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Abstract 

 Throughout the world, control of parasitic nematodes in livestock has been 

compromised by the emergence and spread of anthelmintic resistance. Teladorsagia 

circumcincta is the most important gastrointestinal nematode parasite of small 

ruminants in temperate regions and the major resistant species in the United 

Kingdom (UK). In most cases the genetic factors which underpin resistance to broad-

spectrum anthelmintics are still poorly understood.  

 Recent work conducted independently in New Zealand (NZ) and Scotland has 

implicated the involvement of a particular P-glycoprotein (Pgp) gene, Tci-pgp-9, in 

multiple-anthelmintic resistance in T. circumcincta. The focus of this study is to 

further characterise Tci-pgp-9 and its possible role in ivermectin (and multi-drug) 

resistance using two UK field isolates of T. circumcincta, one which is anthelmintic 

susceptible (MTci2) and another that is multiple-anthelmintic resistant (MTci5).  

 The generation of full-length cDNA sequence data from these isolates 

allowed genetic comparisons which identified the presence of nine non-synonymous 

SNPs in the Tci-pgp-9 coding sequence of the MTci5 isolate. The 3.8 kb, Tci-pgp-9 

transcript from the MTci2 and MTci5 isolates shared 95.5 % identity at the 

nucleotide level and 99.5 % identity at the protein level. Twelve sequence variants 

were identified in the first internucleotide binding domain, designated Tci-pgp-9-

IBDA, some of which shared a high level of identity with sequence variants 

identified in near-isogenic NZ strains. Multiple allelic variants were present in the 

majority of individuals, but a reduction in the number of allelic variants present in 

individuals of MTci5 relative to the MTci2 isolate was evident. A further reduction in 

the number of alleles present in individuals was also observed in individuals derived 

from an IVM treated population of MTci5, suggesting that IVM treatment applied 

purifying selection pressure. Quantitative real time PCR analysis showed a 3.7-fold 

increase in Tci-pgp-9 gene copy number in the MTci5 isolate relative to the MTci2 

isolate, which was consistent with a 3.4-fold increase observed in the NZ study. 

None of the common haplotypes identified were unique to any given isolate, and the 

relationship between haplotype and copy number was not straightforward.  

This study provides evidence that Tci-pgp-9 is under anthelmintic selection, 

but the precise role of this specific P-glycoprotein gene, and its alleles, in the 

phenotypic expression of anthelmintic resistance in T. circumcincta remains to be 

determined.  
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Chapter 1  

General Introduction and Background 

1.1  Impact of Nematode Parasites on UK Livestock 

Agriculture contributes approximately £4.7 billion per annum to the economy 

of the United Kingdom (UK), the largest producer of sheep and goat meat in 

Europe, with an estimated worth of £1.02 billion (DEFRA, 2012). The economic 

cost of gastrointestinal parasites in the UK, through animal production losses, 

costs associated with preventative measures and the treatment of affected 

animals, was estimated in 2005 to be in the order of £84 million per annum 

(range £48-120 million) (Nieuwhof & Bishop, 2005), and is likely to be much 

higher now. In cool temperate areas, grazing ruminants are infected by a variety 

of parasitic nematodes. The common gastrointestinal parasites that infect UK 

sheep flocks are Teladorsagia circumcincta, Haemonchus contortus, 

Trichostrongylus spp., and Nematodirus spp. The dominant species in UK flocks 

is usually considered to be T. circumcincta (Stear et al., 2009), although all 

species can cause ill-thrift and production losses when present in large numbers. 

The disease caused by such infections in sheep is called parasitic gastroenteritis 

(PGE) (Armour, 1986; Taylor et al., 2007; McNeilly et al., 2009). Nematode 

control currently relies heavily upon the intensive use of broad-spectrum 

anthelmintics, which has, in turn, led to the emergence of anthelmintic 

resistance.  

 

1.2  Teladorsagia circumcincta  

 Teladorsagia circumcincta, commonly known as the “brown stomach 

worm”, belongs to the Order Strongylida, and is a member of the Rhabditina 

(Clade V) family in the Phylum Nematoda. This parasitic nematode is most 

commonly found in cool temperate regions of the world, where its definitive 

host is sheep. This section will describe the life-cycle of this important parasite, 

the disease caused and the preventative measures used to manage infections. 
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1.2.1  Teladorsagia circumcincta Life-cycle 

 The life-cycle of T. circumcincta, shown in Figure 1.1, begins when eggs, 

produced by adult females present on the mucosal surface of the abomasum, are 

excreted onto pasture in the faeces. Here, first stage larvae (L1) emerge from 

the eggs and ingest faecal bacteria. The larvae undergo two further moults as 

they pass through the pre-infective second stage (L2) to the infective third (L3) 

stage of their life-cycle. The cuticle from the L2 stage is retained as a larval 

sheath and offers L3 protection from desiccation whilst on the pasture (O’Connor 

et al., 2006). The progression to third stage larvae occurs within 2 weeks under 

optimal conditions of 18-26 °C and 60 % humidity (Gruner & Suryahadi, 1993; 

Urquhart et al., 1996; O’Connor et al., 2006). The infective L3 then migrate out 

of the faeces onto the pasture where they are ingested by grazing sheep. The 

larvae shed their cuticle when they encounter high CO2 concentrations in the 

rumen, then enter the highly acidic environment of the abomasum, after which, 

the larvae migrate to the gastric glands within the first 24 hours and mature 

through fourth (L4) and fifth life-cycle stages, finally becoming sexually mature 

adults (L5), around 10 days post-ingestion. The larvae may enter a hypobiotic 

state where they arrest their development in vivo until environmental conditions 

become favourable.  
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Figure 1.1  Life-cycle of T. circumcincta 

Schematic showing the life-cycle of T. circumcincta. The first three larval stages are 

found on pasture with the remaining development occurring in the host. Images 

courtesy of Dave McBean and Fiona Kenyon (Moredun Research Institute).  

 

1.2.2  Clinical Disease Caused by T. circumcincta 

 The damage in the abomasum is primarily caused when larvae arise from 

the gastric glands, resulting in increased pH levels followed by a strong 

inflammatory response in the host. This leads to a gastropathy that leads to 

protein loss, which is exacerbated by the adult worms which continue to reside 

at the mucosal surface of the abomasum (Simpson, 2000), resulting in reduced 

nutrient acquisition (McKellar, 1993). The effects of PGE ranges from reduction 

in appetite and liveweight gain, to diarrhoea, dehydration and, in severe cases, 

death (McNeilly et al., 2009). Two types of PGE caused by T. circumcincta 

infection have been described; type I - an acute disease (Sutherland & Scott, 

2010), and type II which is generally a sub-clinical disease (Urquhart et al., 

1996; Abbot et al., 2004), which has been shown to suppress the appetite of the 

host (Greer et al., 2008). Type I disease is caused by the ingestion and 



18 
 
maturation of large numbers of L3 from pasture by lambs in their first grazing 

season, whereas, the less common, type II disease is caused by the delayed 

maturation of larvae that were ingested in the previous grazing season. The type 

II disease usually occurs the following late winter/early spring after the larvae 

have either, emerged from a period of arrested development in the host (Gibbs, 

1986; Urquhart et al., 1996), or alternatively, over-wintered in the host as 

arrested L4 (Sargison et al., 2007). Outbreaks of the type II disease have become 

more common and severe in South East Scotland in recent years (Sargison et al., 

2007; Kenyon et al., 2009a).   

 

1.3  Nematode Control Strategies 

1.3.1  Broad-Spectrum Anthelmintics and Mode of Action  

 The control of parasitic nematodes currently relies heavily upon the 

strategic use of anthelmintic drugs combined with pasture management. 

Traditionally there were three main classes of broad spectrum anthelmintic 

available: benzimidazole (BZ), imidazothiazoles (e.g. levamisole (LEV) and 

related compounds), and macrocyclic lactones (MLs) (e.g. ivermectin (IVM) and 

moxidection (MOX). This was extended in recent years to five by the addition of 

two novel classes of anthelmintics: the amino-acetonitrile derivatives (AADs) and 

spiroindoles used as part of a dual-active, derquantel-abamectin.  

 The first broad spectrum anthelmintic was released in the 1960s. 

Thiabendazole, a member of the BZ class, was introduced in 1961 (Brown et al., 

1961) and, after just three years of intensive use, the first cases of resistance in 

sheep nematodes were reported (Drudge et al., 1964). The BZs act by binding to 

β-tubulin, preventing the formation of microtubules resulting in cell lysis, due to 

the inability to transport secretory granules or secrete enzymes (Lacey, 1988; 

Prichard, 1990), which subsequently inhibits larval motility and feeding and 

interferes with other vital cellular processes (McKellar & Jackson, 2004; Mitreva 

et al., 2007; von Samson-Himmelstjerna et al., 2007). The imidazothiazole class 

was introduced in 1970 with LEV proving to be the most commonly used member 

in this class. Levamisole acts on neuromuscular junctions as an agonist for 

nicotinic receptors (McKellar and Jackson, 2004), causing muscle paralysis which 
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results in the eventual death of the parasite. Resistance to levamisole was first 

observed in laboratory selected worms 6 years later (Le Jambre, 1976) and was 

reported in the field 9 years after its introduction (Sangster et al., 1979; Le 

Jambre, 1979; Prichard et al., 1980).  

 The MLs, originally isolated from Streptomyces avermilitis (Putter et al., 

1981; Campbell et al., 1983) were introduced next. The release of IVM 

revolutionised the livestock anthelmintic market and boasted almost 100 % anti-

parasitic efficacy against endo- and ecto-parasites (Geary, 2005). The MLs, such 

as IVM and moxidectin (MOX), bind to unique invertebrate-specific glutamate-

gated chloride channels, causing irreversible activation which leads to muscle 

paralysis and the inhibition of motility, reduced pharyngeal pumping and 

inhibition of oviposition due to effect on uterus muscles (Geary et al., 1993). 

Ivermectin is also believed to be an agonist of γ-aminobutyric acid (GABA) and 

disrupts GABA-mediated neurotransmission (Ros-Moreno et al., 1999). 

 Recently, a fourth class of anthelmintic, the amino-acetonitrile 

derivatives (AADs), was introduced. Monepantel was the first member of this 

class to be released, initially marketed as Zolvix® (Novartis Animal Health) in 

Australia and New Zealand in 2009, and later released in Europe in 2010.  Its use 

as a single quarantine drench or in conjunction with other anthelmintic classes 

has been advised to sustain its efficacy levels (Jackson et al., 2009). Monepantel 

causes paralysis of the larva by targeting Hco-MTPL-1 receptors that are a 

unique, nematode-specific clade of acetylcholine receptor subunits (Kaminsky et 

al., 2008). 

 The fifth class of anthelmintic to be released was the spiroindoles. 

Derquantel, a member of this class, is only used in combination with abamectin 

as part of a dual-active drench, largely due to the fact that derquantel itself has 

very poor efficacy against T. circumcincta. Abamectin, like IVM, interacts with 

the glutamate-gated receptors in the pharynx, inhibiting nerve communication 

by increasing membrane permeability to chloride ions. The resulting irreversible 

neuromuscular blockage and leads to the paralysis, starvation and eventual 

death of the worm. Spiroindoles are nicotinic cholinergic antagonists which block 

cation channels in nematode muscle cell membranes, resulting in flaccid 

paralysis of the nematode (Little et al., 2011). By combining two active 
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compounds, the aim is to slow the development of drug resistance, as resistance 

to one active ingredient is covered by the other (Leathwick & Hosking, 2009). 

 

1.3.2  Alternative Nematode Control Strategies 

 Intensive chemoprophylaxis is not a sustainable method of controlling 

parasitic nematodes as the prevalence of drug resistance increases (Jackson & 

Miller, 2006). Current worming strategies on farms involve rotation between the 

classes of anthelmintic, thereby reducing the generation of worm resistance to a 

single class of anthelmintic. Alternative strategies for controlling parasitic 

nematodes whilst limiting the development of resistance to anthelmintics have 

been considered.  

 

1.3.2.1  Grazing Management 

 Grazing management has been proposed as a method to assist with 

nematode control. An evasive strategy, first proposed by Michel (1985), involves 

moving livestock to another pasture before the larvae resulting from their 

contamination are likely to appear. The livestock are not returned to the 

contaminated pasture until the number of infective larvae has declined. Co-

grazing sheep and cattle has also been suggested as a method for sustaining 

parasite control as they tend to harbour different nematode species (Abbot et 

al., 2004).  
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1.3.2.2  Selective Breeding 

 Over-dispersion typically occurs within the hosts of gastrointestinal 

nematodes, where the majority parasites are harboured by a relatively small 

number of host animals and the majority of animals harbour relatively few 

parasites (Stear et al., 2006). Selective breeding for resilience or resistance to 

parasite infection has been proposed as a medium-long-term solution to the 

problem of anthelmintic resistance in sheep parasites. Animals that harbour 

fewer parasites, relative to susceptible animals, and that mount effective 

immune responses to those parasites are considered resistant to parasitic 

infection, whilst animals that still perform well and are able to maintain live-

weight gain under parasite challenge are considered as being resilient to the 

parasite infections (Bisset et al., 2001).  

 

1.3.2.3  Refugia-based Approaches 

 Adopting refugia-based approaches along with selective breeding for 

desirable nematode resistant and resilient traits has been proposed to prolong 

the efficacy of the current anthelmintics (Kenyon et al., 2009b). This approach 

maintains a population of worms that are not exposed to anthelmintic, thereby 

preserving the genes for susceptibility within the untreated parasite population. 

The anthelmintic resistant genotypes are diluted within the untreated parasite 

population. One practical approach to slow the development of resistance is the 

targeted selective treatments (TST), first described by Bisset & Morris (1996). In 

this study, it was used as a strategy to identify resilient animals, but the authors 

also recognised that it could be useful for reducing selection pressure for 

anthelmintic resistance by only targeting anthelmintics to those animals that are 

likely to benefit from treatment rather than treating the whole flock. The 

majority of hosts have a low worm burden, with approximately 80 % of the 

worms found in only 20-30 % of hosts (Sréter et al., 1994). Targeting treatment 

to those animals that are disease susceptible (non-resilient and/or non-resistant) 

or those that produce most pasture contamination, ensures a sufficient number 

of animals are left untreated, thus maintaining the worms in refugia (Greer et 

al., 2009; Kenyon et al., 2009b). Replicated field trials showed that lambs in a 
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TST group received approximately 50 % fewer anthelmintic treatments 

throughout the trial, and grew as well as lambs that had suppressive monthly 

anthelmintic treatment (Kenyon et al., 2009b; Kenyon et al., 2013). 

 

1.3.2.4  Vaccines  

 The development of vaccines against sheep parasites has been 

challenging, but has seen success with the development of a vaccine against H. 

contortus using a “hidden” antigen approach (Smith & Zarlenga, 2006). 

Substantial protection against natural haemonchosis in grazing sheep was 

observed following immunisation with a combination of the H-gal-GP and H11 

glycoprotein complexes (Smith et al., 2001a). Antibodies specific for H. 

contortus gut membrane proteins, specifically, H-gal-GP and H11, are ingested 

during the parasite’s blood-meal, disrupting the digestion in the parasite, 

leading to starvation, loss of fecundity and weakness (Smith & Zarlenga, 2006). 

Unfortunately, this vaccine did not provide any cross-protection against T. 

circumcincta (Smith et al., 2001b; Knox & Smith, 2001), most likely due to 

insufficient titres of host antibody being ingested for the approach to be highly 

effective.  

 Attempts were made to immunise sheep against T. circumcincta using 

ConcanavilinA-binding extracts prepared from L4 larvae (Halliday & Smith, 2011). 

Despite a similar extract prepared from Ostertagia ostertagi significantly 

protecting calves (Halliday & Smith, 2010), the T. circumcincta extracts did not 

contain significantly protective antigens (Halliday & Smith, 2011). Recently, 

Nisbet et al. (2013) successfully immunised sheep using a nematode sub-unit 

vaccine, containing a cocktail of eight recombinant proteins, against T. 

circumcincta. It is promising that induced levels of protection were higher than 

those observed in any other systems using a recombinant vaccine against a 

parasitic nematode in the definitive ruminant host (Nisbet et al., 2013). 

 Although the vaccines described above have been shown to work in trials, 

the only commercially available nematode parasite vaccine is a live attenuated 

Bovilis® Huskvac preparation used to vaccinate calves against the lungworm, 

Dictyocaulus viviparus. Vaccines offer certain advantages over anthelmintics, 
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due to their lack of chemical residues they require shorter (or zero) withdrawal 

periods for food products, and it could be argued that vaccines are more 

environmentally-friendly as faecal residues are reduced or eliminated (Wall & 

Strong, 1987; Vercruysse et al., 2004). The disadvantages include the 

requirement for regular vaccination, especially with hidden antigen vaccines, 

and the specificity for a single species when natural infections typically comprise 

multiple species.  

 

1.4  Anthelmintics 

1.4.1  Anthelmintic Resistance 

 The widespread prophylactic use of anthelmintics has led to the global 

emergence of resistance in ruminant nematodes. Anthelmintic resistance in T. 

circumcincta has been documented in most countries where the parasite is 

endemic (Kaplan, 2004). Anthelmintic resistance has been reported in four of 

the five major classes of anthelmintics, with no reported cases of resistance in 

the recently released spiroindoles class, as yet. The emergence of anthelmintic 

resistance developed soon after their commercialisation (Table 1.1).  

As well as resistance to single classes of anthelmintic, resistance to 

multiple classes of anthelmintic have developed. The reported first case of BZ 

and IVM double resistance in T. circumcincta isolated from UK goats was in 1992 

(Jackson et al., 1992). Triple resistant isolates from sheep were also reported in 

Europe in 2001 (Sargison et al., 2001). Resistance has also been reported to 

combination drenches (Pomroy, 2006; Leathwick et al, 2009). In the UK, 

drenches usually contain only a single class of anthelmintic, however in the 

Southern Hemisphere, many drenches contain several (up to 4) different actives 

in combination. 
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Table 2.1  Emergence of Anthelmintic Resistance 

Examples of anthelmintics from each of the major classes are shown along with the year 
of their release and the year in which resistant nematodes were first reported in sheep. 
To date, no reports of anthelmintic resistance have been submitted for Derquantel. 
(Adapted from Kaplan (2004))  

Drug Year of Release First Report of Resistance 

Benzimidazole   

Thiabendazole 1961 Drudge et al., 1964 

Imidothiazoles   

Levamisole 1970 Sangster et al., 1979; Le Jambre, 1979 

Macrocyclic Lactones   

Ivermectin 1981 van Wyk & Malan, 1988  
Moxidectin 1991 Leathwick, 1995 

Amino-Acetonitrile Derivatives   

Monepantel 2009 Scott et al., 2013 

Spiroindoles   

Derquantel  2009 - 

 

1.4.2  Mechanisms of Anthelmintic Resistance 

Anthelmintic resistance is accepted as a pre-adaptive phenomenon (Jackson 

& Coop, 2000), where the gene or genes responsible for resistance may have 

already existed at low frequency within a species. A survival advantage is 

conferred to individuals carrying a resistance gene or genes when exposed to 

anthelmintics. The emergence of anthelmintic resistance occurs after continual 

selection with anthelmintic resulting in a high frequency of individuals carrying 

resistance allele(s) within the population. Anthelmintic resistance develops 

through a limited number of ways: (i) alterations of the drug receptor so that 

the target is no longer recognised by the anthelmintic, rendering it ineffective; 

(ii) inactivation or removal of the anthelmintic through increased drug 

metabolism; (iii) changes in drug distribution, such as the up regulation of 

cellular efflux mechanisms, prevent the anthelmintics reaching their target; (iv) 

amplification of the target gene(s) to overcome anthelmintic action or a 

reduction in drug receptor expression (Wolstenholme et al., 2004; Prichard & 

Roulet, 2007). Mechanisms (ii) and (iii) effectively reduce the drug concentration 

at the receptor sites, whilst mechanisms (i) and (iv) affect the receptor response 

as a consequence of drug binding (Prichard & Roulet, 2007). Anthelmintic 

resistance is heritable, and due to the lack of appropriate selection pressure 
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that could be applied against the mutations responsible for the resistances, 

would seem to be irreversible (Barton, 1983; Jackson & Coop, 2000). No 

reversion was observed after a long-term absence of the selecting anthelmintic 

or class of anthelmintic (Dash, 1986; Martin et al., 1988), for example, no 

reversion to sensitivity to BZs was observed in field populations of H. contortus 

and T. colubriformis after the removal of selection pressure (Roos et al., 1995; 

Wolstenholme et al., 2004).  

Resistance to BZs has been attributed to the substitution of phenylalanine to 

tyrosine at either residue 167 or residue 200 of the β-tubulin isotype 1 gene 

which disrupts BZ binding by removing high affinity receptor binding sites (Lacey 

& Gill, 1994). Substitutions at these residues do not occur simultaneously in a β-

tubulin allele, the occurrence of both substitutions simultaneously may be lethal 

in some way (Beech et al., 2011). There appears to be no reduction in fitness 

associated with being genetically resistant, despite the conserved nature of β-

tubulin (Elard et al., 1998). Without a fitness cost to being BZ-resistant, there is 

no selection pressure for the parasites to revert back to susceptibility (Leignel et 

al., 2010). Multiple mechanisms may be responsible for the development of BZ 

resistance as evidence of selection at a Pgp locus during the selection for BZ 

resistance has been shown in H. contortus (Blackhall et al., 2008).  

The first report of IVM resistance was by van Wyk & Malan (1988) just eight 

years after its release. Similarly, MOX resistance was reported in sheep four 

years after its release on to the market (Leathwick, 1995; Watson et al., 1996). 

Glutamate-gated and GABA-gated chlorine channels have been identified as the 

molecular targets for MLs. In H. contortus, it has been reported that there is no 

single allele associated with resistance, but changes in allele frequency have 

been observed (Blackhall et al., 1998, Blackhall et al., 2003). Njue et al., (2004) 

reported that IVM resistance in a UK isolate of Cooperia oncophora was 

associated with an amino acid substitution, from leucine to phenylalanine, at 

codon 256 (L256F) of avr-14B which encodes a subunit of the glutamate-gate 

chlorine channel in this species. Further investigation into Belgian isolates of the 

cattle nematodes O. ostertagi and C. oncophora, did not possess the avr-14B 

L256F substitution (El-Abdellati et al., 2011). The same subunit, avr-14B, was 

recently shown to have a relatively minor role in IVM resistance in T. 

circumcincta (Martínez-Valladares et al., 2012). P-glycoproteins (Pgps) have also 
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been implicated in IVM-resistance. Studies that co-administered IVM or MOX with 

Pgp-inhibitors (such as verapamil) showed an increased efficacy of these drugs 

against MOX-resistant H. contortus (Xu et al., 1998; Molento & Prichard, 1999) 

and will be discussed further below in Section 1.5. 

 Resistance to the AAD class of anthelmintic has been artificially selected 

in laboratory strains of H. contortus (Kaminsky et al., 2008; Rufener et al., 

2009; Rufener et al., 2010). Recently, resistance to monepantel was reported in 

a New Zealand goat herd where T. circumcincta and T. colubriformis populations 

were already multi-drug resistant (Scott et al., 2013). In this case, resistance to 

monepantel had arisen on this property after switching from BZ, ML and LEV 

combination drenches, due to their lack of efficacy, to monepantel. The goats 

received 17 separate doses of monepantel within a two year period, after which 

there was no evidence of efficacy in the FECRT, indicating the development of 

resistance to the AAD class of anthelmintic. No cases of derquantel resistance 

have been reported, most likely because derquantel is combined with abamectin 

and resistance to one active ingredient is covered by the other (Leathwick & 

Hosking, 2009; Geurden, et al., 2012).  

 

1.4.3  Detection of Anthelmintic Resistance 

 Anthelmintic resistance is widespread and likely to be under-reported. 

The detection of anthelmintic resistance has relied upon laborious and 

cumbersome in vivo techniques such as the faecal egg count reduction test 

(FECRT) and the controlled efficacy test (CET); and in vitro methods including 

the egg hatch assay (EHA), the larval development assay (LDA) and to a lesser 

degree the larval migration inhibition assay (LMIA) and the larval feeding assay 

(LFIA). Of the tests mentioned above, the FECRT is the most widely used 

providing a reasonable indication of the reduction in faecal egg output as a 

result of anthelmintic treatment in most cases. It has been routinely used to 

monitor the emergence of anthelmintic resistance which is shown when the 

therapeutic effect of the drug is reduced by >5 % (Coles et al., 1992). The lack 

of sensitivity means that the FECRT detects resistance once >25 % of the parasite 

population expresses resistance genes (Martin et al., 1989; Sangster, 2001).  
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 An understanding of the genetic basis of anthelmintic resistance will allow 

the development of molecular-based diagnostic tests with greater sensitivity 

than the FECRT. Qualitative changes (such as mutations, insertions and 

deletions), and quantitative changes (such as alteration of gene expression) have 

been targeted for the development of DNA based tests. The only example of a 

qualitative change being utilised in this way is the single nucleotide 

polymorphism that is responsible for the phenylalanine to tyrosine substitution 

at amino acid 200 of β-tubulin isotype-1 which has been shown to reduce the 

affinity of BZs to β-tubulin (Kwa et al., 1994; Elard et al., 1996). This mutation, 

along with SNPs that cause a similar substitution at residue 167 (F167Y), has 

permitted the development of a PCR diagnostic test to screen for allele(s) that 

are associated with BZ-resistance in the parasite population (Kwa et al., 1994; 

Elard et al., 1999). Considerably more work is required to identify and develop 

reliable genetic markers of anthelmintic resistance in the other broad-spectrum 

anthelmintic classes (von Samson-Himmelstjerna et al., 2006; von Samson-

Himmelstjerna et al., 2007). While these tests are available, their use is not 

widespread, and are only routinely used in research laboratories.  

 

1.5  P-glycoproteins 

Anthelmintic resistance has been attributed to several genetic factors 

including qualitative and quantitative changes in glutamate-gated chloride 

channels, β-tubulin and several Pgps (Xu et al., 1998; Prichard & Roulet, 2007; 

James & Davey, 2009; Dupuy et al., 2010). P-glycoproteins were first reported in 

mutant cell lines that displayed an altered permeation rate of drugs entering the 

cell via hydrophobic pathways (Juliano & Ling, 1976). 

The Pgps were the first multi-drug resistance transporter molecules found 

to be involved in the efflux of ML and it was observed that Pgp-deficient mice 

accumulated MLs in the brain, resulting in neurotoxicity (Schinkel et al., 1994; 

Lankas et al., 1997). Recent studies have linked polymorphisms in Pgps with the 

multi-drug resistant phenotype in T. circumcincta (Bisset, 2007; Bartley et al., 

2009; Dicker et al., 2011a; Dicker et al., 2011b), H. contortus (Blackhall et al., 

1998; Williamson et al., 2011), Cooperia oncophora (Demeler et al., 2013), 

Parascaris equorum (Janssen et al., 2013) and Onchocerca volvulus (Bourguinat 



28 
 
et al., 2008). Pgps are members of the adenosine triphosphate (ATP)-binding 

cassette (ABC) superfamily and act as non-specific efflux pumps that export a 

range of xenobiotic agents. In the context of anthelmintic resistance, they could 

potentially function by pumping anthelmintics out of target cells, thereby 

reducing intracellular drug accumulation, leading to the parasite being exposed 

to sub-lethal doses (James et al., 2009). The ABC superfamily is an evolutionarily 

ancient group of proteins that are conserved across the Animal Kingdom. Their 

importance in multi-drug resistance is illustrated by the fact that almost 5 % of 

the Escherichia coli genome is occupied by genes encoding 79 distinct ABC 

proteins (Zimniak et al., 1999).  

A typical Pgp molecule, as shown in Figure 1.2, comprises two nucleotide 

binding domains (NBDs) and two transmembrane domains, which form an 

aqueous chamber within the membrane (Schinkel et al., 1995; Rosenberg et al., 

1997; Ambudkar et al., 2003; Buss & Callaghan, 2008). Typical substrates for Pgp 

tend to be hydrophobic, with a molecular mass of 300-4000 daltons (Buss & 

Callaghan, 2008; Aller et al., 2009). MLs are highly hydrophobic and are 

excellent substrates for Pgp transport in mammals (Prichard & Roulet, 2007) 

and, therefore, IVM resistance may develop as a result of increased drug efflux 

by Pgps. Zhao et al. (2004) showed that Pgps are expressed mainly in the 

pharynx, gut or excretory cells of Caenorhabditis elegans and suggested that 

Pgps may protect the individual from a range of xenobiotics. Increased 

expression of Pgps has also been associated with IVM resistance in H. contortus 

(Xu et al., 1998), C. oncophora (Areskog et al., 2013, De Graef et al., 2013) and 

C. elegans (James & Davey, 2009) and was confirmed to be reversible by co-

administering Pgp inhibitors such as the calcium channel blocker verapamil 

(Molento & Prichard, 1999). Lespine et al. (2008) proposed that the active life of 

the MLs could be enhanced by inhibiting the drug transporters and may be able 

to slow down the appearance of resistant parasites in hosts such as cattle in 

countries where resistance is not yet widespread. Recently it was demonstrated, 

for the first time under field conditions, that the co-administration of Pgp 

modulators and IVM improved the activity and extended the active life of IVM 

(Lifschitz et al., 2010). The free-living non-parasitic nematode, C. elegans, and 

the parasitic nematode H. contortus, are closely related to T. circumcincta 
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(Geary & Thompson, 2001), therefore these studies support the theory that Pgps 

may be implicated in IVM resistance in T. circumcincta.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.2  Model of substrate transport by Pgp 
A, Schematic model of a Pgp protein with α-helices in the transmembrane domains and 

a mix of α-helices and β-sheet in the nucleotide binding domains (NBD). B, Schematic 

model of the substrate expulsion; the substrate (magenta) partitions into the bilayer 

from the extracellular surface and enters the internal drug binding pocket through an 

open portal. ATP (yellow) binds to the NBDs and causes a conformational change, 

releasing the substrate into the extracellular space. C, The energy dependent cycle of 

substrate efflux is shown. The substrate (red) is actively pumped into the extracellular 

space as a result of ATP hydrolysis (Adapted from (Aller et al., 2009; Dong et al., 

2005)). 
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1.5.1  Recent Studies on Tci-pgp-9  

As sheep farming is a major part of the economies of Scotland and New 

Zealand (NZ), both countries possess research institutes which focus on livestock 

and animal health. Studies into Pgp expression and its association with 

anthelmintic resistance in T. circumcincta were being conducted independently, 

and collaboration between groups from these institutes was thus established. In 

Scotland, at the Moredun Research Institute, field isolates of anthelmintic 

susceptible and multiple anthelmintic resistant T. circumcincta were maintained 

and characterised (Bartley et al., 2009; Dicker et al., 2011a; Dicker et al., 

2011b). In the meantime in New Zealand, at the AgResearch Wallaceville Animal 

Research Centre, a set of laboratory derived near-isogenic strains of T. 

circumcincta had been developed by introgressing resistance genes from a multi-

drug resistant field strain into an otherwise genetically drug-susceptible inbred 

T. circumcincta background (Bisset, 2007). Interestingly, both groups observed 

increases in expression and polymorphisms of Pgps in multiple anthelmintic 

resistant T. circumcincta, despite the respective resistant isolates being 

selected in very different ways.  

The field isolates, maintained by annual passage through sheep hosts at 

Moredun Research Institute, represent two populations of worms of UK origin 

which are otherwise genetically unrelated. One isolate, MTci2 (Moredun T. 

circumcincta strain 2), has been shown to retain susceptibility to the major 

classes of anthelmintics (Skuce et al., 2010; D. Bartley, Pers. Comm.), and the 

other isolate, MTci5 (Moredun T. circumcincta strain 5) was first described by 

Sargison et al. (2001) and was confirmed to be resistant to fenbendazole, LEV 

and IVM (Bartley et al., 2004; Bartley et al., 2005). Comparisons of the MTci2 

and MTci5 isolates were conducted and one specific Pgp gene in T. circumcincta, 

classified “Tci-pgp-9”, as it aligned with Ce-pgp-9 of C. elegans, appeared to be 

associated with an IVM resistant phenotype (Dicker et al., 2011b). Increased Pgp 

expression was observed at the mRNA level following comparisons of the MTci2 

and MTci5 isolates. The constitutive expression of Tci-pgp-9 NBD2 was measured 

using Real Time PCR in each life-cycle stages and Tci-pgp-9 constitutive 

expression was greater in the MTci5 isolate at all life-cycle stage relative to the 

MTci2 isolate (Table 1.2). The inducible expression of Tci-pgp-9 was measured 

after IVM exposure in the MTci5 isolate, and this was compared to the non-
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exposed MTci5 isolate. Results revealed that Tci-pgp-9 expression was increased 

in the IVM-exposed MTci5 population compared to a population that was at rest 

(no IVM-exposure) (Dicker et al., 2011b). 

 

 

Table 1.2  Increase in Expression of Tci-pgp-9 in T. circumcincta 

The table shows the increases in constitutive and inducible expression of Tci-pgp-9 

NBD2. Values represent fold increases observed between expression in the resistant and 

the susceptible isolates, over the different life-cycles of T. circumcincta (Adapted from 

Dicker et al., 2011b).  

 

 

 

 

 

 

 

 

 

Investigations into the same Tci-pgp-9 gene had earlier been conducted in 

the AgResearch Hopkirk Research Institute, New Zealand (Bisset, 2007). In that 

study, full-length genomic DNA sequences for Tci-pgp-9 were generated from 

overlapping lambda clones obtained by screening a genomic library from an 

Australian strain of T. circumcincta whose anthelmintic resistance status was 

unknown. In addition, near-isogenic lines of multiple-anthelmintic resistant and 

susceptible T. circumcincta were developed for the study through a lengthy 

process of inbreeding and back-crossing experiments. First, a laboratory isolate 

of T. circumcincta, which was known to be susceptible to all anthelmintic 

classes, was inbred for two generations to reduce the genetic variation within 

this worm population. Simultaneously a multiple-anthelmintic resistant field 

isolate, maintained at AgResearch and used in several previous studies of 

anthelmintic resistance (Sutherland et al., 1997; Sutherland et al., 1999; 

Sutherland et al., 2000, Sutherland et al., 2002; Sutherland et al., 2003), was 

screened with oxfendazole (OXF), LEV and IVM for five generations. Late fourth-

Life-cycle 
Stage 

Constitutive Expression Inducible Expression 

Eggs 55.27 1.10 
L1 5.06 1.71 
L3 17.49 1.54 
L4 14.04 No Data 

Adults (L5) 6.75 0.69 
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stage (virgin) female worms from the inbred susceptible population were crossed 

with male worms from the drug-screened multiple-anthelmintic resistant isolate 

by surgically implanting into a young goat. The resulting F1 cross progeny were 

allowed to breed for two further generations with anthelmintic screening with 

OXF, LEV and IVM at the F2 and F3 generations. Adult males from the F3 

generation were then back-crossed with late fourth-stage females belonging to 

the initial inbred anthelmintic-susceptible isolate. Once more the F1 cross 

progeny were allowed to breed for two further generations with anthelmintic 

screening at each of the F2 and F3 generations. Adult males from the F3 

generation progeny were once again back-crossed with late fourth-stage females 

from the initial anthelmintic-susceptible isolate. The resultant progeny were 

bred for two further generations with anthelmintic screening at each of these 

generations to give a multiple-anthelmintic resistant strain of worms that were 

expected to be similar genetically (7/8ths similar) to the inbred anthelmintic-

susceptible strain but carrying the anthelmintic resistance genes derived from 

the original parental anthelmintic resistant field isolate (Bisset, 2007). These 

“near-isogenic” worm populations were used to study the genetic basis of 

anthelmintic resistance in T. circumcincta, focusing on glutamate-gated chloride 

channel genes (Tci-avr-14 and Tci-GluCl-α), the γ-aminobutyric acid receptor 

gene (Tci-GABRG-2), three different Pgp genes (Tci-pgp-1, Tci-pgp-2 and Tci-

pgp-9) and an axonemal dynein gene (Tci-che-3). An advantage of using near-

isogenic strains for genetic comparisons is that only substantial differences 

should be visible at loci linked to anthelmintic resistance, either directly or 

closely linked to other loci that are implicated in anthelmintic resistance.  

With regard to the Tci-pgp-9 gene, amplification and alternative splicing 

was observed during comparisons of the isogenic strains. Four possible coding 

SNPs of interest were identified when two near-isogenic populations, one which 

was susceptible to anthelmintics and another that was resistant, were 

compared. It has been shown that a SNP has the capacity to change an amino 

acid in the drug target protein and so changes its affinity (James et al., 2009). 

For example, BZ-resistance in most nematode species is associated with a 

common F200Y SNP in the β-tubulin isotype I gene, which can be used as a 

molecular diagnostic for BZ-resistance. Therefore, it is conceivable that the 

coding SNPs identified in this study could potentially provide a genetic marker 
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for anthelmintic resistance in T. circumcincta (Bisset, 2007). The first of the 

proposed residue changes is asparagine (N) in susceptible isolates to serine (S) in 

resistant isolates at residue 79 (N79S), and results in the loss of an N-linked 

glycosylation site. N-glycosylation is believed to influence the configuration of 

the Pgp molecule (Schinkel et al., 1993) and the presence of two or three N-

glycosylation sites in this region is strongly conserved in mammalian Pgps. The 

second and third proposed residue changes are, threonine (T) to serine (S) at 

residue 86 (T86S) and asparagine (N) to aspartic Acid (D) (N1043D), respectively. 

The fourth amino acid substitution, located at amino acid 1097, is found in the 

second NBD located towards the 3’ end of the gene and changes glutamic Acid 

(E) to glutamine (Q) (E1097Q). Bisset (2007) also showed that the abundance of 

the Tci-pgp-9 gene was 3.4-fold higher in the near-isogenic anthelmintic 

resistant strain when compared to the anthelmintic susceptible strain. The 

increase is likely to represent gene duplication or increased copy number in the 

resistant strains when compared to its susceptible counterpart (Zhao et al., 

2004).  
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1.6  Thesis Aims 

 The present study was undertaken to further characterise the Tci-pgp-9 gene 

in selected UK strains of T. circumcincta. It follows on from the work carried out 

by Stewart Bisset (2007) and Alison Dicker (2010), as outlined above.  

The specific aims of the present study were: 

(i)   Determine the full-length cDNA sequence of Tci-pgp-9 gene from the MTci2 

and MTci5 isolates of T. circumcincta, and to conduct genetic comparisons of 

these isolates to identify polymorphisms. Compare the full-length Tci-pgp-9 

cDNA sequences derived from the UK isolates and the NZ near-isogenic strains of 

T. circumcincta to identify which, if any, polymorphisms are shared between 

these geographically diverse isolates.  

(ii)   Determine whether each isolate could be differentiated into sub-

populations based on their anthelmintic resistance phenotype, using bioassays. 

Verify the utility of genetic comparisons between unrelated UK isolates by 

comparing the sub-populations collected from each isolate.  

(iii)   Identify which allelic variants of Tci-pgp-9 are present in the UK isolates. 
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Chapter 2 

General Materials and Methods  

2.1  Introduction 

 General molecular biological and parasitological methods that were 

routinely used in multiple experiments are described in this chapter. Specific 

protocols that were followed for particular experiments will be described in the 

relevant chapter(s). 

 

2.2  Teladorsagia circumcincta Isolates 

 Two UK field isolates of Teladorsagia circumcincta, namely MTci2 and 

MTci5, were the principal strains used in the present study. The first, MTci2, 

which is considered to be anthelmintic susceptible, was obtained from the 

Central Veterinary Laboratories (Weybridge, UK) in 2000. This strain was 

originally isolated from the field pre-1970, prior to routine use of LEV and IVM 

anthelmintics. It has been maintained since then by passage through parasite-

naïve lambs without any exposure to anthelmintics. Although BZ anthelmintics 

may already have been in use at the time of MTci2’s isolation, its susceptibility 

to this anthelmintic class has since been verified using egg hatch assays (Skuce 

et al., 2010; D. Bartley, Pers. Comm.). In these assays, an ED50 of 0.09 µg/ml 

was observed (D. Bartley, Pers. Comm.), where resistance is indicated by an ED50 

of >0.1 µg/ml as stipulated by Coles et al. (1992). Although the strain has not 

been exposed to anthelmintics or manipulated in any way since its isolation from 

the field, it may nevertheless contain low numbers of individuals that possess 

naturally occurring genetic mutations associated with anthelmintic resistance.  

The second isolate, MTci5, originates from a Scottish lowland sheep farm 

and was first described by Sargison et al. (2001), where lambs displayed clinical  

evidence of PGE and lower liveweight gain than was expected, despite regular 

anthelmintic dosing. Prior to the isolation of the MTci5 strain, the parasites on 

the farm had been treated with IVM for the previous two years, before which BZ, 

LEV and ML anthelmintics had been rotated on an annual basis (Sargison et al., 

2001). Subsequent CET and FECRTs have confirmed the efficacies of 
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fenbendazole, LEV and IVM against this strain to be 59 %, 88 % and 60 %, 

respectively, indicating moderate levels of resistance to each of these drug 

classes (Bartley et al., 2004; Bartley et al., 2005). Furthermore, as MTci5 was 

isolated from a closed flock with no recent import of animals or, importantly, 

parasites, it was considered likely that the anthelmintic resistances observed 

had been selected on-farm (Bartley et al., 2004). Like MTci2, MTci5 has since 

been maintained by annual passage through parasite naïve Suffolk-greyface cross 

lambs, and has not undergone any subsequent selection with anthelmintics. 

A separate population of MTci5, representing progeny from adult survivors 

of IVM treatment, was generated specifically for the current study. An 

experimentally infected ‘donor’ lamb was treated with IVM at the 

manufacturer’s recommended dose rate (0.2 mg/kg). Faecal samples were 

collected from day 21 post-treatment. Eggs were recovered and cultured to 

hatch to L1, as described in Chapter 2.3.1. This IVM-screened population is, 

henceforth, referred to as “MTci5PT” (MTci5 Post-Treatment).  

 

2.3  Collection of T. circumcincta Life-cycle Stages 

 Eggs, L1 and L3 are the easiest of the life-cycle stages to work with as they 

do not require the necropsy of donor animals. Faeces were collected from 

parasite-infected lambs and eggs and/or larvae were extracted from the faeces 

using the routine techniques listed below.  
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2.3.1   Egg Extraction & Collection of First Stage Larvae 

 Faeces were collected from previously parasite-naïve Suffolk-greyface 

cross lambs that had been dosed 21 days earlier with ~15,000 larvae of one or 

other of the above T. circumcincta isolates. The faeces were initially 

homogenised in tap water and then passed through sieves with decreasing mesh 

sizes (250 µm, 120 µm, 64 µm and 38 µm) to separate the nematode eggs from 

the particulate faecal matter. The eggs were washed with water and spun at 

1000 x g for 2 minutes. The supernatant was removed and the pellet, containing 

the eggs and faecal debris, was resuspended in saturated salt solution. The tubes 

were inverted gently and then centrifuged at 1000 x g for a further 2 minutes. 

Nematode eggs float in saturated salt solution and, therefore, the top 1 cm of 

supernatant was transferred to a 38 µm sieve and the eggs washed thoroughly in 

tap water to remove residual salt solution. Egg hatching was encouraged by 

transfer to a petri-dish and incubation overnight at 25 °C. The L1 were separated 

from unhatched eggs using the Baermann technique, where viable larvae migrate 

through 25 µm filters, for 2 hours at 25 °C.  

 

2.3.2  Coproculture & Collection of Third Stage Larvae 

 Faeces from donor animals were collected and incubated at 20-27 °C for 

approximately 10 days, during which time the eggs hatched and larvae 

underwent two successive larval moults to progress to L3. The L3 were stimulated 

to migrate from the faecal material by submersion in water at room temperature 

for 4 hours. The supernatant was collected and passed over a 25 µm Baermann 

filter to ensure the collection of viable L3 which were stored in water at 4 °C 

until required. 
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2.4  RNA Extraction Procedure 

 Pools of L3 were collected by centrifugation at 1000 x g for 2 minutes. The 

supernatant was discarded before transferring the larvae, suspended in a 

minimal volume of water, to a cryovial. The cryovial was briefly immersed in 

liquid nitrogen (lN2) before adding its contents to a pre-chilled (-80 °C) mortar 

and submerging them in lN2. The larval pellet was thoroughly homogenised with 

a pestle, ensuring the pellet remained frozen by periodic addition of lN2. The 

homogenate was collected in the centre of the mortar and 1-2 ml of Trizol® 

Reagent (Invitrogen) was immediately added. Trizol® reagent is used to isolate 

RNA by single extraction with an acid guanidinium thiocyanate-phenol-

chloroform mixture (Chomczynski & Sacchi, 1987). The Trizol® Reagent solidified 

and the pellet was ground until it thawed to the liquid phase.  Aliquots (1 ml) of 

the Trizol-homogenate were transferred to 1.5 ml Eppendorf tubes and 

incubated at room temperature for 5 minutes. To these tubes, 200 µl of 

chloroform was added and the contents were vigorously mixed for 15 seconds 

followed by 2 minutes incubation at room temperature. Phase separation was 

completed by centrifugation at 12000 rpm for 15 minutes at 4 °C. The upper 

aqueous phase, containing RNA, was transferred to a 1.5 ml Eppendorf tube to 

which 500 µl isopropanol was added and mixed by inversion. The tubes were 

incubated at room temperature for 10 minutes and then centrifuged at 12000 

rpm for 10 minutes at 4 °C to pellet the RNA. The supernatant was discarded 

and the pellet washed with 1 ml of 75 % ethanol with vortexing. The RNA was 

collected in a pellet by centrifugation at 7500 rpm for 5 minutes at 4 °C. The 

ethanol supernatant was discarded and the pellet was air-dried to remove the 

residual ethanol. The pellet was resuspended in 50 µl Ultrapure™ DNAse/RNAse-

Free Distilled Water (Gibco®) and the purity and concentration of RNA was 

determined using a NanoDrop® ND-1000 Spectrophotometer (Thermo-Fisher 

Scientific) and stored at -80 °C.  
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2.5  Crude Genomic DNA Lysate Production 

 Crude genomic DNA (gDNA) lysates were generated for use as template in 

pyrosequencing assays (Chapter 3), allele-specific PCR (Chapter 5) and the 

relative quantification of Tci-pgp-9 using real time PCR (Chapter 6). Individual L3 

were transferred into each well of a 96-well plate (Axygen) containing 10 µl of a 

3 % solution of recombinant PCR grade proteinase K (Roche) in PCRDirect lysis 

reagent (Tail) (Viagen Biotech). The L3 were lysed by incubating at 55 °C for 16 

hours, followed by incubation at 90 °C for 1 hour to denature the proteinase K 

and stored at -80 °C.  

 

2.6  Agarose Gel Electrophoresis, DNA Gel Extraction and Quantification  

 Amplified products from successful PCR reactions were visualised using 

agarose gel electrophoresis and exposure of gels to ultra-violet light. One 

percent molecular grade agarose (Bioline) was added to 1X Tris-acetate-EDTA 

(TAE) buffer (pH 8.0), containing 40 mM Tris base, 20 mM acetic acid, and 1 mM 

Ethylenediaminetetraacetic acid (EDTA). The fluorescent nucleic acid gel stain, 

GelRed™ (Biotium) was added to the gel as a DNA intercalator to allow its 

visualisation using an AlphaImager®2200 (Alpha Innotech) ultraviolet 

transilluminator and imager. DNA was purified either directly from the PCR 

product using a Wizard® SV Gel and PCR Clean-Up System (Promega), or 

extracted from the agarose gel using a QIAquick® Gel Extraction Kit (QIAgen) - 

following the manufacturer’s instructions each time. The concentration of 

purified DNA was determined using a NanoDrop® ND-1000 Spectrophotometer 

(Thermo-Fisher Scientific) and stored at -80 °C. 

 

 

 

 

 

 



40 
 
2.7  DNA Sequencing Procedure 

Two different cloning systems were used; chemically competent E. coli 

cells were used in work conducted at Moredun Research Institute (UK), and 

electro-competent cells were used in work conducted at Hopkirk Research 

Institute (NZ). 

 

2.7.1  UK-based Cloning and Sequencing 

 Successfully amplified products were ligated into pGEM®-T Easy Vector 

(Promega) following the manufacturer’s protocol. The vector was transformed 

into chemically competent E. coli JM109 High Efficiency Competent Cells 

(Promega) as per the manufacturer’s protocol. To obtain the maximal 

transformation efficiency of E. coli, 950 µl of super optimal broth with 

catabolite repression (SOC) medium (Invitrogen) at room temperature was added 

(Hanahan, 1983). The transformed E. coli were incubated at 37 °C for 2 hours in 

a ThermoForma Orbital Shaker at 200 rpm. Transformed E. coli were spread on 

lysogeny broth (LB) -agar plates supplemented with 0.08 mg/ml X-Gal (5-bromo-

4-4chloro-3-indolyl-β-D-galactopyranoside, Promega), 0.1 mg/ml Ampicillin and 

0.5 nM IPTG, and incubated at 37 °C overnight. X-Gal and IPTG were used to 

blue-white screen for successful recombinants which possess a functional lacZ 

gene as part of the transformed pGEM®-T vector plasmid. PCR checks were 

conducted on selected colonies to confirm the presence of original PCR product 

in the plasmid. Successful recombinants were grown as overnight cultures in LB 

growth medium supplemented with 0.1 mg/ml Ampicillin at 37 °C. The plasmids 

were purified from the E. coli culture using a QIAprep Miniprep Spin Kit 

(QIAgen), following the manufacturer’s instructions. The concentration of 

plasmid DNA was determined by spectrophotometry using a NanoDrop® ND-1000 

Spectrophotometer (Thermo-Fisher Scientific). DNA sequencing was outsourced 

commercially to Eurofins/MWG/Operon, and the resulting sequences were 

analysed using Lasergene® 10 (DNASTAR Inc.) bioinformatics software.  
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2.7.2  NZ-based Cloning and Sequencing 

Amplified PCR products that were selected for sequencing were cloned 

into pCR™4-TOPO® TA vector (Invitrogen) by adding 1 µl of PCR product to a 

ligation reaction of 0.6 µl PCR-grade water, 0.4 µl dilute salt solution (1:4 

dilution of saline solution supplied with the kit) and 0.4 µl pCR™4-TOPO® TA 

vector (Invitrogen), followed by incubation at room temperature for 5 minutes. 

Electroporation cuvettes (0.1 cm) were chilled on ice and SOC medium was 

equilibrated to room temperature. Electro-competent Transform One-Shot® 

TOP10 cells (Invitrogen) were thawed on ice and diluted 1:4 with sterile PCR 

grade water. To each ligation reaction, 45 µl of electro-competent cells was 

added and then transferred immediately to the electroporation cuvette and 

stored on ice until electroporation. Electroporation was conducted using a Bio-

Rad Gene Pulser system set to low range 200, high range 500, capacitance 25, 

and voltage 1.5 kV. Immediately after electroporation, 200 µl of SOC medium 

was added to the cuvette followed by incubation at 37 °C for 1 hour with 

occasional mixing. Transformed cells (50 µl) were spread on LB-agar plates 

supplemented with 0.05 mg/ml kanamycin and incubated overnight at 37 °C. 

Colony PCR checks were conducted to confirm the presence of inserted PCR 

products of the appropriate size in the plasmids. Selected recombinants were 

amplified as overnight cultures of LB growth medium supplemented with 0.05 

mg/ml kanamycin at 37 °C. The plasmids were purified from the bacterial 

culture using a QIAprep Miniprep Spin Kit (QIAgen), following the manufacturer’s 

instructions. The concentration of plasmid DNA was quantified by 

spectrophotometry using a NanoDrop® ND-1000 Spectrophotometer (Thermo-

Fisher Scientific). DNA sequencing was sourced externally with Massey Genome 

Service (Massey University, Palmerston North, New Zealand) and sequences were 

analysed using Lasergene® 10 (DNASTAR Inc.) bioinformatics software. 
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Chapter 3 

Genetic comparisons of Tci-pgp-9 in UK isolates of T. circumcincta 

3.1  Introduction 

 A complete genome is a valuable resource for defining genetic 

mechanisms involved in drug resistance as well as genes implicated in host-

parasite interactions. A concerted effort has been made to generate the 

complete genomes of species found throughout the five clades of the Phylum 

Nematoda, however, few have been completed to date. Clade V nematodes, 

Caenorhabditis elegans (The C. elegans Sequencing Consortium, 1998) and C. 

briggsae (Stein et al., 2003), and Meloidogyne hapla (Opperman et al., 2008) 

from Clade IV, have completed genomes. Draft genomes have been submitted 

for members of the other clades, such as Clade III parasitic nematodes Ascaris 

suum (Jex et al., 2011) and Brugia malayi (Ghedin et al., 2007), and the Clade I 

roundworm, Trichinella spiralis (Mitreva et al., 2011). Gastrointestinal 

nematode parasites of livestock belonging to Clade V, including T. circumcincta, 

Ostertagia ostertagi, Cooperia onchophora, and Nematodirus battus have been 

selected for genome sequencing by the Genome Institute at Washington 

University. Recently, drafts of the Haemonchus contortus genome and 

transcriptome have been published, which represent the first genome to be 

published for a strongylid nematode (Laing et al., 2013; Schwartz et al., 2013). 

 Genetic comparisons are difficult in the context of understanding 

anthelmintic resistance, mainly due to the absence of a completed T. 

circumcincta genome. There are only minimal datasets such as the nematode 

transcriptome resource - NEMBASE4 (Elsworth et al., 2011), which forms a 

database of expressed sequence tags and partial sequences, many of which 

remain to be annotated. Focus has thus shifted to specific candidate genes that 

have been associated with a drug resistance phenotype. Helminth parasites are 

thought to avoid the action of anthelmintics in a number of ways: alteration of 

the drug target; decreasing drug metabolism; changing the distribution of the 

drug by decreasing membrane permeability; or by amplifying the target genes to 

overcome the drug action, or indeed a combination of any/all of the above 

mechanisms (Wolstenholme et al., 2004). 
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In T. circumcincta, β-tubulin, acetylcholine receptors and glutamate-

gated chloride channels have been shown to be the main targets for BZ, LEV and 

IVM, respectively. Xenobiotic efflux pumps, specifically Pgps, have been 

suggested as the mechanism by which parasites may resist the detrimental 

effects of multiple anthelmintic classes (Kerboeuf et al., 1999; Prichard, 1999). 

Recent studies focusing on Pgps from T. circumcincta yielded partial sequences 

of multiple Pgp genes (Dicker et al., 2011b), as well as showing an increased 

expression of specific Pgp genes in a multiple-resistant isolate of T. 

circumcincta. Further supporting the theory that Pgps are implicated in 

anthelmintic resistance are the studies into Pgp expression in H. contortus (Xu 

et al., 1998; Williamson et al., 2011), C. oncophora (De Graef et al., 2013) and 

C. elegans (James & Davey, 2009) and the observed enhanced efflux of the BZ 

derivative, triclabendazole, by Pgps in the trematode, Fasciola hepatica 

(Wilkinson et al., 2012). Interestingly, a specific Pgp in T. circumcincta has been 

highlighted by two independent groups as having a putative role in IVM 

resistance in this parasite. An increase in Tci-pgp-9 copy number was observed 

when comparing a resistant NZ isolate with its susceptible counterpart (Bisset, 

2007) and increased expression of Tci-pgp-9 was observed in an anthelmintic 

resistant UK isolate, MTci5, when compared to an unrelated anthelmintic 

susceptible UK isolate, MTci2 (Dicker, et al., 2011b). As part of the Bisset (2007) 

study, the only available full-length coding sequence of Tci-pgp-9, to date, was 

initially predicted from gDNA sequence derived from two lambda clones 

obtained by screening a genomic library from an Australian strain of T. 

circumcincta, whose anthelmintic resistance status was unknown. The Tci-pgp-9 

cDNA sequence was later confirmed by cDNA sequence generated from the 

inbred susceptible and back-crossed resistant, near-isogenic strains of T. 

circumcincta from NZ (described in Chapter 1.4.2). Three non-synonymous 

SNPs/amino acid substitutions were identified from cDNA clones representing N-

terminal and C-terminal transmembrane domains amplified from pools from the 

inbred susceptible and multiple resistant near-isogenic strains. A fourth non-

synonymous SNP was identified in the near-isogenic strains after haplotype 

sequence analyses focused on the second internucleotide binding domain of Tci-

pgp-9 (Bisset, 2007). 
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Non-synonymous SNPs are changes in the nucleotide sequence that, when 

translated into amino acid sequence and ultimately protein, alter the encoded 

residue and thus may change the tertiary structure of the protein molecule in 

question. Depending on their location in the gene, non-synonymous SNPs may 

alter a drug binding site directly, reducing that drug’s binding affinity. 

Synonymous SNPs are “silent” mutations in the coding sequence that do not alter 

the encoded residue. As a result codons used frequently may be changed to rarer 

codons, possibly influencing the timing of co-translational folding and insertion 

of the Pgp molecule into the appropriate membrane (Kimchi-Sarfaty et al., 

2007). Therefore, silent SNPs may play a role in altering the drug binding site of 

the Pgp molecule through changes in protein folding and tertiary structure, 

without any change in the actual amino acid sequence. 

In the field, the detection of anthelmintic resistance relies heavily upon 

the FECRT. There is considerable variation when interpreting the outcomes of 

the FECRT with the possibility of a test returning a false-positive (Miller et al., 

2006). Generally, the FECRT has been considered a diagnostic technique with 

low sensitivity, unable to detect levels of resistance below ~25 % (Martin et al., 

1989). A molecular test would provide greater sensitivity, although the 

identification of polymorphisms that have a potential use as diagnostic markers 

of anthelmintic resistance in parasitic nematodes remains elusive, with one 

notable exception. Currently, a genetic test is available that identifies key 

mutations in the β-tubulin isotype-1 gene that are strongly linked to BZ-

resistance in veterinary nematodes (von Samson-Himmelstjerna et al., 2007). 

The phenylalanine (F) to tyrosine (Y) substitution at residue 200 (F200Y) was 

initially proposed as a marker for BZ-resistance (Kwa et al., 1994) and later, 

similar substitutions were observed at residue 167, F167Y (Silvestre & Cabaret, 

2002) and glutamic acid (E) to alanine (A) substitution at residue 198, E198A 

(Ghisi et al., 2007). Originally identified in H. contortus, these genetic markers 

for BZ-resistance have also been identified in other trichostrongylid species, 

including T. circumcincta (Elard et al., 1996), Trichostrongylus colubriformis 

(Grant & Mascord, 1996) and C. onchophora (Njue & Prichard, 2003) and, most 

recently, Nematodirus battus (A. Morrison, Pers. Comm.). To date, no robust 

markers have been identified for the imidazothiazoles or ML classes of 

anthelmintic. 
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The aim of this Chapter was to identify any polymorphisms by comparing 

the anthelmintic susceptible (MTci2) and resistant (MTci5) isolates, and generate 

the full-length cDNA sequence of the Tci-pgp-9 gene. The Tci-pgp-9 sequences 

generated from UK isolates were compared to Tci-pgp-9 cDNA sequences 

generated from NZ isolates. 

 

3.2  Materials and Methods  

3.2.1  Sequence Differences Identified by Chromatogram Comparisons 

 Comparisons of cDNA sequences from pools of larvae were conducted to 

gain insight into the different genotypes likely to be present in each of the MTci2 

and MTci5 strains. Four regions of the Tci-pgp-9 gene were focused upon, these 

related to four amino acid substitutions, N79S, T86S, N1043D and E1097Q,  

identified during comparisons of the New Zealand susceptible and resistant near-

isogenic strains in the Bisset (2007) study. First-strand cDNA was synthesised by 

reverse transcription from the RNA extracted from pools of larvae (described in 

Section 2.4) using the following method. Initially, a mixture was prepared 

containing 5 µg of RNA, 1 µM oligo(dT)20 primer (Invitrogen), 0.2 µM dNTP mix 

(0.2 µM each) (Invitrogen), and made to 13 µl with Ultrapure™ DNAse/RNAse-

Free Distilled Water (Gibco®), before being incubated at 65 °C for five minutes 

and then transferred to an ice bath for a further minute. To this mix, using the 

components of the SuperScript® III Reverse Transcriptase kit (Invitrogen), 4 µl of 

5X First-Strand Buffer, 2 µM DTT, 40 units of RNaseOUT™ Recombinant RNase 

Inhibitor (Invitrogen) and 200 units of SuperScript™ III reverse transcriptase were 

added. Reverse transcription was carried out by incubating the mixture at 50 °C 

for 45 minutes and 70 °C for 15 minutes, and the resulting first-strand cDNA was 

stored at -20 °C. Fragments of Tci-pgp-9 cDNA, that included the proposed 

locations of the four SNPs (Bisset, 2007), were amplified and the PCR product 

was purified (described in Section 2.6) and sequenced. Sequence generated from 

the MTci2 larvae was compared with sequences generated from MTci5 larvae. 

Automated DNA sequencers generate a four-colour electropherogram, commonly 

known as a chromatogram, where each colour represents an individual 

nucleotide: adenine (A) - green, thymine (T) - red, cytosine (C) - blue and 

guanosine (G) - black. The chromatograms from different sequencing runs can be 
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directly compared using the simple, web-based Sequence Difference of 

Chromatograms (SeqDoC) program, available at: 

http://research.imb.uq.edu.au/seqdoc/ (BioMed Central Ltd.). The SeqDoC 

program produces a difference profile graph by subtracting the differences 

between a reference and test sequence, allowing the rapid identification of 

SNPs, deletions/insertions and point mutations (Crowe, 2005). The difference 

profile is calculated by normalising the amplitude of the chromatogram peaks, in 

both the reference and test sequences and automatically aligning them. The test 

trace values are subtracted from the reference trace, resulting in a difference 

trace with bidirectional peaks highlighting the base changes between the 

sequences. The SeqDoC program was used to detect variations present in the 

generated sequences which may have been missed by base-calling analysis in the 

DNASTAR Lasergene® 10 bioinformatics suite.  

 

3.2.2  SNP Quantification Using Pyrosequencing 

 The frequency of suspected SNPs around the E1097Q amino acid 

substitution, highlighted in the SeqDoC analysis, were determined in the MTci2, 

MTci5 and MTci5PT populations of T. circumcincta using pyrosequencing. 

Pyrosequencing is a ‘sequencing-by-synthesis’ method which is based on the 

detection of released pyrophosphate (PPi) during nucleotide incorporation by 

DNA polymerase (Ronaghi, 2001). Adenosine-triphosphate (ATP) sulfurylase 

coverts the PPi, released during a nucleic acid polymerisation reaction, to ATP in 

the presence of adenosine phosphosulphate. The ATP produced provides energy 

to luciferase which oxidises luciferin to oxyluciferin, a reaction that releases 

light. Ronaghi (2001) states that the overall reaction, from polymerisation to 

light detection, takes place within 3-4 s at room temperature. The light 

generated is proportional to the quantity of ATP produced which is dependent on 

the amount of PPi released, which, in turn, is equimolar to the amount of 

nucleotide incorporated. Therefore, the light emitted is proportional to the 

amount of incorporated nucleotide. The nucleotides are added individually, with 

unincorporated nucleotides and ATP being degraded by an apyrase enzyme 

before the addition of the next nucleotide. Sequential addition of nucleotides 

http://research.imb.uq.edu.au/seqdoc/
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and the resultant light signals generated allowed the determination of the 

template sequence.  

 Eighty-four crude larval lysates (generated using the method described in 

Chapter 2.5) from individuals belonging to each of the MTci2, MTci5 and MTci5PT 

populations of T. circumcincta, respectively, were used as template gDNA. Due 

to low concentrations of gDNA extracted from individual L3, an initial 

amplification step was required before the pyrosequencing PCR products could 

be generated. The sense primer, GAAGATCACAGGAGCCGTCAAG [FTcP13], was 

paired with the antisense primer, ATGGCGATCCGTTGTTTCTG [FTcP14] to 

produce a 1203 bp product that contained both introns and exons that flanked 

the E1097Q polymorphism identified in the SeqDoC analysis (Figure 3.3). The PCR 

mastermix for each reaction included 0.5 units of Platinum Taq Polymerase, 1 µl 

10X Taq buffer, 2.5 mM MgCl2, dNTPs (4 µM each) (all Invitrogen), 1 µM each 

primer and 1 µl template (crude lysate). End-point PCR was performed using the 

following program: 94 °C for 8 min to denature template and to activate the Taq 

enzyme, followed by 35 three-step (denaturing, annealing and extension steps) 

cycles of 94 °C for 10 sec, 50 °C for 20 sec and 68 °C for 40 sec, followed by a 

final elongation step of 68 °C for 7 minutes. Successful PCR products of 1203 bp 

were diluted 1:10 and used as the template in a nested-PCR using the sense 

primer, CGCTCGCGTCTCTTTATGATC [Pyro F2] with the biotinylated antisense 

primer, GCGGATGGATCTGTCGAAA [PyroBiotin 2], which were designed using the 

Pyrosequencing™ Assay Design Software Version 1.0 (Biotage). The biotinylated 

primer was included to facilitate conjugation of the nested-PCR product to 

streptavidin-coated sepharose beads later in the DNA purification process. The 

nested-PCR product was generated using NovaTaq™ Hot Start Mastermix kit 

(Novagen®) and each 50 µl reaction contained 25 µl of 2X NovaTaq™ Hot Start 

Mastermix (which included DNA polymerase and dNTPs), 0.4 mM Pyro F2 primer, 

0.185 mM PyroBiotin 2 primer, 1.5 mM MgCl2, and made to 50 µl with Ultrapure™ 

DNAse/RNAse-Free Distilled Water (Gibco®). The thermocycling program used 

was: 10 minutes initial denaturation at 94 °C, 40 three-step cycles of denaturing 

at 94 °C for 60 s, primer annealing at 52.5 °C for 30 s and an extension phase of 

72 °C for 30 s. A final extension step at 72 °C for 5 minutes followed, with a 

final hold at 4 °C. The successful amplification of the nested-PCR products was 

confirmed by agarose gel electrophoresis, as described in Chapter 2.6, before 
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continuing with the pyrosequencing assay. PyroMark™ Binding Buffer (Qiagen) 

was used to conjugate the biotin-labelled PCR products to streptavidin beads 

and using the PyroMark™ Vacuum Prep Workstation (Qiagen) the products were 

washed using PyroMark™ Washing Buffer (Qiagen) to remove the remaining 

components of the PCR reaction. Added to each well of a PyroMark™ Q96 Plate 

Low (Qiagen) was 38.4 µl PyroMark™ Annealing Buffer (Qiagen), 1.6 µl PyroMark™ 

Sequencing Buffer (Qiagen) and 0.4 µM sequencing primer: TGGCAATGATCTACGC 

[Pyro S2]. The sequencing primer was required for SNP identification mode 

(Biotage PyroMark™ ID) and was located immediately before the SNP analysis 

region. The purified single-stranded DNA was transferred to this plate after 

removal from the streptavidin beads by alkali denaturation with PyroMark™ 

Denaturing Solution (Qiagen). The PyroMark™ Q96 Plate Low 96-well plate was 

incubated at 80 °C for 2 minutes to allow annealing of the sequencing primer, 

then cooled to room temperature for 5 minutes before transferring to the 

Biotage PyroMark™ ID. SNP identification mode was used to test for 

polymorphisms present in the target sequence (Figure 3.1) and was carried out 

on each of the MTci2, MTci5 and MTci5PT isolates.  
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14041         FTcP13              

GAACCGCGAA TTGATGGCAT GACCAGCAAT GGCAAGAAAC CGAAGATCAC AGGAGCCGTC    14100 

             

AAGCTGAATA AAGTCTACTT CAAATATCCA GAAAGACCGG ATGTACCCAT ACTCCAGGGA    14160 

             

ATGGATGTTG ATGTAAGTGA AGCACTACAG ATATCACAGA ACTTATCAGT TGTTGTCCTT    14220 

             

CCATCAATGA TATGTCTTGG GACCATTGAG AAGGTCGATT CATGGTCACT TTTCAGGTCA    14280 

             

AGCCTGGCGA AACTCTAGCG CTGGTTGGGC CTAGTGGTTG TGGAAAGTCA ACAGTGATAT    14340 

         

CGTTACTTGA ACGGCTTTAC GATGCCTTGG ACGGTTCTGT GGTAAGTTAC TCGGATACTG    14400 

          

ACGTTATTTT ATATCCATGT ACGGCACTAC TTTTTTATTT AGAACTTATG CTATTACTTA    14460 

          

CTTATTTGAA CTATTTAATC TGGTAATTTA TTCACAAACT TGAAGGGGCG AAAATCCCCT    14520 

         

TTCCACTAAA ANACGATGCA CAGAAATTGT AAGTGTAGGT TAGTACATGG GCATTGTGCC    14580 

         

AGCCAAAACT GGGCATTTCT GAAAAACATT TTGGGAAGAA GAATAAATTT ATTCTCTCGC    14640 

         

CGTTATTCAC GCAATGGCCT TTCTGGAGAT GGAAAGGTGT TAAGNNGTGT CAGGTCCAAA    14700 

        Pyro F2      

AAAGTCATGA AAAAGCCGCA GCGCGTCCGC TCGCGTCTCT TTATGATCAT CTCAAGCACC    14760 

         

ACTTCCAGCT ATCAAGAGGA GTGAATTCTT TCAGCTGCTC AATGAGGAAC CCATAATACT    14820 

         

ATGAAAACCG CTTTCGGAGA ATTATCGTAT ATGTTTTAAA TTATTGTTTT TATAGTTATT    14880 

         

GTTGTTATTT GCATACTGTA AACTATTTAT TGCACACACC TTATATAACG TTTATAGGAA    14940 

     Pyro S2        ▼    ▼  ▼   ▼     

GTTGATGGCA ATGATCTACG CCAAGTGAAT CCCACTCATC TACGTGCCCA TATAGCTTTG    15000 

    Codons  1097..................1102      

   

GTATCGCAAG AGCCGATTCT TTTCGACAGA TCCATCCGCG ACAACATCCT CTACGGTCTT    15060 

                PyroBiotin 2       

CCACCAGGTT CCGTTAGTGA TGCACAAGTG CACGAAGTCG CTCAACGTGC CAACATTCAC    15120 

         

AGCTTCATCA TAGGCCTGCC TGATGTGAGT TCAGTTCCAC GAGCAGGGCA TTTGCGCCAA    15180 

         

ACATTATCGT TTGACGGCTG CATATTTAAC AATTTAGGGA TATAACACGC GTGCAGGAGA    15240 

            

AAAAGGGGCG CAGCTGTCTG GGGGGCAGAA ACAACGGATC GCCATCGCAC GTGCACTTGT    15300 

           FTcP14    

 

 

Figure 3.1  Pyrosequencing Target Sequence 

A fragment of MTci2 gDNA sequence was amplified, using FTcP13 and FTcP14 primers 
(underlined). The fragment is located between 14082 bp and 15295 bp in the Tci-pgp-9 
gDNA sequence (Bisset, 2007). This fragment contained both introns (shaded) and exons. 
An additional PCR product was amplified using the nested primers Pyro F2 and 
PyroBiotin 2 (underlined). The nested-PCR product included the target sequence for the 
pyrosequencing assay (highlighted in red) immediately following the sequencing primer 
(Pyro S2). The four SNPs (arrows) tested were located in codons 1097, 1098, 1099 and 
1100 of the Tci-pgp-9 amino acid sequence.   
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3.2.3  Generation of Full-Length Tci-pgp-9 cDNA Sequence  

 The first step in identifying polymorphisms within the Tci-pgp-9 gene was 

to generate and compare the full-length cDNA sequence from anthelmintic 

susceptible and resistant UK field isolates, MTci2 and MTci5, respectively. 

Initially, the regions flanking the initiation (ATG) and termination (TGA) codons - 

the 5’ untranslated region (UTR) and the 3’ UTR, were targeted for primer 

design. The spliced leader (SL) sequence, found in most nematodes (Bektesh, 

1988; Blaxter & Liu, 1996; Redmond & Knox, 2001), was utilised to amplify the 

5’ UTR of Tci-pgp-9, upstream from the initiation codon. The SL1 sequence, first 

identified in C. elegans by Krause & Hirsch (1987), was used:  

5’ GGTTTAATTACCCAAGTTTGAG 3’ [Cel SL1]. To enable DNA sequencing 

downstream of the termination codon, a 3’ Rapid Amplification of cDNA Ends 

(RACE) strategy was adopted. This method utilises the naturally occurring 

polyadenylated tail found in mRNA as a generic priming site for an adapter 

primer. The adapter primer comprises a defined sequence at its 5’ end and a 

(dT)18 3’ tail: 5’ ACTTCGTTCTCCATTAGCGCG(T)18 3’ [3’RACE dT]. The adapter 

primer (underlined in the 3’RACE dT primer sequence above) is incorporated at 

the 3’ end of the gene during first strand cDNA synthesis, and provides a binding 

site for an adapter-specific nested primer, 5’ ACTTCGTTCTCCATTAGCGCG 3’ 

[3’RACE]. First-strand cDNA synthesis was conducted using the SuperScript™ III 

First-Strand Synthesis System for RT-PCR (Invitrogen) following the 

manufacturer’s protocol, replacing the Oligo(dT)20 primer with the 3’RACE dT 

primer in the reaction mix. The Cel SL1 and 3’RACE primers were paired with 

primers designed within conserved regions of the Tci-pgp-9 cDNA sequences, 

kindly supplied by Stewart Bisset (AgResearch, Hopkirk Institute, NZ). Using this 

strategy, the 5’ and 3’ UTR sequences were obtained for the UK isolates, and 

allowed the design of primers within these regions to obtain the full-length Tci-

pgp-9 coding sequence.  

 Primer pairs were designed in the 5’ and 3’ UTR sequences to ensure 

amplification of full-length transcripts: 5’ ATGGGCTTCCTAAAGAAGAACGGGA 3’ 

[FTcP36] and 5’ AASATCGTAGGGGTGAGCTCA 3’ [FTcP35] for the MTci2 isolate, 

and for the MTci5 isolate, 5’ GTTTGAGGTAATATGGGCTTCCT 3’ [FTcP24] and 

5’ CGTATGGAASATCGTAGGGGTGA 3’ [FTcP38]. The primer annealing positions 

are shown in Figure 3.2. The FTcP24/FTcP38 and FTcP36/FTcP35 primer pairings 
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were selected due to their superior amplification of the full-length Tci-pgp-9 

gene compared to other primer combinations that were tested. 

 

 

 

 

Figure 3.2  Full-length Transcript Primers 

Schematic showing the positions of primers used to amplify the full-length Tci-pgp-9 
from MTci2 (primer pair FTcP36 + FTcP35) and MTci5 (primer pair FTcP24 + FTcP38), 
respectively. The initiation (ATG) and termination (TGA) codons are annotated with an 
asterisk and the 5’ and 3’ UTRs are underlined and in bold. The SL1 sequence is shown 
italicised and is found immediately upstream of the 5’UTR.  

 

The coding sequence of the Tci-pgp-9 gene forms a large transcript of 

~3.8 kb. To ensure accurate sequence data had been generated, the full-length 

transcript was amplified in its entirety using Platinum® Taq DNA Polymerase High 

Fidelity (Invitrogen). This enzyme mixture was selected because it is composed 

of recombinant Taq DNA polymerase, Pyrococcus species GB-D polymerase and 

Platinum Taq antibody (Innis, 1988; Barnes, 1994). By adding Pyrococcus GB-D 

polymerase to regular Taq Polymerase, an approximately 6-fold increase in 

fidelity is observed. This is thanks to the proofreading ability of the Pyrococcus 

GB-D polymerase through the 3’ to 5’ exonuclease activity (Tindall, 1988). 

The RACE-adapted first-strand cDNA, synthesised from RNA extracted 

from pools of L3 for each of the MTci2 and MTci5 isolates (described in Section 

2.4), was used as the template DNA in the following 50 µl mastermix: 5 µl of 10X 

High Fidelity PCR Buffer, 0.2 µM of each deoxyribonucleotide triphosphate 

(dNTP), 2 mM MgSO4, 1 unit of Platinum® Taq High Fidelity, 1 µl Template DNA, 

and made to 50 µl with Ultrapure™ DNAse/RNAse-Free Distilled Water (Gibco®). 

The thermocycling program followed for amplification of full-length transcripts 

was: 2 minutes initial denaturation at 94 °C, 35 three-step cycles of denaturing 

at 94 °C for 30 s, primer annealing at 55 °C for 30 s and an extension phase of 

68 °C for 4 minutes. A final extension step at 68 °C for 5 minutes followed, and 
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a final hold at 4 °C. Successful PCR reactions were confirmed by agarose gel 

electrophoresis and the DNA was purified as described in Section 2.6. Full-length 

amplicons were ligated into pGEM®-T Easy Vector (Promega) as described in 

Chapter 2.7.1 and transfected into chemically competent JM109 E. coli. Clonal 

amplification of the plasmids was conducted, cDNA purified and DNA sequence 

obtained. Initially the PCR products were sequenced with SP6 and T7 primers 

which anneal to sites located in the plasmid vector, flanking the inserted 

sequence. After confirmation of successful ligation of the full-length Tci-pgp-9 

transcript into the plasmid, the purified cDNA was used for further rounds of 

sequencing. 

The design of sequencing primers was based on the consensus sequence of 

multiple contiguous DNA sequencing alignments of the Tci-pgp-9 gene, 

generated from pools of both the MTci2 and the MTci5 isolates. On average, the 

length of high quality sequence generated was ~500 bp, therefore, primers were 

designed successively at 500 bp intervals along the full-length Tci-pgp-9 gene, in 

both the sense and antisense directions (Figure 3.3). The primer sequences used 

and the intended annealing orientations are shown in Table 3.1. Three clones 

possessing the full-length Tci-pgp-9 products, from each of the MTci2 and MTci5 

isolates, were sequenced in both the sense and antisense directions. Sequencing 

results were assembled and analysed using DNASTAR Lasergene® 10 

bioinformatics software. Comparisons between sequencing results from each 

isolate were conducted using the multiple sequence alignment program 

ClustalW2, available online at the European Bioinformatics Institute 

(www.ebi.ac.uk/Tools/msa/clustalw2). The Tci-pgp-9 sequences from the UK 

isolates were compared to the full-length cDNA sequence generated from the NZ 

stains, due to the unavailability of a UK reference sequence. Polymorphisms 

present in these geographically diverse isolates were compared to identify any 

shared SNPs.  

 

 

 

 

http://www.ebi.ac.uk/Tools/msa/clustalw2
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Figure 3.3  Full-Length Tci-pgp-9 Sequencing Primers 

Schematic showing the approximate locations of primers used to sequence Tci-pgp-9. 
Primers were located at ~500 bp intervals, SP6 and T7 primers were also used at the 5’ 
and 3’ ends of the sequence.  

 

 

Table 3.1  Full-Length Tci-pgp-9 Sequencing Primers 

Primers positioned at ~500 bp intervals in both the sense (S) and antisense (A) 
directions, ensuring complete coverage of the Tci-pgp-9 gene.  

 

Primer 
Name 

Primer Sequence 
Sense (S) or 
Antisense (A) 

FTcP39 5’ GCCCTTATGATCCAATTCGTGGCGCA 3’ S 

FTcP31 5’ GTATTCTTCTCCGTGATGATGGG 3’ S 

FTcP21 5’ TTGGTGACCGAGGAACCCAGATG 3’ S 

FTcP40 5’ CGACTGAAGAAAGAACTCGAAGAAGAAGG 3’ S 

FTcP3 5’ GTCAAGTCGGCTCTCGA 3’ S 

FTcP13 5’ GAAGATCACAGGAGCCGTCAAG 3’ S 

FTcP6 5’ TGGGGGCAGAAACAACGGATCGCCATC 3’ S 

FTcP8 5’ GAAACCGCCGAAAAACTGC 3’ A 

FTcP44 5’ GCCATAGAACCCATCATCACGGAGAA 3’ A 

FTcP26 5’ TGCTGAACAATATGTTCACTTTCG 3’ A 

FTcP43 5’ CCTTCTTCTTCGAGTTCTTTCTTCAGTCG 3’ A 

FTcP42 5’ CGACACCACTGCAGACGGAGAC 3’ A 

FTcP41 5’ GAGCATATGGAAGATAAGACCGGCAGC 3’ A 

FTcP14 5’ ATGGCGATCCGTTGTTTCTG 3’ A 
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3.3  Results 

3.3.1  Comparisons of Sequence Chromatograms  

Sequencing chromatograms for Tci-pgp-9 in the MTci2 and MTci5 isolates 

were compared and analysed using the SeqDoC program. The difference profiles 

were checked at the locations of the four amino acid substitutions identified in 

the NZ isolates of T. circumcincta at residues N79S, T86S, N1043D and E1097Q. 

The difference profiles of the N79S, T86S, and N1043D SNPs were flat, indicating 

no difference in the chromatograms from the MTci2 and MTci5 isolates. The final 

SNP found at E1097Q showed a double peak in the MTci2 chromatogram and a 

single peak in the MTci5 chromatogram, resulting in a peak on the difference 

profile (Figure 3.4). This result suggested that both cytosine and guanine had 

been identified at this position, although the base-calling software identified 

this base as cytosine which was the higher of the peaks at this position. When 

cytosine is incorporated at this position, the codon, CAA, is translated into 

glutamine (Q). Incorporating a guanine at this point changes the residue to 

glutamic acid (E) with a codon of GAA.  

 



55 
 

 

Figure 3.4  SeqDoC Analysis of E1097Q SNP in UK Isolates of T. circumcincta 

The difference profile generated by comparison of the MTci2 and MTci5 Tci-pgp-9 
sequences. The codon of interest, highlighted by orange box, was CAA encoding 
glutamine (Q) and GAA encoding glutamic acid (E). At residue 1097, Q was associated 
with a particular set of haplotypes which appeared to be strongly selected for by drench 
screening in the NZ-R near-isogenic strain. In the MTci2 isolate, the first base of the 
codon appears to be either cytosine or guanine whereas in the MTci5 isolate it is 
predominantly cytosine at this position. This is shown by the double peak in the MTci2 
profile (top profile) and the single peak in the MTci5 profile (bottom profile) and 
highlighted as a bidirectional peak in the difference profile (central profile).  
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3.3.2  Quantifying SNP Frequency 

Previously, Bisset (2007) showed that a Q at residue 1097 was associated 

with a particular set of haplotypes that appeared to be strongly selected for by 

drench screening in the NZ-R near-isogenic strain. Therefore, the E1097Q SNP 

was targeted during the pyrosequencing assay. Evidence from the SeqDoC 

analysis (Figure 3.4) indicated that polymorphism at this codon was present 

within pools of each UK isolate. The initial step was to amplify a 1203 bp 

fragment of Tci-pgp-9 gDNA, which used the template gDNA for a nested-PCR 

reaction. The nested-PCR product (312 bp) was then used as the template for 

the pyrosequencing assays (shown in Figure 3.1). The potential polymorphisms 

shown in the SeqDoC analysis (Figure 3.4) were targeted and included: a 

transversion mutation of CG in the first base of codon 1097, and three 

transition mutations in the third base of codons 1098 (GA), 1099 (TC) and 

1100 (CT). The transversion mutation in codon 1097 translates to a change in 

the amino acid encoded, either glutamic acid (CAA) or glutamate (GAA). The 

transition mutations result in silent mutations and do not change the residue 

encoded by the codon. 

 The pyrosequencing assay generated 18 bp of de novo DNA sequence for 

84 individual larvae from the MTci2, MTci5 and MTci5PT isolates of T. 

circumcincta. No further evidence of an E1097Q SNP was obtained from the 

results of the pyrosequencing assay, although it has since become apparent that 

this may have been due to an issue with the design of primers used for this work 

(see Discussion).   
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3.3.3  Generation of Full-Length Tci-pgp-9 cDNA Sequence  

 The full-length Tci-pgp-9 cDNA sequence was successfully amplified from 

pools of L3 using primer pairs FTcP36 + FTcP35 for the MTci2 isolate and FTcP24 

+ FTcP38 for the MTci5 isolate (products are shown in Figure 3.5). The product 

was cloned into pGEM®-T Easy Vector (Promega), in triplicate, and DNA 

sequencing of the Tci-pgp-9 gene was conducted on purified plasmid cDNA for 

both the MTci2 and MTci5 isolates. Each clone was sequenced in the sense and 

antisense directions, thus ensuring the consensus for each isolate was derived 

from a minimal coverage of six sequences. The DNA sequencing data were 

assembled to form a contiguous sequence for each UK field isolate and 

comparisons of the Tci-pgp-9 gene sequence from each isolate were conducted. 

Common motifs shared by members of the ABC-transporter superfamily (Table 

3.2) were identified by comparing with ABC-transporter sequence motifs 

characterised in Brugia malayi (Ardelli et al., 2010) and annotated in the 

contiguous sequences (Figure 3.6), thus verifying that the sequenced transcript 

was that of a P-glycoprotein.  

 

 

Figure 3.5  Full-length Tci-pgp-9 cDNA PCR Products 

Full-length Tci-pgp-9 PCR products, approximately 3.8 kb, are shown on a 1 % agarose 

gel. The products are amplified from pools of L3 from the MTci2 and MTci5 isolates of T. 

circumcincta.  
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                                (1) 

MTci2 MGFLKKNGKVADSKGQEDSQIEEEKKEVVPKASIGQLFRYTTTFDKVLLLIGSVVAIGTGIGLPMMSIIM   70 

MTci5 ...........................E..........................................   70 

NZ-S  ...........................E..........................................   70 

NZ-R  ...........................E..........................................   70 

                                                                                  

             (A)    (B)                                                                 

MTci2 GNISQNFMSITGNTTSIQQFEHDVIQNCLKYVYLGCGVFTAATIQAMCFLTVCENLVNQLRRQFFKSILR  140 

MTci5 ......................................................................  140 

NZ-S  ........N......T......................................................  140 

NZ-R  ......................................................................  140 

                                                                                  

                                                                                  

MTci2 QDITWFDKNNSGTLATKLFDNLERVKEGTGDKLGLMIQFVAQFFGGFIVAFTYDWKLTLIMMSLAPFMII  210 

MTci5 ......................................................................  210 

NZ-S  ......................................................................  210 

NZ-R  ......................................................................  210 

                                                                                  

                                                                                  

MTci2 CGAFIAKLMASAATREAKKYAVAGGIAEEVLTSMRTVIAFNGQPYECERYEKALEDGKSTGIKKSLYIGI  280 

MTci5 ......................................................................  280 

NZ-S  ......................................................................  280 

NZ-R  ......................................................................  280 

                                                                                  

                                                                                  

MTci2 GLGITFLIMFSSYCLAFWVGTDFVFKNQMQGGTVMTVFFSVMMGSMALGQAGPQFAVLGTAMGAAGSLYQ  350 

MTci5 ......................................................................  350 

NZ-S  ......................................................................  350 

NZ-R  ......................................................................  350 

                                                                                  

                                                                 Walker A                 

MTci2 IIDREPEIDSYSSEGVRPSNLKGKITVSNLKFTYPTRPDVPILKGVSFEAKPGETIALVGSSGCGKSTII  420 

MTci5 ......................................................................  420 

NZ-S  ......................................................................  420 

NZ-R  ......................................................................  420 

                                                              NBD1 ├────────                           

                                      Q-Loop/Lid                                           

MTci2 QLLLRYYNPADGKITIDGVEIDKINIEFLRNYVGVVSQEPMLFNTTIEQNIRYGREKVTDAEITAALRKA  490 

MTci5 ......................................................................  490 

NZ-S  ......................................................................  490 

NZ-R  ......................................................................  490 

      ────────────────────────────────────────────────────────────────────────── 

                                                                   

                             Signature          Walker B D-Loop                                          

MTci2 NAYNFVQSFPDGIYTNVGDRGTQMSGGQKQRIAIARALVRDPKILLLDEATSALDAESEHIVQQALENAS  560 

MTci5 ......................................................................  560 

NZ-S  ......................................................................  560 

NZ-R  ......................................................................  560 

      ─────────────────────────────────────────────────────────┤                                                                            

                                                                                  

MTci2 KGRTTIVIAHRLSTIRNADKIIAMKNGEVVEVGNHDELIARKGLYHELVNAQVFADVDDTVGDAAVRRRT  630 

MTci5 ......................................................................  630 

NZ-S  ......................................................................  630 

NZ-R  ......................................................................  630 

                                                                                  

                                    (234)                              (5)         

MTci2 MSSSRSRSPSLASPEYKRLRSQLSVTEDTGVATAQNDPVKAEKDLERLKKELEEEGAAKANLFGILRHAR  700 

MTci5 ...............................TAT................................S...  700 

NZ-S  ......................................................................  700 

NZ-R  ...............................TAT................................S...  700 

                                                                                  

                                                                                  

MTci2 PEWPFIMFAVFSSVVQGCVFPAFSLFFSQIINVFSKQPGDPTLKQEGHFWALMFLVLGAVQATTMIIQCF  770 

MTci5 ......................................................................  770 

NZ-S  ......................................................................  770 

NZ-R  ......................................................................  770 
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MTci2 FFGMSAERLTMRLRSKIFKNVMRMDATYFDMPRHSPGKITTRLATDAPNVKSALDYRFGSVFSSVVSVCS  840 

MTci5 ......................................................................  840 

NZ-S  ......................................................................  840 

NZ-R  ......................................................................  840 

                                                                                  

                                                                                  

MTci2 GVGIALYFGWQMAILTIAIFPLAAVGQAIQMKFMSGRATADAKEMENSGKVAMEAIENIRTVQALTLEHR  910 

MTci5 ......................................................................  910 

NZ-S  ......................................................................  910 

NZ-R  ......................................................................  910 

                                                                                  

                                                                                  

MTci2 LHAQFCQHLDAPHKTSRRKAIIQGISYGFASSIFYFLYASCFRFGLWLIVNGTLQPMNVLRVLFAISFTA  980 

MTci5 ......................................................................  980 

NZ-S  ......................................................................  980 

NZ-R  ......................................................................  980 

                                                                                  

                                                                   (C)               

MTci2 GSMGFASSYFPEYIKATFAAGLIFHMLEEEPRIDGMTSNGKKPKITGAVKLNKVYFKYPERPNVPILQGM 1050 

MTci5 ...................................................................... 1050 

NZ-S  ...................................................................... 1050 

NZ-R  ..............................................................D....... 1050 

                                                                                  

                   Walker A                        (D)        Q-Loop/Lid                        

MTci2 DVDVKPGETLALVGPSGCGKSTVISLLERLYDALDGSVEVDGNDLRQVNPTHLRAHIALVSQEPILFDRS 1120 

MTci5 ...................................................................... 1120 

NZ-S  ..............................................E....................... 1120 

NZ-R  ...................................................................... 1120 

                NBD2 ├─────────────────────────────────────────────────────────                                    

                           

               (6)                                     Signature                              

MTci2 IRDNILYGLPQGSVSDAQVHEVAQRANIHSFIIGLPDGYNTRAGEKGAQLSGGQKQRIAIARALVRNPKI 1190 

MTci5 ..........P........................................................... 1190 

NZ-S  ..........P........................................................... 1190 

NZ-R  ..........P........................................................... 1190 

      ──────────────────────────────────────────────────────────────────────────       

                                                                              

    Walker B D-Loop                 Switch                                                      

MTci2 LLLDEATSALDTESEKVVQEALDKASEGRTCIVVAHRLSTVVNANCIMVVKGGKVVEKGTHNELMQAKGA 1260 

MTci5 ...................................................................... 1260 

NZ-S  ...................................................................... 1260 

NZ-R  ...................................................................... 1260 

      ───────────┤                                                                 

                          

MTci2 YWALTQKQILAKE- 1273 

MTci5 .............- 1273 

NZ-S  .............- 1273 

NZ-R  .............- 1273 

 

Figure 3.6  Amino Acid Sequence of Tci-pgp-9 

Amino acid sequences from UK isolates, MTci2 and MTci5, aligned with sequence 
information derived from two near-isogenic strains T. circumcincta from NZ (Bisset, 
Pers. Comm.). The first of these was an inbred strain that was known to be susceptible 
to all available anthelmintics (NZ-S) and the other was a near-isogenic strain that was 
anthelmintic resistant (NZ-R). Sequence motifs are underlined and annotated above the 
sequence. The positions of nucleotide binding domains 1 and 2 (NBD1 and NBD2) are 
underlined and annotated below the sequences. Highlighted in yellow are six residue 
substitutions identified in the UK isolates (numbered 1-6), and four previously identified 
residue substitutions in NZ isogenic strains (annotated A-D).  
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Table 3.2  Summary of Signature Motifs in Tci-pgp-9 Amino Acid Sequence 

ABC-transporter sequence motifs were characterised in Brugia malayi (Ardelli et al., 
2010) and these were used to identify similar motifs in the Tci-pgp-9 amino acid 
sequence. The motif amino acid sequences for each nucleotide binding domain are 
listed. 

Motif 
Motif Amino Acid Sequence 

NBD1 NBD2 

Walker A GSSGCGKS GPSGCGKS 

Q-Loop/Lid VGVVSQEPMLFNT IALVSQEPIL 

Signature MSGGQKQRIAIARAL LSGGQKQRIAIARAL 

Walker B ILLLDEAT ILLLDEAT 

D-Loop SALDAES SALDTES 

Switch  CIVVAHRLS 

 

 

At the nucleotide level, the MTci2 and MTci5 isolates share 95.45 % 

identity (identical at 3648/3822 bases) in their respective Tci-pgp-9 cDNA 

sequences, whilst the protein sequences shared 99.53 % identity (1267/1273 

residues). The full-length Tci-pgp-9 cDNA and amino acid sequences for each 

isolate are listed in Appendix 1. Nine point mutations in total were identified 

between the UK isolates, resulting in six residue changes observed at V28E, 

A662T, T663A, A664T, R697S, and Q1131P, respectively (Figure 3.6). The 

remaining 165 silent, synonymous polymorphisms did not result in changes in 

encoded residue. As members of the ABC-transporter superfamily, Pgps share 

common motifs: the Walker A, Q-loop/lid, Signature, Walker B, D-loop and 

Switch sequences (Ardelli et al., 2010) (Table 3.2). The presence of these motifs 

verified that the sequencing results were that of an ABC-transporter (annotated 

in Figure 3.6). The non-synonymous SNPs identified were not located in any of 

the conserved sequence motifs, although the Q1131P SNP was found in NBD2. Of 

the 165 synonymous SNPs, 12 were located in each of the sequence motifs in 

NBD1 and two were found in the Walker A motif in NBD2, the remaining 151 

synonymous SNPs were located sporadically through the Tci-pgp-9 cDNA 

sequence.  

Comparisons were conducted between the Tci-pgp-9 cDNA sequences from 

UK isolates of T. circumcincta and the only other full-length Tci-pgp-9 cDNA 

sequence available, one that was originally predicted from overlapping clones 
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isolated from a T. circumcincta genomic DNA library generated from an 

Australian strain whose anthelmintic resistance status unknown (Bisset, 2007). 

The Tci-pgp-9 sequence was subsequently updated using new information from 

several full-length cDNA clones derived from a set of near-isogenic inbred 

anthelmintic susceptible and multiple-resistant strains of New Zealand origin (S. 

Bisset, Pers. Comm.). The amino acid sequences of the UK and NZ inbred 

susceptible strains share 99.60 % identity (identical at 1268/1273 residues) and 

the resistant strains shared 99.76 % identity (identical at 1270/1273 residues). 

The MTci2 and MTci5 isolates both displayed a similar genotype to the 

anthelmintic resistant strain from NZ at three of the four non-synonymous SNPs 

originally identified in the Bisset (2007) study, at residues 79, 86 and 1097 

(annotated A, B and D, respectively, in Figure 3.6). At the fourth non-

synonymous SNP, residue 1043 (annotated C in Figure 3.6), the UK MTci2 and 

MTci5 isolates shared the susceptible genotype displayed in the NZ near-isogenic 

strains. There was no evidence from the above sequence information to suggest 

that the four non-synonymous SNPs identified in the NZ strains were present in 

the UK isolates of T. circumcincta.  

SeqDoC analysis focussing on a particularly polymorphic region between 

residues 662-697 confirmed that four out of nine base changes resulted in non-

synonymous SNPs and displayed peaks on the difference profile, these were the 

residue changes at A662T, T663A, A664T and R697S (Figure 3.7), the remainder 

were synonymous mutations. The genotype of residues 662, 663, 664, and 697 

(numbered 2-5 in Figure 3.6) partitions between the UK and NZ strains based on 

their anthelmintic resistance phenotype. The MTci2 isolate shares identity with 

the NZ-S strain with “ATA” at residues 662-664 and is also associated with R at 

position 697. Similarly, the MTci5 isolate and the NZ-R strain have identical 

residues with “TAT” at 662-664, associated with S at position 697.   
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Figure 3.7  SeqDoC Analyses of Polymorphisms Present in Tci-pgp-9 

Selected outputs from SeqDoC analysis of the full-length Tci-pgp-9 sequences. The top 
profile is the reference sequence, in this case this was the Tci-pgp-9 cDNA sequence 
from MTci2. The bottom profile is the test sequence of Tci-pgp-9 cDNA from MTci5. The 
difference profile is displayed between the reference and test sequences. Peaks on the 
centraldifference profile indicate the position of SNPs when the MTci2 and MTci5 were 
compared. Panel A shows the observed SNPs at residues A662T, T663A, A664T in the 
full-length Tci-pgp-9 sequence, highlighted by orange box. Panel B shows the SNP 
observed at R697S, in orange box. Additional peaks indicate the presence of synonymous 
SNPs which do not alter the residue encoded by the codon. Examples of synonymous 
SNPs are evident in the transition (CT) mutations in the third base of codons 667 
(Panel A), 696 and 699 (both Panel B).  
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3.4  Discussion 

  For the first time, the full-length cDNA transcripts of Tci-pgp-9 have been 

amplified and sequenced from UK isolates of T. circumcincta.  The sequences 

contain motifs that are common to all ABC-transporters (Ardelli et al., 2010), 

verifying the amplified PCR products as Pgps. The Tci-pgp-9 genes of the MTci2 

and MTci5 isolates share very high homology, 95.45 % at the nucleotide level and 

99.53 % amino acid identity, suggesting that conservation of this gene may offer 

a survival advantage to the individual. Polymorphisms were found throughout 

the Tci-pgp-9 gene when comparisons were made between the MTci2 and MTci5 

isolates. Nine mutations were non-synonymous SNPs, altering six residues (Figure 

3.5), and 165 synonymous SNPs were identified, where nucleotide changes at the 

DNA level do not translate into amino acid changes. Since the Bisset (2007) 

study, the full-length cDNA sequences of Tci-pgp-9 from the inbred anthelmintic 

susceptible and the near-isogenic anthelmintic resistant NZ strains have been 

confirmed (Bisset, Pers. Comm.). Interestingly, comparisons of the full-length 

cDNA sequences from the MTci2 and MTci5 isolates with the NZ strains of T. 

circumcincta revealed that four substitutions at amino acids 662-664 and 697 

were shared. The anthelmintic susceptible strains, MTci2 and NZ-S, both 

displayed ATA and R at the 662-664 and 697 residues, whilst at the same 

positions in the resistant strains, MTci5 and NZ-R, the larvae exhibit TAT and S at 

the respective residues. The significance of these geographically distinct isolates 

sharing non-synonymous SNPs at these positions in Tci-pgp-9 remains to be 

determined. Clearly, further confirmation of these SNPs in additional isolates of 

T. circumcincta is required before they could be considered as robust genetic 

markers of global IVM-resistance in this species. Certain amino acid 

substitutions, such as the F200Y SNP in β-tubulin, have been shown to confer 

resistance to BZ anthelmintics. The search for a similar genetic marker of IVM-

resistance in T. circumcincta, and other important nematode species, is ongoing. 

  The non-synonymous SNPs identified in the UK isolates differed from those 

initially identified in the NZ isolates (Bisset, 2007). Comparisons of the amino 

acid sequence of the NZ anthelmintic susceptible and resistant, near-isogenic 

strains revealed two point mutations, N79S and S86T, located in the first 

extracellular loop of the Tci-pgp-9 molecule, with the first mutation resulting in 

the loss of an N-glycosylation site. Another two mutations (N1043D and E1097Q) 
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were found in the intercellular region near the second ATP-binding domain. 

These four residue substitutions do not appear to be conserved in the UK isolates 

of T. circumcincta.  

  The spread of point mutations observed throughout the Tci-pgp-9 gene 

may influence the tertiary structure of the gene, altering drug binding which can 

be affected by multiple independent parts of the molecule (Gottesman & 

Pastan, 1993). All six residue changes are found in the cytoplasmic regions of the 

molecule and are unlikely to interact with the drug molecules directly; instead 

they may alter protein folding. Additionally, the silent SNPs may cause changes 

in substrate specificity, possibly by changing the timing of co-translational 

folding and thus the conformation of the Pgp molecule (Buss & Callaghan, 2008; 

Kimchi-Sarfaty et al., 2007). Changes in the codon sequence, and therefore 

codon usage, have been linked to the secondary structure of protein that they 

encode. Some residues show preference to be buried in the centre of the protein 

molecule and others prefer to be exposed on the surfaces of the folded protein 

(Saunders & Deane, 2010). Synonymous codons are not used with equal 

frequency (Tao & Dafu, 1998) resulting in the incorporation of “rarer” codons, 

the availability of which may impede translation speed. Structural information 

that is linked to translation speed (Saunders & Deane, 2010), may influence 

translation rate and subsequently protein folding (Kimchi-Sarfaty et al., 2007). 

Therefore, it is possible that both coding and non-coding SNPs have the ability to 

influence the rate of drug efflux in multi-drug resistant isolate of T. 

circumcincta.  

  The occurrence of alternative-splicing was raised by Bisset (2007), 

reporting an alternatively-spliced isoform of Tci-pgp-9, which resulted in the 

deletion of 45 residues in the first three transmembrane domains in the multiple 

resistant worms. Interestingly, an alternatively spliced Pgp was reported to 

occur in substantial quantities in two independently derived multidrug resistant 

Chinese hamster cell lines (Devine et al., 1991), which contained a deletion of a 

similar size and location to the alternatively-spliced Tci-pgp-9 identified in the 

Bisset (2007) study. The deletion was absent from a parallel drug sensitive 

Chinese hamster cell line (Devine et al., 1991). In the present study, no 

evidence of an alternatively spliced Tci-pgp-9 gene was observed in the UK 

isolates of T. circumcincta. 
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The SeqDoC analysis highlighted the nine point mutations that were 

responsible for the non-synonymous SNPs at residues 662, 663, 664 and 697. The 

analysis was also used to focus on the E1097Q identified in comparisons of the 

NZ inbred anthelmintic susceptible strain and the near-isogenic resistant strains 

of T. circumcincta. Comparisons of Tci-pgp-9 from the MTci2 and MTci5 isolates 

at residue 1097 suggested that the pool of MTci2 larvae possessed both G and C 

at the first base of codon 1097, whereas the pool of MTci5 larvae possessed only 

C at this base. The G/C transversion is responsible for changing the residue that 

is encoded from E (codon GAA) to Q (codon CAA). The base-calling software 

displayed Q at residue 1097 because a higher proportion of the pooled MTci2 

larvae displayed the CAA codon. SeqDoC analyses inferred that CAA codon was 

present in approximately 55 % of pooled larvae. The possibility of multiple 

genotypes present at this position in the MTci2 isolate (Figure 3.4) was 

investigated using a pyrosequencing assay, to quantify the frequency of this SNP 

within each isolate.  

The pyrosequencing assay was conducted on 84 larvae from each of the 

MTci2 and MTci5 isolates and the results did not support those shown in the 

SeqDoC analysis. A single genotype was observed, with all individual larvae from 

both isolates displaying CAA at codon 1097. However, following detailed re-

evaluation of the pyrosequencing primers used, it has since become apparent 

that the particular primers used in the pyrosequencing experiment may have 

effectively screened out all variants carrying a G in codon 1097. The FTcP13 and 

FTcP14 primers used in the initial amplification of the target region (Figure 3.1) 

were not sufficiently degenerate and therefore may have only amplified a 

proportion of the sequence variants that were present. The pyrosequencing 

primer design software was used to create primers to amplify the specific target 

region (Pyro F2 and PyroBiotin 2), as well as the sequencing primer (Pyro S2) 

located immediately before the target sequence. The Pyro F2 was positioned in 

intron sequence where it is difficult to design truly degenerate primers, whilst 

retaining the specificity of the primer to its target sequence. It is likely that this 

primer may be specific for a single haplotype, in this case one with CAA at codon 

1097, thus the alternative GAA codon may would have been missed. Indeed this 

was shown to be the case. In the Bisset (2007) study, haplotype analysis of IBD71 

(the second nucleotide binding domain in Tci-pgp-9) showed that the PyroF2 
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primer design is based on “Haplotype 4B” sequence which has Q at residue 1097. 

There was a SNP, which varies according to haplotype, in the second last base at 

the 3’ end of the PyroF2 primer; T at this position in Haplotype 4B, and C in all 

other haplotypes. Therefore, the nested-PCR has only amplified Haplotype 4B 

variants and so only the CAA codon at residue 1097 has been detected. 

The sequencing primer PyroS2 was positioned immediately before the 

target sequence and ends on arginine at codon 1096. The third base of the 

arginine codon can accommodate any nucleotide and, therefore, sequencing 

primer finishing on the C of codon 1096 and has inadvertently screened out all 

variants that possess A, G or T at this position. This lack of degeneracy in the 

sequencing primer may explain why no GAA codons at residue 1097 were 

observed in the pyrosequencing assay. Increasing the degeneracy of the primers 

used in the pyrosequencing assay would ensure that all sequence variants are 

included in the analysis, but the reduction in specificity that comes with 

degenerate primers would have to be taken into consideration when interpreting 

the data. This is particularly pertinent when investigating a large and 

polymorphic gene family like the Pgps. Similarly, with PyroF2 primer design, only 

Haplotype 4B has been screened as the 3’ end of the PyroS2 primer matches 

none of the other haplotypes. Therefore, it was almost inevitable that only the 

CAA codon would be observed at residue 1097 in Tci-pgp-9. 

The amplification and DNA sequencing of full-length cDNA sequence of 

Tci-pgp-9 involved pairing the SL1 and 3’RACE primers. The spliced leader 

sequence is trans-spliced on to the 5’ end of primary transcripts during the 

maturation of the pre-mRNA (Blaxter & Liu, 1996), and conveniently provides a 

conserved sequence template for design of a sense primer(s). The spliced leader 

was first described in C. elegans (Krause & Hirsch, 1987) and since then 

numerous other SLs have been identified in this model nematode. The most 

abundant spliced leader sequence was SL1, which is found trans-spliced onto 

more than 80 % of C. elegans mRNA, and has also been identified in H. contortus 

(Redmond & Knox, 2001) and other strongyle species (Bektesh, 1988). To design 

the antisense primer, to pair with the SL1, a 3’ RACE strategy was adopted. 

During first-strand cDNA synthesis, the adapter primer sequence is incorporated 

into the naturally occurring polyadenylated tail found in mRNA at the 3’ end of 

the gene. This provided a target for the antisense adapter-specific nested 
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primer, 3’RACE, which ensures the termination codon as well as 3’ UTR are 

included in the sequence generated. This approach ensured full-length Tci-pgp-9 

cDNA products were amplified (Figure 3.5). 

 In conclusion, full-length cDNA transcripts of Tci-pgp-9 have been 

amplified and sequenced from UK isolates of T. circumcincta. Four substitutions 

at amino acids 662-664 and 697 were identified in comparisons of the Tci-pgp-9 

full-length cDNA sequence from anthelmintic susceptible and anthelmintic 

resistant isolates. The residue substitutions observed are conserved in each of 

the anthelmintic resistant isolates from both the UK and NZ. Before being 

considered as potential markers of IVM-resistance in this species, the presence 

of these point mutations in the Tci-pgp-9 gene should be confirmed in additional 

T. circumcincta isolates. Future work could focus upon pyrosequencing targeted 

at the SNPs responsible for the substitutions at residues 662-664 and 697 to 

clarify the frequency of these SNPs within each isolate of T. circumcincta. 
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Chapter 4 

Identification of sub-populations of T. circumcincta using in vitro 

bioassays 

4.1  Introduction 

Many different tests have been developed over the last 30 years to detect 

and quantify levels of anthelmintic resistance in parasitic nematodes of 

livestock. In vivo tests such as the Controlled Efficacy Test (CET) and Faecal Egg 

Count Reduction Test (FECRT), as well as in vitro tests such as the Egg Hatch 

Assay (EHA), Larval Development Assay (LDA), Larval Motility Assay, Larval 

Migration Inhibition Assay (LMIA), and the Larval Feeding Inhibition Assay (LFIA) 

(described in Chapter 1.3.3). There are numerous advantages of using in vitro 

techniques over those in vivo, for example; the reduced use of experimental 

host animals, and the cost savings associated with this reduction (outright 

purchase of sheep, husbandry expenses, anthelmintic purchase), assured 

exposure of the parasite to the anthelmintic in question, and removal of the 

inter-host variation in drug metabolism, which can complicate the determination 

of effective drug concentrations. Equally, the latter point can also be considered 

as a disadvantage of using in vitro techniques as the drug metabolism dynamics 

of the host are not necessarily reproduced or accounted for in these assays. 

Another disadvantage of in vitro methods is the requirement that larvae are 

exposed to far higher drug concentrations than would be encountered in the host 

animal. 

The present study focuses on the effect of IVM treatment on T. 

circumcincta. Exposure to IVM causes hyperpolarisation of glutamate-gated 

chloride channels, and this acts on the parasite’s neuromuscular system and 

ultimately, results in a flaccid paralysis particularly of the somatic and 

pharyngeal musculature (Blackhall et al., 1998; Yates et al., 2003), thereby 

inhibiting motility and feeding. The LMIA and LFIA are thus likely to be most 

suitable bioassays for measuring the paralytic effect of IVM. The EHA, for 

example, is only useful for measuring BZ efficacy as the other anthelmintic drugs 

tend to lack ovicidal activity. The LDA has been used successfully to detect BZ 

and LEV resistance in T. circumcincta but it is generally considered less useful 
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for detecting IVM resistance in this species as discriminating LD50 values 

overlapped when IVM-susceptible and IVM-resistant isolates were compared 

(Amarante et al., 1997).  

The LMIA has previously been optimised for cattle nematodes Ostertagia 

ostertagi and Cooperia oncophora (Demeler et al., 2010), but remains to be fully 

optimised for use with sheep parasitic nematodes. Demeler et al. (2010) showed 

that re-suspension of IVM in 0.5 % DMSO was optimal for the LMIA with O. 

ostertagi and C. oncophora at IVM concentrations between 0.1 nM and 10 µM. 

Bioassays requiring higher IVM concentrations would require a higher 

concentration of DMSO for resuspension; the toxicity of DMSO for T. circumcincta 

has yet to be reported. 

The LFIA relies on measuring the disruption in feeding caused by 

macrocyclic lactones such as IVM. As well as inhibiting larval motility, IVM also 

causes flaccid paralysis of the pharynx (Gill et al., 1995; Martin, 1996) thereby 

inhibiting worm feeding activity by reducing pharyngeal pumping. The concept 

used in the LFIA was first described by Geary et al. (1993) who used it to 

monitor the inhibition of ingestion, caused by IVM, of fluorescently-labelled E. 

coli by adult H. contortus worms. Later, it was applied to H. contortus and T. 

circumcincta first-stage (L1) larvae (Jackson & Coop, 2000) and was further 

developed by Álvarez-Sánchez et al. (2005) to calculate the IC50 values 

(concentration causing inhibition of ingestion in 50 % of L1 tested) for 

macrocyclic lactones and imidazothiazoles. In the present study, LFIAs utilising 

fluorescein isothiocyanate (FITC)-labelled E. coli were used to identify larvae 

with the ability to ingest bacteria using fluorescence microscopy of their 

intestinal content. Similar to the LMIA, the concentrations of IVM that caused 10 

% (LFI10) and 90 % (LFI90) feeding inhibition, respectively, were determined. 

Between 10- and 100-fold lower anthelmintic concentrations are required to 

affect larval feeding than to inhibit larval motility (Gill et al., 1995).  

Studies into anthelmintic resistance often include comparisons of 

unrelated isolates of the same species, which are likely to possess different 

genetic backgrounds (Sangster et al., 1999). This can make identifying genetic 

factors related to or responsible for an anthelmintic resistance phenotype 

difficult, due to natural variation or different selection pressures encountered 
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by parasites in different geographic locations, management systems or host 

breeds (Bisset, 2007).  

FECRT studies conducted on the MTci5 isolate showed that IVM efficacy 

was 60 % (Bartley et al., 2004; Bartley et al., 2005), indicating that some 

susceptible individuals still reside in this population. The aim of the work 

described in this chapter was to obtain individual larvae that represent the most 

and least IVM resistant individuals, according to the LMIA and the LFIA, from 

within a single isolate of T. circumcincta. These larvae could then be subjected 

to molecular genetic analysis. Before the assay could be used to determine 

discriminating concentrations of IVM, it was first necessary to establish the 

optimal concentration of DMSO required because this was unknown in relation to 

T. circumcincta.  
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4.2  Materials & Methods 

4.2.1  T. circumcincta Larvae 

 Eggs were recovered from faeces from donor animals that had been 

infected with larvae from the MTci2 and MTci5 isolates of T. circumcincta, 

larvae were coprocultured to L3 as described in Chapter 2.3.2, for use in the 

LMIA. Exsheathment was induced by incubation in 1 % sodium hypochloride for 1-

2 minutes at room temperature after which the larvae were washed with water, 

to remove the sodium hypochloride, and then resuspended in water. First-stage 

larvae of each of the MTci2 and MTci5 isolates were collected as described in 

Chapter 2.3.1 for use in the LFIA. 

 

4.2.2  Larval Migration Inhibition Assay 

Migration chambers were assembled in a similar fashion to those used 

previously by Demeler et al. (2010). A precision woven nylon mesh with a 25 µm 

mesh size (HPC Gears) was attached to one end of a 2 cm section of clear 

plexiglass tube. The 25 µm pore size was selected so that larvae would have to 

actively migrate through the pore rather than passing through under gravity. Six 

migration chambers were attached to a glass rod, aligning the chambers to the 

wells of a 24-well plate (Nunclon®, Thermo-Fisher Scientific) as shown in Panel A 

of Figure 4.1. The rods were positioned in a row of the 24-well plate and the 

incubated larvae, which had been incubated in various concentrations of DMSO 

prior to being transferred into the migration chambers, were added into the 

migration chamber which was immersed in identical concentrations of DMSO 

(Figure 4.1, Panel B) and incubated for a further 24 hours at 25 °C. The 

migrating larvae were found in the bottom of the well and larvae present on the 

outside of the chambers were washed into the well with water. The non-

migrating larvae were washed from the inside of the migration chamber with 

water into empty wells in the row below (Figure 4.1, Panel C).  
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Figure 4.1  Migration Chamber Assembly 

LMIA set up in a 24-well plate. Migration chambers are formed by fixing 25 µm mesh to 
one end of a 2 cm section of clear Plexiglas tube (Panel A). The chambers are aligned 
and secured to a glass rod and placed in rows A and C of a 24-well plate (Panel B). 
Migrating larvae collect in the well, whilst non-migrating larvae are washed from inside 
the chamber to rows B and D of the 24-well plate, indicated by the white arrows in 
Panel C.   

 

The larvae were stained with helminthological iodine and counted under a 

stereomicroscope. The percentage larval migration inhibition (LMI) was 

calculated using Equation 1 and the mean LMI for the replicates was calculated: 

 

                                
          

      
                                 EQUATION 1 

 

4.2.3  Effect of DMSO Concentration on LMIA 

 Higher concentrations of IVM require higher concentrations of DMSO for 

resuspension. Demeler et al. (2010) showed that resuspension of IVM in 0.5 % 

DMSO was optimal for the LMIA for use with the cattle nematodes O. ostertagi 

and C. onchophora, with relatively low concentrations of IVM. In the present 

study, the effects of varying the DMSO concentration was evaluated using both 

sheathed and exsheathed T. circumcincta L3 from both the MTci2 and MTci5 

isolates. Approximately 100 sheathed and 100 exsheathed larvae were added to 
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each well of a 24-well plate in duplicate and exposed to a range of DMSO 

concentrations (range: 0 - 5 %), and incubated for 24 hours at 25 °C. The larvae 

were transferred to migration chambers immersed in identical concentrations of 

DMSO and were allowed to migrate for a further 24 hours at 25 °C. The larvae 

were stained with helminthological iodine and counted under a 

stereomicroscope.  

 

4.2.4  Effect of IVM Concentration on LMIA 

The main aim of conducting the LMIA was to partition each isolate into 

sub-groups of larvae that represented the most and least IVM resistant 

individuals. The LMIA protocol optimised by Demeler et al. (2010) using cattle 

nematodes, C. onchophora and O. ostertagi, was closely followed in the present 

study, with alterations as described below. Stock solutions of ivermectin 1b 

(Sigma) were made with 100 % DMSO with final dilutions made with water, 

ensuring the final concentration of 2 % DMSO was maintained across all IVM 

concentrations. Aliquots of ~100 exsheathed larvae were incubated in IVM 

concentrations ranging from 0.057 to 514 µM resuspended in DMSO, in the dark 

due to the photosensitivity of IVM, for 24 hours at 25 °C. The larvae were 

transferred to migration chambers immersed in the same IVM concentration, 

then allowed to migrate at 25 °C for a further 24 hours in the dark. The negative 

control throughout the LMIA was 2 % DMSO (no IVM) and the positive control was 

100 % DMSO. Larvae that retained the ability to migrate through the mesh were 

washed from the outside of the migration chamber and individuals that were 

unable to migrate were washed from the inside of the migration chamber into 

fresh wells. Staining the larvae with helminthological iodine allowed 

quantification of the migrating and non-migrating larvae under a 

stereomicroscope. 
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4.2.5  Larval Feeding Inhibition Assay 

 The method used for the LFIA was a modification of the procedure 

developed by Geary et al. (1993). Viable L1 were collected as described in 

Chapter 2.3.1 and aliquots of 150 L1 were added to 0.5 ml Eppendorfs containing 

a range of IVM concentrations. Ivermectin 1b (Sigma) was resuspended in 2 % 

DMSO and each concentration (range: 0.1 – 70 µM) was repeated in triplicate for 

both the MTci2 and MTci5 isolates. The larvae were incubated for 2 hours at 25 

°C in the dark, with the addition of 7 µl fluorescein isothiocyanate (FITC)-

labelled E. coli before overnight incubation, similarly at 25 °C in the dark. 

Labelling the E. coli with FITC was achieved by mixing 100 µl of concentrated 

(2250 µg/ml) lyophilised E. coli (Sigma) with 1 ml of bicarbonate buffer (2.66 g/l 

NaHCO3, 1.96 g/l Na2CO3 and 1.5 g/l NaCl, at pH 7.4) containing 1 mg FITC 

(Sigma), and incubating at 20 °C for two hours. After the incubation period, the 

labelled E. coli were washed three times in phosphate buffered saline (PBS) and 

resuspended in 1 ml of PBS. Using an inverted fluorescence microscope (Olympus 

CK40), ingested FITC-labelled E. coli, present in the intestine of the larva, were 

visualised (Figure 4.2), taking care to ensure that fluorescence associated with 

the labelled E. coli was distinguished from the autofluorescence of the larvae 

(Geary et al., 1993).  

 The percentage of larval feeding inhibition (LFI) was calculated using 

Equation 2 and the mean LFI for the replicates was calculated: 

 

                                
        

      
                                 EQUATION 2 

  

 



75 
 

 

Figure 4.2  First stage larvae of T. circumcincta showing inhibited feeding 

Fluorescence microscopy showing an individual larva that retains the ability to ingest 
FITC-labelled E. coli (A), alongside an individual that did not ingest FITC-labelled E. coli 
(B). The fluorescently-labelled E. coli are visible in the intestine of larva (A) but absent 
in the intestine of larva (B). 

 

 The LFIA was repeated on a biological replicate of viable L1 collected on a 

separate day and the IVM concentrations which inhibited larval feeding by 10 % 

and 90 % (LFI10 and LFI90, respectively) were identified. In order to select enough 

larvae from each sub-population for subsequent molecular analyses, the LFIA 

was scaled up by exposing ~600 L1, from each of the MTci2 and MTci5 isolates, to 

the LFI10 and LFI90 doses of IVM. Larvae from each of the MTci2 and MTci5 

isolates that did not feed at the LFI10 IVM concentration were identified, and 

individually transferred to separate wells in a 96-well plate (Axygen) each 

containing 10 µl of a 3 % solution of recombinant PCR grade proteinase K (Roche) 

in PCRDirect lysis reagent (Tail) (Viagen Biotech). This procedure was repeated 

for the larvae that had retained the ability to feed at the LFI90 IVM 

concentration.  
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4.2.6  Data Analysis 

 The percentage inhibition of larval migration (LMI) was determined for 

each concentration of DMSO using Equation 1 above. The LMI at the selected 

DMSO concentration of 2 %, and the percentage inhibition of feeding (LFI), were 

determined for each concentration of IVM using the equations 1 and 2 above. 

Probit analysis was then used to identify the IVM concentrations required for 10 

%, 50 %, 90 %, 95 % and 99 % inhibition of either larval migration or larval 

feeding. Binary logistic regression analysis was conducted using inhibition of 

migration or feeding as the outcome variable (inhibited, not inhibited) and using 

strain (MTci2, MTci5), presence of sheath (sheathed, exsheathed) and 

concentration of DMSO or IVM as the explanatory variables. Probit and logistic 

regression analyses were conducted (using Minitab15 Statistical Software).  

 

4.3  Results  

4.3.1  Effect of DMSO Concentration on Larval Migration 

 Increasing DMSO concentration increased the inhibition of larval migration 

(Figure 4.3). Logistic regression analysis (Table 4.1) showed that isolate, 

presence of sheath and the concentration of DMSO were all highly significant 

factors (p <0.001). The MTci5 isolate had a positive coefficient (p <0.001) and 

the greatest odds ratio of the variables tested, indicating increased inhibition of 

migration in the MTci5 isolate compared with the MTci2 isolate. The absence of 

the larval sheath had a similar effect on the larval migration rates to that caused 

by the increasing the DMSO concentration, with both factors having similar odds-

ratios.  

  Two percent DMSO was selected as the optimal concentration for 

resuspending IVM as the larval migration inhibition was similarly low in both the 

MTci2 and MTci5 isolates at 3.47 % (range: 0.64 – 6.01 %). For consistency with 

previous work and because there were clear differences in the effect of the 

sheath, exsheathed larvae were chosen as they were required for the molecular 

tests that would be undertaken subsequently. 
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Figure 4.3  Effect of DMSO concentration on inhibition of L3 migration  

Larvae were exposed to a range of DMSO concentrations and their ability to migrate 
through a 25 µm mesh was determined. The percentage migration inhibition was 
calculated for each isolate of T. circumcincta: MTci2 sheathed () and exsheathed (●) 
and MTci5 sheathed () and exsheathed (). 

 

 

Table 4.1  Logistic regression table for the effect of DMSO concentration on 
inhibition of L3 migration  

The variables tested included whether the larval sheath was present or not, increasing 
concentration of DMSO and the isolate of T. circumcincta (MTci2 or MTci5).  

 

 

 

 

 

Predictor Coefficient 
SE 

Coefficient 
Z-value P-value 

Odds 
Ratio 

95 % C.I. 

Lower Upper 

Constant -4.5678 0.0682 -66.95 <0.001    
MTci5  1.1340 0.0476  23.96 <0.001 3.13 2.85 3.43 
Exsheathed  0.4092 0.0432    9.48 <0.001 1.51 1.38 1.64 
[DMSO]  0.3975 0.0134  29.61 <0.001 1.49 1.45 1.53 
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4.3.2  Effect of IVM on Larval Migration  

 In order to identify IVM concentrations that would partition the isolates 

into subgroups that were ‘most resistant’ and ‘least resistant’, exsheathed 

infective larvae (L3) were exposed to increasing concentrations of IVM (range: 

0.057 – 514 µM) resuspended in 2 % DMSO, and their ability to migrate through 25 

µm mesh was measured. The LMI was calculated and plotted for each isolate at 

each individual IVM concentration (Figure 4.4).  

 

 

Figure 4.4  Third-stage Larval Migration Inhibition  

Each isolate, MTci2 () and MTci5 (), was exposed to increasing concentrations of IVM 
and the ability of L3 to migrate through 25 µm mesh was observed and the percentage 
migration inhibition was calculated. Inset panel shows an enlarged area of the graph 
marked (). 

 

Logistic regression analysis (Table 4.2) showed highly significant effects of 

increasing the concentration of IVM and isolate (p <0.001). The MTci5 isolate was 

protected against the inhibitory effect of IVM (Odds ratio = 0.83, 95 % C.I. = 0.79 

– 0.86).  
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A Probit analysis was used in an attempt to estimate LMI10 and LMI90 for 

each of the isolates (Appendix 2). High levels of inhibition at relatively low 

concentrations of IVM meant that the Probit model was a poor fit for the data 

and it was not possible to estimate a value for LMI10. The concentration of IVM 

responsible for LMI90 was estimated to be 287 µM and 378 µM for the MTci2 and 

MTci5 isolates, respectively. Using 2 % DMSO to resuspend IVM restricted the 

maximal concentration of IVM to 257.1 µM as the solution reached saturation 

(Figure 4.5). The percentage of migration inhibition before the IVM solution 

became saturated was 81.8 % and 78.5 % for the MTci2 and MTci5 isolates, 

respectively. Hence, the predicted LMI90 was unattainable using the LMIA.  

 

 

Table 4.2  Logistic Regression Table for LMIA 

The potential explanatory variables tested were the concentration of IVM and the MTci2 
and MTci5 isolates of T. circumcincta.  
 

 

 

 

 

Figure 4.5  Saturated IVM Solution 

Ivermectin 1b (IVM) was resuspended in 2 % DMSO and after incubation for 24 hours at 
25 °C, the excess IVM solute recrystallised. The presence of IVM precipitate indicated 
that the solution was saturated and the exact molarity of IVM dissolved in solution could 
not be determined.   

Predictor Coefficient 
SE 

Coefficient 
Z-value P-value 

Odds 
Ratio 

95 % C.I. 

Lower Upper 

Constant -0.568729   0.0131278   -43.32   <0.001    
MTci5 -0.188193   0.0216825    -8.68   <0.001 0.83    0.79 0.86 
Log[IVM] 0.0074410   0.0001061    70.11 <0.001 1.01    1.01    1.01    
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4.3.3  Effect of IVM Concentration on Larval Feeding 

 The percentage of larval feeding inhibition (LFI) at each concentration of 

IVM is shown in Figure 4.6 for a range of IVM concentrations. Logistic regression 

analysis (Table 4.3) showed that increasing concentration of IVM caused a highly 

significant (p <0.001) increase in inhibition of feeding, and confirmed that the 

MTci5 was significantly (p <0.001) less susceptible to the effects of IVM 

compared to the MTci2 isolate (Odds ratio = 0.65, 95% C.I. = 0.61 - 0.69). 

 

 

Figure 4.6  First-stage Larval Feeding Inhibition  

Each isolate, MTci2 (biological replicates 1 () and 2 (●)) and MTci5 (biological 
replicates 1 () and 2 ()), was exposed to a range of IVM concentrations and the 
percentage larval feeding inhibition was calculated.  
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Table 4.3  Logistic Regression Table for LFIA 

The variables tested in the logistic regression analysis were the concentration of IVM 
and the MTci2 and MTci5 isolates of T. circumcincta.  
 

Predictor Coeff. 
SE 

Coeff. 
Z-value P-value 

Odds 
Ratio 

95 % C.I. 

Lower Upper 

Constant 0.266 0.0232     11.47   <0.001    
MTci5 -0.432   0.0308   -13.99   <0.001 0.65          0.69 0.61 
Log[IVM] 222.7     6.0305    36.93 <0.001 5.19 x10

96
   3.82 x10

91
 7.06 x10

101
 

 

 

A Probit analysis was conducted in an attempt to determine the LFI10 and 

LFI90 values (see Appendix 3). The Probit analysis shows a low Chi-square value of 

0.027, showing the model was a good fit for the data overall despite very high 

levels of non-feeding at IVM concentrations close to zero. The estimated LFI90 

was 0.013 mM and 0.016 mM for the MTci2 and MTci5 isolates, respectively, 

therefore the IVM concentration that caused 90 % feeding inhibition was 10 µM. 

The model was a poor fit when focussing on the concentration of IVM responsible 

for LFI10, with negative IVM concentrations of IVM predicted for both isolates. 

Therefore, it was decided to simply select concentrations of IVM on the basis of 

visual appraisal from the line graph (Figure 4.6). The concentration of IVM 

selected to collect the 10 % of non-feeding L1 from each isolate was 0.1 µM. 

Larvae from each isolate that represent the ‘least’ resistant individuals were 

selected and recorded as MTci2NF(0.1µM) and MTci5NF(0.1µM). Larvae representing the 

‘most resistant’ individuals were designated MTci2F(10µM) and MTci5F(10µM).  

 

  



82 
 
4.4  Discussion 

The aim of the work described in this Chapter was to use two in vitro 

bioassays as a tool to select IVM-susceptible and IVM-resistant larvae from within 

two genetically distinct isolates with differing expected levels of IVM resistance. 

However, this aim could only partially be met due to limitations in the bioassays 

and it is clear that considerable work is still required to optimise both of these 

for use with IVM and T. circumcincta. Nonetheless, it was possible to select sub-

populations of larvae from each isolate that could reasonably be considered to 

represent highly resistant and less resistant phenotypes from within each of the 

isolates.  

Although neither assay has been optimised, they both show some promise. 

Most importantly, there was a strong effect of increasing IVM concentration on 

inhibition of migration and feeding. However, these effects were seen at very 

low concentrations of IVM and over most of the range of concentrations tested 

there was little if any significant increase in inhibition of migration or feeding. 

Both bioassays also showed a clear effect of isolate in the expected direction, in 

that MTci5 larvae were significantly less likely to be inhibited by IVM in the LMIA 

and the LFIA. In the case of the LMIA, the protective effect was relatively small, 

likelihood of inhibition of migration being about 90 % of that in MTci2, whereas 

in the LFIA, the likelihood of being inhibited from feeding in MTci5 larvae was 

about half of that in MTci2 larvae. Consequently, the assays show considerable 

promise for further development in the future. 

One of the biggest limitations of the bioassays was their relatively poor 

performance at the lower and upper end of the test concentrations. This 

resulted in a poor fit of the data to the Probit analysis model and an inability to 

determine meaningful values for LMI10 and LFI10. There were also problems at 

the upper end of the concentration scale, in that 100 % inhibition was very rarely 

achieved, leading to LFI90 and LMI90 estimations that exceeded achievable 

concentrations. Rarely achieving 100 % migration inhibition may be a result of 

dead larvae falling through the pores of the sieve, or being pulled through by 

attachment to active larvae, rather than actively migrating through them. 

Although it was decided that the LMIA was not suitable for the purposes of the 

present study and those following it, it was possible to collect some larvae of 
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relatively higher and lower resistance to IVM as determined by the LFIA from 

each of the isolates MTci2 and MTci5. These larvae were used in the experiments 

described in subsequent chapters. 

The LMIA with varying concentrations of DMSO showed that the absence of 

a sheath was protective against the effects of DMSO on migration. This was 

unexpected because larvae retaining the sheath would be expected to receive a 

degree of protection in the form of a physical barrier against its immediate 

environment. It is reasonable to assume the exsheathed individuals would be 

vulnerable to drug molecules as they lack this protective layer. Exsheathed 

larvae appeared more active following the stimulation to shed their sheaths and 

this may result in increased larval migration through the Baermann apparatus. 

Another possible explanation could be that exsheathed larvae tend to fall 

through the mesh more easily than those with an intact sheath. Any movement 

of the liquid in the migration chambers (caused by vibrations or water currents 

due to evaporation for example) may cause the larvae to lift briefly off the mesh 

surface and vertically fall through it. 

This study used a modification of the method developed by Demeler et al. 

(2010), by using 2 % DMSO to resuspend IVM instead of 0.5 %. This facilitated the 

resuspension of higher concentrations of IVM, the concentration range 0.057 to 

514 µM was used in the present study, whereas in the previous study the IVM 

concentration range was limited to 0.001 - 10 µM (Demeler et al., 2010), most 

likely due to the use of 0.5 % DMSO. The maximal concentration of IVM in the 

present study was approximately 200 µM, at which point the recrystallisation of 

IVM was observed after 24 hours incubation without agitation. At this 

concentration, the larval migration inhibition was 81.8 % for the MTci2 isolate 

and 78.5 % for the MTci5 isolate. To attain 90 % larval migration inhibition the 

required IVM concentrations were estimated by Probit analysis to be 287 mM and 

378 mM for the MTci2 and MTci5 isolates, respectively, which was higher than 

the maximal concentration of IVM that could be resuspended in 2 % DMSO. As the 

Probit analysis model was not a good fit, to determine the IVM concentration 

which causes LMI90, would require further optimisation of the LMIA for T. 

circumcincta. Although higher concentrations of DMSO could possibly facilitate 

the resuspension of higher IVM concentrations, the toxicity of DMSO would have 

to be considered when interpreting the rate of inhibition as a result of IVM. 
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Therefore, an alternative bioassay was sought to collect sub-populations of the 

T. circumcincta isolates.  

The larval feeding inhibition assay provided an alternative option to the 

LMIA bioassay for assorting the isolate into two sub-populations based on their 

ability to feed in different concentrations of IVM. The concentrations of IVM used 

(0.1 to 70 µM) were lower than those of the LMIA, avoiding issues with 

resuspension in 2 % DMSO. The requirement for lower concentrations of IVM is 

supported by a finding reported by Gill et al. (1995), which showed that 

between 10- and 100-fold lower anthelmintic concentrations are required to 

affect larval feeding, than to inhibit larval motility. In retrospect, a lower 

concentration of DMSO could have been used as a similar study conducted by 

Geary (1993) into pharyngeal paralysis by IVM in H. contortus used 0.1 % DMSO to 

resuspend IVM. The effects of DMSO were avoided completely in the Álvarez-

Sánchez et al. (2005) study which exposed H. contortus, T. circumcincta and 

Trichostrongylus colubriformis to serial dilutions of IVM in the form of Oramec 

oral solution (Merial). Focusing on much lower concentrations of IVM than in the 

present study could minimise potential confounding of results due to inhibitory 

effects of DMSO. In the present study, no mortality was observed in the L1 that 

were exposed to IVM, the IVM instead paralysed the pharyngeal muscles, 

inhibiting ingestion of fluorescently-labelled E. coli. Thus, it was possible to 

collect two sub-populations based on their ability to ingest fluorescently labelled 

E. coli. One sub-population was collected from the 10 % of L1 that displayed an 

inhibited feeding phenotype at 0.1 µM IVM, these represented the ‘least 

resistant’ individuals from each isolate. A second sub-population was collected 

from the 10 % of L1 that retained the ability to feed at 10 µM IVM, representing 

the ‘most resistant’ individuals from each isolate. A proportion of larvae did not 

feed in the absence of IVM, 5.1 % and in MTci2 and 5.6 % in MTci5, possibly due 

to the toxicity of DMSO. Therefore, the susceptibility of individuals that did not 

feed at low IVM concentrations cannot be assumed, whereas retaining the ability 

to feed at high concentrations of IVM, which does indicate resistance. Had time 

allowed, the susceptibility to IVM could have been tested by passaging non-

feeding LFIA survivors through a sheep to increase numbers and subsequently 

undertaking a controlled efficacy trial on the MTci2(NF0.1µM) and MTci5(NF0.1µM) sub-

populations. As these sub-populations were derived from the same initial 
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population they were considered to have similar genetic backgrounds apart from 

a limited number of genes associated with IVM resistance, allowing meaningful 

genetic comparisons between these two sub-populations.  

Of the two bioassays considered appropriate for studying the effects of 

IVM and collecting sub-populations of larvae, the LFIA was shown to be the more 

suitable. Due to difficulties encountered attempting to resuspend IVM in DMSO, 

the LMIA was discounted as a viable option, at least in this species, as 

concentrations of IVM did not reach concentrations high enough to inhibit more 

than ~85 % of larval migration. Although some degree of optimisation of the LMIA 

was carried out, the LMIA remains to be fully optimised for use with parasitic 

nematodes that infect sheep. Similarly, although the LFIA has been used in the 

present study as a tool for selecting individuals with different IVM-resistance 

phenotypes, plans have been made to scale-up the collection of different sub-

populations using a specially adapted large particle fluorescence-activated cell 

sorter or FACS (F. Kenyon and D. McBean, Moredun Research Institute, Pers. 

Comm.). Larvae displaying different feeding phenotypes could be automatically 

counted and partitioned into separate sub-populations, reducing the time and 

effort taken to characterise a given isolate with respect to IVM sensitivity.  

In conclusion, the LFIA was not fully optimised but instead used as a tool 

for selecting the ‘less resistant’ and ‘more resistant’ individuals from within the 

MTci2 and MTci5 isolates, for use in subsequent genetic comparisons.  
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Chapter 5 

Analysis of Tci-pgp-9-IBDA Allelic Variants in T. circumcincta 

5.1  Introduction 

P-glycoproteins have been implicated as a mechanism for ML-resistance 

(Xu et al., 1998; Molento & Prichard, 1999), although they are not the specific 

target sites for IVM. Instead the Pgp xenobiotic efflux pump affects the drug 

distribution of IVM, restricting access to its acknowledged target sites such as 

the glutamate-gated chloride channels and γ-aminobutyric acid chloride 

channels (Geary et al., 1993; Ros-Moreno et al., 1999). Increasing the number of 

Pgp molecules present at the cell surface will result in a greater capacity for 

drug efflux, thereby avoiding the toxic effects of a given drug. Gene 

amplification, gene expression and gene splicing are all potential mechanisms of 

increasing the number of Pgp proteins present in the cell membrane. As 

anthelmintic treatment provides a selective pressure, individuals that are 

susceptible to the drug action are removed from the population, along with their 

‘susceptible genotype’, whereas survivors complete their life-cycle, passing on 

the ‘resistant genotype’ to their progeny, thus increasing the frequency of 

allele(s) that offer a survival advantage (Blackhall et al., 1998). A reduction in 

genetic variation in a population can arise from non-random mating as a 

consequence of inbreeding or continual drug-selection (Bourguinat et al., 2011) 

leading to an accumulation of the resistant genotype to a level which causes the 

loss of drug efficacy in the target population (Prichard, 1990).  

 A recent study examined the presence of Tci-pgp-9 allelic variants in an 

inbred anthelmintic susceptible strain and a near-isogenic multiple anthelmintic 

resistant strain of T. circumcincta isolated in New Zealand (Bisset, 2007). The 

region targeted for genotyping using allele-specific primers was the N-terminal 

internucleotide-binding domain of Pgp-9, Tci-pgp-9-IBDA, which corresponds to 

the IBD77 region reported in the H. contortus Pgp-1 gene (Hco-pgp-1) by 

Sangster et al. (1999) [Accession Number: AF055175]. The Tci-pgp-9-IBDA target 

gDNA region was ~700 bp, which included exons that represent a 165 bp region 

between bases 1361-1526 in the Tci-pgp-9 cDNA sequence (Appendix 1).  
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Polymorphism in the intronic sequence of Tci-pgp-9-IBDA allowed the 

identification and characterisation of nine allelic variants in the New Zealand 

strains of T. circumcincta (Bisset, 2007). P-glycoproteins appear to have arisen 

by a gene duplication event, fusing two related half Pgp molecules each 

consisting of a NBD and one transmembrane domain (van Veen et al., 2001). 

Possession of multiple allelic variants supports the theory that the Tci-pgp-9 

gene has been duplicated, and its maintenance suggests that this duplication is 

not detrimental to the survival of the individual.  

 There is scant information in the literature on the levels of variability that 

constitute an allele in parasitic nematodes. Each allele presents a unique 

combination of polymorphisms, and as such, a single nucleotide change would, 

technically, represent a new allele. Sangster et al. (1999) amplified Pgp-IBD 

fragments from H. contortus, and grouped alleles that shared 82-99 % identity at 

the nucleotide level. In a recent study by Bisset (2007), allelic variants were 

classified by tolerating “one-off mutations” and basing groupings on blocks of 

nucleotide substitutions, insertions or deletions within introns, which were 

repeatedly associated with particular allelic variants. A strong association 

between the multiple-anthelmintic resistant phenotype and a genotype with an 

increased occurrence of several allelic variants (NZ variants 2, 3, 6, 9 & 10) was 

observed, suggesting that such variants had been subjected to the strong 

positive selection pressures of anthelmintic screening (Bisset, 2007). 

 In this Chapter, individual larvae selected from the MTci2, MTci5, MTci5PT 

isolates and the two sub-populations (least and most resistant) from each of the 

MTci2 and MTci5 isolates, were used to identify which Tci-pgp-9-IBDA allelic 

variants were carried by UK strains of T. circumcincta. The process of identifying 

allelic variants developed by Bisset (2007) was closely followed. 
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5.2  Materials & Methods 

5.2.1  Generation of Generic Tci-pgp-9-IBDA Fragments 

Crude larval lysates were prepared from 84 individual L3 randomly 

selected from the MTci2, MTci5, and MTci5PT isolates, using the methodology 

described in Section 2.5. These were subsequently used as the gDNA template 

for PCR amplification. Crude larval lysates of the sub-populations of L1, 47 of 

each sub-population collected in Chapter 4, were also used as template gDNA for 

allelic variant analysis. The first step was to PCR amplify a fragment of the Tci-

pgp-9-IBDA using the primer pair IBD77GF3B [5’ 

GGNGTNGARATHGAYAARATHAAYATHGARTT 3’] (sense) and IBD77GR2 [5’ 

TGNCCNCCAGACATYTGNGTNCC 3’] (antisense). Degenerate primers were used to 

increase the likelihood of amplifying potential sequence variants present in the 

isolates. A Platinum Taq mastermix was produced where each 10 µl reaction 

volume contained: 0.5 units Platinum Taq Polymerase, 1 µl 10X Taq buffer, 2.5 

mM MgCl2, dNTPs (4 µM each) (all Invitrogen), 1 µM each primer and 1 µl 

template (crude lysate). End-point PCR was performed using the following 

program: 94 °C for 8 minutes to denature template and to activate the Taq 

enzyme, followed by 35 three-step (denaturing, annealing and extension steps) 

cycles of 94 °C for 10 s, 50 °C for 20 s and 68 °C for 40 s, followed by a final 

elongation step of 68 °C for 7 minutes.  

Next, a nested-PCR strategy was followed as it generally gave stronger, 

cleaner PCR products from the minimal concentrations of gDNA present in the 

crude L3 lysates. The PCR product, generated using the IBD77GF3B/IBD77GR2 

primers in the previous step, was diluted 1:50 with Ultrapure™ DNAse/RNAse-

Free Distilled Water (Gibco®) and used as the cDNA template for nested-PCR 

with the primer pair IBD77GF4 [5’ GAGTAGTKTCACARGARCCNATG 3’] (sense) and 

IBD77GR3 [5’ TCNCCNACRTTNGTRTADATNCC 3’] (antisense) in a Platinum Taq 

mastermix similar to that used in the initial PCR step. The thermocycling 

program was initiated with a denaturing step of 94 °C for 8 minutes, followed by 

35 three-step cycles of 94 °C for 10 s, 54 °C for 20 s and 68 °C for 40 s, and a 

final extension step of 68 °C for 7 minutes. To confirm successful PCR 

amplification of the Tci-pgp-9-IBDA domain and to assess evidence of sequence 

variants present in each T. circumcincta larva, the products of the nested-PCR 
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were run through the QIAxcel Advance System (QIAgen) using the QIAxcel 

Screening Kit (QIAgen), and analysed using the QIAxcel ScreenGel 1.0.2 software 

(QIAgen).  

 The QIAxcel Advanced System provides an automated alternative to using 

traditional agarose gel electrophoresis. Using capillary electrophoresis enables 

high resolution and sensitive separation of DNA and the QIAxcel ScreenGel 1.0.2 

software provides a virtual gel image of up to 96 samples per run. The migration 

speeds across the independently operated capillaries were normalised using the 

QX Alignment Marker containing 15 bp and 1 kb DNA markers. The size of the 

PCR products was determined by their relative migration distance when 

compared to known fragments in the QX DNA Size Marker 50 – 800 bp v2.0 

(QIAgen).  

 Generic products of various lengths were amplified by the degenerate 

primer pair IBD77GF4/IBD77GR3 in the nested-PCR, as was observed in a 

previous study (Bisset, 2007). The generic Tci-pgp-9-IBDA PCR products from 37 

individuals (10 from MTci2, 11 from MTci5, and 16 from MTci5PT) were selected 

to account for each of the different sized products and were ligated into pCR® 

4-TOPO® Vector (Invitrogen), transfected into One Shot® TOP10 Electrocomp™ 

Cells (Invitrogen) and grown overnight on Kanamycin (50 mg/ml) supplemented 

LB-agar plates as outlined in Section 2.7.2. The plasmids were purified and the 

cDNA inserts were sequenced at Massey Genome Service at Massey University, 

Palmerston North (New Zealand). The sequencing data generated were analysed 

with Lasergene® 10 (DNASTAR Inc.) bioinformatics software and aligned with 

gDNA sequence of Tci-pgp-9-IBDA allelic variants identified in NZ near-isogenic 

strains of T. circumcincta (Bisset, 2007).  

 Each UK allelic variant was sequenced in both the sense and antisense 

direction, with the exception of UKv2. Using different denaturing solvents during 

the de novo sequencing, such as DMSO or BigDye® Terminator v3.1 (Applied 

Biosystems), did not prove fruitful and each time the generated sequence was 

truncated at the same point when sequenced in both the sense and antisense 

directions. The complementarities shared in different parts of the gene were 

visualised using mfold (Zuker, 2003), a predictive DNA structure program 

(available at http://www.bioinfo.rpi.edu/applications/mfold).  

http://www.bioinfo.rpi.edu/applications/mfold
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5.2.2  Allele-specific PCR 

The DNA sequencing data generated from the initial Tci-pgp-9-IBDA PCR 

products were aligned with 9 allelic variants (numbered 1-3, 5-10) that had been 

previously identified in NZ isolates of the T. circumcincta (Bisset, 2007). Seven 

allelic variants from the UK isolates shared high levels of identity (93 – 99 %) 

with the Tci-pgp-9-IBDA alleles identified in the NZ isolates, therefore, primers 

designed by Bisset (2007) were used for genotyping (Table 5.1). Four alleles 

found in the UK isolates did not align with the previously identified alleles and 

these were numbered 11-14. Allele-specific primers were designed in unique, 

polymorphic regions within the introns of Tci-pgp-9-IBDA and were used to 

differentiate between variants. The melting temperatures of the primers were 

calculated and matched using OligoCalc software 

(http://www.basic.northwestern.edu/biotools/oligocalc.html). The OligoCalc 

software allowed additional checks for potential hairpin formation within the 

primer as well as 3’ complementarity and potential self-annealing sites. The 

allele-specific antisense primers, target sites shown in Figure 5.2, were paired 

with a degenerate (non allele-specific) IBD77GF5 sense primer [5’ 

GAGTAGTKTCACARGARCCNATGCT 3’] located near the 5’ end of the Tci-pgp-9-

IBDA fragment initially amplified with primer pair IBD77GF3B/IBD77GR2. The 

template cDNA used for the allele-specific PCR reactions was the 1:50 dilutions 

of the PCR products that were amplified using the IBD77GF3B/IBD77GR2 primers. 

A Platinum Taq mastermix was used where each 10 µl reaction volume 

contained: 0.5 units Platinum Taq Polymerase, 1 µl 10X Taq buffer, 1.5 mM 

MgCl2, dNTPs (4 µM each) (all Invitrogen), 1 µM each primer and 1 µl cDNA 

template. A touchdown PCR strategy was adopted where the annealing 

temperature in the first cycle is set above the expected annealing temperature 

and reduced by 0.5 °C each subsequent cycle to ‘touchdown’ to the expected 

annealing temperature (Don et al., 1991). This approach increases the 

specificity of primers by reducing non-specific binding at higher temperatures, 

and increases the efficiency towards the end of the cycling by reducing the 

annealing temperature. The touchdown PCR thermocycling program followed 

here was: 94 °C for 8 minutes, then 12 three-step cycles with decreasing 

annealing temperature by 0.5 °C per cycle, starting with a denaturing step at 94 

°C for 10 s, an annealing step at 62 °C for 20 s and an extension step 68 °C for 

http://www.basic.northwestern.edu/biotools/oligocalc.html
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30 s, each cycle; this was followed by 24 three-step cycles of 94 °C for 10 s, 56 

°C for 20 s and 68 °C for 30 s with a final extension step of 68 °C for 5 minutes. 

The PCR products were analysed using the QIAxcel Advanced System and the 

QIAxcel DNA Screening Kit (both QIAgen).  

 

 

 

Table 5.1  Allele-Specific Primers 

Allele-specific antisense PCR primers were combined with the sense primer, IBD77GF5 
[5’ GAGTAGTKTCACARGARCCNATGCT 3’], and used in Tci-pgp-9-IBDA genotyping 
reactions. Primer names starting with “IBD77RAS” were originally designed by Bisset 
(2007) and those starting with “FTcP” were designed in the present study, based on 
sequencing results from UK isolates.  

 

Allele 
Variant 

Primer Name Primer Sequence (5’ – 3’) 
Product 
Size (bp) 

1 IBD77RAS7 GTAGATTCCCTGAAATAAGCTCAC 449 

2 IBD77RAS11 CTTTTCCAGCGACGACCCGC 286 

3 IBD77RAS12 GCGCCATTCCACCACTTTCTTAG 291 

5 IBD77RAS4 CGTACTGTGGCGATCTCG 458 

6 IBD77RAS5B AGCTGAAAGGGCAGAGTCAGAG 610 

7 FTcP 45 ACCCGTGTGATAACATTGGAGAG 361 

8 IBD77RAS8A TCCTGCCCTCTCCCTCTCAAC 323 

9 IBD77RAS9A GTGTGATAACGTCGGGGAAGATC 356 

10 IBD77RAS10C GAGTAGTCCTACAACACCGCT 341 

11 FTcP 46 CACCTTTAAGATCGACAATACGAGC 246 

12 FTcP 47 CCGTGTAAGGGTGGGGATGG 289 

13 FTcP 48 AGAGAAACCAGCAGTAGTGAATGCAACG 422 

14 FTcP 49 AAAATTATAGGCGTTCGCTTTGCGC 191 

14 FTcP 50 CTTTCCAACGCTGCAACACTGACGA 305 
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5.2.3  Data Analysis 

Phylogenetic analyses were conducted using the TreeDyn program which 

is part of the Phylogeny.fr platform (Dereeper et al., 2008) available online at 

http://www.phylogeny.fr/ (Accessed 25th November 2013). A phylogenetic tree 

was constructed based on bootstrap (x100) alignment data to show the 

relationships between the allelic variants of Tci-pgp-9-IBDA, found in the UK and 

NZ strains of T. circumcincta. Allelic variants identified from the UK strains were 

numbered based on their relationships with allele variants previously identified 

in NZ strains (Bisset, 2007). Those that differed by ≥10 % were recorded as 

“new” variants and numbered accordingly.    

Presence or absence of each allelic variant in DNA from each of the 

individual larvae tested was recorded as a binary outcome (0,1) in an Excel 

spreadsheet. Genetic analyses (haplotype generation, allele frequency 

estimations, genetic distance and molecular analysis of variance) were 

conducted using GenAlEx Version 6.501 (Peakhall & Smouse, 2012). Because the 

maximum number of allelic variants amplified by the primers exceeded two and 

ranged up to 10 in some individuals, it was assumed that there was gene 

amplification with 5 copies or more in some larvae. Hence, it was not possible to 

determine whether an individual that was observed to be homozygous had one or 

more copies of the gene. As a result, although it was possible to generate a form 

of haplotype without reference to copy number, the data were not suitable for 

standard genetic analyses for diploid, co-dominant, single locus analysis. 

Instead, to gain some insights into the relatedness of populations and sources of 

variance, the data were treated as multilocus binary data, in which each allelic 

variant was considered as a separate locus with two states (0, 1). Analysis of 

variance (ANOVA) for the number of allelic variants per individual larva, by 

population was conducted using Minitab15 statistical software. 

 
 
 
 
 
 
 

 

 

http://www.phylogeny.fr/
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5.3  Results 

5.3.1  Sequencing Tci-pgp-9-IBDA Allelic Variants 

 The first step in identifying allelic variants, using a nested PCR strategy, 

was to amplify a specific region of Tci-pgp-9-IBDA. Amplification of a generic 

PCR product from individual L3 lysates from each of the MTci2, MTci5, MTci5PT 

strains, and L1 lysates from the sub-populations of MTci2 and MTci5 collected in 

Chapter 4, confirmed successful crude gDNA lysate. It was evident, from the 

QIAxcel virtual gel (Figure 5.1), that several allelic variants had been amplified, 

with a range of different sized PCR products observed. The presence of more 

than one product in the same lane indicated that individuals may possess more 

than one allelic variant. Selected PCR products of different sizes were cloned 

and sequenced from each of the isolates, and the results were aligned with nine 

Tci-pgp-9-IBDA allele sequences previously generated from NZ isolates of T. 

circumcincta (Bisset, 2007).  

 

 

Figure 5.1  Generic Secondary Nested PCR Products from MTci2 (individuals 1-12) 

Virtual gel output from the QIAxcel Advanced Systsem showing PCR products amplified 
using primer pair IBD77GF4/IBD77GR3 from a selection of individuals of the MTci5 
strain. The alignment markers, 15 bp and 1 kb are shown in each lane along with 
products of differing sizes, ranging from ~400 - 800 bp. The QX DNA Size Marker 50 – 800 
bp (v2.0) is highlighted in lane H12.  
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Several distinct allelic variants could be distinguished within the Tci-pgp-

9-IBDA gDNA region (Figure 5.2). The sequence data generated for the allelic 

variants present in UK isolates of T. circumcincta were aligned with the 9 NZ 

allelic variants previously described to check for homology. When classifying 

sequence variants, it was considered impractical to take into account every 

apparent SNP. A limited number of polymorphisms was considered as “one-off 

mutations” and as such were tolerated within each of the “allelic variants” 

groupings. In most cases, groupings were based on blocks of nucleotide 

substitutions, insertions or deletions within introns, which were repeatedly 

associated with particular allelic variants.  

Seven of the nine Tci-pgp-9-IBDA allele variants previously identified in 

the NZ near-isogenic strains were found in the UK strains of T. circumcincta. 

These seven allelic variants aligned closely to NZ variants (NZv) 2, 3, 5, 7, 8, 9, 

and 10, sharing between 93 – 99 % identity (Table 5.2) and were annotated 

accordingly.  Four allelic variants identified in the UK strains did not align with 

the previously identified NZ allelic variants, and were numbered 11-14. A 

phylogenetic tree was constructed to show relationships (Figure 5.3) between 

the allele variants found in UK and NZ strains of T. circumcincta, supporting the 

high levels of identity observed within this amplified gDNA fragment of Tci-pgp-

9-IBDA. Allele variant NZv1 was not observed in the UK strains, although UKv11 

was found to be most closely related to NZv1, sharing 89 % identity when 

aligned.  
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            1            [IBD77GF5] →               120 

UKv3        GAGTAGTKTCACARGAGCCHATGCTGTTCAACACGACCATTGAACAGGTTTGTTTTCGGG-GAGGTCTTATCAACAGAAAAA-----AAAAGGAAAATGGCTAATCTCATTCAGAATATC 

UKv5        GAGTAGTKTCACAGGAGCCAATGCTGTTTAACACAACGATTGAACAGGTTTGTTCTCACG AGAGCTYTGATCCAAAGAAA---GAAARATGGAAAATAACTCGTTCYTTTTAGAATATC 

UKv8        GAGTAGTTTCACAGGAGCCTATGCTGTTCAACACAACGATTGAACAGGTTTGTTCTCACGAGAGSTTTGATCAAAAGAAAAATGGAAAAATTGAAAATAACBCATTCCTTTCAGAATATC 

UKv9        GAGTAGTTTCACAGGAACCTATGCTTTTCAACACAACGATTGAACAGGTTTGTTTTGAGGAGGTCTG--ATCAATAGAAAAAAGGAAAAATTGAAAATGACGTATCTCTTTCAGAATATT 

UKv7        GAGTAGTGTCACAGGAGCCTATGCTGTTTAACACAACGATTGAACAGGTTTGTTCTCACGAGAGCTTTAATCCGAAGAAAAATGGGAAGATGGAAAATAACTCGGTCCTTTCAGAATATC 

UKv10       GAGTAGTTTCACAAGAACCGATGCTCTTTAACACGACGATTGAACAGGTTCGTTCCCACGAGAGCTTTGATCAAACGAAAAATGG-AAAACTGAAAATAACCCATTCCTTTCAGAACATC 

UKv12       GAGTAGTTTCACAGGAGCCKATGCTCTTTAACACAACGATTGAACAGGTTTGTTCTAACGAGAGCTTTGTTCAAAAGAAAAATG----------------CTGATCTCATTCAGAATATT 

UKv6        GAGTAGTTTCACAAGAGCCSATGCTGWTTAACACAACGATTGAACAGGTTTGTTCTCACGAGAGCTTTGATCCAAAGAAAAATGGAAAGATGGAAAATAACTCGTTCCTTTTAGAATATY 

UKv2        GAGTAGTKTCACAGGAGCCHATGCTGTTYAACACAACGATTGAACAGGTTTGTACTCACGAAAGTTTCGATCAAAAGAAAAATGGAAAAATTAAAAATAACCCATTCCTTTCAGAATATC 

UKv11       GAGTAGTKTCACAGGAGCCRATGCTGTTTAACACAACGATTGAACAGGTTTGTACTCACGAAAGTTTCGATCAAAAGAAAAATGGGAAAATTAAAAATAACCCATTCCTTTCAGAATATC 

UKv13       GAGTAGTTTCACAAGAGCCTATGCTGTTTAACACAACGATTGAACAGGTTTGT-TTTTGGAGAGATCTGATGAATAGAAAAAAGGAAA-ATGGTTAAT—CTCATT------CAGAATATC 

UKv14       GAGTAGTTTCACARGAACCKATGCTTTTCAACACAACGATTGAACAGGTTTGT-TTCTGAAGAGGTCTGATCAATAGAAAAATGGAAAGATGGAAAATGACTCATTCCTTTTAGAATATC 

            ******* ***** ** ** *****  * ***** ** ************ **            *    *     ****                    *           **** ** 

               V  V  S  Q  E  P  M  L  F  N  T  T  I  E  Q                                                                     N  I  

 

            121                 240 

UKv3        CGATATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGCAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAATCTCGTGCTGTTGAT---A  

UKv5        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGCAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAACCTCTTGCTGTTGATGTTA  

UKv8        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCGAACGCCTACAATTTTGTGCAGTCGTTCCCTGACGTGAGTTGGAACCTCGTGCTGTCGACCTTA  

UKv9        CGCTATGGACGTGAAAAAGTCACAGACGCTGAAATAACGGCCGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCGTTCCCTGATGTGAGTTGGAACCTCATGCTGTTGACGTTA  

UKv7        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGCAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAACCTCGTGCTGTTGACGTTA  

UKv10       CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCAGCACTCCGTAAAGCGAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGTTGTCGGTGTTA  

UKv12       CGTTATGGTCGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGTTGTCGGCGTTA  
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            121                240 

UKv6        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGCAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAACCTTGTGCTATTGATGTTA  

UKv2        CGTTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGCTGTCGGTGTTA  

UKv11       CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAAGCTCGTATTGTCGATCTTA ← 

UKv13       CGTTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGTAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAATATCCTGCTGTTGATGTTA  

UKv14       CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTGCGCAAAGCGAACGCCTATAATTTTGTACAGTCGTTCCCTGACGTGAGTTGGAATATCGTGCTGTTGATGTTA [FTcP49] 

            ** ***** ***************** ******** ** ** ***** ** ***** ******** ** ***** ***** ******** ***********  *  *  * * *     * 

             R  Y  G  R  E  K  V  T  D  A  E  I  T  A  A  L  R  K  A  N  A  Y  N  F  V  Q  S  F  P  D 

  

            241                 360 

UKv3        GATGCAGTGAGTGCAATAGCTGGTAGGCGG-------AGTCAGTC-TAAGAAAGT----GGTGGAATGGCGCTGGGAAGGAGAGAGCGGCAGGGTGTCGTT----CAATCCCCAACGCCC [IBD77RAS12] 

UKv5        GAGGCAGTGAGTGCAATAGCTGGTGGGCGG-------AGTCAG---------------------------------AAGGAGAGGGCGGGRCGGCGTCGTAGGACTACTGCCCAACGCTT  

UKv8        AAGGCAGTGAGDGCAATGCCTGGTAGGCGG-------ATTCAGTT-TGAGAAAGTCATTGGTGGAACGGTGTTDAGAAGGAGAGGGCAGGAGG-TGTCATAGGATCAACCCCTAACGYCC [IBD77RAS8A] 

UKv9        AAGGCAGTAAGTGCAATGGCTGGTAAGCGG-------AGCTAGTT-TGAGGAAGCCGTTGGTGGAACGGAACTTGGAAGGAGAGAGCGGGAGGATGTCGTAGGATCTTCCCC-GACGT-T ← 

UKv7        AAGGCAGTAAGTGCAATGGCTGGTAAGCGG-------AGTTAGTT-TGAGGAAGCCGTTGGTGGAACGGAACTTGGAAGGAGAGAGCGGGAGGGTGTCGTAGGATCCTCTCC-AATGT-T ← 

UKv10       AAGGCAGTCAGTGCAATGGCTGGTGGGGGA-------AGTTAGTT-TGAGGAAGTCATTGGTGGAACGGCTCTGGGAAGGAGAGCGCGGAGCGGTGTTGTAGGACTACTCCCCAATG-CC [IBD77RAS10C] 

UKv12       AAGGCAGTCAGTGCAATGGCTGGTAGGCAG-------AGTCATTT-TGAGAA---------------------------------------------------ACCATCCCC-----ACC ← 

UKv6        AAGGCAGTGATTGCAATGGCTGRTGGGGGGGGGGGGGAGTTAGTT-TGAGGAAGTCATTGGTGGAACGGCGCTGGGAAGGAGTGGGCGGGAGGGTGTCGTAGGACCACTTCCCAACG-CC  

UKv2        AAAGCAGTGATGGTAATGGCTGAGAGGCGG-----------GT---------CGTCGCTGGAAAAGGGTTGCAAGAGGGGGT-GGTGGGAGGGG-------------------------- [IBD77RAS11] 

UKv11      ←AAGGTGGTGATCGCAATGGGTGACAGGCGG-----------GGTTTCGAGGACGTTGGTGGAACAGCGCTGCAAGAGAGG---GGTAGAAGGGG-------------------------- [FTcP46] 

UKv13       AAGGCACTGATTGCAATGGCTGAGAGGTGG-----------AGTACTGAGGACGTCGTCARTGTTGCRGMGTTGRAAAGGAG-GGGCGGGAGGG--------------------------  

UKv14       AAGGCACTGATTGCAATGGCTGAGAGGTGG-----------AGTACTGAGG--GTCGTCAGTGTTGCAGCGTTGGAAAGGAG-GGGCGGGAGGG-------------------------- [FTcP50] 

             * *   * *  * ***   **    *                                  
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            361                 480 

UKv3        TT-ACACGGGTACCCGACAAGAGGCCCGTCGCGCGGCGAGAAGGCAGATCT-CAGACAGGTCAGCGGACGAGTCGGAGCGCG---------ATCTGGGACGTACTATAGTGTAGCCTATT  

UKv5        TT-ACACGGGTACCCGACAAGAGGCCCGTCGCGCGGCGAGAAGGCAAATYTACGGACAGGTCAGCGGACGA----GCACGCGTATTGTGCGATGTGGGACGTACTATAGTATAGTCTATT  

UKv8        HTYACACGGGTACCCGACAAGAGGCCCGTCGCGCGGCGAGAAGGCDGATCTACAGACAGGTCAGAGGACGAGTCGGAGCGCGTATTGTGCGATGTGGGACGTACTAT-----AGTATATT  

UKv9       ←ATCACACGGGTACCCGACAACAGGCCCGTCGCGCGGCGAGAAGGCATATCTACAGACGTGTCAGCGGACGAGTAGGAGCGCGTATTGTGCGATGTGGGACGTACTAT-GTATAGCATATT [IBD77RAS9A] 

UKv7       ←ATCACACGGGTACCCGACAATAGGCCCGTCGCGCGGCGAGAAGGCTGATCTACAGACGTGTCAGCGGACGAGTAGGAGCGCGTATTGTGCGATGTGGGACGTACTAT-GTATAGTATATT [FTcP45] 

UKv10       CTCGCACGGGTACCCGACAAGAGGCCCGTCGCGTAGCGAGAAGGCAGATCTACGGACAGGTCAGCGGACG---AGCAGCGCGTATTGTGCGATGTGGGACGTACTATAGTATAGTATATT  

UKv12      ←CTTACACGGGTATCCGACAAGAGGCCCGTCGCGCGGCGAGAAGGGAGATCTACAGACGGGTCAGCGGACGAGTC-GAGCGCGTACTGTGCGATGTGGGACGCACTATAGTGTAGACTATT [FTcP47] 

UKv6        CTAACACCGGTACCCGACAAGAGGCCCGTCGCGCAGCGAGAAGGCGGATCTACAGACGGGTCAGCGGATGATTCGCAGCGCGCATTGTGTGATGTGGGA--TACTATAGTAAAGTCTATT  

UKv2        --------------------------------------------------------------------------------------GTGNNNNNNNNNNNNN------------------  

UKv11       -----------------------------------------------------------------------------------------------TATGGT-------------------  

UKv13       --------------------------------------------------------------------------------------GTG---------AGRT------------------  

UKv14       --------------------------------------------------------------------------------------GTG---------AGGT------------------  

                                                                             

            481                 600 

UKv3        TAAATTGACGTTGA---------------------------CCCTTCACCTCTCTGCGTCCCTGCCTTCGCACCGCGGGCAGGCCTCCTGTCGGGTACCTTCTCACACCAATGACGTTCC  

UKv5        AAATTCGAG-----ATCGCCACAGTACGCGMTCAGGCACATYCCCTCACCTGTCTGCGTCCCTGCCTTCGCACCGTGGGCAGGCCTCCTGTCGGGTACCTTYTCACACCAATGACGTTCC [IBD77RAS4] 

UKv8        TAAATTATCGCTGAAACGCTACAGTACGCGCACAGGCACGTCCCCTCACTTGTCTGCGTCCCTGC-----------GGGCAGGCCTCCTGTCGGGTACTTCCT-ACACCAATGAG-----  

UKv9        TGAACTACCGCTGAATCGCTACAGTACGCGCCC-GGCACGTCCCCTCACTTGTCTGCGTCTCTGC-----------GGGCAGGCCTCCTGTCGGGTACTTCCT-ACACCAATGAG-----  

UKv7        TGAGCTACCGCTGAATCGCTACAGTACGCGCACAGGCACGTCCCCTCACTTGTCTGCGTCCTTGC-----------GGGCAGGCCTCCTGTCGGGTACTTCCT-ACACCAATGAG-----  

UKv10       TAAATTGACGCTGAATCGCTACAGTACGCGCACAGGCACGTCCCCTCACCTGTCTGCGTCCCTGCCATTGCATCGCGGGCAGGCCTCCTGTCGGGTACTTCCT-ACACCAATGAG-----  

UKv12       TAAATTGACGCTGAATCGCCACAGTACGCGCTCAGGCAGGTACCCTCACCTGCCTG-ATCCCTGCCTTCGTACCGCGGGCAGGCCTTTTGTCGGGTACCCCCTCACACCAATGAC-----  

UKv6        TAAATTGACGCTGAATCGCCACAGTACGCGCTCAGGCACGTCCCCTCGCCTGTCTGCGTCCCTGCCTTCGCACTGCGAGCAGGCCTCCCGTCCGGTACCCCCTTACACCAGTGAA-----  

                                                      *   * *                                                *    *  ***** ***       
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            481                                                                                                                  600 

UKv2        ----NNNNNCC-----------------CCCCCCT------CCTCCCAC----------------------------------------------AACGCCGTTCCACCAGTGACG-TTA  

UKv11       ----CAGACAC-----------------CCCCCCC------CCTCCCAC----------------------------------------------AACGCCCTTCCACCAATGACCCTTC  

UKv13       ----TAAACGC-----------------CCCCCACCCMC-TCCTCYCAC----------------------------------------------ARCGCCCTWCCACCAATGA--CRTT  

UKv14       ----TAAACGC-----------------CCCCCACACCC-TCCTCCCAC----------------------------------------------AACGCCCTTCCACCAATGA--CGTT  

                                                      *   * *                                                *    *  ***** ***       

 

            601                    705 

UKv3        -TGAGTTGACTCCGCCTCTCTGCTGCTGCAATCACTACTGCT-----TGCTTCC-CGTAACAAAGTCAAGCTCGTTTC-AGGGCATYTACACAAACGTHGGNGA 

UKv5        -TGAATTGACTCCRCCTCTCTGCTGCTGCARTCACTACT-G-----CTTGCTTCTCGTAACGAAGTCRAGCTCGTTTC-AGGGMATHTAYACAAAYGTHGGNGA 

UKv8        ATCCCTTAACTCCACCTCCCAGCTGTCGCAATCACTGCT-CT-AAACTGCTGCCCCTCAACGAGCTGGACCTTTTTTC-AGGGAATCTACACGAACGTTGGHGA 

UKv9        ATCCCTTAACTCCACCTCCCAGCTGTCGCAATCACTGCT-CT-AAACTACTGCCCCTCGTCGAGCTAGTTCTTTTT-C-AGGGCATCTACACAAATGTGGGAGA 

UKv7        ATCACTTAACTCCACCTCCTAGCTGTCGCAATCACTGCC-CT-AAACCACTGCCCCTCAACGAGCTGGACCTTTTTTC-AGGGCATCTACACAAACGTBGGDGA 

UKv10       GTCTCTTAACTCCGCCTCCCAGCTGTCGCAATCACTGCT-CT-AAACTACTGCCCCTCAACGAGCGAGAACTTTTCTCCAGGGAATATACACVAACGTAGGVGA 

UKv12       GTCCCTTAACTTCACCTCTCACCTGTTGCAATCACTGCT-CTCAAACTACTGCCTCTTGACGTGCTGGACGTTTTTTC-AGGGCATCTACACWAAYGTWGGNGA 

UKv6        GTCCTCTGACTCTGCCTTTCAGCTGTTGCAACCACTGCT-CTCAAACTACTGC-CCTTAACGAGCTAGATCTTCTTTC-AGGGAATATACACAAATGTCGGCGA [IBD77RAS5B] 

UKv2        TTGAATTGGTTTCGCCTCTGAACTGCTGCAATCGCTACT------GCTGGTTTCTCGTAACGAAGTCAAGCTCGTTTC-AGGGYATMTACACAAACGTYGGTGA 

UKv11       CTGAATCAGTTCCGCCTCTCAGCTGCTGCAATCACTACT------GCTGATTCCTCGT-TGAAAGGTGAGTTTATTTC-AGGGYATCTACACSAACGTCGGRGA 

UKv13       ATAAATTGGTTGCGCCTCTCAGCCGTTGCAWTCACTRCT------GCTGGTTTCTCKTAAT-GAGGTRAGCTTATTTC-AGGGVATCTACACAAACGTAGGBGA [FTcP48] 

UKv14       ATAAATTGGTTGCGCCTCTCAGCTGTTGCAATCACAACT------GCTGGTTTCTC-TAAT-GAGGTGAGCTTATTTC-AGGGGATTTATACAAACGTAGGAGA 

             *        *   ***     * *  ***  * *  *                 *               *  *  * **** ** ** ** ** ** ** ** 

                                                                                              G  I  Y  T  N  V  G  

Figure 5.2  Allele-Specific Primer Locations Within the Tci-pgp-9-IBDA Domain  

ClustalW2 multiple alignment of partial gDNA sequences of Tci-pgp-9 allelic variants showing introns (shaded), amino acid translation 
(underlined) and locations of allele-specific primers (boxed) used to distinguish between allelic variants.
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Table 5.2  Percentage Identity of Tci-pgp-9-IBDA Allelic Variants  

The percentage identity between the Tci-pgp-9-IBDA allelic variants from the UK and NZ 
strains of T. circumcincta was calculated and shown in the table. The allele variants 
that shared the highest percentage of identity (shaded) formed the basis for the 
numbering of the UK allelic variants. The homology between the NZ isolates is shown to 
the right of the dashed line. 

 

 

UK 
v2 

UK 
v3 

UK 
v5 

UK 
v6 

UK 
v7 

UK 
v8 

UK 
v9 

UK 
v10 

UK 
v11 

UK 
v12 

UK 
v13 

UK 
v14 

NZ 
v1 

NZ 
v2 

NZ 
v3 

NZ 
v5 

NZ 
v6 

NZ 
v7 

NZ 
v8 

NZ 
v9 

UKv3 80 
                   

UKv5 81 84 
                  

UKv6 76 83 86 
                 

UKv7 76 81 84 87 
                

UKv8 80 83 83 85 90 
               

UKv9 74 82 81 83 91 88 
              

UKv10 79 82 84 87 87 89 86 
             

UKv11 83 80 80 82 80 84 79 82 
            

UKv12 75 79 81 85 84 85 83 86 79 
           

UKv13 76 80 80 81 81 79 78 77 78 77 
          

UKv14 78 80 80 83 81 79 80 81 80 78 91 
         

NZv1 76 82 80 81 79 80 80 80 89 76 82 81 
        

NZv2 93 80 81 79 79 84 76 81 85 77 79 81 79 
       

NZv3 80 98 84 83 81 84 82 83 80 79 80 80 82 81 
      

NZv5 80 85 96 87 85 85 82 85 82 82 82 82 83 84 86 
     

NZv6 77 83 86 99 87 86 83 87 82 85 81 84 82 80 83 88 
    

NZv7 74 79 81 82 95 87 86 84 78 81 79 80 79 78 80 83 83 
   

NZv8 81 82 82 85 89 95 88 90 83 86 79 81 78 84 82 83 85 86 
  

NZv9 73 81 80 83 91 88 96 86 77 84 79 83 79 77 81 81 83 87 88 
 

NZv10 78 82 84 87 87 88 86 99 82 86 77 81 81 81 82 85 87 83 89 86 

 

 

 

Figure 5.3  Phylogenetic Relationships of Tci-pgp-9-IBDA Allelic Variants 

A phylogenetic tree constructed based on bootstrap (x100) alignment data to show the 
relationship between the allelic variants of Tci-pgp-9-IBDA, found in the UK and NZ 
strains of T. circumcincta. Percentage concordance based on 100 bootstraps is shown at 
the nodes. 
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 Numerous attempts to obtain the complete sequence of UKv2 were made, 

but each time the sequencing was truncated at the same point in both the sense 

or antisense directions. Therefore, the UKv2 sequence remains incomplete, 

though the partial 5’ and 3’ sequences generated aligned closely to the NZv2 

(Figure 5.4) allowing its categorisation as UKv2. From alignments with the NZv2 

allele, it is likely that the loop of the hairpin is formed by 18 unknown 

nucleotides, consequently the UKv2 allele has been annotated with 18 ‘N’ bases 

to represent the portion of unknown sequence (yellow highlighted section in 

Figure 5.4). The complementarities shared in different parts of the gene were 

visualised using mfold (Zuker, 2003), a predictive DNA structure program (Figure 

5.5). Closer inspection of the sequencing data revealed the presence of a large 

hairpin structure in UKv2, which may impede the DNA sequencing method.  

UKv2   GAGTAGTKTCACAGGAGCCHATGCTGTTYAACACAACGATTGAACAGGTTTGTACTCACG  60  

NZv2   GAGTAGTGTCACAAGAGCCTATGCTGTTTAACACAACGATTGAACAGGTTTGTACTCACG  60 

       ******* ***** ***** ******** ******************************* 

 

UKv2   AAAGTTTCGATCAAAAGAAAAATGGAAAAATTAAAAATAACCCATTCCTTTCAGAATATC  120 

NZv2   AAAGTTTCGATCAAAAGAAAAATGGAAAAATTAAAAATAACCCATTCCTTTCAGAATATC  120 

       ************************************************************ 

 

UKv2   CGTTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAAC  180 

NZv2   CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAAC  180 

       ** ********************************************************* 

 

UKv2   GCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGCTGTCGGTGTTA  240 

NZv2   GCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGCTGTCGGTGTTA  240 

       ************************************************************ 

 

UKv2   AAAGCAGTGATGGTAATGGCTGAGAGGCGGGTCGTCGCTGGAAAAGGGTTGCAAGAGGGG  300 

NZv2   AAAGCAGTGATGGTAATGGCTCAGAGGCGGGTCGTCGCTGGAAAAGGGTTGCAAGAGGGG  300 

       ********************* ************************************** 

 

UKv2   GTGGTGGGAGGGGGTGNNNNNNNNNNNNNNNNNNCCCCCCCCTCCTCCCACAACGCCGTT  360 

NZv2   GTGGTGGGAGGGGGTGTGGTCACACCGCCCCTCCCCCCCCCCTCCTCCCACAACGCCGTT  360 

       ****************                  ************************** 

 

UKv2   CCACCAGTGACGTTATTGAATTGGTTTCGCCTCTGAACTGCTGCAATCGCTACTGCTGGT  420 

NZv2   CAACCAGTGACGTTATTGAATTGGTTTCGCCTCTGAACTGCTGCAATCGCTACTGCTGGT  420 

       * ********************************************************** 

 

UKv2   TTCTCGTAACGAAGTCAAGCTCGTTTCAGGGYATMTACACAAACGTYGGTGA  472 

NZv2   TTCTCGTAACGAAGTCAAGCTCGTTTCAGGGAATCTACACGAACGTTGGTGA  472 

       ******************************* ** ***** ***** ***** 

Figure 5.4  ClustalW Alignment of UKv2 and NZv2 

Alignment showing the identity between the allele variants UKv2 and NZv2. It was not 
possible to generate the complete UKv2 sequence, therefore an 18 nucleotide stretch 
(shaded) remains to be determined. The generation of sequence data at the 5’ and 3’ 
ends of this fragment was successful.  
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Figure 5.5  Prediction of DNA-Folding in UK Allele Variant 2 

The DNA sequence data was generated for UKv2 in the sense and antisense directions. 
When aligned with the NZv2 sequence it revealed 18 nucleotides (arrowed) that had not 
been sequenced. One possible explanation for the failure to sequence through this 
region is offered by the high level of self complementarity of the sequence, 
immediately before and after the unknown nucleotides, as predicted by the mfold 
program (Zuker, 2003).  

 

  

5.3.2  Allele-Specific Genotyping 

 The gDNA sequence data generated above were used to design allele-

specific primers to distinguish between the allele variant(s) present in individual 

larvae. A series of allele-specific primers targeted unique regions of 

polymorphism in each allelic variant ensuring that each primer did not cross-

react with other allelic variants. The specificity of the primers was confirmed in 

the primers listed in Table 5.1, with the exception of primers FTcP49 and 

FTcP50, which displayed cross-reactivity with other variants. The sequencing 

data generated from the amplified fragment of Tci-pgp-9-IBDA in Figure 5.2 

revealed very few polymorphisms that were unique to UKv14, drastically limiting 

the sites available for the placement of an allele-specific primer. Sequencing 

data for UKv6 were initially generated from a single larva belonging to the MTci5 

isolate. During the genotyping analysis, the rarity of the UKv6 sequence variant 

became apparent as UKv6 was absent in the selected larvae from the UK 

isolates. Using allele-specific PCR reactions, the presence or absence of each 

allelic variant was determined in individuals from the MTci2, MTci5 and MTci5PT 

UK isolates. A representative gel-output for allele-specific PCR reactions that 

screened for UKv5 in the MTci2 and MTci5 isolates is shown in Figure 5.6. The 

results for each of the other variants are recorded in Appendix 4. The procedure 

was repeated for the sub-populations of MTci2 and MTci5 larvae collected in 

Chapter 4 and recorded in Appendix 5.  
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Figure 5.6  Representative Virtual Gels Showing UKv5 Allele-Specific PCR 
Products 

Virtual gel output from the QIAxcel Advanced System showing screening for UKv5 PCR 
products (458 bp). The gel shows products amplified from larvae A1-A12 from MTci2 
(top) and MTci5 (bottom) isolates, along with a molecular size marker in row H12. 
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 The combination of allelic variants that each larva possessed was 

allocated a “haplotype” number (Appendix 6). In all, 147 different haplotypes 

were identified. The numbers and proportions of each of the allelic variants are 

listed in Tables 5.3, 5.4 and 5.5. Over all 439 individual larvae that were 

genotyped, the allelic variants UKv2, UKv13, UKv5 and UKv3 were most common, 

being recorded in 0.57, 0.45, 0.37 and 0.35 of individuals. However, given that it 

was impossible to distinguish homozygotes from heterozygotes and larvae with 

single copies from those with multiple copies, it is likely that an analysis of 

frequencies of individual allelic variants would be misleading. 

 

Table 5.3  Frequency of Tci-pgp-9 Allelic Variants in the MTci2 and MTci5 Isolates 

Incidence of Tci-pgp-9-IBDA allele variants identified from the MTci2 and MTci5 isolates 
of T. circumcincta. The number and the percentage of individuals which possessed a 
particular allelic variant are described.  

 

Allele 

Variant 

Allele Incidence  
(Percentages in brackets) 

MTci2 

(n = 84) 

MTci5 

(n = 84) 

2 
42 

(50.00%) 

40 

(47.62%) 

3 
9 

(10.71%) 

47 

(55.95%) 

5 
50 

(59.52%) 

17 

(20.24%) 

6 
0 

(0.0%) 

0 

(0.0%) 

7 
8 

(9.52%) 

15 

(17.85%) 

8 
45 

(53.57%) 

18 

(21.43%) 

9 
37 

(45.05%) 

18 

(21.43%) 

10 
31 

(36.90%) 

15 

(17.86%) 

11 
13 

(15.48%) 

17 

(20.24%) 

12 
39 

(46.43%) 

15 

(17.86%) 

13 
48 

(57.14%) 

26 

(30.95%) 
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Table 5.4  Frequency of Allelic Variants Present in Anthelmintic Susceptible UK 

Isolates of T. circumcincta 

The incidence of allelic variants was measured in the MTci2 and the sub-populations of 
MTci2 that were collected after in vitro exposure to IVM.  

 

 

 

Allele 

Variant 

Allele Incidence  
(Percentages in brackets) 

MTci2 

(n = 84) 

MTci2(NF0.1µM) 

(n = 43) 

MTci2(F10µM) 

(n = 43) 

2 
42 

(50.00%) 

40 

(93.02%) 

34 

(79.07%) 

3 
9 

(10.71%) 

4 

(9.30%) 

7 

(16.28%) 

5 
50 

(59.52%) 

32 

(74.42%) 

24 

(55.81%) 

6 
0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

7 
8 

(9.52%) 

3 

(6.98%) 

2 

(4.65%) 

8 
45 

(53.57%) 

1 

(2.33%) 

0 

(0.00%) 

9 
37 

(45.05%) 

7 

(16.42%) 

7 

(16.28%) 

10 
31 

(36.90%) 

14 

(32.56%) 

10 

(26.26%) 

11 
13 

(15.48%) 

1 

(2.33%) 

3 

(6.98%) 

12 
39 

(46.43%) 

7 

(16.28%) 

9 

(20.93%) 

13 
48  

(57.14%) 

26 

(60.47%) 

27 

(62.79%) 
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Table 5.5  Frequency of Tci-pgp-9 Allelic Variants in Multiple Anthelmintic 

Resistant UK Isolates of T. circumcincta 

The frequency of allelic variants in the MTci5 isolate was compared to populations that 
were collected after both in vivo exposure (MTci5PT) and in vitro exposure 
(MTci5(NF0.1µM) and MTci5(F10µM)).  

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 Often more than one allelic variant was detected in an individual larva, as 

indicated by more than one PCR product in Figure 5.1. The results of the allele-

specific PCR were collated and revealed the presence of up to ten different 

allelic variants in larvae from MTci2, significantly more than the MTci5 and 

MTci5PT isolates (p < 0.001). The MTci5 isolate possessed up to 7 allelic variants, 

and a further reduction was observed in the MTci5PT isolate which displayed up 

to 5 different allelic variants (Figure 5.7). Comparisons of the number of alleles 

in each isolate showed MTci2 had a mean of 3.8 variants, a reduction in the 

Allele 

Variant 

Allele Incidence (Percentages in brackets) 

MTci5 

(n = 84) 

MTci5PT 

(n = 80) 

MTci5(NF0.1µM) 

(n = 45) 

MTci5(F10µM) 

(n = 47) 

2 
40 

(47.62%) 

34 

(42.50%) 

27 

(60.00%) 

31 

(65.95%) 

3 
47 

(55.95%) 

14 

(17.50%) 

35 

(77.78%) 

36 

(76.60%) 

5 
17 

(20.24%) 

34 

(42.50%) 

3 

(6.67%) 

3 

(6.38%) 

6 
0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

7 
15 

(17.85%) 

9 

(11.25%) 

5 

(11.11%) 

4 

(8.51%) 

8 
18 

(21.43%) 

8 

(10.00%) 

8 

(17.78%) 

6 

(12.77%) 

9 
18 

(21.43%) 

11 

(13.75%) 

5 

(11.11%) 

6 

(12.77%) 

10 
15 

(17.86%) 

9 

(11.25%) 

6 

(13.33%) 

5 

(10.64%) 

11 
17 

(20.24%) 

6 

(7.50%) 

2 

(4.44%) 

2 

(4.26%) 

12 
15 

(17.86%) 

32 

(40.00%) 

6 

(13.33%) 

6 

(12.77%) 

13 
26 

(30.95%) 

20 

(25.00%) 

25 

(55.56%) 

27 

(57.45%) 



106 
 

 

mean number of allelic variants to 2.7 was observed in the MTci5 isolate, and a 

further reduction in the MTci5PT isolate, which displayed a mean of 2.2 variants. 

The one-way ANOVA analyses (Figure 5.8) revealed that the majority of larvae in 

the MTci2 isolate possess 2-5 allelic variants, whereas, representatives of the 

MTci5 and MTci5PT isolates possess 2-3 allelic variants.  

 

 

Figure 5.7  Number of Allelic Variants Identified in Individual Larvae 

Larvae from the MTci2 (white), MTci5 (grey) and MTci5PT (black) were screened for the 
presence of the 13 different allelic variants. The total number of larvae tested was 84 
for each of the MTci2 and MTci5 isolates and 80 for the MTci5PT isolate. 
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One-Way ANOVA: 

Source DF SS MS F P 

Isolate 2 113.64 56.82 25.49 <0.001 

Error 245 546.20 2.23   

Total 247 659.83    

s = 1.493    R-Sq = 17.22 %    R-Sq(adj) = 16.55 % 

Level N Mean StDev 

MTci2 84 3.833 2.053 

MTci5 84 2.174 1.228 

MTci5PT 80 2.212 0.951 

 

        Individual 95 % CIs For Mean Based on Pooled StDev  
        ---------+---------+---------+---------+  
MTci2                               (----*----)  
MTci5            (----*-----)  
MTci5PT (-----*----)  
        ---------+---------+---------+---------+  
               2.40      3.00      3.60      4.20 

 

Pooled StDev = 1.493  

 
 

 

Figure 5.8  One-way ANOVA Analysis of Numbers of Allelic Variants 

The number of allelic variants present in individual larvae was analysed using one-way 
analysis of variance. The variation between the MTci2, MTci5 and MTci5PT isolates was 
analysed and the results were summarised in the form of a boxplot with stars indicating 
outlier points.  
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 The number of allelic variants present in the sub-populations of MTci2 and 

MTci5, collected after IVM exposure in vitro, was analysed and revealed that 

these sub-populations possessed between 1-5 allelic variants (Figure 5.9). The 

one-way ANOVA analyses indicated that the sub-populations with inhibited 

feeding when exposed to 0.1 µM IVM, MTci2(NF0.1µM) and MTci5(NF0.1µM), had a greater 

range in the number of allelic variants compared to the MTci2(F10µM) and MTci5(F10µM) 

sub-populations, which retained the ability to feed after exposure to 10 µM IVM. 

No significant differences in the mean number of allelic variants were observed 

between the sub-populations tested, as illustrated in Figure 5.10.  

 

 

 

Figure 5.9  Number of Allele Variants Present in Selected Sub-populations 
 
The number of allelic variants present in individual larvae from the MTci2(NF0.1µM) 
(white), MTci2(F10µM) (light grey), MTci5(NF0.1µM) (dark grey), and MTci5(F10µM) (black) sub-
populations was determined. Forty-three larvae were screened from the MTci2(NF0.1µM) 
and MTci2(F10µM) sub-populations; 45 and 47 larvae screened in the MTci5(NF0.1µM) and 
MTci5(F10µM) sub-populations, respectively. 
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One-Way ANOVA: 

Source DF SS MS F P 

Isolate 3 5.813 1.930 2.20 0.001 

Error 174 147.783 0.849   

Total 177 153.596    

s = 0.9216   R-Sq = 3.78 %  R-Sq(adj) = 2.13 % 

Level N Mean StDev 

MTci2(NF0.1µM) 43 3.1395 0.8333 

MTci2(F10µM)     43 2.8605 0.9150 

MTci5(NF0.1µM)    45 2.7111 1.1000 

MTci5(NF0.1µM)    47 2.6809 0.8104 

 

               Individual 95 % CIs For Mean Based on Pooled StDev  
              ---------+---------+---------+---------+  
MTci2

(NF0.1µM)
                 (---------*--------)  

MTci2
(F10µM)

         (--------*---------)  
MTci5

(NF0.1µM)
   (--------*--------)  

MTci5
(F10µM)

    (-------*--------)  
              ---------+---------+---------+---------+  
                     2.70      3.00      3.30      3.60  

 

Pooled StDev = 0.9216  

 

 

Figure 5.10  One-way ANOVA Analysis of Numbers of Allelic Variants in Selected 
Subpopulations  

The number of allelic variants present in individual larvae was analysed using one-way 
analysis of variance. The variation between the selected subpopulations of the MTci2, 
and MTci5 isolates was analysed and the results were summarised in the form of a 
boxplot, where stars represent outlier points.   
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Appendices 4 and 5 list the haplotypes seen in each of the populations. 

Figure 5.11 shows the distribution of haplotypes across all populations. It is clear 

that the majority of haplotypes were unique to individual larvae, with only a few 

haplotypes being seen in many. Table 5.6 shows the most frequent haplotypes 

(occurring in at least 5 individuals), with their representation in each 

population. The most common haplotype overall was 70 (UKv2, 13), which was 

equally common in all populations. Not surprisingly, given the large number of 

different haplotypes, and the small number of haplotypes represented by more 

than 5 individuals, there were few significant deviations from the expected 

distribution. However, haplotype 21 (UKv2, 3, 13) was seen twice as frequently 

in MTci5 larvae that fed successfully after in vitro treatment with IVM (2 = 

50.9168, 6 d.f., p <0.005). In contrast, haplotype 71 (UKv3) was most common in 

the MTci5 larvae that failed to feed after in vitro treatment with IVM (2 = 

20.2756, p <0.005). 

 

 

 
Figure 5.11  Frequency Distribution of Haplotypes Over All Populations Combined  

The majority of haplotypes were seen in only one larva, with only 8 haplotypes being 
seen in 10 or more individual larvae. 
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The MTci2, MTci5, MTci5PT and the sub-populations derived from MTci2 

and MTci5 were not very distinct. There were no private alleles, that is, all 

allelic variants were present in all populations. Nei’s genetic distance matrix is 

shown in Table 5.7. It shows particularly short Nei genetic distances between the 

feeder and non-feeder samples within each population and between the source 

populations (MTci2 and MTci5) and their derived population. The longest Nei 

genetic distance (0.060) is between MTci2 and MTci5(F1.0µM) populations. The 

relatively small contribution of the populations to genetic variance is shown also 

in Table 5.8, a molecular analysis of variance. This analysis suggests that the 

within-population molecular variance amounts to 86 %, and the among-

population variance is 14 %. 
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Table 5.6  Frequency of the Common Tci-pgp-9 Haplotypes in Each Population 

The frequency of haplotypes occurring at least five times in total within all populations 
under study: MTci2 and MTci5, and populations that were collected after in vivo 
exposure (MTci5PT) and in vitro exposure to IVM (MTci5(NF0.1µM) and MTci5(F10µM)). Within 
each column (population), the most common haplotype is shaded. In those cells in 

which the 2 value ≥ 10, data are presented in order: count, percentage of column 

(population) of this genotype, expected count, 2 

 

Haplotype         

Code Allelic 
Variant(s) 

MTci2 MTci2(NF0.1µM) MTci2(F10µM) MTci5 MTci5(NF0.1µM) MTci5(F10µM) MTci5PT All 

70 2,13 4 5 8 1 4 6 5 33 

21 2,3,13 0 0 1 5 8 16 

34% 

3.22 

50.9168 

0 30 

44 2,5,13 5 9 

19% 

2.7836 

13.8826 

8 1 0 1 2 

 

26 

71 3 0 0 0 7 9 

19% 

2.25 

20.2756 

3 2 21 

124 5,12 7 1 2 1 0 0 8 19 

 null 0 4 4 0 2 0 4 14 

69 2,12,13 5 0 3 2 0 1 0 11 

1 2 2 0 0 3 0 0 5 10 

103 3,12 0 0 0 2 1 3 3 9 

40 2,5,10,13 0 5 3 0 0 0 1 9 

2 2,3 0 2 0 5 1 0 0 8 

68 2,12 0 1 0 1 0 0 5 7 

22 2,5 0 1 1 0 0 0 4 6 

90 3,8 0 0 0 4 0 2 0 6 

122 5,10 1 0 1 1 0 0 3 6 

145 12 0 0 2 0 0 0 3 5 

105 5 3 0 0 1 0 0 1 5 

110 5,8 1 0 0 1 0 1 2 5 

64 2,9,13 0 2 1 2 0 0 0 5 

51 2,7,9,13 0 1 1 1 1 0 1 5 

20 2,3,12,13 0 0 0 0 3 1 1 5 
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Table 5.7  Pairwise Population Matrix of Nei’s Genetic Distance for the 7 

Populations Understudy 

Analysis based on 7 populations with 11 binary loci (rationale provided in Materials and 
Methods). Populations with Nei genetic distance = 0 are identical. Increasing values 
indicate increasing genetic distance between populations.  

 

MTci2 MTci5 MTci5PT MTci2(NF0.1µM) MTci2(F10µM) MTci5(NF0.1µM) MTci5(F10µM) 

 0.000 

      

MTci2 

0.034 0.000 

     

MTci5 

0.021 0.012 0.000 

    

MTci5PT 

0.031 0.043 0.030 0.000 

   

MTci2(NF0.1µM) 

0.023 0.023 0.015 0.005 0.000 

  

MTci2(F10µM) 

0.055 0.008 0.031 0.052 0.032 0.000 

 

MTci5(NF0.1µM) 

0.060 0.012 0.037 0.051 0.032 0.001 0.000 MTci5(F10µM) 

 
 
 
 
Table 5.8  Molecular Analysis of Variance for the 7 Populations Understudy 

Molecular analysis of variance (AMOVA) conducted using GenAlEx version 6.501 with 438 
samples, 7 populations and 11 binary loci. PhiPT is analogous to Fst for co-dominant data 
(a scaled estimator for differentiation ranging from 0 = identical to 1 = no identity). 

 

Source 
Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square 

Estimated 
Variance 

Percentage 

Among 
Populations 

6 104.635 17.439 0.256 14 % 

Within Populations 432 690.025 1.597 1.597 86 % 

Total 438 794.661 

 

1.853 100 % 

 

Value P(rand ≥ data) 

  PhiPT 0.138 0.001 
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5.4  Discussion 

 The focus of this Chapter was to identify and record the allelic variation 

in the gDNA sequence of the N-terminal internucleotide binding domain, Tci-

pgp-9-IBDA, of individuals from UK isolates of T. circumcincta. The sequences 

generated were compared with 9 allelic variants previously identified in the 

same Tci-pgp-9-IBDA region isolated from NZ strains of T. circumcincta (Bisset, 

2007) (Figure 5.2). The incidences of the identified allelic variants in over 80 

randomly selected larvae from each of MTci2, MTci5 and MTci5PT isolates of  

T. circumcincta were recorded and classified into 12 different “allelic variants”. 

Eight of the nine previously identified allele variants were present in the UK 

isolates, with NZv1 the exception. An additional four allelic variants were 

sequenced and numbered 11-14 (Figure 5.3). High levels of identity (93-99 %) 

shared between the UK and NZ Tci-pgp-9-IBDA allelic variants (Table 5.2), 

suggested a degree of conservation of these alleles in these two geographically 

diverse T. circumcincta isolates. The results confirmed a high degree of 

sequence diversity in the introns, as well as synonymous SNPs in the exons of 

Tci-pgp-9-IBDA. It is conceivable that polymorphisms elsewhere in the Tci-pgp-9 

cDNA sequence may be linked to the allele variants identified in the intronic 

regions in the Tci-pgp-9-IBDA domain, although this remains to be proven. The 

possibility of having an allele that is capable of negating or diminishing the toxic 

effects of a drug is greater in genetically diverse species, such as the 

trichostongyloid nematodes H. contortus (Beech et al., 1994) and T. 

circumcincta (Blackhall et al., 1998). Pgps have been implicated in the 

molecular basis of IVM-resistance (Xu et al., 1998; Molento & Prichard, 1999), 

and polymorphisms in certain alleles have the potential to improve drug efflux 

from the cell, thereby changing the drug distribution within the parasite’s 

tissues, thus preventing anthelmintics reaching their site of action 

(Wolstenholme et al., 2004; Prichard & Roulet, 2007).  

 Based on the amplification of an allele-specific PCR product, comparisons 

of the observed frequency of allele variants were conducted. The majority (78.6 

%) of individuals in the anthelmintic susceptible isolate, MTci2, carried between 

1-4 allelic variants, and 21.4 % carried >5 allelic variants of Tci-pgp-9. The 

maximum number of allelic variants observed in an individual MTci2 larva was 

ten, suggesting at least 5 heterozygous copies of the Tci-pgp-9 gene were 
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amplified by the allele-specific PCR. Possessing up to ten different variants may 

provide this individual with an arsenal of Tci-pgp-9 alleles which potentially 

offer a fitness advantage against a variety of xenobiotic agents. A reduction in 

the number of allelic variants in individuals of the anthelmintic resistant isolate, 

MTci5, was observed with 92.9 % of individuals carrying ≤ 4 variants and the 

remaining 7.1 % of larvae possessing 5-7 allelic variants. These results would 

suggest that purifying selection has eliminated deleterious alleles (Prince & 

Pickett, 2002). The further reduction in allele variants observed in the MTci5PT 

isolate, collected after in vivo exposure to IVM, supports this theory of purifying 

selection as 98.8 % of larvae displayed ≤ 4 variants with just one individual (1.2 

%) possessing 5 allelic variants.  

A proportion of individuals displaying fewer than ten alleles would be 

assumed to be homozygous in some or all of its copies of the Tci-pgp-9 gene. As 

selection can act independently on each duplicated allelic variant, increasing its 

specificity (Prince & Pickett, 2002), it is conceivable that T. circumcincta can 

accumulate homozygous copies of the ‘resistant allele variants’. Individuals 

possessing alleles that are susceptible to the action of the drug will succumb to 

the drug’s toxic effects, removing the susceptible allele(s) from the population, 

thereby increasing the frequency of ‘resistant’ allele(s) that offer a survival 

advantage (Blackhall et al., 1998). Therefore, changes in ‘resistant’ allele 

frequency in a population may indicate the resistance status of that population. 

Increases in homozygosity in a population can be a consequence of non-random 

mating due to inbreeding or continual drug selection (Bourguinat et al., 2011) 

and the resistant genotype can accumulate in the parasite population until it 

causes the loss of drug efficacy in the target population (Prichard, 1990).  

 Caution must be applied when comparing the relative frequencies of 

allelic variant(s) in the UK isolates. The MTci2 and MTci5 isolates are not 

different generations of the same isolate but are unrelated field isolates, and 

therefore, natural genetic divergence between these isolates would be expected 

due to founder effect, bottleneck and genetic drift. Sequencing data were 

generated from both isolates with little variation between the UK isolates 

observed during the classification of allelic variants. Indeed, the identity shared 

in the Tci-pgp-9-IBDA variants identified in the unrelated, and geographically 

separate, UK and NZ isolates was >93 % (93-99 %). This is supported by the 
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relatively small Nei genetic distance estimates and relatively low contribution of 

among-population variance to total molecular genetic variance. Cloning was not 

exhaustive and additional allelic variants probably exist, although the most 

prevalent Tci-pgp-9-IBDA variants are likely to have been sampled and 

sequenced. Degenerate primers were used to increase the likelihood of 

amplifying the majority of Tci-pgp-9-IBDA sequence variants.  

 Due to the complexity of comparing the unrelated MTci2 and MTci5 

isolates, the populations of worms that were collected after in vivo and in vitro 

treatment with IVM were more appropriate for comparisons with the starting 

isolate. The sub-populations MTci2(NF0.1µM) and MTci2(F10µM) were compared to the 

starting MTci2 isolate and the MTci5PT and MTci5(NF0.1µM) and MTci5(F10µM) sub-

populations were compared to the starting MTci5 isolate, as these share a 

genetic background. One haplotype (UKv2,3,13) was significantly more common 

in successfully feeding MTci5 larvae after exposure to IVM in vitro and another 

(UKv3) was similarly less common in non-feeding MTci5 larvae after exposure to 

IVM in vitro. 

 Present results appear to be consistent with the hypothesis that 

polymorphisms in the Tci-pgp-9 gene may have contributed at some level to the 

IVM-resistance in T. circumcincta. Further work is required to determine the 

gene copy number of each of the observed haplotypes, which should enable 

more precise classification of the haplotypes, and consequently, a more 

meaningful association of the frequency of allelic variants with resistance status. 

Another area for further work is to link the allelic variants identified in the Tci-

pgp-9-IBDA (this chapter), with the SNP responsible for the amino acid 

substitutions identified during comparisons of Tci-pgp-9 cDNA sequences from 

MTci2 and MTci5 isolates (Chapter 3). 
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Chapter 6 

Relative Quantification of Tci-pgp-9 Copy Number Using  

Real Time PCR 

 

6.1  Introduction  

Increased abundance of P-glycoprotein xenobiotic efflux pumps may result 

in a reduction in the interaction between anthelmintics and their molecular 

target within the cell, thus producing an anthelmintic resistance phenotype in 

parasitic nematodes. A greater abundance of a given gene product can be a 

result of increased cis- or trans- regulation of gene expression or gene 

amplification, which increases the number of the copies of a given gene in the 

genome. Gene duplication may provide a mechanism for increasing expression 

levels (Zhao et al., 2004).  

Gene amplification events occur at frequencies that are orders of 

magnitude higher than the occurrence of point mutations of actively transcribed 

genes (Hastings et al., 2009). In some cases, amplification can enable mutations 

to persist that would otherwise be removed by purifying selection because it 

enables the retention of wild-type variants of the gene. The fact that 

amplification is also more likely to occur in areas of the genome that are subject 

to high levels of transcription (Hastings et al., 2009) means that genes coding for 

proteins that are involved in detoxification are likely to be subject to high rates 

of amplification. There are many examples of insecticide resistance in 

ectoparasites due to gene amplification, mostly as a result of esterases, 

glutathione transferases and mixed function oxidases (reviewed in Bass & Field, 

2011). Gene amplification of members of the Pgp family has been implicated in 

drug resistance in protozoal parasites and also in resistance of cancer cell lines 

to chemotherapeutic drugs (Sidhu et al., 2006; Preechapornkul et al., 2009). 
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To date, there is evidence of increased expression of Tci-pgp-9 

specifically. Dicker et al. (2011b) demonstrated a significant constitutive 

elevation in expression of Tci-pgp-9 NBD2 across all life-cycle stages when 

comparing the MTci2 and MTci5 isolates, most notably a 55.27-fold greater 

expression in eggs and a 17.49-fold increase in L3 in the resistant worm 

population (Dicker, 2011b). Another study conducted on New Zealand isolates of 

T. circumcincta demonstrated an increase in the copy number of Tci-pgp-9 NBD1 

when multiple anthelmintic resistant worms were compared to their 

anthelmintic susceptible counterparts (Bisset, 2007).  

Real time PCR is a routinely used method for the quantification of mRNA 

and, hence, of transcription of genes of interest relative to “housekeeping” 

genes that are not subject to variable transcription levels, and it can also be 

used to determine the number of copies of genes in genomic DNA relative to a 

gene of known copy number (Yuan et al., 2007). Real time PCR is used to 

simultaneously amplify and quantify a specific DNA target. In this study, SYBR 

dye was used as the reporter dye, which non-specifically intercalates into 

double-stranded DNA (dsDNA). The fluorescence is proportional to the 

concentration of dsDNA, allowing the quantification of dsDNA relative to a 

standard curve or relative to a reference gene. The fractional cycle number at 

which fluorescence crosses an arbitrarily placed threshold is defined as the CT 

value (Schmittgen & Livak, 2008). The CT value is also described as the 

quantification cycle (Cq) in the Minimum Information for Publication of 

Quantitative Real Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009). 

The CT values for both the reference gene (β-tubulin) and the target gene (Tci-

pgp-9) are recorded and the ΔCT was calculated as the ratio between the 

reference and target genes for each larva. Comparing the mean ΔCT values 

recorded in different isolates, using the comparative CT (ΔΔCT) method (Livak & 

Schmittgen, 2001), allowed the standardisation of the expression of the target 

gene with respect to the non-regulated reference gene (Pfaffl et al, 2002). The 

comparative CT method highlights the fold-change in abundance of the target 

gene in different isolates.  

In Chapter 5, multiple allelic variants of the Tci-pgp-9 gene were 

identified and larvae were shown to possess between 1 and 10 allelic variants. 

The differing incidence and combinations of allelic variants implies that multiple 
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copies of certain allelic variants exist. This Chapter investigates, using relative 

quantification real time PCR, the differences in abundance of the Tci-pgp-9 gene 

in each of the MTci2, MTci5 and MTci5PT isolates. The methodology described in 

the Bisset (2007) study was closely followed. Using the larval lysates generated 

and analysed in Chapter 5, allowed further characterisation of the Tci-pgp-9 

gene in these individual larvae. The abundance of the Tci-pgp-9 gene in the sub-

populations of T. circumcincta larvae collected from the larval feeding inhibition 

assay (Chapter 4.3) was also investigated.  

 

6.2  Materials & Methods 

6.2.1  T. circumcincta Larvae 

 Further characterisation of the Tci-pgp-9 gene was conducted on the 

crude gDNA lysates of individual larvae from the seven populations of T. 

circumcincta used in the analysis of allelic variants (Chapter 5). These consisted 

of 84 L3 from two ‘resting’ populations (i.e. unexposed to anthelmintic), MTci2 

and MTci5, and 80 L3 from a population collected after in vivo exposure to IVM 

(MTci5PT). Two sub-populations of 43 L1 from the MTci2 isolate, and 45 non-

feeding L1 and 47 feeding L1 from the MTci5 isolate that were collected post in 

vitro IVM exposure (in Chapter 4). 

6.2.2  Real Time PCR Analysis of UK Isolates of T. circumcincta 

Real time PCR assays were performed using an ABI PRISM® 7500 Real Time 

PCR System (Applied Biosystems), using Power SYBR® green PCR mastermix 

(Applied Biosystems). All real time PCR reactions were carried out in MicroAmp® 

Optical 96-well Reaction Plates (Applied Biosystems) sealed with MicroAmp® 

Optical Adhesive Film (Applied Biosystems), both of which are specifically 

designed for use in ABI real time PCR systems. Power SYBR® Green dye was 

selected due to its ability to quantify the amount of product generated during 

PCR by binding to double-stranded DNA and providing a fluorescent signal. The 

Power SYBR® mastermix contains SYBR® Green I Dye, AmpliTaq Gold® DNA 

polymerase, dNTPs and optimised buffer components. Each 20 µl real time PCR 

reaction consisted of 10 µl Power SYBR® Mastermix (2X), 0.15 µM of each sense 

and antisense primer, and 1 µl gDNA template, made up to 20 µl with PCR grade 
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water (Sigma). Real time PCR thermocycling conditions were: 2 minutes at 50 °C 

and 10 minutes enzyme activation at 95 °C followed by 40 two-step cycles of 95 

°C for 15 s (denature), and 60 °C for 1 minute (primer annealing and extension) 

with fluorescence detection at the end of this step. Dissociation curve analysis 

was conducted after the final cycle, which continuously measures fluorescence 

as the temperature is increased from 60 °C to 95 °C. Dissociation curve analysis 

displays a single defined melting curve with a narrow peak when a pure and 

homogenous real time PCR product has been generated. This analysis highlights 

the presence of primer dimers as a broader peak at relatively low temperatures 

compared to the expected PCR product.  

The reference gene, β-tubulin isotype-1 was selected as a reference gene 

because it has previously been shown to be present at a constant copy number in 

genomic DNA in a similar study into Tci-pgp-9 (Bisset, 2007). A fragment of the 

β-tubulin gene was generated from MTci2, MTci5 and MTci5PT isolates of T. 

circumcincta using primer pair 5’-CTTAGATGTTGTTCGTAAAGAGG-3’ [TUBGF] and 

5’-CATGTTCACAGCCAACTTGC-3’ [TUBGR] (Bisset, 2007). The PCR product was 

inserted into a plasmid vector and amplified as described in Chapter 2.7.1 and 

used as the positive template control for β-tubulin amplification in the real time 

PCR. The purified plasmid DNA was sequenced commercially by 

Eurofins/MWG/Operon and alignments were analysed using Lasergene® 10 

bioinformatics software (DNASTAR Inc.). After confirmation that β-tubulin 

isotype-1 had been amplified by primer pair TUBGF/TUBGR, primers for real 

time PCR were designed within this PCR fragment. To ensure the observed 

alleles of β-tubulin gene were amplified from each of the UK isolates of T. 

circumcincta, a degenerate sense primer 5’-TGACGCATTCYTTGGGAGGAGG-3’ 

[TUBRTGF2011] was paired with the antisense primer 5’-

GAGAATGAAGCCATGATTCTATCCGG-3’ [TUBRTGR2011], to amplify a 100 bp 

fragment (Appendix 7).  

 The Tci-pgp-9 plasmid used as a positive template control during the real 

time PCR reactions was generated using the same method as for the β-tubulin 

plasmid. The primers 5’-GAGTAGTKTCACARGARCCNATG-3’ [IBD77GF4] and 5’-

GCGCCATTCCACCACTTTCTTAG-3’ [IBD77RAS12] (Appendix 8) were located in the 

first putative internucleotide binding domain, IBD77, of Tci-pgp-9. The real time 

PCR reaction used primers designed within a conserved region of gDNA sequence 
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identified during the haplotype analysis in Chapter 5. A short, 99 bp product 

from Tci-pgp-9 IBD77 was amplified using the sense primer 5’-

CGHTATGGACGTGAAAAAGTCACAGA-3’ [IBD77RTGFdeg] along with the antisense 

primer 5’-CCAACTCACGTCRGGGAAYGACTG-3’ [IBD77RTGRdeg], ensuring the Tm 

for each primer was closely matched, allowing use under the same 

thermocycling conditions. The degeneracy introduced to the 

IBD77RTGFdeg/IBD77RTGRdeg primer pair ensured that the known Tci-pgp-9 

allelic variants would be amplified during real time PCR. Non-template controls 

were included to verify the absence of gDNA contamination.  

Amplification efficiencies of the β-tubulin (TUBRTGF2011/TUBRTGR2011) 

and Tci-pgp-9 (IBD77RTGFdeg/IBD77RTGRdeg) primer pairs were compared using 

10-fold serial dilutions (10-9 to 10-15 grams) of the β-tubulin and Tci-pgp-9 

plasmids produced above and a standard curve was plotted using the 7500 

Sequence Detection Software Version 1.4 (Applied Biosystems). The efficiency of 

each primer pair was defined as (10(-1/slope)) – 1 (Pfaffl, 2001), and for valid ΔΔCT 

calculation, the amplification efficiencies of the target and reference genes 

should be approximately equal (Livak & Schmittgen, 2001). The amplification 

efficiency is 100 % when each PCR cycle doubles the number of amplicons and so 

the slope of the curve = -1 (Yuan et al., 2007). 

Following confirmation of approximately equal amplification efficiencies 

of both primer sets, the reference gene (β-tubulin), and the target gene (Tci-

pgp-9) were amplified from each individual larva in duplicate reactions. 

Individual larval lysates generated in Chapter 2.5 were diluted 1:5 with PCR 

grade water (Sigma) and 1 µl was added as template for each reaction. The 

threshold was arbitrarily set at ΔRn = 0.1, where ΔRn was calculated by 

normalising the emission intensity of the reporter dye (SYBR) and passive 

reference dye (ROX) and subtracting this from the baseline fluorescence. The 

duplicate CT results were averaged for the reference and target genes and the 

the ΔCT for each individual larva was calculated using the following equation: 

 

ΔCT = Mean CT (target)  –   Mean CT (reference)  
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The average ΔCT for individuals from each isolate was calculated (Table 

6.1) and the comparative ΔCT method (2-ΔΔCT) was used to identify fold change 

differences in Tci-pgp-9 gene abundance between isolates using the following 

equations: 

    ΔΔCT =  ΔCT (sample)  -  ΔCT (calibrator),  

Fold Change = 2-ΔΔCT 

Investigations into the abundance of the Tci-pgp-9 gene in the larval sub-

populations collected from the LFIA (Chapter 4) were conducted. Crude gDNA 

lysates, generated using the method outlined in Chapter 2.5, were diluted 1:5 

with with PCR grade water (Sigma) and 1 µl was added as template for each real 

time PCR reactions described in Chapter 6.2.1. The mean CT and ΔCT values for 

larvae from each sub-population were determined and comparative CT analysis 

was conducted as described earlier (Chapter 6.2.1).  

 

6.2.3  Data Analyses 

Descriptive statistics were performed using Microsoft Excel (2007) and Minitab15 

Statistical Software. Associations between ΔCT and isolate were investigated 

using the Kruskal-Wallis and Mann-Whitney U-tests. The haplotypes, identified in 

Chapter 5, that were present in ≥ 5 individual larvae were plotted against the 

predicted copy number (using Minitab15 Statistical Software). A Kruskall-Wallis 

test was conducted to test for the effect of those haplotypes represented by ≥ 5 

individual larvae on ΔCT. 
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6.3  Results 

6.3.1  Quantification of Tci-pgp-9 in UK Isolates of T. circumcincta  

 The initial step of quantitative real time PCR was to confirm the 

specificity of the primers used to amplify the reference and target genes. First 

the identity of the β-tubulin plasmid construct was confirmed by comparing 

sequencing results with β-tubulin sequences previously submitted to the NCBI 

database (available online at http://blast.ncbi.nlm.nih.gov/Blast.cgi). The β-

tubulin plasmid sequence shared 99 % identity with β-tubulin isotype-1 cDNA 

(Accession Number: Z69258.1) isolated from T. circumcincta (Elard et al., 1996), 

and 93 % identity with the β-tubulin gene (Accession Number: AJ550390.2) 

isolated from O. ostertagi (Van Zeveren et al., 2007). Similarly, the Tci-pgp-9 

plasmid construction was verified, showing 98 % homology to a Tci-pgp-9 gene 

(Accession number: FR691848.1) isolated from T. circumcincta (Dicker et al., 

2011b), 80 % identity with the Hco-pgp-9 gene (Accession Number: HM635771.1) 

isolated from H. contortus (Williamson et al., 2010, unpublished), and sharing 79 

% identity with the IBD77 (Accession Number: AF055175.1) identified in ABC 

transporters of H. contortus (Sangster et al., 1999). The high levels of identity 

shared with β-tubulin and Tci-pgp-9 sequences already submitted to the NCBI 

database, confirmed the specificity of the primers used in the real time PCR 

reactions and also showed that the respective plasmids were suitable for use as 

DNA template in the positive control reactions. 

 The next step in optimising the real time PCR reactions was matching the 

amplification efficiencies of the target and the reference genes to allow valid 

ΔΔCT calculation (Livak & Schmittgen, 2001). For this, standard curves (shown in 

Figure 6.1 Panel A) were generated for β-tubulin and Tci-pgp-9 and amplification 

efficiencies compared. Ideally, each cycle results in a doubling of amplification 

product when the amplification is 100 % efficient (efficiency = 1). Using the 

standard curves, the efficiencies were defined as (10(-1/slope)) – 1 and the 

recorded amplification efficiencies were 0.96 and 1.01 for β-tubulin and Tci-pgp-

9, respectively. The amplification efficiencies are approximately equal, verifying 

the suitability of the primers specifically designed for the quantitative real time 

PCR. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Relative quantitative real time PCR was carried out in duplicate for the 

reference and target genes in each individual larva and the CT values were 

measured and averaged. The ΔCT was calculated by subtracting the mean CT(β-

tubulin) from the mean CT(Tci-pgp-9). Summaries of the CT and ΔCT values for β-

tubulin and Tci-pgp-9 amplification from the MTci2, MTci5 and MTci5PT isolates 

are shown in Table 6.1. The distribution of ∆CT values for each larva along with 

its corresponding number of alleles identified in Chapter 5 was plotted (Figure 

6.2).  
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Figure 6.1  Real Time PCR Analyses of UK Isolates of T. circumcincta 

Panel A shows serial 10-fold dilutions of β-tubulin (blue) and Tci-pgp-9 (red) plasmids 
used to calculate primer efficiencies. The slope of the β-tubulin graph is -3.41 and the 
slope of the Tci-pgp-9 graph is -3.29, these values were used to calculate the relative 
efficiencies of the reactions. The β-tubulin (blue) and Tci-pgp-9 (red) primer pairs were 
used in real time PCR to amplify products from the MTci2 (Panel B), MTci5 (Panel C), 
and MTci5PT (Panel D) isolates. Non-template control reactions are shown for β-tubulin 
(dark green) and Tci-pgp-9 (purple) mastermixes. The CT was set arbitrarily as ΔRn = 0.1 
(Green line). Graphs generated using ABI PRISM® 7500 Real Time PCR System (Applied 
Biosystems). 
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Table 6.1  Summary of CT Values from UK Isolates of T. circumcincta 

CT values were generated by real time PCR amplification of β-tubulin and Tci-pgp-9 
gene fragments from individual larvae from each of the UK isolates of T. circumcincta. 
The target and reference genes were amplified in duplicate for each larva and the mean 
CT value for each isolate was calculated along with the mean ΔCT values. The range of 
values is also given in the table along with the standard error of the mean (SE). 
 

Isolate 
Mean CT ± SE (range) Mean ΔCT ± SE 

(range) β-Tubulin Tci-pgp-9-IBDA 

MTci2 
(n = 80) 

28.25 ± 0.05 
(27.19  –  32.72) 

29.77 ± 0.06 
(28.16  –  35.00) 

1.52 ± 0.03 
(0.65  –  2.85) 

MTci5 
(n = 84) 

28.39 ± 0.03 
(27.04  –  29.84) 

28.02 ± 0.12 
(24.95  –  31.10) 

-0.37 ± 0.12 
(-3.47  –  2.04) 

MTci5 PT 
(n =83) 

28.40 ± 0.04 
(27.13  –  30.53) 

28.86 ± 0.11 
(25.30  –  31.90) 

0.45 ± 0.11 
(-2.74  –  2.79) 

 
 
 

 

Figure 6.2  Distribution of ΔCT Values from Each T. circumcincta Isolate 

Dotplots showing the frequency and distribution of ΔCT values for individual larvae in 
each isolate of T. circumcincta. Each dot represents a specific larva and the colour of 
the dot relates to the number of different Tci-pgp-9 allelic variants identified within 
that individual. The top panel shows the MTci2 isolate, and the middle and lower 
dotplots show MTci5 and MTci5PT isolates, respectively. Low ΔCT values indicate a high 
concentration of the target gene template relative to the reference gene, whilst high 
ΔCT values indicate low concentrations of the target gene template relative to the 
reference gene.  
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The results of the real time PCR confirmed that β-tubulin is a stable 

reference gene and shows no variation in apparent copy number between each 

of the isolates studied, as shown by approximately equal mean CT values. 

Negative ΔCT values indicate a higher abundance of target gene compared to the 

reference gene, and positive ΔCT values indicate less target gene template 

relative to the reference gene. This suggests that more than 1 copy of the β-

tubulin isotype-1 gene exists in T. circumcincta and that individuals with positive 

ΔCT values possess fewer copies of Tci-pgp-9 relative to β-tubulin. The range of 

mean CT values for Tci-pgp-9 in MTci2 larvae fell in the range of 28.16 – 35.00, 

indicating that this isolate is a relatively homogeneous population compared to 

the range of mean CT values of the MTci5 and MTci5PT isolates, 24.95 – 31.10 

and 25.30 – 31.90, respectively. The mean CT values of β-tubulin in the MTci5 

and MTci5PT isolates were approximately equal, demonstrating that IVM 

treatment had no selective effect on the β-tubulin gene. The Tci-pgp-9 CT values 

for larvae from MTci5 and MTci5PT isolates of T. circumcincta showed evidence 

of two distinct groups within each isolate (Figure 6.1, panels C and D). On closer 

inspection, the distribution of ΔCT values for these isolates showed that MTci5 

and MTci5PT isolates could be divided into two groups based on their ΔCT values. 

The groupings, based on their Tci-pgp-9 ΔCT values, were significantly different 

(p <0.0001) within each of the MTci5 and MTci5PT isolates. Group A, consisted of 

larvae with ΔCT values ≥ 0, and Group B which included larvae with ΔCT values < 

0. The mean ∆CT values were calculated for the sub-groupings in the MTci5 and 

MTci5PT isolates (Table 6.2). No obvious relationship between number of allelic 

variants and ∆CT value was observed when the frequency of larvae with similar 

∆CT values was plotted along with the number of allelic variants identified in 

that specific larva (Figure 6.2, data recorded in Appendix 12). Individuals from 

the MTci2 isolate were shown to have positive ∆CT values, and have been shown 

to possess between 1 and 10 allelic variants in Chapter 5. Half of the MTci5 

larvae tested (42/84) had a positive ∆CT values and possessed between 1 and 6 

allelic variants. The other half showed negative ∆CT values and possessed 

between 1 and 7 allelic variants. The MTci5PT isolate was split into group A, 

with 55 individual larvae showing positive ∆CT values and possessing between 1 

and 4 allelic variants, the remaining individuals belonged to group B, which 

showed negative ∆CT values and possessed between 1 and 5 allelic variants.  
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The sub-groups in the MTci5 and MTci5PT isolates were significantly 

different from each other (p <0.0001). Further comparisons were made between 

the MTci2 isolate and the grouping within the MTci5 and MTci5PT isolates (Table 

6.3). The ∆CT values were used in the comparative ΔCT method (2-ΔΔCT) to 

identify fold change differences in Tci-pgp-9 abundance between isolates. The 

calibrator ΔCT was subtracted from the sample ΔCT to give the ΔΔCT value, which 

was expressed as fold change by 2-ΔΔCT (data for each larva is shown in Appendix 

9). The abundance of Tci-pgp-9 was compared between the MTci2, MTci5 and 

MTci5PT isolates and also compared to the sub-groupings within the MTci5 and 

MTci5PT isolates (Table 6.3). Initial comparisons using the comparative ΔΔCT 

method showed on average, MTci5 lysates have a ~3.7-fold (21.89) greater 

abundance of Tci-pgp-9 template than lysates from their MTci2 counterparts. 

Lysates from larvae collected post-IVM treatment (MTci5PT) showed ~2.1-fold 

(21.07) increase in Tci-pgp-9 template compared to those of the MTci2 lysates. A 

~0.6-fold (2-0.82) difference in abundance of Tci-pgp-9 was observed between the 

MTci5PT and MTci5 larval lysates. Comparisons between MTci2 larvae and 

individuals attributed to Group A of each MTci5 and MTci5PT isolates, showed 

little variation in the abundance of Tci-pgp-9 gene, displaying fold increases of 

1.36 and 1.18 respectively. A 10.06-fold increase in Tci-pgp-9 gene was observed 

in MTci5 Group B, and a 7.78-fold increase in MTci5PT Group B, relative to MTci2 

larvae. 
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Table 6.2  Sub-grouping of MTci5 and MTci5PT Isolates  

Real time PCR results of MTci5 and MTci5PT isolates of T. circumcincta which were split 
into two groups based on their ΔCT values. Group A are those larvae with ΔCT values ≥ 0 
and Group B consists of individuals with ΔCT values < 0. The mean and range, along with 
the standard error of the mean (SE), of CT values is shown for each sub-group and the 
calculated ΔCT values.  

Isolate 
Mean CT ± SE (range) Mean ΔCT ± SE 

(range) β-Tubulin Tci-pgp-9-IBDA 

MTci5 Group A 
(n=42) 

28.41 ± 0.04 
(27.35  –  29.84) 

29.48 ± 0.05 
(28.61  –  31.10) 

1.08 ± 0.05 
(0.25  –  2.04) 

MTci5 Group B 
(n=42) 

28.37 ± 0.04 
(27.04  –  29.34) 

26.55 ± 0.07 
(25.03  –  27.90) 

-1.81 ± 0.07 
(-3.47  –  -0.27)  

MTci5 PT Group A 
(n =58) 

28.41 ± 0.05 
(27.13  –  30.53) 

29.69 ± 0.05 
(28.59  –  31.90) 

1.28 ± 0.03 
(0.75  –  2.79) 

MTci5 PT Group B 
(n =25) 

28.37 ± 0.06 
(27.49  –  29.88) 

26.93 ± 0.12 
(25.30  –  28.60) 

-1.44 ± 0.16 
(-2.74  –  -0.01) 

 

 

 

Table 6.3  Fold-changes of Tci-pgp-9 Using the Comparative ΔCT Method  

The fold-change in Tci-pgp-9 was calculated using the comparative ΔCT method  
(2-ΔΔCT). The ΔCT values for individuals from each isolate were not normally distributed 
and could not be transformed, therefore, non-parametric analyses were performed. For 
each comparison, the Mann-Whitney U-test was used to test for significant differences 
between isolates. Rows 1-3 of the table show the comparisons of ∆CT from the MTci2, 
MTci5 and MTci5PT isolates. Rows 4 and 5 of the table are comparisons between the 
sub-groupings within the MTci5 and MTci5 isolates. Rows 6-9 show comparisons of ∆CT 
between the MTci5 isolate and the sub-groupings of the resistant isolates (MTci5 and 
MTci5PT). 
 
 

 

 

Comparison Fold Change (2-ΔΔCT) Mann-Whitney U-test P value 

MTci2 vs MTci5 3.71  (21.89) <0.0001 

MTci2 vs MTci5PT 2.10  (21.07) <0.0001 

MTci5 vs MTci5PT 0.57  (20.82) 0.0008 

MTci5 A vs MTci5 B 7.41  (22.89) <0.0001 

MTci5PT A vs MTci5PT B 6.59  (22.72) <0.0001 

MTci5 vs MTci5 A 0.37  (2-1.45) <0.0001 

MTci5 vs MTci5 B 2.71  (21.44) <0.0001 

MTci5PT vs MTci5PT A 0.56  (20.83) 0.0013 

MTci5PT vs MTci5PT B 3.71  (21.89) <0.0001 
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6.3.2  Quantification of Tci-pgp-9 in Sub-populations of MTci2 and MTci5  

In Section 6.3.1, the MTci5 and MTci5PT isolates were split into two 

distinct groups based on their ΔCT values. Another meaningful comparison was 

between the sub-populations collected during the LFIA in Chapter 4, which have 

been separated based on their ability to feed after exposure to different IVM 

concentrations. Each sub-population was analysed as described in Chapter 6.3.1 

(Figure 6.3), mean CT and ΔCT values were calculated (Table 6.4) and the fold-

change in Tci-pgp-9 abundance was established using the comparative ΔCT 

method (Table 6.5). Data for individual larvae are listed in Appendices 10 and 

11.  
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Figure 6.3  Real Time PCR Analyses of Sub-populations of MTci2 and MTci5 

Larval lysates from sub-populations generated from the LFIA in Chapter 5 were used as 
the template gDNA for real time PCR analyses. The reference gene (β-tubulin) is shown 
in blue and the target gene (Tci-pgp-9) is shown in red. Non-template negative controls 
are shown for the β-tubulin (dark green) and Tci-pgp-9 (purple) mastermixes. The green 
bar on the graph shows and arbitrarily set threshold at 0.1 ΔRn. Panel A shows 
MTci2(NF0.1µM), Panel B shows MTci2(F10µM), Panel C shows MTci5(NF0.1µM) and Panel D shows 
MTci5(F10µM). Graphs generated using ABI PRISM® 7500 Real Time PCR System (Applied 
Biosystems). 
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Table 6.4  Summary of CT Values from Sub-populations of MTci2 and MTci5  

Sub-populations of MTci2 and MTci5 isolates were collected based on their ability to 
feed after exposure to IVM (Chapter 4) and real time PCR was used to amplify the Tci-
pgp-9 gene. The ΔCT values were calculated by comparing the target gene and the 
reference gene. 

 

Isolate 
Mean CT ± SE (range) Mean ΔCT ± SE 

(range) β-Tubulin Tci-pgp-9-IBDA 

MTci2(NF0.1µM) 

(n = 42) 
28.45 ± 0.05 

(27.28  –  29.95) 
29.63 ± 0.05 

(28.40  –  30.91) 
1.18 ± 0.04 

(-0.03  –  2.06) 

MTci2(F10µM) 

(n = 43) 
28.50 ± 0.04 

(27.36  –  29.31) 
29.63 ± 0.05 

(27.37  –  30.34) 
1.13 ± 0.04 

(-0.05  –  1.68) 

MTci5(NF0.1µM) 

(n = 40) 
27.88 ± 0.06 

(26.56  –  29.39) 
27.06 ± 0.17 

(24.58  –  29.82) 
-0.81 ± 0.18 

(-3.59  –  2.29) 

MTci5(F10µM) 

(n = 46) 
27.90 ± 0.06 

(26.38  –  30.29) 
26.99 ± 0.16 

(24.27  –  30.18) 
-0.92 ± 0.17 

(-3.28  –  2.46) 

 

 The CT values for β-tubulin and Tci-pgp-9 genes in individual larvae were 

measured for the sub-populations of the MTci2 and MTci5 isolates. The CT values 

for β-tubulin were consistent with those measured previously (Chapter 6.3.1), 

further supporting the use of β-tubulin as a stable reference gene with the same 

copy number in all individuals examined. The ∆CT values were calculated and 

plotted along with the number of allelic variants found in each individual larva 

(Figure 6.4). The characterisation of Tci-pgp-9-IBDA allelic variants and ΔCT 

values for the sub-populations of MTci2 and MTci5 are recorded in Appendices 13 

and 14. Individuals in the MTci2(NF0.1µM) sub-population possessed between 2 and 5 

allelic variants and 42/43 larvae had positive ΔCT values, with the exception of 

one larva with a ΔCT value of -0.03. The MTci2(F10µM) sub-population displayed 1-5 

allelic variants and, like the MTci2(NF0.1µM) sub-population, 42/43 larvae had 

positive ΔCT values with the exception of one larvae with a ΔCT of -0.5 measured. 

Between 1 and 4 allelic variants were present in the MTci5(NF0.1µM) sub-population 

of larvae and one third of larvae in this sub-population (14/44) had positive ΔCT 

values whilst the remaining two thirds (30/44) exhibited negative ΔCT values. 

Similarly, the MTci5(F10µM) sub-population possessed between 1 and 5 allelic 

variants, one third of the MTci5(F10µM) sub-population (15/47) displayed positive 

ΔCT values and two thirds (32/47) had negative ΔCT values. 
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Figure 6.4  Distribution of ΔCT values from Each T. circumcincta Sub-population 

Dotplots showing the frequency and distribution of ΔCT values for individual larvae in 
sub-populations of the MTci2 and MTci5 isolates separated using the LFIA bioassay. Each 
dot represents a specific larva and the colour of the dot relates to the number of 
different Tci-pgp-9 allelic variants identified within that individual. The top two panels 
show the sub-populations of MTci2 isolate (MTci2(NF0.1µM) and MTci2(F10µM)), and the lower 
dotplots show sub-populations of MTci5 isolate (MTci5(NF0.1µM) and MTci5(F10µM)).  

 

The comparative CT method was used to ascertain the fold-change in the 

abundance of Tci-pgp-9 between populations collected within each isolate after 

either in vivo or in vitro exposure to IVM. Comparisons were conducted (Table 

6.5), and showed that there were significant differences (p <0.05) between sub-

populations within the MTci2 isolate but not within the MTci5 isolate (p >0.05). 

Comparisons of the ‘resting’ MTci2 population with the sub-populations collected 

after exposure to IVM in vitro showed slight increases in Tci-pgp-9 abundance 

with fold increase ~1. When comparing the MTci5PT worms collected after in 

vivo IVM exposure with the MTci5(NF0.1µM) and MTci5(F10µM) larvae that were 

exposed to IVM in vitro, Tci-pgp-9 was shown to be 2.39-fold and 2.58-fold more 

abundant, respectively. A comparison was conducted with what were expected 

to be the “most resistant” MTci5 subpopulation (MTci5(F10µM)) and the “least 
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resistant” MTci2 subpopulation (MTci2(NF0.1µM)) . This comparison showed a highly 

significant difference (p <0.0001), and a 4.29-fold increase in Tci-pgp-9 gDNA 

template abundance was observed. This increase in Tci-pgp-9 abundance is 

greater than the 3.71 fold change observed when comparing the ‘resting’ MTci2 

and MTci5 isolates. There were no significant differences (p >0.05) between the 

mean ΔCT values when comparing MTci5 with MTci5(NF0.1µM), and MTci5(NF0.1µM) 

with MTci5(F10µM). 

 

Table 6.5  Comparative ΔCT values for Tci-pgp-9 populations Derived from MTci2 
and MTci5  

Fold changes in the abundance of Tci-pgp-9 template were calculated from the mean 
ΔCT values in Table 6.4. Sub-populations from each isolate were compared within and 
isolate, and a final comparison between MTci2(NF0.1µM) and MTci5(F10µM) was made. 

 
 
  

 

 

 

 

 

 

 

Comparison Fold Change (2-ΔΔCT) Mann-Whitney U-test P value 

MTci2 vs  MTci2(NF0.1µM) 1.27  (20.34) 0.0004 

MTci2 vs  MTci2(F10µM) 1.31  (20.39) <0.0001 

MTci2(NF0.1µM) vs MTci2(F10µM) 1.04  (20.05) 0.0190 

MTci5 vs MTci5PT 0.57  (2-0.82) 0.0004 

MTci5 vs  MTci5(NF0.1µM) 1.36  (20.44) 0.3382 

MTci5 vs  MTci5(F10µM) 1.46  (20.55) 0.0889 

MTci5PT vs  MTci5(NF0.1µM) 2.39  (21.26) 0.0004 

MTci5PT vs MTci5(F10µM) 2.58  (21.37) <0.0001 

MTci5(NF0.1µM) vs MTci5(F10µM) 1.08  (20.11) 0.6767 

MTci2(NF0.1µM) vs MTci5(F10µM) 4.29  (22.10) <0.0001 
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When ΔΔCT values relative to β-tubulin were back-transformed to 

estimate copy number, all values for which ΔΔCT > 0 resulted in a copy number 

estimate <1. Because it is theoretically not possible to have 0 < n <1 copies of a 

gene in an individual larva, it was assumed that there must be multiple copies of 

β-tubulin in the T. circumcincta genome. The smallest multiple (number of 

copies of β-tubulin) required to convert all of the values for Tci-pgp-9 to a value 

≥ 1 was 5. After this conversion, predictions of copy number ranged from 1 to 

60, with a median of 2 and a mean of 7.4. Figure 6.5 is a histogram of the 

distribution of predicted copy number for all samples and shows that the 

majority of larvae were predicted to have 2 copies of Tci-pgp-9, while small 

numbers of larvae had multiple copies. Figure 6.6 is a boxplot of the predicted 

copy number for individuals from each of the haplotypes that was represented 

by ≥ 5 individual larvae. Haplotype had a significant effect on CT and 

consequently on predicted copy number (Table 6.6). 
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Figure 6.5  Distribution of Predicted Tci-pgp-9 Copy Number  

A histogram showing distribution of the predicted copy number of Tci-pgp-9 from all 439 
larval lysates representing UK isolates of T. circumcincta.   
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Figure 6.6  Boxplot of Predicted Copy Number for Larval Lysates of T. 
circumcincta From Haplotypes Shared by ≥ 5 Individuals  

Some haplotypes of interest from Chapter 5 are highlighted. The most common 
haplotype over all populations combined was Haplotype 70 (UKv2, 13; black box), which 
was represented by 33 individuals. Haplotype 124 (UKv5, 12; 19 individuals, green box) 
was the most common haplotype in MTci5PT larvae. Haplotype 21 (UKv2,3,13; 30 
individuals, blue box) was significantly more common in MTci5 larvae that fed 
successfully when exposed to IVM, whereas Haplotype 71 (UKv3; 21 individuals, red box) 
was present at an unexpectedly higher frequency in those that failed to feed.  
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Table 6.6  The Effect of Haplotypes Represented by ≥ 5 Individual Larvae on ΔCT  

All of the larval lysates generated from UK isolates of T. circumcincta (n = 232) were 
included in a Kruskall-Wallis test for the effect of those haplotypes represented by ≥ 5 
individual larvae on ΔCT. 
 

 

Haplotype Code N Median Ave Rank Z 

1 10 1.0145 121.0 0.22 

2 6 -1.9232 33.2 -3.08 

20 5 -0.1399 71.6 -1.51 

21 29 -1.8187 57.2 -5.08 

22 7 1.4409 185.6 2.76 

37 5 1.2356 141.9 0.86 

40 9 0.9804 123.8 0.33 

44 26 1.3125 159.3 3.45 

51 5 0.9661 131.2 0.50 

64 5 1.3642 161.2 1.51 

68 7 1.2130 130.4 0.56 

69 11 1.4734 162.2 2.31 

70 33 1.1789 137.4 1.93 

71 21 -1.9521 59.4 -4.09 

90 6 -2.2712 32.7 -3.10 

103 9 0.8731 102.4 -0.64 

105 5 1.4755 177.0 2.04 

110 5 1.2064 144.6 0.95 

122 5 1.1166 134.8 0.62 

124 18 1.1518 133.8 1.14 

145 5 1.2356 117.3 0.03 

     

Overall 232  116.5  

H = 95.50  D.F. = 20  P = 0.000; H = 95.50  DF = 20  P = <0.001  (adjusted for ties) 
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6.4  Discussion 

Further characterisation of the Tci-pgp-9 gene in individual larvae from 

UK isolates of T. circumcincta was conducted. In this Chapter, relative 

quantification real time PCR analysis was used to measure the abundance of Tci-

pgp-9 gDNA, relative to the reference gene, β-tubulin, in individual larvae. Two 

β-tubulin isotypes had been identified in H. contortus (Kwa et al., 1994) at the 

time of current study, and since then, Saunders et al. (2013) reported the 

existence of an additional two β-tubulin isotypes in H. contortus. The liver fluke, 

Fasciola hepatica, has been shown to express six β-tubulin isotypes (Ryan et al., 

2008). The real time data would suggest that at least 5 copies of the β-tubulin 

isotype-1 gene are present in the T. circumcincta tested in the present study. 

The reference gene, Β-tubulin isotype-1, was selected as it has previously been 

used in real time PCR analysis study into the abundance of Tci-pgp-9 by Bisset 

(2007) where it showed consistent copy number under test conditions. 

Endogenous reference genes must be carefully selected in parasitic systems 

since high variability has been noted with routinely used genes such as actin and 

glyceraldehyde-3-phosphate dehydrogenase (Trivedi & Arasu, 2005). There are 

few reports of possible reference genes for analysing gene abundance in T. 

circumcincta. Baker et al. (2011) evaluated possible reference genes and 

identified elongation factor-1α and β-tubulin as the most suitable for gene 

expression analysis studies in T. circumcincta. Comparisons of β-tubulin ΔCT 

values, observed in various isolates of T. circumcincta in this study, supported 

its use as a reference gene, due to its relatively uniform abundance in these 

larvae.  

The abundance of Tci-pgp-9 relative to this reference gene, the ΔCT 

value, was attributed to each larva from the MTci2, MTci5 and MTci5PT isolates 

studied, as well as the sub-populations of MTci2 and MTc5 collected from the 

LFIA bioassay (Chapter 4). Negative ΔCT values indicated a higher abundance of 

Tci-pgp-9 relative to β-tubulin within the individual larvae, whereas a positive 

ΔCT value was a sign of a lower abundance Tci-pgp-9 relative to β-tubulin, 

implying that there are multiple copies of β-tubulin present in the T. 

circumcincta genome. 



139 
 

 

Using the Comparative CT Method (Pfaffl et al., 2002), comparisons 

between the mean ΔCT values from different isolates were performed. Initially 

the “resting” larval isolates, MTci2 and MTci5, and a post-IVM treated population 

of MTci5 (MTci5PT) were studied. There was a 3.7-fold higher abundance of Tci-

pgp-9 gDNA in the multiple anthelmintic resistant isolate (MTci5) when 

compared to the anthelmintic susceptible isolate (MTci2). This finding concurs 

with a previous finding in NZ, where an anthelmintic resistant isolate of T. 

circumcincta showed a 3.4-fold increase in Tci-pgp-9 gene abundance when 

compared with its near-isogenic susceptible counterpart (Bisset, 2007). The 

higher Tci-pgp-9 copy number may, in part, explain the 17.49-fold increase in 

expression of the Tci-pgp-9 NBD2 shown in L3 from the MTci5 relative to MTci2, 

observed in the Dicker et al. (2011b) study. Given that a full Pgp molecule 

consists of two NBDs, it would be expected that an increase in expression of Tci-

pgp-9 NBD2 would result in an equivalent increase in Tci-pgp-9 IBD77 (NBD1). 

Direct comparisons between the copy number and mRNA expression levels were 

not possible within this project although an increase in copy number is likely to 

relate to an increased expression level of that gene.    

Larvae collected post-IVM treatment (MTci5PT) displayed a 2.1-fold higher 

abundance of Tci-pgp-9 gene compared to the MTci2 isolate, and a lower 

abundance relative to the MTci5 isolate (0.57-fold difference). Upon closer 

inspection of the distribution of MTci5 and MTci5PT ΔCT values, two significantly 

different groups, p <0.0001 became apparent (Figure 6.2). Individuals with ΔCT 

values ≥ 0 were allocated to Group A and those with ΔCT values < 0 were 

allocated to Group B. Members of Group A from both the MTci5 and MTci5PT 

isolates possessed a similar quantity of Tci-pgp-9 gene, relative to β-tubulin 

gene. The abundance of Tci-pgp-9 in members belonging to Group B was 

increased 10.06-fold and 7.78-fold when compared to the Group A in the MTci5 

and MTci5PT isolates, respectively.  

 The MTci5 isolate was previously shown to comprise of a homogeneous 

mixture of multiply-resistant individuals (Bartley et al., 2004; Bartley et al., 

2005; Stenhouse, 2007). For an isolate to be considered resistant, according to 

the World Association for the Advancement of Veterinary Parasitology (WAAVP) 

guidelines, the reduction in egg count, using the FECRT, has to be less than 95 % 

and the lower 95 % confidence interval less than 90 % (Coles et al., 1992). The 
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MTci5 isolate, for which IVM efficacy is only 60 % (Bartley et al., 2004; Bartley et 

al., 2005), is likely to represent a heterogeneous population of T. circumcincta 

where individuals display differing degrees of anthelmintic resistance. This may 

explain the observation of two distinct groups within the MTci5 isolate: Group A 

might contain individuals in the MTci5 population that are able to survive 

exposure to anthelmintics utilising alternative mechanisms associated with drug 

metabolism to avoid the action of anthelmintics, rather than relying on the 

efflux facilitated by Pgp molecules. Group B may contain larvae which 

potentially possess higher drug efflux efficiency due to the increased abundance 

of Tci-pgp-9 gene (Group B).  

Sub-populations of MTci2 and MTci5 isolates were collected based on their 

feeding phenotype when exposed to a range of IVM concentrations in vitro. The 

sub-populations collected were individuals whose feeding was inhibited when 

exposed to 0.1 µM IVM (annotated as MTci2(NF0.1µM) and MTci5(NF0.1µM)) and 

individuals who retained the ability to feed when exposed to 10 µM IVM 

(annotated as MTci2(F10µM) and MTci5(F10µM)). These sub-populations were 

considered to be the ‘least resistant and ‘most resistant’ individuals of the 

initial population and, as such, genetic comparisons were made between these 

phenotype-selected sub-populations at either end of the resistance spectrum. 

Comparisons between MTci2(NF0.1µM) and MTci2(F10µM) sub-populations showed no 

significant difference in the abundance of Tci-pgp-9 gDNA, which was also 

observed in the MTci5 sub-populations. This finding suggests that the differences 

in phenotype between the non-feeding larvae exposed to 0.1 µM IVM and the 

larvae, from the same isolate, that retained the ability to feed when exposed to 

10 µM IVM, were not due to increased abundance of the Tci-pgp-9 gene. 

Comparing the most diverse sub-populations, MTci2(NF0.1µM) and MTci5(F10µM), 

showed a 4.29-fold increase abundance of Tci-pgp-9 transcript. This is higher 

than the fold changes observed in the initial ‘resting’ populations of MTci5 and 

MTci5PT (3.71- and 2.10-fold respectively), when compared to the MTci2 isolate, 

suggesting that the sub-populations are more homogenous than the initial 

populations. Similarly, when the MTci5 and MTci5PT isolates were split into 

homogenous sub-groups an increase in the fold change of Tci-pgp-9 abundance 

was observed when compared to the starting population.    
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Future work should focus upon the copy number of specific allelic variants 

in individual larvae. The most suitable approach would be to use TaqMan probes 

to increase the specificity of allele-specific quantitative PCR (von Samson-

Himmelstjerna et al., 2003), and significantly increase in sample throughput, 

since no post-PCR steps are required with this procedure (Coles et al., 2006). 

The allelic variants of Tci-pgp-9-IBDA, identified in the present study, may form 

a starting point for future work of this nature in T. circumcincta. This may shed 

light on which of the Tci-pgp-9-IBDA allelic variant(s) have been duplicated and 

the number of copies of each allelic variant present within individual larva. 
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Chapter 7 

General Discussion 

 P-glycoproteins in general have been implicated in the underlying 

genetics of IVM resistance in gastrointestinal nematodes. One specific Pgp, Tci-

pgp-9, has been associated with IVM-resistance (and multi-drug resistance) in T. 

circumcincta, the most important gastrointestinal nematode of small ruminants 

in the UK. The overall aim of the present study was to further characterise this 

specific Pgp and its putative role in resistance in this species.   

The ABC-transporter superfamily, to which P-glycoproteins belong, is an 

ubiquitous and evolutionarily ancient group of proteins found in species ranging 

from bacteria to humans (Zimniak et al., 1999; Jones & George, 2005). P-

glycoproteins were the first multi-drug resistance transporter molecules found to 

be involved in the efflux of MLs (Schinkel et al., 1994; Lankas et al., 1997) and 

are found in high quantities in the intestine and in the blood-tissue barriers, 

where their role is to protect the cells from exogenous and endogenous cytotoxic 

compounds (Kerboeuf et al., 2003). Likened to a molecular “hydrophobic 

vacuum cleaner” by Aller et al. (2009), Pgps pull substrates from the plasma 

membrane and expel them into the extracellular compartment to circumvent or 

subvert drug action and promote drug resistance. Studies into anthelmintic 

resistance have, typically, tended to focus on the drug-target, whereas ‘non-

specific’ mechanisms have been less extensively studied (Riou et al., 2003). An 

understanding of Pgps, in terms of genetic polymorphisms, quantity and 

expression is the first step in understanding the role that these proteins play in 

anthelmintic resistance.   

Two independent studies into Pgp expression and its association with 

anthelmintic resistance in T. circumcincta were conducted and found increased 

expression and polymorphisms in Pgps of multiple anthelmintic resistant T. 

circumcincta (Bisset, 2007; Dicker, 2010). Both groups showed that one Pgp in 

particular appeared to be associated with an IVM resistant phenotype, and 

classified it Tci-pgp-9. Bisset (2007) reported gene amplification, alternative 

splicing and four possible coding SNPs in Tci-pgp-9 when comparing near-isogenic 

strains. Dicker (2010) identified greater constitutive expression of Tci-pgp-9 
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NBD2 in the MTci5 isolate at all lifecycle stages relative to the MTci2 isolate 

(Dicker et al., 2011b). The present study followed on from these two projects, 

and focused on understanding the involvement of Tci-pgp-9 in IVM resistance in 

UK isolates of T. circumcincta. The full-length Tci-pgp-9 cDNA sequence was 

generated, for the first time, from two unrelated UK field isolates, MTci2 and 

MTci5. Comparisons between these isolates revealed nine non-synonymous SNPs, 

which altered the coding of six amino acids which were found in different 

frequencies in susceptible (MTci2) and resistant (MTci5) populations. 

Interestingly, four substitutions at amino acids 662-664 and 697 identified in the 

MTci5 isolate were also present in the NZ anthelmintic resistant near-isogenic 

strain (Bisset, 2007). However, the association of these SNPs with IVM-resistance 

remains unclear, due to the fact that these isolates are genetically unrelated. 

Before being considered as potential markers of IVM-resistance in this species, 

the presence of these point mutations in the Tci-pgp-9 gene should be confirmed 

in additional T. circumcincta isolates. At this point the SNPs are unlikely to be 

suitable for a molecular based diagnostic test, but that was not the over-riding 

objective of study. To be considered as a potential diagnostic marker of 

anthelmintic resistance, 1) the allele must be enriched in a resistant population 

and the level of resistance in a resistant population should be proportional to 

the level of enrichment, 2) the frequency of the candidate allele would be 

expected to increase in the nematode population after challenge with the 

relevant anthelmintic, 3) changes in the sequence or level of expression of the 

allele that reduce its potency should have a functional effect and be supported 

by biochemical or pharmacological evidence, and 4) confer resistance when 

introduced experimentally into susceptible populations (McCavera et al., 2007). 

Future work could focus upon the substitutions at residues 662-664 and 667 in 

additional isolates of T. circumcincta and the use of pyrosequencing assays could 

clarify the frequency of these SNPs within different isolates of T. circumcincta.  

The full-length cDNA Tci-pgp-9 sequences generated from the MTci2 and 

MTci5 isolates contained ~4.5 % polymorphism, suggesting that gene 

amplification of Tci-pgp-9 may be responsible for the IVM-resistance phenotype, 

rather than the presence of non-synonymous SNPs. Increased expression of Tci-

pgp-9 has previously been observed when comparing the MTci2 and MTci5 

isolates (Dicker et al., 2011B). Amplification of Tci-pgp-9 gene has also been 
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observed in NZ anthelmintic resistant near-isogenic strains of T. circumcincta 

(Bisset, 2007).  

 To allow for meaningful genetic comparisons between the UK isolates of 

T. circumcincta, sub-populations derived from MTci2 and MTci5 were collected. 

Firstly a population of worms representing the progeny of adult worms that 

survived in vivo exposure to IVM (MTci5PT) was coprocultured to L3. Secondly, 

two sub-populations from each of the MTci2 and MTci5 isolates were collected 

based on their feeding phenotype after in vitro exposure to IVM. Individual 

larvae from these seven populations in total were used in subsequent genetic 

analyses focussing primarily on the Tci-pgp-9-IBDA region.   

 Detailed cloning and sequencing analysis of the UK isolates of T. 

circumcincta revealed twelve allelic variants of Tci-pgp-9, eight of which shared 

93 - 99 % identity with allelic variants identified in NZ near-isogenic strains of T. 

circumcincta, and four of which were novel variants, found only in the UK 

isolates. Cloning could not be completely exhaustive and additional allelic 

variants probably exist, although the most prevalent variants are likely to have 

been sampled and sequenced. More than two allelic variants were observed per 

individual, indicating gene amplification in this diploid organism. Quantitative 

real time PCR results using gDNA also showed that copy number and number of 

alleles are consistent with gene amplification. Unique combinations of allelic 

variants were designated a haplotype number, and when combined with the 

predicted copy number, analysis showed that haplotype had a strong effect on 

predicted copy number. Comparisons between the abundance of Tci-pgp-9 in 

MTci2 and MTci5 showed a 3.7-fold increase in the resistant isolate, which 

corresponds well with the 3.4-fold increase in Tci-pgp-9 abundance reported in 

the NZ near-isogenic resistant strain of T. circumcincta (Bisset, 2007). 

  The copy number of the reference gene β-tubulin, used in the real time 

PCR analyses, is unknown and it cannot be ruled out that β-tubulin could be 

under anthelmintic selection when treated and so may not be suitable for use a 

reference gene. There is some evidence that BZ & ML-R are linked through β-

tubulin, at least in Haemonchus contortus (de Lourdes Mottier & Prichard, 2008). 

This interpretation was complicated in the present study because the resistant 

isolate, MTci5, is already demonstrably BZ-resistant (P. Skuce, pers. comm.). 
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The copy number for β-tubulin was arbitrarily set at 5 copies as this was the 

smallest multiple required to convert all of the ∆∆CT values for Tci-pgp-9 to a 

value ≥ 1. Subsequent analysis indicated that the majority of larvae were 

predicted to have 2 copies of Tci-pgp-9, while small numbers of larvae had 

multiple copies, as many as 50 in some individuals. The most common haplotype 

over all populations was UKv2, 13, which had a median predicted copy number 

of 2, while the haplotype (UKv2, 3, 13) that was significantly more frequent in 

the feeding larvae of MTci5 exposed to IVM had a median predicted copy number 

of 19 and the haplotype (UKv3) that was significantly more common in non-

feeding larvae exposed to IVM had a median predicted copy number of 18.  

 In summary, the present study revealed that multiple allelic variants were 

present in the majority of individuals, and a reduction in polymorphism, as 

defined by a reduced number of allelic variants, in individuals of MTci5 relative 

to the MTci2 isolate. A further reduction in the number of alleles present in 

individuals was also observed in individuals derived from an IVM treated 

population of MTci5, suggesting that IVM treatment applied purifying selection 

pressure. Quantitative real time PCR analysis showed a 3.7-fold higher Tci-pgp-9 

gene copy number in the MTci5 isolate relative to the MTci2 isolate, which was 

consistent with a 3.4-fold increase observed in the NZ study (Bisset, 2007). None 

of the common haplotypes identified appeared to be unique to any given isolate, 

and the relationship between haplotype and copy number was not 

straightforward. 

To continue the work presented in this study, the next step would be to 

conduct allele-specific quantitative PCR using TaqMan probes (e.g. von Samson-

Himmelstjerna et al., 2003). This would provide insight into the number of 

copies of specific variants present in individual larvae and how this relates to 

their resistance status. The bioassays that were used as a tool in this study for 

separating the least and most resistant individuals within a population did not 

prove as useful as hoped and remain to be fully optimised for use with T. 

circumcincta. The genetic analyses in the present study focused on a specific 

region of Tci-pgp-9 (Tci-pgp-9-IBDA), which appeared to be under anthelmintic 

selection. This region represents a relatively small portion of a large 

polymorphic gene, and it is possible that the major genetic determinants of IVM-

resistance may prove to be elsewhere in the molecule. Alternative gene splicing, 
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as an additional resistance mechanism, was evident in the Bisset (2007) study, 

but was not examined in this work, but would merit further investigation. 

Comprehensive genetic sequence analysis would be required to associate the 

allelic and splice variants with potential polymorphisms that are responsible for 

the resistance phenotype.   

 Alternative methods of worm control that are not solely reliant upon 

chemoprophylaxis are required as extensive use of MLs for treatment of both 

endo- and ecto-parasites will continue to drive selection for anthelmintic 

resistance. Identification of markers of anthelmintic resistance will allow the 

evaluation of new monitoring tools and allow evaluation of the genetic 

consequences of adopting management strategies aimed at delaying its spread. 

Resistance to BZs is mainly conferred by the recessive point mutation F200Y in 

the β-tubulin gene of T. circumcincta (Elard et al., 1999), although several other 

mutations have been identified elsewhere in this gene (Silvestre & Cabaret, 

2002; Ghisi et al., 2007). A study into the evolution of BZ-resistance has utilised 

the F200Y mutation to genotype a French strain of T. circumcincta (Leignel et 

al., 2010), and also to investigate the genetic consequences of different 

management strategies. Unfortunately, there are no equivalent molecular tests 

for ML-resistance, emphasising the need for further research in this area. The 

problem with molecular based tests, as highlighted by Coles et al. (2006), is that 

a mutation associated with resistance must be shown to be the only mutation, or 

at least the major genetic determinant that permits resistance to the drug under 

investigation, in that particular species.   

The present study further supports a role for Tci-pgp-9 in IVM resistance 

in T. circumcincta, but was unable to define the single major genetic 

determinant of that resistance. The quest for genetic tests based on molecular 

markers of resistance remains a major research goal. This remains challenging 

given the highly polymorphic nature of gastrointestinal nematodes, and the fact 

that infections typically involve multiple species. However, the combination of 

rapid advances in genetic and genomic approaches, interfaced with parasite 

isolates of defined resistance status, should aid advancement towards this goal 

(Gilleard & Beech, 2007).  
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APPENDIX  1 

Alignment of the full-length cDNA sequence of Tci-pgp-9 from two UK isolates of T. circumcincta, MTci2 susceptible to anthelmintics and MTci5 
which displays multiple anthelmintic resistance. Derived from the consensus of DNA sequencing of 3 clones from each isolate, the common ABC-
transporter sequence motifs are annotated below the amino acid sequence (underlined). The non-synonymous SNPs identified are shaded.  
 
 
 
 
                                                                                           V                                  120      

MTci2    ATGGGCTTCCTAAAGAAGAACGGGAAAGTGGCGGATAGCAAAGGGCAAGAAGACAGCCAGATTGAAGAAGAGAAGAAAGAGGTGGTCCCGAAAGCCAGCATCGGTCAACTGTTCCGGTAC  

MTci5    ................................................................................A.A.....................C...T.......C...  

          M  G  F  L  K  K  N  G  K  V  A  D  S  K  G  Q  E  D  S  Q  I  E  E  E  K  K  E  E  V  P  K  A  S  I  G  Q  L  F  R  Y                                                                                                                          

          

                                                                                                                           

         121                                                                                                                  240      

MTci2    ACAACGACCTTCGATAAGGTGCTGCTCTTGATCGGCTCAGTTGTCGCTATTGGCACCGGTATAGGACTGCCTATGATGTCTATCATTATGGGCAACATTTCACAAAACTTCATGAGTATC  

MTci5    .....C........C..A........T..A..A....................T.........................................T........................  

          T  T  T  F  D  K  V  L  L  L  I  G  S  V  V  A  I  G  T  G  I  G  L  P  M  M  S  I  I  M  G  N  I  S  Q  N  F  M  S  I                                                                                                                          

          

                                                                                                                           

         241                                                                                                                  360      

MTci2    ACTGGAAACACTACCTCTATCCAACAGTTCGAACATGATGTGATCCAAAACTGCCTTAAATATGTTTACCTCGGTTGCGGAGTATTCACGGCGGCAACGATTCAGGCAATGTGTTTTCTA  

MTci5    .....C.....A..............A....................G.................C........C....................G........................  

          T  G  N  T  T  S  I  Q  Q  F  E  H  D  V  I  Q  N  C  L  K  Y  V  Y  L  G  C  G  V  F  T  A  A  T  I  Q  A  M  C  F  L                                                                                                                        

            

                                                                                                                         

         361                                                                                                                  480      

MTci2    ACGGTATGCGAGAATCTTGTTAATCAACTCAGAAGACAGTTCTTCAAGTCGATTCTTCGTCAAGACATCACGTGGTTCGACAAAAACAATTCAGGAACTCTCGCCACAAAACTATTCGAC  

MTci5    .....C.....A........G.............................A................................G.................T.....G.....G......  

          T  V  C  E  N  L  V  N  Q  L  R  R  Q  F  F  K  S  I  L  R  Q  D  I  T  W  F  D  K  N  N  S  G  T  L  A  T  K  L  F  D                                                                                                                          

             

                                                                                                                        

         481                                                                                                                  600      

MTci2    AATCTGGAACGAGTCAAAGAGGGAACAGGTGACAAACTTGGCCTTATGATCCAATTCGTGGCGCAGTTTTTCGGCGGTTTCATCGTGGCGTTCACTTACGACTGGAAACTCACTCTGATC  

MTci5    .......................T..C..C...........T..........................C.........................................T.........  

          N  L  E  R  V  K  E  G  T  G  D  K  L  G  L  M  I  Q  F  V  A  Q  F  F  G  G  F  I  V  A  F  T  Y  D  W  K  L  T  L  I                                                                                                                          
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         601                                                                                                                  720      

MTci2    ATGATGTCATTGGCCCCATTCATGATCATTTGTGGAGCATTCATTGCCAAGTTGATGGCCAGTGCAGCTACTCGGGAAGCCAAAAAGTACGCCGTGGCGGGAGGAATTGCTGAGGAAGTG  

MTci5    ..............T...........T...........T........T..................................................T.....G........A......  

          M  M  S  L  A  P  F  M  I  I  C  G  A  F  I  A  K  L  M  A  S  A  A  T  R  E  A  K  K  Y  A  V  A  G  G  I  A  E  E  V                                                                                                                          

              

                                                                                                                       

         721                                                                                                                  840      

MTci2    CTCACCTCAATGAGAACTGTTATCGCATTCAACGGACAGCCTTACGAATGCGAGAGGTACGAAAAAGCATTGGAAGACGGCAAATCGACAGGAATCAAGAAATCCTTGTACATTGGCATT  

MTci5    .....T..T...........G...................................A............C..........T.......................................  

          L  T  S  M  R  T  V  I  A  F  N  G  Q  P  Y  E  C  E  R  Y  E  K  A  L  E  D  G  K  S  T  G  I  K  K  S  L  Y  I  G  I                                                                                                                          

                                                                                                                                  

 

         841                                                                                                                  960      

MTci2    GGCCTCGGGATCACTTTTCTCATCATGTTCTCGTCGTACTGCCTGGCTTTCTGGGTTGGCACGGATTTTGTCTTCAAAAATCAAATGCAAGGAGGAACTGTTATGACGGTATTCTTCTCC  

MTci5    ................................T........T...................................G.......................G..................  

          G  L  G  I  T  F  L  I  M  F  S  S  Y  C  L  A  F  W  V  G  T  D  F  V  F  K  N  Q  M  Q  G  G  T  V  M  T  V  F  F  S   

            

                                                                                                             

         961                                                                                                                 1080      

MTci2    GTGATGATGGGCTCAATGGCGCTCGGACAGGCTGGACCACAATTTGCTGTCCTTGGCACAGCTATGGGTGCCGCTGGGTCTCTCTATCAAATTATCGATCGGGAACCAGAAATAGACTCC  

MTci5    ...........T..T...........T.....C.....G.................T..............T...........T.....G.......................C......  

          V  M  M  G  S  M  A  L  G  Q  A  G  P  Q  F  A  V  L  G  T  A  M  G  A  A  G  S  L  Y  Q  I  I  D  R  E  P  E  I  D  S                                                                                                                          

           

                                                                                                                          

         1081                                                                                                                1200      

MTci2    TACTCCTCCGAAGGAGTTAGGCCATCGAATCTCAAAGGAAAAATCACTGTCTCAAATCTGAAGTTCACTTATCCAACACGACCAGATGTCCCGATTCTTAAGGGTGTTTCATTTGAAGCG  

MTci5    .....AAGT.....C..B.............................C.......................C................................................  

          Y  S  S  E  G  V  R  P  S  N  L  K  G  K  I  T  V  S  N  L  K  F  T  Y  P  T  R  P  D  V  P  I  L  K  G  V  S  F  E  A                                                                                                                          

            

                                                                                                                         

         1201                                                                                                                1320      

MTci2    AAACCCGGTGAGACGATAGCACTGGTAGGTTCTAGTGGATGTGGAAAAAGTACCATAATTCAGCTGCTACTACGGTACTACAATCCTGCAGATGGAAAGATTACAATAGACGGTGTGGAA  

MTci5    ................................A.....T................................G....................C........C..................  

          K  P  G  E  T  I  A  L  V  G  S  S  G  C  G  K  S  T  I  I  Q  L  L  L  R  Y  Y  N  P  A  D  G  K  I  T  I  D  G  V  E                                                                                                                          

                ├─────────Walker A─────────┤  

                                                                                                                        

         1321                                                                                                                1440      

MTci2    ATCGACAAGATTAATATCGAATTTCTCCGAAATTACGTTGGAGTAGTGTCACAAGAGCCTATGCTGTTTAACACAACGATTGAACAGAATATCCGTTATGGACGTGAAAAAGTCACAGAT  

MTci5    ..............C......................................G...........B..........................T..C........................  

          I  D  K  I  N  I  E  F  L  R  N  Y  V  G  V  V  S  Q  E  P  M  L  F  N  T  T  I  E  Q  N  I  R  Y  G  R  E  K  V  T  D                                                                                                                          

                    ├──────────────Q-loop/Lid──────────────┤  
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         1441                                                                                                                1560      

MTci2    GCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGGAATTTACACGAACGTTGGTGACCGAGGAACCCAGATGTCTGGTGGCCAAAAGCAA  

MTci5    .....................................................G..............C.......................C.....A...........T.........  

          A  E  I  T  A  A  L  R  K  A  N  A  Y  N  F  V  Q  S  F  P  D  G  I  Y  T  N  V  G  D  R  G  T  Q  M  S  G  G  Q  K  Q                                                                                                                          

                                                                                                            ├─────────Signature─            

          

 

                                                                                             

         1561                                                                                                                1680      

MTci2    CGTATAGCCATTGCCCGCGCTTTGGTCAGAGACCCAAAAATTCTTCTACTCGATGAAGCCACGAGCGCCCTTGACGCCGAAAGTGAACATATTGTTCAGCAAGCCCTTGAAAACGCGTCC  

MTci5    .................T..G..A..........................T...........A.....T..C.................C.....C.....G..............A..T  

          R  I  A  I  A  R  A  L  V  R  D  P  K  I  L  L  L  D  E  A  T  S  A  L  D  A  E  S  E  H  I  V  Q  Q  A  L  E  N  A  S 

         ─Signature──────────────┤              ├───────Walker B────────┼───────D-Loop──────┤  

  

                                                                                                                      

         1681                                                                                                                1800      

MTci2    AAAGGAAGAACGACAATTGTTATTGCTCATCGACTCTCGACGATTCGAAATGCTGACAAGATTATTGCAATGAAAAATGGAGAGGTGGTCGAAGTTGGCAATCATGACGAGTTGATCGCC  

MTci5    .................A...............................................C........G....................................C........  

          K  G  R  T  T  I  V  I  A  H  R  L  S  T  I  R  N  A  D  K  I  I  A  M  K  N  G  E  V  V  E  V  G  N  H  D  E  L  I  A                                                                                                                    

             

                                                                                                                      

         1801                                                                                                                1920      

MTci2    CGTAAAGGACTGTATCACGAGCTGGTCAACGCACAAGTATTTGCCGATGTTGACGATACAGTCGGAGATGCCGCAGTGCGTCGGCGTACGATGTCATCATCTCGATCGAGGTCGCCATCG 

MTci5    ..................................................G..T................................C..........................T...... 

          R  K  G  L  Y  H  E  L  V  N  A  Q  V  F  A  D  V  D  D  T  V  G  D  A  A  V  R  R  R  T  M  S  S  S  R  S  R  S  P  S                                                                                                                         

                                                                                                                                

     

         1921                                                            A  T  A                                             2040      

MTci2    CTTGCGTCACCTGAATATAAGCGTCTCAGGTCTCAATTGTCCGTAACTGAAGACACTGGCGTAGCAACTGCCCAAAACGACCCGGTGAAAGCTGAGAAAGACTTGGAGCGACTGAAGAAA  

MTci5    .....A.........................................................A.GG..A.T........T..A..............G........A............  

          L  A  S  P  E  Y  K  R  L  R  S  Q  L  S  V  T  E  D  T  G  V  T  A  T  Q  N  D  P  V  K  A  E  K  D  L  E  R  L  K  K                                                                                                                          

              

                                                                                                                       

         2041                                             R                                                                  2160      

MTci2    GAACTCGAAGAAGAAGGTGCTGCGAAAGCAAATCTTTTCGGAATTCTCAGGCATGCCCGACCTGAATGGCCTTTCATCATGTTCGCCGTTTTCTCTTCAGTCGTACAGGGCTGTGTTTTT  

MTci5    .............................G.................T..C.....T..........................T.............................C......  

          E  L  E  E  E  G  A  A  K  A  N  L  F  G  I  L  S  H  A  R  P  E  W  P  F  I  M  F  A  V  F  S  S  V  V  Q  G  C  V  F                                                                                                                          
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         2461                                                                                                                2280      

MTci2    CCGGCTTTCTCGCTATTCTTCTCACAAATCATCAATGTGTTCTCGAAGCAACCAGGTGATCCGACGTTAAAACAAGAGGGCCATTTTTGGGCACTGATGTTCCTCGTGTTAGGTGCTGTC  

MTci5    ...........A..G.................T...........A.....G..C...........AC....G..G....................T........................  

          P  A  F  S  L  F  F  S  Q  I  I  N  V  F  S  K  Q  P  G  D  P  T  L  K  Q  E  G  H  F  W  A  L  M  F  L  V  L  G  A  V                                                                                                                          

             

                                                                                                                        

         2281                                                                                                                2400      

MTci2    CAAGCTACCACAATGATCATACAGTGCTTCTTCTTCGGTATGTCAGCCGAACGGCTCACAATGCGACTTCGATCCAAGATTTTCAAGAATGTTATGAGAATGGATGCCACTTATTTCGAC  

MTci5    ....................................................................................................................T...  

          Q  A  T  T  M  I  I  Q  C  F  F  F  G  M  S  A  E  R  L  T  M  R  L  R  S  K  I  F  K  N  V  M  R  M  D  A  T  Y  F  D                                                                                                                          

             

                                                                                                                       

         2401                                                                                                                2520      

MTci2    ATGCCTCGTCATTCACCTGGAAAAATCACCACTCGACTGGCTACCGATGCGCCTAACGTCAAGTCGGCTCTCGACTATCGTTTCGGTTCAGTGTTCAGTTCAGTCGTCTCCGTCTGCAGT  

MTci5    .......................G........................................................C..........................A............  

          M  P  R  H  S  P  G  K  I  T  T  R  L  A  T  D  A  P  N  V  K  S  A  L  D  Y  R  F  G  S  V  F  S  S  V  V  S  V  C  S                                                                                                                          

              

                                                                                                                       

         2521                                                                                                                2640      

MTci2    GGTGTCGGAATCGCGCTTTATTTTGGATGGCAAATGGCAATTTTGACTATCGCCATCTTTCCCTTAGCCGCTGTTGGGCAGGCAATCCAGATGAAATTCATGTCTGGGCGTGCAACAGCT  

MTci5    ...........................................................C..GC................A..C..A.................................  

          G  V  G  I  A  L  Y  F  G  W  Q  M  A  I  L  T  I  A  I  F  P  L  A  A  V  G  Q  A  I  Q  M  K  F  M  S  G  R  A  T  A                                                                                                                          

           

                                                                                                                          

         2641                                                                                                                2760      

MTci2    GATGCAAAAGAGATGGAAAACAGTGGAAAAGTTGCCATGGAAGCTATTGAGAACATTCGAACAGTACAAGCACTAACATTAGAACATCGACTCCACGCGCAGTTCTGTCAGCATTTGGAT  

MTci5    ................................A...........C...........CA.........................G..CA.......T........................  

          D  A  K  E  M  E  N  S  G  K  V  A  M  E  A  I  E  N  I  R  T  V  Q  A  L  T  L  E  H  R  L  H  A  Q  F  C  Q  H  L  D                                                                                                                          

                                                                                                                                    

 

         2761                                                                                                                2880      

MTci2    GCACCGCACAAAACCAGCAGAAGAAAGGCTATCATCCAGGGTATTTCTTATGGATTCGCCAGCAGCATCTTCTACTTCTTATATGCGTCATGCTTCCGTTTTGGATTGTGGCTTATCGTC  

MTci5    .....................................................................................................C..T...............  

          A  P  H  K  T  S  R  R  K  A  I  I  Q  G  I  S  Y  G  F  A  S  S  I  F  Y  F  L  Y  A  S  C  F  R  F  G  L  W  L  I  V 

                                                                                                                         

                                                                                                                                    

         2881                                                                                                                3000      

MTci2    AATGGAACTCTTCAGCCAATGAACGTCCTTAGGGTACTGTTCGCAATCTCGTTCACTGCTGGAAGCATGGGATTTGCAAGCTCTTATTTCCCCGAGTACATCAAGGCAACATTCGCTGCC  

MTci5    ...........C..............T........H..............B.......................C...........C.................A..G.....T.....T 

          N  G  T  L  Q  P  M  N  V  L  R  V  L  F  A  I  S  F  T  A  G  S  M  G  F  A  S  S  Y  F  P  E  Y  I  K  A  T  F  A  A                                                                                                                           
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         3001                                                                                                                3120      

MTci2    GGTCTTATCTTCCATATGCTCGAAGAAGAACCACGAATTGATGGCATGACCAGCAATGGCAAGAAACCGAAGATCACAGGGGCCGTCAAACTGAATAAAGTCTACTTCAAATATCCAGAA 

MTci5    ............................................T...................................C....................................... 

          G  L  I  F  H  M  L  E  E  E  P  R  I  D  G  M  T  S  N  G  K  K  P  K  I  T  G  A  V  K  L  N  K  V  Y  F  K  Y  P  E                                                                                                                          

              

                                                                                                                       

         3121                                                                                                                3240      

MTci2    AGACCGAACGTACCCATTCTTCAGGGAATGGATGTTGATGTGAAGCCTGGCGAAACTCTAGCCCTGGTTGGGCCCAGTGGTTGCGGAAAGTCAACAGTGATATCGTTACTTGAAAGGCTT 

MTci5    .........................................C....................G...........T........T..............................C..... 

          R  P  N  V  P  I  L  Q  G  M  D  V  D  V  K  P  G  E  T  L  A  L  V  G  P  S  G  C  G  K  S  T  V  I  S  L  L  E  R  L                                                                                                                          

                    ├─────────Walker A─────────┤ 

 

                                                                                                                       

         3241                                                                                                                3360      

MTci2    TACGATGCTTTGGACGGTTCTGTGGAAGTTGATGGCAATGATTTACGCCAAGTGAATCCCACTCATCTACGTGCCCATATAGCTTTGGTATCACAAGAGCCGATTCTTTTCGACAGATCC 

MTci5    ........C.................................C............................................................................. 

          Y  D  A  L  D  G  S  V  E  V  D  G  N  D  L  R  Q  V  N  P  T  H  L  R  A  H  I  A  L  V  S  Q  E  P  I  L  F  D  R  S                                                                                                                          

                       ├─────────Q-Loop/Lid──────────┤ 

                                                                                                                          

         3361                           Q                                                                                    3480      

MTci2    ATCCGAGACAATATCCTCTACGGTCTTCCACAGGGTTCCGTTAGTGATGCCCAAGTGCACGAAGTCGCTCAACGTGCTAACATTCACAGCTTCATCATTGGCCTGCCTGATGGATATAAC 

MTci5    ...............................CA.................................................................A..................... 

          I  R  D  N  I  L  Y  G  L  P  P  G  S  V  S  D  A  Q  V  H  E  V  A  Q  R  A  N  I  H  S  F  I  I  G  L  P  D  G  Y  N                                                                                                                          

           

                                                                                                                          

         3481                                                                                                                3600      

MTci2    ACGCGTGCAGGAGAAAAAGGAGCGCAGCTGTCTGGGGGGCAGAAACAACGGATCGCCATCGCACGTGCACTTGTTCGGAATCCAAAAATCCTACTACTTGACGAAGCTACAAGTGCCCTA 

MTci5    ........................................................................................................................ 

          T  R  A  G  E  K  G  A  Q  L  S  G  G  Q  K  Q  R  I  A  I  A  R  A  L  V  R  N  P  K  I  L  L  L  D  E  A  T  S  A  L                                                                                                                          

                ├────────────Signature─────────────┤                       ├───────Walker B────────┼─D-Loop─ 

                                                                                                                         

         3601                                                                                                                3720      

MTci2    GATACTGAAAGCGAGAAGGTGGTGCAGGAGGCGCTCGACAAAGCATCAGAAGGTCGAACATGTATCGTTGTAGCACATCGGTTATCAACTGTCGTCAACGCCAATTGTATAATGGTTGTC 

MTci5    ........................................................................................................................ 

          D  T  E  S  E  K  V  V  Q  E  A  L  D  K  A  S  E  G  R  T  C  I  V  V  A  H  R  L  S  T  V  V  N  A  N  C  I  M  V  V                                                                                                                           

         ───────────┤             ├──────────Switch──────────┤ 

                                                                                                       

         3721                                                                                              3822          

MTci2    AAGGGAGGAAAAGTGGTTGAAAAAGGAACGCACAACGAATTAATGCAAGCCAAGGGTGCATACTGGGCACTCACTCAGAAGCAGATTCTAGCCAAAGAATGA 

MTci5    .........................................................................................G............ 

          K  G  G  K  V  V  E  K  G  T  H  N  E  L  M  Q  A  K  G  A  Y  W  A  L  T  Q  K  Q  I  L  A  K  E  -      
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APPENDIX  2 

Probit Analysis - Larval Migration Inhibition Assay    

Probit analysis was conducted on the data generated from the LMIA. The analysis was 

used to estimate the concentration of IVM and its different inhibitory doses. The 

probability plot for non-migrators is shown below. The isolates tested were (1) MTci2 

and (2) MTci5 annotated by black circles and red squares, respectively. 
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The inhibitory doses of IVM were estimated from the graph and are listed in the tables 
below along with the regression output from the Probit analysis. The regression table 
shows that increasing IVM concentration increases migration inhibition and that the 
MTci5 isolate is inhibited less than the MTci2 isolate with a negative coefficient.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Regression Table 
 

Variable Coefficient S.E. Z-value P-value 

Constant -0.34502 0.0080401 -42.91 <0.001 
[IVM] (µM)  0.00435 0.0000577  75.43 <0.001 
MTci5 -0.12231 0.0131215 -9.32 <0.001 

Chi-Square = 208.592  D.F. = 1  P Value = <0.001 

Isolate 
Inhibitory 

Dose 
[IVM] (µM) SE 

95 % Fiducial C.I. 

Lower Upper 

MTci2 LMI10 -215.236 3.927 -223.118 -207.713 
 LMI50    79.296 1.759    75.866    82.764 
 LMI90  373.828 4.611  365.003  383.088 
 LMI95  457.323 5.653  446.511  468.684 
 LMI99  613.947 7.657  599.310  629.345 

MTci5 LMI10 -187.126 4.340 -195.819 -178.798 
 LMI50  107.406 2.460  102.598  112.246 
 LMI90  401.938 4.875  392.592  411.714 
 LMI95  485.433 5.860  474.213  497.197 
 LMI99  642.057 7.796  627.145  657.724 
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APPENDIX  3 

Probit Analysis - Larval Feeding Inhibition Assay  

Probit analysis was conducted on the data generated from the LFIA. The analysis was 

used to estimate the concentration of IVM and its different inhibitory doses. The 

probability plot for non-feeders is shown below. The isolates tested were (1) MTci2 and 

(2) MTci5 annotated by black circles and red squares, respectively. 
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The inhibitory doses of IVM were estimated from the graph and are listed in the tables 
below along with the regression output from the Probit analysis. The regression table 
shows that increasing IVM concentration increases feeding inhibition and that the MTci5 
isolate is inhibited less than the MTci2 isolate with a negative coefficient.  

 
 
 
 
 
 
 

 

 
 
 
 
 

 
Regression Table 
 

Variable Coefficient S.E. Z-value P-value 

Constant  0.2374 0.0138  17.19 <0.001 
[IVM] (µM) 80.9272 1.6900  47.89 <0.001 
MTci5 -0.2524 0.0185 -13.63 <0.001 

Chi-Square = 0.0277257  D.F. = 1  P-Value = 0.868 

 

Isolate Inhibitory Dose [IVM] (µM) SE 
95.0% Fiducial C.I. 

Lower Upper 

MTci2 LFI10 -0.0188 0.000468 -0.0197 -0.0179 
 LFI50 -0.0029 0.000197 -0.0033 -0.0026 
 LFI90  0.0129 0.000276  0.0123  0.0134 
 LFI95  0.0174 0.000356  0.0167  0.0181 
 LFI99  0.0258 0.000519 0.0248  0.0269 

MTci5 LFI10 -0.0156 0.000415 -0.0165 -0.0149 
 LFI50  0.0002 0.000168 -0.0001  0.0005 
 LFI90  0.0160 0.000320  0.0154  0.0167 
 LFI95  0.0205 0.000404  0.0197  0.0213 
 LFI99  0.0289 0.000570  0.0279  0.0301 
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APPENDIX  4 

Incidence of Tci-pgp-9-IBDA Variants in UK Isolates of T. circumcincta 

Tci-pgp-9-IBDA genotypes of >80 individual L3 were assessed by allele-specific PCR. The 
presence of allelic variants was recorded in individuals from the MTci2, MTci5 and 
MTci5PT isolates of T. circumcincta. The nested-PCR strategy has failed to amplify 
products in four MTci5PT larvae (Larval lysates E6, E8, G7 and G11). The number of 
allelic variants (n) present in each larva is also listed in the table.  

Larval 

Lysate 

MTci2 MTci5 MTci5PT 

Allelic Variant(s) n Allelic Variant(s) n Allelic Variant(s) n 

A1 2, 8, 12 3 2, 7, 8, 10, 11, 13 6 3, 11, 12 3 

A2 8, 9, 10, 13 4 2 1 3, 5, 10, 12 4 

A3 5 1 3, 5, 7, 8, 9, 10, 11 7 2, 13 2 

A4 2, 7, 13 3 2, 3, 8, 10, 13 5 3, 5 2 

A5 5, 8, 9 3 2, 3, 8, 9, 10, 11 6 2, 5 2 

A6 5, 7, 8, 12 4 2, 7, 9, 10, 11, 13 6 5, 12 2 

A7 3, 5, 8, 9, 10, 11, 12, 13 8 8, 9, 10 3 2, 7 2 

A8 3, 5, 8, 9, 10, 12, 13 7 2, 7, 9, 13 4 5, 12 2 

A9 7, 9, 12 3 2, 3, 13 3 5, 11 2 

A10 5, 8, 10 3 2, 3, 12 3 5, 8 2 

A11 8, 10, 11, 12, 13 5 2, 3, 10, 12 4 2, 5, 12, 13 4 

A12 2, 5, 9, 10, 12 5 3, 5, 11 3 2, 5, 13 3 

B1 5, 8 2 5, 7, 9 3 7, 9, 11, 13 4 

B2 5, 12 2 2, 3, 13 3 2, 5, 7, 13 4 

B3 2, 13 2 3, 5, 7, 12 4 2, 5 2 

B4 2, 12, 13 3 9 1 2, 13 2 

B5 3, 5, 8, 9, 10, 11, 12 7 3, 8 2 3 1 

B6 2, 3, 5, 7, 8, 9, 10, 11, 12, 13 10 3, 10, 12 3 5, 12 2 

B7 5, 12 2 2, 12, 13 3 7 1 

B8 8, 9, 10 3 3, 10, 12 3 2, 9 2 

B9 5, 12 2 2, 3, 13 3 5, 12 2 

B10 2, 7, 8, 9, 10, 13 6 9, 12 2 8, 12 2 

B11 2, 13 2 3, 8 2 2 1 

B12 8, 9, 12 3 3, 12 2 13 1 

C1 5 1 2, 5, 7, 13 4 2, 13 2 

C2 2, 12, 13 3 2, 5, 7, 13 4 2, 5, 13 3 

C3 2, 13 2 12, 13 2 10, 12 2 

C4 5, 8, 10, 12 4 2, 3, 5 3 3, 12 2 

C5 9, 12, 13 3 5, 7, 9 3 5, 9, 12 3 

C6 2, 5, 7, 8, 9, 10, 11, 12, 13 9 3, 7, 9 3 12 1 

C7 5, 7, 8, 9, 10, 13 6 5, 8, 13 3 2 1 

C8 2, 5, 13 3 3, 9 2 2, 5 2 

C9 5, 8, 10, 12, 13 5 2, 5, 13 3 2, 5, 10 3 

C10 5, 8, 9, 10 4 3 1 2 1 

C11 2, 5, 8, 9, 10, 11, 13 7 2, 8 2 5, 12 2 

C12 2, 8, 10 3 3, 8, 11, 13 4 5, 7, 9, 12 4 
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Larval 

Lysate 

MTci2 MTci5 MTci5PT 

Allelic Variant(s) n Allelic Variant(s) n Allelic Variant(s) n 

D1 5, 12 2 5 1 3, 12 2 

D2 2, 5, 8, 13 4 3 1 3, 11, 12 3 

D3 2, 8, 12, 13 4 3, 7, 10 3 3, 5, 8 3 

D4 2, 5, 8, 13 4 7, 9, 13 3 2, 12 2 

D5 2, 12, 13 3 2, 3, 5 3 2, 10 2 

D6 2, 3, 5, 8, 9, 13 6 2, 3 2 3, 13 2 

D7 2, 5, 8, 9, 10, 11, 12, 13 8 3, 7, 9, 11 4 2, 12 2 

D8 2, 5, 8, 13 4 3 1 2, 3, 5, 13 4 

D9 2, 5, 7, 8, 9, 10, 11, 13 7 5, 12 2 12 1 

D10 8, 9, 10, 12 4 3 1 5, 8 2 

D11 5, 8, 12 3 2 1 12 1 

D12 2 1 2 1 3 1 

E1 11 1 2, 8 2 2, 13 2 

E2 2, 8, 11, 13 4 5, 10 2 5, 12 2 

E3 2, 8, 13 3 3 1 5, 12 2 

E4 3, 8, 9, 10, 11, 12, 13 7 2, 3 2 5, 12, 13 3 

E5 2, 3, 9, 13 4 2, 3 2 2, 13 2 

E6 3, 5, 8, 9, 10, 11, 12, 13 8 3, 5 2   
 

E7 2, 5, 13 3 3 1 5, 12 2 

E8 5, 10 2 2, 13 2   
 

E9 5, 8, 9, 10, 12, 13 6 2, 3, 13 3 2, 12 2 

E10 8, 9, 12 3 2, 3 2 2, 7, 9, 12 4 

E11 5, 12 2 2, 3 2 5, 10 2 

E12 2, 8, 12 3 3, 8 2 5 1 

F1 5, 11 2 3, 10, 12 3 5, 10 2 

F2 2, 5, 9, 13 4 3, 8 2 2, 5, 10, 13 4 

F3 9, 12 2 3, 8, 13 3 2, 5 2 

F4 3, 9, 13 3 2, 10, 13 3 3, 5, 8, 9, 12 5 

F5 2, 5, 9, 10, 12, 13 6 2, 12, 13 3 2 1 

F6 2, 5, 8, 9, 10, 12, 13 7 2, 9, 13 3 7, 9, 11 3 

F7 5, 12 2 8, 11 2 2, 8 2 

F8 2, 5, 8, 9, 10, 13 6 2, 8, 11 3 3, 12 2 

F9 2, 8, 9, 10, 13 5 2, 3, 13 3 5, 9 2 

F10 2, 5, 8, 9, 10, 12, 13 7 2, 9, 13 3 13 1 

F11 2, 8, 9, 10, 13 5 3 1 13 1 

F12 5, 8, 10,  13 4 5, 8 2 2, 7, 9, 13 4 

G1 2 1 2, 3, 8, 10, 11 5 12, 13 2 

G2 5, 9 2 2, 11, 13 3 2, 3, 12, 13 4 

G3 5, 8, 9 3 2, 9, 11, 13 4 7, 9, 11 3 

G4 2, 5, 13 3 3, 11 2 5, 10 2 

G5 2, 5, 13 3 7, 9, 11 3 2 1 

G6 2, 12, 13 3 7, 9, 11 3 2, 12 2 

G7 5 1 2, 11, 13 3   
 

G8 2, 13 2 2, 12 2 2, 10 2 

G9 5, 12 2 3, 5, 12 3 8 1 

G10 2, 5, 13 3 3, 12 2 8, 9 2 

G11 2, 12, 13 3 2, 3, 10 3   
 

G12 5, 8, 9 3 3, 11 2 2, 12 2 
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APPENDIX  5 

Tci-pgp-9-IBDA Variants in Sub-populations of T. circumcincta 

Allele-specific PCR results for individual larvae selected from the MTci2NF(0.1nM), 
MTci2F(10nM), MTci5NF(0.1nM) and MTci5F(10nM) sub-populations collected from the LFIA. 

 

 

 

MTci2NF(0.1nM) MTci5NF(0.1nM)  

 

MTci2F(10nM) MTci5F(10nM) 

Larval 
Lysate 

Allelic 
Variants(s) 

n 
Allelic 

Variant(s) 
n 

 Larval 
Lysate 

Allelic 
Variants(s) 

n 
Allelic 

Variant(s) 
n 

A1 2, 5 2 2, 11, 13 3  A7 2, 5, 10, 11 4 2, 3, 12, 13 4 
A2 2, 5, 10, 13 4 2, 7, 13 3  A8 

  
3, 7, 9 3 

A3 2, 7, 9, 13 4 2, 13 2  A9 
  

2, 3, 13 3 
A4 2, 9, 13 3 3 1  A10 2, 5, 13 3 2, 3, 13 3 
A5 2, 5, 13 3 2, 3, 5, 13 4  A11 2, 12, 13 3 2, 3, 13 3 
A6 2, 5, 9, 10 4 2, 3, 13 3  A12 2, 13 2 3, 12 2 
B1 2, 13 2 3, 12 2  B7 2, 13 2 2, 3, 13 3 
B2 2, 10 2 3, 7 2  B8 5, 12 2 2, 3, 13 3 
B3 2, 5, 7 3 8, 9, 12 3  B9 2, 12, 13 3 2, 3, 13 3 
B4 

  
3 1  B10 2, 5, 10 3 2, 13 2 

B5 2, 5, 10, 13 4 3 1  B11 
  

2, 3, 13 3 
B6 2, 5, 10, 13 4 2, 3, 9, 13 4  B12 2, 5, 13 3 2, 12, 13 3 
C1 

  
3, 9, 11 3  C7 2, 5, 10, 13 4 3, 7, 9 3 

C2 2, 5, 13 3 2, 8, 10, 13 4  C8 2, 5,13 3 5, 8, 10 3 
C3 2, 5, 13 3 2, 3 2  C9 

  
2, 3, 10 3 

C4 2, 5, 12, 13 4 3 1  C10 2, 3, 5 3 3 1 
C5 2, 5, 12, 13 4 3, 8, 10 3  C11 2, 5, 10 3 3, 12 2 
C6 2, 5, 13 3 3 1  C12 5, 9 2 2, 3, 13 3 
D1 2, 5, 9, 10 4 2, 3, 13 3  D7 2, 12, 13 3 3 1 
D2 2, 12 2 2, 3, 13 3  D8 2, 9, 13 3 2, 3, 13 3 
D3 2, 5, 12 3 2, 3, 12, 13 4  D9 2, 3, 5, 9 4 2, 3, 8, 10 4 
D4 2, 13 2 2, 13 2  D10 2, 5 2 2, 3, 13 3 
D5 2, 3 2    D11 2, 5, 10, 13 4 2, 3, 13 3 
D6 2, 5, 10, 13 4 3 1  D12 2, 5, 13 3 2, 13 2 
E1 2, 3 2 2, 3, 12, 13 4  E7 3, 9 2 3, 8, 10, 11 4 
E2 2, 5, 13 3 2, 7, 9, 13 4  E8 2, 13 2 3, 10 2 
E3 2, 5, 10, 12 4 2, 3, 13 3  E9 2, 13 2 2, 3, 13 3 
E4 2, 13 2 2, 3, 13 3  E10 2, 5, 13 3 3 1 
E5 2, 8, 10, 13 4 2, 3, 8, 10 4  E11 2, 3, 13 3 2, 3, 12 3 
E6 2, 9, 13 3 2, 13 2  E12 2, 3, 5, 10, 13 5 2, 3, 13 3 
F1 2, 5, 10, 12 4 2, 3, 8, 13 4  F7 5, 12 2 3, 9 2 
F2 2, 5, 13 3 3, 7, 9 3  F8 2, 5, 10, 13 4 2, 3, 7, 9, 13 5 
F3 3, 5, 10 3 2, 13 2  F9 2, 5, 13 3 3, 9 2 
F4 2, 5, 11, 13 4 2, 3, 8, 13 4  F10 12 1 5, 8 2 
F5 2, 13 2 3, 8, 10 3  F11 2, 5, 9, 10 4 2, 13 2 
F6 2, 5, 7, 9, 10 5 3 1  F12 2, 5, 13 3 3, 8 2 
G1 5, 12 2 2, 3, 12, 13 4  G7 2, 5, 10 3 2, 7, 9 3 
G2 2, 5, 9, 10 4 2, 3, 13 3  G8 12 1 2, 3, 13 3 
G3 

  
   G9 5, 10 2 2, 3, 13 3 

G4 2, 13 2 2, 3, 5, 13 4  G10 2, 7, 9, 13 4 2, 3, 11, 13 4 
G5 2, 3, 5 3 3, 5 2  G11 2, 5, 13 3 2, 3, 13 3 
G6 3, 5 2 3 1  G12 2, 13 2 2, 13 2 
H1 2, 5, 13 3 3, 7, 9, 12 4  H7 2, 13 2 3, 8 2 
H2 2, 5, 13 3 2, 3, 13 3  H8 2, 13 2 2, 13 2 
H3 

  
3 1  H9 2, 13 2 2, 5, 13 3 

H4 2, 5, 13 3 2, 3, 13 3  H10 3, 7, 9, 11, 12 5 3, 12 2 
H5 2, 5, 10, 13 4 2, 8, 10, 13 4  H11 3, 11, 12 3 2, 13 2 
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APPENDIX  6 

Allocated Haplotype Numbers 

Combinations of Tci-pgp-9-IBDA allelic variants were allocated a “haplotype number” 
and their incidences are listed for each of the larval populations tested.  

 

 

Haplotype 
Number 

Allelic Variants 
Incidence in Isolates 

 
Incidence in Sub-populations 

MTci2 MTci5 MTci5PT 
 

MTci2 

(NF0.1µM) 
MTci2 

(F10µM) 
MTci5 

(NF0.1µM) 
MTci5 

(F10µM) 

1 2 2 3 5 
 

0 0 0 0 
2 2, 3 0 5 0 

 
2 0 1 0 

3 2, 3, 5 0 2 0 
 

1 1 0 0 
4 2, 3, 5, 7, 8, 9, 10, 11, 12, 13 1 0 0 

 
0 0 0 0 

5 2, 3, 5, 8, 9, 13 1 0 0 
 

0 0 0 0 
6 2, 3, 5, 9 0 0 0 

 
0 1 0 0 

7 2, 3, 5, 10, 13 0 0 0 
 

0 1 0 0 
8 2, 3, 5, 13 0 0 1 

 
0 0 2 0 

9 2, 3, 7, 9, 13 0 0 0 
 

0 0 0 1 
10 2, 3, 8, 9, 10, 11 0 1 0 

 
0 0 0 0 

11 2, 3, 8, 10 0 0 0 
 

0 0 1 1 
12 2, 3, 8, 10, 11 0 1 0 

 
0 0 0 0 

13 2, 3, 8, 10, 13 0 1 0 
 

0 0 0 0 
14 2, 3, 8, 13 0 0 0 

 
0 0 2 0 

15 2, 3, 9, 13 1 0 0 
 

0 0 1 0 
16 2, 3, 10 0 1 0 

 
0 0 0 1 

17 2, 3, 10, 12 0 1 0 
 

0 0 0 0 
18 2, 3, 11, 13 0 0 0 

 
0 0 0 1 

19 2, 3, 12 0 1 0 
 

0 0 0 1 
20 2, 3, 12, 13 0 0 1 

 
0 0 3 1 

21 2, 3, 13 0 5 0 
 

0 1 8 16 
22 2, 5 0 0 4 

 
1 1 0 0 

23 2, 5, 7 0 0 0 
 

1 0 0 0 
24 2, 5, 7, 8, 9, 10, 11, 12, 13 1 0 0 

 
0 0 0 0 

25 2, 5, 7, 8, 9, 10, 11, 13 1 0 0 
 

0 0 0 0 
26 2, 5, 7, 9, 10 0 0 0 

 
1 0 0 0 

27 2, 5, 7, 13 0 2 1 
 

0 0 0 0 
28 2, 5, 8, 9, 10, 11, 12, 13 1 0 0 

 
0 0 0 0 

29 2, 5, 8, 9, 10, 11, 13 1 0 0 
 

0 0 0 0 
30 2, 5, 8, 9, 10, 12, 13 2 0 0 

 
0 0 0 0 

31 2, 5, 8, 9, 10, 13 1 0 0 
 

0 0 0 0 
32 2, 5, 8, 13 3 0 0 

 
0 0 0 0 

33 2, 5, 9, 10 0 0 0 
 

3 1 0 0 
34 2, 5, 9, 10, 12 1 0 0 

 
0 0 0 0 

35 2, 5, 9, 10, 12, 13 1 0 0 
 

0 0 0 0 
36 2, 5, 9, 13 1 0 0 

 
0 0 0 0 

37 2, 5, 10 0 0 1 
 

0 3 0 0 
38 2, 5, 10, 11 0 0 0 

 
0 1 0 0 

39 2, 5, 10, 12 0 0 0 
 

2 0 0 0 
40 2, 5, 10, 13 0 0 1 

 
5 0 0 0 

41 2, 5, 11, 13 0 0 0 
 

1 3 0 0 
42 2, 5, 12 0 0 0 

 
1 0 0 0 

43 2, 5, 12, 13 0 0 1 
 

2 0 0 0 
44 2, 5, 13 5 1 2 

 
9 8 0 1 

45 2, 7 0 0 1 
 

0 0 0 0 
46 2, 7, 8, 9, 10, 13 1 0 0 

 
0 0 0 0 

47 2, 7, 8, 10, 11, 13 0 1 0 
 

0 0 0 0 
48 2, 7, 9 0 0 0 

 
0 0 0 1 

49 2, 7, 9, 10, 11, 13 0 1 0 
 

0 0 0 0 
50 2, 7, 9, 12 0 0 1 

 
0 0 0 0 

51 2, 7, 9, 13 0 1 1 
 

1 1 1 0 
52 2, 7, 13 1 0 0 

 
0 0 1 0 

53 2, 8 0 2 1 
 

0 0 0 0 
54 2, 8, 9, 10, 13 2 0 0 

 
0 0 0 0 

55 2, 8, 10 1 0 0 
 

0 0 0 0 
56 2, 8, 10, 13 0 0 0 

 
1 0 2 0 

57 2, 8, 11 0 1 0 
 

0 0 0 0 
58 2, 8, 11, 13 1 0 0 

 
0 0 0 0 

59 2, 8, 12 2 0 0 
 

0 0 0 0 
60 2, 8, 12, 13 1 0 0 

 
0 0 0 0 

61 2, 8, 13 1 0 0 
 

0 0 0 0 
62 2, 9 0 0 1 

 
0 0 0 0 

63 2, 9, 11, 13 0 1 0 
 

0 0 0 0 
64 2, 9, 13 0 2 0 

 
2 1 0 0 

65 2, 10 0 0 2 
 

1 0 0 0 
66 2, 10, 13 0 1 0 

 
0 0 0 0 

67 2, 11, 13 0 2 0 
 

0 0 1 0 
68 2, 12 0 1 4 

 
1 0 0 0 

69 2, 12, 13 5 2 0 
 

0 3 0 1 
70 2, 13 4 1 5 

 
5 8 4 6 

71 3 0 7 2 
 

0 0 9 3 
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Haplotype 
Number 

Allelic Variants 
Incidence in Isolates 

 
Incidence in Sub-populations 

MTci2 MTci5 MTci5PT 
 

MTci2 

(NF0.1µM) 
MTci2 

(F10µM) 
MTci5 

(NF0.1µM) 
MTci5 

(F10µM) 

72 3, 5 0 1 1 
 

1 0 1 0 
73 3, 5, 7, 8, 9, 10, 11 0 1 0 

 
0 0 0 0 

74 3, 5, 7, 12 0 1 0 
 

0 0 0 0 
75 3, 5, 8 0 0 1 

 
0 0 0 0 

76 3, 5, 8, 9, 10, 11, 12 1 0 0 
 

0 0 0 0 
77 3, 5, 8, 9, 10, 11, 12, 13 2 0 0 

 
0 0 0 0 

78 3, 5, 8, 9, 10, 12, 13 1 0 0 
 

0 0 0 0 
79 3, 5, 8, 9, 12 0 0 1 

 
0 0 0 0 

80 3, 5, 10 0 0 0 
 

1 0 0 0 
81 3, 5, 10, 12 0 0 1 

 
0 0 0 0 

82 3, 5, 11 0 1 0 
 

0 0 0 0 
83 3, 5, 12 0 1 0 

 
0 0 0 0 

84 3, 7 0 0 0 
 

0 0 1 0 
85 3, 7, 9 0 1 0 

 
0 0 1 2 

86 3, 7, 9, 11 0 1 0 
 

0 0 0 0 
87 3, 7, 9, 11, 12 0 0 0 

 
0 1 0 0 

88 3, 7, 9, 12 0 0 0 
 

0 0 1 0 
89 3, 7, 10 0 1 0 

 
0 0 0 0 

90 3, 8 0 4 0 
 

0 0 0 2 
91 3, 8, 9, 10, 11, 12, 13 1 0 0 

 
0 0 0 0 

92 3, 8, 10 0 0 0 
 

0 0 2 0 
93 3, 8, 10, 11 0 0 0 

 
0 0 0 1 

94 3, 8, 11, 13 0 1 0 
 

0 0 0 0 
95 3, 8, 13 0 1 0 

 
0 0 0 0 

96 3, 9 0 1 0 
 

0 1 0 2 
97 3, 9, 11 0 0 0 

 
0 0 1 0 

98 3, 9, 13 1 0 0 
 

0 0 0 0 
99 3, 10 0 0 0 

 
0 0 0 1 

100 3, 10, 12 0 3 0 
 

0 0 0 0 
101 3, 11 0 2 0 

 
0 0 0 0 

102 3, 11, 12 0 0 2 
 

0 1 0 0 
103 3, 12 0 2 3 

 
0 0 1 3 

104 3, 13 0 0 1 
 

0 0 0 0 
105 5 3 1 1 

 
0 0 0 0 

106 5, 7, 8, 9, 10, 13 1 0 0 
 

0 0 0 0 
107 5, 7, 8, 12 1 0 0 

 
0 0 0 0 

108 5, 7, 9 0 2 0 
 

0 0 0 0 
109 5, 7, 9, 12 0 0 1 

 
0 0 0 0 

110 5, 8 1 1 2 
 

0 0 0 1 
111 5, 8, 9 3 0 0 

 
0 0 0 0 

112 5, 8, 9, 10 1 0 0 
 

0 0 0 0 
113 5, 8, 9, 10, 12, 13 1 0 0 

 
0 0 0 0 

114 5, 8, 10 1 0 0 
 

0 0 0 1 
115 5, 8, 10, 12 1 0 0 

 
0 0 0 0 

116 5, 8, 10, 12, 13 1 0 0 
 

0 0 0 0 
117 5, 8, 10,  13 1 0 0 

 
0 0 0 0 

118 5, 8, 12 1 0 0 
 

0 0 0 0 
119 5, 8, 13 0 1 0 

 
0 0 0 0 

120 5, 9 1 0 1 
 

0 1 0 0 
121 5, 9, 12 0 0 1 

 
0 0 0 0 

122 5, 10 1 1 3 
 

0 1 0 0 
123 5, 11 1 0 1 

 
0 0 0 0 

124 5, 12 7 1 8 
 

1 2 0 0 
125 5, 12, 13 0 0 1 

 
0 0 0 0 

126 7 0 0 1 
 

0 0 0 0 
127 7, 9, 11 0 2 2 

 
0 0 0 0 

128 7, 9, 11, 13 0 0 1 
 

0 0 0 0 
129 7, 9, 12 1 0 0 

 
0 0 0 0 

130 7, 9, 13 0 1 0 
 

0 0 0 0 
131 8 0 0 1 

 
0 0 0 0 

132 8, 9 0 0 1 
 

0 0 0 0 
133 8, 9, 10 1 1 0 

 
0 0 0 0 

134 8, 9, 10, 12 1 0 0 
 

0 0 0 0 
135 8, 9, 10, 13 1 0 0 

 
0 0 0 0 

136 8, 9, 12 2 0 0 
 

0 0 1 0 
137 8, 10, 11, 12, 13 1 0 0 

 
0 0 0 0 

138 8, 11 0 1 0 
 

0 0 0 0 
139 8, 12 0 0 1 

 
0 0 0 0 

140 9 0 1 0 
 

0 0 0 0 
141 9, 12 1 1 0 

 
0 0 0 0 

142 9, 12, 13 1 0 0 
 

0 0 0 0 
143 10, 12 0 0 1 

 
0 0 0 0 

144 11 1 0 0 
 

0 0 0 0 
145 12 0 0 3 

 
0 2 0 0 

146 12, 13 0 1 1 
 

0 0 0 0 
147 13 0 0 3 

 
0 0 0 0 
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APPENDIX  7 

Consensus DNA sequence for β-tubulin 

β-tubulin PCR product generated from UK isolates of T. circumcincta. Underlined are 
the primers designed to amplify a 687 bp generic β-tubulin product and shaded are the 
nested primers used for real time PCR to amplify a 100 bp product. Identity shared with 
β-tubulin isotype 1 from T. circumcincta (97 %) accession number: GQ910863 (Silvestre 
et al., 2009). 

 

                                       

                               

 1                 TUBGF                                   60 

 CTTAGATGTTGTTCGTAAAGAGGCAGAGGGTTGCGATTGCCTTCAGGTAGTTTTTCGTCG                                                                              

                                                                              

 61                                                       120                     

 CACTTCGGCTGTCATTAAACCGATGATCAAATATAATAATCTGAATTTAGGGCTTCCAAT                                                                              

                                                                              

 121        TUBRTGF2011                                   180                     

 TGACGCATTCTTTGGGAGGAGGTACTGGTTCGGGTATGGGCACTTTGCTCATCTCAAAAA                                                                              

                                                                              

 181                          TUBRTGR2011                 240                     

 TTCGCGAGGAGTATCCGGATAGAATCATGGCTTCATTCTCCGTTGTTCCATCACCAAAGG                                                                              

                                                                               

 241                                                      300                     

 TAATGTATCCCTAACAGTAGTCCTTTTTGAGATCGTATGTACAGGTTCTCGAGGTGCAAT                                                                              

                                                                              

 301                                                      360                     

 CCATTTACGAACTCTTCACATTGATGCGCAACTGTGAAATGTGCGAAGAAGTTATGTTTA                                                                              

                                                                              

 361                                                      420                     

 TAGGTTTCCGATACCGTTGTGGAACCTTACAATGCCACTCTTTCTGTACACCAGTTGGTT                                                                              

                                                                              

 421                                                      480                     

 GAAAATACCGATGAAACATTCTGCATCGATAATGAAGCTCTGTACGATATCTGCTTCCGC                                                                              

                                                                              

 481                                                      540                     

 ACCTTAAAACTCACAAATCCAACTTACGACGATCTCAATCACTTAGGTGAGGTTTTATAT                                                                              

                                                                               

 541                                                      600                     

 AGGTTTTATGAGTATTAGCTTACTGCCATCTTTTTAAATGTATTGTATTGTGGTTTTGCA                                                                              

                                                                              

 601                                                      660                     

 GTGTCTGTCACAGTGTCTGGAGTCACGACCTGCCTTCGATTCCCTGGACAGTTGAATGCT                                                                              

                                              

 661    TUBGR            687                      

 GATCTTCGCAAGTTGGCTGTGAACATG 
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APPENDIX  8 

Consensus DNA sequence for Tci-pgp-9 IBD77 

ClustalW2 alignment of Tci-pgp-9-IBDA allelic variants showing introns (shaded), amino acid translation (underlined). A 99 bp PCR product was 
generated from UK isolates of T. circumcincta using real time PCR with the Tci-pgp-9 gene specific primer pair IBD77RTGFdeg and IBD77RTGRdeg 
(boxed) which were designed so to amplify products from all of the identified allelic variants. A 291bp fragment of UKv3 that included the target 
site for the real time PCR primer pair was generated using the IBD77GF4 and IBD77RAS12 primers (boxed) and included as template DNA in the 
positive control wells.  

 
 

            1            IBD77GF4 →                                                                                              120 

UKv3        GAGTAGTKTCACARGAGCCHATGCTGTTCAACACGACCATTGAACAGGTTTGTTTTCGGG-GAGGTCTTATCAACAGAAAAA-----AAAAGGAAAATGGCTAATCTCATTCAGAATATC 

UKv5        GAGTAGTKTCACAGGAGCCAATGCTGTTTAACACAACGATTGAACAGGTTTGTTCTCACG AGAGCTYTGATCCAAAGAAA---GAAARATGGAAAATAACTCGTTCYTTTTAGAATATC 

UKv8        GAGTAGTTTCACAGGAGCCTATGCTGTTCAACACAACGATTGAACAGGTTTGTTCTCACGAGAGSTTTGATCAAAAGAAAAATGGAAAAATTGAAAATAACBCATTCCTTTCAGAATATC 

UKv9        GAGTAGTTTCACAGGAACCTATGCTTTTCAACACAACGATTGAACAGGTTTGTTTTGAGGAGGTCTG--ATCAATAGAAAAAAGGAAAAATTGAAAATGACGTATCTCTTTCAGAATATT 

UKv7        GAGTAGTGTCACAGGAGCCTATGCTGTTTAACACAACGATTGAACAGGTTTGTTCTCACGAGAGCTTTAATCCGAAGAAAAATGGGAAGATGGAAAATAACTCGGTCCTTTCAGAATATC 

UKv10       GAGTAGTTTCACAAGAACCGATGCTCTTTAACACGACGATTGAACAGGTTCGTTCCCACGAGAGCTTTGATCAAACGAAAAATGG-AAAACTGAAAATAACCCATTCCTTTCAGAACATC 

UKv12       GAGTAGTTTCACAGGAGCCKATGCTCTTTAACACAACGATTGAACAGGTTTGTTCTAACGAGAGCTTTGTTCAAAAGAAAAATG----------------CTGATCTCATTCAGAATATT 

UKv6        GAGTAGTTTCACAAGAGCCSATGCTGWTTAACACAACGATTGAACAGGTTTGTTCTCACGAGAGCTTTGATCCAAAGAAAAATGGAAAGATGGAAAATAACTCGTTCCTTTTAGAATATY 

UKv2        GAGTAGTKTCACAGGAGCCHATGCTGTTYAACACAACGATTGAACAGGTTTGTACTCACGAAAGTTTCGATCAAAAGAAAAATGGAAAAATTAAAAATAACCCATTCCTTTCAGAATATC 

UKv11       GAGTAGTKTCACAGGAGCCRATGCTGTTTAACACAACGATTGAACAGGTTTGTACTCACGAAAGTTTCGATCAAAAGAAAAATGGGAAAATTAAAAATAACCCATTCCTTTCAGAATATC 

UKv13       GAGTAGTTTCACAAGAGCCTATGCTGTTTAACACAACGATTGAACAGGTTTGT-TTTTGGAGAGATCTGATGAATAGAAAAAAGGAAA-ATGGTTAAT—CTCATT------CAGAATATC 

UKv14       GAGTAGTTTCACARGAACCKATGCTTTTCAACACAACGATTGAACAGGTTTGT-TTCTGAAGAGGTCTGATCAATAGAAAAATGGAAAGATGGAAAATGACTCATTCCTTTTAGAATATC 

            ******* ***** ** ** *****  * ***** ** ************ **            *    *     ****                    *           **** ** 

               V  V  S  Q  E  P  M  L  F  N  T  T  I  E  Q                                                                     N  I  
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            121         IBD77RTGFdeg →                                                 ← IBD77RTGRdeg      240 

UKv3        CGATATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGCAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAATCTCGTGCTGTTGAT---A  

UKv5        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGCAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAACCTCTTGCTGTTGATGTTA  

UKv8        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCGAACGCCTACAATTTTGTGCAGTCGTTCCCTGACGTGAGTTGGAACCTCGTGCTGTCGACCTTA  

UKv9        CGCTATGGACGTGAAAAAGTCACAGACGCTGAAATAACGGCCGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCGTTCCCTGATGTGAGTTGGAACCTCATGCTGTTGACGTTA  

UKv7        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGCAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAACCTCGTGCTGTTGACGTTA  

UKv10       CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCAGCACTCCGTAAAGCGAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGTTGTCGGTGTTA  

UKv12       CGTTATGGTCGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGTTGTCGGCGTTA  

UKv6        CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGCAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAACCTTGTGCTATTGATGTTA  

UKv2        CGTTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAACCTCGTGCTGTCGGTGTTA  

UKv11       CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCTGACGTGAGTTGGAAGCTCGTATTGTCGATCTTA  

UKv13       CGTTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTCCGTAAAGCGAACGCCTATAACTTTGTACAGTCGTTCCCTGACGTGAGTTGGAATATCCTGCTGTTGATGTTA  

UKv14       CGCTATGGACGTGAAAAAGTCACAGATGCTGAAATCACAGCGGCACTGCGCAAAGCGAACGCCTATAATTTTGTACAGTCGTTCCCTGACGTGAGTTGGAATATCGTGCTGTTGATGTTA 

            ** ***** ***************** ******** ** ** ***** ** ***** ******** ** ***** ***** ******** ***********  *  *  * * *     * 

             R  Y  G  R  E  K  V  T  D  A  E  I  T  A  A  L  R  K  A  N  A  Y  N  F  V  Q  S  F  P  D 

 

 

            241                                         ← IBD77RAS12                                                             360 

UKv3        GATGCAGTGAGTGCAATAGCTGGTAGGCGG-------AGTCAGTC-TAAGAAAGT----GGTGGAATGGCGCTGGGAAGGAGAGAGCGGCAGGGTGTCGTT----CAATCCCCAACGCCC  

 

 

99 bp real time PCR product 
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APPENDIX  9 

Mean CT values for B-tubulin and Tci-pgp-9 genes in UK Isolates of T. 
circumcincta 

Table showing the mean CT values calculated from duplicate reactions from individual 
larvae from each UK isolate studied. The ΔCT was calculated for each larva.  

 

Larval  
Lysate 

MTci2 MTci5 MTci5PT 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
Δ CT 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

A1 28.22 29.54 1.33 28.45 29.12 0.67 28.19 25.77 -2.41 

A2    28.49 27.11 -1.38 27.96 26.29 -1.66 

A3 27.59 30.10 2.52 28.81 26.69 -2.12 28.04 29.22 1.18 

A4 27.92 29.36 1.44 28.68 26.35 -2.32 28.21 25.48 -2.74 

A5 27.95 29.57 1.62 28.17 27.90 -0.27 28.12 29.34 1.22 

A6 28.55 29.78 1.24 27.87 29.53 1.66 28.36 27.62 -0.74 

A7 28.16 29.65 1.49 28.61 29.63 1.02 28.25 29.19 0.93 

A8 28.21 29.53 1.32 28.59 27.28 -1.31 28.54 29.38 0.84 

A9 28.12 29.44 1.32 28.46 26.90 -1.56 28.48 30.41 1.93 

A10 28.28 29.28 1.00 29.59 30.76 1.17 28.58 29.37 0.79 

A11 28.03 29.08 1.06 27.17 25.94 -1.22 28.55 27.24 -1.31 

A12 28.25 29.40 1.15 28.37 26.61 -1.76 28.23 29.65 1.43 

B1 28.83 31.28 2.45 28.42 29.31 0.89 28.50 29.37 0.88 

B2 29.30 30.88 1.58 28.82 26.93 -1.89 28.30 29.08 0.77 

B3 28.08 30.15 2.08 29.30 26.59 -2.71 28.10 29.61 1.51 

B4 27.64 29.58 1.94 28.11 29.36 1.25 28.45 30.29 1.84 

B5 28.15 29.82 1.67 27.79 25.61 -2.18 28.57 26.21 -2.35 

B6 27.97 29.65 1.68 28.20 26.32 -1.89 28.20 27.30 -0.90 

B7 28.28 29.49 1.21 28.47 30.03 1.56 27.99 30.18 2.19 

B8 28.83 29.81 0.98 28.47 28.71 0.25 28.28 29.44 1.16 

B9 28.21 29.03 0.82 28.17 29.38 1.21 27.54 26.52 -1.02 

B10 28.06 29.29 1.23 28.05 29.27 1.21 28.59 26.62 -1.97 

B11 28.48 29.13 0.65 28.56 29.51 0.96 29.03 29.84 0.81 

B12 28.25 29.41 1.16 28.22 29.24 1.02 27.36 30.15 2.79 

C1 28.10 29.95 1.86 28.71 28.99 0.28 27.88 29.35 1.47 

C2 28.87 30.68 1.81 28.68 27.20 -1.48 28.42 29.59 1.16 

C3 28.23 30.11 1.88 28.89 29.84 0.95 28.02 27.41 -0.61 

C4 28.21 29.55 1.34 28.25 26.59 -1.66 28.68 29.55 0.87 

C5 27.87 29.75 1.88 28.49 30.05 1.56 27.83 28.87 1.04 

C6 27.99 29.44 1.46 28.28 26.19 -2.09 28.24 25.52 -2.72 

C7 28.23 29.71 1.47 28.22 29.85 1.63 28.62 29.76 1.15 

C8 28.19 29.50 1.31 28.11 26.00 -2.11 28.30 29.69 1.39 

C9 28.21 29.35 1.13 28.12 29.73 1.61 28.14 29.48 1.35 

C10 28.02 29.30 1.27 28.24 26.44 -1.80 28.48 26.97 -1.50 

C11 28.05 29.31 1.27 28.49 27.05 -1.44 28.52 28.31 -0.22 

C12 27.95 29.28 1.33 28.39 29.07 0.68 28.57 29.60 1.03 

D1 27.66 29.42 1.76 28.27 29.11 0.84 28.30 26.95 -1.35 

D2 28.63 31.06 2.43 28.56 26.21 -2.36 28.18 27.17 -1.01 

D3 28.28 30.17 1.89 28.90 27.34 -1.57 28.02 26.11 -1.91 

D4 28.04 30.02 1.98 28.70 29.63 0.93 28.27 26.49 -1.78 
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Larval  
Lysate 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

D5 28.23 29.70 1.47 28.31 25.97 -2.34 28.29 29.69 1.40 

D6 27.69 29.67 1.98 28.10 25.77 -2.33 28.86 30.18 1.33 

D7 28.77 30.35 1.58 28.44 26.84 -1.60 28.19 27.75 -0.45 

D8 28.21 29.33 1.13 28.08 29.39 1.32 28.35 27.53 -0.82 

D9 28.15 29.37 1.22 28.28 29.84 1.56 28.18 29.45 1.27 

D10 28.27 29.73 1.46 28.29 25.03 -3.26 27.92 29.28 1.36 

D11 28.07 29.36 1.29 28.39 29.15 0.75 28.26 27.44 -0.82 

D12 28.03 29.17 1.13 28.47 29.37 0.89 28.45 29.72 1.28 

E1 31.70 33.52 1.82 28.69 29.38 0.69 28.69 29.57 0.88 

E2 28.58 30.72 2.15 28.97 29.53 0.55 28.77 26.79 -1.98 

E3 27.99 29.82 1.83 28.64 29.34 0.71 28.13 29.43 1.30 

E4 28.20 29.60 1.39 28.22 26.71 -1.51 28.31 29.99 1.69 

E5 27.95 29.24 1.29 27.75 26.04 -1.71 28.45 29.72 1.26 

E6 27.92 29.48 1.56 28.18 26.55 -1.63 29.63 28.46 -1.17 

E7 28.45 29.77 1.32 28.32 25.63 -2.69 28.61 29.74 1.13 

E8 28.21 29.59 1.38 28.14 29.49 1.35 28.37 29.26 0.89 

E9 28.28 29.71 1.43 28.39 26.50 -1.88 28.40 29.61 1.21 

E10 28.19 29.20 1.01 28.10 26.52 -1.58 27.22 28.67 1.45 

E11 27.20 28.37 1.17 28.40 26.26 -2.14 28.52 29.54 1.02 

E12 28.18 28.97 0.79 28.75 26.74 -2.01 28.67 30.15 1.48 

F1 28.00 29.98 1.99 28.85 29.27 0.42 28.25 29.37 1.12 

F2 28.15 31.00 2.85 28.85 25.38 -3.47 28.30 29.56 1.26 

F3 27.91 29.78 1.87 28.78 27.57 -1.20 28.73 30.17 1.44 

F4 28.08 29.44 1.36 27.99 29.50 1.50 28.54 26.44 -2.10 

F5 27.38 29.13 1.75 27.54 29.58 2.04 28.47 29.80 1.33 

F6 28.15 30.25 2.10 28.37 27.46 -0.91 28.87 29.62 0.75 

F7 28.09 30.44 2.36 27.78 29.29 1.51 28.30 29.67 1.37 

F8 28.34 29.37 1.03 28.22 27.69 -0.53 28.34 29.63 1.29 

F9 28.13 29.56 1.44 28.04 26.08 -1.97 27.92 29.72 1.81 

F10 28.36 29.53 1.17 28.20 29.64 1.44 29.11 30.23 1.12 

F11 28.41 29.61 1.20 28.49 26.54 -1.95 29.05 30.32 1.28 

F12 28.36 29.58 1.22 28.47 29.67 1.21 28.33 29.78 1.45 

G1 31.92 33.56 1.64 28.52 26.16 -2.35 28.82 26.41 -2.41 

G2 28.50 30.56 2.06 28.57 28.94 0.37 28.42 28.41 -0.01 

G3 27.71 30.07 2.37 28.66 29.50 0.84 28.42 29.58 1.17 

G4 27.76 29.48 1.73 28.22 29.30 1.08 28.58 29.88 1.30 

G5 28.12 28.89 0.77 28.16 29.24 1.08 28.06 29.37 1.30 

G6 28.10 29.81 1.71 28.32 29.68 1.37 28.78 29.94 1.16 

G7 28.11 29.25 1.14 28.61 30.24 1.63 29.16 30.16 1.00 

G8 28.19 30.04 1.85 28.64 29.91 1.27 28.29 29.47 1.18 

G9 28.29 29.65 1.36 28.61 28.90 0.29    

G10 28.30 29.70 1.39 27.87 26.38 -1.48 28.16 29.52 1.36 

G11 28.35 29.27 0.92 28.13 26.98 -1.16 30.44 31.82 1.38 

G12 28.24 29.63 1.39 28.48 27.11 -1.37 28.75 30.00 1.25 

Mean 28.25 29.77 1.52 28.39 28.02 -0.37 28.40 28.86 0.46 

S.E. 0.05 0.06 0.03 0.03 0.12 0.12 0.04 0.11 0.11 

Range 
27.19 – 
32.72 

28.16 – 
35.00 

0.65 – 
2.85 

27.04 – 
29.84 

24.95 – 
31.10 

-3.47 – 
2.04 

27.13 – 
30.53 

25.30 – 
31.90 

-2.74 – 
2.79 
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APPENDIX  10 

Mean CT values for sub-populations MTci2NF(0.1nM) and MTci2F(10nM) 

Mean CT values for two sub-populations of MTci2, MTci2NF(0.1nM) and MTci2F(10nM), which 
have been separated based on their phenotype using the LFIA. The ΔCT value is also 
shown.  

Larval  

Lysate 

MTci2NF10 
 

Larval  

Lysate 

MTci2F90 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

 Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

A1 28.34 30.10 1.76  A7 28.98 29.66 0.69 

A2 28.27 29.50 1.23  A10 28.48 29.46 0.98 

A3 28.31 29.72 1.42  A11 28.83 29.54 0.70 

A4 28.31 29.68 1.36  A12 28.50 29.67 1.17 

A5 28.39 29.35 0.97  B7 28.97 29.50 0.53 

A6 28.33 29.78 1.45  B8 28.38 29.94 1.56 

B1 29.18 30.01 0.83  B9 28.45 29.50 1.05 

B2 28.85 29.77 0.92  B10 28.48 29.89 1.41 

B3 28.13 29.65 1.52  B12 28.48 29.30 0.83 

B5 28.80 29.40 0.59  C7 28.67 29.46 0.80 

B6 28.60 29.58 0.98  C8 28.34 29.62 1.28 

C2 28.26 29.43 1.17  C10 28.77 29.91 1.14 

C3 28.25 29.73 1.48  C11 28.67 29.36 0.69 

C4 27.65 28.61 0.96  C12 28.19 29.58 1.40 

C5 28.21 29.33 1.12  D7 28.89 29.95 1.06 

C6 28.44 29.77 1.33  D8 28.31 29.64 1.33 

D1 28.87 29.67 0.79  D9 27.96 29.55 1.59 

D2 28.20 29.87 1.67  D10 28.44 29.92 1.48 

D3 28.79 29.64 0.86  D11 28.65 29.57 0.92 

D4 28.19 29.30 1.11  D12 28.56 29.55 0.99 

D5 28.22 29.49 1.27  E7 28.72 29.88 1.17 

D6 28.86 29.90 1.04  E8 28.58 29.99 1.40 

E1 28.49 29.28 0.79  E9 28.37 30.00 1.62 

E2 28.33 30.07 1.74  E10 28.47 29.61 1.14 

E3 28.37 29.69 1.31  E11 27.88 27.38 -0.50 

E4 29.47 30.17 0.70  E12 27.52 28.66 1.14 

E5 28.46 29.50 1.04  F7 28.93 29.72 0.79 

E6 28.01 29.46 1.45  F8 28.52 29.91 1.38 

F1 29.84 29.81 -0.03  F9 28.53 29.78 1.25 

F2 28.32 29.63 1.32  F10 28.40 29.63 1.24 

F3 27.56 29.13 1.58  F11 28.27 29.77 1.49 

F4 28.06 29.14 1.09  F12 28.30 29.69 1.39 

F5 28.20 29.40 1.20  G7 28.67 29.90 1.24 

F6 28.41 29.84 1.44  G8 28.34 29.82 1.47 

G1 29.13 30.14 1.02  G9 27.88 29.20 1.32 

G2 28.20 29.38 1.18  G10 28.46 29.42 0.97 

G4 28.65 29.93 1.28  G11 28.44 29.86 1.42 

G5 28.58 29.56 0.98  G12 28.47 29.76 1.29 

G6 28.97 30.37 1.40  H7 28.72 29.75 1.03 

H1 28.67 29.65 0.99  H8 28.64 29.86 1.22 

H2 28.09 30.15 2.06  H9 28.84 29.87 1.03 

H4 28.03 29.54 1.50  H10 29.26 30.18 0.92 

H5 28.21 29.06 0.85  H11 28.21 29.89 1.68 

Mean 28.45 29.63 1.18  
 

28.50 29.63 1.13 

S.E. 0.05 0.05 0.04  
 

0.04 0.05 0.04 

Range 
27.28 – 
29.95 

28.40 – 
30.91 

-0.03 – 
2.06 

 
 

27.36 – 
29.31 

27.37 – 
30.34 

-0.50 – 
1.68 
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APPENDIX  11 

Mean CT values for sub-populations MTci5NF(0.1nM) and MTci5F(10nM) 

Mean CT values for two sub-populations of MTci5, MTci5NF(0.1nM) and MTci5F(10nM), which 
have been separated based on phenotype using the LFIA. The ΔCT value is also shown.  

  

Larval  

Lysate 

MTci5NF(0.1nM)  

Larval  

Lysate 

MTci5F(10nM) 

Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

 Mean 
β-tubulin 

CT 

Mean 
Tci-pgp-9  

CT 
ΔCT 

A1 28.21 29.27 1.06  A7 28.15 29.03 0.88 

A2 27.91 29.52 1.61  A8 28.06 28.75 0.69 

A3 27.90 26.47 -1.43  A9 27.66 25.62 -2.04 

A4 28.65 25.79 -2.86  A10 30.07 27.17 -2.91 

A5 27.61 28.96 1.35  A11 28.56 26.95 -1.62 

A6 26.89 28.63 1.74  A12 27.93 27.14 -0.79 

B1 28.34 29.55 1.21  B7 28.14 26.32 -1.82 

B2 28.14 26.49 -1.64  B8 27.39 26.19 -1.19 

B3 28.12 29.80 1.68  B9 27.66 24.38 -3.28 

B4 28.49 25.52 -2.97  B10 28.07 26.14 -1.93 

B5 28.06 25.33 -2.73  B11 27.74 28.95 1.21 

B6 26.82 25.76 -1.05  B12 27.88 26.43 -1.45 

C1 28.16 26.49 -1.67  C7 27.36 28.84 1.47 

C2 28.07 29.31 1.24  C8 27.20 29.66 2.46 

C3 28.10 25.60 -2.50  C9 27.77 24.69 -3.08 

C4 29.03 25.44 -3.59  C10 28.24 27.18 -1.07 

C5 28.18 26.74 -1.44  C11 27.55 28.82 1.27 

C6 26.85 25.24 -1.61  C12 27.53 27.50 -0.03 

D1 27.90 25.83 -2.08  D7 28.13 25.07 -3.05 

D2 28.12 26.51 -1.62  D8 27.36 25.36 -2.00 

D3 28.08 27.94 -0.14  D9 27.53 26.54 -1.00 

D4 28.19 28.80 0.61  D10 28.64 26.07 -2.57 

D5 
   

 D11 27.27 25.98 -1.29 

D6 26.96 25.59 -1.37  D12 28.01 28.75 0.73 

E1 28.22 26.89 -1.33  E7 27.89 26.05 -1.84 

E2 28.45 29.29 0.84  E8 27.51 25.64 -1.87 

E3 27.76 26.71 -1.04  E9 27.61 25.79 -1.82 

E4 27.16 27.12 -0.04  E10 28.47 26.84 -1.63 

E5 27.95 26.84 -1.11  E11 28.04 26.94 -1.09 

E6 26.92 26.32 -0.59  E12 28.21 25.01 -3.20 

F1 28.10 24.96 -3.15  F7 27.41 25.94 -1.47 

F2 28.10 26.56 -1.53  F8 27.19 28.97 1.77 

F3 28.20 29.40 1.20  F9 27.94 25.45 -2.49 

F4 27.67 24.69 -2.98  F10 28.61 28.85 0.24 

F5 27.55 25.28 -2.27  F11 27.92 26.41 -1.51 

F6 26.85 28.59 1.73  F12 27.94 25.13 -2.81 

G1 27.42 25.75 -1.67  G7 28.25 28.79 0.54 

G2 28.26 25.26 -3.00  G8 27.64 24.76 -2.88 

G3 
   

 G9 27.45 29.13 1.68 

G4 27.81 28.40 0.58  G10 28.50 27.31 -1.19 

G5 27.78 29.34 1.56  G11 28.16 26.29 -1.87 

G6 26.82 29.11 2.29  G12 27.83 28.70 0.87 

H1 
   

 H7 28.06 25.69 -2.37 

H2 29.08 27.26 -1.82  H8 27.68 29.30 1.62 

H3 28.46 25.44 -3.02  H9 27.89 28.49 0.60 

H4 27.67 26.57 -1.10  H10 28.22 26.86 -1.37 

H5 27.54 26.36 -1.18  H11 27.15 28.48 1.33 

Mean 27.88 27.06 -0.81  
 

27.90 26.99 -0.92 

S.E. 0.06 0.17 0.18  
 

0.06 0.16 0.17 

Range 
26.56 – 
29.39 

24.58 – 
29.82 

-3.59 - 
2.29 

 
 

26.38 – 
30.29 

24.27 – 
30.18 

-3.28 – 
2.46 
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APPENDIX  12 

Further characterisations of Tci-pgp-9  in UK isolates of T. circumcincta 

The allelic variants identified in MTci2, MTci5 and MTci5PT larval lysates are listed 
along with the corresponding ΔCT value. Real time PCR Amplification failed in two 
individuals (MTci2 A2 & MTci5PT G9; annotated with *). No allele specific PCR product 
and no real time PCR products were observed in larvae E6, E8, G7 and G11 from the 
MTci5PT isolate.  

 

Larval 

Lysate 

MTci2 MTci5 MTci5PT 

Allelic Variant(s) ΔCT Allelic Variant(s) ΔCT Allelic Variant(s) ΔCT 

A1 2, 8, 12 1.33 2, 7, 8, 10, 11, 13 0.67 3, 11, 12 -2.41 

A2 8, 9, 10, 13 * 2 -1.38 3, 5, 10, 12 -1.66 

A3 5 2.52 3, 5, 7, 8, 9, 10, 11 -2.12 2, 13 1.18 

A4 2, 7, 13 1.44 2, 3, 8, 10, 13 -2.32 3, 5 -2.74 

A5 5, 8, 9 1.62 2, 3, 8, 9, 10, 11 -0.27 2, 5 1.22 

A6 5, 7, 8, 12 1.24 2, 7, 9, 10, 11, 13 1.66 5, 12 -0.74 

A7 3, 5, 8, 9, 10, 11, 12, 13 1.49 8, 9, 10 1.02 2, 7 0.93 

A8 3, 5, 8, 9, 10, 12, 13 1.32 2, 7, 9, 13 -1.31 5, 12 0.84 

A9 7, 9, 12 1.32 2, 3, 13 -1.56 5, 11 1.93 

A10 5, 8, 10 1.00 2, 3, 12 1.17 5, 8 0.79 

A11 8, 10, 11, 12, 13 1.06 2, 3, 10, 12 -1.22 2, 5, 12, 13 -1.31 

A12 2, 5, 9, 10, 12 1.15 3, 5, 11 -1.76 2, 5, 13 1.43 

B1 5, 8 2.45 5, 7, 9 0.89 7, 9, 11, 13 0.88 

B2 5, 12 1.58 2, 3, 13 -1.89 2, 5, 7, 13 0.77 

B3 2, 13 2.08 3, 5, 7, 12 -2.71 2, 5 1.51 

B4 2, 12, 13 1.94 9 1.25 2, 13 1.84 

B5 3, 5, 8, 9, 10, 11, 12 1.67 3, 8 -2.18 3 -2.35 

B6 2, 3, 5, 7, 8, 9, 10, 11, 12, 13 1.68 3, 10, 12 -1.89 5, 12 -0.90 

B7 5, 12 1.21 2, 12, 13 1.56 7 2.19 

B8 8, 9, 10 0.98 3, 10, 12 0.25 2, 9 1.16 

B9 5, 12 0.82 2, 3, 13 1.21 5, 12 -1.02 

B10 2, 7, 8, 9, 10, 13 1.23 9, 12 1.21 8, 12 -1.97 

B11 2, 13 0.65 3, 8 0.96 2 0.81 

B12 8, 9, 12 1.16 3, 12 1.02 13 2.79 

C1 5 1.86 2, 5, 7, 13 0.28 2, 13 1.47 

C2 2, 12, 13 1.81 2, 5, 7, 13 -1.48 2, 5, 13 1.16 

C3 2, 13 1.88 12, 13 0.95 10, 12 -0.61 

C4 5, 8, 10, 12 1.34 2, 3, 5 -1.66 3, 12 0.87 

C5 9, 12, 13 1.88 5, 7, 9 1.56 5, 9, 12 1.04 

C6 2, 5, 7, 8, 9, 10, 11, 12, 13 1.46 3, 7, 9 -2.09 12 -2.72 

C7 5, 7, 8, 9, 10, 13 1.47 5, 8, 13 1.63 2 1.15 

C8 2, 5, 13 1.31 3, 9 -2.11 2, 5 1.39 

C9 5, 8, 10, 12, 13 1.13 2, 5, 13 1.61 2, 5, 10 1.35 

C10 5, 8, 9, 10 1.27 3 -1.80 2 -1.50 

C11 2, 5, 8, 9, 10, 11, 13 1.27 2, 8 -1.44 5, 12 -0.22 

C12 2, 8, 10 1.33 3, 8, 11, 13 0.68 5, 7, 9, 12 1.03 

D1 5, 12 1.76 5 0.84 3, 12 -1.35 

D2 2, 5, 8, 13 2.43 3 -2.36 3, 11, 12 -1.01 

D3 2, 8, 12, 13 1.89 3, 7, 10 -1.57 3, 5, 8 -1.91 

D4 2, 5, 8, 13 1.98 7, 9, 13 0.93 2, 12 -1.78 
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Larval 

Lysate 

MTci2 MTci5 MTci5PT 

Allelic Variant(s) ΔCT Allelic Variant(s) ΔCT Allelic Variant(s) ΔCT 

D5 2, 12, 13 1.47 2, 3, 5 -2.34 2, 10 1.40 

D6 2, 3, 5, 8, 9, 13 1.98 2, 3 -2.33 3, 13 1.33 

D7 2, 5, 8, 9, 10, 11, 12, 13 1.58 3, 7, 9, 11 -1.60 2, 12 -0.45 

D8 2, 5, 8, 13 1.13 3 1.32 2, 3, 5, 13 -0.82 

D9 2, 5, 7, 8, 9, 10, 11, 13 1.22 5, 12 1.56 12 1.27 

D10 8, 9, 10, 12 1.46 3 -3.26 5, 8 1.36 

D11 5, 8, 12 1.29 2 0.75 12 -0.82 

D12 2 1.13 2 0.89 3 1.28 

E1 11 1.82 2, 8 0.69 2, 13 0.88 

E2 2, 8, 11, 13 2.15 5, 10 0.55 5, 12 -1.98 

E3 2, 8, 13 1.83 3 0.71 5, 12 1.30 

E4 3, 8, 9, 10, 11, 12, 13 1.39 2, 3 -1.51 5, 12, 13 1.69 

E5 2, 3, 9, 13 1.29 2, 3 -1.71 2, 13 1.26 

E6 3, 5, 8, 9, 10, 11, 12, 13 1.56 3, 5 -1.63   
 E7 2, 5, 13 1.32 3 -2.69 5, 12 1.13 

E8 5, 10 1.38 2, 13 1.35   
 E9 5, 8, 9, 10, 12, 13 1.43 2, 3, 13 -1.88 2, 12 1.21 

E10 8, 9, 12 1.01 2, 3 -1.58 2, 7, 9, 12 1.45 

E11 5, 12 1.17 2, 3 -2.14 5, 10 1.02 

E12 2, 8, 12 0.79 3, 8 -2.01 5 1.48 

F1 5, 11 1.99 3, 10, 12 0.42 5, 10 1.12 

F2 2, 5, 9, 13 2.85 3, 8 -3.47 2, 5, 10, 13 1.26 

F3 9, 12 1.87 3, 8, 13 -1.20 2, 5 1.44 

F4 3, 9, 13 1.36 2, 10, 13 1.50 3, 5, 8, 9, 12 -2.10 

F5 2, 5, 9, 10, 12, 13 1.75 2, 12, 13 2.04 2 1.33 

F6 2, 5, 8, 9, 10, 12, 13 2.10 2, 9, 13 -0.91 7, 9, 11 0.75 

F7 5, 12 2.36 8, 11 1.51 2, 8 1.37 

F8 2, 5, 8, 9, 10, 13 1.03 2, 8, 11 -0.53 3, 12 1.29 

F9 2, 8, 9, 10, 13 1.44 2, 3, 13 -1.97 5, 9 1.81 

F10 2, 5, 8, 9, 10, 12, 13 1.17 2, 9, 13 1.44 13 1.12 

F11 2, 8, 9, 10, 13 1.20 3 -1.95 13 1.28 

F12 5, 8, 10,  13 1.22 5, 8 1.21 2, 7, 9, 13 1.45 

G1 2 1.64 2, 3, 8, 10, 11 -2.35 12, 13 -2.41 

G2 5, 9 2.06 2, 11, 13 0.37 2, 3, 12, 13 -0.01 

G3 5, 8, 9 2.37 2, 9, 11, 13 0.84 7, 9, 11 1.17 

G4 2, 5, 13 1.73 3, 11 1.08 5, 10 1.30 

G5 2, 5, 13 0.77 7, 9, 11 1.08 2 1.30 

G6 2, 12, 13 1.71 7, 9, 11 1.37 2, 12 1.16 

G7 5 1.14 2, 11, 13 1.63   
 G8 2, 13 1.85 2, 12 1.27 2, 10 1.18 

G9 5, 12 1.36 3, 5, 12 0.29 8 * 

G10 2, 5, 13 1.39 3, 12 -1.48 8, 9 1.36 

G11 2, 12, 13 0.92 2, 3, 10 -1.16   
 G12 5, 8, 9 1.39 3, 11 -1.37 2, 12 1.25 
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APPENDIX  13   

Further characterisations of Tci-pgp-9  in MTci2 sub-populations of T. 
circumcincta 

The alleles identified in larvae from the MTci2 sub-populations are listed along with 
their ΔCT value. Real time PCR Amplification failed in two larva from the MTci2NF(0.1nM) 

sub population (annotated with *) and rows where the initial lysis step has failed are 
shown with (*) in both the allelic variants and ΔCT columns.  

 
 

MTci2NF(0.1nM)  MTci2F(10nM) 

Larval 
Lysate 

Allelic 
Variants(s) 

ΔCT  
Larval
Lysate 

Allelic 
Variants(s) 

ΔCT 

A1 2, 5 1.76  A7 2, 5, 10, 11 0.69 
A2 2, 5, 10, 13 1.23  A8 * * 
A3 2, 7, 9, 13 1.42  A9 * * 
A4 2, 9, 13 1.36  A10 2, 5, 13 0.98 
A5 2, 5, 13 0.97  A11 2, 12, 13 0.70 
A6 2, 5, 9, 10 1.45  A12 2, 13 1.17 
B1 2, 13 0.83  B7 2, 13 0.53 
B2 2, 10 0.92  B8 5, 12 1.56 
B3 2, 5, 7 1.52  B9 2, 12, 13 1.05 
B4 * *  B10 2, 5, 10 1.41 
B5 2, 5, 10, 13 0.59  B11 * * 
B6 2, 5, 10, 13 0.98  B12 2, 5, 13 0.83 
C1 * *  C7 2, 5, 10, 13 0.80 
C2 2, 5, 13 1.17  C8 2, 5,13 1.28 
C3 2, 5, 13 1.48  C9 * * 
C4 2, 5, 12, 13 0.96  C10 2, 3, 5 1.14 
C5 2, 5, 12, 13 1.12  C11 2, 5, 10 0.69 
C6 2, 5, 13 1.33  C12 5, 9 1.40 
D1 2, 5, 9, 10 0.79  D7 2, 12, 13 1.06 
D2 2, 12 1.67  D8 2, 9, 13 1.33 
D3 2, 5, 12 0.86  D9 2, 3, 5, 9 1.59 
D4 2, 13 1.11  D10 2, 5 1.48 
D5 2, 3 1.27  D11 2, 5, 10, 13 0.92 
D6 2, 5, 10, 13 1.04  D12 2, 5, 13 0.99 
E1 2, 3 *  E7 3, 9 1.17 
E2 2, 5, 13 1.74  E8 2, 13 1.40 
E3 2, 5, 10, 12 1.31  E9 2, 13 1.62 
E4 2, 13 0.70  E10 2, 5, 13 1.14 
E5 2, 8, 10, 13 1.04  E11 2, 3, 13 -0.50 
E6 2, 9, 13 1.45  E12 2, 3, 5, 10, 13 1.14 
F1 2, 5, 10, 12 *  F7 5, 12 0.79 
F2 2, 5, 13 1.32  F8 2, 5, 10, 13 1.38 
F3 3, 5, 10 1.58  F9 2, 5, 13 1.25 
F4 2, 5, 11, 13 1.09  F10 12 1.24 
F5 2, 13 1.20  F11 2, 5, 9, 10 1.49 
F6 2, 5, 7, 9, 10 1.44  F12 2, 5, 13 1.39 
G1 5, 12 *  G7 2, 5, 10 1.24 
G2 2, 5, 9, 10 1.18  G8 12 1.47 
G3 * *  G9 5, 10 1.32 
G4 2, 13 1.28  G10 2, 7, 9, 13 0.97 
G5 2, 3, 5 0.98  G11 2, 5, 13 1.42 
G6 3, 5 1.40  G12 2, 13 1.29 
H1 2, 5, 13 0.99  H7 2, 13 1.03 
H2 2, 5, 13 2.06  H8 2, 13 1.22 
H3 * *  H9 2, 13 1.03 
H4 2, 5, 13 1.50  H10 3, 7, 9, 11, 12 0.92 
H5 2, 5, 10, 13 0.85  H11 3, 11, 12 1.68 
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APPENDIX  14   

Further characterisations of Tci-pgp-9  in MTci5 sub-populations of T. 
circumcincta 

The alleles identified in larvae from the MTci5 sub-populations are listed along with 
their ΔCT value. The initial lysis step failed in two individuals (annotated with * in both 
the allelic variant(s) and ΔCT columns) from the MTci5NF(0.1nM) sub-population. The real 
time PCR amplification failed in two larvae (H1 and H2) in the MTci5NF(0.1nM) sub-
population. 

 
MTci5NF(0.1nM)  MTci5F(10nM) 

Larval
Lysate 

Allelic 
Variant(s) 

ΔCT  
Larval
Lysate 

Allelic 
Variant(s) 

ΔCT 

A1 2, 11, 13 1.06  A7 2, 3, 12, 13 0.88 
A2 2, 7, 13 1.61  A8 3, 7, 9 0.69 
A3 2, 13 -1.43  A9 2, 3, 13 -2.04 
A4 3 -2.86  A10 2, 3, 13 -2.91 
A5 2, 3, 5, 13 1.35  A11 2, 3, 13 -1.62 
A6 2, 3, 13 1.74  A12 3, 12 -0.79 
B1 3, 12 1.21  B7 2, 3, 13 -1.82 
B2 3, 7 -1.64  B8 2, 3, 13 -1.19 
B3 8, 9, 12 1.68  B9 2, 3, 13 -3.28 
B4 3 -2.97  B10 2, 13 -1.93 
B5 3 -2.73  B11 2, 3, 13 1.21 
B6 2, 3, 9, 13 -1.05  B12 2, 12, 13 -1.45 
C1 3, 9, 11 -1.67  C7 3, 7, 9 1.47 
C2 2, 8, 10, 13 1.24  C8 5, 8, 10 2.46 
C3 2, 3 -2.50  C9 2, 3, 10 -3.08 
C4 3 -3.59  C10 3 -1.07 
C5 3, 8, 10 -1.44  C11 3, 12 1.27 
C6 3 -1.61  C12 2, 3, 13 -0.03 
D1 2, 3, 13 -2.08  D7 3 -3.05 
D2 2, 3, 13 -1.62  D8 2, 3, 13 -2.00 
D3 2, 3, 12, 13 -0.14  D9 2, 3, 8, 10 -1.00 
D4 2, 13 0.61  D10 2, 3, 13 -2.57 
D5 * *  D11 2, 3, 13 -1.29 
D6 3 -1.37  D12 2, 13 0.73 
E1 2, 3, 12, 13 -1.33  E7 3, 8, 10, 11 -1.84 
E2 2, 7, 9, 13 0.84  E8 3, 10 -1.87 
E3 2, 3, 13 -1.04  E9 2, 3, 13 -1.82 
E4 2, 3, 13 -0.04  E10 3 -1.63 
E5 2, 3, 8, 10 -1.11  E11 2, 3, 12 -1.09 
E6 2, 13 -0.59  E12 2, 3, 13 -3.20 
F1 2, 3, 8, 13 -3.15  F7 3, 9 -1.47 
F2 3, 7, 9 -1.53  F8 2, 3, 7, 9, 13 1.77 
F3 2, 13 1.20  F9 3, 9 -2.49 
F4 2, 3, 8, 13 -2.98  F10 5, 8 0.24 
F5 3, 8, 10 -2.27  F11 2, 13 -1.51 
F6 3 1.73  F12 3, 8 -2.81 
G1 2, 3, 12, 13 -1.67  G7 2, 7, 9 0.54 
G2 2, 3, 13 -3.00  G8 2, 3, 13 -2.88 
G3 * *  G9 2, 3, 13 1.68 
G4 2, 3, 5, 13 0.58  G10 2, 3, 11, 13 -1.19 
G5 3, 5 1.56  G11 2, 3, 13 -1.87 
G6 3 2.29  G12 2, 13 0.87 
H1 3, 7, 9, 12 *  H7 3, 8 -2.37 
H2 2, 3, 13 *  H8 2, 13 1.62 
H3 3 -3.02  H9 2, 5, 13 0.60 
H4 2, 3, 13 -1.10  H10 3, 12 -1.37 
H5 2, 8, 10, 13 -1.18  H11 2, 13 1.33 
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