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Abstract 

Pulmonary arterial hypertension (PAH) is a devastating and progressive vasculopathy of 

the pulmonary arteries for which there is no cure. There is an urgent need for more 

effective therapies. PAH is characterised by elevated pulmonary arterial pressures and 

obstructive vascular lesions in the distal vasculature by excessive cellular proliferation. As 

a result, the right ventricle is placed under excessive strain resulting in adaptive 

hypertrophy which progresses to maladaptive hypertrophy and failure. PAH is more 

common in women than in men suggesting that estrogens may be integral to disease 

pathogenesis. Understanding the biological basis for this sex difference would offer a new 

treatment paradigm in this devastating cardiovascular disease. Here, we challenged the 

concept that the estrogen metabolic axis is dysregulated in PAH. 

New insights have revealed a potential contribution of the estrogen metabolizing enzyme, 

cytochrome P450 1B1 (CYP1B1) in the development of PAH. 17β-estradiol (17β-E2) and 

estrone (E1) are metabolized by the activity of CYP1B1 to the 2-, 4- and 16-hydroxylated 

estrogens. Here, we defined the role of CYP1B1 in the pathogenesis of PAH. CYP1B1 

expression was increased in both experimental (hypoxia and SU5416+hypoxia) and in 

heritable and idiopathic PAH (HPAH and IPAH, respectively). Both male and female 

CYP1B1 knockout mice (CYP1B1-/-) were challenged with chronic hypoxia to induce 

PAH as assessed by right ventricular systolic pressures (RVSP), right ventricular 

hypertrophy (RVH) and pulmonary vascular remodeling. CYP1B1-/- mice were protected 

against hypoxia-induced pulmonary hypertension (PH). CYP1B1 inhibition with the highly 

potent and selective inhibitor 2,3',4,5'-tetramethoxystilbene (TMS; 3 mg/kg/day by intra-

peritoneal injection) attenuated the development of hypoxia-induced PH. Only moderate 

effects were observed with CYP1B1 inhibition in monocrotaline-induced PH, despite 

improving survival rates. Female mice that over-express the human serotonin transporter 

gene (SERT+ mice) develop a spontaneous PAH phenotype at 5 months of age which is 

dependent on circulating levels of 17β-E2. Here, we provide evidence that the estrogen 

metabolic axis is dysregulated in these mice and this may underlie their PAH phenotype. 

The estrogen synthesizing enzyme aromatase and CYP1B1 was increased in whole lung 

homogenates of female SERT+ mice compared to wild-type mice. Despite increased 

expression of aromatase, 17β-E2 concentrations were unchanged. CYP1B1 inhibition with 

TMS (1.5mg/kg/day by intra-peritoneal injection) attenuated the PAH phenotype in female 

SERT+ mice as assessed by RVSP and pulmonary vascular remodeling. 



xxiv 
 

Other studies have identified that the 16-hydroxylated metabolites of estrogens (17β-E2 

and E1) are the only CYP1B1 metabolites to induce cellular proliferation, with the most 

profound effects observed with 16α-hydroxyestrone (16α-OHE1). In mice exposed to 

chronic hypoxia, urinary concentrations of 16α-OHE1 were increased. Chronic dosing of 

16α-OHE1 in mice (1.5mg/kg/day by intra-peritoneal injection for 28 days) resulted in the 

development of a PAH phenotype in female mice only. 16α-OHE1 induced cellular 

proliferation in human pulmonary arterial smooth muscle cells (hPASMCs) and this was 

inhibited by a scavenger of reactive oxygen species (ROS) and an inhibitor of extracellular 

regulated kinase 1/2 (ERK 1/2). 4-hydroxylation is the predominant metabolic pathway 

activated by CYP1B1 activity and we therefore investigated the effects of the 4-

hydroxylated metabolite of 17β-E2 in vivo. 4-hydroxyestradiol (4-OHE2) had no effects on 

PAH parameters in mice (1.5mg/kg/day by intra-peritoneal injection for 28 days). 

However, serotonin-induced vasoconstriction of the intra-pulmonary arteries was 

dramatically reduced in arteries harvested from mice dosed with 4-OHE2. More recent 

studies have identified that 4-hydroxyestrone (4-OHE1) is the predominant CYP1B1 

metabolite in the lungs of mice. Interestingly, despite evidence for a pathogenic function of 

CYP1B1 activity in vivo, 4-OHE1 inhibited cellular proliferation in hPASMCs as assessed 

by thymidine incorporation whilst no effects were reported on cell viability. 

We provide evidence for an altered estrogen metabolic axis in PAH, by in part, 

overexpression of the putatively pathological CYP1B1. Yet, the dynamic estrogen 

metabolic profile in pulmonary vascular cells remains undetermined. To address this, we 

developed a high fidelity HPLC method to quantitatively fate map estrogen metabolism in 

hPASMCs to determine the dynamic regulation of estrogen metabolism in PAH. We 

provide the first direct evidence that hPASMCs metabolize 17β-E2 and that estrogen 

metabolism is pathologically altered in PAH. Our metabolic screen revealed a prominent 

role for 17β-hydroxysteroid dehydrogenase enzymes in hPASMCs by rapid formation of 

E1 in all groups studied, increasing with time, with the highest activity in male control 

hPASMCs and the lowest activity in female control hPASMCs. In female control 

hPASMCs there was no evidence of CYP activity, whilst numerous metabolites were 

formed in the other groups studied. The formation of the pathogenic 16α-hydroxylated 

estrogens was only evident in PASMCs from both male and female PAH patients at 24 and 

48 hours. Globally, this study introduces a platform to elucidate effects of PAH insults and 

potential therapies on the estrogen-metabolic profile in pulmonary vascular cells. 
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Overall, we provide eminent evidence that the estrogen metabolic axis is pathologically 

altered in PAH and is influenced by gender. This provides a strong rationale for the 

application of estrogen-sensitive therapies in the management of this highly female 

discriminating disease. 
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 The pulmonary circulation 1.1

At birth we are primed to take our first breath. Instantly there is a dramatic reduction in 

pulmonary vascular resistance (PVR) accompanied by closure of the ductus arteriosus, 

which is used in foetal life to bypass the pulmonary circulation. Subsequently the 

pulmonary arterial pressures (PAPs) rise and the lungs assume their prime function of 

gaseous exchange. 

 Pulmonary vascular structure and function 1.1.1

Deoxygenated blood drains into the right atrium of the heart from the superior and inferior 

vena cava returning blood from the upper and lower extremities. During the diastolic 

contraction of the heart, the tricuspid valves open allowing blood to flow into the right 

ventricle. During systole of the heart, the tricuspid valves close and blood is pushed 

through the semi-lunar valves into the main pulmonary artery which bifurcates into the left 

and the right pulmonary arteries. Each artery then enters its respective lung at the hilum 

through the parenchyma and is thereafter referred to as the intra-lobar pulmonary artery. 

This runs parallel to the respiratory tree alongside the bronchus to the alveoli where it 

becomes a mesh-like network of millions of capillaries from which gas exchange can 

occur. Only a very thin barrier exists between the pulmonary capillaries and alveoli 

allowing for passive diffusion of carbon dioxide and oxygen. There are approximately 480 

million alveoli in the lungs with the prime purpose of increasing the surface area for gas 

exchange (Ochs et al., 2004). The pulmonary arteries and veins each have 15 orders of 

branching between the main pulmonary artery and the capillaries and between the 

capillaries and left atrium, respectively (Huang et al., 1996).  

The lungs are unique in that they are the only organ that receives the entire cardiac output 

(CO) resulting in a high flow system of about 5 litres of blood per minute, which increases 

to about 25 litres during exercise. The primary function of the pulmonary circulation is gas 

exchange. Hence the pulmonary arteries have thin walls with a minimal smooth muscle 

cell layer resulting in a low-pressure, low-resistance system. The pulmonary artery is the 

only artery in the entire body that carries deoxygenated blood and similarly, the pulmonary 

vein is the only vein that carries oxygenated blood. The normal mean PAP is between 

14mmHg and 20mmHg (Badesch et al., 2009), which allows for adequate oxygen 

replenishment and unloading of carbon dioxide. In contrast, in the systemic circulation, 

mean pressures are of the order of 100mmHg. PAP is a result of CO and PVR and thus 
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PAP = CO X PVR. PVR is related to the intraluminal vessel wall diameter - the smaller the 

diameter, the greater the PVR. For this reason, arteries in the pulmonary circulation are 

normally fully dilated. Distension and recruitment of closed arteries are important 

mechanisms that are employed to reduce PVR when the cardiac output is increased, for 

example during exercise. 

The lungs also contain a functionally distinct second circulation known as the bronchial 

circulation. The bronchial circulation arises from the systemic circulation and serves as the 

supplier of oxygen and nutrients to the conducting portions within the lung. 

1.1.1.1 Pulmonary arteries, veins and capillaries 

Mesenchymal cells differentiate into the heterogeneous population of vascular cells that 

comprise the vessel walls within the pulmonary circulation. The pulmonary arteries and 

veins have three distinct vascular layers. The tunica intima is the innermost layer of the 

vessel and is composed of a homogenous population of endothelial cells. The medial layer, 

the tunica media, is comprised of smooth muscle cells. The tunica externa is the outermost 

layer that consists primarily of collagen and fibroblasts. Each respective layer is separated 

by an extracellular matrix known as the basement membrane. Within the distal component 

of the lung, an extensive capillary network separates arteries from veins. 

The structural composition of pulmonary arteries is functionally altered as it extends down 

the length of the vessel towards the base of the lung. Pulmonary arteries can be defined 

according to their structural composition as elastic, muscular or partially muscular 

pulmonary arteries. Elastic vessels contain numerous elastic laminae bound by external and 

internal elastic laminae and extend peripherally into transitional vessels which contain 

fewer elastic laminae. Once only an internal and external elastic lamina exists around the 

smooth muscle cell layer, these vessels are termed muscular. As the artery extends into the 

more distal portions of the lungs, the smooth muscle cell layer becomes sparse (partially-

muscular) or absent (non-muscular) prior to extension into the capillary bed (deMello & 

Reid, 1991;Jones & Capen, 2011). Pre-acinar arteries (including the main pulmonary 

artery) are associated with bronchi, bronchioles or terminal bronchioles and contain 

numerous elastic laminae between smooth muscle layers and are more than 3200μm in 

diameter. As it extends beyond the ninth airway generation, the vessels become muscular 

and are generally more than 150µm in diameter (Elliot & Reid, 1964;Jones & Capen, 

2011). Partially muscular pulmonary arteries are typically 75µm to 90µm in diameter 
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(Jones & Capen, 2011). Pulmonary arteries are much less muscular than systemic arteries 

as the pressure and resistance is much lower within these arteries. 

Pulmonary arteries follow a branching pattern closely associated with the branching 

pattern of the bronchial tree, although there are many more pulmonary arterial branches 

than there are bronchial branches and these increase within the periphery (Elliot & Reid, 

1964). The pulmonary artery will eventually extend into the alveolar capillaries, which 

form a dense anastomosing hexagonal network for which gas exchange can occur (Weibel, 

1963). Oxygenated blood is then drained into the pulmonary vein, which carries the blood 

to the left atria where it is retained until diastole, allowing it to enter the left ventricle for 

subsequent pumping around the body. 

 The function of the pulmonary circulation 1.1.2

The primary function of the pulmonary circulation is to facilitate gas exchange - unloading 

of carbon dioxide and loading of oxygen. Oxygen is obtained from inspired air and binds 

with haemoglobin within red blood cells and is essential to sustain metabolic processes 

throughout the entire body. Re-oxygenation is exquisitely facilitated by the gas-blood 

interface between the alveoli and the extensive alveolar capillary network. 

In addition to facilitating gas exchange, the pulmonary circulation functions as a filtration 

system to remove fine particles and potentially lethal thromboemboli from the mixed 

venous blood before it returns to the systemic circulation (Comroe, 1966). This process is 

chiefly regulated by the pulmonary endothelium which releases mediators that promotes 

fibrinolysis. The location of the lungs together with the vast surface area of the pulmonary 

vasculature allows for this unique filtration function. Additionally the pulmonary 

circulation also serves as a blood reservoir for the left ventricle (Comroe, 1966).  

 Regulation of blood flow in the pulmonary circulation 1.1.3

Pulmonary blood flow is most profoundly regulated by gravity and increases about 9 fold 

from the apex to the base of the lung (West et al., 1964). Arterial, venous and alveolar 

pressures affect the distribution of blood flow within the lungs (West et al., 1964). Blood 

flow and ventilation is regulated by ventilation-perfusion matching (West & Dollery, 

1960). In 1946, Von Euler and Liljestrand characterised a vital difference in response to 

hypoxia between the systemic and pulmonary circulations (Euler & Liljestrand, 1946). In 

the systemic circulation hypoxia caused vasodilatation. In contrast, they observed that the 
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pulmonary arteries uniquely constricted in response to hypoxia (described in more detail 

below). This is perhaps not surprising considering the functional role of the two separate 

systems. In the pulmonary circulation the vasoconstrictor response to hypoxia aids in 

moving the passage of blood to well aerated areas mediating ventilation-perfusion 

matching. In the systemic circulation, hypoxia results in vasodilation in order to increase 

perfusion to meet the energy requirements of tissues and organs. In the lungs, ventilation-

perfusion matching is also achieved by airway constriction in response to pulmonary 

arterial occlusion. This serves to direct inspired air towards alveoli with a denser blood 

flow. The matching of blood to a sufficient oxygen supply is therefore a critical regulator 

of blood flow in the lungs. 

 Regulation of vascular tone: the endothelium 1.1.4

Endothelial cells form the innermost lining of the vasculature and act as a mediator of 

physiological and injurious stimuli. Under normal physiological conditions there is an 

exquisite control of the production and secretion of vasoactive mediators. The predominant 

vasoconstrictors include endothelin-1 (ET-1) and thromboxane A2 (TXA2) and the 

vasodilators include nitric oxide (NO) and prostacyclin, which can act in a paracrine 

fashion on the vascular endothelium and in an autocrine fashion on the underlying vascular 

smooth muscle cell layer. The endothelium is innervated by adrenergic and cholinergic 

nerve fibres that regulate vascular tone. Activation of adrenergic fibres causes 

vasoconstriction via the release of noradrenaline. In contrast, activation of cholinergic 

fibres causes release of acetylcholine resulting in vasodilation. The pulmonary 

endothelium is also an active participator in the metabolism of circulating mediators such 

as angiotensinogen, serotonin and noradrenaline, which are all regulators of vascular tone. 

The endothelium is sensitive to alterations in blood flow and this can have dramatic 

consequences for the endothelial cell fate and it is therefore an extremely important 

regulator of vascular tone. The balance of vasodilators and vasoconstrictors is therefore 

critical in important in maintaining the normal function of the endothelium. 

 Excitation-contraction coupling 1.1.5

Pulmonary vascular smooth muscle cell (PVSMC) tone is regulated by excitation-

contraction coupling whereby a generated action potential drives depolarisation of the cell 

membrane resulting in PVSMC contraction. This process is driven by the interactions 

between actin and myosin. During cross-bridge cycling, myosin (an ATPase) interacts with 

actin resulting in vascular smooth muscle cell contraction, which is exquisitely mediated 
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via calcium (Ca
2+

) (Ward & Knock, 2011). This process is mediated by phosphorylation of 

myosin light chain (MLC) and the Ca
2+

-calmodulin activated myosin light chain kinase 

(MLCK). Thereby, vasoconstriction is predominantly mediated by Ca
2+

 mobilization. 

PVSMC contraction is terminated by dephosphorylation of MLC by myosin light chain 

phosphatase (MLCP). 

 Effect of hypoxia on pulmonary vasoconstriction and 1.1.6
remodeling 

In the pulmonary vasculature, exposure to acute hypoxia induces vasoconstriction and 

exposure to chronic hypoxia results in vascular remodeling. The most profound hypoxia-

induced vasoconstriction occurs in the small pulmonary arteries (Weir & Archer, 1995). 

Potassium (K
+
) and Ca

2+
 are key regulators of pulmonary vascular tone in response to 

hypoxia. PASMCs have a resting membrane potential equivalent to the estimated 

equilibrium of K
+
 ions (Weir & Olschewski, 2006). Hypoxia inhibits K

+
 conductance in 

PASMCs resulting in cell depolarisation and the opening of L-type Ca
2+

 channels causing 

entry of Ca
2+

 ions and subsequent vasoconstriction (Post et al., 1992). Ca
2+ 

entry in to the 

smooth muscle cells is a key regulator of hypoxia-induced vasoconstriction. This is evident 

from studies showing that hypoxic pulmonary vasoconstriction in the rat lungs is inhibited 

with Ca
2+

 antagonists (McMurtry et al., 1976). In chronic hypoxia, endothelial prostacyclin 

production is decreased in both proximal and distal pulmonary arteries together with a 

decreased formation of the vasoconstrictor prostaglandin E2 (PGE2) (Badesch et al., 

1989). Furthermore, chronic hypoxia results in an increased production of vasoconstrictors 

such as ET-1 and serotonin (Eddahibi et al., 2000;Li et al., 1994). This creates an 

imbalanced environment that favours pulmonary vasoconstriction.  

Chronic hypoxia causes medial thickening of the pulmonary artery by smooth muscle cell 

hypertrophy and an increase in extracellular connective tissue, microfibrils, collagen fibres 

and elastin (Meyrick & Reid, 1980). In particular, hypoxia results in the muscularisation of 

previously non-muscular pulmonary arteries. Additionally, in the large elastic pulmonary 

arteries, structural changes including thickening of the media and adventitia contribute to 

altered flow dynamics that may influence both the right ventricle and the distal vasculature 

(Stenmark et al., 2006). Interestingly, despite dramatic alterations in vascular morphology, 

the increases in medial and adventitial thickness of the pulmonary arteries and the 

corresponding right ventricular hypertrophy (RVH) recover to normal once returned to 

normoxic conditions (Meyrick & Reid, 1980). However, the structural effects induced by 



 Chapter 1 - Introduction 

7 
 

hypoxia are irreversible and are associated with increases in extracellular collagen fibres, a 

reduced distensibility and lumen narrowing (Meyrick & Reid, 1980). 

 Pulmonary hypertension 1.2

Pulmonary hypertension (PH) is a complex, insidious and devastating vascular disease 

characterised by persistent elevations in PAPs and remodeling of the pulmonary vascular 

network. This includes obliterative remodeling of the pulmonary vasculature by excessive 

endothelial and smooth muscle cell proliferation and loss of the distal pulmonary 

circulation. The increased pulmonary pressures and vascular resistance challenges the right 

heart causing excessive strain that instigates adaptive hypertrophy that will eventually lead 

to maladaptive hypertrophy resulting in dilatation and right ventricular heart failure. PH 

can manifest itself through a plethora of aetiologies and it has therefore been necessary to 

group PH into subcategories to assist medical practitioners in providing the most suitable 

treatment options. 

 Classification of pulmonary hypertension 1.2.1

Since 1973 the World Symposium on Pulmonary Hypertension (WSPH) has brought 

together experts within pulmonary vascular diseases together to discuss and collate the 

latest scientific contributions within the field. From this, the World Health Organisation 

(WHO) classification of PH is derived, which is categorised according to shared 

histologies and vascular pathologies. Identification of PH WHO category is essential to 

direct the correct treatment regimen and to predict the potential outcome. The most recent 

WSPH was held in Nice in February 2013 from which the table below is derived (Table 

1-1) (Simonneau et al., 2013). The WHO classification is subcategorised into five groups 

of disorders that are known to cause PH: PAH (group 1); PH owing to left heart disease 

(group 2); PH owing to lung diseases and/or hypoxia (Group 3); chronic thromboembolic 

PH (Group 4); and PH with unclear multifactorial mechanisms (Group 5). 
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Table 1-1 WHO classification of pulmonary hypertension 

Group 1 Pulmonary arterial hypertension (PAH) 
1.1 Idiopathic (IPAH) 
1.2 Heritable (HPAH) 
 1.2.1 BMPR-2 
 1.2.2 ALK1, ENG, SMAD9, CAV1, KCNK3 
 1.2.3 Unknown 
1.3 Drug- and toxin-induced 
1.4 Associated PAH 
 1.4.1 Connective tissue diseases 
 1.4.2 HIV infection 
 1.4.3 Portal hypertension 
 1.4.4 Congenital heart diseases 
 1.4.5 Schistosomiasis 
 1.4.6 Chronic haemolytic anemia 
1' Pulmonary veno-occlusive disease and/or pulmonary hemangiomatosis 
1'' Persistent pulmonary hypertension of the newborn 
Group 2 Pulmonary hypertension owing to left heart disease 
2.1 Systolic dysfunction 
2.2 Diastolic dysfunction 
2.3 Valvular disease 
2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 
Group 3 Pulmonary hypertension owing to lung diseases and/or hypoxia 
3.1 Chronic obstructive pulmonary disease 
3.2 Interstitial lung disease 
3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 
3.4 Sleep-disordered breathing 
3.5 Alveolar hypoventilation disorders 
3.6 Chronic exposure to high altitude 
3.7 Developmental abnormalities 
Group 4 Chronic thromboembolic pulmonary hypertension (CTEPH) 
Group 5 Pulmonary hypertension with unclear multifactorial mechanisms 
5.1 Hematologic disorders: chronic haemolytic anemia, myoproliferative disorders, splenectomy 
5.2 Systemic disorders:sarcoidosis, pulmonary Langerhans cell histiocytosis: 
lymphangioleiomyomatosis, neurofibromatosis, vasculitis 
5.3 Metabolic disorders:glycogen storage disease, Gaucher disease, thyroid disorders 
5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis, segmental 
PH 

BMPR-2 = bone morphogenic protein receptor 2; ALK1 = activin receptor-like kinase; CAV1 = 
caveolin 1; KCNK3 = potassium channel subfamily K member 3 
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 Pulmonary arterial hypertension 1.2.2

PH is characterised as PAPs exceeding 25mmHg at rest (Badesch et al., 2009). The 

diagnosis of group 1 PH, PAH, requires the additional diagnosis of pulmonary wedge 

pressures equal or greater than 15mmHg (Badesch et al., 2009). PAH is the most fatal 

subtype of PH and is a progressive and devastating vasculopathy of the pulmonary arteries 

characterised by dysregulated endothelial cell proliferation and apoptosis paired with 

exuberant proliferation of apoptotic-resistant smooth muscle cells (Schermuly et al., 2011). 

Previously non-muscular pulmonary arteries develop a smooth muscle layer eventually 

leading to obliteration and loss of the small distal arteries and the formation of complex 

vascular lesions (Cool et al., 1999). There is currently no cure for the treatment of PAH 

and newer, more effective therapies are urgently required. The WHO have subcategorised 

PAH as is shown in Table 1-1: idiopathic PAH (IPAH), heritable PAH (HPAH), and drug 

and toxin-induced and PAH secondary to other diseases.  

1.2.2.1 Idiopathic and heritable pulmonary arterial hypertension 

In IPAH, the cause is neither inherited nor does it carry any identified risk factor. Germline 

mutations in the bone morphogenic receptor 2 gene (BMPR-2), a member of the 

transforming growth factor-β signaling (TGF-β) family, are accountable for at least 70% of 

HPAH and 10% to 40% of apparently sporadic cases of IPAH (Lane et al., 2000;Machado 

et al., 2001;Thomson et al., 2000). In a few cases, mutations in other genes belonging to 

the TGF-β super family have been reported: activin receptor-like kinase type 1 (ALK1), 

endoglin (ENG) and Sma and Mad (mothers against decapetaplegic)-related proteins 

(SMAD) 9. Additionally novel gene mutations in caveolin-1 (CAV1) (Austin et al., 2012a) 

and the gene encoding the potassium channel super family K member-3 (KCNK3) (Ma et 

al., 2013) have been identified. 

1.2.2.2 Drug and toxin-induced pulmonary arterial hypertension 

Anorectic drugs have been associated with the development of PAH. In the 1960s there 

was an epidemic of PAH amongst obese patients taking the anorectic drug aminorex. 

These findings were later confirmed by the observation that patients taking the 

pharmacologically related drug dexfenfluramine for more than 3 months were at a high 

risk of developing PAH (Abenhaim et al., 1996;Kramer & Lane, 1998). To date, there are 

now several drugs and toxins that have been associated with the development of PAH and 

these have been classified on the strength of evidence for their association with PAH into 
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definite, possible, likely and unlikely (Simonneau et al., 2013). Definite associations 

according to the updated clinical classification of PAH (Simonneau et al., 2013) include 

aminorex, fenfluramines, dexfenfluramines, toxic rapeseed oil, benfluorex and selective 

serotonin reuptake inhibitors. Possible associations include cocaine, phenylpropanolamine, 

St. John’s wort, chemotherapeutic agents, interferon α and β and amphetamine-like drugs. 

Likely risk factors include amphetamines, tryptophan, methamphetamines and dasatinib. 

Unlikely risk factors include estrogen, oral contraceptives and cigarette smoke (Simonneau 

et al., 2013). 

1.2.2.3 Associated pulmonary arterial hypertension 

The development of PAH is also recognised to occur secondary to other diseases. These 

include connective tissue diseases, such as scleroderma, human immunodeficiency virus 

(HIV), portal hypertension, congenital heart disease in adults, schistosomiasis and chronic 

haemolytic anaemia (Simonneau et al., 2013).  

 The diagnosis, prognosis and epidemiology of pulmonary 1.2.3
arterial hypertension 

The symptoms of PAH are non-specific and include breathlessness, fatigue and syncope 

(Rich et al., 1987) making a prompt diagnosis challenging. Electrocardiograms provide 

valuable information on right ventricular function by measuring RVH. Chest radiographs, 

pulmonary functional tests and echocardiography amongst other tests are all useful 

indicators of lung and heart functions. However, right heart catheterisation is essential for 

the diagnosis of PAH and to test the vasoreactivity of the pulmonary circulation (Galie et 

al., 2004). 

The epidemiology of PAH has been outlined by three major registries (Badesch et al., 

2010;Humbert et al., 2006;Ling et al., 2012). In the UK/Ireland (Ling et al., 2012) and 

France (Humbert et al., 2006) the estimated incidence of PAH is 6.6 cases per million and 

15 cases per million, respectively. In all three registries, the median age at diagnosis was 

50 years old and IPAH was the most common form of PAH diagnosed. A higher 

proportion of patients were female with a reported 70% in the UK and Ireland (Ling et al., 

2012), 65.3% in France (Humbert et al., 2006) and 80% in the USA (Badesch et al., 2010). 

In addition, there appeared to be an association with obesity and an increased body mass 

index and the development of PAH. 
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 Pulmonary arterial hypertension arteriopathy 1.2.4

Along the media of the pulmonary artery there is a heterogeneous population of 

phenotypically distinct vascular cells. The main pulmonary artery is composed of three 

distinct layers of cells as mentioned previously; endothelial cells in the tunica intima, 

heterogeneous smooth muscle cells within the tunica media and both muscular and non-

muscular cells in the tunica adventitia (Frid et al., 1994;Stiebellehner et al., 2003). As the 

artery extends from the extra-lobar pulmonary artery and into the intra-pulmonary artery 

the lumen and the arterial wall narrow with fewer vascular cell types. In the distal 

pulmonary artery only a homogeneous population of smooth muscle cells exists 

(Stiebellehner et al., 2003). The smooth muscle cell layer eventually ceases and only a thin 

layer of endothelial cells remains (occasionally with a single smooth muscle cell or 

pericytes: smooth muscle cell precursors). 

In utero, the initial development of larger blood vessels involves the recruitment of pre-

cursor smooth muscle cells by endothelial cells in the mesoderm. Smooth muscle cells will 

proliferate and undergo differentiation and maturation into the quiescent adult smooth 

muscle cell (Stenmark & Mecham, 1997). Pulmonary vascular remodeling is a key feature 

of PAH and is defined as any structural changes that occur within the vascular wall and can 

occur within all three vascular layers. In particular, a key feature of re-structured 

pulmonary arteries includes an increase in smooth muscle cells and endothelial cells. It 

appears that in the vasculature normally quiescent cells resistant to mitogenic stimulation 

exhibit cellular responses similar to developmental processes when injured (Stenmark & 

Mecham, 1997). Non-muscular pulmonary arteries are typically compromised of 

endothelial cells and in some cases, pericytes. In response to injury, pericytes can 

differentiate into vascular smooth muscle cells, which contributes to muscularisation of 

previously non-muscular arteries. Injurious insults include inflammation, hemodynamic 

stress (increased shear stress), mechanical injury and hypoxia.  

There is a general acceptance that the distal pulmonary arteries are the most crucial 

mediators of increased vascular resistance that precede the development of RVH. 

However, recent indications have challenged this notion, suggesting that stiffening of the 

proximal pulmonary artery by deposition of collagen may impact PAPs and RVH in the 

absence of any structural changes in the distal pulmonary circulation (Vanderpool et al., 

2013). Interestingly, distal smooth muscle cells have a very low proliferative capacity 

compared to proximal smooth muscle cells. Furthermore, hypoxia actually reduces their 
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proliferative capacity (Stiebellehner et al., 2003). Thus, a phenotypic switch in the 

homogeneous population of smooth muscle cells in the distal pulmonary arteries is 

presumed to occur to permit vascular proliferation and remodeling. Phenotypic switching 

is defined as a change in the gene expression of a cell that alters its behavioural response to 

various stimuli. For example, a previously non-proliferative cell may undergo phenotypic-

switching into a highly proliferative cell. In addition, mature vascular endothelial cells can 

also transdifferentiate into smooth muscle cells through a mesenchymal transition (Frid et 

al., 2002). Alternatively, proliferative smooth muscle cells of the proximal artery may 

migrate and extend into previously non-muscular pulmonary arteries contributing to distal 

pulmonary vascular remodeling.  

The lung is composed of more than 40 different cell types that are essential to facilitate gas 

exchange and metabolic and endocrine functions. The lung has a remarkable regenerative 

capacity after injurious insults, yet the cell types that contribute to this effect remain 

obscure. There is now evidence for resident stem cells within the lung (Kajstura et al., 

2011) implicating that the phenotypically distinct smooth muscle cells that appear in the 

distal artery could also be differentiated stem cells. Alternatively, the origin of these cells 

could be from distinct regions, such as blood-borne progenitor cells or bone marrow-

derived progenitor cells (Toshner et al., 2009). However, there is currently much 

speculation of the role of progenitor cells in PAH as to whether they play a role in 

repairing damage that has occurred or whether they are indeed intricate to the pathogenesis 

of PAH (Toshner & Morrell, 2010). 

The pathological features observed in PAH are primarily within the pulmonary arteries 

with the veins unaffected. PAH pathology includes pulmonary arterial vascular lesions 

within the distal pulmonary arteries (<500µm in diameter), characterised by medial 

hypertrophy, adventitial thickening, inflammation, complex vascular lesion (plexiform) 

formation and thrombotic lesions (Galie et al., 2009). 

Medial hypertrophy of both muscular and elastic arteries is a common pathological feature 

of all categories of PH (Pietra et al., 1989;Pietra et al., 2004). Alongside, dilatation of 

elastic pulmonary arteries and intimal atheromas and RVH are all manifestations of PH. 

Medial hypertrophy is an increase in the size of the vessel wall by hyperplasia and 

hypertrophy of both pre- and intra-acinar arteries eventually extending into previously non-

muscularised acinar arteries (Pietra et al., 2004). The pulmonary artery runs parallel to the 

respiratory tree and the pulmonary acinus is the region beyond the terminal bronchus. The 
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pulmonary acinus consists of the most delicate arterial structure with a discontinuous 

smooth muscle cell layer, which eventually ceases to exist (Pietra et al., 2004).  

Plexiform, dilatation and arteritis have been classified as complex vascular lesions that 

occur as part of the arteriopathy associated with PH (Pietra et al., 2004). Plexiform lesions 

are formed by extensive hyperplasic and hypertrophic responses of cells that constitute the 

arterial wall. Within their structures, vascular channels, lined with numerous proliferating 

endothelial cells are a typical feature (Jonigk et al., 2011). Plexiform lesions consist of 

numerous cell types, including smooth muscle and inflammatory cells but predominantly 

consist of endothelial cells (Tuder et al., 1994;Jonigk et al., 2011). Plexiform lesions can 

occur in both pre- and intra-acinar regions of the pulmonary arterial tree, but typically 

occur at arterial branching points (Pietra et al., 2004) and are present in 90% of patients 

with PAH (Stacher et al., 2012). It is, however, difficult to determine the stage at which 

plexiform lesions start to occur as we are unable to assess the presence of lesions prior to 

lung transplantation. Thus, plexiform lesions may only be present at end-stage disease.  
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Figure 1-1 Pulmonary arterial hypertension arteriopathy 

Pulmonary arterial hypertension (PAH) is a complex arteriopathy that includes muscularisation of 
peripheral pulmonary arteries, medial hypertrophy of muscular arteries, neotima formation, 
plexiform lesion formation and loss of precapillary arteries. SMC, smooth muscle cell; EC, 
endothelial cell. Reproduced with permission from Dr. Marlene Rabinovitch and the Journal of 
Clinical Investigation (Rabinovitch, 2012). 
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 The right heart 1.2.5

In utero, the pulmonary circulation is vasoconstricted and the right ventricle is 

hypertrophied. At birth, the pulmonary pressures fall and the right ventricular structure is 

switched to an adult phenotype within weeks (Haddad et al., 2011). The left and right 

ventricles of the heart are structurally and functionally unique. The right ventricle has a 

much thinner wall and whilst the volume of blood that is pumped out of the heart (stroke 

volume) is the same, it does this with less force due to the low resistance of the pulmonary 

arteries (Voelkel et al., 2006). Chronic PAH results in a pressure overload on the right 

ventricle that initially leads to adaptive hypertrophy. Consistent constraint on the right 

ventricle eventually results in dilatation, contractile dysfunction and heart failure 

(maladaptive right ventricular remodeling). Right ventricular function is the most critical 

factor in the survival of patients with PH (D'Alonzo et al., 1991;Sandoval et al., 1994). 

Several mechanisms have now been identified to contribute to maladaptive right 

ventricular remodeling, including a switch from α-myosin heavy chain (α-MHC) to β-

myosin heavy chain (β-MHC) as the main contractile protein, as well as mitochondrial, 

metabolic and electrical remodeling (Haddad et al., 2011). In particular, RVH is associated 

with altered metabolic gene expression suggesting a switch from fatty acid metabolism to 

glucose metabolism as the main energy source (Sharma et al., 2004). 

Remarkably, despite dramatic alterations in right ventricular structure and function during 

PH, patients with severe PH who have received single-lung transplants show sustained 

improvement in right ventricular function in terms of ejection fraction and right ventricular 

wall thickness (Ritchie et al., 1993). The mechanism by which the right ventricle repairs 

itself are still unclear but may be related to the mechanisms that occur after birth (Voelkel 

et al., 2006).  

 Inflammation and pulmonary arterial hypertension 1.2.6

Inflammatory insults represent well-defined triggers of PAH. For example, HIV is 

associated with the development of PAH in ~0.5% of patients (Sitbon et al., 2008). 

Perhaps the most common cause of PAH recognised is the parasite schistosomiasis which 

migrates through the skin into the venous system where it matures into an adult worm 

before migrating into the lung causing an inflammatory response. 1% of patients infected 

by schistosomiasis will develop PAH, supporting a functional role for inflammation in 

PAH (reviewed by Graham et al., 2010). Furthermore, there is a direct correlation with the 

development of PAH in patients with inflammatory conditions, such as systemic lupus 
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erythematous and scleroderma (reviewed by Johnson & Granton, 2011). Interestingly, it 

has been estimated that approximately 78% of patients affected with autoimmune diseases 

are women, suggesting that female hormones may drive disease pathogenesis and 

inflammatory responses (Fairweather et al., 2008). The importance of inflammation in 

PAH can also be observed in BMPR-2 haploinsufficent mice. These mice do not develop a 

spontaneous PAH phenotype, yet under inflammatory stress these mice are more 

susceptible to a PAH phenotype than wild-type mice (Song et al., 2005). 

The role of inflammation in PAH is further supported by the increased production of 

inflammatory mediators in both experimental and human PAH (reviewed by Price et al., 

2012) and is therefore under intense investigation. T cells, B cells and macrophages are 

observed in the complex vascular lesions that are associated with PAH (Tuder et al., 1994). 

Additionally, perivascular mast cells and dendritic cells are also increased in patients with 

IPAH (Savai et al., 2012). 

Cytokines are key mediators of inflammation and are also dysregulated in the setting of 

PAH. Serum cytokines, including the interleukins and tumour necrosis factor α (TNFα) 

levels are increased in both IPAH and HPAH and are indicative of survival in patients, 

thereby representing potential useful biomarkers (Soon et al., 2010). Furthermore, chronic 

overexpression of TNFα is associated with the development of PAH (Fujita et al., 2002) 

and TNFα administration to isolated rat pulmonary arteries increases vasoconstriction 

(Stevens et al., 1992). Overexpression of interleukin-6 (IL-6) is associated with the 

development of severe PAH with the formation of neointimal occlusive angioproliferative 

vascular lesions (Steiner et al., 2009). Taken together, this provides evidence for an 

association of inflammation with PAH, whether being of a causative nature or a secondary 

mediator.  

 Treatments 1.2.7

The current therapeutic strategy in PH is aimed at targeting the underlying cause of the 

disease as well as the symptoms. Treating WHO group 1 PH, both IPAH and HPAH is 

complicated by the lack of understanding of its complex pathology. Advanced treatments 

are used to improve the symptoms and thereby the quality of life in this subset of patients. 

PH is a multifactorial process with various aetiologies and the treatment regimen will 

therefore depend on the PH classification. The majority of patients will receive Ca
2+

 

channel blockers, endothelin receptor antagonists, prostanoids or phosphodiesterase type 5 
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(PDE5) inhibitors alone or in combination. Patients will also be evaluated to receive 

supportive therapy including oral anticoagulants, diuretics, oxygen and digoxin. Currently 

available treatments are suboptimal and have considerable unmet clinical needs as 

mortality rates remain unacceptably high (Benza et al., 2012) and the need for improved 

therapies is urgently required. 

1.2.7.1 Ca2+ channel blockers 

Ca
2+

 channel blockers, such as nifedipine or diltiazem, inhibit the influx of Ca
2+ 

through 

voltage gated Ca
2+ 

channels. Consequently, the hyperpolarisation of vascular smooth 

muscle cells by the accumulation of Ca
2+

 inside the cell that results in a contraction is 

inhibited. This aims to reduce the increased pulmonary vascular tone and pressure. Acute 

vasodilator testing during right heart catheterisation is necessary in most patients (certainly 

in IPAH patients) to identify patients that will respond to long-term Ca
2+

 channel blocker 

therapy (Galiè et al., 2013). 

The use of Ca
2+

 channel blockers to treat patients with PAH was first reported in 1987 by 

Rich and Brundage where they treated a small cohort of patients with a high dose of a Ca
2+

 

channel blocker. This lead to reductions in PAPs and a regression of RVH as measured by 

electro- and echocardiography (Rich & Brundage, 1987). This provided rationale to assess 

the long-term effectiveness of Ca
2+

 channel blockers in PAH. In this study, 26% of patients 

responded to the treatment and it vastly improved the 5-year survival in these patients 

(Rich et al., 1992). In a more recent study, the characteristics of IPAH patients whom 

respond to long-term Ca
2+

 channel blocker therapy were evaluated. Less than 10% of 

IPAH patients responded to the therapy, and all these patients had responded to the initial 

vasodilator test with either epoprostinil or NO (Sitbon et al., 2005). Additionally, 

favourable responses to Ca
2+

 channel blockers has been reported in anorexigen-associated 

PAH, but was absent in PAH associated with HIV, portal hypertension, congenital heart 

disease and connective tissue disease (Montani et al., 2010). Therefore, the use of Ca
2+

 

channel blockers is limited in PAH as it is only effective in a very small subset of patients. 

1.2.7.2 Endothelin receptor antagonists 

ET-1 is a potent vasoconstrictor that is produced and released predominantly by vascular 

endothelial cells, which was characterised by Yanagisawa and colleagues in 1988 

(Yanagisawa et al., 1988). Subsequently, elevated plasma levels of ET-1 were reported in 
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patients with PH (Stewart et al., 1991). Importantly, the expression of ET-1 by vascular 

endothelial cells is also increased in PH (Giaid et al., 1993).  

ET-1 exerts its effects through binding with either endothelin receptor-A (ETA) or 

endothelin receptor-B (ETB), which are both G-protein coupled receptors (GPCR). In 

larger conduit arteries ET-1 induces vasoconstriction which is predominantly mediated by 

the ETA receptor. In contrast, in the smaller resistance vessels, the ETB mediates 

vasoconstriction (Maclean et al., 1994). Subsequently, it was found that at lower 

concentrations the effects of ET-1 are mediated by the ETB, but at higher concentrations 

responses are mediated via ETA (Mcculloch et al., 1996). ET-1 mediates vasoconstriction 

through the ETA and ETB receptor by activation of phospholipase C resulting in an 

increase in intracellular inositol triphosphate, diacylglycerol and intracellular Ca
2+

 leading 

to sustained vasoconstriction and activation of mitogenic pathways (Galié et al., 2004).  In 

contrast, the ETB receptor also mediates vasodilation by stimulating the production of NO 

and prostacyclin (Hirata et al., 1993). However, the pulmonary vasoconstriction observed 

in response to ET-1 stimulation is mediated by both receptors, as dual blockade is 

necessary for maximal effects (Galié et al., 2004). 

Pre-clinical studies suggested that the use of the non-selective endothelin receptor 

antagonist, bosentan, might be beneficial in the treatment of PH (Chen et al., 

1995;Eddahibi et al., 1995). Bosentan is an orally active drug and has a half-life of 

approximately 5 hours. Clinical trials using bosentan have reported improvements in 

pulmonary haemodynamics, 6-minute walking distance and survival. However, a main 

adverse side effect of bosentan is hepatotoxicity and patients therefore need to be carefully 

monitored to assess their liver function. There is also evidence to suggest that women 

respond better to endothelin receptor antagonists than men, and going forward, this will 

need to be taken into consideration when evaluating treatment effectiveness (Gabler et al., 

2012). 

The use of selective ETA-receptor antagonists has also been evaluated in PAH. For 

example, monotherapy with ambrisentan, an ETA selective antagonist has proven 

beneficial in haemodynamic parameters and 6 minute walking distance with low reported 

hepatotoxicity (Blalock et al., 2010;Oudiz et al., 2009). Whether selective antagonism has 

a therapeutic advantage over non-selective antagonism requires further elucidation. 
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1.2.7.3 Prostanoids 

Prostacyclin is a member of the prostanoid family. It is a metabolite of arachidonic acid by 

the cyclooxygenase pathway and is predominantly synthesized by endothelial cells. 

Prostacyclin binds with vascular prostacyclin receptors which are GPCR. This increases 

intracellular cyclic adenosine monophosphate (cAMP), which activates protein kinase A 

(PKA) resulting in smooth muscle cell relaxation and inhibition of platelet aggregation. 

Prostacyclins are therefore potent vasodilators in vascular beds and are one of the most 

effective treatments in PAH. Prostacyclins are synthesized by the enzymatic activity of 

prostacyclin synthase and its expression is decreased in PAH (Tuder et al., 1999). 

Prostacyclin and its analogues are therefore utilised in the management of PAH due to their 

vasodilator properties, which can counteract the effects of a shift towards the production of 

vasoconstrictor mediators, such as ET-1. Prostacyclins are therefore a very powerful tool in 

the treatment of PAH. 

The clinical use of prostacyclin is limited by its very short half-life. Prostacyclin analogues 

have therefore been generated to improve their pharmacokinetic properties. There are three 

types of prostacyclin analogues approved for the treatment of PAH; Epoprostenol, iloprost 

and treprostinil are synthetic prostacyclin analogues that have been approved for the 

treatment of PAH. The administration of epoprostenol is invasive and requires an 

intravenous catheter and a portable pump. In contrast, iloprost and treprostinil are available 

as inhalation agents. Treprostinil may also be administered subcutaneously. Beraprost is 

the only prostacyclin analogue that is available for oral administration, but has currently 

not been approved for the treatment of PAH. Although prostacyclins have improved 

survival and exhibit favourable vasodilator properties, they cannot prevent the 

manifestation of advanced plexiform lesions (Pogoriler et al., 2012). Furthermore, there 

are several limitations with prostacyclin analogues including inconvenient routes of 

administration, non-specific activation of receptors and short-half-lives (Sitbon & Morrell, 

2012). 

1.2.7.4 Phosphodiesterase 5 inhibitors 

The cyclic nucleotides, cAMP and cyclic guanosine monophosphates (cGMP) are 

important mediators of pulmonary vasodilation by activation of PKA and protein kinase G 

(PKG), respectively. It is well established that NO is a mediator involved in the activation 

of the cGMP/PKG pathway. Phosphodiesterases (PDEs) catalyse the hydrolysis of cAMP 

and cGMP. PDEs inhibitors are considered an attractive therapeutic to promote 
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vasodilation by increasing the intracellular concentration of cAMP and cGMP. 

Furthermore, PDE isoforms are differentially expressed within tissues allowing for 

selective targeting (Murray et al., 2011). PDE5 is expressed in abundance within the lung 

(Corbin et al., 2005) and PDE5 inhibitors that promote the activation of the vasodilatory 

cGMP/PKG pathway have been very effective in the management of PAH. In addition to 

their vasodilatory properties, PDE5 inhibitors have also shown anti-proliferative effects 

(Wharton et al., 2005) which are highly favourable in this proliferative vasculopathy. 

PDE5 inhibitors including sildenafil, tadalafil and vardenafil are commonly known for 

their application in patients with erectile dysfunction. All three inhibitors are approved for 

the treatment of PAH and show positive therapeutic effects (Galiè et al., 2013). 

There are numerous PDE isoforms that mediate cyclic nucleotide levels within target 

tissues, yet only PDE5 inhibitors have been used to elevate cGMP levels and prostacyclin 

analogues to indirectly regulate cAMP levels through its receptors. More recently, in a 

comprehensive analysis of PDE isoforms within human pulmonary arterial smooth muscle 

cells (hPASMCs) from control and PAH samples demonstrated that the expression of 

PDE1A, PDE1C, PDE3B, and PDE5A were increased in patients with PAH (Murray et al., 

2007). Moreover, hPASMCs from PAH patients had a significant reduction in cAMP 

production in response to agonist stimulation with forskolin and PDE1 and PDE3 activity 

were largely accountable for this (Murray et al., 2007). Specifically, inhibition of PDE1C 

resulted in an accumulation of cAMP and a reduction in hPASMC proliferation, 

highlighting this as a novel therapeutic target to modulate cyclic nucleotide levels in PAH 

(Murray et al., 2007).  

1.2.7.5 Adempas® approved to treat pulmonary arterial hypertension 

In late 2013 Adempas® (riociguat) was approved by the U.S. Food and Drug 

Administration (FDA) for the treatment of PAH based on promising phase 3 clinical trials. 

Riociguat is a soluble guanylate cyclase stimulator and acts in synergy with NO that results 

in vasodilation thereby reducing PAPs. Riociguat was shown to significantly improve 

exercise capacity and clinical end-points in a phase 3 clinical trial in patients with PAH 

(Ghofrani et al., 2013). 

 Emerging therapies 1.2.8

The therapeutic strategy in PAH is two-fold. First, we have to selectively target the disease 

mediators. Second, we have to promote regeneration of the lost distal pulmonary arteries 
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and reverse the extensive remodeling of the pulmonary arterial network that is likely to 

have occurred. Ideally, therapies should also be selective for the pulmonary circulation to 

maximise the therapeutic effects and prevent off-target effects. Current therapies are 

mainly considered for their vasodilatory properties and more recently, the potential anti-

proliferative effects. It has been postulated that for the successful management of PAH, the 

strategy should be to obtain therapies that are pro-apoptotic, regenerative and anti-

inflammatory (Michelakis et al., 2008). 

 Genetic basis of pulmonary arterial hypertension 1.3

In 1951 Dresdale provided the first unique evidence that PAH may have a heritable basis, 

where a mother, her sister and her son all presented with symptoms of PAH (Dresdale et 

al., 1951). More than ten years ago, a genetic basis for the development of PAH was 

finally confirmed and was a remarkable discovery that has paved the way for 

understanding the underlying disease mechanisms (Deng et al., 2000;Lane et al., 2000). It 

was later identified that more than 70% of patients with HPAH carried a mutation in the 

BMPR-2 gene (Machado et al., 2006a). Globally, this identification has made significant 

contributions to our understanding of how such mutations contribute to disease 

pathogenesis.  

 Bone morphogenic protein receptor type II 1.3.1

In 1997, Nichols and colleagues (Nichols et al., 1997) identified six families where there 

was evidence for PAH in the absence of any secondary cause. Inspection of the pedigree 

charts of the six families indicated an autosomal dominant mode of inheritance. By linkage 

mapping, they identified a gene associated with PAH on the long arm of chromosome 2. 

Aforementioned, in 2000 the first gene associated with PAH was identified. Mutations in 

the BMPR-2 gene that encode the bone morphogenic protein receptor type II (BMPR-2), a 

member of the TGF-β, leading to dysregulated signaling were identified (Lane et al., 

2000). The penetrance of HPAH is low with only 20% of carriers actually developing the 

disease (Hamid et al., 2009). Patients with IPAH also have reduced gene and protein 

expression of BMPR-2, although this is more enhanced in HPAH patients (Atkinson et al., 

2002). 

In an attempt to establish the mode of inheritance in patients with HPAH in a large number 

of families, several striking observations were made (Loyd et al., 1995). Firstly, at birth 

there was an abnormal gender ratio, with a greater proportion of female births, suggesting 
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selective loss of male offspring. Secondly, in this cohort studied, the ratio of females to 

males was 2.7:1. Thirdly, if disease had been passed from an asymptomatic heterogeneous 

mother, the mean age of death was strikingly lower than if the disease had been acquired 

from an asymptomatic heterogeneous father. Fourthly, and perhaps the most intriguing 

observation, more females were carriers and more females had PAH (Loyd et al., 1995). 

This provides evidence that an aspect of female gender is implicated in both the 

development and the progression of PAH. 

Bone morphogenic proteins (BMPs) exhibit a plethora of biological activities including 

regulation of growth, differentiation and apoptosis. They are members of the TGF-β 

signaling superfamily that signal through Smad and Smad-independent pathways. On the 

extracellular surface BMPs bind to the tetrameric complex that consists of the type II 

receptor, BMPR-2 and its co-type I receptor (such as BMPR1A, BMPR1B or ALK-1) 

(Machado et al., 2011). Specific ligands for BMPR-2 are BMPs, specifically BMP-2, 

BMP-4, BMP-6, BMP-7 and growth differentiation factors (GDF) -5 and -6 (Morrell, 

2006). Upon activation, the type I receptor undergoes phosphorylation which can activate 

several signaling pathways including phosphorylation of Smad1/5/8, p38 mitogen activated 

protein kinase (p38 MAPK), ERK1/2, c-Jun N-terminal kinase (JNK) and 

Akt/phosphoinositide 3-kinase (PI3K) (as reviewed by Massague, 2003;Morrell, 

2006;Rabinovitch, 2012). Signaling via Smads requires interaction with Smad4 (co-Smad) 

in order to translocate to the nucleus where it can bind with deoxyribonucleic acid (DNA) 

and alter transcription.  

In addition to mutations identified in the BMPR-2 gene, other mutations in the TGF-β 

signaling pathway have also been confirmed. Mutations in ALK-1 (a type I receptor 

cognate to BMPR-2) (Harrison et al., 2003) and ENG (Chaouat et al., 2004) are present in 

patients with hemorrhagic telangiectasia and PAH (Harrison et al., 2003). Rare mutations 

in Smad 9 have also been associated with the development of HPAH (Nasim et al., 2011). 

1.3.1.1 BMPR-2 signaling in the pulmonary vasculature 

Germline mutations in the BMPR-2 gene are accountable for at least 70% of heritable PAH 

(HPAH) and 10% to 40% of apparently sporadic cases of IPAH (Lane et al., 

2000;Machado et al., 2001;Thomson et al., 2000). As a consequence of non-missense 

BMPR-2 mutations there is either reduced trafficking of the receptor to the cell surface or 

compromised phosphorylation of BMP type 1 receptors, which are essential for activation 
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of Smads (Morrell, 2006). In contrast, missense mutations retain normal trafficking to the 

cell surface and ability to activate Smad signaling, but have compromised ability in signal 

transduction via Smads (Morrell, 2006). 

BMPR-2 is expressed in all cell types that comprise the pulmonary vascular wall, but is 

predominantly expressed within endothelial cells (Atkinson et al., 2002). Here they 

maintain normal endothelial cell function by regulating endothelial cell motility, survival 

and proliferation (Valdimarsdottir et al., 2002;de Jesus Perez et al., 2009). Gene silencing 

of BMPR-2 in endothelial cells induces apoptosis (Teichert-Kuliszewska et al., 2006) 

through, in part, recruitment of non-canonical Wnt signaling (de Jesus Perez et al., 2009). 

Phosphorylation of Smads by BMPR-2 in the endothelium activates proliferation (de Jesus 

Perez et al., 2009) and promotes tube formation and migration (Valdimarsdottir et al., 

2002;de Jesus Perez et al., 2009). 

In pulmonary arterial smooth muscle cells (PASMCs) BMPR-2 is present, yet it is much 

less densely populated here than what is observed in endothelial cells (Atkinson et al., 

2002). In this vascular cell, their function confers depending on whether the cell type 

resides in the proximal or distal part of the pulmonary artery (Yang et al., 2005). In the 

proximal pulmonary artery, BMP-4 stimulation inhibits proliferation, yet in the distal 

pulmonary arteries it stimulates proliferation. The inhibitory effects on PASMCs were 

subsequently found to be mediated via Smad1, which is markedly reduced in PAH 

patients, irrespective of BMPR-2 status (Yang et al., 2005). In the setting of a BMPR-2 

mutation, endothelial cells become susceptible to apoptosis, resulting in a leaky barrier that 

permits entry of circulating factors to the underlying smooth muscle cells (Yang et al., 

2005). 

Despite advances in our understanding of the BMPR-2 pathway, there are still no drugs 

that aim to rescue this pathway. Recently, a promising target was identified (Spiekerkoetter 

et al., 2013). Using a high-throughput luciferase reporter assay, FDA approved drugs were 

screened to assess their ability to rescue BMPR-2 signaling. Tacrilomus (FK506), an 

immunosuppressive drug, was able to recapitulate the function of BMP-4 by activating 

pSmad 1/5/8 and the inhibitor of DNA binding-1 (ID-1) in endothelial cells. Targeting this 

pathway may provide a promising therapeutic strategy in the management of HPAH and 

also in cases of IPAH where BMPR-2 signaling is reduced. 
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 Genetic modifiers 1.3.2

1.3.2.1 The serotonin transporter 

Elevated levels of serotonin have been associated with the pathology of both experimental 

and clinical PAH and these effects are mediated in part via the SERT. Polymorphisms 

within the SERT gene have been identified as a genetic risk factor in PAH. SERT is 

encoded by the soluble carrier family 6, member 4 (SLC6A4) and is localised to 

chromosome 17q11.1-17q12 (Ramamoorthy et al., 1993). A short (S) and long (L) 

polymorphism in the upstream regulatory region of SERT affects its transcriptional 

regulation and is a common polymorphism (Lesch et al., 1996). The short polymorphism 

confers reduced transcriptional efficiency of the SERT gene promoter and the long variant 

increases transcriptional efficiency. 

In 2001, Eddahibi and colleagues (Eddahibi et al., 2001b) reported that the L-allelic variant 

of the SERT promoter was present in 65% of patients with PAH whereas it was only 

present in 27% of controls. In HPAH patients, patients homozygous for the LL genotype 

present at an earlier age of diagnosis than patients with either the SS or LS genotypes 

(Willers et al., 2006). In patients with PH secondary to heart failure, the LL variant is also 

associated with higher PAPs (Olson et al., 2007). Given the incomplete penetrance 

(approximately 20% to 30%) that is observed in patients with BMPR-2 mutations 

(Newman et al., 2001;Newman et al., 2004), we therefore assume a multiple-hit hypothesis 

whereby an additional insult may be present. SERT polymorphisms represent one such 

‘insult’ and this data provides evidence for this. In contrast, no associations with SERT 

polymorphisms were reported in patients with IPAH (Willers et al., 2006). Other studies 

have also failed to identify any association with SERT polymorphisms and PAH (Baloira 

et al., 2012;Machado et al., 2006b). There is therefore still much speculation whether 

SERT polymorphisms contribute to PAH pathobiology. 

1.3.2.2 Cytochrome P450 1B1 

In 2008, West and colleagues identified another modifier gene in PAH, cytochrome P450 

1B1, CYP1B1 (West et al., 2008), a xenobiotic and estrogen metabolizing enzyme. 

Subsequently, they genotyped for the CYP1B1 polymorphism that substitutes an 

asparagine for a serine in position 453 in patients with BMPR-2 mutations with and 

without evidence for PAH (Austin et al., 2009). This polymorphism is associated with 

increased proteosomal degradation of CYP1B1 (Bandiera et al., 2005). Interestingly, 
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female patients with BMPR-2 mutations that had been diagnosed with PAH had a 4-fold 

higher penetrance for the wild-type genotype (Austin et al., 2009). This suggests that 

CYP1B1 activity is associated with the development of PAH amongst BMPR-2-mutant 

carriers and represents another potential ‘second-hit’ factor. The contribution of this in 

experimental PAH is intriguing and remains to be determined. 

 Newly identified genetic mutations 1.3.3

1.3.3.1 Potassium channel, subfamily K, member 3 (Ma et al., 2013) 

In 2013, mutations in KCNK3 (also known as TASK-1), a pH sensitive potassium channel 

that regulates the resting membrane potential was identified as a mutation associated with 

PAH (Ma et al., 2013). All the mutations identified in this channel in patients with PAH 

results in a loss-of-function. KCNK3 is postulated to be important in regulating pulmonary 

vascular tone. Furthermore, hypoxia blocks KCNK3 and treprostinil (an FDA approved 

drug for the treatment of PAH) can activate the channel (Olschewski et al., 2006). In 

addition, a phospholipase inhibitor can also rescue the function of this channel and 

represents a novel mechanism by which potassium channel activity can be rescued in 

patients with PAH (Ma et al., 2013). 

 Animal models of pulmonary arterial hypertension 1.4

When describing animal models of PAH, they will be defined as PH (although these 

animals do develop a PAH phenotype). However, the classical models that are utilized are 

currently under scrutiny as to whether they are direct models of human PAH and therefore 

to avoid confusion, they will be termed PH.  

 Hypoxic-induced pulmonary hypertension 1.4.1

Brisket disease is a severe and costly disease that occurs in cattle residing at high altitude, 

named suitably after the swelling that occurs in the brisket. Glower and Newsom in 1915 

first described this phenomenon in cattle living at high altitude with symptoms including 

weakness, dyspnoea on exertion, diarrhoea and oedema (Glover & Newsom, 1915). Upon 

autopsy, abnormalities were reported in the heart structure, including enlargement and thin, 

dilated walls. Furthermore, it appeared that returning the cattle to a lower altitude was 

sufficient to reverse the disease (Glover & Newsom, 1915). Based on these findings, 

together with consistent reports of RVH in brisket disease (Alexander & Jensen, 1959), 
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Will and co-workers pioneered the studies investigating the effect of hypoxic exposure on 

the pulmonary circulation (Will et al., 1962). The effects of high altitude on pulmonary 

haemodynamics were assessed over time in normal cattle. The cattle developed the so-

called brisket disease and all had elevated pulmonary pressures, which increased over time. 

Despite a consistent development of PH in all the animals studied, there was a wide-spread 

in the degree of PH with some animals reaching PAPs of 45mmHg, whilst others reached 

over 100mmHg (Will et al., 1962). Furthermore, there was evidence that the response to 

hypoxia was very species dependent, which lead on to a very unique study that addressed 

the effect of hypoxia in various species (Tucker et al., 1975). In response to chronic 

hypoxia, pigs and calves developed severe PH, rabbits and rats developed moderate PH 

whereas sheep, guinea pigs and dogs developed mild PH. In trying to identify the 

underlying mechanism for these interspecies variations, the researchers identified the 

medial thickness of the small pulmonary arteries in control animals as being strongly 

correlated with the severity of PH developed (Tucker et al., 1975). This identified a key 

role for vascular smooth muscle in the development of hypoxia-induced PH. The extreme 

ease at inducing PH in animals by exposure to chronic hypoxia has made this an extremely 

popular model utilized by researchers.  

 Monocrotaline-induced pulmonary hypertension 1.4.2

The oral administration of crotalaria spectabilis seeds results in the development of PH and 

RVH and is associated with a medial increase in the pulmonary truck and muscular 

pulmonary arteries (Kay et al., 1967). A single injection of monocrotaline (MCT) derived 

from the crotalaria spectabilis plant is sufficient to induce severe PH and RVH in rats 

(Ghodsi & Will, 1981). MCT is activated to dehydromonocrotaline in the liver by the 

activity of cytochrome P450 3A4 (CYP3A4) (Reid et al., 1998). MCT results in 

endothelial damage and extension of smooth muscle into normally non-muscular 

pulmonary arteries (Rosenberg & Rabinovitch, 1988). Despite the evidence for endothelial 

cell damage, this model is characterised by medial smooth muscle thickening in the 

absence of endothelial cell angio-obliterative lesions (Gomez-Arroyo et al., 2012b). 
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 Development of pulmonary hypertension in animal models 1.4.3
that display heightened serotonin activity 

1.4.3.1 Serotonin transporter overexpressing mice 

Female mice that overexpress the serotonin transporter (SERT+ mice) develop 

spontaneous increases in RVSP and pulmonary vascular remodeling at 5-6 months of age, 

which is absent in male SERT+ mice (White et al., 2011b). Interestingly, despite increases 

in RVSP and PVR, this occurs in the absence of RVH (White et al., 2011b).  

1.4.3.2 S100 Ca2+ binding protein A4 overexpressing mice 

The S100 Ca
2+

 binding protein, S100A4/mts1, is expressed in neointimal and complex 

vascular lesions of patients with PAH. Additionally, in approximately 5% of mice that 

overexpress the S100A4/mts1 gene, there have been identified lesions that exhibit similar 

vascular arteriopathy to human PAH (Greenway et al., 2004). Serotonin stimulates the 

release of S100A4/mts1, which enhances the proliferation and migration of hPASMCs via 

the receptor for advanced glycation end products (RAGE). Further upstream, nuclear 

transport of phosphorylated ERK via a serotonin receptor, the 5-HT1B receptor, is 

mediated by SERT and is essential for the up-regulation of S100A4/mts1 (Lawrie et al., 

2005). In parallel with the SERT+ model, only female mice develop elevated RVSP and 

pulmonary vascular remodeling at 5 months of age, and this effect is absent in male mice. 

Additionally, the development of neointimal lesions was only observed in female mice. 

Again, there appeared to be no effect on RVH as a consequence of S100A4/mts1 

overexpression (Dempsie et al., 2011). 

1.4.3.3 The SUGEN-Hypoxic Model of pulmonary arterial hypertension 

Combined inhibition of the vascular endothelial growth factor receptor (VEGF-R) with the 

increased shear stress caused by hypoxia results in apoptosis of endothelial cells, releasing 

vascular endothelial growth factor (VEGF) and TGF-β. This stimulates proliferation and 

inhibits apoptosis of the underlying smooth muscle cell layer. In mice, exposure to 

SUGEN5416 (SU5416 (SU); VEGF-R inhibitor) and hypoxia for three weeks results in the 

formation of occluded vascular lesions. However, when returned to normoxic conditions, 

the developed phenotype reverses to baseline characteristics (Ciuclan et al., 2011). In 

contrast, rats develop more severe lesions after just three weeks and this progressively 

worsens to a severe PH phenotype that recapitulates human PAH arteriopathy when 

returned to normoxic conditions (Abe et al., 2010). Interestingly, serotonin activity is 
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heightened in this model (Ciuclan et al., 2011;Ciuclan et al., 2012). In fact, the 

development of SU-hypoxic induced PAH is dependent on peripheral serotonin synthesis, 

as mice devoid of tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme in the 

synthesis of serotonin, do not develop a PAH phenotype (Ciuclan et al., 2012). 

Furthermore, female rats also develop a more severe disease phenotype in this model 

compared to male rats (Tofovic et al., 2012). 

1.4.3.4 Dexfenfluramine-induced pulmonary hypertension 

Dexfenfluramine is an indirect serotonergic agonist that is an identified risk factor for the 

development of PAH (Abenhaim et al., 1996;Kramer & Lane, 1998). Dexfenfluramine is a 

SERT substrate that causes release of serotonin from intracellular stores (Rothman et al., 

1999). Dexfenfluramine also inhibits the reuptake of serotonin into cells thereby increasing 

extracellular concentrations of serotonin (Eddahibi et al., 2001a). In animals, 

dexfenfluramine induces a PAH phenotype in female mice only, again with no effect 

reported on RVH (Dempsie et al., 2013). 

 Serotonin signaling 1.5

Serotonin is a neurotransmitter and a hormone that is derived from tryptophan. The 

majority of the body’s serotonin is produced by the enterocromaffin cells that line the gut. 

Serotonin is released into the bloodstream where it is rapidly taken-up and stored in 

platelets via the SERT, resulting in extremely low circulating plasma levels. Furthermore, 

serotonin is rapidly metabolized by monoamine oxidase to 5-hydroxyindoleacetic acid. 

There is substantial evidence suggesting that TPH1 activity, the rate limiting step in the 

synthesis of serotonin, contributes to experimental PAH (Abid et al., 2012;Ciuclan et al., 

2012;Izikki et al., 2007;Morecroft et al., 2007;Morecroft et al., 2012). Pulmonary arterial 

endothelial cell expression of TPH1 is increased in both experimental and clinical PAH, 

increasing local serotonin production which can act in a paracrine fashion on underlying 

PASMCs to facilitate proliferation predominantly via the SERT (Eddahibi et al., 1999) and 

the 5-HT1B receptor (Maclean et al., 1996). 

1.5.1.1 The serotonin transporter and pulmonary arterial hypertension 

The SERT is a member of the sodium/chloride (Na
+
/Cl

-
) family of transporters, which also 

includes noradrenergic, dopamine, γ-aminobutyric acid (GABA) and glycine transporters. 

As mentioned above, SERT is encoded by the SLC6A4, and is localised to chromosome 
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17q11.1-17q12 (Ramamoorthy et al., 1993). Serotonin uptake by the SERT is mediated by 

the co-transport of one Na
+
 and one Cl

-
 ion, which is regulated by the Na

+
/K

+ 
ATPase 

(Torres et al., 2003).  

Serotonin is a potent smooth muscle mitogen and vasoconstrictor that is released from the 

vascular endothelium or from adrenergic stimulation in the pulmonary arteries. There is 

now a wealth of evidence to support a role for serotonin in the pathobiology of PAH. The 

original ‘serotonin-hypothesis’ of PAH arose from the PAH epidemic in patients taking the 

anorectic drugs, aminorex and dexfenfluramine (Abenhaim et al., 1996). Both aminorex 

and dexfenfluramine are substrates for the SERT and cause release of serotonin from 

intracellular stores (Rothman et al., 1999). This is supported by studies in mice where 

dexfenfluramine induces a PH phenotype, which is dependent on peripheral serotonin 

synthesis as mice deficient in TPH1 do not develop a PH phenotype (Dempsie et al., 

2008). Polymorphisms in the SERT gene that are associated with an increased expression 

of SERT are correlated with an earlier age of diagnosis in patients with BMPR-2 

mutations, yet not in patients with IPAH (Willers et al., 2006). One study reported that the 

L-allelic variant of the SERT gene that increases its expression was more common in 

patients with IPAH compared to controls (Eddahibi et al., 2001b). Furthermore, SERT 

expression was increased in a small cohort of pulmonary arterial smooth muscle cells 

(PASMCs) from patients with PAH (Eddahibi et al., 2001b). However, further 

comprehensive analyses have failed to find any significant associations between SERT 

alleles and PAH (Machado et al., 2006b;Willers et al., 2006). Overexpression of the SERT 

gene in mice, thereby increasing its activity, is sufficient to induce a PH phenotype 

(Maclean et al., 2004;White et al., 2011b;Guignabert et al., 2006;Machado et al., 2006b). 

Intriguingly, this is only evident in female mice and has subsequently been found to be 

dependent on circulating 17β-estradiol (17β-E2), the predominant circulating pre-

menopausal hormone (White et al., 2011b), Overexpression of the human SERT gene in 

mice has dramatic effects on gene expression profiles in the pulmonary arteries resulting in 

an up-regulation of 71 genes and a down-regulation of 84 genes (White et al., 2011a). One 

gene that was up-regulated by SERT overexpression in mice was CYP1B1 (White et al., 

2011a), which is a major estrogen metabolizing enzyme This suggests that that altered 

17β-E2 metabolism may underlie the pathogenic effects of 17β-E2 in this model. On the 

other hand, mice deficient in the SERT gene develop less severe PH phenotypes in 

response to chronic hypoxia (Eddahibi et al., 2000). 
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Although the precise mechanism by which SERT mediates proliferation of pulmonary 

vascular cells remains incompletely defined, serotonin-induced proliferation is heightened 

in PASMCs derived from PAH patients which is associated with an increased expression 

of SERT (Marcos et al., 2004). Although, inhibition of SERT may offer some therapeutic 

value, extracellular concentrations of serotonin available to bind with the 5-HT1B receptor 

may increase, mediating vasoconstriction in human pulmonary arteries (Morecroft et al., 

1999) and proliferation of hPASMCs (Lawrie et al., 2005). Additionally, there is evidence 

for cross-talk between the SERT and the 5-HT1B receptor. For example, the 5-HT1B 

receptor nuclear transportation of phosphorylated ERK1/2 is mediated by the SERT and is 

essential for the up-regulation of the Ca
2+

 binding protein S100A4/mts1, which is 

associated with proliferation and migration of PASMCs (Lawrie et al., 2005). Therefore, a 

greater therapeutic effect may be offered by dual inhibition of the SERT and the 5-HT1B 

receptor. Indeed, the combined 5-HT1B and SERT antagonist LY393558 is more effective 

than SERT inhibition alone in hypoxia-induced PH and SERT+ mice (Morecroft et al., 

2010). 

 Steroidogenesis 1.6

Both epidemiological studies and recent studies in animal models of PAH have highlighted 

a potential role for steroid hormones in the pathogenesis of this devastating vasculopathy. 

Steroid hormones have multi-factorial functions throughout the body and are synthesized 

from cholesterol in the gonads, adrenal glands and placenta and to a lesser extent in the 

adipose tissue, liver and skin. Progesterone, 17β-E2 and testosterone are synthesised by 

oxidative activity of the cytochrome P450 (CYP) enzymes and the hydroxysteroid 

dehydrogenases. The synthesis of steroid hormones is, in part, regulated by the 

hypothalamic-pituitary axis. Gonadotroph cells in the anterior pituitary gland synthesize 

and secrete leutenizing hormone (LH), which regulates estrogen and testosterone synthesis 

in the gonads.  

Estrogens are small lipophilic compounds that have genomic and non-genomic activities 

that are produced from the pre-curser cholesterol, providing the backbone of all steroid 

hormones. The cholesterol for this process can be obtained from the cell membrane, 

synthesized from acetate or obtained from the circulation from high density lipoproteins 

(HDL) or low density lipoproteins (LDL) (Scott et al., 2009). Enzymatic activity of various 

CYP enzymes and the steroidogenic acute regulatory protein (StAR) metabolise 

cholesterol to pregnenolone which is then further metabolised to 
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dehydroepiandrostenedione (DHEA) by CYP catalytic activity. Activity of the 3β 

hydroxysteroid dehydrogenase (3β-HSD) metabolises DHEA to androstenedione. 

Androstenedione can then be converted to testosterone by 17β-hydroxysteroid 

dehydrogenase 3 (17β-HSD3). Testosterone may also be interconverted back to 

androstenedione by the activity of 17β-HSD2. Alternatively, androstenedione can be 

metabolised to 16α-hydroxyandrostenedione by CYP2C11. Androstenedione, testosterone 

and 16α-hydroxyandrostenedione can undergo oxidative metabolism by CYP19A1 

(aromatase) in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) to 

the active estrogens, estrone (E1), 17β-E2 and 17β-, 16α-estriol (E3 or 16α-OHE1), 

respectively. The steroidogenic pathway for the synthesis of estrogens from cholesterol is 

summarized in Figure 1-2. 
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Figure 1-2 Synthesis of estrogens from cholesterol 

Cholesterol is converted to pregnenolone by the activity of CYP11A and the steroidogenic acute regulatory protein (StAR). Pregnenolone is converted to 
dehydroepiandrostenedione (DHEA) by the activity of CYP17 and 17α-hydroxylase. DHEA is converted to androstenedione by 3β-hydroxysteroid dehydrogenase (3β-
HSD). Androstenedione can then be converted to testosterone by 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) and/or 16α-hydroxyandrostenedione by 
CYP2C11. 16α-hydroxyandrostenedione, androstenedione and testosterone can then be converted to estrogens by the activity of aromatase to estriol, estrone and 
17β-estradiol, respectively. 
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 Aromatase 1.6.1

Aromatase is the critical enzyme in the synthesis of estrogens from androgens mediating 

the formation of E1 and 17β-E2 from androstenedione and testosterone, respectively 

(Figure 1-3). In pre-menopausal women, the primary site of estrogen synthesis occurs in 

the ovaries. In post-menopausal women and in men, the principal site of estrogen synthesis 

is extra-gonadal sites, such as the adipose tissue. Circulating C19 precursors act as a 

reservoir for the synthesis of estrogens within extra-gonadal sites. The principal pre-cursers 

are androstenedione, DHEA and DHEA-sulphate (DHEAS) which circulate at relatively 

high concentrations within the plasma in both men and women (Simpson, 2003). These 

pre-cursers are then converted into testosterone and estrogens within target tissues. The 

catalytic activity of aromatase removes a methyl group from the first carbon ring of 

testosterone, creating an aromatic ring resulting in the formation of 17β-E2 (Figure 1-3). 

Tissue specific expression of aromatase is therefore a powerful regulator of local estrogen 

synthesis in extra-gonadal sites. Locally synthesized estrogens can act in a paracrine or 

intracrine fashion creating a potentially potent estrogenic milieu that may be superior to the 

effects of circulating levels. Although it is difficult to correlate local estrogen synthesis 

with circulating levels, it has been predicted that the concentration of 17β-E2 in breast 

tumours in post-menopausal women is twenty times greater than levels circulating in the 

plasma (Pasqualini et al., 1996). Local estrogen synthesis may therefore have a much 

greater impact on steroidogenic effects within target cells independent of circulating levels. 

It has been hypothesized that excess estrogens or aberrant activity are involved with 

tumorigenesis by exerting pro-proliferative effects and/or postulated that they act as pro-

carcinogens by inducing genotoxicity (Tsuchiya et al., 2005). 

The regulation of aromatase is tissue-specific and is achieved through the use of different 

gene promoters (Simpson, 2003). Follicle stimulating hormone (FSH) regulates aromatase 

expression through cAMP in the proximal promoter II in the ovaries and retinoids regulate 

aromatase expression via the distal promoter I.1 in the placenta (Simpson, 2003). In 

contrast, within the adipose tissue and bone, aromatase expression is regulated by 

glucocorticoids, cytokines and TNFα by the distal promoter I.4 (Simpson et al., 1997). In 

response to various injurious stimuli, such as inflammatory mediators, enhanced aromatase 

expression and subsequent estrogen synthesis is mediated via promoter switching from the 

distal promoter I.4 to the proximal promoter II (Agarwal et al., 1996;Zhao et al., 1996). 

More recently, hypoxia-inducible factor-1α (HIF-1α) has been found to drive increased 
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aromatase expression in breast adipose tissue via promoter switching to the proximal 

promoter II (Samarajeewa et al., 2013). 

In other hormone-sensitive tissues, such as the lung and uterus, estrogens also present as a 

risk factor. For example, women are more likely to develop non-small cell lung cancer 

(NSCLC) than men, although in contradiction, women have a better 5-year survival rate 

(Cerfolio et al., 2006). It has therefore been suggested that both endogenous and 

exogenous sources of estrogens may be associated with the development of lung cancer. 

Aromatase expression is increased in human NSCLC cells and 17β-E2 stimulates 

proliferation within these cells (Marquez-Garban et al., 2009). Furthermore, aromatase 

inhibition in NSCLC xenografted nude mice reduced tumour progression, suggesting that 

endogenously produced estrogens are in fact mediating pathogenic effects in NSCLC 

(Marquez-Garban et al., 2009).  

More recently, a genetic study has provided evidence that aromatase activity may be 

associated with PAH pathobiology. Portopulmonary hypertension (PPHTN) is a 

subcategory of PAH that occurs secondary to portal hypertension. Two promoter single 

nucleotide polymorphisms (SNPs) in aromatase have been associated with an increased 

risk of PPHTN and these SNPs are associated with elevated plasma 17β-E2 levels (Roberts 

et al., 2009). Furthermore, the aromatase inhibitor anastrozole has shown remarkable 

therapeutic potential in the SU-hypoxic rat model where it successfully reversed the PAH 

phenotype in female rats and this correlated with reduced plasma 17β-E2 levels (Mair et 

al., 2013;Tofovic et al., 2013).  

Aromatase inhibitors are already clinically approved for the treatment of estrogen-sensitive 

cancers and are the first line therapy against early and metastatic breast cancer in post-

menopausal women. The application of this line of therapy in PAH may therefore be an 

attractive therapeutic strategy on the basis that PAH is an estrogen-sensitive vasculopathy. 

Anastrozole is currently being evaluated in a phase 2 clinical trial for its safety, ability to 

reduce circulating 17β-E2 levels and to improve right ventricular function in patients with 

PAH. 
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Figure 1-3 Aromatisation of testosterone to 17β-estradiol 

 

 Estrogens 1.6.2

There are three major subtypes of estrogens: 17β-E2, E1 and E3. In premenopausal 

women, the predominant circulating estrogen is 17β-E2. In women, circulating levels of 

17β-E2 vary depending on the estrous cycle. In the follicular phase, circulating 

concentrations of 17β-E2 are about 100pg/mL (~0.37nM) and during ovulation these levels 

rise to about 600pg/mL (~2.20nM). After menopause, 17β-E2 levels are dramatically 

reduced up to 20-fold lower (Mendelsohn & Karas, 1999). We are all exposed to 

exogenous estrogen sources in various forms including contraception’s, hormone-

replacement therapy, dietary sources and chemical products. Furthermore, vascular cells 

can modulate their own estrogenic milieu by the local conversion of testosterone or 

androstenedione to 17β-E2 and E1 respectively (Harada et al., 1999). 

Estrogens (and androgens) circulate in the blood bound to the sex hormone binding 

globulin (SHBG), regulating circulating concentrations of free steroids and their transport 

to target tissues. The androgens, testosterone and dihydrotestosterone (DHT) have the 

highest binding affinities for SHBG followed by 17β-E2, E1 and E3 (Dunn et al., 1981). In 

contrast, androstenedione has a relatively low binding affinity for SHBG (Dunn et al., 

1981). It is thought that steroids reach their target sites by binding of the SHBG with its 

receptor on the plasma membrane thereby resulting in either co-internalisation or release of 

the steroid. The true identification of the SHBG receptor and the mechanisms that underlie 

transport of steroids to target tissues still remains uncertain. Steroids may also circulate 

bound to albumin or other plasma proteins. It is assumed that only free unbound steroids 

are biologically active. 
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Figure 1-4  Chemical structure of estrone and 17β-estradiol  

 

 Tissue regulation of estrogens 1.6.3

The formation of biologically active estrogens within target tissues may also occur via the 

sulfatase and hydroxysteroid dehydrogenase pathways. Estrone-sulfate (E1-S) acts a 

reservoir for estrone synthesis through the sulfatase pathway. Steroid sulfatase hydrolyses 

both E1S and dehydroepiandrostenedione-sulfate (DHEA-S). The estrone formed by this 

reaction can then be converted to 17β-E2 by the activity of 17β-hydroxysteroid 

dehydrogenase 1 (17β-HSD1). In a similar fashion, 17β-E2 can also be converted to E1 by 

the activity of 17β-HSD2. Thus, multiple pathways exist in maintaining the estrogenic 

milieu within target cells and fluctuations in enzyme activity and expression can therefore 

have dramatic consequences on the estrogenic potential of a cell. 

Aromatase inhibitors have been successfully used in the management of breast cancer but 

endocrine resistance remains a problem associated with cancer relapse. Both steroid 

sulfatase inhibitors and 17β-HSD inhibitors are therefore currently being evaluated for 

their treatment in breast cancer. In breast cancer tumours, it appears that the sulfatase 

pathway may be superior to the aromatase pathway in regulating intra-tumoral 17β-E2 

levels as its activity for estrone synthesis was dramatically higher than aromatase activity 

(Santer et al., 1984). STX64 is a potent irreversible steroid sulfatase inhibitor that has been 

evaluated in a phase I clinical trial (Stanway et al., 2006). After a five-day dosing period, 

steroid sulfatase activity in peripheral blood and breast cancer tissue was decreased almost 

100% and E1, 17β-E2, androstenediol, DHEA, testosterone and androstenedione levels 

were significantly decreased (Stanway et al., 2006). Patients that had previously had breast 

cancer progression with aromatase inhibitor therapy, showed evidence of a stable disease 

Estrone (E1) 17β-estradiol (E2)
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with STX64 therapy (Stanway et al., 2006). STX64 is currently being evaluated for its 

potential in reducing breast cancer growth and its safety and effectiveness in estrogen 

receptor positive and metastatic breast cancer. 

As discussed previously, estrogenic E1 which is synthesized by steroid sulfatase and 

aromatase is converted to the potent estrogen 17β-E2 by the activity of 17β-HSD1. 

Inhibitors of 17β-HSD1 may therefore be a useful tool in regulating levels of 17β-E2 

within tissues. 17β-HSD1 activity is associated with enhanced breast cancer cell 

proliferation by increasing 17β-E2 synthesis and inactivating dihydrotestosterone (DHT) 

(Aka et al., 2010). Increased levels of 17β-HSD1 in breast cancer have been associated 

with a worse prognosis (Gunnarsson et al., 2008;Oduwole et al., 2004). Interestingly, in 

NSCLC, a high intra-tumoral expression of both 17β-HSD1 and 17β-HSD2 were 

positively associated with tumour stage (Verma et al., 2013). Accordingly, a high intra-

tumoral E1 concentration was associated with a high expression of 17β-HSD2 and a low 

intra-tumoral E1 concentration was associated with a high expression of 17β-HSD1 

(Verma et al., 2013). However, 17β-E2 intra-tumoral concentrations did not vary with 

isoform expression (Verma et al., 2013). This study highlights a key role for both 17β-

HSD isoforms within NSCLC. 

 Estrogen receptors 1.6.4

Estrogens are small lipophilic compounds that play critical roles in sexual development 

and reproductive function. However, it is now recognised that estrogens contribute to a 

plethora of mechanisms in physiology and disease in both sexes. It has become 

increasingly apparent that estrogens can influence multiple biological functions, including 

inflammatory responses (Straub, 2007), cardiovascular function (Mendelsohn & Karas, 

1999) and bone homeostasis (Weitzmann & Pacifici, 2006). Estrogens are lipophilic and 

can therefore penetrate the cell membrane into the cytosol. Once inside the cell, estrogens 

can be further metabolised by various CYP enzymes to active metabolites or can interact 

with its nuclear receptors, estrogen receptor α (ERα) or estrogen receptor β (ERβ), encoded 

by the ESR1 and ESR2 gene, respectively. ERα and ERβ are transcription factors that alter 

gene expression upon activation. Alternatively, estrogens can also signal through non-

genomic (do not affect gene transcription) mechanisms either by ERα or ERβ tethered on 

the plasma cell membrane (Simoncini et al., 2000) or the orphan GPCR, GPR30/GPCR-

estrogen receptor (GPER-1), mediating acute effects. ERα is a 66kDa protein whereas ERβ 

is a 59kDa protein. ERα and ERβ both have a DNA binding domain, a ligand binding 
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domain in the COOH terminal and a NH2 terminal domain, through which they interact 

with regulatory binding proteins (Heldring et al., 2007). There is significant homology 

amongst the two receptors in the DNA binding domain and the ligand binding domain. In 

contrast, ERα and ERβ differ in the terminal domain, activation function-1 (AF-1), which 

regulates target gene transcription. The functionally unique aspect of signaling through 

ERα and ERβ is that it is dependent on the environment in which it is activated. Therefore, 

the response will be different in a ‘normal’ cell compared to a ‘diseased’ cell. As hormones 

are key modulators of transcription, its activity depends on the signaling pathways that are 

activated when the ligand binds with the receptor, as well as the cellular composition of co-

regulatory proteins and the promoters on estrogen responsive genes (Heldring et al., 2007). 

1.6.4.1 Ligand-mediated regulation of estrogen receptor signaling 

Estrogen binding with either of its nuclear receptors results in its translocation to the 

nucleus where it regulates gene transcription. ERα and ERβ have distinct, often opposing 

effects on gene transcription. Thus, the relative expression of each receptor subtype within 

a cell may underlie the pleiotropic effects that are often observed with estrogens. Estrogen 

binds with the activation function-2 (AF-2) within the ligand binding domain of the 

estrogen receptor which results in a conformational change that promotes 

homodimerization and binding to the estrogen response element (ERE) within the 

promoters of target genes. The resultant increase or decrease in gene expression is 

mediated by the recruitment (tethering) of either co-activators or co-repressors. Estrogen 

can also regulate gene expression indirectly by tethering with other transcription factors, 

such as activator protein-1 (AP-1), and by protein-protein interactions (Murphy, 2011). 

This process has recently been demonstrated to be dependent on ligand-mediated induction 

of transcription factors (Heldring et al., 2011). 

1.6.4.2 Ligand-independent regulation of estrogen receptor signaling 

In addition to the direct and indirect effects of ligand-mediated regulation of transcription 

through the estrogen receptors, estrogen receptors can undergo post translational 

modification including phosphorylation, acetylation ubiquitilation and sumoylation 

(Murphy et al., 2011). Phosphorylation of the estrogen receptors can occur by various 

growth factors or membrane-bound estrogen receptors which permits binding to the ERE. 

Phosphorylation at specific serine sites within the receptor has been demonstrated to 

facilitate transcription. For example, phosphorylation at serine 118 (Ser118) by mitogen 

activated protein kinases (MAPK) of the estrogen receptor regulates the activity of the AF-
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1 (Kato et al., 1995). Phosphorylation can also occur at other serine residues including 

Ser104 and Ser106, amongst others. The exact role of phosphorylation of estrogen 

receptors remains under-investigated, yet it is thought to contribute to drug resistance to 

selective estrogen receptor modulators (Murphy et al., 2011). 

1.6.4.3 Non-genomic signaling effects of estrogen receptors 

Estrogen receptors that are localised on the plasma membrane as well as GPER-1 mediate 

non-genomic effects by acute activation of signaling kinases. 17β-E2 has been associated 

with the stimulation of adenylate cyclase activity, cAMP, MAPK and PI3K signaling 

pathways. Activation of these pathways results in rapid cellular effects, such as activation 

of eNOS. For example, ERα binds to a regulatory subunit of PI3K in a ligand-dependent 

manner, thereby increasing its activity and the activation of eNOS (Simoncini et al., 2000). 

GPER-1 is a 7-transmembrane GPCR that regulates secondary messenger pathways. 

GPER-1 is unique in that it couples to a stimulatory and an inhibitory G protein, Gαs and 

Gαi/o respectively, regulating intracellular levels of cAMP. GPER-1 is an important 

mediator of the rapid, transient non-genomic effects of 17β-E2 by ERK1/2 activation, 

which is dependent on transactivation of the epidermal growth factor receptor (Filardo et 

al., 2000). Furthermore, GPER-1 mediates increases in cAMP in response to 17β-E2 to 

restore epidermal growth factor activated ERK (Filardo et al., 2000). GPER-1 is 

ubiquitously expressed in both normal and malignant tissues, with high levels in the heart, 

lungs, liver, ovaries and brain (Prossnitz et al., 2008). In addition, GPER is also expressed 

in vascular endothelial cells and smooth muscle cells (Prossnitz et al., 2008). Several 

studies have reported the expression of GPER-1 in cancerous tissues and its contribution to 

17βE2 induced cellular proliferation (Prossnitz et al., 2008). GPER-1 protein expression 

has also been positively correlated with tumour size (Filardo et al., 2006). It should 

however be noted that estrogen is not the sole activator of GPER-1 signaling which has 

also been shown to be activated by other mediators including aldosterone (Gros et al., 

2011).  

In addition to GPER, several truncated isoforms of ER have been identified on the plasma 

membrane and are thought to contribute to the rapid, non-genomic effects of 17β-E2. 
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1.6.4.4 Estrogen receptor variants and their signaling 

Estrogens mediate a plethora of activities within target cells and a persistent challenge is 

that not all findings can be understood through known properties of the ‘classical’ estrogen 

receptors. This complexity can be, in part, explained by the existence of splice variants of 

the estrogen receptors. At least two splice variants of ERα have been identified, ER36 

(Wang et al., 2005) and ER46 (Flouriot et al., 2000). These are truncated ERα receptors 

that lack the NH2 terminal domain. Both ER36 and ER46 can form heterodimers with ERα 

and regulate target gene transcription.  

Estrogen receptors on the plasma membrane are important regulators of the rapid non-

genomic signaling of estrogens, in particular by mediating the formation of eNOS and 

subsequent NO synthesis. ER46 is expressed in abundance within endothelial cells and is 

localized on the plasma membrane, cytosol and nucleus (Li et al., 2003). In particular 

ER46 is localised within plasmalemmal caveolae and has been found to be a more potent 

inducer of eNOS than ERα (Li et al., 2003). ER46 can also regulate genomic effects 

contributing to cellular proliferation. In estrogen receptor negative tissues, transfection of 

ER46 results in the activation of ERα-related genes and in ERα positive tissues, ER46 

forms a heterodimer with ERα and acts as a competitive inhibitor of DNA binding thereby 

reducing transcription (Flouriot et al., 2000). Moreover, the proliferative status of MCF-7 

(breast cancer) cells is altered depending on the ratio of ERα to ER36 suggesting that ER46 

plays a role in cellular proliferation (Flouriot et al., 2000). 

More recently, ER36 was characterised and cloned (Wang et al., 2005). ER36 contains 

myristoylation sites giving it the potential to be localized within the plasma membrane 

(Wang et al., 2005). Later studies confirmed that ER36 is predominantly a membrane-

associated receptor (Wang et al., 2006). ER36 lacks the transcriptional domains of ERα 

and functionally cannot regulate transcription in the absence or presence of 17β-E2 (Wang 

et al., 2006). Moreover, ER36 inhibits the genomic signaling pathways of 17β-E2 -

independent and -dependent transactivation activities of both ERα and ERβ (Wang et al., 

2006). ER36 is associated with the rapid, non-genomic effects of 17β-E2 and results in 

dramatic elevations in phosphorylated ERK1/2. These effects are mediated via a 

membrane-bound receptor as BSA-conjugated 17β-E2 (a membrane impermeable 17β-E2) 

was also found to dramatically induce ERK1/2 phosphorylation (Wang et al., 2006). 

Interestingly, ER36 is expressed in triple-negative estrogen receptor breast cancer tumours 

and mediates 17β-E2 induced mitogenic signaling by cross-talk with the epidermal growth 
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factor receptor, Src and ERK (Zhang et al., 2011). This challenges the convention that 

estrogen-receptor negative breast cancer is not associated with pathogenic estrogen 

signaling. Further contributing to the complexity of estrogen signaling is the presence of 

splice variants of ERβ (ERβ2, -4, -5, Δexon5).  

1.6.4.5 Estrogen and the cardiovascular system 

In contrast to the numerous pathogenic effects of estrogen signaling in hormone-sensitive 

cancers, 17β-E2 is renowned for its protective effects against cardiovascular disease in pre-

menopausal women. However, it appears that fluctuations from physiological levels 

present as risk factors in a myriad of cardiovascular diseases (Barros & Gustafsson, 2011).  

Estrogen receptors have been identified throughout the cardiovascular system in the 

endothelium, smooth muscle, adventitia and macrophages. Whilst estrogen signaling is 

probably a complex process that involves signaling through receptors, metabolism and 

non-receptor mediated effects, studies on estrogen receptor knock-out mice have been 

extremely informative to delineate its functions. Conditional knock-out of ERβ in mice 

causes right and left ventricular hypertrophy (Forster et al., 2004), systemic hypertension 

(Zhu et al., 2002), ovarian dysfunction (Cheng et al., 2002) and fewer alveoli in the lungs 

(Patrone et al., 2003). Interestingly, at 5 months of age, both male and female ERβ 

deficient mice have fibrosis in their lungs and underdeveloped alveoli (Morani et al., 

2006).  

Studies using estrogen receptor knock-out mice have revealed that ERα is the predominant 

receptor mediating the cardio-protective effects of 17β-E2 on the heart by regulation of 

VEGF (Jesmin et al., 2010). VEGF is a cytokine, mitogen and pro-survival factor for 

endothelial cells and its reduction is associated with the pathogenesis of numerous 

cardiovascular diseases, including PAH (Farkas et al., 2009). In ERα and ERβ knock-out 

mice there is a reduced expression of VEGF and its receptors, signaling effectors 

endothelial nitric oxide synthase (eNOS) and the serine/threonine protein kinase akt, 

although the effects are much more pronounced in ERα knock-out mice (Jesmin et al., 

2010).  

17β-E2 is recognized to mediate protective effects on the heart via inhibition of 

angiotensin II (Ang II). Ang II infusions results in left ventricular hypertrophy in female 

mice and this is exacerbated by ovariectomy (Pedram et al., 2008). These effects are 

predominantly mediated via the ERβ as exogenously administered 17β-E2 partially 
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reversed the hypertrophy in ERβ knock-out mice, but inhibited this in wild-type and ERα 

knock-out mice (Pedram et al., 2008). 

In systemic vascular smooth muscle cells (VSMC), 17β-E2 inhibits cell proliferation by 

increasing the mitochondrial antioxidant enzyme, manganese superoxide dismutase 

(MnSOD) (Sivritas et al., 2011). Furthermore, 17β-E2 reduces aortic neotima formation 

through MnSOD, which is dependent on the transcriptional activation of Kruppel-like 

factor-4 (KLF-4) (Sivritas et al., 2011). The transcriptional activation of KLF-4 is 

mediated via ERα (Sivritas et al., 2011). Interestingly, whilst 17β-E2 mediates protective 

effects in the cardiovasculature, these effects are lost in patients with diabetes mellitus 

(Orchard, 1996), suggesting that hyper/hypoglycaemia may affect 17β-E2 signaling. High 

glucose is associated with an accelerated rate of VSMC proliferation (Yasunari et al., 

1996). Interestingly, 17β-E2 inhibits VSMC proliferation under normal glucose levels 

(5.5mM) and has no effects in high glucose conditions (25mM) (Ortmann et al., 2011). 

Selective activation of ERα with the agonist MPP inhibits high-glucose-induced VSMC 

proliferation, which is overcome with dual activation of ERα and ERβ (Ortmann et al., 

2011). Furthermore, these selective inhibitory effects mediated by activation of ERα are 

associated with a decrease in intracellular reactive oxygen species (ROS) formation and 

ERK activation (Ortmann et al., 2011). Others have shown an importance for 17β-E2 in 

glucose homeostasis by studying aromatase knock-out (estrogen-deficient) mice. Both 

male and female aromatase knock-out mice have reduced glucose oxidation and increased 

insulin levels (Jones et al., 2000). 

 Cytochrome P450 Enzymes 1.7

CYP heme-thiolate monooxygenase enzymes are catalytic molecules commonly known for 

their role in drug detoxification processes in the liver. As such they are abundantly 

expressed in the liver. CYP enzymes also play an extremely important role in the synthesis 

and metabolism of various endogenous compounds. The lung, aside from its major role in 

gas exchange, acts as a protective filter from the external environment and contains 

numerous CYP enzymes. Whilst CYP enzymes are detoxifying enzymes, they 

paradoxically lead to the formation of reactive intermediates that can induce cellular and 

DNA damage. In addition to their vast role in xenobiotic metabolism, CYP enzymes are 

critical in the metabolism of eicosanoids, the synthesis of cholesterol and the synthesis and 

metabolism of steroids, amongst others. Metabolism by the activity of CYP enzymes has a 

genotoxic capacity via the generation of reactive oxygen intermediates (ROMs) that can 
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interact with nucleic acids and proteins and initiate tumourigensis (Nebert & Dalton, 

2006).  

CYP enzymes are haemoproteins in that they contain an iron (Fe
3+

), serving as a docking 

site for oxygen, which in the presence of NADPH is reduced to Fe
2+

. CYP enzymes are 

part of a super-family subdivided according to sequence homology whereby if 40% of their 

sequence are identical then they belong to the same family (Gibson & Skett, 2001). 

Conserved sequence homology amongst CYP enzymes is only about 10-30%. CYP 

enzymes are critical enzymes in the phase 1 metabolism of drugs and endogenous 

compounds that lead to hydroxylated products. This is the first step in preparing a 

compound for elimination by increasing its polarity thereby making it more soluble in 

water. The liver is the prime site for CYP activity. Other prominent organs capable of CYP 

metabolism include the lung, kidney and brain, amongst others (Gibson & Skett, 2001). 

CYP enzymes are found in abundance within the microsomal fraction of the endoplasmic 

reticulum. 

Numerous drugs and compounds are hydroxylated by the mixed-function oxidase (MFO) 

reaction which is catalysed by the activity of CYP enzymes. The criterion for substances to 

be metabolized by this pathway appears to be high lipophilicity, such as steroid compounds 

(Gibson & Skett, 2001). The overall chemical reaction is characterised by the following: 

NADPH H
+ 

+ O2 + RH  NADP
+ 

+ H2O + ROH 

where RH represents an oxidisable substance such as a drug or steroid compound and ROH 

is the hydroxylated compound. This MFO reaction is catalysed and dependent on the 

activity of CYP enzymes. 

 Catalytic cycle of cytochrome P450 enzymes 1.7.1

Exogenous and endogenous compounds can undergo oxidation by the catalytic activity of 

CYP enzymes, including the estrogens, 17β-E2 and E1 (Figure 1-5). The first step in the 

catalytic cycle involves binding of the estrogens with the oxidised ferric (Fe
3+

) of the CYP 

enzyme. NADPH-cytochrome P450 is a reducing agent that donates an electron for CYP 

hydroxylation resulting in Fe
2+

. Molecular oxygen binds to the Fe
2+

-steroid complex. 

Thereafter, electron rearrangement occurs between the oxygen and the iron and a second 

electron is introduced by the reduction reaction of NADPH-cytochrome P450. 

Subsequently a hydroxylated (-OH) product of the parent compound is released. 
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Figure 1-5 Catalytic cycle of cytochrome P450 enzymes 

E represents an estrogen (either 17β-estradiol or estrone) and Fe represents iron. NADPH, 
nicotinamide adenine dinucleotide phosphate. 
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 Oxidative metabolism of estrogens: 17β-estradiol and 1.7.2
estrone 

CYP enzymes that metabolize estrogens are present in various target tissues and can 

dramatically alter the function of estrogens. Metabolites can exert biological effects by 

interactions with estrogen receptors and/or receptor-independent effects. 17β-E2 and E1 

undergo oxidative metabolism by CYP enzymes in the presence of NADPH to their 

corresponding hydroxylated metabolites (Figure 1-6). Accumulating evidence suggests that 

certain estrogen metabolites formed by this pathway are biologically active and estrogenic 

and possess unique biological functions that may not be directly associated with their 

parent hormone. CYP enzymes are expressed in abundance within the liver and this is 

therefore a prime sight of estrogen metabolism. CYP enzymes promote the hydroxylation 

(addition of an –OH group) on a carbon at any position within the chemical structure. 

Different CYP isoforms exhibit differential hydroxylation activities at different positions 

within the carbon structure of both 17β-E2 and E1. Therefore, the unique expression of 

CYP enzymes within target tissues can modulate metabolite formation. The consequences 

of estrogen metabolism can therefore have dramatic consequences for vascular cell fate by 

in part, regulating the formation of either anti- or pro-proliferative metabolites. The 

predominant hydroxylation pathways of 17β-E2 and E1 include 2-, 4- and 16α-

hydroxylations. 
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Androstenedione Testosterone

17β-HSD3

17β-HSD2

Estrone 17β-estradiol

Aromatase Aromatase

17β-HSD1

17β-HSD2

CYPs

16α-hydroxyestradiol/estrone 4-hydroxyestradiol/estrone

CYPs

COMT

2-, 4-methoxyestrogens

2-hydroxyestradiol/estrone

Stimulation of Cell Proliferation

ROS

Formation of reactive oxygen 

species (ROS), quinones, 

semi-quinones and DNA 

adducts and DNA damage

Inhibition of cell proliferation, 

anti-mitogenic, anti-inflammatory

Inhibition of cell proliferation, 

anti-mitogenic, anti-inflammatory

 

Figure 1-6 Metabolism of estrone and 17β-estradiol and the effects of downstream 
metabolites 

Estrone (E1) and 17β-estradiol (17β-E2) are synthesized from androstenedione and 

testosterone respectively by the activity of aromatase. E1 and 17β-E2 can then be further 

metabolized by the activity of cytochrome P450 enzymes (CYPs) to the 16α-, 2, 4-

hydroxylated estrogens. The 2- and the 4-hydroxylated estrogens can then be further 

metabolized by the activity of catechol-O-methyl transferase (COMT) to the 2- and 4-

methoxyestrogens.  
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1.7.2.1 The oxidative metabolism of 17β-estradiol 

CYP1A1, CYP1A2, CYP3A4 and CYP3A5 have preferential 2-hydroxylation 

(hydroxylation at the second carbon) activities for 17β-E2 (Lee et al., 2003). CYP1A1 also 

catalyses the formation of 15α-, 6α-, 4- and 7α-hydroxyestradiol (15α-OHE2, 6α-OHE2, 4-

OHE2 and 7α-OHE2, respectively) and CYP1A2 and CYP3A5 can also mediate formation 

of 4-OHE2 (Lee et al., 2003). CYP3A4 also catalyses the formation of 4-OHE2 and 16β-

hydroxyestradiol (16β-OHE2) (Lee et al., 2003). In contrast, CYP1B1 exhibits preferential 

catalytic activity for the 4-hydroxylation of 17β-E2, but has the additional capacity to 

generate 2-hydroxyestradiol (2-OHE2) and 16α-hydroxyestradiol (16α-OHE2) (Badawi et 

al., 2001;Hanna et al., 2000;Lee et al., 2003). CYP2A6, CYP2B6, CYP2C8, CYP2C9 and 

CYP2D6 all have low estrogenic oxidative activities of 17β-E2 (Lee et al., 2003).  

1.7.2.2 The oxidative metabolism of estrone 

A similar oxidative metabolic pathway by the activity of CYP enzymes is observed with 

E1. CYP1A1, CYP1A2 and CYP3A4 predominantly catalyses the formation of 2-

hydroxyestrone (2-OHE1) followed by 4-hydroxyestrone (4-OHE1) CYP1B1 

preferentially catalyses the formation of 4-OHE1 (Lee et al., 2003). CYP2A6, CYP2B6, 

CYP2C8, CYP2C9 and CYP2D6 have low estrogenic oxidative activities for the C2 

position (Lee et al., 2003). The formation of 16α-hydroxyestrone (16α-OHE1) is catalysed 

predominantly by CYP1A1, CYP2C19 and CYP3A5 (Cribb et al., 2006). 
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Figure 1-7 Cytochrome P450 mediated metabolism of estrone and 17β-estradiol 

The metabolism of estrone (E1) and 17β-estradiol (17β-E2) by the catalytic activity of various 
cytochrome P450 (CYP) enzymes. Diagram modified and reproduced with permission from 
Professor Bao-Ting Zhu (Lee et al., 2003) 
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 CYP1B1 1.7.3

There are three members of the CYP1 family (CYP1A1, CYP1A2 and CYP1B1) and these 

are key enzymes in the metabolism and activation of hydrophobic xenobiotic pro-

carcinogens. The aryl hydrocarbon receptor (AHR) regulates the expression of the CYP1 

family (Figure 1-8). CYP1B1 is a member of the cytochrome P450 enzyme family I, 

subfamily B, polypeptide 1. 

1.7.3.1 Regulation of CYP1B1 

CYP1B1 transcriptional activity is predominantly regulated by the AHR (Figure 1-8). 

Various endogenous and exogenous compounds including dioxins and poly aromatic 

hydrocarbons bind with the AHR complex (consisting of the AHR, AHR-interacting 

protein (AIP) and heat shock proteins (hsp90)). Upon binding, the AHR dissociates from 

its AIP and hsp90 and translocates into the nucleus where it dimerizes with the AHR 

nuclear translocator (ARNT). This complex then binds to specific DNA enhancer 

sequences known as dioxin-response elements (DRE) which results in transcription of the 

CYP1 family, including CYP1B1. 

17β-E2 is a substrate for CYP1B1 and can regulate its transcriptional activity. In Ishikawa 

cells (human endometrial adenocarcinoma cells), over-expression of ERα induces the 

transcriptional activation of CYP1B1 in the presence of 17β-E2 and this may be via a 

direct interaction with ERα and estrogen responsive elements on CYP1B1 rather than via 

the AHR pathway (Tsuchiya et al., 2004). In hPASMCs, 17β-E2 at physiologically 

relevant concentrations (1nM) increases the protein expression of CYP1B1 (White et al., 

2011a). In addition, the profound PAH insults serotonin and dexfenfluramine also increase 

the expression of CYP1B1 in hPASMCs (Dempsie et al., 2013;White et al., 2011b). In 

vascular endothelial cells, increased shear stress increases the expression of CYP1B1 

(Conway et al., 2009). Additionally, the transcription of CYP1B1 is induced by the 

environmental toxics 2,3,7,8-tetrachlorodinezo-p-dioxin (TCDD) and benzo(a)pyrene. Co-

treatment of TCDD with 17β-E2 in human lung cells results in an accumulation of 4-

methoxyestradiol (4-MeOHE2), a key downstream metabolite indicative of CYP1B1 

activity (Cheng et al., 2007). 
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Figure 1-8 Transcriptional activation of cytochrome P450 enzymes by the aryl hydrocarbon 
receptor 

Endogenous and exogenous compounds bind with the aryl hydrocarbon receptor (AhR) 

dissociating it from its complex consisting of AhR-interacting protein (AIP) and heat shock 

proteins (hsp90) and translocates to the nucleus. The AhR associates with the AhR nuclear 

translocator (ARNT) and binds with specific DNA enhancer sequences known as dioxin-

responsive elements (DRE) which results in transcriptional activation of the CYP1 family. 
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1.7.3.2 CYP1B1 and cancer 

Increased CYP1B1 expression has been reported in virtually all types of cancer including 

breast cancer (McKay et al., 1995), lung cancer (Murray et al., 1997) and ovarian cancer 

(McFadyen et al., 2001). The relatively low expression of CYP1B1 within normal tissues 

makes this an attractive therapeutic target. This suggests that CYP1B1 activity could be 

used to bio-transform anti-cancer agents into their active form specifically only within 

target tissues. Furthermore, the therapeutic value of CYP1B1 inhibition in cancer is 

currently under phase 2 clinical trials (Luby, 2008). CYP1B1 is predominantly an extra-

hepatic enzyme that hydroxylates 17β-E2 and E1 predominantly to the catechol 4-

hydroxyestrogens (4-OHE2 and 4-OHE1, respectively). CYP1B1 is expressed within 

estrogen target tissues including the mammary, ovary and uterus (Tsuchiya et al., 2005). 

The 4-hydroxyestrogens are recognised to contribute to tumorigenesis via the formation of 

ROS resulting in the formation of quinones and semiquinones that can cause DNA damage 

via the formation of depurinating DNA adducts (Nutter et al., 1991;Nutter et al., 1994). 

Although steroids may influence cellular function in terms of proliferation, a genotoxic 

event that induces cellular damage is essential for the initiation of cancer (Cavalieri et al., 

1997). The abundant expression of CYP1B1 in cancerous tissues including breast, colon, 

lung, oesophagus, skin, lymph node, brain and testis supports a pathological role for 

CYP1B1 in tumorigenesis, in particular since its expression was undetectable in normal 

tissues (Murray et al., 1997). This is further supported by a high concentration of 4-

hydroxylated estrogens in uterine leiomyoma and breast cancer (Lemon et al., 1992;Liehr 

et al., 1995;Liehr & Ricci, 1996). In human breast cancer biopsies, 4-hydroxylated 

estrogens are up to three times higher than 2-hydroxylated estrogens (Rogan et al., 2003). 

In line with this, catechol estrogen quinone levels were also three times higher in breast 

cancer specimens compared to control (Rogan et al., 2003). In addition to its 4-

hydroxylation activity, CYP1B1 has the additional capacity to hydroxylate at the C2 and 

C16 positions on the carbon ring of 17β-E2 and E1. 

In the liver, 4-hydroxylation is a minor metabolic pathway of estrogens with 2-

hydroxylation being the predominant pathway (Hammond et al., 1997;Suchar et al., 1995). 

However, in extrahepatic tissues, 4-hydroxylase activity is much more profound. For 

example, in uterine myometrium and myomata (tumour tissue), 4-hydroxylation of 17β-E2 

is the predominant pathway for catechol estrogen formation and this is elevated in 

myomata (Liehr et al., 1995). Certain target tissues are susceptible to 17β-E2-induced 

carcinogenesis including the Syrian hamster kidney (Liehr et al., 1986), CD-1 mouse 
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uterus (Newbold et al., 1990) and the rat pituitary (Clifton & Meyer, 1956). More 

interestingly, in all these tissues the 4-hydroxylation pathway of catechol estrogen 

formation predominates, suggesting that metabolic activation of this pathway is associated 

with carcinogenesis (Bui & Weisz, 1989;Weisz et al., 1992;Paria et al., 1990). Microsomes 

isolated from human mammary adenocarcinomas and fibroadenoma show elevated 4-

hydroxylation activities compared to normal tissue (Liehr & Ricci, 1996). However, more 

recently, in a comprehensive analysis of estrogen metabolites within breast cancer tissue 

and urine, there appeared to be no evidence for 4-hydroxylation activity in breast tissue, 

although 4-OHE1 was detected within in the urine (Taioli et al., 2010). Both 4-OHE1 and 

4-OHE2 retain strong estrogenic activity and have high binding affinities at both estrogen 

receptors ERα and ERβ (Zhu et al., 2006). 

CYP1B1 also has the additional capacity to promote the 2-hydroxylation of estrogens, 

although this is a relatively minor pathway. In contrast to the carcinogenic effects observed 

with the 4-hydroxylation pathway, both 2-OHE1 and 2-OHE2 lack carcinogenic activity. 

This is possibly due to its prompt and exceptionally high metabolic clearance rate by the 

activity of catechol-O-methyl transferase (COMT) to its methoxylated metabolites (Ball et 

al., 1983;Merriam et al., 1980). The products formed by this reaction, 2-methoxyestrone 

(2-MeOHE1) and 2-methoxyestradiol (2-MeOHE2), possess little estrogenic activity with 

a low binding affinity for estrogen receptors (Zhu et al., 2006). Furthermore, 2-MeOHE2 

has distinct antimitogenic, antiangiogenic, anti-inflammatory and apoptotic effects that are 

mediated independently of the estrogen receptors and has therefore been considered as an 

anti-cancer agent (Lakhani et al., 2003). 

16α-hydroxylation represents a potentially pathogenic pathway that may be activated by 

CYP1B1 activity (Badawi et al., 2001;Hanna et al., 2000). In contrast to the evidence of a 

pathogenic role for the 4-hydroxylation pathway in cancer, the evidence for 16α-

hydroxylation is less concrete. 16α-OHE1 binds to the estrogen receptor in two different 

ways. First, it binds in a similar non-covalent fashion to that of 17β-E2 and second, it 

forms an irreversible covalent bond with the receptor (Swaneck & Fishman, 1988). 

Furthermore, 16-hydroxylated metabolites stimulate proliferation of breast cancer cells 

(Seeger et al., 2006;Lippert et al., 2003). An increased ratio of 2-OHE1/16α-OHE1 has 

been inversely associated with an increased risk of breast cancer in some studies (Muti et 

al., 2000;Dallal et al., 2013) whereas other studies have failed to report any correlation 

(Cauley et al., 2003;Eliassen et al., 2008). 
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1.7.3.3 CYP1B1 and cardiovascular diseases 

Within the cardiovascular system, the contribution of estrogen metabolism by CYP1B1 in 

the pathogenesis of cardiovascular diseases is less well-defined. However, a pathogenic 

role of CYP1B1 activity is thought to mediate the development of hypertension, cardiac 

hypertrophy and fibrosis. However, these effects are not through estrogen metabolism, but 

rather through arachidonic acid metabolism. However, given the profound effects that 

estrogens mediate within the cardiovascular system, it is likely that in the coming years an 

increasing role for estrogen metabolism may emerge. 

Arachidonic acid metabolism is mediated via the activity of CYP1B1 in vitro towards the 

formation of epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) 

(Choudhary et al., 2004). In the vasculature, CYP1B1 is predominantly expressed within 

smooth muscle cells, yet its expression is increased by shear stress within the vascular 

endothelium (Conway et al., 2009). In vascular smooth muscle cells, Ang II and 

arachidonic acid cause migration, proliferation and hypertrophy which is inhibited by the 

highly potent and selective CYP1B1 inhibitor, 2,3',4,5'-tetramethoxystilbene (TMS) 

(Yaghini et al., 2010). This is associated with a reduced formation of ROS and its 

downstream signaling molecules ERK1/2 and p38MAPK (Yaghini et al., 2010).  

Ang II and deoxycorticosterone acetate (DOCA)-salt induced hypertension, cardiac 

hypertrophy and fibrosis are inhibited by CYP1B1 inhibition with TMS (Jennings et al., 

2010;Sahan-Firat et al., 2010). Furthermore, increases in mean arterial pressures and 

cardiac hypertrophy by Ang II is reduced in CYP1B1-/- mice (Jennings et al., 2010). The 

increased vascular reactivity associated with Ang II and DOCA-salt induced hypertension 

in aortic, mesenteric and femoral arteries is inhibited in CYP1B1-/- mice and by TMS 

treatment (Jennings et al., 2010;Sahan-Firat et al., 2010). Ang II induces aortic endothelial 

dysfunction as assessed by an impairment in the vasorelaxant response to acetylcholine and 

this is prevented with TMS (Jennings et al., 2010). 

Ang II induced hypertension and cardiac hypertrophy is associated with an increase in 

NADPH oxidase activity and ROS formation and this is inhibited by CYP1B1 inhibition 

and in CYP1B1-/- mice (Jennings et al., 2010). The elevated ROS signaling by Ang II is 

potentially mediated via the metabolism of arachidonic acid by the activity of CYP1B1 

resulting in increased activity of the downstream signaling effectors ERK1/2 and 

p38MAPK (Malik et al., 2012). 
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Taken together, this provides evidence that CYP1B1 is associated with the pathology of 

cardiovascular diseases in particular through elevated ROS signaling. This highlights a 

therapeutic potential of CYP1B1 inhibition within cardiovascular diseases.  

1.7.3.4 Physiological role for CYP1B1 

The formation of genotoxic intermediates by the activity of CYP1B1 together with its 

activity towards the formation of ROS via hydroxylation of estrogens and metabolism of 

arachidonic acids has uncovered speculation of why such a detrimental enzyme would 

exist. There appears to be no beneficial effects associated with the activity of CYP1B1. In 

support of this, the CYP1B1-/- mouse has a normal phenotype and is protected against the 

toxic effects of many poly aromatic hydrocarbons which are known to induce malignancies 

(Nebert & Dalton, 2006). However, the CYP1B1-/- mouse exhibits key pathological 

features associated with primary congenital glaucoma, including abnormalities in ocular 

drainage and the trabecular meshwork in the eye (Vasiliou & Gonzalez, 2008). This 

highlights at least one physiological advantage of normal CYP1B1 activity. 

 Phase 2 metabolism of hydroxylated estrogens 1.7.4

Catechol estrogens (the 2- and 4-hydroxylated estrogens) are further metabolized by 

methylation by the activity of COMT. The activity of COMT represents a key deactivation 

process, in particular by reducing the ability of 4-hydroxylated estrogens to generate 

quinones and semiquinones that have the capacity to induce harmful DNA transformations 

(Acharya et al., 2010). Catechol estrogens can also be metabolized by other conjugation 

reactions including sulfation and glucuronidation.   

 Gender and pulmonary arterial hypertension 1.8

In 1951, Dresdale reported a greater incidence of PAH in females (Dresdale et al., 1951). 

These findings were later confirmed by the national institutes of health (NIH) registry, 

which reported 1.7:1 female to male ratio (Rich et al., 1987). More recently, large-scale 

epidemiological studies from registries in France, UK/Ireland and the USA have reported 

an even higher incidence of PAH amongst females at ~65%, 70% and 80%, respectively 

(Badesch et al., 2010;Humbert et al., 2006;Ling et al., 2012). However, despite an 

increased prevalence amongst females, better survival is reported in females and in 

younger patients (Benza et al., 2010;Humbert et al., 2010). More recently, a 

comprehensive study characterised the relationship of sex and haemodynamics in PAH 
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(Ventetuolo et al., 2014). In young patients (<45 years), male patients had higher mean 

PAPs compared to females and these differences were attenuated in older patients. 

Furthermore, mean PAPs were higher in younger patients compared to older patients, 

despite survival being reportedly poorer in the older patients. 

The cardio-protective effects of 17β-E2 may contribute to the improved survival in female 

patients compared to males as  improved right ventricular systolic function is superior in 

both healthy and PAH-affected women compared to men and is associated with higher 

circulating levels of 17β-E2 (Kawut et al., 2009;Ventetuolo et al., 2011).  

In addition, a few reports have described an association with physiological and 

pharmacological estrogen exposure. Morse and colleagues reported an interesting scenario 

that highlighted a risk for estrogen exposure and the development of HPAH (Morse et al., 

1999). They reported the significant onset of PAH in a 46-year old obligate carrier after 3 

months on hormone replacement therapy. Interestingly, HPAH had been diagnosed in 

several of her family members, all of which were female. More recently, a survey was 

conducted to measure prolonged exogenous estrogen exposure in patients attending the 8
th

 

international Pulmonary Hypertension Association (Sweeney & Voelkel, 2009). More than 

81% of patients reported prior use of hormone therapy and 70% reported prolonged use 

(more than 10 years) (Sweeney & Voelkel, 2009). Whilst this may provide a link between 

exogenous estrogen exposure and PAH, the study did not compare PAH patients with the 

general population. In another study, there was evidence that hormone replacement therapy 

prevented the development of PAH in patients with systemic sclerosis (Beretta et al., 

2006). In PPHTN, circulating 17β-E2 levels are increased, which is associated with a 

single nucleotide polymorphism (SNP) in aromatase, as discussed previously (Roberts et 

al., 2009). The reason for these sexual dimorphisms in reported incidence and survival is 

incompletely understood and under-investigated. 

In review of epidemiological findings, it was initially hypothesized that estrogens, 

particularly 17β-E2, would be associated with the pathogenesis of PAH. However, 

numerous pre-clinical studies suggest that 17β-E2 mediates protective effects in the 

pulmonary circulation and on the right ventricle. Previously, the majority of pre-clinical 

studies have utilised male rodents as they develop a much more robust and severe disease 

phenotype (Rabinovitch et al., 1981). Additionally, it provides a basis to study molecular 

pathways in the absence of any influence of female-derived hormones. Recently, in light of 

epidemiological studies, there has been increased interest in assessing the role of steroids, 
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in particular, female-derived hormones on the development and progression of PAH. 

However, there has been conflicting reports of the role of estrogens in PAH, which has so 

far obscured and diffused our understanding of the relative impact that female hormones, 

or lack thereof, may have in PAH. 

 Estrogens and experimental pulmonary hypertension 1.8.1

1.8.1.1 Estrogens and monocrotaline-induced pulmonary hypertension 

Several lines of evidence converge to support a protective role for 17β-E2 in the MCT 

model of PH. In particular, ovariectomy exacerbates the PH phenotype, suggesting a 

protective role for 17β-E2 in this model (Ahn et al., 2003;Farhat et al., 1993;Tofovic et al., 

2006;Umar et al., 2011;Yuan et al., 2013). MCT disrupts the vascular endothelium in the 

pulmonary artery, leading to microvascular leakage which is prevented by 17β-E2 (Farhat 

et al., 1993). Other studies have shown that 17β-E2 can reverse established severe MCT-

induced PH leading to 100% survival, mediated by the estrogen receptor, ERβ (Umar et 

al., 2011). The protective effects of 17β-E2 in this model included suppression of 

inflammation as assessed by a reduction in the inflammatory marker ED-1 as well as a 

reduction in IL-6 (Umar et al., 2011). Circulating IL-6 levels are increased in PAH 

(Humbert et al., 1995) and overexpression of IL-6 in the lungs induces PH in mice (Steiner 

et al., 2009). Furthermore, 17β-E2 reversed blood vessel loss in both the lungs and right 

ventricle and even promoted angiogenesis (Umar et al., 2011).  

2-MeOHE2 is a CYP/COMT metabolite of 17β-E2 that is a more potent inducer of 

prostacyclin synthesis and inhibitor of ET-1 production in human umbilical vein 

endothelial cells than its parent compound (Seeger et al., 1999;Dubey et al., 2001). This 

metabolic pathway therefore highlights a potential protective pathway. Indeed, 2-MeOHE2 

prevents the development of MCT-induced PH and reverses established MCT-induced 

PAH (Tofovic et al., 2005). However, whilst 2-MeOHE2 increases prostacyclin production 

in human umbilical vein endothelial cells, 16α-OHE1 caused the most profound induction 

of prostacyclin synthesis (Seeger et al., 1999). Elevated circulating levels of 16α-OHE1 

has been associated with the incidence of HPAH (Austin et al., 2009). It is likely that 

estrogen metabolites may infer divergent signaling in diverse cell types. Thus, further 

studies are needed to confirm the effects of estrogen metabolites on prostacyclin synthesis 

in the pulmonary artery.  
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1.8.1.2 Estrogens and hypoxic-induced pulmonary hypertension 

The sexual dimorphism in response to hypoxia has been reported in chickens (Burton et 

al., 1968), swine (McMurtry et al., 1973) and rats (Rabinovitch et al., 1981). Whilst 

reports of gender differences in hypoxic PAH in humans is lacking, we can obtain insight 

from individuals living at high altitude (a hypoxic environment). Whilst most studies have 

been carried out in men, or have not segregated for gender, one study characterised a 

gender difference in high-altitude PH in the Kyrgyz population from Central Asia living 

3,000m above sea level (Aldashev et al., 2002). Electrocardiograms were performed in 347 

males and 394 females and signs of cor pulmonale were reported in 23% of males and 6% 

of females, indicating a greater effect of hypoxia on males in humans. However, it should 

be noted that 43% of the men were smokers compared to none in the females. Further 

studies are required to confirm these findings, as this would have implications for the use 

of this model in studying IPAH and HPAH, which predominates in females (Badesch et 

al., 2010;Humbert et al., 2006;Ling et al., 2012). Nonetheless, this model has provided a 

basis to study the molecular pathways that may underpin disease pathogenesis. 

Both gender and the menstrual cycle can affect pulmonary arterial reactivity. Pulmonary 

artery rings from pro-estrous females (high levels of circulating 17β-E2) reduce pulmonary 

arterial vasoconstrictions under both normoxic and hypoxic conditions (in comparison to 

estrous and di-estrous female and male pulmonary artery rings) (Lahm et al., 2007). 

However, only high doses of exogenous 17β-E2 (500µM and 1mM) attenuate hypoxic and 

phenylephrine-induced pulmonary arterial vasoconstriction, independent of sex or estrous 

cycle and were likely through a non-genomic effect as the response was observed instantly 

(Lahm et al., 2008b). Further studies have provided evidence that the protective effects of 

17β-E2 in hypoxic-induced PH are mediated by the ERα and are independent of 17β-E2 

metabolism, as the general CYP inhibitor, 1-aminobenzotriazole (ABT) has no effects 

(Lahm et al., 2012). Initially, it was reported that intermittent hypoxia increased the 

expression of both ERα and ERβ in rats (Wu et al., 2008). In contrast, chronic hypoxia 

increased the expression of ERβ, whereas levels of ERα were unchanged (Lahm et al., 

2012).  ERβ inhibition abolished the beneficial effects of 17β-E2 on the right ventricle 

(Lahm et al., 2012). This is consistent with reports that ERβ knockout mice have RVH 

(Forster et al., 2004). 17β-E2 treated hypoxic rat lungs displayed a reduction in 

phosphorylated ERK and increased expression of p27
kip

, a cell cycle inhibitor (Lahm et al., 

2012).  
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ET-1 is a potent vasoconstrictor produced from the vascular endothelium and its synthesis 

is decreased by 17β-E2 (Akishita et al., 1996). Hypoxia is a potent inducer of ET-1 

synthesis (Rakugi et al., 1990) and it is regulated by the AHR (Lund et al., 2008). 

Interestingly, transcriptional activity of the precursor to ET-1, pre-pro ET-1, is increased in 

the lungs of ovariectomized rats but not in rats with intact ovaries (Earley & Resta, 2002), 

suggesting that circulating estrogens are suppressing ET-1 synthesis. In addition, 17β-E2 

replacement in rats prevents increases in ET-1 mRNA and protein expression by 

interfering with hypoxia-inducible factor (HIF) activity (Earley & Resta, 2002).  

Endothelium-dependent relaxation is an important physiological response that is impaired 

by exposure to chronic hypoxia and is thought to contribute to PAH. Phytoestrogens are 

plant-derived estrogen-like compounds that have the ability to restore the function of the 

endothelium by promoting relaxation.  In pulmonary arteries isolated from chronically 

hypoxic male rats, the phytoestrogens genistein and daidzen (derived from soy) can restore 

the impaired vasorelaxation response to agonists that stimulate release of NO (Karamsetty 

et al., 2001). 

1.8.1.3 Estrogens in genetically-susceptible and drug-induced pulmonary 
hypertension 

Whilst 17β-E2 appears to exert protective effects in the classical models of PH (MCT and 

hypoxic), in genetically susceptible and drug-induced pulmonary hypertensive models, 

17β-E2 appears to be a risk factor. These models are therefore perhaps much more relevant 

to studying the gender effects associated with the development of IPAH and HPAH. 

Overexpression of the human SERT gene in mice leads to a spontaneous PH phenotype in 

female mice at 5-6 months of age (White et al., 2011b). To establish whether these effects 

are facilitated by ovarian-derived estrogens, female SERT+ mice were ovariectomized and 

assessed for a PH phenotype after 12 weeks. Ovariectomy successfully attenuated the PH 

phenotype as assessed by pulmonary vascular remodeling and RVSPs in these mice and 

this could be re-established by exogenous administration of 17β-E2. In contrast, 

administration of 17β-E2 in male SERT+ mice had no effects (White et al., 2011b). 

Decreased expression of the estrogen metabolizing enzyme CYP1B1 has been reported in 

patients harbouring mutations in the BMPR-2 gene (West et al., 2008). In contrast, a 

CYP1B1 genetic polymorphism Asn453Ser (N453S) which is associated with an increased 

post-transcriptional proteosomal degradation of CYP1B1 (Bandiera et al., 2005) is more 

common in patients without any evidence of PAH, despite harbouring mutations in the 
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BMPR-2 gene (Austin et al., 2009). In female SERT+ mice and in IPAH, CYP1B1 

expression is increased (White et al., 2011a). Differential estrogen metabolism may be 

species and gender specific and may therefore contribute to the divergent effects of 

exogenous 17β-E2 in male and female SERT+ mice.  

Another model that displays female selectivity is the mouse model that overexpresses a 

member of the S100A4/mts1 (Dempsie et al., 2011). Additionally, complex vascular-like 

lesions were present in approximately 25% of females (Dempsie et al., 2011). Serotonin 

induces the expression and release of S100A4/mts1 in hPASMC, inducing cellular 

proliferation via RAGE (Lawrie et al., 2005). 17β-E2 increases the expression of 

S100A4/mts1, whilst soluble RAGE (which can bind RAGE agonists) inhibits the 

proliferative capacity of 17β-E2. This suggests that 17β-E2 mediates an increased 

expression of S100A4/mts1 which can then bind to RAGE promoting PASMC 

proliferation. 

1.8.1.4 Estrogens in SU-hypoxic-induced pulmonary arterial hypertension 

The combined vascular insult SU5416 with hypoxia in rats is to date the model that most 

closely and robustly recapitulates human PAH pathology, with dramatically elevated 

pressures and the formation of complex vascular lesions. In contrast to the classical models 

of PH, female SU-hypoxic rats develop a more severe PAH phenotype compared to male 

rats as measured by RVSP, yet develop less pronounced RVH (Tofovic et al., 2012). 

Whilst both genders developed occlusive vascular lesions, female rats developed complex 

vascular lesions (Tofovic et al., 2012). In this model, ovariectomy reduced the elevated 

RVSP, yet worsened the degree of RVH (Tofovic et al., 2013). To further support a 

pathogenic role for 17β-E2 in this model, rats were dosed with an aromatase inhibitor 

anastrozole, which inhibits endogenous synthesis of 17βE2. Similar with ovariectomy, 

aromatase inhibition significantly reduced RVSP, yet only had a modest effect on right 

ventricular remodeling (Mair et al., 2013;Tofovic et al., 2013). 

1.8.1.5 Estrogens and dexfenfluramine-induced pulmonary hypertension 

Finally, chronic administration of the anorectic drug dexfenfluramine in mice leads to 

increased RVSP in female mice only (Dempsie et al., 2013). In contrast, in female obese 

rats, dexfenfluramine did cause a decrease in the weight of the animals but did not cause 

PH (Mitani et al., 2002). Interestingly, paradoxical effects were observed in MCT treated 

female rats, where dexfenfluramine attenuated the effects of MCT (Mitani et al., 2002). 
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Dexfenfluramine alone induced the activity of elastase, an enzyme that is pathobiologically 

linked to the development and progression of PAH, and conversely, in combination with 

MCT, reduced its activity (Mitani et al., 2002). More recently, synergistic effects have 

been observed in hPASMCs treated with dexfenfluramine and 17β-E2 leading to enhanced 

cellular proliferation (as measured by thymidine incorporation), suggesting that the effects 

of dexfenfluramine may be facilitated via 17β-E2 (Dempsie et al., 2013). Given that 17β-

E2 exerts protective effects in the MCT model of PH, dexfenfluramine may be enhancing 

these effects. Additionally, 17β-E2 metabolism by activity of CYP enzymes may 

contribute to these divergent effects in the MCT model and requires clarification. 

1.8.1.6  Estrogen effects in vitro 

In isolated perfused rat lungs, 17β-E2 potentiates vasoconstriction to a TXA2 mimic (U-

46619) (Farhat & Ramwell, 1992). Additionally, the vasoconstrictive effects to U-46619 

alone were enhanced in sexually mature female rats compared to sexually mature male rats 

(Farhat & Ramwell, 1992). Removal of the pulmonary endothelium increases thymidine 

uptake (a measure of cell mitosis) in canine PASMC and this effect is abolished in the 

presence of an intact endothelium (Farhat et al., 1992). In distal hPASMCs, cellular 

proliferation assays revealed that of the three main estrogens, (E1, 17β-E2, E3) and 

progesterone, 17β-E2 is the only estrogen to stimulate increased proliferation as measured 

by thymidine incorporation assays (White et al., 2011b). 

Arachidonic acid stimulates endothelium-dependent contractions in both male and female 

pulmonary arteries from rabbits, yet these effects are potentiated in females and mediated 

by 17β-E2 (Pfister, 2011). Arachidonic acid is the pre-curser in the production of 

eicosanoids, such as thromboxanes, leukotrienes and prostacyclin. In female rabbit 

pulmonary arteries, there is a greater expression of 5- and 15-lipoxygenase which leads to 

an increased production of 5- and 15-HETE, respectively, which stimulates contraction of 

the pulmonary artery (Pfister, 2011). 

The expression of BMPR-2 is decreased by about 25% in human female cultured 

lymphocytes compared to males and 17β-E2 suppresses BMPR-2 expression in both 

cultured lymphocytes and human microvascular endothelial cells  (Austin et al., 2012). 

Under normoxic conditions in pulmonary endothelial cells, 17β-E2 can increase BMP 

signaling (phosphorylation of Smad1/5/8), whilst under hypoxic conditions, 17β-E2 

suppresses BMP signaling via estrogen receptor signaling and Hypoxia-inducible factor 1α 
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(HIF1α) (Ichimori et al., 2013). These divergent findings may be partly explained by the 

different anatomical locations of the endothelial cells studied (microvascular vs. large 

pulmonary arterial endothelial cells). In contrast, in hypoxic pulmonary microvascular 

endothelial cells, 17β-E2 reduces the phosphorylation of ERK, increases the expression of 

the cell cycle inhibitor, p27
kip1

 and decreases VEGF secretion and cell proliferation (Lahm 

et al., 2012). 

 Progesterone and pulmonary hypertension 1.8.2

Pregnenolone is converted to either DHEA or progesterone. Progesterone is the pre-curser 

to aldosterone. In both male and female rat coronary and pulmonary arteries, progesterone 

is a potent vasodilator (English et al., 2001). In this study, the vasodilatory properties of 

17β-E2, progesterone, testosterone and cortisol were compared in the different vascular 

beds. All steroids were associated with an acute vasodilatory response, although 

differences were noted between genders and the vascular bed studied. In the pulmonary 

arteries, progesterone was the most potent vasodilator, followed by testosterone, cortisol 

and then 17β-E2 (English et al., 2001). In rabbit pulmonary arteries, the vasodilatory 

properties of progesterone are endothelium-dependent and associated with elevations in 

NO and cGMP (Li et al., 2001). In rats deficient of gonadal estrogens by ovariectomy, 

progesterone has been shown to attenuate the development of MCT-induced PH, RVH and 

pulmonary vascular remodeling (Tofovic et al., 2009a). Progesterone receptors have been 

detected within the complex vascular lesions of a patient with PAH (Barberis et al., 1995), 

although this has never been repeated in a larger cohort of patients. Further studies are 

merited to understand the role of progesterone in PAH. 

However, the use of progesterone therapy in PAH should be approached with caution as it 

is the pre-curser to aldosterone. In patients with PAH, plasma aldosterone levels are 

increased (Maron et al., 2013). Aldosterone interacts with the mineralocorticoid receptor 

and its antagonist spironolactone prevents PASMC proliferation and attenuates 

experimental PH (Preston et al., 2013). This highlights a potential detrimental pathway that 

may be activated by progesterone therapy. 

 Androgens and pulmonary hypertension 1.8.3

Whilst the incidence of PAH is more common in women than in men, in patients older 

than 60 years of age, the estimated 2-year survival in male patients is significantly less 

compared to female patients (Shapiro et al., 2012). Young male patients (<45 years old) 
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with IPAH have been reported to have higher mean PAPs and pulmonary vascular 

resistance compared with females, whilst in older patients there were no differences in 

pulmonary haemodynamics (Ventetuolo et al., 2014). Interestingly, older patients (>45 

years) with IPAH, had significantly lower mean PAPs and pulmonary vascular resistance 

compared with younger patients, and this was observed in both sexes (Ventetuolo et al., 

2014). However, survival is worse in male patients (Shapiro et al., 2012). These sexual 

dimorphisms suggest that both estrogens and androgens may influence the pathogenesis of 

PAH. The levels of androgens and estrogens decline with age, with a dramatic reduction in 

estrogens in females after menopause. In PAH, the function of the right ventricle is a key 

determinant in the survival of patients (D'Alonzo et al., 1991;Sandoval et al., 1994). Thus 

is appears that both estrogens and androgens may adversely affect pulmonary 

haemodynamics in younger patients whilst promoting the function of the right ventricle. In 

contrast, in older patients, the reduction in estrogens and androgens may be associated with 

the lower mean PAPs and pulmonary vascular resistance compared with younger patients. 

Overall, these epidemiological differences in survival suggest that androgens may 

influence disease pathogenesis. 

Androgens are primarily synthesized within the gonads and the adrenal cortex. 

Testosterone is the primary androgenic steroid hormone that mediates its effects through 

the androgen receptor. Testosterone is metabolized to its potent, active metabolite 

dihydrotestosterone by 5α-reductase which can also activate the androgen receptor. As 

mentioned previously, right ventricular function is the most important prognostic factor in 

PAH (D'Alonzo et al., 1991). Androgen receptors have been identified in both the left and 

the right ventricle (Lizotte et al., 2009). Both aromatase and 5α-reductase expression are 

increased in cardiac hypertrophy which is associated with an enhanced production of 

dihydrotestosterone (Thum & Borlak, 2002). The contractile protein α-MHC has also been 

found to be reduced in cardiac hypertrophy and can be restored with administration of 

testosterone (Thum & Borlak, 2002). 

Testosterone is a potent vasodilator of the pulmonary vascular beds in both males and 

females (Rowell et al., 2009;Smith et al., 2005). In fact, it is a more potent vasodilator of 

the pulmonary arteries than 17β-E2 (English et al., 2001). These effects are rapid and have 

been shown to occur independently of the androgen receptor (Jones et al., 2002). The 

precise mechanism by which testosterone exerts these vasodilatory actions are 

incompletely understood. However, there is evidence to suggest that testosterone acts as a 
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calcium antagonist as the dilatation to testosterone is increased in vessels pre-constricted 

with agents that activate voltage-gated calcium channels (Jones et al., 2002). 

The relatively low levels of testosterone in females may provide rationale for the increased 

incidence of PAH amongst females. Studies examining the effects of testosterone on the 

pulmonary vasculature and right ventricle are limited. In mice, castration results in reduced 

RVH and myocyte diameter in response to pulmonary arterial banding, and testosterone 

successfully normalised these parameters (Hemnes et al., 2012). Pulmonary artery banding 

is a surgical technique that mimics right ventricular pressure overload by ligation of the 

pulmonary artery. Additionally, survival was improved in castrated mice that underwent 

pulmonary artery banding compared with pulmonary artery banding alone, despite 

testosterone having minimal effects on pulmonary haemodynamics (Hemnes et al., 2012). 

In a healthy cohort of patients, increased testosterone levels were associated with increased 

stroke volume and right ventricular mass and volume (Ventetuolo et al., 2011). In male 

patients, right ventricular ejection fractions worsen in males after initiating therapy, 

whereas it improves in females with IPAH, which may explain the sex differences in 

survival (Jacobs et al., 2013). 

DHEA is the pre-curser to androstenedione. The formation of testosterone from 

androstenedione is mediated by the activity of 17β-hydroxysteroid dehydrogenase 3 (17β-

HSD3). DHEA is synthesized primarily in the adrenal glands from cholesterol and is the 

most abundant adrenal steroid. In addition, the gonads also participate in DHEA synthesis. 

It commonly circulates in its sulfated form, DHEA-S, which acts as an internal reservoir 

for DHEA synthesis. DHEA-S is converted to DHEA by the activity of sulfotransferases 

within tissues. Men have higher levels of DHEA and DHEA-S than women (~50% more) 

and these decline with age (Parker, 1999). DHEA and DHEA-S are potent inhibitors of cell 

proliferation in several cell lines by halting cells in the G0/G1 phase (Jiang et al., 2005). In 

the hypoxic rat model of PAH, DHEA prevented the development of pulmonary arterial 

remodeling, RVH and PH (Bonnet et al., 2003). In vitro cellular studies in PASMCs have 

implicated that DHEA mediates its effects by reducing the levels of intracellular calcium 

and the activation of voltage gated potassium channels (Bonnet et al., 2003). In the SU-

Hypoxic model of PAH, DHEA treatment inhibited right ventricular apoptosis, fibrosis and 

oxidative stress by a reduction in NADPH levels (Alzoubi et al., 2013). Thus, DHEA 

mediates anti-oxidant effects by reducing the availability of NADPH to generate ROS. 

Furthermore, DHEA is a potent suppressor of induced-CYP1B1 expression in vivo 

(Ciolino et al., 2003). A clinical trial in patients with chronic obstructive pulmonary 
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disease associated PH has shown promising results for DHEA as a therapy by significantly 

increased 6-minuite walking tests and pulmonary haemodynamics (de La Roque et al., 

2012). 

 CYP1B1 and pulmonary hypertension 1.8.4

The fact that PAH is more common in women than in men has led to the hypothesis that 

estrogens, in particular 17β-E2, the main pre-menopausal hormone, may be facilitating the 

development and pathogenesis of PAH. One hypothesis is that estrogen metabolism is 

pathologically altered in disease. Increased CYP1B1 activity has been associated with the 

development of numerous cancers and cardiovascular diseases, as discussed previously. 

However, its contribution to the development and pathogenesis of PAH remains obscure. 

CYP1B1 expression is decreased by 10-fold in Epstein-Barr virus immortalized B 

lymphocytes harvested from patients with HPAH associated with a BMPR-2 mutation 

(West et al., 2008). In contrast, in female mice that over-express the human SERT gene 

and in hPASMCs derived from patients with IPAH, CYP1B1 expression is increased 

(White et al., 2011a). A genetic polymorphism in CYP1B1 (Asn453Ser; N453S), which 

is associated with an increased rate of degradation of CYP1B1 (Bandiera et al., 2005) is 

more common in patients with a BMPR-2 mutation without any evidence of PAH (Austin 

et al., 2009). This implicates that the activity of CYP1B1 is a requisite/second-hit factor 

for the development of PAH in patients harbouring a BMPR-2 mutation. Furthermore, in 

this cohort of patients the urinary 2-OHE1/16α-OHE1 ratio was lower compared to 

unaffected mutation carriers, suggesting that estrogen metabolism by this CYP1B1 

polymorphism yields increases in 16α-OHE1. Taken together, this suggests that CYP1B1 

may be a pathological mediator in PAH, yet the functional importance of CYP1B1 has 

never been critically evaluated. Despite paramount evidence that highlights a greater risk 

of PAH amongst females suggesting that a female component may be influencing disease 

pathogenesis, there is a paucity of investigation of estrogens and their metabolism in PAH. 
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  Aims 1.9

PAH is more common in women than in men (Badesch et al., 2010;Humbert et al., 

2006;Ling et al., 2012) and new insights suggest that estrogen metabolism may contribute 

to the pathogenesis of PAH. The principal aim of this research was therefore to investigate 

the role of estrogen metabolism, in particular by CYP1B1, on the development and 

pathogenesis of PAH. This was addressed by the following project aims: 

1. To functionally and molecularly characterise the impact of estrogen metabolism by 

CYP1B1 on the development of PH in vitro and in vivo 

2. To characterise the mechanisms that underlie CYP1B1 pathogenic activity in PH 

3. To develop a method to quantitatively measure estrogen metabolism in pulmonary 

vascular cells 

4. To determine the metabolic fate of 17β-E2 in hPASMCs from naïve cells and PAH-

PASMCs in both males and females 
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 Chemicals reagents and equipment 2.1

All chemical reagents were supplied by Sigma-Aldrich, Dorset, UK unless otherwise 

stated. All organic and aqueous solvents were supplied by Fisher Scientific Limited, 

Loughborough, UK. Materials for protein expression analysis and RNA expression were 

purchased from Invitrogen, Paisley, UK and Qiagen, UK, respectively unless otherwise 

stated. All materials used were of the highest grade obtainable. All cell culture plastics 

were provided by Corning (supplied by Fischer Scientific Limited, Loughborough, UK). 

 Animals 2.2

All experimental procedures were carried out in accordance with the United Kingdom 

Animal Procedures Act (1986) and with the "Guide for the Care and Use of Laboratory 

Animals" published by the US National Institutes of Health (NIH publication No. 85-23, 

revised 1996). All in vivo procedures were performed under the project license 60/4404 

(previously 60/3773) held by Professor Margaret MacLean at the University of Glasgow 

and under the personal license 60/12704 held by Anne Katrine Z. Johansen. All animals 

were maintained in the same environmental conditions and subject to a continuous 12 hour 

light/dark cycle and had access to fresh food and water ad libitum. Some animals were 

housed at the Central Research Facility at the University of Glasgow and others were 

housed in Professor Margaret MacLeans’ chamber suite. For genetically modified mice, 

tail samples were provided by the Central Research Facility for genotyping to confirm 

genetic background. 

 General experimental design 2.2.1

Where possible, animals were randomized into their respective study groups and studied 

blindly. Group identity was revealed after results had been analyzed. No mortalities were 

reported in any of the studies apart from the monocrotaline study, which have been 

summarized within the result section. 

 Cytochrome P450 1B1 knockout mice 2.2.2

Homozygote CYP1B1 knockout (CYP1B1-/-) mice were kindly provided by the National 

Institutes of Health/National Cancer Institute, Bethesda, USA. CYP1B1-/- mice were 

generated as described by Buters and colleagues (Buters et al., 1999). Briefly, a genomic 

clone of 10.5kb containing two of the three exons of murine CYP1B1 was generated using 
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a 1.7kb cassette. One of the exons was non-coding and the other two exons were targeted 

to disrupt the function of CYP1B1. The genomic clone was electroporated into embryonic 

stem cells, grown and transfected into blastocysts from C57BL/6 mice. These cells were 

then injected into psuedopregnant mice and bred with C57BL/6 to obtain CYP1B1-/- mice 

(Buters et al., 1999). Wild-type mice (C57BL/6) were purchased from Harlan Laboratories 

(Oxon, UK) and studied as controls. 

 Serotonin transporter overexpressing mice 2.2.3

Mice overexpressing the human serotonin transporter (SERT+ mice) were generated and 

kindly provided by Professor Tony Harmar from the University of Edinburgh. C57BL/6 x 

CBA wild-type mice were used to generate this mouse model. A 500kb yeast artificial 

chromosome (YAC35D8) was modified to contain the human SLC6A4 gene (encodes 

SERT) flanked by 150kb at the 5' and 300kb at the 3' region (Shen et al., 2000). A 

hemagglutinin epitope tag was incorporated into the yeast chromosome at the C-terminus 

of the SLC6A4 gene (Shen et al., 2000). The YAC clones were amplified and purified and 

injected into the pro-nuclei of fertilized eggs from C57BL/6 x CBA female mice to 

generate human SERT+ mice (Shen et al., 2000).  

 Models of pulmonary hypertension 2.3

Both the MCT and the hypoxic models of PH were studied. Whilst these “classical” animal 

models have and continue to contribute to our understanding of the molecular mechanisms 

that contribute to the pathobiology of the pulmonary hypertensive process, these models 

are generally no longer considered direct models of human PAH. Therefore, PH will be 

used when referring to animal models and PAH will be used when referring to human 

PAH. 

 Monocrotaline-induced pulmonary hypertension 2.3.1

10-16 male and female wistar rats (Harlan Laboratories, Oxon, UK) at 10-12 weeks old at 

termination procedure were studied per group. Where appropriate, rats were injected with 

the pneumotoxin, MCT pyrrole (Sigma-Aldrich, Dorset, UK). MCT was dissolved in 

1mol/L hydrogen chloride (HCl) at a concentration of 100 mg/mL, neutralized with 

1mol/L sodium hydroxide (NaOH), and diluted with sterile distilled water to 6 mg/mL. 

Rats were randomly subdivided to receive either vehicle or MCT at a dose of 60mg/kg by 

subcutaneous injection in the flank of the rat at day 0. All animals were weighed every day 
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and monitored for any signs of discomfort. Animals that were deemed unwell by the 

Central Research Facility staff were terminated by a schedule 1 procedure. 

2.3.1.1  2,3',4,5'-Tetramethoxystilbene study 

14 days post MCT injection animals were randomly allocated to receive either the highly 

potent and selective CYP1B1 inhibitor, TMS (Tocris, UK) at 3mg/kg/day or its vehicle 

(~4% (v/v) ethanol: distilled water) by intra-peritoneal injection for an additional 14 days. 

TMS was prepared freshly daily prior to use under sterile conditions. TMS was pre-

dissolved in 100% ethanol and diluted with distilled water to achieve 0.6mg per 1900µl 

solution. A 200g rat was injected with 1900µl of the drug solution and the volume was 

altered according to the weight of the animal to achieve a 3mg/kg dose. 

 Chronic hypobaric hypoxia 2.3.2

To study the effects of hypoxia on the cardiopulmonary unit, CYP1B1-/-, SERT+ and 

wild-type mice were exposed to 2 weeks of hypobaric hypoxia. On day 0, mice were 

placed into the hypobaric chamber and the pressure was gradually reduced to 750mbar 

(50mbar every 30 minutes) to allow for acclimatization. On day 1, the pressure was further 

reduced to 550mbar (50mbar every 30 minutes). This pressure is approximately equivalent 

to 10% oxygen, stimulating hypoxic pulmonary vasoconstriction in the lungs, which leads 

to the development of a moderate, yet consistent pulmonary hypertensive phenotype. 

Every 5 days, the chamber was brought back up to atmospheric pressure to replenish food 

and water and change caging (50mbar every 5 minutes). For dosing experiments, the 

chamber was brought to atmospheric pressure every day for a maximum of 30 minutes. 

Room temperature, humidity and the chamber pressure were monitored and recorded 

carefully throughout the entire study period. 

2.3.2.1 2,3',4,5'-Tetramethoxystilbene study in hypoxic pulmonary hypertension 

To assess the therapeutic viability of CYP1B1 in hypoxia-induced PH, 10-12 week old  

mice (Harlan Laboratories, Oxon, UK) were administered TMS (3mg/kg/day) or vehicle 

(~4% (v/v) ethanol: distilled water) via intra-peritoneal injection for the 14 day duration of 

chronic hypoxia exposure. All solutions were prepared fresh daily under sterile conditions. 

TMS was pre-dissolved in ethanol and diluted in distilled water to 0.06mg per 200µl. 

200µl was injected by intra-peritoneal injection to achieve a 3mg/kg dose in a 20g mouse 
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and adjusted accordingly. Mice maintained under normoxic conditions were studied as 

controls. 

2.3.2.2 2,3',4,5'-Tetramethoxystilbene study in SERT+ pulmonary hypertension 

Female SERT+ mice develop a robust PH phenotype at 5 months of age (MacLean et al., 

2004;White et al., 2011b). To assess the contribution of CYP1B1 to SERT+ PH, 5-6 

month old female SERT+ mice (normoxic and hypoxic) were administered TMS 

(1.5mg/kg/day) or vehicle (~4% (v/v) ethanol: distilled water) via intra-peritoneal injection 

for 14 days. This was studied in both normoxic and hypoxic conditions. All solutions were 

prepared fresh daily under sterile conditions. TMS was pre-dissolved in ethanol and diluted 

in distilled water to achieve a 0.03mg per 100µl solution. 100µl was injected by intra-

peritoneal injection to achieve a 1.5mg/kg dose in a 20g mouse and adjusted accordingly. 

2.3.2.3 Effect of CYP1B1 metabolites in pulmonary hypertension 

Female and male 10- to 12-week-old C57BL/6 littermate mice were administered 16α-

hydroxyestrone (16α-OHE1; Steraloids, US; 1.5 mg/kg/day) or vehicle (~4% ethanol v/v 

distilled H2O) daily via intraperitoneal injection for 28 days before the assessment of PH. 

In a separate study, female 10- to 12-week-old C57BL/6 littermate mice were administered 

4-hydroxyestradiol (4-OHE2; Steraloids, US; 1.5 mg/kg/day) or vehicle (~4% ethanol v/v 

distilled H2O) daily via intraperitoneal injection for 28 days before the assessment of PH 

 Assessment of pulmonary hypertension 2.4

 Anaesthesia 2.4.1

Mice were anaesthetised in an anaesthetic box with 3% (v/v) isoflurane (Abbot 

Laboratories, Berkshire, UK) supplemented with oxygen at a flow rate of 0.5L/min to 

assist in the flow of the anaesthetic gas. Mice were immediately weighed and transferred to 

a facemask continuously administering ~1.5% (v/v) isoflurane supplemented with oxygen 

at a flow rate of 0.5L/min. The required depth of anaesthesia was confirmed by the absence 

of a hind-limb or tail reflex. Throughout the procedure, anaesthesia was carefully 

monitored to ensure that the depth of anaesthesia neither became too shallow or too deep. 

This was monitored by continuous assessment of reflexes and observation of heart rate and 

breathing rates.  



 Chapter 2 - Methods 

71 
 

 Systemic arterial pressure 2.4.2

Once the required level of anaesthesia had been achieved, an incision was made in the skin 

at the ventral neck to expose the first layer of muscle which was carefully teased away to 

reveal the trachea. The left common carotid artery is located dorsal and slightly to the left 

of the trachea and is identifiable as a large bright red pulsating vessel. The artery was 

isolated from the vagus nerve which has a white appearance and runs alongside the vessel 

and cleaned up of any tissue by carefully manipulating the forceps alongside the vessel. 

Once isolated, surgical non-sterile nylon black monofilament suture size 5-0 (Harvard 

Apparatus, Massachusetts, USA) was placed underneath the artery and tied at the proximal 

end of the artery with a single knot, pulled back and taped down to expose an extended 

arterial length. A second piece of suture was placed underneath the artery and left untied. 

Thereafter, the right ventricular pressure (RVP; described below) was obtained. Once a 

steady reading of at least 5 minutes had been obtained for the RVSP, the systemic arterial 

pressure (SAP; Figure 2-1) was obtained. Using a microsurgical clip (Fine Science Tools, 

Heidelberg, Germany, FST#18055-04), the vessel was carefully clamped at the proximal 

end of the carotid artery. A small incision was made at the distal end of the artery just 

below where the suture had been tied. Using forceps, an opening was manipulated to allow 

a smooth insertion of a calibrated fluid-filled micro-cannula (Harvard Apparatus, 

Massachusetts, USA) which was advanced to the base of the clip. Using the second piece 

of suture, a knot was tied around the cannula and the artery. At this point, the three-way tap 

was turned on to allow the flow of heparinised saline (Heparin Sodium, Wockhardt, UK; 

20units/ml) and the clip was removed to obtain a pressure reading for the SAP.  
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Figure 2-1 Representative mean systemic arterial pressures 

Systemic arterial pressure (SAP; mmHg) taken from a 5-month old normoxic female wild-type 
mouse. 

 



 Chapter 2 - Methods 

72 
 

 Right ventricular pressure 2.4.3

2.4.3.1 In mice 

RVP were measured by diaphragmatic catheterisation in mice. It is technically challenging 

to accurately obtain PAP by this method, and therefore RVP were taken as an indirect 

assessment of the PAP. After isolating and tying off the left common carotid artery, an 

incision was made right above the sternum. Heparinised saline (20units/mL) was flushed 

through the line and the attached calibrated 25mm gauge needle to ensure that there were 

no air bubbles in the system that may obscure the result. The needle was then advanced 

underneath the sternum, a couple of mm to the right hand-side at approximately a 100° 

angle using a micromanipulator (Warner Instruments, Connecticut, USA). Pressure 

recordings were monitored carefully to estimate the location of the needle. Initially, a drop 

in pressure was observed as the needle advances through the diaphragm and into the 

abdominal cavity. The right heart was then catheterised with the needle which should 

produce a reading that has even oscillations, with diastolic values of near zero (Figure 2-2). 

Every few seconds, breathing artefacts will appear in the trace (these were not included in 

the analysis). An upward shift of the diastolic and systolic values is typically a pressure 

that is observed in the left ventricle. If the needle is resting against the septum of the heart, 

this can sometimes cause an ambiguous reading. Therefore, if such a pressure was 

obtained, the needle was first carefully moved slightly to the left. If this did not improve 

the pressure reading, it is a good indication that the needle had entered the left side of the 

heart as opposed to the right.  

2.4.3.2 In rats 

In rats, anaesthesia was maintained at ~2% (v/v) isoflurane supplemented with oxygen at a 

flow rate of 1L/min. To maintain a constant body temperature, rats were placed on a heat 

mat throughout the entire procedure and their temperature was monitored with a 

temperature probe. Systemic arterial pressures (SAP) were obtained by microcannulation 

of the left common carotid artery, as previously described prior to cannulation of the right 

ventricle. Due to the larger size of the artery surgical non-sterile nylon black monofilament 

suture size 4-0 (Harvard Apparatus, Massachusetts, USA) was used. RVP were obtained 

by catheterisation of the right ventricle via the right jugular vein using a fluid-filled 

cannula (with heparin; 20units/ml). 
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All pressure readings were obtained with Biopac Systems MP35 using a SS132 Blood 

pressure transducer (Biopac Systems Inc, California, USA). Blood pressure traces were 

analysed using BSL Pro 3.7 (Biopac Systems Inc, California, USA). 

 
Figure 2-2 Representative right ventricular pressure 

A representative trace of right ventricular pressure (RVP; mmHg) obtained by transdiaphragmatic 
right heart catheterisation in a normoxic 3 month-old wild-type female mouse. 
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 Tissue harvest 2.4.4

Immediately following sacrifice, the heart and lungs were gently flushed with ice-cold 

Dulbecco’s phosphate buffered saline (DPBS) solution (Sigma-Aldrich, Dorset, UK) 

through the right ventricle. For molecular analysis, the lobes of the right lung were flash 

frozen in liquid nitrogen (polymerase chain reaction (PCR), protein and ELISA) and stored 

at -80ºC. For experiments where small vessel wire myography was performed, a lung lobe 

was retained for immunohistochemical analysis and the left lung was used for myography. 

For other experiments, the left lung was gently inflated with ~0.5ml (in mice) 10% (v/v) 

neutral buffered formalin (NBF; 90% (v/v) distilled water, 10% (v/v) formalin, 33mmol/L 

monosodium phosphate (NaH2PO4), 45mmol/L disodium phosphate (Na2HPO4)) and kept 

under gentle agitation in 10% NBF for a minimum of 4 hours prior to paraffin embedding 

(see section 2.6.1). Urine samples were collected by puncture of the bladder with BD 

Micro-Fine™ needle (BD, Oxford, UK) and immediately snap frozen. The uterus and 

ovaries were isolated and excised for assessment of dry weights and subsequently snap 

frozen. 

Other tissues were collected for the tissue repository (including kidneys, spleen and liver). 

Blood was collected in 100µL heparin sodium DPBS (10units of heparin). Cells were 

removed from the blood by centrifugation for 10 minutes at 2,000xg in a chilled centrifuge 

(4ºC) to obtain plasma. The plasma supernatant was pipetted into a chilled eppendorf and 

snap frozen. 

 16α-hydroxyestrone urinary analysis 2.4.5

16α-OHE1 concentration in urine samples was quantified by an enzyme linked 

immunosorbent assay (ELISA) (ESTRAMET 2/16, Demeditec Diagnostics, Germany) as 

per manufacturers’ instructions. Briefly, 16α-OHE1 was assayed with specific alkaline-

phosphatase–labelled conjugation, and quantification was determined by 405-nm 

spectrophotometry analysis (SpectraMax M2, Molecular Devices, US). 

 Right ventricular hypertrophy 2.4.6

RVH was assessed in all animal studies using Fultons’ Index (Fulton et al., 1952), by 

expressing the dry weight of the right ventricle over the dry weight of the left ventricle + 

septum (RV/LV+S). 
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 Small vessel wire myography 2.5

2.5.1.1 Isolation of the intra-pulmonary artery 

The main pulmonary artery branches into the left and right extra-pulmonary arteries from 

which the intra-pulmonary arteries descend (~200µm). The dorsal surface of the lung was 

carefully pinned down facing up. From this view, the hilum where the primary bronchi and 

pulmonary artery enter the lungs is visible. The pulmonary artery runs posterior to the 

bronchi along its length. The pulmonary artery was carefully excised from any peri-

adventitial tissue and cleaned up of parenchymal tissue. 

2.5.1.2 Vessel mounting onto a myograph 

The vessel bath chamber of each individual myograph unit (Multi Wire Myograph System 

– 610M; Danish Myo Technology A/S, Aarhus, Denmark) was filled with Krebs-Henseleit 

buffer (pH 7.4, mmol/L deionised water: 119 sodium chloride (NaCl),  4.7 potassium 

chloride (KCl), 1.2 magnesium sulphate (MgSO4), 25 sodium bicarbonate (NaHCO3), 1.2 

monopotassium phosphate (KH2PO4), 1.25 calcium chloride (CaCl2) and 11mM D-

glucose). Krebs-Henseleit solution was always prepared fresh on the day of isolation of 

vascular tissues. To obtain the optimal pH, the solution was oxygenated by a gas mixture 

containing 95% oxygen and 5% carbon dioxide. The myograph chamber was set to 37ºC 

and equilibrated and maintained with a constant gas flow of 16% oxygen, 5% carbon 

dioxide and 79% nitrogen. This gas composition was selected as it reflects the partial 

pressure of the lungs. Freshly isolated pulmonary arteries were maintained in Krebs-

Henseleit buffer and cut into ring segments of 2mm. The vessel was then cannulated with 

two pieces of 40μm diameter stainless steel wire (Danish Myo Technology A/S, Aarhus, 

Denmark) carefully to prevent damage to the endothelium. The vessel was mounted into 

the myograph chamber and secured in place and left to equilibrate in the buffer for 20 

minutes. 

2.5.1.3 Pressure Standardization 

Using the micrometer on the myograph, the pressure applied to the vessel was altered to 

mimic the transmural pressure present in vivo. All myography experiments performed were 

done in animals where RVSPs had been obtained and the pressure was set accordingly to 

this. To calculate the transmural pressure, P, the following equation was used (Mulvany & 

Halpern, 1977): 
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P = 2π x wall tension (t)/internal vessel circumference (L) 

t = force (f)/2x vessel length (v) 

L = (Xi– Xo) x 2 + 205.6; where Xi = applied tension; Xo=relaxed tension 

P/0.13333 =pressure in mmHg (0.1333kPa = 1mmHg) 

The internal circumference when the wires are touching is equal to 2 + π x 40µm (wire 

diameter size) = 205.6. 

Once the required transmural pressure had been achieved by gradual increments, the artery 

was left to stabilize for 30 minutes. The pulmonary arteries were contracted with 50nM 

KCl twice, with a wash step after the contraction had plateaued. Cumulative concentration 

response curves were then determined for serotonin (Sigma-Aldrich, Dorset, UK) at bath 

concentrations from 1nM to 100µM, incrementing in half log doses. The contraction to 

serotonin is represented as a % of the contractile response to the second KCl contractile 

response. 

All myography data was recorded and analysed using MyoDaq 20 (Danish Myo 

Technology A/S, Aarhus, Denmark). 
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 Immunohistochemistry 2.6

 Tissue Fixation and Paraffin Embedding  2.6.1

Tissue samples were immediately placed in NBF and placed on a shaker under gentle 

agitation for a minimum of 4 hours, depending on the size of the tissue. Formalin-fixed 

paraffin embedded tissue is optimum to help reduce background caused by expression of 

endogenous biotins. After fixation, tissue samples were dehydrated through a water-

histoclear gradient and then embedded in wax in a Citadel 1000 tissue processor (Thermo 

Scientific, UK), summarised in Table 2-1. Immediately prior to cutting for section-

mounting onto slides, tissue blocks were placed in -20˚C to help solidify the wax. Sections 

were cut at 3µm using a microtome (Leica RM2125, Leica Microsystems, Milton Keynes, 

UK), placed in water at 37˚C to gently melt the wax and then placed onto a polylysine-

coated slide (Sakura Finetek, Netherlands) to improve tissue adherence. For particularly 

sensitive antibodies, sections were cut, left to dry and then stored in the fridge and used 

within one week. For more commonly used antibodies, such as α-smooth muscle actin 

(αSMA), sections could be stored at room temperature for several months prior to staining. 
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Table 2-1 Process for paraffin-embedding small animal tissues 

Condition Small Tissue Samples  Larger Tissue Samples 

10% NBF 4 hours 8 hours 

70% Ethanol: Water 15 minutes 45 minutes 

80% Ethanol: Water 15 minutes 45 minutes 

95% Ethanol: Water 25 minutes 45 minutes 

95% Ethanol: Water 25 minutes 1 hour 

100% Ethanol: Water 15 minutes 1 hour 

100% Ethanol: Water 15 minutes 1 hour 

100% Ethanol: Water 15 minutes 1 hour 

Histoclear 30 minutes 1 hour 

Histoclear 30 minutes 1 hour 

Paraffin 30 minutes 1 hour 

Paraffin 30 minutes 1 hour 

Samples were maintained for a minimum of 4 hours in 10% neutral buffered formalin (NBF). 
Samples were however routinely maintained in NBF overnight. 

.
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 Immunohistochemistry 2.6.2

Sections were dewaxed in xylene for 30 minutes and rehydrated through an alcohol-water 

gradient (100% ethanol for 10 minutes, 100% ethanol for 5 minutes, 90% ethanol for 2 

minutes and 70% for 2 minutes). Sections were then washed in running water for 10 

minutes to ensure adequate rehydration. Antigen retrieval was performed using 10mM 

citric acid buffer (Citric acid monohydride dissolved in distilled water; Sigma-Aldrich, 

Dorset, UK), adjusted to pH 6.0 with 5M sodium hydroxide (NaOH), in a microwave for 4 

x 5 minutes and then left to cool at room temperature for 20 minutes. Formalin fixing of 

tissue can cause cross-linking of proteins which can mask the antigen site of interest and 

this step is therefore essential to prevent masking of proteins. The advantage of this type of 

fixing is that it preserves a good cellular morphology. Sections were then washed in 

running water for 10 minutes before blocking for 30 minutes in 3% (w/v) hydrogen 

peroxide solution (Sigma, Dorset, UK) to block endogenous peroxidase activity, which can 

be present at high levels in tissues and would yield a high background and non-specific 

staining. Sections were washed in running water before blocking with ready-to-use 2.5% 

(v/v) normal horse serum (ImmPRESS kit, Vector Labs, Peterborough, UK) for 1 hour at 

room temperature in a humidified chamber. Sections were then incubated with the relevant 

primary antibody overnight at 4ºC in a humidified chamber (see Table 2-2 for details on 

experimental conditions). The primary antibody diluent consisted of 1% (w/v) bovine 

serum albumin (BSA) in 10mM phosphate buffered saline (PBS) pH 7.4 (made using 

Sigma-Aldrich (Dorset, UK) tablets (2.7 mmol/L KCl, 137 mmol/L NaCl pH; 1 tablet 

dissolved in 200mL distilled water). The primary antibody was washed off in 3 x 10 

minute washes in tris-buffered saline (TBS) pH 8.4 (50mmol/L Tris, 150mmol/L NaCl) 

before incubation with an anti-rabbit Ig peroxidase polymer secondary antibody 

(ImmPRESS Kit, Vector Labs, Peterborough, UK) for 1 hour at room temperature. Excess 

secondary antibody was washed off in 3 x 10 minute washes with TBS. Positive 

immunolocalization was then visualised with a suitable chromagen for 2-15 minutes under 

the microscope (either 3,3’-diaminobenzidine (DAB) or Vector® VIP substrate kits, 

Vector Labs, Peterborough, UK). The reaction was terminated by immersion into running 

water once a positive signal had occurred with minimal background staining. Sections 

were then dehydrated through a water-ethanol gradient (70%, 90%, and 2 x 100% ethanol 

v/v) for 5 minutes in each solution, followed by 2 x 5 minutes in histo-clear (National 

Diagnostics, Georgia, USA) before mounting of slide sections on to cover slips using 

Tissue-Tek (Sakura Finetek, Netherlands). Staining was visualised and photographed using 
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a Zeiss Imager M.1 AX10 and axiovision Rel. 4.8 (Carl Zeiss Microscophy Ltd, 

Cambridge, UK). 

2.6.2.1 Haematoxylin and eosin counter-staining 

Rat sections were counter-stained with haematoxylin (nuclear stain) and eosin (cytoplasm 

and collagen) prior to dehydration and embedding. Sections were immersed in 

haematoxylin for 5 minutes and then rinsed in running water. Sections were differentiated 

in 1% acid-alcohol to remove excess stain. To enhance the blue stain, sections were placed 

into luke warm water followed by 3 minutes in eosin. Sections were rinsed in running tap 

water and then dehydrated through an ethanol gradient before mounting, as described 

above. 
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Table 2-2 Antibody manufacturers and optimal concentrations for immunohistochemistry 

Antibody Supplier Antibody Dilution 

CYP1B1 (rabbit pAb) Abcam-ab33586 1µg/mL 

α-SMA (rabbit pAb) Abcam-ab5694 0.4µg/mL 

vWF (rabbit pAb) Dako-A0082 3.1µg/mL 

To check for non-specific binding rabbit immunoglobulin G (IgG) were used at the same 
concentration as the primary antibody. All antibodies were polyclonal (pAb) and raised in rabbits. 
The secondary used for all immunohistochemistry experiments was therefore anti-rabbit. αSMA, α-
smooth muscle cell actin; vWF, von willebrand factor. 
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2.6.2.2 Quantitative Analysis of CYP1B1 Immunoreactivity 

Positive CYP1B1 immunoreactivity in murine and human pulmonary arteries was semi-

quantified by colorimetric analysis (MetaMorph, version 6.1, Molecular Devices, USA). 

The average pixel intensity of each image correlated to a greyscale range of 0 (black) to 

255 (white), with intermediate intensities being assigned an appropriate grey level.  

Preliminary studies were carried in randomly selected arteries to determine the pixel 

intensity range that corresponded with positive CYP1B1 staining. The colour threshold 

was selected to detect pixel intensity between 0 and 156 as representative of CYP1B1 

staining. Pulmonary arteries <80µm in mice and <200μm in human were selected and 

specifically analysed. The percentage threshold area detected was then expressed as the 

percentage of positive CYP1B1 immunoreactivity within the vessel wall. For both human 

and murine lung sections, a total of 15 pulmonary arteries from each lung were assessed. 

All immunoquantification was performed by Dr. Kirsty Mair. 

 Pulmonary vascular remodeling 2.6.3

Pulmonary vascular remodeling was assessed in 3µm sagittal lung sections stained with 

elastic picro-sirius red and pulmonary arteries <80µm external diameter was 

microscopically assessed for degree of muscularisation in a blinded fashion. The number 

of remodeled arteries was expressed over the total number of arteries present within the 

section and expressed as a percentage. To visualise the degree of muscularisation, 3µm 

sagittal lung sections were stained with α-SMA (Abcam, Cambridge, UK) as described 

above (see section 2.6.2).  

2.6.3.1 Elastic picro-sirius red staining 

Sections were dewaxed in histo-clear for 20 minutes and rehydrated through an alcohol-

water gradient (100% ethanol for 5 minutes, 100% ethanol for 5 minutes, 90% ethanol for 

minutes and 70% for 5 minutes). Sections were then washed in running water for 5 minutes 

to ensure adequate rehydration. The tissue section was then immersed into a 0.5% (w/v) 

potassium permanganate (KMNO4) solution for 5 minutes for oxidation to enhance 

staining. The sections were then rinsed in water and immersed into 1% (w/v) oxalic acid to 

decolorize the sections from the KMNO4 followed by an additional wash step. Sections 

were rinsed in 95% ethanol and then placed in Millers Elastin Stain (Thermo Scientific, 

UK) for 2 hours. Excess stain was removed by rinsing in 95% ethanol and then running tap 

water. Sections were counterstained with picro-sirius red for 3 minutes and then briefly 
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rinsed in water. Sections were dehydrated rapidly through a water-ethanol gradient (70% 

ethanol for 1 minute, 90% ethanol for 1 minute, 2 x 100% ethanol for 5 minutes each and 

then 2 x histo-clear for 5 minutes each. Sections were mounted onto cover slips as 

previously described. Staining was visualised using a Zeiss Imager M.1 AX10. The 

staining results in a black appearance of elastic fibres, a deep red colour in collagen and the 

cytoplasm, muscular cells, red blood cells and fibrin appear yellow.  

 Sodium dodecyl sulphate – polyacrylamide gel 2.7
electrophoresis 

 Protein solubilization 2.7.1

All tissue samples were homogenized in ice-cold 1% (v/v) lauryl maltoside (LM) buffer 

(Abcam, Cambridge, UK) in DPBS using a hand-held ultrasonic tissue homogenizer 

(Misonix XL-2000, Fisher Scientific, UK). Samples were kept on ice for 30 minutes to 

encourage protein solubilization, followed by ice-sonication. Samples were centrifuged to 

remove cellular debris at 10,000xg for 10 minutes at 4ºC and the supernatant was collected 

for protein estimation by a bicinchoninic acid (BCA) protein assay. 

 Bicinchoninic acid protein assay 2.7.2

Protein concentrations were determined using a BCA protein assay (Thermo Scientific, 

UK). The standard solutions ranged from 0-2mg/ml bovine serum albumin (BSA) solution, 

diluted in 1% (v/v) LM buffer in DPBS as required. In this reaction, copper in the reagent 

mix is reduced by the protein which reacts with the BCA to form a purple solution 

(greenpurple). Therefore, the more protein there is, the more intense the purple colour 

appears. Both the standards and the samples of interest were loaded onto a clear 96 well 

plate. Reagent A and Reagent B were mixed in the ratio 4.9ml to 0.1ml, respectively. 

200µl of this mixture was added to each well and left on a gentle shaker for 20-30mins. 

The plate was read at 562 nm using a POLARstar OPTIMA microplate reader (BMG 

Labtech, Germany). A representative standard curve is shown in Figure 2-3. 
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Figure 2-3 A representative bicinchoninic acid protein assay standard curve 

A representative standard curve obtained for BSA solution (0-2mg/ml) using a bicinchoninic acid 
(BCA) protein assay. Samples performed in duplicate. 
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 Western blotting 2.7.3

NuPAGE reducing agent was added to protein samples together with a sample buffer 

containing a blue dye for loading visualisation (NuPAGE lithium dodecyl sulfate sample 

buffer). Samples were heated for 15 minutes at 70°C in a heat block. This ensures adequate 

denaturing and reducing of protein disulphide bonds effectively exposing proteins to allow 

for efficient antibody binding. Samples were loaded onto Novex NuPAGE 4-12% 

polyacrylamide gels and separated according to protein size by a constant flow of an 

electrical current at 150volts in NuPAGE MOPS running buffer containing 1% (v/v) 

antioxidant using electrophoresis. See blue pre-stained protein standard was used as the 

protein ladder to determine approximate protein size. Once adequately separated, the 

proteins were transferred on to a polyvinylidene difluoride (PVDF) membrane (Millipore 

Corporation, Massachusetts, USA), which had been pre-activated by emersion in 100% 

methanol. This was performed using wet electroblotting in a transfer tank containing a 

transfer buffer consisting of 5% (v/v) NuPAGE transfer buffer, 20% (v/v) methanol, and 

1% (v/v) antioxidant prepared in distilled water. This was run at 30volts for 2 hours to 

allow for sufficient transfer of proteins onto the PVDF membrane. To check for transfer 

efficiency, blots were immersed in Ponseau S solution (0.1% (w/v) Ponseau S in 5% (v/v) 

acetic acid). This stains all proteins to allow for visualisation. This was subsequently 

washed off with water, reactivated with methanol and the membranes were transferred into 

a 5% (w/v) non-fat milk solution (marvel) in 0.1% (v/v) Tween 20 (Fisher Scientific, 

Loughborough, UK) in TBS (TBST: pH 7.6) to block the membrane to prevent non-

specific binding of the antibody for 1 hour at room temperature. Blots were rinsed in TBST 

and then incubated with the primary antibody overnight in either 5% (w/v) marvel in TBST 

or 5% BSA in TBST overnight at 4°C (See Table 2-3 for details). The unbound primary 

antibody was then washed off the blot by 3 consecutive washes in TBST each lasting 10 

minutes. The corresponding secondary antibody to which the first antibody was raised in 

(see Table 2-3 for details), linked with horseradish peroxidase (HRP) was then applied to 

the membrane at a 1:5000 dilution in 5% marvel TBST for 1 hour at room temperature 

with gentle rocking. The membrane was washed 3 times in TBST for ten minutes and 

antibody binding was detected by enhanced chemiluminescent (ECL) using Pierce ECL 

(Thermo Scientific, UK) or Immobilon western chemiluminescent HRP substrate (Merck 

Millipore, Massachusetts, USA) and developed onto film. The membranes were then 

washed and stripped using Restore western blot stripping buffer (Thermo Scientific, UK) 

and re-probed with a loading control (Glyceraldehyde 3-phosphate dehydrogenase, 
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GAPDH). For quantification, the densitometry was analysed using TotalLab 1D gel 

analysis (TotalLab, UK). 
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Table 2-3 Experimental details for antibodies used for protein analysis by western blotting 

Antibody Supplier  Antibody dilution human Detected band size 

CYP1B1 (rabbit pAb) Abcam-
ab33586 

0.2µg/mL in 5% non-fat milk 61kDa 

Aromatase (rabbit pAb) Abcam-
ab69653 

1µg/mL in 5% non-fat milk 58kDa 

COMT Sigma-
HPA001169 

1µg/mL in 5% non-fat milk 28kDa 

17β-HSD1 HPA021032 1µg/mL in 5% non-fat milk 35kDa 

GAPDH (mouse mAb) Abcam-
ab9484 

0.2µg/mL in 5% non-fat milk 40kDa 

Experimental details of antibodies used for protein analysis by western blotting. All antibodies were 
prepared in 5% non-fat milk in 0.1% tween tris buffered saline. A dilution factor is provided where 
the antibody concentration is not supplied by the manufacturer. Specified next to the primary 
antibody is the species that the antibody was raised in. pAb, polyclonal antibody; mAb, monoclonal 
antibody; GAPDH (loading control), glyceraldehyde-3-phosphate dehydrogenase. 
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 RNA analysis 2.8

 RNA extraction 2.8.1

To extract RNA from tissue samples, lysis was performed using QIAzol lysis reagent and 

extracted with the miRNEASY extraction kit according to manufacturer’s instructions. For 

both cell extractions and tissue extractions 700μl QIAzol was used. Where required, tissues 

were homogenised with a TissueLyser II using stainless steel beads for a total of 2 minutes, 

with 30 second intervals every 30 seconds (to prevent overheating of the samples risking 

RNA degradation). Samples were left at bench top for 5 minutes to promote dissociation of 

nucleoprotein complexes. To extract the RNA, 140μl of high grade chloroform was added 

and shaken vigorously. Samples were left for a further 3 minutes to encourage sample 

separation of RNA from DNA, proteins and lipids and then centrifuged at 12,000xg for 15 

minutes at 4ºC. The upper aqueous layer formed contains the RNA which was carefully 

transferred into a 1.5ml eppendorf and the remaining products were discarded. The RNA 

suspension is then precipitated with 1.5 x volumes of 100% high grade RNA-free ethanol 

and mixed by pipetting the mixture up and down. Half the sample is transferred into a spin 

column, which is provided in the extraction kit. The column contains a silica membrane 

that binds the RNA from the sample. The sample was centrifuged at 8,000xg for 15 

seconds at room temperature and the resulting elute was discarded and the process was 

repeated with the remaining sample. The captured RNA on the membrane is then washed 

with RWT buffer. To ensure adequate clean-up of contaminating DNA, DNase was added 

to the membrane and left at room temperature for 15 minutes. The sample was then washed 

again with RWT buffer followed by a wash with RPE buffer. All washes were removed by 

centrifugation at 8,000xg for 15 seconds at room temperature. The spin column was then 

transferred into a new 1.5ml eppendorf. 30µl of RNase free water was pipetted directly 

onto the RNA-enriched membrane and eluted by centrifugation for 1 minute at 8,000xg. 

The isolated samples were immediately transferred to ice. To determine RNA 

concentrations and purity, samples were analysed by a NanoDrop, ND-1000 

spectrophotometer (Thermo Scientific, UK) prior to storage in -80ºC. The NanoDrop 

measures the absorbance of a sample. RNA absorbs light at a wavelength of 260nm, whilst 

proteins absorb at a wavelength of 280nm. Thus the purity of the sample can be determined 

by expressing the absorbance at 260nm/280nm. All samples analysed had a 260/280 ratio 

of ~2. 
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 Reverse transcription 2.8.2

Extracted RNA samples were reverse transcribed with TaqMan® reverse transcription 

reagents (Life Technologies, Paisley, UK) as per manufacturers’ instructions. 1µg RNA 

was transcribed per sample in a cocktail of RT-buffer, 25mM magnesium chloride 

(MgCl2), deoxynucleotide triphosphates (dNTPs), random hexamers, RNase inhibitors and 

Multiscribe. Reverse transcription was performed using the Veriti® Thermal Cycler (Life 

Technologies, Paisley, UK) under the following cycling conditions: 10 minutes at 25ºC 

(maximised primer RNA template binding), 30 minutes at 48ºC for reverse transcription 

and 5 minutes at 95ºC to deactivate reverse transcription. 

 Quantitative real time-polymerase chain reactions 2.8.3

Gene expression was determined using TaqMan® mastermix and primers for mouse 

cyp1b1 (Mm00487229_m1) and normalised to β2-microglobulin (Mm00437762_m1). 

Samples were analysed using the ViiA7™ Real-Time PCR System (Life Technologies, 

Paisley, UK) with the following cycling conditions: 50ºC for 2 minutes to activate uracil N 

glycosylase (degrades DNA), 95ºC for 10 minutes to activate DNA polymerase followed 

by 50 cycles of 95ºC for 15 seconds for denaturation and 60ºC for annealing and extension. 

 Cell culture 2.9

 Human pulmonary arterial smooth muscle cells 2.9.1

HPASMCs were generated at the University of Cambridge and kindly provided by 

Professor Nicholas W. Morrell (University of Cambridge). HPASMCs were explanted 

from the distal pulmonary microvasculature (vessels with <1mm external diameter) from 

subjects with no reported presence of PH and patients with either HPAH or IPAH. Control 

samples were obtained from unused donor tissues. PAH hPASMCs were obtained at lung 

or heart-lung transplantations. Both male and female samples were used in these studies as 

specified within text. The smooth muscle cell phenotype was confirmed by positive α-

SMA staining by immunofluorescence. All tissue culture experiments were carried out 

under sterile conditions in a class II laminar flow hood. 

Distal hPASMCs were isolated as previously described by either microdissection or 

magnetic isolation (Wharton et al., 2000) and provided by Professor Nicholas Morrell 

(University of Cambridge). Samples were stored in liquid nitrogen facilities in 10% 
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dimethyl sulfoxide (DMSO) (v/v) in 10% (v/v) fetal bovine serum (FBS) Dulbecco’s 

modified eagle medium (DMEM). DMSO is a cryoprotectant that aids in reducing cell 

death during the slow-freezing process to liquid nitrogen (-196˚C). HPASMCs brought up 

from liquid nitrogen were kept on dry ice before rapidly defrosting the cells by dipping the 

bottom part of the vial into a 37˚C water bath. Once the contents in the vial had thawed, the 

exterior of the vial was wiped with 70% ethanol to prevent contamination. Even dispersion 

of the cells was ensured by pipetting the suspension up and down. To determine the 

number of viable cells present, 20µL of the cell suspension was diluted in an equal volume 

of Trypan Blue 0.4% solution (Sigma-Aldrich, Dorset, UK) and counted using a 

haemocytometer, counting each 16 squares in the four different corners to obtain an 

average. Trypan blue detects cell viability as viable cells do not absorb the dye, whilst dead 

cells are permeable to the dye and appear a dark blue colour. The haemocytometer is 

designed so that the number of cells in one set of 16 squares is equivalent to the number of 

cells x 10
4
/mL. Cells were diluted in 10% FBS (v/v; Sera Laboratories International, West 

Sussex, UK) 1% antibiotic antimycotic (AA) DMEM at the required cell density. Cells 

were plated at a density of 10,000 cells per cm
3
 in a T75 flask. Cells were then incubated at 

37˚C, 5% CO2, 95% air humidified cell culture incubator. Cells were left to adhere for a 

minimum of 24 hours and thereafter fed fresh media every 24 or 48 hours. DMEM 

contains phenol red, a pH indicator which progresses from a red colour to a yellow colour 

as the pH of the medium decreases which can be a result of a bacterial infection, cellular 

death or more commonly just a gradual reduction in pH in response to waste products 

released from the cells. All cell culture medium contained 1% (v/v) AA (10,000 unit’s 

penicillin, 10 mg streptomycin and 25μg amphotericin B per mL). Penicillin prevents 

bacterial cell growth by inhibiting cell wall synthesis. Streptomycin is a bacterial protein 

synthesis inhibitor and amphotericin B is an anti-fungal agent. 

2.9.1.1 Sub-culturing of human pulmonary arterial smooth muscle cells 

Cells were grown until near confluency and sub-cultured for further experiments and 

studied between passages 3 and passages 8. The cell culture medium was aspirated from 

the flasks and washed twice with sterile DPBS. 2mL of 0.25% trypsin/EDTA solution 

(0.1% (w/v) EDTA in PBS, Life Technologies, Paisley, UK) was added to the flask and 

swirled to distribute the solution over the entire surface of the flask. Trypsin cleaves 

proteins, thereby detaching them from the flask. The flask is returned to the cell culture 

incubator for approximately 3 minutes until all of the cells have developed a round 

morphology, whereby the flask is gently tapped to dislodge the cells. Immediately, 8mLs 
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of fresh 10% FBS DMEM was added to the flask to terminate the effects of trypsin. Cells 

were sub-cultured into 6 well plates at a density of 7,500 to 10,000 cells per cm
2
.The cell 

culture medium was replaced the following day and then every 24 or 48 hours after.  All 

cells were grown to the required level of confluency for subsequent experiments prior to 

cell-cycle synchronisation by serum deprivation in 0.2% charcoal-stripped (CS)-FBS in 

phenol-red free (PRF) DMEM for 24 hours. The cell culture medium was replenished after 

24 hours and the relevant agonists or antagonists were added to the wells for cell growth 

assays. 

 
Figure 2-4 Distal human pulmonary arterial smooth muscle cell morphology 

Microphotograph of distal female control human pulmonary arterial smooth muscle cells grown in a 
96 well culture dish. 
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 Charcoal-stripped fetal bovine serum  2.9.2

Endogenous estrogens present in FBS were removed by charcoal stripping. Dextran-

activated charcoal selectively removes non-polar components from serum including 

hormones. Dextran-coated charcoal (Sigma-Aldrich, Dorset, UK) was added to FBS at a 

concentration of 1g/100mL and left at 4ºC under gentle agitation. Samples were 

subsequently centrifuged at 1,811xg at 4ºC for 30 minutes. The stripped serum was 

decanted and filtered through a 0.22µm filter. This process was repeated and samples were 

aliquoted and frozen until use. Successful removal of 17β-E2 was determined by a 

competitive based immunoassay (Cayman Chemical, Michigan, USA; see section 2.12). 

This serum was used in all cell culture experiments. 

 

Figure 2-5 Removal of 17β-estradiol from foetal bovine serum 

17β-estradiol (17β-E2) was removed from foetal bovine serum (FBS) by charcoal stripping twice 
with dextran-coated charcoal. Samples were filtered to remove charcoal from samples with a 
0.22μm filter and assayed by a competitive 17β-E2 specific ELISA. 
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 Thymidine incorporation assay 2.10

To measure cellular proliferation, the incorporation of 
3
H-labelled thymidine into 

chromosomal strands of replicating DNA during mitosis was measured. HPASMCs were 

seeded in 24-well plates at a density of 7,500 cells per cm
2
. Cells were grown to ~60% 

confluency in 10% DMEM and then quiesced for 24 hours to arrest the cell cycle and 

synchronise the cells in 0.2% (v/v) CS-FBS, PRF-DMEM. Cell culture medium was 

replaced with 1% charcoal stripped PRF-DMEM and stimulated with agonists/antagonists 

for 72 hours. To investigate effects of antagonists, drugs were incubated with the cells for 

30 minutes prior to addition of an agonist. Drugs and media were replaced every 48 hours. 

3
H-Thymidine (Perkin Elmer, Cambridgeshire, UK) was added to the culture medium 

(0.1μCi) for the last 24 hours.  

To terminate the experiment, the medium was removed and the cell monolayer was washed 

twice with DPBS. Protein samples were purified by protein precipitation with 0.5mL 5% 

(w/v) tricholoacetic acid washes 3 times followed by cell lysis with 0.5ml 0.3M NaOH for 

a minimum of 30 minutes. The cell lysate was collected in 1mL Ecoscint A scintillation 

fluid (National Diagnostics, Georgia, USA), vortexed and left to settle for 2 hours. The 

total 
3
H thymidine was measured using a Tri-Carb 2800TR β-scintillation counter (Perkin 

Elmer, Cambridgeshire, UK). 

 CellTiter-Glo® luminescent cell viability assay 2.11

To determine the number of viable cells, the CellTiter-Glo® luminescence cell viability 

assay (Promega, Wisconsin, USA) was used, as described in the manufacturers’ protocol. 

This assay measures the amount of adenosine triphosphate (ATP) present in the cells using 

beetle luciferin, which undergoes oxidation by luciferase in the presence of ATP, 

magnesium and oxygen, emitting a luminescent signal. Therefore the amount of 

luminescence is directly proportional to the amount of ATP present in the cells which 

strongly correlates with cell number. 

Briefly, cells were plated in 96-well opaque walled clear-bottomed plates (Greiner Bio 

One, Stonehouse, UK) at a density of 7,500 cells per cm
2 

in 10% (v/v) FBS DMEM. At 

60% confluency, cells were quiesced in 0.2% (v/v) CS-FBS DMEM for 24 hours prior to 

addition of relevant agonists/antagonists, as described previously for thymidine 

incorporation assays (see section 2.10). The cell culture plates were removed from 
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controlled incubators and allowed to equilibrate to room temperature for about 30 minutes. 

An equal volume of the CellTiter Glo® reagent to the amount of media present in the wells 

was added to each well, alongside 3 blanks containing only cell culture medium (no cells 

for background luminescence). The plate was placed onto an orbital shaker to induce cell 

lysis and approximately 10 minutes was allowed for stabilisation of the luminescent signal. 

Luminescence was recorded using a luminometer (POLARStar OPTIMA, BMG Labtech, 

Germany). 

 17β-estradiol immunoassay 2.12

The levels of 17β-E2 were determined by competitive based immunoassay in whole lung 

samples from female wild-type and SERT+ mice and in hPASMCs from control and PAH 

patients. All tissue samples were homogenized in ice-cold 1% (v/v) LM buffer in DPBS 

using a hand-held ultrasonic tissue homogenizer (Misonix XL-2000, Fisher Scientific, 

UK). Samples were kept on ice for 30 minutes to encourage protein solubilization, 

followed by ice-sonication. Samples were centrifuged to remove cellular debris at 

10,000xg for 10 minutes at 4ºC and the supernatant was collected for protein estimation by 

a BCA protein assay (see section 2.7.2). 400µg of protein were loaded for mouse lung 

samples and 30µg of protein was loaded for hPASMCs samples. Each sample was 

performed in duplicate. 17β-E2 levels were determined by a 17β-E2 enzyme-linked 

immunosorbent assay kit as per manufacturer’s instructions (Cayman Chemical, Michigan, 

USA), which is summarized in Figure 2-6. Briefly, a constant amount of 17β-E2 

acetylcholinesterase conjugate (17β-E2 tracer) competes with 17β-E2 for binding with 

17β-E2 antiserum. Therefore, the amount of bound 17β-E2 tracer is inversely proportional 

to the concentration of 17β-E2 present in the sample. The plate supplied is pre-coated with 

a mouse monoclonal anti-rabbit IgG which binds free 17β-E2 antiserum. The plate was 

then washed with UltraPure Water (Cayman Chemical, Michigan, USA) five times to 

remove any unbound reagents. The activity of the acetylcholinesterase bound to the plate is 

measured by addition of Ellman’s reagent and read at a wavelength of 405nm for kinetic 

and end point measurements (SpectraMax M2 plate reader, Molecular Devices, California, 

USA).
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Figure 2-6 Schematic of the 17β-estradiol immunoassay 

Image kindly provided by Cayman Chemical, Michigan, USA 
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 17β-estradiol levels in extracellular medium 2.12.1

There is evidence that suggests that synthesis and metabolism of estrogens is increased in 

PAH. Thus, we investigated 17β-E2 uptake into cells by measuring the depletion from the 

extracellular medium as an indirect measurement of 17β-E2 metabolism in cells. Female 

hPASMCs derived from PAH patients and non-diseased controls were plated at a density 

of 10,000 cells per cm
2
 in 6-well plates and grown until near confluency. Cells were 

quiesced in 0.2% (v/v) CS-FBS PRF-DMEM for 24 hours and then stimulated with 1nM 

17β-E2 (544.76pg) for 10 minutes and 24 hours. At the termination of the experiment, cells 

were placed on ice and the spent medium was collected and the intact cells were lysed in 

1% (v/v) LM solution in DPBS for protein correction using a BCA protein assay. Levels of 

17β-E2 in the medium were determined using the 17β-E2 EIA, as previously described 

(see section 2.12). 

 High performance liquid chromatography 2.13

All aqueous and organic solvents were glass-distilled, high performance liquid 

chromatography high performance liquid chromatography (HPLC) grade. 

There is evidence that altered estrogen synthesis and metabolism may figure prominently 

in PAH. However, to date, limited knowledge is available on the dynamic regulation of 

estrogen metabolism in PAH. This is partly due to challenges in measuring steroid 

compounds and a lack of availability of immunoassays. To address this question, we 

developed a methodology to quantitatively measure estrogen metabolism in cell cultures 

using HPLC with ultraviolet (UV) and radiochemical detection. 

 Optimisation of separation of estrogen metabolites by high 2.13.1
performance liquid chromatography 

Fifteen estrogens and estrogen metabolites, including oestrone (E1), 17β-estradiol (17β-

E2), estriol/16α-hydroxyestradiol (16α-OHE2), 17α-estradiol (17α-E2), 16-epiestriol (16-

epi-E3), 17-epiestriol (17-epi-E3), 2-hydroxyestrone (2-OHE1), 2-hydroxyestradiol (2-

OHE2), 4-hydroxyestrone (4-OHE1), 4-hydroxyestradiol (4-OHE2), 2-methoxyestrone (2-

MeOHE1), 2-methoxyestradiol (2-MeOHE2), 4-methoxyestrone (4-MeOHE1), 4-

methoxyestradiol (4-MeOHE2), 16α-hydroxyestrone (16α-OHE1) were obtained from 

Steraloids, Inc. (Newport, USA). All steroids were dissolved in 0.1% ascorbic acid (w/v) 

methanol at a concentration of 0.25mg/ml. Ascorbic acid was added to the samples to 
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prevent non-specific oxidation. Samples were diluted in a mobile phase consisting of water 

(W), acetonitrile (A) and methanol (M) in the ratio 50-30-20, respectively (WAM) to 

10µg/mL. Initially, all steroids were separated by HPLC and detected by UV light. HPLC 

separation was carried out on a Sunfire C18 column (150mm x 4.6mm internal diameter 

column packed with 5µm C18 particles, Waters, Hertfordshire, UK), maintained at 25ºC. 

A total of 200μl of each steroid standard solution (equivalent to 2µg) was injected onto the 

HPLC column at a flow rate of 1ml per minute using a ASI-100 automated sample injector 

(Dionex, California, USA) and a P680 HPLC pump (Dionex, California, USA). Samples 

were initially analysed on a HPLC photo diode array detector (PDA) Dionex PDA-100 at 

wavelengths λ190nm to λ220nm (Dionex, California, USA) to determine the optimum UV 

that delivers the best spectral profile and maximal absorbance. 

Due to the structurally similarity of estrogen compounds, including structural isomers (for 

example, 17β-E2 and 17α-E2), to obtain a single chromatogram of all 15 estrogen 

metabolites, it was essential to use a gradient elution mode. This utilizes graded mobile 

phase compositions to improve the separation of the compounds. The interaction of the 

compounds with the column stationary phase and the mobile phase will determine its 

unique elution profile. All estrogen metabolites were successfully separated on gradient 

elution mode at 25ºC and detected at 200nm. The initial mobile phase consisted of 50-10-

40 WAM which was maintained for 1 minute. The mobile phase was altered to 55-40-4 

over a gradient from 1 to 8 minutes and maintained for 2 minutes under these conditions. 

The mobile phase was then switched to 50-30-20 in a ballistic gradient over 1 minute and 

maintained in these conditions for a subsequent 9 minutes. The mobile phase reverted back 

to the initial conditions for stabilisation of the UV signal for 10 minutes. 

 Optimization of estrogen metabolite extraction 2.13.2

Prior to HPLC analysis, estrogens were extracted from their biological matrix to remove 

interferences and maximise recoveries. Initially, we wished to assess the optimal extraction 

method for complete recovery of all the estrogen metabolites. We tested both solvent 

extractions and solid phase extraction (SPE) using Oasis® HLB Columns (Waters, 

Hertfordshire, UK).  

2.13.2.1 Solvent Extractions 

To assess the ability of solvent extractions to extract estrogen metabolites we used ethyl 

acetate, diethyl ether and dichloromethane in the ratios (aqueous: solvent) 1:1, 1:5 and 1:10 
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(except for dichloromethane where we were unable to separate the solvent from the 

biological matrix at the ratio 1:1). A mixture of all the standards (dissolved in 0.1% (w/v) 

ascorbic acid methanol) was added to 500μl of the biological matrix; 0.1% (w/v) ascorbic 

acid, 1% CS-FBS PRF-DMEM. Medium samples with an equal volume of 0.1% (w/v) 

ascorbic acid in methanol was also prepared for extraction. The former is known as pre-

spiking, where the standards are added into the biological matrix prior to the extraction. 

This can then be compared to the latter, where the standard solution is added to the sample 

after the extraction (post-spiking). This tests the efficiency of the extraction method. To 

each mixture, the relevant solvent was added and thoroughly vortexed and then allowed to 

separate on the bench top. Ethyl acetate and diethyl ether are less dense than the biological 

matrix and form the upper layer of the separation, which was carefully removed. In 

contrast, dichloromethane is denser and thus separates into the bottom layer. The mixture 

of estrogen standards was then added to the post-spiked samples. The samples were 

reduced to dryness under a gentle stream of oxygen free nitrogen gas at room temperature 

and reconstituted in the initial mobile phase (WAM 50-10-40).  

2.13.2.2 Oasis SPE Extraction 

A mixture of all the standards (dissolved in 0.1% (w/v) ascorbic acid methanol) was added 

to 10mL of the biological matrix; 0.1% (w/v) ascorbic acid, 1% CS-FBS PRF-DMEM. The 

Oasis® HLB reverse-phase cartridges 3 cubic centimetres 60 mg (Waters, Hertfordshire, 

UK) were placed onto a vacuum manifold to encourage flow (Waters extraction manifold, 

Waters, Hertfordshire, UK). The sorbent bed was preconditioned with 3mL methanol and 

3mL water prior to loading the sample (steroid standards in biological matrix and the 

biological matrix without any steroids), which was allowed to pass through the cartridge. 

The steroids were retained on the column which was subsequently re-equilibrated with 

3mL water followed by a 3mL wash with 5% (v/v) methanol in 95% water. All organic 

and aqueous solvents contained 0.1% (w/v) ascorbic acid. The steroids were then eluted 

through the cartridge with 0.1% (w/v) ascorbic acid in 100% methanol. The eluted samples 

were dried under a gentle stream of oxygen free nitrogen gas at room temperature and 

reconstituted in the initial mobile phase (50-10-40 WAM). This methodology is 

summarised in Table 2-4. 

Extraction recovery percentages for both solvent extractions and SPE were calculated by 

dividing the mean integrated peak areas from pre-spiked samples by the mean integrated 
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peak areas from post-spiked samples and control samples (no extraction) and multiplied by 

100. 

Table 2-4 Oasis® HLB extraction of Estrogen metabolites 

Solid phase extraction with Oasis® HLB 

Condition 3mL Methanol 

 3mL Water 

Loading Sample 

Re-equilibrate 3mL Water 

Wash 3mL 95% water in methanol 

Elution 3mL methanol 

 

2.13.2.3 High performance liquid chromatography 

100μl of sample was injected onto the HPLC column and run under a gradient elution 

mode, as previously described (See section 2.13.1).  

2.13.2.4 Extraction of radiolabelled 14C-17β-estradiol and optimisation of 
concentration required for optimum detection 

14
C-4C-17β-E2 (

14
C-17β-E2) specific activity, 55mCi/mmol; concentration, 0.1mCi/mL) 

was obtained from American Radiolabelled Chemicals, Inc. (Missouri, USA). 
14

C-17β-E2 

was selected as the suitable isotope as the deuterated form (
3
H-17β-E2) may lose 

deuteriums during CYP metabolism. The Oasis® HLB columns obtained the best 

recoveries of all estrogen metabolites (Chapter 5). The same methodology was therefore 

tested for the extraction of radiolabelled 17β-E2.  

To determine the optimal concentration of 17β-E2 to use for subsequent experiments, we 

required a concentration that provided maximal peak intensity in the radiolabelled detector 

without saturation of the signal (to allow greatest chance of detection of metabolite 

formation). The molar concentration of 
14

C-17β-E2 is calculated by dividing the 

radioactivity concentration by the specific activity (1.818mmol/L). The maximum peak 

intensity was obtained with 0.074µl of 
14

C-17β-E2. The optimal concentration was 50nM 

in 10mL (136.19ng), which was used for all subsequent experiments. This concentration 

allowed us to run the sample in replicate, a minimum of 3 times.   Radioactivity (counts 
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per minute) was determined by a radio HPLC detector (Berthold LP509, Berthold 

Technologies, Bad Wilbad, Germany).  

 Estrogen metabolism in cells 2.13.3

HPASMCs (passages 3-6) were seeded in 100mm tissue culture plates at a density of 

10,000 cells per cm
2
 and grown to near confluency. Cells were synchronised by serum 

deprivation for 24 hours in 0.2% CS-FBS, PRF-DMEM. After 24 hours, the cell culture 

media was replaced with 1% CS- FBS, PRF-DMEM to maintain adequate growth. To 

assess 17β-E2 metabolism, cells were exposed to 
14

C-17β-E2 at the pre-optimized 

concentration of 50nM (136.19ng) for various time-points (0, 10, 30 minutes, 1, 2, 4, 24, 

48 hours). At the end-point, cell culture plates were placed on ice; the spent, metabolite-

enriched medium was collected with 0.1% ascorbic acid to prevent oxidation of the 

extremely sensitive catechol estrogens and frozen at -20°C prior to SPE extraction (see 

section 2.13.2.2) and HPLC analysis. After SPE extraction, standards were added to the 

sample at a concentration of 10µg/mL for peak identification. The cell monolayer was 

washed twice with 10mL of ice cold DPBS, and lysed with a 1% LM (v/v) in DPBS. Cells 

were carefully scraped from the surface of the culture dish and placed in a pre-chilled 

eppendorf for 30 minutes. Cells were then further lysed by sonication in an ice bath (3 x 30 

seconds), centrifuged at 10,000xg for 10 minutes at 4ºC. The supernatant was removed and 

placed in a fresh, ice-chilled eppendorf and frozen at -20°C, prior to BCA analysis to 

determine the protein concentration for normalisation of results. 

2.13.3.1 High performance liquid chromatography 

100µl of the extracted product and steroids applied to the column was separated by HPLC 

and detected by a UV and radio-labelled detection system. The sample was separated using 

a Sunfire C18 column and maintained at 25ºC. To confirm peak identity, the samples were 

also separated with an Allure Biphenyl 5µm, 4.6 x 150mm column (Thames Restek, 

Buckinghamshire, UK) at 30ºC with reverse phase chromatography in isocratic mode using 

water and methanol in the mobile phase (32% water:78% methanol). All peak integrations 

for quantification were obtained from the sample run in the Allure Biphenyl column. 

All HPLC data analysis was performed with Chromeleon 6.5 chromatography data system 

(Dionex, California, USA). 
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 Statistical analysis and data handling 2.14

Data was processed and analyzed using GraphPad Prism 5 (California, USA). Data is 

represented as the groups mean ± the standard error of the mean (SEM). Data was analyzed 

by a student’s t test (where there were only two groups) or a Bonferroni’s Post Hoc test 

(when comparing across all groups). 
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Chapter 3 

The Estrogen Metabolizing Enzyme Cytochrome 
P450 1B1 Influences the Development of 

Pulmonary Arterial Hypertension
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 Introduction 3.1

Despite the complexity and multi-factorial pathology associated with PAH, the incidence 

of both IPAH and HPAH is more common in women than in men (Badesch et al., 

2010;Ling et al., 2012;Shapiro et al., 2012). This suggests that sex hormones may be 

mediating pathological effects in the presence and absence of genetic susceptibilities. This 

is supported by evidence that estrogens are important during lung development, normal 

physiology and pathophysiology (reviewed by Carey et al., 2007;Townsend et al., 2012). 

17β-E2, the main pre-menopausal hormone, is metabolised by various CYP enzymes to 

both pro- and anti-proliferative metabolites. Aberrant expression of CYP1B1, a major 

extra-hepatic estrogen-metabolizing enzyme, has been reported in both pre-clinical models 

of PAH (White et al., 2011a) and in human PAH (Austin et al., 2009). A genetic 

polymorphism in CYP1B1 (Asn453Ser; N453S), which is associated with an increased 

rate of degradation of CYP1B1 (Bandiera et al., 2005) is more common in patients with a 

BMPR-2 mutation without any evidence of PAH (Austin et al., 2009). This suggests that 

CYP1B1 activity is involved in the development of PAH in patients harbouring a BMPR-2 

mutation. Epidemiological evidence highlights a detrimental role for female gender in 

PAH, yet there is a paucity of understanding of the basis of this. Altered metabolism by 

aberrant CYP1B1 activity may underlie this, yet its contribution to PAH has so far been 

undetermined.  

In premenopausal women, the predominant circulating estrogen is 17β-E2. In women, 

circulating levels of 17β-E2 vary depending on the estrous cycle. In the follicular phase, 

circulating concentrations of 17β-E2 are about 100pg/mL (~0.37nM) and during ovulation 

these levels rise to about 600pg/mL (~2.20nM). After menopause, 17β-E2 levels are 

dramatically reduced up to 20-fold lower (Mendelsohn & Karas, 1999). Furthermore, 

vascular cells can modulate their own estrogenic milieu by the local conversion of 

testosterone or androstenedione to 17β-E2 and E1 respectively (Harada et al., 1999). 17β-

E2 and E1 can be interconverted to one another by the activity of 17β-HSD enzymes. In 

hPASMCs 17β-E2 at 1nM increases the expression of CYP1B1 and cellular proliferation 

(White et al., 2011a).  

CYP1B1 is a member of the CYP superfamily, which are monooxygenase enzymes that 

substitute a hydrogen atom to a hydroxyl group in the presence of oxygen and NADPH. 

CYP1B1 preferentially hydroxylates at the C4 position of the aromatic ring of 17β-E2 and 
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to a lesser extent, at the C2 and C16 positions (Badawi et al., 2001;Hanna et al., 2000;Lee 

et al., 2003). CYP metabolites can then undergo further metabolism by the activity of 

COMT to their methylated metabolites. Increased activity and expression of CYP1B1 has 

already been reported in many diseases including breast cancer (McKay et al., 1995), lung 

cancer (Murray et al., 1997), ovarian cancer (McFadyen et al., 2001), and systemic 

hypertension (Jennings et al., 2010). Yet, the contribution of CYP1B1 to the development 

of PAH remains uncertain.  

Here, we investigate the potential pathological contribution of CYP1B1 metabolism of 

17β-E2 on the development of PAH. We demonstrate increased CYP1B1 expression in 

both experimental and clinical PAH which may direct the intrinsically regulated 

metabolism of 17β-E2 towards the formation of pro-proliferative metabolites. Furthermore, 

we demonstrate an essential function of CYP1B1 on the development of experimental 

PAH supporting a putative pathological role of CYP1B1 metabolism in this highly 

prevalent disease in females. We provide evidence for gender differences in PAH, that 

suggests estrogen-related therapies, particularly through inhibition of pathological 

metabolism through CYP1B1, may be a promising therapeutic strategy in some patients.  

Aims of this chapter 

1. To functionally and molecularly characterise the impact of estrogen metabolism by 

CYP1B1 to the development of PAH in vivo 
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 Results 3.2

 Hypoxia alters the estrogen metabolic axis in human 3.2.1
pulmonary arterial smooth muscle cells 

Hypoxia is a mediator in PAH pathogenesis and we therefore wished to investigate 

whether oxygen deprivation alters components of the estrogen-metabolic axis in 

hPASMCs. CYP1B1 transcription is predominantly mediated by translocation of the AhR 

to the nucleus where it associates with the ARNT and binds to DRE. HIF1α is a master 

regulator of hypoxia-induced gene expression. HIF1α mediates gene transcription in 

response to hypoxia by the AhR pathway by binding of the HIF1α-ARNT complex to 

hypoxia-response genes. There is therefore a close link between the AhR pathway, hypoxia 

and CYP1B1 and we were therefore interested to investigate the effect of hypoxia (1% 

oxygen) on CYP1B1 expression. Hypoxia increased the expression of CYP1B1 (Figure 

3-1a). 17β-HSD1 regulates internal reservoirs of E1 by converting them into 17β-E2. We 

report an increased expression of 17β-HSD1 following exposure to chronic hypoxia 

(Figure 3-1b), which suggests there is increased formation of 17β-E2 in response to 

hypoxia in these cells. This can then be further metabolised by increased CYP1B1 

expression. Activity of COMT methylates hydroxylated estrogens to their less active 

metabolites. Here, the expression of COMT was unchanged following hypoxic exposure 

(Figure 3-1c). 

 Pulmonary CYP1B1 expression is increased in 3.2.2
experimental and clinical PAH 

Chronic hypoxia and SU-hypoxia increased CYP1B1 mRNA and protein expression in 

murine pulmonary arteries compared to their normoxic counterparts (White et al., 2012). 

Immunohistochemistry analysis revealed that CYP1B1 was localised within all cells that 

comprise the vascular wall (Figure 3-2 - Figure 3-3). In human PAH, CYP1B1 protein and 

mRNA expression was increased in PASMCs compared to control (White et al., 2012). 

Similarly, CYP1B1 immunolocalisation and quantification revealed increased CYP1B1 

expression in the pulmonary arteries of patients with PAH compared to controls (Figure 

3-4). CYP1B1 was localised to all layers of the pulmonary arterial wall including α-SMA 

(smooth muscle cells) and von Willebrand positive cells (endothelial cells) (Figure 3-5). 

Patient characteristics are listed in Table 3-1. 
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Table 3-1 Patient characteristics of human lung sections 

Clinical data of patients with PAH including their sex, age, mean pulmonary arterial pressure 
(mPAP) and drug therapy that were used for Immunolocalisation and semi-quantification of 
CYP1B1 in the pulmonary arteries of lung sections.  

Sex Age Patient Information mPAP (mmHg) Drug Therapy 

F 26 HPAH 67 Nifedipine 

F 30 HPAH 46 Iloprost, sildenafil 

F 38 HPAH 56 Epoprostenol 

F 44 IPAH 44 Epoprostenol 

F 51 IPAH 49 Prostacyclin 

F 23 IPAH 57 Iloprost 

M 23 HPAH 54 Iloprost and sildenafil 

M 56 IPAH N/A N/A 
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Figure 3-1 Effect of hypoxia on protein expression of CYP1B1, COMT and 17β-HSD1 in 
human pulmonary arterial smooth muscle cells (hPASMCs) 

Female control hPASMCs were quiesced for 24 hours and then exposed to either normoxic or 
hypoxic conditions (1% oxygen) for 24 hours. Cell homogenates were assayed for protein 
expression by western blotting for CYP1B1 (a), 17β-HSD1 (b) and COMT (c) and analysed by 
densitometric analysis. GAPDH was used as the internal loading control. Full western blots are 
shown in appendix 1. n=2 patients, repeated 2 times per condition, *P<0.05, **P<0.01, t-test, data 
is expressed as the mean ± SEM. 
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Figure 3-2 Immunolocalisation of CYP1B1 in normoxic and hypoxic murine pulmonary 
arteries 

Female and male C57BL/6 mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 
weeks. Representative immunohistochemistry for CYP1B1 in the small pulmonary arteries and 
quantification of the % positive CYP1B1 staining within the vessel wall. CYP1B1 expression is 
visualized by DAB staining (dark orange/brown stain). n=4 mice per group, ***P<0.001, One-way 
ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. IgG control 
reveals no non-specific binding. Scale bar = 20µm. 
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Figure 3-3 Immunolocalisation of CYP1B1 in SU-hypoxic murine pulmonary hypertension 

Female and male (C57BL/6) mice were exposed to hypoxia (10% oxygen) or kept in room air for 3 
weeks and given SU5416 (20mg/kg) at 0, 7 and 14 days. Representative immunohistochemistry for 
CYP1B1 in the small pulmonary arteries and quantification of the % positive CYP1B1 staining 
within the vessel wall. CYP1B1 expression is visualized by DAB staining (dark orange/brown stain). 
n=5 mice per group, **P<0.01, One-way ANOVA with a Bonferroni’s post-hoc test. Data is 
expressed as the mean ± SEM. IgG control reveals no non-specific binding. Scale bar = 20µm. 
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Figure 3-4 Immunolocalisation of CYP1B1 in pulmonary arteries from patients with PAH 

CYP1B1 immunolocalisation and quantification of the % CYP1B1 staining in non-PAH, idiopathic 
PAH (IPAH) and heritable PAH (HPAH) pulmonary arteries. CYP1B1 expression is visualized by 
DAB staining (dark orange/brown stain). The IPAH artery is from a 56 year old male patient and the 
HPAH patient is a 26 year old female patient with a BMPR-2 mutation. Quantification was from n=4 
patients per group (see Table 3-1 for patient characteristics). **P<0.01, One-way ANOVA with a 
Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. IgG control revealed absence of 
non-specific binding. Scale bars = 100µm. 
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Figure 3-5 Cellular localisation of CYP1B1 in human vascular lesions 

The expression of CYP1B1, α-SMA (smooth muscle cell marker) and vWF (endothelial cell marker) in 5μm consecutive human pulmonary arteries as visualized by the 
chromagen DAB which appears as a brown/orange stain. CYP1B1, α-SMA and vWF immunolocalisation in a complex vascular lesion from a 38 year old female 
heritable PAH (HPAH) patient (a) and a 26 year old male HPAH patient (b). Scale bar = 100µm. 
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 Effect of chronic hypoxia in CYP1B1 deficient mice 3.2.3

To test the function of CYP1B1 in hypoxia-induced PAH, CYP1B1-/- mice were exposed 

to chronic hypobaric hypoxia for 14 days. Under basal conditions (normoxia), no 

differences in the ratio of RV/LV+S were observed between wild-type and CYP1B1-/- 

female mice. In contrast, male CYP1B1-/- mice had a reduced RV/LV+S ratio compared to 

wild-type mice. Following hypoxic exposure, both male and female wild-type mice 

develop increased RVH. In contrast, the degree of RVH induced by hypoxia was 

significantly less in male and female CYP1B1-/- mice compared to their wild-type controls 

(Figure 3-6). No baseline differences were observed in RVSPs between wild-type and 

CYP1B1-/- mice. Hypoxia induced increases in RVSP in wild-type mice and this effect 

was greater in male mice. CYP1B1-/- male mice exhibited an attenuated RVSP in response 

to hypoxia. No effect was observed in the female CYP1B1-/- mice (Figure 3-7). Hypoxia 

had no significant effects on the mean right ventricular pressure (mRVP) in female mice, 

whilst in male mice this was significantly increased (Table 3-2).  

Pulmonary arterial remodeling in the distal vasculature is a prominent feature of hypoxic-

induced PH and was therefore examined in lung sections obtained from these mice (Figure 

3-8 - Figure 3-9). Under normoxic conditions, no differences in vascular remodeling were 

observed in CYP1B1-/- mice compared to their wild-type controls. Hypoxia increased 

remodeling in the distal vasculature in both male and female wild-type mice. CYP1B1-/- 

female mice exhibited a similar degree of vascular remodeling as was observed in the wild-

type mice. In male CYP1B1-/- mice, the degree of vascular remodeling in response to 

hypoxia was significantly less than in the wild-type mice. 

mSAP, heart rate and body weights were monitored for any off-target effects of hypoxia or 

genetic ablation of CYP1B1 (Table 3-2). Exposure to hypoxia caused an increase in mSAP 

in male mice. This was not observed in any of the other groups studied. Female CYP1B1-/- 

mice had reduced heart rates compared to their wild-type counterparts under normoxic 

conditions. In male CYP1B1-/- mice, a reduced heart rate was reported following hypoxic 

exposure compared to wild-type mice. Female CYP1B1-/- mice were on average heavier 

than their respective wild-type mice under normoxic conditions. In contrast male CYP1B1-

/- mice weighed less than their wild-type controls under both normoxic and hypoxic 

conditions. 



 Chapter 3 – CYP1B1 and PAH 

113 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

*

*** *****

**

**

**

normoxic hypoxic normoxic hypoxic

female male

wild-type

CYP1B1-/-

R
V

/L
V

+
S

 
Figure 3-6 Right ventricular hypertrophy in chronically hypoxic CYP1B1-/- mice 

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% 
oxygen) or kept in room air for 2 weeks. Right ventricular hypertrophy was assessed by expressing 
the dry weight of the right ventricle over the left ventricle and septum (RV/LV+S; Fultons index). 
n=8-12 per group, *P<0.05, **P<0.01, ***P<0.001, One-way ANOVA with a Bonferroni’s post-hoc 
test. Data is expressed as the mean ± SEM. 
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Figure 3-7 Right ventricular systolic pressures in chronically hypoxic CYP1B1-/- mice  

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% 
oxygen) or kept in room air for 2 weeks. Right ventricular systolic pressures (RVSP) were 
measured by right heart catheterisation. n=7-11 per group, *P<0.05, **P<0.01, ***P<0.001, One-
way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 
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Figure 3-8 Representative expression of α-smooth muscle actin positive cells in response to hypoxia in wild-type and CYP1B1-/- mice 

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 weeks. The degree of vascular 
muscularisation was visualized by α-smooth muscle actin (α-SMA) staining in the distal vasculature. α-SMA expression was visualised by DAB staining (dark 
orange/brown stain). Scale bar = 20µm 
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Figure 3-9 Pulmonary vascular remodeling in chronically hypoxic CYP1B1-/- mice 

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% 
oxygen) or kept in room air for 2 weeks. The degree of pulmonary arterial remodeling was 
assessed by counting the number of remodeled and non-remodeled arteries in a lung section and 
expressed as the % of remodeled vessels over the total number of vessels. n=4-5 per group, 
*P<0.05, **P<0.01, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the 
mean ± SEM. 
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 Intra-pulmonary arterial vasoconstriction in CYP1B1-/- Mice 3.2.4

Vasoconstriction of intra-pulmonary arteries is increased following hypoxic exposure. To 

investigate the contribution of CYP1B1 on the contractile response of the pulmonary 

artery, contractile responses to the potent vasoconstrictor serotonin were examined in 

arteries isolated from wild-type and CYP1B1-/- mice after normoxic and hypoxic 

exposure. In arteries from normoxic mice, there were no differences in pulmonary 

vasoconstriction across groups. (Figure 3-10a) Following hypoxic exposure, female wild-

type and CYP1B1-/- mice displayed similar contractile responses to serotonin. In contrast, 

male CYP1B1-/- mice had reduced serotonin-induced contractile responses compared to 

male wild-type mice (Figure 3-10b). 

 Effect of CYP1B1 on uterine + ovary weights 3.2.5

Given the prominent role of estrogen metabolism by CYP1B1, we were interested in 

assessing the effects of hypoxia (elevated CYP1B1 activity) and CYP1B1-/- (reduced 

CYP1B1 activity) on dry uterus and ovary weights. No changes were observed across the 

groups studied (Figure 3-11). 
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Figure 3-10 Vasoreactivity of the intrapulmonary arteries in chronically hypoxic CYP1B1-/- 
mice 

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% 
oxygen) or kept in room air for 2 weeks. The intra-pulmonary arteries were isolated from mice at 
sacrifice and mounted in a myograph. The arteries were constricted twice by increasing 
extracellular concentrations to 50mM potassium chloride (KCl). The second response was used as 
a reference constriction to calculate the % vasoconstriction in response to serotonin. Following a 
wash-out and re-stabilization, cumulative concentration response curves to serotonin were 
constructed. Serotonin-induced pulmonary arterial vasoconstriction in mice maintained in normoxic 
conditions (a). Serotonin-induced pulmonary arterial vasoconstriction mice exposed to hypoxia (b); 
biological replicates are indicated above dose response curves in the legend; Bars are n=5-7, 
*P<0.05, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± 
SEM. 
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Table 3-2 Phenotypic data from wild-type and CYP1B1-/- mice 

Animal Group mSAP (mmHg) mRVP (mmHg) Heart rate (bpm) Body Weight (g) 

Female wild-type normoxic 91.37 ± 2.52 (7) 12.36 ± 0.47 (7) 489.3± 23.09 (6) 19.89 ± 0.17 (10) 

Female CYP1B1-/- normoxic 80.10 ± 1.82 (5) 12.22 ± 0.91 (5) 369.8 ± 21.54§ (6) 22.33 ± 0.34§ (10) 

Female wild-type hypoxic 98.98 ± 2.26 (9) 14.31 ± 0.53 (9) 416.6 ± 18.65 (9) 20.16 ± 0.36 (10) 

Female CYP1B1-/- hypoxic 93.18 ± 2.45 (7) 14.05 ± 0.48 (6) 357 ± 28.43 (8) 21.32 ± 0.48 (10) 

Male wild-type normoxic 88.99 ± 2.40 (8) 11.48 ± 0.8 (8) 472.8 ± 16.6 (8) 28.50 ± 0.60 (9) 

Male CYP1B1-/- normoxic 90.53 ± 2.70 (4) 9.86 ± 0.9 (9) 415.9 ± 20.74 (11) 25.82 ± 0.85§ (10) 

Male wild-type hypoxic 106.9 ± 2.03* (7) 15.23 ± 1.18* (8) 517 ± 15.37 (9) 28.66 ± 0.73 (8) 

Male CYP1B1-/- hypoxic 95.14 ± 7.52 (6) 12.88 ± 0.55 (10) 386 ± 16.00§§§ (9) 25.69 ± 0.34§§ (10) 

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 weeks. Mean systemic arterial pressures 
(mSAP) were measured by cannulation of the carotid artery. Mean right ventricular pressures (mRVP) were calculated from the right ventricular pressure obtained by 
right heart catheterisation. n numbers are indicated in brackets. *P<0.05, P<0.01 c.f. normoxic; §P<0.05, §§§P<0.01 c.f. wild-type, One-way ANOVA with a Bonferroni’s 
post-hoc test. Data is expressed as the mean ± SEM. 
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Figure 3-11 The dry weights of the uterus and ovaries in chronically hypoxic female 
CYP1B1-/- mice 

Female and male wild-type (C57BL/6) and CYP1B1-/- mice were exposed to hypoxia (10% 
oxygen) or kept in room air for 2 weeks. The dry weight of the uterus and ovaries were expressed 
over the body weight. n=8-9, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed 
as the mean ± SEM. 
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 Inhibition of CYP1B1 is protective on the development of 3.2.6
hypoxia-induced PAH 

Gene knockout may lead to compensatory mechanisms and as such, we wished to test the 

effect of CYP1B1 inhibition in mice. We therefore studied the effects of the highly potent 

and selective CYP1B1 inhibitor TMS in hypoxic-induced PH to determine the role of 

CYP1B1. The dosing procedures and the in vivo component (RVP, RVH, SAP) of this 

study were a joint collaborative effort with Ms. Emma Wallace, Ms. Annabel Campbell 

and Dr. Kevin White. TMS reduced the degree of RVSP, RVH and pulmonary vascular 

remodeling in both male and female mice exposed to chronic hypoxia (Figure 3-12 - 

Figure 3-15). Both hypoxia and TMS had no effects in mSAPs. Whilst no effects were 

observed on hypoxia on the average heart rates, TMS significantly increased the heart rate 

in female mice exposed to hypoxia, in comparison to their age-matched vehicle-control 

groups (Table 3-3).  
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Figure 3-12 The CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) attenuates the 
development of chronic hypoxia-induced right ventricular hypertrophy in mice 

Female and male wild-type mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 
weeks. Mice were either injected with 3mg/kg/day TMS or vehicle (~5% ethanol in saline) during 
the 2 week study. Right ventricular hypertrophy (RVH) was assessed by expressing the dry weight 
of the right ventricle over the left ventricle and septum (RV/LV+S; Fultons index) in normoxic and 
chronically hypoxic vehicle- and TMS-treated female and male C57BL/6 mice. n=7-10, *P<0.05, 
**P<0.01, ***P<0.001, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the 
mean ± SEM. 
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Figure 3-13 The CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) attenuates the 
development of chronic hypoxia-induced right ventricular systolic pressures in mice 

Female and male wild-type mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 
weeks. Mice were either injected with 3mg/kg/day TMS or vehicle (~5% ethanol in saline) during 
the 2 week study. Right ventricular systolic pressures (RVSP) were measured by right heart 
catheterization in normoxic and chronically hypoxic vehicle- and TMS-treated female and male 
C57BL/6 mice. n=7-10, *P<0.05, **P<0.01, ***P<0.001, One-way ANOVA with a Bonferroni’s post-
hoc test. Data is expressed as the mean ± SEM. 
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Figure 3-14 Representative α-smooth muscle actin–stained pulmonary arteries in normoxic and chronic hypoxic C57BL/6 mice dosed with vehicle- or the  
CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) 

Female and male wild-type mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 weeks. Mice were either injected with 3mg/kg/day TMS or vehicle 
(~5% ethanol in saline) during the 2 week. The degree of vascular muscularisation was visualized by α-smooth muscle actin (α-SMA) staining in the distal vasculature. 
α-SMA expression was visualized by DAB staining (dark orange/brown stain). Scale bar = 20µm. 
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Figure 3-15 The CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) attenuates the 
development of chronic hypoxia-induced pulmonary vascular remodeling 

Female and male wild-type mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 
weeks. Mice were either injected with 3mg/kg/day TMS or vehicle (~5% ethanol in saline) during 
the 2 week study. The degree of pulmonary arterial remodeling was assessed by counting the 
number of remodeled and non-remodeled arteries in a lung section and expressed as the % of 
remodeled vessels over the total number of vessels. n=4-7, *P<0.05, **P<0.01, ***P<0.001, One-
way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 
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Table 3-3 Effect of CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) in normoxic and hypoxic C57BL/6 mice on haemodynamics and phenotypes 

Animal Group mSAP (mmHg) mRVP (mmHg) Heart rate (bpm) Body Weight (g) 

Female Wild-type normoxic 91.07 ± 1.53 (9) 15.71 ± 0.49 (9) 428.2 ± 16.92 (9) 19.40 ± 0.20 (10) 

Female TMS normoxic 95.49 ± 1.63 (6) 12.47 ± 0.59 (10) 404.4 ± 14.70 (10) 18.30 ± 0.42 (10) 

Female wild-type hypoxic 98.59 ± 2.72 (8) 19.73 ± 1.13* (10) 366.0 ± 21.43 (9) 18.69 ± 0.31 (10) 

Female TMS hypoxic 100.70 ± 3.91 (6) 16.01 ± 1.06§ (10) 477.4 ± 21.30§§ (10) 15.66 ± 0.18§§§ (10) 

Male wild-type normoxic 100.90 ± 0.76 (8) 13.06 ± 0.89 (7) 441.8 ± 21.21 (8) 26.56 ± 0.51 (10) 

Male TMS normoxic 103.02 ± 4.00 (6) 13.00 ± 0.74 (6) 473.4 ± 14.15 (6) 26.31 ± 0.42 (10) 

Male wild-type hypoxic 100.50± 0.77 (5) 16.26 ± 1.103 (7) 485.5 ±33.59 (7) 26.14 ± 0.73 (10) 

Male TMS hypoxic 107.40 ± 2.10 (7) 14.20 ± 1.01 (6) 439.1 ± 26.09 (8) 24.57 ± 0.39 (10) 

Female and male wild-type mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 weeks. Mice were either injected with 3mg/kg/day TMS or vehicle 
(~5% ethanol in saline) during the 2 week study. Mean systemic arterial pressures (mSAP) were measured by cannulation of the carotid artery. Mean right ventricular 
pressures (mRVP) were calculated from the right ventricular pressure obtained by right heart catheterisation. n numbers are indicated in brackets. *P<0.05, **P<0.01 
cf. normoxic; §P<0.05, §§§P<0.001 cf. vehicle, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 
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 Monocrotaline-induced PH is moderately altered by TMS 3.2.7
treatment in male but not female rats 

Having demonstrated CYP1B1 as an integrative mediator of hypoxia-induced PH, we 

wanted to assess its function in a severe inflammatory model of the disease, induced by the 

pneumotoxin MCT. Assistance was provided for the dosing procedures of this study and 

the majority of the female in vivo component (RVP, RVH and SAP) was carried out by 

Ms. Katie Hood, Dr. Ian Morecroft, Ms. Margaret Nilsen and Dr. Kirsty Mair. Both 

females and males develop RVH in response to MCT although this effect is more 

pronounced in the male rats. No effect was observed in response to TMS treatment in the 

female rats, yet male rats had a slight, yet non-significant reduction in RVH to a similar 

level to that observed in the female rats with TMS treatment (Figure 3-16). Here, we report 

that both female and male rats develop substantial increases in RVSP in response to MCT, 

and this effect was unaltered by CYP1B1 inhibition (Figure 3-17). 

Despite the severity of MCT-induced-PH, this occurs in the absence of the complex 

pulmonary arteriopathy that is a key feature in human PAH. However, vascular remodeling 

is present to a much greater extent than what is observed in hypoxic-induced-PH in mice 

with medial narrowing present. We therefore investigated the extent of pulmonary vascular 

remodeling in the distal vasculature of these animals. MCT induced substantial increases in 

arterial remodeling in both male and female rats (Figure 3-19). Although there were no 

significant effects observed by TMS treatment, the effect of MCT on arterial remodeling 

when comparing vehicle-TMS to MCT-TMS was non-significant in females, suggesting a 

moderate effect of TMS treatment in this group. Similarly, in male rats there was less 

significance when comparing vehicle-TMS with MCT-TMS as compared with vehicle-

vehicle to MCT-vehicle. When examining the degree of muscularisation in the distal 

vasculature, all rats developed neointimal lesions in response to MCT, yet these appeared 

much more pronounced in the vehicle group compared to TMS treated groups (Figure 

3-18). This may account for the improved survival in TMS treated rats (see below). 

To determine whether the effects of MCT and TMS were specific to the cardio-pulmonary 

unit, mSAP were monitored in all groups (Table 3-4). The mSAPs were increased in 

female rats in response to MCT whereas no effect was observed in male rats. This was 

unaffected by TMS treatment. MCT reduced the heart rate in male rats and this effect was 

improved by TMS treatment. No effect was observed in the female rats (Table 3-4). MCT 

and TMS had no effects on dry uterus + ovary weights (Figure 3-20). 
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Figure 3-16 Monocrotaline induces right ventricular hypertrophy and this is unaffected by 
the CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) 
or vehicle (see methods for a detailed description) on day 0. After 2 weeks, rats were injected with 
3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. Right ventricular 
hypertrophy (RVH) was assessed by expressing the dry weight of the right ventricle over the left 
ventricle and septum (RV/LV+S; Fultons index). n=8-16, ***P<0.001, One-way ANOVA with a 
Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 
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Figure 3-17 Monocrotaline induces increases in right ventricular pressures and this is 
unaffected by unaffected by the CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) 
or vehicle (see methods for a detailed description) on day 0. After 2 weeks, rats were injected with 
3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. Right ventricular systolic 
pressures (RVSP) were measured in rats by right heart catheterisation through the jugular vein. 
n=5-11, ***P<0.001, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the 
mean ± SEM. 
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Figure 3-18 Representative α-smooth muscle actin–stained pulmonary arteries in monocrotaline (MCT) rats treated with vehicle- or the  CYP1B1 inhibitor 
2,3′,4,5′-tetramethoxystilbene (TMS) 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) or vehicle (see methods for a detailed description) on day 0. After 2 
weeks, rats were injected with 3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. The degree of vascular muscularisation was visualized by α-
smooth muscle actin (α-SMA) staining in the distal vasculature. α-SMA expression was visualised by DAB staining (dark orange/brown stain). Sections have been 
counterstained with haematoxylin and eosin. Scale bar = 20µm 
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Figure 3-19 Monocrotaline increases pulmonary vascular remodeling and this is unaffected 
by unaffected by the CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) 
or vehicle (see methods for a detailed description) on day 0. After 2 weeks, rats were injected with 
3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. The degree of pulmonary 
arterial remodeling was assessed by counting the number of remodeled and non-remodeled 
arteries in a lung section and expressed as the % of remodeled vessels over the total number of 
vessels. n=6-7, **P<0.01, ***P<0.001, One-way ANOVA with a Bonferroni’s post-hoc test. Data is 
expressed as the mean ± SEM. 
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Table 3-4 Phenotypic data from monocrotaline wister rates treated with vehicle or the CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) 

Animal Group mSAP (mmHg) mRVP (mmHg) Heart rate (bpm) Body Weight (g) 

Female vehicle-vehicle 103.6 ± 5.001 (8) 12.71 ± 1.247 (7) 406.9 ± 10.78 (8) 191.4 ± 4.63 (9) 

Female vehicle-TMS 109.6 ± 7.025 (6) 12.95 ± 1.149 (6) 402.6 ±14.19 (6) 195.3 ± 3.75 (9) 

Female MCT-vehicle 126.8 ± 10.15 (7) 27.52 ± 3.177** (8) 414.4 ± 6.46 (8) 209.3 ± 4.46 (12) 

Female MCT-TMS 122 ± 8.243 (7) 30.62 ± 3.661*** 
(11) 

393.7 ± 8.64 (12) 191.2 ± 4.40 (11) 

Male vehicle-vehicle 98.38 ± 2.548 (9) 11.52 ± 0.2759 (8) 397.2 ± 8.41 (9) 301.3 ± 9.74 (9) 

Male vehicle-TMS 106.6 ± 4.284 (9) 11.65 0.4779 (7) 398.2 ± 18.43 (9) 293.2 ± 9.72 (9) 

Male MCT-vehicle 83.86 ± 1.716 (5) 36.65 ± 1.143*** (5) 301.8 ± 14.06*** (7) 298.9 ± 10.71 (9) 

Male MCT-TMS 95.71 ± 5.047 (11) 31.83 ± 2.6*** (8) 360.1 ± 12.07§ (11) 280.0 ± 6.96 (12) 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) or vehicle (see methods for a detailed description) on day 0. After 2 
weeks, rats were injected with 3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. Mean systemic arterial pressures (mSAP) were measured by 
cannulation of the carotid artery. Mean right ventricular pressures (mRVP) were calculated from the right ventricular pressure obtained by right heart catheterisation. n 
numbers are indicated in brackets. **P<0.01; ***P<0.001 c.f. vehicle control; §P<0.05 c.f. MCT-V, One-way ANOVA with a Bonferroni’s post-hoc test. Data is 
expressed as the mean ± SEM. 
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Figure 3-20 Monocrotaline and CYP1B1 inhibition with 2,3′,4,5′-tetramethoxystilbene (TMS) 
on uterus+ovary weights/body weights 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) 
or vehicle (see methods for a detailed description) on day 0. After 2 weeks, rats were injected with 
3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. The dry weight of the 
uterus and ovaries were expressed over the body weight. n=5-9.  
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 Survival is improved in rats treated with TMS 3.2.8

Due to the severity of the MCT model, mortality rates increase substantially after about 20 

days post induction, from suspected right heart failure. Mortalities were reported in male 

rats treated with MCT after 23 days and after 26 days in female rats. TMS treatment 

delayed the onset of death in male rats and completely prevented this effect in female rats 

(Figure 3-21). 

 

Figure 3-21 CYP1B1 inhibition with 2,3′,4,5′-tetramethoxystilbene (TMS) improves survival in 
monocrotaline treated rats as assessed by Kaplan-Meier survival analysis 

Female and male wistar rats were injected with a single injection of monocrotaline (MCT; 20mg/kg) 
or vehicle (see methods for a detailed description) on day 0. After 2 weeks, rats were injected with 
3mg/kg/day TMS or vehicle (~5% ethanol in saline) for a further 2 weeks. Each group had 16 rats 
at the start of the experiment. 
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 Estrogen synthesis and metabolism is dysregulated in 3.2.9
female SERT+ mice 

We have previously reported evidence for dysregulated estrogen metabolism in hypoxic-

associated PH and in human PAH (Chapter 3 and White et al., 2012). Here, we provide 

evidence that estrogen metabolism is dysregulated in female mice that overexpress the 

SERT. This model is unique in that it displays female susceptibility via the effects of 17β-

E2 (White et al., 2011b). Firstly, we demonstrated that the expression of the estrogen-

synthesizing enzyme, aromatase is increased in the lungs of female SERT+ mice compared 

to wild-type mice (Figure 4 1b). Based on this observation, we next determined the levels 

of endogenous 17β-E2 in the lungs of these mice. Despite increased protein expression of 

aromatase, whole lung levels of 17β-E2 were unchanged (Figure 4 1b) 

17β-E2 can undergo further metabolism via activity of CYP enzymes or may be 

interconverted to E1 by activity of 17β-HSD1. Previously we identified a critical role for 

CYP1B1 in PH pathogenesis (Chapter 3 and White et al., 2012). Furthermore the 

expression of CYP1B1 has been reported as increased in the proximal pulmonary arteries 

from female SERT+ mice at 2 months of age (when no PH phenotype is evident) (White et 

al., 2011a). As SERT+ mice do not develop the PH phenotype until 5 months of age, we 

wished to determine whether the expression of CYP1B1 was altered at this age. We 

studied the distal section of the lung as most of the key pathological changes associated 

with PH occur within the distal pulmonary arteries (Yuan & Rubin, 2005). CYP1B1 

mRNA and protein expression was increased in the lungs of female SERT+ mice (Figure 4 

2) 
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Figure 3-22 Overexpression of SERT+ on aromatase expression and 17β-estradiol 
concentrations in whole lung homogenates 

5-6 month old female wild-type (C57BL/6 x CBA) and SERT+ mice lung homogenates were 
analyzed for aromatase expression and concentrations of 17β-estradiol (17β-E2). Western blot and 
densitometric analysis of aromatase expression. GAPDH was used as the internal loading control 
(a, c). Full western blots are shown in appendix 1. ELISA analysis of 17β-E2 concentrations in 
whole lung homogenates. 400µg of protein was loaded per well and assayed in duplicate. n=4-5, 
**P<0.01, t-test. Data is expressed as the mean ± SEM 
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Figure 3-23 Lung CYP1B1 expression is increased in female SERT+ mice 

5-6 month old female wild-type (C57BL/6 x CBA) and SERT+ mice lung homogenates were 
analyzed for CYP1B1 expression. qRT-PCR for mRNA of CYP1B1 expression normalized to B2-
microglobulin (a). Western blot and densitometric analysis of CYP1B1 expression in whole lung 
samples from female wild-type and SERT+ mice. GAPDH was used as the internal loading control 
(b-c). Full western blots are shown in appendix 1. n=5-6, *P<0.05, t-test. Data is expressed as the 
mean ± SEM 
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 Inhibition of CYP1B1 regresses pulmonary hypertension in 3.2.10
female SERT+ mice 

Female SERT+ mice exhibit an established PH phenotype at 5-6 months of age (White et 

al., 2011a). We have previously reported that CYP1B1 is involved in the development of 

both hypoxic and SU-hypoxic induced PH. Here, we provide evidence that CYP1B1 

influences the disease pathogenesis in a serotonin/estrogen-dependent model of PH.  

Female SERT+ mice have elevated RVSP compared to age-matched wild-type controls 

and this effect is exaggerated by exposure to chronic hypoxia. Inhibition of CYP1B1 in 

these mice reverses these elevated pressures under both normoxic and hypoxic conditions 

(Figure 3-24 -Figure 3-25). Despite elevated RVSP, female SERT+ mice do not develop 

RVH measured by RV/LV+S. However, on exposure to hypoxia, female SERT+ mice 

develop exaggerated RVH compared to wild-type mice. Inhibition of CYP1B1 with TMS 

(1.5mg/kg/day for 14 days) did not affect RVH in either normoxic or hypoxic conditions 

(Figure 3-26). Pulmonary vascular remodeling was increased in the distal vasculature in 

female SERT+ mice compared to wild-type mice in both normoxic and hypoxic 

conditions. This effect was completely reversed by CYP1B1 inhibition (Figure 3-28). In 

line with this, pulmonary arterial muscularisation was increased in female SERT+ mice 

and this was reduced by TMS treatment under both normoxic and hypoxic conditions 

(Figure 3-27) mSAP were unchanged by SERT overexpression, CYP1B1 inhibition and/or 

hypoxia (Table 3-5). Female SERT+ mice have a reduced heart rate, which is returned to 

rates similar to wild-type mice by TMS therapy. No other effects on heart rate were 

reported (Table 3-5). Interestingly, female SERT+ mice had dramatically lower body 

weights under both normoxic and hypoxic conditions. 

 

 

 

Wild-type        sert+ 

CYP1B1 

GAPDH 

61kDa 

38kDa 



Chapter 3 – CYP1B1 and PAH 

139 
 

 

Figure 3-24 SERT mice have increased right ventricular systolic pressures which are 
exacerbated by hypoxia and reversed by CYP1B1 inhibition with 2,3',4,5'-
tetramethoxystilbene (TMS) 

Female wild-type C57BL/6 x CBA and SERT+ mice were exposed to hypoxia (10% oxygen) or kept 
in room air for 2 weeks. SERT+ mice were either injected with 1.5mg/kg/day TMS or vehicle (~5% 
ethanol in saline) during the 2 week study. Right ventricular systolic pressures (RVSP) were 
assessed by right heart catheterisation. n=7-10, *P<0.05; **P<0.01; ***P<0.001, One-way ANOVA 
with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 
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Figure 3-25 Representative right ventricular pressure traces from wild-type, SERT+ and 
SERT+ mice treated with the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS) 

Representative right ventricular pressures from 5-6 month old female wild-type C57BL/6 x CBA, 
SERT+ mice and SERT+ mice treated with the CYP1B1 inhibitor TMS (1.5mg/kg/day) for 2 weeks. 
Traces were selected at random from each group.  
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Figure 3-26 Right ventricular hypertrophy in female SERT+ mice in normoxic and hypoxic 
conditions and the effect of CYP1B1 inhibition with 2,3',4,5'-tetramethoxystilbene (TMS) 

Female wild-type C57BL/6 x CBA and SERT+ mice were exposed to hypoxia (10% oxygen) or kept 
in room air for 2 weeks. SERT+ mice were either injected with 1.5mg/kg/day TMS or vehicle (~5% 
ethanol in saline) during the 2 week study. Right ventricular hypertrophy (RVH) was assessed by 
expressing the dry weight of the right ventricle over the left ventricle and septum (RV/LV+S; 
Fultons index). n=9-11, ***P<0.001, One-way ANOVA with a Bonferroni’s post-hoc test. Data is 
expressed as the mean ± SEM. 
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Figure 3-27 Representative α-smooth muscle actin–and von-Willebrand stained pulmonary arteries in wild-type and SERT+ mice treated with vehicle- or 

the  CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS) 

Female wild-type C57BL/6 x CBA and SERT+ mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 weeks. SERT+ mice were either injected with 
1.5mg/kg/day TMS or vehicle (~5% ethanol in saline) during the 2 week study. Pulmonary arterial endothelial cells and smooth muscle cells are visualised by von 
Willebrand staining (DAB; dark brown colour) and α smooth muscle actin (α-SMA; VIP, pink/purple staining), respectively. V=vehicle. Scale bar = 20µm 
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Figure 3-28 SERT mice have increased pulmonary vascular remodeling and this is reversed 
by CYP1B1 inhibition with 2,3',4,5'-tetramethoxystilbene (TMS) 

Female wild-type C57BL/6 x CBA and SERT+ mice were exposed to hypoxia (10% oxygen) or kept 
in room air for 2 weeks. SERT+ mice were either injected with 1.5mg/kg/day TMS or vehicle (~5% 
ethanol in saline) during the 2 week study. The degree of pulmonary arterial remodeling was 
assessed by counting the number of remodeled and non-remodeled arteries in a lung section and 
expressed as the % of remodeled vessels over the total number of vessels. n=4-6, *P<0.05; 
**P<0.01, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± 
SEM. 
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Table 3-5 Effect of SERT overexpression, hypoxia and TMS on mean systemic arterial pressures and heart rate 

Animal Group mSAP (mmHg) mRVP (mmHg) Heart rate (bpm) Body Weight (g) 

Wild-type vehicle normoxic 76.99 ± 2.64 (7) 11.84 ± 0.73 (8) 427.70 ± 6.79 (9) 26.31 ± 1.14 (9) 

SERT+ vehicle normoxic 85.16 ± 3.82 (10) 13.99 ± 0.56 (7) 322.80 ± 18.22§ (7) 20.23 ± 0.80§§§ (8) 

 

SERT+ TMS normoxic 90.49 ± 4.58 (9) 13.49 ± 0.62 (9) 395.30 ± 21.37 (9) 17.96 ± 0.98 (10) 

Wild-type vehicle normoxic 85.63 ± 2.35 (8) 18.10 ± 0.61*** (10) 415.60 ± 29.16 (10) 25.01 ± 0.82 (10) 

SERT+ vehicle hypoxic 92.13 ± 5.45 (6) 16.20 ± 0.73 (10) 405.40 ± 17.15 (9) 17.87 ± 0.53§§§ (10) 

SERT+ TMS hypoxic 85.98 ± 2.85 (6) 16.00 ± 0.43 (9) 395.00 ± 24.37 (10) 18.16 ± 0.48 (10) 

Female wild-type C57BL/6 x CBA and SERT+ mice were exposed to hypoxia (10% oxygen) or kept in room air for 2 weeks. SERT+ mice were either injected with 
1.5mg/kg/day TMS or vehicle (~5% ethanol in saline) during the 2 week study. Mean systemic arterial pressures (mSAP) were measured by cannulation of the carotid 
artery. Mean right ventricular pressures (mRVP) were calculated from the right ventricular pressure obtained by right heart catheterisation. n numbers are indicated in 
brackets. ***P<0.001 vs. normoxic control, §P<0.05, §§§P<0.001 vs wild-type control. 
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 Discussion 3.3

The incidence of IPAH and HPAH is more common in women than in men suggesting that 

estrogens and/or their metabolites may be integrated in the pathogenesis of PAH. Whilst 

protective effects of 17β-E2 have been reported in both hypoxic and MCT-induced PH 

(Lahm et al., 2012;Umar et al., 2011;Xu et al., 2010), our present findings suggest that 

altered estrogen metabolism by up-regulation of CYP1B1 influences the development of 

PAH in both sexes. We show that CYP1B1 expression is increased in both experimental 

and clinical pulmonary vascular disease. Moreover, we provide the first unique evidence 

that estrogen metabolism by CYP1B1 is involved in the development of experimental PH. 

The increased cellular expression of CYP1B1 in the pulmonary arteries of patients with 

PAH suggests that its activity may be pertinent to disease pathogenesis and illustrates a 

potential attractive therapeutic target in this thus far un-curable cardiovascular disease. 

Hypoxia is a key mediator in PAH. Thus we wished to investigate the crude effects of 

oxygen deprivation on the estrogen-metabolic axis in healthy hPASMCs. Following a 24 

hour hypoxic exposure, 17β-HSD1 and CYP1B1 protein expression were increased, whilst 

no effects were observed in COMT expression (Figure 3-1). This suggests that elevated 

pathogenic metabolism of 17β-E2 via CYP1B1 may play a role in the development of 

PAH. Furthermore, increased expression of 17β-HSD1 suggests increased conversion of 

the less active E1 to the more active 17β-E2, which can then be further metabolised by 

CYP1B1.  

Given that hypoxia increased CYP1B1 expression in a homogenous population of 

hPASMCs, we next investigated the effects of chronic hypobaric hypoxia for 14 days on 

CYP1B1 expression in murine pulmonary arteries. Here, we show that CYP1B1 

expression was consistently up-regulated in both male and female mice by hypoxia (Figure 

3-2). In addition, combined VEGF-R inhibition with hypoxia for 21 days also increased 

CYP1B1 expression in the distal pulmonary arteries of both male and female mice (Figure 

3-3). Importantly, CYP1B1 expression was also increased in both male and female 

pulmonary arteries from patients with IPAH and HPAH (Figure 3-4 - Figure 3-5). CYP1B1 

expression was localised in both endothelial and smooth muscle cells (Figure 3-5). 

Furthermore, CYP1B1 protein and RNA expression is also increased in pre-clinical and 

human PAH (White et al., 2011a;White et al., 2012). 
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Given the profound vascular expression of CYP1B1, we next wished to investigate the role 

of CYP1B1 on the development of PAH in animal models of PAH. We assessed the 

development of hypoxia-induced PH in CYP1B1-/- mice (Figure 3-6 - Figure 3-10) and 

also examined the effect of chronic inhibition with the selective and potent CYP1B1 

inhibitor, TMS (Figure 3-12 - Figure 3-15). Hypoxia-induced increases in RVSP, RVH, 

pulmonary vascular remodeling and pulmonary intra-arterial vasoconstriction were 

attenuated in male CYP1B1-/- mice. In contrast, RVH was the only PAH parameter that 

was attenuated in female CYP1B1-/- mice in response to chronic hypoxia. CYP1B1 is 

expressed during embryonic development and is constitutively expressed in several adult 

tissues (Choudhary et al., 2003). This highlights a critical role of this enzyme and suggests 

that genetic deletion of CYP1B1 may result in compensatory effects, which may be 

necessary considering the importance of this enzyme in xenobiotic metabolism. We 

therefore wished to investigate the effects of the selective and potent CYP1B1 inhibitor, 

TMS in the hypoxic model of PH to determine if the effects of selective CYP1B1 

inhibition were different from CYP1B1 gene knockout.  Additionally, we wanted to assess 

the therapeutic potential of TMS therapy in PAH. We demonstrated that inhibition of TMS 

attenuated the development of hypoxia-induced PH in both male and female mice, as 

assessed by RVSP, RVH and pulmonary vascular remodeling. 

Although, hypoxia-induced PH is a useful pre-clinical model of PAH, it fails to 

recapitulate the complex arteriopathy that is seen in human PAH. In collaboration with 

Novartis Pharmaceuticals in Horsham, we investigated the role of CYP1B1 in SU-hypoxia 

induced-PAH (White et al., 2012) which is associated with the formation of occluded 

vascular lesions (Ciuclan et al., 2011), which are absent in the classic hypoxic model of 

PH. TMS attenuated the development of SU-hypoxic induced increases in RVSP, RVH, 

pulmonary vascular remodeling and the formation of occluded vascular lesions, further 

supporting a pathogenic effect of CYP1B1 activity in vivo (White et al., 2012). 

Inflammation is a well-documented component associated with the disease pathology of 

PAH (reviewed by Price et al., 2012). MCT is a plant-derived alkaloid that targets and 

disrupts the vascular endothelium which elicits an inflammatory response. It therefore 

drives a distinct disease pathology compared to the hypoxic and SU-hypoxic models of 

PAH. To assess the function of CYP1B1 activity on the progression of PH, we investigated 

the ability of CYP1B1 inhibition on reversal of established PH in the MCT model of PH 

(Figure 3-16 - Figure 3-19). Despite large increases in RVSP and RVH in both males and 

females, there was no development of the complex arteriopathy that is observed in end-
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stage human disease, albeit neointimal lesions were present. The results presented here 

suggest that CYP1B1 inhibition for 2 weeks did not improve pulmonary haemodynamics. 

No effects were observed in response to TMS on reversal of RVH in females, yet moderate 

effects were reported in male rats. Although CYP1B1 inhibition did not significantly 

reverse pulmonary vascular remodeling, there appeared to be a trend towards an 

improvement, that may have been uncovered had treatment been prolonged. From a 

histological perspective, luminal narrowing observed in response to MCT appeared 

reduced in rats treated with TMS (Figure 3-18). Inhibition of CYP1B1 reduced mortality 

rates in male rats treated with MCT and completely prevented mortalities in female rats 

(Figure 3-21). Perhaps, it is not surprising that CYP1B1 inhibition was unable to 

successfully reverse RVH and RVSP in a two-week dosing regimen, given the severity of 

the induced phenotype, especially when the manifested disease is already far advanced. 

However, this is challenged by numerous reports that have shown successful attenuation of 

MCT-PH with various estrogenic drugs, including geinstein (a soy phytoestrogen) (Matori 

et al., 2012) and 17β-E2 (Umar et al., 2011). However, the applicability of this model as a 

pre-clinical model of PAH has been challenged by the lack of similarity with the 

arteriopathy that is the hallmark human PAH, even at the end-stages of MCT-PH 

(reviewed by Gomez-Arroyo et al., 2012a). 

Numerous studies have highlighted beneficial effects of circulating 17β-E2 in the hypoxic 

and MCT models of PAH (Lahm et al., 2012;Umar et al., 2011;White et al., 2011b;Xu et 

al., 2010;Yuan et al., 2013). In contrast, in models that display heightened activity of the 

SERT, circulating 17β-E2 exacerbates disease phenotypes (White et al., 2011b;Dempsie et 

al., 2011). This suggests that SERT may mediate the pathogenic effects of 17β-E2. One 

hypothesis is that SERT mediates the damaging effects of 17β-E2 by up-regulating the 

expression of CYP1B1, thereby altering estrogen metabolism towards the formation of 

pathogenic metabolites (White et al., 2011a). We therefore next investigated the effects of 

CYP1B1 inhibition with TMS in the female susceptible SERT+ model of PH. In this study, 

we provide evidence that the estrogen metabolic axis is dysregulated in female SERT+ 

mice at 5-6 months of age by increased expression of aromatase and CYP1B1 (Figure 3-22 

- Figure 3-23). At 5-6 months of age female SERT+ mice present with a PH phenotype - 

increased PAPs and pulmonary vascular remodeling compared to wild-type mice. 

Inhibition of CYP1B1 with TMS reverses both the increased PAPs and pulmonary vascular 

remodeling to pressures akin to wild-type mice, suggesting that the SERT is mediating its 

effects via increasing CYP1B1 activity (Figure 3-24 - Figure 3-25, Figure 3-27 - Figure 

3-28).  Despite elevated RVSP and pulmonary vascular remodeling, female SERT+ mice 
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do not develop compensatory RVH. This supports previous findings where a dissociate 

mechanism appears to contribute to ventricular remodeling and vascular pressures in this 

model of PAH (White et al., 2011b). In ovariectomized SERT+ mice, exogenous 17β-E2 

reduces RVH (White et al., 2011b) suggesting that 17β-E2 mediates cardioprotective 

effects in this model, despite exerting pathogenic effects within the pulmonary vasculature. 

Thus we propose that the underlying genetic transformations occurring specifically in the 

lung may contribute to vascular remodeling and increased pressures. RVH is an adaptive 

response to increased PAP, which appears absent in mice with a global over-expression of 

the SERT, suggesting that SERT may be mediating direct effects in the heart. This is 

supported by studies that have reported the development of RVH in mice that that 

overexpress SERT specifically in smooth muscle cells driven by the SM22 promoter 

(Guignabert et al., 2006). To challenge this, it would be of interest to investigate the effects 

of pulmonary artery banding on RVH in female SERT+ mice. Pulmonary artery banding is 

a surgical technique that mimics right ventricular pressure overload by ligation of the 

pulmonary artery. Despite the absence of RVH under normoxic conditions, when exposed 

to hypoxia, female SERT+ mice develop exaggerated RVH in comparison to wild-type 

mice exposed to hypoxia, as previously reported (White et al., 2011b). CYP1B1 inhibition 

failed to attenuate the development of hypoxia-induced RVH in these mice, which 

contradicts the beneficial effects of CYP1B1 inhibition on reducing RVH in the hypoxic 

murine models of PH. Thus the absence of a therapeutic effect of CYP1B1 inhibition on 

hypoxia-induced RVH in female SERT+ may be attributable to an effect mediated directly 

by SERT over-expression in the right ventricle. 

Our present in vivo findings highlight a critical role for CYP1B1 in the development and 

pathogenesis of PAH. CYP1B1 is an extra-hepatic estrogen, xenobiotic and fatty acid 

metabolizing enzyme. CYP1B1 metabolizes estrogens (17β-E2 and E1) by hydroxylation 

at the C2, C4 and C16 positions within the carbon ring structure resulting in the formation 

of 2-, 4, 16-hydroxylated estrogens. The biological effects of estrogens will depend on the 

profile of metabolites formed within a target tissue. Increased activity of CYP1B1 will 

therefore alter estrogen metabolism. Proliferative screens of CYP1B1 estrogen metabolites 

suggest that the 16α-hydroxylated estrogens are potent inducers of cellular proliferation in 

hPASMCs (White et al., 2012). Recent evidence has suggested that altered estrogen 

metabolism by CYP1B1 may underlie the development of PAH in patients with BMPR-2 

mutations (Austin et al., 2009). Females harboring a BMPR-2 mutation without any 

evidence of PAH were more likely to present with a polymorphism in CYP1B1 associated 

with an increased degradation of CYP1B1. In PAH patients with a BMPR-2 mutation and 
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the wild-type CYP1B1, the 2-OHE/16α-OHE1 ratio was 2.3 fold lower compared to 

unaffected mutation carriers (Austin et al., 2009), suggesting that CYP1B1 activity is 

associated with the formation of 16α-OHE1. It is therefore likely that the beneficial effects 

of CYP1B1 inhibition observed in our studies are related to a reduction in the metabolism 

of 17β-E2 and E1 towards the formation of 16α-OHE1 (17β-E2 can be converted to E1 

which can then be metabolized to 16α-OHE1 or 16α-OHE2 can be converted to 16α-OHE1 

by the activity of HSD enzymes). However, the 4-hydroxylation of estrogens is recognized 

as the predominant metabolic pathway mediated by CYP1B1 activity (Badawi et al., 

2001;Hanna et al., 2000;Lee et al., 2003). In addition, in the murine lung, normal CYP1B1 

activity is associated with the formation of 4-OHE1 (Peng et al., 2013). The metabolic 

conversion of 17β-E2 by the 4-hydroxylation pathway is recognized to contribute to DNA 

damage by superoxide production (Acharya et al., 2010). We have recently provided 

evidence that 4-hydroxylation induces profound superoxide production in hPASMCs (up to 

6 fold higher after incubations for 5 minutes compared to control) (unpublished data). 

Thus, CYP1B1 may be inducing its pathogenic effects via increased superoxide 

production. 

The beneficial effects of CYP1B1 inhibition in vivo may also be attributable to subsequent 

increases in estrogens available to mediate effects via estrogen receptors through genomic 

and non-genomic signaling or other metabolic pathways. Numerous studies have provided 

evidence that estrogens mediate protective effects in both acute and chronic vascular 

injury.  17β-E2 increases eNOS expression and NO synthesis in pulmonary vascular cells 

via genomic and non-genomic mechanisms through ERα and ERβ (Austin et al., 2013). 

Both endogenous and exogenous estrogens mediate rapid vasodilatory effects of isolated 

pulmonary arterial rings by non-genomic mechanisms (Lahm et al., 2008a). In vivo, 

exogenous 17β-E2 can prevent the onset of hypoxia-induced PH (Lahm et al., 2012) and 

reverse severe PH in the MCT model (Umar et al., 2011). In contrast, in models that 

display female susceptibility, including the SERT+ model, the mts100/A4 overexpressing 

mouse and dexfenfluramine-treated mice, where a PH phenotype is only evident in female 

mice, 17β-E2 is a critical disease mediator (Dempsie et al., 2011;Dempsie et al., 

2013;White et al., 2011b). More recently, we have provided evidence that locally produced 

estrogens via activity of aromatase are associated with the development and progression of 

both hypoxia and SU-hypoxia induced PH (Mair et al., 2013). These conflicting results 

may be attributable to altered estrogen receptor profiles or metabolic enzymes in the 

different models studied.  
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CYP1B1 is also an important enzyme in the metabolism of arachidonic acid into EETs and 

HETEs (Choudhary et al., 2004). Arachidonic acid metabolism results in the formation of 

eicosanoids which have been implicated in both cancers and cardiovascular diseases 

(Capdevila & Falck, 2001). In systemic vascular smooth muscle cells, Ang II and 

arachidonic acid cause migration, proliferation and hypertrophy which is attenuated by 

CYP1B1 inhibition with TMS (Yaghini et al., 2010). This is associated with a reduced 

formation of ROS and its downstream signaling molecules ERK1/2 and p38MAPK 

(Yaghini et al., 2010). In the rabbit pulmonary arteries, arachidonic acid stimulates 

endothelium-dependent vasoconstriction and these effects are greater in female pulmonary 

arteries compared to male pulmonary arteries (Pfister, 2011). 15-HETE is a metabolite 

formed by the metabolism of arachidonic acid by CYP1B1 and 15-lipoxygenase. 15-

lipoxygenase expression and 15-HETE synthesis is greater in female rabbit pulmonary 

arteries compared with males and stimulates vasoconstriction (Pfister, 2011). Taken 

together, the therapeutic effects observed with CYP1B1 inhibition may be via a reduced 

formation of the pulmonary vasoconstrictors, EETs and HETEs. 

Arachidonic acid is also the precursor to prostaglandins by the COX pathway. Prostacyclin 

is a member of the prostanoid family and is a potent vasodilator, with anti-inflammatory 

and anti-mitogenic properties. PAH is associated with increased pulmonary 

vasoconstriction, inflammation and remodeling and prostacyclin analogues are therefore 

used in the management of PAH. Prostacyclin is the principle arachidonic acid metabolite 

(Alhencgelas et al., 1982) and prostacyclin synthase levels are decreased in PAH (Tuder et 

al., 1999). CYP1B1 inhibition may therefore also increase the availability of arachidonic 

acid for subsequent prostacyclin synthesis. 

Arachidonic acid and estrogen metabolism by CYP1B1 are associated with increased ROS 

formation (Yaghini et al., 2010;Chen et al., 2004), which is associated with the 

pathogenesis of PAH (Bowers et al., 2004;Fessel et al., 2013b;Hemnes et al., 2011). Thus 

multiple pathways may interplay to cause injurious ROS production and cellular 

proliferation via CYP1B1 activity, resulting in a pathogenic environment in the pulmonary 

vasculature that can be reversed by CYP1B1 inhibition. The benefits of CYP1B1 inhibition 

may therefore be pertinent to a greater cohort of patients and have further beneficial effects 

that target several conjoined pathways that are associated with the pathology of PAH. 

CYP1B1 expression is increased in hPASMCs by 17β-E2 (White et al., 2011b). Increased 

aromatase activity is associated with the pathogenesis of PAH (Mair et al., 2013) 

suggesting that increased production of estrogens within the pulmonary vasculature may 
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increase CYP1B1 expression therefore driving pathological estrogen and arachidonic acid 

metabolism whilst reducing levels of estrogens and prostacyclins. 

CYP1B1 is a putative pro-carcinogen marker and the results presented here support a role 

for CYP1B1 in PAH. Inhibition of CYP1B1 is currently under phase II clinical trials for 

the treatment of cancer (Luby, 2008) and our data indicates that CYP1B1 inhibition may 

be a promising therapeutic target to restore dysfunctional estrogenic metabolism in PAH. 

Comprehensive analyses of the estrogen metabolic pathway in PAH are merited to provide 

a better understanding of estrogen metabolism in PAH. It is imperative that estrogen-

related therapies are considered in the management of PAH, given the drastic gender 

disparity that is observed in clinic. Perhaps we can learn from our colleagues in oncology, 

whom now effectively treat cancers depending on estrogen status. 
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Chapter 4 

Dynamic Alterations in the Estrogen Metabolic 
Axis in Pulmonary Hypertension 
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 Introduction 4.1

Estrogen and its metabolites are emerging as highly pathogenic mediators in various 

diseases. Among these, the debilitating and fatal cardiovascular disease PH appears to be 

affected by abnormal activity of the estrogen pathway to adversely affect pulmonary 

vascular cell survival and function. PAH is the most fatal subtype of PH and 

predominantly affects women. For example, in the largest PH registry in the World, the 

Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL), more 

than 80% of patients diagnosed were females (Badesch et al., 2010). Altered estrogen 

synthesis (Mair et al., 2013) and metabolism (Chapter 3 and White et al., 2012) contributes 

to the pathogenesis of PAH. We have recently provided evidence that the estrogen 

metabolic axis is dysregulated in PAH in part via the activity of the putatively pathogenic 

CYP enzyme CYP1B1 (Chapter 3 and White et al., 2012). PAH is characterised by 

obstructive vascular lesions in the distal vasculature by excessive PASMC proliferation 

(Archer et al., 2010;Schermuly et al., 2011), suggesting that anti-proliferative therapies are 

needed. Estrogen and its metabolites elicit potent biological effects within target cells (Zhu 

& Conney, 1998), yet the dynamic regulation of estrogen metabolism in PAH remains 

obscure. We hypothesized that estrogen metabolism is pathologically altered in PAH 

towards the formation of pro-proliferative estrogen metabolites. Modulation of the 

estrogen metabolic pathway that favours the formation of anti-proliferative metabolites 

over pro-proliferative metabolites may represent a novel therapeutic strategy in this highly-

gender selective disease. 

The circulating C19 precursor’s testosterone and androstenedione are converted to 17β-E2 

and E1 respectively by the activity of CYP19A1 (aromatase). Recent evidence highlights a 

potential for locally synthesized estrogens (17β-E2 and E1) in the distal pulmonary arteries 

through expression of aromatase (Mair et al., 2013). Tissues can also regulate their own 

estrogenic milieu through the 17β-HSD enzymes. 17β-HSD1 converts E1 into 17β-E2, 

whereas 17β-HSD2 converts 17β-E2 into E1. 17β-E2 and E1 undergo oxidative 

metabolism by the catalytic activity of CYP enzymes in the presence of NADPH to yield 

the 2-, 4- and 16-hydroxylated estrogens (Figure 4-1). The catechol estrogens (the 2- and 

4-hydroxylated estrogens) formed by this transformation can then undergo rapid 

methylation by the activity of COMT to their less estrogenic methoxyestrogens. 

Alternatively, CYP enzymes can also further oxidise catechol estrogens, specifically the 4-

hydroxyestrogens to quinones and semiquinones that can enter redox cycling and interact 

with DNA to form DNA adducts, which can generate apurinic sites resulting in DNA 
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damage. Recently, DNA damage has been shown to be an important mediator in the 

pathogenesis of PAH and provides a novel therapeutic target (Meloche et al., 2013). 

 

Figure 4-1 Summary of the hydroxylation of estrone and 17β-estradiol by human 
cytochrome P450 isoforms 

CYP enzymes that are highlighted in bold have a high activity for the hydroxylation at that specific 
carbon position. Diagram modified and reproduced with permission from Professor Bao-Ting Zhu 
(Lee et al., 2003) 

α

Estrone (E1)

17β-estradiol (E2)

2C8, 3A4, 3A5, 1B1α

β 1A1, 2C8, 3A4, 3A5, 3A7

1A1, 3A7
α

1A1β

3A4, 3A5, 3A7

α

1A1, 3A4,

3A5, 3A7

1A1, 1A2, 1B1,

2C9, 3A4, 3A5,

3A7

1A1, 1A2, 1B1, 2B6,

2C8, 2C9, 2C19, 2D6,

3A4, 3A5, 3A7

α

1A2, 1B1, 2A6, 2C8, 3A4, 3A5α

β 1A1, 1A2, 2C8, 3A4,

3A5, 3A7, 2C19

1A1, 1B1, 3A4
α

1A1β

1A1, 1A2, 1B1,

3A4, 3A5, 3A7

α

1A1, 3A41A1, 1A2, 1B1,

2C9, 3A4, 3A5,

3A7

1A1, 1A2, 1B1, 2B6,

2C8, 2C9, 2C19, 2D6,

3A4, 3A5, 3A7



Chapter 4 – Estrogen metabolism in PAH 

155 
 

Both herein (Chapter 3) and previously (White et al., 2012) we present extensive evidence 

that estrogen strongly drives PAH onset specifically through pathologic induction of the 

putative cancer-causing enzyme (Murray et al., 1997) CYP1B1. In effect, this is thought to 

potently shift estrogen metabolism towards the formation of pathogenic metabolites. 16-

hydroxylation and 4-hydroxylation of 17β-E2 represent a pathogenic pathway that may be 

activated by increased CYP1B1 activity (Chapter 3 and White et al., 2012). 16-

hydroxylated estrogens robustly induce proliferation of hPASMCs (Chapter 3 and White et 

al., 2012). The 4-hydroxylated estrogen metabolites are highly associated with 

tumorigenesis via the formation of ROS that can generate apurinic sites leading to DNA 

damage (Acharya et al., 2010). 

The lung hosts a substantial number of CYP enzymes. The most prominent are CYP1A1, 

CYP1B1 and CYP2B6 under normal physiological conditions (Bieche et al., 2007) which 

are predominantly extra-hepatic enzymes. CYP1B1 is also highly expressed in the trachea 

and to a lesser extent in the bone marrow, kidney, heart, mammary gland, prostate, spleen, 

thyroid and uterus (Bieche et al., 2007). CYP1A1 is most highly expressed in the lung but 

is also present within other tissues including the kidney, trachea, liver and mammary gland 

(Bieche et al., 2007). In contrast, CYP2B6 is less abundantly expressed with similar levels 

in the liver compared with the lungs as well as the kidney and trachea (Bieche et al., 2007). 

To date, a comprehensive analysis of estrogen metabolism in PAH has been hampered by 

challenges in measuring estrogens and its metabolites due to their relatively low 

abundance, structural similarities and a required high level of expertise in ‘omics analysis. 

Currently, the most commonly used methodologies include immunoassays, gas 

chromatography mass spectrometry (GC-MS) and liquid chromatography mass 

spectrometry (LC-MS) (Gaikwad, 2013). There is a lack of available immunoassays to 

measure all estrogens of interest and it is impossible to analyse multiple steroids in one 

single assay. GC-MS and LC-MS are considered the gold standard techniques in steroid 

analysis yet they carry selective bias and extensive sample preparation for measurement of 

estrogens. To date, estrogen metabolites have only been preliminarily measured in serum 

from patients with severe PAH (Chhatwani et al., 2010). Aromatase (Mair et al., 2013) and 

CYP1B1 (Chapter 3 and White et al., 2012) are expressed within smooth muscle cells of 

the distal pulmonary vasculature indicating local synthesis and metabolism of estrogens 

potentially creating a potent estrogenic milieu. It was therefore of importance to examine 

and quantitatively measure the dynamic profile of estrogen metabolism in a homogenous 

PASMC culture given that an altered estrogen metabolic profile may figure prominently in 

PAH. Pulmonary vascular smooth muscle cell proliferation is a well-established and 
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dominant feature of PAH (Archer et al., 2010;Schermuly et al., 2011), suggesting that anti-

proliferative therapies are necessary to reverse the extensive vascular obliteration. Thus, 

we developed a methodology adapting a HPLC approach to quantitatively fate map 

estrogen metabolism in a homogenous hPASMC population to determine the dynamic 

regulation of estrogen metabolism in PAH and precisely uncover underlying molecular 

events that contribute to PAH pathogenesis via a dysregulated estrogen metabolic axis. 

In this chapter, we investigated the effects of estrogen metabolites on the pulmonary 

circulation and investigated the metabolism of 17β-E2 in hPASMCs providing the first 

direct evidence that estrogen is metabolized by hPASMCs. We provide evidence that 16α-

OHE1 is a disease-modifying metabolite in female mice only. We demonstrate key 

differences in estrogen metabolism in control and PAH hPASMCs. We provide evidence 

for prominent, yet variable activity of 17β-HSD2 in hPASMCs by the formation of E1, 

considered an inactive reservoir for 17β-E2 synthesis. Importantly, we demonstrate that 

estrogen metabolism is pathologically altered in PAH and highlights a novel treatment 

paradigm in this highly female-selective disease. 

Aims of this chapter: 

1. To assess the contribution of estrogen metabolites on pulmonary haemodynamics 

and cellular function 

2. To develop a method to quantitatively measure estrogen metabolism in pulmonary 

vascular cells 

3. To determine the metabolic fate of 17β-E2 in hPASMCs from naïve cells and PAH-

PASMCs in both males and females 
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 Results 4.2

 The CYP1B1 metabolite 16α-hydroxyestrone is increased 4.2.1
by hypoxia 

We have shown that CYP1B1 expression is increased in human PAH and in murine 

experimental models of PH (Chapter 3 and White et al., 2012). Furthermore, genetic 

ablation of CYP1B1 and inhibition of CYP1B1 attenuated the development of hypoxic-

induced-PH. We next wished to identify a mechanistic pathway that mediates CYP1B1 

pathogenesis. Cellular proliferation screening revealed that 16α-OHE1 is the predominant 

CYP1B1 metabolite found to cause significant proliferation in control hPASMCs (White et 

al., 2012). As an indicative measure of CYP1B1 activity in murine PH, we assessed 

urinary concentrations of 16α-OHE1 in response to chronic hypoxia exposure. Urinary 

concentrations of 16α-OHE1 were increased in both male and female mice following 

exposure to chronic hypoxia (Figure 4-2).  

 16α-hydroxyestrone inflicts a pulmonary hypertensive 4.2.2
phenotype in female mice only 

To determine whether 16α-OHE1 is a pulmonary vascular insult that can directly cause a 

PH phenotype in vivo, mice were administered 16α-OHE1 for 28 days (Figure 4-4). Dr. 

Kevin White and Ms. Leigh Paton performed the entire female dosing, in vivo procedures, 

pulmonary vascular remodeling and α-SMA analysis of this study. In female mice, 16α-

OHE1 resulted in increased RVSP, RVH and pulmonary vascular remodeling. In contrast, 

no effects were observed in male mice in any of the parameters measured. The effects 

observed were specific to the cardio-pulmonary unit in female mice, as no changes were 

measured in mSAP. In contrast, 16α-OHE1 significantly reduced mSAP in male mice 

(Table 4-1). 
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Figure 4-2 Urinary levels of the 16α-hydroxyestrone is increased by chronic hypoxia in male 
and female mice 

Urinary levels of 16α-hydroxyestrone (16α-OHE1) were assessed in the urine of mice kept at 
normoxic conditions or after exposure to 2 weeks hypoxia (10% oxygen) by a competitive 
immunoassay (ESTRAMET 2/16). n=5, *P<0.05, t-test, data is expressed as the mean ± SEM.  
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Figure 4-3 16α-hydroxyestrone (16α-OHE1) induces right ventricular hypertrophy in female 
mice only 

Female and male C57BL/6 mice were dosed with 16α-OHE1 1.5mg/kg/day or vehicle (~5% ethanol 
in saline) for 28 days. Right ventricular hypertrophy was assessed by expressing the dry weight of 
the right ventricle over the left ventricle and septum (RV/LV+S; Fultons index). n=7-10 per group, 
*P<0.05, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± 
SEM. 
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Figure 4-4 16α-hydroxyestrone (16α-OHE1) increases right ventricular systolic pressures in 
female mice only 

Female and male C57BL/6 mice were dosed with 16α-OHE1 1.5mg/kg/day or vehicle (~5% ethanol 
in saline) for 28 days. Right ventricular systolic pressures (RVSP) were measured by right heart 
catheterisation. n=7-8 per group, **P<0.01 One-way ANOVA with a Bonferroni’s post-hoc test. 
Data is expressed as the mean ± SEM. 
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Figure 4-5 Representative α-smooth muscle actin–stained pulmonary arteries in 16α-
hydroxyestrone (16α-OHE1) or vehicle treated C57BL/6 male and female mice 

Female and male C57BL/6 mice were treated with16α-hydroxyestrone (16α-OHE1, 1.5mg/kg/day) 
or vehicle (~5% ethanol in saline) for 28 days. Muscularisation is visualised by α-smooth muscle 
actin staining, which has a brown/orange appearance. Scale bar = 20μm 
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Figure 4-6 16α-hydroxyestrone (16αOHE1) increases pulmonary arterial remodeling in 
female mice only 

Female and male C57BL/6 mice were treated with16α-hydroxyestrone (16α-OHE1, 1.5mg/kg/day) 
or vehicle (~5% ethanol in saline) for 28 days. The degree of pulmonary arterial remodeling was 
assessed by counting the number of remodeled and non-remodeled arteries in a lung section and 
expressed as the % of remodeled vessels over the total number of vessels. n=4-6 per group, 
**P<0.05. One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± 
SEM. 
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Table 4-1 Phenotypic data from 16α-hydroxyestrone treated mice 

Animal Group mSAP (mmHg) mRVP (mmHg) Heart Rate (bpm) Body Weight (g) 

Female Vehicle 76.68 ±1.97 (5) 12.34 ± 0.45 (9) 437.1 ± 19.87 (9) 23.16 ± 0.56 (10) 

Female 16α-OHE1 86.39 ± 3.10 (6) 14.95 ± 0.72* (9) 487.8 ± 22.40 (9) 23.63 ± 1.05 (10) 

Male Vehicle 91.14 ± 2.20 (7) 13.58 ± 0.40 (10) 407.6 ± 11.72 (10) 23.92 ± 0.43 (10) 

Male 16α-OHE1 76.87 ± 2.39** (9) 14.55 ± 0.89 (8) 434.5 ± 11.66 (9) 24.01 ± 0.48 (10) 

Female and male C57BL/6 mice were treated with16α-hydroxyestrone (16α-OHE1, 1.5mg/kg/day) or vehicle (~5% ethanol in saline) for 28 days. Mean systemic 
arterial pressures (mSAP) were measured by cannulation of the carotid artery. Mean right ventricular pressures (mRVP) were calculated from the right ventricular 
pressure obtained by right heart catheterisation. n numbers are indicated in brackets. *P<0.05, **P<0.001  
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 16α-hydroxyestrone-induced proliferation is inhibited by a 4.2.3
reactive oxygen species scavenger and an inhibitor of 
extracellular regulated kinase 1/2 

We have shown that 16α-OHE1 induces a PH phenotype in female mice only and that it is 

a potent induced of hPASMCs proliferation (White et al., 2012). We were therefore 

interested in investigating potential mechanisms related to this accelerated rate of 

proliferation. CYP1B1 is recognised to facilitate production of ROS which mediates 

phosphorylation of the target gene ERK1/2 (Jennings et al., 2010;Jennings et al., 2012). It 

was therefore of interest to investigate the effects of a ROS scavenger (tempol) and an 

inhibitor of ERK1/2 inhibitor (UO126) on 16α-OHE1-induced proliferation. hPASMCs did 

not proliferate to 16α-OHE1 in the presence of either tempol or UO126, providing 

evidence that this pathway can also be activated by 16α-OHE1 (Figure 4-7). 
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Figure 4-7 16α-hydroxyestrone (16α-OHE1)-induced proliferation in human pulmonary 
arterial smooth muscle cells (hPASMCs) is mediated by the formation of reactive oxygen 
species (ROS) 

Female PAH hPASMCs were quiesced for 24 hours in 0.2% charcoal-stripped FBS (estrogen free) 
phenol red free DMEM. HPASMCs were then pre-incubated with a vehicle (water), an ERK inhibitor 
(UO126, 1μM) or tempol (ROS scavenger, 1mM) for 45 minutes prior to addition of 16α-OHE1 
(1nM) in the presence of 2.5% charcoal-stripped FBS phenol red free DMEM. Thymidine was 
added for the last 24 hours (0.1μCi) and thymidine incorporation was assessed after 72 hours. The 
effect of inhibitors alone is included in appendix 1. n=1, repeated 4 times, **P<0.01, One-way 
ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 
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 4-hydroxyestradiol attenuates serotonin-induced 4.2.4
vasoconstriction in the pulmonary arteries 

16α-OHE1 and 16αOHE2 were the only CYP1B1 metabolite to induce proliferation of 

hPASMCs (White et al., 2012). However, other pathogenic effects beyond smooth muscle 

cell proliferation may be present. We could therefore not conclude that all effects of 

CYP1B1 were mediated via formation of 16α-OHE1. 4-hydroxylation of 17β-E2 is the 

predominant metabolic pathway of CYP1B1 activity. We therefore wished to determine 

the effects of 4-OHE2 in vivo. No effect was observed in RVSP, RVH (Figure 4-8) or 

mSAP (Table 4-2). Body weights were significantly reduced in mice dosed with 4-OHE2 

(Table 4-2) 

Surprisingly, serotonin-induced pulmonary arterial vasoconstriction was significantly 

reduced in mice that had been treated with 4-OHE2 compared to their vehicle controls 

Figure 4-10. Given the high estrogenic activity of 4-OHE2 we also monitored potential 

hypertrophic/growth effects of the reproductive organs. 4-OHE2 significantly increased the 

dry weight of the uterus and ovaries combined compared to the control-vehicle group 

(Figure 4-11). Furthermore, this was accompanied by a fluid-filled uterus indicating 

hydrometrocolpolis. 
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Figure 4-8 4-hydroxyestradiol (4-OHE2) has no effects on right ventricular hypertrophy or 
right ventricular systolic pressures 

Female C57BL/6 mice were dosed with 4-OHE2 (1.5mg/kg/day) or vehicle (~5% ethanol in saline) 
for 28 days. Right ventricular hypertrophy was assessed by expressing the dry weight of the right 
ventricle over the left ventricle and septum (RV/LV+S; Fultons index (a). Right ventricular systolic 
pressures (RVSP) were measured by right heart catheterisation (b). n=6-10. One-way ANOVA with 
a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM 
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Figure 4-9 4-hydroxyestradiol had no effects on pulmonary vascular remodeling 

Female C57BL/6 mice were dosed with 4-OHE2 (1.5mg/kg/day) or vehicle (~5% ethanol in saline) 
for 28 days. Representative α-smooth muscle actin–stained pulmonary arteries in 4-OHE2 or 
vehicle treated C57BL/6 female mice and percentage of remodeled pulmonary arteries. The degree 
of pulmonary arterial remodeling was assessed by counting the number of remodeled and non-
remodeled arteries in a lung section and expressed as the % of remodeled vessels over the total 
number of vessels. n=5-6, One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed 
as the mean ± SEM. Scale bar = 20μm. 
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Figure 4-10 4-hydroxyestradiol reduces serotonin-induced vasoconstriction 

Female C57BL/6 mice were dosed with 4-OHE2 (1.5mg/kg/day) or vehicle (~5% ethanol in saline) 
for 28 days. The intra-pulmonary arteries were isolated from mice at sacrifice and mounted in a 
myograph. The arteries were constricted twice by increasing extracellular concentrations to 50mM 
potassium chloride (KCl). The second response was used as a reference constriction to calculate 
the % vasoconstriction in response to serotonin. Following a wash-out and re-stabilization, 
cumulative concentration response curves to serotonin were constructed. Cumulative concentration 
response curves to serotonin (a). Area under the curve analysis (b). n=6-7, *P<0.05, t-test. Data is 
expressed as the mean ± SEM. 
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Table 4-2 Phenotypic data from 4-hydroxyestradiol treated mice 

Animal Group mSAP (mmHg) mRVP (mmHg) Heart Rate (bpm) Body Weight (g) 

Female Vehicle 84.22 ± 1.51 (4) 11.45 ± 0.42 (6) 366.0 ± 24.20 (6) 18.75 ± 0.56 (6) 

Female 4-OHE2 83.31 ± 5.76 (8) 12.60 ±0.63 (9) 375.6 ± 12.19 (9) 17.61 ± 0.17** (10) 

Female C57BL/6 mice were dosed with 4-OHE2 (1.5mg/kg/day) or vehicle (~5% ethanol in saline) 
for 28 days. Mean systemic arterial pressures (mSAP) were measured by cannulation of the carotid 
artery. Mean right ventricular pressures (mRVP) were calculated from the right ventricular pressure 
obtained by right heart catheterisation. n numbers are indicated in brackets **P<0.01. 

 

Figure 4-11 Effect of 4-hydroxyestradiol on uterus + ovary weights 

Female C57BL/6 mice were dosed with 4-OHE2 (1.5mg/kg/day) or vehicle (~5% ethanol in saline) 
for 28 days. The dry weight of the uterus and ovaries were expressed over the body weight, n=5-
10, **P<0.05, t-test. Data is expressed as the mean ± SEM. 
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 Effect of estrogen metabolism by CYP1B1 on cellular 4.2.5
function 

Recent evidence has highlighted that the predominant CYP1B1 metabolite in the lungs of 

mice is 4-OHE1 (Peng et al., 2013). Thus, we assessed the functional consequences of 

increased CYP1B1 activity in hPASMCs from female control patients by exposure to 4-

OHE1 (Figure 4-12 - Figure 4-15). 4-OHE1 had no effect on cell viability as assessed by 

quantification for ATP after 3 and 5 days incubation. In contrast, 4-OHE1 dramatically 

reduced DNA replication as assessed by a reduction in thymidine incorporation at 3 days 

(Figure 4-12). Following a 5-day incubation with 4-OHE1, this effect was no longer 

observed (Figure 4-13).  

CYP1B1-/- mouse lungs have a higher concentration of 2-MeOHE2 (Peng et al., 2013) 

suggesting that this is negatively regulated by CYP1B1 activity. We were therefore 

interested in determining the effects of 2-MeOHE2 on cellular viability and proliferation 

(Figure 4-12 - Figure 4-15). 2-MeOHE2 caused a dramatic reduction in cell viability and 

proliferation as assessed by ATP and thymidine incorporation assays, respectively, 

following incubations for both 3 and 5 days.  
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Figure 4-12 Effect of 4-hydroxyestrone (4-OHE1) and 2-methoxyestradiol (2-MeOHE2) on 
human pulmonary arterial smooth muscle cell (hPASMC) viability and proliferation for 3 
days 

Female control hPASMCs were quiesced for 24 hours in 0.2% charcoal-stripped FBS (estrogen 
free) phenol red free DMEM. hPASMCs were then incubated with either 4-OHE1 (1μM), 2-
MeOHE2 (1μM) or vehicle (0.01% ethanol) for 3 days in 1% or 3% charcoal-stripped FBS phenol 
red free DMEM and assessed for cell viability with the CellTiter-Glow® luminescence assay (a) and 
cell proliferation by the thymidine incorporation assay (b) n=1-2, repeated 4 times per cell line. 
**P<0.01, ***P<0.001. One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the 
mean ± SEM. 
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Figure 4-13 Effect of 4-hydroxyestrone (4-OHE1) and 2-methoxyestradiol (2-MeOHE2) on 
human pulmonary arterial smooth muscle cell (hPASMC) viability and proliferation for 3 
days 

Female control hPASMCs were quiesced for 24 hours in 0.2% charcoal-stripped FBS (estrogen 
free) phenol red free DMEM. hPASMCs were then incubated with either 4-OHE1 (1μM), 2-
MeOHE2 (1μM) or vehicle (0.01% ethanol) for 5 days in 1% or 3% charcoal-stripped FBS phenol 
red free DMEM and assessed for cell viability with the CellTiter-Glow® luminescence assay (a) and 
cell proliferation by the thymidine incorporation assay (b) n=2, repeated 4 times per cell line. 
**P<0.01, ***P<0.001. One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the 
mean ± SEM. 
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Figure 4-14 Representative microphotographs of human pulmonary arterial smooth muscle 
cells (hPASMCs) following incubations with 4-hydroxyestrone (4-OHE1) and 2-
methoxyestradiol (2-MeOHE2) for 3 days 

Female control hPASMCs were quiesced for 24 hours in 0.2% charcoal-stripped FBS (estrogen 
free) phenol red free DMEM. HPASMCs were then incubated with 4-OHE1 (1μM), 2-MeOHE2 
(1μM) or vehicle (0.01% ethanol) for 3 days in 1% or 3% charcoal-stripped FBS phenol red free 
DMEM. Representative images of each condition are shown. 

 
Figure 4-15 Representative microphotographs of human pulmonary arterial smooth muscle 
cells (hPASMCs) following incubations with 4-hydroxyestrone (4-OHE1) and 2-
methoxyestradiol (2-MeOHE2) for 5 days 

Female control hPASMCs were quiesced for 24 hours in 0.2% charcoal-stripped FBS (estrogen 
free) phenol red free DMEM. HPASMCs were then incubated with 4-OHE1 (1μM), 2-MeOHE2 
(1μM) or vehicle (0.01% ethanol) for 5 days in 1% or 3% charcoal-stripped FBS phenol red free 
DMEM. Representative images of each condition are shown. 

 

1% Serum          +4-OHE1 (1μM)      +2-MeOHE2 (1μM)              3%                 +4-OHE1 (1μM)    +2-MeOHE2 (1μM) 

1% Serum          +4-OHE1 (1μM)      +2-MeOHE2 (1μM)              3%                 +4-OHE1 (1μM)    +2-MeOHE2 (1μM) 
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 17β-estradiol intracellular levels in human pulmonary 4.2.6
arterial smooth muscle cells 

Aromatase is expressed in both murine and human pulmonary arteries, providing evidence 

for local synthesis of estrogens (Mair et al., 2013). Here, we provide evidence that 17β-E2 

is present in abundance in hPASMCs (Figure 4-16). No differences in 17β-E2 levels were 

observed in patients with PAH compared to control samples. There were also no gender 

differences. We have recently provided evidence for interactions of the estrogen and 

serotonin pathways (White et al., 2011b). We were therefore interested in investigating the 

effects of serotonin on intracellular 17β-E2 concentrations. Serotonin had no effects in any 

of the groups studied. 

 Depletion of 17β-estradiol from the extracellular medium in 4.2.7
human pulmonary arterial smooth muscle cells 

To directly measure intracellular flux of 17β-E2 in hPASMCs, female control and PAH-

hPASMCs were incubated with 17β-E2 and the extracellular medium was collected to 

analyse the depletion of 17β-E2 at various time-points (Figure 4-17). After ten minutes, 

there were no differences in the control hPASMCs and the PAH-hPASMCs. After 24 

hours, there was substantially less 17β-E2 in the extracellular medium in the PAH 

hPASMCs in comparison to the control hPASMCs. 

 Patient characteristics 4.2.8

Intracellular levels of 17β-E2 was analysed in hPASMCs homogenates from both male and 

female control and PAH samples. The patients used for these studies are listed in the tables 

below. We have provided evidence that estrogen metabolism is dysregulated in PH/PAH 

by increased expression of CYP1B1. We were therefore interested to develop a 

methodology to quantitatively determine estrogen metabolism in pulmonary vascular cells. 

Due to the valuable nature of this cell type and time constraints of this project, each 

experiment was performed in one patient, in duplicate over two separate passages. For 

clarification, the female control used for this study was a 59 year old female, the male 

control was a 62 year old male with emphysema, the female PAH patient was a 24 year-old 

female with IPAH and the male PAH patient was a 43 year-old male with APAH 

(Eisenmengers syndrome). See Table 4-3 and Table 4-4 for patient characteristics. 
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Table 4-3 Patient characteristics of control human pulmonary arterial smooth muscle cells 

Sex Age Patient Information Drug Therapy 

F 64 N/A aspirin 

F 58 Mild emphysema N/A 

F 59 N/A Aspirin, simvastatin, bisoprolol, ramipril, metalazine, wuinine 
sulphate, loperamide 

F N/A N/A N/A 

M 72 N/A N/A 

M 62 N/A N/A 

M 76 N/A N/A 

M N/A N/A N/A 

 

Table 4-4 Patient characteristics of pulmonary arterial hypertension human pulmonary 
arterial smooth muscle cells 

Sex Age Patient Information mPAP (mmHg) Drug Therapy 

F 24 IPAH N/A N/A 

F 30 HPAH (R899X 
mutation) 

46 IV prostanoids, warfarin, zopliclone, 
mebeverine, frusimide 

F 33 IPAH 33 IV prostanoids, bosentan, frusemide, 
adizem 

M 43 APAH (Eisenmengers 
syndrome) 

N/A N/A 

M 17 HPAH (W9X mutation) 72 IV prostanoids, warfarin, iloprost 
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Figure 4-16 Intracellular 17β-estradiol (17β-E2) concentrations in pulmonary arterial smooth 
muscle cells (hPASMCs): effect of serotonin 

17β-E2 levels were measured in hPASMCs by ELISA. HPASMCs were grown to 70% confluency 
and then serum starved in 0.2% charcoal-stripped (estrogen free) DMEM for 24 hours to 
synchronise the cells. The medium was then changed to 10% charcoal stripped DMEM and 
maintained under these conditions for 48 hours. The cells were lysed with 1% lauryl maltoside 
buffer and assayed by ELISA. 50μg of protein was loaded per well. n=2-4 patients per group, 
assayed in duplicate. One-way ANOVA with a Bonferroni’s post-hoc test. Data is expressed as the 
mean ± SEM.  
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Figure 4-17 Depletion of 17β-estradiol from the extracellular medium in human pulmonary 
arterial smooth muscle cells (hPASMCs) 

HPASMCs from a control and PAH patient were incubated with 17β-estradiol (17βE2; 
272.38pg/mL) for 10 minutes and 24 hours. Extracellular (medium) levels of 17β-E2 were assayed 
by ELISA. Basal levels of 17β-E2 in the medium used were almost undetected. The media used for 
these studies was twice charcoal-stripped (steroid free) phenol-red free DMEM. n=1 patient per 
group, assayed in duplicate, **P<0.01 t-test comparing the mean ±SEM. 
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 Absorption profiles of estrogen metabolites by high 4.2.9
performance liquid chromatography 

Initially, we identified the unique absorption profiles of the 15 (of the 49 authentic 

estrogen metabolites of 17β-E2 and E1 (Lee et al., 2003)) most prominent estrogen 

metabolites using an isocratic mobile phase constituted of water (50%), acetonitrile (30%) 

and methanol (20%) at a flow rate of 1mL per minute at 25°C. Metabolites were separated 

with a Sunfire C18 5µm, 4.6 x 150mm column (Waters, UK). 100µL of each metabolite at 

a concentration of 1μg/ml was injected into the HPLC and detected by UV light. Under 

these conditions, all metabolites were identified within the first 20 minutes (Figure 4-18 - 

Figure 4-21).  
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Figure 4-18 Chromatograms of 17β-estradiol, estrone and 17α-estradiol 

Chromatograms of estrogens following high performance liquid chromatography with 

ultraviolet absorption (λ200nm). 100μL of 17β-estradiol, estrone and 17α-estradiol 

standards at a concentration of 1μg/mL was injected onto the Sunfire C18 5µm, 4.6 x 

150mm column and run under isocratic conditions in a mobile phase consisting of water, 

acetonitrile and methanol in the ratio 50-30-20 at a flow rate of 1mL/min at 25ºC. mAu, 

milli absorbance unit. 
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Figure 4-19 Chromatograms of 16α-hydroxyestrone, 16α-hydroxyestradiol, 16 epiestriol and 
17 epiestriol 

Chromatograms of estrogens following high performance liquid chromatography with 

ultraviolet absorption (λ200nm). 100μL of 16α-hydroxyestrone, 16α-hydroxyestradiol, 16 

epiestriol and 17 epiestriol standards at a concentration of 1μg/mL was injected onto the 

Sunfire C18 5µm, 4.6 x 150mm column and run under isocratic conditions in a mobile 

phase consisting of water, acetonitrile and methanol in the ratio 50-30-20 at a flow rate of 

1mL/min at 25ºC. mAu, milli absorbance unit. 
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Figure 4-20 Chromatograms of 2-hydroxyestrone, 2-hydroxyestradiol, 4-hydroxyestrone and 
4-hydroxyestradiol 

Chromatograms of estrogens following high performance liquid chromatography with 

ultraviolet absorption (λ200nm). 100μL 2-hydroxyestrone, 2-hydroxyestradiol, 4-

hydroxyestrone and 4-hydroxyestradiol standards at a concentration of 1μg/mL was 

injected onto the Sunfire C18 5µm, 4.6 x 150mm column and run under isocratic 

conditions in a mobile phase consisting of water, acetonitrile and methanol in the ratio 50-

30-20 at a flow rate of 1mL/min at 25ºC. mAu, milli absorbance unit. 

 

 

0 5 10 15 20 25 30
-100

500

1,000

1,500

2,000

2,500

3,000

Time (mins)

m
A

u

4-Hydroxyestrone

0 5 10 15 20 25 30
-100

500

1,000

1,500

2,000

2,500

3,000

Time (mins)

m
A

u

2-Hydroxyestrone

0 5 10 15 20 25 30
-100

500

1,000

1,500

2,000

2,500

3,000

Time (mins)

m
A

u

2-Hydroxyestradiol

0 5 10 15 20 25 30
-100

500

1,000

1,500

2,000

2,500

3,000

Time (mins)

m
A

u

4-Hydroxyestradiol



Chapter 4 – Estrogen metabolism in PAH 

182 
 

 

Figure 4-21 Chromatograms of 2-methoxyestrone, 2-methoxyestradiol, 4-methoxyestrone 
and 4-methoxyestradiol 

Chromatograms of estrogens following high performance liquid chromatography with 

ultraviolet absorption (λ200nm). 100μL of 2-methoxyestrone, 2-methoxyestradiol, 4-

methoxyestrone and 4-methoxyestradiol standards at a concentration of 1μg/mL was 

injected onto the Sunfire C18 5µm, 4.6 x 150mm column and run under isocratic 

conditions in a mobile phase consisting of water, acetonitrile and methanol in the ratio 50-

30-20 at a flow rate of 1mL/min at 25ºC. mAu, milli absorbance unit. 
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 Combined chromatogram of estrogen metabolites 4.2.10

Our goal was to separate all 15 estrogen metabolites in a single chromatographic run to 

enable comparative analysis. To achieve this, we applied a gradient elution mode 

(alteration of the mobile phase during the run), which allows for further separation 

depending on the interaction of the estrogen metabolites with the stationary and mobile 

phases. This was essential due to the structural similarity of all metabolites. 

All estrogen metabolites were successfully separated on gradient elution mode at λ200nm 

at 25ºC (Figure 4-22). The mobile phase consisted of water, acetonitrile and methanol. The 

initial mobile phase consisted of 50-10-40 WAM for 1 minute and switched to 55-40-5 

over 8 minutes and maintained for 2 minutes in this mobile phase composition. This was 

changed to 50-30-20 over 1 minute and maintained for 9 minutes. The mobile phase was 

the reverted back to the initial mobile phase for stabilisation of the UV signal for 10 

minutes. 

This column allowed for efficient separation for the estrogens with simultaneous detection 

by the UV system. The programme was initially extremely useful to identify the section of 

the chromatographic profile where our metabolite peaks formed. However, the widths of 

the peaks on the radio-labelled HPLC resulted in some difficulties in peak assignment 

between closely eluting peaks. It was therefore essential to do further method development 

to suit the different metabolite formation. The samples were therefore also separated with 

an Allure Biphenyl 5µm, 4.6 x 150mm column (Restek, UK) at 30ºC with reverse phase 

chromatography in isocratic mode using water and methanol in the mobile phase (32% 

water:78% methanol). All peak integrations for quantification were obtained from the 

sample run in the Allure Biphenyl column. Peak identification was confirmed using the 

Sunfire C18 column.  
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Figure 4-22 Ultraviolet absorption profiles of the 15 estrogen metabolites with the Sunfire C18 column 

The 15 most prominent estrogen metabolites were separated by high performance liquid chromatography and detected by ultraviolet (UV) absorption in gradient elution 
mode (the baseline alters due to the variations in absorption during the solvent gradient and was reset at 9 and 12 minutes). The mobile phase consisted of water, 
acetonitrile and methanol (WAM). The mobile phase was altered to 55-40-4 over a gradient from 1 to 8 minutes and maintained for 2 minutes under these conditions. 
The mobile phase was then switched to 50-30-20 in a ballistic gradient over 1 minute and maintained in these conditions for a subsequent 9 minutes. The mobile 
phase was then returned to the initial mobile phase for stabilisation of the UV signal for 10 minutes. (See Table 4-5 for individual peak identification). 
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Table 4-5 Estrogen compound retention times on the Sunfire C18 Column 

Peak Estrogen Compound Abbreviation Retention Time (Mins) 

1 16α-Hydroxyestradiol 16α-OHE2 5.2 

2 16α-Hydroxyestrone 16α-OHE1 7.2 

3 16-Epiestriol 16-epi-E3 8.0 

4 17-Epiestriol 17-epi-E3 8.6 

5 4-Hydroxyestradiol 4-OHE2 9.8 

6 2-Hydroxyestradiol 2-OHE2 10.5 

7 2-Hydroxyestrone 2-OHE1 11.4 

8 4-Hydroxyestrone 4-OHE1 11.7 

9 17β-Estradiol 17β-E2 12.9 

10 4-Methoxyestradiol 4-MeOHE2 13.5 

11 17α-Estradiol 17α-E2 14.3 

12 2-Methoxyestradiol 2-MeOHE2 14.8 

13 Estrone E1 16.0 

14 4-Methoxyestrone 4-MeOHE1 17.5 

15 2-Methoxyestrone 2-MeOHE1 18.6 
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 Extraction of estrogen metabolites-method development 4.2.11

Estrogen metabolites are hydrophobic compounds that require extraction from their sample 

matrix (to remove non-specific interference) by either SPE or solvent extractions. The goal 

was to identify the most efficient method to extract all the 15 estrogen metabolites with the 

best recoveries. For the solvent extractions, we tested ethyl acetate, dichloromethane and 

ether in the ratios (aqueous: solvent) 1:1, 1:5, 1:10 with the sample medium (not all sample 

extractions were successful). Extraction recoveries of the 15 standards were assessed by 

comparisons of extracted samples with samples without an extraction step and samples 

where the estrogen standards were added after the extraction (See Chapter 2). The 

recoveries of the estrogens using solvent extractions was inconsistent and relatively poor 

(Figure 4-23-Figure 4-25; ranging from 0 – 95% recoveries, although only few metabolites 

were recovered to this level). We tested the application of SPE to extract our samples using 

Oasis® HLB columns (Waters, UK). This was also an advantage due to the large sample 

volumes (10ml) that we were working with. The extraction recoveries using the Oasis® 

HLB columns were consistent across all estrogen metabolites and had excellent recoveries 

(85 - 100%; Figure 4-26). This was therefore our chosen extraction method for all samples. 

The extractions were much more consistent in the pre-spiked vs. post-spiked samples 

compared to the pre-spiked vs. the control samples. The former is however the most 

representative as both samples contain the sample matrix (the cell culture medium) which 

may affect the chromatographic profile.  

 Extraction and recovery of 14C-17β-estradiol 4.2.12

We had developed a robust methodology for the extraction of the estrogen metabolites. We 

confirmed that this methodology was equally efficient at extracting radiolabelled 17β-E2 

(14C-17β-E2; Figure 4-27).  
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Figure 4-23 Extraction recoveries of estrogen metabolites with a ethyl acetate solvent 
extraction 

Estrogen metabolite extractions was assessed with a solvent extraction using ethyl acetate in the 
ratios 1:1, 1:5 and 1:10 (sample: ethyl acetate) and the percentage extraction recoveries were 
calculated. Estrogen metabolites (2.5μg of each metabolite) were added to the sample matrix (1% 
charcoal-stripped phenol red free DMEM) and then extracted using ethyl acetate. Percentage 
recoveries were calculated by expressing the extracted metabolite over the un-extracted metabolite 
(control). n=3 
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Figure 4-24 Extraction recoveries of estrogen metabolites with a dichloromethane solvent 
extraction 

Estrogen metabolite extractions was assessed with a solvent extraction using dichloromethane in 
the ratios 1:5 and 1:10 (sample: dichloromethane) and the percentage extraction recoveries were 
calculated. Estrogen metabolites (2.5μg of each metabolite) were added to the sample matrix (1% 
charcoal-stripped phenol red free DMEM) and then extracted using dichloromethane. Percentage 
recoveries were calculated by expressing the extracted metabolite over the un-extracted metabolite 
(control). n=3 
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Figure 4-25 Extraction recoveries of estrogen metabolites with a diethyl ether solvent 
extraction 

Estrogen metabolite extractions was assessed with a solvent extraction using diethyl ether in the 
ratios 1:1, 1:5 and 1:10 (sample: diethyl ether) and the percentage extraction recoveries were 
calculated. Estrogen metabolites (2.5μg of each metabolite) were added to the sample matrix (1% 
charcoal-stripped phenol red free DMEM) and then extracted using diethyl ether. Percentage 
recoveries were calculated by expressing the extracted metabolite over the un-extracted metabolite 
(control). n=3 
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Figure 4-26 Extraction recovery of estrogen metabolites using Oasis® HLB columns 

Estrogen metabolite extractions was assessed by solid phase extraction using the Oasis® HLB 
columns and the percentage extraction recoveries were calculated. Estrogen metabolites (2.5μg of 
each metabolite) were added to the sample matrix (1% charcoal-stripped phenol red free DMEM) 
either before (pre-spiked) or after the extraction (post-spiked) Percentage recoveries were 
calculated by expressing the extracted metabolite over the un-extracted metabolite (control) or the 
post-spiked sample. Extraction recoveries of estrogen metabolites in pre-spiked samples vs. post-
spiked samples (a). Extraction recoveries in pre-spiked samples vs. control samples (b) A few 
peaks merged together making it more suitable to analyze the peaks together. Each extraction was 
performed in duplicate. 
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Figure 4-27 Percentage extraction recovery of radiolabelled 17β-estradiol 

Extraction recovery of radiolabelled 17β-estradiol (14C-17β-E2) using Oasis® HLB columns. Pre-
spiked samples represent samples where the estrogen metabolites were added prior to extraction. 
In the post-spiked samples, the estrogen metabolites were added after the extraction and in the 
control sample, there was no extraction. Each extraction was performed in triplicate. 
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 Estrogen metabolism over time in human pulmonary 4.2.13
arterial smooth muscle cells 

For clarity, this data is presented in two ways. Firstly, the data is represented as the 

depletion of 17β-E2 and metabolite formation over time in individual cell lines and 

secondly, the data is represented as comparisons across female and male, control and PAH 

hPASMCs within each time-point.  

In female control hPASMCs (Figure 4-28) there was no evidence of enzymatic activity 

between 10 minutes and 1 hour. After 2 hours, there was a small amount of E1 present 

within the sample. This implicates activity of 17β-HSD2, which converts 17β-E2 to E1. 

This gradually increased over time until 48 hours where ~50% of the 17β-E2 had been 

converted to E1. This was the only metabolite that appeared in female control hPASMCs. 

In male control hPASMCs (Figure 4-29) there was substantially more enzymatic activity in 

comparison to female control hPASMCs. After 10 minutes, E1 and the 2 and 4-

methoxylated estrogens were present within the samples. This indicates activity of 17β-

HSD2, CYP and COMT. Whilst there were no hydroxylated metabolites present within the 

sample, the presence of methoxylated estrogens provides evidence that hydroxylated 

estrogens had been formed prior to the sample collection. Over time, there was direct 

evidence of 17β-HSD2, CYP and COMT activities with the most abundant metabolite 

formed being E1. After 1 hour incubation, ~50% of the parent 17β-E2 had been 

metabolised (predominantly to E1). After 48 hours, there was no 17β-E2 left within the 

sample. Interestingly, formation of 17-Epi-E3 was observed at 30 minutes, yet was 

undetected at any other time-point. 

In female PAH hPASMCs (Figure 4-30), there was evidence of 2-hydroxylation and 

methylation as well as 17β-HSD2 activity between the time-points 10 minutes and 2 hours. 

At 4 hours, ~50% of the 17β-E2 had been metabolized and there was evidence of 4-

hydroxylation and methylation activities. Again, the most predominant metabolite was E1. 

Interestingly at 24 hours and 48 hours, 16-hydroxylated estrogens, predominantly 16α-

OHE1 appeared within the sample, increasing with time. 

In male PAH-hPASMCs (Figure 4-31), 17β-E2 was converted to E1 and 4-OHE1 between 

10 minutes and 4 hours. At 24 hours, ~50% of the parent 17β-E2 had been metabolized. 

Here there was a small formation of 16α-OHE2 which increased at 48 hours. At 48 hours, 

there was also a small formation of 16α-OHE1. In this cell line, there was no evidence of 
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COMT activity as no methylated metabolites were observed. As with the other cell lines, 

the predominant metabolite formation was E1. 
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Figure 4-28 Metabolism of 17β-estradiol over time in control female human pulmonary 
arterial smooth muscle cells (PASMCs) 

Female control (59 year-old) PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for various time-points in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. 
Samples were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by 
HPLC with ultra-violet and radiolabeled detection. n=1 patient, repeated twice in different 
passages. 
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Figure 4-29 Metabolism of 17β-estradiol over time in control male human pulmonary arterial 
smooth muscle cells (PASMCs) 

Male control (62 year-old) PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 136.19ng) 
for various time-points in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient, repeated twice in different passages. 
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Figure 4-30 Metabolism of 17β-estradiol over time in PAH female human pulmonary arterial 
smooth muscle cells (PASMCs) 

Female PAH (24 year-old with IPAH) PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for various time-points in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. 
Samples were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by 
HPLC with ultra-violet and radiolabeled detection. n=1 patient, repeated twice in different 
passages. 
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Figure 4-31 Metabolism of 17β-estradiol over time in PAH male human pulmonary arterial 
smooth muscle cells (PASMCs) 

Male PAH (43 year-old with APAH) PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for various time-points in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. 
Samples were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by 
HPLC with ultra-violet and radiolabeled detection. n=1 patient, repeated twice in different 
passages. 
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 Evidence for an altered estrogen metabolic profile in 4.2.14
pulmonary arterial hypertension 

HPASMCs from both female and male, control and PAH (Figure 4-32 - Figure 4-38) 

actively metabolize 17β-E2, with key differences in rates and product formation. In all the 

groups studied the metabolic screen indicates a prominent role for 17β-HSD2. 

Interestingly, the rate at which E1 was formed was highly variable with the highest rate in 

male control hPASMCs followed by female PAH-PASMCs and then male PAH 

hPASMCs. The lowest rate of conversion was evident in female control hPASMCs. 

Whilst male control, female PAH and male PAH hPASMCs displayed evidence for CYP 

activity, there was no measurable CYP activity in female control hPASMCs. In fact, there 

was no observable enzymatic activity in female controls apart from the formation of E1. 

Both male control and female PAH hPASMCs demonstrated COMT activity; this was 

undetected in male PAH hPASMCs. Male control hPASMCs metabolised 17β-E2 to both 

the 2- and 4-hydroxyestrogens and methoxyestrogens. In female PAH hPASMCs, 17β-E2 

was also metabolized to the 2- and 4-hydroxyestrogens. However, the metabolic profile 

after 24 and 48 hours revealed a clear formation of the pathogenic CYP metabolite, 16α-

OHE1 (7% at 24 hours and 16% at 48 hours). In addition, there was a small formation of 

16α-OHE2 (1% at 24 hours and 4% at 24 hours). In male PAH hPASMCs, there was no 

evidence for 2-hydroxy/methylation. However, there was evidence of 4-hydroxylation and 

the predominant CYP metabolite formed at 24 and 48 hours was 16α-OHE2 (2% and 13% 

respectively). Key enzymatic activities within each cell line have been summarized in 

Table 4-6. 
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Figure 4-32 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle (PASMCs) cells after 10 minutes 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 10 minutes in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Figure 4-33 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle cells (PASMCs) after 30 minutes 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 30 minutes in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Figure 4-34 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle cells (PASMCs) after 1 hour 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 1 hour in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples were 
extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with ultra-
violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Figure 4-35 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle cells (PASMCs) after 2 hours 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 2 hours in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Figure 4-36 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle cells (PASMCs) after 4 hours 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 4 hours in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Figure 4-37 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle cells (PASMCs) after 24 hours 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 24 hours in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Figure 4-38 Estrogen metabolic profile in control- and pulmonary arterial hypertension-
pulmonary arterial smooth muscle cells (PASMCs) after 48 hours 

Female and male, control and PAH PASMCs were incubated with 17β-estradiol (17β-E2; 50nM, 
136.19ng) for 48 hours in 1% charcoal-stripped (estrogen-free) phenol red free DMEM. Samples 
were extracted by solid phase extraction with Oasis® HLB cartridges and analyzed by HPLC with 
ultra-violet and radiolabeled detection. n=1 patient per group, repeated twice in different passages. 
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Table 4-6 Summary of metabolite formation in human pulmonary arterial smooth muscle 
cells 

hPASMCs 17β-HSD2 CYP Enzymes COMT Dehydrogenases 

Female Control E1    

Female PAH E1 2-OHE1 

16α-OHE2 

16α-OHE1 

2-MeOHE2 

4-MeOHE2 

17α-E2 

Male Control E1 2-OHE1 

2-OHE2 

4-OHE1 

4-OHE2 

2-MeOHE1 

4-MeOHE1 

4-MeOHE2 

17α-E2 

17-Epi-E3 

Male PAH E1 4-OHE1 

16α-OHE2  

16α-OHE1 

  

Overall summary of metabolites formed in human pulmonary arterial smooth muscle cells 
(hPASMCs). Metabolites highlighted in blue were specific to pulmonary arterial hypertension (PAH) 
samples whereas metabolites highlighted in red were specific to male control hPASMCs. (E1, 
estrone; 2-OHE2, 2-hydroxyestradiol; 2-OHE1, 2-hydroxyestrone; 4-OHE2, 4-hydroxyestradiol; 4-
OHE1, 4-hydroxyestrone; 16α-OHE2, 16α-hydroxyestradiol; 16α-OHE1, 16α-hydroxyestrone; 2-
MeOHE2, 2-methoxyestradiol; 2-MeOHE1, 2-methoxyestrone; 2-MeOHE2, 2-methoxyestradiol; 4-
MeOHE2, 4-methoxyestradiol; 4-MeOHE1, 4-methoxyestrone; 17α-E2, 17α-estradiol; 17-Epi-E3, 
17-epiestriol.) 
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 Discussion 4.3

PAH is predominantly observed in females but the molecular events that govern this effect 

remain obscure. Understanding the biological basis of this sex difference would offer a 

new treatment paradigm in this devastating cardiovascular disorder that currently has no 

cure with a pressing need for more effective therapies (Archer et al., 2010). We have 

provided evidence that dysregulated estrogen metabolism may underlie this (Chapter 3). 

We therefore investigated the effects of estrogen metabolites in vitro and in vivo, providing 

evidence that the smooth muscle cell mitogen 16α-OHE1 is associated with the 

pathogenesis of PAH. Yet the dynamic estrogen metabolic profile in PAH remained 

undetermined. It was therefore of importance to examine and measure estrogen metabolism 

in hPASMCs. We challenged the concept that estrogen metabolism is pathologically 

altered in PAH.  To address these challenges, we developed a high-fidelity quantitative 

technique to measure estrogen metabolism by HPLC, which can be used as a platform to 

investigate effects of PH insults and therapies on the fate of estrogen in the lung 

vasculature. We provide the first direct evidence that estrogen metabolism is pathologically 

altered in PAH and this highlights a novel therapeutic paradigm that can be targeted in the 

management of this devastating disease. 

17β-E2 is metabolised to both pro- and anti-proliferative metabolites by CYP1B1. TMS 

inhibits 17β-E2-induced proliferation of hPASMCs, suggesting that CYP1B1 metabolism 

mediates the proliferative effects of 17β-E2 (White et al., 2012). The 16α-hydroxylated 

CYP1B1 metabolites induce proliferation of hPASMCs, with the most profound 

proliferation observed with 16α-OHE1. Furthermore, the proliferative effects of this 

mitogen were exaggerated in PAH-PASMC (White et al., 2012). In line with this, urinary 

levels of 16α-OHE1 were increased in mice exposed to chronic hypoxia (Figure 4-2). 

Importantly, increased urinary 16α-OHE1 has also been reported in patients with HPAH 

associated with a BMPR-2 mutation (Austin et al., 2009), supporting a functional role of 

this metabolite in PAH pathogenesis. Moreover, we provide direct evidence that both 

female and male hPASMCs metabolize 17β-E2 to the 16-hydroxylated estrogens (Figure 

4-38). Whether this metabolite is a candidate biomarker is yet to be ascertained. To 

establish a direct pathological link with 16α-OHE1 and PAH, both male and female mice 

were dosed with 16α-OHE1 (Figure 4-4). Whilst 16α-OHE1 had no effects on the 

pulmonary haemodynamics measured in male mice, increased RVSP and RVH was 

observed in female mice. In a recent report by Fessel and colleagues (Fessel et al., 2013a), 

16α-OHE1 induced a PAH phenotype in male BMPR-2 deficient transgenic mice, whilst 
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no effect was observed in their respective male wild-type mice. Thus, it appears that 16α-

OHE1 is a PAH insult in genetically-susceptible and female mice. Interestingly, male mice 

dosed with 16α-OHE1 had significantly reduced mSAP, highlighting a gender-specific and 

divergent effect of this metabolite in the systemic vasculature. 

The precise mechanism by which 16α-OHE1 contributes to PAH pathogenesis is yet to be 

fully investigated. Here we provide evidence that 16α-OHE1 induced proliferation is 

attenuated with a ROS scavenger and an ERK inhibitor (Figure 4-7). Unpublished data 

from our lab have provided evidence that 16α-OHE1 increases superoxide production in 

hPASMCs. Elevated oxidative stress is associated with PAH pathogenesis, yet the 

mechanisms that precede this remain uncertain (Bowers et al., 2004;Fessel et al., 

2013b;Hemnes et al., 2011). Increased metabolism of 17β-E2 to 16α-OHE1 by increased 

CYP1B1 activity may be one mechanism of elevated ROS in PAH. In other studies, 16α-

OHE1 has been shown to have a  high binding affinity for ERβ (Zhu et al., 2006) which is 

increased following hypoxic exposure (Lahm et al., 2012). However, in pre-clinical 

models, ERβ agonists have proven effective in alleviating PH-phenotypes (Umar et al., 

2011). Additionally, the protective effects of 17β-E2 in hypoxic-induced PH are attenuated 

with an ERβ antagonist (Lahm et al., 2012). Independent of estrogen receptor binding, 

16α-OHE1 in MCF-7 cells has been shown to induce cell proliferation via increased 

expression of the cell cycle regulator, cyclin D1 (Lewis et al., 2005). This may be relevant 

to the pathological effects of 16α-OHE1 in PAH as cyclin D1 is an important mediator in 

PAH pathogenesis, where it promotes proliferation and vascular remodeling (Zeng et al., 

2013) 

CYP1B1 is a putative pathological mediator in cancer. Divergent insults such as serotonin 

(White et al., 2011a), hypoxia (White et al., 2012), shear stress (Conway et al., 2009) and 

the dioxin, TCDD robustly alter the expression of CYP1B1. The enzymatic activity of 

CYP1B1 favours the hydroxylation at the C4 position of estrogens (Lee et al., 2003). 

Furthermore, co-treatment with TCDD (a potent CYP1B1 inducer) and 17β-E2 in human 

lung cells leads to an accumulation of 4-MeOHE2 (Cheng et al., 2007), further supporting 

activity of 4-hydroxylation by CYP1B1. Although the 4-hydroxylated estrogens do not 

stimulate proliferation of hPASMCs (White et al., 2012), we wished to investigate its 

function in vivo due to its vast role in cancer (Liehr & Ricci, 1996) and its potential 

influence on redox signaling. Perhaps surprisingly, 4-OHE2 had no effect of RVSP or 

RVH. Interestingly, chronic dosing with 4-OHE2 attenuated serotonin-induced 

vasoconstriction of the intra-pulmonary arteries, suggesting that it mediates vasodilatory 
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effects in the pulmonary arteries. This merits further investigation in tandem with the 

effects of 4-OHE2 in hypoxic conditions. However, there are several experimental 

limitations that need reviewed. Both estrogen metabolites (16α-OHE1 and 4-OHE2) were 

administered by intra-peritoneal injections which has several limitations as a route of 

administration. Intra-peritoneal injections are primarily absorbed through the portal 

circulations (Lukas et al., 1971) which suggests that all drugs injected by this route will 

initially undergo first-pass metabolism by the liver. COMT expression and activity is 

substantial within the liver of mice (Myöhänen et al., 2010) which would breakdown 4-

OHE2 into 4-MeOHE2. Thus the effects observed may not be due to 4-OHE2, but rather 4-

MeOHE2, which has growth inhibitory effects on lung epithelial cells (Cheng et al., 2007) 

and renal cancer cells (Chang et al., 2012). Additionally, the methoxyestrogens have also 

been reported to exert feedback inhibition on both CYP1B1 and CYP1A1 (Dawling et al., 

2003). In contrast, 16α-OHE1 is less likely to be substantially altered whilst passing 

through the liver, thus giving a stronger possibility that the parent metabolite is reaching 

the target tissue (the lung). 

In a more recent comprehensive study of estrogen metabolites in the lungs of wild-type and 

CYP1B1-/- mice, 4-OHE1 appeared as the predominant CYP1B1 metabolite (Peng et al., 

2013). Our previous screen that identified 16α-OHE1 as a disease-modifying metabolite 

was limited to thymidine incorporation and did not address other effects that metabolites of 

17β-E2 may have on cellular function (White et al., 2012). Thus, we sought to investigate 

the functional consequence of increased CYP1B1 hydroxylation activity by stimulating 

naïve hPASMCs with 4-OHE1 and measuring DNA replication and cell viability (Figure 

4-12 - Figure 4-15). In line with our previous findings, 4-OHE1 did not increase 

proliferation, but actually inhibited DNA replication, whilst having no effect on cell 

viability. Following longer incubations (5 days), 4-OHE1 had no significant effects on 

DNA replication, suggesting that these effects were either transient, or had been overcome 

by a different mechanism. 

In the CYP1B1-/- mouse, levels of 2-MeOHE2 in the lungs are increased compared to 

wild-type mice, suggesting that CYP1B1 may be counteracting COMT activity (Peng et 

al., 2013). 2-MeOHE2 is a putative protective estrogen metabolite. Thus, the protective 

effects observed on CYP1B1 inhibition may be mediated via increased formation of 2-

MeOHE2. 2-MeOHE2 has previously been reported to have strong anti-mitogenic effects 

in lung fibroblasts and hPASMCs (Tofovic et al., 2009b) and can attenuate bleomycin 

(Tofovic et al., 2009b), monocrotaline (Tofovic et al., 2005;Tofovic et al., 2006) and SU-
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hypoxic (Tofovic & Rafikova, 2009) induced PH. Our findings are consistent with these 

reports, with 2-MeOHE2 having an inhibitory effect on DNA replication and reducing cell 

viability (Figure 4-12 - Figure 4-15). Whilst 2-MeOHE2 has proven to be beneficial in this 

setting and appears to represent a promising therapeutic strategy in PAH, this has been 

compromised by phase I clinical trials in cancer that were prematurely stopped due to the 

very low bioavailability of this metabolite (Dahut et al., 2006). To circumvent this, 2-

MeOHE2 levels may be increased by CYP1B1 inhibition. 

The metabolic conversion of 17β-E2 by the 4-hydroxylation pathway is recognized to 

contribute to DNA damage by superoxide production (Acharya et al., 2010). We have 

recently provided evidence that 4-hydroxylation induces profound superoxide production 

in hPASMCs (up to 6 fold higher after incubations for 5 minutes compared to control) 

(unpublished data). Thus, CYP1B1 may be inducing its pathogenic effects via increased 

superoxide production. Others have identified a role for serotonin (Lee et al., 1998) and 

endothelin-1 (Wedgwood et al., 2001) in superoxide production in hPASMCs. 

Additionally, other metabolic pathways of CYP1B1 may alter redox cycling. For example, 

arachidonic can be metabolized by CYP1B1 to HETEs (Choudhary et al., 2004). 20-HETE 

increases superoxide production in human pulmonary arterial endothelial cells (Medhora et 

al., 2008). Also, angiotensin-II can increase superoxide production via CYP1B1 (Yaghini 

et al., 2010). Thus multiple pathways may interplay to cause injurious ROS production via 

CYP1B1 activity. In tandem, increased 16α-hydroxylation activity results in increased 

hPASMC proliferation (White et al., 2012), leading to a pathogenic environment in the 

lung. Overall, these pathogenic effects may be reversed by CYP1B1 inhibition.  

Others have provided evidence for 17β-E2 and E1 within the lung (Meireles et al., 

2010;Peng et al., 2013). Here, we provide the first evidence for high intracellular 17β-E2 

concentrations within hPASMCs ranging from ~25nM to 30nM per mg of protein (Figure 

4-16). Patients with PAH did not have significantly different 17β-E2 levels compared to 

control hPASMCs, nor was there any effect on gender. An increased risk of PPHTN is 

associated with increased plasma 17β-E2 as a consequence of a polymorphism in the gene 

encoding for aromatase (Roberts et al., 2009). Recent studies have confirmed that 

aromatase inhibition can reverse severe experimental PAH in females, but not in males 

(Mair et al., 2013). In the absence of changes in 17β-E2 levels within hPASMCs, this 

suggests that it is the metabolic route of 17β-E2 and/or altered signaling through estrogen 

receptors that is adversely affecting the pathogenesis of PAH. Thus the beneficial effects of 

aromatase inhibition may be attributable to a lack of substrate for subsequent metabolism 
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by pathogenic CYP enzymes, such as CYP1B1. We have previously reported interactions 

of the estrogen and serotonin pathways in PH (White et al., 2011b). It was therefore of 

interest to investigate whether serotonin could alter estrogen levels within hPASMCs. 

Serotonin had no effect on intracellular 17β-E2 levels after 48-hour incubation (Figure 

4-16). This supports our patient data, where no changes were observed in 17β-E2 levels. 

There is evidence that estrogen metabolism is dysregulated in PH and that certain estrogen 

metabolites provide protective effects in vivo and in vitro, such as the 2-methoxyestradiol 

(Tofovic et al., 2009b;Tofovic et al., 2006). In contrast, other estrogen metabolites exert 

pathogenic effects in vivo and in vitro, such as the potent smooth muscle cell mitogen, 16α-

OHE1 (White et al., 2012). However, the in vivo effects of 16α-OHE1 on the pulmonary 

hypertensive phenotype was only evident in female mice and genetically susceptible 

mouse models (Fessel et al., 2013a;White et al., 2012). Thus, it is clear that the metabolic 

fate of 17β-E2 can have dramatic consequences on vascular cell fates and one may 

hypothesize that 17β-E2 is differentially metabolized in the severest forms of PH such as 

PAH. Abnormal PASMC proliferation is a key event that drives PAH-pathobiology 

(Archer et al., 2010;Schermuly et al., 2011) and was therefore our chosen vascular cell 

type to study. We initially measured estrogen depletion from the extracellular medium by 

hPASMCs to ascertain if 17β-E2 is differentially metabolized in female control and PAH 

hPASMCs (Figure 4-17). After 24 hours, it was evident that female PAH hPASMCs 

rapidly depleted extracellular levels of 17β-E2 suggesting a greater metabolic rate 

compared to control hPASMCs. This provided preliminary evidence for altered 17β-E2 

metabolism in PAH, but to what effect was still unknown. To answer this question, we 

determined the metabolic fate of 17β-E2 in hPASMCs using the principles of 

metabolomics and metabolic flux analysis. A homogenous population of PASMCs were 

exposed to radiolabelled 17β-E2 to quantitatively measure their unique metabolic profiles. 

50nM (136.19ng) of 17β-E2 was selected as the optimal concentration for three primary 

reasons. First, the concentration was identified as the optimal concentration to sufficiently 

detect 17β-E2 metabolism in the cells. Second, we have provide evidence that intracellular 

levels of 17β-E2 in hPASMCs is predictably higher than circulating levels, which are 

approximately in the range of 0.4nM to 2.2nM (Mendelsohn & Karas, 1999). Third, we 

have reported that there are no differences in 17β-E2 concentrations between females and 

males providing rationale to utilize the same concentration in both sexes. 

The enzymatic kinetics of CYP enzymes in the lung is largely unknown and it therefore 

remains essential to perform a time-point analysis to get a broad window of estrogen 
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metabolism within hPASMCs. This was an extremely fruitful exercise as there appeared to 

be key differences in rates of metabolism across both males and females and controls and 

PAH (Figure 4-32-Figure 4-38). To the best of our knowledge, this is the first study to 

provide direct evidence that hPASMCs actively metabolize 17β-E2. In addition, it revealed 

a prominent role for 17β-HSD2, the enzymatic isoform that converts 17β-E2 into E1. 17β-

HSD enzymes play an important role in the regulation of ‘active’ estrogens within tissues. 

17β-HSD1 converts E1 into 17β-E2 and therefore plays a role in determining the 

availability of 17β-E2 and E1 within specific cell types. 17β-HSD2 also catalyses the 

formation of androstenedione from testosterone. Androstenedione can then be converted to 

E1 by the activity of aromatase. Increased activity of 17β-HSD1 is associated with 

increased levels of 17β-E2 and the pathogenesis of breast cancer (Gunnarsson et al., 

2008;Oduwole et al., 2004) and lung cancer (Verma et al., 2013). Interestingly, it appeared 

that female PAH PASMCs had a higher activity of 17β-HSD2 compared to control 

hPASMCs. In contrast, male PAH-PASMCs had reduced activity of 17β-HSD2 compared 

to non-PAH cells. Thus, E1 (and androstenedione) may play a prominent role in PAH 

pathogenesis in females whereas 17β-E2 (and testosterone) may play a prominent role in 

male PAH. E1 has thus far been assumed to have less estrogenic activity that serves as a 

reservoir for 17β-E2 within tissues and few studies have addressed its cellular effects in 

hPASMCs. In male control hPASMCs E1 has no effects on cell proliferation (White et al., 

2011), yet its effects in female hPASMCs remains to be determined. Whilst E1 itself may 

be a less active estrogen, its hydroxylated products by activity of CYP enzymes can have 

profound effects on cellular fates. For example, the formation of the 16α-OHE1 from the 

hydroxylation of E1 would promote PASMC proliferation (White et al., 2012).  

Whilst male control, female PAH and male PAH hPASMCs displayed evidence for CYP 

activity, there was no measurable CYP activity in female control hPASMCs (Figure 4-28). 

Interestingly, the highest CYP activity was evident in both male and female PAH 

hPASMCs at 24 and 48 hours and curiously, 16α-hydroxylation was only evident in PAH 

hPASMCs (Figure 4-32-Figure 4-38). The most prominent isoform in female PAH was 

16α-OHE1 and the most prominent isoform in male hPASMCs was 16α-OHE2. 16α-

OHE1 levels are increased in the urine of mice exposed to hypoxia and clinically, the ratio 

of 16α-OHE1 to 2-OHE1 is increased in female patients with heritable PAH associated 

with a mutation in the BMPR-2 (Austin et al., 2009). Cellular proliferation screens have 

provided evidence that 16α-OHE1 is a potent inducer of PASMC proliferation (White et 

al., 2012). In vivo, 16α-OHE1 induces a PH phenotype in female mice only and 
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genetically susceptible mice (BMPR-2 mutant mice), providing direct evidence that 16α-

OHE1 may contribute to PAH pathogenesis (Fessel et al., 2013a;White et al., 2012). 

The activity of COMT represents a key deactivation process of hydroxylated estrogens, in 

particular by reducing the ability of 4-hydroxylated estrogens to generate quinones and 

semiquinones that can lead to DNA damage, which contributes to the pathogenesis of PAH 

(Meloche et al., 2013). In female control hPASMCs, there was no evidence for COMT 

activity (Figure 4-28) as measured by the absence of methylated metabolites (albeit CYP 

activity would have been necessary to determine COMT activity). COMT activity was 

present in both male control (Figure 4-29) and female PAH hPASMCs (Figure 4-30) whilst 

no activity was detected in male PAH hPASMCs (Figure 4-31). However, the activity of 

CYP enzymes can also interconvert methoxyestrogens back into their hydroxylated 

estrogens (Dawling et al., 2003). We can therefore not entirely conclude that there was no 

COMT activity within male PAH hPASMCs. 

We have previously provided evidence that estrogen metabolism is dysregulated in PAH 

by numerous studies highlighting increased CYP1B1 expression in pulmonary arteries of 

patients with severe PAH and inhibition studies in various experimental models (Chapter 

3, 4 and White et al., 2012). Furthermore, there is now evidence that aromatase inhibition 

(the estrogen-synthesizing enzyme) can reverse severe experimental PH (Mair et al., 

2013). In contrast, in both the hypoxic and MCT models of PH, exogenous estrogens have 

protective effects mediated via ERα (Lahm et al., 2012) in the hypoxic model and via ERβ 

in the MCT model of PH (Umar et al., 2011). Furthermore, ERα mediates the protective 

effects of 17β-E2 on right ventricular function in hypoxia-induced PH, evident by a 

reduced cardiac output in animals co-treated with the ERα antagonist, 1-methyl-4-phenyl 

pyridinium (MPP) (Lahm et al., 2012). The cardioprotective effects of 17β-E2 may 

contribute to the improved survival in female patients compared to males. Indeed, 

improved right ventricular systolic function is superior in both healthy and PAH-affected 

women compared to men and is associated with higher circulating levels of 17β-E2 (Kawut 

et al., 2009;Ventetuolo et al., 2011). In a small cohort of PAH patients, increased 

expression of ESR1, the gene encoding ERα, is reported in  lungs derived from both male 

and female PAH patients (Rajkumar et al., 2010). A conserved evolutionary binding site 

for ERα is present within the BMPR-2 promoter and can thereby alter its expression profile 

(Austin et al., 2012). In support of this, 17β-E2 (1µM) can reduce the expression of 

BMPR-2 in human pulmonary arterial endothelial cells (Austin et al., 2012) where it is 

predominantly expressed (Atkinson et al., 2002). This supports the gender differences in 
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HPAH associated with BMPR-2 mutations, whereby there is incomplete penetrance (27%) 

with females much more likely to present with PAH (42% females compared with 14% 

males) (Larkin et al., 2012). Whilst protective effects of exogenous estrogens have been 

reported in both the hypoxic and MCT-models of PH (Lahm et al., 2012;Umar et al., 

2011), in models that display heightened activity of the serotonergic system (Dempsie et 

al., 2013;White et al., 2011b), endogenous estrogen is associated with the development of 

PH. In the female mouse model that over-expresses the serotonin transporter (SERT+ 

mice) the ERα inhibitor can reverse its spontaneous PH phenotype (Wright et al. 2013, 

unpublished).  

Interestingly, whilst estrogen metabolites can mediate receptor-independent effects on 

cellular functions, they retain strong binding affinities at the estrogen receptors. Thus, the 

differential effects of 17β-E2 in the hypoxic-, MCT and SERT+ models may be 

attributable to differential metabolism of 17β-E2 (as well as differences in estrogen 

concentrations, gender and species used). Whilst inhibition of CYP1B1 can attenuate both 

hypoxic (Chapter 3 and White et al., 2012) and SERT+ - PH (Chapter 4), it has a much 

less pronounced effect in MCT-induced PH despite dramatically improving survival 

(Chapter 3). A comprehensive analysis of the binding affinities of estrogen metabolites to 

estrogen receptors revealed striking differences suggesting that the unique physiological 

function of 17β-E2 may be dependent on its metabolism. Whilst 17β-E2, 4-OHE2, 4-

OHE1 and 2-OHE2 have an equal binding affinity for both ERα and ERβ, E1 and 2-OHE1 

have a preferential binding affinity for ERα (Zhu et al., 2006). In contrast, the 16-

hydroxylated estrogens (16α-OHE1 and 16α-OHE2) have a preferential binding affinity for 

ERβ (Zhu et al., 2006). Interestingly, ERα lung expression is unchanged in the hypoxic-rat 

model of PH, whilst ERβ expression is increased (Lahm et al., 2012). In contrast, in the 

SERT+ model of PH, ERα levels are increased (Wright et al. 2013, unpublished). Thus, 

there appears to be a two-tiered process by which estrogen signaling may contribute to 

PAH pathology. First, the route by which it is metabolized by aberrant CYP/COMT 

activity. Second, the effects mediated by the metabolite formation will depend, in part, on 

the tissue specific expression of ERs. Overall, this highlights a multi-level complex axis 

and may explain the controversies within the field that report both protective and 

pathogenic effects of estrogens. This is challenged by the study by Lahm and colleagues 

providing evidence that the protective effects of 17β-E2 in the hypoxic-rat model of PH are 

not mediated via metabolite formation as the general CYP inhibitor, ABT does not 

attenuate the protective effects of 17β-E2 (Lahm et al., 2012). This suggests that the 

protective effects of 17β-E2 in this model are not mediated via the formation of protective 
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17β-E2 metabolites. However, in models where 17β-E2 is causative, 17β-E2 metabolism 

may figure prominently by the formation of 16α-hydroxylated estrogens.  

Here, we developed a method to measure the dynamic metabolism of 17β-E2 in 

hPASMCs. This methodology can be easily applied to other cell types of interest. Beyond 

this study, we can utilize in silico analysis to identify specific CYP enzymes that may 

underlie the altered estrogen metabolic phenotype in patients with PAH. For example, at 

48 hours, the key metabolite formed in female PAH hPASMCs was 16α-OHE1. This 

implicates potential activity of CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP3A4, 

CYP3A5 and CYP3A7 (Badawi et al., 2001;Hanna et al., 2000;Lee et al., 2003). We can 

then use this as a platform to investigate potential therapeutic targets that may rescue the 

estrogen metabolic phenotype. For example, we can utilize highly selective inhibitors and 

siRNA to CYP1A1 and CYP1B1 to see if this can prevent the metabolism of 17β-E2 to 

16α-OHE1. Successful CYP candidates can then be investigated for their therapeutic 

potential in vivo. Whilst microarray screens are useful in detecting aberrant gene 

expression, the activities of CYP enzymes do not always correlate with their expression. 

Thus, the sensitivity of such screens in detecting potentially pathological estrogen 

metabolic pathways is limited. We are therefore hopeful that this metabolite screen may be 

useful in identification of novel therapeutic targets for the treatment of PAH. 

The enzymes that are involved in the catalytic metabolism of 17β-E2 have variable kinetics 

in terms of the maximum velocity of the reaction (Vmax) and the affinity of the enzyme for 

the substrate (Km). High catalytic activity is reflective of a high Vmax and a low Km. The 

enzymes that are predominantly involved in 17β-E2 metabolism are CYP1A1, CYP1A2, 

CYP3A4 and CYP1B1. CYP1A1 and CYP1A2 have high catalytic activities for 2-

hydroxylation of 17β-E2 (Badawi et al., 2001;Lee et al., 2003). Our results implicate that 

the activity and expression of these enzymes in hPASMCs from both control and PAH 

samples are negligible as only a small percentage of 2-hydroxylated estrogens was 

detected. However, in contradiction it has recently been found that CYP1A1 is a highly up-

regulated gene in the SU-hypoxic rat model of PAH (unpublished data from Novartis 

Pharmaceuticals, Horsham). Although all estrogen metabolizing enzymes have low 

catalytic activities for 16α-hydroxylation, CYP1A1, CYP1A2 and CYP3A5 are the 

principle source of this metabolite, with a minor contribution by CYP1B1 (Badawi et al., 

2001). CYP1B1 has an overall lower catalytic activity for 17β-E2 than CYP1A1 and 

CYP1A2, but has the highest activity for 4-hydroxylation with a low Km and a high Vmax 

(Badawi et al., 2001). Evidence for CYP1B1 was detected in all samples except for female 
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control hPASMCs. 17β-HSD1 (which interconverts E1 into 17β-E2) has a very low Km 

and uses NADPH as a cofactor. On the other hand, 17β-HSD2 utilises NAD as a co-factor 

and has a higher Km although its catalytic activity is still high. Thus, the tissue-specific 

expression of 17β-HSD and the availability of co-factors are crucial in regulating the 

balance between 17β-E2 and E1. Here, we provided evidence for variable activity of 17β-

HSD2 by the formation of E1. However, the activity of 17β-HSD2 may be counteracting 

the effects of 17β-HSD1, thus we cannot entirely conclude that its activity is the highest in 

male control hPASMCs, as appears to be the case. Future studies investigating the role of 

17β-HSD enzymes in PAH are merited. 

The purpose of this project was to develop a method to track estrogen metabolism in 

pulmonary vascular cells and to determine the optimal time-point to assess estrogen 

metabolism. One key limitation of the data obtained from this study is that the metabolic 

profile generated was only obtained from one patient in each category. It would be 

essential to assess estrogen metabolism in a larger cohort of patients to ascertain whether 

estrogen metabolic profiles are consistently altered in PAH. This is hampered by a general 

lack of available samples due to the low prevalence of PAH. To overcome this, control 

PASMCs could be stimulated with a known PAH insult (such as knockdown of BMPR-2, 

endothelin-1, serotonin) to assess if this can alter the estrogen metabolic profile. PAH 

PASMCs are generally end-stage disease as they are obtained from patients either 

undergoing transplant or post-mortem. These samples may therefore not be reflective of 

on-going PAH pathogenesis and molecular pathways may have been altered by the 

therapies that the patient would have been receiving. This variable would also be overcome 

by studying control PASMCs with a PAH insult. However, it would be challenging to truly 

mimic a PAH profile in vitro as it is likely that numerous pathways contribute to PAH 

pathogenesis. Age may also be an important contributor to extra-gonadal estrogen 

metabolism and as the control samples used in this study were from older patients whereas 

the PAH samples were from younger patients, we cannot disregard that the results obtained 

may be attributable to the different age groups studied. 

The data shown here is the first study to measure the dynamic metabolism of estrogen in 

PAH specifically in the PASMCs. To date, estrogen metabolites have only been 

preliminarily measured by mass spectrometry in serum from post-menopausal patients with 

severe PAH (Chhatwani et al., 2010). In this study, E1 and the E1+17βE2/total estrogen 

metabolites were significantly decreased in post-menopausal PAH patients compared to 

controls. PAH patients also had greater plasma levels of 2-methoxyestrogens. This study 



  Chapter 4 – Estrogen Metabolism in PAH 

217 
 

did not report detections of the 4- or the 16α-hydroxyestrogens suggesting that they did not 

measure them. Mass spectrometry is considered the gold-standard analytical technique, yet 

it carries selective bias as you have to specify what compounds you are interested in 

detecting. The methodology described here is a sensitive and quantitative technique that 

can measure estrogen metabolism in vascular cells. Furthermore, all metabolites that are 

formed by the reaction will be radio-labelled and will therefore be detected. Furthermore, 

this assay allows for absolute quantification as the percentage of radioactive product 

formed directly correlates with the amount of metabolite formation. In LC-MS, absolute 

quantification would require pure authentic standards for each analyte, which are currently 

unavailable. It is challenging to correlate the sensitivity of this assay in comparison to 

other assays available as it employs radioactivity to measure metabolism whereas other 

assays measure relative abundance of unlabelled metabolites. In other assays, estrogens are 

often derivitised in order to improve their detection. This is not necessary in our assay as 

we have incorporated a radioactive label which can be measured in counts per million and 

is extremely sensitive. However, this methodology requires the undesired use of 

radioactive compounds. Furthermore, it restricts future experimental procedures that 

involve tracking of 17β-E2 in vivo and endogenous tissue sample concentrations of 

estrogen metabolites. Additionally, all estrogen metabolites identified by radio-labelled 

HPLC need to be validated by LC-MS to confirm metabolite identity. Ultimately, we will 

develop a LC-MS approach to address these questions and a general metabolomics 

approach to identify all substrates and metabolites within the steroidogenic pathway. 

Together, this will identify the unique steroidogenic profile that is associated with PAH. 

Estrogen metabolism may be integral to a wide span of diseases and may offer targets for 

therapeutic intervention in the management of PAH. We have provided direct evidence 

that estrogen metabolism is dysregulated in PAH, in particular by increased 16α-

hydroxylation. This pathway has already been associated with the development of PAH 

(Austin et al., 2009;White et al., 2012). Current PAH therapies do not encompass this 

well-defined gender disparity that occurs in PAH, or the potential divergent response to 

current therapies that may be affected by gender. Future therapies that target dysregulated 

estrogen metabolism may have a favourable outcome in this highly neglected, devastating 

disease. 
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 General Discussion 5.1

In general, females are less likely to develop cardiovascular diseases compared to males. 

However, the risk for cardiovascular diseases increases after menopause, when estrogens 

are ~20-fold lower (Mendelsohn & Karas, 1999). In contrast, in several lung diseases, 

estrogens are associated with the development and disease progression. Female gender is 

now the most established risk factor in PAH. Although long recognised (Dresdale et al., 

1951), it is only in the last decade that we have started to appreciate the potential impact of 

steroid hormones in PAH. There are currently no treatments available that target the 

steroidogenic pathway nor do any treatments encompass any gender-related effect on 

treatment response. A recent study highlighted the importance of the latter, where they 

reported that females had much greater responses to endothelin receptor antagonists than 

males (Gabler et al., 2012). Furthermore, the REVEAL registry recently reported sex 

differences in the diagnosis, treatment response and outcome in patients with PAH 

(Shapiro et al., 2012). This highlights the importance of understanding the role of the 

steroidogenic pathway in PAH. 

Although the incidence of PAH is more common in women than in men, in older patients 

(>60 years old) the estimated 2-year survival in males is significantly less than female 

patients (Shapiro et al., 2012). In patients younger than 60 years, there are no sex 

differences in the estimated 2-year survival rates (Shapiro et al., 2012). However, there are 

sex differences in haemodynamics between young (<45 years) female and male patients, 

with male patients presenting with higher mean PAPs and pulmonary vascular resistance 

compared with females, whilst these differences are attenuated in older patients 

(Ventetuolo et al., 2014). Interestingly, in older patients (>45 years) with IPAH, mean 

PAPs and pulmonary vascular resistance are lower than younger patients in both sexes 

(Ventetuolo et al., 2014) despite having worse survival rates (Shapiro et al., 2012). These 

sexual dimorphisms suggest that both estrogens and androgens may influence the 

pathogenesis of PAH.  

The fact that PAH is more common in women than in men has led to the hypothesis that 

estrogens, in particular 17β-E2, the main pre-menopausal hormone, may be facilitating the 

development and pathogenesis of PAH. Despite this, numerous pre-clinical studies have 

provided evidence for a protective role for 17β-E2 in the pulmonary vasculature (Lahm et 

al., 2007;Lahm et al., 2008b;Lahm et al., 2012;Umar et al., 2011;White et al., 2011b;Yuan 

et al., 2013). Furthermore, female rats have been shown to develop less severe PH 
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compared to male rats (Rabinovitch et al., 1981). 17β-E2 is a potent vasodilator of the 

pulmonary vascular bed (English et al., 2001) and physiological increases in circulating 

estrogens can attenuate pulmonary arterial vasoconstriction under both normoxic and 

hypoxic conditions (Lahm et al., 2007). 

However, there is controversial data that indicates a pathogenic function of estrogen that 

suggests it may contribute to the pathogenesis of PAH. 17β-E2 can induce proliferation in 

a variety of cell types including PASMCs and may therefore contribute to pulmonary 

vascular remodeling (White et al., 2011b;White et al., 2012). We have recently 

characterised novel murine models of PH that show female susceptibility to the 

development of PH, including SERT+ mice, mts100/A4 overexpressing mice and mice 

treated with dexfenfluramine (Dempsie et al., 2010;Dempsie et al., 2013;White et al., 

2011b). In these models, only females develop a PH phenotype and this is dependent on 

circulating (gonadal) estrogens. More recently, we and others have provided unique 

evidence that suggests that locally produced estrogens within the lung are associated with 

the pathogenesis of PAH (Mair et al., 2013;Tofovic et al., 2012). Certain tissues can 

modulate their own estrogenic milieu by the local conversion of testosterone or 

androstenedione to 17β-E2 and E1 respectively by the activity of aromatase (Harada et al., 

1999). Aromatase synthesizes estrogens from testosterone and androstenedione and is 

expressed within the pulmonary arteries (Mair et al., 2013). Furthermore, inhibition of 

aromatase attenuates hypoxia-induced and SU-hypoxia-induced PH (Mair et al., 2013). 

Interestingly, aromatase expression is unchanged in pre-clinical models of PAH, 

suggesting that the protective effects are either mediated by an increase in testosterone or a 

decrease in subsequent metabolism. Recently, we have shown that testosterone levels are 

unchanged following aromatase inhibition (Mair et al. unpublished), suggesting that 

estrogen metabolism may be altered in PAH. 

17β-E2 is metabolised by various CYP enzymes to both pro- and anti-proliferative 

metabolites. Others have previously provided evidence that alterations in estrogen 

metabolism by aberrant CYP1B1 expression may contribute to the development of HPAH 

(Austin et al., 2009). Furthermore, in the female susceptible SERT+ model of PH and in 

IPAH, CYP1B1 expression is increased (White et al., 2011a). This led us to hypothesize 

that the effects of estrogens in the pulmonary vasculature may be mediated by altered 

estrogen metabolism by increased activity of CYP1B1. Increased activity and expression 

of CYP1B1 had already been reported in many diseases including breast cancer (McKay et 

al., 1995), lung cancer (Murray et al., 1997), ovarian cancer (McFadyen et al., 2001), and 
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systemic hypertension (Jennings et al., 2010). It was therefore the aim of this project to 

investigate the contribution of CYP1B1 and estrogen metabolism in PH/PAH. 

Here, we provide evidence that a dysregulated estrogen metabolic axis via elevated 

CYP1B1 activity may contribute to the pathogenesis of PAH and represents an attractive 

novel therapeutic strategy (Chapter 3). Pulmonary arterial CYP1B1 expression was 

increased in both experimental models and in human PAH. CYP1B1-/- mice and CYP1B1 

inhibition attenuated the development of hypoxia-induced PH. This provided the first 

evidence that dysregulated estrogen metabolism by up-regulation of CYP1B1 contributed 

to the pathogenesis of PH/PAH. In the MCT-model of PH, CYP1B1 inhibition had no 

statistically significant therapeutic effects, although it improved survival in both male and 

female rats and appeared to reduce pulmonary arterial neointimal formation. The classical 

models of PH do not show female selectivity. One animal model that displays a unique 

female susceptibility is the mouse model that overexpresses the human SERT gene (White 

et al., 2011b). Recent evidence has highlighted that 17β-E2 is a critical steroid hormone in 

the development of PH in this model (White et al., 2011b). CYP1B1 expression is 

increased in the pulmonary arteries from these mice (White et al., 2011a), suggesting that 

altered estrogen metabolism may underlie this phenotype in these mice. Here, we 

established that aromatase and CYP1B1 expression was heightened in the lungs of these 

mice compared to wild-type mice. 17β-E2 levels in the lungs were however unaffected. 

CYP1B1 inhibition in these mice reverses the elevated RVSP and pulmonary vascular 

remodeling under both normoxic and hypoxic conditions. Female SERT+ mice fail to 

develop compensatory RVH in response to the increased remodeling in the pulmonary 

vasculature and this was unaffected by CYP1B1 inhibition. 

CYP1B1 activity is recognised to contribute to the pathogenic effects of estrogens by 

altering estrogen metabolism towards the formation of pro-proliferative, pro-oxidative 

metabolites capable of inducing DNA damage. However, the beneficial effects of CYP1B1 

inhibition in vivo may also be mediated by subsequent increases in estrogen that can signal 

through genomic and non-genomic pathways. Estrogens have been shown to mediate 

protective effects via estrogen receptors in both acute and chronic vascular injury. The 

relative expression profile of estrogen receptors may vary in a clinical setting and 

determine the effects of estrogens. For example, 17β-E2 exerts differential effects in 

normoxic and hypoxic (1% oxygen) rat pulmonary arterial endothelial cells (Lahm et al., 

2012). In hypoxic but not normoxic cells, 17β-E2 decreases ERK1/2 activation and 

increases the expression of the cell cycle inhibitor p27
kip1

. 17β-E2 has been shown to 
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induce eNOS expression in pulmonary vascular cells by non-genomic mechanisms through 

ERα and ERβ (Austin et al., 2013). In the fetal pulmonary endothelium, 17β-E2 rapidly 

stimulates NO production via a non-genomic mechanism that is dependent on calcium 

(Lantin Hermoso et al., 1997) and MAP kinases (Chen et al., 1999). In fetal pulmonary 

arterial endothelial cells, 17β-E2 rapidly and dramatically increases prostacyclin synthesis 

via ERβ and is dependent on calcium and independent on MAP kinase signaling (Sherman 

et al., 2002). In isolated pulmonary arterial rings, both endogenous and exogenous 

estrogens mediate vasodilation and selective activation of either ERα or ERβ can also 

attenuate pulmonary vasoconstriction via increased NO (Lahm et al., 2008a). These 

vasodilatory effects are rapid and are therefore presumed to be mediated via a non-

genomic mechanism. In vivo, 17β-E2 rescues established PH induced by MCT and 

completely abolishes mortalities in male rats (Umar et al., 2011). In this study, 17β-E2 had 

angiogenic effects restoring the loss of blood vessels in the lungs and the right ventricle. 

Furthermore, these effects were inhibited by an ERβ antagonist and mimicked by an ERβ 

agonist suggesting that ERβ is a critical mediator in the protective effects of 17β-E2 in this 

model (Umar et al., 2011). In contrast, in the hypoxic model of PH, exogenous 17β-E2 

mediates protective effects, and these effects can be blocked by ERα antagonism (Lahm et 

al., 2012). Taken together, the beneficial effects observed by CYP1B1 inhibition may be 

related to increases in 17β-E2. However, we also provided evidence for a protective role 

for CYP1B1 inhibition in the female susceptible SERT+ model of PH, where 17β-E2 has 

been shown to mediate pathogenic effects (White et al., 2011b). This suggests that the 

protective effects observed by CYP1B1 inhibition may not be mediated via increases in 

17β-E2 within this model. Future studies addressing the effects of CYP1B1 inhibition on 

levels of 17β-E2 are merited for further clarification.  

CYP1B1 also catalyses the metabolic conversion of arachidonic acid into EETs and 

HETEs (Choudhary et al., 2004). The metabolism of arachidonic acid results in the 

formation of eicosanoids that have been associated with the pathogenesis of both cancers 

and cardiovascular diseases, including PAH (Capdevila & Falck, 2001). Arachidonic acid 

stimulates endothelium-dependent contractions in both male and female pulmonary arteries 

from rabbits and these effects are potentiated in females and are mediated by 17β-E2 

(Pfister, 2011). Arachidonic acid is metabolized by CYP450 mediated oxidation, 

lipoxygenases, cyclooxygenases, epoxygenases and hydroxylases. Lipoxygenases 

metabolise arachidonic acid into the leukotrienes and cyclooxygenases metabolize 

arachidonic acid into the prostaglandins. The formation of 15-HETE by upregulation of 

15-lipoxygenase has been associated with pulmonary arterial contraction and cell 



  Chapter 5 – General Discussion 

223 
 

proliferation (as reviewed by Zhu & Ran, 2012). 15-HETE is a metabolite of both CYP1B1 

metabolism and the lipoxygenase pathway. The expression of 15- and 5-lipoxygenase is 

greater in female rabbit pulmonary arteries and 15-HETE synthesis is increased in female 

rabbit pulmonary arteries and stimulates vascular contraction (Pfister, 2011). Furthermore, 

a specific 15-lipoxygenase inhibitor can attenuate the vasoconstrictor response to 

arachidonic acid in pulmonary arteries (Pfister, 2011). In male rabbit pulmonary arteries, 

incubations with 17β-E2 increases 15-lipoxygenase expression and 15-HETE production 

(Pfister, 2011). In the systemic vasculature, EETs are associated with their vasodilatory 

and anti-inflammatory properties. However, in the pulmonary circulation, EETs potentiate 

vasoconstriction (Loot & Fleming, 2011). Thus, the therapeutic effects associated with 

CYP1B1 inhibition may also be via a reduced formation of HETEs and EETs that mediate 

pulmonary arterial vasoconstriction.  

In the vasculature, CYP1B1 is predominantly expressed within smooth muscle cells, yet its 

expression is increased by shear stress within the vascular endothelium (Conway et al., 

2009). In vascular smooth muscle cells, Ang II and arachidonic acid cause migration, 

proliferation and hypertrophy which is inhibited with TMS (Yaghini et al., 2010). This is 

associated with a reduced formation of ROS and its downstream signaling molecules 

ERK1/2 and p38MAPK (Yaghini et al., 2010). Moreover, the therapeutic effects 

associated with CYP1B1 inhibition may be mediated by subsequent increases in 

prostacyclin synthesis from arachidonic acid by the COX pathway. Prostacyclin is a potent 

vasodilator of the pulmonary vasculature and prostacyclin analogues are widely used in the 

management of PAH. 

Taken together, CYP1B1 may be considered a hub for the formation of pathogenic 

metabolites and inhibition may provide multiple therapeutic effects by increasing levels of 

17β-E2, arachidonic acid availability for prostacyclin synthesis whilst preventing the 

formation of genotoxic and proliferative estrogen metabolites, EETs, and HETEs. Future 

studies comparing the concentrations of pre-cursers within the pulmonary vasculature 

together with the catalytic activity (Km and Vmax) of CYP1B1 for each substrate would 

provide insight in to which pathway predominates.  

CYP1B1 is also a key enzyme in the metabolism of polyaromatic hydrocarbons 

(atmospheric pollutants). Polycyclic aromatic hydrocarbons are activated by the activity of 

CYP1B1 (and CYP1A1) into highly toxic compounds that have tumorigenic properties by 

inducing DNA damage. Whilst polyaromatic hydrocarbons may contribute to the 
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pathogenesis of PAH (although such data is lacking), in our experimental models, animals 

were not exposed to environmental toxins suggesting that the therapeutic effects of 

CYP1B1 inhibition were not related to this metabolic pathway.  

Cell proliferation screens of the CYP1B1 estrogen metabolites revealed that the 16α-

hydroxylated estrogens (16α-OHE1 and 16α-OHE2) are potent hPASMC mitogens (White 

et al., 2012). In chapter 4, we showed that urinary concentrations of 16α-OHE1 were 

increased following exposure to chronic hypoxia. Interestingly, chronic dosing with 16α-

OHE1 in mice resulted in the development of a PH phenotype in female mice only. A 

recent study supported these findings, where 16α-OHE1 induced a PH phenotype in male 

BMPR-2 mutant mice but not in wild-type mice (Fessel et al., 2013a). This suggests that in 

females and genetically-susceptible mouse models, 16α-OHE1 mediates pathogenic 

effects. In BMPR-2 mice with a R899X mutation, 16α-OHE1 suppressed cytokine and 

inflammatory pathways whilst promoting platelet adhesion gene expression and genes 

associated with insulin resistance and angiogenesis (Fessel et al., 2013a). The authors 

concluded that the latter effect may be the mechanism by which 16α-OHE1 may be 

promoting vascular injury.  

CYP1B1 has the highest catalytic activity for the 4-hydroxylation of 17β-E2 (Badawi et 

al., 2001;Lee et al., 2003) and 4-hydroxylated estrogens are associated with the generation 

of semi-quinones and quinones which are associated with the initiation of tumorigenesis. 

We were therefore interested in investigating the effects of 4-OHE2 in vivo. Cellular 

proliferation screens have indicated that 4-OHE2 does not induce cell proliferation (White 

et al., 2012). However, unpublished data from our lab indicate that 4-OHE2 induces 

oxidative damage by increased superoxide production in hPASMCs. 4-OHE2 had no 

effects on RVSP, RVH and pulmonary vascular remodeling. In contrast, 4-OHE2 reduced 

serotonin-induced vasoconstriction of the intra-pulmonary arteries, suggesting that it may 

be mediating a protective effect. This is supported by a more recent study that provides 

evidence for beneficial effects of 4-OHE2 in the SU-hypoxic rat model of PH (Tofovic et 

al., 2013). This data suggests that the CYP1B1 mediates its pathogenic effects via the 

formation of the 16α-hydroxylated estrogens. 

A recent study examined estrogen metabolite levels in wild-type and CYP1B1-/- mice. The 

two metabolites that were most profoundly affected by CYP1B1 deletion were 4-OHE1 

and 2-MeOHE2 (Peng et al., 2013). 4-OHE1 was decreased and 2-MeOHE2 was 

increased. Hence we were interested in investigating the effects of these two metabolites 
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on cellular proliferation and viability in hPASMCs. Both 4-OHE1 and 2-MeOHE2 reduced 

cellular proliferation, but only 2-MeOHE2 reduced cell viability at 3 days. Following 

longer incubations (5 days), the proliferative effects were reduced and 4-OHE1 no longer 

caused a significant inhibition of proliferation. Further studies examining the role of these 

two metabolites in human vascular cells require further investigation. Studies on-going in 

our lab have highlighted a potential for ROS species derived from 4-OHE1, which may 

contribute to CYP1B1-induced pathogenesis. 

 The therapeutic potential of CYP1B1 inhibition in the 5.1.1
management of PAH 

The therapeutic strategy in PAH is aimed at developing pulmonary specific therapies to 

prevent off-target effects whilst inhibiting vascular cell proliferation and promoting 

regeneration of the lost distal pulmonary arteries. We have provided evidence that estrogen 

metabolism is dysregulated in PAH by up-regulation of CYP1B1 and that inhibition of this 

pathway can prevent the onset of experimental PH (Chapter 3 and Chapter 4). Moreover, 

we have shown that CYP1B1 inhibition with TMS attenuates 17β-E2 induced-proliferation 

in hPASMCs and this inhibitory effect is ~100 fold more potent in hPASMCs isolated 

from PAH patients (White et al., 2012). 

Increased activity and expression of CYP1B1 has already been reported in many diseases 

including breast cancer (McKay et al., 1995), lung cancer (Murray et al., 1997), ovarian 

cancer (McFadyen et al., 2001) and systemic hypertension (Jennings et al., 2010). From a 

therapeutic perspective, CYP1B1 is highly expressed within most cancers with only 

minimal expression in non-cancerous, healthy tissues (Maecker et al., 2003;Murray et al., 

1997) providing a basis for selective targeting. However, of some concern is the presence 

of positive CYP1B1 cells within healthy fallopian tubes, breast, uterine and ureter 

specimens (Maecker et al., 2003). CYP1B1 is also commonly expressed in the human lung 

(Spivack et al., 2001), where it is an important enzyme in the metabolism of xenobiotics, 

such as polycyclic aromatic hydrocarbons. Paradoxically, the metabolism of xenobiotics 

results in the activation of these compounds by formation of epoxides that generate DNA 

adducts - an early step in tumorigenesis. Inhibition of this pathway in the lung, where 

CYP1B1 is expressed, would therefore be considered advantageous.  

A phase I clinical trial assessing the feasibility, safety, tolerability and the generation of 

CYP1B1 immunity in patients with breast, ovarian, prostate, colon and renal cancer using 

ZYC300 has been evaluated with promising results (Gribben et al., 2005;Luby, 2008). 
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ZYC300 is a plasmid DNA encoding an inactivated form of CYP1B1 that was developed 

as a vaccination to stimulate the immune system to elicit a cytotoxic T lymphocyte 

mediated  response against CYP1B1, resulting in the lysis of CYP1B1 positive cells 

(Gribben et al., 2005;Luby, 2008). Importantly, vaccination with ZYC300 in patients with 

advanced stage cancer has been reported to be well tolerated, safe and patients that 

developed anti-CYP1B1-immunity responded better to therapy and appeared to have a 

clinical benefit (Gribben et al., 2005). The application of ZYC300 in the management of 

PAH is appealing and should be considered as adjunct therapy, given the high pulmonary 

arterial expression of CYP1B1. In addition, others have provided evidence that CYP1B1 

inhibition can attenuate Ang II and DOCA-salt induced hypertension, cardiac hypertrophy 

and fibrosis (Jennings et al., 2010;Sahan-Firat et al., 2010). The increased vascular 

reactivity associated with Ang II and DOCA-salt induced hypertension in aortic, 

mesenteric and femoral arteries is inhibited in CYP1B1-/- mice and by TMS treatment 

(Jennings et al., 2010;Sahan-Firat et al., 2010). Ang II induces aortic endothelial 

dysfunction as assessed by an impairment in the vasorelaxant response to acetylcholine and 

this is prevented with TMS (Jennings et al., 2010). This provides evidence that CYP1B1 

inhibition may be beneficial in numerous cancers and cardiovascular diseases. 

Of caution is the importance of CYP1B1 in normal eye functions and reduced CYP1B1 

activity has been associated with the development of glaucoma (Vasiliou & Gonzalez, 

2008). Thus, in the development of drugs that target CYP1B1, it is important to determine 

the ability of the drug/vaccine to cross the blood brain barrier, so as to prevent off-target 

effects in the ocular region. 

The therapeutic potential of the CYP1B1 inhibitor TMS has yet to be clinically evaluated. 

TMS is a synthetic derivative of a stilbene which was created as an anti-cancer agent with 

a high inhibitory potency for CYP1B1 to prevent the formation of highly genotoxic 

estrogen metabolites (Chun et al., 2001). TMS is a potent and selective CYP1B1 inhibitor, 

with an IC50 value of 6nM and displays 50-fold selectivity over CYP1A1 and 500-fold 

selectivity over CYP1A2 (Chun et al., 2001). TMS was originally developed as an 

inhibitor of the 4-hydroxylation of 17β-E2, and ultimately tumour formation. However, 

TMS has also been shown to induce cell apoptosis and inhibition of microtubule 

polymerisation (Park et al., 2007). It appears to have relatively low toxicity in vivo whilst 

displaying potent anti-tumour and anti-hypertensive effects, making this a good therapeutic 

candidate in cancers and cardiovascular diseases, including PAH that merits consideration.  
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TMS is a derivative of trans-resveratrol which is abundant in grapes and other berries. 

Resveratrol is proposed to be a major factor contributing to the ‘French Paradox’, which is 

the observation that despite having diets high in saturated fats, the French have a relatively 

low incidence of cardiovascular disease (Zern & Fernandez, 2005). Resveratrol is a potent 

inhibitor of CYP1B1, CYP1A1 and CYP1A2 activities with Ki values of ~0.8μM, 1.2μM 

and 15.5μM, respectively (Chang et al., 2001). Resveratrol is well tolerated and safe in 

humans and has been tested in numerous clinical trials. The therapeutic potential of 

resveratrol in PAH has been assessed in the MCT model of PAH with remarkable efficacy 

in attenuating increased RVSP and pulmonary vascular remodeling (Csiszar et al., 2009). 

Furthermore, it decreased the expression of inflammatory cytokines, exerted anti-oxidant 

and anti-proliferative effects (Csiszar et al., 2009). The extent to which these effects are 

mediated by CYP1B1 activity are yet to be evaluated, but it certainly highlights an 

attractive therapeutic avenue in PAH  that has already been successfully applied in other 

cardiovascular diseases and cancers. 

 Targeting estrogen metabolism in the management of PAH 5.1.2

We have provided evidence that estrogen metabolism is dysregulated in PAH by increased 

activity of CYP1B1. Yet the dynamic estrogen metabolic profile in pulmonary vascular 

cells remained undetermined. Whilst gene and protein expression are powerful tools in 

understanding molecular pathways that are altered in disease, they are often just a small 

component of a more complex cellular process. Furthermore, the availability of co-factors 

that are required for the activities of enzymes, the possibility of epigenetic alterations and 

polymorphisms are not taken into consideration. We were therefore interested in adopting 

a metabolomics approach to provide the unique estrogen metabolic profile that is the final 

product of the many complex cellular processes that may be occurring within a given cell. 

We utilized a quantitative HPLC approach to ‘fate-map’ estrogen metabolism in 

hPASMCs (Chapter 4). We report high intracellular concentration of 17β-E2 within both 

male and female hPASMCs and this is unaffected by PAH status. We provide the first 

direct evidence that male and female, non-PAH and PAH hPASMCs actively metabolize 

17β-E2. In all groups studied, the predominant metabolite formation was E1 indicating the 

activity of 17β-HSD2. E1 is less estrogenic and is considered a reservoir for the synthesis 

of 17β-E2. Thus, the activity of 17β-HSD2 could be considered as a deactivation process 

of the highly estrogenic 17β-E2. Of importance, only PAH hPASMCs (from both male and 

female samples) metabolized 17β-E2 to the potent mitogens 16α-OHE1 and 16α-OHE2. 
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Although these findings are preliminary and require validation in a larger cohort of PAH 

patients, these studies fit closely with already published data. We have provided evidence 

that urinary levels of 16α-OHE1 are increased in mice exposed to chronic hypobaric 

hypoxia (Chapter 4 and White et al., 2012) and Austin et al. reported a 2.3 fold lower 2-

OHE/16αOHE1 ratio in PAH patients with a BMPR-2 mutation compared to patients 

without any evidence of PAH (Austin et al., 2009). In addition, 16α-OHE1 is a potent 

inducer of PASMC proliferation and is associated with the development of a PAH 

phenotype in murine models (Fessel et al., 2013a;White et al., 2012). The formation of 

16α-hydroxylated metabolites may be associated with increased CYP1B1 expression 

and/or CYP1B1 polymorphisms (Badawi et al., 2001;Hanna et al., 2000). However, we 

cannot exclude the activities of other enzymes that have been reported to metabolize 17β-

E2 and E1 to 16α-OHE2 and 16α-OHE1, respectively. In particular, CYP1A2 has been 

shown to have a prominent role for 16α-hydroxylation (Badawi et al., 2001). With the 

application of selective inhibitors of these enzymes, including TMS, we will be able to 

determine the prominent enzyme/s that is associated with this unique ‘finger-print’ in PAH 

PASMCs. This discovery would highlight a novel therapeutic target that merits 

investigation in vivo. 

16α-hydroxylated estrogens have also been postulated to be important in carcinogenesis. 

Low urinary 2-OHE: 16α-OHE1 levels are associated with a high risk of breast cancer (Im 

et al., 2009;Kabat et al., 1997;Kabat et al., 2006). Furthermore, 16-hydroxylated 

metabolites stimulate proliferation of breast cancer cells (Seeger et al., 2006;Lippert et al., 

2003). 16α-OHE1 has previously been shown to induce cell proliferation by upregulating 

cyclin D1 expression in breast cancer cells (Lewis et al., 2005). This may be relevant to the 

pathological effects of 16α-OHE1 in PAH as cyclin D1 is an important mediator in PAH 

pathogenesis, where it promotes proliferation and vascular remodeling (Zeng et al., 2013). 

A successful candidate that attenuates the metabolic conversion of 17β-E2 into the 16α-

hydroxylated estrogens may therefore be applicable to a wider span of disease states, 

including PAH. 

 Concluding remarks 5.1.3

In summary of these findings, we have provided evidence for a dysregulated estrogen 

metabolic axis, particularly via increased CYP1B1 activity, in both pre-clinical models of 

PH and human PAH. CYP1B1 expression was increased in the pulmonary arteries of both 

IPAH and HPAH, independent of sex. 17β-E2 is historically regarded as a female gonadal 
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hormone. However, we have provided evidence for local production of 17β-E2 in both 

male and female hPASMC creating a local estrogenic milieu (Chapter 4). In healthy blood 

vessels, 17β-E2 promotes vasodilation and provides atherogenic protection. Cellular 

insults, such as hypoxia, that dysregulate estrogen signaling by altering estrogen receptor 

profiles and estrogen metabolism may perturb the beneficial effects of 17β-E2 promoting a 

pathogenic environment. Here we provide the first direct evidence that 17β-E2 is 

metabolized by hPASMCs. Importantly, we noticed a unique metabolic profile in both 

male and female PAH hPASMCs. Specifically, the smooth muscle cell mitogens, the 16α-

hydroxylated estrogens were only formed in PAH samples, independent of sex, 

highlighting that altered estrogen metabolism may be a crucial mediator in the 

pathogenesis of PAH. 

Inhibition of CYP1B1 with the highly potent and selective CYP1B1 inhibitor displayed 

impressive results in preventing PH onset in both the hypoxic and SU-hypoxic murine 

models of PH. This highlights CYP1B1 as a disease modifying enzyme that can be 

pharmacologically inhibited with TMS. TMS appears to have relatively low toxicity in 

vivo whilst displaying potent anti-tumour and anti-hypertensive effects, making this a good 

therapeutic candidate in cancers and cardiovascular diseases, including PAH that merits 

consideration. 

PAH is a disease of women that currently has no cure. Altered estrogen metabolism may 

be a key disease driver in females (and males) by shifting the protective effects of 

estrogens to pathogenic effects by altered enzymatic profiles. We have reinforced a 

pathogenic role for estrogen metabolism in the genesis and pathogenesis of PAH and we 

propose that clinical trials investigating the safety, tolerability and effectiveness of TMS in 

cancer and cardiovascular diseases including PAH are strongly encouraged. 
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Figure 5-1 Summary diagram 

Under normal physiological conditions, estrogens are metabolized towards the formation of anti-
proliferative metabolites. Up-regulation of CYP1B1 results in the formation of pro-proliferative 
metabolites which represent a pulmonary hypertensive (PH) insult, which can be rescued by 
CYP1B1 inhibition with 2,3',4,5'-Tetramethoxystilbene (TMS). 
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 Future Perspective 5.2

Future studies investigating the safety, tolerability and effectiveness of TMS in cancer and 

cardiovascular diseases including PAH strongly encouraged. Understanding the molecular 

basis of the therapeutic effects of CYP1B1 inhibition is critical. Multiple pathogenic 

pathways are activated by CYP1B1 activity – the formation of genotoxic estrogen 

metabolites, pathogenic eicosanoids and ROS. Furthermore, the inhibition of CYP1B1 may 

increase levels of 17β-E2 and arachidonic acid that may signal by protective or pathogenic 

mechanisms depending on the cellular composition of enzymes and receptors. Delineating 

these effects is crucial in our understanding of the therapeutic effects and potential of 

CYP1B1 inhibition in cancers and cardiovascular diseases. 

We have developed a platform to investigate estrogen metabolism in pulmonary vascular 

cells. This can now be utilized to investigate estrogen metabolism in other cell types and 

the effect of PAH insults on metabolism in control cells. Furthermore, using in silico 

analysis we can predict potential enzymes that may be responsible for the altered estrogen 

metabolism in PAH. We can then target these enzymes in vitro to assess if we can reverse 

this metabolic phenotype. Effectively, this can be utilized as a screening method to identify 

novel therapeutic targets that can beneficially rescue the altered metabolic profile. 

Ultimately, we need to validate our results with the gold standard analytical technique, LC-

MS. 

We have highlighted a key role for CYP1B1 in PAH pathogenesis and future studies will 

examine the contribution of CYP1B1 to the formation of 16α-hydroxylated estrogens in 

hPASMCs. Future studies will also address the molecular mechanisms associated with 

CYP1B1 pathogenesis and specifically the effects of 16α-OHE1 and 16α-OHE2 on cellular 

signalling pathways.  

We anticipate that future therapies that target the estrogen pathway in PAH will show 

promising therapeutic effects on the basis of the evidence that we have provided here and 

that have been shown by other researchers within the field. We strongly encourage the 

development of therapies that target estrogen and its metabolism in this devastating 

cardiovascular disease. 
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 Supplemental data 8.1

 

 Western blots corresponding to figure 3-1 8.1.1

a b

c

 

Figure 8-1 Full western blots for effect of hypoxia on protein expression of CYP1B1, COMT 
and 17β-HSD1 

Female control human pulmonary arterial smooth muscle cells (hPASMCs) were quiesced for 24 
hours and then exposed to either normoxic or hypoxic conditions (1% oxygen) for 24 hours. Cell 
homogenates were assayed for protein expression by western blotting for CYP1B1, COMT and 
17β-HSD1. CYP1B1 (a), 17β-HSD1 (b), COMT (c). The first two samples are normoxic controls 
and the latter two samples are hypoxic (1% samples). 
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 Western blots corresponding to figure 3-22 and 3-23 8.1.2

a

b

 

Figure 8-2 Full western blots of aromatase and CYP1B1 expression in normoxic, hypoxic 
and SERT+ mice 

5-6 month old female wild-type (C57BL/6 x CBA), hypoxic and SERT+ mice lung homogenates 
were analyzed for aromatase and CYP1B1 expression by western blotting. Aromatase (a), 
CYP1B1 (b). Note that in Chapter 3, hypoxic samples were not included to retain focus on SERT+ 
mice. Samples are run in the following order: 2 x wild-type, 2 x hypoxic, 2 x SERT+, 1 x hypoxic, 1 
x SERT+. 
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 Effect of tempol and UO126 on cell proliferation to 8.1.3
complement figure 4-7 
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Figure 8-3 The effect of tempol and UO126 on thymidine incorporation 

Female hPASMCs were quiesced for 24 hours in 0.2% charcoal-stripped FBS (estrogen free) 
phenol red free DMEM. HPASMCs were then incubated with either a vehicle (water), an ERK 
inhibitor (UO126, 1μM) or tempol (ROS scavenger, 1mM) in the presence of 2.5% charcoal-
stripped FBS phenol red free DMEM. Thymidine was added for the last 24 hours (0.1μCi) and 
thymidine incorporation was assessed after 72 hours. n=1, repeated 3 times, One-way ANOVA 
with a Bonferroni’s post-hoc test. Data is expressed as the mean ± SEM. 


