects associated with the Aβ peptide. 

 

3.3.1 The interaction of Hsp20 with Aβ1-42 is modulated via PKA/G 
phosphorylation 

By utilising peptide array technology, I accurately characterised the interaction domains of 

Hsp20 and Aβ1-42 and showed that the binding avidity of Hsp20 towards Aβ1-42 is mediated 

by the N-terminal region of Hsp20, at a domain which includes a consensus PKA/G site. 

Peptide array technology also allowed us to introduce either a phospho-serine or phospho-

mimic residue at the serine site of the PKA/G consensus. Both modifications significantly 

increased the binding of the Aβ1-42 peptide, suggesting that this interaction may be 

regulated in vivo (Fig. 3.1). Reciprocal arrays showed the binding domain on Aβ1-42  to 

which Hsp20 binds, is proximal to the oligomerisation domain (KLVFF), which is 

necessary for the assembly of toxic aggregates (Beyreuther, Dyrks et al. 1992) (Fig. 3.2). A 

number of peptide based molecules which inhibit Aβ aggregation have been developed that 

are based on sequence homology with the KLVFF region (Tjernberg, Naslund et al. 1996; 

Soto, Sigurdsson et al. 1998). Also, several aggregation inhibitors have been designed to 

have the ‘recognition’ sequence KLVFF and a ‘disruptor’ group at the N- or C- terminals 

(Carter, Simms et al. 2010). The fact that Hsp20 binds proximally to this domain suggests 

that the chaperone is acting to inhibit aggregation directly at the site of oligomerisation. 

 

The sequential alanine scanning array of Aβ1-42 demonstrated that the lysine residue in 

position 16 was the only residue in the sequence essential for mediating binding of Hsp20. 

This demonstrates that charge interaction is an important regulator of binding, as the 
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introduction of a negatively charged phosphate group at serine 16 on Hsp20 would 

increase avidity towards Aβ1-42 via the positively charged lysine reside. This lysine residue 

plays an important role in the non-amyloidogenic processing of APP, as α-secretase 

cleavage at this site does not generate the Aβ peptide (Zheng and Koo 2006). The scanning 

array also highlighted that H14 and Q15 are also important residues that mediate the 

binding of Hsp20. H14 has been shown to play an important role in co-ordinating metal ion 

binding, such as zinc, copper. These metal ions can have significant effect on aggregation 

propensity of Aβ (Diaz, Linnehan et al. 2006; Olofsson, Lindhagen-Persson et al. 2009). 

Interestingly, I also saw a reduction in binding when a glutamic acid residue was 

substituted for alanine. Mutations at this residue cause severe early onset familial AD. This 

is particularly true of the ‘Dutch’ mutation (E22Q) and the ‘Arctic’ mutation (E693G). 

Given the role that sHSPs play as chaperones in protein surveillance, mutations that effect 

the interaction of Aβ peptides with sHSPs, such as Hsp20 may perturb Aβ clearance 

resulting in further amyloid deposition. 

 

3.3.2 Hsp20 interacts with Aβ to maintain it in a non-toxic 
conformation 

After identifying that phosphorylation of Hsp20 at a consensus PKA/G site may modulate 

Aβ aggregation, I conducted in vitro pull-down assays (Fig. 3.3). All His-tagged Hsp20 

variants bound to monomeric and dimeric Aβ1-42; therefore it is possible that Hsp20 binds 

to these smaller assemblies, preventing them from forming into higher molecular weight 

species. Unexpectedly, the Hsp20-ADM binding mutant could still bind to, and pull-down 

significant quantities of Aβ1-42 suggesting that there may be more than one domain which 

can interact with Aβ. Indeed the α-crystallin domain of sHSPs has been proposed to be the 

active chaperoning unit (Benesch, Ayoub et al. 2008). Also, the fact that that several 

members of the sHSP family interact with Aβ but do not contain a consensus PKA is also 

suggestive of other binding sites. The biological relevance of Hsp20-S16D binding to 

higher molecular weight species of Aβ1-42 may be related to a second mechanism by which 

some sHSPs are able to reduce the cytotoxic effects of Aβ1-42. In a study looking at a 

different sHSP, also named Hsp20 from the bovine parasite Babesia bovis, it was 

established that as well as binding to Aβ and preventing aggregation, this particular sHSP 

was able to form a complex surrounding Aβ at lower concentrations, leading to 

solubilisation of Aβ oligomers and attenuation of subsequent cytotoxicity (Lee, Carson et 

al. 2006). 
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Further insights into the effect of Hsp20 phosphorylation on the aggregation dynamics of 

Aβ were gleaned using NMR spectroscopy. Due to the aggregation kinetics being so quick 

for Aβ1-42, it was not possible to visualise soluble, low molecular weight species of Aβ1-42 

using NMR. Instead, I used the slower aggregating Aβ1-40 peptide. Early structural 

characterisation of Aβ1-40 in solution using NMR spectroscopy have shown that when in 

solution Aβ1-40 contains two helical regions spanning Q
15

 - D
23

 and I
31

 – M
35

, with the rest 

of the peptide adopting a random coil formation (Sticht, Bayer et al. 1995). Initial analysis 

of the chemical shift perturbations for all Hsp20 variants were most pronounced in these 

two helical regions and also in agreement with the peptide array data as the biggest shift 

differences occurred in region spanning the oligomerisation domain, residues H
13

 – 

L
17

(Fig. 3.5). It was also shown that the introduction of the phospho-mimetic substitution 

(S16D) increased the shift difference in the large majority of residues relative to Hsp20-

WT, demonstrating that the introduction of a negative charge at serine 16 increases the 

interaction of Hsp20 with Aβ1-40. The docking is likely mediated through the lysine residue 

at position 16 which was shown to be essential in the peptide array experiment. Greater 

shift differences between Hsp20-WT and –S16D were also detected in the region spanning 

residues G
29

 – V
36

 which spans the second helical region and suggests that phosphorylation 

of Hsp20 enhances its interaction with the both helical regions within Aβ1-40 in order to 

maintain it in its soluble conformation. Crucially, both of these regions interact with each 

other upon structural conversion into insoluble fibrils and current models show that the two 

regions fold into a β-strand-turn-β-strand conversion. This step is the primary nucleation 

event of β-sheet secondary structure which is essential for fibrillar growth (Ahmed, Davis 

et al. 2010).  

 

Rather unexpectedly, we found that the ADM ‘binding mutant’ induced the most 

pronounced changes in shift distance across all residues within Aβ1-40. This was most 

pronounced at the oligomerisation domain, particularly at residues H
13

 and H
14

 and is 

likely due to the removal of the two adjacent, positively charged arginine residues, 

removing the charge repulsion that would normally occur at the two histidine residues. 

Interestingly, two adjacent histidine residues, followed by a hydrophobic region also play a 

key role in the molecular docking of Hsp20 with PDE4D5 (Sin, Edwards et al. 2011). 

Despite the Hsp20-ADM mutant inducing the biggest change in chemical shifts, this did 

not translate into increased aggregation inhibition, relative to Hsp20-WT and –S16D. Both 

Hsp20-WT and S16D maintained significant amounts of Aβ1-40 in solution in its 

monomeric conformation despite 4 days of aggregation at 37°C. The conformational 
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transition of Aβ from random coil to α-helix to β-sheet structures is a key step in 

promoting neurotoxicity of the peptide (Simmons, May et al. 1994), therefore it appears 

that chaperone activity of Hsp20 functions to stabilise Aβ in a non-toxic conformation. We 

did not see significant differences in the Aβ1-40 NMR spectra between the respective 

Hsp20-WT and –S16D co-incubations post-aggregation. However, following removal of 

insoluble aggregates by centrifugation, western blotting analysis demonstrated clearly that 

the levels of monomeric Aβ1-40 in solution were higher with Hsp20-S16D relative to -WT. 

Levels of Aβ1-40 in solution, in the absence of Hsp20, was barely detectable, and in the 

Hsp20-ADM co-incubation there was no monomeric Aβ1-40 detected at all, suggesting it 

had aggregated into insoluble fibrils and removed in the centrifugation step.  

 

Closer analysis of the in vitro pull-down assay with Hsp20-S16D and Aβ1-40 following 

aggregation, revealed distinct low molecular weight species at 17kDa and 27kDa that have 

previously been described by Lambert et al. (1998) as being neurotoxic. This suggests that 

Hsp20-S16D has a higher propensity to bind soluble toxic species relative to –WT. This 

would also explain the lack of difference between Aβ1-40 levels in solution between the two 

incubations, as any complex between low molecular weight, oligomeric species of Aβ1-40 

and Hsp20-S16D would become invisible to NMR spectroscopy once the combined 

complex size increased beyond 50kDa (Kwan, Mobli et al. 2011).  

Taken together, the experimental data outlined in this chapter suggests that Hsp20 interacts 

with domains involved in the structural conversion from soluble, non-toxic monomers into 

toxic conformations that are involved in the nucleation of amyloid fibrils (Ahmed, Davis et 

al. 2010). Furthermore, the introduction of a phosphate group at serine 16 of Hsp20 

enhances its interaction with Aβ and increases the levels of Aβ peptide maintained in 

solution thereby inhibiting growth of insoluble fibrils. This presents a mechanism by which 

the inhibitory effects of Hsp20 can be further enhanced through phosphorylation and may 

provide a means of targeting this post-translational modification to prevent aggregation of 

Aβ, a key step the amyloid cascade hypothesis (Hardy and Selkoe 2002). 

3.3.3 Hsp20 attenuates two morphologically distinct Aβ 
aggregation pathways 

The development of the novel Aβ aggregation assay by Quinn et al. (2014) allowed us to 

test the efficacy of Hsp20 to inhibit aggregation via two distinct mechanisms. Our previous 

evidence suggested that Hsp20 could inhibit fibrillar growth and our phospho-mimetic 
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Hsp20 had enhanced ability to interact with oligomeric species of Aβ. Our NMR and in 

vitro pull-down assays have shown an affinity for low molecular weight Aβ species and in 

agreement with our earlier studies, the fluorescence quenching assay demonstrated that 

Hsp20 is more effective at inhibiting fibrillar growth of the Aβ peptide. Nonetheless 

Hsp20-S16D was able to significantly inhibit HFIP induced oligomerisation of Aβ1-42 

relative to Aβ1-42 only control. In AD patient brain tissue, Hsp20 was shown to associate 

predominately with non-fibrillar Aβ in the form of diffuse senile plaques (Wilhelmus, 

Otte-Holler et al. 2006). However, the phosphorylation state of this Hsp20 pool was not 

determined in the study. In the globular forming assay, the P20L mutant was actually 

shown to promote aggregation, which was interesting given that this mutation is known to 

affect its secondary structure and reduce its capacity to be phosphorylated at serine 16 

(Nicolaou, Knoll et al. 2008). Whether this single nucleotide polymorphism (SNPs) is 

associated with AD may warrant further investigation, as several SNPs within sHSP family 

are also associated with a number of protein folding diseases (Boncoraglio, Minoia et al. 

2012).   

Under fibril growing conditions (Fig. 3.9B); we again found that Hsp20-ADM 

significantly inhibited aggregation, further confirming that it does bind to Aβ and has 

inhibitory properties despite the mutations. This suggests that there is another binding 

domain within Hsp20 that can function to inhibit fibril growth. In early peptide array 

studies, we found binding within the α-crystallin domain, but this was also apparent in 

Aβscr control incubated arrays and was assumed to be non-specific binding (Fig 3.1B). 

However the immunoglobulin-like α-crystallin domain also contains β-sheet structures 

(Chen, Feige et al. 2010) and may explain the non-specific interaction at this domain 

thereby may mask the secondary binding domain.   Given that I had evidence that there 

may be another Aβ binding site within Hsp20, I wanted to determine the efficacy of short 

25mer peptides based on the N-terminal sequence of Hsp20. In the HFIP induced 

oligomerisation assay, the S16D mutant was 2-fold less inhibitory than full-length Hsp20-

S16D, while the WT 25mer was more effective than its respective full-length protein. 

Similar results were seen with the 25mer peptides as was observed with the full length 

Hsp20 constructs. For example, 25mers corresponding to Hsp20-WT and –S16D, under 

fibril growing conditions, were still effective inhibitors of aggregation in this pathway, 

with Hsp20-S16D the most efficacious at the lower concentration tested. Intriguingly, the 

ADM 25mer resulted in a pronounced change in self-quenching; promoting it to levels 

seen with HFIP induced aggregation at the 4:1 molar ratio (Aβ:25mer). The ADM 25mer is 

substantially more hydrophobic than the WT or S16D peptides and a hydrophobic 
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environment is important for promoting spherical oligomeric conformations (Kayed, Head 

et al. 2003). Therefore it is possible the ADM 25mer is seeding oligomerisation of Aβ1-42 

into more globular like structures, this characteristic would have to be tested against 

another hydrophobic peptide or TEM imaging of this particular assay would be required to 

confirm if this is the case. It also important to note that the HFIP induced “globularisation” 

of Aβ is not a natural aggregation pathway (1% HFIP and 4°C incubation) therefore the 

activity of Hsp20 in this assay might have no relevance physiologically. However, the 

fibril growing conditions are more representative of what is happening in vivo as we use 

physiological salt concentrations and an incubation temperature of 37°C. It would have 

also been advantageous to use a non-Aβ interacting His-tagged protein as a control against 

non-specific protein effects. Nonetheless, full-length Hsp20-S16D consistently 

outperformed Hsp20-WT across all experiments, as expected. 

Taken together, the self-quenching assay has shown that Hsp20 can differentially effect the 

aggregation of Aβ1-42 and has particular selectivity for inhibiting Aβ fibrillar growth. The 

introduction of the phospho-mimetic substitution increases the efficacy of full-length 

Hsp20 to inhibit globular aggregation of Aβ, while also increasing the efficacy of Hsp20 to 

inhibit fibril aggregation at lower protein concentrations, relative to Hsp20-WT. The S16D 

25mer peptide was still effective at reducing fibril growth but given that the efficacy was 

reduced by 2-fold, it would appear that the N-terminal domain itself is not sufficient for the 

full inhibitory effect of Hsp20. The fact that the S16D 25mer still significantly inhibited 

fibril growth is interesting as transducible phospho-mimetics based on the N-terminal 

sequence of Hsp20 have been developed previously, to combat a number of disease- 

related conditions including, reducing keloid scarring, subarachnoid haemorrhage, and 

platelet aggregation (Edwards, Cameron et al. 2011). Whether such peptides would have 

physiological efficacy in reducing fibril formation may be worthy of further investigation. 

3.3.4 Increased intracellular expression of Hsp20 is protective 
against Aβ1-42 induced cytotoxicity 

Hsp20 has been shown previously to neutralise the toxic effects of Aβ when co-incubated 

at various molar ratios, prior to overlay onto neuronal-type cells (Lee, Carson et al. 2006) 

(Wilhelmus, Boelens et al. 2006). Given that low molecular weight soluble species of Aβ 

readily accumulate intracellularly leading to fibril outgrowth (Friedrich, Tepper et al. 

2010), I wanted to establish if neuronal-like cells would be protected from Aβ1-42 induced 

cytotoxicity if the expression levels of Hsp20 were increased intracellularly. Levels of 
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soluble Aβ species correlate more strongly with synaptic loss and severity of cognitive 

impairment than the number of insoluble fibrillar plaques in the brain (McLean, Cherny et 

al. 1999; Wang, Dickson et al. 1999).  Aβ1-42 intracellular accumulation is also known to 

occur at the early stages of the disease process and precedes hallmarks such as NFTs and 

Aβ amyloid deposition (Gouras, Tsai et al. 2000; Mori, Spooner et al. 2002). A triple 

transgenic mouse model demonstrated that deficits in LTP and synaptic dysfunction 

correlated with intracellular Aβ accumulation and became apparent before plaque and 

tangle pathology (Oddo, Caccamo et al. 2003). This suggests that the neurotoxic effect of 

Aβ is an early event in the aetiology of the disease and I believe Hsp20 phosphorylation 

represents and endogenous neuroprotective mechanism.  

I utilised a protocol that promotes soluble, highly toxic diffusible Aβ1-42 species to induce 

cell death (Lambert, Barlow et al. 1998) in neuronal-like SH-SY5Y cells overexpressing 

several variants of Hsp20, the WT variant, a phospho-mimic (S16D), and a phospho-null 

(S16A). Our cell viability assays were originally based on MTT reduction which has been 

used extensively to characterise Aβ neurotoxicity (Datki, Juhasz et al. 2003). 

Overexpression of Hsp20-WT or –S16D significantly increased cell viability in cells 

treated with Aβ1-42 but the phospho-null Hsp20-S16A did not, suggesting that 

phosphorylation at serine 16 differentially modulates the protective properties of Hsp20 

(Fig. 3.11A).   

I adapted our cell viability assay for use with the xCELLigence system so that I could 

monitor the effect of Aβ1-42 cytotoxicity in real-time to see if I could glean any temporal 

information concerning Aβ1-42 mediated cytotoxicity. The xCELLigence system was far 

more sensitive to Aβ1-42 cytotoxicity than MTT as demonstrated through a dose-dependent 

reduction in Cell Index that was more pronounced than the reduction in cell viability 

measured by MTT (Fig. 3.11B). The real-time monitoring of Aβ1-42 mediated cytotoxicity 

showed that there were no differences in cell growth for the first 6 hours (Fig. 3.12A), 

relative to our control peptide Aβscr which does not aggregate or form cytotoxic species. 

After 6 hours I began to see a divergence of both growth curves (control vs. Aβ1-42 treated), 

which is characteristic of cell-death (Diemert, Dolga et al. 2012). Soluble Aβ oligomers 

have been shown to induce significant cell-death in primary rat hippocampal cultures from 

8 hours onwards (Reifert, Hartung-Cranston et al. 2011). Following transfection of Hsp20-

WT, I saw a delay in cell-death induction and an increase in Cell Index relative to Aβ1-42 

treated control transfection (Fig. 3.12B). When I transfected in both the phospho-mimic 

(S16D) and the phospho-null (S16A), SH-SY5Y cells were also significantly protected 
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against Aβ1-42 induced cytotoxicity, however the phospho-null mutant was actually more 

protective than S16D. When I compare the binding of Aβ1-42 in the alanine scan of 

Hsp20
11-36 

there is no significant difference between binding of Aβ1-42 for S16D and S16A 

with relative intensities of 134% vs. 128%, respectively. Therefore the difference in 

protective effects is more likely due to differences in expression levels (Fig. 3.13). The 

lack of difference between the protective effects of Hsp20-S16D and –S16A are also 

suggestive of a mechanism distinct from Hsp20’s ability to directly inhibit cell-death, as 

both of these variants have significantly different effects when expressed in 

cardiomyocytes. Hsp20-S16D can directly inhibit apoptosis whereas non-phosphorylatable 

S16A mutant cannot (Fan and Kranias 2010). In agreement with the MTT reduction assay, 

Hsp20-WT evoked the greatest protective effect; further signifying that phosphorylation at 

serine 16 is required for the full inhibitory effect.   

The variability of Aβ1-42 toxicity between studies in the literature has traditionally been due 

to significant differences in actual concentration, preparation, source and secondary 

conformation of Aβ1-42. I prepared the synthetic Aβ1-42 in such a way as to maximise the 

levels of soluble low molecular weight species that are potently neurotoxic (Lambert 

1998). I then utilised the novel xCELLigence system to monitor effects on the neuronal-

like SH-SY5Y cell line. Consistent with previous studies, higher concentrations of Aβ1-42 

are more cytotoxic. The real-time cell analysis (RTCA) software allowed direct 

comparison of Aβ1-42 IC50 values in SH-SY5Y cells stably expressing either a control 

vector (pcDNA3.1) or Hsp20-WT. The Hsp20-WT expressing cells had much higher levels 

of phospho-HSP20 without the need for induction of phosphorylation; this resulted in a 

significant right-shifted dose-response curve and further demonstrated increased levels of 

protection against Aβ1-42 cytotoxicity. One reason for the protective effects of Hsp20 

expression not being more pronounced is that SH-SY5Y cells readily express Hsp20 

therefore these cells would have level of protection against Aβ1-42 resulting less significant 

difference relative to controls. Ideally, the experiments should have been done in Hsp20 

knockout cells, however, siRNA against Hsp20 did not work. 

 

The data presented here is consistent with previous studies, which show that Hsp20 is 

modified post-translationally in vivo and that phosphorylation at serine 16 evokes its 

protective functions (Fan and Kranias 2010). So for the very first time, I have 

demonstrated that this modulation represents a novel means for attenuating Aβ1-42 

cytotoxicity. Our data highlights how phosphorylation of Hsp20 may increase its ability to 

inhibit two morphology distinct Aβ aggregation pathways relevant to physiological 
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amyloidogenesis and early nucleation events. Hsp20 binds directly to domains involved in 

the structural conversion to neurotoxic Aβ species and functions as an amateur chaperone 

to maintain Aβ in a soluble non-toxic conformation. Phospho-mimetic Hsp20 also binds to 

higher order structures which may represent a mechanism of solubilising hydrophobic Aβ1-

42 conformations to neutralise toxicity or increase Aβ peptide clearance. Finally using a 

novel label-free cell monitoring system I was able to confirm that increased intracellular 

levels of phospho-Hsp20 protects against cytotoxicity associated with diffusible Aβ and 

that this protection is likely mediated through a direct interaction as opposed to the anti-

apoptotic properties of Hsp20. Therefore I believe that targeting PKA/G induced 

phosphorylation of Hsp20 represents a novel endogenous protection mechanism that may 

be targeted therapeutically for the treatment of AD. 
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4 PDE Inhibition Promotes Neuroprotection Via 
Hsp20 Phosphorylation 

4.1 Introduction 

Alzheimer’s disease is the most common of the degenerative brain diseases and is 

characterised by impairment of cognitive function. Patients with this disorder lose the 

ability to encode new memories. Eventually, both declarative and non-declarative memory 

is significantly impaired, resulting in the capacity for reasoning, abstraction and language 

becoming progressively reduced. The early, subtle signs of cognitive impairment occur in 

the absence of clinical signs of brain injury, suggesting that something discrete is 

interrupting synaptic function and inhibiting the encoding of new declarative memories. 

An abundance of evidence has pointed towards the highly hydrophobic 42 amino acid Aβ 

peptide as being a causative factor in AD.  Aβ can assemble into highly stable oligomeric 

and fibrillar species that become deposited as amyloid plaques in the brain, one of the 

pathological hallmarks of the disease (Selkoe 2002). 

Many studies have shown the Aβ peptide to be a key toxic component in AD. However, 

the underlying toxic mechanism and target of toxicity have not been fully elucidated. 

Several compelling arguments have been made with regard to the Aβ peptide and the 

involvement of either soluble or higher order species, aggregation in various intra- or 

extra-cellular compartments, and its neurotoxicity. Another important finding was that AD 

is a disease of synaptic failure and a hallmark of the latter stages of diseased brains is 

major loss of neurons (Selkoe 1991). As such, considerable focus has been put on 

developing therapeutic agents that can prevent neuronal death. Furthermore, it has been 

recognised that synaptic dysfunction is a more proximal pathological event and synaptic 

pathology is responsible for the mild cognitive impairment (MCI) associated with the 

earliest phase of the disease. Attenuating synaptic dysfunction in AD has been predicted to 

have beneficial effects on cognition and may possibly slow progression of the disease 

(Bales, Plath et al. 2010).  

One pathway that has been targeted therapeutically to improve synaptic function is the 

cyclic nucleotide second messenger system. cAMP and cGMP are intrinsically involved in 

the regulation of  synaptic plasticity, a complex process whereby neuronal architecture and 

signalling pathways are adjusted in response to recent brain activity, in preparation for 

future activity. Repeated activity increases synaptic strength, and can be measured in a 
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model of synaptic plasticity known as long-term potentiation (LTP), which is widely 

accepted as an in vitro model of learning and memory (Bales, Plath et al. 2010). The 

second messenger signalling cascade regulates learning and memory processes primarily 

through PKA or PKG phosphorylation of CREB. Upon phosphorylation CREB becomes 

activated, translocates to the nucleus where it regulates gene expression required for long-

term memory storage (Silva, Kogan et al. 1998). Studies looking at the effect of Aβ on 

synaptic plasticity found that extracellular perfusion of Aβ1-40 and Aβ1-42 can inhibit LTP at 

sub-lethal concentrations (Cullen, Suh et al. 1997; Itoh, Akaike et al. 1999). Furthermore, 

the intracellular injection of Aβ1-40 or Aβ1-42 can completely block LTP. Notably, the 

concentration of Aβ1-40 required was 1000-fold greater than Aβ1-42 to induce the same 

effect (Nomura, Takechi et al. 2012). 

The superfamily of phosphodiesterases (PDEs) are an attractive target for modulating 

synaptic plasticity via second messenger signalling as they provide the sole means of 

cyclic nucleotide degradation. There are 21 different genes that encode PDEs and these are 

separated functionally into 11 families depending on characteristics such as, cyclic 

nucleotide specificity and modular structure (Lugnier 2006). Further diversity is generated 

through multiple splice variants existing for a number of PDE families resulting in more 

than 60 different isoforms of PDEs (Lugnier 2006). A number of PDEs have been 

associated with signalling pathways involved in neuropsychiatric disorders including AD. 

Of particular note are PDE4, PDE5 and PDE9, the latter two more recently emerging as 

novel therapeutic targets for AD (Xu, Zhang et al. 2011). 

PDE4 is the most complex of all the PDE families and is encoded by four genes, PDE4A, 

B, C & D. It represents the major cAMP-regulating enzyme in the body and isoforms A,B 

and D are readily expressed in the brain (Perez-Torres, Miro et al. 2000). PDE4 has been a 

therapeutic target for a number of years following the discovery that the prototypical PDE4 

inhibitor rolipram, exhibited antidepressant activity in a clinical setting. More recently 

PDE4 has been targeted therapeutically to treat inflammatory disorders and one inhibitor, 

Roflumilast, has been approved to treat condition such as chronic obstructive pulmonary 

disease (COPD) (Fabbri, Beghe et al. 2010). However, targeted PDE4 inhibition has re-

emerged as a therapeutic target for cognitive disorders following the discovery that 

rolipram could potentiate and extend LTP. Such an observation demonstrated that PDE4 is 

a key regulator of long-term memory formation in the hippocampus (Barad, 

Bourtchouladze et al. 1998). 
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The Aβ peptide has been shown to directly inhibit LTP in cultured hippocampal neurons. 

Aβ treatment leads to the inhibition of PKA activity resulting in decreased CREB 

phosphorylation. However, this was reversible through agents that could increase 

intracellular cAMP, namely rolipram, but blocked using the PKA inhibitor H89. This 

finding suggested for the first time that induction of the cAMP/PKA/CREB signalling 

cascade using a PDE inhibitor may be able to alleviate cognitive deficits associated with 

AD (Vitolo, Sant'Angelo et al. 2002). Several studies have also examined the effects of 

rolipram in rodent models of AD. Firstly (Gong, Vitolo et al. 2004) demonstrated that 

rolipram could ameliorate deficits in LTP and contextual learning in the human APP 

Swedish (KM670/671NL) and presenilin-1 (M146V) expressing transgenic mouse 

(APP/PS1). An important aspect of this study was that the effects of rolipram were long 

lasting and extended beyond the treatment duration. Rolipram administration improved 

LTP and synaptic transmission, and improved memory deficits for up to 2 months after 

completion of treatment. It was hypothesised that expression of CREB regulated genes 

may make synapses more resistant to the neurotoxic effects associated with Aβ 

accumulation (Gong, Vitolo et al. 2004). 

A study examining environmental enrichment, which is associated with reduced risk of AD 

onset, highlighted that APP/PS1 mice raised in a stimulating environment were protected 

against cognitive impairments. These mice had significantly improved performance in 

several behavioural tasks compared to transgenic mice raised in standard housing. 

Furthermore, treatment with rolipram for 2 weeks mimicked the effect of environmental 

enrichment and could restore normal cognitive functions to severely impaired AD mice 

(Costa, Cracchiolo et al. 2007). As well as improving cognitive functions, activation of the 

cAMP/PKA/CREB signalling pathway via rolipram protected against the oligomeric Aβ 

triggered acute decrease in dendritic spine density and alterations of spine morphology in 

non-transgenic hippocampal slices. More importantly, rolipram treatment was shown to 

reverse the chronic loss of dendritic spine density in the hippocampus of aged APP/PS1 

transgenic mice, suggesting that the adverse effects on synaptic architecture induced by Aβ 

may be reversible, even in aged animals (Smith, Pozueta et al. 2009). Similar studies have 

been carried out in rats treated with synthetic Aβ1-40 and a shorter peptide known to have 

toxic effects, Aβ25-35. Perfusion with these peptides produced memory impairments that 

could be reversed dose-dependently with rolipram (Cheng, Wang et al. 2010). 

Furthermore, treatment with Aβ25-35 or Aβ1-42 in rats was associated with increase 

expression of the pro-apoptotic protein Bax in the hippocampus (Wang, Yang et al. 2012).  
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The effects of rolipram can be mimicked by selective knockout of PDE4D in mice. PDE4D 

deficient mice displayed memory enhancement in several hippocampal related tests 

including, water maze and object recognition. PDE4D5 deficient mice also demonstrate 

increased CREB phosphorylation and hippocampal neurogenesis (Li, Cheng et al. 2011). 

Furthermore, microRNAs mediated knockdown of long forms PDE4D4 and PDE4D5, also 

had the same effect. This is of particular relevance as the Baillie group recently discovered 

that Hsp20 interacts directly with PDE4D5. Disruption of this interaction leads to sustained 

Hsp20 phosphorylation and promotes several protective functions of Hsp20 in 

cardiomyocytes, including anti-apoptotic and anti-hypertrophic effects (Sin, Edwards et al. 

2011; Edwards, Scott et al. 2012). 

The PDE5 inhibitor sildenafil (Viagra®) was the first commercially successful drug 

developed to target a PDE isoform. This success has generated significant interest in 

cGMP-specific PDE5 as a therapeutic target for other disorders, particularly related to 

cognition given the role of NO/cGMP/CREB signalling in synaptic transmission (Bales 

2010). An initial study looking at the effects of sildenafil on cognition found that it 

improved long-term retention in a passive avoidance task. This one-trial learning paradigm 

uses an aversive stimulus, such as electric shock, that has to be remembered. The effect of 

sildenafil was long lasting with performance after 1 week and 1 month comparable to 48 

hour post training retention performance (Baratti and Boccia 1999). Sildenafil was also 

shown to improve memory performance in an object recognition task which was associated 

with increased cGMP levels in neuronal fibres in the hippocampus (Prickaerts, van 

Staveren et al. 2002). Despite elevated cGMP levels in the hippocampus being required to 

improve memory performance in object recognition and passive avoidance, it does not 

seem to improve spatial learning. Furthermore, timings of treatment were crucial to the 

modulatory effects of sildenafil on memory performance, suggesting a role for cGMP in 

early stage memory formation (Prickaerts, Sik et al. 2004). 

PDE5 inhibition has also been shown to rescue synaptic function and memory deficits in 

the human APP/PS1 transgenic mouse model of AD. Sildenafil treatment was able to re-

establish CREB phosphorylation and attenuate the effect of high Aβ levels on synaptic 

function for a period beyond treatment. Sildenafil was also able to induce long-lasting 

reduction in Aβ1-40 and Aβ1-42 levels in the cortex of APP/PS1 mice (Puzzo, Staniszewski 

et al. 2009). In a recent study, the effect of sildenafil in APP/PS1 transgenic mice was also 

shown to reverse the neuroinflammatory response induced by Aβ and reduce the levels of 

soluble Aβ1-40 and Aβ1-42 in the hippocampus. The effects of sildenafil were inhibited 
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following intra-hippocampal infusion with a PKG inhibitor, further pointing to the fact that 

targeting the cGMP/PKG/CREB signalling pathway may represent a novel AD therapy 

(Zhang, Guo et al. 2013). 

The cognitive enhancing effects of sildenafil are very similar to that of rolipram, in that 

they both activate CREB via their respective protein kinases, leading to increased LTP. 

Both inhibitors can reverse decreases LTP induced via Aβ perfusion or overexpression and 

both inhibitors appear to have long-lasting effects that are sustained beyond the treatment 

regime. The difference between the two inhibitors is the effect on spatial working memory. 

Rolipram has no effect in these test paradigms, whereas sildenafil can immediately 

enhance spatial working memory. Another major difference between the two compounds is 

that sildenafil can significantly reduce Aβ levels in the brain while rolipram improves 

cognitive impairment without affecting Aβ burden (Puzzo, Staniszewski et al. 2009). 

The latest phosphodiesterase to emerge as a target for ameliorating cognitive impairments 

associated with AD is PDE9. PDE9 has the highest affinity for cGMP out of all known 

cGMP hydrolysing PDEs (Fisher, Smith et al. 1998). PDE9A is the only known gene, 

however, there are 20 different splice variants that result in a complex differential tissue 

expression profile. PDE9 is expressed throughout the brain at low levels and is thought to 

play a key role in regulating basal levels of cGMP signalling in the CNS (Andreeva, 

Dikkes et al. 2001; Rentero, Monfort et al. 2003; Van Staveren, Steinbusch et al. 2003). 

PDE9 mRNA is detectable in the human cortex, hippocampus, and cerebellum in a pattern 

comparable to rodents. However, there were no differences in PDE9 expression patterns in 

AD patient brains relative to controls (Reyes-Irisarri, Markerink-Van Ittersum et al. 2007). 

Following development of the first potent PDE9 inhibitor, BAY 73-6691 (Wunder, 

Tersteegen et al. 2005), it was subsequently shown that inhibition of PDE9 enhanced early 

LTP in hippocampal slices from rats. BAY 73-6691 was shown to enhance acquisition, 

consolidation, and retention of long-term memory in several behavioural paradigms, such 

as social recognition, scopolamine-disrupted passive avoidance, and MK-801-induced 

short-term memory deficits (van der Staay, Rutten et al. 2008). LTP was also enhanced in 

hippocampal slices from PDE9A knock-out mice. These mice had significantly increased 

levels of cGMP throughout the brain, resulting in improved performance in a spatial 

recognition task. These effects could be mimicked pharmacologically with a novel 

selective PDE9 inhibitor, PF-04447943 (Menniti 2008; Schmidt 2009). PF-04447943 was 

also shown to significantly increase cGMP levels in the cerebrospinal fluid in healthy 
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human volunteers (Nicholas 2009). These findings underscore the importance of cGMP 

regulation in the CNS and also underpin the importance of PDE9 in modulating cognitive 

functions. So it seems that PDE9 appears to be an effective target for ameliorating 

symptoms associated with AD (Bales, Plath et al. 2010). 

Despite strong evidence supporting a role for PDE inhibitors as cognitive enhancers, the 

underlying mechanisms of how they strengthen synapses or make synapses more resistant 

to neurotoxic insults has not been elucidated. Indeed, the effects of PDE inhibitors in 

modulating the effects of acute Aβ-induced neurotoxicity have yet to be examined. Given 

the correlation between synaptic loss and cognitive impairments in AD, agents with 

neuroprotective functions are seen as potential therapies for AD. 

4.1.1 Experimental Aims 

I have recently demonstrated that the phosphorylation of the small heat-shock protein, 

Hsp20 at a consensus PKA/PKG site (RRAS) increases the avidity of Hsp20 for the Aβ 

peptide. Hsp20 can maintain Aβ in a non-toxic conformation and prevent it from 

aggregating into higher molecular weight amyloid species that are the pathological 

hallmarks of AD. Furthermore, I have demonstrated that increased levels of intracellular 

phospho-Hsp20 can attenuate the acute toxicity associated with soluble oligomeric forms 

of Aβ. 

As a result of discovering this novel neuroprotective mechanism, we were approached by a 

Danish pharmaceutical company, Lundbeck, who had developed a number of selective 

PDE9 inhibitors and we were asked by them to help establish whether the protective 

mechanism elicited by PDE9 inhibition is driven by increased levels of Hsp20 

phosphorylation. Lundbeck had created a transgenic AD mouse model that over-expressed 

the human form of APP, resulting in a 5-fold increase in Aβ1-42 levels relative to normal 

mice. These mice display significant cognitive dysfunction at 7 months, which can be 

reversed through selective PDE9 inhibition (Personal communication from A. 

Parachikova, Lundbeck).  We wanted to test whether PDE9 inhibition could activate the 

protective properties of Hsp20 in our cell model of Aβ toxicity. I decided to examine the 

effects alongside the PDE4 inhibitor rolipram and the PDE5 inhibitor sildenafil as all three 

PDE inhibitors have been shown to significantly enhance cognitive functions and have 

been proposed as potential AD therapies. 
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4.1.2 Experimental Procedure 

This chapter was put together with data from 3 main experimental procedures as follows: 

1 – Determination of the expression levels of PDE9 in neuronal-like SH-SY5Y cells. 

2 – Characterisation of the effects of PDE4, 5 & 9 inhibition has on endogenous Hsp20 

phosphorylation in SH-SY5Y cells. These cells readily express Hsp20 and are an ideal cell 

model for testing PDE inhibitor induced phosphorylation. 

3 – Using our xCELLigence based real-time cell monitoring platform for measuring Aβ 

cytotoxicity I investigated whether selective PDE inhibition could attenuate Aβ-induced 

cell death in SH-SY5Y cells by increasing levels of intracellular phospho-Hsp20.  

4.2 Results 

4.2.1 PDE9 is expressed in human neuronal-like SH-SY5Y cells 

First of all we had to verify that PDE9 was expressed in SH-SY5Y cells to ensure it was a 

suitable cell model for testing the effects of the PDE9 inhibitors. This was initially carried 

out using reverse transcriptase PCR (Fig. 4.1A). SH-SY5Y cells were harvested for RNA 

in order to check PDE9A transcript mRNA levels, which are generally a good indication of 

expression. Amplification of the resultant cDNA was carried out using RT-PCR primer 

pairs targeted to three distinct intron spanning regions of the PDE9A1 gene. All three 

PDE9A targeted primers amplified PDE9A cDNA from SH-SY5Y cells. Secondly, I tested 

a number of cell lysates for PDE9A expression using a commercially available PDE9A 

antibody (Scottish Biomedical, UK). Cell lysates were resolved using SDS-PAGE 

followed by western blot analysis to probe for protein expression. All cell types tested 

positive for PDE9A expression and a number of different molecular weight isoforms were 

detected (Fig. 4.1B). With regard to PDE4 expression in SH-SY5Y cells, I have recently 

reported that PDE4B and PDE4D isoforms are readily expressed in these neuronal-like 

cells (Cameron, Coleman et al. 2013). PDE5 is also readily expressed in SH-SY5Y cells as 

has been reported previously (Hsu, Liu et al. 2010). 
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Figure 4.1 – PDE9 expression analysis. 
A – RT-PCR of SH-SY5Y RNA using PDE9A1 intron-spanning RT-PCR primer pairs designed to 
three separate regions of the gene sequence (PDE9A1_1, PDE9A1_2, PDE9A1_3). No template 
control reactions lacking cDNA were included to ensure primer contamination had not occurred. 
The resultant PCR product was resolved on a 1.8%, 0.5x TBE agarose gel. Bands corresponding 
to the predicted molecular weight were obtained for each PCR reaction strongly suggesting that 
PDE9A1 mRNA is expressed in SH-SY5Y cells. B – Western blot analysis of a variety of different 
cell lines using a PDE9 selective anti-body (Scottish Biomedicals). Lysates were resolved on a 4-
12% SDS-PAGE gel and several bands corresponding with various isoforms of PDE9A were 
detected. 

Figure 4.1A was carried out by Dr. Jon Day 

4.2.2 PDE9 inhibition promotes Hsp20 Phosphorylation 

As Hsp20 becomes phosphorylated upon activation of PKG (Beall, Kato et al. 1997) I 

decided to characterise the effects of two different PDE9 inhibitors (provided by 

Lundbeck) on changes in endogenous phospho-Hsp20 levels in SH-SY5Y cells. Initially 

no biochemical information was provided for the two PDE9A inhibitors; named F13 and 

F14. Therefore they were initially tested at 25µM, a relatively high concentration for 

selective PDE inhibition. Utilising Western blotting techniques, I examined changes in 

phospho-Hsp20 levels over a 6 hour time-course (Fig. 4.2). Both inhibitors induced 

significant increases in phospho-Hsp20 levels relative to controls (t=0). Phosphorylation of 

Hsp20 peaked for both treatments after 1 hour, F13 treatment induced a significant 4-fold 

increase (± 0.5, p-value < 0.01) after 1 hour (Fig. 4.2 A) compared to a 9-fold increase (± 

4, p-value < 0.05) following F14 addition (Fig. 4.2 B). Similarly, the PDE5 inhibitor 
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sildenafil (Fig. 4.2 D) induced significant increases in phospho-Hsp20, which peaked at 1 

hour after addition. However, rolipram only produced a 2-fold increase (± 0.17) in Hsp20 

phosphorylation relative to control, while sildenafil induced a 2.7-fold increase (± 0.64, p-

value < 0.01). 

 

Figure 4.2 - PDE9, 4 & 5 inhibitors increase phospho-Hsp20 levels in a time-dependent 
manner.  
SH-SY5Y cells were incubated with either PDE9 inhibitor F13 (A), F14 (B) at relatively high 
concentrations for selective PDE inhibition (25µM). SH-SY5Y Cells were also incubated with 10µM 
Rolipram (C) or 1µM of Sildenafil (D), which is approximately 10 times higher than published IC50 
values for both inhibitors. All inhibitors were administered over a time course of 6 hours. Western 
blot analysis demonstrates that all compounds induce an increase in phospho-Hsp20 which 
peaked at the 1 hour time-point. This demonstrates that selective inhibition of PDE9 can induce 
pronounced and sustained phosphorylation of Hsp20 in neuronal-like SH-SY5Y cells. Mean values 
±SEM, p-values - * < 0.05, ** < 0.01; repeated measures ANOVA, n = 3. 

After establishing that PDE9 inhibition could lead to robust and long-lasting 

phosphorylation of Hsp20, I then examined if each inhibitor could induce Hsp20 

phosphorylation in a dose-dependent manner. SH-SY5Y cells were treated with various 

concentrations of inhibitors and incubated for 15 minutes (Fig. 4.3). All of the inhibitors 
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tested, promoted dose-dependent increases in Hsp20 phosphorylation, with the 25µM- 

treated cells being statistically significant for PDE9 inhibitor F14 and PDE5 inhibitor 

sildenafil. 

 

Figure 4.3 - PDE9, 4 & 5 inhibitors modulate phospho-Hsp20 levels dose-dependently. SH-
SY5Y cells were incubated with various concentrations of PDE9 inhibitors F13 (A), F14 (B), PDE4 
inhibitor rolipram (C) or PDE5 inhibitor sildenafil (D) for 15 minutes. Western blot analysis 
demonstrates that all compounds induce a dose-dependent increase in HSP20-pS16 levels relative 
to tubulin controls. Mean values ±SEM, p-values - * < 0.05, *** <0.001; ANOVA, n = 3. 

4.2.3 PDE inhibition attenuates Aβ1-42 induced cytotoxicity 

In chapter 3, I utilised the xCELLigence system for label-free, real-time monitoring of Aβ-

induced cytotoxicity. Using this platform, I demonstrated that increasing intracellular 

levels of Hsp20 could attenuate Aβ1-42 mediated cell-death. This technique can also be used 

to screen compounds for potential neuroprotective properties that may be relevant for 

treating AD. As the cognitive enhancing properties of PDE4, 5 and 9 inhibitors have been 
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well characterised, I wanted to establish if PDE inhibition could also protect neuronal-like 

cells from acute Aβ cytotoxicity via PKA/PKG mediated phosphorylation of Hsp20. 

First of all, I had to determine at which time-point the PDE inhibitors should be added to 

elicit the greatest level of protection against Aβ1-42 toxicity. I initially treated cells with 

PDE9 inhibitors F13 and F14 or vehicle (DMSO) control, 2 hours after the addition of Aβ1-

42 or Aβscr, before any apparent onset of cell death (Fig. 4.4A & B). I saw no difference in 

Cell Index for either F13 or F14 treated wells relative to DMSO/Aβ1-42 treated control 

when using this protocol. I also identified a possible problem with the F14 compound (Fig 

4.4 B), which triggered a sharp decrease in Cell Index on initial addition. This may have 

been due to an error in the DMSO concentration of the stock solution which was above the 

0.1% permissible in cell based assays. This problem was remedied in future experiments.  

As it was possible that cell death responses had already been initiated at 2 hours post Aβ 

treatment, I carried out a 1 hour pre-treatment of PDE9 inhibition in order to increase 

intracellular levels of Hsp20 prior to addition of Aβ1-42. However, as before I found no 

discernible differences between F13 or F14 treated cells and DMSO/Aβ1-42 treated control 

(Fig. 4.4 C & D). 
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Figure 4.4 - PDE9 inhibition Pre & Post Aβ treatment. 
SH-SY5Y cells were seeded into 96-well E-plate (ACEA) at a density of 5 x10

4
 cells per well. Cells 

were left overnight to allow for adherence and for the Cell Index reached a value of at least 1. A & 
B – Cells were treated with 10µM Aβ1-42 or Aβscr for 2 hours prior to addition of F13, F14 or 
DMSO control. C & D – Cells were treated with F13, F14 or DMSO 1 hour prior to addition of 10µM 
Aβ1-42 or Aβscr. E & F - Cells were treated with 10µM Aβ1-42 or Aβscr for 6 hours prior to addition 
of F13, F14 or DMSO control. All treatments carried out in triplicate, n=1, average curves shown 
normalised to point of first treatment. G & H – Average cell index for each inhibitor concentration 
(Added 6 hours post Aβ1-42 treatment) at the 48 hour time-point normalised to Aβ1-42 treated 
controls. Mean values ±SEM, p-values - * < 0.05, ** < 0.01; ANOVA, n = 4. 
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It is noteworthy that throughout all of our Aβ1-42 toxicity experiments, I have consistently 

observed an obvious divergence between the Aβ1-42 and Aβscr growth curves after 

approximately 6 hours of incubation (Fig. 4.5 A. I have considered two possible 

explanations for this. Firstly, it is at this time-point that apoptotic pathways become fully 

established, leading to the significant morphological changes associated with programmed 

cell-death. Secondly, it is possible that it takes 6 hours for significant quantities of soluble 

Aβ1-42 oligomers to accumulate intracellularly before the cytotoxic effects become 

apparent. Phospho-Hsp20 has well characterised anti-apoptotic functions in the heart (Fan, 

Zhou et al. 2008), and I have discovered that Hsp20 phosphorylation enhances its ability to 

interact with Aβ and attenuate its cytotoxic effects. Therefore I decided to add the PDE9 

inhibitors at exactly this time point. Treatment with either F13 or F14, 6 hours post Aβ1-42 

addition induced a pronounced effect on the growth curves across all of the concentrations 

tested (Fig. 4.4 E & F). PDE inhibitors where then added at this time point for all 

subsequent assays. 

After several repeats of this experiment, I found a slight dose-dependent effect against Aβ1-

42 induced cytotoxicity, particularly with regard to F13 (Fig. 4.4). However, both inhibitors 

promoted significant increases in Cell Index when normalised to DMSO/Aβ1-42 treated 

controls (Fig.4.4G & H). Even at 0.1µM F13 increased normalised Cell Index by 149% (± 

17%). The maximum increase for F13 treated cells was 162% (± 17%) at 10µM, whereas 

the maximum effect of F14 was 180% (± 35%) at 1µM. 

When I compared the average curves of the PDE9 inhibitors for the 1µM concentration I 

found that F14 produced the most pronounced protective effect against Aβ1-42 induced 

cytotoxicity (Fig. 4.5A). The reduction in slope for Aβ1-42 control treated cells was also 

steeper, resulting in time-dependent increase in the relative protective effects of F13 and 

F14 (Fig. 4.5B). After 12 hours of Aβ1-42 incubation (6 hours post inhibitor/DMSO 

addition) the significant effects of PDE9 inhibition became apparent until it reached a 

maximum of 158% (± 24%) for F13 and 180% (± 35%) for F14, after 48 hours. 
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Figure 4.5 - PDE9 inhibition attenuates Aβ1-42 induced cytotoxicity.  
SH-SY5Y cells treated with 10µM Aβ1-42 or Aβscr control. After 6 hours cells were further treated 
with either 1µM F13 or F14. A - Average growth curves of treated cells. Aβscr peptide has no 
significant effect on cell growth when compared to untreated controls. Aβ1-42 induces significant 
reduction in Cell Index which can be attenuated by both F13 and F14. B - Cell Index at given time-
points relative to cells treated with 10µM Aβ1-42. Mean values ±SEM, p-values - * < 0.05, ** < 0.01; 
ANOVA, n = 4.  

The PDE4 inhibitor rolipram and PDE5 inhibitor sildenafil were tested at approximately 

10-fold higher concentration than their reported IC50 values (10µM for rolipram, and 1µM 
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for sildenafil). The effect on attenuation of Aβ1-42 cytotoxicity was less pronounced than 

PDE9 inhibition (Fig. 4.6A). However, the increase in Cell Index relative to Aβ1-42 control 

was significant at the 36 hour and 48 hour time-point for both inhibitors (Fig 4.6B). The 

normalised cell index value for rolipram treated cells highlighted maximum increase of 

145% (± 18%) at the 48 hour time-point. Values for sildenafil were similar, with a 

maximum increase of 144% (± 24%) at 48 hours (Fig. 4.6B).  

Given that all the PDE inhibitors significantly protected neuronal-like SH-SY5Y cells 

against Aβ1-42 induced cell death, it was important for us to establish if this protective 

mechanism was mediated directly through Hsp20. Unfortunately attempts at using RNAi to 

knock-down Hsp20 were unsuccessful. Several attempts were made using siRNA targeting 

the Hsp20 gene (HSPB6) and various transfection reagents were tried. However, I was 

unable to reduce Hsp20 expression levels. Failure of the siRNA could be a result of the 

fact that Hsp20 exists in large pools of high molecular weight SDS-stable multimers in SH-

SY5Y cells (Appendix 1B). A previous study looking at the effects of Hsp20 in rat 

cardiomyocytes managed to reduce Hsp20 levels by around 40% but this required an 

adenovirus containing anti-sense Hsp20 cDNA (Wang, Zingarelli et al. 2009). 

Interestingly, that study found that Hsp20 could inhibit NF-κB activity and reduce cytokine 

production. NF-κB is also activated by Aβ, promoting neuroinflammatory responses that 

play an important role in the progression of AD. Rolipram has recently been shown to 

reverse Aβ mediated increases in NF-κB expression in the rat hippocampus (Wang, Yang 

et al. 2012). Regrettably, due to time constraints, I was unable to pursue viral based vectors 

as a means stably to knock-down Hsp20. 
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Figure 4.6 – PDE4 & PDE5 inhibition attenuates Aβ1-42 induced cytotoxicity. 
SH-SY5Y cells treated with 10µM Aβ1-42 or Aβscr control. After 6 hours cells were further treated 
with either 10µM rolipram or 1µM sildenafil. A - Average growth curves of treated cells. Aβscr 

peptide had no significant effect on cell growth when compared to untreated controls. Aβ1-42 
induces significant reduction in Cell Index which can be attenuated by both rolipram and sildenafil. 
B - Cell Index at given time-points relative to cells treated with only 10µM Aβ1-42. Mean values 
±SEM, p-values - * < 0.05, ** <0.01; ANOVA, n = 3. 
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4.3 Discussion 

The Aβ peptide is widely accepted as a major toxic agent in the pathogenesis of AD. 

Through the evaluation of cell death and synaptic plasticity, researchers have identified 

several oligomeric intermediates (both brain-derived and synthetic) as being neurotoxic. 

However, although much research effort has been expended in this area, the exact nature of 

toxic Aβ species has yet to be defined. In this regard recent research has pointed to the fact 

that toxic Aβ oligomers are more relevant in early stages of AD (Gilbert 2013). Preventing 

the formation of toxic Aβ oligomers has, therefore, been proposed as an effective means of 

treating AD. For example, biologics, which can bind to and stabilise the Aβ monomer 

should prevent oligomerisation and allow for increased clearance through endogenous 

processes (Walsh and Selkoe 2007).  

I have previously described (Chapter 3) an endogenous neuroprotective mechanism where 

the small heat shock protein Hsp20 can bind to and stabilise monomeric Aβ and prevent it 

from aggregating. Furthermore, the interaction between Hsp20 and Aβ can be enhanced 

through phosphorylation of a consensus PKA/PKG site leading to protection against Aβ 

induced cytotoxicity. Cyclic nucleotide-dependent second messenger signalling pathways 

also regulate cognitive functions (Halene and Siegel 2007), therefore targeting Hsp20 

phosphorylation through mechanisms such as PDE inhibition may have neuroprotective 

effects that are distinct from the cognitive enhancing effects associated with PDE 

inhibition (Bales, Plath et al. 2010). 

4.3.1 PDE9 inhibition promotes Hsp20 Phosphorylation 

The phosphorylation of Hsp20 at serine 16 has been implicated in a number of 

physiological and pathophysiological processes such as smooth muscle relaxation, platelet 

aggregation, myocardial infarction and atherosclerosis (Fan and Kranias 2011). In the 

heart, Hsp20 has well established cardio-protective functions that are modulated via 

phosphorylation. The beneficial effects of Hsp20 in the heart can be enhanced using the 

phospho-mimetic S16D mutation, while the non-phosphorylatable mutant S16A confers no 

protection (Fan, Chu et al. 2004). Furthermore, hearts from Hsp20 transgenic mice display 

improved functional recovery and decreased cell-death following ischemia/reperfusion 

injury through a direct interaction with the pro-apoptotic protein Bax. Hsp20 

phosphorylation also promotes cardioprotection via a range of diverse processes that 

include modulation of contractility to prevention of apoptosis (Fan and Kranias 2011).  



Chapter 4  

 

119 
 

The role of Hsp20 and its phosphorylation in the brain is only beginning to emerge, but 

protective effects against cellular stress are likely to be conserved in this tissue given that 

Hsp20 is readily expressed throughout the mammalian brain (Verschuure, Tatard et al. 

2003; Kirbach and Golenhofen 2011). In a study looking at hypoxic stress in newborn 

mammals, Hsp20 was shown to be rapidly induced in the hippocampus of piglets, well 

before hypoxia-inducible factor HIF1α. It was proposed that the rapid induction of Hsp20 

would afford the hippocampus the benefits of vascular relaxation and reduce the local 

severity of hypoxic stress in a brain region essential for the establishment of cognitive 

functions in young mammals (David, Boelens et al. 2006). Another study found that 

treatment with transducible phospho-mimetic peptide analogues of Hsp20 could effectively 

inhibit cerebral perfusion in a rat model of subarachnoid haemorrhage (Furnish, Brophy et 

al. 2010). More recently, Hsp20 phosphorylation has been shown to protect against in vitro 

ischemia/reperfusion injury of mouse neuroblastoma cells and could potentially be targeted 

therapeutically to treat ischemic stroke (Zeng, Tan et al. 2010; Zeng, Tan et al. 2013).  

The human neuroblastoma cell line SH-SY5Y, is a well established cell model for a 

number of neurological diseases due to its neuronal-like properties (Agholme, Lindstrom et 

al. 2010)). It readily expresses Hsp20, making it is an ideal model for testing potential 

neuroprotective agents that can promote Hsp20 phosphorylation. The PDE4 inhibitor 

rolipram and the PDE5 inhibitor sildenafil have previously been shown to promote the 

phosphorylation of Hsp20 in different tissue (Tessier, Komalavilas et al. 2004; Sin, 

Edwards et al. 2011). I have shown here, that both of these inhibitors promote sustained 

and dose-dependent increases in phosphorylation of Hsp20 in SH-SY5Y cells, confirming 

that Hsp20 can be modulated by both PKA and PKG mediated phosphorylation in 

neuronal-like cells. After confirming that PDE9 is expressed in SH-SY5Y cells (Fig. 4.1) I 

found that PDE9 inhibitors F13 and F14 can also promote significant induction of Hsp20 

phosphorylation (Fig. 4.2). However, in the initial time course experiments, I used high 

concentrations of inhibitor, 25µM. Typically selective PDE inhibitors have IC50 values in 

the nanomolar range (Bender and Beavo 2006). PDE9 is a key regulator of cGMP levels in 

cells and has the highest affinity for cGMP out of all the known cGMP-specific PDEs. As 

such, it is thought to regulate basal levels of cGMP (Fisher, Smith et al. 1998), (Soderling, 

Bayuga et al. 1998). With this in mind, I hypothesised that PDE9 inhibition should have a 

more pronounced effect on intracellular cGMP levels than PDE5 inhibition. Indeed, I 

observed a more robust and sustained phosphorylation of Hsp20 following treatment with 

PDE9 inhibitors. I also found that all the PDE inhibitors tested produced an acute (15 

minutes) and dose-dependent increase in Hsp20 phosphorylation without the need for 
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agents that increase cyclic nucleotide levels (Fig 4.3). This was expected for rolipram as 

Hsp20 interacts directly with the catalytic domain of PDE4 (Sin, Edwards et al. 2011)  and 

A-kinase-anchoring protein, AKAP-Lbc (Edwards, Scott et al. 2012), meaning that an 

increase in global cAMP concentration is not required for rolipram to induce Hsp20 

phosphorylation. Whether Hsp20 interacts directly with the catalytic domains of PDE5 or 

PDE9 has yet to be investigated. However, the concentrations that induced significant 

levels of Hsp20 phosphorylation relative to controls were again relatively high for selective 

PDE inhibition. Nonetheless, PDE9 inhibition promoted significant and long lasting Hsp20 

phosphorylation which would suggest that PDE9 inhibitors F13 and F14 could be used to 

promote the neuroprotective effects of Hsp20 and may also have therapeutic relevance for 

treating diseases other than AD, such as ischemic stroke.   

4.3.2 PDE inhibition attenuates Aβ1-42 induced cytotoxicity 

PDE4, 5 and 9 inhibitors have well established cognitive enhancing effects, as previously 

discussed, however the neuroprotective properties of these PDE inhibitors are less well 

known.  The PDE4 inhibitor rolipram has been shown to protect primary cortical neurons 

against several distinct cell models of injury including hypoxia and glutamate induced 

neurotoxicity (Chen, Williams et al. 2007).  Rolipram can also promote axonal 

regeneration following spinal cord injury (Nikulina, Tidwell et al. 2004). However, the 

ability of rolipram to promote neuroprotection following CNS trauma to the spinal cord or 

the brain can also be attributed to cAMP-dependent regulation of inflammatory processes, 

which are also key mediators of neurodegenerative disorders (Schaal, Garg et al. 2012). 

The PDE5 inhibitor sildenafil has been shown to promote neurogenesis and reduce 

neurological deficits in a rodent model of stroke (Zhang, Wang et al. 2002). Sildenafil can 

also promote neuroprotection in pelvic ganglia neurones, which can be damaged following 

surgery for prostate, bladder and colorectal cancers (Hlaing, Garcia et al. 2012). The 

neuroprotective role of PDE9 inhibition is only now being investigated but is expected 

have strong neuroprotective functions given the importance of the NO/cGMP/PKG 

pathway plays in neuroprotection (Calabrese, Mancuso et al. 2007).  

I have shown for the first time, the neuroprotective effects of PDE4, 5 & 9 inhibition in our 

cell model of Aβ toxicity. PDE inhibition which has been associated with improving 

cognition in rodent models of AD can also significantly protect neuronal-like SH-SY5Y 

cells against the cytotoxic effects of Aβ1-42. The PDE9 inhibitor F14 was the most effective 

at increasing cell index relative to Aβ1-42 treated control cells. Interestingly F13, which was 
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less effective at inducing Hsp20 phosphorylation, was also less effective at attenuating the 

cytotoxic effects of Aβ1-42 relative to F14. In this experimental setup, selection of the most 

apt time of compound addition was essential for inducing the neuroprotective effect of 

PDE inhibition. I only evoked cytoprotective effects when I added inhibitors 6 hours post 

Aβ1-42 addition, as this was the time point where the Aβ1-42 treated growth curves begin to 

diverge from controls. This could be due to phospho-Hsp20 neutralising Aβ1-42 at the point 

where it has accumulated intracellularly to levels that become toxic to cells. Aβ1-42 is 

readily taken up by SH-SY5Y cells leading to the accumulation of high molecular weight 

aggregates capable of seeding amyloid fibril growth (Hu, Crick et al. 2009). An alternative 

hypothesis is that increasing intracellular levels of phospho-Hsp20 inhibits apoptosis at the 

point of initiation of the morphological changes associated with programmed cell death. 

Unfortunately, without RNAi data ascribing the protective effects to Hsp20, any one of the 

vast array of PKA and PKG substrates that are phosphorylated following increases in 

intracellular cyclic nucleotide concentration could be involved in this process. A positive 

identification of Hsp20 as the causative factor of the attenuation of Aβ1-42 mediated 

cytotoxicity could not be made. 

Interestingly, despite rolipram and sildenafil having very similar protective effects against 

Aβ1-42 mediated cytotoxicity, they both differ in their ability to reduce Aβ levels in vivo. 

Rolipram did not affect Aβ plaque load in the hippocampus of APP/PS1 mice (Gong, 

Vitolo et al. 2004), however, sildenafil treatment reduced Aβ levels which persisted several 

months after treatment finished (Puzzo, Vitolo et al. 2005). A recent study has confirmed 

that sildenafil treatment can reduce both Aβ1-40 and Aβ1-42 levels in APP/PS1 mice (Zhang, 

Guo et al. 2013). Confirmation of rolipram’s inability to reduce Aβ levels is necessary as 

this suggests distinct mechanisms of action. Also, whether PDE9 inhibition would have a 

similar effect in reducing Aβ levels as PDE5 inhibition has not yet been reported but it 

would be beneficial to compare the efficacy of PDE9 inhibitors in vivo under the same 

experimental conditions as sildenafil. 

The inability to effectively silence Hsp20 using RNAi prevented us from proving 

conclusively that the cytoprotective effects of PDE4, 5 or 9 inhibition are mediated through 

Hsp20. Hsp20 can exist within SH-SY5Y cells in large SDS-stable high  molecular weight 

complexes (Appendix 1B). I have also previously carried out MG132 and cyclohexamide 

treatments of SH-SY5Y cells and found the level of monomeric Hsp20 within cells is 

highly stable (Appendix 2 & 3). It is likely that the quantities of the Hsp20 protein exists in 

these stable high molecular complexes is in excess and masking changes Hsp20 expression 
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levels with silencing or blocking of Hsp20 gene expression (HSPB6) having no apparent 

affect on monomeric levels.  

PDE4, 5 & 9 inhibition has been proposed as a novel means for treating AD due to 

cognitive enhancing effects and the ability to reduce Aβ levels in vivo. I have demonstrated 

for the first time that these PDE inhibitors also protect neuronal-like SH-SY5Y cells 

against the acute cytotoxic effects associated with Aβ1-42 treatment. I believe that one of 

the mechanisms for protecting cells against the toxicity associated with Aβ1-42 is mediated 

through the activation of Hsp20 which has well established anti-apoptotic effects in other 

tissue. More recently I have established that Hsp20 phosphorylation also enhances its 

interaction with Aβ peptides in order to help maintain Aβ in a non-toxic monomeric 

conformation and prevents from aggregating into higher order toxic Aβ species. This 

makes Hsp20 a multi-faceted protein that can protect against two of the most important 

aspects of the ‘amyloid hypothesis’, namely Aβ associated neurotoxicity and subsequent 

neuronal cell death.  
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5 The Development of Novel PDE4 Inhibitors to 
Induce Hsp20 Phosphorylation 

5.1 Introduction 

The escalating costs and diminishing returns of drug development have fuelled a growing 

focus on drug repositioning in recent years (Ashburn and Thor 2004). As annual approvals 

of new molecular entities (NMEs) dwindle in the face of increasing economic and 

regulatory pressures (Paul, Mytelka et al. 2010), greater emphasis is being placed on the 

development of systematic approaches for identification of compounds with repositioning 

potential, including the application of in silico structure-based and chemoinformatic 

methodologies (Vasudevan, Moore et al.; Hert, Keiser et al. 2008; Keiser, Setola et al. 

2009; Vasudevan, Moore et al. 2012). We have used such approaches to find novel 

inhibitors of the important cAMP hydrolyzing phosphodiesterase 4 (PDE4) enzyme family, 

which has been implicated in the pathophysiology underlying a range of diseases and 

conditions including cancer, rheumatoid arthritis, depression, schizophrenia, stroke and 

Alzheimer’s disease (AD) (Houslay, Schafer et al. 2005).   

PDE4 is one of eleven known phosphodiesterase families and plays a pivotal role in 

mediating hydrolytic degradation of the important cyclic nucleotide second messenger, 

cyclic AMP (cAMP) (Lugnier 2006). The PDE4 family acts to regulate downstream 

signalling events induced by cAMP, and does so via the action of approximately 25 

different isoforms that manifest as multiple splice variants encoded by four distinct genes 

(PDE4A, B, C and D) (Conti and Beavo 2007). The fact that all PDE4 enzymes have been 

highly conserved through evolution suggests that they have non-redundant functional roles 

in regulating cAMP homeostasis linked to the compartmentalisation of cAMP signalling 

(Baillie 2009). As all PDE4 isoforms have similar Km and Vmax parameters for cAMP 

hydrolysis, their functional roles are determined largely by their cellular location and post-

translational modification.  Discrete intracellular targeting of individual PDE4 isoforms is 

most often directed by a “postcode” sequence within their unique N-terminal domains 

(Houslay, Baillie et al. 2007), which are responsible for promoting many of the protein-

protein and (in one case) protein-lipid interactions that act to anchor PDE4s to signalling 

nodes in sub-cellular compartments (Houslay 2009). 

It is well established that inhibitors, which target the catalytic pocket of PDE4s, show 

promise for the treatment of chronic obstructive pulmonary disease (COPD), asthma, 



Chapter 5 

124 
 

rheumatoid arthritis, inflammatory bowel disease and psoriasis (Houslay, Schafer et al. 

2005; Page and Spina 2012). PDE4 inhibitors have also been shown to be effective in 

enhancing memory function and reversing the effects of Aβ-associated cognitive 

impairments in rodent models of AD (Barad, Bourtchouladze et al. 1998; Vitolo, 

Sant'Angelo et al. 2002; Gong, Vitolo et al. 2004; Costa, Cracchiolo et al. 2007) (Cheng, 

Wang et al. 2010; Wang, Yang et al. 2012). Thus, in principle, PDE4 inhibitors have 

considerable therapeutic potential. In practice, however, their clinical utility has been 

compromised by mechanism-associated side effects that limit maximally tolerated doses 

(Zhang, Ibrahim et al. 2005). Headache, nausea, emesis and diarrhoea are the most 

commonly reported side effects and these stem from the inhibition of PDE4 activity in 

non-target tissues. In particular, PDE4D expression is high in a region of the brain, the area 

postrema, where inhibitor action may trigger nausea (Zhang, Ibrahim et al. 2005). Despite 

the challenges to therapeutic deployment of PDE4 inhibitors, one such compound, 

roflumilast, has recently been approved by the European Commission and US Food and 

Drug Administration (FDA) for the treatment of severe COPD (Fabbri, Beghe et al. 2010), 

albeit that concern remains over side-effects such as diarrhoea, pancreatitis and weight loss 

associated with its administration (Gupta 2012). 

With this in mind, one strategy to develop a novel, safer class of PDE4 inhibitor would be 

to survey existing approved drugs for PDE4-inhibitory activity. In collaboration with 

Shoichet Laboratory, University of California, who carried out a high-throughput 

computational approach to identify several FDA approved drugs with potential PDE4 

inhibitory activity. Each drug was compared to the sets of ligands for each PDE4 subtype 

according to ChEMBL (Gaulton, Bellis et al. 2011) with the Similarity Ensemble 

Approach (SEA) (Keiser, Roth et al. 2007; Keiser, Setola et al. 2009). 

The similarity ensemble approach (SEA) is one of a number of in silico methods now used 

to identify off-target activity of drugs. The technique measures the topological similarity 

between bait molecules and a set of ligands annotated to any given target in a library of 

target-ligand sets.  The observed similarities between the bait molecule(s) and the ligand-

sets are compared to what would be expected at random, and the expectation value of 

seeing the level of similarity observed is calculated (Hert, Keiser et al. 2008; Keiser, Setola 

et al. 2009). Because SEA compares molecules to annotated ligands as sets, collective 

similarity can be established even when the pair-wise similarity to any single ligand in the 

set may be modest. It has been applied successfully to predict activity of established drugs 

against previously unreported targets (Hert, Keiser et al. 2008; DeGraw, Keiser et al. 2010) 
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and also used to predict biological activity in natural products (Sa, de Menezes et al. 2011). 

Here SEA was applied to probe the MDL Drug Data Report (MDDR), a database currently 

comprising >180,000 biologically relevant compounds, with a focus on drugs that have 

been approved or under current development. In doing so, we identified several candidate 

PDE4 inhibitors, using ChEMBL to compare against known sets of PDE4 active 

compounds (Gaulton, Bellis et al. 2011). 

5.1.1 Experimental Aims 

Our strategy was to use a chemical informatics in silico approach to identify potential 

PDE4A,B,C and D inhibitors by SEA. Several “hits” were validated for inhibition of 

phosphodiesterase activity using PDE assays. Compounds with bona fide PDE4-inhibitory 

activity were then tested in several cell based assays to determine if they could induce 

increases in intracellular cAMP levels, thereby making them potential therapeutic agents. 

5.1.2 Experimental Procedure 

1 - In silico screening hits were validated using a two-step radio-assay to measure PDE 

activity (Marchmont and Houslay 1980). This allowed the determination of inhibitory 

activity against several PDE4 isozymes, the type of inhibition (competitive vs. allosteric), 

and also selectivity over other PDE isoforms (PDE5A & PDE8A). 

2 – Temporal changes in intracellular cAMP concentration were evaluated using the 

genetically encoded fluorescence resonance energy transfer (FRET)-based sensor based 

around the cAMP binding domain of Epac1 (Epac1-camps) (Nikolaev, Bunemann et al. 

2004). Potential PDE4 inhibitors were tested in SH-SY5Y cells stably expressing Epac1-

camps. Their ability to alter cAMP concentrations through selective PDE4 inhibition were 

measured in real-time. 

3 – To determine whether increases in cellular cAMP concentrations were physiological, I 

measured PKA activity indirectly by looking at the phosphorylation of Hsp20 at serine 16. 

This was apt because of the cytoprotective role for Hsp20 I have established in previous 

chapters. 

4 – Finally we utilised an MTT-based cell viability assay to determine whether our novel 

PDE4 inhibitor could protect SH-SY5Y cells against Aβ1-42 induced cytotoxicity. The 

neuroprotective effect was compared with the PDE4 inhibitor rolipram and the PDE5 



Chapter 5 

126 
 

inhibitor sildenafil, which I have established previously, can attenuate the cytotoxic effects 

of Aβ1-42. 

5.2 Results 

5.2.1 Chemical informatics and docking studies identify moexipril 
as a candidate PDE4 inhibitor. 

In total, six compounds were identified initially; moexipril, an angiotensin-converting 

enzyme (ACE) inhibitor (Chrysant and Chrysant 2003) was identified as a potential 

PDE4A,B,C and D inhibitor by SEA, with an E-value of 1.71
-11

 and a max Tanimoto 

coefficient in ECFP4 fingerprints of 0.35. Searching for analogs of moexipril was done 

with ZINC (Irwin, Sterling et al. 2012). Docking to PDB Code 1MKD (Lee, Markowitz et 

al. 2002) was performed with DOCK3.6 (Irwin, Shoichet et al. 2009), the best scoring pose 

that overlapped the known ligand was chosen. This helped to identify a further 5 

compounds;  tranilast, an anti-inflammatory drug with poorly understood mechanisms of 

action (Spiecker, Lorenz et al. 2002); devazepide, a cholecystokinin antagonist selective 

for the CCK1 subtype (Weller 2006); verazide, a compound with anti-tuberculous activity 

(Rubbo and Cymerman-Craig 1955); methonalide, a tranquilizer (Perron 1959 - patent 

US2870146); itopride, a dopamine D2 antagonist with acetylcholinesterase effects 

(Holtmann, Talley et al. 2006) (Fig. 5.1A). From the identified ligands, moexipril produced 

the most significant reduction in PDE4B1 activity (20% activity relative to non-treated 

control) at the highest concentration tested (100µM), followed by verazide (56%), 

methonalide (60%), Devazepide (66%), Tranilast (73%). Itopride did not display any 

inhibitory activity against PDE4B1 (Fig. 5.1B). Moexipril also reduced PDE4 activity by 

51% at 10µM and was selected for further analysis.  
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Figure 5.1 – FDA approved compounds identified through in silico screening. 
A – 6 FDA approved compounds were identified using a chemical informatics approach. B – 
Compounds were screened for PDE4 inhibitory activity. The angiotensin converting enzyme (ACE) 
inhibitor moexipril reduced PDE4 activity by 80% at 100µM and was selected for further 
investigation. Rolipram was used as a positive control. 

5.2.2 Model of moexipril and its analogues bound to catalytic 
domain of PDE4 

As the structure of the PDE4 core catalytic domain is well defined by X-ray 

crystallography, with numerous co-crystal structures available for a range of inhibitors 

from different structural classes, we undertook the molecular docking of moexipril to 

consider its potential as a PDE4 inhibitor. Docking was carried out with DOCK3.6 (Irwin, 

Shoichet et al. 2009) against the co-crystal structure (PDB: 1MKD) of the PDE4D core 

catalytic domain with bound zardaverine (2, Fig. 5.2)(Lee, Markowitz et al. 2002). In the 

best scoring pose (Fig. 3A), the 6,7-dimethoxytetrahydroisoquinoline core of moexipril 

overlapped closely with the catechol ether subunit of zardaverine (2) to engage the purine-

scanning glutamine, a residue that is conserved across the entire PDE superfamily and 

which ordinarily anchors the substrate nucleobase during enzymatic turnover. Catechol 
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ethers such as zardaverine (Schudt, Winder et al. 1991) constitute one of the main PDE4 

inhibitor chemotypes and include rolipram (3) (Schwabe, Miyake et al. 1976), the 

archetypal PDE4-selective inhibitor, as well as the isoquinoline natural product, papaverine 

(4) (Triner, Vulliemoz et al. 1970). The recently approved first-in-class PDE4 inhibitor, 

roflumilast (5) (Rabe, Bateman et al. 2005), and other compounds such cilomilast (6) 

(Christensen, Guider et al. 1998) that have progressed to clinical trials also possess a 

catechol ether core structure. Numerous co-crystal structures are available for this class of 

PDE4 inhibitor (Lee, Markowitz et al. 2002; Card, England et al. 2004; Huai, Sun et al. 

2006), and in all cases the catechol ether oxygen atoms straddle the Nε centre of the 

purine-scanning glutamine, forming convergent hydrogen bonds in the manner predicted 

for the docked moexipril model. The 3-carboxy group of the ligand in this pose would be 

orientated proximal to the bimetallic catalytic centre of the enzyme, whilst the side chain 

extension would be free to run across the hydrophobic rim of the catalytic pocket with little 

constraint. 

 

Figure 5.2 – Structural relationship of established PDE4 inhibitors. 
Established PDE4 inhibitors (2–6) and newly identified PDE4 inhibitors 3-carboxy-6,7-
dimethoxytetrahydroisoquinoline compounds (red dashed line) : moexipril (1a), 7 and 8. 
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Figure 5.3 – Docking models of newly identified 3-carboxy-6,7-
dimethoxytetrahydroisoquinoline inhibitors. 
Moexipril (1a), compounds 7 and 8 fitted to the PDE4 catalytic pocket and comparison with 
papaverine (4). (A)–(C) best scoring poses for moexipril, 7 and 8 docked into the PDE4 
zardaverine co-crystal structure (PDE4: 1MKD). (D) Structure of papaverine (cyan stick) bound to 
PDE4D core catalytic domain (PDB: 3IAK). (E)–(F) models of inhibitor 8 (green stick) fitted to the 
PDE4 papaverine co-crystal structure showing poses with alternative conformations for the 
tetrahydroisoquinoline core. 

This work was carried out by Ryan G. Coleman & Dave Adams 

5.2.3 Biochemical determination of moexipril potency as a PDE4 
inhibitor 

To further establish whether moexipril might exhibit PDE4-inhibitory activity, we assayed 

the compound for its ability to inhibit three widely expressed PDE4 isoforms PDE4A4, 

PDE4B2 and PDE4D5. Moexipril inhibited cAMP hydrolysis by all three isoforms in the 

micromolar range (Fig. 5.4A), but was most potent against the PDE4B2 isoform (IC50 38 

µM), with PDE4A4 and PDE4D5 showing respectively 4-fold and 6-fold lower sensitivity 

to inhibition. Having confirmed the prediction that moexipril should inhibit PDE4, we next 

undertook a search for other commercially available 3-carboxy-6,7-

dimethoxytetrahydroisoquinolines using ZINC (Irwin, Shoichet et al. 2009). Our search 

identified two compounds (7 and 8) possessing the tetrahydroisoquinoline core of 

moexipril but with simplified N-acyl extensions. Both compounds were available in 

racemic form from Princeton BioMolecular Research (USA) and initial docking studies, 

undertaken with the (S)-configured structures, suggested that the PDE4 catalytic pocket 

should be able to accommodate these compounds, with the N-acyl side chains extending 
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across its rim (Fig. 5.3B and 5.3C). The (S)-enantiomers were selected for docking in order 

to match the absolute configuration at the tetrahydroisoquinoline 3-position of moexipril. 

The inhibitory activity of (rac)-7 and (rac)-8 was then assessed using PDE4B2, selected as 

the isoform that exhibited greatest sensitivity to inhibition by moexipril (Fig. 5.4B).  The 

archetypal inhibitor, rolipram (3), was included in this comparative evaluation as a positive 

control. Consistent with the modelling, both of the moexipril analogues inhibited PDE4B2. 

Compound 8 showed the highest affinity for PDE4, having an IC50 of 6.9 µM, 7-fold better 

than moexipril, while compound 7 had an IC50 89 µM. The inhibition curves suggest a 

binding mode that is competitive with cAMP for the catalytic site of the enzyme, 

consistent with the docked models (Fig. 5.3). By comparison, (rac)-rolipram, a drug 

optimized for this enzyme, had an IC50 1 µM against it. Moexipril showed no activity 

against two other PDE family members, PDE8A and PDE5, suggesting that it could act as 

a PDE4 specific inhibitor (Fig. 5.4C). 

 

Figure 5.4 – Determination of the efficacy of established and novel PDE4 inhibitors.  
Activities for each PDE4 subtype were related to a non-drug treated sample (100% control) over an 
increasing dose of the indicated compounds (n=3). IC50 values were calculated using Graphpad 
Prism 4.0. (A) Dose response curves of moexipril against 3 different PDE4 isoforms. (B) Dose 
response curves of four different PDE4 inhibitors against PDE4B2. (C) Dose-response curves of 
moexipril against PDE8A1 and PDE5. 
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5.2.4 Moexipril increases in intracellular cAMP 

To determine whether the inhibition of PDE4 by moexipril and its analogues (7 and 8) 

could induce intracellular increases in cAMP, I employed a FRET-based biosensor 

constructed from the nucleotide binding domain of the type 1 exchange protein activated 

by cAMP, EPAC1 (Nikolaev, Bunemann et al. 2004) (see Figure 5A).  This probe enables 

quantitative, real-time detection of rapid changes in global cAMP following cell treatment. 

Experiments were done using SH-SY5Y cells stably expressing the biosensor. This cell 

line endogenously expresses PDE4 isoforms from the PDE4B and PDE4D subfamilies 

(Fig. 6A and B) (Millar, Pickard et al. 2005). All compounds markedly increased 

intracellular cAMP levels over those induced by treatment with a sub-optimal dose of the 

adenylyl cyclase activator, forskolin alone (Fig. 4B-4E). No FRET changes were detected 

when the compounds were added alone (Data not shown). The FRET ratio changes I 

observe here (Fig. 4F), are in line with those previously published for rolipram potentiation 

of the forskolin-stimulated cAMP response (Nikolaev, Bunemann et al. 2004). Given that 

the magnitude of cAMP response produced by moexipril and its analogues evaluated here, 

is similar to that produced by rolipram, further supports the notion that the ACE inhibitor 

could, in principle, also act as a PDE4 inhibitor in vivo. 
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Figure 5.5 - Epac1-camps sensor for detecting intracellular cAMP changes.  
A – Cartoon diagram of the Epac1-camps sensor depicting the conformational change that occurs 
upon binding of cAMP and the subsequent loss of fluorescence resonance energy transfer (FRET) 
between the two fluorophores. (B) Changes in FRET ratio triggered by a 5 µM application of 
forskolin (FSK), followed by treatment with PDE4 inhibitors (i) rolipram (Roli) (ii) moexipril (Moex) 
(iii) compound 7 (Cmp 7) and (iv) compound 8 (Cmp 8). Data is from single cell and is 
representative of experiments carried out at least n=15. (C) Quantification of mean change in 
FRET ratio for all of the treatments including in lane 6 a saturating dose of forskolin (25 µM) plus 
the general PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX 100 µM). All other lanes forskolin 
(FSK) applied at 5µM. Significance evaluated using ANOVA, *** = p<0.001 when compared with 
FSK alone. White numbers within grey bars represents n number for each experiment. 
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5.2.5 Moexipril treatment promotes PKA-mediated 
phosphorylation of Hsp20 

To evaluate whether, under the conditions of our in vitro studies, the elevation in global 

cAMP induced by moexipril and its analogues also resulted in downstream signaling 

events driven by the cAMP-effector protein, protein-kinase A (PKA), I studied a 

phosphorylation event I have recently demonstrated to be important for attenuating toxicity 

of Aβ peptides associated with Alzheimer’s disease. The small heat shock protein Hsp20 is 

a chaperone protein, which combats a number of pathophysiological processes in the heart, 

vasculature and brain (Edwards, Cameron et al. 2011). The protective actions of Hsp20 

require its phosphorylation by PKA on serine 16. Its association with PDE4 (Sin, Edwards 

et al. 2011), however, keeps cAMP levels surrounding Hsp20 low, maintaining Hsp20 in 

its basal, unphosphorylated state. Thus association with PDE4 prevents inappropriate 

phosphorylation and activation of Hsp20 by fluctuations in basal cAMP levels. A similar 

protective ‘gating’ effect through PKA sequestration has been observed for AKAP-

anchored PKA in the centrosome (McCahill, McSorley et al. 2005; Edwards, Scott et al. 

2012). 

PKA phosphorylation of Hsp20 was chosen here as a readout for physiological PDE4 

inhibition as it has been shown previously that PDE4 inhibition alone, via the action of 

rolipram, could trigger this phosphorylation event without the need for artificially raising 

cAMP with sub-optimal doses of forskolin to activate adenylyl cyclase (Sin, Edwards et 

al.). I thus monitored the transient phosphorylation status of Hsp20 in SH-SY5Y cells 

following treatment of cells with either rolipram, or moexipril, or moexipril analogues 7 

and 8 (Figure 5.6C, D, E and F respectively). As previously observed with rolipram 

treatment (Sin, Edwards et al. 2011), challenge of cells with any of three 3-carboxy-6,7-

dimethoxytetrahydroisoquinoline analogs significantly elevated Hsp20 phosphorylation. 

The temporal nature of Hsp20 phosphorylation induction differed somewhat between 

compounds. However, this is likely to reflect differences in their potency in elevating 

cAMP levels, where rolipram induces the largest increase in cAMP (Figure 5.4B) and 

triggers the most rapid Hsp20 phosphorylation (Fig. 5.6C). The transient nature of 

phosphorylation following treatment is likely to be attributed to compensatory mechanisms 

employed by the cell to combat cAMP increases, mechanisms that include activation of 

PDE4 enzymes by PKA (MacKenzie, Baillie et al. 2002) and dephosphorylation of Hsp20 

by as yet unknown phosphatases. To prove that the observed phosphorylation events were 

PKA dependent, a PKA specific inhibitor (KT5720) was used to attenuate the 
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phosphorylation of Hsp20 induced by Moexipril and a sub-optimal dose of forskolin (Fig. 

5.6G). 

 

Figure 5.6 - PDE4 inhibitors induce PKA phosphorylation of the small heat-shock protein 
Hsp20.  
Lysates from SH-SY5Y cells were blotted for the expression of endogenous (A) PDE4D (B) PDE4B 
enzymes. SH-SY5Y cells were treated with (C) rolipram (10 µM), (D) moexipril (50 µM) (E) 
Compound 7 (50 µM) and (F) Compound 8 (50 µM) for the indicated times. G – SH-SY5Y cells 
treated with PKA inhibitor KT5720 (4µM) 20 minutes prior to addition of forskolin (FSK, 10µM) or 
forskolin (FSK, 10µM) with moexipril (Mx, 50µM) for 5 minutes. Cell lysates subjected to SDS-
PAGE and western blotting. Blots were probed for phospho-Hsp20 and a loading control (tubulin). 
Quantification of the relative amounts of phosphorylation on serine 16 vs. loading control were 
calculated following densitometry. Results are plotted as a percentage of the maximal 
phosphorylation over time. Mean values ±SEM, p-values - * < 0.05, ** <0.01, *** <0.001; ANOVA, n 
= 3 
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5.2.6 Moexipril attenuates Aβ1-42 induced cytotoxicity 

I have shown previously that PDE inhibition can protect against the acute cytotoxic effects 

associated with oligomeric Aβ1-42 incubation. In order to examine if moexipril could exert 

the same protective effects, I compared its action alongside the PDE4 inhibitor rolipram 

and the PDE5 inhibitor sildenafil, both of which have been proposed as possible 

therapeutic agents for the treatment of AD (Puzzo, Staniszewski et al. 2009; Smith, 

Pozueta et al. 2009; Zhang, Guo et al. 2013).  

The neuronal-like SH-SY5Y cells were treated with 10µM Aβ1-42, which typically results 

in approximately 50% cell death after 48 hours incubation (discussed in chapter 3). SH-

SY5Y cells were treated with either vehicle control (PBS), 10µM Aβ1-42 or 10µM Aβscr 

followed by treatment with DMSO (control), rolipram, sildenafil or moexipril 6 hours post 

Aβ addition (as described in chapter 4). After 48 hours of incubation with Aβ peptides, cell 

viability was measured using the MTT reduction end-point assay which measures 

mitochondrial activity and hence cell viability.  

All drug treatments significantly attenuated Aβ1-42 induced reduction in cell viability, 

relative to control treated SH-SY5Y cells. Control cells treated with Aβ1-42 were only 44% 

(± 3%) viable, compared to cells treated with rolipram, 67% (± 8%), sildenafil, 62% (± 

5%), and moexipril 71%, (± 7%). 
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Figure 5.7 – Moexipril attenuates cytotoxicity associated with Aβ1-42. 
Cell viability assays showed that addition of Aβ1-42 but not Aβscr resulted in significant reduction in 
cell viability (# = p<0.001, relative to vehicle only control). This reduction in viability was 
significantly attenuated by treating cells with either rolipram (10µM), sildenafil (1µM) or moexipril 
(10µM) but not DMSO (control). The reduction in cell viability was measured with MTT and 
normalised to vehicle only controls. SH-SY5Y cells were incubated with Aβ peptides for 48 hours, 
PDE inhibitors were added 6 hours post Aβ peptide addition. Mean values ±SEM, p-values - ** < 
0.01, ** < 0.001; ANOVA, n = 4.  

This work was carried out by Masters Student Philippa Fowler under my 

supervision.  

5.3 Discussion 

Several FDA approved compounds were identified using chemical informatics approach to 

screen approved compounds for PDE4 inhibition. Four of the compounds identified 

contained a common dimethoxybenzene moiety (Fig. 5.1A) as would be expected using 

SEA.  Several compounds exhibited PDE4 inhibitory activity in the initial screening 

process however this was only at very high concentrations. The compound, which showed 

the most significant inhibitory activity, even at the lower concentration of 10µM, was 

moexipril.   This compound was chosen for further evaluation. 

Moexipril (1a) was developed as a long-acting, nonsulfhydryl angiotensin-I converting 

enzyme (ACE) inhibitor suitable for once-daily administration (Klutchko, Blankley et al. 

1986). The drug is used to treat hypertension and is well tolerated, apparently lacking 

emetogenic activity (Wyvratt and Patchett 1985; Gu and Strickley 1987). Although 

moexipril itself has ACE-inhibitory activity in its own right, it serves as a prodrug for the 
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more potent metabolite, moexiprilat (1b, Fig. 5.2), generated in vivo by hydrolysis of the 

side chain ester. PDE4-inhibitory activity has not previously been attributed to moexipril, 

but we identified the compound as a candidate PDE4 inhibitor by screening the MDDR 

drug database using the chemoinformatics SEA method. This prediction was further 

supported by molecular docking studies. These suggested that moexipril may feasibly bind 

to the PDE4 catalytic pocket with its methoxy groups engaging the purine-scanning 

glutamate in a manner similar to the binding mode adopted by the catechol ether class of 

PDE4 inhibitors. Indeed moexipril is structurally related to the 6, 7-dimethoxyisoquinoline 

natural product, papaverine (4), an established phosphodiesterase inhibitor of the catechol 

ether class for which a PDE4 co-crystal structure (PDB: 3IAK) has been determined (Fig. 

5.3D).  

To test the prediction that moexipril may inhibit PDE4, I evaluated its effect in assays 

using PDE4A4, PDE4B2 and PDE4D5, three ubiquitously expressed isoforms of the PDE4 

family (Houslay 2009). Encouragingly, our initial assessment confirmed that moexipril 

possesses PDE4-inhibitory activity in these enzyme assays, but not against PDE8A or 

PDE5 (Fig. 5.4). Furthermore, the inhibition of endogenous PDE4 isoforms by moexipril 

was evaluated using a cytosolic Epac-based FRET probe and was shown to significantly 

enhance intracellular cAMP increases triggered by forskolin treatment. Epac-based FRET 

probes require association of only one cAMP molecule to alter FRET ratios by up to 30% 

and they also exhibit fast activation kinetics that allow “real-time” evaluation of cAMP 

dynamics (Ponsioen, Zhao et al. 2004) (Fig. 5.5). As the probes are not localized to any 

intracellular domains (Nikolaev, Bunemann et al. 2004), the readout reflects changes in 

“global” cAMP concentrations and this is appropriate as I show that moexipril has activity 

against multiple PDE4 isoforms (Fig. 5.4)  that are known to target, via unique N-terminal 

sequences, to multiple and distinct cellular locations (Houslay, Baillie et al. 2007; Baillie 

2009).  

To demonstrate that cAMP increases initiated by the action of moexipril on PDE4s could 

result in downstream physiological consequences in cells, I monitored changes in the 

phosphorylation of a well-characterized PKA substrate, Hsp20 (Edwards, Cameron et al. 

2011). Hsp20 is readily phosphorylated by PKA as it exists in a complex with the A-kinase 

anchoring protein (AKAP) AKAP-Lbc (Edwards, Scott et al. 2012). However, the activity 

of this Hsp20 anchored pool of PKA is tonically inhibited by sequestered PDE4 that also 

interact with Hsp20 (Sin, Edwards et al. 2011). These features make Hsp20 uniquely 

sensitive to PKA phosphorylation following PDE4 inhibition, even under basal cAMP 
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conditions. Both rolipram and moexipril significantly increased phospho-Hsp20 levels 

when compared with untreated cells, though the maximal effect was reached earlier with 

rolipram (Fig. 5.6).  This is consistent with the other data I present, showing that rolipram 

challenge results in larger cellular increases in cAMP than does moexipril (Fig. 5.5C). 

As a further functional test of PDE4 inhibition by moexipril we tested it along side known 

neuroprotective PDE inhibitors rolipram and sildenafil, in an Aβ1-42 cytotoxicity assay. I 

have shown previously, that both the PDE4 inhibitor rolipram and the PDE5 inhibitor 

sildenafil can attenuate the cytotoxic effects of oligomeric Aβ1-42 incubation, therefore I 

expected moexipril to also be protective albeit to a lesser extent than rolipram. However, to 

our surprise we found that moexipril was more effective than rolipram in protecting against 

Aβ1-42-induced reduction in cell viability 71% vs. 67%, respectively. This may be due to 

the fact that moexipril shows more selectivity for PDE4B isoforms, whereas rolipram has 

very similar IC50 values for all PDE4 isoforms (Gibson, Hastings et al. 2006). Hsp20 is 

known to associate with all PDE4 isoforms via a binding site in the conserved catalytic 

domain of the PDE (Sin, Edwards et al. 2011), however a PDE4B-specific pool of Hsp20 

may localise to the correct cellular area that confirms neuroprotection. Neuroprotective 

properties have been described previously for moexipril ,where it was shown to protect 

against glutamate, staurosporine or Fe
2+/3+ 

-induced cell death in primary chick embryonic 

neurons. Furthermore, pre-treatment with moexipril was shown to be neuroprotective in 

both mouse and rat models of focal cerebral ischemia, however, these effects were ascribed 

to radical scavenging properties (Ravati, Junker et al. 1999). 

Moexiprilat (1b) was not readily available commercially and consequently we were unable 

to evaluate it for PDE4-inhibitory activity. Instead, we searched for other commercially 

available 3-carboxy-6, 7-dimethoxytetrahydroisoquinoline analogues in order to expand 

the study. Two compounds (7 and 8) were identified with no prior literature or patent 

associations and thus no previously reported biological or pharmacological activity. The 

compounds were sourced and tested in racemic form using PDE4B2. Indeed, both 

compounds showed activity, with analogue 8 exhibiting low micromolar potency against 

PDE4B2 (Fig. 5.4B). In keeping with their ability to inhibit PDE4, both compounds also 

significantly enhanced intracellular cAMP increases triggered by forskolin challenge (Fig. 

5.5) and induced Hsp20 phosphorylation (Fig. 5.6). 

Docking of the (S)-enantiomers of both 7 and 8 confirmed that the 3-carboxy-6, 7-

dimethoxytetrahydroisoquinoline could fit the PDE4 catalytic pocket, whilst allowing the 
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N-acyl side chain to roam over the hydrophobic rim of the pocket. As compounds 7 and 8 

were sourced in racemic form, we cannot say to what extent the activity resides with the 

(S)-configured 3-carboxytetrahydroisoquinoline ring. Our preliminary docking studies 

have suggested that both enantiomers of 7 and 8 might potentially be accommodated in the 

PDE4 catalytic pocket and further studies would, therefore, be required to evaluate the 

eudismic ratio for these compounds. This is potentially an important point because the 

absolute configuration at the C-3 stereocentre of the tetrahydroisoquinoline core could 

significantly affect any ACE-inhibitory activity displayed by these simplified by moexipril 

analogues. Thus, although there is currently no ACE•moexiprilat co-crystal structure 

available, inspection of co-crystal structures for closely related ‘pril’ family ACE 

inhibitors, such as enalaprilat (PDB: 1UZE) (Natesh, Schwager et al. 2004), suggests that 

ACE inhibition should show strong dependence on the absolute (S)-configuration for the 

moexipril(at) tetrahydroisoquinoline core. In particular, the carboxyl group of enalaprilat is 

directed into a pocket lined by Gln, Tyr and Lys residues that form tight hydrogen bonded 

and salt bridge interactions. Access to this pocket will be dependent on the absolute 

configuration of the stereocentre in the moexipril(at) tetrahydroisoquinoline subunit. The 

side chain carboxylate of moexiprilat is also expected to make a strong contribution to the 

compound’s ACE-inhibitory activity, as (by analogy to enalaprilat) it should serve as a 

ligand to the zinc(II) catalytic centre of the enzyme. Thus, simplification of the N-acyl 

extension in compounds 7 and 8 is expected to substantially reduce any ACE-inhibitory 

behaviour. In short, the nature of the N-acyl side chain as well as the absolute 

configuration of the 3-carboxy-6, 7-dimethoxytetrahydroisoquinoline core is likely to have 

a profound influence on ACE inhibition, and these features might be exploited to develop 

related compounds as PDE4 inhibitors without ACE-inhibitory activity. However, it should 

be pointed out that we have not tested 7 and 8 for ACE inhibition in the present study. 

The nature of the N-acyl side chain clearly also exerts a significant influence over the 

PDE4-inhibitory performance of the compounds that we have identified here. At present 

we cannot precisely rationalize this because the side chain extends from the opening of the 

catalytic pocket (Fig. 5.3 E and F) and there is some flexibility in the potential contact that 

it might make with the protein. The rim of the PDE4 catalytic pocket presents an extensive 

hydrophobic surface, and many inhibitors with extensions projecting from a core bound 

within the pocket fold across this sticky surface, as illustrated in Fig. 5.3D for papaverine, 

where the pendent dimethoxybenzyl side chain fulfils this role.  
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In addition to the ambiguity regarding the position adopted by the side chain in the PDE4-

bound state, there may be more than one conformation possible for the N-acyl 

tetrahydroisoquinoline core. The best scored binding poses generated from the modelling 

software (DOCK) orientated the 3-carboxyl group proximal to the enzyme’s catalytic 

metal ions (Fig. 5.3A-C). With this organization, the ionised carboxylate might directly act 

as a ligand on the more deeply sited (zinc) ion or potentially hydrogen bond to water 

ligands on the metal centres. The adoption of this bound pose, illustrated for compound 8 

in Fig. 5.3E, introduces a degree of strain into the tetrahydroisoquinoline subunit. An 

alternative conformer, with less ring strain, would possess a pseudoaxial carboxyl group, 

as shown in Fig. 5.3F. In this case the N-acyl group is predicted to hydrogen bond to water 

ligands on the metal centres and also to the proximal His residue (labelled in Fig. 5.3D) 

that plays a role in PDE4 catalysis by protonating the nucleotide 3’-O during substrate 

turnover. We cannot definitively indicate which of these two possibilities will be favoured 

for the bound compounds. The binding pose presented in Fig. 5.3F positions the carboxyl 

group into a hydrophobic subpocket in the roof of the substrate binding site, but it offers a 

significantly more relaxed conformation to the tetrahydroisoquinoline. In principle, with 

this conformation, replacement of the polar carboxyl group by a small hydrophobic 

substituent might enhance the affinity and PDE4-inhibitory potency of the compound, and 

this design principle has been used previously in the development of another PDE4 

inhibitor series (Allcock, Blakli et al. 2011). 

Given the PDE4-inhibitory activity exhibited by moexipril, it is not entirely clear why the 

compound apparently lacks the typical side effects associated with PDE4 inhibitors. This 

could be due to its ADME properties, since neither moexipril nor moexiprilat is brain-

penetrant. However, the dosing window may also play a role in the reported tolerance of 

moexipril. Thus, in one PK assessment, Cmax for moexipril was determined at 25 µg/L (~50 

nM) from an oral dose of 15 mg, clinical trials having focused on once-daily dosing 

regimens in the 7.5-30 mg range. The negative charge character of the ionised moexipril 

and moexiprilat structures may be a contributory factor underlying their poor uptake by the 

brain, as with the carboxyl-bearing second generation PDE4 inhibitor, cilomilast (6), for 

which brain penetration is also limited (Giembycz 2001). Thus, retention of the 3-carboxyl 

group may be a consideration if a non-emetogenic PDE4 inhibitor series is to be developed 

from moexipril.  

A key underlying driver behind the work described here was to identify previously 

approved drugs that lack any emetogenic liability as PDE4 inhibitors. Such compounds 
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might either have direct potential for repositioning as PDE4 inhibitors or provide the 

starting point for development of novel PDE4 inhibitors with an improved therapeutic 

window. Given that the reported potency for inhibition of ACE by moexipril [IC50 40 nM 

vs. porcine serum ACE (Wyvratt and Patchett 1985; Gu and Strickley 1987)] is some three 

orders of magnitude greater than for the inhibition of PDE4 that we disclose here, direct 

repositioning of moexipril for indications that might respond to treatment by PDE4 

inhibitors is therefore likely to be problematic. Not least because the profoundly higher 

concentrations needed to achieve PDE4 inhibition, compared to those required for ACE 

inhibition, may serve also to uncover an emetic response in moexipril. Nevertheless, 

moexipril might constitute a starting point for novel PDE4 inhibitor development, provided 

that derivatives can be made that lack an emetogenic profile. 
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6 Final Discussion 

The aggregation of the Aβ peptide into amyloid fibrils is a central component in the onset 

and progression of AD (Hardy and Allsop 1991; Selkoe 1991). Several pieces of evidence 

support the role of Aβ as the causative agent in the development of AD, these include (i) 

the localisation of APP to chromosome 21 and 100% penetrance of AD in Down’s 

syndrome patients (ii) synthetic Aβ peptides being toxic to neurons, in culture and in vivo 

and (iii) inherited mutations in APP either flanking or occurring within Aβ region leading 

to increases in production or aggregation propensity of Aβ, resulting in early-onset AD. As 

such, strategies that target toxic Aβ generation, either through perturbation of APP 

metabolism, inhibition of Aβ aggregation, attenuation of the neurotoxic effects of Aβ or 

promotion of Aβ clearance from the CNS, are seen as pathways that can be targeted 

therapeutically in order to prevent development and progression of the disease (Walsh and 

Selkoe 2007).  

Within this body of work, I considered methods to promote the prevention of Aβ 

aggregating into toxic species and the attenuation of subsequent toxic effects on neuronal-

like cells. In order to accomplish this, I investigated the actions of an endogenous 

multifunctional protective protein, Hsp20, which is found ubiquitously throughout the 

body and is readily expressed in the mammalian brain (Verschuure, Tatard et al. 2003). 

Hsp20 has well-established cardioprotective functions (Fan 2011), but more recently there 

is accumulating evidence that it has similar protective functions in the field of 

neuroscience, particularly with regard to protecting against hypoxic conditions (David, 

Boelens et al. 2006; Niwa, Hara et al. 2009; Zeng, Tan et al. 2013). The protective 

functions of Hsp20 are evoked via phosphorylation by cyclic nucleotide-dependent protein 

kinases, thereby permitting a mechanism for therapeutic intervention through the 

modulation of second messenger signalling pathways.  

Several aims were identified with regard to establishing a neuroprotective role for Hsp20 

in the context of AD. First of all, I wanted to examine what effect Hsp20 phosphorylation 

would have in regulating a previously identified interaction with Aβ. Secondly, I wished to 

establish what effect phosphorylation of Hsp20 would have on the aggregation dynamics 

of Aβ. Thirdly, I was interested to determine what effect increasing intracellular phospho-

Hsp20 levels would have on Aβ-mediated cytotoxicity. The fourth and final aim was to 

develop novel therapeutic agents that could potentially be developed to treat AD via the 

induction of Hsp20 phosphorylation. 
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6.1 Hsp20 Inhibits Aβ Aggregation  

The Aβ peptide is produced by regular metabolism of the APP and in its monomeric form 

is non-toxic (Morgan, Colombres et al. 2004). Early studies showed that the toxicity of Aβ 

is related to its aggregated state, as newly solubilised synthetic Aβ monomers were found 

to be neurotrophic, whereas aged synthetic Aβ peptides readily self-associated and were 

potently neurotoxic (Pike, Walencewicz et al. 1991). The aggregation of Aβ relies on a 

central hydrophobic domain of residues 
17

LVFF
20 

(Hilbich, Kisters-Woike et al. 1992). A 

pentapeptide aggregation inhibitor was previously developed to target this domain. Based 

on sequence homology with 
16

KLVFF
20 

it can bind full-length Aβ and prevent fibril 

formation (Tjernberg, Naslund et al. 1996). Using peptide array technology, I established 

that Hsp20 binds proximally to 
16

KLVFF
20

, and I also demonstrated that the lysine residue 

of this domain was essential for mediating the interaction between Aβ and Hsp20. This 

suggests that Hsp20 is interacting directly at the domain involved in Aβ self-association. 

In order for Aβ peptides to self-associate, the monomer must convert from an α-

helical/random coil conformation into a β hairpin. This structural conversion facilitates a 

nucleation-dependent polymerisation reaction and subsequent formation of soluble 

metastable oligomers. These oligomers then serve as a nucleus which can be extended 

through further monomer addition to create protofibrils, which bundle together to form the 

large cross β-sheet fibrils that are associated with amyloid plaques (Gilbert 2013). Our 

NMR study showed that Hsp20 only weakly interacted with monomeric Aβ, however, this 

interaction was enough to stabilise significant quantities of monomeric Aβ in its non-toxic 

α-helical/random coil conformation, reducing its propensity to aggregate into insoluble 

fibrils. Furthermore, the domains that showed the largest changes in chemical shifts 

corresponded with the two helical spanning regions, Q
15

 - D
23

 and I
31

 – M
35 

(Sticht, Bayer 

et al. 1995). These two largely hydrophobic regions interact with each other to form the β 

hairpin structure (Penke, Datki et al. 2003). Therefore Hsp20 is acting at the interface of 

these two regions to inhibit structural conversion and subsequent self-association. 

Gratifyingly, this was in  agreement with the peptide array data, which also highlighted 

that the glutamine residue at position 15 was also important for mediating the interaction of 

Hsp20. This residue has also been shown to be involved in Aβ-Aβ interactions that drive 

its polymerisation into fibrils (Ahmed, Davis et al. 2010). Taken together, these data 

demonstrate that Hsp20 can inhibit the initial aggregation processes central to the 

generation of toxic Aβ species, one of the earliest events in the aetiology of AD. 
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There is a large variety of Aβ species in the aggregation cascade that are associated with 

neurotoxicity, however the identification of the exact species has proven problematic over 

the years (Hardy 2009). The Aβ peptide exists mainly in two states that are important in 

AD pathology, insoluble Aβ fibrils and soluble Aβ oligomers. Early studies initially 

pointed to insoluble fibrils as the cause of neurodegeneration due to their association with 

amyloid plaques in histopathological studies of AD (Gilbert 2013). However, the level of 

plaque abundance did not correlate well with the severity of symptoms in AD patients, and 

in transgenic mouse models of the disease, neuronal loss and cognitive impairments were 

shown to precede any plaque formation. This in turn led to Aβ oligomers being implicated 

as the main driver of neurotoxicity (Walsh and Selkoe 2007).  

With this in mind, I established a collaboration with Carlos Penedo’s group who have 

recently developed a novel assay that can differentiate between oligomerisation and 

fibrillisation of the Aβ peptide in real-time. Utilisation of this new technology allowed me 

to establish what effect Hsp20 would have on these two distinct aggregation pathways. 

Hsp20 was originally hypothesised to play a neuroprotective role in AD due to its co-

localisation with diffuse plaques and to a lesser extent senile plaques (Wilhelmus, Otte-

Holler et al. 2006). Interestingly, these plaques are observed in normal aged brains and are 

not associated with neuronal injury or reactive astrocytes and microglia (Selkoe and 

Schenk 2003). Given that this novel aggregation assay highlighted the fact that Hsp20 was 

more effective at inhibiting fibril growth when compared to oligomerisation of Aβ, the 

data suggests that Hsp20’s association with diffuse plaques is preventing fibril elongation 

and may be having a neutralising effect on this type of amyloid.  A similar mechanism has 

been hypothesised for a different heat-shock protein, also called Hsp20 from the bovine 

parasite Babesia bovis. This Hsp20 was shown to encapsulate Aβ fibrils when the molar 

concentration of Hsp20 was 1000-fold less than Aβ. This Hsp20/Aβ complex was found to 

be non-toxic when overlaid onto SH-SY5Y cells (Lee, Carson et al. 2006). Whether a 

similar mechanism exists with human Hsp20/Aβ interaction remains to be elucidated. 

The main aim of the various Aβ aggregation assays that I conducted was to critically 

evaluate the effects of Hsp20 phosphorylation by comparing it to wild type Hsp20. To do 

this, I employed the phospho-mimetic mutant Hsp20-S16D, where the serine is substituted 

for aspartic acid in order to mimic the negative charge of a phosphate group. 

Understandably, this mutation is only a mimic and is unlikely to behave as effectively as 

phospho-serine; therefore it is possible that phospho-Hsp20 would have performed better 

than Hsp20-S16D in the various in vitro assays that I conducted. This was exemplified in 
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the initial peptide array experiment when I showed that the introduction of the phospho-

serine induced increased binding of Aβ to far greater extent than aspartic acid substitution 

within the PKA/PKG consensus sequence. However, due to the recombinant protein 

constructs used in the in vitro assays, phospho-mimetics are a simpler approach to 

understanding the effect of introducing a negative charge at a specific phosphorylation 

sites, has on a protein’s properties. Phospho-mimetic substitutions are also inherently more 

stable than phosphorylated serine residues. 

Despite this caveat of the phospho-mimetic substituted mutant, I was still able to establish 

that Hsp20-S16D outperformed Hsp20-WT in all of the in vitro assays I conducted. Hsp20-

S16D more readily pulled-down higher order Aβ aggregates, Hsp20-S16D was able to 

stabilise more monomeric Aβ and keep more Aβ in solution in our NMR experiments, and 

it was the only construct to significantly inhibit oligomeric aggregation in the novel real-

time Aβ aggregation assay. Taken together, these data have established that Hsp20 is likely 

to be neuroprotective through direct inhibition of Aβ aggregation. Furthermore, this 

interaction is enhanced via phosphorylation, providing a mechanism that is amenable to 

modulation. 

6.2 Hsp20 attenuates Aβ toxicity 

Intraneuronal accumulation of Aβ is also an early event in aetiology of AD, which causes 

synaptic dysfunction and deficits in LTP, well in advance of any discernible extracellular 

deposition of amyloid (Oddo, Caccamo et al. 2003). Low molecular weight species of Aβ 

and soluble Aβ oligomers readily accumulate intracellularly where they become 

concentrated in low pH vesicles, promoting conditions that drive fibril formation (Hu, 

Crick et al. 2009). Furthermore, intracellular fibril out-growth from multivesicular bodies 

leads to the formation of amyloid plaques. Plaque formation induces cell death resulting in 

insoluble amyloid structures being released into the extracellular space (Friedrich, Tepper 

et al. 2010). In light of this, Aβ accumulation, aggregation and toxicity are primarily 

intracellular events and need to be targeted as such. All previous studies looking at the 

effect of sHSPs’ ability to inhibit Aβ toxicity have utilised co-incubation of sHSPs with Aβ 

prior to overlaying the complexes onto neuronal-type cells. My aim was to establish that 

by increasing intracellular levels of Hsp20 I could attenuate toxicity given that the 

molecular interaction of the two proteins is likely to occur intracellularly. 
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Using two distinct toxicity assays, I was able to establish that the overexpression of Hsp20 

significantly attenuated Aβ toxicity. My initial study utilised the standard MTT-based cell 

viability assay, where I showed that overexpression of either Hsp20-WT or Hsp20-S16D 

conferred significant levels of protection, whereas the non-phosphorylatable mutant, 

Hsp20-S16A did not protect cells from Aβ-mediated cytotoxicity. This was particularly 

interesting as the anti-apoptotic effects of Hsp20 in cardiomyocytes require 

phosphorylation at serine 16 (Fan, Chu et al. 2004). Furthermore, Hsp20 directly interacts 

with Bax to inhibit apoptosis (Fan, Ren et al. 2005). Given that the MTT assay is a 

measure of mitochondrial function it is possible that Hsp20 is attenuating Aβ-mediated 

toxicity through the modulation of apoptosis, in addition to a direct interaction with Aβ. 

Our second Aβ toxicity assay, was based on real-time label-free measurement of cellular 

impedance, a technique capable of monitoring changes in cell morphology with a unique 

sensitivity to the effects Aβ toxicity. Surprisingly, increased expression of any of the 

Hsp20 constructs (including phospho-null) induced significant levels of protection against 

Aβ toxicity. To explain this, one must consider the peptide array where the introduction of 

alanine at serine 16 also increases the interaction of Aβ to levels similar to that of S16D. 

Therefore, increasing levels of Hsp20-S16A within cells would account for its significant 

levels of protection 

The xCELLigence system also permitted dose-response analysis of Aβ’s effects on cells. I 

therefore took advantage of this to compare stable cell-lines I had created that expressed 

either an empty pcDNA3.1 construct or our Hsp20-WT construct. This assay showed that 

stable expression of Hsp20-WT induced high levels of phospho-Hsp20 without the need 

for second messenger pathway activation and resulted in a significant right-shift in the 

dose-response curve of Aβ toxicity. Although significant increases in protection were 

observed, they were probably not as striking as anticipated due to SH-SY5Y cells 

expressing Hsp20 at relatively high levels, a feature that should act to negate any impact of 

Hsp20 overexpression. Again, the ability to knock-down Hsp20 would have been 

advantageous in this assay as Hsp20-null cells would be expected to offer less protection 

against Aβ-induced cytotoxicity, however I failed to find effective siRNA oligonucleotides 

directed at Hsp20 silencing.  

My cell-based assays have allowed me to establish that increased expression of Hsp20 can 

attenuate the toxic effects of Aβ. This could be attributed to two distinct mechanisms of 

action, either via the well established anti-apoptotic effects of Hsp20, or through the direct 
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interaction with intracellular Aβ peptides  and the inhibition of cell-death inducing fibrillar 

out-growth, as described by (Friedrich, Tepper et al. 2010) and (Hu, Crick et al. 2009). 

Consistently, the wild-type version of Hsp20 outperformed the phospho-mimetic mutant in 

cell-based assays, suggesting that phosphorylation of Hsp20 is required to fully activate 

Hsp20’s Aβ toxicity attenuating properties. 

6.3 Targeting Hsp20 phosphorylation as a therapeutic 
strategy for treating AD 

In AD patients, early signs of mild cognitive impairment (MCI) occur in the absence of 

clinical signs of brain injury, suggesting some discrete molecule is interrupting synaptic 

function  (Selkoe 2002). Soluble Aβ oligomers have been identified as the causative agent 

for inducing synaptic dysfunction, which is the early pathological event responsible for 

MCI (Walsh and Selkoe 2007). Attenuation of synaptic dysfunction has been predicted to 

have beneficial effects on cognition, and may also help slow progression of the disease 

(Bales, Plath et al. 2010). AD is a disease of synaptic failure and a hallmark for the latter 

stages of the disease is major neuronal loss and brain atrophy (Selkoe 1991). As such, 

considerable focus has been placed on developing therapeutic agents that prevent neuronal 

death.  

The cyclic nucleotide second messenger system is intrinsically involved in synaptic 

function and has been targeted therapeutically through PDE inhibition in order to improve 

cognition. Learning and memory processes are thought to be mediated mainly through the 

phosphorylation of CREB by PKA or PKG, which in turn controls gene expression 

required to regulate synaptic plasticity (Bales, Plath et al. 2010). Given that PKA and PKG 

also mediate the phosphorylation of Hsp20, I wanted to ascertain if PDE inhibition could 

also induce neuroprotection in our cell model of Aβ toxicity. The effect of PDE inhibition 

on attenuating acute cytotoxicity associated with Aβ has not previously been examined and 

the underlying mechanisms of how cyclic nucleotide signalling systems can render 

synapses resistant to neurotoxic insults has yet to be elucidated. Therefore, I wanted to test 

the theory that Hsp20 phosphorylation is an endogenous mechanism that is up-regulated 

following PDE inhibition and results in protection against neuronal loss associated with Aβ 

toxicity. 

First of all it was established that all PDE inhibitors could dose-dependently induce Hsp20 

phosphorylation in SH-SY5Y cells. Rolipram and sildenafil inducing Hsp20 



 

148 
 

phosphorylation has previously been established (Beall, Kato et al. 1997). However, I have 

shown here for the first time that PDE9 inhibition also induces robust and sustained 

phosphorylation of Hsp20 in neuronal-like cells. I then demonstrated that all of the 

therapeutic agents that induced Hsp20 phosphorylation also attenuated subsequent Aβ-

mediated cytotoxicity. I found good correlation between levels of Hsp20 activation, levels 

of cytoprotection and levels of induced co-localisation between Hsp20 and the Aβ epitope. 

However, without being able to measure the cytoprotective effects of PDE inhibition after 

Hsp20 knock-down I could not prove conclusively that these effects were mediated 

directly via Hsp20. Nonetheless, the data presented regarding PDE inhibition shows for the 

first time that these compounds can protect against the acute toxic effects associated with 

Aβ, making them potential clinical candidates for the treatment of AD. 

Unfortunately, the PDE4 inhibitor rolipram has already failed in a clinical setting due to 

adverse side-effects. This compound has been shown to be effective at treating a number of 

conditions in animal models of disease, including AD, therefore we wanted to search for 

another FDA approved compound that could also function as a PDE4 inhibitor but was not 

associated with adverse side-effects. To do this we carried out an in silico screen and 

identified moexipril, an ACE inhibitor used to treat hypertension. Interestingly, 

hypertension is a major risk factor for the development of AD. Therefore it would be 

valuable to know what effect moexipril treatment has on the conversion to AD given that it 

modestly inhibits PDE4 and can attenuate Aβ-mediated cytotoxicity. Moexipril has also 

been shown to protect against ischemic brain injury in rodents, which could also be 

attributed to a protective effect induced via Hsp20 phosphorylation as opposed to a free 

radical scavenging property described by the authors (Ravati, Junker et al. 1999), given 

that Hsp20 is emerging as neuroprotective in ischemic/hypoxic conditions in the brain 

(David, Boelens et al. 2006; Zeng, Tan et al. 2013).  

One of the biggest risks with using selective PDE inhibitors as therapeutic agents is that 

they target all PDE isoforms of that particular family. This is a result of a high degree of 

similarity of the catalytic unit between family members, a feature that can lead to 

unwanted side effects via perturbation of off-target pathways. A method for circumventing 

this issue involves perturbation of an individual PDE isoforms targeting within a cell rather 

than its activity per se.  This novel approach has been pioneered by the Baillie group 

recently, and is described for Hsp20 in the paper by Sin et al. (2011). The report details a 

direct molecular interaction between Hsp20 and PDE4D5, which is required to mediate the 

hypertrophic response in cardiomyocytes. Short peptide sequences which act to disrupt the 
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Hsp20-PDE4D complex removes Hsp20 from the cAMP “sink” surrounding PDE4D5 and 

leads to more sustained phosphorylation of the chaperone. Due to time constraints, I did 

not examine the effects of these disruptor peptides in our Aβ toxicity assays and in any 

event, peptide based therapeutics would have trouble crossing the blood-brain barrier. 

Nonetheless, this approach provides an exquisite way for selectively targeting Hsp20 

phosphorylation to induce its protective functions without the induction of side-effects 

evoked by active site directed compounds. 

6.4 Final Conclusions 

The findings presented in my thesis suggest a novel endogenous mechanism that can be 

manipulated in order to promote protection against Aβ aggregation and toxicity, one of the 

central features for the onset and progression of AD. The small heat-shock protein, Hsp20 

has well established cardio-protective functions that include anti-apoptotic effects and 

protection against ischemia/reperfusion injury. A key aspect of the protective effects of 

Hsp20 is that they are induced by the phosphorylation of a serine residue within the N-

terminal domain. The phosphorylation of this residue is essential for the anti-apoptotic 

functions; however, we have uncovered for the first time that phosphorylation at this site 

also regulates the binding of Hsp20 with the Aβ peptide, and can attenuate Aβ-induced 

cytotoxicity, which is in agreement with our original hypothesis.  

Hsp20 has previously been described by us as a multi-functional protective agent 

(Edwards, Cameron et al. 2011). Throughout the testing of our hypothesis we have shown 

that even within the context of AD, Hsp20 is functioning at multiple levels (Fig. 6.1). 

Firstly, through our NMR (Fig 3.6) and co-immunoprecipitation (Fig. 3.3 & 3.7) 

experiments I have shown that Hsp20 functions to stabilise Aβ in its monomeric 

conformation by acting as a classical chaperone to prevent protein mis-folding. 

Furthermore we demonstrated that this binding/stabilisation can be enhanced through the 

use of our phospho-mimetic Hsp20-S16D mutant. Secondly, both our peptide array (Fig. 

3.2) and NMR (Fig. 3.5) revealed that Hsp20 is interacting with domains involved in the 

self-association of Aβ, a process that precedes the structural conversion of Aβ into a β-

hairpin structure which is essential for fibril elongation. Hsp20 also completely blocked Aβ 

aggregation into fibrils (Fig 3.9A) and the phospho-mimetic form was able to significantly 

inhibit oligomeric-like growth (Fig. 3.9B), demonstrating that it is an effective Aβ 

aggregation inhibitor, that is effective in two distinct Aβ aggregation pathways. Thirdly, 

we have shown that Hsp20 can attenuate Aβ-induced neuronal cell-death when over-
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expressed in neuronal-like SH-SY5Y cells. We suggest that this is mediated through both 

Hsp20’s direct interaction with Aβ and subsequent inhibition of Aβ toxicity and through 

the activation of Hsp20’s potent anti-apoptotic properties. This was particularly evident 

when we showed that the phospho-mimetic Hsp20 mutant but not the non-

phosphorylatable S16A mutant was able to significantly attenuate Aβ-induced cytotoxicity 

when measured using an MTT based cell viability assay (Fig. 3.11A). Lastly, I developed a 

novel real-time Aβ toxicity assay which helped to also demonstrate that increasing 

intracellular levels of phospho-Hsp20 increases protection against Aβ-induced cytotoxicity 

(Fig. 3.14). Using this platform allowed me to test several compounds which induce Hsp20 

phosphorylation resulting in increased cytoprotection. This also demonstrated, for the first 

time that selective inhibition of PDE9 can significantly induce Hsp20 phosphorylation in 

neuronal-like cells. To conclude, I believe targeting Hsp20 phosphorylation represents a 

novel approach to treating AD, through the activation of this endogenous neuroprotective 

mechanism. 
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Figure 6.1 – A mechanism by which Hsp20 inhibits Aβ aggregation and attenuates 
subsequent toxicity. 
Cartoon diagram for the mechanism for targeting Hsp20 phosphorylation and its effect on the 
aggregation dynamics of the Aβ peptide. A - Under normal physiological conditions Hsp20 can be 
phosphorylated through both cAMP and cGMP second messenger signalling pathways to promote 
processes such as smooth muscle relaxation and cardiac contractility. I have also demonstrated 
that increasing Hsp20 phosphorylation either through overexpression or through selective inhibition 
of PDE4,5 & 9 can significantly attenuate Aβ-induced cytotoxicity. B - Using a variety of protein-
protein interaction and Aβ aggregation assays we have shown that Hsp20 binds to monomeric and 
low molecular weight species of Aβ and functions to keep Aβ in solution and prevent it from 
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aggregating. Hsp20 binds proximal to the site responsible for the self association of Aβ which is 
required for oligomerisation and fibril elongation. Using a phospho-mimetic mutant in these various 
aggregation assays we highlighted how phosphorylation of Hsp20 may improve Hsp20’s ability to 
bind Aβ, inhibit aggregation of Aβ under fibril growing conditions and significantly reduce Aβ 
oligomerisation. (Figure 6.1B adapted from (Doran, Anderson et al. 2012). 

 

6.5 Limitations & Future Directions 

There are several aspects of this thesis that point to limitations within the data/model 

systems and possible avenues of research that should be pursued further. One of the major 

limitations was the inability to knock-down Hsp20 using siRNA. I found only one other 

paper that had managed to accomplish this and it reported an adenovirus containing anti-

sense Hsp20 cDNA, which only reduced Hsp20 expression by 40% (Wang, Zingarelli et al. 

2009). The recalcitrance to silencing may be due to the high stability of Hsp20, and its 

ability to exist as high molecular weight aggregates within cells, only to be released upon 

phosphorylation (van de Klundert, Smulders et al. 1998). Developing viral vectors to 

knock-down and to over express Hsp20 would also be advantageous given that neuronal-

like cells are notoriously difficult to transfect.   

Another limitation of the work presented here was the method for aggregating Aβ. I used 

the ADDL method described by Lambert et al. (1998). The term ADDL is a rather non-

specific term and pools together various Aβ species and the exact species which is 

responsible for toxicity is unknown. However, this is an issue that has plagued the field in 

general. In this regard, my main priority was to achieve reproducible toxicity between 

different experimental replicates, a goal which I managed to reach. Ideally, I would have 

tested the various protocols that exist for aggregating Aβ and validated their toxicity on the 

xCELLigence platform. The xCELLigence system also provides a co-culture system were 

effector cells can secrete factors onto underlying target cells. In this type of setup, one 

could have cells overexpressing APP secreting Aβ onto underlying neurons and monitor 

the effects in real-time. This would more closely depict what is happening in vivo, as 

opposed to treating cells with micromolar quantities of Aβ. 

Another limitation in this body of work was the cell-line that I used. Although SH-SY5Y 

cells have been utilised extensively in neuronal research, they are a mixed population of 

cells derived from neuroblastoma cell-lines. Therefore, whether Hsp20 is expressed as 

abundantly in normal neurons is not known. With the onset of induced pluripotent stem 

cells, it is now possible to differentiate human neurons from the skin of patients and 
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undertake cellular assays on them. This system would constitute a highly apt model for 

testing Hsp20’s neuro-protective abilities, though would be beset by numerous ethical and 

technical difficulties. Another aspect I did not investigate is the effect Hsp20 

phosphorylation has on it being secreted from cells. Given that Hsp20 has been shown to 

co-localise extracellularly with diffuse plaques, it is not know whether this is a result of 

Hsp20/Aβ complexes being released following necrosis of neurons or whether Hsp20 is 

being actively secreted as part of a protection mechanism. Hsp20 is known to act 

extracellularly in response to endothelial injury to regulate platelet function (Kozawa, 

Matsuno et al. 2002) and more recently Hsp20 has been shown to be secreted via exosomes 

and promote angiogenesis via activation of VEGFR2 (Zhang, Wang et al. 2012). The latter 

finding could be particularly significant, as insoluble fibrils are thought to induce hypoxic 

conditions in underlying neurons. Therefore, mechanisms that increase circulating Hsp20 

levels in the brain may also be advantageous.  

Having previously mentioned the selective disruption of Hsp20/PDE4D5, it is worthwhile 

mentioning that I have recently developed a high-throughput screening platform to screen 

for small molecules that disrupt this interaction. Using fluorescence polarisation I have 

recently screened a 10,000 compound library and are currently in pursuit of several hits. 

Albeit, the primary aim of this is to develop a compound that can activate the anti-

hypertrophic properties by inducing Hsp20 phosphorylation in the heart. However, if we 

develop a compound that is able to cross the blood-brain barrier then we would also look to 

test it in transgenic mouse models of AD, with the expectation that it may prevent 

progression of the disease. 

Another aspect that should be investigated is whether there is a direct interaction between 

Hsp20 and PDE5 or Hsp20 and PDE9, similar to what we see with PDE4. Hsp20 binds 

directly to the catalytic domain of PDE4s (Sin, Edwards et al. 2011) and given even across 

PDE subfamilies there is good conservation it may be possible that Hsp20 binds directly 

with other PDEs. It would also be worthwhile testing whether there is a synergistic effect 

of inducing Hsp20 phosphorylation when activating both cAMP and cGMP second 

messenger pathways. Previous studies have shown that sildenafil can reduce Aβ levels in 

vivo (Puzzo, Vitolo et al. 2005) while rolipram has no effect on Aβ plaque load (Gong, 

Vitolo et al. 2004). Therefore it would be interesting to note if these PDE inhibitors are 

activating discrete pools of Hsp20 or the same pool. Finally our studies with PDE9 

inhibitors demonstrated for the first time that these compounds can potently induce Hsp20 

phosphoryaltion. Given that Hsp20 phosphorylation has recently been shown to protect 
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against in vitro ischemia/reperfusion injury of mouse neuroblastoma cells and could 

potentially be targeted therapeutically to treat ischemic stroke (Zeng, Tan et al. 2010; 

Zeng, Tan et al. 2013) may make PDE9 inhibitors of therapeutic value for other indications 

requiring Hsp20’s protective effects. 
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7 Appendices 

 

Appendix 1 – siRNA Knock-down of Hsp20 expression 
SH-SY5Y cells nucleofected with various concentrations of siRNA that target Hsp20 and incubated 
for 72 hours. Hsp20 expression was analysed using densitometry with tubulin serving as a loading 
control. Hsp20 expression was then normalised to SH-SY5Y cells treated with same concentration 
of control siRNA. A – None of the concentrations of siRNA tested resulted in effective reduction in 
Hsp20 protein levels. Mean values ±SEM, n = 2. B – In a typical Hsp20 blot high molecular weight 
bands are always present which are thought to represent large, SDS-stable multimers of Hsp20.  
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Appendix 2 – MG132 treatment of SH-SY5Y cells 
SH-SY5Y cells were treated with 3uM of MG132 over a 6 hour timecourse. MG132 is a 26s 
proteasome inhibitor which typically leads to a rise in protein levels for proteins regulated via the 
ubiquitin/proteosomal pathway. I found that Hsp20 levels were in fact significantly reduced after 1 
hour of treatment with MG132 and this reduction was sustained over 6 hours. Therefore it is 
unlikely that Hsp20 levels are regulated via the ubiquitin/proteosomal pathway.  Mean values 
±SEM, * = p-value < 0.05, ANOVA, n = 3. 
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Appendix 3 – Cyclohexamide treatment of SH-SY5Y cells 
SH-SY5Y cells were treated with 100uM of cyclohexamide over a 6 hour timecourse. 
Cyclohexamide is an inhibitor of protein biosynthesis and prevents the expression of new proteins. 
As there were no significant changes in Hsp20 expression over the 6 hour window suggests that 
Hsp20 expression is relatively stable. Mean values ±SEM, n = 3. 
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