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SUMMARY

Surface (S) gene mutations are clinically important in both hepatitis B VIruS (HBV)

prevention and diagnosis. Several HBV vaccination progr~es in endemic countries have

revealed their influence on failure of immunisation. Furthermore, sera harboring these variants

can escape serological detection, but, remain detectable by HBV-DNA testing. According to

these findings, the current work can be divided into two main parts. In the first, the impact of

vaccination on the prevalence of S gene variants and, interestingly, how to use HBsAg

variability as a marker of human population history, were studied. In the second, the influence

of S gene variants on diagnostic failure, and also how to standardise and evaluate these

variants in a novel tag system were investigated.

Initially (Chapter 3.1), four methods of DNA extraction have been compared to enable

quick and efficient human genomic and viral DNA extraction from clotted blood. Two of

these, a phenol based in-house method and Tripure isolation reagent (Roche), only achieved a

low DNA yield. In contrast, QIAamp blood kit (Qiagen) and High Pure Viral Nucleic Acid kit

(Roche Diagnostics) were equally efficient and sensitive.

The prevalence rate of hepatitis B in the south Pacific is amongst the highest in the world.

Regional immunisation programmes were introduced in four Pacific islands in 1995: Vanuatu

and Fiji in Melanesia, Tonga in Polynesia and Kiribati in Micronesia (Chapter 3.2). To assess

the efficacy of these programmes, sera from infants and their mothers were tested. Following

immunisation there was a dramatic fall in the seroprevalence of surface antigen, especially in

Fiji to 0.7% of children. However, in Vanuatu and Tonga it was 3.0% and 3.8% respectively,

and occurred mostly in babies of HBeAg positive mothers denoting the importance of this

mode of transmission. On the other hand, the 3.8% HBsAg prevalence in Kiribati among

children of non-carrier mothers indicated that most of these infections were horizontally

transmitted. This relative failure to provide satisfactory protection could reflect poor health

services or insufficient neutralisation. Moreover, although the opportunity for the emergence

of vaccine escape variants in these populations was high due to the presence of a considerable

amount of the virus with apparently incomplete protection, there were no "a" determinant

variants discovered, suggesting that these variants are relatively insignificant in this

population. Some other variants were noted, but the functional significance of these remains to

be determined.
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Geographic distribution of HBV genotypes is thought to reflect aspects of human

population history. Hepatitis B virus surface antigen (HBsAg) variation from the four Pacific

island locations has been analysed (Chapter 3.3). Samples were collected from unvaccinated

children and adults and tested for HBsAg. At least 20 HBsAg positives from each island were

amplified by PCR and sequenced. HBV isolates from C and D genotypes were identified,

Genotype C predominated in Vanuatu, Fiji and Tonga while D was the dominant genotype in

Kiribati. The diversity of the C genotype sample was significantly greater than that of D,

consistent with a longer history of HBV infection in those islands. Strong geographic identity

was evident in all populations except Tonga and Fiji, which were statistically

indistinguishable. Analysis of HBV sequences from other locations will be required to fully

interpret these data.

HBsAg negativity does not exclude hepatitis B viraemia and HBsAg variants can be

responsible for such diagnostic failures. In Chapter 3.4, we cloned 13 different HBsAg

variants. Variant protein then produced in a mammalian expression system and tested using

seven commercial HBsAg diagnostic assays. Of 12 variants analysed, 6 samples displayed

similar reactivity to the standard HBsAg sequence in most of the assays but 6 samples,

containing various mutations throughout the entire major hydrophilic region (MHR), showed

reduced reactivity. Loss of cysteine at aa124 in one sample was found to influence the

secretion as well as the reactivity of HBsAg in the expression system. Finally, not all assays

were equally able to detect HBsAg variants implying that, to attain an acceptable level of

sensitivity, the antibody repertoire of the current assays should be extended.

Reduced reactivity might be due to antigenic changes or reduced particle production. To

investigate the reason(s) for non-detection, supernatants derived from in-vitro expression of

cloned HBsAg variants were used. We have developed an antibody capture system, using a

non-HBV epitope, to standardize the amount of in-vitro expressed HBsAg protein (Chapter

3.5). Three tag systems were assessed. The successful one, influenza HA-tag, was inserted

into the HBV S gene of control samples and 12 diagnostically important variants within

different backbone subtypes: one aywl, four ayw2, two ayw3, and five adw2. The amount of

in-vitro expressed HBsAg was then equalised in an ELISA that recognises the tag.

Subsequently, the immunoreactivity of each variant was compared using three commercial

HBsAg assays. We were then able to precisely attribute the diagnostic failure of the

investigated variants to antigenic non-recognition and! or poor secretion of HBsAg protein. In
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found that single tag epitopes of up to 15 aa could be inserted at either end of HBsAg protein

without affecting HBsAg reactivity. However, insertion at both ends led to a major impact on

HBsAg conformation.

Differentiation of second episodes of HBsAg positivity as reinfection or reactivation is a

matter of debate. 5 patients who had a serological picture suggesting a second hepatitis B virus

episode were studied compared to a control group of two patients who were HBsAg positive

throughout with fluctuating HBeAg status. We suggest molecular criteria to distinguish

between these two possibilities: number of nucleotide substitutions; number of amino acid

substitutions; situation of aa changes; phylogenetic relatedness, co-incidence of mutation with

immune or antiviral therapy; and genotype/ subtype shifts (Chapter 3.6). Interestingly, S gene

variants were found in all 5 cases with unusual serology but in neither of the controls.

Abnormal serology was therefore accompanied in all patients by rare sequences.
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Chapter 1 Introduction

1.1 GENERAL INTRODUCTION

Although hepatitis as a clinical disease has been recognised from the very earliest times,

the identification of its many viral causes, including hepatitis B virus (HBV), was a relatively

recent event. The hepatitis B virus, firstly, came to light with the discovery of Australia

Antigen (AuAg) by Blumberg and his colleagues in 1965 (Blumberg et al., 1965). Because

they were interested in serum protein polymorphisms as genetic markers in the human

population, they initially considered a hypothesis that the "AuAg" system was another serum

protein polymorphism. Subsequent studies revealed that the antigen occurred more frequently

among patients who received multiple transfusions and blood products (Blumberg et al.,

1967). One year later, electron microscopy of the partially purified Ag, showed it to be

organised into virus-like particles of approximately 22 nm in diameter (Bayer et al., 1968).

The direct relationship of AuAg to type B hepatitis was revealed on examination of serum

samples collected from Willowbrook State School in New York. In this study, two forms of

viral hepatitis were detected after human inoculation and cross-challenge experiments.

Additionally, AuAg was found to be mostly associated with the long incubation period,

parenterally transmissible form of the disease (Giles et al., 1969). Then, over the next 10

years, rapid progress was made in the structure and biological characterisation of the virus.

With the advent of serological markers, the epidemiology and transmission of HBV was

described in more detail (Blumberg, 1977; Hoofnagle, 1981). But, the narrow host range of

the virus and inability to be propagated in cultured cells hampered early efforts to uncover the

molecular details of viral replication (Ganem and Vannus, 1987).

HBV is a major problem in the world; it is endemic in Africa, South America and Asia.

There are at least 350 million persons chronically infected with HBV, each of whom is

potentially infectious. In hyperendemic regions, transmission is mainly from mother to baby

or between children. In low incidence regions, such as Western Europe, transmission is by

sex, intravenous drug usage and needle-stick exposure. This makes it a major health care

problem even in these regions. Expensive and only moderately efficacious therapies are

available, including liver transplantation. Consequently, WHO recommends that all countries

should introduce universal infant vaccination. The vaccine simply consists of hepatitis B

surface antigen (HBsAg), which contains neutralising epitopes that lead to the production of

protective surface antibody (anti-HBs).
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Chapter 1 Introduction

The emergence of variants ofHBV that are not neutralised by vaccine-induced anti-HBs is

also of major concern especially as several studies from different parts of the world have

consistently detected them. If eradication of HBV is our goal, we need to assess the

epidemiological and antigenic significance of these variants. But a number of things are

unknown. First, what pressure does immunisation put on to the HBsAg population? Do new

variants appear ab initio or do certain ones present in the pre-vaccination population become

selected? Can they be transmitted to others? Are they truly neutralisation escape variants?

1.2 HBV STRUCTURE AND GENOMIC ORGANISATION

Electron microscopic examination of partially purified serum derived preparations of HBV

revealed the presence of three kinds of particles. Complete infectiQus viriQns of about 42-nm

in diameter, which consist of a 36-nm icosahedral nucleocapsid of 240 units of the hepatitis B

virus core antigen (HBcAg) and a 7-nm lipoprotein bilayer derived from the endoplasmic

reticulum (ER) membrane of the host (Dane et al., 1970; Patzer et al., 1986; Crowther et al.,

1994). Three HBV surface proteins of varying sizes- large hepatitis B surface protein (LHBs),

middle hepatitis B surface protein (MHBs) and small hepatitis B surface protein (SHBs)- are

inserted into this lipoprotein bilayer (see section lA). The viral DNA, a virus encoded RNA-

dependent DNA polymerase, a protein kinase which phosphorylates HBcAg and a genome-

bound protein covalently linked to the negative strand of HBV DNA are all contained in the

nucleocapsid (Albin & Robinson, 1980; Gerlich & Robinson, 1980; Figure 1.1).

Small spherical and filamentous forms of non-infectious subviral particles of 20-nm

diameter are composed of SHBs with variable amounts of MHBs and LHBs in addition to the

host derived lipids. Spherical forms contain very little LHBs while excessive amounts of

LHBs enhance the formation of filaments (Peterson, 1981; Aggerbeck & Peterson, 1985;

Chisari et al., 1986). Although they do not contain viral DNA or nucleocapsid, they are highly

immunogenic and elicit a strong antibody response in most individuals which is capable of

conferring immunity to reinfection in vivo. Therefore, these particles have been exploited as a

subunit vaccine for HBV infection (Szmuness et al., 1980; Valenzuela et al., 1982; Me Aleer

et al., 1984). The concentration of subviral particles often exceeds the virion concentration by

at least three fold.
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Figure 1.1: Schematic structure of HBV Dane particle

The infectious virion consists of an outer membrane containing the three surface gene products: SHBs (HBsAg),

MHBs (preS2+HBsAg) and LHBs (preS 1+PreS2+HBsAg). The internal nucleocapsid consists of core protein

(HBc) dimers and encloses the partially double stranded circular DNA genome and the polymerase which is

covalently linked to the minus strand DNA via its terminal protein. (Taken from Caselmann, 1996)

HBV is hepatotropic with a small, approximately 3.2 Kb in length, circular DNA which

containsa single stranded region of different length in different molecules (Landers et aI.,

1977; Hruska et aI., 1977). HBV DNA molecule has two remarkable asymmetries that make it

unique from other viruses. Whilst the length asymmetry between its double strands constitute

the first, the second Occurs at their 5' termini. At this position, the long (minus) strand

contains a protein that is covalently linked whereas the shorter (plus) strand has a small

oligoribonucleotide (Gerlich & Robinson 1980; Will et aI., 1987).

HBV DNA is highly organized with ' compact coding to efficiently use every nucleotide

in its small-sized genome through the following strategies: every nucleotide in the genome is

translated; 50% of the genome sequence can be read in more than one frame; there is

differential initiation at several AUG codons within certain ORFs that are sometimes used in

several genes; and all cis-acting regulatory elements (eg., transcripional enhancer and

promotor elements) are also contained within the genomic sequences. Among these is an 11-

nucleotide sequence that is represented twice, termed DR1 and DR2, and located near the 5'

termini of the minus and plus strands respectively, where, they play important roles in

directing the initiation of viral DNA synthesis (Seeger et al., 1986, Will et al., 1987).
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The long mmus strand carries five overlapping ORFs: preS/S (surface), C (core), P

(polymerase), X and "ORF 5" (Miller et al., 1989). Four of these coding regions have been

assigned to known viral proteins: the preS/S region encodes the envelope proteins; the C gene

encodes the core protein; the P gene encodes the viral polymerase; and the X gene encodes the

transactivator HBx (Ganem and Varmus, 1987). For ORF 5, which lies within the X gene, no

protein product has been detected so far (Kaneko & Miller, 1988). On the other hand, the plus

strand contains only one ORF, named ORF 6 (Miller et al., 1989). Two transcripts are derived

from the HBV plus strand which contains the ORF 6 region; the first, about O.7-kb in length,

starts at nucleotide (nt) 1635 and terminates at nt 954 (Standring et al., 1983). The second

transcript, 2.8-kb in length, extends between nt 2381 and 1861 and may serve as a promoter

(Zelent et al., 1987). However, no ORF 6-specific protein has been detected (Figure 1.2).

Figure 1.2: Genomic organization of HBV (subtype ayw)

The numbering system shown in the diagram is according to Gilbert et al., (1979). The outer lines represent the

different classes of transcripts. The four major ORFs (S, P, C and X) are indicated in the center, and ORFs 5 and

6 are shown as well in relation to ORFX. The partially double stranded circle represent the viral genome,

showing the promoters (S lP, S2P, XP and CP), the enhancers (Enhl and EnhIl), and direct repeats (DR1 and

DR2). (Taken from Caselmann, (1996»
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Many recent reports have dealt with this region. For instance, Velhagen et al. (1995)

showed that transcription of the O.7-kbRNA molecule could be regulated by a promoter-like

activity between nt 1885 and 1575. Later, :, direct evidence for the presence of an antisense

promoter within the ORF 6 region of woodchuck hepatitis virus (WHV) was revealed by

Shimoda et al. (1998). Several cis-regulatory elements have also been detected within the ORF

6 region and the corresponding X ORF. However, none of them have been shown to be

involved in ORF 6 expression (Huang & Liang 1993; Donello et al., 1996; 1998). Recently a

cis-regulatory element was shown to inhibit gene expression within the ORF 6 region in an

orientation- and position- dependent manner, perhaps as a specific RNA-destabilizing element

(Wagner et al., 1999).

1.3 HBV LIFE CYCLE

Little is known about the early molecular events such as virus-receptor interaction, viral

uptake or uncoating, although a considerable knowledge of later events such as viral

replication and virion release is available. The narrow host range of HBV and lack of suitable

cell1ines susceptible to infection are major limitations for such studies. Until recently, primary

hepatocytes prepared from uninfected ducks were the only readily available cells known to be

susceptible to infection by hepadnaviruses (Tuttleman et al., 1986; Pugh & Summers 1989).

The low efficiency of infection and their limited availability has impeded the use of human

primary hepatocytes (Gripon et a11988; Ochiya et al., 1989).

However, successful production of HBV both in vitro and in vivo by rat hepatoma cells

and rat hepatocytes respectively was reported after transfection with a construct containing the

HBV DNA (Shih et al., 1989; Takahashi et al., 1995). Additionally, cross species replication

of HBV has been shown in hepatocytes of HBV transgenic mice (Farza et al., 1988; Guidotti

et al., 1995). Furthermore, primary tupaia hepatocytes (PTHs), as an alternative to primary

human hepatocytes, were shown recently to support the complete HBV genomic replication

cycle. Consequently, tupaias have been suggested as a useful animal model for HBV infection

(Walter et al., 1996; Ren & Nassal et al., 2001). According to these findings, it was proposed

that the species barrier for HBV infection was located at the initial stages of viral adsorption

and! or penetration. The steps of the HBV life cycle are shown in figure 1.3.
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Figure 1.3: HBV life cycle

A diagrammatic representation of the HBY lifecycle, with the key stages shown. Binding to the receptor,

penetration of the hepatocyte, uncoating and transport of the viral genome into the nucleus, formation of

cccDNA, RNA synthesis and transport to the cytoplasm, translation of viral mRNAs, nucleocapsid assembly and

encapsidation of PgRNA, reverse transcription and DNA synthesis, export of enveloped virions from the

hepatocyte and retention of some genomes for the amplification of cccDNA. (Taken from Chisari, 2000)

1.3.1 Attachment to the cell membrane

The exact mechanism of attachment and penetration of HBV has not been fully identified.

Binding of a viral particle to the human hepatocyte plasma membrane is an important step in

viral entry and replication of HBV. In this interaction, the envelope proteins of HBV are

thought to play a crucial role. Although there have been many reports during the last two

decades, the identity of the HBV receptor is still controversial.

It was initially suggested that a preS2 domain could act as the attachment site to human

hepatocytes via polymerised human serum albumin (PHSA) (Trevisan et aI., 1982; Machida et

aI., 1983; Ishihara et al., 1987). However, this liver cell-PHSA interaction has been shown to

be non-species-specific as rat liver cells also bind to PHSA (Wright et aI., 1987).

Nevertheless, natural HBsAg spheres or recombinant middle HBs protein, after treatment with

PHSA, could bind to human liver plasma membranes (Pontisso et aI., 1989a, b) and antiserum

against a preS2 peptide (aa 1-25) was able to neutralise the virus and prevent HBV infection in

challenged chimpanzees (Neurath et aI., 1986). It was also noted that polymerised albumin of
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other experimental animals, which are not susceptible to HBV infection, does not bind to

HBsAg particles (Tuttleman et al., 1986). Despite all these findings supporting the hypothesis

of preS2 domain as an attachment site, the importance of PHSA binding for HBV infection

has been doubtful. Thomas et al. (1988) showed that a physiological concentration of native

albumin was able to block the binding of PHSA to HBsAg. Candidates other than PHSA have

also been proposed: transferrin (Franco et al., 1992), the N-linked glycan at the amino terminal

end of the preS2 domain (Gerlich et al., 1993) and fibronectin (Budkowska et al., 1995).

Other observations have shown the preS 1 domain, and not preS2, as the most important

attachment site to human hepatocytes (Neurath et al., 1986; Pontisso et al., 1989b; Petit et al.,

1991). However, as for preS2, the suggested cellular receptor proteins for binding to the preS1

domain have been controversial. These include immunoglobulin A (IgA) receptor (Pontisso et

al., 1992), human Interleukin-6 (hIL-6) (Neurath et al., 1992) and asialoglycoprotein (ASGP)

receptor (Treichel et al., 1994, 1997). Regardless of the controversial findings on the receptor

molecules for the attachment of preS I, Neurath et al. (1989) further supported the importance

of preS1 domain for the attachment to liver cells when they demonstrated HBV neutralisation

in chimpanzees by using rabbit anti-sera against preS 1.

Small HBs has also been reported to bind via apolipoprotein H (apo H) to human

hepatocytes (Mehdi et al., 1994). Human annexin V (hA-V, previously named endonexin II), a

member of Ca2+ dependent phospholipid binding proteins present on plasma membranes of

human liver, has also been proposed as the HBV receptor (Hertogs et al., 1993). Anti-idiotypic

anti-HBs antibodies have been demonstrated in rabbits immunised with hA-V but not in

rabbits immunised with rat annexin V, despite more than 90% sequence homology between

both annexins. This provided evidence for the "receptor-ligand" relationship between hA-V

and HBsAg (Hertogs et al., 1994). Recent reports have further supported the role of hA-V in

facilitating HBV entry and infection into host cells. Expression of the hA-V gene in rat

hepatoma cells, whether due to the transfection of a construct containing hA-V gene or due to

the administration of hA-V to primary cultures of rat hepatocytes, was found to confer

susceptibility to HBV infection (Gong et al., 1999; De Meyer et al., 2000).

Difficulties in sustaining the currently available in vitro infection system for HBV (Gripon

et al., 1993), have led to usage of the duck HBV (DHBV) model to investigate hepadnaviral

entry. Early observations showed that non-infectious subviral particles (SVP) or recombinant

particles containing only the L protein can inhibit the DHBV infection of primary duck
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hepatocytes (Klingmiiller & Schaller, 1993). A year later, Kuroki et al. (1994) detected a

cellular glycoprotein of ISO kDa (gplS0) which interacts with DHBV particles via the preS

region. As anti-preS antibodies were shown to inhibit this binding, gp ISO was suggested as a

possible entry factor for DHBV. This host cell glycoprotein was shown later to be encoded by

a member of the carboxypeptidase family (Kuroki et al., 1995), and termed carboxypeptidase

D (CPD). The essential role of DHBV-preS (DpreS) for receptor recognition was further

supported by mutational analysis of DpreS in which an extended sequence (aa 30-115) was

identified as the receptor binding site ofDHBV (Urban et al., 1995b).

The gp 180/CPD, which is a trans-Golgi resident protein and cycles to the plasma

membrane and back, has the characteristics for a DHBV receptor (Breiner et al., 1995; Breiner

& Schaller, 2000). Indeed, CPD seems crucially involved in avian hepadnaviruses infection.

Uptake of DpreS and viral particles by various cell lines was enhanced by their transfection

with CPD-expressing plasmids (Breiner et al., 1998). Infection of duck hepatocytes with

DHBV can be efficiently blocked with soluble duck CPD (sduCPD) (Urban et al., 1999). The

binding site of CPD corresponds to the mapped receptor binding site within DHBV preS

(Ishikawa et al., 1994; Breiner et al., 1995; Urban et al., 1995b). Levels of CPD are also

greatly reduced upon DHBV infection, similar to the receptor down-regulation seen in

classical retroviruses (Breiner et al., 2001). More precisely, the C-domain of duCPD (which

has an extra two domains: A and B) was shown to be the virus binding domain (Eng et al.,

1999; Urban et al., 2000). It has also been demonstrated that the structure required for binding

and receptor recognition does tolerate a degree of variation. Clearly, this may enable the virus

surface proteins to maintain the receptor affinity while simultaneously escaping immune

surveillance by mutation (Urban et al., 2000).

1.3.2 Viral entry and uncoating

Although the exact post-binding steps are still unclear, several mechanisms have been

suggested for viral entry. There is evidence from DHBV that entry proceeds by a pH-

independent mechanism (Rigg & Schaller 1992). Endocytosis has also been described

(Offensperger et aI., 1991; de Bruin et al., 1995). Additionally, Lu et al. (1996) showed that

HepG2 cells internalized HBV after proteolytic cleavage of the preS domain by VS protease.

This exposed a fusion domain within the envelope protein of HBV that enabled viral fusion

with host cell membranes.
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It is also not clear in what form the viral genome is transported into the cell nucleus since

the diameter of core particles is at the maximal limit for transport through the nuclear pore

(Feldherr et al., 1984). Firstly, nuclear localisation signals (NLS), which are contained within

the C terminus of the HBV nucleocapsid, were suggested to allow nucleocapsid translocation

into the nucleus (Eckhardt et al., 1990; Yeh et al., 1990). However, HBV nucleocapsid

particles were not able to cross the nuclear membrane in either direction in transgenic mice

expressing the C protein and only do so upon dissolution of the nuclear envelope (Guidotti et

al., 1994). Thus the nucleocapsid itself might not normally traverse the nuclear pore.

Alternatively, core particles may bind to the nuclear membrane and release their viral DNA

into the nucleus or even disassemble in the cytoplasm before reaching the nuclear membrane

(Bock et al., 1996; Kann et al., 1997; Qiao et al., 1999). Phosphorylation of the core protein

C-terminal serine residues by protein-kinase C has been suggested to destabilise the core

particles and thus allow virion DNA release giving further support to this model (Kann et al.,

1993;Kann & Gerlich, 1994).

The HBV viral genome, once into the nucleus, is then repaired to its covalently closed

circular (ccc) DNA form. This process requires the following modifications: the removal of its

terminal structures (from both strands); repair of the single-stranded gap region (by

completion of the plus strand synthesis); and covalent ligation of the DNA termini. Host cell

enzymes are most likely responsible for all of these reactions (Kock and Schlicht, 1993).

1.3.3 Transcription

Nuclear ccc HBV DNA is transcribed by host RNA polymerase II. It creates an RNA

template for HBV replication and leads to the synthesis of all viral mRNA transcripts. All

major transcripts are unspliced, have negative strand polarity and terminate with a poly (A)

tail of about 100 nt in length (Cattaneo et al., 1983, 1984).

1.3.3A Viral transcripts

Four extensively overlapping viral RNAs are produced predominantly (3.5, 2.4, 2.1, and

0.7-kb in length). These are exported into the cytoplasm where translation of viral proteins,

assembly of viral particles and genome replication occurs.

a) 3.5-kb RNAs: they cover the entire genome and are terminally redundant (Seeger et al.,

1991). The 3.5-kb transcript produces the polymerase, core and precore proteins and serves as
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the pregenomic RNA template (PgRNA) that is reverse transcribed in viral genome replication

(Chang et al., 1989; Schlicht et al., 1989).

b) 2.4-kb RNA: it is initiated approximately 38 nt upstream of the start codon of the preS/S

gene (Will et al., 1987). It serves as the mRNA for LHBs and is transcribed only in

hepatocytes as it is controlled from the SI promoter (Chang et al., 1989).

c) 2.1-kb RNAs: these 2.1-kb RNAs transcripts are the templates for the synthesis of

MHBs and SHBs proteins (Standring et al., 1984; Siddiqui et al., 1986). They are initiated at

different initiation sites and their transcription is regulated by the S2 promoter which lacks a

TATA box and tissue specificity (Cattaneo et al., 1983).

d) 0.7-0.9-kb RNA: this transcript functions as the mRNA for the X protein which has

transcriptional transactivating potential (Siddiqui et al., 1987; Balsano et al., 1994).

1.3.3B Spliced transcripts

Although all HBY proteins identified to date have been encoded by unspliced RNAs,

spliced HBY transcripts have been detected in HBY-transfected cell hepatoma cell lines, in

HBY-transgenic mice and in HBY-infected liver (Chen et al., 1989; Su et al., 1989a, b; Suzuki

et al., 1989, 1990; Choo et al., 1991; Wu et al., 1991). Spliced RNAs have also been detected

in the related duck (DHBY) and woodchuck hepatitis viruses (WHY) albeit with variable

splicing patterns (Ogston & Razman, 1992; Hantz et al., 1992; Obert et al., 1996). Single and

double spliced forms ofHBY PgRNAs have been described, which have different splice donor

and acceptor sites and give rise to variable sizes of spliced transcripts (Chen et al., 1989; Su et

al., 1989a, Suzuki et al., 1989; Wu et al., 1991).

Recently, Gunther et al. (1997) could not detect any spliced sites downstream of nt 486

and upstream of nt 2067 and proposed that the efficiency and type of splicing, which was

different from patient to patient in their study, might be HBY genotype dependent.

Furthermore, an HBY spliced-generated protein (HBSP), 93 aa in length, was described as the

encoded protein of a singly spliced RNA. In this study, HBSP protein and its anti-HBSP

antibodies were detected in HBV-infected liver samples and sera collected from chronic HBV

carriers respectively (Sousaan et al., 2000). It was also shown earlier that much of LHBs of

DHBV is translated from a spliced transcript derived from the C pre-mRNA and not from

preS1as expected (Obert et al., 1996).
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The precise involvement of spliced HBV RNAs in the HBV life cycle is still unclear.

Spliced HBV transcripts are not essential as mutations of splice donor and acceptor sites do

not influence viral replication (Su et al., 1989b; Wu et al., 1991; Caselmann et al., 1996).

However, encapsidation of these singly spliced RNAs has been reported. 'Ih..eseare most

probably secreted as defective HBV particles through trans-complementation with a helper

wild-type virus (Terre et al., 1991). These HBV defective particles have been detected in

livers and sera from chronically infected patients (Terre et al., 1991; Rosmorduc et al., 1995;

Gunther et al., 1997). Thus, spliced HBV RNAs and their encoded proteins such as HBSP may

playa role, whether direct or indirect, in pathogenesis and! or persistence of HBV (Rosmorduc

et aI., 1995; Gunther et aI., 1997; Sousaan et al., 2000).

1.3.3C Transcription regulation

To date, four promoters (S1 promoter (SIP), S2 promoter (S2P), C promoter (CP), and X

promoter (XP» have been identified as responsible for the transcription of the HBV mRNAs

(Siddiqui et al., 1986; Treinin & Laub 1987; Honigwachs et al., 1989). Of these four

promoters, S2P (nt 3045-3180) is the least liver specific, being active in a wide range of

mammalian cell lines (Dubios et aI., 1980; Standring et al., 1984). However, it is most active,

as for all HBV promoters, in liver cells (Chang & Ting, 1989; Seifer et al., 1990). A CCAAT

box, which is located between nt 3105 and 3110 and shown to mediate NF-Y activation, has

been described to regulate both SIP and S2P promoters as it enhances the S2P activity and

down-regulates SIP transcript levels (Lu et aI., 1995; Lu & Yen 1996).

On the other hand, SIP and CP are highly liver specific and cells in which CP is inactive

cannot support HBV DNA replication, as the production of genomic RNA, which is the

template for reverse transcription, is mostly under the control of this promoter (Seeger et al.,

1989). Only the SIP located between nt 2710 and nt 2800 has a TATA-box; consequently, this

determines a precise 5' end for the LHBs-encoding transcripts (Schaller & Fischer 1991). XP

is partly overlapped with Enhl, In addition to the cellular factors that are important for X gene

transcription, HBx was shown to have a role in enhancing XP activity by binding a 20bp

element at its 5' end (Takada et aI., 1996).

The promoter activities are regulated by two enhancers: enhancer I (EnhI, nt 970-1240) and

enhancer II (EnhIl, nt 1627-1774). EnhI is located between the S and X ORFs whereas EnhIl

is just upstream of the CP (Shaul et al., 1985; Yee, 1989). EnhI displays only a preference for
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hepatocytes, whilst EnhIl shows a highly hepatocyte-specific activity (Shaul et al., 1985;

Tognoni et al., 1985; Yee, 1989; Wang et al., 1990b).

EnhI consists of three elements: a modulator element at the 5' terminus; a central domain;

and the 3' end that partially overlaps with XP. Several nuclear proteins have been identified as

able to bind to the central domain, which has at least four motifs. The external two, at the 5'

and 3' terminals, bind nuclear factor-l (NF-l) and rheumatoid factor-l (RF-l) respectively.

The inner two mediate the tissue-specific regulation of EnhI, and bind HNF3 and HNF4

(Garcia et al., 1993; Kosovsky et al., 1996). S2P, XP and CP are under the control of EnhI,

which is regulated by a complex interaction of hepatocyte-specific and ubiquitous

transcription factors (Yen 1993; Kosovsky et al., 1996). Recently, Bock et al. (2000) have

shown that the decreased transcription activity associated with mutations of EnhI region,

precisely the binding sites for HNF3 and HNF4, might result in chronic persistence of HBV

by reducing replication and immunogenicity of the virus.

EnhIl, which is located within the X ORF and partially overlaps CP, consists of two parts

(A and B), with part B as the basal functional unit (Wang et al., 1990b). In a position- and

orientation-independent manner, it enhances the transcription from S2P and XP and to a small

extent from SIP (Yuh & Ting, 1990; Zhou & Yen 1990). It also positively regulates the basal

CP, but in a position- and orientation-dependent way (Yuh et al., 1992; Yuh & Ting 1993).

Hepatocyte transcription factors such as hepatocyte nuclear factor 1 (HNF1), HNF3, HNF4,

SPI and others, which are important for upregulating CPlEnhII activity, are responsible for the

hepatocyte specificity of EnhII. Other negative regulatory elements, not identified yet, were

also shown to down-regulate CPlEnhIl by binding to its 5' terminal in non-hepatic cells (Guo

et al., 1993; Zhang et al., 1993; Li et al., 1995; Raney et al., 1997; Wang et al., 1998).

A transcriptional termination signal is situated just after the pregenomic RNA-start site

(Ganem & Varmus, 1987). However, it can only function as a terminator when it is more than

400bp away from the start of transcription (Cherrington et al., 1992), enabling RNA

polymerase II to ignore it during the first pass from the 3.5kb RNA start point.
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1.3.3D Post-transcriptional regulation

A post-transcriptional regulating element (PRE) within HBV transcripts, ....500 bases long

and partially overlaping X ORF, was discovered by the observation that HBV S gene

expression was reduced if the downstream region of ORF S was deleted from expression

plasmids (Huang & Liang, 1993; Huang & Yen, 1994). Deletion studies ofHBV PRE (HPRE)

have shown that it consists of two independent sub-elements, PREa nt 1151-1412 and PREP

nt 1413-1684, which function in a co-operative manner (Donello et al., 1996). Distinct binding

sites for cellular RNA binding proteins that mediate the function of PRE are most probably

located within these sub-elements (Donello et al., 1996; Huang et al., 1996b). HPRE regulates

the level of preS/S-specific transcripts by facilitating their transport from the nucleus to the

cytoplasm (Huang & Yen, 1994). This HPRE-effect is most probably due to a positive role;

prevention of splicing and activation of export (reviewed in Yen, 1998).

Further work from the Hope group on WHY PRE (WPRE) has revealed that WPRE

consists of three sub-elements, WPRE a, P and y, where the first two are similar to those of

HPRE. This "tripartite" WPRE was also more active than the "bipartite" HPRE, most

probably due to the additional cis-acting sequence in WPRE (Donello et al., 1998). Moreover,

insertion of WPRE into HIV -derived vectors significantly improves their efficiency,

suggesting its employment in gene therapy. The WPRE effect was only orientation-dependent

but neither cell- nor promoter- dependent (Zufferey et al., 1999). In another elegant

experiment from the same group, important RNA components were identified within HPRE a

and P (HPRE stem-loop a nt 1292-1321 (HSLa) and HSLP nt 1408-1433) which were

essential for the full function of HPRE. Further analysis showed that smaller fragments

containing these HSL a and P, rather than the whole HPRE a and p sub-elements, are

sufficient for the HPRE function (Smith et al., 1998).

1.3.4 DNA replication

Summers and Mason (1982), using DHBV, established that hepadnaviral DNA replication

is accomplished by reverse transcription of an RNA intermediate. In this model, encapsidation

of RNA template with the viral polymerase into the core is followed by sequential synthesis of

the two viral DNA strands. Minus-strand is made first from the RNA template, accompanied

by degradation of the latter, followed by the plus-strand synthesis using the newly synthesised

minus-strand as a template.
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1.3.4A RNA encapsidation

Assembly and initiation of reverse transcription in hepadnaviruses are coupled reactions

that depend on the formation of a ribonucleotide protein complex (RNP). Both viral pol

(reverse transcriptase) and a sequence on PgRNA (E) are required for the formation of this

complex (Bartenschlager et al., 1990; Hirsch et al., 1990; Pollack & Ganem 1993; Wang &

Seeger 1993). The incorporation of the RNA template with the viral pol protein into viral

cores is a highly selective reaction as only viral RNAs of genomic length, not sub genomic or

cellular RNAs, are efficiently incorporated into virions (Enders et al., 1987). Moreover, only

the 5' copy of E within the terminal redundancy of PgRNA serves as the functional

encapsidation signal, however, it is still unclear how the packaging machinery accomplishes

this discrimination (Hirsch et al., 1991; Pollack & Ganem 1993).

Specific E recognition is a function of the pol protein, first suggested when ORF P-mutant

viruses were shown to produce empty capsids (Hirsch et al., 1990; Bartenschlager et al.,

1990). Site-specific binding of Pol to E was later demonstrated in vitro (Pollack & Ganem

1994; Wang et al., 1994a). This reaction was shown to depend on host factors such as heat

shock protein HSP90 and P23 (chaperone partner for HSP90) in addition to ATP hydrolysis. A

multi-component chaperone complex in an energy-dependent process was therefore proposed

to maintain the viral pol in a conformation permissive for RNA packaging (Hu & Seeger

1996; Hu et al., 1997). Recently, human HBV pol was also shown to form a complex with

HSP90, as DHBV did, where C-terminal regions of the TP and RT domains interacted

independently with HSP90 (Cho et al., 2000).

1.3.4B DNA synthesis

DNA replication starts with binding of the viral polymerase (Pol) to the e bulge at the 5'

end of PgRNA. The Pol then primes DNA synthesis, using a tyrosine in its own amino terminal

protein domain (TP) as a primer and s as a template. After three or four nucleotides the DNA

synthesis is arrested (Fig I.4A). Further DNA synthesis requires three switches; one during

minus-strand synthesis and two during plus-strand synthesis.
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Figure 1.4: HBV genome replication

The thin line stands for the PgRNA, dashed line for the plus strand and bold line for the minus strand. The direct

repeats are represented as boxes labeled DRI and DR2. The UUAC involved in the minus strand template switch

are shown. The shaded circle represents the viral P protein, which binds the E bulge at the 5' end of PgRNA. The

sequences of the terminal redundancy of minus strand DNA (shown as 5'r and 3'r). 8asepairing is shown as

hatch marks. (B) Minus strand template switch. (C) Elongation of the minus strand. (D) Completion of minus

strand synthesis and generation of the plus strand primer. (E) Generation of duplex linear genome. (F) Plus strand

primer translocation. (G) Initiation of plus strand synthesis. (H) Plus strand synthesis continues to the 5' terminus

of the minus strand DNA. (I) Circularisation template switch. (J) Generation of a relaxed circular DNA genome.

(Taken from Havert & Loeb, 1997)
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The first template switch occurs shortly after the pnmmg reaction. The primed Pol

complex is translocated to a complementary sequence (UUAC) near the 3' end of the PgRNA

(Fig lAB) where the synthesis of minus-strand DNA resumes. The minus-strand is then

extended to the 5' end of the PgRNA (Fig lAC & D). An active role for the polymerase in

minus-strand DNA transfer has been recently described in DHBV as deletion of aa 79-88 in

the terminal protein domain specifically inhibited the minus-strand transfer reaction (Gong et

al., 2000). Accompanying or shortly following the minus-strand DNA synthesis, the pgRNA

template, with the exception of short terminal oligoribonucleotide, is degraded by the RNaseH

activity of Pol (Fig lAD).

This oligoribonucleotide is then translocated, in the second switch, to DR2 near the 5' end

of minus-strand DNA where it serves as the primer for plus-strand DNA synthesis (Lien et al.,

1986; Loeb et al., 1991). Following this second transfer, the plus-strand DNA synthesis

continues to the 5'end of the minus-strand DNA (Fig 1.4H). However, in approximately 10%

of cases the second switch from DRI to DR2 does not occur, leading to an in situ priming

reaction (Staprans et al., 1991: Fig 1.4E). Thus, a double stranded linear DNA (dsIDNA)

genome, rather than a relaxed circular DNA (rcDNA), is produced.

A third template switch occurs once the plus-strand DNA synthesis reaches the 5' end of

minus-strand DNA. The minus-strand DNA template contains a 7-9 nt terminal redundancy

(r). This redundancy is required for the third template switch in which the 3' end of the

nascent plus-strand is translocated to the 3' end of minus-strand (Loeb et al., 1997: Fig 1.41)to

circularize the genome and permit resumption of the plus-strand synthesis. The synthesis of

plus-strand is only partially completed resulting in a noncovalently closed, partially double

stranded, circular DNA genome (rcDNA).

It is noteworthy that other sequences, distinct from DR1, DR2, 5' and 3' copies of (r),

have been shown to be required for the primer translocation and genome circularisation. These,

cis-acting sequences have been mapped to three different regions of the DHBV genome: 3E

region, near the 3' end of minus-strand template; M region, near the middle of the minus

strand; and 5E region which is located 3' of the DR2 on the minus strand. Although the exact

mechanism remains unclear, these sequences have been proposed to establish a template

conformation that is supportive for efficient template switching during plus-strand synthesis

(Havert & Loeb, 1997). Moreover, changing the site of initiation of plus-strand DNA

synthesis, using a new position relative to the 5' end of the template, has been shown to inhibit
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the subsequent template switch and genome circularisation (Loeb et al., 1998). It seems

therefore, that there are several poorly identified factors that could influence the mechanisms

responsible for primer translocation and genome circularisation. These need to be elucidated.

1.3.4C Viral Assembly

Nucleocapsids containing rcDNA can be either enveloped at an internal cellular

membrane and actively secreted as mature virions or transported back into the nucleus, where

the genome is repaired to yield cccDNA to amplify the intracellular genome pool (Tuttleman

et al., 1986). The destiny of nucleocapsids, either disintegration and release of the genome or

envelopment, is regulated. In the DHBV model, it was demonstrated that disintegration and

genome amplification prevail during the early phase of infection, whereas later, genome

amplification ceases and envelopment of capsids dominate, yielding mature virions (Lenhof &

Summers 1994).

Moreover, the newly formed cytosolic-capsids were found -,incompetent for envelopment

as they contain PgRNA and not the DNA genome. It is suggested that a maturation step or

signal that is linked to the synthesis of the DNA genome makes the nucleocapsid ready for

envelopment (Gerelsiakhan et al., 1996; Wei et al., 1996; Koschel et al., 2000). In contrast,

empty and DNA-containing core particles were shown recently to bind equally to the envelope

protein domains (Hourioux et al., 2000).

LHBs, in addition to SHBs, is required for the assembly and production of mature virions;

however, most of pre-S 1 region is dispensable for this process as demonstrated by

experimental mutagenesis (Bruss & Ganem 1991a, b; Bruss & Thomssen, 1994). Poisson et al

(1997) suggested the involvement of the first 8 N- terminal aa of pre-S2, in addition to the 13

C-terminal aa of pre-S 1, in the envelope-nucleocapsid interaction, as a peptide corresponding

to this region showed the greatest binding affinity to the nucleocapsid. This was further

supported by le Seyec et al. (1998), who showed that the first 5 aa of pre-S2 were essential for

virion export and the domain required for this process should be extended to the N-terminal of

pre-S2. Furthermore, it has been suggested that the cytosolic S loop, aa 29- 79, mediates the

contacts between the nucleocapsid protein and the envelope. A synergistic effect of both SHBs

and LHBs proteins during HBV assembly has been proposed (Tan et al., 1999; Loffler-Mary

et al., 2000).
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HBV core gene mutations that may alter the capsid particle, which interact with surface

proteins during envelopment, have also been reported to block the nucleocapsid envelopment

(Koschel et aI., 2000). Thus, there are several factors controlling the envelopment of core

particles and the ones identified to date are the infection phase and corel surface proteins-

interactions.

1.4 HBV VIRAL PROTEINS

At least seven different proteins are synthesised by the cell which is infected by HBV: the

L, M, S hepatitis B surface proteins, the hepatitis B core and e proteins, the RNA-dependent

DNA polymerase and the X protein (Figure 1.5).

5'/N 3'/C

I pcl HBcAg > I PreS 11preS21 HBsAg :> HBx >
HBpol 178 336 680 832

HBx > I TP(Y63) ISpacer IRT(YMDD) IRN~

genotype PreC HBeAg PreSt PreS2 HBsAg HBpol (YMDD)* HBx

A 29 185 119 55 226 845 (M552) 154
B 29 183 119 55 226 843 (M550) 154
C 29 183 119 55 226 843 (M550) 154
D 29 183 108 55 226 832 (M539) 154
E 29 183 118 55 226 842 (M549) 154
F 29 183 119 55 226 843 (M550) 154
G 29t 195 118 55 226 842 (M549) 154

Figure 1.5: Overlapping and total length of HBV viral proteins in different genoptypes.

*: Positions are highlighted where variability is observed between different genotypes.

t: Genotype G may contain translational stop codons, affecting the precore region length.
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1.4.1 Hepatitis B surface proteins

Only one ORF encodes for these proteins. LHBs covers the entire reading frame, MHBs

initiates at an internal site and the 226 amino acid sequence of SHBs starts further downstream

(Heermann et al., 1984). The sequence between the first and second start site is termed pre SI

and is one of the most variable regions of the genome; the sequence between the second and

the third start site is termed preS2 (Peterson, 1981; Stibbe & Gerlich, 1983). Properties and

functions of hepatitis B surface proteins are shown in Table (1.1). Surface proteins are

believed to mediate the attachment of virions to the hepatocyte membrane and to regulate

virus assembly and amplification of the supercoiled DNA (see section 1.3.1 & 1.3.4C). They

are also used for the production of plasma-derived and recombinant vaccines (Krugman &

Giles, 1973; McAleer et al., 1984) as they are highly antigenic and stimulate the production of

virus-neutralising antibodies.

Table 1.1: Properties and functions of hepatitis B surface proteins

SHBs MHBs LHBs

Genes S gene Pre S2 & S Pre SI, Pre S2 & S

Amino acid Length 226 281 389- 400

Molecular weight p24 & gp27 gp33 & gp36 p39 & gp42

Function Immune target Immune target Immune target
Receptor binding Receptor binding? Receptor binding
Virion assembly Virion assembly Virion assembly

Secretion

SHBs, which is 226 aa long, exists in two forms: p24, unglycosylated and gp27,

monoglycosylated with a complex glycan residue at amino acid Asn-146. Both forms are

equally represented in the viral envelope (Peterson 1981, 1987; Heerman et al., 1984). Both N

and C termini of SHBs are believed to be oriented to the ER lumen (Eble et al., 1987; Bruss &

Ganem, 1991a; see Figure 1.6a). Five regions, three hydrophobic and two hydrophilic, have

been identified so far in SHBs (Prange & Streeck, 1995).
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The first two hydrophobic regions constitute ER signal sequences (I, aa 11-28; II, aa 80-

98) that initiate the translocation of N-terminal sequences and anchor the protein within the

ER membrane. The second region has also been shown to be essential for functional

organisation of the S protein (Bruss & Ganem, 1991a, b). The C-terminal region, aa 169-210,

represents the third hydrophobic domain. In contrast to the extreme sensitivity of the N-

terminus to deletion, the C-terminus seems to tolerate much larger deletions. An HBsAg

protein with a 51 aa C-terminal deletion could be assembled and secreted (Prange et al., 1995).

However, Bruss and Ganem, (1991a) found that the C-terminally truncated S protein (lacking

51 aa) could only be secreted when co-expressed with the wild type.

It is believed that the S region is essential for virus assembly, as cells that synthesise SHBs

exclusively can form regular 22-nm particles (Liu et al., 1982). Secretion of 22-nm SHBs

particles occurs via the Golgi apparatus after aggregation of SHBs molecules. The S proteins

in secreted viral and subviral particles are extensively cross- linked by disulphide bridges;

such cross-linking has been shown to occur concomitantly with the assembly and budding of

the particles (Huovila et al., 1992). Of 14 cysteine residues presumably involved in this

process, four are located in the first hydrophilic region and eight are located in the second

hydrophilic region (Mandart et al., 1984;Norder et al., 1992a).

The first hydrophilic region, aa 29- 79, is on the inner cytoplasmic surface of the viral

envelope and thus may facilitate core particle envelopment during maturation of the virion

(Prange et al., 1995; Lamer-Mary et al., 2000). Deletion mutants reveal that this region

tolerates only minor structural changes (Prange et al., 1992). Three of the four cysteine

residues in this region, Cys 48, 65 and 69, are conserved among all hepadnaviruses and were

shown to be essential for secretion. However, none of these essential cysteines are important

for dimerisation as none of the single or multiple cysteine mutants were found to accumulate

in a monomeric form (Mangold and Streeck 1993).

The second hydrophilic region (aa 99- 160) is exposed on the outer surface of secreted

viral and subviral particles. It contains the major group and subtype-specific antigenic

determinants (Le Bouvier, 1971; Bancroft et al., 1972; Norder et al., 1992a). This region has a

highly complex structure and is very cysteine dense; eight of the 14 cysteine residues in

HBsAg are located here and all of them are highly conserved among mammalian

hepadnaviruses (Mandart et al., 1984; Norder et al., 1992a, 1993). Disulphide bonds between

these residues, whether intra- or inter-molecular, .are likely to contribute to a highly complex
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structure. Antigenicity of HBsAg is dependent upon this complex structure and substitution of

many of these cysteine residue results in loss of immunoreactivity (Mangold et al., 1995;

Bruce & Murray 1995). However, not all cysteines are equally important for antigenicity and!

or secretion (Mangold and Streeck, 1993;Mangold et al., 1995) (Table 1.2).

Table 1.2: The effect of HBsAg cysteine-residues changes according to previous

mutational analysis studies.

Cys/ mutant Secretion * Antigenicity] Employed Ab Reference

124 Cys/ Ser ND

147 Cys/ Ser ND

107 Cys/ Ala +
121 Cys/ Ser ++

1211124 Cys/ Ala ++

137/138/139 Cys/ Ala +
147/ 149 Cys/ Ala +
107 Cyst Ala +
137 Cyst Ala ++

138 Cys/ Ala +
139 Cys/ Ala ++

137/ 139 Cys/ Ala

147 Cys/ Ala ++

149 Cys/ Ala +
137 Cys/ Ser ND

138 Cys/ Ser ND

139 Cys/ Ser ND

149 Cys/ Ser ND

+ pAb Ashton-Rickardt & Murray (1989)

+
mAb Mangold & Streeck (1993)

+

+
ND mAb Mangold et al., (1995)

+
ND

+
ND

++

++

pAb Bruce & Murray (1995)

+

* Secretion: ++, efficient; + reduced secretion; • mostly retained into the cells.

t Antigenicity: ++, reactive; +; reduced reactivity; ., non-reactive. ND, not done.

PAb: polyclonal antibody; mAb: monoclonal antibody.

Cys: cysteine; Ala: alanine; Ser: serine.
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MHBs, which is encoded by the preS2 and S regions (see Figure 1.6b), is 281 aa long and

can be found in two glycosylated forms: gp33, with Asn at aa-4 of the preS2 region and gp36,

with Asn at aa-146 within the S region (Peterson, 1981). The preS2-glycosylation site is

highly conserved, so it has been proposed that the N-linked glycan may playa role in virus

adsorption to the hepatocyte surface (Pontisso et al., 1989a; Gerlich et al., 1993). Additional

candidates for mediation of adsorption of preS2 region to human hepatocytes were discussed

in section 1.3.1. The function of M protein is not well understood. Inhibition of M protein

expression had no effect on viral morphogenesis (Bruss & Ganem 1991a). MHBs is unlikely

to be involved in viral infectivity (Fernholz et al., 1993). However, the first 5- 8 aa at its N-

terminal were shown recently to be involved in the envelope-nucleocapsid interaction (see

section 1.3.4C).

LHBs is 389- 400 aa long due to a variable preS1 domain (108-119 aa), and this is

dependent on viral genotype. PreS 1may hide the preS2 and S regions (Bruss et al., 1994; see

Figure 1.6c). LHBs accounts for only 1-5% of surface proteins in subviral particles and exists

in two forms, p39 and gp42. LHBs was shown to be modified by N-terminal myristylation

(Persing et al., 1987). Myristylation is not required for efficient virion assembly but is required

for viral infectivity and perhaps anchoring the LHBs in the viral-envelope lipoprotein bilayer

(Kuroki et al., 1989; Gripon et al., 1995; Bruss et al., 1996). LHBs is co-secreted with

nucleocapsids from the ER (Ueda et al., 1991). When LHBs is over-expressed compared to

SHBs, it inhibits secretion of the latter (Chisari et al., 1986).

Amino acids 21-47 of the preS 1 region allow specific binding of HBV to the human

hepatocyte membrane (Petit et al., 1992), suggesting a potential receptor function for LHBs

(see section 1.3.1). Besides its role in infection, LHBs is required for the assembly and

production of mature virions (see section 1.3.4C). However, this function requires display of

pre-S 1 epitopes on the cytosolic side. As a consequence of this dual function, it has been

suggested that a fraction of L polypeptides should keep the pre-S 1 domain inside the virion (i-

preS form). The remaining L polypeptides undergo a conformational shift (a post-translational

translocation) to transfer the pre-S 1 binding receptor region across the lipid bilayer to the

exterior of the virus particle (e-preS form), displaying a topology similar to the M protein

(Bruss et al., 1994). This transfer appears to occur as viruses mature during their passage

along the secretory pathway (Prange & Streeck 1995; Guo & Pugh 1997).
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Figure 1.6: The two-dimensional model of HBV surface proteins.

(a) SHBs, (b) MHBs, Cc& d) LHBs with alternative membrane topology ofN terminus. Arabic numerals reflect

amino acid positions and Roman numerals reflect transmembrane domains. Gly: glycine; met: methionine; asn:

asparagine; myr: myristyl residue. (Taken from Caselmann, 1996)
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The lack of glycosylation of LHBs at Asn-4 in the preS2 region gave further support to

this model with the cytoplasmic location of the N terminus (Ostapchuk et al., 1994; Figure

1.6d). Recently, a partial translocated topology, as an intermediate configuration, has also

been suggested in DHBV (Guo & Pugh, 1997). A model for pre-S translocation has been

proposed based on the presence of an aqueous channel in the virus envelope. This model

recalls the early postulation of Stirck et al. (1992). The channel would most probably be

created by oligomerisation of transmembrane domains in the S region (Guo & Pugh 1997;

Grgacic et al., 2000). Moreover, the cytoplasmic loop between transmembrane domains 1 and

2 (TM 1 and TM2) was shown as membrane embedded and probably buds to the particle

surface. Accordingly, a highly folded L molecule with five membrane-spanning domains has

been suggested with a possible role for this 49 aa-long region, S aa 30-79, in the formation of

the presumed preS translocation channel (Stirck et al., 1992; Grgacic et al., 2000; Figure 1.7).

ext.

In.

Figure 1.7: Topology ofDHBV L protein with the loop region between TMI and TM2.

The loop between TMI and TM2 (equivalent to first hydrophilic region in HBV) is shown as membrane

embedded with part of the loop, shown as a black bar, exposed to the particle surface. (Taken from

Grgacic et al., 2000)
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1.4.2 Hepatitis B virus core protein

The hepatitis B core protein (HBcAg; p21) is translated from the pregenomic mRNA and

is 183 amino acid long in most genotypes. Two major domains exist within core protein: the

assembly-domain, which includes the N-terminal up to aa 144; and the arginine-rich domain,

located at the C-terminal, probably situated inside the particle (Seifer & Standaring 1994;

Zlotnick et al., 1997).

The highly basic C-domain, starting at aa 150, acts as a binding domain which is required

for RNA encapsidation and proper reverse transcription (Hatton et al., 1992; Nassal 1992).

This C-terminal domain has been shown to be phosphorylated via an endogenous protein

kinase (Albin & Robinson, 1980). The relevance of this phosphorylation has not been

clarified.A possible role in nuclear transport of virion DNA after nucleocapsid disassembly or

production of an essential undefined signal required for virion maturation ha~ been suggested

(Kann & Gerlich, 1994; Kann et al., 1997; Qiao et al., 1999: see Section 1.3.2).

Assembly of core proteins into icosahedral particles necessitates the formation of dimer

subunits, which are the only detectable assembly intermediates (Zhou & Standring 1992;

Chang et al., 1994). Functional analyses of core protein variants showed that two regions (aa

78- 117 and 113-143) are required for the dimerisation of core monomers and for the

subsequent assembly into core particles (Bottcher et al., 1997; Conway et al., 1997; Zlotnick

et al., 1997; Konig et al., 1998: Figure 1.8). In this model, core protein contains four a. helices

and each monomer should have at least two interfaces, one for dimerisation and the other to

mediate the multimerisation. Cysteine cross-links at aa 48, 61 and 183, also have a role in the

dimerisation and assembly process (Nassal, 1992; Zheng et al., 1992).

Two classes of : core particle have been identified by cryoelectron microscopic

analysis; the first class consists of 120 dimer subunits, which are assembled into a large shell

with a diameter of 36-nm and a triangulation number of 4 (Crowther et al., 1994). A smaller

shell containing 90 dimer subunits, with a triangulation number of 3, constitutes the second

class; these are formed when core particles with small truncations at their C-terminus are

expressed (Zlotnick et al., 1996). Core assembly can tolerate C-terminal truncations up to aa

144 or 140, however, no particles can be detected with further truncated and poorly secreted

variants (Brinbaum & Nassal 1990; Zlotnick et al., 1996). Capsids containing full-length core

proteins are mostly stable, probably due to the additional interactions between the basic C-
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terminus and encapsidated RNA, while those made of truncated variants are unstable in vitro

(Brinbaum & Nassal 1990; Wingfield et al., 1995).

Core particles are strongly immunogenic, as the HBcAg B cell immunodominant epitope

(aa 74-89) is probably located at or near the spikes on the particle surface (Salfeld et al., 1989;

Crowther et al., 1994; Conway et al., 1998). Antibodies against HBcAg appear early in acute

infection (anti-HBc-IgM) and anti-HBc-IgG usually remains detectable for life (Cohen, 1978).

The cellular immune response against HBcAg is considered a major pathogenic mechanism of

HBV-induced liver damage (Ferrari et al., 1988) (see Section 1.6).

HBc apitope
(74·89)

/ \

/-7:1;
Arginine-rich
(150-180)

Dimarization
domain
(7&-117)

/
Dimer
multimerization
domain
(113-143)

I
Proline-rich
(129-138)

\

"
Particlo lntoricr

Cystoine
(183)

Figure 1.8: Three-dimensional model of the core protein dimer based on electron cryomicroscopy

Central exhelices (boxes) and regions employed in core protein dimerisation (gray) and dimer multimerisation

(black) are shown. The assignment of functional domains and amino acids positions is speculative. The folding of

the C terminus within the interior of core particle is currently unclear. (Taken from GUnther et al., 1999).
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1.4.3 Hepatitis B virus eAg

The hepatitis B virus e antigen (HBeAg) is produced by proteolytic cleavage of a p25

precursor protein that is translated from the start codon of the preC region. The p25 protein

contains an extra 29 amino acids at the N-terminus of core protein. The first 19 N-terminal aa

of these 29 constitute a signal peptide sequence that directs the precursor protein into the ER

(Ou et al., 1986; Carlier et al., 1995). An intermediate p22 protein is produced by the cleavage

of this 19-aa signal peptide which is then either translocated into the ER lumen or released

back into the cytoplasm (Garcia et al., 1988). The translocated p22 protein is further processed

at its carboxyl terminus within the Golgi compartment to produce a soluble protein (pI7) that

is secreted and detected in the circulation as HBeAg (Takahashi et al., 1983; Wang et al.,

1991a). HBeAg is present in serum during active infection and generally correlates with

the degree of viraemia.

This soluble protein is found mostly as a monomer and is antigenically different from core

protein (HBeAg and HBcAg), though they appear to share major T-cell epitopes (Bertoletti et

al., 1993). A hydrophobic triad motif (WLW) and cysteine residue within the ten pre-core

amino acids left after signal peptide cleavage, probably force HBeAg into a conformation that

is incompatible with aggregation, thus resulting in this monomeric form (Wasenauer et al.,

1992; Nassal & Rieger 1993). Although HBeAg has been described as a secretory protein, it

can be detected in various compartments of the cell such as the nucleus (Ou et al., 1989; Yang

et al., 1992) and the cytoplasm (Garcia et al., 1988; Yang et al., 1992). This is probably due to

lack of translocation or incomplete processing of the protein.

HBeAg function is not clearly understood. It has been shown to be dispensable for in vivo

infections (Chang et al., 1989; Chen et al., 1992a). Experiments in mice suggest that HBeAg,

acting as an immunomodulatory protein, may cause depletion of Th 1 helper cells, thereby

suppressing the cytotoxic T-Iymphocyte (CTL) response to the infected hepatocytes (Milich et

al., 1990, 1998). Moreover, Scaglioni et al, (1997), showed that levels of HBV replication are

suppressed by the HBeAg overexpression, probably due to formation of hybrid particles that

are unable to support encapsidation. This was further supported by an early report of Lamberts

et al. (1993), where high levels of viral replication were detected when a precore-minus

genome was used in transfection assays. Similar findings have been reported in an HBV

transgenic mouse model (Guidotti et al., 1996a).

27



Chapter 1 Introduction

1.4.4 Hepatitis B virus polymerase

The hepatitis B viral polymerase (pol) is translated from PgRNA (Ou et al., 1990). Pol has

four domains which are arranged from the N to the C terminus as follows: terminal protein

(TP) which is covalently linked to the 5' end of the minus-strand and serves as a primer for

reverse transcription; a spacer region which can be deleted without loss of enzyme activity;

DNA polymerase/ reverse transcriptase (poll RTase); and RNase H activity (Bosch et al.,

1988; Radziwill et al., 1990; Lee et al., 1997b: see Figure l.5). Poll RTase consists of two

subdomains; the C-terminal one contains the reverse transcriptase activity as it has the

conserved YMDD motif (Radziwill et al., 1990). Sequence analysis of the mammalian and

avian Pol ORF revealed highly conserved regions among hepadnaviruses (Chen et al., 1992b,

1994). A change of Asp to His at residue 699, one of the conserved aa in RNase H region,

substantially abrogated the activity of this domain (Lee et al., 1997b).

The fact that HBV P protein is difficult to express in an active form in a recombinant

system has hampered its analysis for many years. Thus, DHBV has been the most frequently

used model for the investigation of hepadnaviral replication. DHBV has been expressed using

in vitro translation or the yeast retrotransposon TyI system (Tavis & Ganem, 1993; Wang &

Seeger, 1992). Both systems produced pol that showed accurate protein priming and reverse

transcriptase activity (Wang & Seeger, 1993; Tavis et al., 1994). However, for unknown

reasons, these systems were not applicable to human HBV. Nevertheless, functional HBV pol

has been expressed recently using the baculovirus expression system and rabbit reticulocyte

lysate system (Lanford et al., 1995; Kim & lung, 1999).

Expressing HBV pol using the baculovirus system, Urban et al, (1998a) showed metal ion

preferences for both the protein priming and reverse transcription activities; protein priming

was enhanced by manganese while reverse transcription was dependent on magnesium. In a

recent study of the effect of deletion mutants, polymerase activity was still exhibited by a

smaller region than the polymerase domain, and RNase H domain deletion was more

deleterious than the deletion of TP or spacer on pol activity (Kim et al., 1999). Observations

by Lee et a1. (1997b) gave further support to these findings, as mutation of highly conserved

aa in this domain was shown to diminish or even abrogate the Rnase H activity.
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1.4.5 The hepatitis B virus X protein

The hepatitis B virus X protein (HBx), which has a mass of 16.5-kDa and is 154 aa long, is

encoded by the HBY X gene which is well conserved among mammalian hepadnaviruses

(Haruna et al., 1991; Wang et al., 1991b). Translation usually starts at the first of the three

AUOs at the 5'end of the X mRNA. HBx is mostly cytoplasmic (Doria et al., 1995; Sirma et

al., 1998). HBx has not been detected in patients' sera, but circulating anti-HBx antibodies in

HBY-infected humans and naturally infected animals suggest its expression (Persing et al.,

1986; Pfaff et al., 1987; Yitvitski et al., 1990). Anti-HBx antibodies were also detected in liver

samples obtained from WHY-infected woodchucks (Dandri et al., 1996).

HBx is a multifunctional protein with a well-described activity affecting transcription

(Andrisani & Barnabas 1999) cell growth (Benn & Schneider, 1995) and programmed cell

death (Chirillo et al., 1997). As HBx does not directly bind to DNA, it is believed that its

activity is mediated via protein-protein interactions. For instance, HBx has been shown to

enhance transcription through AP-l (Natoli et al., 1994). Several possible cellular targets have

also been identified; these include members of the CREBIATF family (Maguire et al., 1991;

Williams & Andrisani, 1995), the TATA-binding protein (Qadri et al., 1995), the UY-

damaged DNA-binding protein (Lee et al., 1995), and the proteasome complex (Huang et al.,

1996a). HBx has also been described to interact with p53 and inhibit its function (Wang et al.,

1994b: Truant et al., 1995).

In addition, HBx possess aa sequence homology to the functional domains ofKunitz-type

serine proteases inhibitors and mutation of this putative motif inactivates the transactiva~ion

function ofHBx (Arii et al., 1992).~< . Using cDNA microarray analysis, Han et al. (2000)

examined the effect ofHBx on the transcriptional regulation of 588 cellular genes and showed

its selective action in human liver cells. As the functional complex between HBx and cellular

transcriptional machinery has not been determined in vivo and HBx activates a multitude of

promoters, HBx lias been suggested to act through an indirect mechanism which will alter the

capacity of cellular transcription (Benn & Schneider, 1995; Zhang et al., 2000).

The importance of HBx in the life cycle of HBY is well described but the underlying

molecular function of HBx remains unclear. X-defective virus is unable to initiate infection in

vivo as C-terminal truncations in the related WHY have been shown to decrease viral

replication in vitro and to inhibit the establishment of infection in vivo (Chen et al., 1993a;

Zolium et al., 1994). A novel hepatitis B binding protein (XIP), which specifically complexes
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with the C-tenninus of HBx, was recently shown to negatively regulate the HBx and hence

virus replication probably through the endogenous viral eP/enhancer elements (Melegari et

aI., 1998a). In agreement with these findings, the transcription of HBV CP was shown to be

enhanced by the interaction ofHBx and CCAAT/enhancer-binding protein a (CIEBPa) (Choi

et aI., 1999). Moreover, EnUXP and EnIUCP were differentially regulated by the synergistic

effect of HBx and CIEBPa. In contrast, the HBx and CIEBPP interaction was reported to have

no functional effect in vivo (Barnabas et aI., 1997).

I.S HBV VARIANTS

Extreme variability of some viruses may be a consequence of an unusually high mutation

rate (Holland et aI., 1982; Domingo et aI., 1985). The relatively high mutation rate of the

eukaryotic viruses is obviously important in generating a pool of mutant genomes from which

new variants can emerge, however differences between viruses in their rate of variation also

reflect differences in selective forces (Smith & Inglis, 1987). Variation in viral genomes is

generally dependent upon rates of polymerase error and the relative influence of selection

pressures. In HBV, variation probably arises due to the use of a non-proofreading reverse

transcriptase enzyme in the replication cycle. However, other contributing factors have also

been reported such as transcription from integrated DNA (Girones & Miller, 1989), spliced

RNAs generated during viral replication (Rosmorduc et aI., 1995) and interaction between

normal and defective genomes (Obert et aI., 1996).

HBV is a DNA virus and its genome is estimated to undergo nucleotide substitution at a

rate of 1.4- 3.2 X 10-5per site per year (Okamoto et aI., 1987). This is much closer to RNA

viruses than to DNA viruses which are relatively stable with an estimated rate of nucleotide

substitution of 10-9per site per year (Britten, 1986). This relatively high rate of HBV mutation

may contribute to its persistence by generating a pool of variants, some of which have inactive

viral epitopes and can escape the immune surveillance.

The persistence of HBV variants has been suspected for many years based on the finding

of HBV DNA in serum and liver from HBsAg- negative patients (Wands et al., 1982). A

Chinese study, using PCR in HBsAg-/anti-HBc+ people, showed that 3% of the Chinese

general population fell into this category (Luo et aI., 1991). Mutations could be responsible for

the diminished rate of replication and consequently for the low-titre immunologically negative

HBV infection (Preisler-Adams et aI., 1993). Alternatively, they may affect the "a"
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determinant, the major B cell epitope cluster in S protein, and therefore be responsible for

antigenic change in the HBsAg resulting in failure to react in commercial HBsAg assays

(Coleman et al., 1999).

Two classes of HBV variants can be generally identified: class I variants, which occur

naturally and have been selected over years dependent on the genetic background of the host

ego subtype defining determinants. In contrast, class II variants have been selected by human

intervention. Vaccination (Carman et al., 1990; Karthigesu et al., 1994; Hsu et al., 1999) and

administration of immunoglobulin antibodies after liver transplant (Cariani et al., 1995;

Hawkins et al., 1996; Protzer-Knolle et al., 1998) or during antiviral therapy (Tipples et al.,

1996; Ling et al., 1996) have all been reported. This section will describe some of the

important HBV variants along with any significance that has been attributed to them.

1.5.1 Small envelope protein variants

The "a" determinant was believed to be situated between aa 124-147 (Brown et al., 1984)

but recent evidence, from observed natural and medically induced variants, suggests that this

epitope cluster could be extended up and downstream to include the entire major hydrophilic

region, MHR (Wallace & Carman, 1997; Figure 1.9).

Figure 1.9: Proposed model of major hydrophilic region (MHR)

The five proposed antigenic regions are labeled HBsl through HBsS. Cysteine to cysteine disulphide bridges are

also shown. (Taken from Wallace & Carman 1997)
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In this model, the suggested disulphide bridges included (C121 to CI24), (C139 to CI47),

(CI07 to C138) and (C137 to CI49). Moreover, Wallace & Carman (1997) proposed that the

epitopes of HBsAg MHR cluster into five regions: HBsl upstream of aa 121; HBs2 between

aa 121 and 124; HBs3 between aa 125 and 137; HBs4 between aa 139 and 147 or 149 and

HBs5 from 148 or 150 downstream to 169. HBs2 and HBs4 can also be considered as a single

antigenic complex as they are probably spatially close. Furthermore, variants of HBsAg are

clinically relevant and can be detected in many scenarios: in samples that react poorly in

diagnostic HBsAg assays (Carman et al., 1997b; Coleman et al., 1999); after or during

monoclonal antibody or hyperimmune globulin (HBIG) (McMahon et al, 1992; Hawkins et

al., 1996; Sterneck et al., 1997); after vaccination (Carman et al., 1990; Okamoto et al., 1992;

Karthigesu et al., 1994; Hsu et al., 1997); and during chronic infection with or without

immunosuppression (Moriyama et al., 1991; Kidd-Ljunggren et al., 1995).

I.S.IA Natural variants

Subtype definin~ determinants: HBsAg carries a group specific determinant "a", common

to all subtypes and two sets of subtype determinants, dly and wlr, which are mutually

exclusive (Le Bouvier, 1971). Both d to y and w to r changes are dependent on lysine to

arginine substitution at amino acids 122 and 160 respectively (Okamoto et al., 1987).

Identification of q determinant (Magnius et al., 1975) and description of subdeterminants of w

determinant, wl-w4 (Courouce et al., 1976), led to a nine member classification namely aywl,

ayw2, ayw3, ayw4, adw2, adw4, adrq-, adrq+ and ayr (Courouce-Pauty et al., 1978).

Additional subtypes have been identified that carry three (adyw, adyr, adwr and aywr) or four

subtypic determinants (adywr) and are termed "compound" HBsAg particles. These particles

are probably formed by the phenotypic mixing of two or more S gene products in hepatocytes

infected by two or more HBV strains (Yamanaka et al., 1990).

Subtypes roughly correspond to genomic groups, however, considerable genetic

heterogeneity was observed among adw2 strains which were found in groups A, B, C and G

(Norder et al., 1992b; Stuyver et al., 2000). African and Vietnamese genomes encoding aywJ

were found in groups A and B respectively, while both ayw2 and ayw3 strains could be

allocated to group D (Norder et al., 1992b). Strains expressing r have only been found in

group C (Okamoto et al., 1988). On the other hand, ayw4 and adw4 strains, which differed to a
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great extent from each other and from other groups, were allocated to groups E and F

respectively (Norder et al., 1992b, 1993).

Norder et al. (1992a) have defined the molecular basis for the serological heterogeneity of

HBV subtypes. Residue 127 is important for the subdeterminant w; Pro, Thr and Leu

characterise wIlw2, w3 and w4 respectively. Residues 134, 143, 159, 161 and 168 are

important for the molecular difference between aywl and ayw2. However, these substitutions

were shared between aywl and adw2, implying that Arg was also important for wI expression.

Moreover, the absence of the q determinant in adrq- and adw4q- was found to differ at the

amino acid level; 159 and 177 were responsible in the former, whereas, the adjacent positions

at residues 158 and 178 were identified in the latter (Norder et al., 1992a, 1993; Table 1.3).

Table 1.3: HBV genotypes and subtypes*

Geno. Subtype Amino acid sequences

120 180
A adw2 PCKTCTTPAQG llSMEPSCCC:I KP:IDGNCTC1 P1PSSWA.EruS .l:LWEWASYRF SWLSLLYfFV

aywl --R-------- ---------- ---------- ---------- ---------- ----------

B adw2 ----------- T--------- ---------- ---------- ---------- ----------
aywl --R-------- T--------- ---------- ---------- ---------- ----------

C adr ------1---- T--------- --S------- ---------R F--------- ----------
ayr --R---1---- T--------- --S------- ---------R F--------- ----------
adrq- ------1---- T--------- --S------- --------VR F--------- ------A---

D ayw2 --R-------- T--y------ --S------- --------G- F------A-- ----------
ayw3 --R--M-T--- T--y------ --S------- --------G- F------A-- ----------

E ayw4 --R----L--- T--------S --S------- --------G- F------A-- ----------

F adw4q- -------L--- T--------S --S------- -------LG- -------A-- -------Q--

G adw2 ----------- ---y------ --S------- ---------- ---------- ----------

*Genotypes from A-G are shown with the allocated subtypes based on S gene typing. S gene sequences between

120 and 180 are shown. Dashed line represents the amino acids that are similar to the standard sequence.
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Natural S gene variants: Insertions in the S gene have been described in a few studies.

Yamamoto et al. (1994) studied six HBY carriers. Substitution of Ile/Thr to Serf Asn at

residue 126 was detected in three of them (No.1, 5 & 6). Two carriers, no. 2 & 3, showed

G145R mutation. In contrast, none of 12 clones from the last carrier (no. 4) showed mutations

of codon 126 or 145, but all possessed an in-phase insertion of eight amino acids between Thr

123 and Cys 124 which constituted the largest insertion detected to date. Carman et al. (1995a)

showed a two aa insertion between 122 and 123 positions (along with G145R) in a patient

with fulminant hepatitis from Indonesia. Hou et al. (1995) described two patients: one of them

had an insertion of two aa between codons 122 and 123 and the other had a three aa insertion

between codons 123 and 124.

Point mutations are also well described. In a study from Thailand of 34 HBsAg positive

patients, Kidd-Ljunggren et al. (1995) sequenced S gene region from 18 chronic carrier. There

were several non-conservative point mutations in the S gene; however, two samples (No.8 &

14) had aa changes in the "a" determinant and both were anti-HBs negative. Sample no. 8 I

showed G145A, while sample no. 14 showed a mixture of Gly or Arg at position 145 which

was suggested as the first step in changeover from Gly 145 to Arg. In contrast, none of the 16

variants defined by Carman et al. (1997b) were in the immunodominant region of the "a"

epitope Cluster (aa 139- 147) and were thus considered as non-neutralising escape mutants.

Mutations in S gene co-occurring with anti-HBs antibody in sera from chronic carriers

have also been described (Kohno et al., 1996; Shinj i et al., 1998). G 130N and G145R

mutations were detected by Kohno et al. (1996), while the TfI126S mutation was found in the

two carrier patients in Shinji's study. Bahn et al. (1997) described HBY variants in chronically

infected children after seroconversion from HBsAg to anti-HBs, where seven out of nine

children (HBsAg-vef anti-HBs+ve) were found to have HBY DNA. The described mutations

were in codons 122, 125, 127, 131, 134, 143, 159 and 161 of the S gene. Three of these

patients showed a genotype change from A (serotype adw) to D (serotype ayw).

Recently, 10 out of 42 patients (24%) with chronic hepatitis revealed mutations within the

"a" determinant region associated with the presence of anti-HBs in their sera (Ogura et aI.,

1999). Furthermore, "a" determinant variants have been reported frequently during chronic

infection as well as in presence of anti-HBs antibodies, reflecting their exposure to a sustained

immune pressure (see Table 1.4) (GUnther et al., 1999).
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Chapter 1 Introduction

It is likely, therefore, if these natural variants can escape neutralising anti-HBs, they may

infect vaccinated individuals and become more common as vaccination coverage increases,

raising potential problems for successful vaccination. However, follow-up of children infected

with such variants arguescurrently against their expected significant spread (Oon et al., 1996;

Hsu et al., 1997). Thus, at the moment their importance appears to be related to the efficacy of

diagnostic assays (Carman et al., 1997b; Jongerius et al., 1998; Coleman et al., 1999).

1.5.1B Medically selected variants

Variants after vaccination, HBIG administration or antiviral therapy have been reported.

Carman et a1.(1990) described a child from Italy who developed HBV infection at birth by an

Arg 145 mutant despite passive-active immunisation. Itwas proposed that vaccine escape was

due to loss of the "a" determinant configuration because it is known that vaccine-induced anti-

HBs is mainly directed towards this structure. Similar findings have been reported from Japan

and a further mutation in codon 126 of the S gene was detected, with Thr/ Ile to Asn

substitution (Okamoto et al., 1992).

In Singapore, a survey of vaccinated babies showed 11.9% of the vaccinees had

breakthrough HBV infections, despite being given HBIG and vaccine at birth and a surprising

number of Arg 145 mutants were described (Zuckerman et al., 1994; Oon et al., 1995). In the

Gambia, 8.3% of vaccinated children had subclinical infections (positive anti-HBc). Of these,

37.3% had high levels ofanti-HBs, which might indicate the ability of mutants to dominate in

a population with high vaccination coverage (Karthigesu et al., 1994). In the USA, a study of

children born to carrier mothers revealed similar results to those from Singapore. A number of

amino acid changes were observed and Arg 145was the most frequent (Nainan et al., 1997).

In China, Hsu et a1. (1997) described that five of fifteen immunised infants born to

HBsAg/ HBeAg-positive carrier mothers had S gene mutants. Three of them had the Arg 145

mutation. Matsumoto et a1.(1997) reported that two cases out of 29 immunised infants born to

HBeAg +ve carrier mothers were positive for HBV DNA. One of them had the wild type virus

and became negative during follow up, 3 years after immunisation. The other had a mixed

viral population, the mutant having P120G and G145R. Follow up indicated that this infant

only had the mutant at six years after immunisation.

As regards HBIG therapy, Me Mahon et a1.(1992) described Arg 145 emergence in mAb-

treated patients and the development of mutations in the "a" determinant was correlated with
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the duration of the HBIG therapy. Another two studies by Cariani et al. (1995) and Hawkins et

al. (1996) showed the presence of mixed populations of viruses in the serum of patients pre-

transplant, including Arg 145. The emergence of a variant HBsAg as the dominant population

was observed after HBIG administration in transplanted patients. These mutants do not

commonly appear in patients who never received HBIG or when infection occurs after

withdrawalofHBIG.

Similar findings have been reported by Carman et al. (1996). S gene mutations were found

in five patients who experienced reinfection while receiving HBIG, while in those who

experienced reinfection after termination of HBIG, no mutations were found in the S gene.

Moreover, Stemeck et al. (1997), in a study to detect HBV sequence changes evolving in liver

transplant recipients with fulminant hepatitis, reported that one of the three cases developed an

Arg 145 mutant under prolonged HBIG treatment. Similar observations have been described

in many recent reports (Protzer-Knolle et al., 1998; Terrault et al., 1998; Shields et al., 1999).

One of the possible reasons for this selection! reinfection in HBIG treated patients could be the

source of HBIG, which can be sourced from acute self-limited hepatitis patients with a highly

homogeneous viral population (Rodriguez-Frias et al., 1999).

Variants have also been noticed with antiviral therapy ego lamivudine. As the surface ORF

is overlapped entirely by the polymerase ORF, mutations in the polymerase domain (see

section 1.5.4) may affect the expression and antigenicity of HBsAg. Ling et al. (1996)

reported that the YMDD (tyrosine, methionine, aspartate, aspartate) motif mutations that

appear with lamivudine therapy resulted in amino acid substitutions in HBsAg: Met for Ile at

aa 195 in patient 1, and Ser for Trp at aa 196 in patient 2. However, these aa are placed in the

lipid envelope and unlikely to affect antigenicity (Bruss et al., 1994). Ala to Asp substitution

at aa 157 of HBsAg was noticed in patient 2 in association with Phe to Leu change at residue

512, upstream ofYMDD.1his may affect the wlr subdeterminant (Okamoto et al., 1987).

Tipples et al., (1996) showed other changes in the S gene sequence in association with the

polymerase protein mutations during lamivudine therapy but the significance of these changes

is not known yet. Two consecutive aa mutations located outside the "a" determinant, Tl15I

and T116N, were also detected in a patient being treated with thymosin alphal (Tang et al.,

1998). A stop codon at aa 199 of S gene in association with an overlapping V542I mutant of

pol gene during long term famciclovir was recently reported. Transfection of this mutant virus

into hepatoma cells showed that HBsAg was not produced (Pichoud et al., 1999).
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1.5.2 Pre-SI and Pre-S2 variation

Mutations of the pre-S region are mostly natural and have been reported in the form of

deletions, point mutations and rearrangements which could lead to changes in immunogenicity

of the viral particles and thus affect immune clearance (Tran et al., 1991; Santantonio et al.,

1992; Yamamoto et aI., 1994). Generally PreSI deletion variants are in frame and express

competent pol protein, because they are overlapped with the dispensable spacer domain

(Radziwill et aI., 1990). Mutations or deletions that prevent translation of pre-S2 (pre-S2

defect) have also been described as replication competent and infectious (Fernholz et aI.,

1993). PreS variants were reviewed in GUntheret al. (1999).

Gerken et al. (1991) described viral deletions in the pre-S gene that eliminated the pre-S2

promoter region and B- and T- recognition sites but conserved the pre-S 1 binding site.

Consequently, such deletions would lead to impairment in viral clearance without affecting

viral penetration in liver cells. This may explain why significant variants have not been

described in the binding site of pre-S 1 (aa 21- 47) although point mutations and deletions have

been noted down-stream (Tran et aI., 1991). In agreement with this observation, Yamamoto et

aI. (1994) detected a deletion in pre-Sl region in one carrier only while pre-S2, especially at

the 5' terminus, was a favoured site for deletion as shown by clone sequencing from all

carriers. Also, subviral particles that are isolated from patients infected with pre-S 1 and pre-S2

variants lacked binding activity to preS1/preS2 specific monoclonal antibodies (Gerkin et al.,

1991; Kohno et al., 1996).

In DHBV, selection of pre-S variants that escaped neutralisation has been described

(Sunyach et al., 1997). MAb (900), which recognises epitope 83IPQPQWTp9o,was used to

generate immune pressure. Point mutations affecting only proline residues were detected

(P90H within this epitope and! or P5L upstream). P5L mutation reduces the mAb 900 mutant

recognition twofold, while the substitution of both prolines (5 & 90) almost completely

abolishes reactivity with the mAb. However, these proline substitutions did not affect either

replication capacity or in vivo infectivity of the virus.

Pre-S2 variation is often associated Wi~apre-core mutant in anti-HBe positive chronic

carriers with high viraemia. However, no substantial data are available to show whether pre-

core and pre-S2 variants occur simultaneously or sequentially and thus their relative

contributions to pathogenesis are unclear. Recently, sequential changes in the preS region

before and after anti-HBe seroconversion, in patients who were infected in childhood, were
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investigated. The effect of interferon (JFN) treatment on selection of mutants was also

evaluated. Analysis of preS sequences before and during therapy did not show any nucleotide

change, while numerous mutations were detected in both groups immediately after

seroconversion. In addition to the selection of preS2 start codon mutants in 3 cases, an A to D

genotype change was seen in 7 cases after seroconversion (Gerner et al., 1998).

1.5.3 Pre-CtC variants

The precore and core proteins, although initiated from two different start codons, are

translated from the same ORF and have a common stop codon. There are certain epitopes for

Band T cells that are common between these proteins while others are peculiar to one

polypeptide (Ferrari et al., 1991; Bertoletti et al., 1991, 1993). Precore stop mutations have

been detected in healthy chronic carriers as well as in patients with fulminant hepatitis or

chronic active hepatitis (Laskus et al., 1995; Lindh et al., 1996). Therefore, it is likely that

concomitant core gene mutations or other mutations are necessary to increase viral virulence

(Akarca & Lok, 1995; Hur et al., 1996; Hunt et al., 2000).

I.S.3A Natural class:

Pre-C stop codon mutations may emerge during the natural course of HBV infection and

are usually followed by a loss ofHBeAg and the appearance ofanti-HBe (Carman et al., 1989;

Okamoto et al., 1990). People who have fluctuating HBel anti-HBe status usually retain the

HBeAg-producing strain (Carman et al., 1992), however low levels of stop codon mutant

strains have also been reported in HBeAg positive cases in the early seroconversion phase

(Naoumov et al., 1992). Precore mutants were shown to be associated with fulminant hepatitis

(Liang et al., 1991; Laskus et al., 1995), however it is difficult or even impossible to establish

a causal relationship between the pre-C stop codon mutation and the clinical course of the

disease. Pre-C stop codon mutants have different clinical presentations. Moreover, in any

patient with chronic HBV infection, many mutants may coexist as a "quasispecies" and

multiple mutations may be found in a single viral genome (Blum, 1993).

The most common precore mutation during seroconversion to anti-HBe is at nt 1896

(A1896)from G to A, leading to a translational stop codon at codon 28. This may be related to

the contiguous guanosines (Gs) in this area as each of the four Gs has been described as

mutated to an A (Brunetto et al., 1989; Santantonio et al., 1991; Carman et al., 1992). A1899

39



Chapter 1 Introduction

has been described in a number of studies (Carman et al., 1989; Brunetto et al., 1989) and is

usually associated with a stop codon. Another precore mutation, without an obvious function,

occurs at aa 15 where Pro has been replaced with Ser (Carman et al., 1992). However,

simultaneous presence of A1896and a Ser at aa 15 would lead to an unstable encapsidation

signal which may explain why these two mutations have never been found together (Lok et al.,

1994; Boner et al., 1995).

Different genotypes of HBV differ with regard to their association with precore variants

depending on the substitutions at position 1858 in the encapsidation signal. If there is a T at

1858, the A1896 mutation will enhance the stability of the secondary structure of the

encapsidation signal and consequently viral replication. In contrast, the presence of a C1858,

generally occurring in genotype A, prevents the G to A mutation at 1896 since it will

destabilise the stem of the encapsidation signal (Li et al., 1993; Lok et al., 1994; Rodriguez-

Frias et al., 1995).

On the basis of these base-pairing requirements, a high prevalence of precore variants has

been observed in genotype B to E strains which have a TI858(Li et al., 1993; Rodriguez-Frias

et al., 1995; Lindh et al., 1996). For genotype F, there is a controversy about the substitution at

position 1858. C1858has been reported by Norder et al. (1993) and Naumann et al. (1993);

however T1858was found explaining the presence of A1896by Arauz-Ruiz et al. (1997a) who

found only one of 17 genotype F strains had C1858.

Core protein contains B cell, T helper cell and cytotoxic T lymphocyte epitopes (Salfeld et

al., 1989; Bertoletti et al., 1991; Ferrari et al., 1991). Variability in this gene has been reported

in patients with ongoing disease. whether HBeAg or anti-HBe posdve (Ehata et al., 1992 &

1993). A graduation of numbers of aa substitutions in the core protein has also been noticed,

with the fewest being in HBeAg positive patients with minimal disease and the most being in

anti-HBe positive patients (Carman et al., 1995b; Bozkaya et al., 1996).

A number of mutations were detected between residues 57 and 68 in the core protein of

genotype F strains (Arauz-Ruiz et al., 1997a). which differ from previously described hot

spots (Hur et al., 1996; Lee et al., 1996). However, Ehata et al., (1993) showed that the

mutation clustering regions differ between genotypes. According to their classification. core

genotype 1 (representing the core sequence of genotype C and most genotype B strains) had a

clustering region between residues 84 and 99, while core genotype 2 (representing the core

sequence of genotype A and D) had a clustering region between residues 48 and 68. Genotype
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F strains may have a unique clustering region between residues 57 and 68 (Arauz-Ruiz et al.,

1997a).

Some specific substitutions have been noted such as core T12S which is found more often

in those with severe disease and only after preselection of the precore stop codon (Carman et

al., 1992). Core aa 12 is within a CD4-restricted T helper epitope (aa 1-20) and may lead to

non recognition by the appropriate T cell population (Ferrari et al., 1991). Core protein

mutations in the major T helper epitope might thus allow immune escape and are more

prevalent during clinical remission while those in B cell epitopes are more prevalent during

progressive disease (Carman et al., 1997a). Mutations in the HBc epitope (aa 18-27) have also

been described that result in a peptide antagonist 1£'>. the T cell receptor and consequently

ineffective CTL activity leading to persistent infection (Bertoletti et al., 1994). However,

mutations in CTL epitopes occurs much less frequently than in B cell or T helper cell epitopes

(Carman et al., 1995b). Deletions within the core protein sequence, often in-frame, have also

been reported in patients with chronic disease with the possibility that core particles are still

formed. However, even in-frame-deleted sequences do not appear to produce nucleocapsids

(D. William, Ph D thesis 1997).

1.5.3B Medical class:

Fattovich et al. (1995) showed that fewer patients select a pre-core mutant on interferon

(IFN) treatment than after natural remission. However, other studies showed either selection in

almost all patients (Gunther et al., 1992) or no selection at all in any patient after treatment

(Xu et al., 1992; Lee et al., 1994). There is also controversy regarding pre-core mutants and

prediction of interferon response (Takeda et al., 1990; Brunetto et al., 1993). Fattovich et al.,

(1995) found that the pre-core sequence has no influence on the outcome of IFN therapy in

anti-HBe positive patients.

Tran et al. (1991) described two HBV DNA molecules in a chronic carrier after a

combination course of acyclovir and interferon for 3 months (serum sample, 1988). One of

them was identical to the pre-treatment sequence (wild type), whereas the mutant showed a

stop codon in the pre-C region at positions 1897 to 1899, an in-frame 36 bp insertion located 6

bp after the initiation codon and a 6 bp deletion (2257-2262) in the C ORF. One year later, the

pre-C/C region still contained both the wild and mutated molecules. Bhat et al. (1990) showed

another in-frame 36 bp insertion in the C gene in an HIV-positive patient serologically
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negative for anti-HBc, along with two point mutations in the pre-C/C gene. In contrast, in a

study of anti-HBc-negative children with HBV infection undergoing chemotherapy for

malignancies, no pre-C/C mutations were found (Melegari et aI., 1991). As regards core gene

variability and prediction of IFN response, it was found that core variants may affect the

response to interferon therapy but do not influence the outcome of liver disease in adults

(Fattovich et aI., 1995; Naoumov et aI., 1995). However, in children with chronic hepatitis B

the presence of core variants does not seem to be involved either in outcome of infection or in

the response to interferon therapy (Schepis et aI., 1997) (see section 1.7.2).

1.5.4 Polymerase gene variants

Replication of HBV is dependent on reverse transcription, therefore nucleoside analogues,

particularly reverse transcriptase inhibitors, have activity against HBV replication.

Lamivudine (Dienstag et aI., 1995; Lai et aI., 1997) and famciclovir (Schalm et aI., 1995) trials

have shown them to be effective in reducing the viral load in chronic hepatitis B infection.

Moreover, lamivudine prophylaxis against HBV reinfection in liver transplantation gives

satisfactory results (Grellier et aI., 1996). However, emergence of resistant strains with

mutatio~s in HBV polymerase gene made famciclovir (Aye et aI., 1997; Seigneres et aI.,

2000) or lamivudine (Ling et aI., 1996; Tipples et aI., 1996) less effective in suppressing

replication of such strains.

I.S.4A Natural class

Naturally occurring HBV variants with mutations affecting polymerase activity are not

commonly reported. Blum et aI., (199Ia) reported a serologically immune patient with a latent

HBV infection who had a viral genome with a point mutation in the TP region of polymerase

gene terminating HBV replication through a loss of RNA encapsidation function. Another

natural variant has been detected in the DHBV system where a point mutation in the C-

terminus of the polymerase gene (encoding for RNase H activity) prevented viral packaging

(Chen et aI., 1992b). Recently, the polymerase RT domain and overlapping HBsAg "an

determinant were shown to be more variable in HBsAg-ve carriers than in HBsAg+ve

controls. It has been suggested that there is a functionally defective RT domain which results

in reduced or impaired replication, 1his would result in HBsAg which cannot be detected in

serum by conventional tests (Weinberger et aI., 2000).
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1.5.4B Medical class

Ling et al. (1996) reported a mutation of Met to Valor lIe in the highly conserved YMDD

motif of HBV polymerase gene in two cases after liver transplantation which conferred

resistance to lamivudine. Thus, resistance of HBV to lamivudine is analogous to that of HIV

(Tisdale et al., 1993). However, the significance of additional substitutions like Met for Leu at

aa 528 upstream of the YMDD motif and Phe to Leu further upstream is still unclear (Ling et

al., 1996). Bartholomew et al. (1997), analysing sequence variation in the HBV polymerase

gene in three patients, showed resistance to lamivudine after OLT. Mutation at Met residue of

YMDD was common to the three patients and was detected only in serum obtained after

recurrence and not in pre-treatment serum. Ling et al. (1996) observed Leu to Met substitution

at position 526 in association with Val (YVDD) in two patients, but not Ile (YIDD).

The development of resistance to lamivudine in these previous studies was thought to be

related to the immunosuppression and associated high levels of viral replication. However,

Honkoop et al., (1997) showed that immunocompetent patients with chronic hepatitis B

infection can also develop lamivudine resistance during prolonged lamivudine monotherapy.

An immunocompetent patient on long term famciclovir therapy developed similar resistance.

A Val 542 lIe mutant in the C domain of viral pol was selected and led to viral persistence

(Pichoud et al., 1999). Several similar results with resistant pol mutants on long-term

famciclovir treatment have been reported. Aye et al. (1997) described a patient in whom

resistance to famciclovir appeared to be due to mutations upstream of the YMDD motif. In 28

patients on long-term famciclovir, TP and RT domains of pol were sequenced. Again, the

YMDD motif was conserved, however the RT domain was frequently mutated in non-

responding patients and Leu 528 Met was selected in two patients plus 14 novel mutations in

another 7 patients (Seigneres et al., 2000).

Sequential viral mutations in a liver transplant recipient reinfected with hepatitis B have

been reported. Famciclovir therapy for 6 months failed to prevent graft infection. lIe 513 Leu

change was detected while on HBIG prior to famciclovir treatment. A change to lamivudine

therapy was associated with a good response and normal graft function. However, after 12

months of lamivudine therapy, HBV DNA rose again and the patient developed a severe acute

hepatitis and subsequently died. Sequence analysis of HBV polymerase gene showed a

mutation in close proximity to the YMDD motif which was considered to be a novel variant

selected by lamivudine therapy (de Man et al., 1998). Similar findings were recently reported,
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where rapid selection of resistant strains due to sequential antiviral therapy and limited

efficacy of the second-line antiviral therapy has been observed (Seigneres et al., 2000;

Mutimer et al., 2000).

The competence of mutants observed during lamivudine and famciclovir therapy has been

investigated in vitro. Impaired replication ofYINDD or F501L mutants (and to a lesser extent

L515M mutant) in HEK 293 (after deoxynucleotide depletion) and HCC cells was detected

(Melegari et al., 1998b). Several other groups have reported similar results (Allen et al., 1998;

Ling & Harrison 1999). Thus, these in vitro data may explain the low viremia in breakthrough

infections and reemergence of standard type soon after cessation of lamivudine (Buti et al.,

1998; Niesters et al., 1998). Consequently, it is unlikely that these pol variants will spread in

human populations. However, this down-regulation may be beneficial to the variant by

allowing escape from immune surveillance (Blum et al., 1991a, b).

1.5.5 X Gene variants

X gene variants are associated with multiple outcomes. Deletions, insertions and point

mutations in the X gene have been described in asymptomatic carriers, chronic persistent

hepatitis (CPH) patients, some fulminant cases (Okamoto et al., 1994; Laskus et al., 1994) and

in chronic HBV patients without the usual serological markers (Blum et al., 1991b; Preisler-

Adams et al., 1993). Recently, X gene sequencing, from 26 patients with fulminant hepatitis

(FHBV), showed that substitution of nucleotides in the X gene in the form of particular motifs

was linked to FHBV pathogenesis. These specific variant motifs were associated with

increased luciferase expression in vitro that correlated with rapid progression of the disease

(M. Yasmin, Ph D thesis 1997).

Due to overlap, core promoter mutations often affect the structure and consequently the

function of X protein. Most deletions/ insertions in the basal core promoter (BCP) shift the X

gene frame producing truncated X proteins. These X proteins lack a highly conserved domain

at their C-terminus (aa132- 140) that is essential for transactivation activity and mediates the

interaction with some cellular proteins (Arii et al., 1992; Kumar et al., 1996; Huang et al.,

1996a). This domain is also important for establishing infection in the related WHY (section

1.4.5). HBV containing core promoter mutants is usually complemented by HBV that can

express full-length X protein (Gunther et al., 1996). However, the 1768-1775 deletion variants

were described in the absence of detectable full-length X gene strains suggesting their
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exclusive expression (Fukuda et al., 1995). In contrast to the deletions/insertions in the core

promoter, 1766T-Cl 1768A-T point mutations introduced changes in the X protein that did not

affect its transactivation activity in vitro (Baumert et al., 1996).

Silent HBV infection associated with deletions of various lengths within X gene has also

been reported (Preisler-Adams et al., 1993; Feitelson et al., 1994). An 8-nt deletion in the

region encoding the X gene has been detected in serologically negative sera from patients with

acute and chronic hepatitis (Uchida et al., 1994; Uchida et al., 1995). This mutation probably

suppressed the replication and expression of HBV DNA resulting in negativity of the

serological markers (Uchida et al., 1995; Fukuda et al., 1996). Low serum DNA levels, that

) are frequently seen in asymptomatic carriers containing X gene deletions, are consistent with

this assumption (Horikita et al., 1994; Fukuda et al 1995).

Hepatitis C virus has been described as frequently associated with silent HBV infection

(Sardo et al., 1994; Gonzalez et al., 1995). In vitro co-transfection of both viruses showed that

silent HBV variant (containing 8-nt deletion in X region) probably promotes HCV replication,

perhaps playing a role in hepatocarcinogenesis of chronic hepatitis C infection (Uchida et al.,

1997). This assumption is supported by the high frequency of HBV DNA detected in HCC

samples from patients with anti-HCV +ve/ anti-HBc+ve/ HBsAg-ve status (Koike et al.,

1998).

Other forms of X gene mutants that do not suppress HBV replication have been described,

such as the replication competent HBV genome with a pre-X open reading frame (Loncarevic

et al., 1990). Also, insertions in the pre-C region, creating a fused X-C reading frame, were

replication competent and expressed two types of X-core fusion protein (Kim et al., 1992;

Preisler-Adams et al., 1993; Kim et al., 1994). Aye et al. (1997) reported that during almost 4

years of antiviral therapy (ganciclovir followed by famciclovir), there were no nucleotide-

changes in the X gene compared to the pre-treatment sequence. Thus, it seems that X gene

variants are mostly natural.
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1.6 HBV INFECTION

Approximately one third of the world's population has already been infected with HBV.

Of these 350 million people are chronic carriers and at least one million will eventually die

from the sequelae of this infection (Kane 1996; Andre 2000). HBV infection has

variable outcomes that range from subclinical infection to fulminant hepatitis. HBV infection

is more common in males than in females (London & Drew 1977; Craxi et al., 1982).

Moreover, chronic HBV infection varies inversely with age; only 5-10% of adults develop

chronic infection, while up to 90% of children become chronically infected (McMahon et al.,

1985;Margolis et aI., 1991).

1.6.1 Epidemiology of HBV transmission

In highly endemic regions (HBsAg prevalence >7%), HBV infection has been identified

in geographically remote and culturally isolated populations (eg. South Pacific Islanders and

Alaskan Natives) as well as in large densely populated regions (eg. sub-Saharan Africa and

Asia). HBV infection usually occurs early in life in high-prevalence areas as a consequence of

maternal-neonatal transmission and horizontal spread among young children. HBV infection

can be detected in most children by 10 years of age in these regions (Margolis et aI., 1991).

HBV infection during infancy and early childhood is usually followed by chronic infection,

even in low endemicity areas, as chronic HBV infection is age-dependent (McMahon et aI.,

1985).Vertical HBV transmission in these high endemicity areas is correlated mostly with the

mother's HBeAg status (Stevens et aI., 1979; Beasley & Hwang 1983). In areas of high

endemicity where the prevalence of HBeAg among mothers is low (Africa, South America

and Middle East), early childhood transmission is the dominant mode of HBV infection

(Marinier et aI., 1985; Hyams et aI., 1988; Toukan et aI., 1990).

In intermediate endemicity regions (HBsAg prevalence 2-7%) such as India, Philippines,

Korea and Taiwan, HBV infection occurs later in adolescence and young adulthood. However,

high rates of chronic infection are still maintained by transmission during early childhood.

More than 40% of world's population live in regions of intermediate endemicity with an

expected lifetime risk of20-60% ofHBV infection (Mahoney, 1999).

In low prevalence populations (HBsAg prevalence <2%) such as United States and

Western Europe, most HBV infections occur among adults. Sexual activity, IV drug use,

occupationally acquired infection and use of multiple blood products constitute the principle
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mechanisms of HBV transmission (Margolis et al., 1991). However, high rates of early

childhood HBV transmission have also been reported among children of Pacific Islanders who

reside in the United States (Tong et al., 1981; Hurie et al., 1992).

1.6.2 Pathogenesis of HBV infection

Most of our knowledge about HBV- host interactions has been unravelled over the last two

decades. Outcome of HBV infection is known to be affected by host genetic factors, however

the exact mechanism is unclear. Viral clearance is associated with a strong polyclonal

multispecific T cell response to HBV in addition to the humoral response, but little is known

about the factors determining the individual's ability to mount such T cell response. In

contrast, ineffective immune responses were observed in patients who failed to clear the virus

(Chisari & Ferrari 1995).

1.6.2A The antibody response

The humoral response involves the formation of antibodies against all proteins of HBV.

Anti-HBe, anti-HBc and anti-HBs antibodies have all been extensively studied whilst anti-pol

and anti-HBx antibodies, perhaps due to lack of proper assays, are not well described. Pol

protein is quite immunogenic and anti-pol antibodies can be detected during acute and chronic

infections (Yuki et al., 1990). Therefore, it has been suggested that these antibodies serve as

markers of infection and ongoing viral replication (Weimer et al., 1990). Anti-HBx antibodies

were also detected at high levels in chronically infected patients (Stemler et al., 1990).

The antibody response to HBV surface proteins is a T cell dependent process (Milich &

McLachlan 1986). These antibodies are detectable in patients who clear the virus and recover

from acute infection and usually are undetectable in chronic HBV infection. Anti-HBs

antibodies play an important role in virus neutralisation as evaluated both in vitro and in vivo

in chimpanzees (Pontisso et al., 1989a; Ogata et al., 1993b; Ryu et al., 1997). They are also

believed to contribute, by forming immune complexes, to the pathogenesis of extrahepatic

syndromes associated with the HBV infection (Alpert et al., 1971; Brzosko et al., 1974;

Michalak 1978). Millard & Pilot (1998) recently showed that the "a" determinant contains at

least three epitopes which are recognised by the human immune system and induce protection.

One of them is well defined and recognised by five mAbs (mAb #1), while the other two are

partially overlapping.
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On the other hand, the role of antibody response to nucleocapsid antigens (anti-HBe and

anti-HBc antibodies) in HBV pathogenesis is still unclear. Although an early report has shown

that chimpanzees injected with anti-HBe are mostly protected against HBV infection (Stephan

et al., 1984), both anti-HBe and anti-HBc are usually considered as non neutralising antibodies

as they are present in high titres during both acute and chronic HBV infection. Cross reactivity

of core and e proteins at the T cell level (Milich et al., 1987a; Bertoletti et al., 1993) and the

ability of core protein to act as both a T cell-dependent and a T cell-independent antigen

(Milich & Mclachlan 1986) are probably responsible for these high antibody levels.

1.6.2B Class II-restricted T Lymphocyte response

In acute hepatitis patients, strong HLA class II restricted CD4+ responses to HBV

nucleocapsid antigens and much weaker envelope-specific Th responses were detected

(Chisari & Ferrari 1995). In contrast, a good percentage of vaccinees developed a vigorous

envelope-specific Th response, suggesting antigen load, presentation or processing as possible

factors to explain these response differences (Celis et al., 1988; Jin et al., 1988; Ferrari et al.,

1989). On the other hand, a weak and ineffective HLA class II-restricted response to all HBV

viral antigens has been observed during chronic HBV infection (Ferrari et al., 1990; Jung et

al., 1991). Thus, a class II restricted nucleocapsid-specific T cell response is believed to playa

major role in viral clearance most probably through induction of virus-specific CTL and an

"intermolecular" help mechanism (Milich et al., 1987b;Penna et al., 1997).

Consistent with this view"broJJ;<atljI-lBVinfected subjects, although hyporesponsive to

immunisation, showed a dose dependent-HBV specific CTL response after injection of the

same vaccine (Theradigm-HBV vaccine), indicating that CTL precursors are present in HBV

infected patients and can be activated (Heathcote et al., 1999). Further characterisation of the

observed proliferative responses revealed ThOor Th2 cytokine profile responses. Responses to

the tetanus toxoid epitope (included within the vaccine as an universal helper T lymphocyte

(HTL) epitope) were also reduced, suggesting altered HTL responses during chronic HBV

infection (Livingston et al., 1999).

In transgenic mice, transfer of HBV-specific CD4+ Thl cells to two inbred lineages (one

expressing LHBs and the other expressing all viral proteins plus replicating virus in liver) has

led to recognition of expressed viral antigens and transient liver injury. Cytokine release and

subsequent suppression of viral replication were also observed, supporting a dual role for
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CD4+ cells (Franco et al., 1997). Thus, the activation of appropriate T-helper cells, which

secrete cytolytic cytokines and, most importantly, activate specific CTL responses, is quite

important for the immune clearance of HBV. CTL also produce cytokines that may exert

direct antiviral effects independent of their cytolytic activity (see section 1.6.2C; reviewed in

Guidotti & Chisari, 2000).

Unlike the association between HLA class I alleles and outcome of HBV infection, which

is not consistent, many reports have documented an association with HLA class II alleles such

as HLA-DR13 & DRBI *1301- 02 (Thursz et al., 1995; Hohler et al., 1997; Diepolder et al.,

1998). DRBI *1301 and DRBI *1302 were shown to be highly frequent in chronic HBV

patients, who spontaneously cleared the virus, both in Africa and Europe (Thursz et al., 1995;

Hohler et al., 1997). In addition, a vigorous HBV core-specific CD4+ T cell response was

found to be associated with HLA DR13 allele in those patients who successfully eliminated

the virus in another study by Diepolder et al. (1998). In contrast, other HLA II alleles, such as

DQA1*0501, DQB I*0301, and homozygosity of class II II were shown to be associated with

persistence ofHBV infection (Pollicino et al., 1996; Thio et al., 1999).

I.6.2C Class L-restrlcted T Lymphocyte response

In transgenic mouse studies, adoptive transfer of CD8-positive HBsAg-specific CTL into

mice~hichexpress HBsAg, caused a liver disease similar to acute viral hepatitis (Moriyama et

al., 1990; Ando et al., 1993). This CTL-induced hepatitis was found to proceed in a stepwise

order. The first step is apoptosis that occurs within 1 hour of CTL administration and is

directly caused by CTL. The second step, which occurs between 4-12 hours, is due to

accumulation of antigen nonspecific inflammatory cells such as macrophages and NK cells,

and is characterised by focal necrosis. This necrosis limited to less than 5% of hepatocytes,

was attributed to the low effector to target cell ratio (1130-11100) and the architectural

constraints of the liver (Ando et al., 1994; Chisari & Ferrari 1995). However, in mice that

overexpress HBsAg, so that their hepatocytes are sensitive to destruction by IFN-y (Gilles et

al., 1992), the process extends to fulminant hepatic failure, which is mostly attributed to

antigen-nonspecific inflammatory cells and various cytokines such as IFN-y and TNF-a.

(Ando et al., 1993).

In agreement with these results, TNF-a, produced by Kupffer cells, was shown to cause

hepatic necrosis independent of macrophage activation (Orange et al., 1997). Also, TNF-a,
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secreted by virus-specific CTL, was described as being able to amplify the damage to nearby

non-infected cells during HCV infection (Ando et al., 1997). Recently, IFN-y and TNF-a.,

produced by HBsAg-specific Thl cells, were shown to be indispensable in the pathogenesis of

liver injury (Ohta et al., (2000).

Although transgenic mouse models have contributed much to our understanding of HBV

pathogenesis, there are two important limitations. First, the mice are not infectible by the

virus, so observations related to viral entry and spread cannot be made. Second, the episomal

ccc HBV DNA forms, purging of which is an indicator of viral clearance, cannot be produced

by the mice (Guidotti et al., 1995). Chimpanzees, which are infectible by HBV, have a similar

immune response to that seen in acutely infected humans and are ideal to test the non-

cytopathic clearance ofHBV during acute infection (Barker et al., 1975; Bertoni et al., 1998).

Guidotti et al. (1999b) showed that disappearance of at least 90% of viral DNA (including the

cccDNA) from the liver preceded the major influx of T cells, which was associated with liver

damage, and coincided with induction of IFN-y, suggesting early noncytopathic control of

HBV in a "tissue-sparing process". This was attributed mostly to the early influx of non-T

cells, perhaps natural killer cells. The remaining infected cells will be killed by antigen-

specific CTL causing liver disease. Similar observations have been described during clearance

of lymphocytic choriomeningitis virus (LCMV), as the virus was noncytopathically eliminated

from hepatocytes (Guidotti et al., 1999a). Cytokine-mediated control of viral infection and its

role in pathogenesis were reviewed in Guidotti & Chisari (2000).

Thus it appears that generation or maintenance of early strong cellular immune responses'

after viral infection is very important for viral clearance and those interactions between

cellular and humoral immune responses will determine the outcome of infection.
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1.7 PREVENTION AND TREATMENT

Vaccination is an important strategy to prevent HBV infection and consequently to

decrease the risk of chronic HBV infection and its subsequent complications. Also, a wide

range of antiviral and immunomodulatory therapies have been evaluated in the last 30 years,

but very few have passed the challenge. In this section, I will briefly shed light on the

important and recent concerns about the control ofHBV infection.

1.7.1 Prevention

Although the key to control of HBV infection is immunoprophylaxis, general preventive

measures (proper disinfective measures, appropriate screening of blood products for HBsAg,

sexual health education and behavior modification) are important tools to reduce the rate of

HBV infection (Minuk et al., 1987;Mast et al., 1999; Stroffolini et al., 2000).

Passive immunoprophylaxis is used predominantly in the following situations, usually in

conjunction with vaccination: in neonates born to HBeAg-positive mothers (Reesink et al.,

1979); after needle-stick exposure (Grady et al., 1978); after sexual exposure (Perrillo et al.,

1984); and after liver transplantation (Muller et al., 1991; Samuel et al., 1991). In neonates, a

dose of 0.5ml of HBIG should be given after delivery within 24 hours into the anterolateral

muscle of the thigh, while in adults 0.05 to 0.07 ml/kg should be given, as soon as possible

and within no more than 7 days (Grady et al., 1978).

HBV vaccine was initially recommended for individuals at high risk of exposure to HBV

infection (health care workers, parenteral drug users, household contacts and infants of

infected mothers). However this strategy was shown to have little effect on the incidence of

new HBV infections. Therefore, universal infant vaccination was recommened by the WHO,

especially in areas where hepatitis B is endemic (Kane 1996).

Two types of hepatitis vaccine have been widely used; plasma derived vaccine (consisting

of HBsAg particles and small amounts of LHBs and MHBs) and yeast-derived recombinant

vaccine, consisting of major S gene product. The latter is used more than the former (McAleer

et al., 1984; Hollinger 1987). Unlike the plasma product, the yeast-derived vaccine contains

nonglycosylated S polypeptides. However, both vaccines are equally efficacious (Andre

1989). New recombinant vaccines containing both preS and S antigens have been developed

to circumvent non-response to conventional vaccines (Clements et al., 1994; Jones et al.,

1998). To get the advantage of inducing cytotoxic T cells as well as neutralising antibodies, a
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nucleic acid vaccine and a vaccine in a salmonella vector have also been described (Davis et

aI., 1993; Schadel et aI., 1994).

Vaccine is given intramuscularly in three doses at 0, 1 and 6 months. An accelerated

schedule for administering the 3 doses (at 0,1 and 2 months) will result in a quicker response

but may reduce peak titers (Jilg et aI., 1989; Hadler et aI., 1989). In adults the conventional

dose is 10- 20ug, however it varies according to age, immunologic status and in patients on

dialysis, while infants may be vaccinated with lower doses. Protective immune serum

response is defined as an anti-HBs titre of ~ 10mIU/mL and can be elicited in 90%-95% of

infants on combined HBIG- vaccine programs as well as in young healthy persons who

receive full immunisation (Hollinger 1989; Andre & Zuckerman 1994). Follow up studies of

immunised infants showed long-term protection against disease and the higher the anti-HBs

levels after vaccination, the longer they persist (Hadler et aI., 1986; Marion et aI., 1994; Xu et

aI., 1995). When the anti-HBs titre falls below 10m1U/mL,HBV infections may occur but are

mostly subclincal and usually without detectable HBsAg (Szmuness et aI., 1981; Wainwright

et aI., 1989). Thus, protection against HBV disease remains even with a low anti-HBs titre.

However, such low levels may favor the selection of escape mutants.

Reduced anti-HBs response or nonresponse has been shown to be as high as 10% (Craven

et aI., 1986; Alper 1995). Vaccine source, dose, patient age, body mass index, site of injection,

immunosuppression, renal insufficiency, smoking and genetic factors all have been described

~ associated with impaired response to hepatitis B vaccine (Craven et aI., 1986; Wood et

aI., 1993; Waters 1998; McDermott et aI., 1998). Several strategies have been adopted to

overcome this problem. Revaccination is the first option as approximately half of the people

who did not respond after a three dose series will do so after additional doses (Hadler et aI.,

1986; Hadler & Margolis 1992). As different mechanisms of uptake determine the

intracellular compartment to which antigens are delivered and may lead to generation of

different T cell epitopes (Lanzavecchia et aI., 1996), intradermal injection of hepatitis B

vaccine has also been tried. Although higher seroconversion rates were detected in non-

responding dialysis patients, comparable or less effective results to those with the 1M injected

vaccine have been observed in healthy nonresponders (Clarke et aI., 1989; Heijtink et aI.,

1989; Chang et aI., 1996; Fabrizi et aI., 1997).

Another interesting approach is the use of preS containing vaccines following the early

observations and recent encouraging results in animals (Milich et aI., 1986; Jones et aI., 1998).
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Incorporation of the pre-S domains with the S antigen has been suggested to recruit pre-S

specific T cells which would aid anti-HBs antibody production (Milich et al., 1986). Using

this type of vaccine induce an anti-HBs antibody response in more than 70% of persistently

non-responder individuals after a single dose. It was dose dependent (Zuckerman et al., 1997;

McDennott et al., 1999). However, no difference was detected between pre-S containing

vaccine and standard vaccine in another study for revaccination of healthy non-responders

where only high doses of vaccine, 40ug, produced a statistically significant difference in

development of protection (Bertino et al., 1997). Obviously, further studies are required that

will not only assess the efficacy of these vaccines but also would facilitate greater

understanding of individual variability in eliciting an immune response. Immunotherapy of

chronic hepatitis Busing anti-HBV vaccine is discussed in the next section (1.7.2).

Improved immune response has also been reported with the co-administration of IFNa. or

IL2 in renal patients (Grob et al., 1984; Meuer et al., 1989). There appear to be two different

groupings in non-responders to vaccine. One group will develop satisfactory titres if they are

simply given more doses. Those in the second fail to respond no matter how many doses they

are given. l-lere the defect could be in the helper cells as well as in the antigen processing or

transport of processed peptides to MHC molecules on antigen-presenting cells (Salazor et al.,

1995;McDennott et al., 1999).

On the other hand, HBV vaccines are well tolerated and are among the safest available

vaccines. The most commonly observed side effects are mild reactions at injection site and

slight increase in body temperature (Stratton et al., 1994; Lakshmi et al., 2000). Anaphylaxis

and symptoms of immediate hypersensitivity are rare but do occur (Stratton et al., 1994).

Guillain-Barre syndrome and, recently, multiple sclerosis have been reported in vaccine

recipients, but they do not appear to be any more common among vaccinees than among the

general population and there was no evidence for any causal link (Stratton et al., 1994;

Monteyne & Andre 2000). There is no harm in using the vaccine, but also not much benefit, in

immunising HBV chronic carriers (Dienstag et al., 1982; Barin et al., 1983).

1.7.2 Treatment ofHBV infection

In acute hepatitis B, although symptomatic treatment may be required, no specific therapy

is indicated as more than 90% of cases will spontaneously clear their infection (Gitlin 1997).

However, a minority of these patients has to be transferred to hospital and liver transplant may

53



Chapter 1 Introduction

be even required if liver functions deteriorate rapidly with acute liver failure (O'Grady et al.,

1989; Perillo & Mason 1993). On the other hand, no effective treatment of asymptomatic

healthy HBsAg carriers is currently available, as administration of HBV vaccine has no

influence on the carrier state (Dienstag et al., 1982; Barin et al., 1983) and treatment with

interferon is not recommended (Rodriguez-HUgoet al., 1997).

In chronic HBV infection, the main goal is eradication of the virus. In early stages of the

disease, therapeutic approaches have been used to stop replication of the HBV aiming at viral

clearance or at least to prevent or ' , reduce complications of the disease. Patient stabilisation,

prevention of fatal outcome and prevention of HBV reinfection of transplanted liver are the

objectives in end stage cirrhotic patients. Until recently, alpha interferon, which is effective in

about 30% to 40% of well-selected patients, was the only available therapy for chronic HBV

infection. However, introduction of nucleoside analogues such as lamivudirsand famciclovir

into clinical trials has markedly improved the clinical outcome of HBV infection. Emergence

of escape mutants due to aa changes within the reverse transcriptase enzyme (the YMDD

mutant) leads to decreased antiviral potency and is a major limitation of therapy.

Interferon alpha

Although interferon alpha (IFN-a.) has been used since 1976 (Greenberg et al., 1976) for

chronic hepatitis B, it was only recently licensed for therapy. In addition to its antiviral

activity, IFN-a. acts principally as an immunomodulatory agent by stimulating the immune

system, increasing natural killer cells and enhancing MHC class I display (Peters 1989;

Goodboum et al., 2000). The recommended regimen for IFN-a. is 10 million units 3 times a

week for 16-24 weeks by subcutaneous injection or 5 million units daily for the same period

(Wong et al., 1995; Hoofnagle & Di Bisceglie 1997).

In about 30-40% of chronic HBV patients, IFN-a. therapy will induce a long-term

remission which is identified by the loss of HBeAg and HBV DNA, normalisation of serum

aminotransferase levels and improvement in liver lesions (Perrillo, 1993; Gitlin, 1997).

Indeed, IFN-a. therapy improves the clinical outcome even in the presence of cirrhosis

(Niederau et al., 1996). Several studies have shown that HBV-related decompensated cirrhosis

might benefit from low-dose IFN-a. therapy (Nevens et al., 1993; Perrillo et al., 1995).

However, severe acute flares and life threatening side effects resulting from interferon therapy

make it less likely to be beneficial (Hoofnagle et al., 1993). IFN-a. may also induce remissions
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in patients with extrahepatic disorders (eg. glomerulonephritis) associated with chronic HBV

infection (Conjeevaram et al., 1995).

Some patients achieving HBeAg seroconversion also eventually lose HBsAg and this is

associated with improved clinical outcome (Korenman et al., 1991; Niederau et al 1996;

Fattovich et al., 1998). However, other studies reported no loss of HBsAg over prolonged

follow up suggesting an effect of ethnic or racial variation (Lok et al., 1993; Lin et al., 1999).

Genomic variation in precore and core CTL region (aa 18-27) is also one of the much debated

issues in interferon response. Some studies showed enhanced response in the presence of the

precore mutant A1986(Takeda et al., 1990; Lok et al., 1995) while others contradicted this (Xu

et al., 1992; Fattovich et al., 1995). Other authors have suggested that specific mutations in the

core protein may impair the response to IFN therapy (Carman et al., 1995b; Naoumov et al.,

1995), however, others have found that core gene mutations were unrelated to IFN response

(Bozkaya et al., 1996; Shindo & Okuno 2000).

There are several criteria for increasing the likelihood of response to IFN therapy; these

include low HBV DNA levels, high ALT levels, a short ;nt~nidLsince the onset of HBV

infection and female gender (Gitlin, 1997). Although IFN therapy is potentially successful and

constitutes the mainstay of treatment for chronic hepatitis B, it has several disadvantages. For

instance, in endemic regions most chronic HBV patients do not fit these selectee criteria and

thus have a reduced probability of response to IFN. Also, IFN-a. is only successful in patients

with an active immune response, making it ineffective in patients infected with HIV or

immunocompromised patients. Furthermore, Asian patients, who constitute 75% of world

carriers, respond poorly to IFN (Lok et al., 1993). Moreover, interferon treatment is expensive,

administered by injection and poorly tolerated with side effects including flu like symptoms,

injection-site reactions, anorexia, rash, neutropenia and thyroid disorders (Gitlin, 1997).

IFN-a. therapy for children with hepatitis B has also been approved recently (Sokal et al.,

1998). A successful response has been reported in 26-33% of children on interferon therapy,

which is similar to that detected in adults (Torre & Tambini 1996; Sokal et al., 1998; Vajro et

al., 1998). Therefore, IFN-a. therapy is recommended in children who have chronic hepatitis B

after being well selected, using. similar criteria to theeeusedin adults, to reduce the chance for

the development of major complications (Roberts, 2000). However, Bortolotti et al. (2000)

suggested that interferon therapy in children only speeded up a spontaneous event and their..
early observations in Caucasian children further supported this view (Bortolotti et al., 1998).
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Nucleoside analo~es

The development of nucleoside analogues, which block viral replication directly by

inhibition of the HBV polymerase, greatly improved the outcome of hepatitis B treatment. To

date, lamivudine is the only n~cleoside analogue to have been approved for the treatment of

chronic hepatitis B as other nucleoside analogues have been shown to either have less efficacy

e.g. famiciclovir or to be poorly tolerated e.g. tobucavir (Dusheiko, 1999).

Early studies have shown that lamivudine rapidly reduces HBV replication and suppresses

HBV DNA to undetectable levels after a few weeks of treatment (Dienstag et al., 1995; Lai et

al., 1997). Furthermore, long-term trials in both Asian and Western patients have shown that

lamivudine significantly reduced the progression of hepatic histopathological changes and

normalized serum ALT levels (Lai et al., 1998; Dienstag et al., 1999; Suzuki et al., 1999; Liaw

. et al., 2000). Lamivudine has ~lso many advantages over IFN-a such as better tolerability, oral

administration and most importantly its global effectiveness irrespective of ethnicity, patients'

sex or onset of infection (Lai et al., 1998; Maddrey, 2000).

Lamivudine thus offers a promising therapeutic option for chronic hepatitis B patients.

However, emergence of resistant strains (see section 1.5.4) results in reduced efficacy of

lamivudine (Tipples et al., 1996; Allen et al., 1998). Nevertheless, many reports indicate that

patients on prolonged lamivudine therapy continue to receive benefit as shown by lower HBV

DNA levels and improvements in serum ALT concentrations relative to pre-treatment values

(Lai et al., 1998; Liaw et al., 2000). Moreover, it has been suggested that combination of

lamivudine with other nucleoside analogues or with IFN-a might delay or prevent the

emergence of viral resistance (Lee, 1997). One recent study has shown that the use of .

combination of lamivudine and IFN-a was more effective than either monotherapy (Schalm et

al., 2000), however, more studies are needed to confirm the superiority of this combination

and to investigate different regimens, . ~

Other Approaches

As inadequate host immune response is believed to have a role in chronic hepatitis B

infection (Chi sari & Ferrari 1995), immunomodulatory agents such as thymosin 0.1 (Tal),

whether alone or in combination with IFN-a, have been tested in chronic HBV carriers. Early

observations have shown that Tal therapy in chronic hepatitis B was associated with

cessation of viral replication and clinical improvement (Mutchnick et al., 1991). However,
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recent studies regarding the efficacy of Tal monotherapyare still controversial (Andreone et

al., 1996; Chien et al., 1998; Mutchnick et al., 1999). A combination of Tal and low dose

IFN-a was associated with promising results in chronic HBV patients with a sustained

response in 60% (Rasi et al., 1996). Therefore, further trials are still needed to assess this

combination.

Therapeutic vaccines are another interesting approach to stimulate the immune system

against HBV. The mechanisms involved in the response to HBV vaccine therapy are still

unclear. Post-infection vaccination might broaden the immune repertoire against the pathogen

and hence bypass the inadequate immune response to natural infection. Additionally,

differences in antigen presentation, processing, post-translational modification and recruitment

of dendritic cells by intramuscular injection of the vaccine epitopes may induce modulations

of the immune response. Further support for this approach comes from transgenic mice. Both

T cell proliferation and anti-HBs production were induced by administration of the therapeutic

vaccine via activation of dendritic cells, implying a key role in the antiviral response (Akbar

et al., 1997, 1999). Clinical trials in chronic hepatitis B carriers ha ve·· sho-.pl-n i.a reduction

in serum HBV DNA levels or clearance of the virus in about 30% of patients (Pol et al., 1994,

2000). Induction of CD4+ T cell response and restoration of the specific B cell immune

response were detected in another study during vaccine therapy (Couillin et al., 1999). PreSt S

vaccine was more frequently associated with disappearance of serum HBV DNA (7/35) in

chronic HBsAg carriers than in those who received S vaccine only (1/21) or no vaccine (1/32)

(Pol et al., 1998). In the same study, it was suggested that vaccination enhanced the efficacy of

IFN-a therapy. Other vaccine strategies based on single-CTL epitope or HBV vaccine and

anti-HBs complex have been also investigated (Wen et al., 1995; Heathcote et al., 1999). DNA

based vaccines which induce both humoral and cellular immune responses, and also seem to

bypass HLA restriction, showed optimistic results in mice, woodchucks and ducks (Geissler et

al., 1997; Lu et al., 1999; RoIlier et al., 1999). These approaches deserve further study and

clinical trials, in particular in combination with nucleoside analogues, to define the optimal

protocols for the treatment of chronic HBV patients.

Adoptive transfer of immunity, rather than its stimulation by vaccination, is another

approach to treat chronic HBV carriers. Early observations have shown that adoptive transfer

of immunity to HBV can be achieved by bone marrow transplantation (BMT) from immune

competent donors (Lok et al., 1992; Han et al., 1993). The feasibility of adoptive immunity
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transfer approaches to HBV in humans BMT recipients through transferring of HBV immune

peripheral blood lymphocytes (PBLs) was also described (Shouval & Han 1995). Recent

reports further supported the role of adoptive immunity transfer in clearance of HBV in BMT

recipients whose donors were immune competent (Lau et al., 1997, 1998). Although the role

of BMT as a treatment of chronic hepatitis B is limited by the high risk and cost associated

with the procedure, use. of nucleoside analogues in addition might allow design of better

therapeutic strategies (Lau et al., 1998).

Liver transplantation

Liver transplantation is often the only therapeutic option for patients with acute or chronic

liver failure caused by HBV infection (Todo et al., 1991; Perillo & Mason 1993). However,

HBV reinfection of the liver graft is a major problem in those patients who receive

immunosuppressive medication to prevent graft rejection. In these cases, retransplantation

may be required due to the rapidly progressive course of the disease which often leads to graft

failure and high mortality rates (O'Grady et al., 1992; Samuel et al., 1993). Therefore,

prevention of HBV reinfection after liver transplantation is important and mainly entails the

usage ofanti-HBs (Lauchert et al., 1987).

Indeed, reduction of reinfection risk and better survival of liver transplant were described

in patients on prophylactic anti-HBs (Muller et al., 1991; Samuel et al., 1991). However,

escape mutants with frequent mutations within S gene, especially in the MHR, were observed

in some patients who suffered reinfection (Carman et al., 1996; Protzer-Knolle et al., 1998).

IFN-a. has also been tried to prevent HBV reinfection in liver transplanted patients. Pre-

transplantation treatment with IFNa. did not prevent graft reinfection even if there was a

response pre-transplant (Marcellin et al., 1994). Early studies showed similar results with IFN-

a. administration whether before or after transplantation (Rakela et al., 1989; Lavine et al.,

1991). Thus IFN-a. does not appear to prevent allograft infection after transplantation except

perhaps in those who become PCR-negative before transplantation (Marcellin et al., 1994).

A newer option is the use of lamivudine or famciclovir; both have been shown to prevent or

reduce HBV reinfection of the liver graft (Boker et al., 1994; Grellier et al., 1996; Aye et al.,

1997). However, resistant viruses with mutations in the reverse transcriptase enzyme have

emerged (Ling et al., 1996; Grellier et al., 1996). Nevertheless, other studies have reported

that a combination of lamivudine and long term HBIG was highly effective in preventing
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HBV recurrence, however at significant expense (Markowitz et al., 1998). Several recent

reports showed similar successful results by using this combination, although in different

regimens (Dodson et al., 2000; Angus et al., 2000). Reduction of the costs of this efficacious

but very expensive strategy could be achieved either by reducing the dose of HBIG or

replacing the HBIG by another effective antiviral agent in combination with lamivudine (Yao

et al., 1999; Angus et al., 2000; Perrillo et al., 2000).

1.8 USAGE OF VIRUS-HETEROGENEITY AS A MARKER TO CHART HUMAN
POPULATION MOVEMENTS

Regardless of the details of earliest origins of viruses on earth, it is generally accepted that

viruses interact, and may even co-evolve with cellular nucleic acid. These cellular interactions

with viruses play a major role in the evolution of both the host cell and infecting viruses.

Evaluation of molecular properties of viruses such as nucleotide sequencing will thus

determine how much of their evolution can be reconstructed, may reflect valuable information

on human history and may even enable us to make predictions about the future development

of viral diseases since the dissemination of viruses can be followed both locally and globally.

Viruses that have the virtue of vertical transmission, medium mutation rate, and endemic

distribution are good candidates for this purpose. Consequently, viral sequence variability has

been proposed as a marker of human migration. Here, I briefy review of what has been

described so far.

1.8.1 Human T-celllymphotropic viruses

The human T-celllymphotropic viruses HTLV-I and HTLV-II are retroviruses. HTLV-I is

regarded as the causative agent of adult T-cell leukaemia (ATL) and HTLV-I-associated

myelopathy/ tropical spastic paraparesis (HAMlTSP). On the other hand, HTLV-II is weakly

correlated with HAMlTSP-like diseases (Yoshida et aI., 1982; Murphy et aI., 1993). STLV-I,

which is the simian equivalent, infects most Old World primate species and is also associated

with lymphoma and leukaemia (Watanabe et aI., 1986; Tsujimoto et al., 1987). These human

and simian viruses are known as primate T-celllymphotropic viruses (PTLVs).

The rate of PTLVs transmission is remarkably low, as it requires close and frequent

contacts such as '. . : breast-feeding, sexual intercourse and .» » •• blood transfusion

(Hino et aI., 1985; Vitek et al., 1995). Unlike other retroviruses, which have a high mutation
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rate leading to quasi-species because of high replication levels and lack of a proof-reading

mechanism of the viral polymerase, PTLVs exhibit unusually low levels of diversity within

individuals (Katz & Skulka 1990; Gessain et al., 1992). These low levels of diversity have

been attributed to the clonal expansion of HTLV-infected cells, which is the dominant

replication mode for such viruses after the initial period of active viral replication (Wattel et

aI., 1995; Cimarelli et aI., 1996). The nucleotide substitution rate of HTLV-II is estimated to

be 1.08x 10-4_2.7x 10-5 per site per year. The HTLV-I evolutionary rate is slightly lower, at

0.4- 6.8x 10-7(Liu et aI., 1994; Salemi et aI., 1998).

HTLV-I is distributed world-wide, but is endemic in Africa, Japan, South America, the

Caribbean basin and the Melanesian region. Phylogenetic ally, HTLV-I has been classified into

three major groups: the Cosmopolitan (HTLV-Ia); Central African (HTLV-Ib); and

Melanesian (Gessain et aI., 1992; Nerurkar et al., 1993). Recently, distinct HTLV-I variants

from Central Africa have been identified and proposed as a fourth group (HTLV-Id) (Mahieux

et aI., 1997). As their names suggest, these phylogenetic groups are generally correlated with

the geographic origins and ethnic backgrounds of the various carriers.

In contrast to HTLV-I, HTLV-II was originally thought to be a New World pathogen

restricted to Amerindian tribes. However, the discovery of diverse strains of the virus in

different tribes among African human ethnic groups contradicted the "New World exclusive"

hypothesis. HTLV-II epidemiology has been changed recently to potential global distribution,

as the virus has invaded new host populations of intravenous drug users (IVDU) in Europe and

North America (reviewed in Slattery et aI., 1999).

HTLV has been used as a genetic marker in endemic populations to trace the origin of the

virus, the migration of ethnic groups, and the contact between populations (Gessain et aI.,

1992; Vandamme et aI., 1998). It is generally believed that type-I viruses have become

globally distributed by multiple episodes of interspecies transmission and successful invasion

of new host populations (Mahieux et aI., 1997; Vandamme et aI., 1998). On the other hand,

HTLV-II strains have a common ancient human ancestor virus and selection may be a factor

in its mutation process relative to type I (Slattery et aI., 1999).
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1.8.2 Human papilloma viruses

Human papilloma viruses (HPVs), which can induce neoplastic proliferation of human

epithelial cells, are a group of DNA tumour viruses with an 8-kb circular genome. More than

100 HPV types have been described with many new types still being characterised. An

association with additional human cancers, such as non-melanoma skin cancers have been

reported (deVilliers et al., 1997; Harwood et al., 2000). HPVs can be transmitted by several

possible routes: close personal contact of most cutaneous warts particularly in presence of

trauma at site of inoculation; neonatal infections (vertical transmissionj shzsare acquired by

passing through infected birth canal; fomites contaminated by HPV-infected cells; and sexual

transmission (Ho et al., 1993; Tay SK, 1995).

Because of the high similarity between different isolates of HPV types (such as type 16

and 18), it was difficult to estimate the mutation rate of HPVs (Ho et al., 1993; Ong et al.,

1993). Comparison of HPV type 16 variants from many geographical locations with different

ethnic backgrounds showed that this type evolved along 5 main branches: two in Africa; two

in Asia; and a dominant one in Europe and India (Ho et al., 1993). Furthermore, because of the

similarity of HPV evolution pattern to that of human races, ancient coevolution of humans and

papillomaviruses has been suggested as a likely possibility (Ho et al., 1993). Analysis ofHPV

type-18 diversity further supported the coevolution hypothesis and suggested a very slow

evolution process; a single point mutation represents at least 12,000 years of evolution (Ong et

al., 1993).

1.8.3 Human polyomavirus JC

Human polyomavirus JC (JCV) virus has a circular double-stranded DNA just over 5kb in

length. Both JCV and HPVs are members of the Papovaviridae family. JCV was first isolated

in 1971 and causes a fatal demyelinating disease known as progressive multifocal

leukoencephalopthy (PML) (Padgett et al., 1971). It is a horizontally transmitted virus;

however, it requires long cohabitation to be transmitted. Therefore, JCV is frequently

transmitted from parents to children but rarely among human populations (Kunitake et al.,

-' 1995; Kato et al., 1997). After infection in childhood, it persists in the renal tissue for life. In

adults, JCV DNA can be detected in urine (Tominaga et al., 1992; Kitamura et aI., 1997).

Infection with this virus appears to be widespread, but asymptomatic in the majority of

patients.
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Genotypes of JCV showed a distinctive geographical distribution. Type 1 (subtype EU) is

found in Europe, type 2 (subtypes Bland MY) in Asia and types 3 and 6 (subtypes Afl and

Af2) in Africa (Sugimoto et at, 1997; Jobes et at, 1998). Therefore, typing of JCV has been

used as a marker of human migration and also to study the racial composition of China

(Sugimoto et at, 1997; Agostini et al., 1997; Guo et at, 1998). JCV has a slow rate of

mutation (4x 10-7); this makes it a good witness only where there is a long history of

evolution, but it is not sensitive for recent drift (Hatwell & Sharp 2000).

1.8.4 Human herpes virus-8

Human herpes virus-8 (HHV-8), which was discovered only a few years ago, has a large

DNA genome (140-kb bounded by 40-kb of terminal tandem repeats) and belongs to the y2

group of Gammaherpesvirinae (Chang et al., 1994; McGeoch & Davison 1998). HHV-S

causes Kaposi's sarcoma (KS) and other neoplastic disorders. Classic KS is common in certain

geographic areas such as Middle East, certain parts of Africa and specific regions of the

Mediterranean countries of Greece, Italy, and Turkey. On the other hand, a low incidence has

been seen in Northern European countries such as Sweden and England (Grulich et at, 1992;

Cottoni et at, 1996).

Four major subtypes have been determined: subtype A is found in USA, B is mostly

confined to Africa, C in Middle East and Asia, and the rare D found in Pacific island patients

(Zong et at, 1999). HHV-8 is spread sexually; however, nonsexual routes of transmission are

likely to occur in HHV-8 endemic areas where the infection is acquired early in childhood

(Schulz, 1998). The HHV-8 genome contains, at the left hand end, the ORF-Kl gene encoding

a transmembrane protein that exhibits much more diversity than the rest of the viral genome

(Zong et at, 1999; Cook et aI., 1999). On phylogenetic analysis, a significant correlation

between the clade patterns of this protein and the geographic or ethnic backgrounds of

infected patients has been detected. Therefore, it has been concluded that such distribution

patterns may reflect the migration of modern human populations (Zong et aI., 1999; Hayward,

1999).

Clearly, the genetic relatedness of several viruses recovered from different geographical

regions has shown that viruses may hold valuable information about ancient human population

movements. It appears that there are still more viruses in the list that have not been discovered

yet. There are uncertainties in virus data. First, there is the inherent effect of genetic drift.
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Second, the initial colonisation of certain regions may precede the introduction of viruses.

Third, the possibility exists that they may not have affected all ancient populations similarly.

Nevertheless, virus analysis has some interesting aspects that human genome analysis does

not. It provides a much greater range of diversity and creates greater power in the conclusions

one can draw as an independent source of evidence. Furthermore, viral sequences have high

mutation rates that allow variations to be determined progressively and consequently the

timing of historical events can be estimated as long as the virus mutation rate is known.

Aims and Hypotheses

The overall aim of this work was to investigate aspects of HBV S gene variation in

relation to virus infection and diagnosis.

Firstly, we hypothesised that HBV S gene "a" determinant variants will emerge in

vaccinated infected children in the Pacific region. To assess this hypothesis, blood samples

were collected from vaccinated children and their mothers from 4 different islands in this

region. Serological markers of HBV infection were tested. PCR and sequencing were carried

out on all children's sera with serological profiles that indicated past or present HBV

infection. Sera from mothers of positive children were treated similarly. Maternal sequences

allowed the incidence of natural variants to be assessed, while sequences from the children

revealed the effect of vaccination. HBsAg positive samples from unvaccinated subjects were

also used to define the background HBV sequence peculiar to the Pacific.

Secondly, we hypothesised that HBV variation can be employed to chart Pacific human

migration. Based on reasonable non-virological evidence that the people of South East Asia

migrated eastwards into Polynesia, we have chosen to study HBsAg variation from four

Pacific islands which have different ethnic backgrounds. Kiribati represented Micronesia,

Vanuatu and Fiji represented Melanesia and Tonga represented Polynesia. Using phylogenetic

analysis of these Pacific HBsAg strains and database sequences isolated from other parts of

the world, we attempted to show that specific sequences co-localised with ethnicity and that

the evolutionary pattern of hepatitis B virus matched the proposed migration patterns of these

people.

Thirdly, we hypothesised that HBsAg negativity in conventional diagnostic assays was

sometimes due to variants that fail to bind to capture anti-HBs. As serum containing HBsAg

particles is rarely available in volumes sufficient for testing against a multitude of capture
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antibodies, we cloned variant HBsAg from 13 diagnostically relevant cases and tested cell

culture supernatants in seven commercial diagnostic assays. As the project evolved, it became

clear that standardisation of the amount of in vitro expressed HBsAg particles was necessary

to allow a fair comparison of the reactivities of these variants. We therefore developed a tag

system, by insertion of a non-HBV tag epitope into the S gene, to standardise the number of

HBsAg particles before measuring reactivity.

Finally, we hypothesised that it may be possible to differentiate between HBV reactivation

and reinfection by comparing sequences at two or more time points. Five patients who had a

serological picture suggesting a second hepatitis B virus episode were studied compared to a

control group of two patients who were HBsAg positive throughout with fluctuating HBeAg

status. Though differentiation between HBV reactivation and reinfection might not add too

much to our clinical understanding of HBV infection, it may provide some insights into the

pathological events ofHBV infection.
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2.1 MATERIALS

a) DNA extraction from serum and blood clots

all In House procedure

Nucleic acid lysis mix

Machine lysis buffer

Proteinase K

Phenol! Chloroform

l x TE buffer

O.MNaCI, 10mM Tris, 2mM EDTA (PH 8.2)

Applied Biosystems, Cheshire, UK.

10mg/ml

25:24:1 with isoamyl alcohol

10mM Tris, ImM EDTA (PH 7.5)

a2) TriPure™ Isolation Reagent (Roche Diagnostics, Lewes, East Sussex, UK)

TriPure Isolation Reagent is a monophasic solution of phenol and guanidine thiocyanate

that allows the isolation of total RNA, DNA and protein from the same sample in a single-step

liquid phase separation. Reagents required but not supplied: ethanol (96% and 75%), 8mM

NaOH and O.IM sodium citrate in 10% ethanol.

a3) High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Lewes, East Sussex, UK)

Binding buffer 6M guanidine HC1, 10mMUrea, 10mM Tris-HC1,

20% Triton®X-lOO(v/v), pH 4.4

Poly(A) carrier RNA

Proteinase K

Wash buffer

Elution buffer

High Pure filter tubes

Collection tubes

0.2mg/40ul (after reconstitution)

20mg/ml (after reconstitution)

20mM NaCl, 2mM Tris-HCl (PH 7.5)

Nuclease-free redistilled H20

Polypropylene tubes have two layers of glass fibre fleece

and can hold up to 700ul of sample volume

2ml Polypropylene tubes
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a4) QIAamp Blood Kit (2S0) (QIAGEN Ltd., Crawley, West Sussex, UK).

It includes 250 QIAamp spin columns, Proteinase K., Buffers: AL for lysis; AW for wash;

and AE for elution, and collection tubes (2ml). However, the ingredients of these materials are

not provided by the manufacturer.

b) Synthetic oligonucleotides

Oligonucleotides were synthesised m house using a Cruachem PS2S0 automated

synthesiser. Oligonucleotides used during this work are listed in table 2.1.

c) Enzymes

Taq DNA polymerase, restriction enzymes and T4 DNA ligase were obtained from Roche

Diagnostics. RNase and Lysozyme were purchased from Sigma.

d) Reagents and buffers for PCR and cloning

lOx PCR buffer 200mM Tris-HCI (PH 8.4), SOOmM KCI

lOx dNTPs 100mM of each dATP, dCTP, dGTP, dTTP

TaqStart Antibody 1.1u·gIul in storage buffer: 50mM KCI, 10mM Tris-HCI

(PH 7.0), 50% glycerol

50mM KCI, IOmM Tris-HCI (PH 7.0)

89mM Tris HCI (PH 8.0), 89mM boric acid, ImM EDTA

TaqStart dilution buffer

lOx TBE

lOx agarose gel loading buffer lx TBE, 1% SDS, 50% sucrose, lmglml bromophenol blue

Acrylamide gel elution buffer O.SM ammonium acetate, 10mM MgCh, 0.1% SDS, 1mM

EDTA

lOx ligase buffer 250mM Tris HCI (PH 7.6), SOmM MgCI2, SmM DTT,

SmM ATP, 25% PEG 8000

lOx TAE 0.2 Tris, SOmM EDTA (PH adjusted to 8.0 with acetic acid)

e) Human J3 globin and HBV DNA PCR positive controls

Our positive J3 globin PCR control was the DNA extracted from pnmary human

embryonic lung cells (MRC5) infected with the human cytomegalovirus (HCMV). The HBV

DNA positive standard was at a titration of 10-6 (40 gev/ml).
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f) Plasmid

PH was used to express full-length surface genes (standard and variant types) in COS7

mammalian cells. PH plasmid has a pUC backbone and contains a cytomegalovirus (CMV)

promoter which allows very high expression of proteins in a variety of mammalian cells, a

multiple cloning site (MCS) downstream of the promoter, for insertion of the target gene, a

SV40 late poly (A) signal to direct proper processing and for increased stability of the PH

mRNAs (SV 4OpA), SV40 origin of replication for single stranded DNA production, and an

ampicillin resistant gene (AMpR) for prokaryotic selection.

g) Bacterial strain and growth media

DH5a Escherichia coli. Genotype: ~80dlacZLlM 15, recAI, endAI, gyrA96,

thi-l , hsdRI7 (rkO,m,'), supE44, reI AI, deoR, Ll(lacZYA-argF) UI69.

L-broth Luria-Bertani liquid medium (10 g NaCI, 10 g Bacto Tryptone, 5 gm

Bacto-yeast extract in one litre distelled water.

As above plus 109 Bacto-agar,L-broth in agar

h) COS7 culture system

These monkey kidney cells were originally derived from an African-monkey kidney cell

line transformed by an origin defective mutant of SV-40. Cells were grown in Dulbecco's

modified Eagles medium (DMEM) supplemented with 10% bovine calf serum, 100 ID/ml

penicillin! 100 ug/ml streptomycin and 2mM glutamine. Trypsin (0.25% trypsin dissolved in

'Iris-saline) and Versene (600mM EDTA in PBS A, 0.0015% (w/v) phenol red) were used for

splitting of the confluent cells.

i) Reagents and solutions for small scale plasmid preparation

Miniprep Solution I 25mM Tris HCI (PH 8.0), 50mM glucose, IOmM EDTA

(PH 8.0)

Miniprep Solution II

Miniprep Solution III

Ethanol

0.2M NaOH, 1% SDS

3M pot. acetate, 5M acetic acid

100% and 70% (diluted with distilled water)
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j) Reagents and solutions for large scale plasmid preparation using Midiprep QIAGEN

Kit (Crawley, West Sussex, UK).

Buffer PI

Buffer P2

BufferP3

BufferQBT

50mM Tris HCI (PH 8.0), 10mM EDTA, 100ug/ml RNase A

0.2M NaOH, 1% (w/v) SDS

3M potassium acetate (PH 5.5)

750mM NaCI, 50mM MOPS (PH 7.0), 15% isopropanol,

0.15 % triton X-lOO

1M NaCI, 50mM MOPS (PH 7.0), 15% isopropanol

1.25 M NaCI, 50 mM Tris HCI (PH 8.5), 15% isopropanol

1.6M NaCI, 50mM MOPS (PH 7.0), 15% isopropanol

BufferQC

BufferQF

BufferQN

k) Reagents and solutions for transfection

k 1) CaP04 method reagents

eaCh

2x HEBS buffer

1M CaCh, filter-sterilised (0.22um), stored in 5ml aliquots

at-20°C

280mM NaCI, 10mM KCI, 1.5mM Na2HP04.2H20, 12mM

Dextrose, 50mM HEPES, pH adjusted to 7.05 with

NaOH, filter-sterilised and stored in aliquots as above.

K2) Lipofectase transfection Reagent

Lipofectase reagent was made "in house" using the following chemicals.

DDAB: Dimethyldioctadecyl-ammonium bromide; purchase from Sigma, D 2779.

DOPE: Dioleoyl L-a-phosphatidyl ethanolamine; purchased from Sigma, P051 O.

K3) FuGENETM6 Transfection Reagent (Roche Diagnostics, Lewes, East Sussex, UK

FuGENE Reagent is a proprietary blend of lipids (non-liposomal formulation) and other

compounds in 80% ethanol, filter-sterilised.
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I) Reagents, solutions and requirements for ELISA

10xPBS

Dilution buffer

Blocking buffer

Wash buffer

Substrate (ABTS, Peroxidase

substrate system,

Flat bottomed Immulon wells

ELISA plate reader

100mM phosphate, 1.5MNaCl (PH 7.2)

lxPBS

2% bovine serum albumin (BSA) in 1xPBS

0.1% Tween® 20 (v/v) in lxPBS

Purchased from Kirkegaard & Perry Laboratories Inc.,

Gaithersburg, Maryland, USA.

Dynatech laboratories Ltd, West Sussex, UK

Anthos HT2 Version 1.21, Labtech International Limited,

East Sussex, UK.

m) Antibodies for ELISA and immunofluorescence

Monoclonal anti-CMV Late Nuclear Capricorn Products Inc. Scarborough, USA

Protein antibody (anti-pp65 mouse)

Rabbit polyclonal antibody A kind gift from Dr. H. Marsden (Virology Institute).

Raised against a peptide from the N terminus of

HMCV ULI02 protein.

Protein A (used as anti-species

anti-polyclonal antibody)

High affinity anti-HA peroxidase

(3FIO)

Biotinylated anti-HA

FITC conjugated anti-HA

Polyclonal Goat anti-hepatitis B

surface antigen (anti-HBs)

FITC conjugated rabbit anti-Goat

JgG (whole molecule)

Purchased from Pharmacia.

MAb conjugated with peroxidase, used for the

detection ofHA-tagged recombinant proteins.

(All anti-HA antibodies were purchased from

Roche Diagnostics).

MAb conjugated with biotin, used for the capture of

HA-tagged recombinant proteins.

FITC conjugated MAb used for IF.

DAKO (Carpinteria, USA). Used at a working

dilution of 1: 900 as the primary Ab for detection.

Sigma & used as secondary detection Ab at a working

dilution of 1: 64.
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n) Common Reagents

All reagents and chemicals were purchased from BDH Chemicals, (Poole, UK) or Sigma-

Aldrich Co. (Poole, UK) unless otherwise stated in this section or in the methods section

Roche Diagnostics

Chemicals

Ampicillin

TEMED, Ammonium persulphate

Formaldehyde

Sequagel 6 and Proto gel pre-prepared acrylamide solutions

Deionized formamide

Boric acid, chloroform, ethanol, glacial acetic acid, glycerol,

isopropanol, methanol

Agarose, Tris base

Manufacturer

Beecham Research

Bio-Rad

Fluka

National Diagnostics

Oncor

Prolabo
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Table 2.1: Primers used in this study

S gene Primers

Name Primer sequence (5'>3') Position Type
56-75 Sense
459-479
129-146
636-656
1003-979 Anti-sense
690-669
842-823
434-415

SI
S4
S6C
SIO
S2Na
S3
S7D
S8

CCTGCTGGTGGCTCCAGTTC
GTATGTTGCCCGTTTGTCCTC
GCACACG*GAATTCCGAGGACTGGGGACCCTG
TCCTATGGGAGTGGGCCTCAG
CCACAATTCKTTGACATACTTTCCA (K=G/T)
AATGGCACTAGTAAACTGAGCC
GACACCiAAGCTTGGTTAGGGTTTAAATGTATACC
AGAAGATGAGGCATAGCAGC

Pre S primers

Name
FO
F7
R4

Primer sequence (5'>3') Position Type
TGGGAACAAGAG/TCTAC
AATCCA/CGATTGGGACT/CTCAA
TCCTG/AACTGG/CCGATTGGT

2835-2950 Sense
2971-2990
3159-3142 Anti-sense

C gene primers

Name
Cl
C3a
C4N

Primer sequence (5'>3') Position Type
GGGAGGAGTTGGGGGAGGAGA
GA/GTCTWTGTAYTAGGAGGCTG (Y=C/T)
CCTTATGAGTCCAAGGRATA (R=G/A)

1732-1752 Sense
1763-1783 Sense
2478-1459 Anti-sense

S gene tagged Primers

Name Sequence before the tag epitope Tag epitope Sequence after the tag epitope
including the restriction enzyme

ABtagl 5' GAG*GAATTC 155 ATG M-CMV 158 GAGAACATCACATCAGGA
ABtag2 5' GAG*GMTTC 155 ATG PI-CMV 158 GAGAACATCACATCAGGA
ABtag3 5' GAG*GAATTC 155 ATG P2-CMV 158 GAGAACATCACATCAGGA
ABtag4 5' GAG*GMTTC 155 ATG Flu-HA 158 GAGAACATCACATCAGGA
BAtagl 5' GACACC tMGCTT838GGTTTA M-CMV 832 AATGTATACCCAGAG
BAtag2 5' GACACCt MGCTT838GGTTTA PI-CMV 832 AATGTATACCCAGAG
BAtag3 5' GACACC tMGCTT838GGTTTA P2-CMV 832 AATGTATACCCAGAG
BAtag4 5' GACACC tAAGCII838GGTTTA Flu-HA 832 AATGTATACCCAGAG

*: E coRI restriction site (underlined).

t: Hind III restriction site (underlined).

Non-HBV sequence are written in bold and nucleotide position numbering are according to Okamoto et al., 1988.

•
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2.2 METHODS

2.2.1 HBV DNA extraction, peR, sequencing and Phylogenetic analysis

a) Extraction of human and HBV DNA from blood clots

a1) Inhouse procedure

A pea sized blood clot was transferred to a sterile Eppendorf tube and the following

reagents were added: 250 ul nucleic lysis mix, 250 ul "machine" lysis buffer (Applied

Biosystems, Warrington, Cheshire, UK) and 50 ul proteinase K at 10 mg/ml. Samples were

incubated at 55°C for 2-3 hours or overnight at 37°C followed by vortexing to dissolve the

blood clot. Then, 500 ul of phenol chloroform was added and the DNA precipitated and

washed with ethanol. The pellet was left to air dry and then resuspended in 50 ul Ix TE

buffer.

a2) TriPure™ Isolation Reagent (Roche Diagnostics, Lewes, East Sussex, UK).

1ml TriPure isolation reagent was added to the pea sized blood clot in a sterile Eppendorf

tube and the cells were lysed by repetitive pipetting. The samples were incubated for 5 min at

room temperature to ensure the complete dissociation of nucleoprotein complexes. 0.2 ml

chloroform was added, the tube capped securely and shaken vigorously. Further incubation at

room temperature for 2-15 min was carried out followed by centrifugation at 12,000 x g for 15

min to separate the solution into three phases. After centrifugation, the upper, aqueous,

colourless phase containing RNA was carefully removed. DNA precipitation from the

interphase and the red organic phase was performed with 96% ethanol. Samples were washed

3 times with 0.1 M sodium citrate in 10% ethanol and then once in 75% ethanol. The DNA

pellet was air-dried and then resuspended in 50 ul 8 mM NAOH. Finally, the pH of the

isolated DNA was adjusted to 8.4 using 0.1 M HEPES.

a3) High Pure Viral Nucleic Acid kit (Roche Diagnostics, Lewes, UK).

For the Roche kit, 200 ul of working solution (binding buffer supplemented with poly (A)

carrier RNA) and subsequently 40 ul of 20 mg/ml proteinase K were added to the pea sized

blood clot in a sterile Eppendorf tube, mixed and incubated for 10 min at 72°C. After the

incubation, 100 ul of isopropanol was added. The filters and collection tubes were combined
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and the samples pipetted into the upper reservoir followed by centrifugation for 1min at 8,000

x g and the flowthrough discarded. The filter was washed twice with the wash buffer and the

flowthrough discarded after each wash. Finally, centrifugation for 10 seconds at full speed

removed all the residual wash buffer. Collection tubes were discarded and clean nuclease-free

1.5ml tubes were used to collect the eluted DNA in 50 ul of elution buffer.

a4) QIAamp blood kit (Qiagen Ltd, Crawley, UK).

For the Qiagen kit, although Roche and Qiagen kits employ the same principle, the

reagents are different. Buffer AL, Qiagen protease, ethanol, and buffer AW were used instead

of the working solution, proteinase K, isopropanol, and wash buffer respectively that were

employed in the Roche kit.

NB. HBV DNA were extracted from the sera using either High Pure Viral Nucleic Acid

Roche Kit or the QIAamp blood kit from QIAGEN.

b) Preparation of oligodeoxyribonucleotides

All oligodeoxyribonucleotides used in this study were synthesised "in house" using a

Cruachem PS250 oligonucleotide synthesiser. They were eluted from their synthetic columns

with 1.5ml ammonia solution (high grade), deprotected at 55°C for 5 hours and dried under

vacuum by spinning overnight. The precipitated pellets were resuspended in 100- 200 ul

dH20 and oligonucleotides concentration was determined by measuring the optical density

(OD) at 260 and 280 nm wave lengths (where 260/ 280 reading ratio should be around 1.8, to

rule out any contamination possibility). Aliquots were made and stored at -20°C.

For oligonucleotides over 45-50 bases further purification have been done by

polyacrylamide gel electrophoresis (PAGE). 50ul of each resuspended oligonucleotide was

mixed with an equal volume of deionized formamide and run on a 12% polyacrylamide gel

(20ml of 30% protogel, 5ml lOx TBE, 24.4 dH20, 40ul TEMED and 600ul ammonium

persulphate). The oligonucleotides were run in separate wells (with a few wells space left in

between them to prevent cross contamination). Gel loading buffer was loaded in a separate

well to act as a molecular weight marker. Electrophoresis was performed at 400V/ 10mA for

2-3 hours in lx TBE. Then, the gel was removed from the plates, wrapped in cling film and

viewed by ultraviolet shadow- casting technique. The bands were cut with a sterile scalpel,

diced and incubated overnight in 1ml acrylamide gel elution buffer at 37°C. After
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centrifugation, the eluted oligonucleotides were removed, phenol: chloroform extracted and

ethanol precipitated. The pellet was washed with 70% ethanol, dried under vacuum and finally

resuspended in 30- 50 ul dH20.

c) peR amplification of the extracted DNA

cl) ~ globin PCR

Five microliters of extracted DNA was amplified in SOulmaster mix containing 1.25 U

Taq polymerase (Gibco, Paisley, UK), 2.5 U TaqStart™ antibody (Clontech Laboratories Inc,

Palo Alto, CA, USA), 0.2 mM dNTPs, 2.0 mM MgCh, lOX PCR buffer (supplied with Taq

polymerase) and 20 pmol of each primer, Pc03 (5' ACACAACTGTGTTCACTAGC) and

Pc04 (5' CAACTTCATCCACGTTCACC). The reaction mix was overlaid with SOulmineral

oil to prevent evaporation. The reactions were performed on a Biometra TRIO Thermoblock

using the following program; five min at 94°C, followed by 35 cycles of 94°C for Imin, 55°C

for Imin and 72°C for Imin. The product is 110 bp.

c2) HBV DNA S gene PCR

Hot start PCR was performed using a nested protocol and antibody to Taq polymerase to

amplify the surface (S) gene of HBV. Five microliters of extracted DNA was amplified in

SOul solution containing 1.25 U Taq polymerase (Gibco, Paisley, UK), 2.5 u TaqStart™

antibody (Clontech Laboratories Inc., Palo Alto, CA, USA), 0.25 mM dNTPs, 2.5 mM MgClz,

lOX PCR buffer, and 25pmol of each primer (S1: sense 5'-CCTGCTGGTGGCTCCAGTTC-

3' and S2Na: antisense 5'-CCACAATTCKTTGACATACTTTCCA-3'; where K= G or T), for

5 cycles of 95°C for 1min, 55°C for Imin, and 72°C for 90 sec followed by 35 cycles with the

denaturation temperature reduced to 90°C. One microlitre of first round PCR product was then

re-amplified in the same solution as above except for nested primers, (S6C: sense and S7D:

anti sense, see Table 2.1). Conditions used were; 5 cycles of 95°C for 1 min, 55°C for 75 sec,

and 72°C for 90 sec followed by 25 cycles with the denaturation temperature reduced to 90°C.

c3) HBV DNA Corel PreS regions PCR

A hemi-nested protocol was used for the amplification of both regions. Primers Cl and C4

followed by C3a and C4 were used in core region amplification, whereas, primers FOand R4

followed by F7 and R4 were used to amplify the Pre-S region. The reaction mix (except for
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using MgC}zat 1.5 mM concentration in core amplification) and program cycles of Biometra

TRIO Thermoblock, were similar to those used in S gene amplification. Amplification of

these regions was employed to confirm the PCR or sequencing results of S gene.

d) Agarose gel electrophoresis

Agarose gel electrophoresis was used to confirm the right size of our amplified PCR

products by visualizing the gel on an ultraviolet transilluminator. Also, it was used to check

linearized plasmids (after enzyme cut and before ligation) and restriction digests of miniprep

DNA. Gels were prepared by adding 19 agarose to 100mliX TBE buffer. The solution was

boiled until dissolved and left to cool. Then, 50ul ethidium bromide (lmg/ ml) was added

before pouring the gel. One ul of agarose gel loading buffer was added to each sample before

loading, followed by running the gel at 80-90V in IX TBE buffer for 25min.

e) Purification of the peR product

el) DNA purification using Geneclean Kit (Bio lab 101 Inc, CA, USA):

After running an adequate amount of the PCR product on the gel, DNA fragments of the

expected size were located by visualizing the gel on an ultraviolet transilluminator. The

correct bands were cut and placed in 1.5ml tubes with 3 volumes of sodium iodide and 0.5

volume of TBE gel modified buffer and incubated at 55°C for 10-15min. After complete

melting of the gel, 5ul of glass milk was added to each tube. The tubes were vortexed and

incubated at room temperature for 10min. The tubes were spun for 30 seconds at 13,000 rpm

in a bench-top microfuge, and the resulting pellet washed twice with 0.5ml ice cold NEW

wash (containing 14ml concentrate provided with the Geneclean kit, 280ml distilled water and

3l0ml 100% ethanol). The pellet was dried and the DNA eluted in 50ul of dH20 by

incubation at 55°C for 5min. Finally, the supernatant was collected after spinning the

suspension at 13,000rpm for 2min.

e2}DNA purification by High Pure PCR Product purification kit

(Roche Diagnostics, Lewes, UK)

250ul of binding buffer was added to SOulof PCR reaction product and mixed well. The

mixture was poured onto the High Pure filter tube and centrifuged at 13,OOOrpmfor 30sec.
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The filter tube was washed twice. Finally, the filter was inserted in RNase free1.5ml tube and

dH20 was applied to elute the DNA (higher volumes of dH20 for elution are preferred as it

increases the elution efficiency).

f) DNA sequencing

fl) DNA purification and sequencing

DNA was firstly purified by using one of the previously mentioned kits (2.2.1. el, 2).

Sequencing of the S gene was performed either directly from the purified PCR products or

after S gene cloning using an automated sequencer (ABI Prism, 377 DNA sequencer, Applied

Biosystem, Perkin Elmer) according to the manufacturer's instructions. The reaction mix was

prepared by adding 1.6pmol of the primer to 20-30ng purified PCR product in a total volume

of6ul. For the cloned S gene, 200ng of the DNA were used instead in the reaction mix.

£2) Sequence data analysis

The Sequence Navigator software program (Applied Biosystem, Cheshire, UK) was used

to analyse our sequence data. The sequences were aligned and the consensus sequence was

determined for sequences that have the same subtype/ genotype. Moreover, other HBV S gene

sequences from Gene bank, representing the different HBV genotypes, were retrieved and

analysed with our studied sequences.

g) Phylogenetic analysis

Sequences were aligned using Clustal V. Phylogenetic trees were reconstructed and drawn

using NEIGHBOR and DRAWGRAM programes from the PHYLIP package v3.5C

(Felsentein 1993) and phylogenetic networks were constructed using NETWORK 2.0B

(Bandelt et al., 1995).

gl) Phylogenetic tree construction

A big simple Neighbor-joining Tree was constructed using the S gene (681bp) nucleotide

sequences from 102 isolates (Figure 3.4), consisting of 20 sequences chosen randomly from

each island and 22 S gene sequences representing the different genotypes of HBV retrieved

from Genbank. The aim was to reveal the overall picture of circulating HBV genotypes in the

four Pacific islands.
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NB** For a small part of the work, phylogenetic analysis was performed on a 477-bp

fragment of the S gene bracketing nucleotides 82-558 using sequences obtained from

GenBank and sequences from within the UK. The phylogenetic tree (which was performed by

Siew Lin Ngui; Chapter 3.6, Fig 3.12) was constructed using Megalign from the Lasergene

Navigator suite of programmes (DNASTAR, Madison, WI, USA).

g2) Phylogenetic network construction

Construction of a Genotype C Pacific Network

In order to resolve the ancestry of the Pacific C genotype sample in the context of world

HBV C genotype variability, a phylogenetic network was constructed containing the 64

Pacific C genotype HBsAg sequences. This was augmented by the inclusion of a selection of

25 database sequences, with highest similarity in FASTA research to the sample sequences. .

The pooled dataset contained 89 sequences of681nt, with 129 variable sites across the S gene

sequence. Of these, 20 tri-and tetra-morphic sites were excluded as unsuitable for analysis

using the reduced median network approach, which requires binary data. A further 13

dimorphic sites were initially excluded on the basis that they displayed a high degree of

incompatibility with other sites in the data. This was taken as evidence that they had mutated

several times in the history of the sample, and therefore would not be helpful in inferring the

structure of the phylogeny.

Initially, separate networks were constructed for the database sequences and the Pacific

sequences, including some key sequences in both datasets. Inspection of the initial network

for Pacific sequences indicated that a further site (nt13) should be removed in order to reduce

the amount of reticulation in the network. In the next stage, selected sequences central to each

network were added to the alternate dataset to construct overlapping networks sharing key

haplotypes. The networks were then obtained by superimposing these key haplotypes. Finally,

each site which had previously been excluded was tested for re-inclusion, and was re-

incorporated if parallel mutations at that site could be resolved into separate mutations in

distinct clusters which were already apparent in the rest of the data. Thus, 5 out of the 14

excluded sites were re-introduced in this way (see Figure 3.5).
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Construction of a Genotype D Pacific Network

The reconstruction of the D genotype phylogeny was simpler than that for the C genotype,

because of the smaller sample size and consequent reduction in the amount of homoplasy, or

site incompatibility, corresponding to evidence for multiple substitutions at some sites. A

screen of the database was used to identify all distinct sequences that were within 7 mutational

steps of any sequence in the sample, and the augmented dataset was used to construct a

phylogenetic network. The dataset contained 50 sequences, with variation at 76 sites. There

were 12 trimorphic sites, which were unambiguously resolved into separate characters before

network construction. Of these 12, only one was trimorphic within the Pacific sample, which

was indicative of the high degree of relatedness between Pacific D sequences.

b) Time estimates

The method of Morral (1994) was used to make relative estimates of the time since the

respective putative ancestor of the C and D samples. The quantity rho; the average number of

mutations along branches to the founder sequence, was calculated for each genotype (Table

2.2). VI02, the central sequence of the main cluster was taken as the founding C genotype

because the sequences V185, X75656 and X75665 appear to share an older common ancestor

with the main cluster which may have existed before the main founding event (see Figure

3.6). The sequence defined by K232/T269 was taken as the founder sequence for the D

sample and because it is uncertain whether the branch leading to K202, F148, F306 and

T251is derived from the same colonisation event, calculations were done both with and

without these sequences (see Figure 3.5).

For D, rho was calculated from the network for an arbitrarily chosen, likely tree, and other

likely trees gave similar values. For C, because of the complicated nature of the final network,

rho was calculated approximately from the full incidence matrix generated by resolving most

incompatibilities into separate sites. The effect of the remaining ambiguity in the network

structure was a slight inaccuracy of some branch lengths. This effect is unlikely to be serious

where parallelisms in the network are small and confined to single branches, and this is

demonstrated for D where the data was uncomplicated enough to apply both methods. The

Saillard et al. (2000) estimator for var (rho) was used to decide whether differences in rho

were statistically significant, and, as before the calculations were done explicitly for D and by

approximation for C.
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Table 2.2: Time estimates of HBV ancestor in Pacific islands*

genotype C D

method approx. exact approx.

sequences VI02 all all
cluster sequences sequences

rho 8.87 nt 3.08 nt 3.04 nt

s.d. 1.44 0.52 0.54 O.3<l

Confidence 6.0 - 11.8 2.0 - 4.1 .4- 3.0
Interval
Age (1) 432 - 850 yr 144 - 295 yr

Age (2) 39 -77 yr 13 -27 yr

*: Calculations were performed according to the mutation rates published in Hannoun et al. (2000).

Rho: The average number of mutations along branches to the founder sequence

(1): HBeAg positive rate; 2.04x 10-5

(2): HBeAg negative rate; 2.25x 10-4

2.2.2 Molecular cloning and transfection methods

a) Digestion of the vector/ insert by endonuclease digestion

Intially, PCR products of the amplified S genes (DNA insert) were purified by one of the

described methods (2.2.l.e). Then, restriction enzyme digestion of both insert and vector was

carried out with Hind III and EcoR I enzymes. Typically, a digestion mixture was composed

of DNA, endonuclease enzyme (l0 units of enzyme per 1ug of DNA) and the optimal buffer

at the right concentration. Temperature and time of incubation were adjusted as specified by

the manufacturers.

b) Purification and concentration estimation of digested DNA

Digested vector and insert were run on 1% agarose gel and visualised on an ultra-violet

transilluminator. Then, appropriate bands were excised and purified which was followed by a
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comparative gel, where different concentrations of both vector and insert were estimated with

agarose gel electrophoresis in presence of molecular weight marker of known concentration.

c) Ligation

PCR products were ligated into mammalian expression vector PH after digestion with

Hind III and EcoR I. The appropriate vector: insert ratio was used. Ligation mixture was

added to the vector insert mix, containing 1 unit T4 ligase/ ug DNA, 3ul T4 ligase buffer and

dH20 to a final volume of IS. This was incubated for 3-4 hr at 16°C. Half of the ligated DNA

was used immediately and the rest stored at -20°C.

d) Preparation of E. coli competent cells

IOul of DHSa glycerol stock was added to IOml of LB broth and incubated overnight at

37°C in a shaking incubator. O.Sml of the overnight culture transferred to SOOmlof pre-

warmed LB broth and incubated at 37°C for 2-3hr, until the OD6oo of the culture was

approximately 0.3. Cells were then transferred to SOmlFalcon tubes and spun at 2,800rpm for

IOmin at 4°C. The cells pellet was resuspended in 20ml cold sterile 100mM CaCh and kept

on ice for 2hr. This spin was repeated and the pellet resuspended in 2ml of cold IOOmMCaCh

and left on ice for 30min. The resuspended cells were then kept overnight at 4°C before

transformation to enhance their competency. For storage, Iml aliquots of re-suspended cells,

after adding glycerol at a concentration of 15%, were snap frozen in liquid nitrogen and stored

at -70°C. Glycerol stocks were prepared by adding glycerol to a final concentration of 40%,

snap frozen and stored as before.

e) Transformation of E. coli

7.Sul of the ligation reaction was added to IOOulof competent E. coli and incubated on ice

for Ihr. The cells were then heat shocked in a 42°C water bath for 2min followed by Smin

incubation on ice. One ml ofRT-pre-warmed L-broth was added to the cells and incubated at

37°C for Ihr. In the meantime, LB agar plates containing ampicillin at 100ug/ml were

prepared. The bacteria were spun for 10 seconds at 13,000 rpm followed by removal of the

supernatant except for 100ul. These transformed bacteria, after gentle shaking, were plated

onto the LB agar/ampicillin plates. 100ng of uncut plasmid, positive control, cut plasmid,
negative control, were also transformed. 10ul of 10-6competent E. coli were plated on LB
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agar plates without ampicillin as a bacterial control. The plates were then incubated overnight

at 37°C.

t) Small Scale Plasmid Preparation (Mini-prep)

Colonies of transformed bacteria were inoculated into 2-3ml of LB broth containing

ampicillin at 100uglml and incubated in a shaker at 37°C overnight. One ml of the overnight

culture was transferred to a 1.5ml eppendorf tube and centrifuged at 13,000rpm for 30sec. The

pellet, after decanting the supernatant, was resuspended in 100ul of ice cold solution (I) and

left at RT for 5min. 200ul of freshly prepared solution (II) was added, mixed gently and left

on ice for 2-3min. 150ul of solution (III) were added, mixed by few inversions, left on ice for

2-3min. 150ul of phenol/chloroform was added to the mixture, vortexed and centrifuged at

13,000rpm for 3-5min. The aqueous phase was transferred to a fresh tube, 800ul of 100% ice

cold ethanol was added to precipitate the plasmid DNA and centrifuged for 10min.

The pellet was then washed with 70% chilled ethanol, air dried and finally resuspended in

50ul dHzO containing Rnase at 20uglml to remove any contaminating RNA.

g) Restriction enzyme digestion

Restriction digestion of plasmid DNA was carried out to confirm successful cloning. The

standard mixture consisted of I.5ul lOX restriction buffer (B), 0.2ul (2 units) of each

restriction enzyme (EcoR1 & HindIIl), 5ul plasmid DNA and dHzO to a final volume of 15ul.

The digest mixture was then incubated at 37°C for 2-3hr.

b) Large scale plasmid DNA preparation

Large scale plasmid preparations were performed to purify plasmid DNA, using the

QIAGEN midi kit. 0.5ml of the overnight culture of confirmed clones was added to 50ml L-

broth containing 100uglmi ampicillin and incubated overnight at 37°C. The culture volume

was divided into two equal parts which were spun at 3,000rpm for 15min at 4°C. One of the

bacterial pellets was stored at -20°C, while the second was resuspended by vigorous vortexing

in 4ml of buffer PI. 4ml of buffer P2 was added and mixed gently by several inversions. After

5min incubation at RT, 4ml of chilled buffer P3 was added and mixed gently. The lysate was

poured into the QIAfilter cartridge with screw cap on and incubated at RT for lOmin, In the

meantime, QIAGEN-tip 100 was equilibrated with 4ml of buffer QBT. The lysate filtrate was
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then transferred from QIAfilter to the equilibrated QIAGEN-tip and left to drip by gravity

flow. After all the lysate filtrate had dripped through the QIAGEN-tip, the resin tip was

washed twice with wash buffer QC. Elution of the plasmid DNA from the resin tip was finally

achieved by addition of 5ml elution buffer QF. The plasmid DNA was precipitated by the

addition of 3.5ml isopropanol followed by centrifugation at II,OOOrpm(Sorvall SM24 rotor)

for 30min at 4°C. The pellet was then washed with 70% ethanol, air dried and resuspended in

IOOul dH20. Finally, the plasmid DNA concentration was determined by measuring the

absorbance at 260 nm.

i) COS7 cell culture

COS7 cells were grown and passaged in sterile, disposable I75cm2 flasks. From a

confluent cell culture flask, media were poured off and cells washed twice with 20ml versene.

The cells were then trypsinised with a solution of trypsin and Versene, at 1:1 ratio, gently

swirled and poured off. After 5min incubation at 37°C, the flask was gently tapped to dislodge

all the cells.

Cells were then resuspended in IOmIof DMEM containing IOOIU/mlpenicillin, 100ug/ml

streptomycin, 2mM glutamine and 10% foetal calf serum (FCS). 1ml of harvested cells was

used to seed a new flask containing 50ml medium, gassed with 70ml C02 and incubated at

37°C+5% CO2. For storage, COS7 stock cells containing DMSO at a final concentration of

15%were kept in nitrogen liquid after overnight incubation at -20°C.

j) Transfection

jl) Calcium phosphate (CaP04) transfection

For 6cm diameter plates, cells were seeded on 13mm glass coverslips at 2x 106 cells per

plate and incubated overnight at 37°C until they become 60-70% confluent. 250ul solution

containing the plasmid DNA (IOug) and CaCh (0.25M) were made and left at RT for I-2hr.

250ul of 2x HEBS were then added to the DNNCaCL2 solution slowly and mixed gently to

allow a fine precipitate of CaP04 to form. After 30min incubation at RT, the transfection

mixture was added across the plate and incubated at 37°C for approximately I6hr. The

medium containing the transfection mixture was then replaced with a Sml of fresh DMEM

and the incubation continued for a further 2-3 days. Two plasmids (PH) containing standard

HBV DNA surface gene sequence (both adw and ayw subtypes) were used as positive
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controls for transfection and antigenic analysis. Negative transfection control, an uncut

plasmid without gene sequences, was also used during each transfection. To confirm HBsAg

protein expression, the supernatants were harvested after 3 days and immunofluorescent

staining performed on the cell-mono layered coverslips.

j2) Liposomal Transfection

The plasmid, with its entire HBV surface gene insert, was transfected into subconfluent

monolayers of COS7 cells on 13mm coverslips in 60mm petri-dishes using cationic liposomes

made from dioleoyl L-a-phosphatidyl ethanolamine and dimethyldioctadecyl ammonium

bromide (Sigma-Aldrich, Poole, UK). Briefly, 2Jlg plasmid was diluted in 200JlI Optimem 1

reduced serum medium (Life Technologies, Paisley, UK) and, in a separate vial, 24J-l1of

liposomes was added to 200JlI of Optimem 1. The two solutions were mixed and allowed to

stand for 15 min at room temperature, then further diluted to 2ml using Optimem 1 and added

to pre-washed COS7 cells. The cells were incubated with the transfection mixture for 5h at

37°C in 5% CO2 and then 3ml of COS7 medium added (DMEM with 10% foetal bovine

serum, 100 IV/ml penicillin, 100 ug/ml streptomycin and 2mM L-glutamin (Life

Technologies, Paisley, UK).

Cells were incubated for 16h at 37°C in 5% CO2 when the transfection mixture was

removed and 5ml of fresh COS7 medium added. Transfection controls and HBsAg protein

expression detection were done as described before in CaP04 method.

j3) FuGENE™ 6 transfection Reagent

The FuGENE™ 6 Transfection Reagent (Roche Diagnostics, Lewes, East Sussex, UK) has

enabled us to use a smaller concentration of pasmid DNA, achieve a better transfection and,

hence, protein expression. The DNA was transfected into subconfluent monolayers of COS7

cells on 13mm coverslips. 10ul of FuGENE was added to 95ul of Optimem 1 reduced-serum

medium (Life Technologies, Paisley, UK), and incubated at room temperature for 5 min.

Meanwhile, 3ug of DNA were added to a separate tube. The FuGENEI Optimem mixture was

added slowly to the DNA and incubated for 15-20 min at RT. Then, this mixture was added to

the adherent subconfluent COS7 cells in a 60mm petri dish containing 5ml DMEM and

incubated for 3 days at 37°C. Transfection controls and HBsAg protein expression detection

were done as described before in CaP04 method.
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k) Immunofluorescence

Transfected cell monolayers on cover slips were washed twice with PBS. The cells were

then fixed with chilled methanol (at RT for IOmin), washed three times with PBS and

permeabilised with 0.5% triton X-lOOin PBS. The permeabilised cells were rinsed twice with

0.05% Tween in PBS and incubated with goat anti-HBsAg polyclonal antibody (Dako Ltd.

High Wycombe. UK) at 1: 900 dilution for 60 min at room temperature in a moist dark box.

After washing, the cells were further incubated with anti-goat FITC labelled immunoglobulin

(IgG) for 30 minutes (Sigma-Aldrich Company. Poole, UK) at 1: 64 dilution. After three

washes, the cover slips was dried carefully and mounted on glass slides with a drop of

Citifluor, a glycerol! PBS solution. After 10-15min, cover slips were then examined using a

Nikon Microphot-SA fuorescence microscope and pictures of fluorescing cells were taken.

Additionally, FITC-conjugated monoclonal anti-HA (anti-HA FITC conjugated, Roche

Diagnostics, Lewes, East Sussex, UK) was used for direct immunofluorescence. The same

steps were followed as before with omitting the secondary detection antibody step.

2.2.3 Tag ELISA system

a) Epitope Tags and Approaches •
M-CMV epitope, ERKTPRVTGG, is derived from pp65 matrix protein (McLauchlan et

al., 1994).

PI-CMV epitope, MTAQPPLHHRHHPYA, is derived from the first 15 aa of the N

terminus ofHCMV ULI02 protein and is recognised by an in-house rabbit polyclonal serum

(PAb 371).

P2-CMV epitope, is the first 10 amino acids ofP1-CMV.

Flu-HA epitope, YPYDVPDYA, is derived from human influenza hemagglutinn protein.

Tag epitopes were first inserted into the standard S gene sequence to evaluate their effect

on HBsAg reactivity. M-CMV was inserted at either the 5'(after start codon) or 3' terminus

(before stop codon) of S gene (see Figure 3.7; Constructs Y tag & Y 67). Anti-CMV MAb

(Capricorn Products, Scarborough, USA) was used for capture and anti-HBs (Murex Biotech

Ltd, Dartford, UK) for detection (see Figure 3.8). Next, P-CMV epitopes (PI or P2) were

inserted at the opposite end to M-CMV in Y tag and Y67 constructs. This design would have

allowed a sandwich ELISA to be designed without cross-reacting capture and detection

antibodies. The epitope was previously defined as 15 aa long (H. Marsden, unpublished data)
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but to avoid any length effect on HBsAg antigenicity, the first 10 aa was used in separate

experiments. All four possible dual constructs were generated (TI, T2, T3 and T4). To assess

the effect on HBsAg antigenicity of insertion of single P-CMV epitopes, all four constructs

were also generated (PI, P2, P3 and P4). In the dual tag system, a MAb anti-CMV was used

for capture and rabbit PAb followed by protein A for detection. Finally, we made a modified

single tag system using HA-tag epitope at the 5'end of S gene. A biotinylated anti-HA

antibody was used for capture on to avidin-coated plates and a peroxidase-labelled anti-HA

for detection.

b) Primers design and PCR

A series of primers were constructed to insert the tags at the 5' or 3' end ofHBsAg (Table

2.1). All primers. were synthesized in house using a Cruachem PS250 oligonucleotide

synthesizer. For single tag insertion, one tagged primer, BAtag, (anti-sense) or ABtag (sense),

was used in conjunction with a previously described non-tagged primer, S6C (sense) or S7D

(anti-sense) respectively. Both ABtag (sense) &BAtag (antisense) were employed for dual tag

insertion.'

Single round PCR was performed on plasmids previously constructed containing HBV

DNA S gene of variant or standard type. Briefly, one microlitre of plasmid (IOOfg) was

amplified in 50ul solution containing 1.25 U Taq polymerase (Life Technologies, Paisley,

UK), 2.5 U TaqStart™ antibody (Clontech Laboratories Inc., Palo Alto, CA, USA), 0.25 mM

dNTPs (Pharmacia, St. Albans, UK), 2.5 MgCh, lOX PCR buffer, and 25 pmol of each primer

for 5 cycles of 95°C for 1 min, 55°C for 75 sec, and 72°C for 90 sec followed by 25 cycles

with the denaturation temperature reduced to 90°C.

c) Cloning, transfection & Immunofuorescence

PCR products were ligated into the mammalian expression vector pJI, after digestion with

Hind III & EcoR I. Ligation and transformation were performed using standard methods

(2.2.2. c & e). Plasmid was purified using Qiagen plasmid midi-kit (Qiagen Ltd, Crawley,

West Sussex, UK). All constructs were confirmed by sequencing on an automated sequencer

(ABI Prism, 377 DNA sequencer, Perkin Elmer). Constructs were transfected into

subconfluent monolayers of COS7 cells on 13mm coverslips using the FuGENE™ reagent

(2.2.2. J). Immunofluorescence of the transfected cells was also performed as described before

in section (2.2.2. k).
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d) Cell lysate

Transfected cells, which were left in the plates after removal of cover slips, were washed

with PBS and harvested with cell scrapers (Becton Dickinson, New Jersey, USA) into 1 ml

PBS. The samples were centrifuged at 6.S00rpm for Smin and the supernatant discarded. The

cell pellets were lysed in 300ul of PBS containing 0.2S M Tris (PH 8.0) by freezing on dry ice

and thawing in a 37°C water bath for two cycles. After centrifugation at 13,000rpm for Smin,

the supernatants were collected.

e) ELISA and standardisation ofHBsAg variants

I did not develop ELISA for the first two systems, M-CMV tag system and the dual tag,

due to reagent costs and destroyed HBsAg antigenicity respectively (see Chapter 3.3). The

HA-tag was inserted at S' end of the surface gene into standard sequence subtypes aywl,

ayw2, ayw3, and adw2 in addition to 12 diagnostically important variants. The clinical

background and aa changes ofthe variants used in this study are shown in Table 3.1S.

Briefly, flat bottomed immulon wells (Dynatech Laboratories Ltd, Daux Road, West

Sussex, UK) were coated with the capture Ab, biotinylated anti-HA, at 200 ng/well overnight

at 4°C. This was followed by washing S times with the wash buffer.

Then, blocking with 2% bovine serum albumin (BSA) was carried out for 2 hours at 37°C

followed by washing. HBsAg containing samples were incubated for 1 hour at 37°C followed

by washing. Detection Ab, anti-HA labelled with peroxidase, was added at 100ng/ml, and

incubated for 1 hour at 37°C followed by washing. Substrate (ABTS Microwell, peroxidase

substrate system, Maryland, USA) was added and left for IS-30 min for colour development.

Finally, the OD was determined at 40S by an ELISA plate reader (Anthos HT2 Version 1.21,

Labtech International Limited, East Sussex, UK).

A yeast expressed, recombinant HA-tagged HBsAg protein was used as a positive control

and non-tagged standard S gene was used as a negative control. Cut-off value was calculated

by adding O.OSto the mean of the negative control replicates (Mean Negative Control). Assay

specificity was confirmed by substituting one component at a time; capture Ab, samples with

different tag and detection Ab. The HA-tag assay was repeated at least five times, either from

the same supernatant patch or from a different transfection-expression patch, to assess

reproducibility of test results. I also defined the sensitivity of our tag ELISA by using

decreasing concentrations of the positive control (a kind gift from Dr Ralph Gehrke). The
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lowest limit of detection was 50pglml (see Figure 3.10). The mean value of LIS ratios was

also statistically analysed (see below)

To standardise the expressed-tagged particles in the ELISA, various concentrations (up to

five times) of the supernatants were generated using Vivaspin (Vivascience Ltd, Lincoln,

UK). Each concentration was tested in the tag-ELISA and a dilution that gave a similar

signal, 0.9 OD at 405nm, chosen for all constructs (variants and controls). After this

standardisation, three commercial assays were used to compare HBsAg reactivity. IMX

HBsAg (V2) semi-automated system (Abbott Laboratories Ltd., Maidenhead, UK) employs

mouse MAb for capture and goat PAb for detection. Murex HBsAg GE14, (Murex

Biotechnology Ltd., Dartford, UK) (2 hour procedure), uses goat PAb for capture and mouse

MAb for detection. BioELISA HBsAg colour, (BIOKIT, Longfield, Kent, UK) (standard

procedure) uses guinea pig PAb for capture and goat PAb for detection. A standard serum

containing 0.5nglml HBsAg (working standard from National Institute for Biological

Standards and Control, South Mimms, UK), was used as a sensitivity control. Reactivities

were also expressed as a percentage of that found for the standard HBsAg (see Chapter 3.3).

f) Statistical analysis

MINITAB Program (1994 copyright, release 10.1) was used to analyse our data. One-way

analysis of variance (ANOVA) was used to compare the values of variants LIS ratios to those

of their cognate standard ratio. A P value of <0.05 was considered statistically significant.

g) HBsAg ELISA (Commercial assays)

The assays used in the study (see Chapters 3.4 and 3.5) were - [1] bioELISA HBsAg

colour, BIOKIT, Longfield, Kent, UK (standard procedure); [2] AUSRIA 11-125, Abbott

Laboratories Ltd., Maidenhead, UK (overnight room temperature procedure); [3] VIDAS

HBsAg, bioMerieux SA, Marcy-l'Etoile, France (long protocol); [4] Enzymun-Test HBsAg

ES300, semi-automated system, Boehringer Mannheim GmbH, Mannheim, Germany; [5]

IMX HBsAg (V2) semi-automated system, Abbott Laboratories Ltd.,Maidenhead, UK; [6]

Murex HBsAg GE14, Murex Biotechnology Ltd., Dartford, UK (2 hour procedure) and [7]

Enzygnost HBsAg Monoclonal II, Behring Diagnostics GmbH, Marburg, Germany (manual

procedure). All the assays were used according to the manufacturer's instructions.
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3.1 Pacific study preparatory work

(An efficient extraction method from blood clots for studies requiring both host and

viral DNA)

3.1.1 Introduction

The clot from blood is usually discarded after collection of the serum. Yet, it contains

nucleated white blood cells and a substantial amount of serum. Moreover, HLA typing of

individuals who have either cleared HBY infection, are chronic carriers or have no evidence

of infection would allow us to study host immune factors that may influence the course of

infection. Specific HLA class II alleles are associated with both hepatitis Band C viral

clearance (Thursz et aI., 1995; Diepolder et aI., 1998; Cramp et aI., 1998).

If testing for HLA and hepatitis viruses is required in addition to other serological

markers, there is a need to minimize the blood volume used in laboratory testing, especially in

young children as is the case with our Pacific study I (Chapter 3.2). Direct PCR amplification

from whole blood without prior DNA isolation has been attempted (McCusker et al 1992), but

sensitivity of viral DNA detection is low (Mercier et aI., 1990), and the DNA cannot be stored

for further investigation (Kanai et aI., 1994).

Methods have been described in the literature for DNA extraction from whole liquid blood

(Parzer & Mannhalter 1991; Scherczinger et aI., 1997) as well as from clotted blood (Kanai et

aI., 1994; Garg et aI., 1996). As clotted blood is usually discarded after collection of the

serum, extraction of DNA from clots could be useful and efficient. Proteinase K, a powerful

proteolytic enzyme with a broad target spectrum, has been used in nucleic acid isolation for

more than 25 years (Gross et aI., 1973) .

. In this study we compared four methods, three dependent on digestion with proteinase K,

for extraction of both human (p globin) and viral (HBY) DNA from clotted blood (see Section

2.2.1). In the initial extraction, we amplified p globin from clots of HBY negative blood. To

control the reaction, DNA extracted by a standard technique from primary human embryonic

lung cells (MRCS) infected with the human cytomegalovirus (HCMY) was used. The HBY

DNA source was blood from two HBY carrier patients with a low titre of viremia.
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Subsequent precise analyses were done on a dilution series of HBV positive stock serum

(our internal laboratory standard) diluted in normal blood negative for HBV. The dilution

series was from 10-3 to 10-6, equivalent to 4 x 104_ 4x 10 gevl ml (genome equivalent per ml).

After leaving the blood to clot, serum and blood clots were separated by centrifugation and

aliquoted. Our positive serum standard for HBV PCR at a dilution of 10-6 (40 gev/ml) was

also extracted.

3.1.2 Results and Discussion

The kits and reagents were assessed for extraction of human DNA p globin on HBV

negative blood and then on HBV carrier patients in order to measure the HBV DNA levels.

Equal volumes of the PCR products were run on 1% agarose gels stained with ethidium

bromide. The intensity of PCR bands, reflecting the quantity and perhaps the purity of the

isolated DNA, was used to roughly estimate the amount of DNA isolated using each kit.

Qiagen & Roche High Pure kits had obviously brighter DNA bands as shown in (Figure 3.1 &

Table 3.1).

L Rl&2 Ql&2 Hl&2 Tl&2 +ve

Human p globin; 110 bp

HBV S gene; 681 bp

Figure 3.1: Comparison of PCR yield from two carrier patients with low viremia using four different

extraction methods

Rl&2: Extracted by Roche High Pure Viral kit; Ql&2: Extracted by Qiagen QIAamp blood kit

Hl&2: Extracted by In house procedure; T1&2: Extracted by TriPure Isolation Reagent

+ve: positive control; L: 100 bp ladder
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Table 3.1: Comparison of the PCR yield using four different extraction methods.

Method Intensity of PCR bands*

QIAamp blood kit +++

High Pure Viral Nucleic Acid kit +++

In house procedure ++

TriPure™ Isolation Reagent

Intensity ofPCR bands*: +++: high, ++: moderate, -: not detected.

The Qiagen & Roche High Pure kits were then assessed for sensitivity using a dilution

series of a positive serum containing HBV DNA of known concentration in negative blood.

Both sera and blood clots of these dilutions were extracted and PCR carried out in the same

run. For both sera and blood clots, the intensity ofPCR bands was consistent between the two

kits; HBV DNA was detected up to a dilution of 10-5 that was equivalent to 4 x 102gev/ ml

(see Table 3.2; Figure 3.2). However, the positive control serum gave a positive result at 4 x

10 gev/ ml, perhaps because dilution of the stock serum is done in negative serum and not

whole blood.

10-3 -4 -ve 10-5-6 +ve L 10-3 -4 -ve 10-5 -6 +ve

Serum

Blood clots

Figure 3.2: HBV DNA extraction sensitivity of Qiagen and Roche kits

peR results of 10.3 up to 10-6 dilutions of HBV positive control extracted by Qiagen and Roche kits.

-ve& +ve: negative and positive controls, L: 100 bp ladder marker
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Table 3.2: HBV peR results of serum and blood clots extracted by Qiagen QIAamp

blood and Roche High Pure Viral Nucleic acid kits*.

Sample dilution QIAamp blood kit High Pure Viral Nucleic Acid

sm.un blood clot serum. blood clot

10-3 + + + +

10-4 + + + +

lOos + + + +

10-6

*: Control serum was also amplified by PCR; titre was 10-6(4x 10 gevl ml).

+: detected; -: not detected.

Thus, both Qiagen and Roche High Pure kits were equally efficient and sensitive for

extraction of DNA from clotted blood as well as simple to use and widely available. From a

practical point of view, our experience with these methods revealed that:

1- blood clots do not have to be completely dissolved, as the incubation time with proteinase

K is only 10min.

2- Extreme care must be taken on transferring the digested blood to avoid any debris, which

could obstruct the filter in the column of the kit.

3- A higher centrifugation speed (10,000 x g) is preferred to the recommended one by the

manufacturers (8,000 x g) as the partially digested blood is heavier than serum.
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3.2 Pacific study I

(Impact of regional infant immunisation in 4 Pacific Islands and prevalence of HBsAg

variants)

3.2.1 Introduction

Hepatitis B infection is an important global health problem that needs collaboration of all

world health organisations to achieve optimal prevention, control and hence its eradication.

Approximately 350 million people are chronic carriers of HBV, of whom it is estimated that

up to 30% will die of the consequences of their infection. HBV modes of transmission and

their relative importance vary in different regions of the world. In highly endemic regions (>

7% HBsAg prevalence), transmission mainly occurs perinatally or in early childhood. By

contrast, most infections are acquired during early adult life in low endemicity regions « 2%

HBsAg prevalence) (Mast et al., 1999; Andre et al., 2000). Therefore different immunisation

strategies to prevent HBV transmission have been considered. For instance, infant vaccination

will rapidly eliminate transmission in countries of highly endemic HBV infection, whereas

vaccination for older children, adolescents and adults are preferred in countries with

intermediate and low endemicity (Mast et al., 1999).

HBV infection during. infancy and early childhood is usually followed by chronic

infection, even in low endemicity areas, as chronic HBV infection is age-dependent

(McMahon et al., 1985). Moreover, it has been shown that the risk ofHBsAg positive mothers

infecting their babies varies and is best correlated with HBeAg positivity (Stevens et al., 1975;

Hwang et al., 1985; Andre and Zuckerman 1994). It has been postulated that early exposure to

HBeAg may induce peripheral tolerance to the epitopes that are usually the target of CTL and

therefore specific suppression of cell mediated immune response. Exhaustion of T cell

response by the high viral load may be an additional mechanism. Alternatively, clonal deletion

of HBV specific T cells may occur if this exposure was due to transplacental infection, during

the developing fetus stage, where viral antigens will be recognized as self (Chisari, 2000). It

was also suggested that transfer of maternal anti-HBc across the placenta may result in either

modulation of HBcAg display or of the cell mediated immune response to this protein and

lead to failure of clearance of HBV infected cells (Thomas & Lever, 1986).
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Hepatitis B is highly endemic in most countries of the western Pacific and South East

Asian regions except Australia, New Zealand and Japan, where the mean carrier rate is less

than 2%. More than 75% of the world's chronic carriers are living in such densely populated

region where carrier rates are relatively high (Maynard et al., 1989). The first universal

childhood immunisation program in this region was initiated by the republic of Nauru in 1983

(Speed et al., 1989). Since that time, national programs have been introduced in many

countries with varying degrees of success. As immunisation programs have been in place for a

sufficient period in some countries, their impact has been evaluated. It was clear that most

countries of the region achieved a considerable reduction in the carrier rate among their

children (Ruff et al., 1995; Oon et al., 1995; Chen et al., 1996a). However, over the last few

years several reports showed that a number of neonates and children have developed infection

despite the presence of anti-HBs antibody. On sequencing of the amplified HBV DNA

isolated from the sera of these children, mutations with amino acid changes within and outside

the MHR were detected (Carman et al., 1990; Okamoto et al., 1992; Karthigesu et al., 1994;

Oon et al., 1999).

Here we address certain points of major concern regarding HBV infection in these isolated

islands. Firstly, to determine the infection rate after vaccination in different ethnic populations

and to identify risk factors associated with failure of immunisation. Secondly, concerning the

detection of S gene variants: a) their incidence after universal vaccination in ethnically diverse

population; b) whether they were previously seen in their mothers or were selected de novo;
and c) their prevalence in vaccinated populations compared to an unvaccinated control group.

Finally, we wished to evaluate the horizontal transmission rate in a vaccinated background.

Subjects and study design

Hepatitis B immunisation programmes were launched in four Pacific islands in 1995;

Kiribati (KK), Vanuatu (VV), Fiji (FF) and Tonga (TT). All infants were vaccinated with 3

doses of plasma-derived vaccine (Korean Green Cross vaccine; UNICEF) 10ug each at 0, 1

and 6 months of age. Unfortunately, we were unable to gain any information about the HBV

strain included in this vaccine. After a regional immunisation programme, sera from pre-

school children were collected from four Pacific islands (156 from KK, 132 from W, 285

from FF and 211 from TT). Sera were then aliquoted and stored at -70C until tested further..
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All samples were investigated for serological markers of HBY infection. Children were at

least 3 years old before sample collection to allow a sufficient time for horizontal transmission

to take place. So as not to miss any positive HBY DNA containing samples, we studied all

children with serological marker profiles that are directly (HBsAg +ve, n= 19 plus one sample

missing) or indirectly (anti-HBc+ve or anti-HBc+/ anti-HBs+, n=36) suggestive of current

HBY infection. PCR was employed to detect and amplify the HBY DNA S gene, followed by

direct sequencing of the detected amplicons (see Section 2.2.1). The mothers of these 55

children were screened for HBY serological markers and then sera amplified by PCR. To

control for the natural background HBY sequence in unvaccinated subjects, 40 HBsAg

positive unvaccinated samples (10 from each island) were used.

This study was a collaborative one between Glasgow, Melbourne and Brisbane. All

serological assays were performed in Melbourne, DNA extraction in Brisbane, and PCR and

HBsAg sequencing in Glasgow. Unfortunately, HLA typing has not been performed due to

some financial and political problems.

3.2.2 Results

A total of784 pre-school children, 285 from FF, 211 from TT, 132 from Wand 156 from

KK, were screened in parallel with their mothers, for serological markers of HBY infection

after immunisation (Table 3.3). Of these 784, 19 samples (1 from FF, 4 from W, 8 from TT,

and 6 from KK) were HBsAg positive. 68% of this HBsAg positive pre-school children (13/

19) had HBsAg positive mothers. All HBsAg positive mothers who have HBsAg positive

children were HBeAg positive, indicating the importance of HBeAg positivity as a major

factor for failure of immunisation. On the other hand, there were some HBsAg positive

children who were born to HBsAg negative mothers (1 in W, 1 in TT and 4 in KK), implying

that these infections may be horizontally transmitted.

The effect of immunisation on children was also evaluated. Low sero-conversion rates

with significant variation between the four regions were observed, 77% in FF, 72% in W,

60% in TT and 47% in KK (see Table 3.3). For ease of understanding, I will discuss the

results from each island separately with especial concern to the PCR and sequencing results. A

comparison of the immuneinduced variants to natural variants isolated from the same island is

also shown in a separate section.
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Table 3.3: Prevalence of hepatitis B markers in the Pacific islands'[

t: Modified from Wilson et al., 2000
t: Past infection in vaccinated children is indicated by the presence ofHBsAg and! or anti-HBc.
§: Melanesian population only (ie, Indo-Fijians were excluded)
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Ion2a Island

In Tonga (Table 3.4), samples were collected from two cities, namely Nukualofa and

Kolavai, In Nukualofa, 13 children were studied. Four out of these 13 (C223, C22, C20 and

C31) were PCR positive. All positives but one (C223) were positive for HBsAg. On the other

hand, PCR was negative in one case (C57) that had HBsAg as the only detected marker. All

PCR positive children were shown to have PCR positive mothers.

On sequencing, three children were found to have identical HBV S gene sequence to those

amplified from their mothers (C221M18, C201M16 and C311M226). One infant showed a

completely different SUbtype!genotype from that has been isolated from his mother (C223

ayw3! MI7 adrq-). On the other hand, one infant was protected against the infection from his

mother (C331M90).

In Kolavai, 7 children were studied. Of these, 4 were positive by PCR. All positive

children had PCR positive mothers (C471M15, C321MIl, C611M2 and C391M3). The first

three infant mother pairs showed a complete sequence concordance on sequencing.

Interestingly, the fourth infant mother pair (C391M3) was identical to the sequences amplified

from Betio City in KK. Similar to Nukualofa, one child (C231M9) was successfully protected

from catching the HBV infection from his mother who was negative for HBeAg; her S gene

sequence was similar to the natural sequences circulating in the island.

Vanuatu Island

In Vanuatu (Table 3.5), samples were collected from Vila Central and Mele-Maat cities.

Seven children were studied from Vila Central. Of these, four were PCR positive. AU

positives but one (C12) were positive for HBsAg. All the PCR positive children except one

(C38) were shown to have PCR positive mothers. All PCR positive mothers but one (M13)

were HBsAg positive. However, one mother (M6) who was positive for all HBV serological

markers has a negative PCR result for unknown reasons.

On sequencing within and between families, complete sequence concordance was

observed between two infant mother pairs (C481MI02 and C19IMIOl). On repeat, we got the

same sequence from these two pairs. However, infection in a couple of children did not seem

to be of maternal origin. The first has an HBV subtype that is different from his mother

(C121M13). The other most probably has an immunised mother because she has only anti-HBs
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(C381M96). On the other hand, one child was protected from contracting the infection from

his mother who was positive for both HBsAg and HBeAg (C64IM74).

In Mele-Maat, 4 child mother pairs were studied. Of these, only one pair (C37IM75) was

PCR positive. Serologically, this pair was positive for the HBsAg marker. On sequencing,

identical S gene sequences were detected in the mother and child samples.

Fiji Island

In Fiji (Table 3.6), samples were collected from three cities, namely Valelevu, Raiwaqa

and Navua. In Valelevu, 5 child mother pairs were studied. Of these, one pair (C58/ MIO) and

one mother (M78) were PCR positive. All PCR positive samples were HBsAg positive. On

sequencing, both samples of the defined pair (C58IMIO) were shown to be identical. The child

of the PCR positive mother seems to be protected (C224/ M78).

In Navua and Raiwaqa, one and four pairs were studied respectively. None of the tested

samples were PCR positive.

Kiribati Island

In Kiribati (Table 3.7), samples were collected from Bikenibeu and Betio cities.

In Bikenibeu, 7 child-mother pairs were studied. On PCR, three children (C91, C60 and C45)

gave positive results. Of these, one was negative for HBsAg (C91). None of the positive PCR

children had a positive PCR mother. On sequencing, C91 was of a»y3 subtype, whereas the

other two (C60 and C45) w-as of ayw2 subtype. However, C45 showed a sequence that was

identical to those sequences amplified from Betio.

Seven child-mother pairs were studied from Betio. Of these, two pairs (C35IM97 and

C41IM98) were PCR positive. Additionally, three infants (C21, C42 and C56) were positive

by PCR while their respective mothers were PCR negative. All PCR positive samples but one

(C21) were positive for HBsAg. On sequencing all positive samples, three children and two

child mother pairs showed exactly the same sequence of subtype ayw2. On repeat the.
amplified sequences were the same. These samples have been repeated either directly by re-

amplification of the extracted DNA material or by re-extraction and amplification from the

original sera. The highly heterogeneous pre-S region was also identical on sequencing.
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Table 3.4: Serology and PCR results of child mother pairs in Tonga

A) Nukualofa City

Code number Child fCR!. Mother
HBsAg! anti-HBcl anti-HBs§ C M HBsAg! anti-HBcl anti-HBsI HBeAg

1200 (223/17) " - +" 36 + + + + - +
1484 - + >100 - - - + >100 NO

1428 - + 28 - - - + 29 NO

1054 (57/14) + - - -t + - + - -
1464 (22/18) + + - + + + + - +
1542 (20/16) + + - + + + + - +
1590 (31/226) + + - + + + + - +
1592 (33/90) - + >100 - + + + - +
1598 - + >100 - - - + 46 -
1224 - + >100 - - - + >100 NO

1182 - + 51 - - - + 25 NO

1490 - + 99 - - - + - NO

1540 - + 52 - - - + - NO

B) Kolovai City

Code number Child ~ Mother
HBsAgI anti-HBcl anti-HBs§ C M HBsAgI anti-HBcl anti-HBsI HBeAg

1268 (23/9) - + >100 - + + + - -
1314 - + >100 - - - + 76 NO

1386 - + >100 - - - + 27 NO

1400 (47/15) + + - + + + + - +
1392 (39/3) + + - +~ + + + - +
1324 (32/11) + + - + + + + - +
1364 (61/2) + + - + + + + - +

Numbers between brackets: PCR samples number (child! mother)

PCR·: S gene; t: Core gene was also tested; t: Pre S region was also tested

antiHBs§: anti-HBs serum levels in miu/ml; +: Positive; -: Negative; NO: not done
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Table 3.5: Serology and PCR results of child mother pairs in Vanuatu

A) Vila Central City

Code number Child ~ Mother
HBsAgl anti-HBcl anti-HBs§ C M HBsAgi anti-HBcl anti-HBsI HBeAg

3274 - + 52 - - - + >100

1762 (70/6) - + 15 - -tt + + - +
1756 (48/102) + + 12 + + + + - +

1788 (38/96) + + - + - - - >100 NO

3272 (19/101) + + - + + + + - +

1744 (12/13) - + 44 + + - + - NO

3454 (64174) - + >100 - + + + - +

B) Mele-Maat City

Code number Child feR! Mother
HBsAg! anti-HBcl anti-HBs§ C M HBsAgi anti-HBcI anti-HBsI HBeAg

3386 (37175) + + - + + + + - +

3466 - + >100 - - - + >100 NO

3378 - + 41 - - - + >100 NO

3412 - + >100 - - - + - NO

Numbers between brackets: PCR samples number (child! mother)

PCR·: S gene; t: Core gene was also tested; t: Pre S region was also tested

antiHBs§: anti-HBs serum levels in miu/ml

+: Positive; -: Negative; NO: not done
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Table 3.6: Serology and PCR results of child mother pairs in Fiji

A) Valelevu City

Code number Child ~ Mother
HBsAgI anti-HBc/ anti-HBs§ C M HBsAg/ anti-HBc/ anti-HBS! HBeAg

904 - + >100 - - - + >100 NO

842 - + >100 - - - + >100 NO

612 - + >100 - - - + - NO

604 (224/78) - + >100 - + + + - +
770 (58/10) + + - + + + + - +

B) Raiwaqa City

Code number Child feR! Mother
HBsAg/ anti-HBc/ anti-HBs§ C M HBsAg/ anti-HBc/ anti-HBS! HBeAg

380 - + >100 - - - + >100 NO

404 - + >100 - - - + 89 NO

330 - + 39 - - - + 12 NO

340 - + 36 - - - + 44 . NO

C) Navua City

Code number Child £.CB.! Mother
HBsAg/ anti-HBc/ anti-HBs§ C M HBsAg/ anti-HBc/ anti-HBS! HBeAg

996 - 1+ 1>100 - - - 1+ l- INo

Numbers between brackets: PCR samples number (child! mother)

PCR·: S gene; t: Core gene was also tested; t: Pre S region was also tested

antiHBs§: anti-HBs serum levels in miu/ml

+: Positive; -: Negative; NO: not done

100



Chapter 3 Results

Table 3.7: Serology and PCR results of child mother pairs in Kiribati

A) Bikenibeu City

Code number Child £eR! Mother
HBsAg/ anti-HBc! anti-HBs§ C M HBsAg/ anti-HBc! anti-HBs! HBeAg

3234 - + 13 - - - + >100 NO
3244 - + 99 - - - + >100 NO
3246 (91/44) - + 33 + - - + - NO
3218 - + >100 - - - + 38 NO
3250 - + >100 - - - + >100 NO
3230 (60/104) + + - + - - + - NO
3254 (45/106) + + - +~ - - + 44 NO

B) Betio City

Code number Child £eR! Mother
HBsAg/ anti-HBc! anti-HBs§ C M HBsAg/ anti-HBc! anti-HBS! HBeAg

3062 (21/86) - + 65 + - - + - NO
3076 - + 62 - - - + 17 NO
3088 - + 19 - - - + 74 NO
3092 (56/107) + + - + - - + 32 NO
3144 (42/76) + + - + - - + 13 NO
3162 (35/97) + + - +! + + + - +
3184 (41/98) + + - +! + + + - +

Numbers between brackets: PCR samples number (child! mother)

peR·: S gene; t: Core gene; !:Pre S region

antiHBs§: anti-HBs serum levels in rniu/ml

+: Positive; -: Negative; NO: not done
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HBsA~ variants in immunised children and their mothers

HBsAg sequences of immunised children and their mothers from different islands were

analysed for nucleotide and aa substitutions in HBsAg by their comparison to standard HBsAg

sequences. Different strains of adrq- were considered, as we detected three different strains of

subtype adrq-, av, ER and EV (see Chapter 3.3). The distribution of detected substitutions

within HBsAg is shown in Table 3.8. "a" determinant variants were not detected and also no

particular site changes were restricted to vaccinated children compared to non-vaccinated

people (either their mothers or background sequences; see Tables 3.8 and 3.14). 13 out of 15

child! mother pairs have concordant sequences, while the remaining two were discordant, one

from TT (ayw3C223/ adrq-M17) and the other from VV (ayw2C12/ adrq-M13). All these

children have HBeAg positive mothers except the Vanuatan pair (CI2!M13) where HBeAg

was not done.

3.2.3 Discussion

Perinatal transmission is a crucial factor in maintaining the reservoir of infection,

particularly in highly endemic regions such as southeast Asia. A positive feedback mechanism

that relates the average age at infection, transmission rate and probability of carriers'

development following infection has been recently suggested. A 'Catastrophic' model for

dynamics of HBV infection and control was also proposed where the epidemiological

outcome of infection is critically dependent on a threshold phenomenon (Medley et al., 200 I).

Although hepatitis B virus can infect the fetus in utero, HBeAg positive mothers mostly

transmit the infection to their infants at the time of, or shortly after, birth. It has been

suggested that the HBeAg protect the infected hepatocytes from the immune surveillance by

developing tolerance to HBcAg and HBeAg (Milich et al., 1990). However, this mode of

transmission is less important in infection among older children, 5-15 years, where infections

are mainly horizontally transmitted.

South East Asia is one of the highly endemic areas for HBV infection; hepatitis B carriers

are infected mainly during infancy or early childhood (Hsu et al., 1986). Although these high-

risk infants can be protected from HBV infection by active and passive immunoprophylaxis

soon after birth, there is still a high percentage of carriers rate, 5-10% (Lee et al., 1991). This

failure ofimmunoprophylaxis could be due to many reasons that will be discussed later.
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Chapter 3 Results

3.2.3a Infection rate and implications

In this study, pre-school children showed the lowest HBsAg prevalence among the studied

groups, mean 2.6% (see Table 3.3). The percentage of HBsAg infected students were

significantly higher than that of the mothers (27.4% versus 15.1%) in KK. The reverse was

almost correct in TT (18.6% for mothers versus 11.1% in students) and VV (16.3% versus

12.3). On the other hand, there was no significant difference in the prevalence of HBsAg

between these two groups, students and mothers, in FF island (6.9% versus 6.6%). These data

may have several implications.

Firstly, the obviously reduced infection rate in pre-school children is proof of the success

of the immunization program. Secondly, the significantly different infection rates between the

studied groups after launching the immunization program could reflect the main mode of

transmission in these different age groups within each island in this region. For instance,

vertical transmission could be expected as the main mode of transmission for preschool

children infection, where it was successfully interrupted by infant immunization (Beasley et

al., 1982, 1983). On the other hand, horizontal transmission from household members and

transmission due to sexual contact with a carrier may be responsible to some extent for

augmenting the infection rate in students and mothers groups.

Thirdly, the 13.7% risk of a child born to an HBsAg positive mother being HBsAg

positive fell to 0.9% if the mother was HBsAg negative; all HBsAg positive mothers who had

HBsAg positive infants were positive for HBeAg. HBeAg positivity is therefore of high

importance in predicting the risk of infant infection as has been described earlier (Stevens et

al., 1975; Hwang et al., 1985). Of these infants at risk, despite passive active immunization,

the frequency of the carrier's state varies. In the Netherlands, R del Canho et al. (1994)

reported 8/118 (6.8%) as the determined carrier rate, while Jp et al. (1989) detected 14/124

(11.3%) in Hong Kong. In India, higher percentages, 14.2% and 25%, were detected (Sehgal

et al., 1992). These differences were attributed to the usage of different vaccine doses or

different HBV DNA levels of the infected mothers. But there are other factors that have not

been considered in this interpretation and could play a role such as genetic background and

quality of vaccination services (McDermott et al., 1999; Streefland et al., 1999).
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3.2.3b Horizontal transmission role

Vertical transmission is the main mode of transmission of HBV infection in Asia (Stevens

et al., 1975; Beasley et al., 1982), while horizontal transmission is the prevalent one in Africa

(Tabor et al., 1985; Tsega et al., 1988; Martinson et al., 1998). This continental preference has

been mostly attributed to the differences in the prevalence of the HBeAg in these populations,

which is much higher among Asians.

However, Tibbs et al. (1987) reported that mother to child transmission in Kiribati was not

as important as in Taiwan and other parts of south east Asia. This conclusion was based on the

low prevalence of HBeAg among mothers, higher concordance of HBsAg presence in sibling

pairs than in child-mother pairs and detection of HBsAg and HBeAg in exudates of tropical

ulcers that might represent an infectious source to uninfected people. Another report from

Vanuatu showed that cross-infection between children is an important source of infection that

mostly spread through skin sores (Maher et al., 1991). Furthermore, presence of HBsAg

positive siblings and intra-familial interactions have been shown to increase the frequency of

HBsAg carriers among Asians, whether born in their ancestral country or USA (Tong et al.,

1981; Franks et al., 1989; Hurie et al., 1992).

All previous reports were from subjects in an unvaccinated background. Here, we have

supportive data for the transmission of HBV horizontally among immunised children in Asian

Pacific islands. Firstly, the significantly elevated HBsAg infection rate among unvaccinated

students and mothers over that found in vaccinated children, interpreted previously as a result

of vaccination, could be also in part due to horizontal transmission reflecting different degrees

of exposure to HBV infection between these different groups (Table 3.3). Secondly, there was

some molecular evidence among immunised children. By PCR, we detected infected children

but non-infected mothers, as in KK (Bikenibeu: ru,C60 and C45; Betio: ru,C56 and C42)

and W (Vila central: C38). On sequencing of the circulating HBV recovered from some

child-mother pairs, unrelated sequences were detected in TT (Nukualofa: 0ll1M17) and W

(Vila central: CllIM13).

Among the 9 children who seem to have contracted the infection horizontally, only four

had anti-HBs; a titre of less than 100 miulml was detected (black and underlined).

Determination of virus quantity has not been performed in mothers of these children due to
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negativity of HBsAg, The only HBsAg! HBeAg positive mother (M17), however, may have a

low virus load as sequencing of her baby virus revealed a different strain.

Of significant interest, only one infant out of the nine cases had the adrq- subtype

(genotype C); all the other cases were of genotype 0 (subtype ayw2 and ayw3). This might be

a real selection of a certain strain over the other, ayw2 (0» adrq- (C). Alternatively, it could

be selection bias due to the presence of six samples from KK~in which most infected people

have genotype 0 (see Chapter 3.3). If it is the former, it may be of especial importance as the

plasma-derived vaccine used in this study was derived from Korea (which mostly contains the

adr subtype). Thus, insufficient neutralisation or weak cross protection by the induced

antibodies against the different subtypes/ genotypes (ayw2 & 3/ D) is possible as both adr and

ayw2/3 are different at several crucial residues within the MHR such as amino acids 113, 122,

126, 127 and 159 (see Chapter 4).

Among the six cases identified in Kiribati, four children had identical sequences (C45,

C21, C56 and C42). The same sequences were recovered from another two child-mother pairs

from Kiribati and, interestingly, one child! mother pair from Tonga (39/3). To exclude

contamination due to laboratory work, we have repeated the sequencing of these samples both

from extracted DNA and original sera. All samples revealed the same results. Even the pre-S

sequences, which are the most heterogeneous part of the HBV genome, were also identical.

Although contamination at the site of collection cannot be totally ruled out, it seems unlikely

due to detection of the same virus from different cities (within KK) or even islands (KK and

TT). Alternatively, the isolated virus could be circulating highly among these people due to a

common source of transmission. This unusual phenomenon in Kiribati might extend to the

nearby islands upon inter-island migration. It might be that exudates from the fairly common

ulcers caused by the rugged Kiribati reef-top environment may provide a highly infections

source for uninfected people (Tibbs 1987). Perhaps we can consider those Kiribati children

who have shown an anti-HBs response in association with anti-HBc (C91 & C21), as due to

natural exposure rather than vaccination that has failed.

Nevertheless, it would appear that horizontal transmission plays a minor role in South East

Asia and Pacific islands (except Kiribati as shown above); however, it cannot be ignored. In

conclusion, strategies of immunisation for prevention and control of HBV infection should be

tailored to the local transmission route.
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3.2.3c S gene variants and Pacific islands

Coexistence of HBsAg and anti-HBs, samples with anti-HBc as the only HBV marker and

samples with discordant serology (samples that react in one HBsAg assay but not the other)

have all been found to be associated with S gene variants (Carman et al., 1997b; Don et al.,

1999; Hsu et al., 1999). These S gene variants with missense mutations, whether within or

outside the MHR, have been described in infected infants despite the presence of vaccine

induced anti-HBs antibodies (Carman et al., 1990; Okamoto et al., 1992; Karthigesu et al.,

1994; Don et al., 1999). Accordingly, it was suggested that such mutants escaped the immune

pressure whose target was the standard virus.

In the Pacific islands, of the 55 children who showed markers suggestive of HBV

infection, 19 had positive HBsAg (Group 1: Gl) and 36 were positive for anti-HBc (Group 2:

02); 22 were positive on PCR. Only one HBsAg positive sample in G1was negative by PCR;

this might be a false positive as it was negative for other HBV markers. On the other hand, 4

out of the 36 negative HBsAg samples in 02 were positive by PCR. Except for 7 cases, six

from Kiribati and one from Vanuatu, all the PCR positive children were shown to have PCR

positive mothers (15 child mother pairs). On sequencing, 13 out of these 15 child! mother

pairs showed a complete concordance in their sequences whereas the remaining two pairs, TT

(C2231M17) and W (CI21Ml3), showed not only different sequences but also different

subtype/ genotype (see Table 3.8).

Analysis of S gene recovered from the immunised children showed clearly that "a"

determinant mutants were not detectable. Yet, mutations outside the "a" determinant were

randomly distributed along the S gene, such as at residues 3, 5, 68, 175 and 177 (Table 3.8).

Carman et a1. (1997b) reported similar observations in vaccinated health care workers.

Furthermore, alterations outside the "a" determinant have been detected recently in immunised

infants from Singapore where decreased binding to the "a" determinant specific monoclo~al

antibody was observed to some of the identified variants (Don et al., 1999). Thus, escaping

neutralisation by antibodies elicited by vaccination due to the presence of S gene mutations is

still a possibility as the functional analysis of the variants we discovered has not been

performed.

Alternatively, breakthrough infections in these immunised infants might be due to

additional factors other than the immune escape mutants. The most likely, but worrying
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scenario, is the improper quality of heath services applied in these poor areas such as improper

vaccine storage, incomplete dosage or improper administration whether in regard to timing or

site of injection (Ruff et al., 1995; Streefland et al., 1999). High maternal viral load also plays

a role, especially in HBeAg positive mothers (Lee et al., 1986; Ip et al., 1989). Failure to

respond adequately to vaccine can be due to genetic or acquired causes (Came et al., 1987;

Alper et al., 1989; McDermott et al., 1999). HLA typing has not been performed in our study,

due to financial and political problems, however immune responses to vaccination and

outcomes of HBV infection are known to be influenced by the type of HLA alleles (Craven et

al., 1986; Hsu et al., 1993; McDermott et al., 1999, Diepolder et al., 1998; Thio et al., 1999;

Ahn et al., 2000). Although all these possibilities have their supporters, there is still some

debate (Poovorawan et al., 1997; Tanget al., 1998; R del Canho et al., 1994). This controversy

over the reasons for breakthrough infections in immunised individuals is complicated by

several variables between the different studies, including geographical and ethnicity

differences which are expected to play an important role (see Table 3.9).

Although it has been reported recently that universal immunisation has accelerated the

accumulation of HBsAg "a" determinant mutants in vaccinated children (Lee et al., 1997a;

Hsu et al., 1999), we did not find any significant difference between the immunised children

and non-immunised control group, since the detected variants were similar both in site and

frequency. This may indicate that these variants were mostly natural and not vaccine-induced.

Geographical differences may playa role in the discrepancies between our results and those of

others. Another reason could be the time interval that has elapsed since launching the

immunisation program as has been shown recently by Hsu et a1. (1999). In Taiwan, the

prevalence of "a" determinant variants jumped from 7.8%, just before vaccination, to 28.1%,

10 years after introduction of universal vaccination (see section 4.2). Indeed, this interval may

allow the virus to survive long enough to acquire mutations that may enhance viral replication

and consequently variant eventual dominance. Additional factors could be which vaccination

strategy is adopted and the HBV endemicity level, for example in England and Wales, 12%

prevalence rate was seen due to selective vaccination in a low endemicity region (Nugi et al.,

1997). Furthermore, different HBV strains, in different geographical regions, may be

associated with specific nucleotide or amino acid changes that are more suitable for the viral

fitness (see Section 4.2).
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Chapter 3 Results

3.3 Pacific study II

Use of HBsAg variability as a marker of human population history in the Pacific

3.3.1 introduction .

Studying the genetic relationship between viruses can reveal information on the origin and

geographical distribution of a particular strain, the routes of virus transmission and may be

useful for the development of control measures. HBV is the prototype of the Hepadnaviridae

family which includes avian viruses such as duck and heron hepatitis B viruses (Mason et al.,

1980; Sprengel et al., 1988) and mammalian viruses. The latter comprise rodent members

such as woodchuck, ground squirrel and tree squirrel viruses (Summers et al., 1978;Marion et

al., 1980; Feitelson et al., 1986) and primate members that infect humans, gibbons, wooly

monkeys, orangutans and chimpanzees (Norder et al., 1996; Lanford et al., 1998;Warren et a.,

1999; Takahashi et al., 2000).

Phylogenetically, HBV has been classified into seven genotypes, denoted A to G, often

with a distinct geographic association. Genotypes A and D are widely distributed in the old

world, while genotypes Band C are confined to east Asia. Genotype E is mainly found in sub-

saharan Africa, genotype F in the aboriginal population of the Americas and the recently

discovered G has so far been detected in USA and France (Okamoto et al., 1988; Norder et al.,

1992b; Stuyver et al., 2000). Therefore, it has been suggested that the divergence of viral

genotypes may reflect the migration of human populations (Norder et al., 1994, 1996). There

are also nine different HBV subtypes, defined serologically with a characteristic geographic

patterns (Le Bouvier 1971; Bancroft et al., 1972; Courouce-Pauty et al., 1983). Although

some of these subtypes, such as adw2, are genetically heterogeneous there is an accepted

degree of correspondence between the genetic and serological classification. By 1992, the

molecular basis for the serologic heterogeneity of HBV subtypes had been defined and it thus

became possible to determine the serotype by sequencing of the HBV S gene (Norder et al.,

1992a). The validity of this approach was confirmed by sequencing the complete genome

(Norder et al., 1994; Arauz-Ruiz et al., 1997).

Geographically, Pacific islands are divided into three regions; Micronesia, Melanesia and

Polynesia. Polynesia occupies a large triangle in the eastern and central Pacific region

extending from Hawaii in the north to Rapanui in the east and New Zealand in the west

(Figure 3.3).
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Chapter 3 Results

Melanesia extends' from New Guinea to Fiji and contains the western island chains that lie

south of the equator. Micronesia includes the group of islands that lie west of Polynesia and

north of Melanesia.

The origin of Pacific islanders has attracted the attention of many scholars over the last 30

years, and work on a variety of searches including archeology, linguistics and human genetics

has led to major progress in our understanding of history of human settlement in this part of

the world. Two waves of Pacific colonization have been proposed. The first, which is dated

between 30 and 50,000 years before the present (BP), includes regions such as Australia, New

Guinea and Northern Melanesia that are correlated with the geographic limit of Papuan-

speaking populations in the Pacific (Groube et al., 1986; Allen et al., 1988; Roberts et al.,

1990). The second relatively recent wave, which occurred in the last 3000- 4,000 years BP,

includes Austronesian-speaking parts of Melanesia and all of Micronesia and Polynesia. The

terms "Near Oceania" and "Remote Oceania" have also been proposed as an alternative

classification of Pacific islands on the basis of these concordant linguistic and geographical

patterns. Near Oceania includes mainly Papuan-speakers living in the internal antique regions

in western Pacific in addition to Austronesian speakers in the coastal regions, while Remote

Oceania includes the recently settled regions and is mainly inhabited with Austronesian-

speakers (Kirch, 1997).

The ultimate origin of this last major human migration is, however, a matter of debate.

One group, chiefly geneticists, argue that Polynesians originated in Southeast (SE) Asia and

swept rapidly through Melanesia, explaining the limited admixture with Near Oceania, along

their way to settle eastwards (Diamond 1988; Lum et al., 1994, 1998; Hagelberg & Clegg

1993). The other, chiefly archaeologists, believes that Polynesian ancestors were one of a

number of diverse populations residing within Melanesia itself (Terrell, 1988). Recently,

Kayser et al. (2000) suggested that the SE Asian ancestors of Polynesians did not move

rapidly but extensively mixed with Melanesians and left behind their genes, the "slow boat".

Nuclear genetic studies have shown that nuclear alleles, such as the globin gene and

human leucocyte antigens, of Remote Oceanic peoples (Polynesians and Micronesians) are

related to both Asians and, to a lesser extent, to Near Oceanic Melanesians (Serjeantson et al.,

1982; O'Shaughnessy et al., 1990; Roberts-Thomson et al., 1996). These contributions from

both Asia and Near Oceania to Remote Oceania are more consistent with "entangled bank"

model of Terrell (1988) that assumed a complex pattern of gene flow as a result of long term
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interactions among Near Oceanian and western Pacific populations without a second

migration. An opposing view, supported by the accumulated mitochondrial DNA (mtDNA)

analyses, see this admixture as the result of contact with the Polynesian ancestors who came

from SE Asia and passed through Melanesia along their way to settle in Polynesia (Hertzberg

et al., 1989; O'Shaughnessy et al., 1990; Lum et al., 1998; Hagelberg et al., 1999).

Linguistic patterns are in agreement with this latter model, termed the "express train"

(Diamond 1988; Gray & Jordan 2000). However, as mtDNA is maternally inherited while Y-

chromosomal microsatellites (short tandem repeats: STR) are bi-parentally inherited,

discordant results during times predominated by male gene flow could be detected, as has

been proposed by Lum et al. (1998).

A recent bottleneck has also been proposed as an alternative explanation for this

discordance between mtDNA and nuclear variation patterns (Fay & Wu 1999). It is

noteworthy that the amount of genetic diversity among certain populations is dependent on

their migration rate, with more diversity expected among those groups with a higher migration

rate (Tajima et al., 1990). Consistent with this hypothesis, mtDNA and STR diversity were

greatly reduced or even lost in geographically isolated Remote Oceanic populations (Lum et

al., 1998). On the other hand, under conditions of geographical isolation it is believed that

both genetic and linguistic patterns are significantly correlated to reflect the same history

while discordance between the two patterns suggests lack of such isolation and probably a

recent colonization event.

Based on the evidence that the people of SE Asia migrated eastwards into Polynesia, we

have chosen to study HBsAg variation from four Pacific islands which have different ethnic

backgrounds. Kiribati represents Micronesia (KK), Vanuatu and Fiji represent Melanesia (VV

& FF) and Tonga represents Polynesia (TT). By phylogenetic analysis of these Pacific HBsAg

strains in addition to database sequences representing other parts of the world, hypothetically,

we would be able to match the proposed migration patterns of these people. We believe HBV

is ideally suited to this purpose as it is transmitted by intimate contact or from mother to child,

chronic carriage is associated with easily detectable viremia and the viral sequence remains

fairly constant during the early years of infection. We have also made the assumption that

there is little intermarriage between these ethnic groups, so that characteristic HBV strains

should remain relatively isolated:
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Subjects and study design

HBsAg positive samples were collected from mothers and school children from four

Pacific islands: KK, VV, FF and TT. The samples were divided into aliquots and stored at-

20°C until use. Initially, we randomly chose and analysed 20 PCR positive samples from each

island (study level I). Next, the two identified genotypes, C and D, were analysed separately

(study level II). In addition to the four genotype C isolates detected in KK, we augmented the

number of the studied samples representing this genotype from the other three islands. A total

of 64 isolates of genotype C (four from KK and 20 from each of VV, FF and TT) were

analysed. All identified genotype D isolates, being 16 from KK, 6 from FF and 4 from TT,

were also processed.

All samples were investigated for serological markers of HBV infection. PCR was

employed to detect and amplify the HBV DNA S gene followed by direct sequencing of the

detected amplicons (see section 2.2.1). S gene sequences were determined using a variety of

forward and backward primers to eliminate sequence variations caused by Taq polymerase

possible errors during amplification. The nucleotide sequences were then edited and

assembled using Sequence Navigator software program. To detect important nucleotide

changes and motifs, Pacific HBsAg sequences from different islands were lined up and

compared to identify any island specific differences. They were also compared with

previously published HBsAg sequences from the Pacific region (Norder et aI., 1993).

A simple Neighbor-joining Tree was first constructed using the S gene (681bp) nucleotide

sequences from 102 isolates (Figure 3.4), consisting of the 20 sequences chosen randomly

from each island and 22 S gene sequences representing the different genotypes of HBV

retrieved from GenBank (Table 3.10). The aim was to reveal the overall picture of circulating

HBV genotypes in the four Pacific islands. We were not only interested in the crude genotype

distribution, but also wished to investigate whether sequence specific motifs could be

identified on specific islands, which may support theories of inter-island migration at some

time in the past. Therefore, in addition to the comparative analysis to detect specific island

differences, separate genotype specific networks were constructed, one for genotype C and the

other for genotype D, using the reduced median network approach (Figure 3.5 and 3.6: for

phylogenetic analysis see Section 2.2.1). Phylogenetic network analysis was performed in

Oxford by Rory Bowden; Department of Statistics and Institute of Biological Anthropology.
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Table 3.10: Database sequences used in this study"

Accession Origin Sub/Geno Accession Origin Sub/Geno

X75665 New Caled adrq-/ C Y07587 Germany ayw2/D

X75656 Polynesia adrq-/ C M32138 Turkey ayw2/D

X04615 Japan ayr/C AB033558 Japan ayw2/D

X75667 Vietnam ayr/C AB033559 New Guinea ayw2/D

AF068756 Thailand adrq+/C AF061523 Germany ayw2/D

D23682 Japan adrq+/C AF061S28 Germany ayw2/D

MS4892 China adrq+/C AF065112 Germany ayw2/D

X14193 Korea adrq+/C AF06S118 Germany ayw2/D

DS0518 Japan adrq+/C AF121240 Turkey ayw2/D

AF074449 Thailand adrq+/C AFlS1735 Turk/Greek ayw2/D

M23807 Japan adrq+/C AF209398 Germany ayw2/D

M23809 Japan adrq+/C AF214659 Tunisia ayw2/D

M12906 Japan adrq+/C AF214660 Tunisia ayw2/D

X7S792 France adrq+/C AF214661 Tunisia ayw2/D

Ab031262 Vietnam adrq+/C L27106 Israel ayw2/D

AFOS2576 China adrq+/C A0186S Unknown ayw3/D

AB014399 Japan adrq+/C Z35716 Poland ayw3/D

AB014374 Japan adrq+/C US5227 Brazil ayw3/D.
XOlS87 Japan adrq+/C U55228 Brazil ayw3/D

Y18856 China adrq+/C U878S1 S Africa ayw2/D

AF209402 Germany adrq+/C U91S04 Costa Rica ayw3/D

D00630 Japan adrq+/C U91S32 Costa Rica ayw3/D

Y18855 China adrq+/C V01460 France ayw3/D

D16666 Japan adrq+/C X02496 Latvia ayw2/D

VOO867 Japan adrq+/C BangllO·· Bangladesh ayw3/D

J02202 France ayw2/D Bang 171" Bangladesh ayw2/D

X6S2S7 Italy/patientC ayw2/D Bang49" Bangladesh ayw3/D

X72702 Germany ayw3/D INOOOS" India ayw2/D

X75662 France ayw2/D INOOlS" India ayw2/D

X75668 France ayw3/D INOOI7" India ayw2/D

X59795 Italy ayw2/D INOOS1·· India ayw2/D

X8S2S4 Italy ayw2/D INOO62·· India ayw3/D

X9784S Greek (Pat 2) ayw2/D INOO83·· India ayw3/D

INOI34·· India ayw3/D IN0091·· India ayw3/D

*: The database sequences used for this study were selected from amongst the Genotype C and D

sequences in GenBank based on similarity to the sample sequences, or by geographic affinity.

•• : unpublished sequences from previous studies performed in our Laboratory.
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3.3.2 Results

Genotype and subtype prevalence in Pacific islands

. Table 3.11 shows that, in Kiribati, 16 out of 20 sequenced isolates were genotype D while

the remaining four had genotype C. In contrast, Vanuatu had only genotype C while Fiji and

Tonga inhabitants were mainly (67% and 80% respectively) infected with HBV sequences of

genotype C. Subtype adrq' was the main subtype in genotype C occupied islands while aYW2

was the prevalent one in Kiribati. Other subtypes, such as ayw3, adrq+, ayr, had a low

prevalence and sporadic distribution (Table 3.11). Only one recombinant subtype was

detected in Tonga (sample 286T).

Distribution of HEV strains within the Pacific islands

Based on residues at positions 44 and 47, in addition to other changes across the S gene,

we were able to define three major strains of the adrq- subtype in Pacific islands, glycine/

valine (GN), glutamic acid! arginine (EIR) and glutamic acid! valine (EN) (Table 3.12). The

last strain, having EN, was novel. The prevalence of these strains of genotype C was island-

specific, particularly in Vanuatu. 13 out of 20 sequences in Vanuatu had GN. In contrast,

only three isolates of this strain were found in Fiji and none in Tonga. EIR strain, though,
•

detected in various percentages in all islands, was the dominant one in Fiji. EN strain was

seen in 12 of20 Tongan sequences. In keeping with the hypothesised migration from West to

East (Vanuatu, Fiji and Tonga), specific variants were identified in the Pacific island that

either increased, or decreased, from West to East. For example, nucleotide changes at

positions 13, 203, 282, 339, 348, 551 and 552 were mainly seen in Tonga. On the other hand,

changes at 213, 384, 524 nucleotide positions were predominant in Vanuatu. However, no

specific nucleotide changes were detected in Fiji (Table 3.12).

Furthermore, detailed analysis of the distribution of strains within islands revealed some

intriguing features. For example, in Tonga, a clear selective distribution of EN and EIR

strains between the two cities was observed (Table 3.13). Twice as many EN strains were

observed in Kolovai compared to Nukualofa. In contrast, EIR strain was mainly prevalent in

Nukualofa, with 6 isolates versus 2 from Kolovai. In Kiribati, with a predominance of

genotype D, Betio, which is located in the west, was the only region where genotype C

isolates were detected. Perhaps, this is because it is much closer to Papua New Guinea (PNG)

where this genotype was previously isolated (Carman et al., 1997b).
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Table 3.11: HBV genotype and subtype distribution within Pacific islands

HBVTyping Kiribati Vanuatu Fiji Tonga

. Genotype C 4 (20%) 20 (100%) 14 (67%) 16 (80%)

Subtype adrq- 3 18 14 16

Subtype adrq+ 1 1

Subtype ayr 1

Genotype D 16 (80%) Nil 6 (33%) 4 (20%)

Subtype ayw2 15 4 2+1*

Subtype ayw3 1 2 1

"': Recombinant sample

Table 3.12: Important motif (44-47)* and nucleotide differences** for differentiation
between HBV prevalent strains in Fiji, Tonga and Vanuatu

44-47 aa pair Vanuatu Fiji Tonga

GN 13 3 Nil
EIR 5 12 8
EN 2 5 12

Nucleotide Position Vanuatu Fiji Tonga
& change
13.A>G 1 2 10

• 203. T>C 2 3 12
213. C>T (S) 12 2 nil

246. C>A (S) 4 1 nil

282. G>A(S) 1 3 11

339. A>C (S) 3 nil 13

348. C>A (S) 1 3 11
384. T>A (S) 13 2 nil

524. T>C 14 2 2

551. T>C 1 3 12

552. A>C (S) 1 3 10

594. G>Tor A 5 (T) nil I (A)

"': The motif is from nt130 to nt14I, and is flanked by 44 and 47 amino acids; GN, EIR & EN (highlighted).
'""': Nuumber of isolates that has the identified changes is shown underneath each island.
S: Silent change, all the other changes are not silent.
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Table 3.13: Distribution of genotype C adrq- strains and genotype D in specific cities

Island cities GN EN EIR Genotype D

Tonga

Nukualofa 4 6

Kolovai 8 2

Kiribati

Betio 1 1+1* 1 4

Bikenibeu (Tarawa) 6

Bairka 6

*: One isolate of adrq+ subtype.

Pacific islands versus database comparative analysis

Choosing the correct reference sequence is mandatory, especially in cross-sectional

studies, otherwise overestimation of mutations can occur. The adrq- subtype is rarely found in

Genbank; the four available isolates (HMA, Cha, Wan and Del), published by Norder et al.

(1993), constituted our reference sequences.

There are a number of variants that were unique to the Pacific islands (Table 3.14). Firstly,

there were single amino acid changes dispersed across the S gene. Aa 18 was always valine

(V) in our adrq- sequences. None of our adrq-sequences from the four islands had lysine (K)

at amino acid number 24, though previously described in the HMA isolate. Position 175 was

occupied by serine (S) instead of leucine (L) in 18 Pacific isolates, 14 of them from Vanuatu.

Valine (V) or alanine (A) was the amino acid usually detected at residue 184.

Secondly, some amino acid pairs were changed either together or separately. Of particular

interest was the pair of aa 44 and 47, which constituted a motif within an important CTL

epitope and showed three possibilities: GN, EIR and EN (Table 3.l2). Residues 159 and 177,

which are described to be responsible for q- determinant expression in this subtype, made up

the second important pair. Valine instead of alanine at position 177 was detected in nine

sequences (4FF, 2TT, 3VV). In addition to the change at the aa 177, alanine instead of valine

at 159 position was detected in another two isolates (K271 and V185).
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Phylogenetic analysis

Primary analysis of the prevalent pacific HB Vgenotypes (level J)

Figure 3.4 shows that the Pacific sequences grouped into 4 major clusters. The first is

mainly occupied by Kiribati sequences (genotype D), with a few isolates from FF and TT. The

second mainly contains Vanuatuan sequences (I4W, IFF and IKK). The third and fourth

clusters, though more heterogeneous, mainly contain Fijian (IOFF, 7TT, 4W and IKK) and

Tongan (9TT, 3FF, IW and lKK) sequences respectively.

After identifying the circulating genotypes in the four Pacific islands, a re-alignment was

performed according to their predominant genotype. Among genotype C occupied islands,

W, FF and TT, characteristic nucleotide differences were determined (see Table 3.12). In

contrast, no significant differences were observed between genotype D sequences that were

isolated from KK, FF or TT. This indicates that genotype D indeed arrived in the Pacific as a

relatively homogeneous population and has probably been distributed by admixing with stable

human populations.

Genotype CNetwork

A major cluster containing about 18 sequences is centered on the haplotype defined by

VI02 (see Figure 3.5). 24 of the 64 sequences, and one of the database sequences (X75665),

are within two mutational steps of this haplotype (distances measured discounting the

excluded sites). The central cluster contains mostly Fijian and Tongan sequences. Most of the

rest of the sequences are felt in two clusters, which centered 2 and 3 mutations respectively

from the central haplotype. The first of these is predominantly Vanuatuan (13 out of 16

sequences) with 2 sequences from Fiji and one from Kiribati. On the other hand, all but one

(Vanuatuan) sequence in the second cluster are from Tonga (11 sequences) and Fiji (6

sequences). 5 of the remaining sequences (VI50, K271, T243, K240 and V235) are on

relatively rare lineages derived from the central cluster. Another 3 observed sequences are

intermediate on the lineages leading to the derived clusters (K136, VI59 and T285).

The Pacific network can be rooted using the database sequences. All the Pacific sequences

in the dataset, plus two sequences of Pacific origin from the database (X75665 & X75656),

share a single link to the database sequences representing other parts of the world, indicating a

common origin. Furthermore, V185 and the two Pacific database sequences are closer to the

rest of the world than all other Pacific sequences.
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Chapter 3 Results

Figure 3.4: N-J phylogenetic tree of Pacific HBsAg isolates.

Phylogenetic analysis ofHBV isolates was based on the nucleotide sequences ofS gene.

Genotypes ofHBV are indicated from A to G.

VV: Vanuatu; FF: Fiji; TT: Tonga; KK.: kiribati.

All the other sequences are retrieved from GenBank and are shown by accession numbers.
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Chapter 3 Results

Genotype D Network

One of the sequences, T286, was clearly a CID recombinant (C left part, D right part,

breakpoint between 203 and 300). Therefore its position at the end of a long branch in the D

network reflects the number of fixed differences between C and D genotypes in the first

-250bp of the HBsAg sequence. T286 was most closely related to VI59 and X75656 amongst

the known C sequences (5/250 mismatches in nt 1-250), and K130, 1(232 and AB03359

amongst known D sequences (1/431 mismatches in nt 251-681).

The final network for D contained several reticulations, or ambiguities, in the implied

mutation order and tree topology (see Figure 3.6). The identification of nt 192 as a 'fast' site

and T286 as a recombinant sequence allowed the tentative resolution of the parallelisms on

the branch leading to 1(202, F 148, F306 and T251. It seems clear that 21 of the 26 sequences

are found in a cluster together with two database sequences, one from from Papua New

Guinea (AB0335599) and the other from France (X75662). 102202, a third database sequence

from France is on a derived, but probably not ancestral, branch. The main cluster is related to

all other known sequences through a single branch, which therefore represents the

presumptive ancestral lineage. A mutation at nt513 defines the main cluster, and separates it

from the remaining Pacific sequences, 1(202 and F 148, which share an ancestral branch.

The other most similar database sequences form a second cluster to the right of the figure,

and originate from India. The data indicates a variable distribution of largely homogeneous D

sequences across a wide area of the Pacific, including Papua New Guinea, consistent with a

relatively recent origin and spread of D genotype. This is in contrast to C, where the

variability seems to be older and more geographically specific

Time estimates science the first ancestor

Published estimates for the substitution rate for HBV vary with pathogenic status of the

infection (Bozkaya et al., 1997). Family data from Hannoun et a1. (2000) lead to point

estimates of 2.04 e-5 and 2.25 e-4 nfiyr-i, for HBeAg positive and negative patients

respectively. These estimates were incorporated to give estimated dates for HBV colonisation

of the Pacific (see Section 2.2.1h; Table 2.2). In our study, it is at least clear from historical

information ruling out very recent introduction ofHBV, that the HBV mutation rates observed

are more consistent with HBeAg-positive infection rather than HBeAg negative status which

are most frequent in highly endemic areas in Asia like the Pacific region.
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Chapter 3 Results

Moreover, assuming the same rate of nucleotide substitution in the two genotypes, it can

be inferred from the calculations that the time elapsed since the major common ancestor for

the C sample is 2- 4 times longer than that for the 0 genotype.

3.3.3 Discussion

80% of strains in Kiribati were genotype 0, whilst genotype C was found in all strains

from Vanuatu and between 67% and 80% of strains from other Melanesian! Polynesian sites.

We believe that this can be explained as result of inter-island movement after the main

migration (Table 3.11). In genotype C dominated islands (Figure 3.5), the identified HBV

isolates share a common origin, related most probably to the initial colonization of the region.

The relationships between sequences suggest that varying degrees of isolation and migration

are responsible for the spatial distribution differences. The absence of genotype 0 in Vanuatu

supports this contention as Vanuatu has a net migration rate of 0 migrantS/1000 population

(1999 est.) and is mainly occupied by indigenous Melanesian people (94%), in addition to

other ethnic minorities; French, Chinese, Vietnamese and other Pacific islanders, (CIA, 1999).

On the other hand, recent Indian immigrants who usually have genotype 0 and constitute

around 44% of total Fijian population might playa role in Fiji (CIA, 1999).

Adrq- and ayw2 subtypes are the predominant subtypes in genotype C and 0 dominated

islands, respectively (Table 3.11). adrq+ is the prevalent subtype in South-East Asia, while

adrq- is only found in Oceania. Geographical transition from Asian adrq+ to South American

adw4q- through the adrq- subtype in Oceania has also been suggested (Courouce-Pauty et al.,

1983). Adrq+ and adrq- are consistently different at three sites, 159, 177 and 213 and there are

additional non-consistent differences. Ayw2 and ayw3 (both genotype D) have a worldwide

distribution; however, it is predominant in the Mediterranean area, through the middle East

and extending into India (Norder et al., 1993).

Comparative analysis & important variants

Both simple sequence comparisons and the derived networks clearly identified island-

specific nucleotide and amino acid sequences on genotype C dominated islands (Table 3.12;

Figure 3.5). Two types of changes have been observed. Firstly, there were single aa changes

across the S gene such as that observed at residues 5, 68, 175 or 184, that were island-specific
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(Table 3.14). Other sites such as aa 18 and 24 were not island-specific. For instance, amino

acid 18 was always Valine (V) in all identified sequences, while only one of the four adrq-

isolates published by Norder et al. 1993 (Del isolate) has this aa, in addition to subtype

adw4q-. Also, A, mainly in Tonga, or V was the amino acid detected at residue 184, but never

D as has been previously described in Del isolate (Norder et al., 1993).

Secondly, two pairs of aa changes at two important regions have been determined. The

first pair was at residues 44 and 47 and is located within a region containing the HLA class 1-

restricted CTL epitope, aa 38 to 47 (Nayersina et al., 1993). The larger region (aa 29-53) is

found frequently mutated in chronic hepatitis and hepatocellular carcinoma patients who are

under immune pressure from CTL, suggesting a potential role of CTL escape in HBV

persistence (Chen & Oon 1999). Although there is much debate about this relationship

(Rehermann et al., 1995), the accumulated data would appear to support such a link (Bertoletti

et al., 1994; Tai et al., 1997; Chen & Oon 1999; Khakoo et al., 2000).

Consistent with this data, further changes at positions 175 (mainly in Vanuatu), 177 and

184 (mainly in Tonga) have also been observed in our Pacific study (see Table 3.14); these are

contained within another two identified HLA class 1 restricted CTL epitopes (172- 180 &

175- 184: Nayersina et al., 1993). In contrast, mutations within the MHR, aa 99-160,

containing the major B cell epitope cluster of HBsAg (Brown et al., 1984; Waters et al.,

1992a) were less frequently detected and had no island linkage.

The second pair was at residues 159 and 177. Both or one of these residues were proposed

to be responsible for abolishing the expression of q subdeterminant in adrq-, while the

adjacent residues (aa 158 and 178) were described for the same effect in adw4q- subtype

(Norder et al., 1992). V, instead of A, at position 177 was detected in nine Pacific sequences

(4FF, 2TT, 3VV). However, A instead of V at position 159 was only detected in two isolates

along with V at residue 177. These two isolates, K271 and V185, were in fact of adrq+

subtype. Thus, residue 159 seems to be more conserved in adrq- subtype and perhaps has an

interaction with residue 177 to abolish q expression, as it was never changed in isolation.

Consequently, G 159 in ayw2, ayw3 and ayw4 and A in the other q+ subtypes will have no

effect on q expression, as has been previously noted (Norder et al., 1992a).
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HBsAg as a marker to trace the migration of Pacific people

We set out to use the HBV sequence as a surrogate marker of the migratory patterns of

Pacific people. The origin of Polynesians and the relationship among Pacific and Asian

populations is a matter that has been long debated between geneticists and archaeologists

(Diamond 1988; Terrell 1988). Employment of mitochondrial DNA (mtDNA) to infer the

ethnic backgrounds of human subjects has been widely used in Pacific region (Merriwether et

al., 1991; Sykes et aI., 1995; Lum et aI., 1998;Matisoo-Smith et aI., 1998). Other tools such

as language, archaeology and nuclear encoded loci have also been employed (O'Shaughnessy

et al., 1990;Kirch, 1997;Hagelberg et al., 1999).

In fact HBV has been used to support population theory in the past. A report from 25

years ago showed a South-to-North gradient in the distribution of the r determinant in Japan

and suggested employing HBsAg sequences to predict Japanese ancestors (Yamashita et al.,

1975). Moreover, serological subtyping of HBV was recently employed in Indonesia to trace

ethnic origins (Mulyanto et al., 1997).

There are several hypotheses for the origin of Polynesian people: "Express train",

"entangled bank", "Melanesian origin", "eastern Indonesia" and recently "Slow boat"

(Diamond 1988; Terrell 1988; Hagelberg & Clegg 1993; Redd et al., 1995; Kayser et aI.,

2000). Our results are most consistent with the first, which suggests that the Polynesian

people were originally agriculturists from Southern China. Along their way, they spread to

Taiwan, Philippines, eastern Indonesia and then Melanesia and Fiji by around 3,500 years ago

and radiated across the Pacific to fill the Polynesian triangle by around 1,000 years ago

(Diamond 1988; Bellwood 1991). On the other hand, Melanesians may have been earlier or

later arrivals after this great migration in keeping with our closely related sequences from

Tonga and Fiji, and previous reports (Hagelberg & Clegg 1993; Gibbons 1994). Additionally,

or alternatively, back migration from Polynesia to Melanesia could be another factor

responsible for these shared sequences between Tonga and Fiji (Hagelberg et al., 1999).

The existence of 3 Pacific sequences (V185, X75656 and X75665) along the implied

ancestral lineage, rather than elsewhere amongst the remaining genotype C sequences,

strongly suggests that further diversity exists within the Pacific region, and that these

sequences are sampled from the pool (see Figure 3.5). This is still in agreement with the

radiation phase of the previously described "Express train" hypothesis (Diamond 1988;
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Bellwood 1991). Alternatively, this diversity pattern may reflect the influence of different

migrations at different times or random genetic drift in these populations (Merriwether et al.,

1999). Of interest is that the four KK. genotype C isolates were extremely diverse, were found

along three clusters in genotype C network, and are consequently consistent with recent

introduction of derived C strains from other islands.

The situation for genotype D is quite different and unlike the pattern in genotype C

dominated islands (Figure 3.6). The extreme lack of diversity suggests a history of sub-

endemic or absent HBV followed by recent introduction of closely related D lineages. The

few D sequences on other islands show a similar homogeneity indicating a recent contact

between Kiribati and the genotype C dominated islands (see above). Consequently, the HBV

strains identified on these islands is in keeping with a varied degree of contact and isolation

among Pacific islanders as has been previously described (Mastisoo-Smith et al., 1998).

Pacific genotype D sequences are found in a cluster together with two database sequences

one from PNG (AB0335599) and the other from France (X75662). A third database sequence,

J02202, is on a derived, but probably not ancestral, branch. The main cluster is related to all

other known sequences through a single branch, parallel to the line separating ayw2 and ayw3

subtypes (see Figure 3.6), which therefore represents the presumptive ancestral lineage.

Analysis ofHBV sequences from other locations will be required to interpret these data fully.

Times estimation for HB V in Pacific islands

Although it is helpful to estimate the depth of the history, this approach is by nature

approximate. In Pacific region, the dates inferred using the lower mutation rates detected in

HBeAg positive individuals in Hannoun et a1. (2000) are at least within an order of magnitude

of consistency with the hypothesis that HBV accompanied settlers in the major colonisation

events (Diamond 1988; Bellwood 1991; see Table 2.2). However, it should be noted that there

are several sources of bias (see below). Alternatively, these shallow dates might indicate that

the virus entered the Pacific region at a later date (after the human colonisation) and then

simply become isolated on each individual island along human movements (Eddie Holmes;

personal communication).
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The extreme heterogeneity of mutation rates across sites in HBV would have the effect of

leading to underestimation of times. This is because events at fast sites are over-represented in

short-term longitudinal studies used to estimate mean rates, but are hard to resolve on

genealogies, with many mutational events remaining undetected. Another factor influencing

the mutation rate (real and inferred), is the type of infection predominating (Lin et al.,

1991;Carman et al., 1995b; Bozkaya et al., 1997; Hannoun et al., 2000). From the above, it

should be clear that the average mutation rate clearly differs between a hyperendemic

population and one in which infection is non or sub-endemic, perhaps due to differences in

pathology and immune selection. Secondly, the effective population size, relating the number

of infections and the rate and mode of transmission, will affect the accumulation of genetic

variability in a way which may be harder to predict.
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3.4 Diagnostic assay reactivity of HBsAg variants

3.4.1 Introduction

Antigenic variation of HBsAg is clinically significant and has been discussed in several

reviews (Locarnini, 1998; Gunther et al., 1999; Hunt et al., 2000). HBsAg variants (hepatitis

B viruses containing mutations in the surface gene) can be divided into 2 aetiological classes.

The first class occurs naturally and includes subtype variation and amino acid (aa) changes

which may be poorly detected in diagnostic assays (Yamamoto et al., 1994; Carman et al.,

1995a). Class 2 variants are selected by medically induced immune pressure (Carman et al

1990; McMahon et al., 1992; Don et al., 1995; Ghany et al., 1998; see Section 1.5.1). The

MHR, an important external domain of HBsAg, contains clusters of epitopes within which are

the proposed neutralising epitopes (Brown et al., 1984; Waters et al., 1992a, b). Although

class 2" antigenic variation tends to occur within these neutralising epitopes, both classes show

variation within the MHR.

Furthermore, it is possible that gene variation can affect the disease process. A study of

120 Asian Indians with chronic HBV revealed S gene variants in 10.8% of patients. These

showed an unfavourable clinical course compared with the standard strain (Guptan et al.,

1996). G145R and DI44A variants were shown to be associated with a worse clinical

outcome and longer persistence despite the termination of HBIG treatment (Protzer-Knolle et

al., 1998). The increased frequency of association of variant compared to standard sequences

has also been described in some cases of hepatocellular cancer (Zhong et al., 1999).

Although a range of commercial assays for HBsAg is widely available, not all are equally

sensitive (Carman et al., 1997b; Coleman et al., 1999). The backbone, either subtype d or y, of

the tested variant has a role in HBsAg detection efficacy (Wallace et al., 1994; Carman et al.,

1997b). Moreover, the geographical distribution of HBsAg subtypes has to be considered

(Courouce-Pauty et al., 1983). On the other hand, serum containing HBsAg particles is rarely

available in volumes sufficient for testing against a multitude of capture antibodies, therefore

we cloned variant HBsAg from 13 diagnostically relevant cases and tested cell culture

supernatants in seven commercial diagnostic assays.
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3.4.2 Results

The mutations detected in each of the variant samples are shown (Table 3.15). Also listed

is the clinical background and country of origin of the serum samples. As sample T5N gave

uninterpretable results, this is dealt with separately (see below).

3.4.2a Immunofluorescence results

Immunofluorescence was performed to measure transfection efficiency (Table 3.16). Most

samples (10/12) showed 40-60 % of cells expressing HBsAg. BA3.2 was lower at 20-30% but

still within the lower range of the standard Gly Y and expected to produce detectable amounts

of surface antigen.

3.4.2b Diagnostic assay reactivity

The reactivity of each variant is presented in two ways. First, it was calculated as an index

(Table 3.16) i.e. reactivity of the variant divided by that of the NIBSC standard (0.5 IU/ml)

for each assay. Secondly, they are expressed as a percentage of the reactivity of the standard

HBV sequence of the same subtype, ay or ad (Table 3.17). These two analyses allow

comparison both to a known amount of natural HBsAg and to an in vitro expressed standard

sequence. Representing the data in these ways allows both inter- and intra-assay comparisons

to be made. All assays pert:ormed within the sensitivity limits claimed by their manufacturers

using two preparations of a standard serum (working standard and monitor sample; NIBSC).

Both standard sequences and seven of the variants (ArgI45, 91-4696, HK188, AP3.1,

SA4, SA6 and SA7) were detected by all assays although Arg145 was less reactive than the

working standard in assays 3, 6 and 7, and only marginally above cut off level in 6 and 7. This

group contained variants in HBs regions 1, 3, 4 and 5 of the MHR (see Figure 1.9). Three

samples (l056Sp, BA 3.4 and BA 2.4) were detected by most of the assays, although some

displayed only low level reactivity: 1056Sp was low in assay 7 and negative in assay 4; BA3.4

was negative in assays 3 and 5; and BA2.4 was negative in assay 4 and low in assays 3, 5 and

7. This group contained variants in HBs regions I, 2 and 4 of the MHR.

In this chapter, the serological assays work was performed by Jacqueline Ireland, Barbara

O'Donnell, and Joy Kean, whose efforts are very much appreciated.
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Chapter 3 Results

Sample MS, which had mutations inHBs regions 1- 4, was negative in assays 3, 4, 6 and

7. Moreover, sample BA 3.2, containing mutations in HBs region 2, could not be detected by

any of the assays. To attribute non-reactivity of BA 3.2 to the mutations per se, we had to

exclude intracellular retention of surface antigen particles. Therefore, cell lysates of BA3.2

and appropriate controls (celllysates ofGly Y and standard sera) were tested using assays 1,5

and 6. Positive results for BA3.2 were detected in all three assays, with a reactivity of

approximately 20% of that of the standard HBsAg sequence. This indicates that the loss of

cysteine at amino acid 124 has had a deleterious effect on secretion as is suggested by the low

positivity found by immunoflourescence on the transfected cells (Table 3.16).

We also compared the assay performance of the variants that react at a level greater than

or equal to 10% of the standard HBV sequence (Table 3.18). In general, the use of poly clonal

antibody in the capture and/or detection phases was associated with higher detection rates:

assays 1,2,5 and 6 detected 11,9, 10 and 9 of the 11 variants respectively. The exception was

assay 7 (detected seven variants) which used sheep pAb in the capture phase and mouse mAb

for detection. Assays 3 and 4, which detected only seven and eight of the variants

respectively, employed mAb in both capture and detection phases. Variants ofHBV subtype d

are also detected more readily than those of subtype y using this panel of assays (Table 3.18).

As a measure of expression efficiency, reproducibility of variant antigen reactivities was

determined on supernatants from multiple transfection experiments using the IMX HBsAg

(V2) assay (Table 3.19). The number of supemates tested for each antigen ranged from 4 to

11 and the range of reactivity was relatively consistent at a level of 0.S-I.6 times the mean

value. Only sample MS produced a wider range of values; 0.45-2.2 times the mean value.

Transfection efficiency was also evaluated by repeating six of the seven assays using a

separate batch of supernatants from a different transfection experiment. Only M5 in assay 1

(bioELISA) gave an obviously different reactivity on repeat testing; 44% of standard

sequence activity compared to 13% in a previous experiment. Four other samples of low

reactivity (one in assay 3, Arg145, and three in assay 7, ArgI4S, 1056P and BA2,4) became

either borderline positive, having initially been negative, or became negative having initially

been borderline positive. Clearly, this is not considered significant. In fact, the reactivity of

these samples compared to that of the appropriate standard GlyYID (set at 100%) ranged from

6-12.6%, a level at which repeat testing would be required in a clinical or diagnostic setting.
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Chapter 3 Results

Table 3.19: Expressed surface antigen results of multiple transfection experiments using
the IMX HBsAg (V2) Assay.

Sample Mean index of reactivity" Range of reactivity Range as a

± s.e' (number oftransfection experiments multiple of mean

GlyY 4.80 ± 0.49 (10) 3.26-7.81 0.68-1.63

1056Sp. 1.43 ± 0.25 (6) 0.64-2.20 0.45-1.54

BA2.4 0.73 ± 0.21 (5) 0.24-1.43 0.33-1.96

BA3.4 0.23 ± 0.041 (4) 0.13-0.33 0.57-1.43

SA7 5.30 ± 0.37 (5) 4.38-6.47 0.83-1.22

M5 0.95 ± 0.22 (8) 0.43-2.07 0.45-2.18

GlyO 4.79 ± 0.36 (8) 3.50-6.32 0.73-1.32

Arg145 5.40 ± 1.10 (9) 1.59-10.38 0.3-1.92

91-4696 4.72 ± 0.84 (7) 1.96-8.04 0.42-1.70

HK188 8.58 ± 1.07 (10) 4.72-14.04 0.55-1.64

AP3.1 6.57 ± 1.33 (6) 1.93-10.72 0.30-1.63

SA4 4.88 ± 0.98 (4) 2.44-7.16 0.50-1.47

SA6 3.91 ± 0.64 (4) 2.51-5.24 0.64-1.34

PR* 0.14 ± 0.014 (11) 0.08-0.27 0.57-1.93

COS7 cells: 0.15 ± 0.014 ~1Q 0.09-0.25 0.60-1.67

.: Reactivity = OD of sample / OD ofNIBSC standard serum

t: Standard error.

~: Negative controls are supernatants from COS7 cells alone and cells transfected with plasmid pJl without

cloned HBV surface gene.
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To assess intra-test variation, four of the assays (assays 1, 5, 6 and 7) were repeated using

the original supernatants. The reactivities of the variants were comparable with the original

results with only one borderline positive sample becoming negative on repeat and one

negative sample becoming borderline positive in assay 7.

Finally, the variant T5N, containing a 2 amino acid insertion and mutations in HBs

regions 1, 2 and 4, was not detected by any of the assays either in the supernatant or the cell

lysate. This either implies gross antigenic diversity or a lack of production. The original serum

containing this variant was found to be negative by monoclonal antibody-based Auszyme

assay, but positive by the polyclonal radioimmunoassay AUSRIA II (Abbott Laboratories Ltd,

Maidenhead, UK) (Carman et al., 1995a). Perhaps the AUSRIA II positivity was due to higher

viral load in serum. However, we cannot exclude the possibility (albeit unlikely) of there

being differences in secondary structure of expressed HBsAg compared with the native

HBsAg which would affect reactivity in diagnostic assays. To confirm whether the variant

was adequately expressed, plasmid sequences upstream of the cloning site were found to be

identical to those seen in the parent plasmid pJI, so expression of cloned HBsAg was unlikely

to have been affected by changes in the vector sequence. On immunofluorescence, T5N

showed only 5-10% of cells fluorescing which indicates some binding by pAbs and therefore

some degree of expression; however, it remains possible that the antigen level in the

supernatant was insufficient for detection. It is not clear why the T5N variant was not detected

by any of the seven assays used. Interestingly, one group has detected it in vitro recently

(Coleman et al., 1999).

3.4.3 Discussion

The main observation in this work is that all assays are not equally able to detect

expressed HBsAg variants, mainly due to employment of anti-HBs antibodies with variable

specificities and sensitivities against different HBsAg epitopes. However different levels of

HBsAg expression, whether in vivo or in vitro, could also playa role. Obviously, in any

analysis of this nature, standardisation of HBsAg particles is required, but this presented

difficulties. Electron microscopy was attempted but the particles were difficult to count

because of clumping and an uneven distribution. Also, Bradford assay for total protein
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determination proved unhelpful as HBsAg was masked by large quantities of foetal calf

serum. We have finally developed an epitope tag system to standardise the quantity of HBsAg

particles in the supernatants independently ofHBsAg antigenicity (see Chapter 3.5).

A mammalian expression system was used in the study because the availability of sera

containing HBsAg variants is usually limited. Additionally, we assume there is little or no

alteration in the secondary structure of expressed HBsAg compared to the natural material

since all of the post-translational modifications should occur in COS7 cells. However,

expressed HBsAg is not absolutely ideal for characterising variation as measured reactivity

depends both on antigenicity and on the total amount of protein. Due to the transient nature of

expression and relatively low numbers of cells the assay reactivities are lower than would be

expected in serum.

In this cohort of samples we observed the following points. Firstly, the samples which

displayed similar reactivity to the standard sequence had variation in regions 1, 3, 4 and 5.

while those with reduced reactivity all had variation within HBs region 2 (l056sp, BA 3.4 and

BA 2.4 in regions 1,2 and 4; MS in regions 1- 4; BA 3.2 in region 2; and T5N in regions 1,2

and 4) (see Table 3.15 and Figure 1.9). This region, either solely or discontinuously with other

regions, clearly contributes to the loss of reactivity. There is also evidence that the 4 amino

acids bounded by cysteines at aa 121 and 124, HBs region 2, form a distinct epitope on the tip

of a loop (Chen et al., 1996b; Qiu et al., 1996). Cysteines within the MHR are responsible for

the formation of intra- and inter-molecular disulphide bridges that give the HBsAg its highly

complex structure. Antigenicity of HBsAg is dependent upon this structure and substitution of

many of the cysteine residues results in either reduced or complete loss of immunoreactivity

(Ashton-Rickardt & Murray 1989; Mangold & Streek 1993; Mangold et al., 1995).

Alternatively or additionally, it could be that there are secondary effects on other regions up-

or down-stream from the mutations (Bruce & Murray 1995; Wallace & Carman 1997).

Secondly, it was clear that there is no correlation between the number of mutations across

S gene and altered antigenicity. It seems to be the site and not the number that is responsible

for this reduced reactivity. For example, Argl45 and BA3.4 had single mutations and

displayed <50% of standard reactivity in five and four assays respectively. Samples SA4 and

BA 2.4, each with two mutations, showed <50% of standard reactivity in five assays.

However AP3.1, with one mutation, HK188 and 91-4696, with two mutations, and SA6, with

139



Chapter 3 Results

three mutations, showed good levels of reactivity, with <50% in either one or no assays (see

Table 3.17).

Thirdly, some poor reactivity is due to reduced secretion from cells. A comparison

between samples BA3.4, which contains T123N and BA3.2, which had the additional CI24R

is instructive. The loss of cysteine at aa124 completely abrogated reactivity in all seven assays

when the supernatant was used. When the cell lysate was tested in assays 1, 5 and 6, it

displayed reactivities of 28%, 18% and 15% of that of the GlyY respectively. Since BA 3.2

cell lysate is still detected at lower levels compared to BA3.4, we can conclude, supported by

the data presented in Chapter 3.5, that addition ofCI24R and TI23N has a dual effect on both

immunoreactivity and secretion.

Fourthly, in vitro results do not always confirm in vivo observations. Supernatants from

samples HKI88 and 91-4696 (see Chapter 3.6; patient I), which were initially HBsAg

negative in serum, surprisingly displayed similar reactivity to the positive control samples.

The failure to detect serum HBsAg may have been due to the presence of a low level of

HBsAg or, perhaps, due to complexes between anti-HBs and HBsAg preventing the antigen

from being detected (Ackerman et al., 1994). Fifthly, it has previously been suggested that ay

subtype samples react less than those with an ad background (Wallace et al., 1994; Carman et

al., 1997b). This also appeared to be the case here, however this needs confirmation using

samples with the same mutations in both subtype backgrounds.

Finally, it is obvious that the ability of an assay to detect a variant depends critically on

the choice of anti-HBs used. In general these samples were best detected by assays which

employed pAbs in the capture and/or detection phases (with the exception of assay 7; Table

3.18). Assays that contained MAbs for both phases of the assay appeared to perform less

efficiently in detecting this set of variants.
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3.S A novel epitope tag system to standardise HBsAg variant particles after in vitro
expression

3.S.1 Introduction

The HBV genome is encapsidated along with a virus-encoded polymerase in a 32-nm

diameter nucleocapsid surrounded by a host-derived lipid envelope bearing three viral surface

proteins. These HBV surface proteins are translated from a single open reading frame of the

viral genome using three different in-phase start codons. HBV surface proteins can be

independently secreted from the infected hepatocytes as 22-nm diameter spherical or tubular

non-infectious particles which are composed mainly of SHBs and host-derived lipids

(Heermann et al., 1984; Peterson 1987).

Variants of the surface gene, which encodes HBsAg. are clinically relevant and can be

detected in a number of situations (see Section 1.5.1). As sera containing HBsAg variants are

rarely available in volumes sufficient for testing against a wide range of assays, in-vitro

expressed supernatants of cloned HBsAg variants have been used instead in these assays to

test their reactivity (Coleman et al., 1999; see Chapter 3.4). Reduced reactivity of such

expressed variants could be due to either antigenic changes or reduced particle production.

Consequently, standardisation of the number of expressed HBsAg particles is required before

antigenic analysis. In a previous study, Chapter 3.4, both electron microscopy for counting

particles and Bradford assay for total protein determination proved unhelpful. Such

quantification has been recently attempted using Ausria II assay, which relies on polyclonal

antibodies for both capture and detection, or the Hepanostika HBsAg Uni-form II plus which

employs MAb for capture and PAb HRP-labelled anti-HBs for detection (Coleman et al.,

1999; Cooreman et al., 1999). However, a conflict develops if particle number is assessed

using methods that rely on antigenic recognition.

Here, an epitope tag system for standardising the number of particles, independent of

HBsAg antigenicity, has been developed. Four epitopes, have been inserted stepwise into

either or both termini of HBsAg (after the start codon and or before the stop codon): three

were derived from cytomegalovirus (CMY) and the fourth was derived from influenza virus

haemagglutinin (HA) protein (see Section 2.2.3).

141



Chapter 3 Resu Its

Figure 3.7: Schematic figure of the tag constructs

~
1 M-CMV

~
M-CMV 227

~ 11 I M-CMV PI-CMV 227

~
I M-CMV11 I 227

EJ I 1 I M-CMV I UH*MmH1111227 I

~ 11 II~mooHIIII I M-CMV I 227 I

~ 11 I

EJ ! 1 227

~ I ~IUmooRlll1 227

EJ 1111S_1111

11 I HA-tag

I: HBsAg start codon; 227: HBsAg stop codon.
M-CMV: 10aa epitope derived from pp65 matrix protein; PI-CMV: 15aa epitope derived from N terminus of

HCMV ULI02 protein; P2-CMV: first 10aa ofPI-CMV; HA-tag: 9 aa Flu-HA epitope.
M-CMV tag constructs included: I) Y tag: M-CMV inserted at the 5'end of standard HBsAg (after the start

codon); 2) Y 67: M-CMV inserted at the 3' end of standard HBsAg (before the stop codon).
M-CMVIP-CMV constructs included: I) Tl: 5'end M-CMVI 3' end PI-CMV; 2) T2: 5' end PI-CMV 5'1 3'end

M-CMV; 3) T3: 5'end M-CMVI 3' end P2-CMV; 4) T4: 5' end P2-CMV 5'1 3'end M-CMV.
P-CMV tag constructs included: I) PI: 5' end PI-CMV; 2) P2: 3' end PI-CMV; 3) P3: 5' end P2-CMV; 4) P4:

3' end P2-CMV.
HA-construct: HA-tag at the 5'end ofHBsAg.

142



Chapter 3 Results

Variants used were the same panel that used in the previous study (chapter 3.4) except for

T5N, due to unreliable results (see chapter 3.4), and HK188 due to unavailability ofa standard

sequence that have the same background sequence. Variant 2030, containing T127A and

S143L changes, (Wallace et al., 1994) was also added to this group of samples. A schematic

of the tagged constructs is shown in Figure 3.7.

3.5.2 Results & discussion

3.S.2a M-CMV tag system

HBsAg expressed protein was captured with a specific anti-CMV MAb and detected by

anti-HBs (Figure 3.8). Tag insertion at either the 5' or 3' end of the HBsAg (Figure 3.7; Y tag

and Y67) did not affect anti-HBs recognition of the expressed particles, as there were no

significant differences in OD between tagged and non-tagged proteins in the IMx HBsAg

assay (Table 3.20). Two implications can be inferred from these results. First, both amino-

and carboxyterminal regions must be exposed on the surface of the particle; such topology is

consistent with the results of early studies (Eble et al., 1987; Peterson 1987). Second, HBsAg

conformation is not affected by the insertion at either end. However, early observations of

Bruss and Ganem (1991a) showed that fusion of foreign sequences to codon 11 of pre-S2 led

to formation of unstable chimeras. More stable, but non-secretable, chimeras were those fused

with codon 11 of S gene. This might be due to either the difference in epitope size, 10-15 aa in

our study versus 143-243 aa in the study of Bruss & Ganem, or the epitope insertion site,

which was after the first codon rather than codon 11.

However, estimation of protein production using anti-HBs in this way is misleading as

variants might affect the expression of group-specific determinants of HBsAg and most of the

commercially used anti-HBs are directed against the major B cell epitope cluster of HBsAg

between aa 124-147 (Brown et al., 1984; Waters et al., 1992a, b). For instance, Coleman et al.

(1999) have recently quantified the in-vitro expressed HBsAg particles using the Ausria II,

which depends on the hypothesised ability of polyclonal capture and detection to recognise a

broad range of HBsAg variants. However, in our previous study, BA3.2 variant escaped

detection and two other variants, SA4 and SA6, showed less than 10% reactivity with this

assay (see Chapter 3.4).
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Chapter 3 Results

Table 3.20: IMX results* of M-CMV and P-CMV single tag systems and cell lysate

results of dual tag system.

Sequence Supernatant] Lysate: Imrnunofluorescence§

Ytag 35.95 NO ++++

Y67 40.48 ND ++++

PI 38.20 ND ++++

P2 39.75 ND ++++

P3 37.85 NO ++++

P4 40.25 NO ++++

Tl 1.81 7.69 +

T2 5.69 37.16 ++

T3 1.34 3.73 +

T4 1.55 7.42 +

GIy.D 43.45 49.11 ++++

Gly. Y 40.25 47.50 ++++

cells 1.36 2.00

PJI 1.36 1.82

*: All results in this table were obtained by the conventional CaP04 transfection method. Abbott IMx assay was

employed to show that tag insertion did not significantly affect the antigenicity ofHBsAg.

t: All supernatants were used as neat.

t: In addition to the controls, (positive; Gly. D and Gly Y) and (negative; cells and PJI), lysates from transfected

dual tag transfected cells were tested as the HBsAg was suspected to be retained within the cells.

§: The positive signals are reflecting the degree of fluoresence of each relative sequence. ++++: high; +++:
moderate; ++: mild; +: minimal; -: negative.

Gly. Y and Gly. D are standard sequences of adw and ayw subtypes respectively and represent the positive

controls.

Cells and PJI (plasmid containing no insert) represent the negative controls.
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3.S.2b M-CMVIP-CMV system

To address the conflict between protein quantification and antigenicity of the M-CMV

system, constructs were generated with different tags at either end, so that a sandwich ELISA

could be designed. Either PI-CMV or P2-CMV, both recognised by a rabbit antiserum, was

inserted into the 3' or 5' of the CMV-tagged protein at the opposite terminus (Figure 3.7; TI,

T2, T3 and T4). Anti-CMV MAb was again used for capture, but instead of anti-HBs, PAb

371 (anti-P-CMV; see section 2.2.3) was used for detection (Figure 3.8).

However, these proteins were either intracellularly retained or poorly secreted (Table

3.20). As proteins with one M-CMV tag at either end have a normal biology, this effect

should be due to a change of conformation, due either to tags being at both ends or to the P-

CMV per se. Consequently, all four possible constructs (Figure 3.7; PI, P2, P3, P4)

containing P-CMV only at either the 3' or 5' terminus were generated; all resulted in good

signals in comparison to the non-tagged HBsAg in the IMx HBsAg assay (Table 3.20). Thus,

inserting tags at both ends simultaneously was responsible for the system failure and the

following effects on S protein structure could be responsible for this failure.

A direct effect on the neighbouring transmembrane helices and thus HBsAg assembly may

have occurred, as interactions between S monomers during early assembly were shown to be

grossly affected by the disposition of the N-terminus. Perhaps inserting both epitopes

simultaneously at both ends led either to major displacement of nearby termini or to formation

of unstable protein. Alternatively, the dual tag insertion might indirectly have deleterious

effects on tertiary structure, due to displacement of important aggregation domains (Bruss &

Ganem 1991a). Furthermore, if these tagged proteins overcame such impediments, they might

be faced with a secretion challenge (see below).

HBsAg conformation is maintained by disulphide bridges and mutations of an essential

cysteine (eg at aa, 48, 65, 69) can lead to intracellular retention (Prange et al., 1995). At least

one of these cysteines seems to be essential for further oligomerisation, but none of them is

required for dimerisation (Mangold and Streeck 1993). Dimers of the S protein are formed

early in the ER, then sorted to a post-ER, pre-Golgi compartment where they are slowly

converted into disulphide-linked oligomers (Huovila et al., 1992). The secretion-deficient

variants that have the capacity for oligomerisation are most likely trapped in this intermediate
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compartment and fail to extrude from the membrane (Prange et al., 1995). In our dual tag

constructs, although the essential cysteines are not mutated, they still might form aberrant

oligomeric structures due to shuffling of disulphide bonds which results from the misfolding

or major displacement produced after dual tag insertion. Thus, aggregation and retention by

the ER may then occur (Doms et al., 1993, Mangold et al., 1995).

All M-CMV/P-CMV dual constructs (except T2, which had a borderline positive signal)

led to negative IMx HBsAg signals and showed minimal immunofluorescence in comparison

to the standard sequence (Table 3.20). Consequently, celllysates of all dual tag constructs in

addition to the appropriate controls were tested for HBsAg reactivity using IMX HBsAg (V2)

assay. Only T2 showed a significant signal, but repeat experiments were not consistent and

the fluorescing cells looked abnormal where the low expressed tagged proteins stacked to the

cell membrane rather than being located within the cytoplasm proper (Figure 3.9).

3.5.2c Flu HA tag system

To overcome these problems, another single tag system was developed. The HA tag (9 aa-

epitope) was inserted at the 5' end of HBsAg (Figure 3.7; HA), although the M-CMV work

indicated it could have been inserted at either terminus. The same MAb against the inserted

tag was used for both capture and detection (but in different forms, biotin- and peroxidase-

labelled: Figure 3.8). This modification unfortunately can not be applied to the first M-CMV

tag system, as generating biotinylated or peroxidase-labelled anti-M-CMV was prohibitively

expensive due to the price of anti-CMV antibody; IOmglml was required (100 vials: £110/

vial containing 100ug). However, the experience gained from this system allowed progress

with the HA-tag system, as described below. An ELISA that recognises HA tag was then

employed to standardise the amount of HBsAg particles after their expression. The sensitivity

of this tag ELISA was confirmed by using decreasing concentrations of the positive control (a

kind gift from Dr Ralph Gehrke). The lowest limit of detection was 50pglml (Figure 3.l0).

After standardisation (see Section 2.2.3), three commercial assays, IMX HBsAg (V2), Murex

HBsAg GE14 and bioELISA HBsAg colour, were used to measure the HBsAg antigenicity.

147



~ I + ::t: t:' ~ ~ ~..... < -e :> = I
_.

~

(1) o I

~(1) 1:1) nn I

~n r+ -0 0 ~ - ~
...

::s g ~ -< tD
til g (M

~ ~ ,.....
~

.
a :-:- :-:-

_.
~ .... g. ~

n til
I til .... ......

(1) n {;i. o .... til a- - (1)

~

til ....
~ - - -. .... til

=
til - ::stil ::s ....s
~

::t n n s- ~ - 1:1
~ = = -er c, I p.. = e

-e til (1) () p.. 2'~ til (1)

Z ~ p.. a:: p.. (1) en p...... r+ n ::t: < .... ...g (1) ...... ::s
_ .

tDe, (1) :> ._ ~ ::s (IJp.. I >< n
~ -- g. - tDa ~ 1:1) . 1:1.... (JQ 1"+-- .... (1) ~ ~ n-. ::r g. (JQ

~ til ,.N tD
't:J 8- (1)

§ "C.g - "0
~

~~ - n
_.

~ w p.. n::r 0 s-s. a a ::s ....
~ ><6; til ::s ...I

_.
a- n p.. 0\ tDCZl p.. - -..,J (IJ:> 0 n = ~ ,.

::s 0 n p.. ~ na - :-+ (1) 0 e
~ ::s p.. ::s ---. ...... tiln e? _ .

a- n.... ::s0 ::s e
til

.... ....., 0 fIJ
0 ::s 1"+ ~(JQ - ~.g . n

CZl ....., tD
(1) ...... -~ ,.N -,..... (IJ
;.< ....j ~~ p..
0 a w II
0

~ 1:1a < (IJ.... p.. ~c§ 2 ....., n
~ ~ ;-.... Q.::tln ~a ........... =r'0::s Q.

1
....
iI...

(1) tD
~ 1:1..

i
ne
1:1
(IJ

~.:
F

.....

.j:>.
00



-.l>-
ee



A405nm
<:) <:) <:) <:) .... .... .... ....

<:)
<:) N :.:.. 0, Co .... N :.:.. 0, Co N

(:)....

11(Q'
e

0 Cil
o :..

W
0 •~:s Qo
CD (I)
::l CD...... ::3AI (I)..._.

j -.0 ct
::l S.0

~....
:I: 0l> ..._... .... sAI
CO CD
CO

~
CD
Co
:I: •
CD lit
(I)

~l>
CO CD- Q.
::l

~
CO-3 (ii-- .... :b0



Chapter 3 Results

Here, the subtype was taken into consideration (Norder et aI., 1992a and 1993), as the

backbone, either subtype d or y of the tested variant, has a role in HBsAg detection efficacy

(Wallace et aI., 1994, Cannan et aI., 1997b). Moreover, the HBsAg subtype can be affected by

changes within the MHR (Ashton-Rickardt and Murray 1989). Therefore, the HA-Tag epitope

was inserted into HBV DNA S gene of four standard sequences, one of each classical subtype,

as well as 12 diagnostically important variants of different backbone subtypes (one aywJ

(genotype A), four ayw2, two ayw3 (genotype D), and five adw2 (genotype A). The subtype

of the backbone was as defmed by Norder et al. (1993). Then, all the variants were compared

to the standard sequence of that subtype.

aywl backbone variants

Subtype ayw3 differs at least at two positions within the MHR from ayw2, yet both

subtypes fall within genotype D (Norder et aI., 1993). VI and V8 have an ayw3 backbone.

After standardisation, VI had 32%, 58% and 65% reactivity on IMX, Murex and bioElisa

respectively. P120S and S143L, the variants found in VI, reduced the binding of monoclonal

antibodies to the MHR (Wallace et aI., 1994) and P120E escaped detection by two assays in

another study (Coleman et aI., 1999). Secretion efficiency was similar to the standard

sequence, as the lysatel supernatant (LIS) ratios for variant to standard sequence was 1.4/ 1.3

(Table 3.21; Figure 3.11). Clearly, the main explanation for poor detection of this variant is an

antigenic effect.

On the other hand, V8, which has T127A and S143L, had similar reactivity to standard

sequence after standardisation and there was no impact on secretion efficiency (ratios 1.251

1.3: Table 3.21). This is in agreement with other studies that showed both the site and nature

of amino acid substitutions are critical to antigenicity (Chiou et al., 1997; Cooreman et aI.,

1999; Chapter 3.4) and that combined mutations may have an unpredictable impact on

altering HBsAg conformational structure. Thus, P 120S, solely or discontinuously with S143L,

contributes the deleterious effect on HBsAg reactivity in this subtype backbone.
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qyw2 backbone variants

V3, V5, V6 and VII are included in this group. V5 (YlOOC and P120T) reacted well after

standardisation in the three assays (70%, 95% and 90%) (Table 3.22). The LIS ratios were

1.6/1.2 (Table 3.21; Figure 3.11), indicating a significant effect on secretion. This can be

further supported from the results showed in chapter 3.4, whereas this variant (V5; BA2.4)

revealed a lower reactivity in IMX HBsAg and Murex assays (see Table 3.17), 15.9% and

75.4 instead of 70% and 95% respectively, before being standardised. But, VI (P120S and

S143L) like V5, which contains a variant at aa 120, was not detected as well as VS, perhaps

due to the different backbone or the different site and nature of the additional substitutions

(Mangold et al., 1995; Chiou et al., 1997).

V3, which had 12 aa changes, had a dual effect. The LIS ratios were 2.06/ 1.20 (variant!

standard sequence) indicating a secretion defect. After standardisation, the variant was only

detected at 50-55% compared to standard sequence or even escaped detection. Consistent with

this view, IMX HBsAg and bioElsia assays in chapter 3.4 showed low reactivity signals for

this variant (M5), 20% and 44.9% respectively (see Table 3.17). After the standardisation the

variant was still detected at low levels, 50 and 55% respectively, or even escaped detection

(Table 3.22).

V6 and VII have T123N, but V6 has C124R in addition. Both variants showed negative

or borderline positive reactivity in IMX HBsAg assay, even after standardisation. VII could

be detected with Murex and bioElisa at 45% and 71% respectively, but V6 always escaped

detection (Tables 3.22). This poor reactivity can be partially attributed to reduced secretion, as

LIS ratios were 2.85 and 2.45 respectively versus 1.20 for the standard sequence. In contrast, a

double non-natural mutant, C1211124A, has previously shown secretion with wild-type

efficiency (Mangold and Streeck 1993), perhaps due to the different substitution (Mangold et

al., 1995; Chiou et al., 1997).

None of the HBsAg assays detected V6 after standardisation (Table 3.22) despite it giving

a reasonable signal in the tag ELISA (more than five fold of the cut-off value), indicating

significantly reduced antigenicity. Loss of cysteine at aa 124 has been previously shown to

strongly reduce or even abrogate the reactivity ofHBsAg (Mangold et al., 1995; Chapter 3.4).
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Table 3.21: HA tag-based ELISA: results ofHA-tagged HBsAg variants

Variant Supernatant" Lysate] LIS ratio P valuej Immunofluores.

Vyw3(ayw3) 1.297 1.690 1.303 +++++

VI (1056SP) 1.225 1.715 1.40 0.584 +++

V8 (2030) 1.345 1.683 1.251 0.7 +++

Vyw2(ayw2) 1.321 1.590 1.203 +++++

V3 (MS) 0.648 1.341 2.069 0.006 +++

V5(BA2.4) 0.936 1.567 1.674 0.044 +++

V6(BA3.2) 0.452 1.289 2.851 0.000 ++

VII (BA3.4) 0.589 1.445 2.453 0.002 ++

Vywl (aywl) 1.351 1.709 1.264 +++++

VI3 (SA7) 1.419 1.765 1.243 0.904 +++++

Vdwl(adwl) 1.387 1.670 1.204 +++++

V2 (145R) 1.485 1.695 1.141 0.675 +++++

V4(SA6) 0.692 1.293 1.868 0.015 +++

V9 (91-4696) 1.637 1.848 1.128 0.620 +++++

VIO (AP3.1) 1.249 1.569 1.256 0.759 +++

V12 (SA4) 0.858 1.452 1.692 0.039 +++

-vel o.ois 0.035

-ve2 0.021 0.039

-ve3 0.024 0.042

Cut-off 0.071 0.089

*: The supernatant of tagged variants was used neat.

t: The cell lysate was collected in 300u1 per plate (6Omm plates).

t: P value of the difference in LIS ratios between tagged variants and their cognate standard

were calculated; values less than 0.05 are considered statistically significant.

-ve 1: no capture Ab; -ve 2: no or different tagged construct; -ve 3: no detection Ab.
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Table 3.22: ELISA results of three commercial as ay after th randardl arion

equenee Vol/Cone* IMX HBsAg

vyw3 30ul/Ncat 78.90 100% 2.900 100·Yu 2.100 100%

VI 30ulINcat 25.30 32% 1.690 SW:;'. 1.700 6 ";')

V 28ul/Ncat 57.94 73% 2.58 8 % 2. 20 tlc %)

vyw2 30ul/Ncat 80.75 100% 2.950 100·Yo 2.650 100%

V3 50uIlZ.SX 40.60 SO% 0.116 NA 1.470 5 '%

V5 SOul/Neat 56.70 70·% 2.795 95% 2. 9 10'%

V6 SOul/Z.8X 1.73 NA 0.070 NA 0.1 2

VII SOul/2.8X 2.56 3% 1.340 45'10 1.890 71':;'.

vywl 28ul/Neat 82.95 100% 2.941 100% 2.747 100%

VI3 28ul/Neat 80.82 97% 2.985 101'Vo 2.290 ~3%

vdw2 28ullNeat 83.65 100% 2.992 100% 2.7 6 100'1.,

V2 21ulINeat 45.75 SS% 0.09 N 1.85 66'Yo

V4 SOul/Z.ZX 83.50 100% 2.980 100% 2.74 9H'%

V9 14uI/Neat 65.55 78% 2.989 100% 2. 28 4%

VIO 28ulINeat 56.20 67% 1.85 2% 2.05 7%

VI2 50ul/Z.3X 65.96 79% 2.398 80% 1.870 67%

Neg SOuI/Neat <2.00 0.072 0.105

WS SOul/Neat 8.20 0.420 O. 20

Cut-off 2.00 0.122 0.145

,. : Volumes and Concentrations that are used after standardi ati n. All v IlIm'S m ide ul t

phosphate buffered saline (PBS).

PORt: percentage of reactivity; rounded to remove the de imal fi tur ·S.

NA: not applicable; Neg: negative control.

ul \ ith

WS: a working serum standard ofO.S IU/ml con cntrati n NIB ha be n us 'cl in nll ussnys,

I 4
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ayw/ backbone variant

Vl3 (MI33T) was the only variant studied in this group. Reactivities were similar to those

of the standard control: 97%, 10I% and 83%. The LIS ratios were also similar, (1.241 1.26)

(Table 3.21). This is in agreement with a recent study, where only one out of28 MAb showed

reduced reactivity with this variant (Cooreman et al., 1999). Moreover, MI33L was detected

with equivalent signals to the standard antigen in nine commercial assays (Coleman et al.,

1999). Thus, MI33T change in this subtype backbone has little, or no, effect on HBsAg

secretion or reactivity.

adw2 backbone variants

The five variants that had this backbone can be divided into two subgroups according to the

site ofaa changes: the first comprises V4 and V12; the second V2, V9 and VIO.

V4 (QI29R, Gl30N and AI66V), was the best example of reduced HBsAg reactivity

being solely due to poor secretion as the US ratio was significantly higher in comparison to

that of the standard, 1.86/ 1.20, (Table 3.21). After standardisation, HBsAg reactivity was

100% of the standard (Table 3.22). Results from this variant (SA6) in chapter 3.4 (see Table

3.17), are consistent with this view. This combination of aa changes was therefore tolerable in

terms of the antigenic structure.

VI2 (M133T and YI6IF), although nearly affecting the same region ofHBsAg as the V4,

had a potential effect on antigenicity. The variant LIS ratio was also significantly higher than

the standard LIS ratio: 1.69 compared to 1.20 (Table 3.21). After standardisation, none of the

assays detected Vl2 with a similar sensitivity to that of standard HBsAg, indicating this low

reactivity cannot be explained only by poor secretion. Considering that Vl3, although it has a

different backbone, also had Ml33T, the potential effect on HBsAg antigenicity is likely to be

due to the variant at 161, either solely or discontinuously with Ml33T.

Reactivity for two variants, V2 (GI45R) and V9 (SIl3TI T143S) was significantly higher

in the tag ELISA than those for the standard; hence, they had to be tested at lower

concentrations (75% and 50% respectively) in the standardisation assay. Initial results in

chapter 3.4, showed that V9; 91-4696 variant was well recognised in most of the assays (see
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Table 3.17), however, V2; Arg145, due to its major effect on the "a" determinant, revealed

low reactivity in most of the assays or even escaped detection as in Murex assay. Their LIS

ratios were not significantly different from the standard, 1.14 and 1.12 versus 1.20.

V9, with S1l3T and T143S, had a reactivity similar to the standard HBsAg after

standardisation (Table 3.22). T143S has been observed previously in two adw2 isolates from

France. Two additional adw isolates, one from Japan and the other from Indonesia, had S113T

(Norder et al., 1993). It appears that S113T and T143S can be tolerated by that subtype and

consequently, have no significant effect on HBsAg antigenicity or secretion. Although VI and

VS also have a variant at aa 143, the backbone is different (ayw3), and there were additional

associated mutations at aa 120 and 127 respectively. On the other hand, both V2 and VIO

were shown to have a major impact on HBsAg antigenicity, but normal secretion (LIS ratios,

1.14 and 1.25 versus 1.2 respectively) (Table 3.21). After standardisation, they showed low

reactivity that did not exceed 66% and 73% of the standard.

Does this simply indicate that V2 and V9 variants were overproduced in the transient

expression system used here, or might it be that there is additional selection? If the latter, the

implication is serious (see Chapter 4), especially for V2 containing G 14SR, which escapes

detection and can be selected from a previous variant in vaccinees (Carman et al., 1990). If

these mutations become fixed, they may become further propagated (Blum, 1993).

In summary, single tag epitopes of up to 15 aa can be inserted at either end of HBsAg

protein without affecting HBsAg reactivity. However, insertion at both ends led to a major

impact on HBsAg conformation and hence its antigenicity. Furthermore, variants used in this

study were found to have different strategies in affecting HBsAg reactivity. VI, V2 and VIO

were the only class that showed a pure effect on altering HBsAg structure and hence its

antigenicity, while a combined effect due to inefficient secretion and altering HBsAg structure

was found to be responsible in other group containing V3, V6, VII and V12. The effect on

antigenicity was dominant in V3 and V6. On the other hand, the reduced reactivity of V4 and

VS was mainly due to poor secretion.
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3.6 Reappearance of bepatitis B surface antigen: reinfection or reactivation?

3.6.1 Introduction

HBsAg is frequently used as the primary marker of current hepatitis B virus infection, and

thus infectivity. However, there are reports of serologically negative patients, both with and

without disease, who have HBV DNA in serum, liver and/or mononuclear cells (Brecher et

al., 1985; Preisler-Adams et al., 1993; Cabrerizo et al., 2000). It is also well known that

people who are positive for anti-HBc alone can be infectious (Larsen et al., 1990; Luo et al.,

1991;Grob et al., 2000). Some of these people were described to be infected with variants of

HBsAg that are not detectable in conventional assays (Carman et al., 1997b; Grethe et al.,

1998).As both variants and standard viruses can be detected using nucleic acid amplification

methods such as PCR, HBsAg can no longer be considered to be the "gold standard" marker

of current infection (van Deursen et al., 1998).

Second episodes of hepatitis B, defined by the reappearance of HBsAg or HBV DNA in

serum, are well described (Maeland et al., 1989; Gilson et al., 1989; Martin et al., 1995). A

history of clinical recovery from acute hepatitis B followed by HBsAg loss may not always

help in classifying a second episode of hepatitis B as reinfection, because persistent HBV

infections occur in the absence of serological markers of active infection (Michalak et al.,

1994;yotsuyanagi et al., 1998).On the other hand, detection of low HBV DNA levels in such

individuals may function as an immune trigger to stimulate long-lasting CTL responses

(Rehermann et al., 1996; Penna et al., 1996). In addition, selected HBsAg variants can persist

in the presence of anti-HBs (Asahina et al., 1996a; Kohno et al., 1996). Therefore, several

tests may be required to differentiate between reinfection and reactivation as the cause for

reappearance ofHBsAg. Obviously, such differentiation would be beneficial to understand the

pathogenesis during recurrence.

Although not as greatly informative as cloning for determining sequence changes, direct

sequencing using PCR is reliable for monitoring HBV infection and assessing responses to

antiviral therapies (Alexopoulou et al., 1997; Pawlotsky et al., 2000). Direct sequencing using

PCR has been carried out successfully in several studies (for longitudinal and sequential

analysis or tracing the route of infection); the HBV genome is mostly stable unless exposed to
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host immune pressure (Zuckerman et al., 1995; Ashina et al., 1996a; Hannoun et al., 2000).

For example, 4 point changes at the most were detected between samples taken over 5 years

(Alexopoulou et al., 1997). Sequential analysis of HBV genomes before and after acute

exacerbations associated with appearance of anti-HBe and anti-HBs showed that mutations

were mainly located in the surface and pre-corel core genes; at most, 15 nucleotide changes

were detected across the entire genome (Ashina et al., 1996a). Similarly, about 20 mutations

over a 20-35 year period were found across the whole genome on sequencing in an

intrafamilial comparison study in HBeAg negative carriers (Hannoun et al., 2000).

Here, we describe five cases of second episodes of HBV activity that may have been

reinfection or reactivation. The potential existence of HBsAg variants was also considered.

Two continuously HBsAg-positive patients with fluctuations in their HBeAg status were used

as a control group for serial sequence variation. We suggest molecular criteria to distinguish

between these two possibilities. The criteria were: number of nucleotide substitutions; number

of amino acid (aa) substitutions; situation of aa changes; phylogenetic relatedness, co-

incidence of mutation with immune or antiviral therapy; and genotype/ subtype shifts. Using

these criteria will not only reflect how far is the divergence between the sequential isolates

from each patient but also will show if they were exposed to any immune pressure. For

example, high proportion of non-silent changes, selection of important target eitopes as the

site of aa change and usage of immune or antiviral therapy are more consistent with

reactivation (Lok et al., 1991;Kato et al., 1996).

3.6.2 Results

3.6.28 peR and sequencing results

Patient 1: HBV DNA was detected by PCR in samples 1991, 1996-a and 1996-b, but not

in samples 1994-a and I994-b (Table 3.23). The nucleotide and amino acid substitutions of

PCR positive samples are shown in Table 3.28. There were 14 nucleotides changes between

sequences 1991 and I996-b, resulting in seven amino acid substitutions: F8Y, TI13S, SI43T,

DI44A, A194V, S207N and V209L. The percent similarity was 97.3% between amino acid

sequences and both were genotype A. Nucleotide sequences remained the same throughout

1996 despite discrepant serology. There were two amino acid substitutions within the MHR in
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sample 1991 as compared with the prototype sequence of the same subtype, SI13T and TI43S

(adw) (Ono et al., 1983). Both have been reported in other adw sequences (Norder et al.,

1993). There were also five amino acid substitutions in sample 1996-b as compared with the

adwprototype: F8Y, DI44A, A194V, S207N, and V209L.

Patient 2: Samples in 1987 and 1992 were both PCR positive (Table 3.24). The nucleotide

and amino acid sequences revealed 3 nucleotide differences between sequences (Table 3.28),

resulting in three amino acid substitutions: V96G, MI03I, and K122R. The percent similarity

was 99.1% between sequences. K122R is significant, being a subtype-specific change. The

sequence in 1987 showed only one amino acid substitution (F219S) as compared with the adw

prototype sequence, while the sequence in 1992 had 4 substitutions (V96G, MI03I, K122R

and F219S) in comparison with adw.

Patient 3: For the serological picture of 1987 and 1995 patient samples see Table 3.25.

The nucleotide and amino acid sequences of the these two samples revealed 3 nucleotide

differences resulting in three amino acid substitutions, Y161F, L193S and S210R (Table

3.28). The percent similarity was 99.1%, both sequences being genotype A. The sequence in

1987 showed 2 amino acid substitutions as compared with the adw prototype sequence (G44E

and S193L) while the sequence in 1995 had 3 substitutions (G44E, Y161F and S21OR) in

comparison with adw.

Patient 4: Samples from 1989 and 1990 were PCR negative for both core and S genes,

despite the patient being anti-HBc positive (Table 3.26). The S sequence of all positive PCR

samples from 1991 and 1992 showed two amino acid substitutions, QI0IH, D144E, as

compared with the ayw2 (genotype D) prototype sequence with the 1992 serum also having

the additional change of S143L (Table 3.28). It should be noted that aa 143and 144 are both

within the immunodominant epitope of the HBsAg.

Patient 5: All samples were PCR negative for S gene except for the one from August 1997

(Table 3.27). The S sequence of this sample showed only one amino acid substitution as

compared with the adw prototype sequence (EI64V).
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Table 3.23: HBV serology and PCR results for patient 1.

Date Sample No HBsAg anti-HBs anti-HBc HBeAg HBVDNA PCR·

1990 + + NO NA

1991 + (41.2) + NO +

1993 + (27.7) + ND NA

1994 I994-a + (40.8) + NO ND

1994 1994-b + (59.7) + ND

1995 + (68.S) + NO ND NA

1996 1996-a + (43.4) + ND +

1996 1996-b + + + +

1996 + + ND ND NA

Table 3.24: HBV serology and PCR results for patient 2.

Date HBsAg anti-HBs anti-HBc HBeAg anti-HBe PCR·

1985 NO NO NA

1986 + NO + NA

1987 + NO +

1988 + NO NO NA

1992 + NO + +

1994 + + + ND NA

Patient 1 has no vaccination history.
HBsAg, anti-HDs, anti-HBc, anti-HBe and HBeAg were tested by Abbott IMX.
HBV DNA was tested by the Digene HBV (Murex, Dartford, UK) assay.
Figures in brackets are inmIU/rnl
NA, serum depleted; NO, not done
-: negative; +: positive
.: surface gene
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Table 3.25: HBV serology and peR results for patient 3.

Date IlBaA& IIDti-HB~ HBeAg anti-HBe peR·
RIA eIE IgG IgM

1984 + + + NA
1987 + NO NO NO + +
1995 + NO + + ND +

Table 3.26: HBV serology and peR results for patient 4.

Date HBsAg anti-HB~ HBeAg anti-HBs peR·
IgG IgM

10/1989 + NO NO (49) - t
04/1990 + NO NO (9) - t
04/1991 + NO ND (2) +
10/1991 + + + (1) +
0411992 NO NO ± + ND +
12/1992 NO NO + ND +

Table 3.27: HBV serology and peR results for patient 5.

Date HBsAg anti-HBc anti-HBs peR·

+ NO

+ ND

+ (8)

+ (11)

+ (11)

+ ND +
+ ND

04/1995

04/1995

08/1996

12/1996

0111997

08/1997l +
06/1998

HBsAg, anti-HBs, anti-HBc, anti-HBe and HBeAg were assayed by Abbott IMX.
RIA: radioimmunoassay; elE: counterimmune electrophoresis
*: surface gene; t: core gene
l: August 1997 sample was HBeAg and anti-HBcIgM positive
Figures in brackets are in mIU/ml
NA: serum depleted; ND: not done.
-: negative; +: positive; ±: borderline.
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Table 3.28: Nucleotide and amino acid mutations following second episode of hepatitis B

Patient Nucleotide/ / amino acid substitutions

Patient I (adwl A)*

Nil aa change

(from 1991 to 1996)

T23A11 F8Y, Al3ICII S, G282A11 S, A337TII TlI3S, C339A11 S,

T3S1C11 S, A36OC/1 S, T427CII SI43T, A431A11 DI44A, G462A11 S,

CS81TII AI94V, G620AlI S207N, G62STII V209L, C666TII S.

Patient 2 (adwl A)

N II aa change

(from 1987 to 1992)

T287GII V96G, G309A11 MI03I, A36SGII K122R.

Patient 3 (adwl A)

N 1/ aa change

(from 1987 to 1995)

A482TIIYI61F, TS78CIILI93S, T63OGIIS210R

Patient 4 (ayw2/ D)

N II aa change

(from standard seq.)

A303C11 QIOIH, C428TII S143Lt, C432A11 DI44E.

Patient 5 (adwl A)

N II aa change

(from standard seq.)

A491TII EI64V.

*: subtype and genotype.

NIl aa change: the convention chosen to describe the mutation is the same as in table (3.IS)

t: only in sample of 1992

liS: silent

Control ~oup (two patients): Both isolates had subtype ayw2 (genotype D) and showed

nearly identical S gene sequence from all available samples for each patient (over 3 and 5

years respectively). Compared to the prototype ayw2 sequence, patient 6 was identical, while

patient 7 had two silent mutations at nucleotides 465 (Crr) and 660 (TIC).
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3.6.2b Phylogenetic Analyses

The phylogenetic analysis was performed on a 477-bp fragment of the S gene bracketing

nucleotides 82-558 using sequences obtained from Genbank and sequences from within the

UK. As only the sequence for the second episode is available for patient 4 and 5, they are not

included (Figure 3.12). Isolated samples from patient 1 were greatly different, while those

from patients 2 and 3 were highly related.

3.6.3 Discussion

HBsAg may reappear after becoming undetectable. Such a progression of events was

found in patients I, 2, 4 and 5. There are three possible explanations for this: maintenance of

low level virus replication or "latency" of the virus followed by reactivation, emergence of an

HBsAg antigenic variant, or reinfection. That these patients can be positive for HBV DNA by

PCR concurrent with being negative for serum HBsAg demonstrates the value of PCR as a

confirmatory test for current infection (van Deursen et al., 1998). Low levels of replication

and significant variability due to selection of minor populations of the existing strains in

subsequent sera were usually seen in anti-HBe positive subjects (Wright & Lau 1993;

Alexopoulou et al., 1997). As all patients in this study were HBeAg positive, except patient 3

who was anti-HBe positive in 1987, the probability that their sera may contain heterogenous

HBV populations is low. If these patients even had such assumed minor HBV strains, clinical

history showed that none of them have been exposed to induced immune pressure.

Patient I may have selected an escape mutant, because there were two amino acid

substitutions, SI13T and T143S, within the MHR in the 1991 sample. Infection by an escape

mutant would be compatible with the reappearance ofHBsAg following a period of anti-HBs

positivity. However, this variant (91-4696) surprisingly displayed similar reactivity to the

positive control samples on antigenic analysis (see Chapter 3.4). The reason that this patient

tested negative for HBsAg in 1991 may have been that the level of variant HBsAg present in

the serum was below that detectable by the kit. There was also a discrepancy in HBV serology

between the two 1996 samples in spite of their identical esquences.
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Figure 3.12: N-J Phylogenetic tree of patients 1, 2, 3.
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This is best explained by observations that the reactivity of variant HBsAg is determined

not only by absolute (i.e. plus/minus) binding between anti-Hlss in the kit and HBsAg, but

also by the ability of the kit to detect low levels of variant antigen (van Deursen et al., 1998).

This interpretation is supported by 1996-b sample being positive for HBeAg as well as

HBsAg. Furthermore, there is long-standing evidence that previous infection with HBV and

subsequent development of anti-HBs does not completely protect against later infection by a

virus ofa different HBsAg subtype (Koziol et al., 1976; Foutch et al., 1983).

Thus, the reappearance of HBsAg in 1996 is more likely to be due to reinfection than

reactivation (Table 3.29). First, this patient received hemodialysis and was at risk of

reinfection from other hemodialysis patients. Second, HBV DNA was not detected by PCR

between 1991 and 1996. Third, 50% of the 14 nucleotide changes were silent, a high

percentage that is unlikely to be due to escape from immune pressure. Fourth, amino acid

subsitutions seen in 1996 were scattered throughout the S sequence, not concentrated within

the MHR. Fifth, the phylogenetic distance between the two sequences isolated in 1991 and

1996 support reinfection rather than reactivation.

The K 122R change seen in the second hepatitis episode in patient 2 appears to be more

compatible with reactivation rather than reinfection although similar cases associated with

HIV infection have been reported where reinfection with a different subtype presumably

occurred (Maeland et al., 1989). This is because firstly, we have to differentiate between a

different subtype and just a change at one of the subtype-identifying positions, which is the

situation here. Secondly, the co-infection by different subtypic clones generated by point

mutations, or dual infection of viruses with different subtypes, was also demonstrated

(Yamanaka et al., 1990). Those observations implied that HBsAg with a different subtype-

specific change might be detected in a second episode of hepatitis B as a result of reactivation.

Moreover, only three nucleotide changes occurred in the whole S gene, all of which resulted

in amino acid substitutions; which are more consistent with reactivation rather than

reinfection (Table 3.29). Finally, the HBV sequence in 1992 was related to the sequence in

1987 by phylogenetic analysis. Therefore, we believe this second episode is most likely to be

due to reactivation.

Anti-HBc IgM is well known to become detectable not only in acute hepatitis but also in

persistent HBV infection in response to reactivation or exacerbation. In patient 3, sequences in
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1987 and 1995 had a very close phylogenetic distance and all nucleotide changes in 1995,

only three, resulted in amino acid substitutions. From these results, the second episode in

patient 3 is likely to be due to reactivation.

Patient 4 and 5 represents a different situation from the other three cases because of the

lack of early sequence; consequently, we were not able to classify them as reinfection or

reactivation according to our proposed criteria. Nevertheless, the abnormal serology was

accompanied in both patients, as well as the first three patients, by detection of variant

sequences which shows the importance of variants in this situation (see Section 4.7). Thus, of

the three analysable cases described here, we believe that the second episodes of hepatitis B

were due to reinfection in one and reactivation in two and we suggest that our proposed

criteria should be taken into consideration for the molecular differentiation between

reinfection and reactivation.

Although chapter 3.6 was the earliest piece of work in this thesis, attempts to get sufficient

samples that have the same criteria (reappearance of HBsAg) were not successful. Therefore,

faithful differentiation between both re-infection and reactivation, although potentially

achievable, was quite difficult. Larger number of patients would be helpful to tightening up

these criteria and increasing the confidence in the interpretations.

Table 3.29: Proposed criteria for differentiation of second episodes of hepatitis B.

Criteria Patient 1 Patient 2 Patient 3

Sub~geno~change +

Phylogenetic analysis Different related Closely related

Number of nucleotide changes 14 3 3

Number of amino acid changes 7 3 3

Site of amino acid substitutions in S gene Scattered MHR* Scattered

Therapy (immune or antiviral) None given None given None given

Patients 4 and 5 are not included because of the unavailability of earlier sequences

MHR*: major hydrophilic region; -: negative; +: positive.

166



CHAPTER 4 DISCUSSION

4.1 Low and different seroconverslon rates among the Pacific Islands on vaccination

Using the same vaccine in Indonesia, a 68- 77% seroconversion rate was achieved by Ruff

et al., (1995). Seroconversion rates in Fiji and Vanuatu were similar to that detected in

Indonesia while those in Tonga and Kiribati were 20 to 30% less. On the other hand, higher

seroconversion rates were seen in the Gambia, Alaska and Taiwan (Whittle et al., 1991; Tsen

et al., 1991; Fortuin et al., 1993; Wainwright et al., 1997). This discrepancy could be due to

the following possibilities: incompatibility of the vaccine strain with the circulating strains in

the Pacific region; poor quality of provided health services such as vaccine storage, handling

and administration; or geographical and genetic background differences. (Ruff et al., 1995;

Streftland et al., 1999;Karthigesu et al., 1999;McDermott et al., 1999).

It appears important that the vaccine strain (s) should be of similar antigenicity to the

prevalent strains in the target populations. There is long-standing evidence that previous

infection with HBV and subsequent development of anti-HBs does not completely protect

against later infection by a virus of a different HBsAg subtype (Koziol et al., 1976; Foutch et

al., 1983). Kohno et al. (1996) showed that adw-specific antibodies and HBsAg of adr

subtype, which do not have any mutations that affect MHR or HBsAg antigenicity, co-existed

in the serum of one patient. Further analysis revealed that these adw-specific antibodies were

not able to agglutinate cells coated with HBsAg of adr subtype. Also, there have been similar

concerns raised in some Pacific countries regarding the immunogenicity of HBV vaccine

(Milne et al., 1995). The same issue has been raised in the Gambia, where a major difference

in antigenicity was found between the prevalent subtype, ayw4, and the plasma-derived

HBsAg subtype, being adw (Karthigesu et al., 1999). Furthermore, 5 out 12 MAbs raised

against natural HBsAglayw2 were predominantly subtype specific and did not react with

adw2 subtype (Sobotta et al., 2000).

As regards the quality of health services, significant differences in seroconversion rates

were observed among children served by different health centers in different villages and

districts as has been reported in the Gambia and Venezuela (Hadler et al., 1989; Fortuin et al.,

1993). Similar results were observed in our study between the Pacific islands. An example that

may reflect the importance of the role of the health services is the discrepancy between two

child! mother pairs from different cities in Vanuatu (C641M74 from Vila central and C371M75
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from Mele-Maat). Of these two pairs, both mothers were HBeAg positive and had similar

HBsAg sequences, however, the first child (C64) seems protected (anti-HBs >100 mIU/ml)

while the other had no detectable anti-HBs and became infected (see Tables 3.4 and 3.8).

Although this is the simplest explanation for this striking difference, it also seems the most

likely if we assume that other variable parameters are absent as they are from the same island

which has very little immigration. Ruff et al. (1995) showed that protection was better if the

first vaccine dose was given within the first week after birth than later (the seroconversion rate

was 77% versus 68% and HBsAg prevalence was 1.4% versus 3.0%). Additionally, the

importance of general preventive non-immunogenic measures cannot be ignored.

Genetic modulation of immune responses to vaccination also has a potentially major role.

The inflammatory process that results from intra-muscular injection of vaccine will result in

high levels of local IL-l and IL-12 production by macrophages. These mediators have the

potential to recruit more inflammatory cells and to activate those cells to express effector

functions. The antigen would then be presented to an MHC class II molecule of an antigen

presenting cell (APC) (Steinman, 1991). The HLA class II antigen presenting cells will

interact with, and activate, specific T-cells in specialised regions of the lymph node which

then migrate to the B-cell follicles to provide help via cytokines for the production of anti-

HBs antibody (Goodnow, 1997). According to this model, low doses of vaccine may be

inadequate to induce the inflammatory response, due to personal or racial variation resulting

from different HLA haplotypes; larger amounts of the antigen may be required to start this

stimulatory cascade process (McDermott et al., 1999).

Furthermore, several studies showed that the count of T helper cells, T4rr8 ratio and

percentage of T8 cells in peripheral blood have a role in immune response to vaccination or

revaccination (Lee & Tong 1985; Nowicki et al., 1985; Keet et al., 1992; Rey et al., 2000).

Hypo-responders have been associated with a high frequency ofHLA DR7 and DR3 alleles in

the Caucasian population; on the other hand, those from China were found to have HLA-

DR14 and DR52. In the UK, such low response was correlated with the presence of

homozygous HLA-DRB1*0701 and DQBl*0202 alleles (Craven et al., 1986; Hsu et al.,

1993; McDennott et al., 1997, 1999). Several possibilities have been suggested to explain this

relationship between HLA haplotype and anti-HBs response: different efficiencies in

presenting antigenic fragments derived from the vaccine; linkage to deletion of vital T-cell
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clones; and induction of periheral tolerance or ''molecular mimicry" to a self antigen (Rocha

& Von Boehmer 1991; Janeway, 1992; Kyburz et al., 1993; Schwartz, 1996).

Finally, we believe that this poor response in Pacific populations is to be further studied

and evaluation of HBV vaccine in use is essential particularly in hyperendemic areas.

Vaccines containing more than one genotype may be a more useful approach; it is noteworthy

that the first escape mutant had a genotype D while the applied vaccine contained a genotype

A (Cannan et al., 1990). Weak or non-responses in healthy individuals are not well

understood and a high percentage of apparent non-responders will respond to additional

vaccination (Cheng et al., 1994; Belloni et al., 1998). Revaccination of these children who

failed to respond on primary vaccination in the Pacific is thus recommended.

4.2 HBV S gene "a" determinant variants in vaccinated Pacific children

Norder et al. (1992b), based on dendograms ·derived from S gene sequences of 32 HBV

genome, devised a scheme that showed a substantial correlation between antigenic subtypes

and genotypes except for the heterogeneity of both aywJ and adw2 subtypes. However, as

more sequence data accumulate from different geographical regions, it is expected that more

precise strain sequences reflecting their origin should be available and genotyping schemes

will thus undergo refmement. Extended studies in wider geographical contexts are thus likely

to contribute to the fmer mapping of both the circulating regional strains and the relationship

between genotypes and antigenic subtypes.

HBV vaccination programmes have significantly reduced both new HBV infections and

the carrier rates in various endemic regions of the world. However, viruses with mutations in

the "a" determinant of HBsAg have been found in several populations (Carman et al., 1990;

Oon et al., 1995; Hsu et al., 1999). These mutants are described as vaccine-escape mutants

that probably have altered expression of HBsAg "a" determinant epitopes which allows both

infection in previously vaccinated individuals as well as lack of detection by the conventional

immuno-based assays for HBV (Carman et al., 1990; Karthigesu et al., 1994; Carman et al.,

1997b; Zuckerman & Zuckerman 1999).

Some vaccine escape viruses have mutations in other parts of HBsAg (outside "a"

determinant) as has been shown in Japan (Miyake et al., 1996) and Singapore (Oon et al.,

1999). These HBsAg mutants also showed an altered binding affinity to neutralizing

antibodies (Carman et al., 1997b; Oon et al., 1999). Intriguingly, mutations in the "a"
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determinant have been observed after using a PreS2-containing vaccine (Surya et aI., 1996).

In contrast, vaccination of chronic HBV carriers using a PreS2/S-containing vaccine did not

reveal either "a" determinant mutants or any common hot spot mutations by comparison of

the full envelope protein sequence before and six months after vaccination (Soussan et aI.,

2001). Perhaps this was due to the short period elapsed after vaccination (6 months) or the

limited number of patients studied. This wide-variety of mutations, that could display several

advantages to the virus, is clearly supporting the complexity of HBsAg structure.

No "a" determinant variants were discovered in the Pacific vaccinated children (Chapter

3.2). Further, they were less prevalent than these variants within HLA class I-restricted CTL

epitopes in non-immunised individuals. There could be a number of explanations: different

geographically defined basal prevalence of variants; duration of exposure to immune pressure;

HBV endemicity level; and strength of the immune pressure.

Firstly, geography must be taken into consideration in interpretation of differences in the

prevalence of HBsAg "a" determinant variants eg., Singapore, 39%, and Taiwan, 22%; see

Table 3.9 (Don et al., 1995; Lee et al., 1997a). The time interval that has elapsed since

launching the immunisation program could be another factor, as has been shown recently by

Hsu et al. (1999). The prevalence of "a" determinant variants jumped from 7.8% in 1984 (just

before vaccination) to 19.6% in 1989 (5 years after applying vaccination) and then to 28.1%

in 1994 (10 years after introduction of universal vaccination).

It is noteworthy that the basal prevalence of these variants was 7.8% at 1984, which reflect

the presence of these mutants at a non-negligible percentage before the introduction of

vaccination program. Consistent with this view, HBsAg "a" determinant-variants have been

detected in Singapore in the random population (Oon et al., 1996). In Japan, variants of "a"

determinant were also observed in 10 out of 42 patients (24%) with chronic hepatitis.

However, the frequency of mutations at the hot spot codons 40 and 47 that coincide with HLA

class I-restricted CTL epitopes were very low compared to those seen in Taiwan and

Singapore (Tai et al., 1997; Ogura et al., 1999; Chen & Oon 1999).

A low prevalence of HBV mutants may reflect a weaker immune pressure on the virus, as

possibly shown in England and Wales (Ngui et aI., 1997). In this study, low immune pressure

resulting from a selective vaccination strategy and low endemicity infection led to a 12%

prevalence of "a" determinant variants. Consistent with this is the emergence of such variants

in several patients who had received human monoclonal anti-HBs antibody or HBIG after

170



Chapter 4 Discussion

liver transplantation, and also in chronically HBY infected individuals (Moriyama et al., 1991;

McMahon et al., 1992; Hawkins et al., 1994; Kidd-Ljunggren et al., 1995; Protzer-Knolle et

al., 1998; see Section 1.5.1). However, an immunological selection process is not always

required as naturally occurring HBY mutants may be already circulating as is the case in the

Far East (Yamamoto et al., 1994;Hsu et al., 1995).

Thus, firstly, it seems that "a" determinant variants did not contribute to the cases of

breakthrough infections in the Pacific children. Alternatively, in addition to vaccine non-

responsiveness, other factors such as intrauterine infection and high maternal viral DNA load

(see chapter 3.2) may be responsible for such infections. Other exposures such as ear piercing,

tattooing and exposed ulcers may also have a role. Special attention should be therefore given

to 'improve the preventive and educational measures especially in defined risk groups. These

preventive non-immunologic measures, in combination with immunisation, proved very

successful in Italy (Stroffolini et al., 2000).

Secondly, different HBY strains may be associated with specific nucleotide or amino acid

changes in different geographical regions. These changes may result in greater viral fitness

which is suitable for the challenge with HBIG therapy and anti-HBs antibodies elicited by

vaccination. Monitoring of the circulating HBY strains in immunised populations from

different ethnic backgrounds for a long time is thus essential as it will determine if the

prevalent strains do have unique mutations. More epidemiological studies would be therefore

of major importance for the control and eradication of HBY infection. Finally, though

vaccination did not prevent all infections, it remains the most cost-effective mean to decrease

HBY infection especially in endemic countries, at least by delaying the age of infection; this

delay will greatly reduce the proportion of infections that become chronic. Therefore, further

reductions of the cost of HBY vaccine are extremely important to help the people from

hyperendemic regions with poor economies to control HBY infection.

4.3 HBV S gene variants within CTL epitopes

Over the last decade, S gene escape mutants, mainly within the MHR, have received a lot

of interest (McMahon et al., 1992; Oon et al., 1995; Ghany et al., 1998). Regions of S gene

outside this large domain have been little investigated so far (Oon et al., 1999).

In the present work (Chapter 3.3; Table 3.14), mutated residues were mainly located

within regions coinciding with class I HLA-A2-restricted CTL epitopes: residues 38- 47, 172-
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180 and 17S- 184 (Nayersina et al., 1993). Interestingly, Paulij et al. (1999) showed that

residues 178-186 of S gene constituted an important HBsAg epitope for human MAb 4-7B,

and suggested the exposure of this region on the particle surface, in contrast to the classical

model where this epitope is located within the lipid membrane (Stirk et al., 1992). Consistent

with this recent view, Chen et al. (1996b) showed that HBsAg displays clusters of antigenic

epitopes some of which are located in the region spanning aa 160- 207.

Variants within these CTL epitopes-containing regions have been recently described in

several reports. In one study, 83% of patients (10/12) had mutations between S gene residues

40-47 while the mutations within the main B cell domain, 124-148, was found in 58% (7/12)

of chronic carriers (Tai et al., 1997). The HBsAg region encompassing residues 29-S3 was

also shown to be frequently mutated in chronic hepatitis and hepatocellular carcinoma patients

in comparison to the immunogenic "a" determinant (83% versus 25%), suggesting a potential

role of CTL escape and thus HBV persistence (Chen & Oon 1999), In immunised

Singaporean infants, S gene variants with aa substitutions outside the "a" determinant were

also detected. Positions 183 and 184 were among these changes; in particular, Fl83C variant

was associated with reduced binding to a MAb directed against the "a" determinant (Oon et

al., 1999).

Residues 175-198 of HBsAg overlaps domain C of Pol gene, which is functionally

important and notorious for the emergence of antiviral-induced resistant variants (S: aa 175-

198/ P: aa S32-SSS) (Poch et al., 1989; Ling et al., 1996). Interestingly, none of the S gene

changes in our Pacific-detected variants resulted in aa changes in the overlapping P gene,

except for those at S aa 198 which led to V55SUS in the P gene, which is already known as a

variable site (Poch et al., 1989). Thus, the S gene changes within this region are likely

replication tolerable and may even enhance the replication efficiency of the virus.

It has been shown previously that viral mutations in the core 18-27 region inhibit CTL

recognition and amino acid substitutions at positions 21, 22, 23 or 24 (major contact sites)

reduce specific CTL activation (Bertoletti et al., 1997). Residues involved in HLA binding

can also indirectly affect T cell receptor (TCR) recognition (Chen et al., 1993b). Consistent

with this view, substitutions at HLA anchor residues (L19M substitution in core 18-27

epitope) showed an inhibitory effect on CTL specific proliferation (Bertoletti et al., 1997).

Therefore, to have and maintain efficient CTL responses, the infected individual has to

mountain a CTL response capable of recognizing the mutated epitope (Haanen et al., 1999).
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In passing, an applied example for how serious the situation is in such cases can be

inferred from similar observations in the core protein within one of the important Th epitopes,

aa 50- 69 (Ferrari et al., 1991). Helper T cell epitopes are important for optimal CTL

responses. For example, carriers of heterogeneous HBY populations are predisposed to

transmit the non-dominant strains in perinatal and nosocomial transmitted infections (Von

weizacker et al., 1995; Ngui et al., 2000). The basis for this selective transmission is still not

clear. However, possession of "genetic determinants" which may give these minority strains

priority to enter the new host and replicate easily have been suggested (Ngui et al., 2000). In

this report, the authors showed that a variant which constitutes only 7% of HBY population in

a surgeon, and has mutated residues at aa 57, 58 and 64 in the core gene, was transmitted to 3

patients. However, they did not highlight the immunological importance of the changes found

in this strain. Interestingly, the mutated residues are located within the important Th epitope

(50- 69 aa) which might explain virus non-recognition by new host immune surveillance and

thus superiority in transmission and infection (Ferrari et al., 1991";Diepolder et al., 1996).

Indeed, Th epitope aa 50-69 is one of the epitopes that have been described to elicit a strong

immune response in patients with acute resolving hepatitis B (Ferrari et al., 1991). Although

its relevance to IFN-a response is much debated, aa variation in this Th epitope (aa 50- 69) is

thought to impair cellular clearance (Fattovich et al., 1995; Alexopoulou et al., 1998).

Unlike immune escape from the humoral immune response by variant virus, it is unclear if

single aa substitutions in T cell epitopes can allow similar escape (Carman et al., 1990;

Cariani et al., 1995; Protzer-Knolle et al., 1998). Ishikawa et al. (1998) believe that single aa

changes in HBsAg CTL epitopes cannot abolish CTL recognition. Also, as the vigorous

cellular immune response, the basis for clearance of HBV, is against multiple epitopes, a

cellular escape in a similar manner to the immune escape from humoral immune responses

was considered unlikely (Rehermann et al., 1995). However, a substitution of residues in

dominant epitopes that affect its anchoring to HLA binding motif should prevent or at least

weaken CTL recognition (Rosenberg, 1999). Likewise, peptides presented by HLA-B*4402

and HLA-B*4403 subtypes, which had a single aa difference (residue 146; Asp in B*4402

and Leu in B*4403) were recognised differently by CTL (Herman et al., 1999). It has been

also demonstrated that once a CTL response against an epitope has been formed, the immune

system may be resistant, or at least take a longer time, to develop a CTL response against the

mutated epitope (Klenerman et al., 1998). Moreover, the accumulated data would appear to
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support a relationship between mutations within CrL epitopes and weak CrL responses,

whether as a cause or a result (Bertoletti et al., 1994; Tai et al., 1997; Chen & Don 1999;

Khakoo et al., 2000).

Several conditions have been similarly characterised where CD8+ T cell responses

decrease or disappear. First, CTL-escape virus variants in vivo have been demonstrated not

only for HBV, but also for HIV, HCV and LCMV viral infections (Pircher et al., 1990;

McMichael & Phillips 1997). Second, unresponsiveness or exhaustion of CrL response may

occur (Moskophidis et al., 1993; Zajac et al., 1998). Third, C'l'L responses may be initially

low (Moskophidis et al., 1995), and consequently facilitating virus escape from neutralising

Ab responses. Indeed, in mice, although neutralising antibodies efficiently controlled LCMV

in the absence of CD8+ T cells, neutralization-resistant viral mutants emerged and escaped the

established polyclonal Ab response during prolonged CTL absence (Ciurea et al., 2000) ..

Taken together, a virus with mutations within residues 175-198 of S gene would get

several benefits; escaping humoral and cellular immune responses, and also being highly

replicative, may be reflected in an unfavourable outcome of HBV infection and resistance to

antiviral therapy. Therefore, our strategies toward S gene variants should not be restricted to

those variants within the MHR as others may be equally or even more important.

Furthermore, optimal activation of both cellular and humoral immune responses is thus

required not only for immune activation capable of mediating protection, but also to clear any

settled infections and prevent emergence of viral escape variants.

4.4 How reliable is phylogenetic network analysis of S gene variability?

In recent years, powerful computerised tools for phylogenetic analysis of nucleotide and

amino acid sequences have been produced, where the relationship between members of a

given data set or evolutionary history of organisms and genes generated from sequence

alignments can be presented in the form of "trees" or "networks".

In a tree, each terminal node (branch end) represents a single sequence from the

alignment, while internal nodes (where branches meet) represent hypothetical ancestral

sequences. Based on a range of philosophical and mathematical approaches, a wide variety of

tree-building techniques have been developed. Phylogenetic techniques either examine a

sample of all possible tree topologies looking for the best possible tree as defined by chosen

criteria (searching methods; e.g., Maximum Parsimony (MP}), or they use an algorithm to
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generate a tree starting with a few members of the data set and adding the rest one at a time

(clustering methods; e.g., Neighbour Joining (NJ) (page & Holmes 1998). However, these

techniques cannot take a count of recombination within the data set and were also unable to

model the mutation process in the presence of an intrinsically variable rate of mutation

(Bollyky et al., 1996; Bollyky & Holmes 1999); in such cases, a network may be more

appropriate.

Networks have proved to be an effective way to represent ambiguity and try to explicitly

place mutations on the branches of a tree. A network contains one or more cycles (a group of

nodes where it is possible to trace a path that starts and ends at the same node without visiting

any other node more than once), whereas trees do not. To date, two network models have been

developed, reduced median (RM) and median joining (MJ). RM networks, briefly, display the

principal character relationships present in the data and resolve likely parallel events while

retaining character conflicts in the form of reticulations when ambiguity remains (Bandelt et

al., 1995). In MJ networks, additionally, larger sets of data can be analysed and a faster speed

can be achieved, however, MJ should be applied to a recombination-free data (Bandelt et al.,

1999). A network approach is particularly useful in studying intra-specific data due to small

phylogenetic distances (such as variation within human mitochondrial DNA (mtDNA) and

virus genotypes as in our Pacific study; see chapter 3.3), where alternative potential

evolutionary paths in the form of cycles can be displayed (page & Holmes 1998).

HBV genotyping has been performed by two molecular techniques; direct sequencing of

full-genome or restriction fragment length polymorphism (RFLP) analysis (Okamoto et al.,

1988; Norder et al., 1994; Mizokami et al., 1999). Unlike PCR, RFLP is simple, less

expensive and can detect variation across large genomic regions. RFLP was used earlier to

relate HBV serotypes to certain restriction patterns (Shih et al., 1991), and recently for HBV

genotyping based on the analysis ofS gene region (Lindh et al., 1997; Mizokami et al., 1999).

However, RFLP analysis detects only a small proportion of the total genetic variation; which

probably limits its use in studying within-genotype variation or investigating and identifying

transmission routes (Nei, 1987; Sugauchi et al., 2000). In contrast, direct sequencing yields

more complete information about variation at the sequenced site, however, its greater expense

and technical requirements limit its application to small genomic regions (s 1000 bases)

(Arens, 1999).
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The molecular basis for the serological heterogeneity of HBsAg, which is encoded by the

small S gene, bas been defined (Norder et al., 1992a). HBV genotyping based on limited

sequencing within S gene is also consistent with those based on sequencing of the full HBV

genome (Norder et al., 1994). The validity of S gene sequencing-analysis for HBV genotyping

bas been further confirmed in several studies (Arauz-Ruiz et al., 1997; Mizokami et al., 1999).

Taken together, the approach of phylogenetic network analysis for studying the S gene

variability, based on direct sequencing, in Pacific islands to investigate the relation of such

variability to the different Pacific islands and to trace the history of people movements in this

part of the world is reliable.

4.5 OBsAg as a marker for tracing the migration pattern of Pacific people

Human genetic evidence, in addition to linguistic and archeological evidence, has been

gathered in attempts to resolve the origin of Pacific people; however, a clear conclusion has

not yet emerged. One hypothesis suggest that the whole cultural and genetic background of

Polynesia came from South East Asia, and migrant populations passed through Melanesia

without mixing appreciably with aboriginal populations, this is termed the "Express Train"

(Diamond 1988). An opposing view holds that there was indeed a general push eastwards,

originating in South East Asia, but that the degree of mixing between migrant and aboriginal

populations was much greater, the "Tangled Bank" (Terrell 1988). Recently, using analysis of

Y chromosomes, Kayser et al. (2000) suggested more complex migratory patterns for the

origin of these people, the "Slow Boat".

Genetic information from persistent viruses has long been recognised as a potential source

of independent evidence concerning population history (Gessain et al., 1992; Ho et al., 1993).

Variability of viral sequences has one major advantage over human genomic or mtDNA

sequences that relates to their high mutation rates which allow variations to be determined

progressively. Timing of historical events can also be calculated; as long as the virus mutation

rate is known. For example, different genotypes of a virus may differ by several hundred

nucleotides and their co-existence in a geographical region probably reflect different origins

rather than recent viral evolution.

The ideal virus to trace the human-population movements would be transmitted perinatally

so it acts as an inherited marker, would not be subjected to immune pressure till transmitted to

the next generation and likely not lead to death before subsequent transmission so the carrier
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will be treated as any community member. Finally, it should be a common virus so that "non

carriers" would have antibodies and probably life long immunity, so they would rarely acquire

the virus from other peoples. HBV in Asia and Pacific islands satisfies all these requirements.

Usage ofHBV viral sequence variability has not been employed before to chart population

movements, although it has long been known that viral serotypes and genotypes have a

characteristic world geographic distribution (Courouce-Pauty et aI., 1981; Norder et aI.,

1993). It has been hypothesised that the origins of the genotypes are related to events in the

formation of human populations; however, few data are available about patterns of within-

genotype variation which might hold information about more recent virus and host population

history. Therefore, we collected data on the variability of HBV in the Pacific in the

expectation that it might contain information about the origins of the human populations in the

region.

The dominant HBV genotype in Kiribati was D, while genotype C predominated in the

other three island locations. Isolates that are exceptions to this general trend can be interpreted

as the result of limited transfer of viruses between locations within the Pacific and, in the case

of Fijian D isolates, acquisition of new strains by migration. This pattern, and the distribution

of finer scale variation within genotypes across islands, is consistent with a single ancient

HBV colonization event in the western Pacific, leading to the predominance of a single C

lineage in Vanuatu, Fiji and Tonga, and a separate, more recent event colonizing Kiribati.

Thus, we believe that each population wave carried with it a specific subtype of HBV and

that, within each subtype, only selected viral strains were carried on to the next island that

then evolved independently. However, no strong evidence was found for Indian admixture in

Fijian D genotype sequences, in spite of the >40% Indian origin of the Fijian population (est,

1999). This could be explained either by selective sampling (as only Melanesian Fijians and

not Indo-Fijians were included), with a lack of transfer of HBV types between the two sub-

populations, or by differences in the incidence of HBV in the two source- populations as the

latter have much lower HBV infection rate. Moreover, although it is described that B

genotype makes up a significant proportion of Asian HBV, this is not substantiated in our

Pacific study. Therefore, further investigation of population samples from extra Pacific

populations should help to clarify both the role and origin of B isolates in this region, and also

the degree to which different source populations contributed to the settlement of various

Pacific locations.
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A question of current importance is whether it will be possible to use HBV data to help to

distinguish between hypotheses concerning the origins of Pacific populations. Although

uncertainties in virus data due to the inherently greater effects of genetic drift and the

possibility that HBV may not have affected all the ancient populations similarly cannot be

completely excluded, we think the data presented in Chapter 3.3 on HBV sequence variability

have yielded useful information about the history of human populations in the Pacific region.

Obviously, a cultural expansion with its origins in South East Asia was an important

determining factor in the initial colonization of the Pacific islands. It is also reasonably clear

from the data and interpretation (see Chapter 3.3) that HBsAg population variability contains

patterns that are at least consistent with aspects of the known history of host populations.

Furthermore, virus analysis has some interesting aspects that human genome analysis does

not. Clearly, it provides much greater range of diversity and creates greater power in the

conclusions one draws as an independent source of evidence. Finally, we believe that HBV is

a good candidate that can be employed as a pseudo-genetic marker, at least in Asia and Pacific

islands, in tracing human population history.

4.6 Tag system for evaluation of HBsAg variants: are they truly escape mutants? Do

some variants have enhanced replication efficiency?

Failure to detect variant HBsAg could be due to the presence of aa substitutions that

markedly change the conformation dependent antigenic structure of HBsAg or low serum

levels of the variants that are below the detection limit of the employed diagnostic kits. Thus,

it is essential to establish that failure of HBsAg variant detection is due to the antigenic

changes and not due to variant low production. Therefore, we have developed an antibody

capture system, using a non-HBV epitope, to standardise the amount of in-vitro expressed

HBsAg protein. The amount of in-vitro expressed HBsAg was then equalised in ELISA that
'----- ...

recognises the tag.
The advantage of this approach is that sufficient amounts of RBsAg can be generated and

quantified to comparable and known concentrations. These antigens can then be evaluated in

several HBsAg assays to determine their ability of detection of such antigens. The outcome of

such testing would therefore reveal the mutations affecting diagnostically important epitopes

for detection of HBsAg. According to the results presented in chapter 3.4 and 3.5, it appears

that some variants can be detected by using the right combination of antibodies while others
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still escape detection. Therefore, further improvements in our HBsAg assays design are still

required to detect these HBsAg variants such as using different panel of antibodies developed

to other epitopes outside MHR that are not influenced by the conformational change of

HBsAg or by the introduction of nucleic DNA chip technology.

Recently, Karthigesu et al. (1999) showed enhanced antibody binding with L141E HBsAg

variant to some monoclonal antibodies, which were raised against the standard antigen. These

reactivity differences have been interpreted on the basis of antigenic differences between both

strains. Additionally, or alternatively, this could be attributed to variant overproduction, as the

expressed particles were not standardised. Quantification of serum HBV DNA in children

infected with S gene variants, one of them G145R, revealed a relatively high concentration

giving further support to our observations (Hsu et al., 1999). G145R and DI44A, which are

the main aa changes within V2 and VI0 constructs respectively (see Chapter 3.5), have been

associated with a worse clinical outcome and longer persistence despite the termination of

HBIG treatment of infection of second and even third liver grafts (Protzer-Knolle et al., 1998).

It thus appears that these variants could become the predominant strain.

Similar observations of enhanced replication have been reported with HBV core promoter

deletion variants, although the deletions remove part of the core promoter that enhances the

synthesis of the pregenomic RNA. Variants that have core promoter deletions can have

slightly enhanced replication in cell culture. Consistent with these findings, high viremia has

been detected in three patients infected by HBV with similar deletions in the core promoter

region (Gunther et al., 1996; Moriyama et al., 1997; Chen & Oon 2000).

Even though results of in vitro data cannot be fully applied to the in vivo situation, due to

the complexity of reactions, the observations in Chapter 3.5 provide a clue that enhanced

replication of some variants in vitro may lead to high viremia in vivo. However, the relevance

of this observation to the outcome of infection warrants further investigations.

4.7 Abnormal or discrepant serology: does it mean presence of HBsAg variants?
HBsAg negativity usually reflects clinical situations such as the late phases of chronic and

acute infection where suppression of HBV replication is known to occur and consequently

disappearance ofHBsAg (Fong et al., 1993; Michalak et al., 1994; Loriot et al., 1997). HeV

or HOV co-infection can suppress HBV replication and also lead to HBsAg negativity (Fong

et al., 1991; Sheen et al., 1992; Francisci et al., 1995; Jilg et al., 1995).
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Mutations or deletions elsewhere in the genome, which theoretically down-regulate HBV

replication, have also been reported to result in HBsAg negativity. These have been seen in

the core promoter/ X- gene (deletion of8 nucleotides), the S promoter region (selective down-

regulation); and in the polymerase gene (showed to terminate HBV replication in vitro) (Blum

et al., 1991a; Uchida et al., 1994; Fukuda et al., 1996; Melegari et al., 1997; Bock et al.,

1997).

The presence of "a" determinant variants, in addition to low levels of HBsAg which are

below the detection limits of the used assays, could however lead to a false negative HBsAg

test (Jongerius et al., 1998; Grethe et al., 1998; chapter 3.4). Consistent with this view a very

important finding of the work inChapter 3.6 was the association between abnormal serology

and S gene variant sequences in all patients. In patient 4, the S gene sequences of the later

samples (1991 and 1992) were identical to each other and were different from the standard

ayw2 sequence at two positions (Q101H and DI44E). These substitutions, particularly the

latter one, have previously been shown to be antigenically important, as has the additional

mutation S143L, seen in both samples from 1992 (Wallace et al., 1994). In patient 5, there

was only one substitution (EI64V), as compared to the standard sequence, which has not been

described before. Thus, the association of abnormal serology by variant sequences in both

patients shows the importance of variants in this situation. This conclusion is strongly

supported by patients 6 and 7 (control group), where the sequential samples were not only

identical but also did not contain any variant away from the prototype.

On the other hand, sensitivity of HBsAg assays could also has a crucial role and be

responsible for this discrepancy as has been observed in patient 3 in this work, chapter 3.4 or

previous reports (Carman et al., 1995a, 1997b;Grethe et al., 1998). For example, a polyclonal

antibody-based radioimmunoassay was successful in detecting HBsAg variant from an

Indonesian patient that escaped the detection by monoclonal antibody-based ELISA (Carman

et al., 1995a). Furthermore, similar concern has been raised recently about the sensitivity of

HBsAg assays and the resultant discordant serology of tested samples (Carman et al., I997b).

Therefore, a diagnostic screening protocol of testing for both HBsAg and anti-HBc should

at least be performed for each suspected infected individual. It is also most important that

results of serological assays are carefully assessed. Additionally, test reagents have to be

validated for use according to the epidemiological finding in a region, as there are significant

antigenic differences between the circulating subtype strains in different parts of the world
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(Karthigesu et al., 1999; Sobotta et al., 2000). Finally, as there are several reports of HBV

DNA positive individuals with undetectable HBsAg, the possibility of new uncharacterised S

gene mutants with little known about their replication competency, in addition to low-titer

standard virus, supports the argument for PCR testing (van Deursen et al., 1998; Zuckerman

& Zuckerman 1999). PCR testing will not only allow us to determine HBV DNA in HBsAg

negative individuals but to detect any sequence variation under host selection and also might

give an explanation for the variable outcome of HBV infection.

4.8 Conclusions
The data presented in this thesis focused on several important issues. First, efficient viral

and human DNA extraction from blood clots. This enables good use of a material that is often

thrown away. Second, the prevalence of "a" determinant variants in HBV endemic regions

(pacific islands) after applying universal vaccination. Emergence of vaccine escape variants in

these populations was relatively insignificant. Consequently, failure of vaccination is not

always due to emergence of HBsAg variants and other preventive public health measures are

important, particularly in developing countries.

Third, it is useful to employ S gene variability to trace human population history in Asia

and the Pacific islands. Indeed, looking at virus heterogenity of native populations gives a

glimpse into ancient times and provides a good insight into how people have moved across the

globe. Fourth, HBsAg variants react differently in various commercial assays. This has

important implications for diagnosis and blood donor screening. Fifth, standardisation of

HBsAg particle quantity is important. Insertion of an influenza tag into the end of HBsAg

allows the antigenicity rather than expression efficiency of mutant HBsAg to be assessed.

Sixth, abnormal or discrepant serological findings in HBV infected individuals may be an

indicative marker for the presence of HBsAg variants.
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Reactivity of 13 In Vitro Expressed Hepatitis B Surface Antigen
Variants in 7 Commercial Diagnostic Assays

JACQUELINEH. IRELAND,IBARBARAO'DONNELL,IASHRAFA. BASUNI,!JOYD. KEAN,!LESLEYA. WALLACE,!
GEORGEK. K. LAU,2ANDWILLIAME CARMANI

The primary marker of current hepatitis B infection is the
surface antigen (HBsAg), however HBsAg negativity does
not exclude hepatitis B viremia. HBsAg yarlants can be
responsible for such diagnostic failures. Here 13 different
HBsAg variants were cloned, variant protein produced in a
mammalian expression system, and tested using 7 commer-
cial HBsAg diagnostic assays. Of 12 variants analyzed. 6
samples displayed similar reactivity to the positive control
(containing standard HBsAg sequence) In most of the
assays. but 6 samples. containing various mutations through-
out the entire major hydrophilic region (MHR), showed
reduced reactivity. It was found that the loss of cysteine at
amino acid (aa) 124 in 1 sample affected the secretion as
well as the reactivity of HBsAg in the expression system.
Thus, not all assays are equally able to detect HBsAg
variants, implying that. to attain an acceptable level of
sensitivity. the antibody repertoire of the current assays
should be extended. (HEPATOLOGY2000;31:1176-1182.)

Antigenic variation of hepatitis B surface antigen (HBsAg)
is clinically significant and has been discussed in several
reviews.P HBsAg variants (hepatitis B viruses containing
mutations in the surface gene) can be considered as 2
etiological classes. The first class occurs naturally and in-
cludes subtype variation and amino acid (aa) changes that
may be poorly detected in diagnostic assays.3.S Class 2
variants are selected by medically induced immune pressure,
for example after vaccination and treatment with hepatitis B
immunoglobulin or monoclonal antibody.6-12 One external
domain of HBsAg, referred to as the major hydrophilic region
(MHR), contains clusters of interleaved epitopes within
which are the proposed neutralizing epttopes.' Although

Abbreviations: HBsAg. hepatitis B surface antigen; aa. amino acid; MHR. major
hydrophilic region; S gene. surface gene; HBY, hepatitis B virus; PCR. polymerase chain
reaction: PBS. phosphate-buffered saline; mAb. monoclonal antibody; pAb. polyclonal
antibody.
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class 2 antigenic variation tends to occur within these
neutralizing epitopes, both classes show variation extensively
within the MHR.

The clinical and epidemiological significance of HBsAg
variants cannot be fully characterized until their true preva-
lence is known. Despite more than 50 reports (1992-1999) on
the occurrence of surface (S) gene variants. very few large
sero-epidemiological studies have been reported as yet. One
such studyl3 reported 63 variants out of 2,305 (3%) vacci-
nated children. Several other studies report the incidence of S
gene mutations after immune prophylaxis in their study
cohorts ranging from 5% to 22%.1.14-16This level suggests a
risk of the spread of hepatitis B virus (HBy) variants due to
immune pressure selecting against vaccine susceptible wild
type HBy'17Large prevalence studies are currently under way
around the world, which will hopefully answer this impor-
tant question. However, because there are clear clinical
consequences of diagnostic failure, It Is important to the
further development of commercial HBsAg assays. There have
been at least 12 reports (1992-1999) of naturally occurring S
gene variants leading to nondetection of blood and organ
donors.18,19 Further, It Is possible that gene variation can
affect the disease process. A study of 120 Asian Indians with
chronic HBV reported S gene variants In 10.8% of patients.
These showed an unfavorable course compared with the
standard strain.20 The increased frequency of association of
variant compared with standard sequences In some cases of
hepatocellular cancer-! is also of clinical concern. Although a
range of commercial assays for HBsAg are widely available,
not all are equally sensitive, and it Is thus Imperative that the
antibodies used for antigen capture In diagnostic assays are
tested against a wide variety of variants to maximize their
sensitivity and specificity.

Sera containing HBsAg variants are rarely available in
volumes sufficient for testing against a multitude of capture
antibodies, therefore we cloned variant HBsAg from 13
diagnostically relevant cases and tested cell culture superna-
tants in 7 commercial diagnostic assays. The observed substan-
tial discrepancies in assay reactivity have serious implications
for the design of commercial assays.

MATERIALS AND METHODS

Derivation of Variant Sequences

Surface gene sequences from 13 patients in different clinical and
geographical settings were used in this study as detailed in Table I.
These particular examples were chosen from our bank of variants
collected because of clinical relevance. In some cases they have been
described In a number of reports: others were hlghiy divergent and
therefore of particular Interest. HBV DNA was extracted from 50 pl,
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TABLE1. Expressed Hepatitis BSurface Antigen Variants
HBsRegion

ofMHRWhere
Mutations

Sample Subtype MutationsWithintheMHR' AreLocatedI Origin ClinicalBackground

GlyY ayw Standard sequence Spain Positive control
GlyD adw Standard sequence Spain Positive control
Argl45 adw GI45R 4 italY; Vaccinee
1056Sp. ayw PI20SlS143L 2.4 Spaln34 Subtype study. rvDU
M5 ayw YlooSffl18VIR122K1MI33I1YI34NIP142S1S143UGI45K 1-4 Saudi Arabia Discrepant serology.renal transplant patient
T5N ayw D99NI122NTI23/G145R 1.2.4 Indonesia! Discrepant serology.vaccinee
91-4696 adw S113Tff143S 1.4 South Africa Diagnostic failure
HKI88 adr L98V/QIOIR I Hong Kong Diagnostic failure. bone marrow donor
BA3.2 ayw T123N/C124R 2 PaklstanlO Liver transplant-HBIG treated
BA2,4 ayw YlOOCIP120T 1.2 Paktstanl'' Liver transplant-HBIG treated
BA3,4 ayw TI23N 2 PaklstanlO Liver transplant-HBIG treated
AP3.1 adw DI44A 4 UKIO Liver transplant-HBIG treated
SM adw MI33TIY161F 3.5 South Africa Acute hepatitis B.diagnostic failure
SA6 adw Q129R1G130N/A166V 3. 5 South Africa Chronic liver disease. diagnostic failure
SA7 ayw MI33T 3 South Africa Chronic liver disease. diagnostic failure

Abbreviations:IVDU.Intravenous drug user; HBIG.hepatitis BImmunoglobulin.
''The conventionchosen to describe the mutation is the amino acid (aa) position (numberedfrom the start of the surfacegene) precededby the usual aa and

followedby the aa found In the variant sequence. .

of serum using the QIAamp Blood Kit (QIAGEN. Crawley. UK)
according to the manufacturer's Instructions. A hotstart, nested
polymerase chain reaction (PCR) was performed to amplify the S
gene. Five microliters of extracted DNA was amplified In a 50-ilL
solution containing 1 U Taq polymerase (Life Technologies. Paisley.
UK). 1.4 pmoVL TaqStart antibody (Clontech Laboratories Inc., Palo
Alto. CA), 0.25 mmoVL dNTPs (Pharmacta, St. Albans, UK), 2.5
mmoVL MgCl2, 5 pl, of 10 X PCR buffer, and 25 pmoVL of primers
SI (56F. 5'- CCTGCTGGTGGCTCCAGTTC-3') and S2Na (I003R.
5' -CCACAATTCKTTGACATACTTTCCA-3'. where K= Gar T). for
5 cycles of 95'C for 60 seconds, 55'C for 60 seconds, and 72'C for
90 seconds followed by 35 cycles with the denaturation temperature
reduced to 90·C. All primers are numbered according to the system
used by Okamoto et al. 22 One microliter of first round PCR product
was reampllfied as described above with the nested primers. S6C
(129F. 5'-GCACACGGAATTCCGAGGACTGGGGACCCTG-3') and
S7D (842R. 5' -GACACCAAGCTTGGTTAGGGTTTAAATGTATACC-
3') for 5 cycles of 95'C for 60 seconds, 55'C for 75 seconds, and
72'C for 90 seconds followed by 25 cycles, with the denaturation
temperature reduced to 90·C. DNA fragments of expected size, were
extracted from 1% agarose gel using Geneclean II kit (Blo 101, La
Jolla. CA).

ClonIng and Surface Gene Sequenclng
The S6C and S7D primers used in the nested PCR incorporate

restriction sites for EcoRI and HindIlI. respectively. The purified PCR
product was ligated into the mammalian expression vector pJI and
transformed into the Escherichia co11strain DH5a (Life Technolo-
gies). Plasmid DNA was purified using a Qlagen plasmid midi-kit
(QIAGEN) and fluorescence-based sequencing of the whole surface
gene was carried out using the ABI PRISM Ready Reaction dRhoda-
mine Terminator Cycle Sequencing Kit (Perkin Elmer. Cheshire.
UK) according to the manufacturer's Instructions. The primers used
for sequencing were S6C and S7D with the Internal primers S3
(690R. 5'-AATGGCACTAGTAAACTGAGCC-3'). S4 (459F. 5'-
GTATGTTGCCCGTTTGTCCTC-3') and S8 (434R. 5'-AGAAGAT-
GAGGCATAGCAGC-3'). Sequence analysis was performed with the
GCG program (Wisconsin sequence analysis package, version 9.1.
Genetics Computer Group. Madison. WI).

Expression of HBsAg
The plasmid. with Its entire HBV surface gene insert, was

transfected into subconfluent monolayers of COS7 cells on l6-mm

coversllps In 60-mm petri dishes using cationic IIposomes made
from dloleoyl t-o-phosphattdyl ethanolamine and dlmethyldlocta-
decyl ammonium bromide (Sigma-Aldrich, Dorset, UK).23.24Briefly.
2 Ilg plasmid was diluted In 200 ilL Optlmem 1 reduced serum
medium (LIfe Technologies) and, In a separate Vial, 24 pl, of
lIposomes was added to 200 pl, of Optlmem 1. The two solutions
were mixed and allowed to stand for 15 minutes at room tempera-
ture, then further diluted to 2 mL using Optimem I and added to
prewashed COS7 cells. The cells were Incubated with the transfec-
tlon mixture for 5 hours at 37"C In 5% CO2 and then 3 mL of COS7
medium was added (Dulbeccos modified Eagle's medium with 10%
foetal bovine serum, 100 IUlmL penicillin, 100 pg/ml, streptomycin.
and 2 mmoVL l-glutamine; Life Technologies). Cells were Incubated
for 16 hours at 37'C In 5% CO2 when the transfectlon mixture was
removed and 5 mL of fresh COS7 medium was added. Plasmid pJI
containing standard HBV DNA S gene sequence (both adwand ayw
subtypes) was used as a control for transfection and antigenic
analysis. After 3 days. the culture medium was harvested and
immunofluorescent staining was performed on the cell monolayered
coversllps.

PreparatIon of Cell Lysates
To check that HBsAg was being expressed In samples with

nonreactive supernatants. the cell lysates were also tested. Cells
from 60-mm petri dishes were removed using sterile cell scrapers
(Becton Dickinson, Paramus. NJ) In ImL phosphate-buffered saline
(PBS). The samples were centrifuged at 6,500 rpm for 10 seconds
and the supernatant was removed. The cell pellet was washed twice
with PBS, the supernatant was removed. and the cells were resus-
pended In 250 ul, PBS. The washed cells were frozen/thawed 3 times
and finally spun at 13,000 rpm for 2 minutes. The supernatant.
presumably containing HBsAg. was removed and tested using the
IMX HBsAg (V2) assay (Abbott Laboratories. North Chicago. IL).

AntIgenIc Analysls of Expressed HBsAg

DIagnostic Assay Reacllvlly. Aliquots of culture supernatant were
tested according to manufacturers' instructions in 7 commercial
diagnostic assays. which use various monoclonal (mAb) and/or
polyclonal (pAb) antibodies for either capture or detection (Table
2). The signal to cutoff ratio was obtained for each sample in each
assay and divided by that of a standard serum containing 0.5 nglmL
HBsAg (called the "working standard" 0.5 IUlmL. National Institute
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TABLE2. Reactivity of Expressed Hepatitis B Surface Antigen Variants as Determined by 1 Commercial Diagnostic Assays

2 3 4 5 6 7 Immunonuorescence
(pAb) % of Positive

bloELISA AUSRIA VIDAS Enzymun·Test IMXHBsAII HB.AII EnZYllnost HBsAlI Cells per Field
Sample HB.AII colour II -125 HBsAg HBsAIIES300 (V2) GEI4 Monoclonal II ot X 10 Magnlncatlon

GlyY· 3.59 21.94 12.89 9.02 4.78 8.83 4.73 30-40
1056Sp. 3.31 11.88 1.36 0.52 Negt 1.16 6.17 0.35lowf 40-50
BA2.4 3.24 7.07 0.69 low 0.37 Neg 0.76 low 6.66 0.33 low 40-50
BAH 2.20 4.08 0.029 Neg 5.67 0.27 Neg 2.20 2.47 40-50
SA7 2.79 5.20 9.59 4.27 7.59 8.04 5.59 40-50
M5 1.57 3.34 0.024 Neg 0.71 Neg 1.40 0.23 Neg 0.30 Neg 40-50
BA3.2 N/A§ N/A N/A N/A N/A N/A N/A 20-30
GlyD· 3.50 33.40 13.22 18.78 7.01 8.70 4.15 50-60
Argl45 3.40 15.60 0.40 low 8.42 4.83 0.27 low 0.38 low 50-60
91-4696 3.66 29.88 12.97 14.50 5.76 8.35 5.11 40-50
HKI88 3.64 22.40 12.94 32.97 11.52 8.51 5.01 40-50
AP3.1 3.31 17.10 11.60 15.46 5.18 6.93 6.71 40-50
SA4 1.89 2.91 '3".46 6.06 4.58 2.31 1.38 40-50
SA6 2.70 1.43 8.21 9.52 5.02 4.45 3.77 20-30
pJI (plasmtdl] 0.52 Neg 0.11 Neg 0.024 Neg 0.32 Neg 0.196 Neg 0.16 Neg 0.27 Neg Neg
COS7 cells] 0.39 Neg 0.16 Neg 0.063 Neg 0.46 Neg 0.20Neg 0.18 Neg 0.28 Neg Neg
WorkIng standard' 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Not tested
Monitor sample' 0.68 0.31 0.30 0.73 Neg 0.40 0.39 0.53 Not tested
Assay cutolT'"· 0.53 0.23 0.14 0.95 0.28 0.24 0.31

NOTE. Reactivity Is expressed as an Index = (OD) of sample/COD) of workIng standard.
·Gly Y.Gly D are standard sequences of HBVsubtype ay and ad. respectively.
tNeg = Negative. I.e.• reactivity below the kIt cutoff level.
flow = reactivity below that obtained for the working standard.
§N/A = results not applicable. BA3.2 expressed antigen was later found to be retained within the cells.
IINegatlvecontrols. I.e.. supernatants from COS7 cells alone and cells transfected wIth the plasmid pJI. which certains no Insert of hepatitis B surface gene.
Hhe working standard (0.5 IU/mL) and the monitor sample (0.125 IU/mL) are serum preparatlons from the National Instltute of Biological Standards

(London. UK) and distributed natlonally to diagnostic laboratories as external controls .
•• Assay cutoff = the value prescribed by the assay above which a serum sample would be deemed to be reactive.

for Biological Standards and Control. NIBSC UK). to give an Index of
reactivity (Table 2). The reactivities of the variants were also
expressed as a percentage of that found for the standard HBV
sequence. the activity of which was taken as 100% (Table 3). We
recorded the number of variants detected by each assay at a level of
~ 10% of the reactivity of the standard HBV sequence (Table 4). We
considered this more appropriate than simply relying on the kit
cutoff value. because In a diagnostic setting reactivities close to the
cutoff value are not generally considered to be true positives without
corroborative testing such as neutralization or detection of antlbod-
Ies to hepatitis B core antigen. The assays were repeated to assess
reproducibility of test results. To control for transfectlonlexpresslon
efficiency between experiments. supernatants from multiple transfec-
tions were tested using IMX HBsAg (V2) (Table 5). Also. we
repeated 6 of the 1 assays using a separate batch of supernatants.

The assays used In the study were (1) bloELISA HBsAg colour.
BIOKIT. Longfield. Kent. UK (standard procedure); (2) AUSRIA
II-125. Abbott Laboratories Ltd .• Maidenhead. UK (overnight room
temperature procedure); (3) VIDAS HBsAg. bloMerleux SA. Marcy-
l'Etotle, France (long protocol); (4) Enzymun-Test HBsAg ES300.
semi-automated system. Boehringer Mannheim GmbH. Mannhelm.
Germany; (5) IMX HBsAg (V2) semi-automated system. Abbott
Laboratories Ltd.; (6) Murex HBsAg GE14. Murex Biotechnology
Ltd .. Danford. UK (2-hour procedure): and (1) Enzygnost HBsAg
Monoclonal II. Behring Diagnostics GmbH. Marburg. Germany
(manual procedure).

Immunofluorescence. COS1 cells on glass coverslips were methanol
fixed. washed with PBS. and incubated with goat antl-HBsAg pAb
(Dako, High Wycombe. UK) for 45 minutes at room temperature.
After washing. the cells were Incubated with the secondary antibody.
anti-goat fluorescein Isothiocyanate-labeled Immunoglobulin. for
30 minutes at room temperature (Sigma-Aldrich Company). Cells

were examined for fluorescence under a Ntkon Mlcrophot-SA
microscope.

RESULTS

SequencIng

The mutations detected In each of the variant samples are
detailed In Table 1. Also listed Is the clinical background and
country of origin of the serum samples. As sample TSN gave
uninterpretable results. this is dealt with separately (see
below).

Immunofluorescence

Immunofluorescence was performed to measure transfec-
tion efficiency (Table 2). Most samples (10/12) showed 40%
to 50% of cells expressing HBsAg. BA3.2 and SA6 were lower
at 20% to 30% but still within the lower range of the standard
Gly Y and expected to produce detectable amounts of surface
antigen.

Diagnostic Assay Reactivity

The reactivity of each variant Is presented In two ways.
First. It was calculated as an Index (Table 2). i.e. reactivity of
the variant divided by that of the NIBSC standard (0.5 IUlmL)
for each assay. Secondly (Table 3). they are expressed as a
percentage of the reactivity of the standard HBV sequence of
the same subtype. ay or ad. These two analyses allow
comparison both to a known amount of natural HBsAg and to
an in vitro expressed standard sequence. Representing the
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TABLE3. Percentage Reactivity of HBsAg Variants In 7 Assays Compared With the Positive Control (100%)

1 2 3 4 5 6 1

bloELISA AUSRIA VIDAS Enzymun- Test IMX HBsAg HBsAg Enzygnost HBsAg
Sample HBsAgcolor II -125 HBsAg HBsAg ES300 (V2) GEI4 Monoclonal II

GlyY" 100 lOO 100 lOO 100 lOO 100
1056Sp. 92.2 54.2 10.6 5.8 24.3 69.9 7.4
BA2,4 90.3 32.2 5.35 4.1 15.9 75,4 6.98
BA3,4 61.3 18.6 0.2 62.9 5.7 24.9 52.2
BA3.2 N/At N/A N/A N/A N/A N/A N/A
SA7 77.7 23.7 74,4 47.3 158.8 91.0 118.2
MS 44.9 10.0 0.2 3.8 20.0 2.6 7.2
GlyD" 100 lOO lOO 100 lOO lOO 100
Argl45 97.1 46.7 3.0 44.8 68.9 3.2 9.2
91-4696 104.6 89.5 96.1 77.2 82.2 96.3 123.1
HKI88 104.0 67.1 97.9 175.6 164.3 97.8 120.7
AP3.1 94.6 51.2 87.7 82.3 73.9 79.7 161.7
SM 54.0 8.11 26.2 32.3 65.3 26.6 33.3
SA6 77.1 4.28 62.1 50.7 71.6 51.1 90.8
pJI (plasmid) t 14.5 0.51 0.2 3.6 4.1 1.8 5.8
COS7 cellsj 10.9 0.73 0.5 5.1 4.2 2.0 6.0
Working standard§ 27.9 4.6 7.8 11.1 21.0 11.5 21.1
Monitor sample§ 18.9 1.4 2.3 8.1 8.4 4.5 11.2
Capture antibody Guinea pig pAb Guinea pig pAb MousemAb MousemAb Mouse mAb Goat pAb SheeppAb
Detection antibody GoatpAb HumanpAb MousemAb MousemAb GoatpAb MousemAb MousemAb

NOTE. Reactivity = (OD) of sample! (OD) of standard sequence of same SUbtype X 100%.
·Gly Y.Gly 0 are standard sequences of HBV subtype ayand ad. respectively.
tN/A = results not applicable. BA3.2 expressed antigen was later found to be retained within the cells.
tNegative controls. Supernatants from COS7 cells alone and cells transfected with the plasmid pJI. which certains no Insert of hepatitis B surface gene.
§The working standard (0.5 IU/mL) and the monitor sample (0.125 IV/mL) are serum preparations from the National Institute of Biological Standards

(London. VK). distributed nationally to diagnostic laboratories as external controls.

data in these ways allows both inter- and intra-assay compari-
sons to be made. All assays were performed within the
sensitivity limits claimed by their manufacturers using the
two preparations of standard sera.

Both standard sequences and 7 of the variants (Arg145.
91-4696. HK188. AP3.1. SA4. SA6. and SA7) were detected
by all assays. although Arg145 was less reactive than the
working standard in assays 3. 6. and 7 and was only
marginally above cutoff level in 6 and 7. These contain
variants in HBs regions 1. 3, 4, and 5 of the MHR.l Three
samples (l056Sp. BA 3.4. and BA 2.4) were detected by most
of the assays. although some displayed only low level
reactivity: 1056Sp was low in assay 7 and negative in assay 4;
BA3A was negative in assays 3 and 5; and BA2.4 was negative
in assay 4 and low in assays 3. 5. and 7. This group contained
variants in HBs regions 1. 2, and 4 of the MHR. Sample M5.
which had mutations in HBs regions 1 to 4. was negative in
assays 3. 4. 6. and 7. Sample BA 3.2. containing mutations in
HBs region 2, could not be detected by any of the assays. To
attribute nonreactivity of BA 3.2 to the mutations per se. we
had to exclude intracellular retention of surface antigen
particles. Loss of secretion of HBsAg from transfected cells
has been noted previously.25.26Therefore, celllysates of BA3.2

and appropriate controls (cell lysates of Cly Y and standard
sera) were tested using assays 1. 5, and 6. Positive results for
BA3.2 were detected in all three assays. with a reactivity of

. approximately 20% of that of the standard HBsAg sequence
(data not shown). This indicated that the expressed BA3.2
antigen was not present In the culture supernatant and is
separated accordingly from the other samples in Table 2. This
suggests that the loss of cysteine at amino acid 124 has had a
deleterious effect on secretion as is suggested by the 20% to
30% positivity found by immunofluorescence on the trans-
fected cells (Table 2).

Table 4 compares assay performance of the variants that
react at a level greater than or equal to 10% of the standard
HBV sequence. The assays detected between 7 and 11 of the
variant supernatants. In general. the use of pAb In the capture
and/or detection phases was associated with higher detection
rates: assays 1, 2. 5. and 6 detected 11.9. 10. and 9 of the 11
variants. respectively. The exception was assay 7 (detected 7
variants). which used sheep pAb In the capture phase and
mouse mAb for detection. Assays 3 and 4. which detected
only 7 and 8 of the variants. respectively. used mAb in both
capture and detection phases. Variants of HBV subtype dare

TABLE4. Number of Variants Detected by Each Assay at a Level of ~ 10% of the Standard HBsAg (GlyY/GlyD)

Assay I Assay 2 Assay 3 Assay4 Assay 5 Assay 6 Assay7

ay SUbtype variants 515 515 2/5 2/5 4/5 4/5 2/5
ad Subtype variants 6/6 4/6 5/6 6/6 6/6 5/6 5/6
Total variants detected 11111 9/11 7/11 8/11 10/11 9111 7/11

Capture antibody Guinea pig pAb Guinea pig Mouse mAb Mouse mAb Mouse mAb Goat pAb Sheep pAb
Detection antibody Goat pAb pAb Mouse mAb Mouse mAb Goat pAb Mouse mAb Mouse mAh
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TABLE5. Expressed Surface Antigen Reactivities From Multiple
Transfectlon Experiments Using the IMX HBsAg (V2) Assay

Sample
Mean Index of Reactivity" z SE

(Number of Transfectlon Experiments)

Range of
Reactivity

Multiple
of Mean

GlyY
1056Sp.
BA2.4
BAH
SA7
M5
GlyD
Arg145
91-4696
HKI88
AP3.1
SM
SA6
PHt
COS7 cells]

4.80 ± 0.49 (10)
1.43 ± 0.25 (6)
0.73 ± 0.21 (5)
0.23 ± 0.041 (4)
5.30 ± 0.37 (5)
0.95 ± 0.22 (8)
4.79 ± 0.36 (8)
5.40 ± 1.10 (9)
4.72 ± 0.84 (7)
8.58 ± 1.07 (l0)
6.57 ± 1.33 (6)
4.88 ± 0.98 (4)
3.91 ± 0.64 (4)
0.14 ± 0.014 (11)
0.15 ± 0.014 (11)

3.26-7.81
0.64-2.20
0.24-1.43
0.13-0.33
4.38-6.47
0.43-2.07
3.50-6.32
1.59-10.38
1.96-8.04
4.72-14.04
1.93-10.72
2.44-7.16
2.51-5.24
0.08-0.27
0.09-0.25

0.68-1.63
0.45-1.54
0.33-1.96
0.57-1.43
0.83-1.22
0.45-2.18
0.73-1.32
0.3-1.92

0.42-1.70
0.55-1.64
0.30-1.63
0.50-1.47
0.64-1.34
0.57-1.93
0.60-1.67

"Reactivity = (OD) ofsamplel(OD) ofNIBSC standard serum.
tNegative controls are supernatants from COS7 cells alone and cells

transfected with the plasmid pJI without cloned HBV surface gene.

also detected more readily than those of subtype y using this
panel of assays (Tables 2, 3, and 4).

As a measure oftransfectloniexpresslon efficiency. reproduc-
Ibllity of variant antigen reactivities was determined on
supernatants from multiple transfectlon experiments using
the IMX HBsAg (V2) assay (Table S). The number of
supernates tested for each antigen ranged from 4 to 11 and
the range of reactivity was relatively consistent at a level of
O.S to 1.6 times the mean value. Only sample MS produced a
wide range of values, being O.4S to 2.2 times the mean value.

Transfectlon efficiency was also measured by repeating 6 of
the 7 assays using a separate batch of supernatants from a
different transfection experiment (data not shown). Only M5
in assay 1 (bioELISA) gave an obviously different reactivity
on repeat testing; 44% of standard sequence activity com-
pared with 13% in a previous experiment). Four other
samples of low reactivity (l in assay 3 and 3 in assay 7)
became either borderline positive, having initially been
negative, or became negative having initially been borderline
positive. We do not consider this to be significant. In fact, the
reactivity of these samples compared with that of the appro-
priate standard GlyY/D (set at 100%) ranged from 6% to
12.6%, a level at which repeat testing would be required in a
clinical or diagnostic setting.

To assess Intra-test variation, four of the assays (assays 1, S,
6, and 7) were repeated using the original supernatants. The
reactivities of the variants were comparable with the original
results with only one borderline positive sample becoming
negative on repeat and one negative sample becoming border-
line positive in assay 7 (data not shown).

Finally, the variant TSN, containing a 2-aa insertion and
mutations In HBs regions 1. 2, and 4, was not detected by any
of the assays either in the supernatant or the cell lysate. This
either implies gross antigenic diversity or a lack of produc-
tion. The original serum of this variant was found to be
negative by monoclonal antibody-based Auszyme assay. but
positive by the polyclonal radioimmunoassay AUSRIA II
(Abbott Laboratories Ltd).' Perhaps the AUSRIA II positivity
was caused by higher viral load in serum or even a mixed
population of viruses. However. we cannot exclude the
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possibility (albeit unlikely) of there being differences in
secondary structure of expressed HBsAg compared with the
native HBsAg. which would affect reactivity In diagnostic
assays. On immunofluorescence. TSN showed only 5% to
10% of cells fluorescing, which indicates some binding by
pAbs and therefore some degree of expression; however, it
remains possible that the antigen level In the supernatant was
insufficient for detection. Otherwise it is not clear why TSN
variant was not detected by any of the 7 assays. It has been
detected in vitro recently'? To confirm whether the sequence
was adequately expressed. plasmid sequences upstream ofthe
cloning site were found to be Identical to those seen in the
parent plasmid pJI. so cloned HBsAg expression was unlikely
to have been affected by changes in the vector sequence.

DISCUSSION
Our main observation is that all assays are not equally able

to detect expressed HBsAg variants. mainly because of the use
of anti-HBs antibodies with variable speciflcities and sensitivi-
ties against different HBsAg epitopes. However different
levels of HBsAg expression, whether in vivo or in vitro. could
playa role.

Obviously. in any analysis of this nature. standardization of
the number of HBsAg particles is required. but this presented
difficulties. Electron microscopy was attempted (data not
shown) but the particles were difficult to count because of
clumping and an uneven distribution. Also. Bradford assay
for total protein determination proved unhelpful because
HBsAg was masked by large quantities of fetal calf serum. We
have now developed an epitope tag system to quantify the
numbers of particles in the supernatants (Basunl et al.,
manuscript submitted) independently of HBsAg antigenicity.

A mammalian expression system was used in the study
because the availability of sera containing HBsAg variants Is
usually limited. We assume there Is little or no alteration In
the secondary structure of expressed HBsAg compared with
the natural material, because all of the post-translational
modifications should occur in COS7 cells. However. ex-
pressed HBsAg is not absolutely Ideal for characterizing
variation as measured reactivity depends both on antigenicity
and on the total amount of protein. Because of the transient
nature of expression and relatively low number of cells. the
assay reactivities are lower than would be expected In serum.

In this cohort of samples we observed the following points.
First. the samples that displayed similar reactivity to the
standard sequence had variation in regions 1. 3. 4, and S.
whereas those with reduced reactivity all had variation within
HBs region 2 (lOS6sp, BA 3.4 ,and BA 2.4 In regions 1. 2, and
4; MS In regions 1 to 4; BA3.2 in region 2; and TSN In regions
1.2, and 4). This region, either solely or discontinuously with
other regions clearly contributes to the loss of reactivity.
There Is also evidence that the 4 aas bounded by cysteines at
aa 121 and 124. HBs region 2. form a distinct epltope on the
tip of a 100p.28.29Cystelnes within the MHR are responsible
for the formation of intramolecular and intermolecular disul-
fide bridges, which give the HBsAg Its highly complex
structure. Antigenicity is dependent on this structure. and
substitution of many of the cysteine residues results In either
reduced or complete loss of Immunoreactivity.25.26.30.31Alter-
natively. It could be that there are secondary effects on other
regions upstream or downstream from the mutattons.l-"

Second, it was clear that there was no correlation between
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the number of variants and altered antigenicity. It seems to be
the site and not the number that Is responsible for this
reduced reactivity. For example. Arg145 and BA3A had single
mutations and displayed less than 50% of standard reactivity
in 5 and 4 assays. respectively. Samples SA4 and BA2.4. each
with 2 mutations. showed less than 50% of standard reactivity
In 5 assays. However. AP3.1 with 1 mutation. HK188 and
91-4696 with 2 mutations. and SA6 with 3 mutations showed
good levels of reactivity. with less than 50% in either one or
no assays.

Third. some poor reactivity Is caused by reduced secretion
from cells. A comparison between samples BA3.4. which
contains T123N. and BA3.2. which had the additional
C124R. is instructive. The loss of cysteine at aa 124 com-
pletely abrogated reactivity in all 7 assays when the superna-
tant was used. When the cell lysate was tested in assays 1. 5.
and 6. it displayed reactivities of 28%. 18%:a:nd 15% of that
of the GlyY. respectively. Because cell lysate BA3.2 is detected
at lower levels compared with BA3.4. we can conclude that
the addition of C 124R and T123N has a dual effect on both
immunoreactivity and secretion.

Fourth. in vitro results do not always confirm in vivo
observations. Supernatants from samples HK188 and 91-
4696 (Htno et al., unpublished data. 1997). which were
Initially HBsAg negative in serum. surprisingly displayed
similar reactivity to the positive control samples. The failure
to detect serum HBsAg may have been caused by the presence
of a low level of HBsAg or. perhaps. because complexes
between anti-HBs and HBsAg prevented the antigen from
being detected.F

Fifth. it has previously been suggested that ay subtype
samples react less well than those with an ad background.33.34
This also appeared to be the case here; however. this needs
confirmation using samples with the same mutations in both
subtype backgrounds.

Finally. It is obvious that the ability of an assay to detect a
variant depends critically on the choice of anti-HBs used. In
general these samples were best detected by assays that used
pAbs In the capture and/or detection phases (With the
exception of assay 7). Assays that contained mAbs for both
phases of the assay appeared to perform less efflclently in
detecting this set of variants.

Although currently available HBsAg assays are an improve-
ment on their predecessors. there Is a need for further
development with ongoing assessment of assay ability to
detect the emerging HBsAg variants that are discovered in
clinical settings or by other diagnostic methods. e.g.. PCR.
Manufacturers could also investigate the possibility of using
antibodies that are not affected by conformational change
within the MHR perhaps by developing antibodies to linear
epitopes outwith this region.
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SUMMARY. The clot from blood is usually discarded after the
collection of serum. Yet. it contains nucleated white blood
cells and substantial serum. Here. we have compared four
methods to enable quick and efficient extraction of human
genomic and viral DNA from clotted blood. Two of these
methods. a phenol-based in-house method and Tripure iso-
lation reagent. only achieved a low polymerase chain reac-

tion (PCR) yield. In contrast. the QIAamp blood kit
and the High Pure Viral Nucleic Acid kit were equally effi-
cient. with similar sensitivity to serum for extraction of viral
DNA.

Keywords: blood clots. DNA extraction. hepatitis B virus.
human p-globin.

INTRODUCTION

Genomic markers. including human leucocyte antigen
(HLA) typing. of individuals who have either cleared hepa-
titis B virus (HBV)infection. are chronic carriers or have no
evidence of infection. allow the study of host immune factors
that may influence the course of infection. SpecificHLAclass
II alleles are associated with both hepatitis Band C viral
clearance [1-3]. Many large-scale studies in this area are
underway and this field is set to expand in the future. Thus.
if testing for HLA and hepatitis viruses is required in addition
to other serological markers. there is a need to minimize the
blood volume used in laboratory testing. especially in
infants. Direct polymerase chain reaction (PCR) amplifica-
tion from whole blood without prior DNA isolation has been
attempted [4]. but sensitivity of viral DNA detection is low
[5] and the DNA cannot be stored for further investigation
[6]. Methods have been described in the literature for DNA
extraction from whole liquid blood [7.8] as well as from
clotted blood [6.9]. As clotted blood is usually discarded after
collection of the serum. extraction of DNA from clots could
be useful and efficient. Proteinase K. a powerful, broad-
spectrum proteolytic enzyme. has been used in nucleic acid
isolation for more than 25 years [10]. In this study we
compared four methods. three of which are dependent on

Abbreviations: HBV. hepatitis B virus; peR. polymerase chain
reaction.
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digestion with proteinase K. for extraction of both human
(P-globin) and viral (HBV)DNA from clotted blood.

MATERIALS AND METHODS

DNA extraction methods

In-house procedure. A pea-sized blood clot was transferred to a
sterile Eppendorf tube and the following reagents added:
250 Id nucleic acid lysis mix (0.4 M NaCI. 10 mM Tris.
2 mM EDTA). 250 III lysis butTer (Applied Biosystems War-
rington. Cheshire. UK;cat. no. 400676) and 50 III proteinase
Kat 10 mg ml-I. Samples were incubated at 55°C for 2-3 h
or overnight at 37°C followed by vortexing to dissolve the
blood clot. Then. 500 III phenol-chloroform was added and
the DNA precipitated and washed with ethanol. The pellet
was left to air-dry and then resuspended in 50 III of Ix TB
(10 mM Tris. 1 mM EDTA)butTer.

TrjPureTM Isolation Reagent. One millilitre of TriPure isola-
tion reagent (Roche Diagnostics. Lewes. UK) was added to
a pea-sized blood clot in a sterile Eppendorf tube and the
cells were lysed by repetitive pipetting. The samples were
incubated for 5 min at room temperature to ensure the
complete dissociation of nucleoprotein complexes. Chloro-
form (0.2 ml) was added. the tube was capped securely and
then shaken vigorously. Further incubation at room tem-
perature for 2-15 min was carried out followed by centri-
fugation at 12 000 g for 15 min to separate the solution
into three phases. After centrifugation. the upper. aqueous.
colourless phase containing RNA was carefully removed.
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DNA precipitation from the interphase and the red organic
phase was performed using 96% ethanol. Samples were
washed three times with 0.1 M sodium citrate in 10%
ethanol and then once in 75% ethanol. The DNA pellet was
air-dried and then resuspended in 50 III 8 mM NaOH.
Finally. the pH of the isolated DNAwas adjusted to 8.4 using
0.1 M HEPES.

High Pure Viral Nucleic Acid kit and QIAamp blood kit. For the
High Pure Viral Nucleic Acid kit (Roche Diagnostics). 200 III
of working solution [binding buffer supplemented with poly
(A) carrier (RNA)]. and 40 III 20 mg ml" of proteinase K
were added to a pea-sized blood clot in a sterile Eppendorf
tube. mixed and incubated for 10 min at 72 °C. After
incubation. 100 III of isopropanol was added. The filters and
collection tubes were combined and the samples pipetted
into the upper reservoir followed by centrifugation for 1 min
at 8000 9 and the flowthrough discarded. The filter was
washed twice with the wash buffer and the flowthrough
discarded after each wash. Finally. centrifugation was per-
formed for 10 s at full speed (12000 g) to remove all the
residual wash buller. Collection tubes were discarded and
clean. nuclease-free 1.5-ml tubes were used to collect the
eluted DNA in 50 III of elution buffer.

Although the High Pure Viral Nucleic Acid kit (Roche
Diagnostics) and the QIAamp blood kit (Qiagen Ltd. Crawley.
UK) kits employ the same principle. the reagents are differ-
ent. For the Qiagen kit. Buffer AL. Qiagen protease. ethanol
and buffer AW were used. respectively. instead of the
working solution. proteinase K. isopropanol. and wash buffer
that were employed in the Roche kit.

p-globin PCR

Five microlitres of extracted DNA were amplified in 50 III of
master mix containing 1.25 U Taq polymerase (Gibco,
Paisley. Strathclyde. UK). 2.5 U TaqStart'J'M antibody (Clon-
tech Laboratories Inc.. Palo Alto. CA). 0.2 mM dNTPs.
2.0 mM MgCI2• lOx PCR buffer (supplied with Taq

polymerase) and 20 pmol of each primer. Pc03 (5'-
ACACAACTGTGTTCAC'TAGC-3')and Pc04 (5'-CAACTT-
CATCCACGTTCACC-3').The amplification cycles were as
follows: 5 min at 94°C. followed by 35 cycles at 94°C for
1 min. 55°C for 1 min and 72 °C for 1 min. The product
was 110 bp.

HBV DNA PCR

The same master mix used for p-globin PCR was used for
HBV DNA PCR. except that the MgCl2 concentration was
2.5 mu and HBVS-gene primers were used. The first-round
primers were: 5'-CCTGCTGGTGGCTCCAGTTC-3'and 5'-
CCACAATTCKTTGACATAC'ITTCCA-3'.where K = G or T.
Five cycles were performed at 95°C for 1 min. S5 °C for
I min and 72°C for 90 s. followed by 35 cycles with the

denaturation temperature reduced to 90°C. One microlitre
of the first-round PCR product was reamplified in a second
round with nested primers (5'-GCACACGGAATTCCG-
AGGACTGGGGACCCTG-3'and 5'-GACACCAAGCTTGGTT-
AGGGTTTAAATGTATACC-3')for five cycles at 95°C for
1 min. 55°C for 75 sand 72 °C for 90 s followed by 25
cycles with the denaturation temperature reduced to 90°C.
The product was 681 bp.

Materials: human p-globin and HBV DNA

In the initial extraction. we amplified p-globin from clots of
HBV-negative blood. As a control. DNA was used that had
been extracted. using a standard technique. from primary
human embryonic lung cells (MRCS) infected with the
human cytomegalovirus (HCMV).
The HBV DNA source was blood from two HBV carrier

patients with a low level of viraemia. Subsequent precise
analyses were performed on a dilution series ofHBV-positive
stock serum (our internal laboratory standard) diluted in
normal whole blood that was negative for HBV.The dilution
series ranged from 10-1 to lO-h• equivalent to 4 x 104-
4 x 10 genome equivalents per ml (gEq ml"). After leaving
the blood to clot. sera and clots were separated by centrifu-
gation and aliquoted. Our positive serum standard for HBV
PCR at a titration of 10-6 (40 gEq ml-1) was also extracted.

RESULTS AND DISCUSSION

The kits and reagents were assessed for extraction of human
DNA (P-globin) on HBV-negative blood and then on HBV-
carrier patients in order to measure the HBV DNA levels
simultaneously. Equal volumes of the PCR products were
run on 1% agarose gels stained with ethidium bromide. The
PCR yield. reflecting the quantity and perhaps the purity of
the isolated DNA. was used as an approximate estimate of
the DNA isolation ability of each kit. The Qiagen and Roche
High Pure kits had unmistakably brighter DNA bands. as
shown in Table 1 and Pig. 1.
The Qiagen and Roche High Pure kits were then assessed

for sensitivity using a dilution series of a positive serum
sample containing HBV DNA of known concentration in

Table 1 Comparison of the polymerase chain reaction
(PCR) yield using four different extraction methods

Method Intensity of PCR bands'

QIAamp blood kit + + +
High Pure Viral Nucleic Acid kit + + +
In-house procedure + +
TriPure'J'MIsolation Reagent

• Intensity of PCR bands: + + +. high; + +. moderate. -.
not detected.

© 200() Blackwell Science Ltd. Journal of Viral Hepatitis. 7.241-243
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Fig. 1 Comparison of polymerase chain reaction (PCR)
Yield from two carrier patients with low viraemia. using four
different extraction methods. R1&2. extraction using the
Roche High Pure Viral kit: Q1&2. extraction using the
Qlagen QIAamp blood kit: Hl&2. extraction using an
in-house procedure: T1&2. extraction using the TriPure
Isolation Reagent; +V. positive control: L. lOO-bp molecular
Weight ladder.

negative blood. Both sera and blood clots of these dilutions
Were extracted and PCR was carried out in the same run. For
both sera and blood clots. the PCR yield was consistent
between the two kits: HBV DNA was detected up to a
dilution of 10-5• equivalent to 4 x 102 gEq ml-l (Table 2:
Fig. 2). However. the positive control serum gave a positive
result at 4 x lO gEq ml-1• perhaps because dilution of the
stock serum was performed in negative serum and not whole
blood.

Thus. both Qiagen and Roche High Pure kits were equally
elficient and sensitive for extraction of DNA from clotted
blood. as well as simple to use and widely available. More-
over. our experience with these methods revealed that:

1 Blood clots do not have to be completely dissolved because
the required incubation time with proteinase K is only
10 min.

2 Extreme care must be taken on transferring the digested
blood to avoid any debris that could obstruct the filter in
the column.

Table 2 Hepatitis B virus polymerase chain reaction (HBV
PCR) results of serum and blood clots extracted by Qiagen
QIAamp blood and Roche High Pure Viral Nucleic acid kits

QIAamp blood kit
High Pure Viral
Nucleic Acid kit

Sample dilution Serum Blood clot Serum Blood clot

1O-! + + + +
10-4 + + + +
10-5 + + + +
10-6

Control serum was also amplified by PCR; the titre was
io" (4 x 10 genome equivalents per ml).
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Blood
clots

Serum

Fig. 2 Hepatitis B virus (HBV) DNA extraction sensitivity of
Qiagen and Roche kits. Polymerase chain reaction (PCR)
results are presented from 10-3 to 10-6 dilutions of the
HBV-positive control extracted using the Qiagen and Roche
kits. -V. negative control; +V. positive control; L. lOO-bp
molecular weight ladder.

3 A higher centrifugation speed (10 0000) is preferred to
that recommended (8000 0) because the partially diges-
ted blood is heavier than serum.
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ERRATUM

Huang Y-H. Wu I-C. Chiang T-Y et al. Detection and viral nucleotide sequence analysis of transfusion-
transmitted virus infection in acute fulminant and non-fulminant hepatitis. J Viral Hepat 2000; 7: 56-63

A copyediting mistake led to the affiliation and correspondence addresses being given as Taiwan. China rather
than Taiwan. Republic of China. The corrected details are reprinted below.
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