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Abstract

Fine tuning in the Standard Model (SM) is the basis for a widespread expectation that

the minimal model for electroweak symmetry breaking, with a single Higgs boson, is

not realised in nature and that new physics, in addition to (or instead of) the Higgs,

will be discovered at the Large Hadron Collider (LHC). However constraints on new

physics indicate that many models which go beyond the SM (BSM) may also be fine

tuned (although to a much lesser extent). To test this a reliable, quantitative measure

of tuning is required. We review the measures of tuning used in the literature and

propose an alternative measure. We apply this measure to several toy models and a

constrained version of the Minimal Supersymmetric Standard Model.

The Exceptional Supersymmetric Standard Model (E6SSM) is another BSM moti-

vated by naturalness. As a supersymmetric theory it solves the SM hierarchy problem

and by breaking a new gauged U(1) symmetry it also solves the µ-problem of the

MSSM. We investigate the Renormalisation Group Evolution of the model and test

for radiative electroweak symmetry breaking in two versions of the model with differ-

ent high scale constraints. First we briefly look at scenarios with non-universal Higgs

masses at the GUT scale and present a particle spectrum that could be observed at

the LHC. Secondly we study the constrained E6SSM (CE6SSM), with universal scalar

(m0), trilinear (A0) and gaugino (M1/2) masses. We reveal a large volume of CE6SSM

parameter space where the correct breakdown of the gauge symmetry can be achieved

and all experimental constraints can be satisfied. We present benchmark points cor-

responding to different patterns of the particle spectrum. A general feature of the

benchmark spectra is a light sector of SUSY particles consisting of a light gluino, two

light neutralinos and a light chargino. Although the squarks, sleptons and Z ′ boson

are typically much heavier, the exotic color triplet charge 1/3 fermions as well as the

lightest stop can be also relatively light leading to spectacular new physics signals at

the LHC.
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Chapter 1

Introduction

This thesis describes my research activities carried out during the course of my Ph.D

studies. I have a general interest in the phenomenology of both the Standard Model

(SM) and physics Beyond the Standard Model (BSM) and the construction of new

phenomenologically viable models.

My research has been focused around three related topics, electroweak symmetry

breaking, supersymmetry and naturalness. Discovering the mechanism of electroweak

symmetry breaking used in nature is essential because it will allow us to understand

the origin of the masses of fundamental particles and will either verify the SM, if the

simplest version of the Higgs Mechanism is revealed, or provide clues for how the SM

must be extended.

For example, in supersymmetric extensions of the SM there are at least two Higgs

doublets, leading to at least five physical Higgs particles. One of the major motivations

for supersymmetry is that it may solve a naturalness problem with the SM, where the

parameters require unnatural fine tuning to keep the Higgs mass light. Naturalness

also provides the motivation for most of the BSM physics that provides phenomenology

testable at the LHC.

With my supervisor Dr David Miller I carried out research into measuring fine

tuning in the Minimal Supersymmetric Standard Model (MSSM) [1–3]. This work
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is important because fine tuning is used as a motivating factor for most of the BSM

phenomenology and BSM experimental searches at current and future colliders, as well

as being the basis for the construction of new exotic physics models. There are a number

of difficulties with the tuning measures applied in the literature, including ambiguities

in how to combine tunings for individual parameters and observables. Often whether

or not a scenario is considered fine tuned depends upon the measure applied. To resolve

this we have developed a tuning measure which is directly based on our intuitive notion

of tuning and automatically combines tuning from all parameters and observables.

I have also worked on projects on the Exceptional Supersymmetric Standard Model

(E6SSM) with collaborators Prof. Steve F. King, Dr David J. Miller, Dr Stefano Moretti

and Dr Roman Nevzorov. The E6SSM model was introduced by S. F. King, S. Moretti

and R. Nevzorov in [4–5]. This is a very interesting model because it solves the µ-

problem of the MSSM, in a similar way to the NMSSM, but without the accompanying

tadpole or domain wall problems. In addition it has a significantly increased upper

bound on the mass of the lightest Higgs particle (155 GeV) in comparison to the

MSSM, which may ease the Little Hierarchy Problem. It is also very exciting phe-

nomenologically as it predicts the existence of exotic colored objects which may be

seen at the LHC.

The projects I have been involved in examine the Constrained Exceptional Super-

symmetric Standard Model (CE6SSM) [6] and the non-universal Higgs mass (NUHM)

E6SSM [7] versions of this model to see if electroweak symmetry breaking may be ra-

diatively driven in them in a similar way to the Constrained Minimal Supersymmetric

Standard Model (CMSSM). Since radiatively driven electroweak symmetry breaking

is viewed as a triumph of the CMSSM, this work provides an important test for the

CE6SSM and additionally allows us to predict mass spectra which could be seen at the

LHC from only three (or six in the case of the NUHM E6SSM) soft SUSY breaking

parameters.

Chapters 2-4 describe background information on topics which I find interesting

and provide information which is important for understanding the research carried out
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in later chapters. In chapter 2 a description of the Standard Model is provided with

particular emphasis on electroweak symmetry breaking and an introduction to the first

naturalness problem in the thesis, the Standard Model Hierarchy problem. Useful

pedagogical materials on the topics described here can be found in [8–16].

In much of chapter 2 the language used is deliberately quite basic as it is aimed at

as wide an audience as possible. The rest of this thesis is pitched at a postgraduate

level student conducting research into theoretical elementary particle physics.

In chapter 3 supersymmetry (SUSY) is introduced. The main motivations for this

class of BSM physics are described and basic descriptions of constructing SUSY models

and of breaking them are provided. Helpful pedagogical materials may be found in [17–

28].

Chapter 4 introduces the MSSM. A description of the particle content and structure

of the model are given, followed by a description of EWSB in the MSSM and finally

the tree level expressions for the masses of the MSSM particles are presented.

Chapters 5 and 6 describe research I carried out into fine tuning in collaboration

with Dr David Miller. In Chapter 5 problems with tuning measures in the literature

are identified and a new tuning measure is introduced and its relationship to the other

measures revealed.

This new tuning measure and several of the measures in the literature are then

applied to the Standard Model and various toy models in chapter 6 and the results

compared. Finally the new tuning measure is applies to the CMSSM and the results

are analysed.

Chapter 7 describes the E6SSM. As such it provides further background material,

drawn from papers written by my collaborators [4–5].

Chapters 8 and 9 describe the results of investigations into the radiative electroweak

symmetry breaking in the CE6SSM and NUHM E6SSM. Exclusion plots showing re-

gions of parameter space where no EWSB solutions can be found are presented. The
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restrictions from EWSB breaking solutions imply that the gluino is lighter than the

squarks, which is unusual and interesting phenomenologically. In addition it is shown

that low mass exotic particles are consistent with the model and may be detected at

the LHC. Finally detailed particle spectra are presented and discussed



Chapter 2

The Standard Model

The Standard Model (SM) of particle physics is a theoretical construct (called a Quan-

tum Field Theory) which is consistent with all current data1, describing all observed

fundamental particles2 and their interactions due to the strong, electromagnetic and

weak forces.

The particle content of the SM is shown in Fig. 2.1, grouped into matter particles

and force mediating particles. The first generation of matter particles are the building

blocks of atoms and molecules. The second and third generations are heavier analogues

of the first generation, but they do not form stable bound states as they decay too

quickly.

Matter particles can also be split up into quarks and leptons. The quarks interact

via the strong, weak and electromagnetic forces. Each generation of quarks contains

one particle with positive electric charge, referred to as up type quarks, and one particle

with negative electric charge referred to as down type quarks. The first generation of

quarks form the bound states, protons and neutrons which make up the nucleus of an

1Except for the case of neutrino masses as experiments have recently shown that neutrinos have

mass [29–31]. The SM has not yet been adapted to include neutrino masses though this could be

readily done.

2and one unobserved particle, the Higgs boson.
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Figure 2.1: The particle content of the Standard Model. Taken from [32]

atom.

The leptons do not interact via the strong force. Instead each lepton generation

consists of a lepton which interacts via both the weak force and the electromagnetic

force, with negative electric charge and a second type of lepton, termed neutrino, which

only interacts via the weak force and as such has an electric charge of zero. The first

generation charged leptons is the electron. This combines with the positively charged

nucleus to form electrically neutral bound states called atoms.

The force mediating particles can be categorised by the force they mediate: the

electromagnetic force is mediated by the photon, γ; the Strong force, by particles called

gluons, g, and the weak force by weak particles W± and Z0. Gravitational interactions

are presumably mediated by a graviton but this particle is, so far, undetected due to

the relative weakness of gravitation in comparison the other fundamental forces. For

this reason gravity (and gravitons) are not included in the SM.

Also shown in Fig. 2.1, and completing the Standard Model is the Higgs particle.

The Higgs particle is yet to be observed, but plays a crucial role in the Standard

Model as it is responsible for generating masses for the fundamental particles. How

fundamental particles obtain mass is currently unknown, but a theoretically consistent
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model of the fundamental particles and their interactions cannot be constructed unless

it includes a mechanism which generates these masses. In the SM the simplest version

of the Higgs mechanism (described in Sec. 2.3) plays this role, and this predicts the

presence of the Higgs particle.

The construction of the Standard Model is based upon elegant ideas about symme-

tries of nature. The fundamental forces, which induce the interactions of fundamental

particles, are described by groups of symmetry transformations, called gauge3 groups,

under which the physics is invariant. For example one important family of symme-

try groups can be introduced by considering transformations of complex N-component

vectors.

The transformations can be represented by N × N matrices. If these matrices are

unitary (i. e. U †U = I) the transformations they perform on the vectors will preserve

the inner product between them. Such matrices form a unitary group U(N). If the

matrices also have a determinant equal to 1 then they form the group of special unitary

matrices, SU(N).

Strong interactions are described by Quantum Chromdynamics (QCD), which is an

SU(3) gauge theory. The electromagnetic and weak forces are described by a unified

electroweak theory with gauge group SU(2)⊗U(1). This electroweak symmetry is bro-

ken by the Higgs mechanism to generate masses for the fundamental particles, leaving

a different U(1) symmetry associated with the gauge theory Quantum Electrodynamics

(QED) which describes how light interacts with matter. The full gauge group of the

SM, before symmetry breaking, is SU(3) ⊗ SU(2) ⊗ U(1).

The physics is also invariant when particles in the Standard Model undergo space-

time transformations of the Poincaré group. This is a group of translations, rotations

and Lorentz boosts. Rotations and boosts make up the Lorentz group of Special

Relativity, which is a subgroup of the Poincaré group.

3Gauge transformations are discussed in more detail in 2.2.
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2.1 Particles in the Standard Model

In this section the fundamental particles of the Standard Model and their properties

are described in more detail. These properties are presented in the Particle Data Book

[33] and this has been heavily relied upon as a reference guide here. This information

and some updates can be found at the live website [34].

Particles can be classified according to their spin, which is an internal quantum

number, analogous to angular momentum, though it cannot be described in terms

of individual constituents rotating about some fixed axis and is instead an intrinsic

property of the particle. Particles with spin values which are odd integer multiples of4

1/2 are called fermions. Particles with integer spin are called bosons.

In the Standard model all the fundamental matter particles are fermions and have

spin = 1/2.

2.1.1 Fermions

The behaviour of fermions can be conveniently described in the Lagrangian formalism.

Just as in classical field theory, the equations of motion (Euler-Lagrange equations)

are obtained from the Lagrangian density by finding the path of least action. However

unlike classical field theory the fields in the Lagrangian must be quantised.

Free fermions are governed by the Dirac equation,

(iγµ∂µ −m)ψ = 0. (2.1)

which is an Euler-Lagrange equation of the Dirac Lagrangian,

LDirac = ψ(iγµ∂µ −m)ψ, (2.2)

where ψ the fermion field is a 4-component object, and the adjoint field is given by

ψ = ψ†γ0. µ runs over the set {0, 1, 2, 3} and repeated indices are summed over, m is

4Here and throughout this thesis natural units are used in which the reduced Planck constant, h̄

and the speed of light are set equal to 1.
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the mass of the fermion and γµ are the 4 × 4 Dirac matrices which satisfy the Clifford

algebra, {γµγν + γνγµ} = 2gµν and gµν = Diag(1,−1,−1,−1) is the Minkowski space-

time metric. This can be written in 2x2 block form. Choosing the Weyl representation

of the Dirac matrices,

γ0 =


 0 1

1 0


 , γi =


 0 σi

−σi 0


 , (2.3)

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 , (2.4)

⇒ LDirac = (ψ†
R ψ†

L)


 −m iσ · ∂

iσ · ∂ −m




 ψL

ψR


 , (2.5)

where ψL and ψR are two component Weyl spinors and

σµ = (1, σ1, σ2, σ3) σµ = (1,−σ1,−σ2,−σ3). (2.6)

If m = 0 ψL and ψR decouple and obey independent equations of motion therefore

they can be interpreted as separate objects which are coupled by the mass. Fields

which obey the ψL equation of motion are called left-handed chiral fields and those

obeying the ψR equation, right-handed chiral fields. If the fermion is massless there is

no requirement for both the left-handed and right-handed fields to exist.

In addition left-handed and right-handed fields have different interactions. Only

left-handed fields interact via the weak force. This means that left-handed fields are

placed into electroweak doublets, while the right-handed chiral fields are electroweak

singlets. For a review of the evidence for this see [35–36]. This further suggests that

ψL and ψR really are fundamentally different objects which get coupled by a mass

interaction term.

The chiral fields of the Standard Model and their properties are summarised in

Table 2.1. These are then mixed by mass couplings into mass eigenstates. The mass

eigenstates and properties are shown in Table 2.2.

All of the leptons shown have now been discovered [37–42]. With quarks there
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Names SU(3)C SU(2)L U(1)Y

quarks Qi =




ui

di




L

3 2 1
6

uR i 3 1 2
3

dR i 3 1 −1
3

leptons L =




li

νi




L

1 2 −1
2

lR i 1 1 −1

Table 2.1: The properties of the chiral fields of the Standard Model which apply to all

three families, i = {1, 2, 3}.

is an important subtlety because at low energies the quarks are confined to color

neutral bound states called hadrons. There are two types of hadron known as baryons,

made up of three quarks each carrying a different color and collectively forming a

‘white’, or color neutral state, and mesons made up of a quark and an anti-quark

with the color charges cancelling. The up, down and strange quarks were originally

postulated by Gell-Mann and Zweig [43–47] to explain the hadronic spectra. Crucial

evidence that quarks really were the substructure of hadrons was obtained when deep

inelastic scattering experiments [48–49] verified Bjorken-scaling [50]. Since then the

heavier quarks have also been discovered [51–54]. So the existence of all fermions in

the Standard Model is well established.

The masses shown in Fig. 2.2 have been extracted from experimental data, and are

presented in [33]. In the SM the mass of each fermion is set by its interaction strength

with the Higgs (see Sec. 2.3.2) which is a parameter of the model. This means the

interaction strength with the Higgs can be fixed by experimentally measured masses,

despite no observation of the Higgs to date.

The electric charge shown for the electron is that measured in experiment to be,
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Names charge mass Names charge mass

quarks u +2
3
e 1.5 − 3 MeV leptons e− −e 0.511 MeV

d −1
3
e 3 − 7 MeV νe 0 < 225 eV

c +2
3
e 1.27 GeV µ− −e 105.7 MeV

s −1
3
e 2.5 − 5.5 MeV νµ 0 < 0.19 MeV

t +2
3
e 172.5 GeV τ− −e 1.78 GeV

b −1
3
e 4.2 GeV ντ 0 < 18.2 MeV

Table 2.2: Fermions of the Standard Model in their mass eigenstates.. The charges are

given in terms of the charge of the electron, −e = (−1.602176487×10−19±4×10−27)C.

−e = (−1.602176487× 10−19 ± 4 × 10−27)C [33]. The muon and tauon charges shown

are equal to that of the electron as the SM assumes a family symmetry of charges. The

neutrinos have strong experimental limits on non-zero charges (see e.g. [55] and more

recently [56]). From measurement of the charges of the proton [57] and neutron [58]

and the quark model of these baryons one can infer that the charges of the up and

down quarks should be +2/3e and −1/3e respectively. Then an assumption of a family

symmetry again yields the charges for the second and third generations. There is no

experimental evidence of any deviations from this family symmetry of electric charges

and in some cases there is very precise experimental confirmation, see e.g. [59] for the

muon.

In addition the electric charges of the SM particles are derived from the gauge

transformation properties of the left-handed and right-handed chiral fields they are

composed of, as will be demonstrated in Sec.2.3.2. In practise this means that exper-

imentally measured electric charges can be used to fix the hypercharge (charge of the

U(1) gauge in the SM group SU(3)⊗SU(2)⊗U(1)) of these fields and conversely any

constraints on the hypercharges leads to constraints on the electric charges.

This is important because the charges of the SM particles are also constrained by
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anomaly cancellation. The gauge symmetries of the Standard Model are imposed as

classical symmetries of the Lagrangian. However it is the possible that they could be

violated by quantum corrections. In chiral theories there are certain dangerous pertur-

bative quantum corrections, referred to as anomalies, which can violate the classical

symmetry in an undesired way. Particular arrangements of the hypercharges can lead

to cancellation of these effects preserving the gauge symmetry at the quantum level.

The arrangement of electric charges described above does precisely this.

2.1.2 Gauge Bosons

The photon is a spin 0 massless gauge boson, which mediates the electromagnetic force.

The mass of the photon is experimentally consistent with zero, the upper limit on its

mass being 6× 10−17 eV [33] and its charge has an upper limit of 5× 10−30e [33]. The

photon is its own anti-particle.

The W± are the charged spin 1 gauge bosons which mediate the weak force, having

electromagnetic charge ±1e. The two different signs represent the particle and the

anti-particle. However which sign is associated with the particles and which with the

anti-particles is purely a matter of convention. The mass is mW = 80.403± 0.029 GeV

[33]. The W was discovered in 1983 at Cern [60].

The Z0 is a neutral spin 1 gauge boson which mediates the weak force. It has mass

mZ = 91.1876±0.0021 GeV [33]. It was discovered in 1983 [61] just after the W boson.

The gluon is a massless spin 1 gauge boson with zero electric charge which mediates

the strong force. From experiment [62] the upper limit on a mass for the gluon is

several MeV. There are eight types of gluons commonly labelled by color, with each

gluon carrying a color-anticolor charge.

The Higgs particle is a spin 0 boson. Uniquely amongst the particles of the Standard

model it is a Lorentz scalar. From searches for the Higgs at LEP the lower bound on

the SM Higgs is mH > 114.4 GeV [63]. Recently additional constraints have come

from the Tevatron at Fermilab, through search channels gg → h → W+W− and
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qq → hW± → W±W+W−. The combination of CDF and D0 results now rules out

a Higgs mass of 170 GeV [64]. In addition to direct search constraints there are also

indirect constraints that can also be used to place bounds on the mass of the Higgs.

From electroweak precision test (EWPT) data fitted to the SM an upper bound on the

Higgs mass is found, mH < 154 GeV [65].

2.2 SM Interactions and the Local Gauge Invari-

ance Principle

Gauge theories are fundamental to particle physics. As will be shown below the gauge

structure of the Standard Model is remarkably successful in describing the interac-

tions of the fundamental particles. For example Quantum Electrodynamics (QED) is

a quantum gauge theory which describes how light interacts with matter with remark-

ably well tested predictions. Integral to the development of QED is the local gauge

invariance principle.

Classical Electromagnetism is described by Maxwell’s Equations. These equations

exhibit a gauge freedom meaning that a transformation can be made on the scalar

or vector fields (electric and magnetic potentials respectively) that leaves the physics

invariant. These are termed gauge transformations. Aµ = (V,A) is the electromag-

netic 4-vector potential which combines the scalar, V , and vector, A, potentials of

electromagnetism. Using this Maxwell’s equations can be derived from,

LEM = −1

4
FµνF

µν , (2.7)

where F µν ≡ ∂µAν − ∂νAµ, (2.8)

is the Maxwell (or electromagnetic field strength) tensor. This Lagrangian is invariant

under gauge transformations, Aµ → Aµ − ∂µα(x)

However if we try to combine this with the Dirac equation (Eq. 2.1) and add an elec-

tromagnetic interaction term, then applying only the gauge transformation of classical

electromagnetism changes the physics. To leave the physics unaltered the wavefunc-



2.2: SM Interactions and the Local Gauge Invariance Principle 14

tion, ψ must be transformed simultaneously with the electromagnetic potentials. Local

gauge invariance of the wavefunction is required.

It is more elegant to reverse this argument. The wavefunction ψ describing the field

of a particle is not observed, it is |ψ| which has physical meaning. One can adjust the

field by phase factors ψ → exp (iα)ψ and observables which are of the form
∫
ψ∗Ôψ dV ,

where Ô is an operator, are unchanged.

This is known as ‘global gauge invariance’. The word global is used because the

phase factor is the same for all points in space-time. It is also possible to apply a

position dependant phase factor ψ → exp (iα(x))ψ. However, since derivatives are

involved in the Dirac equation, applying this transformation will result in a new term

which alters the physics. Demanding local gauge invariance requires modification of

the Dirac equation.

To create local gauge invariant terms the derivative ∂µ is replaced with the covariant

derivative. For electromagnetism this is written as,

Dµ = ∂µ + iqAµ, (2.9)

where q is the electric charge. Now whenever ψ undergoes an (electromagnetic) gauge

transformation, so does the 4-vector potential Aµ. So the formal definition of a local

(electromagnetic) gauge transformation is now,

ψ → exp (iqα(x))ψ (2.10)

Aµ → Aµ − ∂µα(x). (2.11)

Combining the free Dirac and electromagnetic Lagrangians and imposing local gauge

invariance, leads to the QED Lagrangian,

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.12)

= ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − qψ̄γµψAµ. (2.13)

where the γµ are the Dirac matrices, defined in Sec. 2.1.1.
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Modifying the Dirac equation so that it is locally gauge invariant has led to the

inclusion of a new term, −qψ̄γµψAµ. This term describes interaction between electro-

magnetic fields and matter, and we now have the Lagrangian of Quantum Electrody-

namics!

QED is an extremely well tested theory and has survived since its original inception

in the late 1940s [66–72]. Experimental tests of QED are in agreement with theory to

a staggering level of precision. For example the anomalous magnetic moment of the

electron is:

ae(Experiment) = 11596521810 ± 7 × 10−13 (2.14)

ae(Standard Model) = 11596521827.8(0.772)(0.011)(0.026)× 10−13 (2.15)

Although this compares experiment with the Standard Model theory prediction [73],

ae is not very sensitive to the strong and weak forces and so this is predominately a test

of QED. The number quoted has been calculated by using a value for the fine-structure

constant, α determined by experiments using the Rubidium [74] atom.5

Since the local gauge invariance principle has led to the remarkably successful gauge

theory QED it is reasonable to apply it to interactions involving the weak and strong

forces too. The electromagnetic gauge (phase rotations) we have made reference to so

far is the abelian group U(1)Q. The subscript Q refers to the charges of the group,

which in this case are those of electromagnetism.

To extend this idea we impose local gauge invariance for weak interactions, SU(2)W ,

where W labels this gauge symmetry as one associated with weak interactions. Then

all weakly interacting quarks and leptons are placed into SU(2)W doublets, to provide a

theory of weak interactions. For the strong force we place strongly interacting quarks

into SU(3)C triplets6 such that under these SU(3)C transformations the physics is

invariant. This leads to the gauge theory Quantum Chromodynamics (QCD).

5An alternative number quoted in [73] can also be obtained by using α measured from experiments

using the Caesium [75] atom.

6Where C refers to the color charge.
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For the standard model we have the gauge group SU(3)C⊗SU(2)W ⊗U(1)Y . From

the above discussion one might have expected U(1)Q to appear in the gauge group

instead of the U(1)Y symmetry describing hypercharge (Y) interactions. However as

we shall see the unified electroweak theory with gauge group SU(2)W ⊗ U(1)Y is in

fact broken to the gauge group of electromagnetism, SU(2)W ⊗ U(1)Y → U(1)Q.

The gauge group of the Standard Model leads to predictions of how all the fun-

damental particles of the SM interact. There is an enormous body of experimental

evidence which supports the interactions predicted by the SM.

The SU(2)W ⊗ U(1)Y theory of electroweak interactions correctly predicts inter-

actions involving neutral and charged Weak currents as well as decays of the Weak

bosons. For example see [76] and references therein.

The strength of the QCD interaction increases as the energy scale of the physical

process is decreased. This means, as mentioned earlier, that colored objects are confined

to bound colorless states, hadrons and mesons, at low energies. Due to this confinement

direct probes of QCD are more difficult. Nonetheless perturbative QCD combined with

models of hadronisation make predictions which can be testable. These predictions are

now well confirmed by experiments.

For example at LEP the processes e+e− → Four jets, and, e+e− → Two jets were

used to directly probe the gauge structure of QCD [77]. The results are consistent with

the SU(3)C structure of QCD.

Despite the accuracy of these predictions we also have irrefutable experimental

evidence for a violation of the SU(2)W ⊗ U(1)Y symmetry. For example in experi-

ments we observe vector bosons for weak interactions with masses [60–61]. It is not

possible to write a mass term for gauge bosons which is invariant under local gauge

transformations.

Mass terms are of the form M2BµB
µ, where Bµ is the gauge field and M the mass.

So for example if Bµ transforms as Bµ → Bµ + ∂µχ(x) under the gauge transformation
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then,

M2BµB
µ →M2(BµB

µ + 2Bµ∂
µχ(x) + ∂µχ(x)∂µχ(x)). (2.16)

The SU(2)W ⊗ U(1)Y prediction of massless vector bosons is not seen experimentally.

Therefore some mechanism of electroweak symmetry breaking should be introduced.

2.3 Electroweak Symmetry Breaking

Electroweak symmetry must be broken to give mass to fundamental particles. However

this should be done in a such a way that the predictions for the particle interactions

made by the gauge theory are preserved. This can be achieved if the electroweak

symmetry is broken spontaneously.

To do this in general one takes a continuous symmetry group G of the Lagrangian

and adds a potential V which is also invariant under the action of G. Minimising V

will determine the minimum energy configuration, or vacuum. If the minimum of V

does not respect the full symmetry of Lagrangian, then the symmetry is spontaneously

broken in the physical vacuum.

In this case the physical vacuum will not be invariant under all generators of the

group. The generators under which the physical vacuum is not invariant are said to

have been ‘broken’. A perturbative expansion of the Lagrangian about the physical

vacuum is then written. This gives us the Lagrangian of small oscillations (L∫ .≀.) about

the physical vacuum from which the mass spectrum is obtained.

2.3.1 The Higgs Mechanism

Now we need a continuous symmetry of the Lagrangian and a vacuum, V, which meets

the requirements for spontaneous symmetry breaking. It is then possible to determine

what happens to the bosons associated with the broken generators, by looking at the

mass spectrum of L∫ .≀..
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When this is carried out however one does not, in general, obtain mass terms for

gauge bosons. Instead massless particles known as Goldstone bosons appear. This

phenomenon is known as Goldstone’s theorem [78–80]. This theorem is commonly

stated (see e. g. [16]) as follows. For every broken global continuous symmetry of the

Lagrangian, there is a massless spin zero Goldstone boson which has the same quantum

numbers and parity as the 0th component of the symmetry current, jµ. However when

Goldstone’s theorem was first formulated it was not clear that local gauge symmetries

could evade the basic assumptions it uses. It appeared to be a serious obstacle for

developing spontaneously broken gauge theories which describe nature.

As will be shown shortly, a local gauge transformation can remove the Goldstone

bosons and therefore, in a local gauge symmetry, the Goldstone bosons cannot be

independent physical particles in any gauge. Indeed it is choosing a particular local

gauge which leads to a violation of the axioms of Goldstone’s theorem.

Peter Higgs first showed this and developed the Higgs Mechanism [81–86] to gener-

ate masses for gauge bosons. In simple terms this works by postulating a Higgs Field

which in the minimum energy configuration of the universe (or vacuum) is expected to

have a non-zero value. This means that the associated Higgs particle is expected to be

present in this vacuum. In contrast the fields of fundamental particles are expected to

be zero, and the associated particles are not expected to be present in the vacuum.

However, when we move from a vacuum state to an excited one with non-zero values

for the field of some fundamental particle, the fundamental particles will appear into

space which already contains many Higgs particles. These particles will interact with

the Higgs and it will affect their motion according to the strength of this interaction.

This effect on the motion of the fundamental particle is what we perceive as mass.

2.3.2 Higgs Mechanism in the Standard Model

In the SM the simplest realisation of the Higgs Mechanism which is consistent with

data is employed. As was stated in Sec. 2.1.2 the Standard Model has one ingredient



2.3: Electroweak Symmetry Breaking 19

yet to be detected, the Higgs boson. This particle is associated with a Higgs field

postulated in the SM to allow the breakdown of electroweak symmetry into the gauge

symmetry of QED, SU(2)W ⊗ U(1)Y → U(1)Q.

The electroweak sector of the SM and its breaking was developed by Glashow,

Weinberg and Salam [87,88,89]. The SU(3) symmetry of strong interactions is not

broken, as is indicated by the fact that gluons are massless. While the photon is also

massless, its physical state is associated with the U(1)Q symmetry, not the U(1)Y .

The Higgs field in this model is a complex scalar SU(2) doublet,

φ =




φ+

φ0


 (2.17)

This appears in Lagrangian for electroweak interactions along with all the matter and

gauge fields of the SM,

LEW = (Dµφ)†(Dµφ) − V (φ) − 1

4
[fµνf

µν + F l
µνF

lµν ] + Lmatter, (2.18)

where Bµ and fµν = ∂µBν − ∂νBµ are the vector field and field strength tensor,

respectively, associated with the U(1)Y gauge symmetry. W l
µ, with l = {1, 2, 3},

are the three vector fields associated with the SU(2)W gauge symmetry and F l
µν =

∂νW
l
µ− ∂µW

l
ν + gǫjklW

j
µW

k
ν are the corresponding field strength tensors. Lmatter is the

part of the Lagrangian from which matter particles derive their mass and interactions

and will be discussed later in this section. V (φ), is the most general renormalisable

scalar potential permitted by the SM gauge structure,

V (φ) = µ2|φ†φ| + |λ|
(
|φ†φ|

)2

(2.19)

and Dµ is the covariant derivative

Dµ = ∂µ +
ig′

2
AµY +

ig

2
σlW l

µ, (2.20)

where σl are the Pauli matrices defined in Sec. 2.1.1. Y is the hypercharge and g′ and

g are dimensionless gauge couplings.
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If µ2 < 0, then the minimum of the potential, is not invariant under SU(2)W ⊗ U(1)Y ,

leading to spontaneous symmetry breaking. The minimisation condition (or elec-

troweak symmetry breaking condition) for V implies that,

|φ†φ| =
µ2

2|λ| ≡
v2

2
. (2.21)

This defines a continuous spectrum of minima which could be the physical vacuum,

but making the arbitrary choice that one of them is the true physical vacuum,

〈φ〉0 =
1√
2




0

v


 (2.22)

breaks electroweak symmetry and we have broken generators,

σi〈φ〉0 6= 0, Y 〈φ〉0 6= 0. (2.23)

So all original generators of SU(2)W ⊗ U(1)Y are broken, but a linear combination,

Q〈φ〉0 =
1

2
(σ3 + Y )〈φ〉0 = 0, (2.24)

corresponding to the electric charge, is invariant implying a massless boson (the photon)

is contained in the model, as required by observation.

Now to find the mass spectrum we need to look at field oscillations about the

physical vacuum. Rewriting, φ0 = (h+ v)/
√

2, expanding the electroweak Lagrangian

about the physical vacuum and choosing a specific gauge known as the unitary gauge

one obtains,

Ls.o =
1

2
∂µh∂µh− µ2h2 +

(v)2

8
Zµ +

g2(v)2)

8
[|W+

µ |2 + |W−
µ |2]

− 1

4
[fµνf

µν + F l
µνF

lµν ] + Ls.o−matter. (2.25)

where we have defined the fields of the physical gauge bosons,

Zµ ≡
gW 3

µ − g′Bµ√
g2 + g′2

and W±
µ ≡ 1√

2
(W1µ ∓ iW2µ) (2.26)

along with the combination

Aµ ≡ gBµ + g′W3µ√
g2 + g′2

. (2.27)
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which defines the field of a massless photon.

So we have an SU(2) ⊗ U(1) gauge invariant Lagrangian which after symmetry

breaking leads to a particle spectrum containing massive Zµ,W
+
µ ,W

−
µ and Higgs bosons

and one massless photon. However to provide a model for nature we also need to include

fermions, described by the last term in Eqn. 2.25.

So far the Higgs mechanism has been presented as a method for generating gauge

boson masses. However as discussed in Sec. 2.1.1 fermionic fields, ψ are composed of left

and right-handed chiral fields, ψL,R = (1∓ γ5)ψ/2, where γ5 ≡ iγ0γ1γ2γ3. These fields

are coupled together to form a massive fermion by the mass term in the Lagrangian,

Lmass = −mψ̄ψ = −m(ψ̄LψR + ψ̄RψL). Since ψL and ψR have a different gauge

structure, transforming differently under SU(2)W , Lmass violates gauge invariance. So

explicit mass terms for the fermions are forbidden.

In the SM the Higgs Mechanism generates mass terms for fermions as well as gauge

bosons. A simplified description of this, neglecting generational mixing, can be under-

stood from the following Lagrangian,

Lmatter =

j=3∑

j=1

[L̄jiγ
µDµLj + l̄Rjiγ

µDµlRj + Q̄jiγ
µDµQj

+ ūRjiγ
µDµuRj + d̄Rjiγ

µDµdRj − (yljLLjφlRj

− yujǫ
ab(QLj)a(φ

†)buRi − ydjQLjφdRj + h. c.)], (2.28)

where h.c. stands for hermitian conjugate, j is a generational index, yf is the trilinear

Yukawa coupling between the Higgs field and the right and left-handed chiral fields of

the fermion, f. The left-handed electroweak doublets are,

Q1 =




u

d




L

Q2 =




c

s




L

Q3 =




t

b




L

(2.29)

L1 =




νe

e−




L

L2 =




νµ

µ−




L

L3 =




ντ

τ−




L

, (2.30)
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and lRj , uRj , and dRj are the right-handed chiral fields of the jth generation charged

lepton, up-type quark and down-type quark respectively. The covariant derivative is

defined in Eqn. 2.20, though when acting on quark fields it should include terms with

the strong coupling and the SU(3)C generators, neglected here as they do not take

part in the Higgs mechanism.

When we expand about the physical vacuum the last three terms (and their hermi-

tian conjugates) lead to fermion mass terms,

LFM =

j=3∑

j=1

− 1√
2

(yljv)l̄LjlRj −
1√
2

(yujv)ūLjuRj −
1√
2

(ydjv)d̄LjdRj + h. c. (2.31)

To summarise the full particle spectrum described here is two charged gauge bosons

W+
µ and W−

µ , sharing a common mass, gv/2; two neutral gauge bosons, one Aµ,which

is massless, and the other Z0
µ having mass

√
(g2 + g′2)v/2 ; fermions with mass yfv/

√
2

and finally a neutral, scalar boson, h, with mass
√

−2µ2 = v
√

2|λ| which is known as

the Higgs boson.

mγ = 0, MW =
gv

2
, MZ0 =

(g2 + g′2)
1

2v

2
, (2.32)

mf = yf
v√
2
, mH =

√
−2µ2 = v

√
2|λ| (2.33)

2.4 Renormalisation and Renormalisation Group

Equations

In the previous sections we have shown how the Standard Model elegantly describes

all fundamental particles and their interactions to incredible precision, such as the

calculation of the anomalous magnetic moment of the electron in Eq. 2.15. However

in some sense we have hidden from view significant complications. Thus far most of

the description of the SM has been at the level of classical field theory. While many

interesting features of the SM can be explained in this way, the SM is a quantum

theory.
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The fields are defined through canonical commutation relations. Fourier expansions

of the free fields reveal creation and annihilation operators. The creation of a particle

at space-time point x and the destruction at space-time point x′ is then described by a

propagator, for instance the Higgs propagator is written i/(p2−m2). The mass appears

as the pole in the particles propagator, and for a non interacting theory this matches

the mass which appears as a coefficient of quadratic fields. This relationship breaks

down when we try to solve an interacting theory.

The coupled non-linear equations which are obtained from the Lagrangians of in-

teracting quantum field theories like QED or the SM cannot be solved analytically.

Instead SM observables are usually calculated using perturbation theory. Observables

are written as series expansion in, e. g. α = e2/(4π2) ≈ 1/137 < 1, the coupling between

photons and fermions. This expansion is commonly done pictorially with Feynman di-

agrams [71]. The lowest order terms appear as ‘tree level’ diagrams, and higher order

terms are drawn as ‘loop’ diagrams, interpreted as being unobserved internal interac-

tions where particles are radiated then reabsorbed.

For example shown below is a diagram representing the propagator of the Higgs

particle. On the right hand side of the equality we have explicitly drawn the diagrams

for the tree level contribution and two additional diagrams representing one loop cor-

rections due to two different types of particles.

=
h

+ +

+

higher order

Figure 2.2: Perturbative expansion of the Higgs particles’ propagator

While at tree level the pole in the propagator corresponds to the mass appearing as a

quadratic field coupling in the Lagrangian, these corrections disrupt that relationship.

We define a pole mass, mp as the energy in the particle’s rest frame for which the

propagator becomes maximal.

m2
p = m2

0 + Σ, (2.34)
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where the bare mass, m0, is the one appearing in the SM Lagrangian and provides the

tree level contribution to the propagator. Σ is the real part of the self energy of the

particle which results from all the radiative corrections

These loops represent integrals which are often formally divergent. However the

divergences in the higher order terms can be cancelled by divergences in the bare

masses and couplings, in a procedure called renormalisation [90–91]. First the diver-

gent integral is rendered finite by some form of regularisation and then removed by

the renormalisation procedure where the divergence is absorbed into the unobservable

parameters of the theory.

The most popular regularisation procedure for the Standard Model is Dimensional

Regularisation (DREG) [92]. In this regularisation scheme the integral is first rendered

finite by changing the number of dimensions from 4 where the integral is divergent,

to 4 − 2ǫ where the integral is finite. The divergence now appears as a pole when

ǫ→ 0. While this scheme preserves the gauge invariance of the SM it does violence to

supersymmetry, which as will be described in chapter 3 requires the number of bosons

(nb) to be equal to the number of fermions (nf). Changing the dimension of the integral

introduces new degrees of freedom spoiling nb = nf .

Dimensional Reduction (DRED) [93] is a similar scheme to DREG except that only

the momenta are of dimension 4−2ǫ. The gauge fields and γ matrices representing the

Clifford algebra remain ordinary 4 dimensional vectors. DRED is frequently used for

supersymmetric loop calculations and it has now been shown that it can be formulated

in a mathematically consistent way [94–95].

Once the integral has been regularised, renormalisation is carried out. Here certain

renormalisation conditions are applied, where some physical processes are defined to

take some finite value at a particular momentum, p2 = −Q2 say. Q is then referred to

as the renormalisation scale.

The divergent quantity which has been regularised (i.e. 1/ǫ in DREG and DRED)

appears in unobservable shifts relating the finite physical process to “bare” parameters



2.4: Renormalisation and Renormalisation Group Equations 25

which appear in the Lagrangian. Since the physical processes are finite this divergence

should be cancelled by a divergence in the bare parameters.

If all the divergences arising from higher order corrections can be cancelled by the

divergences in the set of bare parameters the theory is then termed renormalisable. In

such a theory, once it has been renormalised, the higher order corrections can be treated

as small perturbations in a well behaved perturbation series and physical processes can

be calculated to the desired order. It has been shown that spontaneously broken gauge

theories are renormalisable [92,96] and physical processes in the Standard Model can

be calculated using renormalised perturbation theory.

However the removal of the divergences is not enough to guarantee that a process

can be calculated using perturbation theory. It must also be possible to express the

process as a power series in some quantity < 1. Feynman diagrams represent a pertur-

bative expansion about the interaction couplings (like α) so it is important that the

coupling for a process is small, but it is also important that there is no other large

quantity accompanying it in the power series.

An important effect of renormalisation is that different choices of renormalisation

scale, Q, lead to different values of the parameters. This variation can be described by

a Renormalisation Group Equation (RGE) [97–98],

Q
dg

dQ
= β(g) Q

dM

dQ
= β(M). (2.35)

The equation on the left and right describe the evolution of a dimensionless coupling

g and a massive coupling M respectively, with respect to the renormalisation scale.

The right hand side of the equations is called the β function of the coupling and may

depend on other couplings as well, leading to coupled equations.

When calculating loop corrections to physical processes, power series of, for ex-

ample, α| lnE/Q| appear rather than just α, where E is the energy associated with

physical process being calculated. These logarithms can be dangerously large, spoiling

the perturbation theory even if α is small. To maintain the validity of perturbation

theory, Q can be chosen to be of the same order as E, rendering the logarithms small.
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So it is usually best to choose a renormalisation scale which is of the same order as the

energy which is relevant for the physical process being calculated.

A modern interpretation of these divergences is that the momentum integral is

only valid up to the Planck Energy, where new physics should appear. So in carrying

out the renormalisation we are not cancelling infinite contributions, but instead terms

dependent on the energy scale of new physics. One way of seeing the effect of this

is to cut off the momentum in these loops by mimicking the effect of fictitious heavy

particles, as happens in Pauli-Villars regularisation [99].

In the next section we will simply introduce an arbitrary, ultra-violet cutoff, Λ,

for all loop momenta. This is similar to Pauli-Villars regularisation but it violates

gauge invariance. Nonetheless it has the advantage of being simple and is useful for

illustrating the Hierarchy Problem.

2.5 Hierarchy Problem

The fact that gauge theories can absorb the divergences which occur in all the physical

processes and at every order is a remarkable result. This makes it possible for the SM

to make predictions of the precision described in Sec. 2.2. Despite the beauty and the

very precise agreement between experiment and theory of the SM, we know the SM is

not a complete description of nature.

The SM does not include the gravitational interaction. While gravity is so weak

that it has negligible effect on energies testable in collider physics, at the Planck scale,

O(1019 GeV), gravitational interactions are significant. Therefore one expects new

physics to appear at the Planck scale, if not before.

We also expect new physics beyond the Standard Model to appear at low energies

O(1TeV). A major reason for this belief is the Hierarchy Problem. The Higgs mass

can be written as,

m2
H = m2

0 + ΣH , (2.36)
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where ΣH is the real part of the self energy of the Higgs particle.

To calculate the value of such loop diagrams we integrate over all possible momenta

for the virtual particles, with a naive cutoff on the Euclidean momentum, Λ, introduced

for renormalisation.

For example consider the third diagram shown in Fig. 2.2. It represents the Higgs

particle decaying to a fermion–anti-fermion pair which recombine into the Higgs. This

can then be evaluated to give,

−iΣf = −i
λ2
f

23π2

(∫ 1

0

dx2∆ ln
Λ2 + ∆

∆
− Λ2

)
, (2.37)

where ∆ = −x(1−x)m2
H+m2

f , mf is the mass of the fermion and x is an extra parameter

introduced for ease of evaluation. Σf contains terms quadratic and logarithmic in the

cutoff Λ. If the SM really is valid up to the Planck scale, with no new physics entering

at lower energies, then Λ ∼ MP l. Unfortunately this means that the quadratic terms

are huge. The one loop corrections, to the Higgs mass, from gauge bosons will also

give similar contributions. The total one loop contribution can be expressed as,

m2
H = m2

0 − CΛ2 + ..., (2.38)

where the logarithmic terms have been dropped since they are much smaller than the

quadratic terms and C is a combination of gauge and Yukawa couplings.

So in order to get weak scale masses ∼ O(100GeV) the bare mass must be very

precisely ‘fine tuned’ to be very close to the momentum cutoff. This required tuning

seems very unnatural and we feel there needs to be a more natural mechanism for

obtaining this hierarchal structure of scales. This is known as the Hierarchy Problem

[100–104].

One may believe that Λ is an artifice of the renormalisation prescription and not

be concerned about such tunings. However the Higgs will be sensitive to the masses of

any new particles which couple to it. Even if the new particles do not couple directly

to the Higgs it will be sensitive to them through higher order loop corrections so long

as there are common interactions.7 So it is expected that if there is new physics at

7These arguments are discussed in more detail in e.g. [17]
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the Planck scale the Higgs mass will be quadratically sensitive to that scale, and this

implies fine tuning.

To remove the problem of fine tuning one could try to lower the cutoff scale and

say that new physics comes in much sooner. To do this one should then attempt to

construct a realistic model of physics which cuts off the divergent parts of the integral

at energies just above the weak scale. Another solution is to postulate new physics to

cancel only the quadratic divergences. Supersymmetry does precisely this, as will be

discussed in chapter 3.

2.6 Other Motivations to go beyond the Standard

Model

Another deficiency of the SM is that it is inconsistent with the observations of dark

matter, which appears to make up about 85% of the matter content of the universe.

Dark matter cannot be seen and is only detected by observing that the motion of

the visible matter deviates from the predictions of General Relativity. A dark matter

candidate should be a stable particle which only interacts via the weak force and

gravity. A review of all the evidence for dark matter is given in [105]. In the SM the

only candidate particles for dark matter are the neutrinos. Current upper limits on

neutrino masses mean that they cannot account for all the dark matter in the universe

(see e. g. [106]).

The anomalous magnetic moment of the muon, aµ appears to show a > 3σ deviation

with the SM. At the recent E821 experiment at Brookhaven it has been measured, [107]

aexp
µ = 11 659 208.0(6.3)× 10−10. (2.39)

The SM theory calculation for aµ has involved many groups working on the various

QED, electroweak and hadronic contributions. A recent review [108] obtains

aSM
µ = 11 659 178.5(6.1)× 10−10 (2.40)



2.6: Other Motivations to go beyond the Standard Model 29

giving a 3.4σ deviation. The results obtained in [109–111] are slightly different but all

obtain a deviation > 3σ.

It is still possible that this 3σ deviation could simply be a statistical fluctuation.

However it is certainly interesting enough to make theorists wonder what types of new

physics could explain it.

Neutrinos in the SM are defined as massless. However it has now been established

in neutrino experiments [29,30,31,112] that neutrinos have mass, and the SM must be

adapted. This can be easily achieved but there is currently insufficient data to restrict

theorists to one particular description of the masses.



Chapter 3

Supersymmetry

Supersymmetry (SUSY) was first introduced as the only way to extend the Poincaré

algebra, which describes invariant transformations in relativistic space-time [113]. Con-

served operators which transform trivially as scalars under the Lorentz group form an

internal symmetry group, such as the gauge structure of the SM. Any further ex-

tension is highly restricted. The Haag-Lopuszanski-Sohnius [113] extension of the

Coleman-Mandula theorem [114] states that SUSY is the only non-trivial extension

of the Poincaré group.

Supersymmetry is a special class of graded Lie algebra (or superalgebra) which is

consistent with relativistic quantum field theory [113,115]. Graded Lie algebras in-

clude group generators Sa which obey anti-commutation relations (like fermion fields),

{Sa, Sb} = ifabcSc, rather just the usual commutation relations, [T a, T b] = ifabcT c for

generators defining a Lie algebra.

The SUSY generators (or charges) change the spin of a state by a 1/2 integer. So

they transform a fermion into a boson and vice-versa,

Q|boson〉 = |fermion〉 Q|fermion〉 = |boson〉. (3.1)

The supersymmetry charges have half integer spin and are referred to as fermionic

operators, while the generators with integer spin, like those of the Poincaré group are

bosonic operators. The charges Q (alongwith a conjugate charge Q) should also carry
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Weyl spinor indices (α, β and α̇, β̇) which all run over the set {1.2}. There can be more

than one copy of the SUSY generators, so supersymmetries are classified according to

the number of copies, N , of the generators1. Due to the requirement that we have

chiral fields at low energies N = 1 supersymmetry is the only one relevant to low

energy phenomenology [25].

The supersymmetry algebra (with vanishing central charges 2.) is,

{
Qα

A, Q̄β̇B

}
= 2σµ

αβ̇
Pµδ

A
B (3.2)

{
Qα

A, Qβ
B
}

=
{
Q̄α̇A, Q̄β̇B

}
= 0 (3.3)

[
Pµ, Qα

A
]

=
[
Pµ, Q̄α̇A

]
= 0 (3.4)

where Pµ are the generators of space-time translations in the Poincaré group, with µ =

0...3 being the index of a Lorentz four-vector. σµ is a 4–component object with, σ0 = I,

the identity matrix and σ1,2,3 are the three Pauli matrices. Finally the capitalised

Roman indices A,B run from 1...N , labelling the different copies of the generators.

Irreducible representations of the supersymmetry algebra are called supermultiplets

and describe the one particle states of the supersymmetry. In each supermultiplet the

number of bosonic degrees of freedom is equal to the number of fermionic degrees of

freedom3 (nb = nf) so they contain both, fermionic and bosonic states, which are the

dubbed superpartners. Since the generators of gauge transformations commute with

SUSY generators, the superpartners must also have the same gauge transformation

properties and consequentially share the quantum numbers, of electric charge, weak

isospin and color. SUSY also requires that the superpartners are of equal mass. This

is in conflict with experiment since no superpartners of the SM particles have been

observed. So if SUSY exists it must be broken. Nonetheless there are many strong

motivations to believe that some form of broken supersymmetry exists in nature. In

1From this it should be understood that N is an integer ≥ 1. There are however theories termed

N = 1/2 supersymmetry which are defined on a “non-anti-commutative” superspace, see e. g. [116–

118].

2Central charges are excluded for N=1 supersymmetry

3This is shown in a relatively simple way in e.g. [17].
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the following sections, we describe how many of the problems of the SM outlined in

Sec. 2.5 and Sec. 2.6 can be solved if supersymmetry is broken in such a way that

the equality of couplings is maintained while the masses of the superpartners to the

observed particles are raised high enough to evade current experimental limits. As will

be described in Sec. 3.4 supersymmetry can be broken in exactly this way, so all of the

motivations below are valid.

3.1 Solution to the Hierarchy Problem

Supersymmetric theories have the correct properties to cancel the quadratic divergences

in scalar masses which were discussed in Sec. 2.5. To see how this works consider the

one loop correction to the Higgs propagator, shown in Fig. 3.1 due to a single scalar,

s, which is the superpartner of one one of the SM fermions.

Figure 3.1: Correction to the Higgs propagator from a scalar particle

With a cutoff, Λ, imposed on the Euclidean momentum this gives,

−iΣs = −iλs
1

24π2
(Λ2 −m2

s ln
Λ2 +m2

s

m2
s

), (3.5)

where ms is the mass of the scalar particle, s and λs is a quartic coupling between

the Higgs, h, and s. Again both quadratic and logarithmic divergences have appeared.

However the quadratic terms have opposite sign and this is a hint for a possible solution.

If the coefficients of these terms were equal (λ2
f/(2

3π2) = λs/(2
4π2) ⇒ λ2

f = λs/2) then

the quadratic divergences cancel. Since Supersymmetry requires nb = nf in each

supermultiplet there are two scalar superpartners for each SM fermion. Furthermore

supersymmetry also implies that λs1 = λs2 = λ2
f , cancelling the quadratic divergences

exactly.
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Notice also that the quadratic divergences are independent of the masses of the

fermion and the scalar superpartners. So if supersymmetry is broken in such a way

that the masses msi
> mf the terms with quadratic dependence on the cutoff scale,

Λ, do not reappear. However the mass splitting between the superpartners cannot

be too large because the terms with logarithmic dependence on Λ, vary quadratically

with these masses. Too large a splitting would reintroduce fine-tuning. How tuned a

supersymmetric model must be in order to evade current limit on superpartner masses

is model dependent. How tuning can be quantified is the subject of Chapter 5 and

in Chapter 6 tuning in a particular supersymmetric model, the Constrained Minimal

Supersymmetric Standard Model (CMSSM) is examined.

3.2 Further Motivations

Low energy supersymmetry can also explain the deviation between the experimentally

measured anomalous magnetic moment and the SM theory prediction. This is a chal-

lenge for generic BSM physics as the contributions are suppressed by the mass scale of

the new physics and typically masses which are low enough have been ruled out [119–

122]. However in supersymmetric models there is a Higgs sector parameter, tan β (see

Sec. 4.3 for a definition) which is O(10) and appears as multiplicative enhancement to

the SUSY contribution [123],[119–122]. Since the contribution decreases with the mass

scale of the new particles this still requires sparticles which are light.

Another very attractive idea which goes beyond the Standard Model is that of Grand

Unified Theories (GUT), which provide a unified description of the electromagnetic,

weak and strong forces, combining all gauge groups into one, with gauge interaction of

strength g0. As was described in Sec. 2.4 renormalisation introduces a scale dependence

to the couplings and they can be described as evolving according to Renormalisation

Group Equations (RGE).

Since GUT have a single unified g0 it would be nice if the gauge couplings (with

appropriate GUT normalisation) evolved to a single point. In the SM when RGE
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Figure 3.2: Inverse gauge

couplings α−1
a (Q) in the

SM (dashed lines) and the

MSSM (solid lines) two

loop evolution over renor-

malisation scale, Q. For

the MSSM sparticle mass

thresholds are varied be-

tween 250 GeV and 1 TeV,

and α3(mZ) between 0.113

and 0.123. Taken from [17].
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evolution is plotted the gauge couplings, gi (or equivalently αi = g2
i /(4π

2)) do not meet

at a single point, as shown by the dotted lines in Fig. 3.2 taken from [17]. Threshold

corrections to the RGE from new particles associated with the GUT are not known to

fix this.

Supersymmetry at or below the TeV scale can improve this, adjusting the running

such that gauge couplings unify at a single point. This is shown for the Minimal

Supersymmetric Standard Model (MSSM) (which will be described in the next chapter)

in Fig. 3.2. However it should be pointed out that recent developments spoil this

unification in the MSSM a little, with now a deviation > 2σ (see [124] and references

therein for an explanation). Nonetheless this discrepancy could be solved by threshold

corrections to the RGE from GUT scale physics or in other supersymmetric models

like the E6SSM [124].

In SUSY models a discrete symmetry called R-Parity (see Sec. 3.5) is usually pos-

tulated. R-parity conserving SUSY has a natural dark matter candidate, which is the

Lightest Supersymmetric Particle (LSP), usually the lightest neutralino (a mass eigen-

state formed from superpartners of the neutral gauge and Higgs fields). For the LSP

to be dark matter it must be quite light (see e. g. [125]) and if we assume the spectrum

is not too hierarchical then this also points to low energy supersymmetry.
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It is striking that we now have four separate hints of low energy supersymmetry.

While it is certainly possible that some other explanation exists for all of these problems

they emphasise the importance of searching for supersymmetric models at forthcoming

colliders.

In the Standard Model the shape of the Higgs potential is just postulated to have the

correct shape for electroweak symmetry breaking (EWSB). In supersymmetric models

one can hope to do better. Various supersymmetry breaking scenarios generate soft

masses which break supersymmetry (see Sec. 3.4) at some energy scale far above the

electroweak breaking scale where we can do experiments. In addition these breaking

schemes often imply some relations between the various soft parameters at the high

energy scales.

It is then possible to use the RGE to evolve the parameters from this higher scale

down to observable scales and see if the Higgs potential has taken on the required

shape for electroweak symmetry breaking. If this happens for generic choices of the

parameters at the high scale then one can say that EWSB is radiatively generated,

since it is the radiative corrections which dictate how the parameters evolve with scale.

In the MSSM it is has been shown that radiative symmetry breaking takes place

[126–132] for certain high scale universality prescription on the parameters which have

been inspired by SUSY breaking models, e. g. the Constrained MSSM (CMSSM),

inspired by the Minimal SUperGRAvity (mSUGRA) breaking scheme.

From Cosmic Microwave Background (CMB) measurements [133] there is a baryon

asymmetry in the universe of (nb − nb̄)/nγ = (6.1 ± 0.3) × 10−10. Explaining the

origin of this asymmetry is a theoretical challenge. The SM as defined in Sec. 2 is

not sufficient to explain this as it does not have enough CP-violation for electroweak

baryogenesis (see e.g. Sec. 7.1 of [19]). However extending the Standard Model to in-

clude right-handed neutrinos, which is very reasonable thing to do now that we know

neutrinos have mass, can help. This allows an alternative to electroweak baryogenesis,

leptogenesis from lepton violating decays.4 Supersymmetric models may have some

4The lepton asymmetry thus generated is then converted into a baryon asymmetry through the
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further advantages over the SM as they have additional sources of CP-violation, im-

proving prospects for Electroweak baryogenesis; may contain new exotic matter with

additional lepton number violating decays which can improve prospects for leptogen-

esis and finally supersymmetric models also admit the possibility of the Affleck-Dine

mechanism [135].

3.3 SUSY Lagrangians and Superpotentials

A simple free chiral supersymmetric Lagrangian, can be written as,

Lfree = ∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi + F ∗iFi, (3.6)

where φ is a complex scalar field and ψ is a left-handed 2-component Weyl fermion.

The index i is a flavour index. F is auxiliary field which does not describe a physical

particle. It is required to balance the fermionic and bosonic degrees of freedom when

off shell and has an Euler-Lagrange equation Fi = 0.

This Lagrangian is invariant under infinitesimal SUSY transformations,

φi → φi + δφi

(ψi)α → (ψi)α + δ(ψi)α

Fi → Fi + δFi

δφi = ǫψi, (3.7)

δ(ψi)α = i(σµǫ†)α ∂µφi + ǫαFi, (3.8)

δFi = iǫ†σ̄µ∂µψi, (3.9)

where ǫα, a 2-component Weyl spinor, is infinitesimal. φi and ψi are superpartners and

reside in the same chiral supermultiplet.

Wess and Zumino [136] constructed the first interacting supersymmetry preserving La-

grangian by adding, to the free chiral Lagrangian LFree, all renormalisable interaction

involving chiral supermultiplets that are allowed by supersymmetry,

LWZ = ∂µφ
∗i∂µφi + ψ†iiσ̄µ∂µψi − |Wi|2 −

1

2
{W ijψiψj + h.c} (3.10)

W = liφi +
1

2
µijφiφj +

1

6
yijkφiφjφk, (3.11)

non-perturbative B+L violating sphaleron process [134].
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Wi =
∂W

∂φi
, Wij =

∂2W

∂φi∂φj
. (3.12)

W is the superpotential and µij are bilinear couplings of dimension [mass] which are

symmetric over the interchange i ↔ j; yijk are dimensionless trilinear couplings, sym-

metric in the interchange of i, j and k and the linear coefficients5, li, are of dimension

[mass]2. The auxiliary fields have been removed by imposing their Euler-Lagrange

equation for the interacting Lagrangian,

Fi = −W ∗
i , F ∗i = −W i . (3.13)

So far only spin zero and spin 1/2 fields have been included in the Lagrangian. One can

also include spin 1 bosons along with spin 1/2 superpartners, which reside together in

gauge supermultiplets. A Lagrangian with gauge supermultiplets can be constructed

as,

LGauge = −1

4
F a
µνF

µνa − iλ†aσ̄µDµλ
a +

1

2
DaDa, (3.14)

where,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (3.15)

Dµλ
a = ∂µλ

a + gfabcAbµλ
c, (3.16)

and the Aaµ are the gauge fields and their spin 1/2 superpartners λa are called gaugino

fields. The Da are auxiliary fields, analogous to the F i fields for the Wess-Zumino

Lagrangian, which are required so that off-shell we maintain nb = nf for the gauge

supermultiplets and the supersymmetry algebra closes. Roman indices run over the

generators of the gauge group, while Greek indices run over the dimensions of space-

time for the Lorentz vectors and tensors.

The infinitesimal SUSY transformations are,

δAaµ =
1√
2

(
ǫ†σ̄µλ

a + λ†aσ̄µǫ
)
, (3.17)

δλaα =
i

2
√

2
(σµσ̄νǫ)α F

a
µν +

1√
2
ǫα D

a, (3.18)

δDa =
i√
2

(
ǫ†σ̄µDµλ

a −Dµλ
†aσ̄µǫ

)
. (3.19)

5liφi is forbidden unless φi is a gauge singlet. For this reason the term is often dropped.
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Finally we can combine all of this, and adding all renormalisable terms which respect

SUSY invariance, we obtain a SUSY invariant Lagrangian containing interacting chiral

and gauge supermultiplets,

LSUSY = Dµφ∗iDµφi + iψ†iσ̄µDµψi −
1

2
µijψiψj −

1

2
µ∗
ijψ

†iψ†j

− 1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k − 1

4
F a
µνF

µνa − iλ†aσ̄µDµλ
a

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) − V (φ, φ∗) (3.20)

with,

V (φ, φ∗) = F ∗iFi +
1

2

∑

a

DaDa = W ∗
i W

i +
1

2

∑

a

g2
a(φ

∗T aφ)2 (3.21)

= µ∗
ikµ

kjφ∗iφj +
1

2
µiny∗jknφiφ

∗jφ∗k +
1

2
µ∗
iny

jknφ∗iφjφk

+
1

4
yijny∗klnφiφjφ

∗kφ∗l + li∗µijφ
j + liµ

ij∗φ∗
j

+
1

2
li∗yijkφ

jφk +
1

2
liy

ijk∗φ∗
jφ

∗
k +

1

2

∑

a

g2
a(φ

∗T aφ)2. (3.22)

where we have also used the Euler-Lagrange equations to remove the auxiliary Da

fields (Da = −g(φ∗T aφ)) as well as the F i fields. Dµ is the covariant derivative for the

gauge group of the supermultiplet, T a are the generators of the gauge group, and ga

are dimensionless gauge couplings. The terms derived from Fi fields in Eqn.(3.21) are

referred to as F-terms and terms derived from the Da fields as D-terms.

Many of the terms in LSUSY will vanish if the they violate the gauge transformation

of the supermultiplet. For example all terms with li will vanish unless there is chiral su-

permultiplet which transforms as a gauge singlet. Most of the terms in the Lagrangian

can be determined from the superpotential, W . The other terms are all readily deter-

mined from the gauge group of the model, particle content and the transformations.

So to specify a SUSY model often the superpotential W, gauge group, particles and

the transformation properties of each supermultiplets present in the model are given.

The superpotential is usually written in terms of superfields rather than the scalar

fields as was presented here. Eqn. (3.11) can be written instead as,

W = liφ̂i +
1

2
µijφ̂iφ̂j +

1

6
yijkφ̂iφ̂jφ̂k, (3.23)
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where φ̂i is a superfield and contains the scalar, φi, fermionic, ψi and auxiliary field,

Fi. While this is the only knowledge of superfields that is required to understand this

thesis a more detailed description of superfields is presented in Appendix A.

3.4 Softly Breaking Supersymmetry

From the non-observation of supersymmetric partners for the SM particles, if super-

symmetry exists it must be broken at some scale above energies6 which have already

been probed at LEP and the Tevatron. However if one wishes to maintain natural-

ness as a motivation for supersymmetry it must be broken in such a way that the

cancellations of the quadratic divergences is maintained.

Therefore the superpartners’ equality of dimensionless couplings should be main-

tained while breaking the mass equalities in such away that the experimental constrains

on superpartner masses can be evaded. This is referred to as soft SUSY breaking. The

following terms break supersymmetry softly (without re-introducing quadratic diver-

gences at any order in the perturbation theory [137]) if they appear in the Lagrangian:

• Gaugino mass: Maλ
aλa

• Massive trilinear coupling: aijkφiφjφk

• massive bilinear coupling: bijφiφj

• Tadpole term: tiφi

• complex conjugates of all the above terms

• Scalar (mass)2 term: (m2)ijφ
j∗φi

6Many of the motivations presented in Secs. 3.1 and 3.2 were for low energy supersymmetry,

requiring that superpartners are not too much heavier than the electroweak scale. With respect to

fine tuning this will be discussed in much greater detail in Chapters 5 and 6.
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where, as with the terms in LSUSY, further restrictions will be imposed by the gauge

groups of the supermultiplets.

With these soft SUSY breaking terms phenomenological studies can be carried out

for some particular low energy SUSY model where the soft masses are TeV scale, e.g. the

Minimal Supersymmetric Standard Model (MSSM). At high energies supersymmetry

is restored but the low energy model incorporating soft breaking terms forms a low

energy effective theory. This approach is very general and independent of any particular

SUSY breaking mechanism. While this is an entirely valid approach the sheer size of

the parameter space makes a thorough survey of all possibilities a daunting task. It is

often useful to look to particular breaking mechanisms for some inspiration as to how

this parameter space might be constrained.

In any case rather than simply postulate the existence of soft supersymmetry break-

ing terms without motivation it is preferable to have model of the spontaneous break-

down of supersymmetry. As with EWSB in Sec. 2.3, this occurs when the physical

vacuum is not invariant under the action of the generators of the symmetry, in this

case supersymmetry generators Q|0〉 6= 0. This can be achieved when either an F-

term or a D-term obtains a vacuum expectation value (vev). The latter is realised

in Fayet-Iliopoulos SUSY breaking [138], the former in O’Raifeartaigh SUSY breaking

[139].

Typically phenomenological models such as the MSSM, NMSSM and E6SSM do

not have the right ingredients for a viable breakdown of supersymmetry and need to

be augmented in some way. If TeV scale supersymmetry is coupled directly to an

O’Raifeartaigh type breaking sector, mass sum rules [140] predict sparticle masses far

below the lower bounds set by experiment. Fayet-Iliopoulos type breaking of super-

symmetry through tree level couplings to the observed sector fails to produce viable

spectra. If the known gauge structure from the SM is used and with an extended U(1)

the breaking can reintroduce quadratic divergences unless the trace of the U(1) charges

vanishes [141]. Unfortunately requiring the trace of these to vanish returns us to sum

rules implying mass spectra ruled out by experiment.
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So for SUSY breaking it is normal to postulate a hidden sector, which is secluded

from the visible sector (our softly broken, phenomenological SUSY model) having only

very small or no couplings with the chiral supermultiplets in the visible sector. Su-

persymmetry is broken in the hidden sector and then mediated to the visible sector

through some common interaction shared by both.

Therefore we have two separate sectors for a complete phenomenologically SUSY

model: the hidden sector and the visible sector. SUSY model building then tends to

be be split into three separate components. The construction of phenomenologically

viable SUSY models with explicit soft breaking terms; models of a hidden sector with

spontaneous supersymmetry breaking, and models of how this spontaneous breaking

is transmitted from the hidden sector to the visible sector via some form of suppressed

interaction.

The former has already been discussed in the previous sections and two examples are

discussed in much greater detail in chapter 4, the Minimal Supersymmetric Standard

Model (MSSM) and in chapter 7 the Exceptional Supersymmetric Standard Model

(E6SSM).

Since, by construction, the hidden sector has only suppressed interactions with the

visible sector it is assumed that hidden sector does not affect the radiative corrections

and RG flow in the visible sector. Therefore for phenomenological studies hidden

sectors are often neglected, and this is the approach taken in research described in this

thesis.

Nonetheless the construction of such models have important implications for natu-

ralness. If supersymmetry is broken dynamically this can actually lead to a hierarchy

as a prediction (rather than simply stabilising the Weak scale) [142]. A review of dy-

namical SUSY breaking models is given in [143]. More recently it has been claimed

that dynamical SUSY breaking with a completely stable vacuum (a global minimum)

is tough and non-generic (see e. g. [144]). However meta-stable vacua (a local mini-

mum which will eventually decay) are proposed as being easier to construct and generic

[144–148]. A useful pedagogical guide is given in [23].
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The high scale pattern of the soft masses is largely dictated by the form of mediation.

Common types of models for this are gravity mediation, gauge mediation and more

recently anomaly mediation has received some interest.

Some breaking schemes predict relations amongst the soft breaking parameters at

the high scale. For example gravity mediation with Minimal SUperGRAvity (mSUGRA)

inspires certain constrained phenomenological models e.g. CMSSM, CE6SSM. Since

these models are the subject of research described in this thesis, a brief description of

their mSUGRA inspiration is given here.

In gravity mediation the soft terms appear through non-renormalisable higher di-

mensional, Planck suppressed operators of SUperGRAvity (SUGRA) which is a model

of local supersymmetry. Global supersymmetry can be promoted to a local symmetry

by making the symmetry transformations position dependent (i.e. replace the ǫ with

ǫ(x) in the infinitesimal transformations) as has been done for gauge symmetries. In

order to preserve invariance under local SUSY transformations a spin 2 field, gµν (de-

scribing a massless graviton) and a spin 3/2 field ψµ (describing a gravitino7) must be

introduced. Together they form a supergravity supermultiplet which appears in the

Lagrangian in non-renormalisable higher dimensional operators which are suppressed

by powers of MPL. In the limit MP l → ∞, SUperGRAvity → Global supersymmetry.

However the Planck suppressed operators can play an important role in transmitting

SUSY breaking to the visible sector. These non-renormalisable operators couple the

hidden sector auxiliary F fields to the gaugino and scalar fields of the MSSM. When

the F field picks up a vev the soft mass terms, listed at the beginning of this section,

are generated as part of a Planck scale effective field theory of broken supersymmetry.

They may be generated8 as,

• faFλ
aλa/MP l →Maλ

aλa where Ma = fa〈F 〉/MP l

7The gravitino obtains a mass through a super-Higgs mechanism when local supersymmetry is

broken.

8Ignoring the tadpoles as these soft terms are not included in the models discussed in this thesis.
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• hijkFφiφjφk → aijkφiφjφk where aijk = hijk〈F 〉/MP l

• µ
′ijFφiφj/MP l → bijφiφj where bij = µ

′ij〈F 〉/MP l

• FF ∗κijφ
j∗φi/M

2
P l → (m2)ijφ

j∗φi where (m2)ij = κij〈F 〉2/M2
P l

While the soft masses inherit the Planck scale suppression of the non-renormalisable

operators, if the auxiliary fields in the hidden sector pick up vevs at a high enough

scale the soft masses can be of the desired order ( 0.1..1 TeV) for phenomenological

purposes.

In a very special form of Supergravity, minimal Supergravity (mSUGRA) there

are very strong constraints on the couplings appearing in the non-renormalisable La-

grangian. These constraints on the couplings imply constraints on the soft masses

generated in mSUGRA leading to a single universal, flavour diagonal, scalar mass,

(m2
0 = κ |〈F 〉|2

M2

Pl

); universal gaugino masses (M1/2 = f 〈F 〉
mPl

); universal trilinear softmass

(A = α〈F 〉
MPl

) and finally a universal bilinear mass (B = β〈F 〉
MPl

). κ and f are universal

diagonal couplings for the scalar and gaugino masses respectively; β is a constant of

proportionality between µ
′ij and the bilinear coupling appearing in 3.11 and α is a

constant of proportionality between hijk and yijk, the Yukawa couplings from 3.11.

Such a scheme has clear phenomenological advantages. It is simple, with only

a few parameters making the parameter space much more manageable, enabling phe-

nomenological studies to cover a much greater portion of the space. In addition Flavour

Changing Neutral Current (FCNC) constraints (see e,g. [149–151] can be evaded with

this universality [152], as well as limits on CP-violating phases (e. g. [153–155]). So the

universality conditions are very well motivated from a phenomenological perspective.

The Constrained MSSM (CMSSM) uses the simple high scale parameter scheme

motivated by mSUGRA as a postulate, though unlike mSUGRA there is no graviton

or gravitino in the model. The masses can be evolved from the high scale down to the

TeV and Electroweak scales and the phenomenological consequences can be studied.

In this model radiative electroweak symmetry breaking takes place, as the (mass)2 of
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the up-type Higgs9, initially equal to m2
0 > 0 is driven negative by the large top quark

Yukawa coupling during the Renormalisation Group evolution between the high scale

and the electroweak scale.

It should also be pointed out that strong constraints on the parameter space can also

come out of the other breaking mediation schemes. These are not described in detail

here as they are not the subject of investigation in this thesis, but it is very important

to note that both how supersymmetry is broken and how this breaking is mediated

are open questions and the gravity mediation which has inspired the phenomenological

models studied in this thesis is just one possibility.

3.5 R-Parity

While in the SM there are no renormalisable terms which could violate baryon number

or lepton number, this is not the case in supersymmetric theories. No baryon or lepton

number violating decay has been observed experimentally, and the non-observation of

the proton decay puts strong constraints on this. While one could impose baryon and

lepton number conservation directly to avoid this10, it is known that non-perturbative

effects, significant only at high energies, violate baryon and lepton number [156] and

these may be important in the early universe.

Instead a new discrete symmetry is imposed which rules out all the dangerous B

and L number violating terms in the Superpotential. This discrete symmetry is often

either, Matter parity, or equivalently, R-Parity, which are given by conservation of the

multiplicative quantum numbers,

PM = (−1)3(B−L) and PR = (−1)3(B−L)+2s, (3.24)

respectively and s is the spin of the particle. Due to the conservation of angular

9As will be discussed in the next chapter the MSSM contains two Higgs doublets one which gives

mass to up-type quarks and other to down-type quarks and charged leptons.

10In fact proton decay can be avoided simply by imposing either baryon or lepton number conser-

vation.
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momentum at interaction vertices these two symmetries have the same consequences.

All observed SM particles and Higgs particles have PR = +1, while the supersymmetric

partners (sparticles) of these have PR = −1.

As a result if a sparticle decays, then then there will be an odd number of daughter

sparticles. The lightest sparticle (LSP) cannot then decay as any decay into lighter

particles would violate R-parity. Therefore, as mentioned earlier, supersymmetric mod-

els with R-parity have a stable LSP which can match criteria for dark matter if it is,

for example, a neutralino. So R-Parity conserving supersymmetry has the potential to

solve the dark matter problem.

In addition to this R-parity implies that sparticles must be pair produced from

ordinary matter and this has important consequences for sparticle searches.

3.6 Experimental Constraints on Supersymmetry

Constraining supersymmetry by experiment requires both substantial experimental

and theoretical work. In collider experiments an enormous effort must be applied into

the construction of the collider, and the detection of the products of the collisions.

However, since all supersymmetric particles produced will either decay too quickly or

(in the case of the LSP) escape the detector, these particles are not directly observed

in the detectors.

Instead the production and decay of the supersymmetric particles must be un-

derstood in order to determine an experimental signature for them. For example if

charginos had been within the mass reach of LEP they would have been produced

through e+e− → γ, Z → χ̃+χ̃−. The charginos can then decay via a virtual W boson

or a virtual sfermion leading to decays, χ̃± → W ∗±χ̃0
1 → ff

′
χ̃0

1 and χ̃± → f̃ ∗f
′ → ff

′
χ̃0

1

respectively.

Therefore LEP pair production of charginos would have the signature e+e− →
ff

′
ff

′
+ Emiss

T , where Emiss
T stands for missing transverse energy due to the light-
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est neutralinos escaping the detector. However this signature can also be mimicked

by known Standard Model processes, such as W pair production, therefore the SM

background must also be carefully predicted.

By comparing the SM predictions and the contribution from the new particles (in

this example charginos) it is possible to determine whether or not this signature should

yield a statistically significant deviation from the SM for a particular range of masses

of the new particles. Finally, assuming this is the case, the data obtained from the

detectors is searched for an excess number of events above the expectation value from

background processes and, if none is found, limits on the mass of these particles can

be obtained.

In general such experimental mass bounds on SUSY particles are both model and

parameter space dependent. The bounds on supersymmetric partners of ordinary mat-

ter are schematically: squarks and sleptons & 100 GeV; χ0
2 & 60 GeV; lightest chargino

& 100 GeV [157]; gluino & 150 GeV [158–159]; the lightest neutralino χ0
1 & 45 GeV

[160] and since LEP limits on the SM Higgs usually apply to the lightest neutral

Higgs mass, mh ≥ 114 GeV. However assuming relations between parameters can dra-

matically change these bounds. For instance in the CMSSM the gluino & 300 GeV

[158–159].

The bounds on physical particles masses from experiment along with electroweak

precision tests can be translated into bounds on the parameter space, [161–169]. More

sophisticated analyses combine all experimental data to give a likelihood map of the

parameter space [170–177], telling us what our expectations for a particular model are,

given the current data.



Chapter 4

Minimal Supersymmetric Standard

Model

4.1 Description of the model

The Minimal Supersymmetric Standard Model (MSSM) is a N = 1 low energy phe-

nomenological model of supersymmetry, with the minimal possible particle content in

order to match data. The MSSM contains a chiral supermultiplet for every observed

SM fermion and a gauge supermultiplet for every observed gauge boson. In addition

it has two chiral Higgs doublets, which give five physical Higgs particles. The chiral

supermultiplets and their gauge transformations are given in Table 4.1 and the gauge

supermultiplets are shown in Table 4.2.

The gauge group is the same as the in the SM, SU(3)C ⊗ SU(2)W ⊗ U(1)Y . The

superpotential is,

W = ǫαβ(yiju Ĥ
α
u uiQ̂

β
j − yijd Ĥ

α
d diQ̂

β
j − yije Ĥ

α
d eiL̂

β
j + µĤα

u Ĥ
β
d ), (4.1)

where α, β are as usual spinor indices running over {1, 2} and the antisymmetric tensor

ǫαβ = −ǫβα and ǫ12 = −1. The roman indices are over family space and1 yu, yd, ye

1Where the bold font is used emphasise that these are matrices when the indices have been dropped.
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Supermultiplet spin 0 spin 1/2 SU(3)C SU(2)L U(1)Y

Q̂i (ũL d̃L)i (uL dL)i 3 2 1
6

ui ũ∗R i u†R i 3 1 −2
3

di d̃∗R i d†R i 3 1 1
3

L̂i (ν̃ ẽL)i (ν eL)i 1 2 −1
2

ei ẽ∗R i e†R i 1 1 1

Ĥu (H+
u H0

u) (H̃+
u H̃0

u) 1 2 +1
2

Ĥd (H0
d H−

d ) (H̃0
d H̃−

d ) 1 2 −1
2

Table 4.1: Chiral supermultiplets of the MSSM, three generations i = {1, 2, 3} of left

and right-handed quark and lepton supermultiplets and a single generation of Higgs

supermultiplets. The representations of SU(3)C and SU(2)W as well as the U(1)Y

charges are displayed for each chiral supermultiplet.

are 3× 3 matrices of the Yukawa couplings and the superpotential is written using the

chiral supermultiplets appearing in Table 4.1 rather than the scalar fields. Ĥu and Ĥd

are up and down type Higgs superfields respectively containing spin 0 Higgs bosons and

spin 1/2 Higgsino fermions; the Q̂i are quark superfields containing spin 1/2 quarks

and spin 0 squarks; the L̂i are lepton superfields containing spin 1/2 leptons and spin

0 sleptons.

The soft breaking terms in the MSSM are,

−LMSSM
soft =

1

2

[
M3λegλeg +M2W̃

aW̃ a +M1B̃B̃ + h.c.
]

+ ǫαβ[bHα
dH

β
u − auij

Hα
u ũi Q̃

β
j + adij

Hα
d d̃i Q̃

β
j + aeij

Hα
d ẽi L̃

β
j + h.c.]

+ m2
Hd
|Hd|2 +m2

Hu
|Hu|2 + Q̃α

i m
2
Qij
Q̃α∗
j

+ L̃αim
2
LijL̃

α∗
j + ũ

∗

Rim
2
uij ũj + d̃

∗

im
2
dijd̃j + ẽ

∗

im
2
eij ẽj . (4.2)

These soft masses mix the gauge eigenstates and physical particles (mass eigenstates)

are combinations of those fields. Assuming inter-generational mixing is suppressed the
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Supermultiplet Gauge spin 1/2 spin 1 SU(3)C SU(2)L U(1)Y

Ĝ SU(3)C g̃ g 8 1 0

Ŵ SU(2)W W̃± W̃ 0 W± W 0 1 3 0

B̂ U(1)Y B̃0 B0 1 1 0

Table 4.2: Gauge supermultiplets of the MSSM, and gauge group representations.

physical particles not yet observed are shown in Fig. 4.3.

4.2 Electroweak Symmetry Breaking in the MSSM

As mentioned in the previous section, the MSSM has two Higgs doublets. This is the

minimal Higgs sector in a supersymmetric model. The structure of supersymmetry

forbids terms like yuQH
†
duR so separate Higgs doublets are needed: one, Hu, to give

mass to the ‘up-type’ fermions and the other, Hd, to give mass to the ’down-type’

fermions. In addition two Higgs doublets with opposite hypercharge are needed to

ensure anomaly cancellation in the model.

The Higgs potential of the MSSM is,

VH = |µ|2
(
|Hd|2 + |Hu|2

)
+

1

8
(g2 + g′2)

(
|Hd|2 − |Hu|2

)2

+
1

2
g2|H∗

dHu|2 +m2
Hd
|Hd|2 +m2

Hu
|Hu|2 + b(ǫαβH

α
dH

β
u + h.c.) (4.3)

where g and g′ are the gauge couplings of SU(2)W and U(1)Y , as defined in Sec. 2.3.2.

The first three terms, from the SUSY invariant part of the Lagrangian, are all positive,

so soft masses are required for electroweak symmetry breaking to take place. Now

examining,

∂V

∂H−
d

=
∂V

∂H+
u

= 0 ⇒ 〈H+
u 〉 = 〈H−

d 〉 = 0. (4.4)

From the Hessian of VH(H0
u, H

0∗
u , H

0
d , H

0∗
d ), the origin is not a stable minimum if b2 >

(m2
Hd

+ |µ|2)(m2
Hu

+ |µ|2). Additionally the potential is unbounded from below when
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Gauge Eigenstates Mass Eigenstates

up squarks ũL ũR s̃L s̃R t̃L t̃R ũ1 ũ2 c̃1 c̃2 t̃1 t̃2

down squarks d̃L d̃R c̃L c̃R b̃L b̃R d̃1 d̃2 s̃1 s̃2 b̃1 b̃2

charged sleptons ẽL ẽR µ̃L µ̃R τ̃L τ̃R ẽ1 ẽ2 µ̃1 µ̃2 τ̃1 τ̃2

sneutrinos ν̃e ν̃µ ν̃τ ν̃e ν̃µ ν̃τ

Higgs bosons H0
u H0

d H+
u H−

d h0 H0 A0 H±

neutralinos B̃0 W̃ 0 H̃0
u H̃0

d χ̃0
1 χ̃

0
2 χ̃

0
3 χ̃

0
4

charginos W̃± H̃+
u H̃−

d χ̃±
1 χ̃±

2

gluino g̃ g̃

Table 4.3: The MSSM particle content yet to be discovered is displayed. Both gauge

eigenstates and mass eigenstates are shown, where it is assumed intergenerational mix-

ing is negligible. First and second generation mixing should also be negligibly small but

the mass eigenstates are labelled the same as for the third generation for completeness.

|H0
u|2 = |H0

d |2 if 2b > 2µ2 + m2
Hd

+ m2
Hu

. So for a finite non-zero vev at tree level we

require,

(m2
Hd

+ |µ|2)(m2
Hu

+ |µ|2) < b2 (4.5)

2µ2 +m2
Hd

+m2
Hu

> 2b (4.6)

Minimising the potential yields,

(|µ|2 +m2
Hu

)vu = bvd +
1

4
(g2 + g′2)(v2

d − v2
u)vu (4.7)

(|µ|2 +m2
Hd

)vd = bvu −
1

4
(g2 + g′2)(v2

d − v2
u)vd, (4.8)

where vu = 〈H0
u〉 and vd = 〈H0

d〉.
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4.3 Tree level Masses in the MSSM

Defining Zµ and W±
µ as for the SM in Eq. 2.26,

m2
Z =

1

2
(g2 + g′2)(v2

u + v2
d) (4.9)

m2
W =

1

2
g2(v2

u + v2
d), (4.10)

where the combination (v2
u + v2

d)
1/2 = v =

(
2m2

W

g2

)1/2

= 174 GeV is fixed from experi-

ment and tan β ≡ vu/vd. This allows Eqns. 4.7, 4.8 to be rewritten as,

M2
Z =

2(m2
Hd

−m2
Hu

tan2 β)

tan2 β − 1
− 2|µ|2 (4.11)

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2 , (4.12)

The observed fermions’ masses are given by,

mu,c,t = yu,c,tv sin β, md,s,b = yd,s,bv cosβ, me,µ,τ = ye,µ,τv cosβ. (4.13)

With three of the eight degrees of freedom from the Higgs scalars being absorbed by

the W± and Z bosons, there are five degrees of freedom remaining and these become

five physical Higgs particles, with masses,

m2
A = 2b/ sin(2β) (4.14)

m2
H± = m2

A0 +m2
W , (4.15)

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2(2β)

)
. (4.16)

where A is a CP-odd, pseudoscalar Higgs boson, H± are charged Higgs bosons and h

and H are the light and heavy CP even Higgs bosons.

The superpartners of the W± and the charged Higgs fields are mixed by mass terms

and the mass eigenstates are called charginos with mass,

m2
χ̃1,χ̃2

=
1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin 2β|2
]
. (4.17)
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The superpartners of the neutral SU(2)W field, W 0 and the neutral field of the U(1)Y ,

B, the “Wino” and “Bino” respectively, mix with the superpartners of the neutral

Higgs fields into the mass eigenstates called neutralinos. Their masses are determined

by diagonalising,

Mχ̃0 =




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0



. (4.18)

while the gluino, the superpartner of the gluon, does not mix with any other states

and has a mass at tree level which is simply, M3.

Finally if intergenerational mixing is assumed negligible so that the soft squark

mass matrices are flavour diagonal, and the trilinears are assumed proportional to the

Yukawas for each generation,2 au = Auyu, ad = Adyd, ae = Aeye the sfermion masses

are given by,

m2
ũ1,ũ2

=
1

2

[
m2
Q +m2

U + 2m2
u + △Q + △U

±
√

(m2
Q −m2

U + △Q −△U)2 + 4m2
u

(
Au −

µ

tanβ

)2]
. (4.19)

for each up-type squark mass, where mu is the quark mass of the squark’s superpartner,

m2
Q and m2

U are the left-handed and right-handed soft masses, respectively, of the

appropriate generation, and △Q, △U are the left-handed and right-handed D-term

contributions respectively. For the down-type squark masses,

m2
d̃1,d̃2

=
1

2

[
m2
Q + m2

D + 2m2
d + △Q + △D

±
√

(m2
Q −m2

D + △Q −△D)2 + 4m2
d

(
Ad − µ tanβ

)2]
, (4.20)

where md is the quark mass of the squark’s superpartner, m2
Q and m2

D are the left-

handed and right-handed soft masses, respectively, of the appropriate generation, and

2This is a weaker form of 4.25, but if 4.25 is taken to hold at some high scale far above the squark

mass the two relations are consistent, as the RGE running will split the universality of trilinears in

exactly this way.
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△Q, △D are the left-handed and right-handed D-term contributions respectively. For

each charged slepton mass,

m2
l̃1,l̃2

=
1

2

[
m2
L +m2

E + 2m2
l + △L + △E

±
√

(m2
L −m2

E + △L −△E)2 + 4m2
l

(
Al − µ tanβ

)2]
, (4.21)

where ml is the lepton mass of the slepton’s superpartner, m2
L and m2

E are the left-

handed and right-handed soft masses, respectively, of the appropriate generation, and

△L + △E are the left-handed and right-handed D-term contributions.

The D-term contributions to these masses appear when the Higgs fields are substi-

tuted for their vevs in the D-terms coupling Higgs with sfermions. They depend on

the U(1)Y charges and weak isospin of the sfermions,

△A = (T3Ag
2 − YAg

′2)(v2
d − v2

u) = (T3A −QA sin2 θW ) cos(2β)m2
Z . (4.22)

With the low energy values of the soft parameters specified, the low energy spectra

can be approximated using the formulae presented in this section. For example as

a preliminary study prior to the fine tuning project (Chapters 5 and 6) we wrote

a program which could take low energy MSSM soft masses and used the tree level

relations in this section to calculate all tree level masses in the MSSM. This was tested

for several of the benchmark MSSM points, known as Snowmass Points and Slopes3

(SPS) [178] with the low energy parameters taken from [179] and the results for the

physical masses compared with the physical masses for the SPS point.

The accuracy of the tree level approximations varies depending on which mass is

predicted as well as which SPS point is used. For example the light Higgs mass gets

very large corrections from the SUSY breaking sector while its tree level mass is set

by the electroweak vev, v. Therefore, in this case, the tree level prediction is a poor

approximation, and one loop corrections can be as large as 30%.

3Snowmass Points and slopes are chosen by consensus as representing qualitatively different MSSM

scenarios and are very useful for comparison with other work.
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Indeed at tree level the upper bound on the light Higgs mass is bounded by MZ

and large radiative corrections are required to evade the LEP bound.

The error on the gluino mass was typically less than 10%. However it is known

that the gluino mass corrections can be as large as 30% [180] in some cases. The other

masses all had deviations . 10%, when compared to results in [179] which include one

loop corrections. In many cases the corections were as low as 1 − 2%.

A thorough analysis of the size of one loop corrections can be found in [180].

4.4 CMSSM

As already described in Sec. 3.4 the Constrained MSSM is an mSUGRA inspired form

of the MSSM where all soft mass parameters are specified in terms of four parameters,

m0, M1/2, A, B, where,

m2

f̃i
(MX) = m2

01 m2
Hu

(MX) = m2
Hd

(MX) = m2
0 (4.23)

M3(MX) = M2(MX) = M1(MX) = m1/2, (4.24)

au(MX) = Ayu, ad(MX) = Ayd, ae(MX) = Aye, (4.25)

b = Bµ, (4.26)

where MX is the high scale at which the universality constraints are postulated and

m2
f̃i

are the sfermion soft mass parameters. Since the gauge couplings unify at a scale

MGUT ≈ 1016, it is usual to take MX = MGUT .

There is also the superpotential mass term µ which mixes the Higgsinos. However

|µ| is fixed by the Z boson mass after imposing the electroweak symmetry breaking

conditions. Therefore all unknown masses in the CMSSM can be fixed by just 4 mass

parameters and one sign. Since |µ| is already being fixed by EWSB constraint Eq. 4.11,

it is convenient to also swap the parameterB with the ratio of vevs, tan β using Eq. 4.12.

A CMSSM point is then specified by the parameter set,

{m0, M1/2, A, tan β, sign(µ)}. (4.27)
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In order to link the high scale parameters of the CMSSM with low energies and

study the phenomenological consequences of the model, the Renormalisation Group

Equations (RGEs) of the MSSM must be employed. In the MSSM the RGEs of the

gauge, Yukawa and soft mass couplings form a set of non-linear coupled differential

equations which can be solved numerically.

4.4.1 Softsusy

SOFTSUSY [181] is a publicly available program, written by B. C. Allanach which can

be used to the calculate MSSM mass spectra, to high precision, from MSSM parameters,

input at the GUT scale, and experimentally measured data, which is input at low

energies. It accepts user inputs of general MSSM parameters, or a smaller set of

parameters based on constraints inspired by mSUGRA, Gauge Mediated Symmetry

Breaking (GMSB) or Anomaly Mediated symmetry Breaking (AMSB) to generate the

spectrum of masses in the MSSM for the user specified point.

The RG evolution between the unification scale and the EWSB scale is controlled by

two loop MSSM beta functions. SOFTSUSY employs what is termed an ambidextrous

[182] approach to RGE evolution. Soft masses are set at the unification scale, defining

high scale boundary conditions (b.c.), while EWSB constraints and low energy data

are input at MZ or the low energy scale most appropriate to their measurement, and

these form low energy boundary conditions. Simultaneous solutions to these two sets

of b.c.s are then solved iteratively by evolving between the unification scale and low

scales. This procedure is summarised in Fig 4.1.

The masses of the observed particles, α(MZ), α3(MZ) and the muon decay constant,

Gµ
F , form a set of low energy data used as low energy boundary conditions at MZ for

the procedure. These b.c. are first used to make initial guesses for the Yukawas and

gauge couplings of the MSSM. The parameters are RGE evolved up to MX , where the

high scale b.c. are are imposed (e.g. those of the CMSSM).

Then all mass parameters and couplings are RG evolved to MZ , and the tree level
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EWSB conditions (Eq. 4.11 and Eq. 4.12) are applied to estimate |µ| from MZ , and to

replace softmass parameter b with vev parameter tanβ. The sparticle spectrum and

the SUSY scale, MS =
√
mt̃1(MS)mt̃2(MS) are also estimated. This concludes the

initial part of the procedure illustrated at the top of Fig 4.1 and the main iteration,

shown on the bottom left of Fig 4.1, is now entered.

The gauge and Yukawa couplings at MZ are re-estimated to now accommodate

radiative corrections involving the MSSM particles with the masses which have just

been estimated. All parameters are then evolved to MS. The electroweak constraints

are again used to determine µ and b, but his time with loop corrections added. For

the consistent inclusion of the higher order terms in the EWSB conditions, an iterative

procedure is used to determine |µ|. This is shown in the bottom right diagram of Fig

4.1.

With µ determined all parameters are run to MX and the high scale boundary

conditions are reimposed, before running back down to MZ , where the sparticle spec-

trum is recalculated. The iteration is then continued until the a convergent solution is

obtained and the spectrum of SUSY masses is determined and output.

A more complete description of the corrections included and the iteration procedure

can be found in the manual [181] or at the website [183] where the program can be

downloaded.
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Figure 4.1: Flow chart showing how SOFTSUSY finds sparticle spectra consistent

with high scale boundary conditions (e.g. those of the CMSSM), correct EWSB and

low energy data from experiments.



Chapter 5

Quantifying Fine Tuning

5.1 Motivation

Fine tuning appears in many areas of particle physics and cosmology, such as the

Standard Model (SM) Hierarchy Problem and the Cosmological Constant Problem.

These problems imply that the universe we live in is a very atypical scenario of the

theories we use to describe it. The contortion required to reproduce observation makes

such theories seem unnatural, motivating many studies of Beyond the Standard Model

(BSM) physics.

However many of the models constructed to solve fine tuning, also exhibit some

degree of tuning themselves. In the absence of data, while we await the LHC, natural-

ness is used to compare models and judge their viability. Great importance has been

attached to small differences in the levels of tuning when comparing models, so it is

important that naturalness and fine tuning are rigorously understood and measured

accurately.

For example the Hierarchy Problem is one of the principle motivations of low energy

supersymmetry (SUSY) (see Sec. 2.5 and Sec. 3.1). If the SM is an effective theory,

valid up to the Planck scale, then the inclusion of supersymmetric partners for every

SM particle leads to the cancellation of quadratic divergences in the loop corrections to
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the Higgs mass. This removes the need for fine tuning of O(1034) between the tree-level

mass parameter and the Planck Mass, allowing the Higgs boson to be naturally light.

5.1.1 Little Hierarchy Problem

Unfortunately current limits on superpartner masses may imply fine tuning in the most

studied model, the Minimal Supersymmetric Standard Model (MSSM). In the previous

chapter it was shown that the minimisation of the Higgs potential relates the square of

the Z boson mass, M2
Z , to the supersymmetry breaking scale. The tree-level expression

for this given in Eq. 4.11 and is reproduced here for convenience,

M2
Z =

2(m2
Hd

−m2
Hu

tan2 β)

tan2 β − 1
− 2|µ|2, (5.1)

where tanβ is the ratio of vacuum expectation values, µ the bilinear Higgs superpo-

tential parameter, and mHu
and mHd

are the up and down type Higgs scalar masses

respectively.

Lower bounds on the masses of the supersymmetric particles and the Higgs translate

to lower bounds on the parameters appearing on the right hand side of Eq. (5.1). If,

for example, one of the parameters is 1 TeV, then to cancel this contribution and give

MZ = 91.1876 ± 0.0021 GeV [33], another parameter (or combination of parameters)

would have to be tuned to the order of one part in a hundred.

Including loop corrections to Eq. (5.1) and examining the experimental constraints,

one finds that the largest term is from corrections involving the heaviest stop. This

can be written as [184],

δm2
Hu

= −3y2
t

8π2
(m2

t̃l
+m2

t̃r
) ln

(
Λ

mt̃

)
, (5.2)

where Λ is the high scale at which the soft stop masses, mt̃l
and mt̃r , are generated

from the supersymmetry breaking mechanism and yt is the top Yukawa coupling. A

heavy physical stop mass (mt̃ & 500 GeV) is needed to provide radiative corrections

to the light CP even Higgs mass, mh0 of the form,

δm2
h0 =

3v2y2
t

4π2
sin4 β ln

(
mt̃l

mt̃r

m2
t

)
, (5.3)



5.2: Tuning Measures In literature 60

which are large enough to evade the LEP constraints on its mass (≥ 114 GeV). So

the Little Hierarchy Problem is really about the tension between the masses of the Z

boson, the heaviest stop squark and the light Higgs.

The desire to solve this “Little Hierarchy Problem” has motivated a flood of activity

in the construction of supersymmetric models [185–191]. There is also increased interest

in studying alternative solutions to the SM Hierarchy problem [192–194]. In addition

to ensuring such models satisfy phenomenological constraints it is essential that the

naturalness is examined using a reliable, quantitative measure of tuning.

5.2 Tuning Measures In literature

In [195] Barbieri and Giudice use a measure of tuning, originally proposed in [196], for

an observable, O, with respect to a parameter, pi,

△BG(pi) =
∣∣∣ pi
O(pi)

∂O(pi)

∂pi

∣∣∣. (5.4)

A large value of △BG(pi) implies that a small change in the parameter results in a large

change in the observable, so the parameters must be carefully “tuned” to the observed

value. Since there is one △BG(pi) per parameter, they define the largest of these values

to be the tuning for that point in the parameter space,

△BG = max({△BG(pi)}). (5.5)

They then make the aesthetic choice that a tuning, △BG > 10 is fine tuned.

This measure has been used extensively in the literature to quantify tuning in

the MSSM [197–206] and to examine tuning in other models and theories e.g. [184],

[207,211]. However other measures have also been proposed and used.

Motivated by global sensitivity, which will be discussed in the next section, Ander-

son and Castano [212–215] propose that tuning should be measured with,

△AC(pi) =
△BG(pi)

△BG(pi)
, (5.6)
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where they choose the “average” sensitivity, △BG(pi), not to be the mean, but instead

defined by,

△−1

BG(p) =

∫
p′f(p′)△−1

BG(p′)dp′

pf(p)
∫
dp′

. (5.7)

where f(p) is the probability distribution of parameter p. Individual △AC(pi) are com-

bined in the same manner as the individual △BG(pi),

△AC = max({△AC(pi)}). (5.8)

There is some dispute within the literature as to whether or not Eq. (5.5) is the

best way of choosing a final tuning value from the set {△BG(pi)}. In [192],[216–219]

the individual △BG(pi) are be combined as if uncorrelated,

△E =

√∑

i

△2
BG(pi), (5.9)

to give a measure of fine tuning for the parameter space point.

Several other measures have been proposed [220–223], but will not be discussed here.

5.3 Limitations of Traditional Measure

Despite the wide use of △BG it has several limitations which may obscure the true

picture of tuning:

• variations in each parameter are considered separately;

• only one observable is considered in the tuning measure, but there may be tunings

in several observables;

• it does not take account of global sensitivity;

• only infinitesimal variations in the parameters are considered;

• there is an implicit assumption that the parameters come from uniform proba-

bility distributions.
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Tuning is really concerned with how the parameters are combined to produce an un-

natural result. If one measures tunings for each parameter individually, there is no

clear guide how to combine these tunings to quantify how unnatural this cancellation

is. This has led to two alternative approaches in the literature, Eq. (5.5) and Eq.

(5.9); the only way to determine if either △BG or △E combines sensitivities correctly

is to compare them with a generalisation of △BG(pi) that varies all of the parameters

simultaneously.

Secondly, some theories may contain significant tunings in more than one observ-

able. We want to know how these tunings can be combined to provide a single measure.

For example it is reported in [161,224], and more recently in [225–226], that the MSSM

also requires tuning in the relic density of the dark matter (ρ). To measure the tuning

for some particular set, S ′ = {M ′
Z , ρ

′}, of these observables we should determine how

atypical predictions like S ′ are in the theory. There are four classes of scenario which

are significant: the first where both MZ and ρ are similar to their value in S ′; two more

classes where only one of MZ or ρ is similar to its value in S ′; one with neither observ-

able similar to S ′. Tunings in these two observables should be combined in a manner

which measures how atypical scenarios in the first class are, without double counting

scenarios which appear in the second and third classes. Only a tuning measure which

considers the observables simultaneously can achieve this.

A third problem, first mentioned by Anderson and Castano [212] is that the tra-

ditional measure picks up global sensitivity as well as true tuning. △BG is really a

measure of sensitivity. Consider the simple mapping f : x → xn, where n ≫ 1.

Applying the traditional measure to f(x) gives △BG = △BG(x) = n. Since △BG is

independent of x, we follow the example of [212] and term this global sensitivity. Since

△BG(x1)−△BG(x2) = 0 for all x1, x2, there is no relative sensitivity between points in

the parameter space.

If we use △BG as our tuning measure then f(x) appears fine tuned throughout the

entire parameter space. This contrasts with our fundamental notion of tuning being a

measure of how atypical a scenario is. A true measure of tuning should only be greater
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than one when there is relative sensitivity between different points in the parameter

space.

Another concern is that △BG only considers infinitesimal variations in the param-

eters. Since MSSM observables are complicated functions of many parameters, it is

reasonable to expect some complicated distribution of the observables about that pa-

rameter space. There may be locations where some observables are stable (unstable)

locally, but unstable (stable) over finite variations.

Finally, there is also an implicit assumption that all values of the parameters in the

effective softly broken Lagrangian LSUSY are equally likely. However they have been

written down in ignorance of the high-scale theory, and may not match the parameters

in, for example, the Grand Unified Theory (GUT) Lagrangian, LGUT . Any non-trivial

relation between these different sets of parameters may alleviate or exacerbate the fine

tuning problem.

While some of the alternative measures in the literature are motivated by one of

these issues, no proposed measure fully addresses all of them.

5.4 Constructing Tuning Measures

A physical theory is fine tuned when generic scenarios of the theory predict very dif-

ferent physics to that which is observed. For the theory to agree with observation

the parameters must be adjusted very carefully to lie in an extremely narrow range of

values. Insisting that the physics described by the theory is similar to that observed,

shrinks the acceptable volume of parameter space. When in this tiny volume even

small adjustments to the parameters will dramatically change the physics predicted,

so fine tuning may also be characterised by instability. It is this instability which the

traditional measure is exploiting.

Instead we wish to construct a tuning measure which determines how rare or atyp-

ical certain physical scenarios are. The most direct way to do this is to compare the
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volume of parameter space, G, that is similar to some given scenario with the typical

volume, T , of parameter space formed by scenarios which are similar to each other.

If all the parameters {pi} are drawn from a uniform probability distribution then the

probability of obtaining a scenario in G is, G/V , where V is the volume of parameter

space formed by all possible parameter choices. Similarly T/V gives the probability of

obtaining a scenario in volume T . We may then define tuning as △̂ = T/G, to quantify

the relative improbability of scenarios similar to our given scenario in comparison to

the typical probability.

To place this within a quantitative framework we must define what we mean

by “similar” and “typical”. This will be dealt with later. First, though, consider

the toy example presented in Fig. 5.1, showing an observable, O, which depends

Figure 5.1: A toy example with an observable, O, which depends on a parameter x.

on a parameter, x. Here there are four clearly distinct groups of observable sce-

nario (O = O1, O2, O3, O4) and “similar” can be replaced with equal. Given one of

these groups of scenarios, O = Oi, the volume G is the length (one dimensional vol-

ume) of parameter space with O = Oi. For example, for O4 we have G = x2 − x1.

Next we must define our “typical” volume, T formed by these distinct groups of sce-

narios. In this simple example an obvious choice is to define T as the mean vol-

ume (length) of parameter space formed by scenarios in the same group. So T =

1
4
(x1 + (x2 − x1) + (x3 − x2) + (x4 − x3)) = x4

4
. The tuning required to get O = O4 is

then △̂ = x4

4(x2−x1)
, which conforms to our intuitive expectation.



5.4: Constructing Tuning Measures 65

In more realistic examples the definitions of “similar” and “typical” will not be so

trivial. The definitions must be chosen to fit the type of problem one is considering. In

the simple example given above the problem was that scenarios where O = O4 occupied

a smaller proportion of the parameter space than other values, O = O1, O2, O3.

In hierarchy problems the concern is that one (or more) observable is much smaller

than another observable, despite depending on common parameters. The requirement

that one observable is large forces the theory into a region of parameter space where

generic points also predict a large value for the second observable(s).

So “similar” must be related to the size of the observables. For example, one might

consider “similar” to observable O′
i to mean observables “of the same order”as O′

i. A

sensible definition of G is then the volume of parameter space where 1
10

≤ Oi

O′
i
≤ 10, for

all observables Oi. However it is not clear that this is more appropriate than some other

choice such as 1
2
≤ Oi

O′
i
≤ 2. So generally G can be defined by a class of parameter space

volumes formed from dimensionless variations in the observables a ≤ Oi

O′
i
≤ b. Different

values of a and b quantify different definitions of “similar” and are therefore different

fine-tuning questions. In comparison, the one dimensional measure ∆BG is a ratio of

infinitesimal lengths, so implicitly adopts the choice a, b → 1. One can imagine cases

where this would be a bad choice (e.g. an observable which oscillates quickly when the

parameter is varied), so care must be taken to choose a and b sensibly (i.e. ask the

correct question).

When a large hierarchy between observables requires a large cancellation between

parameters, as in the traditional hierarchy problem, the region of parameter space

which can provide the correct observables (the volume G) is much smaller than one

would expect (i.e. it is “fine-tuned”). We must compare this volume with the “typical

volume” of parameter space, T , that one would expect if no fine-tuning were present.

The remaining question is then, how do we define this “typical volume”?

One might suggest that this typical volume should be the average of volumes G

throughout the whole parameter space, 〈G〉. However, the measure would then depend

only on how far parameters are from some hypothesised upper limits on their values.
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For example, an observable O which depends on a parameter p according to O = αp will

display fine-tuning for small values of p if one chooses the maximum possible value of p

to be large, even though there is no cancellation present. This is not the ‘fine-tuning’

we are trying to probe; we want to gain insight into the unnatural cancellation between

parameters, so T must be anchored to the specific parameter point to be tested.

We can do this by adopting the same notion of “similar” that we used to define G.

We introduce a volume F which is formed from dimensionless variations [a, b] in the

parameters. A comparison of F/G at different points in the parameter space, provides

a test of whether G’s variation is due to a simple scaling with the parameters (as

described above for O = αp), or due to some “unnatural” effect such as fine-tuning.

Consequently one should compare F/G with its average value over the entire space,

〈F/G〉. Reverting to our previous terminology, the “typical” volume which one would

have expected to form from dimensionless variations in the parameters about {p′i}, is

T =
F ({p′i})〈

F
G

〉 . (5.10)

5.5 New Tuning Measure

Following the above discussion and motivated by the limitations of the traditional

measure, we propose a new measure of tuning.

We define two volumes in parameter space for every point P ′{p′i}. Let F be the

volume of dimensionless variations in the parameters over some arbitrary range [a, b],

about point P ′, i.e. the volume formed by imposing a ≤ pi

p′i
≤ b. Similarly let G be the

volume in which dimensionless variations of the observables fall into the same range

[a, b], i.e. the volume constrained by a ≤ Oj({pi})

Oj({p′i})
≤ b. Volumes F and G are illustrated

for a two dimensional example in Fig. 5.2.

We define an unnormalised measure of tuning with,

△ =
F

G
. (5.11)

This is sufficient for comparing different regions of parameter space within a given
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Figure 5.2: Left: In two dimensions the bounds placed on the parameters, a ≤ pi

p′i
≤ b,

appear as four lines in parameter space giving the dark grey area (2d volume), F .

Middle: Bounds on the two observables, a ≤ Oj({pi})

Oj({p′i})
≤ b introduce four more lines

giving the volume G. Right: Two dimensional volumes (areas) F (dark grey) and G

(light grey).

model as the normalisation factor will be common. To compare tuning in different

models we need to include normalisation,

△̂ =
1

△
F

G
, (5.12)

with,

△ =

〈
F

G

〉
=

∫
dp1...dpn

F
G

({pi}, {Oi})∫
dp1...dpn

. (5.13)

Notice that this measure does not depend on experimental constraints. In naturalness

problems such constraints should only rule out the point, P ′, around which we make

variations to test fine tuning. If P ′ is not experimentally excluded, we should not

impose experimental constraints on nearby points {Pi} used to probe fine tuning. Fine

tuning quantifies how unnatural a region of parameter space is and this is a feature of

the theory, not our experimental knowledge.

△̂ quantifies the restriction on parameter space. This is more in touch with our

intuitive notion of tuning than the stability of the observable. Notice that with only

one or two parameters and no global sensitivity, △BG also describes restriction of pa-

rameter space and yields the same results as our new measure. However it is important

to recognise that △BG’s ability to do this leads to its utility as a tuning measure there.

Equally its failure to do so in many dimensions demonstrates its limitation.
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Consider fine tuning for a single observable which depends on more than one parameter,

Even though the true tuning for any physical scenario should be described using all

available observables, it is often useful to define individual tunings for each observable

separately. However, in this case, the volume G is unbounded, since a single observable

can only constrain one combination of parameters.

To resolve this difficulty one must either reduce the number of parameters to one or

introduce some other bounds on G. The former reintroduces the problem of combining

tunings for individual parameters and a better procedure is to restrict G to be within

F . Here we are trying to pick up how much of the restriction in parameter space is

due to this particular observable. The assumption is made that if all other observables

were natural then they would restrict G no more than F does. Therefore we define

GOj
to be the volume restricted by a ≤ Oj({pi})

Oj({p′i})
≤ b and a ≤ pi

p′i
≤ b. Tuning is then

defined by,

△̂Oj
=

1〈
F
GOj

〉 F

GOj

, (5.14)

This definition is applied to obtain individual tunings in the MSSM in Section 6.2.1.

Like △BG and △AC, △ depends upon the choice of parameterisation. Since tuning

is about the restriction of the parameter space this seems unavoidable. To examine

different choices of parametrisation one must redefine volumes F and G in terms of the

new parameters and normalise the tuning by taking the average over the new parameter

space.

5.6 Relation To Other Measures

Since much of the motivation behind developing this measure was to generalise △BG

so that many parameters and many observables are considered simultaneously, it is

interesting to look at how the two measures are related.

Consider a theory with one observable, y which has a linear dependence on a single
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parameter, x, with the value of that parameter being drawn from a uniform probability

distribution. At the parameter point (x0, y0), notice that, △BG = |xo/yo∂y/∂x|, while

we can see F = (b− a)xo and G = ∂x
∂y

(b− a)yo, so,

△ =
F

G
=
bxo − axo
byo − ayo

∂y

∂x
= △BG. (5.15)

Similarly Anderson and Castano’s measure may be written as,

△AC =
xo
yo

∂y

∂x

∫
dx′y(x′) ∂x′

∂y(x′)

xo
∫
dx′

=

∫
dx′y(x′)

yo
∫
dx′

(5.16)

Now notice that 〈G〉 = ∂x
∂y

R
dx′(b−a)y(x′)R

dx′
, so,

△AC =
〈G〉
G
. (5.17)

In Section 5.4, we pointed out the difficulty in using 〈G〉/G as a tuning measure and

this will be further illustrated in Section 6.1 when we look at results for our measure

and △AC for a toy version of the SM Hierarchy problem.



Chapter 6

Applying New Tuning Measure

6.1 Toy Models

In this section a comparison is made of some of the tuning measures for various toy

models and the implications are discussed. In each of these examples a uniform prob-

ability distribution for the parameters is assumed.

Results from this section for toy models with only one parameter are summarised

in Table 6.1, comparing the analytical results of various tuning measures for the simple

models with only one parameter and one observable. With only one parameter it is

trivially the case that △E = △BG, so it is not included.

6.1.1 SM Hierarchy Problem Revisited

As a first test of our measure we apply it to the Standard Model Hierarchy Problem,

where we know the tuning is enormous. Here there is only one observable,the physical

Higgs mass, mH . Recall from Sec. 2.5 that at one loop we can write,

m2
H = m2

0 − CΛ2. (6.1)
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△BG △ △AC △̂

Toy SM 1 + CΛ2

m2

H
1 + CΛ2

m2

H

m2

Hmax+m2

Hmin

2m2

H

m2

0

m2

H+
m2

H
CΛ2

m2
0 max−m2

0 min

ln
m2

0 max−CΛ2

m2
0 min

−CΛ2

f(x) = xn n b−a
b1/n−a1/n

xmax+xmin

2x 1

g(x) = ekx |kx| (b−a)|kx|

ln b
a

1 2x
xmin+xmax

Proton Mass 16π2

b3g2

3

(b−a)

( −k

g2
3

ln b−k
)1/2−( −k

g2
3

ln a−k
)1/2

(gmax+gmin)(g2

max+g2

min)

4g3

3

≈ gmaxgmin

g2
3

Table 6.1: Tuning measures for models with only one parameter and one observable.

We treat only the bare mass squared, m2
0 as a parameter. Λ, the Ultra Violet cutoff, is

taken to be the Planck Mass or some other fixed scale. C is a positive constant which

includes gauge and Yukawa couplings.

To apply our measure we simply vary the tree level mass parameter about m2
0,

over the arbitrary range [am2
o, bm

2
0].As is illustrated in Fig.(6.1), this gives the line

F = (b− a)m2
0. Doing the same for the observable yields the line G = (b− a)m2

H .

Figure 6.1: One dimensional volume (length ) F (dark grey) and the restricted subset,

length G (light grey)

⇒ △ =
F

G
= 1 +

CΛ2

m2
H

= △BG. (6.2)

Notice that the arbitrary range [a, b] has fallen out of the result and it matches that

obtained using the traditional measure, which we showed must be the case for linear

functions like this.

Since F/G = △BG the only difference between the new measure proposed here and
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that of Anderson and Castano is how global sensitivity is determined. In both cases

some choice needs to be made for the range of possible m2
0, so we write m2

0max ≥ m2
0 ≥

m2
0min > CΛ2. The new measure then gives,

〈
F

G

〉
=

1

m2
0max −m2

0min

[m2
0max −m2

0min + CΛ ln
m2

0max − CΛ2

m2
0min − CΛ2

] (6.3)

⇒ △̂ =
m2

0

m2
H +

m2

H
CΛ2

m2

0 max−m
2

0 min

ln
m2

0 max−CΛ2

m2

0 min−CΛ2

(6.4)

If the chosen range of variation is large, m2
0max −m2

0min ≫ CΛ2,

⇒
〈
F

G

〉
≈ 1 ⇒ △ ≈ m2

0

m2
H

=
F

G
= △BG. (6.5)

Alternatively choosing very narrow range of variation about CΛ2+µ2
H , where µ2

H ≈ 150

GeV, implies △ is very small and in the limit m2
0max −m2

0min → 0, △ → 0.

This is intuitively reasonable. Imagine there was some compelling theoretical reason

for the bare mass term to be constrained to lie close to the cutoff. For instance a

GUT or a new quantum theory of gravity which gave rise only to a bare mass with,

CΛ2 < m2
0 ≤ CΛ2 +µ2

H . In light of this, the case for new physics at low energies would

be dramatically weakened. Indeed it is precisely because there is no such compelling

reason that we worry about the hierarchy problem and look to BSM physics such as

SUSY to explain how we can have mH ≪MP lanck.

Now the measure used by Anderson and Castano is applied to this problem.

△−1

BG =
m2

0max +m2
0min − 2CΛ2

2m2
0

, (6.6)

⇒ △AC =
m2

0max +m2
0min − 2CΛ2

2m2
H

=
m2
Hmax +m2

Hmin

2m2
H

. (6.7)

Notice that as m2
0max −m2

0min → 0, mHmin → mH and mHmax → mH , so △AC → 1.

While numerically different from the result given by the new measure in this limit, in

both cases the interpretation is that there is no tuning problem.

However a fundamental difference between △̂ and △AC is that the latter will give

a large tuning for any m2
H ≪ 1

2
(m2

0max + m2
0min) − CΛ2. If the upper bound is chosen
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such that, m2
0max ≫ m2

0, then even a Higgs mass of O(m2
0) will appear fine tuned.

This measure is not sensitive to the unnatural cancellation which causes our concern.

Instead it is sensitive to the fact that large values of m2
H take up a much larger volume

of parameter space than small values of m2
H . This would be true even if the Higgs mass

was described by m2
H = m2

0, with no unnatural cancellation.

The results for this Toy SM are summarised in the first row of Table 6.1.

6.1.2 Other Toy Models with one parameter

Now consider the tuning for a simple function f(x) = xn. Earlier in Sec. 5.3 it was

shown that there was no relative sensitivity in f(x), as the traditional tuning measure

is △BG = n, ∀x. The unnormalised version of the measure proposed here, △, also gives

a constant value,

△ =
b− a

b
1

n − a
1

n

. (6.8)

If instead tuning measures normalised over the range xmax ≥ xmin ≥ 0 are used,

this global sensitivity is removed. It is trivial to obtain the mean value for △BG and

△,

△BG = n ⇒ △BG

△BG

= 1, (6.9)

〈
F

G

〉
=

b− a

b
1

n − a
1

n

⇒ △̂ = 1. (6.10)

Although in this case the unnormalised sensitivity does depend the size of the variations

(our choice of a and b) the final result, △̂ is independent of this and implies that there

is not a tuning problem here.

Applying Anderson and Castano’s tuning measure, △AC , to f(x), over the same

range, gives,

△AC =
xmax + xmin

2x
, (6.11)
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This does substantially reduce the global sensitivity, but nonetheless implies that for

naturalness considerations an observable that is as large as possible is preferential.

Another interesting case is g(x) = exp(kx), where k is taken to be a positive

constant for simplicity. Applying the traditional measure we get △BG = |kx|. A naive

interpretation suggests that only x = 0 to x = ±1/k is not tuned and any |x| > 10/k is

fine tuned. However this means that if x is allowed to extend to large values (x≫ 1/k)

then most of the parameter space is fine tuned! Rephrased this would imply that far

more of the parameter space matches atypical values than typical ones, which is a

contradictory statement. This is another clear example of the need to compare against

some “average” sensitivity. △ gives a similar result but with a different constant factor,

△ =
|k(b− a)x|

ln b
a

(6.12)

If instead one compares the sensitivity for some given value of exp(kx) with the mean

sensitivity a more sensible answer can be produced. As in the previous examples to do

this one must make certain assumptions about the parameter space. Let the allowed

values of x be bounded by xmax ≥ x ≥ xmin ≥ 0 with all values of x being equally likely

in this range, then,

△̂ =
△BG

△BG

=
2x

xmin + xmax
, (6.13)

Note that △̂ < 2, so g(x) is never fine tuned for any x according to this measure,

though △̂ does vary a little.

For g(x) Anderson and Castano’s measure gives,

△−1

BG =
1

|kx| ⇒ △AC = 1. (6.14)

It is interesting that our measure considers f(x) to have consistently no tuning (△̂ = 1),

whereas it is for g(x) that △AC = 1 for all x. The tuning results for f(x) and g(x), for

the case xmax > xmin > 0 are shown in the second and third rows of Table 6.1.
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6.1.3 Proton Mass

The original illustration of global sensitivity presented by Anderson and Castano in

[212] was for the proton mass. The proton can be much lighter than the Planck Mass

without fine tuning because the renormalisation group equations (RGE) lead to only a

logarithmic dependence on high scale quantities. However, by using the one loop RGE

for the QCD coupling, α3, and equating the proton mass to the QCD scale1

MProton ∼ ΛQCD = C exp

[
− 8π2

b3g2
3

]
, (6.15)

where g3 is the strong gauge coupling evaluated at the Planck scale, MPlanck, and C is

a positive constant. As they demonstrated, this gives,

△BG(g3) =
16π2

b3g2
3

> 100. (6.16)

In [212] △AC is proposed to solve this problem and for gmax ≥ g3 ≥ gmin > 0 the result

obtained is,

△AC =
(gmax + gmin)(g2

max + g2
min)

4g3
3

. (6.17)

If instead one normalises △BG with the mean the result is,

△BG

△BG

=
gmaxgmin

g2
3

. (6.18)

To evaluate our measure, let k = 8π2/b3, so

△ =
(b− a)

( −k
g2
3

ln b−k
)

1

2 − ( −k
g2
3

ln a−k
)

1

2

. (6.19)

If g2
3 ln b/k ≪ 1 and g2

3 ln a/k ≪ 1, ∀gmin ≤ g3 ≤ gmax

△ ≈ 2k(b− a)

g2
3 ln b

a

(6.20)

and

△ ≈ △̂BG

△BG

. (6.21)

1For details see [212].
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In these one parameter examples the need for a normalised tuning measure is ap-

parent. However △AC diverges significantly from our new measure, which in many

of these simple one dimensional models is equivalent to normalising the traditional

measure with its mean value.

It is also interesting that even after accounting for global sensitivity some of these

one dimensional functions may still show some small degree of tuning. This opens up

the possibility that changing the parameterisation of the effective low energy theory

might exacerbate or alleviate the tuning problem. Finding choices of parametrisation

which reduce tuning could allow us to select high scale theories which are preferential

in terms of naturalness. This point has not appeared in the literature and merits

investigation. However we do not address this here but leave it for a future study.

6.1.4 Toy SM with two parameters

Now we consider models with more than one parameter. In these cases △E diverges

from △BG and we must compare each of these with △.

First we return to the SM hierarchy problem, but this time treat mH as a function

of two parameters, m2
0 and Λ2. In the one dimensional example the tension between the

weakness of gravitation (the large Planck Mass) and a light Higgs mass was examined

indirectly by choosing the Planck mass to be a fixed constant in theory. We now take

a more direct route with two observables m2
H and M2

Planck (“observed” to be large due

to the weakness of gravitation), predicted from the parameters with,

M2
Planck = Λ2, m2

H = m2
0 − CΛ2. (6.22)

We are still predicting m2
H from Eq. (6.1) and have not split up any of the terms

to introduce new cancellations, so we expect to simply reproduce the same result for

△ as we obtained in the one parameter toy SM model. However, the method applied

provides a simple illustration of how our measure works with more than one parameter.

We have a two dimensional parameter space, so allowing the parameters to vary about
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some point P ′(m2
0,Λ

2) over the dimensionless interval [a, b] defines an area, F , in this

space. Clearly the bounds from dimensionless variations in M2
Planck are the same as

those from Λ2, while the bounds from dimensionless variations in m2
H introduce two

new lines in the parameter space.

This is shown in Fig. 6.2 for two different points. In the first point, the values of

the parameters are of the same order as the observable, m2
H , because we have chosen

a small value of MPlanck. So G is not much smaller than F . For the other point

M2
Planck ≫ m2

H , resulting in an F much larger than G and fine tuning. Of course

neither of these points are representative of the weakness of gravitation we observe.

A point with MPlanck = 1019 GeV and mH = 120 GeV, would have F ≫ G to such an

extent that a graphical illustration is not possible.

Figure 6.2: The two dimensional volumes (areas) F (dark grey) and G (light grey) for

two different points in the two dimensional parameter space.

In general the areas are, F = (b− a)2m2
0Λ2 and G = (b− a)2Λ2m2

H so,

△ = 1 +
CΛ2

m2
H

= △BG. (6.23)

In this simple case we find the same result as the traditional measure. Combining

△BG(Λ) and △BG(m2
0) as if they are uncorrelated, gives,

△E =

√
C2Λ4 +m4

0

m2
H

. (6.24)

With CΛ2 and m2
0 both ≫ m2

H , i.e. fine tuned scenarios, this gives us △E ≈
√

2△.

While our measure does not deviate from △BG in this simple example, models with
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additional parameters allow the observable to be obtained from cancellation of more

than two terms, complicating the fine tuning picture.

6.1.5 Toy Model with three parameters and four observables

We now look at a model with four observables, M2, M2
1 , M2

2 , M2
3 , and three parameters,

p2
1, p

2
2, p

2
3, described by,

M2 = c1p
2
1 − c2p

2
2 + c3p

2
3. (6.25)

M2
1 = p2

1, M2
2 = p2

2, M2
3 = p2

3. (6.26)

For a point (m2
1, m

2
2, m

2
3), in the three dimensional parameter space, the traditional

measure gives △BG(pi) = cim
2
i /M

2 (no sum over i is implied), so,

△BG = max

{
cim

2
i

M2

}
and △E =

√∑

i

c2im
4
i

M2
. (6.27)

To apply our tuning measure in the three dimensional case we must determine volumes

F and G. For a point, (m2
1, m

2
2, m

2
3), with M2 = M2

0 = c1m
2
1 − c2m

2
2 + c3m

2
3 we have,

∂3F

∂p2
1∂p

2
2∂p

2
3

=
3∏

i=1

θ(p2
i − am2

i )θ(bm
2
i − p2

i ), (6.28)

∂3G

∂p2
1∂p

2
2∂p

2
3

=
∂3F

∂p2
1∂p

2
2∂p

2
3

θ(M2 − aM2
0 )θ(bM2

0 −M2), (6.29)

where the latter uses M2
i = p2

i and θ(x) is the usual Heaviside step function. Integrating

Eq. (6.28) over all three pi gives the volume,

F = (b− a)3m2
1m

2
2m

2
3, (6.30)

and similarly Eq. (6.29) gives,

G = (b− a)3

{
θ(c3m

2
3 − c2m

2
2)θ(c2m

2
2 − c1m

2
1)

[
1

c3
m2

1m
2
2M

2 − c21
3c2c3

m6
1

]

+ θ(c1m
2
1 − c2m

2
2)θ(c2m

2
2 − c3m

2
3)

[
1

c1
m2

2m
2
3M

2 − c23
3c2c1

m6
3

]

+ θ(c3m
2
3 − c2m

2
2)θ(c1m

2
1 − c2m

2
2)

[
m2

1m
2
2m

2
3 −

c22
3c1c3

m6
2

]

+ θ(c2m
2
2 − c1m

2
1)θ(c2m

2
2 − c3m

2
3)

[
1

c2
m2

1m
2
3M

2 − 1

3c1c2c3
M6

]}
. (6.31)
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We find that the analytical expressions for tuning in this model depend on the mass

hierarchy of m1, m2 and m3.

For c1m
2
1 > c2m

2
2 > c3m

2
3 we find,

△ =
F

G
=

c1m
2
1m

2
2

m2
2M

2 − c2
3

3c2
m4

3

≈ △BG if c3m
2
3 ≪ c2m

2
2. (6.32)

For c3m
2
3 > c2m

2
2 > c1m

2
1 we find:

△ =
F

G
=

c3m
2
2m

2
3

m2
2M

2 − c2
1

3c2
m4

1

≈ △BG if c1m
2
1 ≪ c2m

2
2. (6.33)

For c3m
2
3 > c1m

2
1 > c2m

2
2 and c1m

2
1 > c3m

2
3 > c2m

2
2:

△ =
F

G
=

m2
1m

2
3

m2
1m

2
3 −

c2
2

3c1c3
m4

2

≈ 1 if c1m
2
1c3m

2
3 ≫ c22m

4
2. (6.34)

For c2m
2
2 > c1m

2
1 > c3m

2
3 and c2m

2
2 > c3m

2
3 > c1m

2
1:

△ =
F

G
=

c2m
2
1m

2
2m

2
3

m2
1m

2
3M

2 − 1
3c1c3

M6
≈ △BG if M4 ≪ c1m

2
1c3m

2
3. (6.35)

Notice that these results do not match △E, but in three dimensions at least △BG is a

much better approximation, as is shown in Fig. 6.3.

Figure 6.3: Comparison of (unnormalised) tuning measures in the three parameter

model with m2
3 varying from 0 to 100 GeV2 and M2

0 = 1 GeV2 and m2
2 = 99 GeV2 kept

constant. m2
1 then varies according to Eq. (6.25) to accommodate the changes in m2

3.

Left: between △BG and our new measure. Right: between △E and our new measure.
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However, as we have seen, in moving from two parameters to three parameters these

discrepancies appeared, increasing the number of parameters further will increase the

divergences between the measures.

6.2 CMSSM

6.2.1 Procedure

The analytical methods described above become increasingly complicated to apply as

the number of parameters and observables are increased. For such situations we have

also developed a numerical procedure which can be applied to produce approximate

results for tuning. Since the MSSM contains many parameters and many observables

we chose to apply our numerical approach here.

To do this a modified version of SOFTSUSY 2.0.5 [181] was used. SOFTSUSY was

described in Sec. 4.4.1. To apply our new tuning measure we need to input additional

high scale constraints, µ(MX) = µGUT and b(MX) = m2
3, and be able to calculate MZ

and tanβ from µ(MZ) and b(MZ).

In SOFTSUSY 2.0.5, there is a routine to predict MZ and tan β, which was written

to apply the traditional tuning measure, △BG numerically. However this routine does

not provide an iterative solution for MZ . Instead the Higgs tadpoles and the real part

of the transverse self energy of the Z boson for the experimentally measured value of

MZ is used. This approximation is fine for very small deviations about MZ , but since

our new measure uses finite variations, rather than the infinitesimal variations of △BG

some alteration is required.

We modified SOFTSUSY 2.0.5 so that MZ was determined through an iterative

routine similar to the routine in which µ is iteratively determined. This is illustrated

in Fig. 6.4.

The numerical version of our measure can then be applied in the following way.
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Figure 6.4: Flow chart showing the modified iterative routines of our altered version

of SOFTSUSY.

We take random dimensionless fluctuations about an MSSM point at the GUT scale,

P ′ = {pk}, to give new points {Pi}. These are passed to the modified version of

SOFTSUSY 2.0.5. Each random point Pi is run down from the GUT scale until

electroweak symmetry is broken. An iterative procedure is used to predict M2
Z and

then all the sparticle and Higgs masses are determined.

As before F is the volume formed by dimensionless variations in the parameters.

GOi
is the sub-volume of F additionally restricted by dimensionless variations in the

single observable Oi, a ≤ Oi({pk})
Oi({p′k})

≤ b. As usual G is the volume restricted by a ≤
Oj({pk})

Oj({p′k})
≤ b, for each observable, Oj, where {Oj} is the set of masses predicted in

SOFTSUSY. For every Oi a count, NOi
, is kept of how often the point lies in the

volume GOi
as well as an overall count, NO, kept of how many points are in G. Tuning

is then measured according to,

△Oi
≈ N

NOi

, (6.36)
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for individual observables and

△ ≈ N

NO
(6.37)

for the overall tuning at that point.

Before describing the results two comments on this approach should be made.

Firstly when using SOFTSUSY to predict the masses for the random points, some-

times problems are encountered. We may have a tachyon, the Higgs potential un-

bounded from below, or non-perturbativity. Such points don’t belong in volume G

as they will give dramatically different physics. However it is unclear which volumes,

GOi
, the point lies in. Such points never register as hits in any of the GOi

and this

may artificially inflate the individual tunings, including △M2

Z
. Keeping the range small

reduces the number of problem points. Therefore we chose a = 0.9 and b = 1.1 for our

dimensionless variations.

Secondly, since we are measuring tuning for individual points numerically and cover

only a small sample of points, it is not possible to obtain mean values of △ and the

△Oi
as we haven’t sampled the entire space. When simply comparing how the tuning

varies about the parameter space the normalisation factor is not needed, since it is the

same for all points. However to compare the tuning between different observables as

well as to compare with different models some form of normalisation is essential.

6.2.2 Preliminary Study

We considered points on the Constrained Minimal Supersymmetric Standard Model

(CMSSM) benchmark slope, SPS 1a [178]. This slope is defined by,

m0 = −A0 = 0.4m 1

2

, sign(µ) = +, tan β = 10, (6.38)

where m0 is the common scalar mass, m1/2 the common gaugino mass (both at the

GUT scale) and sign(µ) is the undetermined sign of µ, the magnitude being determined

from a loop corrected, inverted form of Eq. (5.1) with M2
Z set to its observed value. A0
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is the common multiplicative factor which relates the supersymmetry breaking matrices

of trilinear mass couplings to their corresponding Yukawa matrix, e.g. au = A0yu.

The parameters we vary simultaneously are the set2 {m0, m1/2, µGUT , m
2
3, A0, yt, yb, yτ},

where m3 is the soft bilinear Higgs mixing parameter and yt, yb, yτ are the Yukawa cou-

plings of the top, bottom and tau respectively. The gauge couplings are not included

as parameters. Doing so would introduce excessive global sensitivity, increasing the

statistics needed to keep the errors under control.

First we applied our tuning measure to the observable M2
Z for 13 points on the

SPS 1a slope. Moving along this slope in m1/2 is an increase in the overall supersym-

metry breaking scale, since the magnitude of every soft breaking term is increasing.

We have plotted the results of this investigation in Figure 6.5.

0 200 400 600 800 1000
m

1/2
(GeV)

100

200

300

400

500

∆
M

Z
2

Figure 6.5: △M2

Z
for the SPS 1a slope. Error bars denote a one standard deviation

statistical error arising from the numerical procedure.

As expected there is a clear increase in tuning as the supersymmetry breaking scale

is raised. The statistical error also increases with the tuning, making the numerical

2Note that since points on the SPS 1a slope have |µ| set by M2
Z , our tuning measure is not sensitive

to the µ-problem. However for our random variation about the SPS 1a points we do treat µGUT as a

parameter because we are predicting M2
Z from the parameters, not fixing it to its observed value.
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approach most difficult to apply when the tuning is large. However precise determina-

tions of tuning are only relevant for moderate and low tunings. With tunings greater

than 500, precise values are not required.

6.2.3 Further Study

Due to the difficulty in this approach for measuring large tunings we looked in more

detail at points expected to have moderate tuning. We chose a grid of points with,

A0 = −100 GeV, tan β = 10, sign(µ) = +,

250 GeV ≤ m 1

2

≤ 500 GeV, 100 GeV ≤ m0 ≤ 200 GeV. (6.39)

Shown in Fig. 6.6 (top) is a plot of △M2

Z
over this grid of points. While the errors

are still significant (. 10%) there is a clear trend of tuning increasing with m1/2.

Also shown (bottom left) is △M2

Z
averaged over the five different values of m0. This

substantially reduces the errors giving a much more stable picture of tuning increasing

linearly with m1/2. Similarly △M2

Z
, averaged over the eleven different values of m1/2,

is shown (bottom right) as a function of m0. △M2

Z
appears insensitive to variations in

m0. These trends can be understood by looking at the one loop renormalisation group

improved version of Eq. (5.1), written in terms of the parameters (with tanβ = 10),

M2
Z ≈ 2(−|µ|2 + 0.076m2

0 + 1.97m2
1

2

+ 0.10A2
0 + 0.38A0m 1

2

), (6.40)

where |µ|2 is the value at MZ and and differs from the parameter at the GUT scale,

µGUT . The large coefficient in front of m1/2 explains why variations in this parameter

have a much greater impact on △M2

Z
than variations in m0 whose coefficient is much

smaller.

△, which includes all of the masses predicted by SOFTSUSY as well as M2
Z , is

shown in Fig. 6.7. Although the errors are much larger here, a similar pattern to that

for M2
Z can be seen. Since these are unnormalised tunings, the numerical values of

the two measures cannot be compared and one should not assume that △ > △M2

Z

implies that the tuning is worse than when only M2
Z was considered. In fact the lack
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Figure 6.6: Tuning variation in M2
Z . Top: △M2

Z
for all points on our grid. Bottom

left: △M2

Z
plotted against m1/2. To reduce statistical errors, at each value of m1/2, we

have taken the mean value △M2

Z
over the five different m0 values. Bottom right: △M2

Z

plotted against m0. To reduce statistical errors, at each value of m0, we have taken

the mean value △M2

Z
over the eleven different m1/2 values.

of evidence for distinct patterns of variation in tuning from the Figs. 6.6 and 6.7 is

consistent with the conjecture that the large cancellation between parameters in M2
Z

is the dominant source of the tuning for these points.

Fig. 6.8 shows that △m2

t̃2

and △m2

h
have similar patterns of variation to △M2

Z
and

△ over m1/2, though the gradients are noticeably shallower. While we know m2
h and

m2
t̃2

contribute to the Little Hierarchy Problem by giving a large contribution to M2
Z ,

thereby requiring a cancellation to keep MZ light, this shows there is also some tension

in their own masses which restricts the parameter space. It is not clear from our results

whether or not dimensionless variations are restricting different regions of parameter
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Figure 6.7: Variation in △ plotted as in Fig. 6.6 for △M2

Z
.

space to those in M2
Z or if Gm2

t̃2

and Gm2

h
are merely sub-volumes of GM2

Z
, with no

influence on △. This topic deserves further study.

However our results do show some evidence that the Little Hierarchy Problem is

not the only source of tuning. Displayed in Fig. 6.9 is △M2

A
. Notice that △M2

A
is very

small, so the errors are significantly reduced and we can resolve very small variations

in △M2

A
. As with the other observables tuning increases with m1/2, but it is a distinctly

non-linear variation. More surprising is that tuning decreases with m0. This pattern

of variation, distinct from that shown for △M2

Z
, shows a different source of tension. It

can be understood by examining the one loop RGE solution for MA,

M2
A ≈ 2f(|µGUT |2, {gi}, {yi}) + 0.81m2

0 − 1.55m2
1

2

− 0.022A2
0 − 0.41A0m 1

2

, (6.41)

where f is a function of supersymmetry preserving parameters only, arising from the
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Figure 6.8: Variation of unnormalised tunings in the mass of the heaviest stop (△m2

t̃2

,

shown left) and the mass of the light Higgs (△m2

h
, shown right) over m1/2

evolution of |µ|2. Notice that there is some opportunity for a cancellation here to make

MA lighter than expected. However the cancellation in the points we have looked at

is very small, leading to small values for △M2

A
. As m2

0 increases the already dominant

positive part of the equation increases and MA increases. As this happens the cancella-

tion becomes less significant to MA further reducing △M2

A
as shown in Fig. 6.9(bottom

right). Increasing m1/2 increases the size of the cancellation. If all other parameters on

the right hand side of Eq. (6.41) were fixed then we would expect to see △M2

A
increase

linearly3 with m1/2. However each point on our grid has the value of MZ = 91.188 GeV

fixed, and the term f(|µ|2, {gi}, {yi}) ≈ |µ2| changes according to an inverted Eq.

(6.40). This means M2
A is also increasing with m1/2 and the balancing act between

these two different effects leads to the nonlinear pattern shown.

Although we can’t determine the normalisation using this approach it is nonetheless

interesting to compare the unnormalised tunings for the points in our study with those

obtained for points with more “natural” looking spectra. We present two points for

this purpose. NP1 and NP2 are defined by,

NP1 : m 1

2

=MZ , m0 =MZ , A0 =−MZ , sign(µ)=+, tan β=3,

NP2 : m 1

2

=−50 GeV, m0 =100 GeV, A0 =−50 GeV, sign(µ)=+, tan β=10.

(6.42)

3The effect of A0m1/2 can be neglected since m1/2 > A0.
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Figure 6.9: Variation in △M2

A
plotted as in Fig. 6.6 for △M2

Z
.
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The spectra of these points are displayed in Fig. 6.10 and Fig. 6.11, and the unnor-

malised tunings are displayed in Table 6.2. Note that these are not intended to be

“realistic” scenarios. Indeed both NP1 and NP2 are ruled out by experiment but are

simply intended to provide “natural” scenarios for comparison.
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Figure 6.11: Point NP2 with a “natural” spectrum

While NP1 has low values of △M2

Z
, △m2

h
, △m2

t̃2

and △M2

A
, it has a relatively large

tuning in the mass of the lightest neutralino (△m2

χ0
1

). These combine to give a △ which
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△ △M2

Z
△mt̃2

△m2

h
△M2

A
△m2

χ0
1

NP1 241+36
−26 14.7+0.5

−0.5 6.7+0.1
−0.1 1.72+0.02

−0.02 2.05+0.02
−0.02 30.1+1.4

−1.3

NP2 31.4+1.5
−1.4 2.92+0.04

−0.04 2.26+0.03
−0.03 1.87+0.02

−0.02 2.23+0.03
−0.03 2.64+0.04

−0.04

Table 6.2: Unnormalised tunings for the two points, NP1 and NP2, with natural looking

spectra.

△̂ △̂M2

Z
△̂mt̃2

△̂m2

h
△̂M2

A
△̂m2

χ0
1

Relative to NP1 0.5..1.5 3..10 1..2 7..25 1 0.2

Relative to NP2 5..15 10..50 4..7 6..23 1 2

Table 6.3: Approximate relative tunings for the points in our study, with respect to

those for NP1 and NP2.

is similar in size to the values found for our grid of points. In NP2 all of the tunings

are relatively small, but the combined tuning is still larger than may naively have been

anticipated. This is because many of these small tunings for individual observables are

not correlated and are restricting different regions of parameter space. Table 6.3 shows

the approximate relative magnitude of the tunings in our grid points with respect to

these seemingly natural points.

In attempts to find a CMSSM scenario with a mass spectrum which is manifestly

natural we found many scenarios where tuning appeared in the mass of the lightest

neutralino. NP1 is a (moderate) example of this. This is because in some parameter

choices, the lightest neutralino becomes very light due to large cancellations between

the parameters. Other observables may also contain large cancellations between the

parameters in certain regions of parameter space. While we have not studied this

enough to make definitive claims, this may suggest that mass hierarchies appear in a

greater proportion of the parameter space than conventional CMSSM wisdom dictates.
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This would reduce the true tuning in the CMSSM as scenarios with hierarchies would

be less atypical than previously thought. A reduction in tuning from this effect can

only be measured by using our normalised new measure, △̂.

Unfortunately the numerical approach we have applied to the MSSM in this pa-

per cannot be used to address this issue. An average measure of △, over the whole

parameter space, is needed in order to investigate this possibility. A thorough numeri-

cal survey of the parameter space would be too expensive, however an analytical study

may be more promising. Findings in numerical studies like this may be used to identify

which observables and parameters are important for fine tuning and therefore reduce

the set {Oi} and {pi} to a manageable size. We will not carry out this programme

here, but leave it for a future study.

It is not just the possibility of finding a larger than expected global sensitivity which

motivates this study. It may be that most of the CMSSM parameter space is hierarchy

free and this is not a significant effect. However identifying a region of parameter

space where mass hierarchies are common also opens up new possibilities. Past studies

(see e.g. [227–228]) have looked for a theoretical basis for relations between parameters

which enforce a hierarchy between MZ and MSUSY . However no search has been made

for theoretical relations which simply restrict the parameter space to regions where

hierarchies, in general, are common. Such studies may also have the possibility of

solving the Little Hierarchy Problem.

Here we have two complimentary approaches. An analytical approach which can

determine tuning precisely, but is complicated and unwieldy when applied to a great

number of parameters and observables and a numerical approach which can be applied

to such situations but is not able to give an unambiguous measure of tuning as global

sensitivity cannot be accounted for. Progress can be made by combing our two ap-

proaches. Since solving for the tuning analytically with all parameters and observables

included would be difficult, one should first apply the numerical method. This might

identify which observables are in tension and responsible for the restriction of param-

eter space and also along which axis in parameter space this restriction takes place. If
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these are a sufficiently small set (maybe no more than 5 parameters and 5 observables)

then the analytical measure can be applied to this limited set to obtain a reasonably

accurate and unambiguous measure of tuning for that model.

6.3 Conclusions

Fine tuning ≈ 1034 within the Standard Model has motivated many of the BSM the-

ories which are popular within particle physics. In particular it motivates low energy

supersymmetry. However constraints from LEP and other searches have placed strin-

gent bounds on new physics which mean that many of the proposed solutions to the

SM fine tuning problem also require tuning to some degree. In order to compare the vi-

ability of such models and judge whether or not they are satisfactory a reliable measure

of tuning is required.

Current measures of tuning have several limitations. They neglect the many pa-

rameter nature of fine tuning, ignore additional tunings in other observables, consider

local stability only and assume LSUSY is parametrised in the same way as LGUT . In

the literature there have been different approaches to combine tunings for individ-

ual parameters and observables. With no guiding principle to select one particular

approach, which models are preferred in terms of naturalness can depend on which

tuning measure is used.

In this paper we have presented a new measure of tuning based upon our intuitive

notion of the restriction of parameter space. This measure can also be obtained by

generalising the traditional measure of tuning to include many parameters, many ob-

servables and finite variations in the parameters followed by removing global sensitivity

by factoring out the mean value of the unnormalised sensitivity.

From the application of this new measure to various toy models, we have shown that

none of the other measures satisfactorily combine individual tunings per parameter.

Interestingly though, in the absence of global sensitivity, it is the traditional measure

of Barbieri and Guidice which comes closest to our result with deviations for these
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simple examples being very small.

A numerical approach for some CMSSM scenarios demonstrated how the tuning in

complicated models with many parameters and many observables may be examined

and also highlighted some of the complications and issues encountered in doing so.

Our new measure is needed in future studies to examine tuning in the Z boson mass

and cosmological relic density simultaneously; to judge the true tuning in the NMSSM

in light of [229]; to examine parametrisation choices which alleviate the tuning in

different models and to study the global sensitivity of the complete tuning measure to

see if this may cause a significant reduction in the tuning problem.



Chapter 7

Exceptional Supersymmetric

Standard Model

7.1 Motivation and Background

The Exceptional Supersymmetric Standard Model (E6SSM) [4–5] is an E6 inspired

model with an extra gauged U(1) symmetry. It is a very interesting model from a

phenomenological point of view because it,

• solves the µ-problem in a similar way to the NMSSM but without the accompa-

nying problems of singlet tadpoles or domain walls;

• allows the light Higgs mass to be as heavy as 155 GeV, which may ease the Little

Hierarchy Problem;

• allows unification of the gauge couplings to within 2 standard deviations without

relying on threshold corrections;

• predicts a new Z ′ boson which could be discovered at the LHC if its mass is less

than ∼ 4 TeV;

• predicts exotic colored objects which may either be diquark or leptoquark in
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nature and their supersymmetric partners;

• predicts exotic objects which carry neither lepton nor baryon number which we

refer to as Inert Higgs and Inert Higgsinos and new exotic leptons;

• includes sterile right-handed neutrinos;

• aids successful baryogenesis in the early universe.

From a more theoretical standpoint it also has further advantages due to its E6 moti-

vation as,

• it could originate from an E6 Grand Unified Theory;

• E6 groups arise naturally from the breakdown of E8× E′
8 heterotic superstring

theory when the extra dimensions are compactified.

Some of these motivations are described in more detail in the following sections.

7.1.1 The µ-problem

The incorporation of the most minimal SUSY extension of the SM, the Minimal Super-

symmetric Standard Model (MSSM) into SUGRA or SUSY GUT models lead to the

µ-problem [19]. The superpotential of the MSSM contains one bilinear term µĤdĤu

which can be present before SUSY is broken. As a result one would naturally expect

the parameter µ to be either zero or of the order of the Planck scale. If µ ≃MPl then

the Higgs scalars get a huge positive contribution ∼ µ2 to their squared masses and

EWSB does not occur. On the other if µ = 0 at some scale Q the mixing between

Higgs doublets is not generated at any scale below Q due to the non-renormalisation

theorems [230]. In this case 〈Hd〉 = 0 and down–type quarks and charged leptons

remain massless. The correct pattern of EWSB requires µ to be of the order of the

SUSY breaking (or EW) scale.
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An elegant solution to the µ problem is provided in the E6SSM. The low energy

gauge group of the E6SSM contains an extra gauged U(1)N symmetry This forbids

the bilinear term, µĤdĤu, but allows an interaction of the extra SM singlet superfield

Ŝ with the Higgs supermultiplets Ĥd and Ĥu in the superpotential, λŜĤdĤu. After

EWSB the scalar component of the singlet superfield Ŝ acquires a non-zero vev breaking

U(1)′ and an effective µ term of the required size is automatically generated.

7.1.2 Light Higgs Mass

Another striking advantage of this model is that the upper bound on the mass of the

lightest Higgs is 155 GeV, significantly larger than in either the MSSM or the NMSSM.

Figure 7.1: Two loop upper bounds on the lightest Higgs mass. Taken from [4].

The upper-bound on the light Higgs mass plays an important role in the Little

Hierarchy Problem, as described in Sec. 5.1.1. The accommodation of a heavier SM-

like Higgs mass in the E6SSM could allow a Higgs mass which is above the LEP limit

without the requirement for such a heavy stop, which has led to the perception of a

Little Hierarchy problem in the MSSM.
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7.1.3 Gauge Coupling Unification

Like the MSSM when the gauge couplings in the E6SSM are evolved up to high energies

using renormalisation group equations the result is consistent with the gauge couplings

unifying at MGUT ≈ 1016. However, as is described in [124] the gauge couplings of

the MSSM no longer meet within 2 standard deviations, following a reduction in the

experimental uncertainty in α3. This is shown in Fig. 7.2(a) and Fig. 7.2(b). Two loop

RGE evolution of the gauge couplings in the E6SSM is shown to be consistent within

1 standard deviation, as is shown in, Fig. 7.2(c) and Fig. 7.2(d).

7.1.4 Connection to Superstring theory

The low energy gauge structure of the E6SSM may arise naturally from superstring

models. Ten-dimensional heterotic E8×E′
8 superstring theory [231] could provide an

ultraviolet completion of non-renormalisable Supergravity models. The strong coupling

behaviour of heterotic E8×E′
8 superstring theory is determined by its eleven dimen-

sional supergravity (M-theory) [232] and has been shown to be compatible with the

unification scale MX [233]. When the extra dimensions are compactified this results in

breaking of E8 down to E6 or one of its subgroups in the observable sector [234]. The

matter content of the E6SSM fits into the corresponding E6 multiplets.

The remaining E′
8 only couples to the matter (in the E6 multiplets) through gravi-

tational interactions and therefore makes up a hidden sector in which the spontaneous

breakdown of local supersymmetry can take place, as is often required in phenomeno-

logical SUSY models (see Sec. 3.4). At low energies the hidden sector decouples from

the observable one due to the weakness of gravity but the spontaneous breaking of

local supersymmetry in that sector is transmitted to the visible sector as described in

Sec. 3.4. This gives rise to a set of soft SUSY breaking parameters like the ones shown

in Sec. 3.4, which spoil the mass degeneracy between bosons and fermions within one

supermultiplet.

Superstring inspired E6 models may lead to low-energy gauge groups with extra
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Figure 7.2: Taken from [124]. Renormalisation Group Evolution of gauge couplings:

(a) in the MSSM from EW to GUT scale MX ; (b) in the MSSM close to MX ; (c) in

the E6SSM from MZ to MX ; (d) in the E6SSM close to MX . Thick, dashed and solid

lines correspond to the running of SU(3)C , SU(2)W and U(1)Y couplings respectively.

Parameters are tanβ = 10, an effective SUSY threshold scale MS = 250 GeV, MZ′ =

1.5 TeV, κ1,2,3(M ′
Z) = λ1,2,3(MZ′) = g

′

1(MZ′), g
′2
1 (MZ′) = 0.2271, g11(MZ′) = 0.02024,

αs(MZ) = 0.118, α(MZ) = 1/127.9 and sin2 θW = 0.231. The dotted lines show the

one sigma deviation band about the central values, from the EW scale measurement

of αS.
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U(1)′ factors. In particular, by means of the Hosotani mechanism [235] E6 can be

broken directly to the subgroup SU(3)C × SU(2)W × U(1)Y × U(1)ψ × U(1)χ, with

U(1)ψ and U(1)χ symmetries defined by [236],

E6 → SO(10) × U(1)ψ, (7.1)

SO(10) → SU(5) × U(1)χ. (7.2)

For suitably large vacuum expectation values (vevs) of the symmetry breaking Higgs

fields this can be reduced further to an effective model with only one extra gauge

symmetry U(1)′ which is a linear combination of U(1)χ and U(1)ψ:

U(1)′ = U(1)χ cos θ + U(1)ψ sin θ . (7.3)

This is the extra U(1)N (with θ = arctan
√

15) factor in the gauge group of the E6SSM.

So the gauge structure and matter content of the E6SSM is inspired by the E6 and

Superstring theory.

7.1.5 Neutrinos and Leptogenesis

This particular U(1)′ extension of the gauge group set by the choice θ = arctan
√

15, is

very advantageous. Right-handed neutrinos have zero charge under this gauge group,

thus transforming as singlets and do not participate in any gauge interactions. This

means with no symmetry protection right-handed neutrinos may be super-heavy and

this can help explain the origin of the mass hierarchy in the lepton sector.

The presence of super-heavy right-handed neutrino also allows the generation of

lepton and baryon asymmetries of the Universe through leptogenesis [237–238]. The

E6SSM also contains two generations of Inert Higgs fields which carry neither lepton

nor baryon number and new lepton doublets with lepton number L = ±1 and addi-

tional exotic matter, exotic colored objects. As well as providing tremendously exciting

phenomenology these exotic objects provide new decay channels for the right-handed

neutrinos and augment the decay channels already present in the MSSM. This increases

the generated CP-asymmetries to such an extent that successful leptogenesis can take
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place with a relatively light right-handed neutrino mass in range, ≈ 106..109GV which

is not possible with only MSSM matter content [238].

7.2 E6SSM Model

The E6SSM [4–5] is an E6 inspired model with an extra gauged U(1) symmetry. It pro-

vides a low energy alternative to the Minimal (MSSM) and Next to Minimal (NMSSM)

Supersymmetric Models. In this section a brief description of the model is given. A

more complete description is given in Appendix B.

The gauge group is, SU(3) ⊗ SU(2) ⊗ U(1)Y ⊗ U(1)N , where U(1)N is defined by,

U(1)N =
1

4
U(1)χ +

√
15

4
U(1)ψ, (7.4)

with U(1)χ and U(1)ψ in turn, defined by the breaking, shown in 7.2

The matter content is based on three generations of complete 27plet representations of

E6 in which anomalies are automatically cancelled. Each 27plet, (27)i, is filled with one

generation of ordinary matter Q̂i, û
c
i , d̂

c
i , L̂i, ê

c
i , N̂

c
i ; a singlet field, Ŝi; up and down

type Higgs like fields, Ĥ2,i and Ĥ1,i and exotic colored matter, D̂i, D̂i. In addition to the

matter contained in complete 27plets, the model contains two extra SU(2) doublets1,

Ĥ ′ and Ĥ ′ which are components of 27′ and 27 ′ E6 representations that survive to low

energies. The inclusion of Ĥ ′ and Ĥ ′ affects the running of the gauge couplings at the

one loop level and allows for unification at the GUT scale. So long as µ′ (the parameter

which sets their masses) is between the EW scale and 30TeV unification can still take

place.

To summarise the matter content of the E6SSM is,

3
[
(Q̂i, û

c
i , d̂

c
i , L̂i, ê

c
i , N̂

c
i ) + (Ŝi) + (Ĥ2i) + (Ĥ1i) + (D̂i, D̂i)

]
+Ĥ ′+Ĥ ′, (7.5)

1A slight variant on the E6SSM, known as the Minimal E6SSM [239–240], does not contain these

extra survival fields and achieves unification of gauge couplings through a two step process.
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As mentioned in Sec. 7.1.5, the right-handed neutrinos, N̂ c
i , are expected to gain masses

at some intermediate scale. All other matter in the E6SSM should have masses between

the TeV and EW scales near which the gauge group U(1)N is broken.

7.2.1 Superpotential

Now that the gauge group and matter content has been specified it is time to introduce

the superpotential. There is an important subtlety here because the E6SSM in fact

refers to two distinct, though closely related, models, E6SSMI and E6SSMII.

The superpotentials of both models originate from the most general renormalisable

superpotential which is consistent with low energy E6SSM gauge structure. This is

shown in Appendix B.3, Eq. B.10 where it is divided into E6 preserving terms and

terms which violate E6, but are allowed by the low energy gauge structure. To forbid

dangerous flavour changing processes an approximate ZH
2 symmetry is imposed, under

which only one pair of Higgs like superfields Ĥd, Ĥu and one singlet Ŝ are even and all

other superfields are odd. However, to prevent the proton decay, two different discrete

symmetries (which are specified below) may be imposed.

In the first model, E6SSMI, an exact discrete symmetry, ZL
2 , under which lepton2

superfields are odd and all other superfields are even is also imposed. In this model all

baryon and lepton violating processes are then suppressed3 if the exotic colored objects,

D̂i and D̂i are diquark superfields with baryon number assignment BD = −2/3 and

BD = 2/3.

E6SSMII has, instead, an exact symmetry, under which the exotic quark and lepton

superfields are odd while all the other superfields are even, is imposed. This model

2Recall that exotics Ĥ ′ and Ĥ ′ are lepton superfields, so this applies to them in addition to the

lepton superfields of ordinary matter.

3There is one exception to this, µ′
ijD̂id̂

c
j , coming from the E6 breaking sector. This term can cause

the proton to decay, but it is not certain that explicit E6 breaking term like this would be generated

during the breakdown of E6, so it is not stressed. This term can be forbidden by an additional Z2

symmetry, under which only Qi, uc
i , dc

i are odd and all other superfields are even.
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is then free from lepton and baryon violating processes if D̂i and D̂i are leptoquarks,

i. e. they carry baryon (BD = 1/3 and BD = −1/3) and lepton (LD = 1 and LD = −1)

numbers simultaneously.

If the ZH
2 symmetry was exact, then the superpotential of both E6SSM models

would be the same,

WE6SSMI, II → λiŜ(Ĥ1iĤ2i) + κiŜ(D̂iD̂i) + fαβŜα(ĤdĤ2β) (7.6)

+f̃αβŜα(Ĥ1βĤu) +
1

2
MijN̂

c
i N̂

c
j + µ′(Ĥ ′Ĥ

′

) (7.7)

+hE4j(ĤdĤ
′)êcj + hN4j(ĤuĤ

′)N̂ c
j +WMSSM(µ = 0), (7.8)

where α, β = 1, 2 and i = 1, 2, 3. By construction the third generation of the Higgs-like

scalar fields, Hu = H2,3, Hd = H1,3 and S = S3, are Higgs fields and develop vevs,

〈H0
u〉 = vu, 〈H0

d〉 = vd, and 〈S〉 = s, (7.9)

where vu and vd give mass to ordinary matter, while s both gives mass to the exotic

colored fields, κiS → κis = mDi
and generates an effective µ-term, µeff = λ3s. To

ensure that none of the fields S1,2, H and H ′ obtain a vev it is further assumed that,

κi ∼ λ3 & λ1,2 ≫ fαβ , f̃αβ, h
E
4j , h

N
4j. (7.10)

With the first and second generation singlet couplings fαβ and f̃αβ thus suppressed,

the RG equations for soft singlet masses mS1,2
, as is shown in Eq. C.37 of Appendix

C, are dominated by negative contributions from the gaugino mass M ′
1, leading to an

increase in mass during RG evolution from the high scale, MX , to the electroweak

scale. Therefore these singlet fields will not develop a vev. Similarly Eq. C.47 and

Eq. C.48 show that RG evolution of these survival field are also dominated by negative

contributions from gaugino masses preventing them from developing vevs.

Since the approximate ZH
2 symmetry suppresses the ZH

2 violating couplings, this

superpotential can in many cases be used to study the model. However the Inert

Higgs superfields and the exotic colored superfields only couple to ordinary matter

through ZH
2 violating decays. This is why ZH

2 can only be an approximate symmetry
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as otherwise the model would contain stable, electromagnetically charged particles.

To understand how these exotic particles can be produced and how they decay one

must also know the ZH
2 violating couplings present in E6SSMI and E6SSMII. These are

shown in Appendix B.3, Eq. B.16.

The hierarchical structure of the Yukawa interactions allows substantial simplifica-

tion of the form of the E6SSM superpotential. Integrating out heavy Majorana right-

handed neutrinos and keeping only Yukawa interactions which will have a significant

impact on the RG evolution leaves the Superpotential,

WE6SSM ≃ λS(HdHu) + λαS(H1,αH2,α) + κiS(DiDi) (7.11)

+ht(HuQ)tc + hb(HdQ)bc + hτ (HdL)τ c + µ′(H
′

H ′). (7.12)

7.2.2 Soft Breaking Terms

Finally to complete this description of the model soft SUSY breaking masses are spec-

ified. The most general scalar potential of the E6SSM that ensures the soft breakdown

of supersymmetry is,

Vsoft = m2
Si
|Si|2 +m2

H2 i
|H2 i|2 +m2

H1 i
|H1 i|2 +m2

Di
|Di|2 +m2

Di
|Di|2

+m2
Qi
|Qi|2 +m2

uc
i
|uci |2 +m2

dc
i
|dci |2 +m2

Li
|Li|2 +m2

ec
i
|eci |2

+m2
H′ |H ′2| +m2

H′ |H ′|2 + [B′µ′(H
′

H ′) + λiAλi
S(H1 iH2 i)

+κiAκi
S(DiDi) + htAt(HuQ)tc + hbAb(HdQ)bc

+hτAτ (HdL)τ c + h.c.]. (7.13)

In addition to the scalar masses appearing in Eq. 7.13 there are also soft SUSY

breaking gaugino masses M1, M2, M3, and M ′
1 which give mass to the gauginos asso-

ciated with U(1)Y , SU(2)W , SU(3)C and U(1)N gauge groups respectively. So M3 is

a gluino (g̃) mass, M2 is a wino (W̃ ) mass, M1 is a bino (B̃) mass and M ′
1 is the mass

of the new (with respect to the MSSM) gaugino B̃′.



7.3: Electroweak Symmetry Breaking in the E6SSM 104

Q̂ ûc d̂c L̂ êc N̂ c Ŝ Ĥ2 Ĥ1 D̂ D̂ Ĥ ′ Ĥ ′

√
5
3
QY
i

1
6

−2
3

1
3

−1
2

1 0 0 1
2

−1
2

−1
3

1
3

−1
2

1
2

√
40QN

i 1 1 2 2 1 0 5 −2 −3 −2 −3 2 −2

Table 7.1: Charges of E6SSM matter fields under gauge symmetries, U(1)Y and U(1)N .

The numerical factors in front of the charges are from E6 normalisation.

7.3 Electroweak Symmetry Breaking in the E6SSM

As mentioned in the previous section EWSB takes place in the E6SSM when the neutral

components of Hu and Hd as well as the singlet field S pick up vevs. The interactions

between them are defined by the structure of the gauge interactions and the superpo-

tential, Eq. 7.8. The full effective Higgs potential is,

V = VF + VD + V H
soft + ∆V ,

VF = λ2|S|2(|Hd|2 + |Hu|2) + λ2|(HdHu)|2 ,

VD =
g2

8

(
H†
dσaHd +H†

uσaHu

)2

+
g′2

8

(
|Hd|2 − |Hu|2

)2
+

+
g

′2
1

2

(
Q̃1|Hd|2 + Q̃2|Hu|2 + Q̃S|S|2

)2

,

V H
soft = m2

S|S|2 +m2
1|Hd|2 +m2

2|Hu|2 +
[
λAλS(HuHd) + h.c.

]
,

(7.14)

where ∆V includes loop corrections to the Higgs potential. Q̃1, Q̃2 and Q̃S are effective

U(1)N charges of Hd, Hu and S respectively. The U(1)N charges are shown in Table

7.1, and the effective charges are related to them by

Q̃i ≡ QN
i +QY

i

g11

g′1
, (7.15)

where the extra term is a result of gauge kinetic mixing which can arise in loop correc-

tion. In fact g11 turns out to be rather small and can be neglected for most purposes.
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g and g′ are the gauge couplings of SU(2)W and U(1)Y , as defined in Sec. 2.3.2 and g′

is not changed by the kinetic mixing. The gauge coupling associated with the U(1)N

symmetry is rescaled by the kinetic mixing, giving g′1 but since this mixing is small it

is reasonable to just consider g′1 to be the U(1)N gauge coupling. As usual VF and VD

contain terms from Auxiliary fields F and D respectively and V H
soft is the Higgs part

of Eq. 7.13. VD contains terms proportional to g′1
2, from the extra U(1)N symmetry,

which are not present in the MSSM or NMSSM.

The leading one–loop contributions to the Higgs effective potential [241–242] in

Eq. 7.14 come from loops involving the top and stops, and also exotic colored objects

if the couplings κ1,2,3 are large,

∆V (1) =
3

32π2

[
m4
t̃1

(
ln
m2
t̃1

Q2
− 3

2

)
+m4

t̃2

(
ln
m2
t̃2

Q2
− 3

2

)
− 2m4

t

(
ln
m2
t

Q2
− 3

2

)

+
∑

i=1,2,3

{
m4
D̃1,i

(
ln
m2
D̃1,i

Q2
− 3

2

)
+m4

D̃2,i

(
ln
m2
D̃2,i

Q2
− 3

2

)

−2µ4
Di

(
ln
µ2
Di

Q2
− 3

2

)}]
(7.16)

where mt̃1 , mt̃2 are the masses of the stops, µDi
are the masses of the exotic fermions

and mD̃1,i
and mD̃2,i

are the masses of their scalar superpartners. The physical vacuum

is found by minimising the scalar potential (7.14). The Higgs fields have non-zero

expectation values in the vacuum (vevs),

〈Hd〉 =




v1

0


 , 〈Hu〉 =




0

v2


 , 〈S〉 = s. (7.17)

In the E6SSM the U(1)N symmetry is broken above (but hopefully not too far above)

the EW scale when m2
S < 0. The requirement for a finite non zero vev for the fields H0

u

and H0
d then becomes the same conditions as in the MSSM, with µ replaced by µeff

and b replaced by beff

(m2
Hd

+ |µeff |2)(m2
Hu

+ |µeff |2) < b2eff (7.18)

2µ2
eff +m2

Hd
+m2

Hu
> 2beff (7.19)
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where,

µeff = λs, beff = λAλs. (7.20)

Therefore EWSB can be triggered when m2
S < 0 and m2

Hu
< 0.

Stationary points of the Higgs potential, with respect to the Higgs fields, require,

m2
Ss =

λAλ√
2
v1v2 −

λ2

2
(v2

1 + v2
2)s− g

′2
1

2

(
Q̃1v

2
1 + Q̃2v

2
2 + Q̃Ss

2
)
Q̃Ss−

∂∆V

∂s
(7.21)

m2
1v1 =

λAλ√
2
sv2 −

λ2

2
(v2

2 + s2)v1 −
g2

8

(
v2
1 − v2

2)
)
v1

−g
′2
1

2

(
Q̃1v

2
1 + Q̃2v

2
2 + Q̃Ss

2
)
Q̃1v1 −

∂∆V

∂v1
(7.22)

m2
2v2 =

λAλ√
2
sv1 −

λ2

2
(v2

1 + s2)v2 −
g2

8

(
v2
2 − v2

1

)
v2

−g
′2
1

2

(
Q̃1v

2
1 + Q̃2v

2
2 + Q̃Ss

2
)
Q̃2v2 −

∂∆V

∂v2
, (7.23)

where g =
√
g2 + g′2. Four of the original ten Higgs sector degrees of freedom are

absorbed by the W±, Z and Z ′ gauge bosons. Zµ and W±
µ can be defined in the same

way as in the MSSM and SM in Eq. 2.26 and,

MW =
g

2
v2 M2

Z =
g2

2
v2 (7.24)

as before.

However in the E6SSM Zµ does not quite coincide with a mass eigenstate. There is

a mixing between Z and Z ′, the boson associated with the U(1)N symmetry, with tree

level mass,

M2
Z′ = g

′2
1 v

2
(
Q̃2

1 cos2 β + Q̃2
2 sin2 β

)
+ g

′2
1 Q̃

2
Ss

2. (7.25)

The mass squared mixing matrix is, in the basis (Z,Z ′),

M2
ZZ′ =




M2
Z ∆2

∆2 M2
Z′



, (7.26)
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where

∆2 =
gg′1
2
v2
(
Q̃1 cos2 β − Q̃2 sin2 β

)
, (7.27)

The eigenvalues of this matrix are

M2
Z1, Z2

=
1

2

[
M2

Z +M2
Z′ ∓

√
(M2

Z −M2
Z′)2 + 4∆4

]
. (7.28)

However phenomenological constraints render this mixing negligible [244]. The mass

of the extra neutral gauge boson is bounded MZ′ ≥ 700 GeV [261]. These constraints

require that S acquires a large vev s & 1.5 TeV. This large vev implies that the first

term of Eq. 7.25 is negligible and

MZ2
≃MZ′ ≈ g′1Q̃Ss. (7.29)

The observed quarks get their masses from, vu and vd in the same way as happens in

the MSSM.

mu,c,t = yu,c,tv sin β, md,s,b = yd,s,bv cosβ, me,µ,τ = ye,µ,τv cosβ. (7.30)

The remaining six degrees of freedom from the Higgs fields become the physical Higgs

bosons. In the E6SSM the physical Higgs sector consists of two charged Higgs bosons,

H±, a neutral CP-Odd pseudoscalar A0 and three CP-even, neutral Higgs masses. The

masses of the pseudoscalar and the charged Higgs at tree level are given by,

m2
A =

√
2λAλ

sin 2ϕ
v, tanϕ =

v

2s
sin 2β (7.31)

m2
H± =

√
2λAλ

sin 2β
s− λ2

2
v2 +

g2

2
v2 . (7.32)

The three CP even Higgs masses can be found at tree level by diagonalising the mass

matrix of the Higgs scalars, formed from double derivatives of the Higgs potential with

respect to the Higgs fields and takes the form,

M2 =




∂2V

∂v2
1

∂2V

∂v1∂v2

∂2V

∂v1∂s

∂2V

∂v1∂v2

∂2V

∂2v2

∂2V

∂s∂v2

∂2V

∂v1∂s

∂2V

∂sv2

∂2V

∂2s




, (7.33)
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or equivalently, noting that tadpole terms vanish, by diagonalising,

M2 =




∂2V

∂v2

1

v

∂2V

∂v∂β

∂2V

∂v∂s

1

v

∂2V

∂v∂β

1

v2

∂2V

∂2β

1

v

∂2V

∂s∂β

∂2V

∂v∂s

1

v

∂2V

∂s∂β

∂2V

∂2s




=




M2
11 M2

12 M2
13

M2
21 M2

22 M2
23

M2
31 M2

32 M2
33




. (7.34)

where,

M2
11 =

λ2

2
v2 sin2 2β +

g2

4
v2 cos2 2β + g

′2
1 v

2(Q̃1 cos2 β + Q̃2 sin2 β)2, (7.35)

M2
12 =

(
λ2

4
− g2

8

)
v2 sin 4β +

g
′2
1

2
v2(Q̃2 − Q̃1) × (Q̃1 cos2 β + Q̃2 sin2 β) sin 2β, (7.36)

M2
22 =

√
2λAλ

sin 2β
s+

(
g2

4
− λ2

2

)
v2 sin2 2β +

g
′2
1

4
(Q̃2 − Q̃1)2v2 sin2 2β, (7.37)

M2
23 = M2

32 = −λAλ√
2
v cos 2β +

g
′2
1

2
(Q̃2 − Q̃1)Q̃Svs sin 2β, (7.38)

M2
13 = M2

31 = −λAλ√
2
v sin 2β + λ2vs+ g

′2
1 (Q̃1 cos2 β + Q̃2 sin2 β)Q̃Svs, (7.39)

M2
33 =

λAλ

2
√

2s
v2 sin 2β + g

′2
1 Q̃

2
Ss

2. (7.40)

and the tree level minimisation conditions have been used to substitute soft masses

m2
1, m2

2 and m2
S.

The charginos have the same expression as for the MSSM,

m2
χ̃1,χ̃2

=
1

2

[
|M2|2 + |µeff |2 + 2m2

W

∓
√

(|M2|2 + |µeff |2 + 2m2
W )2 − 4|µeffM2 −m2

W sin 2β|2
]
. (7.41)

The E6SSM has two more neutralinos than the MSSM. This is because there is an extra

gauge supermultiplet associated with U(1)N , contributing a gaugino, superpartner to

the Z ′ boson and one extra Higgs supermultiplet, contributing a Higgsino which is the

superpartner of the singlet scalar Higgs that picks up vev s. These additional fields

get mixed with the others and the masses of the six neutralinos must be determined
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by diagonalising,

Mχ̃0 =




M1 0 −1

2
g′v1

1

2
g′v2 0 0

0 M2
1

2
gv1 −1

2
gv2 0 0

−1

2
g′v1

1

2
gv1 0 −µeff −λv2√

2
Q̃1g

′
1v1

1

2
g′v2 −1

2
gv2 −µeff 0 −λv1√

2
Q̃2g

′
1v2

0 0 −λv2√
2

−λv1√
2

0 Q̃Sg
′
1s

0 0 Q̃1g
′
1v1 Q̃2g

′
1v2 Q̃Sg

′
1s M ′

1




, (7.42)

where this has been written in the basis, (B̃, W̃3, H̃
0
1 , H̃

0
2 , S̃, B̃

′) and kinetic mixing

has been neglected. As usual M1, M2 are the masses for B̃, W̃3 respectively, and M ′
1

is the soft gaugino mass for B̃′.

As in the MSSM the gluino, the superpartner of the gluon, does not mix with any

other states and has a mass at tree level which is simply, M3.

The sfermions which are superpartners of ordinary matter are also given by the

same tree level formulae as their MSSM counterparts, except they have have an extra

and very significant contribution from the D-terms in the super potential.

m2
ũ1,ũ2

=
1

2

[
m2
Q +m2

U + 2m2
u + △Q + △U

∓
√

(m2
Q −m2

U + △Q −△U)2 + 4m2
u

(
Au −

µ

tanβ

)2]
, (7.43)

m2
d̃1,d̃2

=
1

2

[
m2
Q +m2

D + 2m2
d + △Q + △D

∓
√

(m2
Q −m2

D + △Q −△D)2 + 4m2
d

(
Ad − µ tanβ

)2]
, (7.44)

m2
l̃1,l̃2

=
1

2

[
m2
L +m2

E + 2m2
l + △L + △E

∓
√

(m2
L −m2

E + △L −△E)2 + 4m2
l

(
Al − µ tanβ

)2]
. (7.45)
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The D-term contributions, △A, to these masses now include contributions from the

U(1)N symmetry. Unlike the D-terms associated with U(1)Y and SU(2)W these can

be very large as they involve the s vev and s is constrained by phenomenology to be

significantly larger than v.

△A = (T3Ag
2 −QY

Ag
′2)(v2

d − v2
u) + △(N)

A , (7.46)

△(N)
A = g′21 (Q1Qiv

2
1 +Q2Qiv

2
2 +QSQis

2). (7.47)

The exotic quarks and Inert Higgsinos get their mass from s in a similar manner to

ordinary fermions obtaining mass from vu, vd.

µDi
= κis, mH̃1,j

= mH̃2,j
= λjs (7.48)

where µDi
is the mass of the exotic fermion Di and i = 1, 2, 3 is a generational index.

and, mH̃1,i
, mH̃2,i

are the masses of the fermion, H̃1,i, H̃1,i partners of the scaler Inert

Higgs, where in this case generation index j only runs over the first two generations,

as the third generation fields H̃1,3 and H̃1,3 play the role of MSSM like Higgsinos and

mix in to form neutralinos in Eq. 7.42.

Their scalar super partners get masses in a manner analogous to the sfermion

partners to the observed fermions,

m2
D̃1 i,D̃2 i

=
1

2

[
m2
Di

+m2
Di

+ 2µ2
Di

+ △D + △D

±
√

(m2
Di

−m2
Di

+ △Q −△U)2 + 4µ2
D

(
Aκi

− λv1v2

s

)2]
, (7.49)

M2
Hd

i ,H
u
i

=
1

2

[
m2
H1 i

+m2
H2 i

+ 2m2
H̃1,i

+ △H1
+ △H2

±
√

(m2
H1 i

−m2
H2 i

+ △H1
−△H2

)2 + 4m2
H̃1,i

(
Aλi

− λv1v2

s

)2]
, (7.50)



Chapter 8

The Non Universal Higgs Mass

E6SSM

The Non Universal Higgs Mass (NUHM) E6SSM is a version of the E6SSM with the

GUT scale constraints reducing the number of soft SUSY breaking parameters to a

universal gaugino mass ( M1/2), a universal trilinear (A), a common Higgs singlet mass

(mGUT
S ), ‘up-type’ Higgs mass (mGUT

Hu
), ‘down-type’ Higgs mass (mGUT

Hd
), and a common

scalar mass for all other E6SSM scalars (m0),

Mi(MX) = M1/2, Ai(MX) = A, mi(MX) = m0 (8.1)

mSi
(MX) = mGUT

S , mHu i
(MX) = mGUT

Hu
, mHd i

(MX) = mGUT
Hd

(8.2)

where MX is defined here as the scale at which the E6SSM gauge couplings, g1 and g2

appearing in chapter 7 are equal, g1 = g2.

8.1 Motivation

In this chapter results of the first study into radiative electroweak symmetry breaking in

the NUHM E6SSM model are presented. This study was presented in [7], proceedings

for the European Physical Society Conference in 2007, but has not otherwise been

published. The study was carried out as preliminary work while we were studying a
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related but more tightly constrained model, the CE6SSM. Since this was a preliminary

study we only tested radiative electroweak symmetry breaking for a sample choice of

those E6SSM Yukawas and vevs which have not been determined from experimental

data, so this is far from a complete survey of the model. Additionally as a preliminary

study, some effects included in the more thorough study into the CE6SSM (described

in Chapter 9) were not included here. Some of these effects are surprisingly strong so

the results presented in this chapter should be interpreted as qualitative rather than

quantitative.

Nonetheless this study is interesting in its own right. Although the very strong

high scale constraints of universal scalar masses, universal gaugino masses and uni-

versal trilinear couplings eliminates a large volume of parameter space which is not

phenomenologically viable, it can also restricts parameter space which is viable and

therefore such assumptions could be seen as over constraining. In addition while such

universality schemes are motivated by minimal SUGRA, there are a much wider variety

of SUGRA models which do not lead to these universality constraints. One interest-

ing alternative to the CMSSM which has become popular is the Non Universal Higgs

Mass MSSM [245–255]. The NUHM E6SSM can be seen as a similar alternative to the

CE6SSM.

As described in Sec. 3.2 radiative electroweak symmetry breaking, where EWSB is

triggered by the RG flow between the unification and EW scales, occurs in the CMSSM

and NUHM MSSM. This is a powerful result as it shows that if SUSY breaking takes

place at the TeV scale, then it is natural for EWSB to occur. It is therefore of great

interest to see if the same effect is generated in the NUHM E6SSM. If this occurs the

spectrum of particle masses can be determined from the NUHM E6SSM parameters.

As shall be seen some very interesting patterns appear in the particle spectrum which

could provide a testable signature for these models.
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8.2 RG flow of the soft SUSY breaking terms

Below the Grand Unification scale the RG flow causes the gauge couplings and the soft

SUSY breaking parameters to split from the universal values g0, m
2
0, mGUT

S , mGUT
Hu

,

mGUT
Hd

, M1/2 andA. This splitting is described by the Renormalisation Group Equations

(RGE) of the model.

The RGE of the E6SSM, derived for these projects by Dr Roman Nevzorov, appear

in Appendix C. As this work was carried out earlier than that described in Chapter 9

only two loop beta functions for the SUSY preserving E6SSM parameters were available.

All soft SUSY breaking parameters were evolved with the one loop RGE.

The complete set of E6SSM RGE can be separated into two sectors. The first sector

describes the evolution of gauge and Yukawa coupling constants. The corresponding

set of equations is nonlinear even in the one–loop approximation. Therefore it is ex-

tremely difficult or even impossible to find either exact or approximate solutions of

these equations. The remaining subset of RGE describes the running of fundamental

parameters which break SUSY in a soft way. If the renormalisation group flow of the

gauge and Yukawa couplings is known this part of the RG equations can be considered

as a set of linear differential equations for the soft SUSY breaking terms. To solve this

set of equations, first one integrates out the equations for the gaugino masses Mi. In

the one–loop approximation we get

Mi(t) =
g2
i (t)

g2
0

M1/2, M ′
1(t) =

g
′2
1 (t)

g2
0

M1/2, (8.3)

where index i runs from 1 to 3, while M3, M2, M1 and M ′
1 as defined in Sec. 7.2.2 and

t = ln
Q

MX
, Q being the renormalisation scale at which Eq. 8.3 holds true.

Next one integrates the one–loop renormalisation group equations for the trilinear

scalar couplings Ai(t) which can be written as follows

dAi(t)

dt
= Sij(t)Aj(t) + Fi(t). (8.4)

The dependence of Fi on t comes from the gaugino masses appearing in the one loop

RGE of the trilinears. One then finds the solution of this system of linear differential
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equations,

Ai(t) = Φij(t)Aj(0) + Φik(t)

t∫

0

Φ−1
kj (t′)Fj(t

′)dt′, (8.5)

where we have introduced Φij(t), which is the solution the homogeneous equation

dΦij(t)/dt = Sik(t)Φkj(t), with the boundary conditions Φij(0) = δij . From the uni-

versality constraint and exploiting Eq. 8.3 to write Fi(t) ∝ M1/2, the solution of RG

equations for the trilinear scalar couplings takes the form,

Ai(t) = ei(t)A + fi(t)M1/2. (8.6)

The obtained solution Eq. 8.6 can be substituted into the right–hand sides of the RG

equations for the soft scalar masses which may be presented in the following form,

dm2
i (t)

dt
= S̃ij(t)m

2
j (t) + F̃i(t). (8.7)

Due to the scalar mass universality constraints and the fact that the functions F̃i(t)

contain terms which are proportional to A2, AM1/2, and M2
1/2 the solution of the linear

system of differential Eq. 8.7 reduces to,

m2
i = αi(t)M

2
1/2 + βi(t)A

2 + γi(t)AM1/2 + δi(t)m
2
0

+ǫi(t)m
GUT 2
S + ρi(t)m

GUT 2
Hu

+ ζi(t)m
GUT 2
Hd

. (8.8)

The functions, αi(t), βi(t), γi(t), δi(t), ǫi(t), ρi(t), ζi(t), which determine the evolution

of m2
i (t) and also ei(t) and fi(t) for Ai(t), remain unknown, since an exact analytic

solution to the full set of E6SSM renormalisation group equations is unavailable. These

functions are strongly dependent on the values of the Yukawa coupling at the Grand

Unification scale MX . At the SUSY breaking scale, MS, where t = t0 = ln
MS

MX
, the

relations shown in Eq. 8.3, Eq. 8.6 and Eq. 8.8 give the dependence of gaugino masses,

trilinear scalar couplings and soft scalar masses on their initial values at the Grand

Unification scale.

The RG flow of the soft SUSY breaking terms also depend on the gauge couplings.

We find that the running of gi(µ) changes dramatically after the inclusion of two–loop

effects. In particular, in the one–loop approximation the β function of strong interac-

tions vanishes so g3(t) would be constant in the one–loop approximation. The vanishing
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of the beta function for g3 also lead to a constant M3(t) = M1/2. Unfortunately as

a consequence the two loop contributions to the gaugino masses, not included in this

study, are also very large, changing low energy gaugino masses by as much as 20–40%.

This is one reason why the results in this chapter can only be considered qualitative.

8.3 Electroweak Constraints

As a test case we chose the new E6SSM Yukawas and vevs to be,

λ3(MGUT ) = 0.6, λ1,2(MGUT ) = 0.46, κ1,2,3(MGUT ) = 0.162 (8.9)

tan β = vu/vd = 10, s = 3 TeV (8.10)

with v2 = v2
u + v2

d = (174GeV)2 fixed from experiment. The third generation Yukawas

ht, hb and hτ are fixed at the electroweak scale by the masses of the top, bottom and

τ fermions respectively, using the tree level relations given in Eq. 7.30. The gauge

couplings g1, g2 and g3 are also fixed at the electroweak scale from the experimentally

measured values of αe, sin θW and αS. A full set of Yukawas and gauge couplings at

the unification scale MX , consistent with both these EW and MX constraints, is then

found by evolving between the two scales until a stable solution is reached.

Due to the RG flow described in the previous section all low energy soft masses

of the E6SSM can be written in terms of the NUHM E6SSM GUT scale parameters,

as shown in Eq. 8.3, Eq. 8.6 and Eq. 8.8. The dimensionless coefficients appearing in

these equations can then be determined numerically by evolving between the unification

scale and the EW scale and selectively switching soft GUT scale parameters to zero.

This RGE evolution was performed using a version of SOFTSUSY 2.0.5 [181] which we

modified to include the E6SSM RGEs. The EWSB constraints shown in Eq. 7.23 fix

the three third generation Higgs masses (mHu
, mHd

and mS) at the EW scale in terms

of the Yukawas, gauge couplings, vevs and Aλ3
. Since all vevs and SUSY preserving

parameters were either set to their observed values or already chosen, the Higgs masses

can be written as functions of A and M1/2 after using the RGE solutions to substitute
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for Aλ3
. This gives,

m2
Hd

= p1M1/2 + q1A+ h1 + ∆
(1)
d , (8.11)

m2
Hu

= p2M1/2 + q2A+ h2 + ∆(1)
u , (8.12)

m2
S = p3M1/2 + q3A+ h3 + ∆(1)

s , (8.13)

where the one loop contributions, ∆
(1)
d , ∆

(1)
u and ∆

(1)
s , introduce a more complicated

dependence on the soft parameters.

So if the one loop contributions are initially neglected, for each of the Higgs masses

we have two constraints which may be equated leaving three low energy constraints

and six unification scale parameters. For all choices of M1/2, A and m0 we can then

determine what values of m2
Hd

, m2
Hu

and m2
S are required to satisfy the constraints.

The rest of the soft mass spectrum can then be determined from Eq. 8.3, Eq. 8.6

and Eq. 8.8 using the coefficients which have been determined numerically. Then the

physical masses of the stops and the exotic colored objects are calculated from their

tree level relations, Eq. 7.43 and Eq. 7.49 respectively, and their contribution to the

one loop effective potential are determined. The leading one loop corrections are then

added to Eq. 8.13, and finally the soft mass parameters and particle spectrum are

solved iteratively.

In this study the particle spectrum was calculated using the tree level approxima-

tions presented in Sec. 7.3. No loop corrections were added to the light Higgs mass

as this was not used in constraining the model. Given the large values for soft Higgs

parameters and the heavy spectra (particularly stop masses) it seems reasonable to

assume that the LEP limit on the light Higgs mass would be evaded in these scenar-

ios and would not restrict our solutions. In addition, since this study was qualitative

rather than quantitative, a precise determination of the Higgs mass required to test

against the LEP bound seems unrealistic. However it is clear that a full study should

include this as a constraint. In addition the gluino mass was only calculated using the

very simple tree level expression (mg̃ = M3), though it is also well known that this

quantity is also subject to large radiative corrections. This does affect the restrictions

on the parameter space, and once again stresses that this is merely a qualitative study.
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Finally experimental constraints were applied. We required that charginos were

heavier than 100 GeV, neutralinos heavier than 45 GeV, gluinos heaver than 300 GeV,

and that the squarks and sleptons of ordinary matter are heavier than 100 GeV. For

the exotic quarks and squarks we imposed a lower bound of 300 GeV, to evade HERA

constraints on the Leptoquarks [262].

The LEP bound on the light Higgs does not apply to the Inert Higgs bosons as

they do not develop vevs and therefore have no HZZ coupling for production via Higgs-

strahlung. However they still have HHZ couplings which are fixed by gauge interaction

and this means that the charged Inert Higgs bosons (which are degenerate in mass with

the neutral Inert Higgs bosons) can be bounded by searches for charged Higgs bosons

from LEP [256] and similarly the masses of the Inert Higgsinos can be bounded from

below by searches for charginos. To evade these constraints we require that the Inert

Higgs and Inert Higgsinos must be heavier than 100 GeV.

8.4 Results

The values obtained for this sample set of SUSY preserving parameters are shown

in Fig.8.1(a-c) with the large white regions ruled out by GUT scale tachyons when

(mGUT
Hd

)2 < 0, (mGUT
Hu

)2 < 0 or (mGUT
S )2 < 0 respectively. From (a) all parameter space

accessible at future colliders with M1/2 > 0 is excluded, but M1/2 < 0 is valid in our

scheme1. Fig. 8.1(b) and (c) exclude some additional points with M1/2 > 0. Fig. 8.1(d)

shows the combined exclusion region from (a-c) and also a large region of parameter

space ruled out by EW scale tachyons and a small slice ruled out by experiment.

The soft Higgs masses at the unification scale are typically much heavier than m0

and there tends to be some hierarchy amongst them. Indeed none of the points scanned

over exhibited a universal scalar Higgs mass, even allowing for it to be very different

from m0. This indicates the strength of the condition in the CE6SSM where a full

1In chapter 9 conventions are chosen such that M1/2 > 0. This isn’t done here but one can perform

the transformation, A → −A, M1/2 → −M1/2, s → −s, to obtain solutions with M1/2 > 0.
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Figure 8.1: EWSB exclusion plots in the m0, M1/2 plane, with A = −300GeV. (a):

mGUT
Hd

values consistent with the EWSB and NUHM E6SSM boundary conditions. The

white region is ruled out since (mGUT
Hd

)2 < 0. (b): As (a) but for mGUT
Hu

. (c): As (a) but

for mGUT
S . (d): Full exclusion plot. The blue (black) region shows the allowed region

of the parameter space, the purple (dark grey) region is ruled out by searches for the

charginos and gluinos, while the pink (light grey) and white regions are ruled out by

EW and GUT scale tachyons respectively.

universality of scalar masses is imposed.

While EWSB provides strong constraints on the NUHM E6SSM, there is a large

volume of parameter space which may be physically realised and could be discovered

at the LHC. The low energy spectra do have the challenging feature of heavy squarks

and sleptons but also have some very interesting phenomenological features. A sample

spectrum which might be observed is shown in Fig. 8.2. The presence of the exotic

colored particles (D̃1,2 and D) and the new Z ′ boson at low energies provide interesting

experimental signatures for the model. In the spectrum shown, the presence of D̃1 at

just above 500 GeV offers a tantalising glimpse at what exciting phenomenology may
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be discovered at the LHC if nature has chosen this kind of model.

In addition there is a hierarchy in the spectra. The gluino is lighter than most of

the squarks, which is unusual and phenomenologically interesting as it affects cascade

decays. This is a result of the renormalisation group (RG) running of the soft masses

in the E6SSM and is typical of points we have looked at in the NUHM E6SSM. The

smaller the hierarchy amongst the GUT scale soft parameters, the stronger this effect.

This also foreshadows results which will be presented in chapter 9. In addition the

lightest chargino is lighter than the gluino and the lightest neutralino is lighter still.

These features are also due to the RG flow and it would be very challenging if not

impossible to find spectra without this hierarchy.
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Figure 8.2: A sample NUHM E6SSM spectrum that could be seen at the LHC. The soft

mass parameters for this point arem0 = 600 GeV, M1,2 = −500 GeV, A = −300 GeV,

mGUT
S = 2.39 TeV, mGUT

Hu
= 2.25 TeV & mGUT

Hd
= 922 GeV

8.5 Conclusions

In this chapter a qualitative exploration of a small portion of the NUHM E6SSM

parameter space has been performed. This is the first time any such spectra has been



8.5: Conclusions 120

produced for any version of the E6SSM with universality constraints imposed at the

unification scale.

For our benchmark choice of E6SSM Yukawas and vevs there is no solution with all

universal scalar masses at the GUT scale. Indeed the soft GUT scale Higgs masses are

generally required to be significantly larger than m0 for electroweak symmetry breaking

to take place, and this feature may be regarded as somewhat disappointing. In addition

the spectrum is a little heavy and it may be challenging to detect. Nonetheless we

presented a spectra with exotic colored objects ≈ 500 GeV, demonstrating the exciting

prospect of such a discovery at the LHC. In addition there is another striking feature of

the model. There is clear hierarchy in the spectra. The exotics, squarks, and sleptons

are typically significantly heavier than the lighter elements of the gaugino sector. In

particular the RG flow implies that the gluino is often lighter than the squarks.

Despite the lack of precision in the study, striking phenomenological features of the

model have been uncovered that are generic and should be stable to improvements in

the accuracy of the calculations. In addition because these features are driven by the

RG flow it is likely that they apply to a wider class of models then just the NUHM

E6SSM.

This will be seen explicitly when a more thorough study of the CE6SSM is provided

in the next chapter.



Chapter 9

The Constrained E6SSM

The Constrained Exceptional Supersymmetric Standard Model (CE6SSM) is intro-

duced and studied in this chapter. The model is defined by applying high scale uni-

versality constraints to the low energy phenomenological model the E6SSM, specified

in Chapter 7.

These constraints require that at the high scale, MX , all scalars masses are given

by a single flavour diagonal mass, m0; all gaugino masses are specified by a mass

M1/2 and a single coupling A specifies all trilinear couplings, aijk through the relation,

aijk = Ayijk. So,

Mi(MX) = M1/2, Ai(MX) = A, mi(MX) = m0. (9.1)

As in Chapter 8 MX is defined as the scale at which the E6SSM gauge couplings, g1

and g2 are equal, g1 = g2.

9.1 RG flow of the soft SUSY breaking terms

As with the NUHM version of the E6SSM, the soft SUSY breaking parameters and

gauge couplings split from the unified values m2
0, M1/2, A and g0 at MX when evolved

to lower energies using the E6SSM RGE. One loop semi–analytical solutions can be



9.1: RG flow of the soft SUSY breaking terms 122

found for these equation at energies below MX in a similar manner to that described

in Sec. 8.2. The solutions to the gaugino masses, Mi and the trilinear couplings Ai are

of the same form,

Mi(t) =
g2
i (t)

g2
0

M1/2, M ′
1(t) =

g
′2
1 (t)

g2
0

M1/2, Ai(t) = ei(t)A + fi(t)M1/2. (9.2)

and again t = lnQ/MX . For the scalar masses the new more restrictive boundary

condition at MX , in which all scalar masses are take a single unified value, yields the

shorter expression,

m2
i (t) = ai(t)m

2
0 + bi(t)M

2
1/2 + ci(t)AM1/2 + di(t)A

2. (9.3)

As before the functions ei(t), fi(t), ai(t), bi(t), ci(t), and di(t), which determine the

evolution of Ai(t) and m2
i (t), are unknown, since an exact analytic solution of the

E6SSM renormalisation group equations has not been derived.

The sensitivity of these functions to the Yukawa and gauge couplings at MX is

again very strong. In particular it is important to reiterate that the one-loop beta

function for the gauge coupling of strong interactions is zero. So the running of g3 and

M3 is dictated solely by the two loop contributions and these two loop beta functions

can change the RG flow substantially. In this study the two loop beta functions for

the gaugino masses and trilinear couplings were included. The solution of two loop RG

equations for the Mi(t) can be written as follows:

Mi(t) = pi(t)A + qi(t)M1/2. (9.4)

One can see that in the two loop approximation gaugino masses depend not only on

the universal gaugino mass, M1/2, but also on the trilinear scalar coupling, A. The

numerical calculations show that the dependence of Mi(t) on A is rather weak, i.e.

pi(t0) ≪ 1. However the change in the co-efficient qi(t) is substantial and at low–

energies the gaugino masses changes by 20-40%.

The general form of the solutions of RG equations for m2
i (t) and Ai(t) remain intact

after the inclusion of two loop effects. At the same time some of the coefficient functions

fi(t), bi(t) and ci(t) change significantly. The two loop corrections to the β functions
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Figure 9.1: Two–

loop RG flow of

gauge couplings

within the E6SSM for

TMSSM = TESSM =

Mt = 175 GeV

(upper lines) and

TMSSM = 250 GeV,

TESSM = 1500 GeV

(lower lines). Here

we fix tan β = 10 and

α3(MZ) = 0.118.

have the strongest impact on the RG flow of the soft SUSY breaking terms which are

sensitive to the strong interactions.

The RG flow of the gauge couplings, gi(t), is also quite sensitive to threshold effects.

In Fig. 9.1 the running of αi(t) is presented for two different sets of threshold scales,

TMSSM = TESSM = 175 GeV and TMSSM = 250 GeV, TESSM = 1500 GeV. The

threshold TMSSM is a common scale for the sparticles of ordinary matter, while TESSM

is a common mass scale for new exotic particles not present in the MSSM. The unified

gauge coupling at the MX changes from 1.24 to 1.4 when these thresholds are changed

in this way. This result and also the value of the g2
0 for several other sets of thresholds,

TMSSM and TESSM , are summarised in Table 9.1.

Since soft SUSY breaking terms depend very strongly on the values of the gauge

couplings at the Grand Unification scale, the uncertainty related with the choice of the

threshold scales limits the accuracy of our calculations of the particle spectrum. The

results of our numerical analysis presented in Table 9.1 and Fig. 9.1 indicate that it

is unrealistic to expect an accuracy, in the calculation of the sparticle masses, better

than 10%.
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TMSSM (GeV) 250 250 250 175 175 175

TESSM (GeV) 1500 800 250 1500 250 175

g2
0 1.54 1.60 1.78 1.61 1.88 1.96

MX (GeV) 3.5 · 1016 3.3 · 1016 3.5 · 1016 3.7 · 1016 4 · 1016 4 · 1016

Table 9.1: The dependence of g2
0 and MX on the threshold effects in the exceptional

SUSY model. Here we fix tan β = 10 and α3(MZ) = 0.118.

9.2 RG flow of the SUSY preserving sector

To start our analysis we fix effective threshold scales associated with the SUSY and

exotic particles as well as the value of tanβ. Thresholds are used only in the SUSY

preserving sector where full two loop RGE are employed and are neglected in the soft

SUSY breaking sector where only one loop RGE are used for the scalar masses. The

thresholds are chosen before the spectrum is determined and are therefore only an esti-

mate. A more accurate analysis is left for a further study. We chose TMSSM = 600 GeV

and TESSM = 3 TeV to be the mass scale of the unobserved particles of the MSSM

and the new exotic objects in the E6SSM respectively, based on studies of the NUHM

version and preliminary results for the CE6SSM where relatively heavy spectra were

observed.

Experimental data is entered at low energies and then the SUSY preserving param-

eters are evolved up to the unification scale, MX , using two–loop RG equations. At

MX high scale boundary conditions for the new Yukawas are imposed. An iteration

is then performed to find a solution consistent with both sets of boundary conditions.

The detail of this procedure is described below.

The gauge couplings are fixed using the experimentally measured values at MZ .

Below the mass of the top quark SU(2)W ⊗U(1)Y is broken, therefore between MZ and

mt the beta functions for QED and QCD are employed to evolve the gauge couplings.

A routine to do this is already present in SOFTSUSY 2.0.5 [181] and this was employed
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here. At mt boundary conditions are used to relate the QED and QCD gauge couplings

to the gauge couplings of the SM. For each fixed tanβ one can find the values of the

Yukawa couplings at the electroweak scale using the relation between the running

masses of the fermions of the third generation and vevs of the Higgs fields, i.e.

mt(Mt) =
ht(Mt)v√

2
sin β, mb(Mt) =

hb(Mt)v√
2

cosβ,

mτ (Mt) =
hτ (Mt)v√

2
cosβ .

(9.5)

Between mt and TMSSM the Standard Model RGE which appear in [257] are employed.

At TMSSM further boundary conditions are used to relate the Standard model Yukawas

and gauge couplings to those of the MSSM. The two loop MSSM beta functions and

routines in SOFTSUSY 2.0.5 are then used to evolve between TMSSM and TESSM .

Finally another set of boundary conditions are used to relate the gauge and Yukawa

couplings of the MSSM to those of the E6SSM. The values of the E6SSM gauge and

Yukawa couplings then form a low energy boundary condition for what follows.

The one loop beta functions of the E6SSM gauge couplings are used to provide

a first estimate for the unification scale, MX , when g1 = g2. The two loop RGE of

the E6SSM (shown in Appendix C) are used to run the E6SSM gauge and Yukawa

couplings to this estimate of the unification scale. At MX the chosen high scale values

of the new Yukawa couplings λi and κi are set, and g′1 is set equal to g1 and g2. The

choice of new Yukawas at MX and the relation g′1 = g1 form our high scale boundary

conditions. The following improved estimate of the scale MX is then made, based on

a routine used in SOFTSUSY 2.0.5.

Defining tQ = ln Q
MZ

, where Q is the renormalisation scale, a Taylor expansion in

tQ is performed using,

gi(tQ) = gi(tMX
) + (tMX

− tQ)
dgi
dt
. (9.6)

⇒MX = Q exp(
g2(Q) − g1(Q)

β(g1)|Q − β(g2)|Q
). (9.7)

where dgi/dt = β(gi) has been used to replace the derivatives with two loop beta

functions. Since two loop beta functions are used, this linear approximation improves

on the initial one loop estimate.
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An iteration between successively improved estimates of MX and TESSM is then

performed until convergence is reached. When the iteration is complete the value of

all Yukawas and gauge couplings, consistent with unification of the gauge couplings,

the low energy constraints from experiment and our choice of tanβ, are obtained.

9.3 Low Energy Constraints

Now the work in the previous two sections is combined. Semi-analytical expressions for

the soft masses at the scale TESSM are determined as follows. First at the unification

scale we set A = M1/2 = 0 while setting m0 to some arbitrary non-zero value (in this

case 1). The soft masses are RG evolved (using a modified version of SOFTSUSY 2.0.5)

down to the low energy scale TESSM . Eq. 9.3 is then used to fix the coefficients ai(t),

where t = ln[TESSM/M
2
X ]. Similarly unification scale constraints of m0 = M1/2 = 0,

with A set to a non-zero value and m0 = A = 0, with M1/2 set to a non-zero value,

are used to fix the two sets of coefficients {di(t), ei(t), pi(t)} and {bi(t), fi(t), qi(t)}
respectively using Eq. 9.3, Eq. 9.4 and Eq. 9.2.

Once this procedure is carried out all the coefficients ai(t), bi(t), ci(t), ci(t), ei(t),

fi(t), pi(t), and qi(t) for t = ln[TESSM/M
2
X ] are known, yielding semi-analytic expres-

sions for all soft mass parameters at TESSM . As a result all soft scalar masses, trilinear

scalar couplings and gaugino masses are determined by M1/2, A and m2
0 only.

This set of low energy constraints on the soft masses are then combined with the tree

level low energy EWSB constraints appearing in Eq. 7.23. This leaves three constraints

and three soft mass parameters. Two of the equations can be used to eliminate M1/2

and m0, leaving one quartic equation for one unknown, A. This equation is solved

numerically, and the resultant value for A is used to obtain M1/2 and m0. For fixed

values of gauge couplings, Yukawas and vevs, (determined from choices of tanβ and

s with v known from experiment) there are four sets of soft masses A, M1/2 and m0.

Usually two of the solutions are complex and two are real, but four real or four complex

solutions cannot be ruled out. Therefore our routine deals with between 0 and 4 sets
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of real solutions to the soft masses.

With a tree level solution for A, M1/2 and m0 determined, the tree level spectrum

of masses can be calculated. Leading one loop contributions to the effective potential

from stop masses are added and an improved estimate of the electroweak symmetry

breaking conditions is made. For the CE6SSM only stop mass contributions from the

one loop contribution to the effective potential are used. This is firstly because we

observed during the project on the NUHM E6SSM that such contributions are small

(contributing . 5%) in comparison to our target accuracy of around 10%. Secondly

for higher order contributions to the light Higgs mass (see mass spectra calculations,

below) we only included the top-stop sector, so for consistency it was necessary to drop

the exotic contributions from the tadpoles.

The stop corrections lead to improved estimates of the three soft mass parameters

and then the stop masses themselves can be recalculated to improved accuracy. For

each set of tree level solutions an iteration is then performed until stable values for the

soft masses are obtained. Finally the mass spectrum is determined and compared with

experimental constraints.

The mass spectra are calculated using the tree level expressions given in Sec. 7.3.

For the CP-even higgs masses, leading one loop corrections from the effective potential

are added. These contributions are listed in Appendix D. However, after a detailed

study of the mass spectra for benchmark points, it became apparent that the light

Higgs mass could be in conflict with the LEP limit for certain points and that leading

two loop corrections were also needed for a reliable estimate.

For approximate two loop corrections we used the expression which appeared in [4]

and is a simple generalisation of results in [258,259],

m2
h .

[λ2

2
v2 sin2 2β +M2

Z cos2 2β +
M2

Z

4

(
1 +

1

4
cos 2β

)2]
×
(

1 − 3h2
t

8π2
l

)

+
3h4

tv
2 sin4 β

8π2

{
1

2
Ut + l +

1

16π2

(3

2
h2
t − 8g2

3

)
(Ut + l)l

}
, (9.8)

where Ut = 2
X2
t

M2
S

(
1 − 1

12

X2
t

M2
S

)
and l = ln

[M2
S

m2
t

]
.
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At tree level the CP-odd pseudoscalar, A and the charged H± Higgs bosons are

quasi degenerate in mass with one of the heavier CP-even Higgs (h2 or h3). This is

assumed to be maintained at the one loop level.

Since it is known that corrections to the gluino mass can be large in the MSSM, we

included the one loop contribution to the gluino from the gluon-gluino loops and quark-

squark loops, where only quarks and squarks of ordinary matter are included. The

contribution from the exotic particles were neglected as preliminary studies suggested

they were heavy. With the exotic contributions neglected the gluino correction are the

same as those for the MSSM, which have been presented in e.g. [180] and are already

present in SOFTSUSY 2.0.5. We use the gluino corrections adapted from SOFTSUSY

2.0.5. In our approximation the gluino mass is evaluated at the E6SSM threshold

TESSM as this is where the RG evolution is halted. These corrections are then given

by,

mg̃ = M3(TESSM)[1 + ∆g̃(TESSM)] (9.9)

where

∆g̃(Q) =

(
g3(Q)

4π

)2

[15 + 9 ln
Q2

M(Q)2
−
∑

q

2∑

i=1

B1(M3(Q), mq, mq̃i, Q)

−
∑

q=t,b

mq

M3(Q)
sin(2θq)(B0(p,mq, mq̃1, Q) − B0(p,mq, mq̃2, Q)] (9.10)

where the term on the bottom line is only included for the third generation, as mixing,

given by the squark mixing angle θq, in the first two generations is negligible. The

functions B0 and B1 are the Passarino-Veltman functions [260] with the divergent part

removed using modified Dimensional Reduction (DR) and may be expressed as [180],

B0(p,m1, m2) = − ln

(
p2

Q2

)
− fB(x+) − fB(x−) (9.11)

B1(p,m1, m2) =
1

2p2

[
A0(m2) −A0(m1) + (p2 +m2

1 −m2
2)B0(p,m1, m2)

]
(9.12)

A0(m) = m2[1 − ln
m2

Q2
]. (9.13)

and

fB(x) = ln(1 − x) − x ln(1 − x−1) − 1 (9.14)
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x± =
s±

√
s2 − 4p2(m2

1 − iε)

2p2
s = p2 −m2

2 +m2
1 (9.15)

The experimental constraints applied in our analysis are, mh ≥ 114 GeV, all slep-

tons and charginos are heavier than 100 GeV, all squarks and gluinos have masses above

300 GeV and Z ′ boson has a mass which is larger than 700 GeV [261]. We also impose

the most conservative bound on the masses of exotic quarks and squarks that comes

from the HERA experiments [262]. We assume that our exotic quarks and squarks are

heavier than 300 GeV. Finally we require that the Inert Higgs and Inert Higgsinos are

heavier than 100 GeV to evade limits on Higgsinos and charged Higgs from LEP, as

described in the previous chapter.

In addition to a set of bounds coming from the non–observation of new particles at

the experiment we impose a few theoretical constraints. We require that the lightest

supersymmetric particle should be a neutralino. We also restrict our consideration by

the values of the Yukawa couplings λi(MX), κi(MX), ht(MX), hb(MX) and hτ (MX) less

than 3 to ensure the applicability of perturbation theory up to the Grand Unification

scale.

9.4 Results

9.4.1 Exclusion Plots

In our exploration of the CE6SSM parameter space we looked at scenarios with a

universal coupling between exotic colored superfields and the third generation singlet

field Ŝ, κ(MX) = κ1,2,3(MX) and fixed the Inert Higgs couplings λ1,2(MX) = 0.1. In

fixing λ1,2 like this we are deliberately pre-selecting for relatively light Inert Higgsinos.

The third generation Yukawa λ = λ3 was allowed to vary along with κ. Splitting

λ3 from λ1,2 seems reasonable since λ3 plays a very special role in E6SSM models in

forming the effective µ-term when S picks up a vev.

For fixed values of tanβ = 3, 10, 30, we scan over s, κ, λ. From these input param-
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eters, the sets of soft mass parameters, A, M1/2 and m0 which are consistent with the

correct breakdown of electroweak symmetry are found.

We find that for fixed values of the Yukawas the soft mass parameters scale with

s. While for fixed s, varying the Yukawas, λ and κ then produces a region of al-

lowed points, as is shown in Figs. 9.3, 9.5 and 9.7, for (tanβ, s) values (10, 3 TeV),

(30, 3 TeV) and (3, 4 TeV) respectively, with the allowed regions in green and the ex-

cluded regions in white. We find that for fixed tan β there is a lower limit on the ratio

Figure 9.2: Physical solutions with tanβ = 10 which pass experimental constraints

from LEP and Tevatron data. On the left hand side of the allowed region the chargino

mass is less than 100 GeV, while underneath and on the lower right quadrant the Inert

Higgs are less than 100 GeV or becoming tachyonic.

m0/M1/2 which is a weak function of the singlet vev s. For example consider Fig. 9.2.

The region to the left of the allowed space is ruled out by the lightest chargino mass

being < 100 GeV, while the lower right region is ruled out by Inert Higgs bosons with

masses below experimental bounds or tachyonic Inert Higgs masses. This boundary
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implies that for tanβ = 10, over the allowed ranges shown, m0/M1/2 varies from ≈ 1.4

to ≈ 0.8.

This boundary can be understood as follows. For fixed m0, maximising M1/2 re-

quires the singlet vev s to be increased, as well as varying the Yukawas, λ and κ.

However the squared mass values of the Inert Higgs bosons receive a positive contri-

bution from m2
0 and a negative contribution from the auxiliary D-term which varies

with s2 (see Eq. 7.50). Due to this D-term contribution md,u 2
1,2 decreases with s and

at some point falls below experimental limits, bounding M1/2 from above. The larger

m0 is, the larger the negative contribution must be in order to drive the Inert Higgs

mass below it’s lower limit. Further, if one assumes that m0 ∼ s and Aλ ∼ M1/2 then

EWSB conditions imply s ∼ M1/2 tanβ. This suggests not only the observed limit on

m0/M1/2 but also that it will be more severe for large tanβ and shallower for low tan β.

In addition, by examining Fig. 9.3 in conjunction with Fig. 9.2, one can see that the

lower right boundary in the latter is formed from the bottom right corner of plots like

Fig.9.3 which moves upwards and to the right as s is varied. Benchmarks scenarios,

shown in Figs. 9.8, 9.9, 9.10 and 9.11 are drawn from these plots. These will be

discussed in detail the next section.

The allowed region in Fig. 9.4 is formed from by the same combination of bounds

as Fig. 9.3, but in this case m0/M1/2 varies from ≈ 1.9 to ≈ 1.4, so for this larger

tanβ = 30 the limit on ratio m0/M1/2 is enhanced. The fixed s plot Fig. 9.5 also

demonstrates this increased hierarchy as one can see that with s = 3 TeV there is a

much smaller region which is allowed by EWSB and experimental constraints at low

energy. Benchmarks scenarios, shown in Figs. 9.12, 9.13 and 9.14 are drawn from these

plots. Again detailed discussion of these is delayed until the next section.

In Fig. 9.6 the region to the left of the allowed parameter space is also ruled out

by experimental limits on the chargino mass. However the lower-right region is ruled

out not by the Inert Higgs masses but by a light Higgs which is lower than the LEP

limit. This change can be understood for two reasons, firstly the Inert Higgs bosons

obtain positive contributions to their masses from m0 (with a coefficient of ≈ 1) and
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Figure 9.3: Physical solutions with tanβ = 10 and s = 3 TeV fixed, which pass

experimental constraints from LEP and Tevatron data. On the left hand side of the

allowed region the chargino mass is less than 100 GeV, while underneath the Inert

Higgs are less than 100 GeV or becoming tachyonic. The region ruled out immediately

to the right of the allowed points is due to mh < 114 GeV.

M1/2, while, due to the Auxiliary D-term contribution, the Inert Higgs masses decrease

with s. Since decreasing tanβ reduces the hierarchy between s and M1/2 this negative

contribution the mass of the Inert Higgs is smaller and does not decrease their mass

as rapidly when m0 is reduced. Secondly we observe that the light Higgs mass reduces

with tanβ. This occurs because decreasing tan β increases the mixing, which provides

a negative contribution to the light Higgs mass.

As with the other values of tan β we also present a plot for tan β = 3 with a fixed

value of s. However in this case all solutions we obtained with s = 3 TeV were ruled

out. This is due to experimental constraints on the light Higgs mass, which as already

mentioned, decreases when tanβ is reduced. Instead a plot for fixed s = 4 TeV is
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Figure 9.4: Physical solutions with tanβ = 30 which pass experimental constraints

from LEP and Tevatron data. On the left hand side of the allowed region the chargino

mass is less than 100 GeV, while underneath and on the lower right quadrant the Inert

Higgs are less than 100 GeV or becoming tachyonic.
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Figure 9.5: Physical solutions with tanβ = 30 and s = 3 TeV fixed, which pass

experimental constraints from LEP and Tevatron data. On the left hand side of the

allowed region the chargino mass is less than 100 GeV, while points immediately below

the lowest (in m0) allowed point are ruled out by Inert Higgs being less than 100 GeV

or becoming tachyonic. The region ruled out immediately to the right of allowed points

is due to mh < 114 GeV.
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Figure 9.6: Physical solutions with tanβ = 3 which pass experimental constraints from

LEP and Tevatron data. On the left hand side of the allowed region the chargino mass

is less than 100 GeV, while underneath and on the lower right quadrant the lightest

Higgs mass is less than 114, in violation of the limit set at LEP.
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presented in Fig. 9.7.

Even with this value of s the light Higgs mass still provides a strong constraint on

the parameter space. Unlike the previous fixed s there is an upper bound on m0 which

is below 1 TeV, and therefore visible on the plot shown. The upper limits on both m0

and M1/2 are due to the light Higgs mass.

Figure 9.7: Physical solutions with tanβ = 3 and s = 4 TeV fixed, which pass experi-

mental constraints from LEP and Tevatron data. On the left hand side of the allowed

region the chargino mass is less than 100 GeV, while points immediately below the

lowest (in m0) allowed point are ruled out by Inert Higgs being less than 100 GeV

or becoming tachyonic. The region ruled out immediately to the right and above the

allowed points is due to mh < 114 GeV.

Benchmark scenarios, shown in Figs. 9.15, 9.16 and 9.17 are drawn from these plots.

A detailed discussion of the benchmark scenarios now follows.
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9.4.2 Benchmark Scenarios

In this section the spectra of various benchmark scenarios for the CE6SSM are shown

and discussed. The numerical values for the masses shown the various spectra plot in

this section can be found in Appendix E.

Figure 9.8: The particle mass spectra for CE6SSM benchmark point A1 with,

tanβ = 10, s = 2.7 TeV M1/2 = 363 GeV, m0 = 537 GeV, A =

711 GeV, λ(MX) = −0.3684, λ(µS) = −0.3548, λ1,2(MX) = 0.1, κ1,2,3(MX) =

0.2068, κ1,2,3(µS) = 0.5385.

Shown in Fig. 9.8 is Benchmark scenario A1. This CE6SSM point has been drawn

from the lower left corner of the allowed region in Fig. 9.2. This is typical of the

light spectra found in that region and it would be difficult to find a significantly

lighter CE6SSM spectra in scenarios with tanβ = 10, a universal κ coupling and

λ1,2(MX) = 0.1. Notice that even for this comparatively light spectra the only sfermion

below 500 GeV is the lightest stop. The gluino (mg̃ = 330 GeV) is lighter than all

sfermions and will therefore not decay into a sfermion as in the usual MSSM sparticle
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cascade decay chains. The gluino will decay through, g̃ → qq̃∗ → qq̄ + Emiss
T .

There are also quite light Inert Higgs (mHd
1,2

= 154 GeV) and Inert Higgsinos

(mH̃ = 244 GeV) in the spectra. Relatively light Higgsinos were preselected for when

λ1,2(MX) = 0.1 was set and is not a general prediction of the CE6SSM.

The light Inert Higgs bosons decay via the ZH
2 violating terms hNijkN̂

c
i Ĥ2jL̂k,

hUijkû
c
iĤ2jQ̂k, h

D
ijkd̂

c
iĤ1jQ̂k and hEijkê

c
iĤ1jL̂k, where the Inert Higgs superfields are SU(2)

doublets with Ĥ1j = (Ĥ0
1j , Ĥ

−
1j) and Ĥ2j = (Ĥ+

2j, Ĥ
0
2j). These interactions are analogous

to the Yukawa interactions of the Higgs superfields, Ĥu and Ĥd. So the neutral In-

ert Higgs bosons decay predominantly into 3rd generation fermion–anti-fermion pairs

like Hd 0
i → bb̄. The charged Inert Higgs bosons decays are also into fermion–anti-

fermion pairs, but in this case it is the antiparticle of the fermions’ electroweak partner,

e.g. Hd−
i → τ ν̄τ .

The same couplings also govern the decays of the Inert Higgsinos. The electro-

magnetically neutral Higgsinos predominantly decay into a fermion anti-sfermion pairs

(e. g. H̃0
2 i → t̃t̄

∗
, H̃0

1 i → τ ˜̄τ
∗
). The charged Higgsinos decays are similar but in

this case the sfermion is the supersymmetric partner of the electroweak partner of the

fermion, (e. g. H̃+
2 i → t˜̄b

∗
, H̃−

1 i → τ ˜̄ν
∗
τ ).

The lightest particles in the spectra are the lightest Higgs (mh1
= 115 GeV), the

lightest chargino (mχ±

1

= 103 GeV) and the two lightest neutralinos (mχ0

1
= 58 GeV

and mχ0

2
= 103 GeV). The second lightest neutralino decays, as in the MSSM, through

χ0
2 → χ0

1 + ll̄. The lightest chargino will also decay in the way as a light chargino in

the MSSM, e.g. χ− → τ̃ ∗ντ . Although the mass scale of the exotic colored objects is

sensitive to s making them typically quite heavy, large mixing in this scenario means

that one set of exotic sfermions is comparatively light (mD̃1
= 628 GeV). The decay

for this object will discussed in later benchmarks where it has an even lighter mass.

Benchmark point A2, shown in Fig. 9.9, is also a scenario with tan β = 10, a

universal κ coupling and λ1,2(MX) = 0.1, but with a more exaggerated hierarchy in

the mass spectra than A1. This is because the scenario has been chosen from the top
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Figure 9.9: Benchmark point A2. tanβ = 10, s = 3.8 TeV, M1/2 = 390 GeV, m0 =

998 GeV, A = 768 GeV, λ(MX) = −0.3066, λ(µS) = −0.2845, , λ1,2(MX) =

0.1 κ1,2,3(MX) = 0.2463, κ1,2,3(µS) = 0.5935.

left of the allowed region in Fig. 9.2, so that m0 >> M1/2. the result of raising m0

has been to push the heavier parts of the spectra up in mass to such an extent that

only the gluino, Inert Higgsinos, the lightest Higgs, the lightest chargino and the two

lightest neutralinos are below ≈ 700 GeV. With the exception of the lightest Higgs

mass, which is bounded from above, these particles are not sensitive to m0.

Although the hierarchy in the spectra has increased, the pattern is otherwise quite

similar to A1, with a hierarchy amongst the sfermions unchanged. However the lightest

set of Inert Higgs bosons are now heavier than the Inert Higgsino as they are sensitive

to m0. The exotics colored objects are now very heavy.

It is also possible to have a generally heavier spectrum like A2 but with light Inert

Higgs bosons. Since the lower right boundary is caused by the inert Higgs bosons

becoming too light, a point close to this boundary, with large m0 and M1/2 will have
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Figure 9.10: Benchmark point A3. tanβ = 10, s = 4.4 TeV, M1/2 = 775 GeV, m0 =

799 GeV, A = 919 GeV, λ(MX) = −0.3698, λ(µS) = −0.3736, , λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.1780, κ1,2,3(µS) = 0.4935.

light Inert Higgs, but is otherwise expected to have a spectra similar to A2. An example

of this is benchmark A3, whose spectra is shown in Fig. 9.10. Notice that since M1/2 is

also large in this scenario, the light neutralinos and chargino are now a little heavier,

with mχ±

1

= 217 GeV and mχ0

1
= 122 GeV. The gluino is also significantly heavier,

mg̃ = 673. Despite this all sfermions are still heavier than the gluino, and the spectrum

is still very hierarchical.

All these points drawn from scenarios with tanβ = 10, a universal κ coupling and

λ1,2(MX) = 0.1, so far have MZ′ > 1 TeV. The lower limit on the Z ′ mass used in this

study is 700 GeV and it is interesting to see a spectrum of masses where MZ′ is close

to this bound. Benchmark A4, whose spectra is shown in Fig. 9.11, is an example of

this with MZ′ = 719 GeV. A light Z ′ boson can provide a signature through enhanced

production of lepton–anti-lepton pairs.
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Figure 9.11: Benchmark point A4. tanβ = 10, s = 1.9 TeV, M1/2 = 382 GeV, m0 =

816 GeV, A = −19 GeV, λ(MX) = −0.2573, λ(µS) = −0.2780, , λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.1739, κ1,2,3(µS) = 0.4979.

This point appears on the left hand side of the m0 −M1/2 plain shown in Fig. 9.2

lying somewhere between A1 and A2. The sfermions are heavier than those in A1

because m0 is larger. However the heaviest neutralinos and Higgs boson and the exotic

D fermions are lighter than in A1 since their masses are set by s. All points with

MZ′ < 1 TeV appear in a similar region of the m0 −M1/2 plane and will have similar

spectra. Points with MZ′ < 1 TeV do not appear in the bottom left corner of the plot

from where A1 was drawn.

It is also significant that such points with low Z ′ masses occupy a region in the

m0 −M1/2 plane that is also covered by points with MZ′ > 1 TeV. This is important

because during this project a limit of MZ′ > 936 GeV [263] was informally announced,

though it has not yet been confirmed in a formal publication. All exclusion plots

presented in this thesis are, in fact, valid with the new limit on the Z ′ mass, despite
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the fact that we did not impose this as a bound. No other benchmark points with

MZ′ < 1 TeV will be shown here, but if the old limit, in fact, persists the benchmarks

associated with different tan β could also have spectra with a pattern similar to A4.

Figure 9.12: Benchmark point B1. tanβ = 30, s = 3.1 TeV, M1/2 = 365 GeV, m0 =

702 GeV, A = 1148 GeV, λ(MX) = −0.37845, λ(µS) = −0.3661, , λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.17121, κ1,2,3(µS) = 0.4813.

Similar patterns in the mass spectra can be observed for scenarios with a larger

tanβ = 30, but still with a universal κ and fixed λ1,2(MX) = 0.1. Benchmark B1,

whose mass spectra is shown in Fig. 9.12, is drawn from the lower left corner of Fig. 9.4,

and can be seen as an analogous point to A1, but with a larger tan β. Also of interest in

this spectrum is the lightest sfermion being an exotic D sfermion with mD̃1
= 393 GeV,

so light as a result of even larger mixing than in A1. Other than that, the pattern of

masses is quite similar to that of A1, but just a little heavier since m0 and s are larger.

Similarly benchmark B2 (with spectra shown in Fig. 9.13) and B3 (spectra shown in

Fig. 9.14) can be seen as larger tanβ analogue of benchmarks A2 and A3 respectively.
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Figure 9.13: Benchmark point B2. tanβ = 30, s = 3.4 TeV, M1/2 = 361 GeV, m0 =

993 GeV, A = 1121 GeV, λ(MX) = −0.3333, λ(µS) = −0.3238, , λ1,2(MX) =

0.1 κ1,2,3(MX) = 0.1839, κ1,2,3(µS) = 0.5078.

In B3 there is again an increased mixing in the exotic sfermions leading to a very light

mD̃1
= 312 GeV. How these objects decay depends on whether they are scalar diquarks

or scalar leptoquarks (i.e. whether we are in CE6SSMI or CE6SSMII). In CE6SSMI the

exotic scalar diquarks decay through ZH
2 violating terms, gQijkDi(QjQk) and gqijkDid

c
ju
c
k.

Therefore the scalar diquarks decay into an up and a down type quark,1 like ˜̄D → tb.

If instead we are in the CE6SSMII then the scalar leptoquarks decay through

gNijkN
c
iDjd

c
k, g

E
ijke

c
iDju

c
k and gDijk(QiLj)Dk. This results in decays into quark and lepton

pairs like, D̃ → tτ .

Since the discrete symmetry forbidding proton decay permits single production of

1Please recall that in the E6SSM the discrete symmetry which prevents rapid proton decay ensures

that the exotic quarks must decay into a sparticle, while the scalar partners do not.
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Figure 9.14: Benchmark point B3. tanβ = 30, s = 5.0 TeV, M1/2 = 725 GeV, m0 =

1074 GeV, A = 1726 GeV, λ(MX) = −0.3847, λ(µS) = −0.3788, , λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.1579, κ1,2,3(µS) = 0.4559
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these exotic scalars, they can mediate contact interactions between ordinary fermions.

However any constraints, coming from such contact interactions, on the masses of these

particles depends also on the coupling between these fields and ordinary matter. In

the E6SSM such interactions are ZH
2 suppressed and contact interactions should not

introduce bounds beyond what has already been assumed.

However recent, as yet unpublished, results from Tevatron searches for dijet res-

onances [264] should apply to the scalar diquarks. This search increases the lower

bound on the diquarks to 630 GeV. Therefore in scenarios like B3, where this bound

is violated, the exotic scalars should be leptoquarks, with the version of the E6SSM

model containing diquarks ruled out for such scenarios.

For tanβ = 3 the spectra benchmark scenarios, C1, C2, C3, with a universal κ and

λ1,2(MX) = 0.1 are shown in Figs. 9.15, 9.16 and 9.17 respectively. These benchmarks

can also be thought of as being lower tanβ analogues of the benchmarks A1, A2 and

A3, though in the case of C2 and C3 larger values of s were chosen so that an examples

of very heavy spectra could be shown.



9.4: Results 146

Figure 9.15: Benchmark point C1. tanβ = 3, s = 3.3 TeV M1/2 = 365 GeV, m0 =

640 GeV, A = 798 GeV, λ(MX) = −0.465, λ(µS) = −0.354, λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.3, κ1,2,3(µS) = 0.628.
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Figure 9.16: Benchmark point C2. tanβ = 3, s = 5.6 TeV, M1/2 = 352 GeV, m0 =

1238, GeV A = 1194 GeV, λ(MX) = −0.529, λ(µS) = −0.300, , λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.492, κ1,2,3(µS) = 0.716.
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Figure 9.17: Benchmark point C3. tanβ = 3, s = 5.5 TeV, M1/2 = 931 GeV, m0 =

918 GeV, A = 751 GeV, λ(MX) = −0.434, λ(µS) = −0.375, λ1,2(MX) =

0.1, κ1,2,3(MX) = 0.23, κ1,2,3(µS) = 0.56.
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It is also interesting to consider spectra with with a hierarchy in the exotic fermion

couplings κ1, κ2 and κ3. Fixing κ1,2 ≪ 1 could provide light first and second generation

exotic colored sfermions and fermions. Benchmark D1 (Fig. 9.18) is an example of this

with very light exotic fermions with masses µ1,2
D = 300 GeV, which is even lighter than

the gluino mass, mg̃ = 353 GeV.

Figure 9.18: Benchmark point D1. tanβ = 10, s = 2.7 TeV, M1/2 = 388, GeV m0 =

681, GeV A = 645, GeV, λ1,2(MX) = 0.1, λ3 = −0.378, λ(µS) = −0.348, κ1,2 =

0.06, κ3(MX) = 0.42, κ3(µS) = 0.915.

Benchmark D2 is similar to D1 but the spectra, as shown in Fig. 9.19, contains

both very light exotic sfermions and fermions, mD̃1,2
1

= 370 GeV and µ1,2
D = 391 GeV.

The decays of the light exotic colored sfermions have already been discussed earlier,

and are unchanged here. The decays of the exotic colored fermions are governed by the

same ZH
2 violating couplings as their sfermion superpartners. Leptoquarks can decay

be detected by decay into quark and a slepton, like D → tτ̃ ∗ or a lepton and a squark,

like D̃ → ντ b̃
∗. The diquarks decay into a quark and squark, like D̄ → tb̃∗.
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Figure 9.19: Benchmark point D2. tanβ = 10, s = 2.7 TeV, M1/2 = 358 GeV, m0 =

623 GeV, A = 757 GeV, λ1,2(MX) = 0.1, λ3 = −0.395, λ(µS) = −0.355, κ1,2 =

0.08, κ3(MX) = 0.43, κ3(µS) = 0.915.
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Finally since in all benchmark scenarios so far, light Inert Higgsinos have been

preselected, there has always been some exotic particle (Z ′ boson, D fermions, sfermions

and Inert Higgs and Higgsinos) with a mass lower than 500 GeV in the spectra. This

is not necessarily the case. Benchmarks F1 (shown in Fig. 9.20) and F2 (Fig. 9.21) are

scenarios where all exotics are heavier than 900 GeV. This demonstrates the range of

possibilities in the CE6SSM model.

Figure 9.20: Benchmark point F1. tanβ = 10, s = 4.0 TeV, M1/2 = 426 GeV, m0 =

701 GeV, A = −1652 GeV, λ1,2(MX) = 2.8, λ3(MX) = −2.0, λ3(µS) =

−0.266, κ1,2 = 2.5 κ3(MX) = 2.0, κ3(µS) = 0.652,

If such a scenario like F1 or F2 is chosen by nature, where the only light sparticles

are the gluino, the two lightest neutralinos and the lightest chargino phenomenology

signatures can still be obtained. Pair production of χ0
2χ

0
2, χ0

2χ
±
1 , χ±

1 χ
∓
1 and g̃g̃ should

still be detectable at the LHC.

Since the gluino decays through, g̃ → qq̄ + Emiss
T , the light gluino provides a sig-

nature for the model at the LHC through, pp → qq̄qq̄ + Emiss
T + X. In this case a
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Figure 9.21: Benchmark point F2. tanβ = 10, s = 4.0 TeV, M1/2 = 389 GeV, m0 =

725 GeV, A = −1528 GeV, λ1,2(MX) = 2.6, λ3(MX) = −2.0, λ3(µS) =

−0.259, κ1,2,3 = 2.5, κ3(µS) = 0.728.
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detailed phenomenological study is needed to look at the significance of this signature

and how it differs from other SUSY models. This is not included here but is left for

further study. The second lightest neutralino decays through χ0
2 → χ0

1+ll̄ and so would

produce a signal pp→ ll̄ll̄ + Emiss
T +X, just as in the MSSM.

In this section we have investigated the spectra of the CE6SSM and have observed

that several distinctive patterns present in them. The Z ′ boson, two heaviest neutrali-

nos and the heaviest CP–even Higgs boson are normally heavier than all the sfermions

of ordinary matter. Their masses are almost degenerate around Z ′ boson mass MZ′,

i.e.

|mχ0

5
| ≃ |mχ0

6
| ≃ mh0

3
≃MZ′ (9.16)

This is the case for all but one of the benchmark spectra presented here. In such cases

we also find that at tree level,

MH± ≃MA ≃ mh0

3
(9.17)

and we assume, though do not explicitly check that this is maintained at the one loop

level.

However if s is very light this can be changed, as is shown in benchmark A4. In

this case the degeneracy is with the 2nd heaviest Higgs instead,

|mχ0

5
| ≃ |mχ0

6
| ≃ mh0

2
≃MZ′ . (9.18)

and in this case the tree level quasi-degeneracy amongst the Higgs is,

MH± ≃MA ≃ mh0

2
. (9.19)

One generation of exotic colored fermions and sfermions also have their mass set

by the singlet vev, s, and are therefore usually relatively heavy, though, due to large

mixing, sometimes one of the exotic sfermion may be light. If the κi couplings are not

all equal then light exotics then other generations of sfermions and fermions may be

light, as only one κi coupling needs to be constrained for EWSB to take place.
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The CE6SSM predicts that the set of the lightest particles always include one CP–

even Higgs boson, the lightest neutralino, the lightest chargino and gluino. The masses

of the lightest and second lightest neutralinos, the lightest chargino and gluino are

determined by the soft gaugino masses M1, M2 and M3 respectively, i.e.

mχ0

1
≃M1 , mχ0

2
≃ mχ±

1

≃ M2 , mg̃ ≃M3 . (9.20)

It also predicts that the gluino is lighter than all sfermions superpartners of the

observed SM fermions. As mentioned in chapter 8 this is a result of the RG flow and

has strong implications for cascade decays. There is also a stable hierarchy amongst

the these sfermions, with the heaviest sfermion being one of the down type squarks, b̃2

or the quasi-degenerate first and second generation d̃2. Exotic colored sfermions and

fermions could appear at low energies providing very exciting collider signatures of the

model. This is not however a concrete prediction of the model as it is also possible for

all exotics to be relatively heavy.

9.5 Conclusions

In this chapter the CE6SSM has been introduced and the low energy consequences

of the model have been explored. We find it is difficult, if not impossible, to obtain

solutions with m0 << M1/2 while maintaining M1/2 < 800 GeV for a light particle

spectrum. This makes it very challenging to obtain light sleptons and no scenarios

with this feature were found in our study. The squarks of ordinary matter also tend

to be quite heavy. The lightest sfermion of ordinary matter in all benchmark scenarios

presented here is the lightest stop.

By contrast the gluino can be very light. This should be compared to the CMSSM

where the gluino tends to be heavier than most of the sfermions (see e.g. [178]). This

feature of the model is a result of the RGE evolution.In the E6SSM the one loop beta-

function for the strong coupling (and by implication the soft gluino mass parameter)

vanishes, whereas in the MSSM it is < 0 resulting in an increase in the gluino mass
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parameter as the RGE are evolved to low energies. A gluino which is lighter than the

sfermions is therefore a stable signature of the CE6SSM.

In addition to two light neutralinos, a light chargino and a light Higgs should be

present. As has been shown in benchmark F2, it is possible that none of the other

unobserved particles presented here are lighter than 700 GeV. Nonetheless there are

many scenarios where there is light exotic matter below 500 GeV, which would provide

a very striking signature of the model.



Chapter 10

Summary, Conclusions and Outlook

Electroweak symmetry breaking is crucial to particle physics, as without this taking

place gauge theories cannot provide a correct description of nature. While the mecha-

nism which does this is currently unknown, theoretical models based on gauge theories

must include some mechanism for doing this if they are to to be consistent with data.

In chapter 2 we described how, in the Standard Model, the minimal version of Higgs

Mechanism, consistent with data, breaks the electroweak symmetry.

In addition we also explained that we doubt this minimal model will be found in

nature as it suffers from the Hierarchy Problem, where the parameters governing the

mass of the Higgs boson have to be very delicately fine tuned to maintain a weak

scale, which is much lower than the scale at which gravitational interactions become

important.

This problem has motivated many new models of beyond the Standard Model

physics. These models have more complicated mechanisms for electroweak symmetry

breaking, but are considered preferential because they reduce the fine tuning, admitting

the possibility that the observed spectrum of masses might be a natural consequence

of the model, without some tweaking of the parameters. It is also significant that it

appears that any solution to this hierarchy must have new physics which is present at

low energies that will be within reach of the LHC, which has just started running as
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the finishing touches to this thesis are being made.

If the scale of the new physics is too large this will reintroduce some kind of fine

tuning between the mass scale of the new physics and the scale at which electroweak

symmetry is broken. This tuning is the first aspect of electroweak symmetry breaking

explored in this thesis.

In order to be quantitative about this one must study each model individually and

apply some prescription for measuring tuning. In chapter 5 some criticisms of the

tuning measures used in the literature are presented and a new measure of fine tuning

is introduced and it’s meaning and relation to other measures expounded.

In chapter 6 this new tuning measure is applied to various models, including a toy

version of the SM, in order to demonstrate it’s use and further elucidate the meaning.

It is shown that the new tuning measure picks up the correct features of the Hierarchy

Problem while not suffering from any of the problems it was designed to solve. It is also

applied to the case of the CMSSM where measures in the literature have indicated that

the fine tuning may now be quite severe due to the LEP limits on sparticle masses.

The new measure demonstrates that tuning increases with mass scale, as expected.

However the results cast doubt on previous claims about the severity of the tuning.

Unfortunately all tuning measures should be normalised in order to remove global

sensitivity. This means that a correct normalised measure requires a sampling of the

whole parameter space, not just some limited region of it. Doing this went beyond

the scope of this study, however from examining points already ruled out by LEP we

observed that many such points have larger than expected values for the unnormalised

tuning measures, due to different hierarchies in the model. It is possible that in a highly

constrained model, such as the CMSSM, any choice of it’s parameters will lead to some

large cancellation amongst them in the expression for one of the masses. Therefore it

may be the apparent large tuning in the CMSSM is a simply a result of only considering

one observable, the Z boson mass.

It is possible that with some sensible bounds on the parameter space and sophis-



158

ticated sampling techniques this work could be expanded and a result for normalised

tuning found. This work could be pursued in the future.

The second aspect of electroweak symmetry breaking studied in this thesis is the

possibility that EWSB can be driven by radiative corrections. This has already been

established for the constrained versions of the MSSM, but in this thesis it is demon-

strated that this can also occur in the NUHM E6SSM (chapter 8) and the CE6SSM

(chapter 9).

In the former a qualitative study was performed for a sample choice of new E6SSM

Yukawa couplings. For this point it was demonstrated that radiative electroweak sym-

metry breaking can take place for many different values of the NUHM E6SSM soft

parameters, though there are constraints on m0 and M1/2 requiring them to be & 500

GeV. A sample spectrum is then shown with masses ranging from ≈ 60-1700 GeV. The

spectrum is very hierarchical with a gluino lighter than most fermions.

A more extensive and quantitative study was carried out in the CE6SSM. In this

model constraints on the M1/2 −m0 plane were obtained for scenarios with universal

exotic fermion coupling κ, fixed Inert Higgs coupling λ1,2(MX) = 0.1 and fixed values

of tanβ = 3, 10, 30. Sample spectra for these scenarios and also other patterns of the

new Yukawa couplings were presented. These show hierarchical spectra with all the

sfermions heavier than the gluino. This is a very unusual feature of the model which

could provide an interesting signature. A thorough phenomenological study on the

process pp→ qq̄qq̄ + Emiss
T +X should be carried out in the future.

Additionally the exotic particles of the model, a Z ′ boson, exotic colored objects

and Inert Higgs and Higgsinos could all be detected directly at the LHC if they are

light enough.

With the LHC now running and the first collisions anticipated shortly these are

very exciting times for particle physics. The mechanism behind electroweak symmetry

breaking should be revealed, whatever it may be. In addition a solution to the hierarchy

problem requires new physics to appear within the mass ranges (O(1 TeV)) probed by
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the LHC. So assuming the LHC is sensitive to this new physic it will be discovered. The

specific models investigated here, the CMSSM, NUHM E6SSM and CE6SSM, which

have been motivated by naturalness, can be tested directly and either discovered or

rejected as solutions to the hierarchy problem.



Appendix A

Superfields

As is described in the body, the Haag-Lopuszanski-Sohnius generalisation of the Coleman-

Mandula no-go theorem shows that the most general space-time symmetry also includes

fermionic SUSY transformations. Therefore supersymmetry can be viewed as an ex-

tension of space-time. This can be made explicit by adding fermionic coordinates,

θa, θȧ, which are 2 component Weyl spinors with a, ȧ = {1, 2} and individual com-

ponents being anti-commuting Grassman numbers, {θa, θb} = 0. Including these four

new co-ordinates along with the usual four space-time ones gives a superspace with

coordinates,

z = (xµ, θ
a, θȧ). (A.1)

A superfield is a function of superspace coordinates. Noting identities such as,

θaθbθc = 0, (θσµθ)(θσνθ) =
1

2
gµνθ2θ

2
, θσµθ = −θσµθ (A.2)

one can observe that the most general form for a superfield is,

φ̂(z) = φ(x) + θζ(x) + θχ(x) (A.3)

+θ2m(x) + θ
2
n(x) + θσµθVµ(x) (A.4)

+θ2θλ(x) + θ
2
θψ(x) + θ2θ

2
d(x). (A.5)

where spinor indices are contracted as in θ2 = θaθa = θaǫabθ
b and θ

2
= θȧθ

ȧ
= θȧǫ

ȧḃθḃ.

There are four complex two component spinor fields, ψ(x), λ̄, ζ(x) and χ̄(x) giving
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16 fermionic dof. The four complex scalar fields, φ(x), m(x), n(x) and d(x) make up

eight bosonic degrees of freedom (dof). If the vector field Vµ(x) is complex then this

contributes eight more bosonic giving 16 bosonic dof in total. A real Vector field would

only contribute four dof, violating nb = nf .

However this general superfield is not an irreducible representation of supersym-

metry. It can be reduced to give chiral superfields or vector superfields by imposing

constraints, eliminating certain degrees of freedom.

A.1 Chiral Superfields

Using the SUSY covariant derivatives,

Dα =
∂

∂θα
+ iσµ

αβ̇
θ
β̇ ∂

∂xµ
Dα̇ = − ∂

∂θ
α̇ − iθβσµβα̇

∂

∂xµ
, (A.6)

one can define chiral superfields by, Dȧφ̂ = 0 and anti-chiral fields Daφ̂ = 0. With this

constraint a chiral field can be written as,

φ̂(z) = φ(x) + iθσµθ∂µφ(x) +
1

4
θ2θ

2
∂µ∂

µφ(x) (A.7)

+
√

2θψ(x) − i√
2
θ2∂µψ(x)σµθ + θ2F (x). (A.8)

Alternatively defining yµ ≡ xµ − iθσµθ, and relating chiral fields via φ̂(y, θ, θ) =

φ̂L(x, θ, θ) to left-handed chiral fields, φ̂L, we obtain,

φ̂L(z) = φ(x) +
√

2θζ(x) + θ2F (x). (A.9)

There are no vector fields in these expressions only, two complex scalar fields (4 dof)

and one complex Weyl spinor (4 dof), so that nb = nf .

A.2 Vector Superfields

Vector superfields, V , are formed by imposing the constraint, V (x, θ, θ) = V †(x, θ, θ)

requiring V to be self-adjoint. This gives,

V (z) = C(x) + iθχ(x) − iθχ(x) +
i

2
θ2 [M(x) + iN(x)] (A.10)
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− i

2
θ

2
[M(x) − iN(x)] − θσµθVµ(x) (A.11)

+iθ2θ

[
λ(x) +

i

2
σµ∂µχ(x)

]
− iθ

2
θ

[
λ(x) +

i

2
σµ∂µχ(x)

]
(A.12)

+
1

2
θ2θ

2
[
D(x) +

1

2
∂µ∂

µC(x)

]
. (A.13)

where C(x), M(x), N(x), D(x) are real scalar fields, contributing four bosonic dof,

Vµ(x) is a real vector field contributing a further four bosonic dof, while the two complex

spinor fields χ, λ give eight fermionic dof. Therefore nb = nf again. Nonetheless this

vector superfield still has excess dof due to gauge freedom. There is a supersymmetric

gauge transformation exp (gV ) → exp (−igφ̂†) exp (gV ) exp (igφ̂) which can be made,

where φ̂ is a chiral superfield and g is the gauge coupling. For example specialising to

the Wess-Zumino gauge removes three scalar dof, C, M , N and the four fermion dof

contained in χ. This leaves just the ordinary gauge freedom Vµ → V ′
µ = G(x)VµG

−1 +

i
g
(∂µG(x))G−1 where G = exp (iT · α(x)), T is a vector of the generators of the gauge

group and α(x) is a an arbitrary position dependent vector. When the gauge of Vµ is

also fixed, a further bosonic dof is removed and only four fermionic and four bosonic

dof remain,

VWZ(z) = −θσµθVµ(x) + iθ2θλ(x) − iθ
2
θλ(x) +

1

2
θ2θ

2
D(x). (A.14)



Appendix B

Construction of the E6SSM

B.1 Gauge Structure

The gauge group is

SU(3) ⊗ SU(2) ⊗ U(1)Y ⊗ U(1)N , (B.1)

where U(1)N is defined by,

U(1)N =
1

4
U(1)χ +

√
15

4
U(1)ψ, (B.2)

with U(1)χ and U(1)ψ in turn, defined by the breaking,

E6 → SO(10) × U(1)ψ, (B.3)

SO(10) → SU(5) × U(1)χ. (B.4)

B.2 Matter content

The matter content is based on three generations of complete 27plet representations

of E6 in which anomalies are automatically cancelled. The 27i multiplets decompose
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under the SU(5) × U(1)N subgroup of E6,

27i →
(

10,
1√
40

)

i

+

(
5∗,

2√
40

)

i

+

(
5∗, − 3√

40

)

i

+

(
5,− 2√

40

)

i

+

+

(
1,

5√
40

)

i

+ (1, 0)i ,

(B.5)

where the quantities in the brackets are the SU(5) representation and extra U(1)N

charge, respectively. Index i runs from 1 to 3 in family space. SU(5) can break into

the SM gauge group,

SU(5) × U(1)N → SU(3)C × SU(2)W × U(1)Y × U(1)N (B.6)

and the matter multiplets further decompose,

(10, 1)i → Qi ∼
(

3, 2,
1

6
, 1

)
(5∗, 2)i → dci ∼

(
3∗, 1,

1

3
, 2

)

uci ∼
(

3∗, 1,−2

3
, 1

)
 Li ∼

(
1, 2,−1

2
, 2

)

eci ∼ (1, 1, 1, 1) ; (B.7)

(5∗,−3)i → H1i ∼
(

1, 2,−1

2
,−3

)
(5,−2)i → H2i ∼

(
1, 2,

1

2
,−2

)

Di ∼
(

3∗, 1,
1

3
,−3

)
Di ∼

(
3, 1,−1

3
,−2

)
(B.8)

where the quantities in the brackets are the SU(3) representations, SU(2) representa-

tion, U(1)Y hypercharge and U(1)N charges.

So each 27plet, (27)i, is filled with one generation of ordinary matter

(Qi, u
c
i , d

c
i , Li, e

c
i , N

c
i ); a singlet field, Si; up and down type Higgs like fields, H2,i

and H1,i and exotic colored matter, Di, Di. In addition to the matter contained in

complete 27plets, the model contains two extra SU(2) doublets, H ′ and H
′

which are

components of 27′ and 27
′

E6 representations that survive to low energies. The inclu-

sion of H ′ and H
′

affects the running of the gauge couplings at the one loop level and

allows for unification at the GUT scale. So long as µ′ (the parameter which sets their

masses) is between the EW scale and 30TeV unification can still take place.
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To summarise the matter content of the E6SSM is,

3
[
(Qi, u

c
i , d

c
i , Li, e

c
i , N

c
i ) + (Si) + (H2i) + (H1i) + (Di, Di)

]
+H ′+H

′
, (B.9)

As mentioned in Sec. 7.1.5 the right-handed neutrinos, N c
i , are expected to gain masses

at some intermediate scale. All other matter in the E6SSM1 should have masses between

the TeV and EW scales near which the gauge group U(1)N is broken.

B.3 Superpotential

The most general renormalisable superpotential allowed by the low energy gauge struc-

ture of the E6SSM is,

Wtotal = WE6
+W

��E6
. (B.10)

where, WE6
is the most general renormalisable superpotential which is allowed by the

E6 symmetry,

WE6
= W0 +W1 +W2 ,

W0 = λijkSi(H1jH2k) + κijkSi(DjDk) + hNijkN
c
i (H2jLk) + hUijku

c
i(H2jQk)+

+hDijkd
c
i(H1jQk) + hEijke

c
i(H1jLk) ,

W1 = gQijkDi(QjQk) + gqijkDid
c
ju
c
k ,

W2 = gNijkN
c
iDjd

c
k + gEijke

c
iDju

c
k + gDijk(QiLj)Dk .

(B.11)

W
��E6

contains all terms which violate E6, are permitted by the low energy gauge struc-

ture of the E6SSM, SU(3) × SU(2) × U(1)Y × U(1)N ,

W
��E6

=
1

2
MijN

c
iN

c
j +W ′

0 +W ′
1 +W ′

2 , and (B.12)

1There is other matter expected to appear at the unification scale, but the E6SSM is defined here as

a low energy, phenomenological model which is only inspired by E6, not an actual E6 GUT embedded

model.
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W ′
0 = µ′(H ′H

′
) + µ′

i(H
′
Li) + hijN

c
i (H2jH

′) + hH
′

ij e
c
i(H1jH

′) ,

W ′
1 =

σijk
3
N c
iN

c
jN

c
k + ΛkN

c
k + λijSi(H1jH

′
) + gNijN

c
i (H

′
Lj)

+gNi N
c
i (H

′
H ′) + gUiju

c
i(H

′
Qj) + µij(H2iLj) + µi(H2iH

′) + µ′
ijDid

c
j ,

W ′
2 = gH

′

ij (QiH
′)Dj , i, j, k = 1, 2, 3 .

(B.13)

Eq. (B.10) includes lepton and baryon number violating couplings which can induce

proton decay. In addition the exotic fields in E6 inspired SUSY models have new

Yukawa interactions that will generally induce large non-diagonal flavour transitions

in conflict with experiment. To suppress all of these unwanted effects a ZH
2 symmetry

can be postulated.

Under this symmetry only one pair of Higgs like fields Hd, Hu and one singlet S

are even under this symmetry and all other superfields are odd. We define,

Hd ≡ H1,3, Hu ≡ H2,3 and S ≡ S3. (B.14)

With this symmetry imposed only Hd interacts with the down type quarks and charged

leptons and only oneHu couples to up type quarks while the couplings of all other exotic

particles to the ordinary quarks and leptons are forbidden, eliminating problems with

the non-diagonal flavour transitions.

However the ZH
2 symmetry can only be approximate as it results in a Lagrangian,

invariant not only with respect to U(1)L and U(1)B, but also under U(1)D symmetry

transformations D → eiαD and D → e−iαD.

The U(1)D invariance ensures that the lightest exotic quark is stable. Theoretical

estimations, based on models of the early universe, imply such heavy stable particle

should be confined in heavy hadrons which are present in terrestrial matter with a

concentration [265] far above experimental limits [266].So the ZH
2 symmetry in the

E6SSM has to be broken, but the breakdown of ZH
2 should not give rise to operators

leading to rapid proton decay.
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This problem is overcome in the E6SSM in two different ways, which define two

distinct, though closely related, models, E6SSMI and E6SSMII. One may insist that

the resulting Lagrangian must be exactly invariant with respect to either a discrete ZL
2

symmetry, under which all superfields except lepton ones are even (E6SSMI), or under

a discrete ZB
2 symmetry, which implies that exotic quark and lepton superfields are

odd whereas the others remain even (E6SSMII). If the Lagrangian is invariant under

the ZB
2 symmetry transformations then all terms in W1 are forbidden and the exotic

quarks are leptoquarks, i. e. they carry baryon (BD = 1/3 and BD = −1/3) and

lepton (LD = 1 and LD = −1) numbers simultaneously. If ZL
2 is imposed then all

terms in W2 are forbidden and the baryon number conservation requires the exotic

quarks to be diquarks2, i.e. BD = −2/3 and BD = 2/3. The two possible models can

be summarised as,

WE6SSMI = W0 +W1 +
1

2
MijN

c
iN

c
j +W ′

0, (B.15)

WE6SSM II = W0 +W2 +
1

2
MijN

c
iN

c
j +W ′

0 +W ′
2. (B.16)

Since ZH
2 symmetry violating operators lead to the non–diagonal flavour interac-

tions, the corresponding Yukawa couplings are expected to be small. Moreover these

Yukawa couplings must preserve either ZB
2 or ZL

2 symmetries that ensure proton stabil-

ity. To guarantee that the contribution of new particles and interactions to the K0−K0

oscillations and to the muon decay channel µ→ e−e+e− are suppressed in accordance

with experimental limits, it is necessary to assume that the Yukawa couplings of ex-

otic particles to the ordinary quarks and leptons are less than 10−3 − 10−4. Since ZH
2

symmetry violating Yukawa couplings are expected to be so small they do not affect

the RG flow of other masses and couplings and therefore can be safely ignored in our

analysis of the particle spectrum.

The ZH
2 symmetry reduces the structure of the Yukawa interactions in the super-

2The breaking terms include a term a baryon violating µ′
ijDid

c
j which can lead to p → π+χ0. So

in E6SSMI this must be forbidden by an additional Z2 symmetry, under which only Qi, uc
i , dc

i are

odd and all other superfields are even. This is not stressed here as it is not clear how this E6 breaking

term would be generated if one assumes an E6 GUT embedding of the model.
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potential of the E6SSM to:

WE6SSMI, II → λiS(H1iH2i) + κiS(DiDi) + fαβSα(HdH2β) (B.17)

+f̃αβSα(H1βHu) +
1

2
MijN

c
iN

c
j + µ′(H ′H

′
) (B.18)

+hE4j(HdH
′)ecj + hN4j(HuH

′)N c
j +WMSSM(µ = 0), (B.19)

where α, β = 1, 2 and i = 1, 2, 3 . In Eq. (B.19) we choose the basis of H1α, H2α, Di and

Di so that the Yukawa couplings of the singlet field S have flavor diagonal structure.

This model is constructed with the intent that the third generation fields Hu = H2,3,

Hd = H1,3 and S = S3 will be Higgs fields in this model and develop vevs,

〈H0
u〉 = vu, 〈H0

d〉 = vd, and 〈S〉 = s, (B.20)

where vu and vd give mass to ordinary matter, while s both gives mass to the exotic

colored fields, κiS → κis = mDi
and generates an effective µ-term, µeff = λ3s. To

ensure that none of the fields S1,2, H and H ′ obtain a vev it is further assumed that,

κi ∼ λ3 & λ1,2 ≫ fαβ , f̃αβ, h
E
4j , h

N
4j. (B.21)

For the purposes of Renormalisation Group analysis the couplings fαβ , f̃αβ, h
E
4j , h

N
4j

are sufficiently small that they can be neglected. This leaves a superpotential,

WE6SSM ≈ λiSH1,iH2,i + κiSDiDi + hu iHuQiu
c
R i + hd iHdQid

c
R i + he iHdLie

c
R i, (B.22)

where hu i = {hu, hc, ht} are the Yukawas for the up type quarks, hd i = {hd, hb, hc} are

the Yukawas for the down type quarks, and he i = {he, hµ, hτ} are the Yukawas for the

charged leptons.



Appendix C

E6SSM Renormalisation Group

Equations

The running of gauge coupling constants from the Grand Unification scale to the elec-

troweak one is determined by the set of renormalisation group (RG) equations. The

corresponding RG equations can be written as,

dG

dt
= G×B ,

dg2

dt
=

β2g
3
2

(4π)2
,

dg3

dt
=

β3g
3
3

(4π)2
, (C.1)

where t = ln [Q/MX ] while B and G are 2 × 2 matrices describing the RG flow of the

Abelian gauge couplings which is affected by the kinetic term mixing, i.e.

G =




g1 g11

0 g′1



, (C.2)

B =




B1 B11

0 B′
1




=
1

(4π)2




β1g
2
1 2g1g

′
1β11 + 2g1g11β1

0 g
′2
1 β

′
1 + 2g′1g11β11 + g2

11β1



. (C.3)
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In the one–loop approximation β11 =

√
6

5
. The two–loop diagonal β functions of

the E6SSM gauge couplings are given by,

β3 = −9 + 3Ng +
1

16π2

[
g2
3(−54 + 34Ng) + 3Ngg

2
2 +Ngg

2
1 +Ngg

′2
1

−4h2
t − 4h2

b − 2Σκ

]
, (C.4)

β2 = −5 + 3Ng +
1

16π2

[
8Ngg

2
3 + (−17 + 21Ng)g

2
2 +

(
3

5
+Ng

)
g2
1

+

(
2

5
+Ng

)
g

′2
1 − 6h2

t − 6h2
b − 2h2

τ − 2Σλ

]
, (C.5)

β1 =
3

5
+ 3Ng +

1

16π2

[
8Ngg

2
3 +

(
9

5
+ 3Ng

)
g2
2 +

(
9

25
+ 3Ng

)
g2
1

+

(
6

25
+Ng

)
g

′2
1 − 26

5
h2
t −

14

5
h2
b −

18

5
h2
τ −

6

5
Σλ −

4

5
Σκ

]
, (C.6)

β ′
1 =

2

5
+ 3Ng +

1

16π2

[
8Ngg

2
3 +

(
6

5
+ 3Ng

)
g2
2 +

(
6

25
+Ng

)
g2
1

+

(
4

25
+ 3Ng

)
g

′2
1 − 9

5
h2
t −

21

5
h2
b −

7

5
h2
τ −

19

5
Σλ −

57

10
Σκ

]
, (C.7)

(C.8)

where,

Σλ = λ2
1 + λ2

2 + λ2
3 , Σκ = κ2

1 + κ2
2 + κ2

3, (C.9)

The Yukawa couplings appeared in the superpotential of the E6SSM obey the fol-

lowing system of two–loop renormalisation group equations:

dλi
dt

=
λi

(4π)2

[
2λ2

i + 2Σλ + 3Σκ +
(

3h2
t + 3h2

b + h2
τ

)
δi3

−3g2
2 −

3

5
g2
1 −

19

10
g

′2
1 +

β
(2)
λi

(4π)2

]
, (C.10)

dκi
dt

=
κi

(4π)2

[
2κ2

i + 2Σλ + 3Σκ −
16

3
g2
3 −

4

15
g2
1 −

19

10
g

′2
1 +

β
(2)
κi

(4π)2

]
, (C.11)

dht
dt

=
ht

(4π)2

[
λ2 + 6h2

t + h2
b −

16

3
g2
3 − 3g2

2 −
13

15
g2
1 −

3

10
g

′2
1 +

β
(2)
ht

(4π)2

]
, (C.12)

dhb
dt

=
hb

(4π)2

[
λ2 + h2

t + 6h2
b + h2

τ −
16

3
g2
3 − 3g2

2 −
7

15
g2
1 −

7

10
g

′2
1 +

β
(2)
hb

(4π)2

]
, (C.13)

dhτ
dt

=
hτ

(4π)2

[
λ2 + 3h2

b + 4h2
τ − 3g2

2 −
9

5
g2
1 −

7

10
g

′2
1 +

β
(2)
hτ

(4π)2

]
, (C.14)
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where the two–loop contributions to the corresponding β functions are given by,

β
(2)
λi

= −2λ2
i

(
λ2
i + 2Σλ − λ2

(
3h2

t + 3h2
b + h2

N + h2
τ

)
(2 + δi3)

−
[
9h4

t + 9h4
b + 6h2

th
2
b + 3h4

τ + 3h4
N + 2h2

τh
2
N

]
δi3 + 16g2

3Σκ + 6g2
2Σλ

+g2
1

(
4

5
Σκ +

6

5
Σλ

)
+ g

′2
1

(
5

2
λ2
i −

9

5
Σκ −

6

5
Σλ

)
+
[
16g2

3

(
h2
t + h2

b

)

+g2
1

(
4

5
h2
t −

2

5
h2
b +

6

5
h2
τ

)
+ g

′2
1

(
− 3

10
h2
t −

1

5
h2
b −

1

5
h2
τ

)]
δi3

+3g4
2

(
3Ng −

7

2

)
+

3

5
g4
1

(
3Ng +

9

10

)
+

19

10
g

′4
1

(
3Ng +

27

20

)

+
9

5
g2
2g

2
1 +

39

20
g2
2g

′2
1 +

39

100
g2
1g

′2
1 + 3Σκ

)
− 4Πλ − 6Πκ , (C.15)

β(2)
κi

= −2κ2
i

(
κ2
i + 2Σλ + 3Σκ

)
− 4Πλ − 6Πκ − 2λ2

(
3h2

t + 3h2
b + h2

N + h2
τ

)

+16g2
3Σκ + 6g2

2Σλ + g2
1

(
4

5
Σκ +

6

5
Σλ

)
+ g

′2
1

(
5

2
κ2
i −

9

5
Σκ −

6

5
Σλ

)

+
16

3
g4
3

(
3Ng −

19

3

)
+

4

15
g4
1

(
3Ng +

11

15

)

+
19

10
g

′4
1

(
3Ng +

27

20

)
+

64

45
g2
3g

2
1 +

52

15
g2
3g

′2
1 +

13

75
g2
1g

′2
1 , (C.16)

β
(2)
ht

= −22h4
t − 5h4

b − 5h2
th

2
b − 3h2

th
2
N − h2

bh
2
τ − h2

τh
2
N − 3h4

N

−λ2
(
λ2 + 3h2

t + 4h2
b + h2

τ + 2Σλ + 3Σκ

)

+16g2
3h

2
t + 6g2

2h
2
t + g2

1

(
6

5
h2
t +

2

5
h2
b

)

+g
′2
1

(
3

2
λ2 +

3

10
h2
t +

3

5
h2
b

)
+

16

3
g4
3

(
3Ng −

19

3

)
+ 3g4

2

(
3Ng −

7

2

)

+
13

15
g4
1

(
3Ng +

31

30

)
+

3

10
g

′4
1

(
3Ng +

11

20

)
+ 8g2

3g
2
2 +

136

45
g2
3g

2
1

+
8

15
g2
3g

′2
1 + g2

2g
2
1 +

3

4
g2
2g

′2
1 +

53

300
g2
1g

′2
1 , (C.17)

β
(2)
hb

= −5h4
t − 22h4

b − 5h2
th

2
b − 3h2

bh
2
τ − h2

th
2
N − h2

τh
2
N − 3h4

τ

−λ2
(
λ2 + 4h2

t + 3h2
b + h2

N + 2Σλ + 3Σκ

)

+16g2
3h

2
b + 6g2

2h
2
b + g2

1

(
4

5
h2
t +

2

5
h2
b +

6

5
h2
τ

)

+g
′2
1

(
λ2 +

1

5
h2
t + h2

b −
1

5
h2
τ

)
+

16

3
g4
3

(
3Ng −

19

3

)
+ 3g4

2

(
3Ng −

7

2

)
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+
7

15
g4
1

(
3Ng +

5

6

)
+

7

10
g

′4
1

(
3Ng +

3

4

)
+ 8g2

3g
2
2 +

8

9
g2
3g

2
1 +

4

3
g2
3g

′2
1

+g2
2g

2
1 +

3

2
g2
2g

′2
1 +

49

150
g2
1g

′2
1 , (C.18)

β
(2)
hτ

= −9h4
b − 3h2

th
2
b − 9h2

bh
2
τ − 3h2

th
2
N − 10h4

τ − 3h4
N − 3h2

τh
2
N − λ2

(
λ2 + 3h2

t

+2h2
N + 3h2

τ + 2Σλ + 3Σκ

)
+ 16g2

3h
2
b + 6g2

2h
2
τ + g2

1

(
−2

5
h2
b +

6

5
h2
τ

)

+g
′2
1

(
λ2 − 1

5
h2
b +

13

10
h2
τ

)
+ 3g4

2

(
3Ng −

7

2

)
+

9

5
g4
1

(
3Ng +

3

2

)

+
7

10
g

′4
1

(
3Ng +

3

4

)
+

9

5
g2
2g

2
1 +

39

20
g2
2g

′2
1 +

51

100
g2
1g

′2
1 , (C.19)

and

Πλ = λ4
1 + λ4

2 + λ4
3 , Πκ = κ4

1 + κ4
2 + κ4

3 . (C.20)

In the two–loop approximation the RG equations for the gaugino masses and tri-

linear scalar couplings take a form,

dM3

dt
=

g2
3

16π2

[
(−18 + 6Ng)M3 +

1

16π2

(
(−216 + 136Ng)g

2
3M3

+ 6Ng g
2
2(M2 +M3) + 2Ng g

2
1(M1 +M3) + 2Ng g

′2
1 (M ′

1 +M3)

− 8h2
t (At +M3) − 8h2

b(Ab +M3) − 4ΣAκ
− 4ΣκM3

)]
, (C.21)

dM2

dt
=

g2
2

16π2

[
(−10 + 6Ng)M2 +

1

16π2

(
16Ngg

2
3(M3 +M2)

+ (−68 + 84Ng)g
2
2M2 +

(
6

5
+ 2Ng

)
g2
1(M1 +M2)

+

(
4

5
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where the two–loop contributions to the β functions of trilinear scalar couplings are
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where

ΣAλ
= λ2

1Aλ1
+ λ2

2Aλ2
+ λ2

3Aλ3
, ΣAκ

= κ2
1Aκ1

+ κ2
2Aκ2

+ κ2
3Aκ3

,

Πλ = λ4
1Aλ1

+ λ4
2Aλ2

+ λ4
3Aλ3

, Πκ = κ4
1Aκ1

+ κ4
2Aκ2

+ κ4
3Aκ3

.

(C.36)

The one–loop RG equations for the soft scalar masses can be written as
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Appendix D

One loop corrections to the Higgs

masses in the E6SSM

Higgs masses are obtained by taking double derivatives of the effective potential with

respect to the Higgs fields.

The tree level Higgs masses for the CP–even Higgs sector were presented in Sec.7.3,

Eq. 7.40. The expression for the one loop contribution, ∆V (1), to the effective potential

also appears in Eq. 7.16 and the physical masses of the stops, appearing in this equation,

are calculated in the tree level approximation,
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Only including stop/top contributions we find,
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∂y
∆xmt̃2 − 4

∂

∂y
∆xmt

]
, (D.7)

∂

∂x
∆xm = (

∂

∂x
m2)2 ln

m2

Q2
+ a0(m)

∂2

∂x2
m2 (D.8)

∂

∂y
∆xm = (

∂

∂y
m2)(

∂

∂x
m2) ln

m2

Q2
+ a0(m)

∂2

∂y∂x
m2 (D.9)

Now we obtain single and double derivatives of the masses.

D.1 Single Derivatives

m2
t̃1,t̃2

= 0.5

[
m2
Q +m2

U + 2m2
t + ∆Q + ∆U ±√

rt

]
(D.10)

rt ≡ (m2
Q −m2

U + ∆Q − ∆U )2 + 4m2
t (At −

λs√
2 tanβ

)2 (D.11)

∂

∂s
m2
t =

∂

∂v1
m2
t = 0

∂

∂v2
m2
t = v2y

2
t (D.12)

∂

∂s
m2
t̃1,t̃2

= 0.5[0.25g′21 s± 0.5r
− 1

2

t (
∂

∂s
rt)] (D.13)

∂

∂s
rt = −8m2

t (At −
λs√

2 tan β
)

λ√
2 tanβ

(D.14)

∂

∂v1
m2
t̃1,t̃2

= 0.5[0.25(g2
2 + 0.6g2

1)v1 −
6

40
g′1v1 ± 0.5r

− 1

2

t (
∂

∂v1
rt)] (D.15)

∂

∂v1

rt = 0.5(g2
2 − g2

1)v1(m2
Q −m2

U + ∆Q − ∆U)
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−8m2
t (At −

λs√
2 tan β

)
sλ√
2v2

(D.16)

∂

∂v2

m2
t̃1,t̃2

= 0.5[2v2y
2
t − 0.25(g2

2 + 0.6g2
1)v2 −

1

10
g′1v2 ± 0.5r

− 1

2

t (
∂

∂v2

rt)] (D.17)

∂

∂v2

rt = −0.5(g2
2 − g2

1)v2(m
2
Q −m2

U + ∆Q − ∆U)

+4(At −
λs√

2 tan β
)2v2y

2
t + 8m2

t (At −
λs√

2 tan β
)
sv1λ√

2v2
2

(D.18)

D.2 Double derivatives

∂2

∂s2
m2
t̃1,t̃2

= 0.5[0.25g′21 ± 0.5r
− 1

2

t (
∂2

∂s2
rt) ∓ 0.25(

∂

∂s
rt)

2r
− 3

2

t ] (D.19)

∂2

∂s2
rt = 8m2

t (
λ√

2 tan β
)2 (D.20)

∂2

∂v2
1

m2
t̃1,t̃2

= 0.5[0.25g2 − 6

40
g′21 ± 0.5r

− 1

2

t (
∂2

∂v2
1

rt) ∓ 0.25(
∂

∂v1

rt)
2r

− 3

2

t ] (D.21)

∂

∂v1
rt = 0.5(g2

2 − g2
1)(m2

Q −m2
U + ∆Q − ∆U) + 0.125(g2

2 − g2
1)2v2

1

+8m2
t (

sλ√
2v2

)2 (D.22)

∂2

∂v2
2

m2
t̃1,t̃2

= 0.5[2y2
t − 0.25g2 − 1

10
g′21 ± 0.5r

− 1

2

t (
∂2

∂v2
2

rt) ∓ 0.25(
∂

∂v2
rt)

2r
− 3

2
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∂2

∂v2
2

rt = −0.5(g2
2 − g2

1)(m2
Q −m2

U + ∆Q − ∆U) + 0.125(g2
2 − g2

1)2v2
2

+4(At −
λs√

2 tan β
)2y2

t

+8(At −
λs√

2 tan β
)v2(

sv1λ√
2v2

2

) + 8m2
t (
sv1λ√

2v2
2

)2 (D.24)

∂2

∂v1∂s
m2
t̃1,t̃2

= 0.5[±0.5r
− 1

2

t (
∂2

∂v1∂s
rt) ∓ 0.25(

∂

∂v1

rt)(
∂

∂s
rt)r

− 3

2

t ] (D.25)

∂2

∂v1∂s
rt = +8m2

t (
v1λ√
2v2

)(
sλ√
2v2

) − 8m2
t (

λ√
2v2

2

)(At −
λs√

2 tan β
) (D.26)

∂2

∂v2∂s
m2
t̃1,t̃2

= 0.5[±0.5r
− 1

2

t (
∂2

∂v2∂s
rt) ∓ 0.25(

∂

∂v2

rt)(
∂

∂s
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− 3

2
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∂2

∂v2∂s
rt = −8y2

t v2(At −
λs√

2 tanβ
)(

λ√
2 tan β

) − 8m2
t (
v1λ√
2v2

)(
sλv1√

2v2
2

)

+8m2
t (
v1λ√
2v2

2

)(At −
λs√
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∂2

∂v2∂v1
m2
t̃1,t̃2

= 0.5[±0.5r
− 1
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∂
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∂
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∂2

∂v2∂v1

rt = −0.125(g2
2 − g2

1)2v1v2 − 8y2
t v2(At −

λs√
2 tanβ

)(s
λ√
2v2
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−8m2
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2v2
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sλv1√

2v2
2

) + 8m2
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2v2

2
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Appendix E

Benchmark Spectra

E.1 Benchmark Point A1

tanβ = 10, s = 2.7 TeV M1/2 = 363 GeV m0 = 537 GeV A = 711 GeV (E.1)

λ(MX) = −0.3683 λ(µS) = −0.3548, λ1,2(MX) = 0.1 (E.2)

κ1,2,3(MX) = 0.2068, κ1,2,3(µS) = 0.5384 (E.3)

Squark and slepton masses

mt̃1 = 433 GeV mb̃1
= 668 GeV mτ̃1 = 631 GeV (E.4)

mt̃2 = 734 GeV mb̃2
= 841 GeV mτ̃2 = 730 GeV (E.5)

mũ2,d̃1
= 807 GeV mẽ2 = 733 GeV (E.6)

mũ1
= 788 GeV md̃2

= 850 GeV mẽ1 = 631 GeV (E.7)

Exotic colored masses

mD̃1
(1, 2, 3) = 628 GeV mD̃2

(1, 2, 3) = 1439 GeV µD(1, 2, 3) = 1028GeV. (E.8)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 58 GeV mχ0

2
= 103 GeV mχ0

3
= 684 GeV (E.9)

mχ0

4
= 684 GeV mχ0

5
= 993 GeV mχ0

6
= 1052 GeV (E.10)

mχ±

1

= 103 GeV mχ±

1

= 686 GeV MZ′ = 1020 GeV mg̃ = 330 GeV (E.11)
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CP-Even Higgs masses

m
(2−loop)
h1

= 115 GeV m
(1−loop)
h1

= 119 GeV (E.12)

mh2
= 664 GeV mh3

= 1022 GeV (E.13)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 479 GeV mH2

(1, 2) = 154 GeV (E.14)

mSinglet(1, 2) = 908 GeV mH̃1
(1, 2) = 244 GeV (E.15)
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E.2 Benchmark Point A2

tanβ = 10, s = 3.8 TeV M1/2 = 390 GeV m0 = 998 GeV A = 768 GeV (E.16)

λ(MX) = −0.306648 λ(µS) = −0.284529, , λ1,2(MX) = 0.1 (E.17)

κ1,2,3(MX) = 0.246329, κ1,2,3(µS) = 0.593522 (E.18)

Squark and slepton masses

mt̃1 = 787 GeV mb̃1
= 1036 GeV mτ̃1 = 1203 GeV (E.19)

mt̃2 = 1070 GeV mb̃2
= 1282 GeV mτ̃2 = 1095 GeV (E.20)

mũ2,d̃1
= 1225 GeV mẽ2 = 1207 GeV (E.21)

mũ1
= 1211 GeV md̃2

= 1292 GeV mẽ1 = 1105 GeV (E.22)

Exotic colored masses

mD̃1
(1, 2, 3) = 1363 GeV mD̃2

(1, 2, 3) = 2077 GeV µD(1, 2, 3) = 1595 GeV. (E.23)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 62 GeV mχ0

2
= 110 GeV mχ0

3
= 771 GeV (E.24)

mχ0

4
= 771 GeV mχ0

5
= 1405 GeV mχ0

6
= 1469 GeV (E.25)

mχ±

1

= 110 GeV mχ±

1

= 773 GeV MZ′ = 1437 GeV mg̃ = 362 GeV (E.26)

CP-Even Higgs masses

m
(2−loop)
h1

= 121 GeV m
(1−loop)
h1

= 126 GeV (E.27)

mh2
= 963 GeV mh3

= 1437GeV (E.28)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 694 GeV mH2

(1, 2) = 875 GeV (E.29)

mSinglet(1, 2) = 1430 GeV mH̃1
(1, 2) = 324 GeV (E.30)
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E.3 Benchmark Point A3

tanβ = 10, s = 4.4 TeV M1/2 = 775 GeV m0 = 799 GeV A = 919 GeV (E.31)

λ(MX) = −0.369832 λ(µS) = −0.37357, , λ1,2(MX) = 0.1 (E.32)

κ1,2,3(MX) = 0.177975, κ1,2,3(µS) = 0.49349 (E.33)

Squark and slepton masses

mt̃1 = 853 GeV mb̃1
= 1216 GeV mτ̃1 = 1172 GeV (E.34)

mt̃2 = 1259 GeV mb̃2
= 1473 GeV mτ̃2 = 982 GeV (E.35)

mũ2,d̃1
= 1446 GeV mẽ2 = 1176 GeV (E.36)

mũ1
= 1398 GeV md̃2

= 1488 GeV mẽ1 = 992 GeV (E.37)

Exotic colored masses

mD̃1
(1, 2, 3) = 821 GeV mD̃2

(1, 2, 3) = 2363 GeV µD(1, 2, 3) = 1535 GeV (E.38)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 122 GeV mχ0

2
= 217 GeV mχ0

3
= 1167 GeV (E.39)

mχ0

4
= 1167 GeV mχ0

5
= 1603 GeV mχ0

6
= 1727 GeV (E.40)

mχ±

1

= 217 GeV mχ±

1

= 1168 GeV MZ′ = 1663 GeV mg̃ = 673 GeV (E.41)

CP-Even Higgs masses

m
(2−loop)
h1

= 114 GeV m
(1−loop)
h1

= 122 GeV (E.42)

mh2
= 1145 GeV mh3

= 1664 GeV (E.43)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 182 GeV mH2

(1, 2) = 765 GeV (E.44)

mSinglet(1, 2) = 1446 GeV mH̃1
(1, 2) = 418 GeV (E.45)
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E.4 Benchmark Point A4 (Z ′ mass < 936 GeV)

tanβ = 10, s = 1.9 TeV M1/2 = 382 GeV m0 = 816 GeV A = −19 GeV (E.46)

λ(MX) = −0.2573 λ(µS) = −0.2780, , λ1,2(MX) = 0.1 (E.47)

κ1,2,3(MX) = 0.17385, κ1,2,3(µS) = 0.49792 (E.48)

Squark and slepton masses

mt̃1 = 682 GeV mb̃1
= 862 GeV mτ̃1 = 890 GeV (E.49)

mt̃2 = 890 GeV mb̃2
= 1001 GeV mτ̃2 = 850 GeV (E.50)

mũ2,d̃1
= 1001 GeV mẽ2 = 903 GeV (E.51)

mũ1
= 985 GeV md̃2

= 1009 GeV mẽ1 = 857 GeV (E.52)

Exotic colored masses

mD̃1
(3) = 887 GeV mD̃2

(3) = 1228 GeV µD(1, 2, 3) = 669 GeV (E.53)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 60 GeV mχ0

2
= 104 GeV mχ0

3
= 385 GeV (E.54)

mχ0

4
= 387 GeV mχ0

5
= 690 GeV mχ0

6
= 750 GeV (E.55)

mχ±

1

= 105 GeV mχ±

1

= 390 GeV MZ′ = 719 GeV mg̃ = 346 GeV (E.56)

CP-Even Higgs masses

m
(2−loop)
h1

= 117 GeV m
(1−loop)
h1

= 122 GeV (E.57)

mh2
= 717 GeV mh3

= 801 GeV (E.58)

(E.59)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 767 GeV mH2

(1, 2) = 797 GeV (E.60)

mSinglet(1, 2) = 970 GeV mH̃1
(1, 2) = 187 GeV (E.61)
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E.5 Benchmark Point B1

tan β = 30, s = 3.1 TeV M1/2 = 365 GeV m0 = 702 GeV A = 1148 GeV (E.62)

λ(MX) = −0.37845 λ(µS) = −0.3661, , λ1,2(MX) = 0.1 (E.63)

κ1,2,3(MX) = 0.17121, κ1,2,3(µS) = 0.4813 (E.64)

Squark and slepton masses

mt̃1 = 463 GeV mb̃1
= 694 GeV mτ̃1 = 858 GeV (E.65)

mt̃2 = 773 GeV mb̃2
= 890 GeV mτ̃2 = 706 GeV (E.66)

mũ2,d̃1
= 945 GeV mẽ2 = 900 GeV (E.67)

mũ1
= 929 GeV md̃2

= 998 GeV mẽ1 = 804 GeV (E.68)

Exotic colored masses

mD̃1
(3) = 393 GeV mD̃2

(3) = 1617 GeV µD(1, 2, 3) = 1055 GeV (E.69)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 59 GeV mχ0

2
= 104 GeV mχ0

3
= 808 GeV (E.70)

mχ0

4
= 809 GeV mχ0

5
= 1143 GeV mχ0

6
= 1203 GeV (E.71)

mχ±

1

= 103 GeV mχ±

1

= 810 GeV MZ′ = 1172 GeV mg̃ = 336 GeV (E.72)

CP-Even Higgs masses

m
(2−loop)
h1

= 114 GeV m
(1−loop)
h1

= 118 GeV (E.73)

mh2
= 593 GeV mh3

= 1173 GeV (E.74)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 220 GeV mH2

(1, 2) = 704 GeV (E.75)

mSinglet(1, 2) = 1093 GeV mH̃1
(1, 2) = 298 GeV (E.76)
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E.6 Benchmark Point B2

tan β = 30, s = 3.4 TeV M1/2 = 361 GeV m0 = 993 GeV A = 1121 GeV (E.77)

λ(MX) = −0.33333 λ(µS) = −0.32376, , λ1,2(MX) = 0.1 (E.78)

κ1,2,3(MX) = 0.18394, κ1,2,3(µS) = 0.50783 (E.79)

Squark and slepton masses

mt̃1 = 694 GeV mb̃1
= 914 GeV mτ̃1 = 1117 GeV (E.80)

mt̃2 = 964 GeV mb̃2
= 1133 GeV mτ̃2 = 973 GeV (E.81)

mũ2,d̃1
= 1186 GeV mẽ2 = 1165 GeV (E.82)

mũ1
= 1211 GeV md̃2

= 1292 GeV mẽ1 = 1080 GeV (E.83)

Exotic colored masses

mD̃1
(3) = 884 GeV mD̃2

(3) = 1860 GeV µD(1, 2, 3) = 1221 GeV (E.84)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 58 GeV mχ0

2
= 102 GeV mχ0

3
= 784 GeV (E.85)

mχ0

4
= 785 GeV mχ0

5
= 1256 GeV mχ0

6
= 1316 GeV (E.86)

mχ±

1

= 102 GeV mχ±

1

= 786 GeV MZ′ = 1285 GeV mg̃ = 338 GeV (E.87)

CP-Even Higgs masses

m
(2−loop)
h1

= 119 GeV m
(2−loop)
h1

= 124 GeV (E.88)

mh2
= 748 GeV mh3

= 1285GeV (E.89)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 689 GeV mH2

(1, 2) = 966 GeV (E.90)

mSinglet(1, 2) = 1351 GeV mH̃1
(1, 2) = 323 GeV (E.91)
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E.7 Benchmark Point B3

tan β = 30, s = 5.0 TeV M1/2 = 725 GeV m0 = 1074 GeV A = 1726 GeV (E.92)

λ(MX) = −0.38471 λ(µS) = −0.3788, , λ1,2(MX) = 0.1 (E.93)

κ1,2,3(MX) = 0.15788, κ1,2,3(µS) = 0.4559 (E.94)

Squark and slepton masses

mt̃1 = 837 GeV mb̃1
= 1193 GeV mτ̃1 = 1363 GeV (E.95)

mt̃2 = 1248 GeV mb̃2
= 1491 GeV mτ̃2 = 1102,GeV (E.96)

mũ2,d̃1
= 1595 GeV mẽ2 = 1427 GeV (E.97)

mũ1
= 1557 GeV md̃2

= 1664 GeV mẽ1 = 1254 GeV (E.98)

Exotic colored masses

mD̃1
(3) = 312 GeV mD̃2

(3) = 2623 GeV µD(1, 2, 3) = 1612 GeV (E.99)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 116 GeV mχ0

2
= 206 GeV mχ0

3
= 1343 GeV (E.100)

mχ0

4
= 1343 GeV mχ0

5
= 1832 GeV mχ0

6
= 1950 GeV (E.101)

mχ±

1

= 206 GeV mχ±

1

= 1344 GeV MZ′ = 1889 GeV mg̃ = 642 GeV (E.102)

CP-Even Higgs masses

m
(2−loop)
h1

= 114 GeV m
(1−loop)
h1

= 123 GeV (E.103)

mh2
= 988 GeV mh3

= 1890 GeV (E.104)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 220 GeV mH2

(1, 2) = 1117 GeV (E.105)

mSinglet(1, 2) = 1732 GeV mH̃1
(1, 2) = 491 GeV (E.106)
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E.8 Benchmark Point C1

tan β = 3, s = 3.3 TeV M1/2 = 365 GeV m0 = 640 GeV A = 798 GeV (E.107)

λ(MX) = −0.465 λ(µS) = −0.354, λ1,2(MX) = 0.1 (E.108)

κ1,2,3(MX) = 0.3, κ1,2,3(µS) = 0.628 (E.109)

Squark and slepton masses

mt̃1 = 493 GeV mb̃1
= 758 GeV mτ̃1 = 873 GeV (E.110)

mt̃2 = 821 GeV mb̃2
= 974 GeV mτ̃2 = 651 GeV (E.111)

mũ2,d̃1
= 910 GeV mẽ2 = 874 GeV (E.112)

mũ1
= 893 GeV md̃2

= 975 GeV mẽ1 = 762 GeV (E.113)

Exotic colored masses

mD̃1
(1, 2, 3) = 1797 GeV mD̃2

(1, 2, 3) = 1156 GeV µD(1, 2, 3) = 1466 GeV(E.114)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 59 GeV mχ0

2
= 107 GeV mχ0

3
= 829 GeV (E.115)

mχ0

4
= 832 GeV mχ0

5
= 1220 GeV mχ0

6
= 1278 GeV (E.116)

mχ±

1

= 107 GeV mχ±

2

= 832 GeV MZ′ = 1248 GeV mg̃ = 336 GeV (E.117)

CP-Even Higgs masses

m
(2−loop)
h1

= 114 GeV m
(1−loop)
h1

= 119 GeV (E.118)

mh2
= 850 GeV mh3

= 1249 GeV (E.119)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 165 GeV mH2

(1, 2) = 468 GeV (E.120)

mSinglet(1, 2) = 1097 GeV mH̃1
(1, 2) = 249 GeV (E.121)
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E.9 Benchmark Point C2

tan β = 3, s = 5.6 TeV M1/2 = 352 GeV m0 = 1238 GeV A = 1194 GeV (E.122)

λ(MX) = −0.529 λ(µS) = −0.300, , λ1,2(MX) = 0.1 (E.123)

κ1,2,3(MX) = 0.492, κ1,2,3(µS) = 0.716 (E.124)

Squark and slepton masses

mt̃1 = 944 GeV mb̃1
= 1260 GeV mτ̃1 = 1571 GeV (E.125)

mt̃2 = 1293 GeV mb̃2
= 1625 GeV mτ̃2 = 1412 GeV (E.126)

mũ2,d̃1
= 1494 GeV mẽ2 = 1571 GeV (E.127)

mũ1
= 1484 GeV md̃2

= 1627 GeV mẽ1 = 1412 GeV (E.128)

Exotic colored masses

mD̃1
(3) = 2635 GeV mD̃2

(3) = 3105 GeV µD(1, 2, 3) = 2835 GeV (E.129)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 57 GeV mχ0

2
= 103 GeV mχ0

3
= 1189 GeV (E.130)

mχ0

4
= 1191 GeV mχ0

5
= 2089 GeV mχ0

6
= 2148 GeV (E.131)

mχ±

1

= 103 GeV mχ±

1

= 1191 GeV MZ′ = 2119 GeV mg̃ = 342 GeV (E.132)

CP-Even Higgs masses

m
(2−loop)
h1

= 117 GeV m
(1−loop)
h1

= 125 GeV (E.133)

mh2
= 1319 GeV mh3

= 2119 GeV (E.134)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 560 GeV mH2

(1, 2) = 877 GeV (E.135)

mSinglet(1, 2) = 1947 GeV mH̃1
(1, 2) = 313 GeV (E.136)
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E.10 Benchmark Point C3

tan β = 3, s = 5.5 TeV M1/2 = 931 GeV m0 = 918 GeV A = 751 GeV (E.137)

λ(MX) = −0.434 λ(µS) = −0.375, , λ1,2(MX) = 0.1 (E.138)

κ1,2,3(MX) = 0.23, κ1,2,3(µS) = 0.56 (E.139)

Squark and slepton masses

mt̃1 = 1056 GeV mb̃1
= 1472 GeV mτ̃1 = 1409 GeV (E.140)

mt̃2 = 1511 GeV mb̃2
= 1784 GeV mτ̃2 = 1172,GeV (E.141)

mũ2,d̃1
= 1724 GeV mẽ2 = 1409 GeV (E.142)

mũ1
= 1666 GeV md̃2

= 1785 GeV mẽ1 = 1173 GeV (E.143)

Exotic colored masses

mD̃1
(1, 2, 3) = 1567 GeV mD̃2

(1, 2, 3) = 2997 GeV µD(1, 2, 3) = 2187 GeV(E.144)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 148 GeV mχ0

2
= 262 GeV mχ0

3
= 1463 GeV (E.145)

mχ0

4
= 1464 GeV mχ0

5
= 2006 GeV mχ0

6
= 2155 GeV (E.146)

mχ±

1

= 262 GeV mχ±

1

= 1464 GeV MZ′ = 2079 GeV mg̃ = 805 GeV (E.147)

CP-Even Higgs masses

m
(2−loop)
h1

= 114 GeV m
(1−loop)
h1

= 125 GeV (E.148)

mh2
= 1508 GeV mh3

= 2080 GeV (E.149)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 121 GeV mH2

(1, 2) = 714 GeV (E.150)

mSinglet(1, 2) = 1763 GeV mH̃1
(1, 2) = 471 GeV (E.151)
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E.11 Benchmark Point D1

tanβ = 10, s = 2.7 TeV M1/2 = 388 GeV m0 = 681 GeV A = 645 GeV (E.152)

λ1,2(MX) = 0.1 λ3 = −0.378 λ(µS) = −0.348 (E.153)

κ1,2 = 0.06 κ3(MX) = 0.42, κ3(µS) = 0.915 (E.154)

Squark and slepton masses

mt̃1 = 546 GeV mb̃1
= 777 GeV mτ̃1 = 845 GeV (E.155)

mt̃2 = 829 GeV mb̃2
= 955 GeV mτ̃2 = 757,GeV (E.156)

mũ2,d̃1
= 929 GeV mẽ2 = 849 GeV (E.157)

mũ1
= 911 GeV md̃2

= 964 GeV mẽ1 = 765 GeV (E.158)

Exotic colored masses

mD̃1
(3) = 1464 GeV mD̃2

(3) = 2086 GeV µD(3) = 1747 GeV (E.159)

mD̃1
(1, 2) = 520 GeVmD̃2

(2) = 906 GeV µD(1, 2) = 300 GeV (E.160)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 61 GeV mχ0

2
= 109 GeV mχ0

3
= 671 GeV (E.161)

mχ0

4
= 672 GeV mχ0

5
= 992 GeV mχ0

6
= 1054 GeV (E.162)

mχ±

1

= 109 GeV mχ±

1

= 674 GeV MZ′ = 1021 GeV mg̃ = 353 GeV (E.163)

CP-Even Higgs masses

m
(2−loop)
h1

= 115 GeV m
(1−loop)
h1

= 119 GeV (E.164)

mh2
= 765 GeV mh3

= 1022GeV (E.165)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 459 GeV mH2

(1, 2) = 627 GeV (E.166)

mSinglet(1, 2) = 1001 GeV mH̃1
(1, 2) = 233 GeV (E.167)
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E.12 Benchmark Point D2

tanβ = 10, s = 2.7 TeV M1/2 = 358 GeV m0 = 623 GeV A = 757 GeV (E.168)

λ1,2(MX) = 0.1 λ3 = −0.395 λ(µS) = −0.355 (E.169)

κ1,2 = 0.08 κ3(MX) = 0.43, κ3(µS) = 0.915 (E.170)

Squark and slepton masses

mt̃1 = 474 GeV mb̃1
= 712 GeV mτ̃1 = 794 GeV (E.171)

mt̃2 = 772 GeV mb̃2
= 894 GeV mτ̃2 = 704,GeV (E.172)

mũ2,d̃1
= 862 GeV mẽ2 = 798 GeV (E.173)

mũ1
= 845 GeV md̃2

= 903 GeV mẽ1 = 712 GeV (E.174)

Exotic colored masses

mD̃1
(3) = 1445 GeV mD̃2

(3) = 2059 GeV µD(3) = 1747 GeV (E.175)

mD̃1
(1, 2) = 370 GeV mD̃2

(1, 2) = 916 GeV µD(1, 2) = 391 GeV (E.176)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 57 GeV mχ0

2
= 101 GeV mχ0

3
= 684 GeV (E.177)

mχ0

4
= 684 GeV mχ0

5
= 994 GeV mχ0

6
= 1051 GeV (E.178)

mχ±

1

= 101 GeV mχ±

1

= 686 GeV MZ′ = 1021 GeV mg̃ = 327 GeV (E.179)

CP-Even Higgs masses

m
(2−loop)
h1

= 114 GeV m
(1−loop)
h1

= 118 GeV (E.180)

mh2
= 723 GeV mh3

= 1022 GeV (E.181)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 345 GeV mH2

(1, 2) = 561 GeV (E.182)

mSinglet(1, 2) = 961 GeV mH̃1
(1, 2) = 229 GeV (E.183)
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E.13 Benchmark Point F1

tanβ = 10, s = 4.0 TeV M1/2 = 426 GeV m0 = 701 GeV A = −1652 GeV(E.184)

λ1,2(MX) = 2.8 λ3(MX) = −2.0 λ3(µS) = −0.266(E.185)

κ1,2 = 2.5 κ3(MX) = 2.0, κ3(µS) = 0.652(E.186)

Squark and slepton masses

mt̃1 = 784 GeV mb̃1
= 918 GeV mτ̃1 = 1000 GeV (E.187)

mt̃2 = 932 GeV mb̃2
= 1115 GeV mτ̃2 = 850,GeV (E.188)

mũ2,d̃1
= 1035 GeV mẽ2 = 1005 GeV (E.189)

mũ1
= 1015 GeV md̃2

= 1121 GeV mẽ1 = 862 GeV (E.190)

Exotic colored masses

mD̃1
(3) = 1728 GeV mD̃2

(3) = 2013 GeV µD(3) = 1845 GeV (E.191)

mD̃1
(1, 2) = 1980 GeV mD̃2

(1, 2) = 2263 GeV µD(1, 2) = 2106 GeV (E.192)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 65 GeV mχ0

2
= 115 GeV mχ0

3
= 758 GeV (E.193)

mχ0

4
= 759 GeV mχ0

5
= 1487 GeV mχ0

6
= 1551 GeV (E.194)

mχ±

1

= 116 GeV mχ±

1

= 761 GeV MZ′ = 1518 GeV mg̃ = 380 GeV (E.195)

CP-Even Higgs masses

m
(2−loop)
h1

= 116 GeV m
(1−loop)
h1

= 120 GeV (E.196)

mh2
= 624 GeV mh3

= 1518 GeV (E.197)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 977 GeV mH2

(1, 2) = 1245 GeV (E.198)

mSinglet(1, 2) = 1290 GeV mH̃1
(1, 2) = 1175 GeV (E.199)
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E.14 Benchmark Point F2

tanβ = 10, s = 4.0 TeV M1/2 = 389 GeV m0 = 725 GeV A = −1528 GeV(E.200)

λ1,2(MX) = 2.6 λ3(MX) = −2.0 λ3(µS) = −0.259(E.201)

κ1,2,3 = 2.5 κ3(µS) = 0.728(E.202)

Squark and slepton masses

mt̃1 = 777 GeV mb̃1
= 907 GeV mτ̃1 = 1012 GeV (E.203)

mt̃2 = 921 GeV mb̃2
= 1108 GeV mτ̃2 = 867,GeV (E.204)

mũ2,d̃1
= 1023 GeV mẽ2 = 1017 GeV (E.205)

mũ1
= 1007 GeV md̃2

= 1113 GeV mẽ1 = 879 GeV (E.206)

Exotic colored masses

mD̃1
(1, 2, 3) = 1948 GeV mD̃2

(3) = 2200 GeV µD(1, 2, 3) = 2060 GeV (E.207)

Neutralinos, charginos, gluino and Z ′ masses

mχ0

1
= 59 GeV mχ0

2
= 106 GeV mχ0

3
= 738 GeV (E.208)

mχ0

4
= 739 GeV mχ0

5
= 1490 GeV mχ0

6
= 1548 GeV (E.209)

mχ±

1

= 106 GeV mχ±

1

= 740 GeV MZ′ = 1518 GeV mg̃ = 350 GeV (E.210)

CP-Even Higgs masses

m
(2−loop)
h1

= 116 GeV m
(1−loop)
h1

= 120 GeV (E.211)

mh2
= 615 GeV mh3

= 1518 GeV (E.212)

Inert Higgs, Higgsino and Singlet masses

mH1
(1, 2) = 903 GeV mH2

(1, 2) = 1172 GeV (E.213)

mSinglet(1, 2) = 1290.GeV mH̃1
(1, 2) = 1302 (E.214)
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[74] Cladé et al. Phys. Rev. A. 74, 052109 (2006)

[75] Gerginov et al. Phys. Rev. A. 73,032504 (2006)

[76] G. Arnison et al. [UA1 Collaboration], Phys. Lett. B 166, 484 (1986).

[77] G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 20, 601 (2001)

[arXiv:hep-ex/0101044].

[78] J. Goldstone, Nuovo Cim. 19, 154 (1961).

[79] J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).

[80] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).

[81] P. W. Higgs, Phys. Lett. 12, 132 (1964).

[82] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[83] P. W. Higgs, Phys. Rev. 145, 1156 (1966).

[84] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

[85] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).

[86] T. W. B. Kibble, Phys. Rev. 155, 1554 (1967).

[87] S. L. Glashow, Nucl. Phys. 22, 579 (1961).



BIBLIOGRAPHY 202

[88] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

[89] A. Salam, Originally printed in *Svartholm: Elementary Particle Theory, Pro-

ceedings Of The Nobel Symposium Held 1968 At Lerum, Sweden*, Stockholm 1968,

367-377

[90] J. S. Schwinger, Phys. Rev. 73, 416 (1948).

[91] R. P. Feynman, Phys. Rev. 74, 1430 (1948).

[92] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 44, 189 (1972).

[93] W. Siegel, Phys. Lett. B 84, 193 (1979).

[94] D. Stockinger, In the Proceedings of 2005 International Linear Collider Work-

shop (LCWS 2005), Stanford, California, 18-22 Mar 2005, pp 0203 [arXiv:hep-

ph/0506258].

[95] D. Stockinger, JHEP 0503, 076 (2005) [arXiv:hep-ph/0503129].

[96] G. ’t Hooft, Nucl. Phys. B 35, 167 (1971).

[97] M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

[98] E. C. G. Stueckelberg and A. Petermann, Helv. Phys. Acta 26 (1953) 499.

[99] W. Pauli and F. Villars, Rev. Mod. Phys. 21 (1949) 434.

[100] S. Weinberg, Phys. Rev. D 13, 974 (1976).

[101] S. Weinberg, Phys. Rev. D 19, 1277 (1979).

[102] E. Gildener, Phys. Rev. D 14, 1667 (1976).

[103] L. Susskind, Phys. Rev. D 20, 2619 (1979).

[104] G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer and

R. Stora, New York, Usa: Plenum ( 1980) 438 P. ( Nato Advanced Study Institutes

Series: Series B, Physics, 59)



BIBLIOGRAPHY 203

[105] G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005) [arXiv:hep-

ph/0404175].

[106] A. D. Dolgov, arXiv:0803.3887 [hep-ph].

[107] G. W. Bennett et al. [Muon G-2 Collaboration], Phys. Rev. D 73, 072003 (2006)

[arXiv:hep-ex/0602035].

[108] J. P. Miller, E. de Rafael and B. L. Roberts, Rept. Prog. Phys. 70 (2007) 795.

[109] M. Davier, Nucl. Phys. Proc. Suppl. 169 (2007) 288.

[110] K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner, Phys. Lett. B 649

(2007) 173.

[111] F. Jegerlehner, arXiv:hep-ph/0703125.

[112] B. T. Cleveland et al., Astrophys. J. 496 (1998) 505; J. N. Abdurashitov et al.

[SAGE Collaboration], J. Exp. Theor. Phys. 95 (2002) 181 [Zh. Eksp. Teor. Fiz.

122 (2002) 211]; W. Hampel et al. [GALLEX Collaboration], Phys. Lett. B 447

(1999) 127; J. Hosaka et al. [Super-Kamkiokande Collaboration], hep-ex/0508053;

M. Altmann et al. [GNO COLLABORATION Collaboration], Phys. Lett. B 616

(2005) 174; SNO Collaboration (B. Aharmim et al.). Phys. Rev. C 72 (2005) 055502;

Phys. Rev. D 72, 052010 (2005).

[113] R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B 88, 257 (1975).

[114] S. R. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).

[115] Yu. A. Golfand and E. P. Likhtman, JETP Lett. 13, 323 (1971) [Pisma Zh. Eksp.

Teor. Fiz. 13, 452 (1971)].

[116] N. Seiberg, JHEP 0306, 010 (2003) [arXiv:hep-th/0305248].

[117] T. Araki, K. Ito and A. Ohtsuka, Phys. Lett. B 573, 209 (2003) [arXiv:hep-

th/0307076].

[118] I. Jack, D. R. T. Jones and L. A. Worthy, Phys. Lett. B 611, 199 (2005)

[arXiv:hep-th/0412009].



BIBLIOGRAPHY 204

[119] D. Stockinger, J. Phys. G 34, R45 (2007) [arXiv:hep-ph/0609168].

[120] J. Haestier, S. Heinemeyer, W. Hollik, D. Stockinger, A. M. Weber and G. Wei-

glein, AIP Conf. Proc. 903, 291 (2007) [arXiv:hep-ph/0610318].

[121] D. Stockinger, arXiv:0710.2429 [hep-ph].

[122] S. Marchetti, S. Mertens, U. Nierste and D. Stockinger, arXiv:0808.1530 [hep-ph].

[123] A. Czarnecki and W. J. Marciano, Phys. Rev. D 64, 013014 (2001) [arXiv:hep-

ph/0102122].

[124] S. F. King, S. Moretti and R. Nevzorov, Phys. Lett. B 650, 57 (2007) [arXiv:hep-

ph/0701064].

[125] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive and M. Srednicki, Nucl.

Phys. B 238, 453 (1984).

[126] L. E. Ibanez and G. G. Ross, Phys. Lett. B 110, 215 (1982).

[127] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 68, 927

(1982) [Erratum-ibid. 70, 330 (1983)].

[128] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 71, 413

(1984).

[129] L. Alvarez-Gaume, M. Claudson and M. B. Wise, Nucl. Phys. B 207, 96 (1982).

[130] L. Alvarez-Gaume, J. Polchinski and M. B. Wise, Nucl. Phys. B 221, 495 (1983).

[131] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B 125,

275 (1983).

[132] A. Dedes and P. Slavich, Nucl. Phys. B 657, 333 (2003) [arXiv:hep-ph/0212132].

[133] M. R. Nolta et al. [WMAP Collaboration], Astrophys. J. 608, 10 (2004)

[arXiv:astro-ph/0305097].

[134] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36

(1985).



BIBLIOGRAPHY 205

[135] I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).

[136] J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974).

[137] L. Girardello and M. T. Grisaru, Nucl. Phys. B 194, 65 (1982).

[138] P. Fayet and J. Iliopoulos, Phys. Lett. B 51, 461 (1974); P. Fayet, Nucl. Phys. B

90, 104 (1975).

[139] L. O’Raifeartaigh, Nucl. Phys. B 96, 331 (1975).

[140] S. Ferrara, L. Girardello and F. Palumbo, Phys. Rev. D 20, 403 (1979).

[141] W. Fischler, H. P. Nilles, J. Polchinski, S. Raby and L. Susskind, Phys. Rev.

Lett. 47, 757 (1981).

[142] E. Witten, Nucl. Phys. B 188, 513 (1981).

[143] L. Randall, arXiv:hep-ph/9706474.

[144] H. Murayama, arXiv:0709.3041 [hep-ph].

[145] H. Murayama and Y. Nomura, Phys. Rev. D 75, 095011 (2007) [arXiv:hep-

ph/0701231].

[146] H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007) [arXiv:hep-

ph/0612186].

[147] K. Intriligator, N. Seiberg and D. Shih, JHEP 0604, 021 (2006) [arXiv:hep-

th/0602239].

[148] K. Intriligator, N. Seiberg and D. Shih, JHEP 0707, 017 (2007) [arXiv:hep-

th/0703281].

[149] M. L. Brooks et al. [MEGA Collaboration], Phys. Rev. Lett. 83, 1521 (1999)

[arXiv:hep-ex/9905013].

[150] M. Ahmed et al. [MEGA Collaboration], Phys. Rev. D 65, 112002 (2002)

[arXiv:hep-ex/0111030].



BIBLIOGRAPHY 206

[151] M. Ciuchini et al., JHEP 9810, 008 (1998) [arXiv:hep-ph/9808328].

[152] F. Gabbiani and A. Masiero, Nucl. Phys. B 322, 235 (1989);

[153] J. Ellis, S. Ferrara and D.V. Nanopoulos, Phys. Lett. B 114, 231 (1982);

[154] J. Polchinski and M.B. Wise, Phys. Lett. B 125, 393 (1983);

[155] F. del Aguila, M.B. Gavela, J.A. Grifols and A. Méndez, Phys. Lett. B 126, 71

(1983) [Erratum-ibid. B 129, 473 (1983)];

[156] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).

[157] J. Abdallah et al. [LEP SUSY Working Group],

http://lepsusy.web.cern.ch/lepsusy/.

[158] [CDF Collaboration], http://www-cdf.fnal.gov/physics/

CDF Notes 9176; 9229;9332

[159] V. M. Abazov et al. [D0 Collaboration], Phys. Lett. B 660, 449 (2008);

[160] J. Abdallah et al. [DELPHI Collaboration], Eur. Phys. J. C 36, 1 (2004) [Eur.

Phys. J. C 37, 129 (2004)] [arXiv:hep-ex/0406009].

[161] J. R. Ellis, K. A. Olive and Y. Santoso, New J. Phys. 4, 32 (2002) [arXiv:hep-

ph/0202110].

[162] H. Baer, C. Balazs, A. Belyaev, J. K. Mizukoshi, X. Tata and Y. Wang, JHEP

0207, 050 (2002) [arXiv:hep-ph/0205325].

[163] L. Roszkowski, R. Ruiz de Austri, and T. Nihei, JHEP 08 (2001) 024,

hep-ph/0106334.

[164] H. Baer, C. Balazs, and A. Belyaev, JHEP 03 (2002) 042, hep-ph/0202076.

[165] H. Baer and C. Balazs, JCAP 0305 (2003) 006, hep-ph/0303114.

[166] U. Chattopadhyay, A. Corsetti, and P. Nath, Phys. Rev. D68 (2003) 035005,

hep-ph/0303201.



BIBLIOGRAPHY 207

[167] A. B. Lahanas and D. V. Nanopoulos, Phys. Lett. B568 (2003) 55–62,

hep-ph/0303130.

[168] G. Belanger, F. Boudjema, A. Cottrant, A. Pukhov, and A. Semenov,

hep-ph/0412309.

[169] A. Belyaev, AIP Conf. Proc. 753, 352 (2005) [arXiv:hep-ph/0410385].

[170] B. C. Allanach and C. G. Lester, Phys. Rev. D 73, 015013 (2006) [arXiv:hep-

ph/0507283].

[171] B. C. Allanach, Phys. Lett. B 635, 123 (2006) [arXiv:hep-ph/0601089].

[172] B. C. Allanach, K. Cranmer, C. G. Lester and A. M. Weber, JHEP 0708, 023

(2007) [arXiv:0705.0487 [hep-ph]].

[173] L. Roszkowski, R. R. de Austri, J, Silk and R. Trotta, On prospects for dark

matter indirect detection in the Constrained MSSM,[arXiv:0707.0622].

[174] R. R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo

analysis of the CMSSM, JHEP 0605 (2006) 002 [arXiv:hep-ph/0602028].

[175] B. C. Allanach, C. G. Lester and A. M. Weber, The dark side of mSUGRA,

JHEP 12 (2006) 065 [arXiv:hep-ph/0609295]

[176] L. Roszkowski, R. R. de Austri and R. Trotta Implications for the Constrained

MSSM from a new prediction for b → sγ, JHEP 2007 (2007) 075 [arXiv:0705.2012].

[177] F. Feroz, B. C. Allanach, M. Hobson, S. S. AbdusSalam, R. Trotta and A. M. We-

ber, arXiv:0807.4512 [hep-ph].

[178] B. C. Allanach et al., Eur. Phys. J. C 25 (2002) 113 [arXiv:hep-ph/0202233].

[179] N. Ghodbane and H. U. Martyn, in Proc. of the APS/DPF/DPB Summer

Study on the Future of Particle Physics (Snowmass 2001) ed. N. Graf, arXiv:hep-

ph/0201233.

[180] D. M. Pierce, J. A. Bagger, K. T. Matchev and R. j. Zhang, Nucl. Phys. B 491,

3 (1997) [arXiv:hep-ph/9606211].



BIBLIOGRAPHY 208

[181] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002) [arXiv:hep-

ph/0104145].

[182] V. D. Barger, M. S. Berger and P. Ohmann, Phys. Rev. D 49, 4908 (1994)

[arXiv:hep-ph/9311269].

[183] B. C. Allanach http://projects.hepforge.org/softsusy/

[184] S. Chang, P. J. Fox and N. Weiner, JHEP 0608, 068 (2006) [arXiv:hep-

ph/0511250].

[185] K. Choi, K. S. Jeong and K. i. Okumura, JHEP 0509 (2005) 039 [arXiv:hep-

ph/0504037].

[186] Y. Nomura and B. Tweedie, Phys. Rev. D 72, 015006 (2005) [arXiv:hep-

ph/0504246].

[187] K. Choi, K. S. Jeong, T. Kobayashi and K. i. Okumura, Phys. Lett. B 633 (2006)

355 [arXiv:hep-ph/0508029].

[188] R. Kitano and Y. Nomura, Phys. Lett. B 631, 58 (2005) [arXiv:hep-ph/0509039].

[189] O. Lebedev, H. P. Nilles and M. Ratz, arXiv:hep-ph/0511320.

[190] R. Kitano and Y. Nomura, Phys. Rev. D 73, 095004 (2006) [arXiv:hep-

ph/0602096].

[191] S. Chang, L. J. Hall and N. Weiner, Phys. Rev. D 75, 035009 (2007) [arXiv:hep-

ph/0604076].

[192] J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 0503, 038 (2005) [arXiv:hep-

ph/0502066].

[193] Z. Chacko, H. S. Goh and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006)

[arXiv:hep-ph/0506256].

[194] Z. Chacko, H. S. Goh and R. Harnik, JHEP 0601, 108 (2006) [arXiv:hep-

ph/0512088].



BIBLIOGRAPHY 209

[195] R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63 (1988).

[196] J. R. Ellis, K. Enqvist, D. V. Nanopoulos and F. Zwirner, Mod. Phys. Lett. A 1

(1986) 57.

[197] B. de Carlos and J. A. Casas, Phys. Lett. B 309, 320 (1993) [arXiv:hep-

ph/9303291].

[198] B. de Carlos and J. A. Casas, arXiv:hep-ph/9310232.

[199] P. H. Chankowski, J. R. Ellis and S. Pokorski, Phys. Lett. B 423, 327 (1998)

[arXiv:hep-ph/9712234].

[200] K. Agashe and M. Graesser, Nucl. Phys. B 507, 3 (1997) [arXiv:hep-ph/9704206].

[201] D. Wright, arXiv:hep-ph/9801449.

[202] G. L. Kane and S. F. King, Phys. Lett. B 451 (1999) 113 [arXiv:hep-ph/9810374].

[203] M. Bastero-Gil, G. L. Kane and S. F. King, Phys. Lett. B 474, 103 (2000)

[arXiv:hep-ph/9910506].

[204] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D 61, 075005 (2000)

[arXiv:hep-ph/9909334].

[205] B. C. Allanach, J. P. J. Hetherington, M. A. Parker and B. R. Webber, JHEP

0008, 017 (2000) [arXiv:hep-ph/0005186].

[206] T. Kobayashi, H. Terao and A. Tsuchiya, Phys. Rev. D 74, 015002 (2006)

[arXiv:hep-ph/0604091].

[207] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005) [arXiv:hep-

ph/0502105].

[208] R. Barbieri and L. J. Hall, arXiv:hep-ph/0510243.

[209] R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D 74, 015007 (2006)

[arXiv:hep-ph/0603188].



BIBLIOGRAPHY 210

[210] B. Gripaios and S. M. West, Phys. Rev. D 74, 075002 (2006) [arXiv:hep-

ph/0603229].

[211] R. Dermisek, J. F. Gunion and B. McElrath, Phys. Rev. D 76 (2007) 051105

[arXiv:hep-ph/0612031].

[212] G. W. Anderson and D. J. Castano, Phys. Lett. B 347, 300 (1995) [arXiv:hep-

ph/9409419].

[213] G. W. Anderson and D. J. Castano, Phys. Rev. D 52, 1693 (1995) [arXiv:hep-

ph/9412322].

[214] G. W. Anderson and D. J. Castano, Phys. Rev. D 53, 2403 (1996) [arXiv:hep-

ph/9509212].

[215] G. W. Anderson, D. J. Castano and A. Riotto, Phys. Rev. D 55, 2950 (1997)

[arXiv:hep-ph/9609463].

[216] J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 0401, 008 (2004) [arXiv:hep-

ph/0310137].

[217] J. A. Casas, J. R. Espinosa and I. Hidalgo, arXiv:hep-ph/0402017.

[218] J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 0411, 057 (2004) [arXiv:hep-

ph/0410298].

[219] J. A. Casas, J. R. Espinosa and I. Hidalgo, Nucl. Phys. B 777 (2007) 226

[arXiv:hep-ph/0607279].

[220] P. Ciafaloni and A. Strumia, Nucl. Phys. B 494, 41 (1997) [arXiv:hep-

ph/9611204].

[221] K. L. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D 58, 096004 (1998)

[arXiv:hep-ph/9710473].

[222] R. Barbieri and A. Strumia, Phys. Lett. B 433, 63 (1998) [arXiv:hep-

ph/9801353].



BIBLIOGRAPHY 211

[223] L. Giusti, A. Romanino and A. Strumia, Nucl. Phys. B 550, 3 (1999) [arXiv:hep-

ph/9811386].

[224] P. H. Chankowski, J. R. Ellis, K. A. Olive and S. Pokorski, Phys. Lett. B 452,

28 (1999) [arXiv:hep-ph/9811284].

[225] S. F. King and J. P. Roberts, JHEP 0609 (2006) 036 [arXiv:hep-ph/0603095].

[226] S. F. King and J. P. Roberts, JHEP 0701 (2007) 024 [arXiv:hep-ph/0608135].

[227] P. H. Chankowski, J. R. Ellis, M. Olechowski and S. Pokorski, Nucl. Phys. B

544, 39 (1999) [arXiv:hep-ph/9808275].

[228] G. L. Kane, J. D. Lykken, B. D. Nelson and L. T. Wang, Phys. Lett. B 551, 146

(2003) [arXiv:hep-ph/0207168].

[229] P. C. Schuster and N. Toro, arXiv:hep-ph/0512189.

[230] A. Salam, J. Strathdee, Phys. Rev. D 11 (1975) 1521; M. T. Grisaru, W. Siegel,

M. Rocek, Nucl. Phys. B 159 (1979) 429.

[231] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory (Cambridge Univ.

Press, Cambridge, 1987).

[232] P. Horava, E. Witten, Nucl. Phys. B 460 (1996) 506; Nucl. Phys. B 475 (1996)

94.

[233] E. Witten, Nucl. Phys. B 471 (1996) 135; T. Banks, M. Dine, Nucl. Phys. B 479

(1996) 173; K. Choi, H. B. Kim, C. Muñoz, Phys. Rev. D 57 (1998) 7521.
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