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ABSTRACT 

Visual processing of complex objects is a feat that the brain accomplishes with 

remarkable speed – generally in the order of a few hundred milliseconds. Our knowledge 

with regards to what visual information the brain uses to categorise objects, and how early 

the first object-sensitive responses occur in the brain, remains fragmented. It seems that 

neuronal processing speed slows down with age due to a variety of physiological changes 

occurring in the aging brain, including myelin degeneration, a decrease in the selectivity of 

neuronal responses and a reduced efficiency of cortical networks. There are also 

considerable individual differences in age-related alterations of processing speed, the 

origins of which remain unclear. Neural processing speed in humans can be studied using 

electroencephalogram (EEG), which records the activity of neurons contained in Event-

Related-Potentials (ERPs) with millisecond precision. Research presented in this thesis had 

several goals. First, it aimed to measure the sensitivity of object-related ERPs to visual 

information contained in the Fourier phase and amplitude spectra of images. The second 

goal was to measure age-related changes in ERP visual processing speed and to find out if 

their individual variability is due to individual differences in optical factors, such as senile 

miosis (reduction in pupil size with age), which affects retinal illuminance. The final aim 

was to quantify the onsets of ERP sensitivity to objects (in particular faces) in the human 

brain. To answer these questions, parametric experimental designs, novel approaches to 

EEG data pre-processing and analyses on a single-subject and group basis, robust statistics 

and large samples of subjects were employed. The results show that object-related ERPs 

are highly sensitive to phase spectrum and minimally to amplitude spectrum. Furthermore, 

when age-related changes in the whole shape of ERP waveform between 0-500 ms were 

considered, a 1 ms/year delay in visual processing speed has been revealed. This delay 

could not be explained by individual variability in pupil size or retinal illuminance. In 

addition, a new benchmark for the onset of ERP sensitivity to faces has been found at ~90 

ms post-stimulus in a sample of 120 subjects age 18-81. The onsets did not change with 

age and aging started to affect object-related ERP activity ~125-130 ms after stimulus 

presentation. Taken together, this thesis presents novel findings with regards to the speed 

of visual processing in the human brain and outlines a range of robust methods for 

application in ERP vision research.  
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1 LITERATURE REVIEW 

The ease with which humans can recognise complex objects in a fraction of second 

is perhaps one of the most striking abilities of the human brain. When visual information 

travels from the retina through the primary visual cortex (V1) to higher-order cortical 

areas, it undergoes a number of transformations and is progressively translated into higher-

level neural representations that can be used for decision-making (Wandell, 1995; DiCarlo 

& Cox 2007). It is still unclear what information that is available to the visual system is 

used by the brain to create these representations and how fast are they created. Our 

knowledge with regards to how factors such as development, aging and disease influence 

the dynamics of visual processing is also fragmented. Further, we know very little as to 

why human brains differ considerably in how fast they process visual information; these 

individual differences are only beginning to be quantified. Various scientific disciplines 

have contributed to the current state of knowledge about the properties and speed of object 

processing in the brain, from biology, through molecular and cognitive neuroscience to 

psychology. Multiple brain imaging methods have also been used to explore neural 

correlates of visual processing and one technique has been particularly useful in measuring 

the time course of object categorisation – EEG (electroencephalogram). In this literature 

review, I will first introduce EEG methodology, outline its pros and cons, and discuss areas 

of concern and point out potential improvements in collecting and analysing EEG data. 

Subsequently, I will present the theoretical and empirical developments to date with 

regards to visual object processing in the human and monkey brain, followed by an 

overview of the current state of knowledge concerning the aging brain and how various 

cortical and optical factors might contribute to age-related changes in visual processing 

speed. I will also identify the gaps and inadequacies in the existing literature and point out 

how the experimental work presented in this thesis addresses some of these gaps.  
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1.1 USING ELECTROENCEPHALOGRAPHY (EEG) TO MEASURE THE 

SPEED OF VISUAL PROCESSING IN THE BRAIN 

Because recognition occurs so rapidly, it is essential to explore the temporal dynamics 

of the neuronal extraction of information necessary for image classification. This can be 

achieved by recording Event-Related Potentials (ERPs) contained in EEG data. Scalp EEG 

non-invasively records the summed activity of thousands, or even millions, of neurons in the 

form of tiny electrical potentials picked up from subject‘s scalp. EEG is particularly 

sensitive to post-synaptic potentials generated in superficial layers of the cortex by neurons 

directed towards the skull. Dendrites that are located deeper within the cortex and/or are 

producing currents that are tangential to the skull have much less contribution to the EEG 

signal. Because scalp EEG records summed neuronal activity coming from different parts of 

the brain, precise source localisation of EEG signal poses difficulties. Hence, EEG is 

considered to have a poor spatial resolution. EEG has excellent temporal resolution (in the 

order of milliseconds), however, allowing it to track the time course of neural activity 

associated with perceptual and cognitive processes (Luck, 2005).  

Many methods of processing EEG data exist, and most of them typically involve 

basic steps such as filtering, baseline correction, epoching or artifact rejection. To increase 

the signal-to-noise ratio of EEG data, many trials per condition need to be recorded, which 

can be then time-locked to the stimulus onset and averaged. This procedure outputs mean 

ERP waveforms, which are typically reported in EEG studies. No consensus exists as to what 

the best approach is in terms of processing or statistical analyses of EEG data, but the choice 

of method may potentially have a significant impact on the experimental results (Rousselet & 

Pernet, 2011; VanRullen, 2011). I will challenge several assumptions in current EEG data 

analyses techniques, point out their limitations, and suggest potential improvements. 

First, ERP researchers commonly restrict their data analyses to easily identifiable 

peaks (components) within the EEG waveform, for example P100 – a positive peak around 

100 ms post-stimulus, or N170 – a negative deflection around 170 ms post-stimulus. 

However, this approach is problematic mainly because there is no agreement within the EEG 

research field regarding the exact nature of the information carried within the EEG 

waveform, including the exact meaning of ERP peak latencies and amplitudes. ERP 

components are not equivalent to functional brain components (Luck, 2005). Thus, limiting 

the analyses to pre-defined peaks, and discarding the potentially informative activity between 

peaks, misses what could have been otherwise obtained using a data-driven approach. And 
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since it is difficult to pin-point the exact cortical sources of EEG activity picked up from 

various parts of the scalp, we should not restrict the analyses to pre-defined scalp electrodes 

either. Using data-driven EEG data analyses procedures was encouraged already in the 80‘ by 

Lehmann (1986a; 1987; 1986b) who emphasised the importance of both temporal and spatial 

dimensions of EEG data. Since then many developments in data-driven analyses approaches 

have been introduced making these approaches an attractive and necessary direction for the 

future of EEG research (Rousselet & Pernet, 2011). 

Including all the electrodes and all the ERP time-points into the statistical analyses 

significantly increases the number of comparisons one needs to perform. Thus, such analyses 

require robust methods that correct for multiple comparisons to help to control for Type I 

error – an inflated rate of possible false positives. A variety of possible ways to correct for 

multiple comparisons exists, including Bonferroni correction or resampling-based methods, 

which provide better univariate confidence intervals and, in conjunction with other 

techniques, can be used to control the Type I error rate. These include bootstrapping, 

permutations or Monte Carlo simulations. The popularity of the resampling methods has been 

growing recently because of their strength in utilising the characteristics of distributions of 

the observed data (Nichols, 2012; Eklund, Andersson, & Knutsson, 2011). However, too 

stringent multiple comparison corrections may boost the rate of false negatives. To deal with 

this problem sophisticated thresholding techniques have been introduced (Nichols, 2012) that 

incorporate information both on false positives and false negatives. The method combines 

evidence against the null hypothesis (classical p-value) with evidence that supports it 

(alternative p-value). The selection of multiple comparisons correction methods is currently 

broad and the choice should depend on the experimental design, the characteristics of data, 

and the estimators used (Rousselet & Pernet, 2011; Maris & Oostenveld, 2007; Litvak, et al., 

2011). 

Another issue comes into play when applying statistical measures to analyse EEG 

data. Typically, EEG studies compute the average EEG activity across trials using the mean 

as a measure of central tendency. They also typically report variance as a measure of 

dispersion, and use standard t-tests and ANOVAs for inferential statistics. However, the use 

of these classic statistical tools requires the data to be normally distributed and the variances 

to be homogeneous. If applied to data that do not meet the optimal distribution criteria, and 

are, for instance, skewed or contain outliers, standard statistical tools can lead to significant 

errors both in descriptive and inferential statistics (Wilcox, 2012). Robust alternatives to the 

standard tools exist, for instance trimmed mean or winsorized variance and equivalents of t-
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test and ANOVA that incorporate them. These measures are robust even when optimal 

distribution requirements are violated, and the EEG community could greatly benefit from 

applying them more widely. 

Recently, the cutting-edge EEG data analyses techniques tend to move away from 

averaging ERP activity towards single-trial-oriented approaches. This is because important 

information regarding the nature of neural processing is contained within each single-trial 

ERP and in the variability across trials. A growing number of studies use single-trial-based 

analyses to study the relationships between brain activity, stimulus properties and 

behavioural responses of subjects (Philiastides & Sajda, 2006; Schyns, Petro, & Smith, 2007; 

Ratcliff, Philiastides, & Sajda, 2009; Vizioli, Rousselet, & Caldara, 2010). This would have 

been impossible with the standard average-across-trials ERP techniques, which obstruct 

inter-trial variability. New techniques to estimate single-trial variability distributions are 

being developed, including reverse correlation techniques (Smith, Gosselin, & Schyns, 

2007), Generalized Linear Models (Pernet, et al., 2011) and ICA-based approaches (De Vos, 

Thorne, Yovel, & Debener, 2012). The latter technique has been used in recent studies to 

demonstrate that the ERP activity visible ~170 ms in response to faces can be dissociated 

from activity ~100 ms in terms of its neural origins (Desjardins & Segalowitz, 2013), and 

that it is not exclusively face-related but associated with the network involved in general 

visual processing (De Vos, et al., 2012). Furthermore, relating behavioural and brain 

responses with each other,  and with the information content of the stimuli, requires moving 

away from statistical analyses on a group level and focusing instead on individual subject 

data. Each brain is unique and there is evidence that ERPs are much more similar within a 

subject than they are across subjects. Moreover, ERPs averaged across subjects tend to not 

resemble any of the individual subjects‘ ERP patterns (Gaspar, Rousselet, & Pernet, 2011). 

Finally, there are considerable individual differences in the speed of visual processing in the 

brain (Rousselet, et al., 2010) that cannot be addressed by using group analyses approaches.  

Another problem that can potentially distort EEG results is data filtering. Typically 

EEG data is filtered during the pre-processing stage in order to increase the signal-to-noise 

ratio. However, filtering can seriously distort the data – an issue that has been well 

documented in the literature (Luck, 2005) and recently has been brought back into the 

attention of the ERP research community (VanRullen, 2011; Acunzo, MacKenzie, & van 

Rossum, 2012; Rousselet G. A., 2012; Widman & Schroger, 2012). Non-causal high-pass 

filters, with cut-offs beyond a recommended 0.1 Hz, cause potential distortions in the 

shape of the ERP waveform (Luck, 2005; Acunzo, et al. 2005). A filter is called non-causal 



Literature Review 

11 

if it is applied in a forward direction first and then again in a backward direction, which 

results in a zero-phase shift. Non-causal filtering can produce artifacts; in particular it can 

smear the effects in later parts of the waveforms back in time, contaminating earlier parts 

of the waveform with the effects that were not previously there (Acunzo, et al., 2012). 

Non-causal filters are prevalently used in ERP research according to non-exhaustive 

overviews done by Acunzo, et al. (2012) and Rousselet (2012). Acunzo, et al. (2012) 

reported that out of 185 scrutinized studies, 43% used filters with cut-offs higher than 0.1 

Hz and half of those used cut-offs higher than 1 Hz. Rousselet (2012) reported that out of 

158 studies, 21 used high-pass filters at 1, 1.5 or 2 Hz. Moreover, most ERP studies do not 

specify whether the filter they used was non-causal or causal. Causal filters are applied 

only in forward direction, hence they do not generate distortions backward in time. They 

can be safely used to study the latencies of the earliest effects (onsets). However, causal 

filters alter the phase of the signal; thus, if one is interested in the latency of peaks, non-

causal filters should be applied (Acunzo, et al. 2005; Rousselet, 2012). In general though, 

data filtering should be kept to a minimum whenever possible and filter types and cut-offs 

should be carefully considered, taking into consideration the quality of the data and 

experimental hypotheses. 

To sum up, the future of ERP vision research lies in single subject data-driven 

analyses techniques, using careful data cleaning procedures, robust statistical measures and 

experimental designs that aim to link brain activity, behaviour and the information 

available to the visual system on a single-trial basis. The new developments will hopefully 

help to create models of the visual system that incorporate the various levels of neuronal 

information processing, from activity of single cells to large populations of neurons. EEG 

has been the method of choice for the work in this thesis, which also applies several 

methodological improvements: parametric experimental designs, single subject data 

analyses, EEG data pre-processing procedures based on cutting-edge developments, and 

robust statistics using variety of non-parametric measures that do not rely on assumptions 

about data distributions. All this allows a more precise quantification of the speed of the 

neuronal processing underlying visual object categorisation, as reflected in the ERPs. 

  



Literature Review 

12 

1.2 PROPERTIES OF THE VISUAL SYSTEM IN PRIMATE AND HUMAN 

BRAIN 

Understanding the visual system‘s structure and function is vital to understanding 

how, when and where in the brain objects are processed and recognised. Anatomical 

studies of the primate brain have shown between two dozens and 40 visual and visual 

associative cortical areas, but their exact number is still unknown (Van Essen, 2003; 

Sereno & Tootell, 2005). Establishing how many visual areas are in the human brain has 

been proven more difficult, mostly because highly informative techniques, such as single 

cell recordings, neural tracers or artificially induced lesions, to name a few, are also highly 

invasive and cannot be routinely used in humans. However, non-invasive brain imaging 

techniques, primarily structural and functional magnetic resonance imaging (MRI and 

fMRI), have revealed more than a dozen putative human visual areas (Tootell, Tsao, & 

Vanduffel, 2003; Felleman & Van Essen, 1991; Nowak & Bullier, 1997; Orban, Van 

Essen, & Vanduffel, 2004). The exact number, location, and functionality of primate and 

human visual areas are the subject of ongoing research. Two main suggestions have been 

put forward to account for the multiplicity of visual brain regions: hierarchical processing 

and functional specialisation. 

1.2.1 HIERARCHICAL ORGANISATION OF THE VISUAL SYSTEM 

According to the hierarchical organisation hypothesis, as the visual information 

travels from the retina, through the lateral geniculate nucleus (LGN) and the primary visual 

cortex (or striate cortex/V1) to the extrastriate and higher-order visual areas, such as V4, 

inferior temporal cortex (IT) or medial temporal cortex (MT), it undergoes a number of 

transformations from very simple to increasingly more refined and complex 

representations (Grill-Spector & Malach, 2004; Ullman, 2006). A simplified representation 

of the main human visual areas is depicted in Figure 1.1. Visual signals reaching the retina 

are processed by at least 80 anatomically and physiologically distinct neural cell 

populations and 20 separate circuits, resulting in over a dozen parallel pathways that 

project their signals further to the cortex (Dacey, 2004). While information travels up the 

visual hierarchy, more and more complex visual features are being resolved. For example 

neurons in V1 respond to simple lines of different orientations, brightness or local contrast 

(Geisler, Albrecht, & Crane, 2007; Tootell, Hamilton, Silverman, & Switkes, 1988), while 

some neurons in the higher level visual areas in the IT cortex fire selectively when certain 

categories of stimuli are present, such as faces (Tsao, et al., 2006; Freiwald, et al., 2010; 

Logothetis & Sheinberg, 1996; Freedman & Miller, 2008).  
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Figure 1.1. Schematic representations of the visual areas in the human (left) and the 

macaque monkey brain (right). (Human brain image sourced from (Dubuc, 2014); 

macaque image adapted from Bullier (2003), Fig. 33.5, p. 529). (B) Flat maps of human 

(left) and monkey (right) visual areas; CollS: collateral sulcus, OTS: occipito-temporal 

sulcus, ITS: inferior temporal sulcus, POS: parieto-occipital sulcus, IPS: intraparietal 

sulcus, LaS: lateral sulcus, STS: superior temporal sulcus (Adapted from Orban, Van 

Essen, & Vanduffel (2004), Fig 1, p.317).  

The notion of a hierarchical organisation of visual pathways is supported by 

monkey data indicating that as information travels from the retina to the higher-order 

visual areas the response latencies of neurons become increasingly delayed (Bullier, 2003; 

Nowak & Bullier, 1997). While responses at the retina appear as early as 20 ms post-

stimulus (Copenhagen, 2004), those in LGN/V1/V2 become visible between 45 – 80 ms, 

and the responses in IT, Superior Temporal Sulcus (STS) and most posterior regions of the 

temporal lobe occur between 100 – 200 ms  (Nowak & Bullier, 1997). It is worthwhile to 

note that the reported latencies of neurons in the various areas of a monkey‘s visual system 

vary considerably among studies (Figure 1.2). For instance, median latencies of cells 

responding to light flashes in V1 range from 45 – 80 ms. The latency differences between 

two adjacent areas, for instance between V1 and V2, seem to range between 10 – 20 ms 

(Raiguel, Lagae, Gulyas, & Orban, 1989; Schmolesky, et al., 1998; Wang, Zhou, Ma, & 
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Leventhal, 2005) (Figure 1.3). The reported latency differences between V1 and V4 areas, 

connected through a relay in V2, tend to be around 20 – 40 ms (Maunsell & Gibson, 1992; 

Schmolesky, et al., 1998), or even less if bypass routes from V1 to V4 and from V2 to IT 

are considered (Nakamura, Gattass, Desimone, & Ungerleider, 1993). Thus, it seems that 

at least parts of the visual systems are organised in a hierarchical manner. However, the 

pure form of hierarchical hypothesis is difficult to reconcile with the findings showing that 

response latencies within the visual system are not always ordered as expected from their 

anatomical hierarchy (Felleman & Van Essen, 1991).  

 

Figure 1.2. Latencies of neurons in different cortical areas of the macaque monkey.  Data 

from behaving monkeys in all cases except (10). Stimuli were small light flashes in all 

cases except (7) and (12), for which fast- moving visual pattern was used. For each area, 

the end points of the bar represent the 10% and 90% centiles and the tick represents the 

median latency. No difference was found between latencies to motion onset and to small 

flashed stimuli (Raiguel et al., 1999). [(1), Barash , et al., 1991; (2), Baylis, et al., 1987; 

(3), Bushnell, et al., 1981; (4), Celebrini, et al., 1993; (5), Funahashi, et al., 1990; (6), 

Goldberg and Bushnell, 1991; (7), Kawano, et al., 1994; (8), Knierim and Van Essen, 

1992; (9), Maunsell and Gibson, 1992; (10), Nowak, et al., 1995; (11), Perrett, et al., 

1982; (12), Raiguel, et al., 1999; (13), Thompson, et al., 1996; (14), Thorpe, et al., 1983; 

(15), Vogels and Orban, 1994]. (Modified from Nowak & Bullier, 1997, Fig.4, p.229).  
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Figure 1.3. Cumulative distributions of visually evoked onset response latencies in the 

LGNd, striate and extrastriate visual areas as labeled. Percentile of cells that have 

begun to respond is plotted as a function of time from stimulus presentation. The V4 

curve is truncated to increase resolution of the other curves; the V4 range extends to 159 

ms. (Reprinted from Schmolesky, et al., 1998, Fig. 2, page 3272).  

Multiple findings suggest that the information transfer across the visual pathways 

follows a more complex route and does not happen in a simple serial fashion - from bottom 

to top, or from simple to complex. For example, latencies of neuronal responses in the 

Frontal Eye Field (FEF) area, located anatomically close to the top of visual hierarchy, 

overlap with those in V1, located at the bottom of the visual hierarchy (Bichot, Shall, & 

Thompson, 1996). Further, the fast-cells-mediated 10 ms delay observed between monkey 

areas V1 and V2 is also observed between V1 and MT – an area located anatomically 

much further away from V1 than V2 (Raiguel, Lagae, Gulyas, & Orban, 1989). Such 

findings have led to multiple propositions with regards to the organisation of the visual 

system (Figure 1.4) and to a distinction between the so called fast and slow brain areas 

within it. The areas that belong to the fast brain include V1, V2, medial superior temporal 

area (MST) and FEF, with average response latencies below 80 ms, as well as MT and V4, 

with latencies only 10 and 20 ms larger than in V1, respectively. Areas in the temporal 

lobe, such as the STS or IT cortex (e.g. areas TE and TEO) represent the slow brain and 

respond with latencies above 100 ms (Nowak & Bullier, 1997; Bullier, 2003).  
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Figure 1.4. Models of the visual system. (A) Hierarchies of visual areas proposed in 

different publications. Areas are arranged according to the figures in the original 

articles (Adapted from Capalbo et al., 2008, Fig.1, p.2). (B) Model proposed by 

Capalbo, et al. (2008) with response latencies of various brain regions (C) occupying 

different levels in this model (Adapted from Capalbo, et al., 2008, Fig.12, p.11 & 

Fig.11B, p.10).  

While relatively distant areas can activate almost simultaneously or with little 

delay, considerable differences in neuronal response latencies may exist within one cortical 

region. For instance, neurons in layer 4Cα of V1 receiving input from the magnocellular 

pathway have ~20 ms shorter response latencies than neurons in layer 4Cβ of V1 that 

receive input from the parvocellular pathway. Evidence from intracranial recordings in 

humans indicates that visual information is processed in parallel by several cortical areas 

and that a single cortical area can be involved in more than one stage of visual processing. 

For example, Halgren, Baudena, Heit, Clarke, & Marinkovic (1994) showed that each of 

the 14 studied brain regions in the temporal, occipital and parietal lobes, including 

fusiform and lingual gyri, lateral occipitotemporal cortex, posterior and anterior middle 

temporal gyrus or superior temporal gyrus, was involved in 2 to 8 stages of visual 

processing. For example, a sequence of potentials visible around 130 – 240 ms post-

stimulus was the largest in the fusiform gyrus, but was also present in several other 
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structures including V4, posterior superior gyrus and middle temporal gyrus. Finally, 

studies show that patterns of activity that are thought to be characteristic of higher visual 

areas can also be found in the early visual regions (Lamme, Super, & Spekreijse, 1998; 

Lee, Yang, Romero, & Mumford, 2002; Kourtzi, Tolias, Altmann, Augath, & Logothetis, 

2003). All this evidence shows that, for most areas beyond V1, V2 and V3, it is impossible 

to be certain where exactly in the visual hierarchy a given region is located and there is no 

simple division between ―higher‖ and ―lower‖ visual areas (Juan & Walsh, 2003; Pascual-

Leone & Walsh, 2001; Anderson & Martin, 2006; Angelucci & Bressloff, 2006; Bullier, 

2003).  

Determining the organisation of the visual system is also challenging because 

cortical areas that support visual processing are interconnected in a sophisticated and not 

yet fully understood fashion with a network of feed-forward, feedback and horizontal 

projections (Bullier, 2003; Salin & Bullier, 1995; Gilbert, 1993; Lamme, Super, & 

Spekreijse, 1998; Felleman & Van Essen, 1991; Markov, et al., 2014). These connections 

create a network of parallel and highly reciprocal channels, allowing complex interactions 

within and between different regions of the visual system and beyond it. For instance, V1 

sends strong feed-forward signals to V2 and MT (Kuypers, Szwarcbart, Mishkin, & 

Rosvold, 1965; Van Essen, Newsome, Maunsell, & Bixby, 1986) but also receives 

feedback information from V2, V4, IT and MT that modifies its responses (Gattass, Sousa, 

Mishkin, & Ungerleider, 1997; Huang, Wang, & Dreher, 2007; Bullier, Hupé, James, & 

Girard, 2001; Bullier, 2003). It appears that conduction rates of feedback and feed-forward 

connections are quite similar, at least between V1 and V2 (Girard, Hupe, & Bullier, 2001). 

This suggests that visual information may travel up the visual hierarchy as fast as it travels 

down. The role of different types of cortical connections is unclear, but reports suggest that 

feed-forward processing mainly determines the receptive field tuning properties of neurons 

in the visual system, and that the converging feed-forward input from lower-level areas 

facilitates the selectivity of neurons in the higher areas (Bullier, 2003). Feedback and 

horizontal connections on the other hand are thought to mediate processes related to visual 

awareness and attention (Lamme, Super, & Spekreijse, 1998), but they also seem to be 

involved in bottom-up selectivity. According to the model by Ullman (1995, 2006) 

feedback projections may carry different hypotheses concerning the interpretation of the 

viewed stimulus that are sent down to meet the incoming feed-forward activity, giving rise 

either to extinction or reinforcement of neural activity associated with different 

interpretations.  
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All in all, it seems that the visual system does not adhere to the naïve top-to-bottom 

or simple-to-complex hierarchical organisation, at least beyond the visual areas V1, V2 and 

V3. The mismatch between the structure of the visual system and the timing of responses 

throughout it as well as the complexity of connections between the areas suggests that 

networks supporting visual processing may be organised according to its functional 

purpose rather than anatomy. The functional roles of neural systems supporting visual 

processing will be presented next. 

1.2.2 FUNCTIONAL SPECIALISATION OF CORTICAL PATHWAYS 

SUPPORTING VISUAL PROCESSING 

Functional specialisation hypothesis suggests the existence of neural pathways 

specialising in different type of visual information processing. These pathways, although 

not completely separate, utilise incoming information in different ways depending on 

outcome requirements (Goodale & Milner, 1992). Examples of such functionally 

specialised pathways are the dorsal and ventral visual streams. The dorsal stream is mainly 

involved in visuo-motor control, grasping and object manipulation; hence it is also called 

the ―where‖ pathway. The ventral stream on the other hand is primarily engaged in 

recognition of objects; hence it is also called the ―what‖ pathway. The existence of these 

pathways is mainly supported by the contrasting effects of lesions in monkeys‘ brain areas 

involved in the two pathways (Ungerleider & Pasternak, 2003).  Both streams originate in 

the primary visual cortex (V1), and continue via V2 where from the dorsal stream is 

directed into the dorsal sites of the parietal lobe via MT, whereas the ventral stream is 

directed into the IT lobe (areas TEO and TE) via V4 (Ungerleider & Mishkin, 1982; 

Goodale & Milner, 1992). Many areas within the stream share sensitivity to some stimulus 

properties, such as colour, shape or texture (Ungerleider & Pasternak, 2003). The last 

stations of both streams project into the perirhinal cortex and the parahippocampal areas 

TF and TH, from which information is sent via entorhinal cortex to the medial temporal 

lobe (MTL) regions, such as hippocampus (Mormonne, et al., 2008). Both streams also 

have heavy connections with the prefrontal areas (Ungerleider, Gaffan, & Pelak, 1989; 

Webster, Bachevalier, & Ungerleider, 1994; Cavada & Goldman-Rakic, 1989) as well as 

subcortical structures, including pulvinar, claustrum and basal ganglia (Webster, 

Bachevalier, & Ungerleider, 1995; Ungerleider, Galkin, & Mishkin, 1983). The ventral 

stream also has direct projections to the amygdala (Webster, Bachevalier, & Ungerleider, 

1993). The two-stream hypothesis is supported by evidence from mice brains showing two 

sub-networks – one connected to the parietal and motor cortices, and another to the 

temporal and the parahippocampal structures, resembling dorsal and ventral pathways 
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(Wang, Sporns, & Burkhalter, 2012). It is noteworthy that the visual processing in the two 

streams is not completely segregated. For example, there is growing evidence that the 

dorsal regions carry information about objects in 3D, including shape (Lehky & Sereno, 

2007; Sereno, Trinath, Augath, & Logothetis, 2002), size and orientation (Murata, Gallese, 

Luppino, Kaseda, & Sakata, 2000), contributing to a view-invariant object representation 

in the cortex. 

The response latencies in the regions of dorsal and ventral stream differ 

considerably. The dorsal stream engages more areas of the fast brain, including V1, V2, 

MT and MST, resulting in shorter response latencies, usually less than 100 ms. The ventral 

stream relies more on the slow brain areas, such as TEO and TE, and has longer latencies, 

usually above 100 ms (Ungerleider & Pasternak, 2003; Bullier, 2003). Longer response 

latencies within the ventral stream may be related to lower myelination density in the grey 

matter areas of the temporal lobe compared to the dorsal stream areas in the parietal lobe 

and MT. Most connections to the dorsal stream contain higher densities of neurofilament 

protein, indicating a higher proportion of large, myelinated, rapidly conducting axons, like 

those connecting V1 and MT (Movshon & Newsome, 1996). Also, bypass connections 

between regions, such as those from V1 to V4 or from V2 to IT (Nakamura, Gattass, 

Desimone, & Ungerleider, 1993), seem to be less frequent within the ventral stream. Most 

neural connections in the ventral pathway appear to be reciprocal in a way that projections 

from the first area to the second are reciprocated by the projections from the second to the 

first (Felleman & Van Essen, 1991). Despite the reciprocity, much of the processing 

appears to be sequential, perhaps contributing to longer response latencies compared to the 

dorsal stream that engages more parallel channels (Desimone & Ungerleider, 1989). 

Moving forward through the ventral stream, there is a gradual decrease in the retinotopy of 

cortical areas (responses of single neurons in the IT cortex become independent on the 

object‘s position in the visual field) and the selectivity to increasingly complex stimulus 

features and combination of features emerges (Tanaka, 1993). Also, a degree of selectivity 

in object-related responses seems to be present in the areas that the ventral stream projects 

to – the medial temporal lobe (MTL). Mormann, et al. (2008) found that the level of object 

selectivity in regions of the MTL was related to their response latencies – the least 

selective parahippocampal cells responded the earliest with mean latencies of 271 ms, 

compared to ~400 ms for more selective cells in entorhinal cortex, hippocampus and 

amygdala. These results hint that hierarchical object processing is present also beyond the 

ventral stream. 
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To sum up, visual processing engages a sophisticated network of cortical areas 

whose organisation seems to have some hierarchical properties, as inferred from anatomy 

and the neurons‘ response latencies, but involves also large number of parallel and 

reciprocal channels. Thus, inferences about the existence of stages in visual processing are 

difficult to make. Visual areas also appear to belong to largely independent cortical 

pathways, which are specialised in processing different aspects of visual information. 

Despite much progress, the understanding of structure and function of the primate visual 

system is still fragmented and many gaps in knowledge are waiting to be filled. These 

include detailed characteristics of the neural processes involved in object categorisation 

which are the subject of this thesis. These processes have already been the subject of a 

considerable body of prior research, which is reviewed in the following section. 

1.3 OBJECT (FACE) PROCESSING IN THE PRIMATE VISUAL SYSTEM 

The processing of objects begins in V1 with the analysis of local contours 

orientation, colour, contrast and brightness in a retinotopic manner – subsets of neurons are 

responsible for different locations within the visual field (Tootell, Hamilton, Silverman, & 

Switkes, 1988; Geisler, Albrecht, & Crane, 2007). Information is then sent forward to V2, 

which mainly examines colour, combinations of orientations, basic form of a stimulus, and 

border ownership (Ts'o, Roe, & Gilbert, 2001; Zhou, Friedman, & von der Heydt, 2000; 

Anzai, Peng, & Van Essen, 2007). Moving forward into V4, cells become more jointly 

tuned to the processing of multiple stimulus dimensions and conjunctions of features, such 

as width, length or disparity (Desimone & Schein, 1987; Pasupathy & Connor, 2002) and 

about a third of the V4 cells are sensitive to stimulus curves and angles (Gallant, Connor, 

Rakshit, Lewis, & Van Essen, 1996; Pasupathy & Connor, 1999). As the information 

reaches areas TEO and TE in the IT cortex, critical features needed to activate neurons 

tend to be moderately complex (Tanaka, 1997), and some cells exhibit strong preferential 

responses towards particular object categories, for example faces (Tsao, et al., 2003; 2006, 

2008; Freiwald, et al, 2009, 2010). Cells in the IT cortex also encode configural 

relationships between object parts, supporting three-dimensional complex shapes 

representation (Yamane, Carlson, Bowman, Wang, & Connor, 2008). However, it is still 

uncertain where and when exactly the first object- and face-sensitive neural responses 

appear in the cortex and what visual information the brain uses to create object 

representations. Some aspects of when and what questions will be answered in the 
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experimental work presented in this thesis, but first research developments to date that 

have also addressed these, and related, questions will be reviewed. 

1.3.1 THE WHERE AND WHEN OF OBJECT (FACE) PROCESSING 

Accumulating research evidence coming from single cells, intracranial and scalp 

recordings, optical intrinsic signal imaging (OISI), and functional magnetic resonance 

imaging (fMRI) studies in monkeys and humans suggests that object processing is 

supported by both distributed and localised cortical activity, appearing within the first 200 

ms after stimulus onset.  Most object representations seem to rely on distributed patterns of 

excitatory and inhibitory neuronal responses of different parts of the cortex, which process 

various visual features and/or their combinations (Haxby, Gobbini, Furey, Ishai, Schouten, 

& Pietrini, 2001; Tsunoda, Yamane, Nishizaki, & Tanifuji, 2001; Cukur, Huth, Nishimoto, 

& Gallant, 2013; Sato, Uchida, Lescroart, Kitazono, Okada, & Tanifuji, 2013; Tanaka, 

1997; Wang, Tanaka, & Tanifuji, 1996; Wang, Tanifuji, & Tanaka, 1998). However, both 

human and monkey IT cortex seem to also possess localised patches of clustered neurons 

specialised in processing of particular object categories, such as faces, body-parts or places 

(Kanwisher, McDermott, & Chun, 1997; Reddy & Kanwisher, 2006; Bell, Hadj-Bouziane, 

Frihauf, Tootell, & Ungerleider, 2009; Bell, et al., 2011; Tsao, Freiwald, Knutsen, 

Mandeville, & Tootell, 2003; Tsao, et al., 2006; Hung, et al., 2005; Kiani, et al., 2005; 

Matsumoto, et al., 2005; Efiuku, et al., 2004). Whether these patches are truly category-

selective or rather display strong preferences towards one category, while still processing 

other stimuli, remains uncertain. However, there is considerable evidence that processing 

of at least one category of objects – faces – may be particularly privileged in both monkey 

and human cortex, and since face images were the primary stimuli used in the experiments 

for this thesis, the literature concerning face processing in both species will be presented 

next. 

FACE PROCESSING IN MONKEYS 

Various studies suggest that the processing of faces has preference over other 

objects in parts of IT cortex – it seems to be faster and associated with a unique neural 

circuitry (Wang, et al., 1996, 1998; Freiwald, Tsao & Livingstone, 2009; Freiwald & Tsao, 

2010; Tsao, et al., 2003, 2006). There is also evidence suggesting innate nature of face 

processing ability that is independent of experience (Sugita, 2008). Several interconnected 

cortical patches specialised in face processing have been identified in monkeys‘ areas TE 

and TEO, but their exact number and location varies across studies, due to methodological 

differences in defining category-selective regions (Bell, et al., 2009). Typically, 2-6 
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regions per hemisphere have been reported and these include: posterior lateral (PL), middle 

fundus (MF), middle lateral (ML), anterior fundus (AF), anterior lateral (AL), and anterior 

medial (AM) (Pinsk, et al., 2005; 2009; Bell, et al., 2009; 2011; Freiwald & Tsao, 2010; 

Tsao, et al., 2003; 2006; 2008; Issa & DiCarlo, 2012; Moeller, Freiwald, & Tsao, 2008). 

The recent monkey studies indicate that more than 80% (and even up to 97%) of visually 

responsive cells in these patches exhibit high selectivity for faces, with responses being 

significantly stronger and earlier than responses to non-face categories (Issa & DiCarlo, 

2012; Freiwald & Tsao, 2010; Freiwald, Tsao & Livingstone, 2009). This proportion is 

much higher compared to older studies, which reported only 10-30% of cells in a studied 

region to be face-selective (Perret, et al., 1982; Desimone, et al., 1984). The difference 

most likely stems from the methodological advances – most current studies use fMRI-

guided single-cell recordings that facilitate the targeting of a highly face-selective area, 

whereas most earlier studies recorded from regions that were less precisely localised. 

Regardless of number and location of face patches, most studies seem to agree that the 

properties of individual neurons‘ tuning to face stimuli seem to vary across and within 

patches. 

Recent evidence suggests that there is a build-up in the level of selectivity and 

timing of responses from posterior, via middle to anterior face patches (Freiwald & Tsao, 

2010; Tsao, et al., 2008; Issa & Dicarlo, 2012; Bell, et al., 2009). For example, Freiwald & 

Tsao (2010) found that neurons in ML/MF patches responded to faces viewed from 

specific angles, while neurons in AL and AM achieved partial and almost full view 

invariance, respectively. There was also an increase in number of cells significantly 

modulated by face identity – from 19% of cells in ML/MF, 45% in AL to 73% in AM 

patch. Similar build-up across face patches was visible with regards to response latencies. 

Peak latencies of the local field potentials (LFP) evoked by faces increased from ML/MF 

(126 ms), through AL (133 ms), and further to AM (145 ms) patch. Bell, et al. (2011) also 

found neuronal response latencies to faces versus other objects to appear earlier in MF/ML 

than in AL/AM patches: ~110 versus ~120 ms, respectively. Considerably earlier overall 

neuronal latencies across all the patches were reported by Issa & DiCarlo (2012) – the 

median peak latencies across all object categories in the PL, ML and AM/AL patches were 

74, 79 and 80 ms, respectively. For faces, the earliest responses in the PL patch were 

observed already ~60 ms and peaked ~80 ms post-stimulus. Overall, the temporal 

dynamics and the increase in selectivity of neuronal responses from posterior to anterior 

face patches seem to support hierarchical models of face processing in the IT cortex 
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(Tamura and Tanaka, 2001). What is puzzling is the considerable inter-studies variability 

in the timing of face-sensitive responses in the visual system. 

Multiple studies that recorded face-related single-cell activity in monkey IT or the 

superior temporal sulcus (STS) reported response latencies larger than 100 ms (Bell, et al., 

2009; Tsao, et al., 2006; Freiwald & Tsao, 2010; Freiwald, Tsao & Livingstone, 2009). 

Moreover, Efiuku, et al. (2004) demonstrated that out of a wide range of neuronal response 

latencies to faces, from 117 to 350 ms, only the late neurons (with responses >200 ms) 

correlated with monkeys‘ behavioural performance in a face identification task. Along 

similar lines, Tsao, et al. (2006) showed that only the later (~130 ms post-stimulus), but 

not the early LFP activity (~100 ms) in the middle face patch of monkeys‘ IT cortex was 

face-specific and corresponded to neurons‘ peak firing rate. On the other hand, several 

studies have observed cells responding selectively to face stimuli already around 60 – 100 

ms in anterior middle temporal sulcus (Kiani, et al., 2005), the STS (Edwards, et al., 2003; 

Keysers, et al., 2001; Sugase, et al., 1999), the PL face patch of the IT cortex (Issa & 

DiCarlo, 2012), as well as other IT regions of the cortex (Matsumoto, et al., 2005). Also, 

microstimulation of sites in the lower bank of the STS and in area TE between 50-100 ms 

post-stimulus can bias monkeys‘ classification of noise stimuli towards faces (Afraz, et al., 

2006). The timing differences across monkey studies could reflect real timing differences 

among neurons, but they could also be related to methodological differences: first, the 

many different locations the recordings have been made from (Yovel & Freiwald, 2013) 

and second, the problem with clearly defining what constitutes a face-selective region (Issa 

& DiCarlo, 2012; Tanaka, 2003). Thus, the evidence is mixed, but it seems that at least 

some of the face-selective sites in monkey IT cortex can respond already before 100 ms. 

FACE PROCESSING IN HUMAN BRAINS 

In humans, the object processing network involves areas in lateral occipital and 

ventral temporal lobe. In particular, strong preferential responses towards faces versus 

other object categories have been found in the midfusiform gyrus (the fusiform face area - 

FFA), the inferior occipital gyrus (the occipital face area - OFA) and the posterior superior 

temporal sulcus (pSTS) (Hoffman & Haxby, 2000; Kanwisher & Yovel, 2006; Sergent, et 

al., 1992; Kanwisher, McDermott & Chun, 1997). These regions have been associated with 

processing of invariant face characteristics, such as gender and identity, but also 

changeable face features, such as eye gaze or emotional expression (Hoffman & Haxby, 

2000; Smith, et al., 2007; Andrews & Ewbank, 2004; Engell & Haxby, 2007). The 

importance of these regions in face processing is highlighted by neurological studies of 
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patients suffering from prosopagnosia – inability to recognise faces. Prosopagnosic 

patients suffer from lesions in various regions of the face-related network, such as the 

OFA, the FFA or the pSTS. Despite considerable heterogeneity in lesions locations and the 

extent of the recognition impairment between individual cases, data from these patients 

indicate that the OFA and the FFA are necessary for normal face identity processing 

(Rossion, Caldara, Seghier, Schuller, Lazeyras, & Mayer, 2003; Barton, Press, Keenan, & 

O'Connor, 2002). However, there has been growing evidence that FFA is also involved in 

the processing of objects other than faces (Hanson & Schmidt, 2011; Haxby, et al., 2001; 

Gauthier, 2000; Mur, et al., 2011; Huth, et al., 2012). It appears that FFA contains spatially 

segregated subdivisions whose activity is selectively enhanced and suppressed by 

categories other than faces, such as animals or vehicles (Cukur, Huth, Nishimoto, & 

Gallant, 2013; Grill-Spector, Sayres, & Ress, 2006). Broad tuning to processing of 

different object categories has been observed throughout the human ventral temporal 

cortex. For example, Haxby, et al., (2001) showed that fMRI response patterns in the 

object-selective areas that discriminated between faces, cats, man-made objects and 

scrambled texture images could also be found in the areas activated maximally only to one 

category. However, most support for the existence of face-selective regions in humans 

comes from fMRI data, which measures blood oxygenation levels in the cortex (BOLD 

response), and hence is not a direct measure of functional specialisation of cells. Moreover, 

demonstrating that a given area strongly responds to particular object categories is 

necessary, but not sufficient, to conclude that this area performs object recognition.  

To measure how fast category-sensitive responses appear in the human brain, the 

vast majority of studies use non-invasive electrophysiological scalp recordings (EEG and 

MEG). There is a considerable debate regarding what cognitive processes are reflected in 

the shape (amplitude, latency) of the ERP waveforms in response to visual stimulation. 

Particularly widely debated is categorical sensitivity of the so called N170 component – a 

negative deflection of the waveform visible ~170 ms post-stimulus (ranging typically from 

130 – 200 ms). The N170 tends to be larger in response to faces compared to a variety of 

other stimulus categories (Rossion, Joyce, Cottrell, & Tarr, 2003; Itier & Taylor, 2004; 

Rousselet, Macé, & Fabre-Thorpe, 2004; Bentin, McCarthy, Perez, Puce, & Allison, 1996), 

although some studies question its sensitivity to faces (Thierry, 2007). The N170 has been 

linked with activity in the OFA, FFA and the STS (Deffke, et al., 2007; Shibata, et al., 

2002; Herrmann, Ehlis, Muehlberger, & Fallgatter, 2005; Itier & Taylor, 2004; Nguyen & 

Cunnington, 2014; Nguyen, Breakspear, & Cunnington, 2013), although recently the face-
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related activity in the OFA and the FFA/STS have been dissociated and linked with the P1 

and the N170, respectively (Desjardins & Segalowitz, 2013; Sadeh, Podlipsky, Zhdanov, & 

Yovel, 2010). It has not been determined yet what kind of neural processes the N170 is 

driven by and some studies have pointed out its link to task-related processes (Rousselet, et 

al., 2011) and expertise (Tanaka & Curran, 2001). It has also been suggested that the N170 

deflection may reflect the accumulation of diagnostic face information useful for decision 

making, that concludes when the N170 peaks (Schyns, Gosselin, & Smith, 2009; Smith, et 

al., 2007).  

However, the notion that the N170 is the first marker of face-related processes has 

been challenged by a number of studies. A considerable number of other studies have 

found ERP face-sensitivity before the N170 time window, in particular around the first 

positive ERP peak called P1, typically visible between 80 - 120 ms post-stimulus. Studies 

report delayed P1 latencies for inverted versus upright faces (Itier & Taylor, 2002, 

Linkenkaer-Hansen, et al., 1998) or amplitude alterations when intact face images are 

compared to their pixel scrambled versions (Linkenkear-Hansen, et al., 1998; Herrmann et 

al., 2005), images of buildings (Halit, et al., 2000) or places (Rivolta, et al., 2012). These 

early (~100 ms) face-related responses usually appear around medial and inferior occipital 

brain/scalp regions, around the location of striate and extra-striate visual areas, including 

the OFA (Linkenkear-Hansen, et al., 1998; Halit, et al., 2000; Rivolta, et al., 2012). It is 

uncertain if such early face-sensitive responses are also present in the FFA. Several studies 

using depth recordings from the fusiform gyrus have reported local field potentials (LFPs) 

in response to faces peaking at various times after 100 ms (Allison, Puce, Spencer, & 

McCarthy, 1999; Halgren, Baudena, Heit, Clarke, & Marinkovic, 1994; McCarthy, Puce, 

Belger, & Allison, 1999; Puce, Allison, & McCarthy, 1999; Barbeau, et al., 2008). 

However, none of these studies have reported the onsets of the responses. There are also 

few reports of face-sensitive responses, visible as early as 50 – 80 ms after stimulus 

presentation, captured using intracranial depth electrodes in medial occipital lobe (Halgren, 

et al., 1994), or using scalp ERPs (Seeck, et al., 1997; Mouchetant-Rostaing, et al., 2000; 

George, et al., 1997). However, the latter group of findings has been linked to habituation 

and priming processes based on perceptual similarity of visual stimuli rather than category-

specific processing (Debruille, Guillem, & Renault, 1998). 

Further support for the early category-sensitive processes comes from studies that 

applied pattern classifiers trained on electrophysiological data to discriminate responses 

associated with different object categories. The classifiers were able to decode stimulus 
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category (faces, natural scenes, tools, bodies) with above chance accuracy from the activity 

in occipital lobe and the inferior occipital gyrus (where the OFA is located) already from 

60 – 95 ms onwards (van den Nieuwenhuijzen, et al., 2013; Carlson, et al., 2013; 

Cauchoix,et al., 2014; Isik, et al., 2013), and in the fusiform gyrus from 100 ms onwards 

(Liu, et al., 2009). In the latter study however, the large high-pass filter cutoff of 1Hz 

applied to the data might have smeared the onset effects back in time (Acunzo, 

MacKenzie, & van Rossum, 2012; Rousselet, 2012; Widman & Schroger, 2012). Pattern 

classifiers are informative tools, useful to study multivariate patterns of activation in high 

dimensional space, such as the brain. However, one concern with the classifier studies is 

that demonstrating that a classifier is able to detect response patterns useful for 

discrimination between object categories does not mean that these response patterns 

produced object representation that are available to the brain or used by the brain in 

explicit object categorisation. Still, a lot of uncertainty remains concerning the amount of 

diversity and overlap in response tuning of individual neurons within face-selective 

patches, which can support robust yet precise face recognition mechanisms. 

All in all, it seems that in both monkey and human brains, sensitivity to object 

category may appear already around or before 100 ms after stimulus presentation, but the 

overall evidence is inconclusive. To appropriately study ERP onsets of face processing in 

humans, advancements in methodology are necessary. Research reported in this thesis 

(Section 4) uses causal filtering of EEG data which does not distort onsets, robust statistics 

with spatial-temporal cluster-based multiple comparisons correction, and analyses of 

single-subject data in a sample of 120 subjects, to quantify the onsets of face-sensitive ERP 

responses in the human visual system.  

COMPARISON BETWEEN MONKEY AND HUMAN FACE PROCESSING 

SYSTEMS 

The visual systems in monkey and human brains have important homologies as 

well as noticeable and important differences. The primary visual cortex occupies only 

about 3% of total cortical volume in humans, in comparison to 6% of the cortex in 

chimpanzees and 11-12% in macaques (Sereno & Tootell, 2005). However, the 

arrangement of many retinotopically organised visual areas in human occipital cortex 

strongly corresponds to the pattern found in macaques. These areas include: V1, V2, V3 

(V3d), VP (V3v), V3A, and V4v (DeYoe, et al., 1996; Orban, Van Essen, & Vanduffel, 

2004; Tootell, Tsao, & Vanduffel, 2003). Beyond these regions, the correspondence 

between human and monkey visual systems is less obvious, and the similarities and 
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dissimilarities between species in terms of the areas that support object and face processing 

are still debated.   

In both human and macaque monkeys, multiple face-sensitive areas have been 

found, located primarily in the temporal lobes, in regions associated with object 

processing. However, the exact number and locations of face areas seem to differ between 

the two species; in macaques face patches seem to be more numerous than in humans and 

located mostly inside or close to the STS, while the majority of human face areas are 

situated more ventrally (Figure 1.5). Recently though, a face patch located in the ventral 

TE has been identified in monkeys (Ku, Tolias, Logothetis, & Goense, 2011), and it has 

been shown that more face-responsive areas may exist in humans, as an additional one has 

been identified in human anterior ventral temporal cortex (Pinsk, et al., 2009; Tsao, 

Moeller, & Freiwald, 2008). This suggests that the anatomical correspondence between 

macaque and human face processing systems might be higher than previously thought. 

 

Figure 1.5. Face areas in monkey (left) and human (right) brains. Face patches in 

monkeys: PL – posterior lateral; MF – middle fundus; ML – middle lateral; AF – 

anterior fundus; AL – anterior lateral; AM – anterior medial. Face areas in humans: 

OFA – the Occipital Face Area; FFA – the Fusiform Face Area; STS-FA – the superior 

temporal sulcus-face area. (Adapted from Yovel & Freiwald (2013), Fig. 1A). 

In both monkey and human brains, face areas seem to form a network. However, 

while in macaques face processing regions are tightly interconnected (Moeller, Freiwald, 

& Tsao, 2008), it seems that in humans structural and functional connectivity between the 

OFA and the FFA is stronger than between the OFA/FFA and the STS (Gschwind, 

Pourtois, Schwartz, Van De Ville, & Vuilleumier, 2012; Davies-Thompson & Andrews, 

2012.). In both species, though, there seems to be an increase in response latencies, face 

selectivity, and receptive field size from posterior to anterior face regions, suggesting that 

hierarchical organisation of the face recognition system might be one of the common 

features of macaques and humans (Freiwald & Tsao, 2010; Hemond, Kanwisher, & Op de 

Beeck, 2007; Sadeh, Podlipsky, Zhdanov, & Yovel, 2010). Thus, it has been proposed that 

the PL patch in monkeys might be an equivalent of the OFA in humans, supporting 
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intermediate stages of face processing (Issa & DiCarlo, 2012), while the ML/MF and 

AL/AF/AM patches might correspond to different parts of the STS and the FFA (Yovel & 

Freiwald, 2013; Tsao, Moeller, & Freiwald, 2008; Pinsk, et al., 2009; Rajimehr, Young, & 

Tootell, 2009). Finally, the absolute response latencies are longer in humans than in 

monkeys and this is mainly due to differences in brain size across species (Sereno & 

Tootell, 2005). When extrapolating from monkey to human latencies, the 3/5 ratio rule 

seems to provide a good fit with the data (Schroeder, et al., 1995; 2004).  

All in all, the correspondence between macaque and human face processing 

systems is evident, but still many dissimilarities exist. Establishing homologies between 

species has proven difficult, as multiple criteria need to be considered, such as structural 

and functional similarities (e.g. number of synapses per neuron is 2000-6000 in monkeys 

and 7000-10000 in humans), cytoarchitecture, gene expression and connectivity links to 

behaviour (Orban, Van Essen, & Vanduffel, 2004; Yovel & Freiwald, 2013; Tsao, Moeller, 

& Freiwald, 2008). Nonetheless, studying the monkey brain can inspire important insights 

about the neural correlates of face recognition in humans.  

The description of the locations and timing of neuronal object and face processing 

is only part of the story; it is also necessary to ask what information the brain uses to 

categorise incoming visual input and how this information is used to achieve it.  

1.3.2 THE WHAT AND HOW OF OBJECT (FACE) PROCESSING 

What visual information is used by the brain to categorise objects, including faces? 

How is this information integrated in the cortex to arrive at complex object 

representations? Based on electrophysiological data and animal and human brain imaging 

various theoretical and computational models of visual object processing in the brain have 

been put forward. Most models consist of stages, resembling hierarchical organisation of 

the visual system (Hmax hierarchical model (Serre, et al., 2007), Textsynth (Portilla & 

Simoncelli, 2000), SpatialPyr (Lazebnik, Schmid, & Ponce, 2006), with the number of 

computational steps often limited by the rapidness of object categorisation. Other models 

are based on measuring certain characteristic of the visual input, such as contrast 

distributions (Ghebreab, Scholte, Lamme, & Smeulders, 2009; Scholte, Ghebreab, 

Waldorp, Smeulders, & Lamme, 2009). Object classification accuracy of several popular 

models have been tested by Crouzet and Serre (2011) who found that the Hmax and 

Textsnyth hierarchical models, that are based on processing of intermediate complexity 

features performed best and reached level of performance similar to an average observer. 
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The Weibull model measuring contrast statistics of the visual input performed poorly. 

However, because of the high complexity of the models as well as non-linearity and high-

dimensionality of the inputs, it is difficult to determine what exactly drives classification 

accuracy in these models. The important findings are that highest performing models had a 

hierarchical nature, resembling organisation of the visual system, and were mostly utilising 

features of intermediate complexity, which is consistent with empirical data (Tanaka, 

1997; Sato, et al., 2013) and theoretical models, like the one put forward by Ullman 

(2006). 

In his fragment-based hierarchy model Ullman (2006) proposed that object 

categorisation (distinguishing between object classes) and object recognition (individual 

identification) relies on a limited number of informative object features that are extracted 

during learning from observed examples of a given object class. An object feature is 

considered informative if it reduces the ambiguity about the class this object belongs to. In 

other words, an informative feature will frequently appear in objects within one class but 

not in those from outside this class. Importantly, the features are considered in the order of 

the amount of information they deliver – from most to the least informative. In Ullman‘s 

(2006) model the most informative features for object categorisation are usually of 

intermediate complexity, such as eyes for face, wheels for cars or paws for animals 

(Ullman, Vidal-Naquet, & Sali, 2002). However, recognition of individual exemplars 

within a class relies on increasingly finer, local features, all the way to the basic edges and 

lines. Therefore, an extraction of informative features takes place on multiple levels, 

suggesting a hierarchical nature of object processing. Also, via observational learning the 

brain creates an abstract representation of object that deals with robustness of 

categorisation process under different viewing conditions. These internal representations 

are later used to facilitate the speed of object recognition by serving as potential 

interpretations for the incoming visual input. Ullman‘s (2006) model predicts preferential 

activation in object processing regions in a presence of highly informative visual features 

versus less informative ones. However, it remains unclear to what extent object 

categorisation utilises high-level feature processing (shapes of different complexity) and 

low-level visual input (contrast, luminance, spatial frequency, edges or contours) 

(Rousselet & Pernet, 2011; Schyns, Gosselin, & Smith, 2009; VanRullen, 2011).  
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THE ROLE OF HIGH-LEVEL VISUAL FEATURES IN FACE 

CATEGORISATION 

Theoretically the number of potential shapes and objects that the visual system can 

encounter is infinite. Thus, shape processing needs to be robust and high-dimensional, but 

the exact nature of the dimensions remains elusive. Brincat & Connor (2004) presented ~ 

1000 different 2D silhouette shapes to macaques and found that 80% cells in TEO and TE 

areas showed significant selectivity to shapes, regardless of their retinotopic position and 

size. This suggests that neurons in these areas integrate information about multiple (usually 

2-4) contour fragments, such as straight and curved edges, using linear and nonlinear 

summation of contours signals. Linearity and nonlinearity was correlated with 

responsiveness – cells with linear responses were selective to broad range of shapes, cells 

with nonlinear responses were selective to only a few shapes or part combinations. These 

results support theories of IT selectivity to critical features, explicit coding of structural 

relations between parts, and part-based representation of objects, at least in the posterior 

IT. 

Due to its high social and evolutional importance faces are thought to be ―special‖ 

among other stimulus categories, and multiple studies have identified cells in parts of 

monkey IT cortex that appear to be sensitive to certain face fragments and/or their 

combinations. For example, Issa & DiCarlo (2012) discovered that in monkeys neuronal 

spike activity around 60 – 100 ms in 108 out of 111 sites of the posterior IT face patch 

(PL) was primarily driven by the contralateral eye-like features surrounded by the face 

outline. The other eye, nose and mouth have contributed mainly to the activity after 100 

ms? The activity between 60 – 100 ms was also independent on retinal position of the eye-

like feature and was much weaker when the eye was absent from the image. Another study 

of Freiwald, Tsao & Livingstone (2009) found that cells in the middle face patch in 

macaques signalled the presence or absence of face fragments and were tuned to the 

geometry of facial features. The most popular parameter was face aspect ratio - more than 

half the cells (59%) were tuned to it, followed by iris size (46%), height of feature 

assembly (39%), inter-eye distance (31%) and face direction (27%) with little 

representation for mouth and nose. 90% of the studied neurons responded to one or more 

critical face features (on average 2.8 per cell), but there were no cells that were tuned to all 

aspects of the face. The latter piece of evidence suggests that face detection does not rely 

on holistic processing, although facial layout geometry and eye geometry seem to be very 

important, and cells seem to encode axes, rather than individual faces. Moreover, most 

cells showed a one-to-one mapping of their firing rate to the feature value suggesting that 
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cells indeed measure feature dimensions, such as iris size or distance between eyes. The 

existence of one-to-one mapping between firing amplitude and feature value, varying 

degrees of cell feature selectivity and a considerable amount of face-related suppression of 

cell activity suggest that all levels of response, including minimal ones, may carry 

information important for object categorisation. This proposal is supported by the evidence 

from single cell recordings in macaques showing that cells in anterior IT cortex were most 

often tuned to an average face and deciphering identity of the input may rely on signals of 

varying strengths resolving individual features in a comparative process against the 

internal representation (Leopold, Bondar, & Giese, 2006). 

In humans, some studies have managed to link the processing of the contralateral 

eye with early evoked potentials, namely the N170 (Schyns, et al., 2003; Smith, et al., 

2004; 2007; 2009). Using EEG Schyns, Petro & Smith (2007) discovered that integration 

of facial features started at the contralateral eye about 50 ms before the peak of the N170 

and proceeded down the face, stopping when the information diagnostic for a particular 

expression has been integrated (and N170 peaks). The important finding was that different 

information was diagnostic for different facial expression: the eyes for fear or the mouth 

for happiness. Additionally, the further down a face the diagnostic feature was located, the 

longer it took to integrate the information and the longer the latency of the N170, meaning 

the N170 for ―happy‖ peaked later than for ―fear‖. Along the same vein, McCarthy & Puce 

(1999) found that the latency of a negative ERP peak ~200 ms post-stimulus was the 

earliest for full faces and was progressively delayed for face fragments in the order: eyes, 

lips and noses.  Thus, face (an object) processing may rely on accumulation of perceptual 

evidence that resolves in time and utilises certain critical dimensions or features that are 

highly informative (diagnostic) for a given category (Philiastides & Sajda, 2006; Ullman, 

2006; Smith, et al., 2004; Issa & DiCarlo, 2012).  

Indeed, recent evidence from monkeys shows that patches of face-selective neurons 

in the anterior IT cortex not only have common functional properties – display similar 

patterns of activity to the preferred object – but also consist of finer functional columns 

responsive to individual features of the stimulus and their configurations (Sato, et al., 

2013). Columnar organisation of monkey area TE where cells with overlapping but slightly 

different selectivity cluster together was also found by Tanaka (1993). These findings 

indicate that object representation is distributed across many cells in multiple columns, not 

by simple summation of feature columns, but rather based on combinations of active and 

inactive columns representing individual features (Tsunoda, Yamane, Nishizaki, & 
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Tanifuji, 2001). Such distributed and hierarchical representation of objects in the cortex 

allows responses to remain robust to subtle changes in visual input, while at the same time 

facilitates precision of the representation (Tanaka, 1993; 1997).  

It remains to be determined if different face patches support different and 

complementary aspects of face representations and to what extent they overlap. It is 

possible that processing of different face fragments is supported by different face patches, 

embedded in a wider object representation network (Sato, et al., 2013), or by cortical areas 

outside of those currently associated with face or object categorisation (Tsao & 

Livingstone, 2008). Additionally, because IT cells do seem to display preferences towards 

one or more visual features, the challenge would be to constrain the stimulus space taking 

into consideration these preferences. Finally, it is possible that for specific categories or 

particular tasks, the brain might make use short-cuts and rely more on global, low-level 

input, instead of high-level visual information. 

LOW-LEVEL FEATURES IN OBJECT CATEGORISATION - THE ROLE OF 

IMAGE FOURIER PHASE AND AMPLITUDE SPECTRA 

There is evidence that object and face recognition processes rely not only on the 

high-level features and their combinations, but also on low-level properties of the visual 

input, such as contrast, spatial frequency, edges and contours. It has been suggested that 

particularly the early (~100 ms) neuronal activity associated with object categorisation is 

sensitive to low-level cues (Rossion & Caharel, 2011). Particularly debated is the 

contribution of Fourier amplitude (power) and phase spectra to object-related brain 

activity. Amplitude spectrum carries information about orientations and spatial frequency 

content of an image, whereas the phase spectrum contains information about local image 

structures, such as edges and contours, because edges require the alignment of phase across 

different spatial frequency components (Morrone & Burr, 1988; Kovesi, 1999; Hansen, 

Farivar, Thompson, & Hess, 2008). The importance of phase for object recognition has 

been demonstrated in studies conducted by Piotrowski and Campbell (1982) and 

Oppenheim and Lim (1981) who showed that, when mixing the Fourier amplitude of one 

image with Fourier phase of another image, the outcome resembles its phase contributor 

much more than its amplitude contributor. Since then, studies using well-controlled stimuli 

with amplitude spectra equated between images have demonstrated that early visual 

processing appears to rely mostly on phase information by detecting edges and lines of the 

object starting at about 130-150 ms after stimulus onset (e.g. Loschky & Larson, 2008; 

Wichmann, Braun, & Gegenfurtner, 2006; Rousselet, Pernet, Bennet & Sekuler, 2008; 
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Rousselet, Husk, Bennett, & Sekuler, 2005; Wichmann, Drewes, Rosas, & Gegenfurtner, 

2010; Jaques & Rossion, 2006; Allison, Puce, Spencer, & McCarthy, 1999; Rousselet, et 

al., 2007). 

Moreover, animal data indicate that complex cells in V1 are more sensitive to their 

preferred visual features when they are present in non-random phase natural scenes 

compared to random phase images (Felsen, Touryan, Han, & Dan, 2005). Interestingly, 

this increased sensitivity is present for images of natural phase but random power spectrum 

and absent for images of random phase and natural power spectrum. This suggest that 

complex cells rely more on the phase regularities when detecting visual features, than on 

amplitude spectrum which is consistent with studies highlighting the importance of phase 

congruence in visual processing (Morrone & Burr, 1988; Kovesi, 1999). Furthermore, 

Phillips & Todd (2010) showed than even when dealing with macrostructures of 

contrasting luminances, the visual system does not need amplitude spectrum for 

discrimination between them, as all the necessary information can be completely extracted 

from short- and long – distance spatial alignments of features contained in a phase domain. 

These findings emphasise how essential phase information is for object recognition, 

although they do not answer what is the role (if any) of amplitude spectrum in this process. 

Many natural images have similar spatial frequency amplitude spectra, and phase is 

thus essential to discriminate among them. However, when images have substantially 

different Fourier amplitudes, the role of phase may be no longer essential (Juvells, 

Vallmitjana, Carnicer, & Campos, 1991). This idea is supported by the existence of 

computational algorithms that can efficiently classify images of natural scenes using non-

localized or coarsely localized amplitude spectrum information (Oliva & Torralba, 2001; 

Crouzet & Serre, 2011). Furthermore, human observers can detect degradation in amplitude 

spectra in meaningless synthetic textures (Clarke, Green, & Chantler, 2012), or discriminate 

between wavelet textures using higher order statistics (Kingdom, Hayes, & Field, 2001). 

Hence, provided that amplitude spectrum information is available for the task at hand, human 

observers might be able to use it when categorising objects and natural scenes. In particular, 

some studies suggest that when a stimulus is presented rapidly, the amplitude spectrum may 

provide a type of abstract information not obviously related to the semantic content of an 

image, but sufficient for its broad categorisation (Oliva & Torralba, 2006; Joubert, Rousselet, 

Fabre-Thorpe, & Fize, 2009; Honey, Kirchner, & VanRullen, 2008; Crouzet & Thorpe, 2010; 

VanRullen, 2006).  
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Alternatively to the two previous accounts, it is also plausible that object and scene 

categorization do not depend on phase or on amplitude alone, but on an interaction between 

them. For instance, categorisation accuracy decreases when the amplitude of each stimulus is 

replaced by the average amplitude across stimuli, while retaining the original phase (Drewes, 

Wichmann, & Gegenfurtner, 2006). Accuracy is also affected when the amplitude is swapped 

within image category in an animal detection task - e.g. the amplitude spectrum of a fish is 

mixed with the phase spectrum of a tiger (Gaspar & Rousselet, 2009).  Because swapping 

amplitude spectra within category should preserve their diagnostic properties in an animal 

detection task, this result suggests the existence of a specific relationship between phase and 

amplitude spectra, which, when disturbed, hampers image classification.  

Some neuroimaging studies have also claimed that neural processes underlying 

object recognition are at least partially driven by global image information contained in the 

amplitude spectrum. Rossion & Caharel (2011) reported ERP differences between two 

categories of colour images: faces and cars. The differences were visible as early as 80 – 

100 ms post-stimulus onset for both intact and phase scrambled versions of faces and cars. 

The authors concluded that the differences observed between the intact picture categories 

were due to low-level image properties (amplitude spectrum), and not to high-level 

categorical information. Another study using fMRI showed larger BOLD (Blood 

Oxygenation Level Dependent) responses to faces compared to places in face-preferential 

brain regions (FFA) for intact images and for their phase-scrambled versions, although the 

responses were weaker in the latter case. Based on these results, the authors concluded that 

at least part of the categorical BOLD differences to intact images could be due to 

uncontrolled low-level image properties Andrews, Clarke, Pell, & Hartley (2009). 

However interpretations proposed in both of these studies seems questionable. In the case 

of Rossion and Caharel (2011) study, the early ERP responses could have been driven by 

differences in contrast or colour between the two image categories – a potential confound 

the authors acknowledged. Moreover, both studies used only intact and phase-scrambled 

images of faces and places and did not include necessary control conditions in which 

amplitude spectra were equated across categories or swapped between categories. One of 

the purposes of the work outlined in this thesis (Section 2) was to resolve the debate 

concerning the relative contribution of Fourier phase and amplitude spectra to ERP 

responses associated with object categorisation by employing parametric manipulation of 

phase and amplitude along the continuum from 0 to 100% in 10% steps intervals.  
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To sum up, it seems that both human and monkey brains contain a number of 

distributed regions that are especially tuned to processing of faces and can respond to them 

remarkably fast – even before 100 ms post-stimulus. However, the exact number, 

organisation and response latencies of these regions as well as the role each of them plays 

in face recognition, remains the subject of continuous investigation. It is also unclear what 

visual information the brain uses to categorise images, and when this information 

modulates the ERP responses. Further, there are factors than can influence the processing 

speed of complex objects in the brain, such as aging. Accumulating experimental evidence 

points out that visual processing speed decreases with age and this slowdown is related to a 

variety of physiological changes occurring in the aging brain which will be reviewed 

below.  

1.4 THE AGE-RELATED SLOWDOWN IN VISUAL PROCESSING SPEED 

Aging has been associated with a decline in cognitive abilities and one of the 

indicators of this decline is a decrease in processing speed. Many older people often 

require more time to perform even simple cognitive tasks such as detection, discrimination 

or recognition of visual targets (Salthouse & Ferrer-Caja, 2003; Verhaeghen & Salthouse, 

1997). Most commonly, the age-related slowdown is visible in the increase in reaction 

times when performing a task requiring a speeded response with a key-press upon making 

a decision (Salthouse, 2000). However, it is still unclear whether effects of aging on 

processing speed are independent from its effects on other cognitive variables, including 

memory or reasoning, but models that assume independence seem to fit quite poorly into 

the data (Salthouse, 1998; Salthouse & Czaja, 2000). Instead, evidence from research 

seems to support a shared model in which age has a broad effect on many variables related 

to cognitive and non-cognitive functioning (e.g. visual acuity or auditory sensitivity). 

Moreover, the shared and unique magnitude of aging effects on these variables, translated 

into behavioural changes, can be measured (Lindenberger & Potter, 1998; Lindenberger, 

Mayr, & Kliegl, 1993; Verhaeghen & Salthouse, 1997). Thus, it seems that aging 

influences what is common between different cognitive abilities, for example memory and 

processing speed – a notion supported by evidence that most cognitive variables are 

typically positively correlated (Deary, 2000).  

It appears that alterations in processing speed are a major factor underlying age-

related impairments in cognitive deficits because about 75% of variance is shared between 
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age-related slowing and multiple other measures of cognitive performance (Salthouse, 

1996). Based on this data, a theory has been put forward in which slow processing impairs 

cognitive performance in two ways: via limited time and simultaneity mechanisms. First, if 

early operations take longer with age, the amount of time available for later operations is 

reduced – an issue primarily relevant in the presence of external time limits or concurrent 

task demands. Second, products of early processing may be lost or become obsolete by the 

time later processing is completed, meaning that some information might not be available 

when needed. Thus, a slowdown in processing speed with age may have a variety of 

influences on cognitive processes, which could be reflected in altered brain activity and 

behavioural patterns. However, there are several concerns in aging research that limit the 

inferences one can make with regards to the properties of the age-related decline in 

cognition. These include the correlational nature of age-related effects, the potential for 

spurious correlations and the commonness of cross-sectional studies.  

Because age cannot be randomly assigned or manipulated, the effects of age on any 

variable cannot be interpreted in causal terms, but only in correlational. Despite this 

limitation, age can be conceptualized as a continuum along which causal factors operate, 

thus may remain an informative index of cumulative causal influences (Salthouse & 

Ferrer-Caja, 2003). Another issue concerns the potential for spurious correlations if a 

relationship between two variables, that both change with age, is found to be significant. 

Partialling out the influence of age from both of these variables before correlating them is a 

robust way to validate this existence of a true relationship. Finally, the prevalence of cross-

sectional comparisons with relatively small sample sizes and the limited number of 

longitudinal studies restricts the scope for inferences about the process of aging. However, 

both longitudinal and cross-sectional studies converge on the finding of nearly linear age-

related decline in cognitive abilities, including speed (Salthouse, 2011).  

Many behavioural markers of changes in cognitive processing speed with age exist. 

These changes may stem from cumulative age-related declines across multiple neuronal 

systems that support fast object categorisation and the unique pattern of these declines may 

vary between individuals. Various changes in brain physiology and in patterns of neural 

activity may be related to reduction in speed of visual object categorisation with age and 

these will be reviewed next. 

A variety of structural and functional changes occur in the healthy aging brain (Raz 

& Rodrigue, 2006) that might contribute to the age-related cognitive decline, including a 
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decrease in processing speed. These changes include alterations in grey and white matter 

volumes, changes in myelination of axons, hyperactivity of neurons and a decrease in the 

selectivity of neuronal responses. These will be discussed in the following sections. 

1.4.1 AGE-RELATED CHANGES IN GREY AND WHITE MATTER 

First, studies show that with age there is a decrease in overall brain tissue volume 

by about 0.4 – 0.5% / year (Resnick, Pham, Kraut, Zonderman, & Davatzikos, 2003; Tang 

et al., 2001; Chee et al., 2009) manifesting itself in surface area shrinkage and cortical 

thinning. The rate of brain volume decrease seems to accelerate from the mid-fifties to 

about 1 – 1.5% / year, with considerable variation across individuals (Raz, et al., 2005). 

The estimates of grey matter volume shrinkage vary between studies and range between 

0.2 – 0.4 % / year (Good, et al., 2001; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 

2003; Chee, et al., 2009). The majority of volumetric studies show that some grey matter 

regions undergo especially severe volume loss with age, in particular prefrontal areas, but 

also anterior insula, cerebellum and the hippocampus. Significant but more moderate age-

related changes appear in medial temporal (entorhinal cortex), inferior temporal, parietal 

and occipital association areas, while sensory cortices, including primary visual cortex, 

seem to be largely spared (Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010; Raz, 

et al., 2005; Good, et al., 2001; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 2003; 

Raz, Rodrigue, & Haacke, 2007; Raz, et al., 2013). Studies using voxel-based 

morphometry (VBM) to access local tissue density confirm, to a large extent, the findings 

obtained using volumetric approaches, with an exception of additional striate cortex 

atrophy (Tisserand, et al., 2004). 

Significant individual differences exist in the level of age-related atrophy in total 

and regional brain tissue volume. Individual variability in volume decline is visible in 

majority of brain regions, but it is especially pronounced in the visual cortex, fusiform 

gyrus, inferior temporal cortex, cerebellum and prefrontal white matter and seems to 

correlate across regions, suggesting a common cause (Raz, et al., 2005). Variety of 

moderators can contribute to variation in brain volume shrinkage with age. These include 

factors related to vascular health, such as hypertension (Strassburger, et al., 1997), glucose 

homeostasis (Moran, et al., 2013), a person‘s genotype (Moffat, Szekely, Zonderman, 

Kabani, & Resnick, 2000) and the presence of pathological changes, such as Alzheimer‘s 

disease (Thompson, et al., 2001). For example, Raz et al. (2005) discovered the age-related 

acceleration of shrinkage of the hippocampus was limited to older adults that were 

diagnosed with hypertension. Also, regions that are normally preserved in the healthy 
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aging, such as striate cortex show deterioration in persons with hypertension and other 

vascular disease factors (Raz, et al., 2007). Because individual differences in brain 

shrinkage may potentially contribute to individual variability in cognitive abilities, 

sampling a wide range of ages for experimental investigations becomes particularly 

important in aging research.  

A link between age-related regional grey matter volume shrinkage and change in 

cognitive abilities, measured with variety of behavioural tests, is unclear (Raz & Rodrigue, 

2006). Some data suggest that a loss in frontal grey matter and hippocampus volume in 

older adults is linked to a drop in performance in fluid intelligence and memory tests (Raz, 

et al., 2008; Taki, et al., 2010). Reduced processing speed in elderly, expressed in reaction 

time prolongations, has been associated with a decline in total grey matter volume in a 

sample of ~250 participants (Chee, et al. 2009). Some studies have found that a decrease in 

processing speed was related to changes in cerebellar morphology with age, in particular 

grey matter volume loss in the vermis (MacLullich, et al., 2004; Paul, et al., 2009; Eckert, 

Keren, Roberts, Calhoun, & Harris, 2010), linking processing speed declines with sensory-

motor problems (Hogan, 2004). Regions involved in object processing network, including 

occipital associative areas, inferior temporal lobe and fusiform gyrus seem to undergo 

moderate volume shrinkage with aging (Raz, et al., 2005; Chee, et al., 2009; Kennedy, et 

al., 2009) but how this relates to age-related deficits in face perception observed for 

example by Salthouse (2004) remains a mystery. Minimal atrophy of the primary visual 

cortex suggests the basic perceptual processes are largely preserved in healthy aging, 

although factors other than volume shrinkage may negatively impact striate and other 

cortices‘ performance, such as myelin degeneration and cells‘ response selectivity which 

will be discussed next. 

Post-mortem and in vivo examinations indicate that with age there is a considerable 

and widespread decline of white matter volume, even in very healthy individuals (Piguet, 

et al., 2009; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 2003). Over a lifetime, 

white matter volume appears to decrease by 20-30% and the overall length of myelinated 

nerve fibers drops by nearly 30%, or even up to 45% in some samples (Marner, 

Nyengaard, Tang, & Pakkenberg, 2003; Tang, Nyengaard, Pakkenberg, & Gundersen, 

1997; Pakkenberg & Gundersen, 1997). This decline seems to accelerate in advanced aging 

(Salat, et al., 2009) and is associated with age-related drop in a number of myelinated 

fibers (Marner, Nyengaard, Tang & Pakkenberg, 2003), and a loss and deformation of 

myelin sheaths (Peters, 2002; Peters, Moss & Sethares, 2000), despite overall preservation 
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in number of neurons (Freeman, et al., 2008). The axons that lost their myelin are 

continually remyelinated by oligodendrocytes whose number do not decline with age. 

However, axons‘ new sheaths are significantly thinner and contain additional nodes of 

Ranvier prolonging the conduction rates along nerve fibres (Peters, 2009). Additionally, 

myelin sheaths can become deformed, for example by developing local splittings or 

additional myelin layer making the overall sheath too large for an axon. Both types of 

alterations in myelination were observed in V1 in monkeys, despite no observed loss in the 

number of myelinated nerve fibers in their visual cortex (Nielsen & Peters, 2000). These 

breakdowns of myelin correlated significantly with cognitive deficits in individual 

monkeys. The correlation was related to how breakdowns of myelin lead to changes in 

axonal conduction velocities across the brain (Peters, Moss, & Sethares, 2000). Thus, age-

related myelin degeneration can contribute to the gradual slowing of the transmission rates 

across neuronal populations and may lead to slower processing in aging. 

Studies accessing white matter microstructure using diffusion tensor imaging (DTI) 

and tractography indicate that aging does not have an uniform effect on white matter 

density in different brain regions (Good, Johnsrude, Ashburner, Henson, Friston, & 

Frackowiak, 2001; Deary, Bastin, Pattie, Clayden, & Whalley, 2006; Salat, et al., 2005). It 

seems that regions myelinated late in the course of brain development (e.g. prefrontal 

cortex) tend to undergo stronger age-related shrinkage (Raz, 2000). The deterioration 

seems to increase gradually starting from posterior to anterior brain areas with frontal 

cortex being most strongly affected (Salat, et al., 2009; Davis, et al., 2009). Only few 

studies have looked at the age-related changes in white matter in areas associated with 

object processing. Salat, et al. (2009) discovered a loss in white matter volume in the 

inferior temporal cortex in older adults, in particular the fusiform gyrus, and Thomas, et al. 

(2008) found an age-related reduction in diffusion metrics in one of the fiber tracts passing 

through the fusiform regions (inferior fronto-occipito fasciculus – IFOF). However, no 

statistical tests that access links between white matter integrity and cognitive abilities were 

reported in these studies. A drop in number of myelinated nerve fibers in anterior 

commissure, which supports the transfer of visual information between hemispheres, has 

been linked to cognitive decline in elderly (Sandell & Peters, 2003). Further, a disruption 

in white matter connectivity in the ventral occipito-temporal cortex has been found to 

correlate with face recognition impairments in patients with congenital prosopagnosia 

(Thomas, et al., 2009). Given that object and face processing is supported by a distributed 

network of brain areas, including the ventral pathway, it is possible that a breakdown in 
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connectivity between these areas caused by age-related white matter deterioration may lead 

to deficits in face perception found for example by Salthouse (2004). 

Multiple studies have reported links between age-related changes in density of 

white matter and modulations in behavioural markers of processing speed, mostly reaction 

times. Longer processing in the elderly seems to correlate with frontoparietal (Kennedy & 

Raz, 2009) and global indices of white matter integrity loss (Deary, et al., 2006), although 

some studies do not find this link (Charlton, et al., 2006; Charlton, et al., 2008). An 

association between white matter density loss in the anterior limb of the internal capsule 

and longer processing in visual detection task has also been reported (Madden, et al., 

2004). What also tends to affect speed-dependent performance are ischemic lesions 

expressed as white matter hyperintensities (WMH) which are common in normal healthy 

elderly (Gunning-Dixon & Raz, 2000; Prins, et al., 2005; van den Heuvel, et al., 2006). 

Rabbit et al. (2007) found that WMH prevalence accounted for all of the age-related 

variance between individuals 65 – 84 years old in psychometric tests of speed. Thus, it 

seems that breakdowns in integrity and transmission between fiber bundles of white matter 

white matter can disrupt or slowdown cognitive processing abilities in older adults, 

including object categorisation.  

Finally, there are considerable individual variations in white matter volume and 

these are significantly related to grey matter volume, especially in the frontal brain regions 

(Raz, Rodrigue, & Acker, 2003). Accumulating evidence indicates that both grey and 

white matter undergo a number of changes leading to a general slowing in neural 

information processing, although their exact contributions are not clear. 
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1.4.2 AGE-RELATED DEGRADATION OF RESPONSE SELECTIVITY OF 

NEURONS AND DECREASE IN SPECIALISATION OF NEURONAL 

NETWORKS 

Another possible cause of aging related slowdown in neural visual information 

processing is the degradation in response selectivity of neurons in striate and extrastriate 

visual cortices. With senescence, receptive filed properties, such as orientation and 

direction selectivity of cells in V1 and V2, decrease in rhesus monkeys (Schmolesky M. , 

Wang, Pu, & Leventhal, 2000; Yu, Wang, Li, Zhou, & Leventhal, 2006). This is 

accompanied by neural hyperactivity – an increase in cells‘ spontaneous activity, visual 

responsiveness and a decrease in signal-to-noise ratio (Schmolesky, et al., 2000; Yu, et al., 

2006; Hua, Li, He, Zhou, Wang, & Leventhal, 2006). Wang et al. (2005) have found that in 

old monkeys‘ V1 and V2 neural hyperactivity was accompanied by delays in the latency of 

intracortical (within V1 and V2) as well as intercortical (between V1 and V2) transfer of 

information and the effect was much more severe in V2 compared to V1 (Figure 1.6). 

Interestingly, there were no age-related delays in cell responses in layer 4 of V1 (both 4Cα 

and 4Cβ layers) that receives a direct input from the magnocellular and parvocellular 

pathways layers of lateral geniculate nucleus (LGN) and projects to the remaining layers of 

V1 and from there to V2. The response latencies of cells in V1, outside of layer 4, were 70 

ms (young) and 84 ms (old) and in V2, 82 ms (young) and ~114 ms (old)
1
. There was also 

a significant age-related increase in the range of responses between short and long latency 

cells, from 15 ms (young) to 30 ms (old) in V1 and from 30 (young) to 60 ms (old) in V2. 

This suggests that intracortical information processing speed declines with age and this 

effect is more pronounced in V2 than in V1. Moreover, the information transfer between 

V1 and V2 took on average longer in old monkeys: ~30 ms compared to ~10 ms (median = 

~20 ms) in the young ones. Varying aging effects on cells‘ response latencies in V1 and 

V2 suggest that different delays might be induced on inputs coming to the higher visual 

areas from V1 and V2 in a way that is difficult to predict. 

                                                 
1
 The reported latencies come from Table 1 in Wang et al. (2005). Note the discrepancy between old 

monkeys‘ V2 latencies reported in Table 1 (114 +- 24 ms), and their median V2 onset latencies presented in 

Figure 2 (~105 ms). The reason for this discrepancy is uncertain since there is not enough details in the 

method section and in the Table 1 caption with regards how the latencies in Table 1 were computed. 
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Figure 1.6.. Onset latencies of V1 and V2 cells in young and old monkeys. The 

percentage of cells with any given onset latency in areas V1 [including layer 4 – 

author’s ed.] and V2 are shown in cumulative distribution plots, where solid grey and 

black lines represent the combined data of young and old monkeys, respectively  [0.5 

percentile indicates median latency – author’s ed.]. The difference in latency between 

cells in areas V1 and V2 is greater in old animals indicating that sig nal transfer between 

these areas takes longer in old monkeys. Also, the range of latencies within both areas 

V1 and V2 is significantly greater in old than in young monkeys. Thus, intracortical 

signal transfer takes longer in both areas V1 and V2 of old monkeys and area V2 is 

affected more than area V1. (Reprinted from Wang et al., 2005, Fig.2). 

 

The observed delays can have several potential underlying correlates. One of them 

is previously discussed alterations in axon myelination leading to a slowdown in 

conduction along nerve fibres. Another hypothesis was proposed by Wang, et al. (2005) 

who suggested that cell hyperactivity in the older brain may induce early failures in 

excitatory transmission that in turn is reflected in increased latencies of information 

transfer, but no correlation between excitatory transmission and age-related delays was 

reported in this study. An increase in visually driven spontaneous responses in monkeys‘ 

V1 and V2 also implies a possible degradation of inhibitory mechanisms within cortical 

circuits. Studies investigating the role of GABA inhibitory transmitter and its agonists 

show that in a healthy brain GABA mediated inhibition is prevalent across the neocortex 

(Letinic, Zoncu, & Rakic, 2002) and that level of GABA declines with age (McGeer & 

McGeer, 1976). Moreover, administration of GABA into V1 cells of old monkeys led to 

improvement of previously deteriorated orientation and motion direction selectivity of 

these cells, decreased cells‘ spontaneous activity and increased their ability to signal visual 

stimuli (Leventhal, Wang, Pu, Zhou, & Ma, 2003). GABA mediated inhibition also 

contributes to the generation of receptive fields‘ structures and stimulus selectivity of 
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neurons in area TE of IT cortex in monkeys (Wang, Fujita, & Murayama, 2000; Wang, 

FujitaI., Tamura, & Murayama, 2002). In particular, the blockade of GABA mediated 

inhibition changed stimulus selectivity of more than 80% of recorded TE neurons, for 

example making them responsive to stimuli that were originally ineffective, including 

faces. 37% of neurons showed changes in luminance contrast and spatial frequency 

selectivity after the release from inhibition (Wang, et al., 2000). This provides direct 

evidence for the importance of inhibitory processes mediated by GABA in responsiveness 

of cells and preventing age-related degradation of cortical functions. Because deficits in 

GABA inhibition influence response selectivity and timing both at the beginning and 

towards the end of the ventral pathway, it is not unreasonable to assume that the entire 

visual system might be at least partially affected, leading to accumulating delays in 

processing speed along the visual stream. 

Finally, some research has suggested that age-related effects in visual processing 

speed may be associated with dedifferentiation – an age-related reduction in specialisation 

of cortical networks. It has been suggested that measures of various cognitive functions are 

more intercorrelated in older than in younger adults (Babcock, Laguna, & Roesch, 1997; 

Lindenberger & Baltes, 1997). Looking at brain data, voxels sensitive to different object 

categories overlap more in old than in young subjects suggesting that patterns of brain 

activity become more generalised with age (Park, et al., 2004). Moreover, older adults tend 

to exhibit bilateral frontal activity in various memory or semantic tasks for which young 

people show lateralized activity (Cabeza, McIntosh, Tulving, Nyberg, & Grady, 1997; 

Reuter-Lorenz, et al., 2000; Cabeza, Anderson, Locantore, & McIntosh, 2002). The 

functional significance of this effect is difficult to interpret, but it suggests that older 

people may recruit different, and perhaps less efficient, cortical circuits when performing 

the same task as young adults. The reasons for that may vary. For instance, it can be due to 

an increase in the amount of neural resources necessary to perform the task, which 

nonetheless remains specialized. It may also reflect the involvement of areas that are 

specialized in young people, while playing a more general role in older people (Park, et al., 

2004). It has been also proposed that older individuals may rely more on the pre-frontal 

cortex to compensate for ineffective perceptual processes (Grady, 2000), perhaps by 

sending additional feedback from frontal to occipitotemporal regions (Horwitz, et al., 

1995), which may introduce a delay. However, the evidence for the compensation theory 

and the age-related over-recruitment of frontal brain regions in elderly may as well be a 

cross-sectional fallacy. Nyberg, et al. (2010) contrasted cross-sectional and longitudinal 
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analyses approaches using fMRI data from the same subjects scanned in two sessions 6 

years apart. While frontal over-recruitment was present in the former case, frontal under-

recruitment emerged in the latter. This discrepancy stemmed from inclusion in the follow 

up study participants with higher frontal activations and better memory performance 

already in the first session, relatively to participants who dropped out before the second 

scan. This suggests that cross-sectional studies may be subject to sampling biases that 

include relatively highly performing older individuals, motivated to take part in research. 

The compensation theory was further challenged by results indicating that age-related 

decrease in response selectivity in ventral visual regions could not be compensated by 

encoding information across larger numbers of voxels or by engaging additional resources 

within and outside the ventral visual cortex (Carp, Park, Polk, & Park, 2011). Both, under- 

and over-recruitment can result in decreased processing speed whether due to atrophy and 

diminished cortical resources or due to necessity of engaging additional brain regions to 

support less effective cognitive processes. However, the exact link between dynamic 

resource allocation in the brain and speed of visual processing remains unclear.   

The age-related dedifferentiation in cortical responses has also been observed in 

object processing regions of the ventral pathway (Voss, et al., 2008; Carp, Park, Polk, & 

Park, 2011; Park, et al., 2012). Carp, et al. (2011) found that age-related decrease in 

distinctiveness of multivariate neuronal activation patterns in response to visual stimuli not 

only in the ventral visual pathway, but also in the inferior parietal, and medial and lateral 

prefrontal cortices. On the other hand, in an fMRI study with a sample of 200 adults 20 to 

89 years old Park, et al. (2012) found a decrease in face-selective activity in the fusiform 

face area (FFA), but not in the occipital face area (OFA), nor in the STS. This suggests that 

dedifferentiation might not be a ubiquitous cortical phenomenon. The effect in the FFA 

was driven by increased activity to houses which supports the hypothesis that 

dedifferentiation may stem from broadening of tuning curves in cortical areas, supported 

by the evidence from animal studies showing widening of the range of stimuli cells in the 

aged monkey visual cortex respond to (Schmolesky, et al., 2000; Leventhal, et al., 2003). 

High specialisation of cells in processing particular stimuli, such as face depends on the 

amount of exposure and is achieved with experience (Logothetis, Pauls, & Poggiot, 1995). 

It is also reflected in the rate of accumulation of information useful for object 

categorisation - the more specialised the cells the faster the process (Perrett, Oram, & 

Ashbridge, 1998). Thus, with aging, cortical dedifferentiation reflected in reduction in 

neural specialisation may lead to categorical evidence growing slowly in populations of 
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cells broadly tuned to stimulus type. This can contribute to slowdown in the visual 

processing speed observed in the elderly on a behavioural and neuronal level. Moreover, 

more broadly tuned cells might need more signal in a noisy input for the categorisation to 

occur, compared to young people who may have more noise-resistant responses. Indeed, 

increased sensitivity to noise in the elderly has been found in Rousselet, et al. (2009) 

suggesting that older people may require more information to achieve the same level of 

performance as young people. 

Most indices of dedifferentiation rely on qualitative measures of spatial overlaps 

between regions of brain activity in young and old adults and introducing more 

quantitative measures of thereof is needed. A shift towards quantitative measures would 

facilitate studying individual differences and their relation to cognitive functioning. Lately, 

such measures have been proposed based, for example, on the ability of a mutlivoxel 

pattern classifier to accurately predict stimulus category based on patterns of neural 

activity (Park, Carp, Hebrank, Park, & Polk, 2010) or on magnitude and variance in brain 

activity (Voss, et al., 2008). Using the former method, Park , et al. (2010) showed that 

variability in neural specificity was significantly related to individual differences in tests 

scores. Understanding the factors underlying individual variability in brain activity is of 

great importance in aging research, because it allows us to relate structural and functional 

changes in the cortex to cognitive functioning across the lifespan. A larger number of 

longitudinal studies involving a full age range of participants, including middle age ones, is 

needed to track the variety of complex changes occurring in the aging brain that underlie 

slow-down in processing speed. 

To sum up, a variety of changes in brain morphology appear with age, including 

alterations in grey and white matter, and reduction in response selectivity and inhibitory 

mechanisms of neurons. All of them can negatively impact the speed of visual processing. 

Because aging does not have a uniform effect on cognition and its neural correlates, it is 

possible that various stages of visual object processing will also be affected differently. 

Due to its excellent temporal resolution, non-invasiveness and ease of application, EEG is 

a particularly suitable method to study changes in visual processing speed in healthy adults 

across the lifespan. Many studies made use of EEG to investigate age-related slowdown in 

processing using simple (e.g. checkerboards) and complex (e.g. faces) and these will be 

reviewed next. 
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1.4.3 AGING EFFECTS IN EEG AND VEP STUDIES USING SIMPLE STIMULI 

Studies employing gratings or checkerboard stimuli to study visual evoked 

potentials (VEPs) typically consider several major components: N1 (or N75 – negative 

deflection ~75ms post-stimulus), P1 (or P100 – positive peak ~100ms), N2 (or N140 – 

negative deflection ~140ms) and P3 (or P300 – positive peak between 300 – 600 ms). Most 

studies showed age-related decreases in amplitude and increases in latency of VEPs around 

P1 (Celesia, Kaufmann, & Cone, 1987; Allison, Hume, Wood, & Goff, 1984; Tobimatsu, 

Kurita-Tashima, Nakayama-Hiromatsu, Akazawa, & Kato, 1993). However, less consistent 

results were observed for the N2 component – its latency does not seem to increase with 

age in one study using checkerboards (Celesia & Daly, 1977), but increased in another 

(Allison, Wood, & Goff, 1983). Another study using checks found age-related 

prolongation in the latency of visually evoked responses only after 300 ms (component P3) 

in a sample of 120 subjects age 20 to 80+ (Figure 1.7 A&B) (Polich, 1997). Finally, 

Kügler (1997) reported relatively small latency increases in later components N250 and 

P300 that accelerated from age 60 onwards in a sample of 344 healthy individuals age 18 – 

98 years old (Figure 1.7 C). 
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Figure 1.7. Latencies of ERP responses to checkerboards as a function of age (A) P3 

latency (ms) for each subject at the Cz electrode position (Adapted from Polich, et al., 

1997, Fig.8, p. 251). (B) N1, P2, and N2 latency (ms) for each subject at Cz electrode 

(Adapted from Polich, et al., 1997, Fig.9, p. 252. Note that N1, P2 and N2 seem to cover 

different time windows that typically reported for these components. However, Polich , et 

al. (1997) did not provide the time windows that were assigned to N1, P2, N2 in the 

article). (C) Third-order polynomial regression functions for both the N250 and P300 

latencies (ms) of 344 healthy subjects between 18 and 98 years of age. The 95%-

confidence and prediction intervals are shown (Adapted from Kügler, et al., 1997, Fig. 1, 

p. 18-19). 

It is plausible that the observed differences in aging effects found in visual evoked 

potentials partially reflect the co-appearing age-related changes in sensitivity to such 

parameters as stimulus‘ spatial and temporal frequency, luminance and contrast. Celesia, et 

al. (1987) and Sokol, Moskowitz & Towle (1981) pointed out that VEPs depend on the 

check size used during the experiment - VEPs latencies vary for age-matched visually 

normal subjects as a function of stimulus spatial frequency. Patterns of high spatial 

frequency (small checks) induce longer latency VEPs compared to patterns of lower spatial 
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frequency (large checks). Age-related effects in VEPs also seem to differ as a function of 

spatial frequency of the stimulus. Sokol, et al.  (1981) have found that with aging latency 

increase occurs more rapidly for small checks (12 min of arc) than to large checks (48 min 

of arc). Significant aging effect for 15 min of arc checks but not for 51 min of arc checks 

were also found by Celesia, et al. (1987). This indicates that different spatial frequency 

channels within the human visual system may be affected differently by senescence.  

Prolongations in early ERP latencies might also be related to changes in luminance 

and contrast sensitivity with age. There is a well-documented link between luminance and 

the latencies of neuronal responses in various parts of the visual system documented in 

animals using multi-focal ERG (Raz, Seeliger, Geva, & Percicot, 2002). Research applying 

neutral density filters to manipulate retinal illumination in young subjects showed that 

pattern ERG and P100 latencies are delayed by decreased illumination (Froelich & 

Kaufman, 1991). Shaw and Cant (1980) pointed out that the effect of age on the P100 

latency depends on stimulus‘ luminance – at lower (5 cd/m
2
) luminance levels there was a 

considerable increase in P100 latency for subjects older than 50, while only a little latency 

increase has been observed at high luminance (50 cd/m
2
). However, this finding was 

challenged by a report of similar ERP aging effects at 11 cd/m
2
 and 180 cd/m

2
 luminance 

levels (Tobimatsu, Kurita-Tashima, Nakayama-Hiromatsu, Akazawa, & Kato, 1993). 

Interestingly, it seems that age-related delays in retinal and cortical activity can be 

abolished after equating retinal illuminance between age groups by using neutral density 

filters (Trick, Trickl, & Haywood, 1986). All in all, it remains unclear to what extent aging 

effects on the ERPs are dependent on luminance of the visual input. 

Age effects observed at P100 seem to be also mediated by changes in contrast 

sensitivity with age. Tobimatsu, et al. (1995) found that a reduction in contrast of 

checkerboard pattern leads to significant differences in the latency of P100 between young 

and middle age group, contrary to high contrast checks where no difference was observed. 

For older participants both low and high contrasts patterns have elicited significant P100 

latency increase compared to middle age group. Comparing alterations in pattern reversal 

ERG and visual evoked potentials with age-related decline in psychophysical performance 

suggests that some neural changes may take place between retina and the striate cortex but 

the exact locus is difficult to identify (Tobimatsu, Kurita-Tashima, Nakayama-Hiromatsu, 

Akazawa, & Kato, 1993). Additionally, Morrison and Reilly (1989) have showed that 

incrementing the stimulus contrast makes VEP‘s of older observers resembling those of the 

young ones. It appears therefore, that age-related reduction in contrast sensitivity may 
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partially contribute to the observed increase in ERP latencies around 100 ms post-stimulus 

in older and middle age participants.   

1.4.4 AGING EFFECTS IN EEG STUDIES USING COMPLEX STIMULI. 

EEG studies that use more complex stimuli, such as images of faces or houses 

show that in humans 200 ms is sufficient for the visual system to elicit responses reflecting 

sensitivity to the higher-order content of the image, such as object category (Rousselet, 

Husk, Bennett, & Sekuler, 2008; VanRullen & Thorpe, 2001). A variety of studies have 

investigated age-related changes in latencies of the early (<200 ms) and late (>200 ms) 

ERP responses to complex objects, yielding ambiguous results. 

Several studies did not find aging effects in the early ERPs to complex stimuli, 

such as faces (Pfutze, Sommer, & Schweinberger, 2002; Chaby, George, Renault, & Fiori, 

2003; Gao, et al., 2009; Chaby, Jemel, George, Renault, & Fiori, 2001). These studies 

observed age-related delays only at later stages of visual processing (>200 ms). For 

example, Chaby, et al. (2001) have found that older subjects had behaviourally more 

difficulties in discriminating between congruent famous and incongruent famous faces and 

this effect was accompanied by a significant latency increase in the later stages of visual 

processing >400ms post-stimulus. Contrary to these negative results, several studies 

reported age-related latency increases or amplitude modulations of early ERPs to faces 

(Nakamura, et al., 2001; Wiese, Schweinberger, & Hansen, 2008; Gazzaley, et al., 2008; 

DeFockert, Ramchurn, Velzen, Bergstrom, & Bunce, 2009; Daniel & Bentin, 2010), letters 

(Falkenstein, Yordanova, & Kolev, 2006; Kolev, Falkenstein, & Yordanova, 2006), and 

letter-number pairs (De Sanctis, et al., 2008). Four studies using faces found that the 

latency of the face-sensitive negative ERP peak around 170 ms post-stimulus was delayed 

in the older group compared to the young group, but this effect was not visible around 100 

ms post-stimulus (Nakamura, et al., 2001; Wiese, Schweinberger, & Hansen, 2008; Daniel 

& Bentin, 2010; Gazzaley, et al., 2008). De Fockert, et al. (2009) reported ERP amplitude 

modulations around 170 ms in the elderly, but did not carry out latency analyses. However, 

many of ERP aging studies suffer from methodological shortcomings. The most common 

limitation is restricting analyses to easily identifiable EEG peaks on selected electrodes, 

thus discarding the potentially valuable information in regarding cortical processes 

between the peaks.  

Recent studies by Rousselet, et al. (2009, 2010) overcame these drawbacks and 

demonstrated a reduction in visual processing speed of about 1 ms/year staring from about 
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age 20 onward in a sample of 62 healthy adults age 19 to 98 years old (Rousselet, et al., 

2010). This delay has been computed using 50% integration time – a measure based on the 

shape of the whole EEG waveform between 0-500 ms post-stimulus. This measure takes 

into consideration both, latencies and amplitudes of the ERPs, providing a cumulative 

index of the speed of visual processing (Figure 1.8 A & B). Age-related effects reflected in 

the ERPs started at about 120 ms after stimulus onset and reached a maximum at around 

190 ms, when the young group was about 50 ms ahead of the old group.  Additionally, a 

qualitative change in the time-course of brain activity occurring at around 47 years of age 

was observed (Figure 1.8 C). Single subject data analyses revealed considerable individual 

differences in the speed of visual processing (indexed with 50% integration time) among 

subjects (Rousselet, et al., 2010). Some 60-70 old subjects were as fast as the 20-30 year-

olds (or some 20-30 year-olds were as slow as the 60-70 year-olds (Figure 1.8 A). The 

reasons for this variability are difficult to reconcile with other EEG aging studies because 

most of them do not provide individual subject data, but only group averaged ERPs.  
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Figure 1.8. Changes in ERP processing speed and in the shape of ERP waveforms as a 

function of age (A) Processing speed expressed in the 50% integration time (50IT), for 

62 subjects (one dot per subject). Equation for the regression of 50IT against  age is 

provided inside the plot. (B) Processing speed expressed in 50IT for two experimental 

sessions [for the 24 retested subjects – authors’ ed.] – red circles are for session 1 and 

green squares are for session 2 (two symbols per subject). For each session regression 

equation (50IT against age) is given inside the plot.  (C) The graph shows changes in the 

ERP sensitivity to manipulation of image properties (phase coherence) over time (0-500 

ms post-stimulus) for different age groups. ERP modulations are expressed in R
2
 

functions reflecting general linear model (GLM) fit into EEG data. The GLM model 

contained two face identities, global phase coherence and l ocal phase coherence of 

images as predictors. R
2
 (model  fit) ranges from 0 (dark blue) to 1 (dark red) (A, B and 

C are adapted from Rousselet, et al., 2010. A - Fig.9C p. 10; B - Fig 12B, p.11; C - Fig. 

8, p.9). 

EEG aging effects may be also confounded with modulations related to task 

demands. Different types of tasks might require different attentional resources and top-

down control and this can be reflected in varying ERP patterns. In young adults, task 

requirements have been found to alter early EEG activity ~150 or even as early as 100 ms 

after stimulus onset in experiments in which the same complex category images (faces, 

natural scenes, animals, vehicles) were either to be attended or to-be-ignored in different 
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blocks (VanRullen & Thorpe, 2001; Gazzaley, Clapp, Kelley, McEvoy, Knight, & 

D'Esposito, 2008). However, the very early (~100 ms) task effects may be due to 

uncontrolled perceptual differences between stimulus categories. Rousselet, Macé, Thorpe, 

& Fabre-Thorpe (2007) have shown that very early tasks effects that were initially visible 

~100 ms for faces were abolished after controlling for variability in physical properties of 

images, while the later effects ~150 ms persisted. On the other hand, no task-related or top-

down modulations in EEG activity before 200 ms were observed in several other studies 

using faces (Puce, Allison, & McCarthy, 1999; Carmel & Bentin, 2002; Se´verac-Cauquil, 

Edmonds, & Taylor, 2000). Despite these conflicting results, it is possible that task effects 

that are absent in young subjects may be present in old subjects and task difficulty may 

affect brain activity of older adults‘ differently than in younger adults.  

Furthermore, it appears that the amount of perceptual evidence needed to accurately 

perform an object categorisation/recognition task increases with age, which can be related 

to changes in visual system‘s sensitivity to noise. Manipulation of evidence is often done 

by increasing the amount of visual noise, for example by scrambling Fourier phase spectra 

of images which carries most information about the category (Gaspar & Rousselet, 2009). 

Noteworthy, the level of noise should not be equated with the level of task difficulty. 

Although some practical correspondence can be drawn between them, cortical processes 

that underpin them might be quite different and translate into distinct ERP patterns. Indeed, 

Banko, et al. (2011) discovered that only the presence of noise and not the overall task 

difficulty had an effect on the first 300 ms of EEG activity in response to faces. The 

presence of noise has been found to affect EEG activity around 100 – 300 ms post-stimulus 

in both young and old adults (Philiastides & Sajda, 2006; Rousselet, et al., 2009; 

Rousselet, et al., 2010; Rousselet, Gaspar, Wieczorek, & Pernet, 2011a). It also seems that 

older subjects might be more sensitive to noise than young people. Rousselet, et al. (2010) 

found that older participants needed more information (stimuli with less noise) to achieve 

the same level of behavioural performance as young participants. The age-related changes 

in sensitivity to image structure were reflected in ERP delays starting ~120 ms post-

stimulus, with the strongest effects at 208 ms. These delays might have several underlying 

phenomena, including decreasing processing speed with age, reduced neural specialisation 

in resolving signal from noise in the stimuli or deficits in inhibitory control. If the first 

interpretation is correct, then it is possible that later ERP activity in older adults may 

become functionally equivalent to earlier ERP activity in young adults (Rousselet, et al., 

2010). The presence of noise increases processing demands and while dedifferentiation 
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seem to take place in the aging brain, it is plausible that reduced response tuning introduces 

a delay. Finally, older subjects may have more difficulties with supressing irrelevant or 

distracting information (noise) and the link between inhibitory deficits and modulations in 

early (<200 ms) ERPs has been suggested in several studies (Gazzaley, et al., 2008; 

Gazzaley, Cooney, McEvoy, Knight, & D‘Esposito, 2005; Zanto & Gazzaley, 2009). 

Other methodological variables, such as sample characteristics, may also contribute 

to the considerable amount of variability in age-effects on visual ERPs between various 

studies. All aging studies differ in their sample size, age range coverage, and density 

within age decade. This is not trivial issue because substantial amount of variability in 

visual processing speed within young, middle aged old age groups has been observed in 

aging research (Rousselet, et al., 2010). Thus, simple difference in the number of subjects 

in their, 40‘, 50‘ or 60‘ included in sample can potentially have an impact on a direction of 

the results. Moreover, lack of replications and reliability studies does not allow us to infer 

about how much of the observed effects could have depended on the day of testing. 

Finally, averaging data within age groups may lead to results that do not resemble any of 

the individual subjects (Gaspar, Rousselet, & Pernet, 2011), especially taking into 

consideration large individual differences in the speed of processing visible on both a 

neuronal and behavioural level. Experimental work reported in this thesis overcomes these 

issues by employing large sample of participants age 18-79, with roughly equal spread 

across decades. Moreover, all the subjects were tested twice to assess the reliability of the 

results and data were analysed on a single subject basis (Section 3).   

To sum up, despite strong evidence that visual object processing slows down with age, the 

exact origins of the aging effects, as well as the origin of the inter-individual differences 

within age groups (Rousselet, et al., 2010), are still unclear. Apart from physiological 

changes occurring in the aging brain, it is possible that part of the age-related delays is due 

to factors affecting speed of processing before visual information arrives the cortex, in 

particular reduced retinal illumination that appears in the aging eye. 
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1.5 THE AGING EYE 

1.5.1 OPTICAL PARAMETERS 

Processing of visual information does not start at the cortex. After entering the eye, 

visual information travels from the retina, through the lateral geniculate nucleus (LGN) in 

the thalamus, via striate cortex to finally arrive to higher-order visual areas. Each of these 

areas may have its own contribution to the decrease in processing speed because age-

related neural loss occurs from retina to cortex, suggesting that the decline in visual 

cognition is due to a combination of degenerative neural changes occurring at different 

stages within visual stream (Marshall, 1987; Devaney, 1980). This could account for the 

progressively increasing delay after stimulus onset found in (Rousselet, et al., 2009). 

Because visual processing starts at the retina, age- related alterations in processing speed 

may already begin there, for instance due to changes in pupil‘s response properties.  

In healthy eyes, the size of the pupil controls to a large extent the amount of light 

that reaches the retina. An increase in the level of illumination results in a decrease in pupil 

size, and vice versa. The response to changing light conditions (pupil light reflex) is 

usually completed in a few seconds for increase in light, and up to a minute for withdrawal 

of light (Reeves, 1920; Crawford, 1936). A complete pupil adaptation to brightness occurs 

quite rapidly, however darkness adaptation is slower and may take even up to 30 minutes. 

In healthy eyes, both pupils respond equally to stimulation of only one eye – this 

phenomenon is known as the consensual light reflex (Szczepanowska-Nowak, Hachol, & 

Kasprzak, 2004). Pupil reaction is more extensive if both eyes receive stimulation 

compared to only one-eye stimulation. The diameter of the pupil may vary between 2 mm 

in high illumination to about 8 mm in darkness. Thus, the amount of light entering the 

pupil changes by the factor of 16 (Atchison & Smith, 2002). This variation is not sufficient 

to maintain a constant level of retinal illuminance, considering that humans operate 

comfortably over a 10
5
 times luminance range from bright light (~1000 cd/m

2
) to full 

moonlight (~0.01 cd/m
2
). According to Campbell and Gregory (1960) the purpose of 

pupillary light response is to optimize visual acuity for various light levels. At various 

levels of photopic illumination (moderate to high light levels) the pupil also fluctuates in 

size with approximate frequency of 1.4 Hz – a phenomenon known as hippus.  

Importantly, pupil diameter decreases with increasing age which leads to a reduced 

amount of light that reaches the retina in elderly eyes. This phenomenon, known as senile 

miosis, is present at all illuminance levels, although the rate of pupil change with age 
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decreases for higher luminance levels (Winn, Whitaker, Elliott, & Phillips, 1994). There is 

high variability in pupil diameters within an age group which decreases when luminance 

level increases (Figure 1.9) (Winn, et al., 1994). The size of the pupil reaches its maximum 

during teenage life and declines since then. For instance, Kadlecova, et al. (1958) have 

found pupil size varied from about 7.5 mm at the age of 10 years and decreased to 5mm at 

the age of 80 years. Also, the speed and the range of pupillary reaction, including the 

pupil‘s responsiveness to changes in luminance level, declines with age (Kumnick, 1954).  

Interestingly, the reduction in pupil size with age can also be beneficial for vision – it 

diminishes changes in higher-order aberrations (comatic and spherical aberrations or 

trefoil) (Applegate, Donnelly, Marsack, Koenig, & Pesudovs, 2007) and the eye‘s optical 

transfer function at lower light levels (Guirao, et al., 1999). Additionally, it reduces the 

diameter of retinal blur circle, boosting the depth of focus by about 0.5 D between 30 and 

70 years of age (Weale, 1992). Nonetheless, because senile miosis reduces retinal 

illuminance, it could contribute to the delays and the considerable within age-group 

individual differences in cortical processing speed found in previous studies.  

 

Figure 1.9. Pupil diameter as a function of age for luminance = 44 cd/m
2
. Data are fitted 

by linear regression with the 95% confidence limits indicated by the dotted line. 

(Reprinted from Winn et al. (1994), Fig. 2, p.1135). 

 

Other optical properties of the eye also change with age, leading to a decline in 

visual performance. Most dramatic changes are observed in the lens. With age, the lens 

increases in volume and mass (Cook, Koretz, Pfahnl, Hyun, & Kaufman, 1994), while the 

maximum possible change in lens shape decreases, reducing the amplitude of 

accommodation – the reflexive autofocus of the eye that allows objects to be well focused 
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on the retina (Koretz, Cook, & Kaufman, 2002). The eye‘s ability of accommodation 

decreases from the fifth decade of life onwards and seems to disappear altogether in the 

sixth (Birren & Schaie, 2001). Alterations in corneal thickness, shape and transmittance 

have also been found (Birren & Schaie, 2001). Light transmittance of both ultraviolet 

(wavelength 10 – 400 nm) and visible wavelengths (400 – 780 nm) goes down with age, 

while light absorption goes up, due to decrease in lens transparency (Artigas, Felipe, 

Navea, Fandino, & Artigas, 2012). Additionally, after the age of 40 (Fujisawa & Sasaki, 

1995) there is a growth in the amount of optical backward and forward scatter (variations 

in the refractive index). Unlike for the absorption and backward scatter, increasing the light 

level does not compensate for the forward scatter. Forward scatter produces a veiling glare 

over the retina and reduces the contrast of the retinal image. This may cause low-contrast 

images to become invisible.  

All in all, combining the reduction in pupil size, scatter and the drop in ocular 

transmittance leads to approximately 60% of light loss at the retina at lower light levels, 

between the ages of 20 and 60 years. This corresponds to more than 43 % of light loss at 

the retina of an older person at low light levels. Thus, there is a considerable difference 

between retinal illumination of younger and older adults which can affect the information 

transfer through the visual system and in turn be reflected in changes in processing speed 

in the cortex. 

1.5.2 AGING EFFECTS ON LOW-LEVEL VISION 

All the above optical factors contribute to age-related changes in such aspects of 

vision as visual acuity and contrast sensitivity. Visual acuity (the ability to resolve fine 

detail) diminishes year by year starting at about 50 years of age (Sekuler & Sekuler, 2000). 

Part of this deficit can be explained by changes in optical properties of the eye, such as 

decreased transparency, increased scatter and pupil miosis that lead to reduced retinal 

illuminance. However, the optical contribution can be challenged by first, the fact that 

when the crystalline lens is replaced with an artificial intraocular one, the acuity decline 

persists (Jay, Mammo, & Allan, 1987) and second, that acuity deficit becomes larger at 

lower luminance levels. It seems likely that acuity loss in the elderly is also related to 

changes occurring in the retina or brain (Owsley & Burton, 1991). The retinal loss in 

number of photoreceptors, ganglion cells or bipolar cells or a dysfunction in the 

connections between them can result in acuity decline. Moreover, studies in monkeys 

indicate that a selective damage to the parvocellular pathway (but not the magnocellular 

pathway) can lead to visual acuity deficits (Schiller, Logothetis, & Charles, 1990a).  
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It has been established in the 1980s that with age there is a decrease in spatial 

contrast sensitivity under photopic conditions, particularly at intermediate and high spatial 

frequencies in both fovea and periphery (Crassini, Brown, & Bowman, 1988; Owsley, 

Sekuler, & Siemsen, 1983). For low spatial-frequencies elevation of the contrast sensitivity 

threshold occurs when older observers view stimuli at high temporal frequency (Habak & 

Faubert, 2000). Also, the size of spatial contrast sensitivity deficit in aging seems to 

increase with progressively lower luminance levels (Sloane, Owsley, & Alvarez, 1988). 

For instance, in daylight older and young adults are equally sensitive to 0.5 cpd grating 

while under scotopic conditions the older subjects require on average three times as much 

contrast as younger subjects to discern a target (Schefrin, Tregear, Harvey, & Werner, 

1999). There is a controversy regarding the extent to which the decline in contrast 

sensitivity can be attributed to optical and neural factors. The results of psychophysical 

studies using laser interferometry to bypass the optics of the eye and generate an image 

directly on the retina are conflicting: some opt for the former (Burton, Owsley, & Sloane, 

1993) some for the latter hypothesis (Morrison & McGrath, 1985). Two further studies 

using adaptive optics to control for monochromatic higher-order aberrations (Elliot, 1987; 

Elliott, et al., 2009) support the neural approach. Although contrast sensitivity decline may 

be partially due to light scatter, it seems unlikely to be due to senile miosis because it 

persists when pupil diameter is controlled (Elliott, Whitaker, & MacVeigh, 1990) or due to 

the lens because it is still present when articificial intraocular lens is used (Morrison and 

McGrath, 1985). Additionally, anatomical observations indicate that age-related loss of 

retinal ganglion cells is relatively mild (Spear, 1993). The controversy in the origins of 

contrast sensitivity decline with age might have arisen because of inter-studies differences 

in inclusion criteria for subjects who differed in terms of their visual acuity that positively 

correlates with contrast sensitivity (Spear, 1993). To sum up, the data suggest that contrast 

sensitivity declines with age, in particular for mesopic and scotopic light conditions and for 

intermediate and high spatial frequency stimuli under photopic conditions. It is probably 

safe to assume that for most EEG aging studies that apply complex stimuli, age-related 

contrast sensitivity decline is not a major concern because they largely use monitors that 

operate in the photopic range. However, the majority of these studies do not report 

luminance under which subjects were tested and do not control for spatial frequency 

content of their stimuli, while it has been shown that under photopic conditions: variations 

in luminances can modulate latencies of ERP responses (Tobimatsu, Kurita-Tashima, 

Nakayama-Hiromatsu, Akazawa, & Kato, 1993; Shaw & Cant, 1980) and age effects on 
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contrast sensitivity depend on spatial frequency of the visual input (Owsley, Sekuler, & 

Siemsen, 1983). 

1.6 THESIS RATIONALE 

Visual object categorisation in the brain is a widely studied phenomenon but our 

understanding of it remains fragmented. Research work presented in this thesis addressed 

several enduring questions in visual neuroscience with regards to complex object 

processing: what low-level image information the brain is sensitive to when categorising 

objects and what is the timing of this sensitivity; how does the speed of object processing 

change with age; what is the contribution of optical factors, such as retinal illuminance, to 

individual differences and age-related delays in processing speed; and finally when do the 

first face-sensitive responses occur in the brain. These questions were addressed using 

EEG and robust data analyses techniques. 

First, the question what visual information brain uses to categorise complex 

objects, such as faces, remains unclear. Studies using single cell recordings show that 

features of varying complexity are processed in different parts of ventral visual pathway. 

How this processing is reflected in activity of large populations of neurons recorded using 

EEG, is uncertain. In particular, the contribution of low-level stimulus characteristics, such 

as those carrying global (amplitude spectrum) and local (edges and contours) image 

information, to EEG activity associated with object categorisation is still debated. The 

debate stems in part from conceptual mistakes in the literature. For example, demonstrating 

that human observers can detect, or are impaired by amplitude spectrum manipulations, 

does not mean that observers actually use the amplitude spectrum when both phase and 

amplitude are available (Gaspar & Rousselet 2009; Wichmann, et al. 2010). Also, to my 

knowledge, no study has systematically assessed ERP sensitivity to phase and amplitude 

using systematic, parametric designs. Thus, in my first experiment (Section 2) I went 

beyond simple categorical designs and employed continues manipulation of phase and 

amplitude information from 0-100% in 10% intervals. This approach allowed not only to 

systematically measure the contribution of phase and amplitude to the ERPs, but also to 

determine the direction of this contribution by applying linear modelling of ERP data. 

Also, for the first time in the field, I computed the timing and unique contribution of phase 

and amplitude effects to individual subjects‘ ERPs and assessed reliability of my results by 
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testing my subjects twice. I found a major phase contribution but little evidence for 

amplitude spectrum contribution to early (<200 ms) ERPs to faces and houses. 

Second family of questions addressed in this thesis concerns the timing of neural 

processes underlying object categorisation, how this timing is affected by senescence and 

whether optical factors can contribute to the age-related and individual differences in 

visual processing speed. With aging, there is a variety of changes appearing in the cortex, 

including white and grey matter atrophy, decrease in neuronal response specificity and 

inhibition and increase in cells‘ spontaneous activity. All of these can contribute to the age-

related slowdown in visual processing speed, as indicated by studies using recordings of 

single cells activity as well as of populations of neurons (EEG and MEG). However, 

despite considerable body of ERP aging research, no agreement has been reached 

concerning what stages of visual object processing are subject to aging effects and how this 

translates into EEG modulations. Some studies observed age-related alterations in ERPs in 

response to faces before 200 ms post-stimulus, while other studies found only later effects. 

Recently, using component-free approach Rousselet, et al. (2009, 2010) demonstrated an 

age-related 1 ms/year ERP delay in visual processing speed of faces. Age effects on the 

ERPs started about 120 ms and were the strongest around 160 ms post-stimulus. Large 

individual differences in ERP processing speed were also observed. However, the origins 

of the age-related delay and of the individual variability remain elusive. Because visual 

processing starts at the eye, it is possible that at least part of the variability in processing 

speed may be of optical, rather than cortical origin. Considerable within-age group 

individual differences in size of the pupil have been observed. Moreover, pupil size 

decreases with age (senile miosis). Pupil size largely determines retinal illuminance which 

has been found to affect response latencies of neurons within the visual stream – the lower 

the retinal illuminance the later the responses. However, no study have tried to determine if 

there is a link between age-related and individual variability in visual processing speed 

observed at the cortex, and age-related decrease and individual variability in pupil size.  

Thus, to assess the relationship between pupil size and age-related changes in speed 

of ERP responses I conducted two experiments (Sections 3 and 4), in which subjects‘ 

retinal illuminance was manipulated using neutral density filters (Section 3) and pinholes 

of varying sizes placed in front of their eyes (Section 4). Both of these methods were used 

previously to manipulate the amount of light that reaches observers‘ retinas (Eagan, et al., 

1999).While neutral density filters allow to control stimulus luminance, pinholes placed in 

front of observers‘ eyes act as artificial pupils altering retinal illuminance without changing 
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stimulus luminance. Thus, the two methods complement each other and serve as a control 

to one another. The study involved EEG recordings of 62 healthy adults, age 18-79 years 

old, in two sessions each. Including participants with roughly even spread across age 

decades allowed for precise quantification of the rate of slowdown over the lifespan – a 

result that is largely lacking in ERP aging research dominated by cross-sectional 

comparisons. Moreover, my study is the first one to assess reliability of the aging effects 

by retesting all the participants on a separate day. The index of visual processing speed for 

each individual was computed based on the shape of the whole ERP waveform, was 

computed. This method leaves behind traditional peak measurements and incorporates 

both, latency and amplitude alterations along the time-course of EEG activity. In short, my 

results replicated the age-related 1 ms/year in ERP processing speed and showed that 

individual differences in pupil size could not account for this delay, nor for the individual 

variability in speed of processing, indicating that aging effects on the ERPs are largely 

cortical in origin. Moreover, age started to influence visual ERPs around 125 ms post-

stimulus, spearing the earliest ERP responses to faces that were visible around 90 ms.    

Building on the latter result of no age effects on the onsets of face-related ERP 

responses, my final project (Section 5) aimed for precise quantification of onsets in large 

sample of participants, using state-of-the-art analyses approaches. Research work to date is 

inconclusive with regards to precise timing of the first ERP responses sensitive to faces. 

Most studies suffer from methodological shortcomings, such as small sample sizes, using 

statistics that lack multiple comparisons corrections, focusing on group averaged ERPs, 

restricting analyses to easily identifiable peaks and, probably most crucially, applying EEG 

data filters that can potentially disrupt the latencies of the earliest significant ERP 

responses. The goal of my final project was to quantify the onsets of ERP sensitivity to 

faces by overcoming methodological shortcomings in the field to date. To this end, I 

combined data of a total of 120 subjects, collected in the aging experiment reported in 

Section 3, and in two independent studies using similar stimuli (Rousselet, et al., 2009, 

2010). To my knowledge no study has yet quantified ERP face sensitivity onsets in 

individual subjects belonging to such a large group, with age range 18-89 years old. 

Further, I used novel and robust statistical analyses, including bootstrap spatial-temporal 

multiple comparison corrections. The final advantage of my study was the application of 

causal filtering of EEG data which does not distort onsets of the effects. The main findings 

were that the earliest ERP sensitivity to faces was visible at the median latency of 87 ms 
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post-stimulus, and the onset distributions did not change when low-pass filtering or 20% 

trimmed means, instead of means, across ERP trials were applied. 
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2 ERP SENSITIVITY TO IMAGE 

PROPERTIES 
Evidence from parametric, test-retest, single-subject analyses. 

One major challenge in determining how the brain categorises objects is to tease 

apart the contribution of low-level and high-level visual properties to behavioural and brain 

imaging data. So far, studies using stimuli with equated amplitude spectra have shown that 

the visual system relies mostly on localised information, such as edges and contours, 

carried by phase information. However, some researchers have argued that some event-

related potentials (ERP) and blood-oxygen-level-dependent (BOLD) categorical 

differences could be driven by non-localised information contained in the amplitude 

spectrum.  

The goal of this study was to provide the first systematic quantification of the 

relative contribution of phase and amplitude spectra to early ERPs to faces and objects. 

Overall, a major contribution of phase information to face- and object-related ERPs was 

observed, with little evidence for a contribution of the amplitude spectrum. 

2.1 METHODS 

2.1.1 SUBJECTS 

Eight subjects took part in the experiment (six males, two females; median age = 

28, min = 20, max = 32). Six of them completed a second experimental session between 5-

8 months after the first one. Session 2 had the same experimental settings as session 1, 

except the sequence of stimuli, which was randomised for each session. Three subjects 

were members of the lab, including two of the authors, and the remaining five subjects 

were naive regarding the purpose of the experiment. Two subjects were left-handed, six 

were right-handed. We tested subjects‘ visual acuity using a Colenbrander mixed contrast 

card set. All subjects had normal or corrected to normal visual acuity in the range of 20/25 

to 20/10 dec, at 40 cm, 63 cm and 6 m distances. Subjects‘ contrast sensitivity was 

measured using Pelli-Robson Contrast Sensitivity Chart, yielding results of 1.95 and above 

(normal range). All participants also filled in a general health and life style questionnaire. 
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The median number of education years was 21.5 (min = 19, max = 24). All reported good 

to excellent vision and hearing, and at least weekly exercise. One person reported smoking. 

All subjects read a study information sheet explaining the behavioural and EEG 

experimental procedures and provided written informed consent.  

2.1.2 STIMULI 

Two object categories were used in the experiment: faces and houses (one exemplar 

image per category, chosen from a set of 10; see details in Rousselet, Husk, Bennett, & 

Sekuler, 2008b; Husk, Bennett, & Sekuler, 2007). The same house and face were used for 

all the subjects. All images had the same mean pixel intensity and RMS contrast of 0.1. 

Phase and amplitude spectra were manipulated of face and house images parametrically 

and independently using Matlab 2007b (Figure 2.1A). Global phase coherence was altered 

in 10% intervals, resulting in images containing from 70% to 0% phase coherence 

(Philiastides & Sajda, 2006; Rousselet, et al., 2008a). Amplitude spectra were manipulated 

by replacing the original image‘s amplitude spectrum with composite amplitude spectra, 

ranging from 100% face amplitude (0% house amplitude), through 50% face amplitude 

(50% house amplitude), to 0% face amplitude (100% house amplitude), in 10% steps. 

These manipulations resulted in 88 face and 88 house conditions, with 8 phase (0-70%) 

and 11 amplitude levels (0-100%). A maximum phase coherence level of 70% was used to 

reduce the length of the experiment and because increasing phase coherence beyond 70% 

does not lead to significant behavioral and ERP changes in most subjects (Rousselet, Husk, 

Pernet, Gaspar, Bennett, & Sekuler, 2009; Rousselet, et al., 2008a).  
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Figure 2.1. Stimuli. (A) There were a total of 88 face conditions (top) and 88 house 

conditions (bottom). For the two categories, amplitude is expressed along the X -axis, 

from 100% face amplitude (0% house amplitude) on the left, to 0% face amplitude (100% 

house amplitude) on the right, in 10% intervals. Phase is expressed along the Y -axis from 

0% phase coherence at the bottom to 70% phase at the top, in 10% intervals.  (B) Trial 

timeline. For presentation purposes the face image is not to scale.  (C) Amplitude 

spectrum contours of face (left) and house (right) images. Spectral energy contours were 

computed by averaging the amplitude spectra of all images within one object category. 

The red, green and blue contours indicate the boundaries of 60%, 80% and 90% of the 

total power contained below the relevant spatial frequencies (50, 100, 150 cycles per 

image) indicated by the radius of each circle.  

2.1.3 EXPERIMENTAL PROCEDURE 

EEG electrode application lasted about 30 min. Subjects sat in a sound attenuated 

booth. They were asked to position their heads on a chin-rest to maintain a viewing 

distance of 80 cm and then were given experimental instructions. Subjects were asked to 

categorise images as faces, houses or textures by pressing a corresponding key on a 

computer keyboard (1, 2, or 3 on the numerical pad), using three fingers of their dominant 

hand. The order of the response keys was randomly assigned. Stimuli were presented on a 

Samsung SyncMaster 1100Mb monitor (600 x 800 pixels, height and width: 30 x 40 cm, 

21º x 27º of visual angle). All images were 256 x 256 pixels (9º x 9º of visual angle) and 

were displayed on a grey background (RGB 128, 128, 128) with luminance 33 cd/m
2
. In 

each trial, first a fixation cross appeared for a random interval between 1000 and 1400 ms, 
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followed by a stimulus presented for 5 frames (i.e. a maximum of 53 ms), and then by a 

blank screen which remained displayed until subjects‘ response (Figure 2.1B). There were 

10 blocks, each with 176 trials: 88 images of faces and 88 images of houses. Each of the 88 

images represented one of the 88 conditions. There were thus a total of 10 trials per image 

category and condition. The whole experiment contained 1760 trials and lasted about 75 

minutes, excluding electrode application. 

2.1.4 BEHAVIOURAL DATA ANALYSIS 

Generalized Estimating Equations (GEE, IBM SPSS Statistics 19) were used to 

build binary logistic models of the occurrence of ―face‖ and ―house‖ responses in all 

subjects. The occurrence of ―face‖ responses within the face stimuli matrix (Figure 2.1 A, 

top panel) was separately modeled from the occurrence of ―house‖ responses within the 

house stimuli matrix (Figure 2.1 A, bottom panel), for each session separately. In the first 

case, ―face‖ responses were coded as ―1‖ and all the other responses were coded as 0, 

whereas in the second case all ―house‖ responses were coded as ―1‖ and the remaining 

responses were coded as ―0‖. Both models contained phase and amplitude as within-

subject continuous predictors (covariates). The within-subject dependencies were assumed 

to be homogenous (exchangeable correlation matrix option in SPSS). Model effects were 

computed using Wald chi-square statistics. Because subjects responded ―house‖ to face 

stimuli or ―face‖ to house stimuli in only 1-5% of trials, depending on the session, we did 

not model this behavior. Statistical analysis of rare events (appearing on less than 10% of 

the trials) may lead to spurious results.  

2.1.5 EEG RECORDING 

EEG was recorded at 512 Hz using the Active Electrode Amplifier System 

(BIOSEMI) with 128 electrodes mounted on an elastic cap. Two additional electrodes were 

placed at the outer canthi of the eyes and two below the eyes. During analog to digital 

conversion, a 5th order Bessel filter was applied to prevent aliasing. The filter had a -3 dB 

point at 1/5th of the sample rate, i.e. 102.4 Hz. DC coupled data were saved to file.  

2.1.6 EEG DATA PRE-PROCESSING 

EEG data were pre-processed using Matlab and the open-source toolbox EEGLAB 

(Delorme & Makeig, 2004; Delorme, et al., 2011). Data were first re-referenced off-line to 

an average reference, band-pass filtered between 0.5 Hz and 40 Hz using a two-way least 

square FIR filter (pop_eegfilt function in EEGLAB) and then epoched from -300 to 1200 

ms. The use of a non-causal high-pass filter means that the true onsets of some of the 
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effects could be later than the onsets reported in this paper (VanRullen, 2011; Rousselet, 

2012; Widman & Schroeger, 2012; Acunzo, MacKenzieb, & van Rossum, 2012). Noisy 

electrodes were then detected by visual inspection and rejected on a subject-by-subject 

basis (number of rejected electrodes: median = 3, min = 0, max = 18). Baseline correction 

was performed using the average activity between -300 ms until stimulus onset. 

Subsequently, we used Independent Component Analysis (ICA), as implemented in the 

infomax algorithm from EEGLAB. If ICA decomposition yielded components representing 

noisy electrodes (IC with a very focal, non-dipole activity restricted to one electrode while 

the rest of the map around the electrode is flat), the noisy channels were removed and the 

ICA was repeated. Components representing blinks, lateral eye-movements or muscle 

contraction were rejected individually for each subject (number of rejected components: 

median=2, min=1, max=6). After rejection of artifactual components, data were re-

epoched between -300 and 500 ms and baseline correction was performed again. Finally, 

data epochs were removed based on an absolute threshold value larger than 100 µV and the 

presence of a linear trend with an absolute slope larger than 75 µV per epoch and R
2 

larger 

than 0.3. The median number of trials accepted for analysis was 1729 out of 1760 (min = 

1572, max = 1757). 

2.1.7 EEG DATA ANALYSIS 

Data from individual subjects were analyzed using the LIMO EEG toolbox, a plug-

in to the EEGLAB environment (Pernet, et al. 2011). Independently at each time point and 

at each electrode, single-trial ERPs were modeled as: 

ERP = β1F + β2H + β3 F amp + β4 F ϕ + β5 F int + β6 H amp + β7 H ϕ + β8 H int + β0 + ε          (1) 

In this model, images of faces (F) and houses (H) were two categorical predictors, 

whereas global phase coherence (ϕ), amplitude spectrum (amp) and the phase x amplitude 

interaction (int) were continuous predictors. Amplitude was coded as the proportion of face 

amplitude (Figure 2.2). β0 was a constant term and ε was the error. The design matrix for 

the main model is presented in Figure 2.2 (left panel). 

Subsequently, for each subject individually the electrode with maximum model fit, 

termed the max R
2
 electrode, was determined. This electrode captured the maximum ERP 

sensitivity to our image structure manipulation. The max R
2
 electrodes for all subjects for 

the main regression model and for the categorical interaction model are provided in top left 
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plots of Figures 2.6 and 2.10, respectively and in the Appendix A – Supplementary Figures 

7, 8, 9 & 10. 

 

Figure 2.2. Design matrices. Left – main model (equation 1); right – categorical 

interaction model (equation 2). Rows represent single-trials; columns represent the 

predictors of the GLM. Both models contained two categorical predictors – faces and 

houses (F and H), and continuous predictors – there were 6 regressors in the main 

model: amplitude, phase and their interaction for faces, and for houses, and 4 regressors 

in the categorical interaction model: amplitude, phase, category x amplitude interaction 

and category x phase interaction. The last column in both designs repre sents a constant 

term. 

2.1.8 UNIQUE VARIANCE ANALYSIS 

The amount of unique variance each predictor explained at the max R
2
 electrode in 

each subject was determined by computing semi-partial correlation coefficients. Separately 

for each session and each subject, the maximum unique variance for each predictor in three 

time windows: P1 (80-120 ms), N1 (130-200 ms) and P2 (200-300 ms) was measured. 

These time windows were defined based on conventions in the ERP literature as well as 

visual inspection of the data. A percentile bootstrap test was used to determine if, across 

subjects, the medians of the unique variances differed significantly between phase and 

amplitude for faces and houses. Medians were estimated using the Harrell-Davis estimator 

of the 0.5 quantile (Wilcox, 2005). 

2.1.9 CATEGORICAL INTERACTION ANALYSIS 

If the amplitude spectrum carries categorical information, categorical effects should 

be modulated by amplitude – in other words, we should observe a category x amplitude 

interaction. A second model was designed to test this interaction (Figure 2.2, right panel):  

ERP = β0 + β1F + β2H + β3amp + β4ϕ + β5cat x amp + β6cat x ϕ + ε            (2) 
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In this model there were two categorical variables: faces (F) and houses (H), and 

four continues variables: amplitude (amp), phase (ϕ), category x amplitude interaction (cat 

x amp) and category x phase (cat x ϕ) interaction. Interaction terms were computed by 

multiplying the categorical predictor (F=1 or H=-1) by z-scored continues predictors (amp 

or ϕ).  

2.1.10 CROSS-SESSION RELIABILITY ANALYSIS 

We assessed the reliability of phase and amplitude effects across two experimental 

sessions by calculating the difference between beta-coefficients obtained from each session 

at the max R
2
 electrode. We tested the significance of the beta differences using a max 

temporal cluster bootstrap statistics. First, we pooled together single-trial data from the two 

sessions. Then we drew two bootstrap samples, with replacement, from the pooled data. 

The number of trials in each bootstrap sample was the same as the number of trials 

originally recorded in each session. The bootstrapped samples for each session were then 

analysed using the corresponding GLM. Bootstrap sampling and model fitting was 

performed 1000 times. Using these 1000 iterations, we calculated percentile bootstrap 

univariate 95% confidence intervals for the beta coefficient differences across sessions. 

Next, the confidence intervals were used to define temporal clusters of absolute beta 

differences in the bootstrapped and the original data. Original cluster sums of absolute 

differences were considered significant if they were larger than the 95
th

 percentile of the 

corresponding bootstrap distribution of maximum cluster sums (i.e. p<0.05 corrected for 

multiple comparisons). 

2.2 RESULTS 

2.2.1 BEHAVIOUR 

The behavioural data indicated that subjects relied more on phase than on 

amplitude spectrum to categorise images (Figure 2.3). There was a significant effect of 

phase on the number of subjects‘ face responses to face stimuli and on the number of house 

responses to house stimuli in both sessions (faces session 1: Wald Chi-Square (WCS) = 

12.160, p = 0.0001; faces session 2: WCS = 268.622, p = 0.0001; houses session 1: WCS = 

24.044, p = 0.0001; session 2: WCS = 11.148, p = 0.0001). Participants‘ accuracy 

significantly improved as global phase coherence of images increased from 0 to 70% 

(faces session 1: β= 11.300, 95% Wald Confidence Interval = [4.9, 17.6]; faces session 2: β 
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= 18.438 [16.2, 20.6]; houses session 1: β = 9.581 [5.752, 13.411]; houses session2: β = 

12.148 [5.017, 19.279]). Significant effects of amplitude on subjects‘ face responses to 

face stimuli or house responses to house stimuli were present only in session 2 (faces: 

WCS = 8.446, p = 0.004; houses: WCS = 4.289, p = 0.038), but not in session 1 (faces: 

WCS = 3.219, p = .073; houses: WCS = 1.715, p = 0.190). In session 2, the beta coefficient 

associated with a significant amplitude effect for face stimuli was positive (β = 1.514 

[0.493, 2.536]), indicating that participants responded ―face‖ more often when the 

amplitude changed from 0 to 100% face. In the same session, the beta coefficient for house 

stimuli was negative (β = -3.989 [-7.763, -.214]) suggesting that subjects pressed ―house‖ 

less often when the amplitude increased from 0 to 100% face. There was no interaction 

between phase and amplitude in any of the sessions. In sum, the behavioural results 

suggest that phase is the main contributor to subjects‘ categorisation decision. However, 

participants‘ responses appear to be influenced also by the congruency between phase and 

amplitude spectra – if a stimulus contained amplitude and phase information of a face, the 

number of ―face‖ responses increased; if a stimulus had house phase spectrum and face 

amplitude, the number of ―house‖ responses decreased. However, this result was not 

consistent across sessions; hence it is difficult to interpret. 

  



ERP Sensitivity to Image Properties 

70 

 

Figure 2.3. Behavioural results. Matrices showing how many times in each session 

subjects categorized an image from the face stimuli matrix either a “face” (columns FF) 

or a “house” (columns FH). Each matrix contains colour-coded numbers of answers 

(from 0 - dark blue, to 10 - dark red) for the 88 conditions (one condition per cell). The Y 

axis represents global phase coherence (0-70%).The X axis represents amplitude 

spectrum coded from 100% face amplitude (= 0% house amplitude) in the left column to 

0% face amplitude (100% house amplitude) in the right column.  

2.2.2 EEG 

The results suggest that phase is the main contributor to early categorical ERPs in 

humans. The max R
2
 electrode in each participant was also the electrode showing 

maximum phase sensitivity. Phase effects peaked at around 170 ms after stimulus onset for 

faces, and slightly later, at 185 ms, for houses (Table 2.1); at these latencies, amplitude 

spectrum and phase x amplitude spectrum interaction effects were negligible (Figure 2.4, 

row 1; Appendix A – Supplementary Figures 1-6). Phase effects before 200 ms post-

stimulus were visible at lateral-occipital electrodes in all subjects (Figure 2.5, Appendix A 

– Supplementary Figures 1 & 2). In the 6 subjects tested twice, the time-courses of the beta 

coefficients associated with phase effects were also reliable across sessions, although 
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significant differences in latency, magnitude or both were observed in 3 subjects (MAG, 

GAR and KWI; Appendix A – Supplementary Figures 11 & 12). 

 Peak latency 

Session 1 

Peak latency 

Session 2 

Peak latency 

S1 – S2 difference 

 Faces Houses Faces Houses Faces Houses 

Phase 170 [160, 182] 185 [174, 195] 168 [154, 185] 185 [170, 196] 2 [-6, 11] ms 2 [-13, 13] ms 

Amplitude 160 [144, 186] 144 [131, 159] 179 [138, 200] 176 [141, 193] -9 [-23, 16] ms -20 [-54, 13] ms 

Table 2.1. Median latencies (ms) of peak sensitivities to phase and amplitude spectra. 

The two right-hand columns contain differences between sessions for each effect. Square 

brackets contain 95% percentile bootstrap confidence intervals.  
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Figure 2.4. Time course of effects associated with each predictor  in the main regression 

model. Row 1: mean F values at max R
2
 electrode; row 2: mean of max F values across 

all electrodes (envelope); row 3: mean beta coefficients at max R
2
 electrode; row 4: 

mean unique variance at max R
2
 electrode; row 5: mean of the max unique variance 

across electrodes. Shading represents 95% confidence intervals around the means.  
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Figure 2.5. Topographic maps of the frequencies of the effects from the main regression 

model. Maps are colour-coded according to the number of subjects showing the effects, 

from 0 subjects (dark blue) to the maximum number of subjects for that session (dark 

red). Each row shows the scalp distributions between 80 and 300 ms post stimulus.  

Large amplitude spectrum effects occurred before 200 ms after stimulus onset at 

medial occipital electrodes in 3 out of 8 subjects for faces and in 6 out of 8 subjects for 

houses (Figure 2.5). The medial occipital amplitude sensitivity peaked at the median 

latency of 160 ms (session 1) and 179 ms (session 2) for faces, and at 144 ms (session 1) 

and 176 ms (session 2) for houses (Table 2.1) with no significant differences between 

sessions (Table 2.1). 

The latencies of maximum early sensitivities to phase and amplitude differed only 

for houses in session 1 (Table 2.2) – the strongest amplitude effects occurred significantly 

earlier than phase effects. Additionally, some subjects showed also amplitude effects after 

200 ms post-stimulus, at lateral-occipital electrodes. 

Finally, only three subjects had significant interaction effects, and they occurred 

after 200 ms post-stimulus: one subject (KWI) showed a significant interaction for faces in 

both sessions and in one session for houses (Appendix A – Supplementary Figures 5 & 6); 

two subjects had an interaction effect in one session for face stimuli. 
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 Phase vs. amplitude 

Session 1 

Phase vs. amplitude 

Session 2 

 Faces Houses Faces Houses 

Peak 8 [-6, 15] 40 [21, 54] -12 [-21, 22] 9 [-21, 50] 

Table 2.2. Differences between median latencies (ms) of maximum sensitivity to phase 

and amplitude: phase vs. amplitude, separately in faces and houses. A negative 

difference means an earlier effect for phase compared to amplitude. Square brackets 

contain 95% percentile bootstrap confidence intervals.   

 Faces vs. houses 

Session 1 

Faces vs. houses 

Session 2 

 Phase Amplitude Phase Amplitude 

Peak -15 [-25, -7] 16 [8, 41] -16 [-23, -5] 3 [-43, 51] 

Table 2.3. Differences between median latencies (ms) of maximum sensitivity to phase 

and amplitude: faces vs. houses, separately for phase and amplitude. A negative 

difference means an earlier effect for faces compared to houses.  

DIRECTION OF THE EFFECTS 

Beyond the mere presence or absence of phase and amplitude effects, it is also 

important to consider the direction of the effects, as indicated by the sign of the beta 

coefficients. At the max R
2
 electrode, between about 130 and 200 ms, the phase beta 

coefficients were negative in all participants which means that ERPs to faces and houses 

(i.e. the N170) became more negative as phase changed from 0% (stimuli perceived as 

textures) to 70% (stimuli perceived as faces or houses – Figure 2.4, row 3; Figure 2.6; 

Appendix A – Supplementary Table 1; Supplementary Figures 7 – 10).  In most subjects 

and most sessions, amplitude spectrum effects had the opposite direction: a positive beta 

coefficient indicated that as the amplitude spectrum changed from 0% to 100% face 

amplitude, ERPs to faces and houses became more positive. The same pattern of amplitude 

effect was observed at the max R
2 

electrode (Figure 2.6; Appendix A – Supplementary 

Figures 7 – 10, columns 2 & 5), and at the electrodes where maximum sensitivity to 

amplitude was found (Appendix A – Supplementary Figures 7 – 10, columns 3 & 6). The 

only cases where beta coefficients for phase and amplitude went in the same direction 

appeared in subject WJW (faces in session1; houses in both sessions) and TAK (houses in 

session 2) but the similarities were short-lived and mostly present beyond 200 ms post-

stimulus. 
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Figure 2.6. Time-courses of beta coefficients associated with each predictor of the first 

regression model. The betas are from the electrode of the max R
2
 for each subject 

(provided on the right hand side of the top left plot). Rows shaded in grey indicate 

missing subjects in Session 2. 

UNIQUE VARIANCE 

The phase spectrum had significantly larger unique explained variance than the 

amplitude spectrum for both faces and houses, in the N1 and P2 time windows, but not in 

the P1 time window (Figures 2.7 & 2.8). This was the case at the max R
2
 electrode and at 

the maximum across all electrodes (envelope; Appendix A – Supplementary Table 2). In 

contrast to phase, the amplitude spectrum explained close to zero unique variance in the 

N1 time window, at the max R
2 

electrode (Figures 2.7 & 2.8, Appendix A – Supplementary 

Table 3). However, amplitude did explain small amount of unique variance at medial 

occipital electrodes in the P1 and N1 time windows and at lateral-occipital sites in the P2 

time window (Figure 2.9, Appendix A – Supplementary Table 3). The phase x amplitude 

interaction explained nearly no unique variance in any time window. Overall, within the 

first 200 ms post-stimulus, phase accounted for the largest part of the ERP variance with a 

lateral-occipital scalp distribution, whereas amplitude had a weak contribution at medial 

occipital electrodes.  
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Figure 2.7. Boxplots of maximum unique variance explained by each predictor at the 

max R
2
 electrode, in three time windows: P1 (80-120ms), N1 (130-200ms) and P2 (200-

300ms). The boxplots show distributions across subjects. Session 1 is shown in row 1 and 

session 2 in row 3. Rows 2 and 4 depict distributions of differences of unique explained 

variance between phase and amplitude. Near each boxplot, t he median difference is 

given with its 95% percentile bootstrap confidence interval.  
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Figure 2.8. Maximum unique explained variance across all electrodes (envelope). See 

Figure 2.7 caption for details. 
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Figure 2.9. Topographic maps of unique explained variance for each predictor: face 

phase (panel A1), house phase (A2), face amplitude (B1) and house amplitude (B2). Each 

row shows colour-coded maps for one subject at the time point of maximum unique 

variance in three time windows: 80-120 ms (P1), 130-200ms (N1) and 200-300 ms (P2). 

The time point (ms) at which each map is plotted is shown above the map. Different 

scales for phase and amplitude were used, because the amount of unique explained 

variance for amplitude was small compared to phase.  
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PHASE AND AMPLITUDE INTERACTIONS WITH IMAGE CATEGORY 

Results of the second model analysis revealed that only phase, but not amplitude, 

interacted significantly with image category (Figure 2.10; Appendix A – Supplementary 

Table 4; Supplementary Figures 13 & 14) indicating that categorical differences are 

modulated by phase, but not by amplitude. This effect was significant in all participants 

and sessions, and had a lateral-occipital scalp distribution in both sessions (Figure 2.11). 

Despite the presence of main amplitude effects in all subjects (apart from TAK, session 2), 

the category x amplitude interaction was not significant in any of the 8 subjects in session 

1 and in 7 out of 8 subjects in session 2. Subject TAK, who did not show any main 

amplitude effect, showed sensitivity to category x amplitude interaction in session 2 at left 

frontal electrodes. 

 

Figure 2.10. Time-courses of beta coefficients associated with each predictor of the 

second regression (categorical interaction) model (“cat” states for image category) . The 

betas are from the max R
2 

electrode from each subject (provided on the right hand side of 

the top left plot). Rows shaded in grey indicate missing subjects in Session 2.  
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Figure 2.11. Topographic maps of the frequency of effects from the second regression 

model. Maps are colour-coded according to the number of subjects showing the effects at 

a given electrode, from 0 subjects (dark blue) to the maximum number of subjects for that 

session (dark red). Each row shows one effect between 80 and 300 ms post stimulus.  

In sum, the results show that phase information is the major contributor to the early 

categorical ERPs observed at lateral-occipital electrodes. As the amount of phase 

information in the image increases, this image is perceived more as a face or a house and 

the corresponding N1 becomes more negative. In contrast, amplitude spectrum sensitivity 

is mostly observed at medial-occipital electrodes in the P1-N1 window and as amplitude 

information becomes more face-like, the corresponding ERPs become increasingly 

positive. Furthermore, phase spectrum explains significantly more unique ERP variance in 

the N1 and P2 time windows than amplitude and only phase interacts significantly with 

image category. 

2.3 DISCUSSION 

Overall, the results suggest that early ERPs to faces and objects are mostly 

modulated by the phase spectrum, not by the amplitude spectrum. First, in contrast to 

phase effects, amplitude effects were very weak, inconsistent across sessions and across 

subjects. Second, amplitude sensitivity before 200 ms post-stimulus occurred at medial-

occipital electrodes, rather than at the lateral-occipital electrodes that showed the strongest 

phase effects and categorical ERP differences. Third, as expected, the early ERPs over 

lateral-occipital sites were becoming increasingly negative as phase coherence of images 

increased from 0% (noise) to 70%. In contrast, Fourier amplitude modulated ERPs in the 

opposite direction: ERPs became increasingly positive as images contained increasing 

amount of face Fourier amplitude.  Fourth, the amplitude spectrum accounted for little 

unique ERP variance compared to phase. Finally, only phase but not amplitude interacted 

with categorical differences. Overall, these results suggest that the phase spectrum is the 
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main contributor to early categorical ERP differences, whereas amplitude‘s contribution is 

much weaker and present mostly beyond 200 ms post-stimulus. This conclusion seems to 

be a fair interpretation of my results, and could well apply to a larger range of stimuli. 

However, because I used a simplified set of cropped faces and houses, future studies will 

have to investigate if the present results hold for more realistic stimuli too. At least, the 

present study provides a systematic approach to tackle this sort of empirical problems. 

My findings question the claims of Rossion & Caharel (2011) and Andrews, et al. 

(2010) that the amplitude spectrum can be responsible for visual categorical differences 

similar to those observed with intact images. It seems likely that the effects observed in 

Rossion & Caharel (2011) were not due to amplitude spectrum differences, but instead due 

to differences in color between their two image categories. In keeping with this idea, it has 

been shown that the presence of color that is diagnostic for a given category (e.g. green for 

forest) can speed up early categorization processes reflected in ERPs (Goffaux, Jacques, 

Mouraux, Oliva, Schyns, & Rossion, 2005).  

An alternative, simpler explanation might also account for the results of the fMRI 

study by Andrews, et al. (2010). In that study, they found BOLD differences between 

phase scrambled images of faces and houses. Instead of being driven by amplitude 

spectrum differences, their BOLD differences could have been due to differences in image 

orientation. Indeed, in their study, intact and scrambled images were both vertical for faces 

and horizontal for places. Image orientation could have created expectations sufficient to 

influence BOLD responses in FFA and PPA, as suggested by recent studies that have 

shown that expecting a face can boost neural responses to noise stimuli in the lateral-

occipital-temporal cortex (Smith, Gosselin, & Schyns, 2012; Hansen, Farivar, Thompson, 

& Hess, 2008).  

Additionally, Rossion & Caharel (2011) and Andrews, et al. (2010) failed to 

include important control conditions, making it even more difficult to validate their claims. 

In the present study, I attempted to overcome the above shortcomings by either adding 

control conditions or using a parametric experimental design that provides a more sensitive 

way of capturing ERP variability associated with changes in physical image properties. 

Using a general linear model approach, I was able to show that despite the presence of 

main amplitude effects in almost all subjects, these effects could be dissociated from phase 

effects: they differed in timing, strength, scalp distribution, reliability, and they did not 

interact with image category. My results converge with the explanation proposed by 
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Clarke, et al. (2012), who suggested that cortical sensitivity to amplitude spectrum arises 

not because amplitude carries information about image category but because the visual 

system detects and responds to changes in spatial frequency content of the visual input, 

regardless of its category. In keeping with this idea, a recent study by Hansen, Johnson and 

Ellemberg (2012) shows relatively strong modulations of early ERPs by the spatial 

frequency content of pictures of natural scenes. This implies that the mere presence of ERP 

differences between images with different amplitude spectra is not sufficient to conclude 

that image categorisation can be achieved by relying purely on the amplitude spectrum 

(Rousselet, Pernet, Caldara, & Schyns, 2011b; VanRullen, 2011). Moreover, VanRullen & 

Thorpe (2001) have demonstrated that even though ERPs at about 100 ms post-stimulus 

can differentiate between visually distinct image categories, only later neural activity, 

beyond 150 ms, correlates with subjects‘ decision (see also: Philiastides & Sajda, 2006; 

Philiastides, Ratcliff, & Sajda, 2006).  

Instead of explicit categorical processing, the early (<200 ms) main amplitude 

effects could reflect the visual system‘s sensitivity to distributions of local contrast energy. 

ERP sensitivity to contrast statistics of images of natural textures has been reported 

recently: it reached a maximum at the medial occipital electrode Oz in the time-window 

100-200 ms (Groen, Ghebreab, Lamme, & Scholte , 2012a; Groen, Ghebreab, Lamme, & 

Scholte, 2012b; Hansen, Johnson, & Ellemberg, 2012). This scalp distribution and timing 

fits very well with the amplitude effects found in the present study.  

Finally, I would like to stress that my results should not be used to justify not 

controlling low-level stimulus parameters. To the contrary, tight control over physical 

properties of visual stimuli is absolutely crucial to study higher-level object categorisation 

(Rousselet & Pernet, 2011). As it was already mentioned, the present results might be 

limited to the simplified cropped faces and houses that were used as stimuli. Further, task 

constraints were not manipulated; therefore a contribution of amplitude spectrum 

information in different tasks cannot be ruled out (Rousselet, Pernet, Caldara, & Schyns, 

2011). Also, the amplitude spectrum did have an effect at some electrodes and in some 

subjects: in different experimental contexts, these ERP differences could be misinterpreted 

as high-level categorical responses. Thus, careful control over image properties is 

necessary to systematically study object categorisation. 
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3 ERP AGING EFFECTS – OPTICAL 

FACTORS AND INDIVIDUAL 

DIFFERENCES  

This section, and the next, focus on the effects of aging on ERP visual processing 

speed and the contribution of optical factors (retinal illuminance and pupil size) to 

individual variability in the age-related ERP delays. This section presents an ERP 

experiment in which subjects age 18-79 had their retinal illuminance manipulated using 

neutral density filters that alter the stimulus‘ luminance.  

The first goal of this study was to replicate the previous finding of Rousselet, et al. 

(2010) that aging slows down visual processing at the rate of 1ms/year, which was 

successfully achieved. Further, it was aimed to determine whether retinal illuminance 

modulates age-related delays in ERP measures of processing speed. The hypothesis was 

that if ERP aging delays depend on senile miosis and retinal illuminance, there should be 

no difference in processing speed if differences in retinal illuminance are abolished. 

However, it was found that age-related changes in processing speed are not due to senile 

miosis, as they were independent of luminance. Another aim was to answer whether 

individual differences in visual processing speed can be accounted for by variability in 

retinal illuminance, which they could not. The results strongly suggest that age-related face 

ERP delays are not due to optical factors. 

3.1 METHODS 

3.1.1 SUBJECTS 

The study involved 59 subjects (31 females, 28 males, age range of 18-79, Table 

3.1). To assess the test-retest reliability of the results and to control for luminance 

manipulation order, all but eight subjects took part in a second experimental session. Prior 

to the experiment, all subjects read a study information sheet and signed an informed 

consent form. The experiment was approved by the School of Psychology Ethics 

Committee (approval no. FIMS00740). Persons who reported any eye condition (i.e. lazy 

eye, glaucoma, macular degeneration, cataract), had a history of mental illness, were taking 
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psychotropic medications (e.g. antidepressants, beta-blockers) at the moment of testing or 

use to take them, suffered from any neurological condition (i.e. Parkinson‘s, Alzheimer‘s, 

dementia), had diabetes, had suffered a stroke or a serious head or eye injury and who had 

their vision tested more than two years ago (for people under 60 year old) or more than one 

year ago (for people aged 60 and above) were excluded from taking part in the experiment. 

Subjects‘ visual acuity and contrast sensitivity were assessed in the lab on the day of the 

first session using a Colenbrander mixed contrast card set and a Pelli-Robson contrast 

sensitivity chart. All subjects had normal or corrected-to-normal vision (Table 3.1) and 

contrast sensitivity in the range of 1.95 and above (normal score). One older subject 

reported the start of a monocular cataract that did not require medical treatment at the 

moment of testing. All subjects filled in a general health and life style questionnaire. All 

reported very good or excellent hearing and most reported at least weekly exercise. All 

subjects in the older group (>60) were in good cognitive health as indicated by their scores 

(>26 out of 30) at the MOCA test during the first experimental session. Subjects were 

compensated £6/hour for their participation.  

Age 

bracket 

Age 

(median 

[min, max]) 

Number 

of subjects 

(females, 

males) 

Visual acuity MOCA 

Scores 

(median, 

[min, max]) 

Years of 

education 

(median, 

 [min, max]) 

High contrast 

63 cm  

(median  

[min, max]) 

Low contrast 

63 cm 

(median  

[min, max]) 

18-19 19 [18, 19] 5 (4,1) 105 [100, 110] 95 [90, 100] n/a 15 [15, 16] 

20-29 22 [21, 29] 12 (6,6) 105 [95, 108] 94.5 [90, 102] n/a 18 [17, 25] 

30-39 32 [30, 38] 9 (2,7) 107 [99, 109] 97 [90, 102] n/a 18 [14, 23] 

40-49 43.5 [41, 49] 8 (4,4) 106 [95, 112] 98.5 [88, 103] n/a 18 [12, 23] 

50-59 54 [50, 59] 6 (2,4) 105 [95, 105] 94 [90, 95] n/a 17 [13, 19] 

60-69 64.5 [60, 67] 10 (7,3) 94 [80, 106] 85.5 [75, 95] 29 [27, 30] 15.5 [5, 21.5] 

70-79 72 [70, 79] 9 (6,3) 98 [78, 105] 88 [63, 94] 28 [26, 30] 14 [11, 21] 

Table 3.1. Subjects’ information. 
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3.1.2 STIMULI 

The stimuli were pictures of faces and textures (Figure 3.1A). There were 10 

identities of faces (Rousselet, Pernet, Bennett, & Sekuler, 2008). Faces were grey-scaled 

front view photographs oval-cropped to remove hair and pasted on a uniform grey 

background. A unique image was presented on each trial by introducing noise into the face 

images. Faces had 70% phase coherence (see details in Rousselet, Pernet, Bennett, & 

Sekuler, 2008). Textures had random phase (0% phase coherence). All stimuli had an 

amplitude spectrum set to the mean amplitude of all faces. All stimuli also had the same 

mean pixel intensity, RMS contrast = 0.1, and occupied 9˚ x 9˚ of visual angle.  

 

Figure 3.1. (A) 10 face identities at 70% phase coherence and 10 examples noise 

textures used in the luminance experiment. (B) Single trial procedure. For presentation 

purposes the fixation cross and the face image are not to scale. 

3.1.3 EXPERIMENTAL PROCEDURE AND DESIGN 

Most subjects participated in two experimental sessions. The screen luminance 

progressively decreased in bright to dark (b2d) sessions, and increased in dark to bright 

(d2b) sessions. The order of the sessions was randomly assigned on the first day of testing. 

We altered screen luminance by placing neutral density filters in front of the computer 

screen. The filters were attached to thin wooden frames, which were pierced at the top, so 

that they could hang from pegs attached to the wall above the screen. The filters covered 

the screen completely. Each filter had 0.3 optical density (f-stop reduction = 2). This is 

equivalent to a 50% reduction in optical power transmitted through the filter. In other 

words, adding one filter in front of the screen reduced the screen‘s luminance by 50%, 

adding another filter reduced it by another 50% and so on. 
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The luminance levels from the brightest to the darkest were: 60.8, 31, 16, 8.16, 

4.19, 2.17, 1.12, and 0.59 cd/m
2
. Both sessions commenced with the highest luminance 

block (60.8 cd/m
2
). In the b2d session, starting from block 2, the luminance was 

progressively reduced by adding one filter in each block to reach seven filters in block 8 

(0.59 cd/m
2
). In the d2b session, in block 2 we used the maximum number of filters, seven. 

Then in each block we removed one filter, to reach one filter in block 8. Block 9 in each 

session was again conducted without any filters, as in block one (60.8 cd/m
2
). The 

luminance of the screen with and without filters was measured using a Minolta CS-100 

colorimeter. The measurements were done at the center of the monitor about one hour after 

switching it on and before running each participant.  

During the experiment, subjects sat in a sound attenuated booth and rested their 

head on a chin rest. Stimuli were displayed on a Samsung SyncMaster 1100Mb monitor 

(600 x 800 pixels, height and width: 30 x 40 cm, 21˚ x 27˚ of visual angle; refresh rate – 85 

Hz, bits per pixel – 32). Viewing distance measured from the chin rest to the monitor 

screen was 80 cm. Subjects were given experimental instructions including a request to 

minimise blinking and movement. Subjects were asked to categorise images of faces and 

textures by pressing ‗1‘ for face and ‗2‘ for texture, on the numerical pad of a keyboard, 

using the index and middle fingers of their dominant hand. Before the main experiment, 

subjects performed a 40 trial practice block containing 20 trials with auditory feedback, 

followed by another 20 trials without feedback. After the practice block, the dim lights in 

the booth were switched off and an adaptation screen with grey uniform background (RGB 

128,128,128) was turned on. A 60 sec light adaptation was performed at the beginning of 

all blocks, except in block 2 of d2b sessions, in which the adaptation lasted for 5 min. This 

longer duration was necessary due to the large luminance difference between zero and 

seven filters. After the adaptation and before each experimental block, pupil size in 

participant‘s right eye was measured three consecutive times (the mean of these three 

measurements was later used for the analyses). For the first 22 subjects we used a Colvard 

(Oasis Mediacla Inc.) pupillometer; for the remaining subjects we used a NeurOptics 

VIP™-200 pupillometer. When pupil measurement was completed, subjects were ready to 

proceed with the experiment.  

The experiment had a mixed design with image category and luminance as within-

subject factors and age as between-subject factor. There were 9 experimental blocks, each 

consisting of 150 trials: 70 faces (10 face identities, each repeated 7 times, each time with a 

unique noise field) and 70 unique noise textures. Additionally, there were 10 practice trials 

http://www.neuroptics.com/uploads/vip200_110531nb.pdf
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(5 faces and 5 textures) at the beginning of each block with auditory feedback signalling to 

subjects whether their response was correct or not. The whole experiment consisted of 

1350 trials, including 90 practice trials. Each trial began with a small fixation cross (size: 

12 x 12 pixels; 0.4º x 0.4º of visual angle) displayed at the centre of the monitor screen for 

a random time interval of about 1000 – 1300 ms, followed by an image of a face or a 

texture presented for about 9 frames (~104 ms) (Figure 3.1B). These durations are 

multiples of refresh screen durations and do not necessarily reflect the actual duration 

during which image pixels were active (Elze, 2010). After the stimulus, a blank screen was 

displayed until subject‘s response. The fixation cross, the stimulus and the blank response 

screen were all displayed on a grey uniform background (RGB 128, 128, 128). The 

importance of accuracy over speed was stressed to subjects. Subjects performed the task 

very well: in all the luminance levels, most subjects had accuracy above 95% and all 

exceeded 90%. One experimental block lasted for approximately 4 minutes and the whole 

experiment (with breaks but excluding electrode application) lasted for about 1 hour 30 

min. 

3.1.4 EEG RECORDING 

EEG data were recorded at 512 Hz using an Active Electrode Amplifier System 

(BIOSEMI) with 128 electrodes mounted on an elastic cap.  Four additional electrodes 

were placed at the outer canthi and below the eyes.  

3.1.5 EEG DATA PRE-PROCESSING 

EEG data were pre-processed using Matlab 2011a and the open-source toolbox 

EEGLAB 11.0.2.1b (Delorme & Makeig, EEGLAB: an open source toolbox for analysis of 

single-trial EEG dynamics including independent component analysis, 2004). Data were 

first re-referenced off-line to an average reference and an individual channel mean was 

removed from each channel. Data were then band-pass filtered between 0.3 Hz and 40 Hz 

using a non-causal two-way least square FIR filter (pop_eegfilt function in EEGLAB). 

Non-causal filtering can potentially distort onsets (Acunzo, MacKenzieb, & van Rossum, 

2012; VanRullen, 2011; Widman & Schroeger, 2012; Rousselet, 2012). Therefore, onsets 

of ERP differences were analysed by creating a second dataset in which data were pre-

processed with 4th order Butterworth filters: high-pass causal filter at 2 Hz and low-pass 

non-causal filter at 40 Hz. Data from the two datasets were then epoched between -300 and 

1200 ms around stimulus onset. Noisy electrodes were detected by visual inspection of the 

non-causal dataset and rejected on a subject-by-subject basis (the same electrodes were 

rejected in the two datasets). Baseline correction was performed using the average activity 
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between time 0 and -300 ms. The reduction of artifacts, such as eye-movements or blinks 

was performed using Independent Component Analysis (ICA), as implemented in the 

infomax algorithm from EEGLAB. If ICA yielded components representing noisy 

electrodes (e.g. IC with a very focal, non-dipole activity restricted to one electrode whereas 

the rest of the map was flat), the noisy channels were removed and the ICA was repeated. 

ICA was performed on the non-causal FIR-filtered datasets and the ICA weights were then 

applied to the causal Butterworth-filtered datasets (on a subject by subject basis) in order to 

ensure removal of the same components from both datasets. After rejection of artifactual 

components, data were re-epoched between -300 and 500 ms and baseline correction was 

performed again. Finally, artifactual data epochs were removed based on an absolute 

threshold value larger than 100 µV and the presence of a linear trend with an absolute 

slope larger than 75 µV per epoch and R2 larger than 0.3. The median number of trials 

accepted for analysis was 1313 out of 1350 [min: 1163, max: 1345] in bright to dark 

sessions and 1318 [min: 1166, max: 1344] in dark to bright sessions. 

3.1.6 ERP STATISTICAL ANALYSES 

Statistical analyses were conducted in single subjects and at the group level using 

Matlab 2011a and the LIMO EEG toolbox (Pernet, Chauveau, Gaspar, & Rousselet, 2011). 

To model EEG data we used a general linear model (GLM) across trials, at all time points 

and all electrodes. Multiple comparisons correction was performed using a bootstrap 

spatial-temporal clustering technique (Rousselet, Gaspar, Wieczorek, & Pernet, 2011; 

Pernet, et al., 2011; Bieniek, Pernet & Rousselet, 2012).  

3.1.7 AGING EFFECTS ON VISUAL PROCESSING SPEED 

SINGLE SUBJECT DATA ANALYSES 

Several measures of visual processing speed we extracted based on the timing and 

the amplitude of the difference between face and texture ERPs. To that end, a general 

linear model (GLM) was used with faces and textures at each luminance level as 

categorical predictors. Subsequently, linear contrasts (t-tests) between beta coefficients for 

faces and textures for each luminance level were computed. This model was applied 

separately to the causal-filtered and non-causal filtered datasets of each subject. Thus, for 

each subject and for every electrode the time course of model fit and of t statistics 

associated with each linear contrast were obtained. Then, for each subject, the electrode 

with the highest squared t statistics in the block with the brightest luminance (60.8 cd/m
2
) 

was determined. It is a data-driven approach that does not make assumptions about the 



ERP Aging Effects – Optical Factors 

89 

localisation of the effects, and allows us to identify the electrode with the maximum 

sensitivity to our experimental manipulation, independently in each subject. We refer to 

this electrode as the max t
2
 electrode and report it according to the electrode numbering in 

Biosemi format (see Appendix A, Supplementary Figure 15 for the Biosemi electrode map 

with corresponding electrodes from the 10/10 system). 

From the outputs of our single-subject GLMs, three estimates of processing speed 

were derived. The first measure was the onset of the earliest significant differences 

between face and texture ERPs at each luminance level. The onsets were obtained from the 

GLM applied to all the electrodes of the causal-filtered dataset of each subject. The second 

measure was the time it takes to integrate 50% of the cumulative t
2
 function, which we 

refer to as the 50% integration time (50IT) (Rousselet, Gaspar, Pernet, Husk, Bennet, & 

Sekuler, 2010). This measure incorporates potential changes in the shape of the ERP 

difference waveform that may occur with age. The integration was done over time, from 0 

to 500 ms, and across all electrodes. The last measure was the latency of the maximum 

ERP difference (peak latency) between faces and textures recorded at the max t
2
 electrode 

for each subject. Although ERP latency is not a direct index of processing speed, it could 

reflect the accumulation of information in neuronal population that ceases when an ERP 

peaks (Schyns, Gosselin, & Smith, 2009). In that sense, it can potentially carry an 

indication of timing of neuronal processes. Both, 50IT and peak latency were obtained 

from the non-causal filtered data, for each luminance level and for each subject. 

GROUP DATA ANALYSES 

To visualise age-related changes in the shape of the t
2
 functions (that reflects 

changes in the ERP difference waveform) the quantiles of the age distribution of my 

sample were calculated using the Harrell-Davis estimator, which is based on a weighted 

sum of sorted values (Wilcox, Introduction to Robust Estimation and Hypothesis Testing, 

2005). The same weights were then applied to the t
2
 functions for each luminance level 

individually (Rousselet, et al. 2010).  

To calculate descriptive statistics (median 50ITs with 95% confidence intervals 

(CI, reported in square brackets)) percentile bootstrap procedure was used with 1000 

samples and with Harrel-Davis estimator of the median. Comparisons between 50IT for the 

60.8 cd/m
2
 luminance condition and all the other luminance conditions were done using a 

two-tailed percentile bootstrap test for dependent groups; comparisons between young 

50ITs in each pinhole condition and the 50ITs of old adults obtained in the luminance 
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experiment (in 60.8 cd/m
2
 condition) were done using two-tailed percentile bootstrap test 

for independent groups. 

To determine if pupil size, retinal illuminance, the measures of processing speed 

(50IT, onsets, peak latencies) and peak amplitudes of ERP differences varied with age, 

group level regressions for each luminance level were computed using Matlab‘s robustfit 

function, with the default parameters. Then, percentile bootstrap confidence intervals 

around the slopes and intercepts were calculated in the following way. First, subjects were 

sampled with replacement, keeping their corresponding age, 50ITs, onsets, peak latencies 

and amplitudes of ERP differences. Second, regressions between each measure of 

processing speed and age, at each luminance level were performed. These two steps were 

performed 1000 times, and each time all the slopes and intercepts were saved. Then, the 

bootstrapped slopes and intercepts were sorted, and the 2.5 and 97.5 percentiles were used 

to form the boundaries of 95% bootstrap confidence intervals. To calculate whether the 

regression slopes and intercepts for the brightest condition differed from the other 

luminance conditions, the bootstrapped slopes and intercepts of pairs of conditions were 

subtracted to derive 95% bootstrap confidence intervals of the differences. 

The next aim was to find out if, after accounting for age, we could explain 

individual variability in 50ITs and peak latencies of ERP differences by the variability in 

subjects‘ pupil sizes. To address that question the 50IT/age residuals and the peak 

latencies/age residuals were regressed against the pupil/age residuals. Again, the percentile 

bootstrap procedure was used to build confidence intervals of the slopes and intercepts. 

Finally, the onset and the maximum latency of the aging effects were determined 

by calculating how much of the cumulative t
2
 function of each subject has been integrated 

up to each time point between 0 and 500 ms. Then, at each time point, and for each 

luminance level separately, regressions between the integrated t
2
 and age across subjects 

were calculated. To determine when the regression slopes became significantly different 

from zero a bootstrap procedure was used (see Rousselet, et al., (2010) for description). 

3.1.8 LUMINANCE EFFECT ON FACE-TEXTURE ERP DIFFERENCES 

SINGLE SUBJECT DATA ANALYSES 

In the second part of the analyses, the time course of luminance effects on face and 

texture ERPs was quantified using a single-trial ANCOVA model. The model had two 

categorical predictors – faces and textures, one continuous predictor – luminance, and an 
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interaction term between luminance and category. Luminance was entered into the model 

as the z-score of the log luminance levels. This model was applied to causal and non-causal 

filtered datasets of individual subjects. From the analyses of the causal-filtered datasets we 

obtained onsets of luminance and luminance x category interactions. From the analyses of 

the non-causal filtered data the latency of the strongest luminance and interaction F values 

was obtained.   

GROUP DATA ANALYSES 

To determine if the ERP onsets and the latencies of maximum sensitivity to 

luminance and luminance x category change with age, regressions for the onsets and 

maximum latencies of each effect against age were performed. Then, the 95% bootstrap 

confidence intervals around the slopes and intercepts as well as around the difference 

between the slopes and intercepts of the two effects were calculated. Similar procedure as 

described in section 3.1.7 (group data analyses) was used. 

3.1.9 OVERLAP BETWEEN THE ERPS OF YOUNG AND OLD OBSERVERS 

In the third part of the analysis, it was determined if the ERPs of old observers in 

the brightest condition could be matched to that of young observers at lower luminance 

levels. To this end, the overlap between the t
2
 functions of older (>60, n=18) observers in 

the brightest luminance condition and young observers (<30, n=15) at each luminance 

level was quantified. First, the t
2
 functions were normalised within participant by dividing 

their t
2
 functions by the maximum t

2
 across all luminance levels and time points. Then, the 

t
2
 functions were averaged across subjects, separately for young and old subjects.  To 

calculate the percentage of t
2
 overlap between young and old, the area under the mean t

2
 

functions for young and old observers was computed using trapezoidal numerical 

integration (trapz function in Matlab) and expressed as a proportion of the overall area 

under the two functions. The overlaps were calculated between the mean t
2
 function of 

young subjects at each luminance level and the mean t
2
 function of old subjects in the two 

conditions with the highest luminance (60.8 cd/m
2
 - conditions 1 and 9).  

The 95% confidence intervals around the overlaps as well as around mean t
2
 

functions of young and old adults were computed using a bootstrap procedure. First, 

separately for the young and old group, subjects were sampled with replacement. 

Subsequently, mean t
2
 functions for young and old samples were computed and the overlap 

between the two functions for each luminance level was calculated. Also, within group 

overlap for old subjects was computed by sampling two different samples from the old 
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group and calculating the overlap between their means. This procedure was performed 

1000 times, each time saving the mean t
2
 functions for young and old groups in each 

condition, the overlaps and the difference in overlaps between the two brightest conditions 

(the first and the last block). Then, each of the bootstrap estimates was sorted and used the 

2.5 and 97.5 percentiles to form the boundaries of 95% bootstrap confidence intervals.  

3.2 RESULTS 

The first goal of this study was to replicate the ERP aging effects reported in 

Rousselet, et al. (2010). Second goal was to determine if age-related delays in ERP 

measures of visual processing speed are luminance dependent. Third goal was to answer 

whether individual differences in processing speed can be explained by the variability in 

observers‘ retinal illuminance. The final aim was to determine if the ERPs of old observers 

can be matched to the ERPs of young observers tested at lower retinal illuminance levels.  

First, the results replicated previous findings of Rousselet, et al. (2010): aging 

slows down visual processing, expressed in the 50IT, at the rate of 1 ms/year. This delay 

was observed in the present study at all luminance levels, which suggests that age effects 

are not luminance dependent. It was also found that aging prolongs peak latencies of the 

face-texture ERP differences at the average rate of 1.5 ms/year. However, no effects of age 

on the onset of ERP differences were observed. The early ERPs to faces and textures were 

delayed with decreasing luminance, an effect visible in individual subjects in both sessions 

(Figure 3.2). Finally, individual differences in visual processing speed could not be 

explained by inter-subject variability in retinal illuminance. Finally, the ERPs of old 

observers could not be matched to those of young adults at lower luminances. These 

findings suggest that the age-related slowdown in visual processing is not due to optical 

factors. 
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Figure 3.2. ERP results in individual subjects. Data of three representative subjects: one 

young (TEF, age 21), one middle-age (EWP, age 42) and one old (REM, age 65) for b2d 

session (panel A) and d2b session (panel B) at the max t
2
 electrode (indicated in the top 

left corner of plots A2 and B2). Electrode map is provided in the Supplementary Figure 

4. (A1 & B1) Single trial ERPs, in μV. (A2 & B2) Time-courses of contrasts between face 

and texture beta-coefficients for each luminance level; horizontal lines indicate 

significant differences. (A3 & B3) Normalised t
2
 cumulative sums at each luminance 

level.  
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3.2.1 AGE EFFECTS ON 50% INTEGRATION TIMES, PEAK LATENCIES, 

ONSETS AND AMPLITUDES OF FACE-TEXTURE ERP DIFFERENCES  

First, a qualitative age-related change in the overall shape of the t
2
 functions for all 

luminance levels was observed (Appendix B – Supplementary Figure 1). This qualitative 

change was captured by the measure of processing speed (50IT), showing a significant 

age-related delay of ~1 ms/year (Figure 3.3 A, Appendix B – Supplementary Tables 1 & 

2). This effect was present at all luminance levels, and in both experimental sessions. 

There was no significant difference between the 50IT/age regression slope at the brightest 

luminance level (60.8 cd/m
2
) and all the other luminance conditions, suggesting that the 1 

ms/year slope is similar across luminance levels (Appendix B – Supplementary Tables 1-

4). The peak latencies of face-texture ERP differences were also delayed by age at all 

luminance levels and in both sessions, with an average slope of 1.5 ms/year (Figure 3.3 B, 

Appendix B – Supplementary Tables 1 & 2). 
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Figure 3.3. Regressions of 50IT and peak latencies of face-texture ERP differences 

against age. Regression fits between (A) 50IT and age and (B) latencies of maximum 

face-texture ERP differences and age, for all luminance levels. B2d sessions are shown 

in column 1, d2b sessions in column 2. The two horizontal plots below each regression 

plot contain slopes and intercepts (intr) as colored dots, with confidence intervals as 

vertical black lines. Horizontal dashed black lines show the boundaries of the confidence 

intervals of the slopes and intercepts in the first brightest condition (60.8 cd/m
2
). 
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The analyses revealed no age effect on the onsets of face-texture ERP differences, 

except for some small effects that were inconsistent across sessions, present at 0.59 cd/m
2
 

in the bright to dark session only, and at the 60.8, 1.12 and 2.17 cd/m
2
 in the dark to bright 

session only (Figure 3.4 A, Appendix B – Supplementary Tables 1 & 2). There was also no 

aging effect on the amplitude of face-texture ERP differences at all luminance levels and in 

the two experimental sessions (Figure 3.4 B, Supplementary Tables 1 & 2).  



ERP Aging Effects – Optical Factors 

97 

 

Figure 3.4. Regressions of onset and amplitude ERP differences against age. (A) 

Regression fits between the onset of significant face-texture ERP differences and age and 

(B) between maximum amplitude of face-texture ERP differences and age, for all 

luminance levels. See Figure 4 caption for details.  
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Finally, aging started to affect processing speed at 131 ms (b2d) and at 125 ms 

(d2b)  post-stimulus at 60.8 cd/m
2
, except in blocks 7 (8.16 cd/m

2
) and 9 (60.8 cd/m

2
) of 

the d2b session, where aging effects commenced already at 94 and 106 ms, respectively. 

Aging effects were the strongest around 201 ms (b2d) and 203 ms (d2b) at the highest 

luminance and were delayed up to ~260 ms at 0.59 cd/m
2
. Reduced luminance also 

prolonged the onset of aging effects from ~125 ms at 60.8 cd/m
2
 up to 162 ms at 0.59 

cd/m
2
 (Figure 3.5 A & B).    

 

Figure 3.5. (A) Time-courses of % of cumulated t2/age regression slopes. Each curve 

shows the time-course at one luminance level. Horizontal lines indicate significant 

regression slopes. Vertical dashed lines mark the onsets and the pe ak latencies of 

significant aging effects. (B) Table of onsets (ms) and peak latencies (ms) of the aging 

effects on the processing speed for all luminance levels (cd/m
2
) for b2d and d2b 

experimental sessions. 

3.2.2 AGE EFFECTS ON PUPIL SIZE AND RETINAL ILLUMINANCE 

The regressions between pupil size and age revealed senile miosis - a significant 

reduction of pupil size with age that was present at all luminance levels in both sessions 

(Figure 3.6 A). The slope of the pupil/age regression was in the range of -0.03 mm (60.8 

cd/m
2
) to -0.05 mm (0.59 cd/m

2
) per year (Appendix B – Supplementary Tables 1 & 2). 

This is equivalent to about 0.6 – 1 mm decrease in pupil size every 20 years – from ~5 mm 

at 20 years old to ~3.5 mm at 80 years old at 60.8 cd/m
2
 and from ~7 mm to 20 years old to 

~4.5 mm at 80 years old at 0.59 cd/m
2
. The pupil/age regression slope at the brightest 
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luminance did not differ from the slopes at the lower luminance levels (Appendix B – 

Supplementary Tables 1& 2). The intercepts of the pupil/age regressions differed between 

the brightest luminance and all the other conditions and increased from 5 mm at 60.8 cd/m
2
 

to 7 mm at 0.59 cd/m
2
.  

As expected, retinal illuminance decreased with increasing age (Figure 3.6 B) and 

both the slope and the intercept of the retinal illuminance/age regression differed 

significantly between 60.8 cd/m
2
 and all the other luminance conditions (Appendix B – 

Supplementary Tables 1 & 2). The slope ranged from about -12 at 60.8 cd/m
2
 to -0.2 at 

0.59 cd/m
2
 in both sessions. The intercept was 1400 Td at 60.8 cd/m

2
 and dropped to 24 Td 

at 0.59 cd/m
2
. 
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Figure 3.6. Regressions of pupil size and retinal illuminance against age . (A) Regression 

fits between pupil size and age and (B) between retinal illuminance and age, for all 

luminance levels. See Figure 3.4 caption for details. 
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After partialling out the effect of age from 50IT, from peak latencies of face-texture 

ERP differences and from pupil size, individual differences in 50IT (Figure 3.7 A) and in 

peak latencies (Figure 3.7 B) could not be accounted for by variability in pupil size across 

subjects (Appendix B – Supplementary Table 5). Regression slopes between 50IT/age 

residuals and pupil size/age residuals were not significant at any luminance level.  
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Figure 3.7. (A) Regressions of residuals of 50IT/age against residuals of pupil size/age 

for all luminance levels. (B) Regressions of residuals of peak latency of face-texture ERP 

differences/age against residuals of pupil size/age for all luminance levels. See Figure 

3.4 caption for details. 



ERP Aging Effects – Optical Factors 

103 

3.2.3 AGE EFFECTS ON ERP SENSITIVITY TO LUMINANCE AND CATEGORY X 

LUMINANCE INTERACTION 

The onsets of ERP sensitivity to luminance and to category x luminance interaction 

did not change with age (Figure 3.8 A) and the age regression slopes for the two effects did 

not differ (b2d: diff = -0.19 [-0.51, 0.10]; d2b: diff = -0.13 [-0.42, 0.15]). Luminance 

started to affect the ERPs at about 66 ms [60, 72] in the b2d session and 60 ms [52, 71] in 

d2b session (Figure 3.8 A). This is about 20 ms before (b2d: diff = -20 ms [-36 -3]; d2b: 

diff = -19 ms [-34, -4]) luminance began to interact with stimulus category at 86 ms [68, 

103] (b2d) or 80 ms [66, 97] (d2b) (Figure 3.8 A & B). The ERP sensitivity to luminance 

was the strongest around 152 ms in b2d session and 129 ms in d2b session, whereas the 

category x luminance interactions peaked at about 118 ms (b2d) and 104 ms (d2b) post-

stimulus (Figure 3.8 B & C). However, the latencies of the two effects did not differ 

significantly (differences between regression intercepts, b2d: diff = 34 [-9, 84]; d2b: diff = 

25 [-32, 91]). There was also no age effect on the timing of maximum sensitivity to 

luminance in any of the sessions (Figure 3.8 C). However, aging delayed the latency of 

maximum interaction between stimulus category and luminance at the rate of 1.03 ms 

[0.05, 1.93] per year in b2d and 1.69 ms [0.79, 2.59] per year in d2b. The difference 

between the regression slopes of luminance and category x luminance effects was not 

significant (b2d: diff = -0.64 [-1.83, 0.69]; d2b: diff = -0.89 [-2.17, 0.26]). 
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Figure 3.8. Regressions of luminance effect and category x luminance interaction  

against age. (A) Onsets of the two effects against age for b2d (left column) and d2b 

sessions (right column). (B) Mean (across all subjects) beta coefficients associated with 

two predictors: luminance and category x luminance interaction.  (C) Latencies of the 

maximum effects against age. Each subplot contains regression equations in the format 

intercept + slope with their confidence intervals in square brackets. The colo ur of each 

equation corresponds to the regression line for each effect.  
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3.2.4 OVERLAP BETWEEN YOUNG AND OLD SUBJECTS 

The median 50IT of young adults (<30) at the highest luminance (60.8 cd/m
2
) was 

181 ms (95% bootstrap CI = [169, 196] in b2d) and 183 ms [168, 199] in d2b (Figure 3.9 

A tables). At the same luminance, the median 50IT of older subjects (>60) was 232 ms 

[225, 238] (b2d) and 237 ms [222, 247] (d2b), which is ~50 ms slower than the processing 

speed of young subjects in both experimental sessions (b2d: diff = -50 ms [-64, -34]; d2b: 

diff = -53 ms [-72, -33]). Indeed, visual processing of young adults was significantly faster 

than that of old adults in all but the two darkest conditions (1.12 and 0.59 cd/m
2
) in both 

sessions, and the 2.17 cd/m
2
 condition in d2b session (Appendix B – Supplementary Table 

6).  

The latencies of peak face-texture ERP differences were also delayed by age in 

both sessions. ERP differences in young adults at the luminance of 60.8 cd/m
2
 peaked at 

the median latency of 139 ms [133, 154] (b2d) and at 143 ms [133, 169] (d2b), whereas for 

old adults the differences peaked at 224 ms [162, 238] (b2d) and at 224 ms [175, 242] 

(d2b) (Figure 3.9 B tables). This is an ~80 ms difference between peak ERP latencies of 

young and old subjects at the highest luminance (b2d: diff = -84 ms [-100, -33]; d2b: diff = 

-80 ms [-100, -27]).  The latencies of the peak ERP differences of old adults (at 60.8 

cd/m
2
) were significantly longer than those of young adults for all luminance levels, apart 

from 1.12 and 0.59 cd/m
2
 conditions in both sessions and 2.17 cd/m

2
 in b2d session only 

(Appendix B – Supplementary Table 6).  
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Figure 3.9. (A) Boxplots of 50% integration times and (B) peak latencies of face-texture 

ERP differences for young (<30 years old) and old (>60 years old) adults. The median 

(across subjects) 50ITs and peak latencies along with confidence intervals are provided 

in the tables to the right of the subplots. For young subjects median 50IT and peak 

latencies for all conditions are given; for old subject, they are given for the two brightest 

conditions (condition 1 (c1) and 9 (c9)).   

A qualitative age-related change in the shape of t
2
 functions was shown in Figure 

3.2; Figure 3.10 A shows the mean t
2
 functions for young (<30 years old) and old (>60 

years old) adults. The percentage of overlap between normalised t
2
 functions of these two 

age groups was computed to determine if the brain responses of old adults could be 

matched to that of young adults experiencing reduced retinal illuminance. The overlap 

increased with decreasing luminance, starting from about 69-74% at 60.8 cd/m
2
 to about 

83-86% at 0.59 cd/m
2
 in both sessions (Figures 3.10 B & 3.11A). The overlap within the 

old group exceeded 90% indicating that old subjects are more similar to each other than to 

young subjects at any luminance level (Figure 3.11 A).  In addition, even in the two 

conditions where the overlap was the highest - 86% at 0.59 cd/m
2
 and 85% at 1.12 cd/m

2
, 

the retinal illuminance of young subjects was only about 5% of that of old subjects (Figure 

3.11 B), thus suggesting that retinal illuminance cannot account for young vs. old 

differences in processing speed. 



ERP Aging Effects – Optical Factors 

107 

 Figure 3.10. (A) Time-course of t
2
 functions for young and old subjects. Each subplot 

shows mean time-courses, across young subjects (<30 years old), at each luminance 

level, and across old subjects (>60 years old) in the two conditions with the highest 

luminance: condition 1 (c1) plotted in black and condition 9 (c9) plotted in grey.  (B1, 

C1) Confidence intervals of young and old t
2
 functions. Each subplot shows the time-

course of 95% confidence intervals of the mean t
2
 functions of young subjects (in grey) at 

each luminance level and of old subjects (in green) in the first brightest condition 

(luminance = 60.8 cd/m
2
). (B2, C2) Overlaps between young and old t

2
 functions. Each 

subplot depicts the area under the t
2
 function of young (<30) and old (>60) subjects 

shaded in dark green. The edges of the young t
2
 functions are black, those of old t

2
 

functions are red. The overlap between t
2
 functions for young and old subjects is shaded 

in light green. The proportion of overlap is given inside each subplot and the luminances 

are given in the title of each subplot. 
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Figure 3.11. (A) Boxplots of t
2
 function overlaps between young and old adults. In each 

subplot, the first 9 boxplots show overlaps for young subjects at each luminance. The last 

two boxplots show the within group overlaps for old and young subjects, in the first 

brightest condition (60.8 cd/m
2
), for b2d and d2b session. In each boxplot the square 

indicates the percentage of overlap between young and old yielded by our calculation; 

the circle is the mean of the bootstrapped overlaps – thus, the difference between the 

values for circle and square suggests that our estimation of the overlap is positively 

biased. (B) Retinal illuminance of young and old subjects. The first nine boxplots in each 

subplot depict the distributions of retinal illuminances in young subjects, at nine 

luminances; the two last boxplots in each subplot show results in old subjects in the two 

brightest conditions (luminance = 60.8 cd/m
2
). 
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4 ERP AGING EFFECTS – PINHOLE 

EXPERIMENT 

The luminance experiment presented in the previous section showed that individual 

variability in retinal illuminance and pupil size could not account for individual differences 

in visual processing speed in a sample of subjects age 18-79. A second experiment 

presented in this section complements these findings by investigating if there is a causal 

relationship between pupil size and processing speed. Young subjects‘ pupil sizes were 

directly manipulated by placing pinholes of varying sizes in front of their eyes. Pinholes 

act as artificial pupils altering retinal illuminance without changing stimulus luminance. 

The aim was to establish if old subjects‘ ERP processing speed at high luminance (60.8 

cd/m
2
) could be matched match to that of young subjects wearing pinholes. The results 

show that this match was unsuccessful corroborating the results from the previous section 

of aging effects on ERP processing speed being due to neural, rather than optical factors.   

4.1 METHODS 

4.1.1 SUBJECTS 

10 subjects (median age = 28.5, min = 22, max = 34, 6 males, 10 right handed) took 

part in two experimental sessions conducted one week apart. Seven of them also 

participated in the luminance experiment 5 to 6 months earlier. Each subject‘s visual acuity 

was measured using Collenbrander mixed contrast card set and contrast sensitivity was 

measured using Pelli-Robson chart. The measurements were taken for both eyes separately 

(monocular testing), on the day of the first session. All subjects had normal or corrected-to-

normal vision and contrast sensitivity (Table 4.1), and all reported very good hearing, at 

least weekly exercise and none reported smoking. None of the subjects reported suffering 

from an eye disease, or a mental condition and none was taking psychotropic medications. 

All subjects gave written informed consent and were compensated for their participation at 

the rate of £6/hour. 
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Visual acuity Contrast sensitivity 

(median 

[min max]) 

Years of 

education 

(median 

[min max]) 

High contrast 

63 cm 

(median 

[min, max]) 

Low contrast 

63 cm 

(median 

[min, max]) 

Right eye Left eye Right eye Left eye Right eye Left eye  

107  105.5 95 93 1.95  

[1.95,  2.10] 

1.95  

[1.95,  2.10] 

19 

[15, 25] 

Table 4.1. Pinhole experiment subjects’ information.  

4.1.2 STIMULI 

The stimuli were faces and textures generated as in the luminance experiment.  

4.1.3 EXPERIMENTAL DESIGN 

The experiment consisted of 7 blocks in each session. The two experimental 

sessions differed in terms of pinhole order employed: in the ―small to big‖ (s2b) session 

pinhole size of 1 mm was applied in block 2. The pinhole size then increased by 1mm in 

each subsequent block to reach 5 mm in block 6. In the ―big to small‖ (b2s) session, a 5 

mm pinhole was used in the 2
nd

 block and then pinhole size decreased by 1 mm in each 

block, up to 1mm in block 6. The first and the last blocks in both sessions were conducted 

without pinhole. All subjects participated in one s2b and one b2s session that were 

randomly assigned. 

Each block contained 210 trials: 100 faces (10 face identities repeated 10 times, 

each time with unique noise field), 100 unique noise textures, and 10 practice trials at the 

beginning of every block (5 faces and 5 textures). The whole experiment had a total of 

1470 trials. The task and trial procedure were the same as in the luminance experiment.   

4.1.4 PROCEDURE 

The experiment was conducted in the same lab booth as the luminance experiment.  

The stimuli were displayed on the same monitor with a luminance of 60.8 cd/m
2
, which 

was constant across blocks. The viewing distance was also 80 cm. Subjects performed the 

experiment monocularly using the eye with best visual acuity – 4 subjects used their left 

eye and 6 subjects used their right eye. The other eye was occluded with an optician eye 

patch. For the purpose of light adaptation, before each experimental block, subjects were 

instructed to look at the monitor screen with uniform grey background (128 128 128) and 

luminance of 60.8 cd/m
2
 for 60 seconds. After adaptation, subjects‘ pupil size in the non-

occluded eye was measured using a NeurOptics pupillometer, following the same 
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procedure as in the luminance experiment. After pupil measurement, an optical trial lens 

frame (model TF-1002, Danyang Huasu Optical Co., Ltd.) was put on subjects‘ head. The 

pinholes were black circular plates 4 cm in diameter with a circular aperture of 1, 2, 3, 4 or 

5 mm located in the middle of the plate. To determine the optimal position of the pinhole 

in front of the non-occluded eye, the smallest (1 mm) pinhole plate was inserted into the 

trial frame. Subsequently, the experimenter adjusted the pinhole position until a 

rectangular frame displaying the message ―Press any key to start… (Block 1 of 7)‖ (size: 

256 x 256 pixels, 9° x 9° of visual angle, displayed in the centre of the screen) was centred 

in the subjects‘ visual field (the message was not displayed during light adaptation). Each 

subject‘s visual field extent, while looking through the pinhole, was computed by taking 

into consideration the distance between the eye and the pinhole plate and the pinhole size. 

The median visual angle across subjects for pinholes of 1, 2, 3, 4 or 5 mm was 15˚, 17˚, 

18˚, 20˚, and 22˚, respectively, in the s2b and 14˚, 16˚, 18˚, 20˚, and 22˚ in the b2s 

procedure. Thus, the 9˚ x 9˚ stimuli were visible even through the smallest pinhole. Once 

the trial frame with 1 mm pinhole was optimally installed, subjects conducted a 40 trial 

practice block, which was similar to the practice block in the luminance experiment. After 

the practice block and a small break, subjects proceeded with the experiment.  

4.1.5 EEG DATA ACQUISITION AND PRE-PROCESSING 

Data were acquired and pre-processed in the same way as in the luminance 

experiment, except that causal-filtered datasets were not created. All analyses were done 

on the non-causal filtered data (band-pass filtered between 0.3 Hz – 40 Hz using a two-way 

least square FIR filter (pop_eegfilt function in EEGLAB). 

4.1.6 EEG DATA ANALYSIS 

EEG data were analysed using Matlab 2011a and the LIMO EEG toolbox (Pernet, 

Chauveau, Gaspar, & Rousselet, 2011). General linear modelling of single-trial EEG data 

was used and the procedure was similar to the one used in the luminance experiment, 

except there were seven face-texture contrasts, instead of nine – one for each of the seven 

pinhole conditions. As in the luminance experiment, the results were corrected for multiple 

comparisons using a spatial-temporal clustering approach. For descriptive statistics and all 

comparisons, a similar percentile bootstrap procedure was used as in the luminance 

experiment.  

  

http://huasu.en.alibaba.com/
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4.2 RESULTS 

The goal of the second experiment was to determine if, by decreasing young 

subjects‘ pupil size, their processing speed could be slowed and their ERPs could match to 

those of old subjects. The results show that the ERPs of young subjects were delayed for 

all pinhole sizes compared to the no pinhole condition. This effect was the strongest with 

the 1 mm pinhole and was visible at the level of single trial ERPs (Figure 4.1 A), face-

texture ERP differences (Figure 4.1 B), and cumulative sums of t2 functions (Figure 4.1 

C). Also, contrary to our hypothesis that the smaller the pinhole, the bigger the overlap 

between young and old subjects‘ ERPs, the overlap was higher for 4 and 5 mm pinholes 

compared to 1 and 2 mm pinholes (Figure 4.4). However, even at 4 or 5 mm, we were 

unable to match the ERPs of young observers to those of old observers. 

 

Figure 4.1. Individual subjects data. Data of two representative subjects: TWH (age 30), 

and MMB (age 29) in b2s (column 1) and s2b (column 2) sessions at the max t
2
 electrode 

for that subject, indicated in the top left corner of each plot. (A) Single-trial ERPs. (B) 

Time-courses of contrasts between face and texture beta-coefficients for each pinhole 

condition. Horizontal lines indicate significant differences. (C) Cumulative sums of t
2
 

functions for each pinhole condition. 
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4.2.1 EFFECT OF PINHOLES ON ERP PROCESSING SPEED 

Young subjects‘ 50ITs increased from 189 ms in the first no pinhole condition to 

265 ms (b2s) and 251 ms (s2b) with a 1 mm pinhole (Figure 4.2, Table 4.2). We found 

significant differences in 50ITs between the no pinhole condition and 1, 2 and 3 mm 

pinhole sizes in both sessions; for 4 mm the difference was significant only in the b2s 

session, and for 5 mm pinhole in the s2b session. There was no significant difference 

between the two no pinhole conditions within the same session.  

 

Figure 4.2. Boxplots of 50% integration times. Boxplots 1-7 show 50ITs across all 

pinhole subjects, in each pinhole condition. Boxplots 8 -11 show old subjects’ 50ITs from 

the two brightest conditions of the luminance experiment (60.8 cd/m
2
 – c1 and c9), for 

the b2d and d2b sessions. Horizontal dashed lines indicate the lowest 25th and the 

highest 75th quantile across the old subjects’ 4 conditions.     

 no pinhole 

(first) 

1 mm 

pinhole 

2 mm 

pinhole 

3 mm 

pinhole  

4 mm 

pinhole 

5 mm 

pinhole 

no pinhole 

(last) 

b2s 189  

[177, 204] 

265  

[251, 277] 

219  

[194, 248] 

219  

[191, 243] 

211  

[187, 227] 

198  

[180, 216] 

211  

[190, 226] 

Difference  -75  

[-88, -62] 

-29  

[-57, -10] 

-29  

[-54, -4] 

-22  

[-38, -3] 

-9  

[-24, 5] 

-22  

[-40, 2] 

s2b 189  

[174, 205] 

251 

[216, 267] 

205 

[193, 228] 

210 

[200, 225] 

204 

[186, 226] 

217 

[195, 237] 

196 

[180, 212] 

Difference  -62  

[-73, -42] 

-16  

[-28, -5] 

-20  

[-30, -13] 

-15 

 [-35, 1] 

-27  

[-47, -5] 

-7  

[-27, 15] 

Table 4.2. 50% integration times for all pinhole conditions. The median 50IT (ms) and 

its 95% CI (in square brackets) is given for each pinhole condition and each session. 

Differences between the first “no pinhole” condition and each of the remaining pinhole 

conditions (1-5 mm and the last condition with “no pinhole”) are also provided along 

with the 95% CIs.  
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4.2.2 MATCHING OF PROCESSING SPEED BETWEEN YOUNG AND OLD 

SUBJECTS. 

Young subjects‘ 50ITs for 2 and 3 mm pinholes in the b2s session matched those of 

old subjects from both b2d or d2b luminance sessions (b2d: 2 mm – diff = -14 [-39, 16]; 3 

mm – diff = -14 [-41, 11]). However, in the s2b session, 50IT matched between young and 

old subjects (from both luminance sessions) for 1 and 5 mm pinhole sizes (b2d: 1 mm – 

diff = 19 [-15, 36]; 5 mm – diff = -16 [-38, 5]; d2b: 1 mm – diff = 14 [-16, 37]; 5 mm – diff 

= -20 [-43, 1]). 50ITs for all the remaining pinhole sizes differed significantly from those 

of old subjects (Figure 4.2, Appendix B – Supplementary Table 6).  

Furthermore, a qualitative difference in the shape of the t
2
 functions of young adults 

with no pinhole (and luminance level = 60.8 cd/m
2
) and old subjects tested at 60.8 cd/m

2
 

was observed (Figure 4.3). This shape difference was visible for all pinhole conditions. 

Additionally, in the 1mm pinhole condition, the onsets of the face-texture ERP differences 

in young subjects were delayed compared to the onsets of the old adults in the luminance 

experiment (Figure 4.3). The calculation of the overlap between t
2
 functions of young and 

old adults revealed that in both pinhole sessions, the overlap was 5-14% higher when 

young subjects wore pinholes compared to the no pinhole condition (Figure 4.4). For the 

b2s session the overlap was the highest for 2 and 3 mm pinholes ~81-82% (Figure 4.4 A), 

whereas for the s2b session it was the highest for the 5 mm pinhole ~73-74% (Figure 4.4 

B). This result converges with the finding that 50ITs of young and old adults matched for 2 

and 3 mm pinholes in b2s session and for the 5 mm pinhole in s2b session. Finally, the 

overlaps were 3-8% higher for the 5 mm pinhole size compared to 1 mm, which goes 

against the hypothesis that the smaller the pinhole in young subjects the bigger the overlap 

between young and old ERPs. Thus, although pinholes delay visual processing, they are 

not sufficient to make young subjects‘ ERPs look old. 
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Figure 4.3. Time-course of normalized t
2
 functions for young and old subjects. Each 

subplot shows the time-courses of mean normalized t
2
 functions of young subjects, in all 

conditions of the pinhole experiment, and of old subjects from the luminance experiment, 

in the two conditions with the highest luminance 60.8 cd/m
2
: condition 1(c1) plotted in 

black, and condition 9 (c9) plotted in grey. 
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Figure 4.4. Overlaps between t
2
 functions of young subjects tested in the pinhole 

experiment and old subjects tested in the luminance experiment. (A) Overlap between old 

(>60) adults in the first brightest (60.8 cd/m
2
) condition from the b2d (A1) and d2b (A2) 

session of the luminance experiment and young subjects in all the pinhole conditions of 

the pinhole experiment’s b2s session. (B) Overlap between old subjects in the brightest 

(60.8 cd/m
2
) condition from the b2d (B1) and d2b (B2) session of the luminance 

experiment and young subjects in all the pinhole conditions of the pinhole experiment’s 

s2b session. Each subplot depicts the area under the t
2
 functions of young and old 

subjects, shaded in dark green. The edges of the t
2
 functions for young and old subjects 

are highlighted in black and in red, respectively. The overlap between t
2
 functions for 

young and old subjects is shaded in light green. The proportion of overlap is  given inside 

each subplot. 
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4.3 DISCUSSION 

The study presented in this section addressed several enduring questions about 

aging effects on visual processing speed, as reflected in ERPs. It was measured by how 

much the visual processing of faces slows down throughout adulthood; the onset of the 

slowdown; and the contribution of luminance and pupil size to the age-related delay. 

4.3.1 AGE-RELATED ERP DELAYS 

First, the data confirms previous findings of Rousselet, et al. (2010), suggesting that 

aging slows down visual processing speed by 1 ms/year. This result was extended by 

showing that this rate of slowdown is constant across luminance levels, from 60.8 to 0.59 

cd/m
2
. At the highest luminance (60.8 cd/m

2
), the processing speed of older (>60) subjects 

was ~230 ms, about 50 ms slower than that of younger (<30) subjects (~180 ms). Aging 

also prolonged the latencies of maximum face-texture ERP differences, but at a sharper 

rate: on average by ~1.5 ms/year; the strongest face-texture ERP differences were observed 

~140 ms post-stimulus in young adults, but only after 220 ms in older adults – about 80 ms 

later. Aging effects started around ~125 ms post-stimulus at 60.8 cd/m
2
 and, because of a 

main effect of luminance, were delayed up to 162 ms at 0.59 cd/m
2
; maximum aging 

effects appeared at ~200 ms at 60.8 cd/m
2 

and were delayed to ~260 ms at 0.59 cd/m
2
.  

Previous research yielded inconclusive results regarding the dependency of aging 

effects on luminance: some research showed similar ERP aging delays regardless of the 

luminance level (Tobimatsu, et al., 1993), whereas others suggested that ERP aging effects 

were stronger at low luminances (e.g. Shaw & Cant, 1980). The findings of Shaw and Cant 

(1980) do not contradict our observations – the luminance level beyond which their aging 

effect became weaker (~72 cd/ m
2
) is higher than our maximum luminance (60.8 cd/m

2
).  

Unfortunately, we are unable to relate the dependency between luminance and aging 

effects found in our study to other face ERP aging studies, because only one of them 

reported the mean luminance of their stimuli: 64 cd/m
2
 (Pfutze, Sommer, & 

Schweinberger, 2002). In this study, Pfutze, et al. (2002) reported no changes in P1 and 

N170 peak latencies with age. However, their results cannot be directly compared to our 

results because they did not consider the entire time-course of the effects, as is done in our 

approach. Nevertheless, it is possible that at luminances higher than the ones used in the 

present study, ERP aging effects may decrease and future studies should address this 

question. Including information about luminance and contrast of the stimuli into method 

sections would also facilitate the comparison of age-related effects across studies. 
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In the current study, and the previous ones (Rousselet, et al., 2009; Rousselet, et al., 

2010), my lab found ERP aging effects starting at about ~125 ms post-stimulus, and lasting 

for about 200 ms, with the strongest effects in the N170 time window. Aging effects in the 

N170 time window have been reported in several studies (Gazzaley, et al., 2008, 

Nakamura, et al., 2001; Wiese, et al., 2008). However, present results confirm that aging 

effects start earlier than the N170 peak, in keeping with the idea that peak analyses should 

be abandoned in favour of systematic time-point by time-point analyses (Rousselet & 

Pernet, 2012). Noteworthy, ERP studies using checkerboards have reported age-related 

latency increases already around 100 – 110 ms post-stimulus (Tobimatsu, et al., 1995; 

Shaw & Cant 1980; Sokol, Moskowitz, & Towle, 1981). However, checkerboards and 

faces differ in spatial frequency content, and it is thus difficult to compare the absolute 

latencies of the ERPs elicited by these two types of stimuli.  

Among studies using faces (Pfutze, Sommer, & Schweinberger, 2002; Chaby, 

George, Renault, & Fiori, 2003; Daniel & Bentin, 2010; Gao, XU, ZhangG, Zhao, Harel, 

& Bentin, 2009; Chaby, Jemel, George, Renault, & Fiori, 2001; Gazzaley, et al., 2008, 

Nakamura, et al., 2001; Wiese, et al., 2008; Wiese, Komes, & Schweinberger, 2012) 

discrepancies in N170 aging effects could be due to variability in stimulus parameters (e.g. 

whether or not external features were preserved, size, color, contrast, luminance), or ERP 

analysis approach (focused on peak amplitude and latency or peak-independent analyses), 

or both. It seems unlikely that particular stimuli could explain the presence of early aging 

effects because very different stimuli were used also among studies that did find delays in 

early ERPs, as well as among those that did not. Nevertheless, future work could determine 

how the aging effects observed in the present work are linked to potential differences in 

ERP information content, for instance using reverse correlation techniques (Schyns, 

Gosselin & Smith, 2009; Smith, Gosselin & Schyns, 2012). This would allow determining 

if age-related changes in ERP shape are due to changes in diagnostic information, which 

might reflect, for instance, differences in task related strategies.  

At present, it seems more plausible that the differences in ERP aging effects 

between the current study and the existing literature stem from the application of different 

measures of age-related delays. Most studies focus on component peak latencies in pre-

defined time windows, whereas our analyses take into consideration changes in the overall 

shape of the ERP, and is independent of ERP peaks and regions of interests. Thus, it is 

entirely possible that similar aging effects would be obtained by applying data analyses 

approach used in this work to data from other studies. Moreover, the 1 ms/year age-related 
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delay in processing speed, obtained with the present analysis approach, has been replicated 

both within studies (testing our subjects twice), and across studies in independent samples 

of subjects from two countries (Rousselet, et al., 2009, Rousselet, et al., 2010). 

4.3.2 LUMINANCE EFFECT ON THE ERPS 

The results indicate that, independently of age, luminance strongly modulated 

ERPs. Previous research has shown that decreasing luminance increases the latencies of 

neuronal responses in cortical areas including V1 (Rousselet G. A., Husk, Bennett, & 

Sekuler, Time course and robustness of ERP object and face differences, 2008b), superior 

colliculus (Marino, et al., 2012) and in the LIP - lateral intraparietal area (Tanaka, Nishida, 

Aso, & Ogawa, 2013). Early ERPs (~100 ms) are also delayed by changes in luminance 

(Cant, Hume, & Shaw, 1978; Tobimatsu, et al., 1993; Johannes, Munte, Heinze, & 

Mangun, 1995; Wicke, Donchin, & Lindlsey, 1964). The present study extends this finding 

by showing that luminance affects most of the ERP time-course, within 500 ms post-

stimulus, starting about 60 ms post-stimulus, with maximum modulations occurring 

between 130 – 150 ms. These strongest luminance effects occurred after the P100 time-

window, a period of activity commonly thought to be most sensitive to changes in low-

level visual factors, such as luminance (Shaw & Cant, 1980), contrast (MacKay & Jeffreys, 

1973), size (Yiannikas & Walsh, 1983) or color (Anllo-Vento & Hillyard, 1996). My 

results suggest that it is not the P100 but the 130 – 150 ms period that is most strongly 

modulated by luminance – the period usually associated with higher-order cognitive 

processes, such as object and face categorization (Itier & Taylor, 2004), expertise (Tanaka 

& Curran, 2001), or task-related processes (Rousselet, Gaspar, Wieczorek, & Pernet, 

2011a). Stronger sensitivity to changes in luminance around 130-200 ms, rather than 

around 100 ms, has also been observed in a study using short flashes of vertical bars 

(Johannes, et al., 1995). Thus, visual ERP studies should not underestimate the effects of 

low-level factors beyond the P1 time window. Reporting the screen luminance is also 

essential to be able to compare ERP latencies across studies. 

4.3.3 CONTRIBUTION OF PUPIL SIZE AND SENILE MIOSIS TO AGE-RELATED 

ERP DELAYS 

The results show that pupil size decreases with aging at the rate of ~0.03 mm/year 

at 60.8 cd/m
2
, ~0.04 mm/year at intermediate luminances, and ~0.05 mm/year at 0.59 

cd/m
2
. This is equivalent to about 0.6 – 1 mm reduction every 20 years. These estimates 

match quite well those obtained in previous studies – for instance Winn (1994) found a 

decrease in pupil size of about 0.03 mm/year at 220 cd/m
2
 and ~0.04 mm/year at 44 and 9 
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cd/m
2
. Birren, Casperson and Botwinick (1950) reported a 2.5 mm difference in pupil size 

between subjects in their twenties and subjects in their eighties (~0.04 mm/year) at 3.18 

cd/m
2
. Between the same age groups, Sokol et al. (1981) observed a slightly smaller 

reduction in pupil size of 1.5 mm (0.025 mm/year) at 1.9 cd/m
2
. Finally, our senile miosis 

measurements fit well with a recent model that estimates pupil size based on age, 

luminance, size of adaptive field and whether one or two eyes have been adapted (Watson 

& Yellott, 2012).  

Contrary to the expectations, senile miosis is unlikely to be a factor explaining age-

related delays in visual ERPs. Moreover, individual variability in pupil size within age 

groups cannot account for individual differences in visual processing speed. First, after 

partialling out the effect of age from our processing speed measurements and from pupil 

size, we failed to find a relationship between processing speed and pupil size. Second, at 

31 and 16 cd/m
2
, the luminance conditions providing the best retinal illuminance match 

between young and old subjects, the overlap between their ERPs was the second smallest 

(after 60.8 cd/m
2
). Additionally, in the conditions where young-old ERP overlap was the 

highest (0.59, 1.14, 2.17 cd/m
2
), the retinal illuminance of young subjects was only about 

5-10% of that of old adults. Furthermore, in experiment 2, the ERPs of old subjects tested 

at high luminance could not be matched to those of young subjects wearing pinholes. In 

fact, a counterintuitive result was observed: the young-old ERP overlap was 3-8% higher 

in the 5 mm pinhole size condition compared to the 1 mm condition. Overall, the results 

demonstrate that ERPs to faces are delayed by aging at the early stages of visual 

processing (< 200 ms) and strongly suggest that these delays are of cortical, rather than 

optical origin. 

4.3.4 CONTRIBUTION OF OTHER OPTICAL FACTORS AND CONTRAST 

SENSITIVITY TO ERP AGING DELAYS 

Ruling out senile miosis as possible contributor to age-related visual processing 

delays does not necessarily mean that no other optical factors are involved. With age, there 

is a reduction in lens light transmittance (Boettner & Wolter, 1960), as well as in the eye‘s 

ability to accommodate, which decreases from the fifth decade of life onwards and seems 

to disappear altogether in the sixth decade (Birren & Schaie, 2001). Additionally, after the 

age of 40, the amount of intraocular light scatter increases, leading to a reduction in retinal 

image contrast (Fujisawa & Sasaki, 1995). Under these circumstances, senile miosis is 

actually beneficial because it diminishes optical aberrations (Applegate, Donnelly, 

Marsack, Koenig, & Pesudovs, 2007); it also boosts depth of focus, improving contrast and 
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the overall quality of the retinal image (Weale, 1992). Despite the positive effects of senile 

miosis, overall, reduction in pupil diameter, increase scatter and a decrease in ocular 

transmittance lead to approximately 60% of light loss at the retina, at lower light levels, 

between the ages of 20 and 60 years. However, this reduced retinal illuminance in old 

subjects is unlikely to account for the ERP aging delays found in this study because even 

when retinal illuminances of young and old subjects matched, their ERPs did not.  

Another factor that could potentially contribute to our ERP aging delays is a 

decline in spatial contrast sensitivity with age. The effects of diminished contrast 

sensitivity in the elderly have been primarily studied at the early stages of visual 

processing, especially around the P100 (Tobimatsu, 1995; Tobimatsu, Kurita-Tashima, 

Nakayama-Hiromatsu, Akazawa, & Kato, 1993; Morrison & Reilly, 1989). Morrison & 

Reilly (1989) showed that incrementing stimulus contrast makes ERPs of older observers 

resemble those of young observers. Tobimatsu, et al., (1993) found that a reduction in 

contrast of checkerboard patterns leads to significant differences in P100 latency between 

young and middle age groups, contrary to high contrast checks for which no difference was 

observed. In the older group, P100 latencies were delayed compared to the middle age 

group for both low and high contrast checks. My stimuli had RMS contrast of 0.1, which is 

similar to the low contrast stimuli used by Tobimatsu, et al. (1993). It is therefore possible 

that for higher contrast stimuli, our aging effects would be less pronounced; to my 

knowledge no face ERP study has yet addressed the link between stimulus contrast and 

aging delays.  

However, it is unlikely that reduction in contrast sensitivity could fully explain the 

ERP aging delays found here. Contrast sensitivity loss under photopic light conditions has 

been observed in particular for intermediate and high spatial frequencies – above 2 

cycles/degree of visual angle (Owsley, Sekuler, & Siemsen, 1983). In my stimuli, 90% of 

the total power was contained within the low to intermediate spatial frequency range 

(Bieniek, Pernet, & Rousselet, 2012, Figure 1) – below 20 cycles/image, which for our 

image size of 9º of visual angle is equivalent to ~2.2 cycles/degree. This suggests that most 

of the spatial frequency content of our images is below the range that is typically affected 

by aging. Also, age-related differences in contrast sensitivity are larger under mesopic and 

scotopic light conditions than in photopic conditions (Sloane, Owsley, & Alvarez, 1988; 

Owsley, 2011). In my study, only the 0.59 cd/m
2
 luminance condition falls within the 

mesopic range. However, the aging effect for that luminance level did not differ from the 
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one observed at the highest luminance level. Thus, a link between our aging effects and 

contrast sensitivity loss is unlikely. 

4.3.5 POSSIBLE ACCOUNTS FOR THE ERP AGING EFFECTS 

Finally, in this last section, I speculate about the main factors that could account for 

age-related processing speed slowdown, including: alteration in axons‘ myelination, 

reduced synaptic and network efficiency, decrease in neuronal response selectivity, 

inhibitory deficits, and neuronal network reorganisation.  

First, slowdown of visual processing speed with age may be due to myelin 

alteration: aging is associated with degeneration of myelin sheaths of cortical neurons that 

subsequently get remyelinated, but with shorter internodes, leading to slower conduction 

along nerve fibres (Peters, 2009; Peters, 2002). Changes in myelin sheaths are distributed 

across grey matter and white matter, suggesting that communication both within and 

between cortical regions might be disturbed (Peters, 2002). In keeping with these 

anatomical observations, there is direct evidence for age-related slowing in the visual 

system: Wang, et al. (2005) reported delays in the latency of inter-cortical spiking activity, 

between V1 and V2, as well as intra-cortical activity, within V1 and V2, and this effect 

was more pronounced in V2 compared to V1.  

In humans, post-mortem analysis reveals stronger changes in white-matter density 

than in grey-matter density with healthy aging (Piguet, et al., 2009). Using in-vivo 

techniques, several studies have suggested a relationship between age-related decline in 

white matter and cognitive function including speed of processing (Eckert, 2011; Eckert, 

Keren, Roberts, Calhoun, & Harris, 2010; Salami, Eriksson, Nilsson, & Nyberg, 2012; 

Bucur, Madden, Spaniol, & Provenzale, 2008). However, some of these studies potentially 

suffer from a statistical problem arising from the artificial correlation between time-

dependent variables (Hofer & Sliwinski, 2001; Lazic, 2010). These studies also use 

composite behavioural measures of processing speed that do not have the specificity and 

the temporal resolution potentially afforded by EEG and MEG.  

Additionally, animal studies suggest that aging is associated with a decrease in 

spine numbers and spine density (Duan, et al., 2003), as well as with alterations in the 

strength and efficiency of synaptic connections (Mostany, et al., 2013). Although at a 

different scale, reduced efficiency of cortical networks in older individuals has also been 

suggested in humans (Achard & Bullmore, 2007). This loss in efficiency may be linked to 
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the degradation of neuronal response selectivity, which in turn could translates into slower 

processing times. Indeed, animal research shows that aging is associated with an increase 

in spontaneous activity of neurons, a reduction in signal to noise ratio, and a deterioration 

of orientation and direction selectivity in V1 and V2 (Schmolesky M. , Wang, Pu, & 

Leventhal, 2000; Yu, Wang, Li, Zhou, & Leventhal, 2006; Hua, et al., 2006). This increase 

in noise and decrease in selectivity of neuronal responses may lead to broader tuning of 

neuronal populations and impair face-specialised processing. This notion is supported by 

fMRI findings of reduced differentiation of BOLD signal between faces and pink noise 

textures (Park, et al., 2004) accompanied by an increase in BOLD response to all 

categories in regions normally preferentially active for certain categories only (Park, et al., 

2004; Voss, et al., 2008; Payer, Marshuetz, Sutton, Hebrank, Welsh, & Park, 2006). If 

populations of cells become less tuned to a specific stimulus, the rate of accumulation of 

evidence supporting its recognition would slow down, leading to longer processing times 

(Perrett & Ashbridge, 1998).  

The deterioration of visually driven neuronal responses has also been linked to an 

age-related reduction in GABA concentration. The administration of GABA to V1 cells of 

senescent monkeys‘ improved selectivity of visual responses, demonstrating a direct link 

between inhibitory processes and healthy visual function (Leventhal, Wang, Pu, Zhou, & 

Ma, 2003). In humans, inhibitory deficits in elderly subjects have been captured at the 

level of populations of neurons using EEG. For instance, Gazzaley, et al. (2008) found that 

older adults have more difficulties with suppressing task-irrelevant information, which 

manifests itself in longer N170 latencies (but unaffected P1 latencies). It is unclear whether 

the present results of the most prominent aging effects occurring in the N170 time window 

can be linked to inhibitory deficits or decreased specialisation of face-selective processes: 

further research should address this question.  

Although they cannot yet be linked to particular processes, it seems plausible that 

the earliest aging effects (~125) involve activity from higher-order visual areas. 

Intracranial recordings showed face-sensitive responses in extrastriate areas (Halgren, et 

al., 1994), occipital and temporal structures (Liu, et al., 2009), and in the fusiform gyrus 

(Barbeau, et al., 2008) as early as ~100 ms. Strikingly, one small cortical patch can 

generate the whole P1-N170-P2 complex (Sehatpour, et al., 2008; Rosburg, et al., 2010; 

Allison, Puce, Spencer, & McCarthy, 1999). Studies using scalp recordings have also 

reported responses differentiating between faces and other objects already ~100 ms post 

stimulus (Liu, Harris, & Kanwisher, 2002; Herrmann M. J., Ehlis, Ellgring, & Fallgatter, 
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2005; Itier & Taylor, 2002; Linkenkaer-Hansen, et al., 1998; Pizzagalli, Regard, & 

Lehmann, 1999; Halit, de Haan, & Johnson, 2000; Yamamoto & Kashikura, 1999). 

However, some of these studies used non-causal filters with relatively large high-pass cut-

offs between 0.8 Hz and 1.5 Hz, which could have shortened onsets by smearing effects 

back in time (Rousselet, 2012; Acunzo, MacKenzie, & van Rossum, 2012; Widman & 

Schroeger, 2012). In the present study a causal Butterworth high-pass filter was used, 

which does not distort onsets, and it was found that face-texture ERP differences started 

around 90 ms post-stimulus. This suggests that the visual system detects faces very rapidly, 

and that aging starts to affect visual processes within 35 to 40 ms after face detection.  

However, if degeneration of myelin and increased noise of neuronal responses are 

visible already in V1 (Peters, Sethares, & Killiany, 2001; Schmolesky, et al., 2000), we 

would expect to see ERP aging differences earlier than ~125 ms post-stimulus. This is 

assuming serial processing from V1 onward, and our capacity to measure evoked 

responses from all successive stages, which is a rather unrealistic model (Foxe & Simpson, 

2002). Additionally, face stimuli are not optimal to capture very early brain activity, and 

different strategies have been suggested to measure the earliest cortical onsets, as reflected 

in the C1 component, starting around 60 ms post-stimulus (Kelly, Gomez_Ramirez, & 

Foxe, 2008). Whether age-related differences in activity from striate and early extra-striate 

areas might occur in the absence of differences in the onset of face related areas remain to 

be investigated. 

Reduced selectivity of neuronal responses and deficits in inhibition of irrelevant 

information may lead to slower accumulation of evidence useful for decision making. It 

has been suggested that subjects‘ behavioural choices can be predicted from the activity in 

two EEG time windows associated with the accumulation of evidence useful for decision 

making: one early (~N170) and one late (>300 ms) (Philiastides, Ratcliff, & Sajda, 2006; 

Philiastides & Sajda, 2006). In my study, aging effects started 35 – 40 ms after the onsets 

of face/texture differences. Moreover, subjects‘ behavioural performance did not change 

with age and was close to 100%. Thus, it seems plausible that, for all age groups, stimulus 

processing starts at the same time, but when the aging effects appear, the whole cascade of 

information accumulation necessary for a behavioural decision is disturbed, leading to 

longer processing times, without necessarily hampering subjects‘ performance - at least in 

an easy task such as ours. The task used in our study was designed to be very easy in order 

to measure age-related ERP differences in processing speed in the absence of behavioural 

differences. 
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Age-related neuronal changes might also lead to the involvement of additional or 

different neuronal circuits – reorganisations that could potentially explain aging results 

found in the present study. Indeed, age-related reorganisation of neuronal networks during 

face processing has been observed by Grady, McIntosh, Horwitz & Rapoport (2000). They 

discovered that in young adults better recognition of degraded face images was positively 

correlated with the activity in the fusiform gyrus, in contrast to old adults for whom 

behavioural performance correlated with activity in the posterior occipital cortex. Other 

studies found that when task difficulty increases (for instance because faces are degraded), 

older observers rely more on prefrontal areas, suggesting that, with age, there is an over 

recruitment of frontal activity to compensate for poorer performance of the sensory 

systems (Grady, 2008). In the current study, the behavioural task was very simple, most 

likely not requiring the involvement of compensatory brain circuits. However, the exact 

task conditions that promote frontal compensation in old adults are still poorly understood. 

Also, evidence for over-recruitment and compensation have been obtained from cross-

sectional designs, and have been challenged by a recent longitudinal study (Nyberg, 

Lovden, Rilund, Lindenberger, & Backman, 2012; Nyberg, et al., 2010).  

Finally, the aging effects observed in this study could be related to a decline in 

perceptual grouping abilities (Kurylo, 2006) and contour integration (Roudaia, Bennett, & 

Sekuler, 2008; Roudaia, Farber, Bennett, & Sekuler, 2011). Because face and object 

recognition rely to a large extent on contours and edges carried by image phase 

information (Bieniek, Pernet, & Rousselet, 2012; Gaspar & Rousselet, 2009), any deficit in 

a mechanism responsible for contour integration is likely to affect face and object 

processing. An important research question would thus be to determine the relationship 

between ERP aging delays and age-related contour integration deficits, which might 

themselves be due to inhibitory deficits and other neuronal changes.  
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5 THE ONSET OF ERP SENSITIVITY 

TO FACES IN THE HUMAN BRAIN 

Building on the result presented in the previous section of no age effects on the 

onsets of face-related ERP responses, my final project (Section 5) aimed for precise 

quantification of onsets in a large sample of participants. The time needed by the visual 

system to detect faces has been the subject of considerable debate in electrophysiological 

literature (Section 1.2 & 1.3). Although the evidence is mixed, it seems plausible that face-

sensitive responses might occur already before 100 ms in both human and monkey brains. 

To address this controversy, the onset of ERP face responses in humans was estimated 

using an approach that overcomes some of the major limitations of previous ERP research. 

ERPs of 120 subjects were recorded; 74 of them were tested twice to assess the test-retest 

reliability of the results. To quantify individual differences data were analysed on 

individual subject basis. Causal filters were applied to the EEG data, so as to avoid 

potential onset distortions introduced by non-causal filters commonly used in ERP research 

(Acunzo, et al., 2012, Rousselet, 2012, Luck, et al., 2005, Widmann & Schroder, 2012). 

Analyses were performed systematically at all electrodes and time frames and controlled 

for multiple comparisons using a bootstrap spatial-temporal cluster technique. 

5.1 METHODS 

5.1.1 SUBJECTS 

In this study data from 120 healthy subjects (60 females) age 18-81, recruited and 

tested in Canada (group 1: n=30) and in the UK (group 2: n=31, group 3: n=59) were 

pooled together. Basic information about the subjects is given in Table 5.1 and detailed 

descriptions are provided in Rousselet, et al. (2009) for group 1, Rousselet, et al. (2010) for 

group 2 and Section 3 for group 3. A total of 73 subjects took part in a second 

experimental session to assess the reliability of their results (24 subjects from group 2 and 

49 subjects from group 3). 
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Age 

bracket 

Age Number of 

subjects 

(females, males) 

Years of 

education 

 

Visual Acuity Contrast 

Sensitivity 

18-19 19 [18, 19] 6 (4, 2) 15.5 [15, 18.5] 1.25 [1, 1.6] 1.95 [1.95, 1.95] 

20-29 22 [20, 29] 29 (14, 15) 18 [15, 25] 1.25 [0.8, 1.68] 1.95 [1.8, 2.25] 

30-39 33 [30, 38] 15 (5, 10) 19 [14,25] 1.25 [0.8, 1.6] 1.95 [1.95, 2.1] 

40-49 43.5 [40, 49] 16 (10, 6) 18 [12, 27] 1.25 [0.8, 1.6] 1.95 [1.95, 2.25] 

50-59 55 [50, 59] 9 (3, 6) 19 [13, 19] 1.25 [0.63, 1.6] 1.95 [1.95, 1.95] 

60-69 66 [60, 69] 31 (16, 15) 16 [5, 21.5] 0.96 [0.4, 1.39] 1.95 [1.95, 1.95] 

70-81 73.5 [70, 81] 14 (8, 6) 13.5 [10, 21] 1 [0.4, 1.25] 1.95 [1.65, 1.95] 

Table 5.1. Subjects’ information. For each age  bracket the median age, years of 

education, visual acuity (measured using Colenbrander mixed contrast card set at 63 cm 

and high contrast), and Pelli-Robson contrast sensitivity are, given with minimum and 

maximum values in square brackets. 

5.1.2 DESIGN AND PROCEDURE 

Subjects from all three groups viewed images of faces (F) and textures (T). The 

same set of 10 faces was used across the three experiments and is described in more detail 

in Rousselet, Husk, Bennett, & Sekuler (2008), Rousselet, et al., (2010), Rousselet, et al., 

(2009) and Section 3. In short, all faces were front view grey-scale images, cropped into an 

oval shape to remove external features (hair, ears). Textures were images with random 

Fourier phase spectra. All faces and textures had their Fourier amplitude spectra set to the 

average across faces. Fourier transform of images was computed using fft2 function in 

Matlab. All images were 256 x 256 pixels (visual angle: 8° x 8° for group 1 and 9° x 9° for 

groups 2 and 3) with contrast variance = 0.1. In the original studies, Fourier phase 

coherence or screen luminance was manipulated to affect the amount of stimulus evidence. 

Thus, from each study, we chose trials from the conditions in which subjects viewed 

stimuli with comparable Fourier phase coherence and screen luminance: group 1 – phase 

coherence = 70% & 0%, luminance = 33cd/m
2
 (120 trials/condition); group 2 – phase 

coherence = 70%, 75% (pooled) & 0%, 5% (pooled), luminance = 33 cd/m
2
 (128 

trials/condition); group 3 – phase coherence = 70% & 0%, luminance = 60.8 cd/m
2
 (150 

trials/condition). For group 3, the blocks with luminance = 60.8 cd/m
2
 were chosen 

because the 31 cd/m
2
 block had only 75 trials/condition and no difference in processing 

speed between 60.8 and 31 cd/m
2
 was found (Section 3). Also, no ERP difference between 

70% and 75% phase coherence, or between 0% and 5% was found (Rousselet, et al. 2009; 

2010). Groups 1 and 2 performed a forced choice discrimination task between two pictures 

of female or male faces that included varying amount of phase noise. Group 3 performed a 

categorisation task between faces and textures. These task differences among studies 
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should not affect onsets because task effects on face ERPs are very weak or absent before 

the N170 time window (Rousselet, Gaspar, Wieczorek, & Pernet, 2011a; Philiastides, 

Ratcliff, & Sajda, 2006; VanRullen & Thorpe, 2001; Séverac-Cauquil, et al., 2000; Carmel 

& Bentin, 2002; Lueschow, et al., 2004; Furey, et al., 2006; Okazaki, et al., 2008). Also, as 

shown in the result section, there was no onset difference among the three groups. Detailed 

descriptions of experimental procedures and equipment are given in Rousselet, et al. 

(2009), Rousselet, et al (2010) and in Section 3. 

5.1.3 EEG DATA PRE-PROCESSING: 

EEG data were obtained in Canada using a 256-channel Geodesic Sensor Net 

(Electrical Geodesics Inc., Eugene, Oregon), and in the UK using a Biosemi Active 

Electrode Amplifier System with 128 electrodes. Data were pre-processed using Matlab 

2012a and EEGLAB 11.0.2.1b (Delorme & Makeig, 2004; Delorme, et al., 2011). Data 

were first re-referenced off-line to an average reference. Subsequently, data were filtered 

independently in two different ways. First, to measure onsets, a 2 Hz causal 4
th

 order 

Butterworth high-pass filter was used to avoid onset distortion associated with non-causal 

filtering (Acunzo, MacKenzieb, & van Rossum, 2012; Widmann & Schroger, 2012; 

Rousselet, 2012). Second, a 1 Hz non-causal 4
th

 order Butterworth high-pass filter was 

upplied to perform independent component analysis (ICA). Due to high levels of power 

line noise, the Canadian datasets (group 1) were also low-pass filtered using a 30 Hz non-

causal 4
th

 order Butterworth filter. Subsequently, all datasets were re-sampled at 500 Hz 

and epoched between -300 and 1000 ms around stimulus onset. In the causal filtered 

dataset, baseline correction was performed using the average activity between time 0 and -

300 ms, whereas in the non-causal filtered dataset, individual channel mean was removed 

from each channel, which increases ICA reliability (Groppe, Makeig, & Kutas, 2009). 

Noisy electrodes were identified by visual inspection of the non-causal filtered data and 

rejected from causal and non-causal datasets.  ICA was performed on the non-causal 

filtered data using the infomax algorithm as implemented in EEGLAB. Components 

representing blinks were then identified and removed from both causal and non-causal 

filtered datasets (number of ICs removed: median = 2, min = 0, max = 10). Subsequently, 

data were re-epoched between -300 and 600 ms and baseline correction was performed 

again. Finally, data epochs were removed based on an absolute threshold value larger than 

100 µV and the presence of a linear trend with an absolute slope larger than 75 µV per 

epoch and R
2
 larger than 0.3. Across subjects, the median number of trials available for 
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analyses was, for faces (session 1/session 2): 127/146; min = 27/92; max = 150/150; for 

textures: 127.5/146; min = 25/91; max = 150/150. 

5.1.4 EEG DATA ANALYSIS: 

Statistical analyses were conducted using Matlab 2012a and the LIMO EEG 

toolbox (Pernet, Chauveau, Gaspar, & Rousselet, 2011). 

SINGLE SUBJECT DATA ANALYSES 

To determine the onset of face ERP sensitivity, in every subject we computed t-

tests between face and texture ERPs, independently at each electrode and each time point. 

Multiple comparisons correction was performed using a bootstrap spatial-temporal 

clustering approach (Rousselet, Gaspar, Wieczorek, & Pernet, 2011; Pernet, et al., 2011; 

Bieniek, Pernet & Rousselet, 2012).  

Onsets obtained using t-tests with standard means were compared against those 

obtained with 20% trimmed means. T-tests on 20% trimmed means can help increase 

power and might reveal earlier onsets in noisier subjects (Wilcox, 2012; Rousselet, et al. 

2008; Desjardins & Segalowitz, 2013). For t-tests on means the limo_ttest function was 

used and for t-tests on trimmed means the limo_yuen_ttest function (both functions are part 

of the LIMO EEG toolbox) was used. This comparison was performed on data without 

low-pass filtering (mean versus tmean), and after application of a 40 Hz low-pass 4
th

 order 

Butterworth filter (mean lp versus tmean lp). This was done to check if low-pass filtering, 

as commonly applied in ERP research, produces signal distortions leading to artificially 

earlier onsets (VanRullen, 2011). This comparison was performed in 90 subjects only, 

because 30 subjects from the Canadian dataset had to be low-passed filtered during the pre-

processing stage to reduce line-noise.  

Onsets of ERP face sensitivity were defined as the first significant t-test at any 

electrode, after removing any significant cluster that started before stimulus onset, which 

happened in three subjects.  

Effect Sizes 

Measures of effect size typically used in psychology and neuroscience suffer from 

two major problems: they are not robust, and they are not intuitive (Cliff, 1996; Wilcox, 

2006; Wilcox & Tian, 2011). Here, two powerful measures of effect sizes were used: delta 

(Cliff, 1996) and Q (Wilcox & Muska, 1999), which hopefully will gain in popularity.  



The Onset of ERP Sensitivity to Faces in the Human Brain 

130 

Cliff‘s delta estimates the probability that a randomly selected observation from 

one group is larger than a randomly selected observation from another group, minus the 

reverse probability (Cliff, 1996). This statistic ranges from 1 when all values from one 

group are higher than the values from the other group, to -1 when the reverse is true. 

Completely overlapping distributions have a Cliff‘s delta of 0. Cliff‘s deltas of 0.15, 0.33 

and 0.47 indicate 15%, 33% and 47% of non-overlap between distributions and correspond 

approximately to Cohen‘s d of 0.2, 0.5 and 0.8 – small, medium and large effects sizes 

(Cohen, 1988) - computed using the delta2cohd function from the orrdom package for R 

(Rogmann, 2013). Because delta is a statistic based on ordinal, rather than interval 

properties of the data, it is unaffected by rank preserving data transformations. Its non-

parametric nature reduces the impact of extreme values or distribution shape (Hess & 

Kromrey, 2004). It is related to the Wilcoxon-Mann-Whitney U statistic (Birnbaum, 1956). 

However, the estimate of the standard error of delta makes it, in some situations, more 

robust and more powerful than U (Cliff, 1996). Also, contrary to U, delta is a direct 

measure of effect size, with an intuitive interpretation. 

The Q statistic is also a non-parametric measure of effect size and ranges from 0 to 

1, with chance level at 0.5. It is the probability of correctly deciding whether a randomly 

selected observation belongs to the first of two groups and it reflects the degree of 

separation between two groups (Wilcox & Muska, 1999). Q outperforms d in some 

situations. For instance, if two symmetric distributions do not differ in mean, but do differ 

in variance, large differences can occur in the tails of the distributions. In that case d will 

be close to zero, suggesting wrongly that the two distributions overlap. However, Q will be 

larger than 0.5, suggesting that the two distributions do not overlap. Delta and Q 

complement each other - the former incorporates the ordinal properties of data, whereas the 

latter looks at the overlap between two distributions.   

The delta and Q statistics were calculated in Matlab R2012b, using code adapted 

from the WRS package (Wilcox and Schönbrodt, 2012) in R (R Core Team, 2012). In 

particular, the WRS function cid computes the d statistic. The WRS function qhat 

computes Q, using the adaptive version of the kernel density estimate (Silverman, 1986).  

GROUP DATA ANALYSES 

Distributions of results were quantified using the Harrell-Davis estimate of the 

deciles (Wilcox 2005, p. 71). 95% confidence intervals (CI) are reported in square brackets 
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throughout Section 4. These CIs were obtained using a percentile bootstrap procedure with 

1000 samples (Rousselet, et al., 2010; Section 3). 

Onset distributions 

Adaptive kernel density estimates (KDE) of onset distributions were computed for 

each condition using the akerd function adapted from R (Wilcox, 2012, p. 51). Adaptive 

KDE uses the expected frequency as the initial density estimate (Silverman, 1986).  

Shift Function 

To quantify differences between deciles of onset distributions, the shift function for 

dependent groups (Doksum, 1974; Doksum, 1977) was used. The Matlab implementation 

presented here was based on Wilcox‘s R code and includes a correction for multiple 

comparisons (Wilcox, 2012). The following contrasts were considered: 1) mean vs. mean 

lp, 2) mean vs. tmean, 3) tmean vs. tmean lp, and 4) mean lp vs. tmean lp. Because there 

were no differences between onset distributions in any of these comparisons (Figure 4.2), 

all further analyses were only performed on the mean lp data. 

Regression Analyses  

Regression analyses were performed to determine if there is a relation between: 

ERP onsets and age; ERP onsets and effect sizes at onset times; effect sizes and age. To 

this end group level regressions were computed using Matlab‘s robustfit function, with 

default parameters. I report slopes and intercepts along with percentile bootstrap 

confidence intervals (CIs) calculated in the following way. Subjects were sampled with 

replacement, and this bootstrap sample was used to estimate the regression slopes and 

intercepts. This sampling with replacement was performed 1000 times, and each time the 

slopes and the intercepts were saved. Then, the 2.5 and 97.5 percentiles were used to form 

the boundaries of 95% bootstrap confidence intervals, reported in square brackets. 

Test-retest Comparison 

To determine the reliability of onset estimates, the distribution of onset differences 

between two experimental sessions (n=74) was quantified using a shift function, KDEs, 

and Harrell-Davis estimates of the deciles of this distribution. 

Onset differences among groups 

To test if onsets of face sensitivity differed across the three groups of subjects a 

one-way ANOVA (anova1 function in Matlab) was calculated. There were no onset 

differences among the three groups of subjects in session 1 (F (2, 117) = 0.26, p = 0.77), 
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and between the two groups of subjects in session 2 (F (1, 72) = 0.21, p = 0.65). 

Regression analysis was also performed (using glmfit function in Matlab, with default 

parameters) to test if onset variability could be explained by subjects‘ age, visual acuity, 

contrast sensitivity years of education or sex (Equation 3). None of these variables 

significantly predicted onset times (Table 5.2).  

ONSET = β1Age + β2VA + β3CS + β4YE + β5SEX + β0 + ε            (3) 

 Age Visual acuity Contrast 

sensitivity 

Years of 

education 

Sex 

Beta coefficient 0.01 1.1 5.7 -0.3 8.4 

T statistic  -0.1 0.1 0.2 -0.4 1.8 

p-value  0.9 0.9 0.9 0.7 0.1 

Table 5.2. GLM regression of age, visual acuity, contrast sensitivity, years of education 

and sex as predictors for onset times. 

Monte-Carlo simulations 

Monte-Carlo simulations were used to estimate how group median onsets and 

median test-retest differences changed as a function of the number of subjects. To this end, 

samples of subjects were drawn from a total pool of 120 subjects: from 5 to 70 subjects, in 

steps of 5 (fourteen levels). For each sample size, subjects were sampled with replacement 

10,000 times, and every time the median onset and the between session median onset 

differences were computed. The variability among Monte-Carlo estimates was quantified 

using the inter-quartile range (IQR), which was measured using the idealf function adapted 

from R (Wilcox, 2012). Confidence intervals around the IQRs were calculated using the 

standard percentile bootstrap procedure. 

Control Experiment Methods 

So far, parametric analyses of univariate differences in means and trimmed means 

between distributions of face and noise ERPs were described. But single-trial ERP 

distributions could in principle differ not only in location, but also in dispersion, skewness, 

and kurtosis. Differences between ERP conditions could also be distributed across 

electrodes. So, in order to check if the univariate tests did not miss earlier onsets and if the 

face onsets measured in the main experiment were comparable to onsets involving other 

image categories, ERP data from my recent publication (Bieniek, et al., 2012; Experiment 

1) was re-analysed using variety of tools. In short, experimental procedure involved eight 

observers who categorised pictures of faces, houses, and noise textures, presented for 53 

ms. Seven observers were tested twice. There were up to 1000 trials per observer in total: 
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300 face trials, 300 house trials, 300 trials of phase noise textures with the same amplitude 

spectra as faces and houses, and 100 white noise trials. EEG pre-processing was as 

described in Section 2, except that the causal filtered data, used to measure onsets, were 

not low-pass filtered at all, and were transformed into single-trial spherical spline current 

source density waveforms using the CSD toolbox (Kayser and Tenke, 2006; Tenke and 

Kayser, 2012). This transformation facilitates more focal locating of neural signal 

generators. CSD waveforms were computed using parameters 50 iterations, m=4, 

lambda=10
-5

. The head radius was arbitrarily set to 10 cm, so that the ERP units in all the 

figures are µV/cm². 

Several statistical tests were used to check if the univariate tests that look for 

differences between face and noise ERPs using means of ERP distributions did not miss 

earlier onsets. Onsets were defined by differences among all conditions (one-way ANOVA 

or equivalent), and differences between pairs of conditions. One-way ANOVA and linear 

contrasts (t-tests) on means were performed with the LIMO EEG toolbox (Pernet, 

Chauveau, Gaspar, & Rousselet, 2011). Linear contrasts on 20% trimmed means were 

computed using a Matlab version of Wilcox‘s lincon R function (Wilcox, 2012). 2-sample 

Kolmogorov-Smirnoff tests were performed using Matlab‘s kstest2 function. Kolmogorov-

Smirnoff test is a non-parametric test useful in comparing the distance between two 

distributions and is sensitive to both, the location and the shape of the cumulative funsions 

of the two distributions. Also, two types of mutual information (MI) were calculated: 

between ERP amplitudes and image categories (MIcat), and between ERP amplitudes and 

image pixels (MIpix). Mutual information measures a mutual dependence between two 

variables and has been recently gaining in popularity due to its usefulness to quantify how 

information about external correlate is coded in neural response on a single trial basis. For 

MIpix, the maximum across pixels was used as summary statistics. MI was calculated using 

an open access Matlab toolbox (Ince, Mazzoni, Petersen, & Panzeri, 2010; Magri, 

Whittingstall, Singh, Logothetis, & Panzeri, 2009) with the direct method, quadratic 

extrapolation bias correction, and four equipopulated bins for image pixels and ERP 

amplitudes. To look for multivariate effects across electrodes multivariate logistic 

regression was used, independently at each time point, a one time-frame training window, 

and a leave-one-out cross validation (Parra, Spence, Gerson, & Sajda, 2005; Philiastides & 

Sajda, 2006) Finally, variance, skewness and kurtosis were compared between pairs of 

conditions. 



The Onset of ERP Sensitivity to Faces in the Human Brain 

134 

Onsets were measured using bootstrap clustering techniques with 1000 bootstrap 

samples (Pernet, et al., 2011; Rousselet, et al., 2011) except for logistic regression, for 

which 200 bootstraps were used because it was extremely time-consuming. In the result 

section, I report, for every statistical test, the minimum onset across the two sessions for 

the seven subjects tested twice, and the single onset for the 8
th

 subject. 

5.2 RESULTS 

Using t-tests with means on low-pass filtered data revealed a median onset of 87 ms 

[81, 94] in session 1, and a mode of 74 ms (Figure 5.1). The 1st decile of the distribution 

was 68 ms [64, 73], and the 9th decile was 119 ms [113, 125]. These estimates were 

reliable across testing sessions, and they did not change for data that were not low-pass 

filtered, or when 20% trimmed means were used instead of means. 

 

Figure 5.1. Onset distributions (A, C) Kernel density estimates of onset distributions for 

each of the 4 conditions (mean, tmean, mean lp and tmean lp). The circles on each plot 

indicate the estimated frequencies of onsets. Horizontal plots underneath the KDEs 

depict onsets from individual subjects (one tick per subject).  Topographic maps show 

how many subjects had onsets on each electrode (B, D) Deciles of onset distributions 

with 95% CIs. The vertical middle dashed line in each plot marks the median and the 
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shading highlights the boundaries of the median’s CI, which is also given in square 

brackets. The other two vertical dashed lines indicate the 1st and the 9th deciles  

No significant differences were found between any deciles of onset distributions for 

mean vs. tmean, mean lp vs. tmean lp, mean vs. mean lp, tmean vs. tmean lp. Results for 

session 1 are illustrated in Figure 5.2, and were similar in session 2. These results indicate 

that low-pass filtering or using trimmed means instead of means, does not significantly 

affect any part of the distributions of face ERP onsets. 

 

Figure 5.2. Comparisons of onset distributions. (A) Comparisons of kernel density 

estimates of onset distributions. (B) Differences between deciles of onset distributions 

(black dots) with 95% CIs (vertical lines) computed using shift functions for dependent 

groups. (A) and (B) show data for session 1. Similar results were observed in Session 2.  

Data presented here were from subjects 18 to 81 years old. Thus, I looked at the 

relationship between ERP face onsets and age, and found no evidence for an aging effect 

(Figure 5.3), which confirms previous observations (Section 3). 

 

Figure 5.3. Regressions of onsets against age. Each circle represents the onset from one 

subject. The regression line appears in black The group median onset and its 95% C I is 

indicated at the top of each scatterplot. Below the median are regression equations with 

intercepts and slopes and their corresponding 95% CIs. Both scatterplots contain mean 

lp data; n = number of subjects. 
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The next aim was to look at how big the effects were at onset times (Figure 5.4). In 

the majority of subjects, deltas ranged from 0.1 to 0.3, which corresponds to about 1% to 

45% of non-overlap between face and texture ERPs (and to small-medium effect sizes in 

Cohen‘s d framework). There was no significant relationship between onset latencies and 

effect sizes, measured using either delta or Q (Figure 5.5 A), which means that later onsets 

were not for instance systematically associated with smaller effect sizes compared to 

earlier onsets. Effect sizes also did not depend on subjects‘ age, indicating that aging did 

not affect the size of earliest face ERP differences (Figure 5.5 B). 

 

Figure 5.4. Distributions of effect sizes at onset times. (A) KDEs of effect size 

distributions. (B) Deciles of effect size distributions with 95% CIs. Both (A) and (B) 

show data for mean lp condition, session 1. Similar results were observed in session 2.  
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Figure 5.5. Effect sizes as a function of onset time (A) and age (B). The regression 

equation with intercept and slope and their corresponding 95% CIs is given at the top of 

each scatterplot. Both (A) and (B) show data for mean lp condition, session 1 (number of 

subjects, n=120). Similar results were obtained in session 2.  

The analysis of the test-retest differences revealed reliable ERP onsets between 

experimental sessions. For the 74 subjects tested twice, no significant differences were 

found between onset deciles obtained in the two sessions (Figure 5.6).  

 

Figure 5.6. Test-retest differences between experimental sessions. (A) Kernel density 

estimate of the distribution of onset differences between sessions. Deciles of this 

distribution, along with their 95% CIs, are shown in panel (B). (C) shows the results of 

the shift function analysis comparing onset distributions between sessions in the mean lp 

condition. Dots represent differences in onset times between sessions at each decile of 

session 1 onsets; horizontal lines mark the boundaries o f the 95% CIs around these 

differences. 
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The variability in median onsets as a function of sample size was estimated using 

Monte-Carlo (MC) simulations. Medians of MC estimates of onsets and onset differences 

between sessions changed very little as a function of sample size, but they tended to be 

larger for smaller samples (Figure 5.7 A). This result indicates that in the long run, smaller 

sample sizes would tend to over-estimate processing time. The inter-quartile range (IQR) 

of each MC distribution followed an exponential decay as sample size increased, for both 

median onset distributions and median onset differences between sessions (Figure 5.7 B). 

In particular, the right side of the median distributions is much more strongly affected than 

their left side: this shows that, in the long run, testing at least 20 subjects would help 

reduce the risk of over estimating onsets and would increase their reliability.  

 

Figure 5.7. Monte-Carlo estimates of median onsets and median onset differences 

between sessions as a function of sample size. (A) Boxplots of MC median onset 

estimates. The red vertical line within each boxplot indicates the median, the extremities 

of the blue box indicate lower and upper quartiles, and whiskers extend to the most 

extreme data points, not including outliers, which are marked individually by red dots. 

(B) IQR of median onsets and median onset differences between sessions. Black dots 

indicate the boundaries of 95% confidence intervals. The dashed horizontal lines mark 

the edges of the confidence interval for the IQR obtained with a sample size of 70 

subjects. 
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Results from the control experiment 

The goal of the control experiment was to test in an independent dataset (n = 8) if 

any earlier onsets have been missed because of differences not captured by parametric 

comparisons of central tendency. We also tested whether similar onsets would be observed 

for a control object category (houses) and between our structured textures and a control 

texture (white noise). For each of the 8 subjects — 7 of which were tested twice (for a total 

of 15 EEG sessions) — we looked for differences in mean, variance, skewness and kurtosis 

between four pairs of image categories: textures vs white noise, faces vs. textures, houses 

vs. textures, and faces vs. houses. Within 200 ms all pairwise comparisons were only 

significant for means. Differences in skewness and kurtosis were observed beyond 200 ms 

in a few subjects and only in one of their sessions. Corroborating this result, in every 

subject and for every contrast, kernel density estimates and shift functions revealed 

uniform shifts in the single-trial distributions at onset times. We confirmed that categorical 

ERP differences were essentially due to differences in means by measuring onsets using a 

range of robust and non-parametric techniques (Figure 5.8). Onsets derived from a one-

way ANOVA and t-tests on means were similar to those reported in the main experiment. 

Results from the other methods were very similar, or led to delayed onsets. Thus, the 

results from the control experiment suggest that t-tests on the mean, combined with 

modern control for multiple comparisons, are adequate and sufficient to capture early 

differences in single-trial ERP distributions. In addition, all pairwise contrasts tended to 

have the same median onsets, except for t-tests on trimmed means. This goes against the 

naive hierarchy that would see first emerge differences between textures and white noise, 

then between textures and objects (with perhaps a face advantage), and finally between 

faces and houses.  Hence, these early ERP differences might correspond to a stage of 

processing involving the extraction of coarse image statistics (Groen, Ghebreab, Prins, 

Lamme, & Scholte, 2013). 
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Figure 5.8. Comparison of onsets from the control experiment. The scatterplots show the 

onsets of eight subjects, in six families of statistical tests. For the seven subjects that 

were tested twice, we report their minimum onset (across sessions), for each test. The 

horizontal bars indicate median onsets (ms). The one-way ANOVA or equivalent tests 

were performed on the four image categories (W, T, F, H). The other tests involved 

pairwise comparisons. Abbreviations: GLM=one-way ANOVA on mean; MIcat=mutual 

information between image categories and ERP amplitudes; MIpix=mutual information 

between image pixels and ERP amplitudes; W=white noise; T=textures with amplitude 

spectra matching those faces and houses; F=faces; H=houses.  

5.3 DISCUSSION 

ERP face sensitivity onsets were measured in a sample of 120 healthy subjects, 

aged 18-81 years old. Across subjects, the median onset was 87 ms [81, 94] and this value 

did not depend on whether EEG data were low-pass filtered or not, or whether we used 

trimmed means or means across EEG trials. Extending this result, the control experiment 

suggested that categorical ERP differences at onset time essentially reflect shifts in the 

means of single-trial distributions, so that statistical tests sensitive to other distributional 

differences other than the mean did not provide earlier onsets. ERP face onsets also did not 

change with age, replicating previous observations and suggesting that aging affects face 

processing beyond the earliest face detection stage (Section 3). Further, no relationship 

between effect sizes and face ERP onsets was found, suggesting that the large individual 

differences in onset times (Figure 5.5) were not associated with systematic differences in 

signal-to-noise ratio across subjects. We also know from the previous Section that 
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individual differences do not seem to be due to optical factors, such as differences in 

retinal illuminance. In the present study onset estimates were reliable, with only about 5-10 

ms difference between two experimental sessions conducted on separate days, which is 

consistent with studies showing the stability of scalp and intracranial ERPs across hours 

and days (Hamerer, Li, Volkle, Muller, & Linderberger, 2013; Bansal, et al., 2012). 

Finally, Monte-Carlo simulations revealed that small subject sample sizes could lead to 

under-estimated processing speed and test-retest reliability.  

What are the cortical origins and the information content of the face ERP 

differences around 87 ms? It seems that striate and some extrastriate visual areas could be 

associated with the onset activity, which in turn might reflect complex shape detection and 

possibly signal the presence of a face. The present results are compatible with a growing 

number of studies showing face- and object-sensitive neuronal activity within 100 ms. 

5.3.1 CORTICAL ORIGINS OF ERP ONSETS 

Face-sensitive M/EEG responses before 100 ms tend to appear around medial and 

inferior occipital brain/scalp regions, around the location of striate and extra-striate visual 

areas (Linkenkaer-Hansen, et al., 1998; Halit, et al., 2000; Rivolta, et al., 2012). It is 

uncertain though if at the time of the 87 ms onset, object and face-associated areas are 

already active. Activity in the lateral occipital cortex (LOC) that seem to be involved in a 

general shape processing of all kinds of objects (Grill-Spector, Kourtzi, & Kanwisher, 

2001) starts to be visible already before 100 ms post-stimulus (Ales, Appelbaum, 

Cottereau, & Norcia, 2013). LOC also responds stronger to intact versus scrambled 

pictures of objects (Malach, et al., 1995). More specifically for face stimuli - recent EEG 

and concurrent EEG-fMRI studies have suggested dissociation between cortical 

contributors to face-related activity around 100 ms and around 170 ms (Desjardins & 

Segalowitz, 2013), linking the former with the OFA, and the latter with the FFA and the 

STS (Nguyen, et al., 2014; Nguyen, et al., 2013; Sadeh, et al., 2010). Several studies using 

depth recordings in the fusiform gyrus reported local field potentials (LFPs) in response to 

faces peaking at various times after 100 ms (Allison, Puce, Spencer, & McCarthy, 1999; 

Halgren, Baudena, Heit, Clarke, & Marinkovic, 1994; McCarthy, Puce, Belger, & Allison, 

1999; Puce, Allison, & McCarthy, 1999; Barbeau, et al., 2008). However, none of these 

studies have reported the onsets of the responses, thus it is difficult to directly relate them 

to the results obtained here. In monkeys, single cell recordings suggest that the earliest 

responses to faces can be present as early as ~60 ms in the anterior middle temporal sulcus 

(Kiani, et al., 2005), the PL face patch in the IT cortex (Issa & DiCarlo, 2012) and parts of 
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the STS (Edwards et al., 2003; Sugase, et al., 1999). If one was to apply the 3/5 ratio rule 

for extrapolating from monkey to human responses latencies (Schroeder, et al., 2004), it 

seems that we can expect the earliest face-sensitive activity in human IT and STS to occur 

~ 100 ms. However, comparisons between monkey and human face processing systems are 

rendered difficult because of uncertainty in anatomical and functional equivalence (Yovel 

& Freiwald, 2013; Orban, Van Essen, & Vanduffel, 2004). Therefore, it seems that the 87 

ms onset activity might involve visual areas up to and including general shape processing 

regions (LOC), and perhaps some nodes of the face-related cortical network (OFA). 

However, this suggestion has to be tested directly in future studies, perhaps by looking 

again into the collected intracranial data.  

5.3.2 INFORMATION CONTENT OF ONSET ACTIVITY 

Previous research suggests that our early face ERP onsets could be related to either 

categorical face detection or non-categorical general shape processing. Studies in monkeys 

and humans suggest that sensitivity to face features, and in particular the eye area, starts 

before 100 ms (Issa & DiCarlo, 2012; Smith, et al., 2009). In humans, early face-sensitive 

activity has been linked with the OFA and it has been suggested that the OFA might be 

involved in face detection (Schwarzlose, et al., 2008) and processing of face parts (Pitcher, 

et al., 2011); also, the OFA could be an equivalent to the PL face patch in monkeys, 

thought to support intermediate stages of face processing (Issa & DiCarlo, 2012; Tsao, et 

al., 2008; Fairhall & Ishai, 2007; Nguyen, et al., 2013). However, the OFA has also been 

found to support the processing of non-face objects and 2D shapes (Gilaie-Dotan, et al., 

2008; Silvanto, et al., 2010). Also, the OFA seems to be sensitive to changes in face 

stimuli without subjects being aware of these changes behaviourally, which contradicts the 

hypothesis of the OFA as a face detector (Fox, et al., 2009; Large, et al., 2008). It is 

therefore possible that the onset activity observed in the present study did not represent 

face sensitivity per se. 

Instead, it is possible that the onset reflects more general shape processing, perhaps 

involving detection of complex structures in a stimulus, irrespective of their category. 

Support for this interpretation comes from studies that applied pattern classifiers to M/EEG 

data. The classifiers were able to decode stimulus category (faces, natural scenes, tools, 

bodies) with above chance accuracy from the activity in occipital lobe and the inferior 

occipital gyrus (where the OFA is located) already from 60-95 ms onwards (van den 

Nieuwenhuijzen, et al., 2013; Carlson, et al., 2013; Cauchoix, et al., 2014; Isik, et al., 

2013), and in the fusiform gyrus from 100 ms onwards (Liu, et al., 2009). By looking at the 
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information content of images, Cauchoix, et al. (2014) discovered that the classifier‘s 

performance under 100 ms was largely related to low-level stimulus characteristics, in 

particular the distribution of image pixel intensities. This distribution reflects image 

complexity and has been found to explain a large proportion of variance in single-trial ERP 

distributions (Groen, et al., 2012). In particular, contrast energy modulates ERP responses 

before 100 ms (Groen, et al., 2013). The latency and mid-line distribution of the effects 

reported by Groen, et al. (2013) are consistent with our own findings. The results of our 

control experiment show that the time when ERP responses evoked by distinct images 

started to diverge was similar, regardless of which image categories were contrasted. This 

provides further support for the interpretation that the first electrophysiological activity 

sensitive to differences in visual input is not category specific. In another study, 

Tanskanen, et al. (2005) demonstrated that mid-occipital MEG activity 70 – 120 ms is not 

sensitive to the visibility of a face but to manipulations of image spatial frequency. More 

direct evidence for general complex shape processing around 100 ms comes from LFP 

recordings from face-selective patches in monkey STS showing that only the activity after 

130 ms, but not around 100 ms post-stimulus, is category specific (Tsao, et al., 2006). 

Further, activity in the fusiform gyrus around 100 ms has also been observed in response to 

geometric shapes (Barbeau, et al., 2008), and there is growing evidence that FFA is 

functionally subdivided and involved in processing of objects other than faces (Hanson & 

Schmidt, 2011; Haxby, et al., 2001; Gauthier, 2000; Mur, et al., 2011; Huth, et al., 2012; 

Cukur, et al., 2013; Grill-Spector, et al., 2006).  It has been also shown that single cells in 

monkeys‘ V4 respond better to convex angles and curves than to lines and edges, and that 

population activity between 70-160 ms represents boundary features and can be used to 

reconstruct object‘s shape (Pasupathy, et al., 1999; 2002). Because faces contain many 

curvatures, they might be particularly effective in driving V4 responses.  

Overall, it is possible that the early face onsets observed in the present study reflect 

some form of face processing, but it could also be associated with general shape detection. 

Irrespectively of whether the onset activity is face-sensitive or not, this finding establishes 

a lower benchmark for the earliest ERP responses to complex objects in the human visual 

system. 
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6 GENERAL CONCLUSIONS AND 

FUTURE DIRECTIONS 

Motivated by the inconsistencies and methodological shortcomings in visual 

neuroscience, this research has been the first to offer a systematic quantification of ERP 

processing speed of complex objects in the human brain, the ERP sensitivity to stimulus 

properties as well as the influence of aging and optical factors on processing speed. Instead 

of relying on categorical experiment designs, ERP peak analyses, small samples, group 

averages, and p-value-based statistics, I employed parametric designs, analysed the entire 

ERP time-course on a single subject basis, applied robust statistics, tested large samples of 

subjects with a broad age range, and assessed the reliability of my results. 

The first experimental section of this thesis (Section 2) provided a comprehensive 

account on the sensitivity of visual ERPs to low-level image characteristics, in particular 

Fourier phase and amplitude spectra. I have shown that early (< 200 ms) ERPs to faces and 

objects are driven by edges and contours within an image, contained in the phase spectrum, 

with almost no contribution from the amplitude spectrum. The amplitude spectrum 

conveys information about the non-localized spatial frequency content of an image and 

some researchers have argued that it could be used by the brain to categorise objects, as 

reflected by the modulation of BOLD and ERP responses. However, no study has actually 

computed the relative contribution of phase and amplitude information to early ERPs to 

faces and objects. My work fills this gap by providing the first systematic quantification of 

ERP sensitivity to phase and amplitude spectra using a range of state-of-the-art analysis 

techniques, including detailed single-subject general linear modeling of ERP data, test-

retest reliability, and unique variance analyses. The results emphasize the need for stimulus 

control (including the amplitude spectrum), parametric designs, and systematic data 

analyses, of which we have seen far too little in ERP vision research.  

Empirical evidence presented in Section 3 confirmed the previous finding of 

Rousselet, et al. (2010) that early ERPs to faces are delayed with aging by 1 ms/year, and 

extended it by demonstrating that these delays are of a cortical, rather than optical, origin. 

Large inter-subject variability in processing speed within and between age groups has not 

yet been accounted for in the current research. Experiment 1 showed that individual 
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differences in processing speed, as reflected in ERP responses collected from 59 subjects, 

age 18-79, cannot be explained by senile miosis or individual variability in pupil size. 

Experiment 2 (Section 4) complemented these findings by showing that ERP processing 

speed of old and young subjects cannot be matched by manipulating their retinal 

illuminance. Both experiments showed that age-related slowdown in visual processing 

speed is not related to optical factors. In addition, the study challenged the notion that only 

activity ~100 ms is affected by stimulus‘ luminance, and demonstrated that changes in 

luminance modulate the entire ERP time-course, from 60 – 500 ms. Finally, by analysing 

the entire ERP time-course 0-500 ms point-by-point I was able to show that the earliest 

ERP sensitivity to faces was already present ~ 90 ms post-stimulus, while aging effects on 

the ERPs began around 125-130 ms and were the strongest around 200 ms.  This suggests 

that the visual system detects faces very rapidly, and that aging starts to affect visual 

processes within 35–40 ms after the detection. Thus, the results confirmed previous 

findings that aging effects vary in strength across different parts of ERP waveform 

(Rousselet, et al., 2010) and, for the first time, showed that the onset of ERP face 

processing is not affected by senescence.   

Section 5 presented the extension of previous results – a project that employed the 

largest to-date sample of 120 subjects, age 18-81, to measure the onsets of ERP sensitivity 

to faces. Existing studies report conflicting findings with regards to latencies of early face-

related ERP responses. This may be due to several reasons: restricting analyses to ERP 

peaks, group averages, or filtering methods of EEG data that may distort the timings of the 

effects. In my final study, I used causal filters that preserve onsets, time-point-by-time-

point ERP analyses and robust statistical methods to quantify onsets at a single-subject 

level. I also assessed the reliability of my results by testing subjects on two separate days. 

The analyses revealed the median ERP face sensitivity onset of ~90 ms, which was not 

affected by aging and reliable across testing days. This study established a benchmark for 

the earliest ERP responses to complex objects in the human brain appearing at around 90 

ms.  

Potential limitation of the projects outlined in this thesis is lack of control over 

subjects‘ eye movements. However, subjects were instructed to fixate on the cross in the 

centre of an image and the stimuli were presented very rapidly (between 53 -104 ms), 

preventing exploratory eye movements. Moreover, ICA components related to eye 

movements were rejected from the EEG data during the pre-processing stage. 
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All in all, the experimental work described in this thesis has furthered the 

knowledge with regards to the speed of complex objects processing in the visual system, 

its modulation by aging, optical factors and image properties. I am hopeful that the results 

of this research will prompt further investigation in this area and encourage a more 

rigorous approach to neuroimaging and behavioural data analyses in cognitive 

neuroscience. 

Moving forward from this work, there is still much research to be done to fully 

encapsulate the neural processes underlying object categorisation. We only partially 

understand how basic visual information such as contrast, luminance or colour is 

implemented in the human brain, let alone representations of complex objects, such as 

faces. EEG research has a great potential to provide insights into the temporal dynamics of 

object processing, but many challenges remain. The biggest of these is probably to 

understand how exactly cognitive processes are reflected in the shape of ERP waveforms. 

The relationship between brain activity, behaviour and information available to the visual 

system on a single-ERP-trial basis is only beginning to be addressed.  

An obvious question that could be asked as an extension to this research is which 

brain areas the ERP aging effects were associated with. Since the effects started ~125-130 

ms post-stimulus, it is possible that regions involved in object processing before that time 

are spared from the adverse impact of advanced age. Some indication that this might be the 

case comes from fMRI evidence showing age-related dedifferentiation in the fusiform 

gyrus but not in the OFA or the STS (Park, et al., 2012). On the other hand, age-related 

slowdown has been observed already before 100 ms in V1 (except layer 4) and V2 in 

monkeys (Wang, et al., 2005). However, it is uncertain to what extent aging effects 

reported in non-human primates correspond to those that can be found in humans. Thus, 

one of the ways forward could be to simultaneously address the age-related slow down in 

neuronal activity and cortical sources associated with it, for example using MEG. The 

advantage of this method is both, high spatial and high temporal resolution of the 

recordings. Another way to investigate which brain areas are spared, and which are subject 

to aging effects is to use simultaneous EEG, fMRI and DTI recordings. These methods 

provide complementary information with regards to the timing, locations, and the 

connectivity between the locations that contribute to object categorisation processes. 

Finally, analyses based on ICA components can provide information with regards to age-

related changes in scalp spectral measures with very little intercorrelation. Because ICA 

components relate to activity of various brain regions, they could enhance our 
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understanding about alterations in cortical correlates of aging effects. New developments 

will hopefully help to create models of the visual system that not only incorporate various 

levels of neuronal information processing, from activity of single cells to large populations 

of neurons, but also integrate a dynamic dimension to the models, reflecting changes 

related to aging. 

It would be also interesting to find out if aging effects are also visible in the time-

frequency dimension of my EEG data. Research shows that healthy aging is associated 

with changes in the alpha band activity (8-12 Hz), and this effect might be related to 

different attention control in the elderly (Deiber, Ibanez, Missonnier, Rodriguez, & 

Giannakopoulos, 2013; Zanto, Pan, Liu, Bollinger, Nobre, & Gazzaley, 2011). Age-related 

changes in other frequency bands, such as theta or beta have also been observed (van de 

Vijver, Cohen, & Ridderinkhof, 2014; Deiber, Ibanez, Missonnier, Rodriguez, & 

Giannakopoulos, 2013). In general, power topographies specific to certain frequency bands 

seem to become more uniformly distributed with age (Babiloni, et al., 2004). Thus, it is 

possible that aging effects observed in my projects were associated with some oscillatory 

modulations and future studies could address this issue. 

Another avenue for potential exploration concerns the relation between the age-

related neuronal slowdown of 1ms/year and behavioural indices of cognitive performance. 

ERPs likely reflect aggregated changes in various cognitive abilities associated with aging. 

Most cognitive variables, such as processing speed, memory performance or perceptual 

skills, are correlated with each other, which is consistent with the idea that aging effects on 

different aspects of cognition are not independent. Thus, it would be of great interest to 

measure the shared and unique contributions of various behavioural markers of cognitive 

decline to the ERPs. Moreover, time-point-by-time-point ERP analyses could potentially 

reveal how age-related changes in different cognitive variables modulate different parts of 

ERP waveforms, and whether their effects are independent of each other. Regression 

analyses could also determine if variability in different cognitive variables can explain 

ERP delays, after accounting for age.  

Lastly, multiple neural systems that support functionally different processes might 

be affected differently by senescence, and the impact of this on changes in neural 

processing speed is currently difficult to predict. The aim would be to establish a causal, 

rather than correlational, relationship between aging and reduction in processing speed on 

behavioural and neural level. Furthermore, it is still uncertain whether different elements of 
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cognitive processing slow equivalently with age or whether slowing is specific only to 

certain aspects of processing that may differ between different tasks. All aging studies will 

also have to deal with the uncertainty whether observed age-related effects indicate that 

young and old people differ in neural correlates of functionally equivalent processes or that 

two groups make use of distinct processes perhaps also supported by dissimilar cortical 

networks. Finally, to account for the role of experience in instructing the organisation of 

cortical circuitry over life-span, I anticipate an increase in longitudinal, over cross-

sectional aging research. 
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APPENDIX A 

Supplementary Materials for Section 2. 

SUPPLEMENTARY TABLES 

Subject β1 F β2 H β3 F 

amp 

β4 F ϕ β5 F 

int 

β6 H 

amp 

β7 H ϕ β8 H 

int 

ε 

MAG 1 -2.4 0.9 1 -5.2 -0.6 0.6 -1.7 -0.1 -1.6 

MAG 2 0.2 1.9 0.5 -4.4 0.1 1.1 -2.2 -0.4 2.2 

GAR 1 -1 0.5 0 -3.6 0.1 0.1 -2.4 0.1 -0.4 

GAR 2 -1.1 0.9 0.1 -3.4 0.1 0.5 -1.9 0.1 -0.2 

KWI 1 -0.4 1.8 0.4 -3.3 -0.1 0.4 -2.2 -0.3 1.4 

KWI 2 2.1 3.5 1.1 -2.8 -0.9 1.7 -2.1 0.1 5.6 

TAK 1 1.5 2.3 0 -3.9 0.3 -0.1 -3.3 0 3.8 

TAK 2 1.6 3.2 -0.5 -3.9 0 -0.6 -2.5 -0.6 4.8 

CMG 1 0.7 3.3 0.4 -3.7 -0.1 -0.2 -0.7 0.1 4 

CMG 2 1.7 4.1 -0.5 -3.1 -0.7 -0.1 -1 -0.1 5.8 

WJW 1 0.2 4 -0.7 -5.8 -0.1 -0.2 -2.2 0.1 4.2 

WJW 2 0.4 4.4 0.2 -7 0.9 -0.6 -3.5 -1.2 4.8 

BTM 1 -2.1 -0.7 0.8 -4.9 0.3 0.3 -4.4 0 -2.8 

CXM 1 -1.4 -0.1 0.4 -5.3 0 0.5 -4.5 0 -1.6 

MEAN 

1 

-0.6 1.5 0.3 -4.5 0 0.2 -2.7 0 0.9 

MEAN 

2 

0.8 3 0.2 -4.1 -0.1 0.3 -2.2 -0.4 3.8 

Supplementary Table 1. Beta coefficients associated with each predictor of the first 

(main) regression model. Results are reported at the electrode and the latency of the max 

R
2
. Numbers 1 and 2 after the subjects’ names indicate the session.  
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 Envelope 

PHASE P1 N1 P2 

 Faces Houses Faces Houses Faces Houses 

Session 1 0.02 

[0.01, 0.03] 

0.01 

[0.01, 0.02] 

0.15  

[.12, 0.17] 

0.06  

[0.05, 0.1] 

0.08 

[0.06,0.1] 

0.06 

[0.04, 0.08] 

Session 2 0.01 

[0.01, 0.02] 

0.01 

[0.01, 0.02] 

0.11  

[0.09, 0.15] 

0.05  

[0.04, 0.06] 

0.07 

[0.04, 0.08] 

0.04 

[0.03, 0.06] 

 

 Max R
2
 electrode 

PHASE P1 N1 P2 

 Faces Houses Faces Houses Faces Houses 

Session 1 0.006 

[0.001, 0.02] 

0.003 

[0.001, 0.01] 

0.15 

[0.11, 0.17] 

0.06 

[0.04, 0.1] 

0.07 

[0.05, 0.1] 

0.05 

[0.03, 0.08] 

Session 2 0.006 

[0.002, 0.01] 

0.006 

[0.002, 0.01] 

0.11 

[0.09, 0.15] 

0.04 

[0.03, 0.05] 

0.06 

[0.04, 0.08] 

0.04 

[0.03, 0.06] 

Supplementary Table 2. Unique variance explained by phase spectrum. Median ERP 

variance uniquely explained by phase in the P1, N1 and P2 time windows for faces and 

houses with 95% percentile bootstrap confidence interval in brackets. Data are reported 

for the max R
2
electrode and for the envelope (max across all electrodes).  
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 Envelope 

AMPLITUDE P1 N1 P2 

 Faces Houses Faces Houses Faces Houses 

Session 1 0.01  

[0.01, 0.02] 

0.01  

[0.01, 0.02] 

0.02 

[0.01, 0.02] 

0.02  

[0.01, 0.03] 

0.02  

[0.01, 0.02] 

0.02 

[0.02, 0.04] 

Session 2 0.01  

[0.01, 0.02] 

0.01  

[0.01, 0.02] 

0.01  

[0.01, 0.02] 

0.02  

[0.01, 0.03] 

0.02 

[0.01, 0.03] 

0.03 

[0.02, 0.04] 

 Max R
2
 electrode 

 P1 N1 P2 

 Faces Houses Faces Houses Faces Houses 

Session 1 0.002 

[0.001, 0.003] 

0.002 

[0.001, 

0.01] 

0.004 

[0.003, 

0.005] 

0.003 

[0.002, 0.006] 

0.009 

[0.005, 0.02] 

0.02 

[0.01, 0.03] 

Session 2 0.002 

[0, 0.003] 

0.003 

[0, 0.006] 

0.004 

[0.002, 

0.005] 

0.005 

[0.002, 0.01] 

0.01 

[0.01, 0.03] 

0.02 

[0.02, 0.04] 

Supplementary Table 3. Unique variance explained by amplitude. Median ERP variance uniquely 

explained by amplitude in the P1, N1 and P2 time windows for faces and houses. See Table 6 

caption for details. 
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S

ubject 

β1 

F 

β2 

H 

β3 amp β4 ϕ β5 cat x amp β6 cat x ϕ ε 

MAG 1 0.9 -2.4 0.8 -3.4 0.2 -1.7 -1.6 

MAG 2 1.9 0.3 0.8 -3.3 -0.3 -1.1 2.2 

GAR 1 0.5 -1 0 -3 -0.1 -0.6 -0.4 

GAR 2 0.9 -1.1 0.3 -2.7 -0.2 -0.7 -0.2 

KWI 1 1.8 -0.4 0.4 -2.7 0 -0.6 1.4 

KWI 2 3.3 2.1 1.4 -2.4 -0.3 -0.3 5.4 

TAK 1 2.2 1.3 0.1 -3.6 0.1 -0.4 3.4 

TAK 2 3.2 1.6 -0.6 -3.2 0 -0.7 4.8 

CMG 1 3.3 0.7 0.1 -2.2 0.3 -1.5 4 

CMG 2 4.1 1.7 -0.3 -2 -0.2 -1 5.8 

WJW 1 4 0.2 -0.4 -4 -0.3 -1.8 4.2 

WJW 2 4.4 0.4 -0.2 -5.3 0.4 -1.7 4.8 

BTM 1 -0.7 -2.1 0.5 -4.7 0.3 -0.3 -2.8 

CXM 1 -0.2 -1.4 0.4 -4.9 0 -0.4 -1.6 

MEAN 

1 

1.5 -0.6 0.2 -3.6 0.1 -0.9 0.8 

MEAN 

2 

3 0.8 0.2 -3.2 -0.1 -0.9 3.8 

Supplementary Table 4..Beta coefficients associated with each predictor of the second 

regression model, at the electrode and the latency of the max R
2
. Numbers 1 and 2 after 

the subjects’ names indicate the session.  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Scalp distributions of sensitivity to phase spectrum in face 

stimuli. Effects are expressed in colour-coded F values: from non-significant effects 

(dark blue) to the strongest significant effects (deep red) for session 1 and session 2. 

Each row represents one subject. The effects are shown between time 0 (=stimulus 

presentation) and 500ms post stimulus. 
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Supplementary Figure 2. Scalp distributions of sensitivity to phase spectrum in house 

stimuli. See Supplementary Figure 1 caption for details. 
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Supplementary Figure 3. Scalp distributions of sensitivity to amplitude spectrum in face 

stimuli. See Supplementary Figure 1 caption for details. 
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Supplementary Figure 4. Scalp distributions of sensitivity to amplitude spectrum in 

house stimuli. See Supplementary Figure 1 caption for details. 
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Supplementary Figure 5. Scalp distributions of sensitivity to phase x amplitude 

interaction in face stimuli. See  Supplementary Figure 1 caption for details. 
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Supplementary Figure 6. Scalp distributions of sensitivity to phase x amplitude 

interaction in house stimuli. See Supplementary Figure 1 caption for details. 
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Supplementary Figure 7. ERPs and beta coefficients from the main model for session 1, 

faces stimuli. Data at the max R
2
 electrode (columns 1, 2, 4, 5) and the electrode with 

max amplitude effects (columns 3 and 6) for all subjects (rows). Column 1 - ERPs for 8 

levels of phase averaged across all amplitude levels; columns 2, 3 – ERPs for 11 levels 

of amplitude averaged across all phase levels; columns 4, 5, 6 – time courses of beta 

coefficients on all electrodes (grey lines) with betas for the max R
2
 electrode (columns 4, 

5) or max amplitude effect electrode (column 6) highlighted with a thick black line. Red 

horizontal lines show time windows where the effects were significant. The number in 

upper left corner of each box tells which electrode was the max R
2
 electrode (columns 1, 

2, 4, 5) and max amplitude effect electrode for that subject.  
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Supplementary Figure 8. ERPs and corresponding beta coefficients (main model) - data 

for session 2, faces stimuli. See Supplementary Figure 7 caption for details.  
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Supplementary Figure 9. ERPs and corresponding beta coefficients (main model) - data 

for session 1, houses stimuli. See Supplementary Figure 7 caption for details. 

 

Supplementary Figure 10. ERPs and corresponding beta coefficients - data for session 

2, houses stimuli. See Supplementary Figure 7 caption for details. 
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Supplementary Figure 11. Cross-session reliability of beta coefficients associated with 

phase and amplitude spectra for faces and houses from the main regression model. Beta 

coefficients for the two sessions are plotted in black (session 1=solid; session 2=dashed) 

and the difference between them is plotted in red. Horizontal lines indicate time windows 

of significant beta coefficients (session 1=thick black; session 2=thin black; 

difference=red).  
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Supplementary Figure 12. Cross-session reliability of beta coefficients (main model). 

See Supplementary Figure 11 caption for details. 
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Supplementary Figure 13. Categorical interaction analysis results for subjects GAR, 

KWI, MAG and TAK. For each subject, the results are presented in 10 subplots, with 2 

sessions in columns, and 5 predictors in rows. Each subplot shows colour -coded F values 

at all electrodes along the Y axis, and from -100 to 500ms along the X axis. Non-

significant effects are indicated with a grey background.  
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Supplementary Figure 14. Categorical interaction analysis results for subjects WJW, 

CMG, CXM and BTM. See Supplementary Figure 13 caption for details. 
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Supplementary Figure 15. Electrode map for the Biosemi Active Electrode Amplifier 

System with 128 electrodes with corresponding labelling from the 10/10 system (circled 

electrodes). 
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APPENDIX B 

Supplementary material for Sections 3 and 4. 
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 Pupil size Retinal illuminance Onset Amplitude 50IT Peak latency 

lum slope intr slope intr slope intr slope intr slope intr slope intr 

60.8 

(first) 

-0.03 

[-0.04, 

-0.02] 

5.95 

[5.36, 

6.52] 

-11.15 

[-15.72, 

-6.47] 

1433.51 

[1175.8, 

1699.7] 

0.27 

[0.03, 

0.55] 

82.6 

[69.27, 

95.015] 

0 

[-0.06, 

0.06] 

13.31 

[10.81, 

16.04] 

1.07 

[0.64, 

1.38] 

158.71 

[143.04, 

177.20] 

1.27 

[0.61, 

2.05] 

116.86 

[85.84, 

140.73] 

0.59 -0.05 

[-0.06, 

-0.03] 

8.11 

[7.65, 

8.55] 

-0.24 

[-0.30, 

-0.15] 

27.07 

[22.08, 

30.32] 

0.40 

[0.13, 

0.73] 

115 

[102.03, 

127.27] 

0 

[-0.05, 

0.071] 

11.4 

[8.50, 

13.87] 

1.22 

[0.92, 

1.5] 

201.04 

[186.37, 

216.25] 

1.59 

[0.90, 

2.39] 

159.05 

[117.92, 

199.8] 

1.12 -0.05 

[-0.05, 

-0.03] 

7.79 

[7.30, 

8.23] 

-0.40 

[-0.49, 

-0.27] 

45.95 

[38.65, 

51.02] 

0.36 

[0.07, 

0.64] 

112.25 

[100.67, 

124.71] 

0.01 

[-0.03, 

0.073] 

11.63 

[8.92, 

13.98] 

1.07 

[0.75, 

1.37] 

202.72 

[186.12, 

219.639] 

1.52 

[0.73, 

2.26] 

160.34 

[121.43, 

202.8] 

2.17 -0.05 

[-0.05, 

-0.03] 

7.61 

[7.07, 

8.12] 

-0.79 

[-0.97, 

-0.52] 

87.66 

[71.65, 

98.50] 

0.48 

[0.18, 

1.09] 

95.12 

[76.86, 

108.51] 

0.01 

[-0.05, 

0.07] 

11.54 

[8.54, 

14.442] 

1.01 

[0.68, 

1.35] 

197.07 

[179.46, 

215.15] 

1.76 

[1.09, 

2.35] 

136.12 

[104.71, 

166.55] 

4.19 -0.04 

[-0.05, 

-0.03] 

7.43 

[6.93, 

7.84] 

-1.38 

[-1.72, 

-0.94] 

156.50 

[130.49, 

176.04] 

0.18 

[-0.10, 

0.72] 

98.38 

[82.77, 

115.94] 

0.01 

[-0.05, 

0.079] 

11.99 

[9.29, 

14.50] 

0.95 

[0.64, 

1.22] 

193.34 

[177.53, 

211.16] 

1.78 

[1.28, 

2.25] 

130 

[104.17, 

153.75] 

8.16 -0.04 

[-0.05, 

-0.03] 

7.03 

[6.59, 

7.46] 

-2.35 

[-2.96, 

-1.52] 

268.91 

[225.32, 

304.02] 

0.29 

[0.05, 

0.58] 

89.68 

[77.68, 

101.03] 

0.01 

[-0.04, 

0.07] 

11.96 

[9.14, 

14.67] 

0.91 

[0.54, 

1.27] 

189.41 

[171.03, 

208.82] 

1.48 

[0.9, 

2.07] 

135.69 

[108.40, 

159.63] 

16 -0.04 

[-0.05, 

-0.03] 

6.7 

[6.23, 

7.17] 

-4.01 

[-5.15, 

-2.70] 

476.12 

[405.92, 

548.24] 

0.11 

[-0.18, 

0.44] 

94.4 

[79.92, 

108.07] 

0.01 

[-0.04, 

0.08] 

12.26 

[9.41, 

15] 

1.03 

[0.68, 

1.338] 

173.77 

[157.81, 

193.44] 

1.42 

[0.78, 

2.17] 

123.24 

[91.80, 

147.64] 

31 -0.04 

[-0.04, 

-0.02] 

6.27 

[5.74, 

6.71] 

-6.57 

[-8.83, 

-4.203] 

813.75 

[686.97, 

952.64] 

0.14 

[-0.17, 

0.49] 

90.43 

[74.02, 

105.44] 

0.02 

[-0.04, 

0.08] 

12.32 

[9.39, 

15.16] 

0.90 

[0.55, 

1.23] 

174.92 

[157.12, 

194.47] 

1.17 

[0.55, 

1.87] 

130.69 

[99.69, 

156.913] 

60.8 

(last) 

-0.03 

[-0.04, 

-0.02] 

5.74 

[5.21, 

6.19] 

-10.62 

[-14.42, 

-6.55] 

1335.97 

[1104.7, 

1552.8] 

0.16 

[-0.12, 

0.44] 

86.33 

[73.8, 

98.53] 

0.01 

[-0.04, 

0.07] 

12.37 

[9.70, 

15.62] 

0.97 

[0.68, 

1.194] 

168.77 

[156.02, 

183.20] 

1.20 

[0.66, 

1.88] 

124.06 

[98.03, 

144.64] 

Supplementary Table 2. Age regression fits in the d2b session . Confidence intervals of 

the slopes and intercepts (intr) are given in square brackets.  
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 Pupil size Retinal illuminance Onset Amplitude 50IT Peak latency 

lum slope intr slope intr slope intr slope intr slope intr slope intr 

31 0.01 

[0, 

0.01] 

-0.76 

[-0.98, 

-0.568] 

-3.46 

[-5.978, 

-0.77] 

506 

[341, 

646] 

-0.24 

[-0.54, 

0.04] 

9.09 

[-2.81, 

22.93] 

0.01 

[-0.02, 

0.04] 

-0.54 

[-2.02, 

0.80] 

0.09 

[-0.13, 

0.31] 

-12.48 

[-24, 

-2] 

0.04 

[-0.6, 

0.45] 

-13.08 

[-26.95, 

4.91] 

16 0.01 

[0, 

0.02] 

-1.18 

[-1.42, 

-0.928 

-6.96 

[-11.13, 

-3.13] 

896 

[674, 

1144] 

-0.15 

[-0.44, 

0.14] 

3.77 

[-11.34, 

19.8] 

0 

[-0.02, 

0.03] 

0.2 

[-1.14, 

1.48] 

0 

[-0.2, 

0.18] 

-13.67 

[-22.17, 

-4.25] 

0.06 

[-0.76, 

0.66] 

-20.83 

[-42.03, 

2.45] 

8.16 0.01 

[0, 

0.02] 

-1.44 

[-1.68, 

-1.17 

-9.69 

[-14.52, 

-5.24] 

1172 

[906, 

1450] 

0.03 

[-0.27, 

0.31] 

-9.11 

[-20.51, 

4.16] 

-0.02 

[-0.05, 

0.01] 

1.38 

[0.15, 

2.76] 

0.04 

[-0.15, 

0.24] 

-21.41 

[-32.41, 

-11.20] 

-0.36 

[-0.90, 

0.15] 

-10.24 

[-30.94, 

6.85] 

4.19 0.01 

[0, 

0.02] 

-1.62 

[-1.91, 

-1.3 

-10.97 

[-16.23, 

-6.25] 

1308 

[1013, 

1617] 

-0.04 

[-0.43, 

0.21] 

-10.48 

[-20.24, 

3.21] 

-0.02 

[-0.06, 

0.02] 

1.62 

[-0.5, 

4.02] 

0.03 

[-0.22, 

0.3] 

-30.81 

[-45.70, 

-15.94] 

-0.34 

[-0.95, 

0.26] 

-23.14 

[-51.4, 

-0.59] 

2.17 0.01 

[0, 

0.02] 

-1.69 

[-1.94, 

-1.40 

-11.72 

[-17.11, 

-6.92] 

1386 

[1090, 

1704] 

0 

[-0.59, 

0.20] 

-16.53 

[-25.61, 

1.74] 

0.01 

[-0.03, 

0.04] 

0.77 

[-1.30, 

2.94] 

0.03 

[-0.2, 

0.25] 

-36.18 

[-47.32, 

-24.50] 

-0.12 

[-0.89, 

0.53] 

-43.99 

[-73.02, 

-15.72] 

1.12 0.01 

[0, 

0.02] 

-1.8 

[-2.05, 

-1.51 

-12.08 

[-17.64, 

-7.13] 

1426 

[1122, 

1753] 

-0.31 

[-0.7, 

0.1] 

-12.36 

[-28.21, 

3.93] 

-0.02 

[-0.06, 

0.04] 

1.9 

[-0.49, 

4.4] 

0 

[-0.29, 

0.26] 

-43.78 

[-57.68, 

-28.7] 

-0.42 

[-1.18, 

0.27] 

-40.82 

[-71.2, 

-11.15] 

0.59 0.01 

[0, 

0.02] 

-1.88 

[-2.17, 

-1.6] 

-12.26 

[-17.85, 

-7.22] 

1446 

[1136, 

1776] 

-0.56 

[-1.20, 

-0.16] 

-9.49 

[-27.28, 

10.26] 

-0.01 

[-0.059, 

0.04] 

2.46 

[0.27, 

4.74] 

0.11 

[-0.2, 

0.39] 

-59.81 

[-74.10, 

-44.38] 

0.28 

[-0.52, 

0.97] 

-79.82 

[-113.6, 

-47.54] 

60.8 

(last) 

0 

[-0.01, 

0] 

0.5 

[0.19, 

0.85] 

-2.98 

[-6.69, 

-0.04] 

286.37 

[112.1, 

522.70] 

-0.02 

[-0.28, 

0.27] 

4.23 

[-7.73, 

16.74] 

0.01 

[-0.019, 

0.032] 

-0.25 

[-1.36, 

1.10] 

0.3 

[0.05, 

0.54] 

-21.17 

[-34.07, 

-6.89] 

0.02 

[-0.57, 

0.53] 

-9.01 

[-26.44, 

10.35] 

Supplementary Table 3. Age regression slopes and intercepts differences between the 

first brightest luminance (60.8 cd/m
2
) and all the other luminance conditions in the b2d 

session. 
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 Pupil size Retinal illuminance Onset Amplitude 50IT Peak latency 

lum slope intr slope intr slope intr slope intr slope intr slope intr 

0.59 0.02 

[0,0.02] 

-2.16 

[-2.61, 

-1.66] 

-10.91 

[-15.46, 

 -6.4] 

1406 

[1171, 

1659] 

-0.13 

[-0.47, 

0.14] 

-32.38 

[-45.87, 

-19.18] 

0 

[-0.04, 

0.04] 

1.92 

[0.10, 

3.69] 

-0.15 

[-0.54, 

0.16] 

-42.34 

[-59.82, 

-23.97] 

-0.31 

[-1.1, 

0.40] 

-42.19 

[-85.6, 

-2.77] 

1.12 0.01 

[0,0.02] 

-1.83 

[-2.26, 

-1.4] 

-10.75 

[-15.28, 

 -6.22] 

1387 

[1152, 

1639] 

-0.09 

[-0.37, 

0.23] 

-29.66 

[-43.89 

-17.78] 

-0.01 

[-0.05, 

0.03] 

1.69 

[0.08, 

3.42] 

0 

[-0.33, 

0.3] 

-44.01 

[-60, 

-27.41] 

-0.24 

[-0.82, 

0.42] 

-43.48 

[-82.4, 

-14.58] 

2.17 0.01 

[0,0.02] 

-1.66 

[-2.05, 

-1.20] 

-10.36 

[-14.81,  

-5.87] 

1345 

[1118, 

1596] 

-0.21 

[-0.72, 

0.04] 

-12.53 

[-25.25, 

6.77] 

-0.01 

[-0.03, 

0.02] 

1.78 

[0.42, 

3.14] 

0.05 

[-0.29, 

0.36] 

-38.36 

[-54.12, 

-20.52] 

-0.48 

[-1.13, 

0.16] 

-19.26 

[-50.8, 

9.19] 

4.19 0.01 

[0,0.02] 

-1.48 

[-1.88, 

-1.05] 

-9.77 

[-14.06, 

 -5.36] 

1277 

[1051, 

 1518] 

0.09 

[-0.35, 

0.41] 

-15.78 

[-33.14, 

-2.37] 

-0.01 

[-0.04, 

0.03] 

1.33 

[0.02, 

2.8] 

0.11 

[-0.16, 

0.38] 

-34.63 

[-48.41, 

-22.76] 

-0.51 

[-1.07, 

0.11] 

-13.14 

[-37.6, 

5.95] 

8.16 0.01 

[0,0.02] 

-1.08 

[-1.44, 

-0.72] 

-8.8 

[-12.80,  

-4.72] 

1164 

[954, 

 1398] 

-0.02 

[-0.28, 

0.24] 

-7.08 

[-20.63, 

7.01] 

-0.01 

[-0.04, 

0.02] 

1.36 

[0.04, 

2.71] 

0.15 

[-0.13, 

0.46] 

-30.7 

[-46.89, 

-17.54] 

-0.21 

[-0.69, 

0.29] 

-18.82 

[-42.5, 

0.04] 

16 0.01 

[0,0.01] 

-0.75 

[-1.11, 

-0.37] 

-7.14 

[-11.01,  

-3.42] 

957 

[765,  

1178] 

0.16 

[-0.14, 

0.48] 

-11.8 

[-26.59, 

2.97] 

-0.01 

[-0.05, 

0.02] 

1.06 

[-0.27, 

 2.48] 

0.04 

[-0.22, 

0.28] 

-15.06 

[-28.24, 

-1.70] 

-0.15 

[-0.72, 

0.34] 

-6.38 

[-23.8, 

13.14] 

31 0 

[0,0.01] 

-0.32 

[-0.67, 

0.045] 

-4.58 

[-7.85, 

 -1.38] 

619 

[459, 

812] 

0.13 

[-0.16, 

0.41] 

-7.83 

[-20.80, 

6.54] 

-0.02 

[-0.05, 

0.01] 

0.99 

[-0.33, 

2.52] 

0.16 

[-0.16, 

0.51] 

-16.21 

[-35.32, 

1.38] 

0.11 

[-0.32, 

0.62] 

-13.83 

[-36.1, 

4.17] 

60.8 

(last) 

0 

[0,0] 

0.22 

[-0.11, 

0.55] 

-0.53 

[-3.24,  

2.30] 

97 

[-61, 

264] 

0.11 

[-0.15, 

0.39] 

-3.74 

[-16.43, 

9.28] 

-0.01 

[-0.05, 

0.02] 

0.95 

[-0.39, 

2.24] 

0.1 

[-0.21, 

0.36] 

-10.06 

[-24.90, 

6.02] 

0.07 

[-0.27, 

0.38] 

-7.2 

[-18.9, 

3.72] 

Supplementary Table 4. Age regression slopes and intercepts differences between the 

first brightest luminance and all the other luminance conditions in the d2b session.  
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luminance 

B2D D2B 

50IT / pupil size Peak lat / pupil size 50IT / pupil size Peak lat / pupil size 

slope intercept slope intercept slope intercept slope intercept 

60.8 (first) -1.67 

[-8.68, 

7.47] 

-0.08 

[-6.22, 

5.34] 

1.7 

[-12.44, 

18.7] 

0.02 

[-9.72, 

10.62] 

-6.19 

[-15.19, 

6.08] 

-0.49 

[-7.45, 

7.27] 

0.50 

[-29, 0.44] 

-13.73 

[-10.113, 

13.31] 

31 1.73 

[-3.89, 

7.85] 

0.03 

[-4.84, 

4.49] 

3.05 

[-11.49, 

17.98] 

0.27 

[-9.85, 

11.87] 

-3.18 

[-8.62, 

3.89] 

0.14 

[-4.50, 

5.29] 

-0.21 

[-21.43, 

12.42] 

-6.86 

[-11.93, 

11.26] 

16 -1.66 

[-8.73, 

7.90] 

-0.04 

[-5.20, 

5.29] 

-7.92 

[-23.02, 

10.73] 

-0.53 

[-12.20, 

10.6] 

-5.56 

[-11.82, 

1.78] 

0.23 

[-4.97, 

5.71] 

0.14 

[-20.09, 

10.14] 

-7.38 

[-10.66, 

10.81] 

8.16 -0.22 

[-7.43, 

8.68] 

0.06 

[-4.58, 

5.03] 

8.36 

[-12.92, 

26.35] 

-0.4 

[-13.02, 

12] 

-5.83 

[-11.73, 

0.65] 

0.11 

[-5.03, 

6.07] 

-0.16 

[-22.50, 

4.33] 

-9.71 

[-10.53, 

9.55] 

4.19 1.03 

[-6.67, 

8.88] 

0.06 

[-5.88, 

6.37] 

-8.31 

[-25.88, 

12.85] 

-0.21 

[-10.85, 

9.94] 

-1.91 

[-9.46, 

7.59] 

-0.31 

[-5.90, 

5.88] 

0.02 

[-25.42, 

10.44] 

-5.6 

[-10.56, 

10.62] 

2.17 -1.04 

[-8.03, 

5.57] 

0.03 

[-4.58, 

4.51] 

-15.9 

[-27.21, 

-2.46] 

-0.41 

[-12.35, 

10.29] 

0.12 

[-7.54, 

8.23] 

0.03 

[-6.13, 

6.40] 

-0.63 

[-20.89, 

6.95] 

-9.48 

[-11.14, 

10.59] 

1.12 -2.36 

[-9.17, 

5.74] 

-0.003 

[-5.48, 

5.19] 

-13.21 

-24.65, 

-1.54] 

-0.43 

[-10.16, 

9.72] 

-1.32 

[-8.06, 

6.13] 

0.09 

[-6.64, 

6.39] 

-0.04 

[-13.67, 

14.18] 

-1.71 

[-13.37, 

17.43] 

0.59 -5.11 

[-12.90, 

1.85] 

0.33 

[-3.89, 

5.54] 

-16.06 

-30.34, 

2.54] 

0.21 

[-13.33, 

15.37] 

-2.11 

[-9.19, 

8.29] 

-0.10 

[-5.55, 

5.64] 

-0.13 

[-15.4, 

13.20] 

0.15 

[-11.81, 

14.95] 

60.8 (last) -4.72 

[-14.67, 

5.12] 

0.005 

[-6.99, 

6.37] 

-12.75 

-26.72, 

3.73] 

0.02 

[-10.34, 

9.97] 

-1.95 

[-8.89, 

5.45] 

-0.05 

[-4.52, 

5.25] 

0.06 

[-20.41 

10.87] 

-4.8 

[-9.52, 

10.96] 

Supplementary Table 5. Slopes and intercepts of regressions of 50IT and peak latency 

against pupil size, after partialling out the effects of age. Confidence intervals of the 

slopes and intercepts are given in square brackets.  
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B2d sessions D2b sessions 

luminance 
50IT Peak latency luminance 50IT Peak latency 

60.8 (first) -50 [-64, -34] -84 [-100, -33] 60.8 (first)  -53 [-72, -33] -80 [-100, -

27] 

31 -38 [-48, -28] -76 [-94, -19] 0.59 -8 [-26, 10] -51 [-74, 5] 

16 -38 [-53, -20] -70 [-89, -12] 1.12 -11 [-27, 8] -55 [-79, 7] 

8.16 -27 [-38, -18] -69 [-85, -18] 2.17 -13 [-32, 6] -67 [-86, -20] 

4.19 -21 [-34, -4] -66 [-83, -9] 4.19 -21 [-38, -1] -65 [-89, -13] 

2.17 -13 [-26, -3] -53 [-75, 7] 8.16 -26 [-47, -3] -69 [-92, -20] 

1.12 -9 [-22, 8] -49 [-72, 12] 16 -37 [-54, -17] -76 [-96, -29] 

0.59 8 [-1, 20] -9 [-51, 56] 31 -37 [-58, -16] -70 [-94, -20] 

60.8(last) -37 [-51, -18] -71 [-93, -13] 60.8(last) -40 [-56, -20] -76 [-97, -28] 

Supplementary Table 6. 50IT and peak latency differences (ms), between young (<30) 

and old (>60) subjects. Differences in median processing speed (50IT) and median peak 

latency of face-texture ERP difference between young subjects in all luminance 

conditions, and old subjects in the first brightest condition (luminance = 60.8 cd/m
2
). 

For each difference the 95% bootstrap confidence interval is given in square brackets.  
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  Young, 

no pinhole 

(first) 

Young, 

1 mm 

Young, 

2 mm 

Young, 

3 mm 

Young, 

4 mm 

Young, 

5 mm 

Young, 

no pinhole 

(last) 

b2s 

pinhole 

(Old, b2d 

session) 

-43 

[-56, -27] 

32 

[17, 45] 

-14 

[-39, 16] 

-14 

[-41, 11] 

-21 

[-45, -5] 

-34 

[-54,-15] 

-22 

[-42, -5] 

(Old, d2b 

session) 

-47 

[-64, -30] 

28 

[12, 47] 

-18 

[-44, 16] 

-18 

[-45, 9] 

-25 

[-50, -6] 

-39 

[-59,-14] 

-26 

[-48, -7] 

s2b 

pinhole 

(Old, b2d 

session) 

-43  

[-59, -26] 

19 

[-15, 36] 

-27 

[-41, -6] 

-23 

[-35, -6] 

-28 

[-48, -4] 

-16 

[-38, 5] 

-36 

[-53, -18] 

(Old, d2b 

session) 

-47 

[-65, -27] 

14 

[-16, 37] 

-32 

[-47, -7] 

-27 

[-40, -7] 

-32 

[-55, -6] 

-20 

[-43, 1] 

-41 

[-58, -19] 

Supplementary Table 7. Differences in 50IT between young subjects in the pinhole 

experiment and old subjects in the luminance experiment. The results are presented for 

all the pinhole conditions of each experimental session (s2b and b2s), and for luminance 

condition 1 (60.8 cd/m
2
) of both sessions (b2d and d2b).  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. 3D landscapes of t
2
 functions. Each subplot depicts how the 

time-course (X axis) of normalised t
2
 functions (Z axis) changes with age (Y axis), at the 

luminance indicated in the top left corner of the subplot. (A) B2d session. (B) D2b 

session. The process of generating the figure is described in section 3.1.7 of the thesis. 
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Supplementary Figure 2. Boxplots of t
2
 function overlaps. Boxplots depicting 

distributions of t
2
 function overlaps between young subjects in each pinhole condition 

and old subjects from the luminance experiment, in the brightest condition (60.8 cd/m
2
) 

of b2d and d2b sessions. The last boxplot in each subplot shows the overlap within the 

group of old subjects. 

 

Supplementary Figure 3. Pupil size of young and old subjects.  The first nine boxplots in 

each subplot depict the distributions of pupil sizes  in young subjects, at nine luminances 

for b2d (A) and d2b (B) sessions. The last two boxplots in each subplot show results in 

old subjects in the two brightest conditions (luminance=60.8 cd/m
2
). 


