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Summary 

Joint disease is common in adults and in adolescents. It 

particularly affects the knee joints. In young people, joint disease 

has a number of causes including: genetic factors, defects in 

joint cart i lage and sports related injuries. In particular,  

overtraining and traumatic injuries are common in many sports 

Participat ion in sports has expanded during the last two decades 

in many parts of the world. This has led to an increased number 

of injuries. Our knowledge of the role of l igaments in the control 

of movements and how they should be managed after injuries 

needs to expand as fast as participat ion rates.  

The aims of the current study were f irst ly,  to investigate if  

ref lexes can be el ici ted by electr ical stimulation of l igaments. 

Secondly, to investigate if  dif ferent muscles are affected 

dif ferently by these ref lexes. The f inal aim was to investigate if 

these ref lexes can be modulated by posture or muscle activity.  

A total of 44 volunteers participated in a series of experiments. 

These experiments were designed to elicit ref lexes following 

electrical stimulation of the col lateral knee l igaments during 

sitt ing, standing and walking on treadmill. The ref lexes were 

observed in averaged rect if ied electromyograms from Rectus 

Femoris, Vastus Medial is, Vastus Lateral is, Lateral and Medial 

Gastrocnemius and Soleus. Muscle activity was essential if  

ref lexes were to be elicited. No ref lexes were el ic ited in relaxed 

muscles.  

During the f irst series of experiments ref lexes in Rectus Femoris, 

Vastus Lateralis and Vastus Medialis were investigated while the 
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subjects sat on a chair with their hip joint at 100° and the knee 

at 180°. During the experiments the subjects maintained 

sustained contract ions at 5 to 20% of their maximum voluntary 

contract ion (MVC) for 60 seconds. A train of electr ical pulses 

was applied to the ligaments. The experiments used stimulating 

currents of up to 45 mill iamps. Subsequently, similar tests were 

conducted to investigate ref lexes while the volunteers were 

standing. A f inal set of experiments investigated the ref lexes as 

the volunteers walked on the treadmill.   

Reflexes were identif ied as changes in the averaged rect if ied 

electromyograms (EMG). The EMG in the immediate post 

stimulus period was compared with the pre-stimulus control. 

Inhibitory and excitatory ref lexes were elicited following l igament 

stimulat ion in al l three sets of experiments. The mean latency in 

quadriceps for early excitat ion was 57 + 6 msec and 67 + 10 

msec for early inhibit ions. The equivalent means were 70 + 6 

msec and 77 + 6 msec for triceps. The shortest latency recorded 

in quadriceps was 46 msec. Longer latency ref lexes were 

frequently observed. The mean latency in quadriceps for late 

excitat ion was 102 + 6 msec and 113 + 11 msec for late 

inhibit ions. The equivalent means were 110 + 6 msec and 119 + 

11 msec for triceps. There was no signif icant dif ference in the 

latencies of ref lexes from MCL and LCL. The latencies in triceps 

were approximately 10 msec longer (90 msec for quadriceps a 

100 msec for triceps) than those in quadriceps and this can be 

attributed to their longer conduction pathway. The ref lexes were 

also recorded during gait. During walking, the latencies of both 

excitat ions and inhibit ions were signif icantly longer than they 

were during sitt ing and standing. The mean latency of excitatory 

ref lexes in Vastus Lateralis after LCL stimulation were 71 + 5 
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msec. For inhibitory ref lexes the mean latency was 87 + 1 msec. 

The mean latency for excitat ion ref lexes in Lateral Gastrocnemus 

was 82 + 2 msec and for inhibit ion ref lexes was 94 + 3 msec. 

In each set of experiments the shortest latencies were consistent 

with slow group II  or group III afferents excited by relatively 

strong st imulation. Control experiments using topical cutaneous 

anaesthesia minimised the possibi l ity of cutaneous contributions 

to the observed ref lexes. It is also possible that the electr ical 

stimulat ion excited capsular afferents located close to the 

ligaments. This cannot be sett led by the experiment reported in 

this thesis and the observed ref lexes are best described as 

ligamento-muscular ref lexes.   

 

These observed effects are consistent with recent results already 

published by Kim et al in 1995.  
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Chapter 1 

 General Introduction and Literature Review 

The principal purpose of this study is to extend our knowledge 

of ref lexes associated with the medial and lateral col lateral 

l igaments of the knee. Disease and injury of l igaments, 

muscles and joints are major causes of pain and disabil ity in 

the population, especial ly in athletes.  

Joint disease is common in adolescents and adults, both men 

and women. In the lower l imb it part icularly affects the knee 

joints (Felson 1988). Osteoarthrit is, or degenerative joint 

disease, is a chronic disease of joints which has many causes. 

It most commonly affects middle-aged and elderly people. 

However, in young people joint disease is associated with 

genetic factors, defects in joint carti lage, overtraining and 

traumatic joint injury in sports (Kuipers and Keizer (1988), 

Felson (1990), National Inst i tute of Arthrit is and 

Musculoskeletal and Skin Disease (2006)). Osteoarthrit is 

affects all the components of the joint: the joint capsule, the 

ligaments and the tendons. Athletes participat ing in sports may 

be exposed to sudden and forceful movements, quick changes 

of direction and unpredictable physical contact with other 

athletes. All of these can all  lead to joint injuries.  

In addition, osteoarthrit is occurs in many people due to 

advancing age. Joint deformity and exposure of joints to 

repetit ive stress cause degenerat ive changes in the joints 

(Felson and Chaisson 1997). Increasingly, obesity has been 

identif ied as an important factor in the development of 

osteoarthrit is. This is especial ly common in women and most 

commonly affects the knee joints (Felson, Zhang, Anthony, 

Naimark and Anderson (1997), Felson and Zhang (1998), Hart, 



    

  2 

 

Doyle and Spector (1999)). In the UK, hip and knee 

replacement rates are higher in women than in men (Liu, 

Balkwill, Banks, Cooper, Green and Beral 2007).  

1.1. Ligament Injury 

Knee ligament injuries are common in sports (Woo, Chan and 

Yamaji (1997), Woo, Abramowitch, Kilger and Liang (2006), 

Liden, Ejerhed, Sernert,  Laxdal and Kartus (2007)).  The 

mobility and stabil ity of the knee will be affected following 

rupture of the knee ligaments (Abramowitch, Yagi, Tsuda and 

Woo 2003). In sports which require running, twisting and 

jumping, as well sudden accelerat ion and decelerat ion, players 

are at high risk of injury. These movements expose the limbs 

to large forces. I t  has been found that 68% to 88% of all 

football injuries occur in the lower extremities. (Fried and 

Lloyd (1992), Witvrouw, Donneels, Asselman, D'Have and 

Cambier (2003)).  About 25% of football injuries are 

musculoskeletal lesions mainly located in the thigh (17%) and 

the groin (8%) (Albert 1983). The American Academy of 

Orthopaedic Surgery (AAOS 1997) has reported that 5 mill ion 

people visit off ices of orthopaedic surgeons each year 

because of knee problems, 1.4 mil l ion people go to hospital 

emergency room for knee problem; 80 percent of the visits are 

due to injuries. 

In 1994, 7000 hospital visits were recorded for pat ients with a 

torn quadriceps tendons; 39.8 percent of the patients were 

under 18 years old; 24.7 percent were 18-44 years old; 25.7 

percent were 45-64 years old and 9.8 percent were 65 or older 

(AAOS 1997). Thus, problems are mostly found in younger, 

more active people. 
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Female athletes are 3 to 11 times more vulnerable to injury 

than their male counterparts (Lindenfeld, Schmitt, Hendy, 

Mangine and Noyes (1994), Arendt and Dick (1995), Hewett, 

Myer and Ford (2005), Zazulak, Hewett, Reeves, Goldberg and 

Cholewicki (2007)). In particular, injuries to the anterior 

cruciate l igament are more frequent in women than men 

(Hewett et al (2005), Chaudhari,  Lindenfeld, Andriacchi,  

Hewett,  Riccobene, Myer and Noyes (2007)).  At f irst  sight this 

is surprising since women have a lower body weight than men 

and tend to participate in sports which have less physical 

contact.  

There are relevant anatomical dif ferences between men and 

women. The dif ferences in anatomical al ignment and geometry 

of the pelvis, femur and tibia may partly explain the higher 

incidence of l igament injury in women (Arendt and Dick (1995), 

Hewett (1998), Huston, Greenfield and Wojtys (2000), Noyes, 

Barber-Westin, Fleckenstein, Walsh and West (2005),  Yu, 

McClure, Onate, Guskiewicz, Kirkendall and Garrett  (2005) 

Dick (2007)).The pelvis is wider in women than men and this 

dif ference causes the thigh bones to come down to the tibial 

tubercle at a wider angle. This increases the Q angle and 

subsequently causes the knee to bend inward. The quadriceps 

femoris muscle angle (Q angle) is the angle formed by a line 

drawn from the anterior superior i l iac spine to the central 

patella and a second line drawn from the central patella to the 

tibial tubercle. An increased Q angle is a risk factor for 

patellar subluxation and injury to the knee ligaments. 

Normally, the Q angle is 14 degree for males and 17 degree 

for females. (Agliett is, Insall and Cerull i (1983), Evans (2001)).  

The Q angle is shown in f igure 1.1. 
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As the Q angle increases, more force wil l be applied through 

the medial aspect of the knee. During sports, particularly when 

landing after jumps, the medial l igaments of the knee are 

exposed to high forces (Chaudhari and Andriacchi 2006). In 

men, the limb tends to be straighter on landing and the lateral 

forces are lower. In addition, many studies have reported that 

during the female menstrual cycle, l igaments can be 

inf luenced cycl ical ly by sex hormones. There may be an 

association between menstrual cycle phase and the f requency 

of injury to the anterior cruciate l igament (ACL) (Wojtys, 

Huston, Lindenfeld, Hewett and Greenfield (1998), Yu, Liu, 

Hatch, Panossian and Finerman (1999)).   

Wojtys (1998) has reported that the most non-contact injuries 

of the ACL of female athletes happen during the ovulatory 

phase, when oestrogen concentrations are raised. Oestrogen 

is known to reduce the total collagen content of tendons in rats 

(Dyer, Sodek &Heersche 1980) and may weaken other 

connective tissues. This explanation of the distribut ion of 

injuries needs to be treated with some caution of 

neuromuscular performance varies changes during the 

menstrual cycle (Davies, Elford and Jamieson 1991). However, 

the idea has been supported by other authors (Heiz, 

Eisenman, Beck and Walker (1999), Adachi, Nawata, Maeta 

and Kurozawa (2008)).   
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A B 

 

Figure 1.1  
Panel A of the f igure shows the definit ion of the Q angle.  
Panel B shows the Q angle in women is wider than men.  
www.drt immaggs.com/images/picture2.jpg 
(Accessed 9 th March 2008) 
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In contrast, testosterone produces an increase in the muscle 

mass in males and this protects the knee if  the muscle activity 

is used appropriately to stabil ise the joint. This in turn may 

reduce the injury rates during activity (Hewett, Lindenfeld, 

Riccobene and Noyes (1999), Myklebust, Engebresten,  

Braekken, Skjolberg, Olsen and Bahr (2003), Mandelbaum, 

Silvers and Watanabe (2005)).  

There is a well-recognised historical trend for athletes, 

particularly professional athletes, to be taller and heavier in 

recent years. Part of this can be attributed to a general 

improvement in nutrit ion and health, generation by generation. 

However, athletes also develop the size and strength of their 

muscles by specialised training and possibly by the use of 

special diets. There are also many recent cases of athletes 

using i l legal pharmaceutical techniques to further enhance 

their physique or performance (Sheehan 2002). The 

anthropometric data for some sports is well documented. In the 

1900s the average baseball player weighed 174 pounds. This 

rose to 186 pounds in the 1970s. In the 1990s the average 

player weighed 198 pounds. This increase is over 5% per 

decade (Neyer 2000). During the last decade some athletes 

have abused a variety of the banned drugs to enhance their 

performance (National Institute on Drug Abuse 2007). One 

reason for the increased number of knee injuries is l ikely to be 

the fact that players are bigger and faster than ever before 

(Morral l and Sull ivan 1969). Knee ligaments may be more 

likely to be injured when they are exposed to the forces from 

overdeveloped muscles.  

In the normal population during normal movements, the joints 

are not exposed to extreme forces. Several factors may 

contribute to stabi l ising a joint. Muscles, l igaments and joint 
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capsules can contribute forces to stabil ising the knee 

(Shelburne, Torry and Pandy 2005).  

The passive visco-elastic properties of t issues provide some 

forces which will  stabil ise the joint posit ion by resist ing 

displacement. These wil l act almost immediately since they are 

not delayed by ref lex latencies or muscle contract ion t imes. 

Stretching of the connective t issues will provide the most 

immediate resistance to displacement of the structures. 

Experiments in isolated tissues from laboratory animals have 

shown that connective t issues in tendons are known to be 

surprisingly st if f  when subjected to small displacements 

(Proske and Rack 1976). The stif fness increases when the 

velocity of stretch increases and when even small muscle 

contract ions are present. Capsular laxity, perhaps as a result 

of previous injury or due to joint hyper-mobili ty syndrome has 

been suggested as a risk factor for joint injury and is 

associated with increased prevalence of osteoarthri t is (Hall,  

Baxendale, Ferrel l  and Hamblen (1995), Ferrell , Tennant, 

Baxendale, Kusel and Sturrock (2007)).  

Unlike connective tissues, muscles can change their  

mechanical propert ies act ively by developing force or changing 

their length or st if fness. Thus muscle contract ion can resist 

joint loading or excessive joint displacement to maintain knee 

stabil ity. The knee is stabil ised by the hamstrings and 

quadriceps muscles (Shoemaker and Markolf  (1982), Louie 

and Mote (1987), Solomonow, Baratta, Zhou, Shoji,  Bose, 

Beck and D'Ambrosia (1987), Buchanan and Lloyd (1997)).  

Their precise roles depend on the biomechanics of the 

particular movement. The muscle contract ion may be brought 

about by ref lexes init iated by stretch ref lexes or by joint 

displacement (Nashner 1977). In these cases the muscle force 

must be delayed by tens or hundreds of mill iseconds due to 
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conduction delays and the time needed for force development. 

It is also possible that muscle contract ions are in it iated 

predictively i.e. before any potentially damaging movement 

has taken place. This would be especially valuable in 

protect ing the joint during high speed movements or coll isions 

as could occur during sports participation. The quadriceps 

muscles have been extensively invest igated and are thought to 

have a strong role in stabil ising the joint (Dyhre-Poulsen and 

Krogasgaard 2000).  

1.2. Quadriceps Muscle  

The quadriceps is subdivided into four separate portions. One 

of them, Rectus Femoris (RF) is in the middle of the thigh and 

connects the i l ium to the patel la. The other three muscles: 

Vastus Lateral is (VL), Vastus Medial is (VM) and Vastus 

Intermedius have their origins on the femur and insert into the 

patellar l igament. Vastus Lateral is, has its origin on the upper 

part of the intertrochanteric l ine, the anterior and inferior 

borders of the greater trochanter, the lateral l ip of the gluteal 

tuberosity and the upper half  of the lateral l ip of  the linea 

aspera. Its insertion is on the lateral border of the patella. 

Vastus Medialis arises from the lower half  of the inter-

trochanteric l ines, the medial l ip of the lina aspera, the upper 

part of the medial supracondylar l ine, the tendons of the 

Adductor Longus and the Adductor Magnus and the medial 

intermuscular septum. The insertion of the muscle is along the 

medial border of the patella by the l igamentum patella into the 

tibia tuberosity. The origin of Vastus Intermedius is on the 

front and lateral surfaces of the body of the femur and 

insertions are the superior border of the patella and the tibial 

tuberosity (Mart ini 2006). These are i l lustrated in f igure 1.2. It 

is relatively simple to record electromyograms from the skin 

over the superf icial components of quadriceps: Vastus 
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Lateral is, Vastus Medial is and Rectus Femoris. It is impractical 

to make surface recordings from Vastus Intermedius as it l ies 

deep to the vastus muscles. No recordings from this muscle 

are shown in this thesis. 

The quadriceps muscle is supplied by femoral nerve and 

artery. 
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Figure 1.2 
The f igure shows the components of the quadriceps 
muscles, from which EMG was recorded. Modif ied from: 
http://training.seer.cancer.gov/module_anatomy/unit4_4_
muscle_grp4_lower_extremity.  
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1.3. Triceps Muscle 

The most superf icial of the calf  muscles is Gastrocnemius and 

it forms the greater part of the calf . The muscle has two 

dif ferent parts: medial and lateral. They have two dif ferent 

origins. The origin of the medial head is posterior to the medial 

condyle of femur. Lateral Gastrocnemius arises from the 

posterior surface of the lateral part of the femoral condyle. 

Both heads also arise from the inferior of the capsule of the 

knee. The muscle inserts into the calcaneus via the calcaneal 

tendon. The muscle is innervated by the tibial nerve (Mart ini 

2006).  

The details of the origins and insertions of the muscle are 

shown in f igure 1.3.  

The Soleus is a f lat muscle situated immediately anterior to 

Gastrocnemius. Its origin is on the posterior of the head of the 

f ibula, the upper third of the posterior surface of the body of 

the bone; the popliteal l ine, and the middle third of the medial 

border of the t ibia. Some f ibres also arise between the tibial 

and f ibular origins of the muscle. The insertion of  the muscle 

is an aponeurosis which covers the posterior surface of the 

muscle and gradually becoming thicker and narrower before i t  

joins with the tendon of the Gastrocnemius to form the tendo-

calcaneus (Mart ini 2006).  
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Figure 1.3  
The f igure shows the lower leg muscles. Number 1 is 
the lateral head and number 2 is the medial head of  the 
Gastrocnemius muscle. Number 3 is Soleus muscle. 
Modif ied f igure from Tortora and Grabowski (1993). 

1 

2

3
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1.4. Knee Ligaments and Menisci 

Ligaments consist of many minor l igaments which run in 

dif ferent directions and layers. There are two separate 

ligaments located on the medial and lateral side of  the knee 

joint. They are the medial collateral l igament (MCL) and the 

lateral collateral l igament (LCL). The MCL is attached above to 

the femur and inserts into the t ibia. The LCL is at tached above 

to the femur and inserts into the f ibula. In addition, the ACL 

connects the femur and the tibia. ACL injury is more common 

in females than men. The reasons for this are addressed in 

section 1.1. The ligaments act together to provide the knee 

with stabi l ity and f lexibi l i ty.  

The ligaments may be injured direct ly by mechanical trauma as 

described earl ier in section 1.1. Medial col lateral l igament 

injury is more common than lateral collateral l igament in men 

and women (Abbott, Saunders, Dec, Bost and Anderson 

(1944), Naik, Rao and Rao (2007)). 

The menisci are two cart i laginous elements within the knee 

joint which protect the ends of the bones from rubbing on each 

other. They also play a role in shock absorption. They are 

shown in f igure 1.4. The upper surfaces of the menisci are 

concave and this deepens the tibial sockets into which the 

femur attaches. The menisci are in contact with the condyles 

of the femur. The lower surfaces are f lat and rest upon the 

head of the tibia. Both surfaces are smooth and are covered 

by the synovial membrane.  The menisci can be cracked or 

torn when the knee is f lexed and forcefully rotated.  
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Figure 1.4   
The f igure shows the knee ligaments and menisci of the left knee 
seen from behind.  
www.nationalsportsmed.com/knee.html  
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1.5. The Role of Reflexes 

The role of ref lexes in preventing damage to joints by over-

load or over-range movements has been widely discussed. In a 

recent paper, Solomonow and Krogsgaard (2001) reported that 

the idea of protective ref lexes, elicited by mechanical 

stimulat ion of l igaments, was f irst proposed by Payr, 

Derheutige and Gelenkchirugie in 1900. This was the f irst 

description of the "Kinetic chain". In this theory Payr discussed 

ligamento-muscular protect ive ref lexes and believed that 

l igaments with bones, muscles and receptors act to provide 

safe, stable motion of the joint.  Payr had lit t le experimental 

evidence to support his theory. Subsequently, many 

researchers have investigated such protect ive ref lexes 

(Partr idge (1924), Palmer (1958), Stener (1959), Petersen and 

Stener (1959), Ferrell,  Gandevia and McCloskey (1987), 

Baxendale, Ferrel l  and Wood (1988), Johansson, Sjolander 

and Sojka (1991b)).  

The fundamental suggestion is that sensory endings in the 

ligaments form part of a negative feedback system that 

controls the muscle activity stabil ising the knee to prevent 

abnormal movements of the joint (Andersson and Stener 

(1959), Johansson et al (1991b)). There have been two main 

experimental approaches to investigat ing this suggestion: 

some studies have used surgical ly invasive techniques to 

study ref lexes in laboratory animals. These animals have 

general ly been under the inf luence of anaesthesia or made 

insensible by decerebrat ion. The other common exper imental 

approach uses human volunteers.  

The animal studies have been more invasive in their approach 

using reduced preparations, denervations and long term 

surgical interventions. Thus, there are suff icient experimental 
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data to confirm the existence of l igamento-muscular ref lexes, 

probably involving low threshold mechanoreceptors. They 

inf luence muscle activity via the γ-muscle spindle system, 

whereas high-threshold mechanoreceptors may exert effects 

directly onto the skeleto-motoneurons (Appelberg, Hull iger, 

Johansson and Sojka (1983), Johansson, Sjolander and Sojka 

(1991b)). 

Sherrington (1903, 1910) real ly provided the scientif ic 

foundations of the experimental investigat ion of ref lexes in 

laboratory animals. Later Matthews (1933), Gardner (1944), 

Gardner, Latimer and Sti lwell  (1949) published studies of the 

behaviour of the mechanoreceptors associated with joints. 

Boyd and Roberts (1953) invest igated the afferent discharge in 

the posterior art icular nerve of the knee joint of the cat. They 

categorised the responses into two dif ferent types, slowly and 

rapidly adapting. Also they concluded that the sense-endings 

are stretch receptors responding to extension in a particular 

direction and they may play an important part in the control of 

movement. Later, Wyke (1981) and Newton (1982) classif ied 

the nerve endings into four categories: Ruff ini endings, 

Pacinian corpuscles, Golgi tendon organ-l ike endings and free 

nerve endings. Subsequently, several authors have reviewed 

knee joint function and have identif ied that the 

mechanoreceptors named above are distr ibuted in the 

collateral l igaments, cruciate l igaments and the menisci of 

several laboratory species and humans (Grigg and Hoffman 

(1982), Schultz, Miller, Kerr and Micheli (1984), Halata, Grim 

and Christ (1990)).   

The experimental studies in human volunteers have been more 

restricted. The ACL, MCL and LCL of human knee ligaments 

have been investigated (Palmer (1958), Petersen and Stener 

(1959), Kim et al (1995), Buchannan and LIoyd (1997), Dyhre-
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Poulsen and Krogsgaard (2000)). The studies have been 

explained in page 22. 

1.6. Articular Mechanoreceptors in the Knee Joint 

Several dif ferent types of mechanoreceptors have been 

identif ied in human and animal knee cruciate l igaments, 

collateral l igaments and the menisci (Grigg and Hoffman 

(1982), Schultz et al (1984)). Many authors have proposed that 

mechanoreceptors of the cruciate and collateral l igaments in 

knee, ankle and shoulder joints have important roles in 

elicit ing ref lexes (Boyd and Roberts (1953), Skoglund (1956), 

Palmer (1958), Andersson and Stener (1959), Petersen and 

Stener (1959), Ekholm, Eklund and Skoglund (1960), Freeman 

and Wyke (1967), Grigg, Harrigan and Fogarty (1978), Ferrel l  

(1980), Grigg and Hoffman (1982), Wood and Ferrel l (1984), 

Johansson and Sojka (1985), Baxendale et al (1988),  Pope, 

Cole and Brand (1990), Johansson, Sjolander and Sojka 

(1991a), Kim, Rosen, Brander and Buchanan (1995), 

Solomonow and Krogsgaard (2001)).  

Skoglund (1956) found that the discharge of slowly adapting 

receptors in the cat knee joint could signal the steady-state 

angle of the joint as well  as the direction and velocity of 

movement. These observations were extended by Ferrel l  

(1980) who found that a signif icant number of slowly adapting 

joint afferent f ired across the mid-range of joint posit ions.  

Four types of mechanoreceptors are found in capsular 

l igaments and menisci: Ruff ini endings, Pacinian corpuscles, 

Golgi tendon organs and free nerve endings. The properties of 

the different kinds of mechanoreceptors are shown in table 

1.1. 
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Art icular 
mechano-
receptors 

Type 

Locat ion Sensit ive 
To 

Adaptat ion 
Rate 

Freeman 
& Wyke 

Classi f ic
-at ion 

Af ferent  
Fibre 
Group 

 
Ruf f in i  

Endings 
 

Jo int 
Capsule 

L igaments 
and 

Menisc i 

 
Mechanical 

Pressure 

 
Slowly 

Adapt ing 

 
I  

 
I I  

 
Pacin ian 

Corpusc les 
 
 

 
Fibrous 

Capsules 

 
Mechanical 

Stress 

 
Rapid ly 

Adapt ing 

 
I I  

 
I I  

 
Golg i  

Tendon 
Organs 

 

 
L igaments
Tendons 

and 
Menisc i 

 
Mechanical 

Force 

 
Slowly 

Adapt ing 

 
I I I  

 
Ib 

 
Free Nerve 

Endings 
 

 
L igaments, 
Capsules  

and 
Menisc i 

 
Stretch 

 
Non 

Adapt ing 

 
IV 

 
I I I / IV 

 

Table 1.1 
The table shows the propert ies of the dif ferent types of 
articular mechanoreceptors. 



    

  19 

 

Ruff ini endings are encapsulated, slowly-adapting, stretch 

sensit ive mechanoreceptors. They are located in the col lateral 

and cruciate l igaments, capsule, and menisci (Polacek (1966), 

Freeman and Wyke (1967), Zimny, Schutte and Dabezies 

(1986), Solomonow and Krogsgaard (2001)).  

Pacinian corpuscles are encapsulated, rapidly adapt ing, force 

sensit ive mechanoreceptors. They are located in the joint 

capsule, cruciate l igaments and menisci in cats and humans 

(Boyd (1954), Freeman and Wyke (1967), Halata, Rett ig and 

Schulze (1985)).  Pacinian corpuscles are active in 

acceleration and decelerat ion of joints and they are inactive in 

immobile joints (Freeman and Wyke (1967), Zimny (1988), 

Johansson et al (1991b)).  

Golgi tendon organs (GTOs) are encapsulated, slowly adapting 

mechanoreceptors. They have a higher force threshold for 

activat ion than the Ruff ini endings (type I receptors) when the 

forces are applied passively. They are found in the col lateral 

and cruciate l igaments, capsule and menisci (Matthews (1933), 

Skoglund (1956), Grigg, Hofman and Fogarty (1982), Schultz 

et al (1984), Zimny et al (1986)). Golgi tendon organs are most 

commonly located at the junct ions between the muscle f ibres 

and the collagen strands composing tendons and aponeuroses 

(Milana, Mileusnic, Gerald and Loeb 2006). Because of the 

nature of their highly transient response, they are involved in 

accelerations, quick movements, and vibrations (Freeman and 

Wyke (1967), Halata (1977), Grigg (1984)). Golgi tendon 

organs are arranged in series with extrafusal muscle f ibres 

because of their location at the junct ion of muscle and tendon. 

Some authors believe that activat ion of the Golgi tendon 

organs inhibits muscular contract ion to protect muscles from 

injury (Houk and Henneman (1966), Houk and Simon (1967)).  

In other circumstances act ivat ion of GTOs leads to increases 
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in muscle force (Conway, Hultborn and Kiehn (1987),  Pratt  

(1995), Prochazka, Gil lard and Bennett (1997), Pearson, 

Misiaszek and Fouad (1998), McCrea (1998), Stephens and 

Yang (1999)).  

Free nerve endings are not encapsulated and have no complex 

sensory structures. Most have polymodal responses and they 

respond to a range of mechanical and chemical st imuli. Free 

nerve endings are located in muscles, l igaments and 

cutaneous t issue layers (Freeman and Wyke (1967), Zimny 

(1988), Solomonow and Krogsgaard (2001)). They are the 

most common type of nerve ending. 

1.7. Ligament Reflex 

In chapter 3 (sections 3.3.1, 3.3.2. and 3.3.3.) details of 

ref lexes el icited by electrical stimulation of l igaments will be 

described. In al l of these experiments, there several important 

questions which need to be considered:  

1. Which type of articular mechanoreceptors will be 
activated?  

2. Will only one group of f ibres be act ivated?  

3. Will several groups be activated simultaneously?   

4. Can specif ic ref lex act ions be attr ibuted to part icular 
types of afferents?   

Many studies in animal preparations have found that ref lexes 

can be elicited by electrical or physiological st imulation of the 

knee joint receptors. Cohen and Cohen (1956) and Eccles and 

Lundberg (1959) demonstrated that stimulat ion of the high 

threshold afferents of the cat knee joint act ivated α-

motoneurons via ref lex connections.  
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Experimental data gathered from animal studies conf irm the 

existence of l igament muscular ref lexes, probably through low 

threshold mechanoreceptors that inf luence muscle activity via 

the γ-muscle spindle system. Hongo, Jankowska and Lundberg 

(1969) found that electrical stimulat ion of low-threshold joint 

afferents evoked excitatory and inhibitory potentia ls in alpha 

motor neurons. Baxendale, Davey, El laway and Ferrel l (1992) 

used restr icted mechanical stimulat ion to stimulate group II 

joint mechanoreceptor and elicited inhibitory and excitatory 

responses in γ-motoneurons supplying the cat hindlimb. Scott,  

Ferrel l and Baxendale (1994) stimulated group II/ II I afferents 

in the Posterior Articular Nerve of the cat knee jo int.  They 

could elicit  excitatory responses in lateral gastrocnemius and 

soleus γ-motoneurons.  

At low st imulat ion intensit ies, joint af ferents and l igamentous 

afferents have more potent effects on the γ-motoneurones 

rather than on the α-motor neurons. It has been suggested 

that joint mechanoreceptor ref lexes operating via the γ-motor 

neurone loop (γ-motor neurons- intrafusal f ibres in muscle 

spindles-primary muscle spindle af ferents-α-motor neurons) 

may contribute to the pre-programming of st if fness of muscles 

around the joint and thereby to the regulation of joint st i ffness 

and joint stabil ity (Johansson et al (1991b), Sjolander, 

Johansson and Djupsjobacka (2002)).  

There are some fundamental studies in reduced animal 

preparat ions indicating that articular mechanoreceptors have 

short latency ref lex act ions on spinal alpha motor neurones 

(Baxendale, Ferrell and Wood (1987), Johansson et al 

(1991b)). Solomonow and Krogsgaard (2001) have proved that 

direct mechanical stimulation of the anterior cruciate l igaments 
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in cat knees can result in increased activation of the 

hamstrings and inhibit ion of quadriceps.  

Sjolander, Djupsjobacka, Johansson, Sojka and Lorentzon 

(1994) showed that fusimotor effects are elicited after 

electrical st imulation of l igaments or application of low to 

moderate changes in the tension of the medial and lateral 

collateral l igaments. There was no concomitant act ivat ion of 

skeleto-motoneurons. 

In parallel with the animal studies, other researchers have 

attempted to elicit ref lexes in humans following mechanical or 

electrical stimulat ion of the knee ligaments. These ref lexes 

were f irst examined in the late 1950s. Palmer (1958) 

suggested that afferent signals from the MCL of the knee were 

able to modify the activity in the muscles around the knee. 

Petersen and Stener (1959) tried to elicit ref lexes from several  

muscles in the limb such as Sartorius, Semimembranosus and 

Vastus Medial is muscles following mechanical stimulat ion of 

the MCL by f lexing the l imb. The surface EMG was 

investigated in 30 healthy volunteers. But, however strongly 

they applied tension to the MCL they could not record any 

ref lexes. 

Other experiments performed in humans have shown the 

existence of ref lexes (Kim et al (1995), Dyhre-Poulsen and 

Krogsgaard (2000)). They el icited ref lexes following electr ical 

stimulat ion of the l igaments of the human knee joint. Some of 

the researchers have used invasive methods (Kim et al (1995), 

Buchanan and Lloyd (1997), Dyhre-Poulsen and Krogsgaard 

(2000)). In 1995, Kim et al placed f ine wire electrodes directly 

in the ligaments using percutaneous needles. They observed 

that the muscles on the medial side of the joint were act ivated 

following electrical stimulat ion of the medial col lateral l igament 
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and that lateral muscles were act ivated following stimulat ion of 

the lateral col lateral l igament. Subsequently, Dyhre-Poulsen 

and Krogsgaard (2000) placed a stimulation electrode in the 

proximal and mid part of the ACL during arthroscopy. They 

elicited ref lexes in quadriceps and hamstring muscles. These 

tended to be inhibit ions. The ref lex latency was 65 + 20 msec.  

Others have used a less or non-invasive approach and 

stimulated the ligaments through or over the skin (Jenner and 

Stephens (1982), Gandevia, Mil ler, Aniss and Burke (1986), 

Gibbs, Harrison and Stephens (1995), Bagheri and Baxendale 

(1995), Priori, Berardell i,  Inghil leri, Pedace, Giovannelli and 

Manfredi (1998), Grey, Ladouceur, Andersen, Nielsen and 

Sinkjaer (2001), Kalantari (2002), Haridas and Zehr (2003), 

Dhaher, Tsoumanis and Rymer (2003)).  

The advantage of the invasive method is that the st imulat ion is 

more accurately focussed on a particular structure than it is in 

the non-invasive method. Less current is required for 

stimulat ion and the EMG is less affected by artefacts. The 

disadvantages of this method include dif f iculty in recruit ing 

volunteers because of the more invasive nature of the 

experiment, problems in identifying the correct placement of 

the electrodes and the risk of infection.  

The advantages of the non-invasive method are that the 

volunteers are easier to recruit and they return for repeat 

tests. The main disadvantages of non-invasive method is 

controll ing the st imulation and recording in the presence of 

large stimulat ion artefacts.  

The experiments described above provide evidence that 

ref lexes can be elicited by electr ical st imulation of knee 

ligaments. The overal l picture resembles that of the ref lexes 
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associated with Golgi tendon organs. Electr ical st imulation of 

Ib sensory afferents from extensor muscles in laboratory 

animals l ike the cat elicits a complex pattern of depolarizat ion 

of Ib terminals from various muscles. The afferents from Golgi 

tendon organs located in extensor muscles are an important 

source of posit ive force feedback signal during locomotion 

(Conway et al (1987), Dietz, Gollhofer, Kl ieber and Trippel 

(1992), Pratt (1995), Prochazka et al (1997), Pearson, 

Misiaszek and Fouad (1998), McCrea (1998), Stephens and 

Yang (1999)). 

Many studies have investigated the role of Ib afferents during 

locomotion in the cat and human (Nichols and Houk (1976), 

Conway et al (1987), Yang, Stein and James (1991), Pearson 

and Collins (1993), Sinkjaer, Andersen, Nielsen and Hansen 

(1999)).  

This is a clear example of the modulation of ref lexes 

depending on the context in which they are elicited. To date, 

there has been no similar investigation of the modulation of 

l igamentous ref lexes during dif ferent motor tasks. 

Theoretical and experimental evidence indicate that l igament 

afferents, together with afferents from other joint  structures, 

muscles and the skin provide the CNS with information during 

movements and posture through ensemble coding 

mechanisms, rather than via modality specif ic private 

pathways (Sjolander et al 2002). It means that ref lexes travel 

via pathways other than those projecting directly to the 

skeletomotor system. In addition, during gait, the effects may 

feed forward to modify future movements rather than feedback 

to modify ongoing movements in the classical manner. Stretch 

ref lexes in the leg muscles are certainly act ivated during 

locomotion and they appear to help launch the body into the 
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next step (Funase, Higashi, Sakakibara, Imanaka, Nishihira 

and Miles 2001).  

Aims 

In conclusion, classical electrophysiological exper imentation in 

laboratory animals has demonstrated that short latency 

ref lexes can be elicited by st imulat ion of mechanoreceptors in 

the joint capsule l igaments and tendons. The ref lexes are 

complex and may be fed-back into ongoing movements or fed-

forward in future movements. The situation is less clear in 

humans. Early attempts to el icit ref lexes by mechanical 

stimulat ion of l igaments were unsuccessful but direct electr ical 

stimulat ion of l igaments via per-cutaneous wire electrodes has 

shown that the ref lexes can be elicited. The main aim of this 

project was to investigate if  less invasive stimulation 

techniques could also be used to study ligamento-muscular 

ref lexes. It was of particular interest to invest igate the effects 

of muscle force, changes in posture and on-going movement 

on these ref lexes.   

Consequently, the aims of the experiments reported in this 

thesis are: 

1. To investigate if  ref lexes can be el icited by electrical 
stimulat ion of l igaments.  

2. To investigate if  different muscles are affected differently 
by these ref lexes. 

3. To investigate if  these ref lexes can be modulated by 
posture or muscle activity. 
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Chapter 2 

Materials and Methods 

This chapter provides detai ls of the materials and methods 

that were common to al l experiments. Materials and methods 

specif ic to only one experiment wil l be discussed in the 

appropriate chapter. 

2.1. Subjects 

Forty-four volunteers aged between 21 and 49 years 

participated in four series of experiments. All were healthy 

asymptomatic individuals with no history of any neurological,  

musculo-skeletal or cardiovascular problems. All vo lunteers 

were recruited from the University of Glasgow staff  and 

students. The Glasgow University Research Ethics Committee 

approved the experimental protocol.  Al l subjects had given 

informed consent and they were free to withdraw from the test 

at any stage. Subjects had dif ferent tolerances for stimulation. 

Some of them tolerated relatively intense st imulation, up to 45 

mill iamps. Some had a much lower l imit of tolerance. This is 

i l lustrated for 17 of the subjects in table 3.2. None of the 

volunteers withdrew from the experiments. All reached their 

individual l imit.  
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2.2. Experimental Set-up 

The subjects sat on a chair with their hip joint at  100° and the 

knee joint at 180°. Figure 2.1 shows the posit ion of the 

subject. 

The maximal voluntary contraction (MVC) of the quadriceps 

was measured at 180° of knee extension. The protocol for 

measuring the MVC consisted of asking the volunteer to make 

3 maximal contractions of their knee extensor muscles 

(quadriceps). Each contract ion lasted for 2 to 3 seconds and 

was separated by about the same period. A typical set of 

contract ions can be seen in f igure 2.2.  

The experiments described in chapter 3 and 4 used a Neurolog 

106 EMG Integrator unit (Digit imer Ltd, Welwyn Garden City, 

UK) with a t ime constant of 100 msec to process the EMG. 

Effectively the integration is performed using a ‘leaky 

resistor/capacitor’ circuit . The init ial EMG data in chapter 5 

was recorded in the same way. The NL106 Integrator was 

replaced by using the ‘channel process’ commands in Spike 2 

version 5.03 (Cambridge electronic Design, Cambridge UK). 

The software performed the full wave rect if icat ion function 

before the signal was subjected to a ‘smoothing period’ of 60 

msec. This is a running average of a 60 msec period of data 

(personal communication from CED engineer).  In both cases 

the analysis was performed on-line during the experiment. The 

integrat ion and subsequent signal processing would have the 

effect of t ime shif t ing the signal so that artefacts appear 

slight ly delayed from their true posit ion. This was indicated by 

the posit ion of the trigger pulse issued to the stimulator.  

The time scales of the published records have been adjusted 

so that the zero posit ion is coincident with the onset of the 
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artefact. The reposit ioning is applied to the whole record so 

that there is no effect on the measured ref lex latency since 

both artefact and ref lex are exposed to the same delay. 

The MVC was identif ied from the largest amplitude EMG in the 

set of three contractions. This was used to set the magnitude 

of subsequent sub-maximal contract ions at 5, 10 and 20% of 

MVC. The 20% MVC value previously selected was marked on 

the screen and the subjects were asked to maintain the 

contract ion at this level.  

Bipolar st imulation electrodes were posit ioned on the skin over 

the collateral knee ligaments. The posit ion was identif ied by 

physical examination with reference to anatomical landmarks 

such as muscles like Vastus Medialis, the knee joint and 

patella. This process was aided by reference to anatomy texts 

such as Fundamentals of Anatomy and Physiology by Mart ini  

(2006). The location of the stimulating electrodes is shown in 

f igure 2.1. 

The ligaments were electr ically st imulated by a tra in of three 

pulses of 1 msec duration given at 100 Hz. Before each 

experimental run, during relaxation, the perceptual threshold 

(PT) was determined for each subject. Experiments started 

with the lowest current and on subsequent runs the current 

was increased. This process was repeated until the current 

l imit at which it became too painful to continue was reached. 

The experiment was ended at that point. Obviously, the 

maximum intensity was not the same in al l subjects. The 

greatest current ever used was 45 mil l iamps. The lowest 

current ever used to elicit these ref lexes was 20 mil l iamps. 
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Figure 2.1  
The f igure shows a subject during the experiment. Three 
recording electrodes were placed on the RF, VM and VL. 
Two stimulat ing electrodes were posit ioned on lateral knee 
ligaments. 
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Figure 2.2  
This f igure shows recordings of EMG during three maximum 
contract ions of quadriceps. The lower trace shows the surface 
EMG recorded over RF. The upper trace shows the ful l-wave 
rect if ied smoothed EMG.  
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2.3. Electrical Stimulation 

A constant current stimulator, DS7A (Digit imer Ltd, Welwyn 

Garden City, England) was used in all the experiments. 

Rectangular stimulus pulses of 0.1msec duration were given 

through surface electrodes. The maximum voltage of the 

stimulator was set at 400 Volts. The collateral knee ligaments 

were st imulated by placing a round cathode, 3.2 cm in 

diameter, on the skin at the level of the lateral s ide of patella. 

A photograph of the electrodes can be seen in f igure 2.3.  
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Figure 2.3   
The f igure shows the examples of the electrodes used. On the 
left four PALS self-adhesive stimulat ing electrodes can be 
seen. Each is 3.2 cm in diameter. On the right, three EMG 
recording electrodes can be seen. Each has a common 
electrode in the middle and two recording electrodes. Each 
electrode is si lver and 0.5cm in diameter. The distance 
between the recording electrodes was 2cm. The block also 
encased an amplif ier unit. 
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2.3.1. Electromyography Recording 

Action potentials from active motor units were recorded and 

displayed by using conventional techniques. The 

electromyogram (EMG) is the electr ical signal recorded by 

needle or surface electrodes during a muscular contraction. 

Surface EMGs were recorded from Rectus Femoris, Vastus 

Lateral is and Vastus Medial is of the right and left  legs of the 

subjects. The skin at the recording sites was prepared very 

carefully before attaching the electrodes. The area was shaved 

and cleaned with alcohol. An electrode gel was used under the 

electrodes to decrease the contact resistance (Signa Creme, 

Parker Laboratories Inc, Orange, NJ, USA). The EMG signals 

were amplif ied 5000× by a head stage amplif ier mounted on 

the skin surface. The bandwidth of the amplif iers was 10Hz to 

1 KHz (-3dB at these frequencies) and their input impedance 

was 10 Mohms. Their common mode rejection rat io was 100 dB 

a 50Hz. Neurolog 106 amplif iers were used when addi tional 

amplif ication was needed. Their bandwidth was set at 3 Hz to 

1 KHz.  

The recording electrodes were placed near the middle of the 

muscles. This is shown in the f igure 2.1. The electrodes were 

aligned along the long axis of the muscle. The diameter of 

each electrode was 5mm and the distance between the 

electrodes was 20mm.  

All signals were digit ised by a C.E.D. 1401 Micro interface 

(C.E.D. Ltd, Cambridge, England) at a sampling rate of 5000 

Hz and stored in a PC. The data in chapters 3 and 4 were 

recorded and processed using Spike2 version 3.5 (C.E.D. Ltd, 

Cambridge, England). Version 5.03 was used for the data in 

chapter 5.  
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After digit isat ion the EMG f ilters were processed using the 

digital f i l ters available in Spike 2. A high pass f i lter set at 10 

Hz was used to remove any offset in the signal before the 

rect if ication was done. When necessary a band stop f i lter  

(-3dB at 46.5 and 53.9 Hz) was used to reduce 50Hz mains 

corruption of the EMG.  

2.4. Averaging of EMGs 

The ref lexes el icited by l igament st imulation were identif ied by 

calculating peri-st imulus time (PST) averages of the rectif ied 

EMG. The surface EMGs of three muscles were recorded 

continuously using Spike 2. Each channel was sampled at a 

rate of 5000 Hz. The analysis was performed after the 

experiment was completed. 

Each channel was full wave rectif ied and smoothed using the 

channel process functions of Spike 2. A period of 10 msec was 

used to smooth the rect if ied EMG. This calculates a running 

average for each t ime point for the interval + the smoothing 

period. The f irst tr igger pulse in each stimulus sequence was 

then used to create a peri-stimulus time (PST) average of each 

channel. The period before and after each tr igger could be set 

using Spike 2. Typically, 400 msec before the onset of 

stimulat ion and 600 msec after stimulation were averaged. 

A typical data collection run lasted one minute and the stimuli  

were delivered each second. Consequently, sixty responses 

were averaged to create a single PST average. This was 

ult imately l imited by the desire to avoid fatigue in long 

duration contractions and to minimise the number of  strong 

shocks delivered to the volunteer.  
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Increasing the number of repetit ions leads to a better ratio of 

signal to noise. The signal/noise ratio improves with the 

square root of the number of sweeps averaged. Init ially, the 

improvement wil l be substantial e.g. 16 sweeps gives an 

improvement in the ratio of x4 but an additional 20 to give a 

total of 36 sweeps gives a smaller benefit as the ratio 

improves from 4 to 6.  

The choice of 60 repetit ions in these experiments gives an 

improvement of 7.75. Lengthening the period of data capture 

was considered but could not be justif ied because of the 

problems of fatigue developing during sustained contractions. 

In addition, at the higher stimulus current intensit ies used, 

some volunteers approached their l imits of tolerance. The 

choice of 60 repetit ions is a compromise since it gives a 

reasonable signal/noise ratio without causing problems with 

muscle fatigue or volunteer withdrawal.  

2.5. Analysis of pre-stimulus EMG 

The EMG recorded in the immediate pre-st imulus period 

represents asynchronous activity of a number of motor units. 

Reflex responses were identif ied by comparing the pre-

stimulus background with the post st imulus period.  

The rectif ied smoothed averaged EMG data were translated 

into a text f i le and saved. The subsequent analysis was done 

using Excel to perform the calculat ions. 

The time scales of the published records have been adjusted 

by the relat ive movement of the time points and the voltage 

points so that zero posit ion is coincident with the onset of the 

artefact. The reposit ioning is applied to the whole record.  
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The mean background EMG was est imated by calculat ing the 

mean of the voltage values for the 400 msec before the onset 

of the stimulation artefact. This background period was 

selected to avoid any inclusion of the artefact. These could be 

large compared to the magnitude of the EMG and so i t was 

important make an appropriate select ion. Inappropriate 

choices of background period led to calculations of  means 

which did not f it the data or to large confidence intervals which 

contained the whole of the pre-st imulus EMG. On the rare 

occasions when this happened, the period was reviewed or the 

data were rejected as unsuitable for analysis. 

The standard deviation of the EMG during this period was 

also calculated. The mean plus and minus two standard 

deviations were used to calculate a 95% confidence interval 

for the background signal.  These values were extrapolated 

into the post stimulus period to assist in identify ing ref lex 

responses. Responses were treated as signif icant i f  the 

mean EMG rose above or fell below the confidence interval  

for periods of longer than 5 msec. This is similar to the 

criteria used by other authors (van der Glas, de Laat and van 

Steenberghe (1985), van der Glas, Cadden and Abbink, 

(1999)). The former paper used a minimum duration of 5.8 

msec and the latter included a minimum period of 4.7 msec 

outside the confidence interval in their l ist of cr iteria for 

identifying responses. The variation in durations is due to the 

number of sweeps averaged. Increasing the number of 

sweeps reduces the chances of random f luctuations. Both 

papers report that these periods excluded 95% of chance 

excursions outside the interval.  

An example is given in f igure 2.4. 
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Figure 2.4   
The f igure shows the peri-st imulus t ime average of the rect if ied 
EMG recorded from RF after MCL stimulation. The st imulus 
current was 40 mamps and the volunteer sustained a background 
contract ion of 20% of MVC. The vert ical axis shows the EMG 
signal in volts. The horizontal axis shows t ime in seconds. 
It shows 400 msec before the stimulat ion artefact and 600 msec 
after the stimulat ion. The mean of the pre-stimulat ion EMG is 
shown and extrapolated into the post stimulation period. The 
95% confidence intervals are also shown as the upper and lower 
horizontal l ines. 
The EMG goes outside the lower confidence interval twice. The 
f irst inhibit ion happen 76 msec after st imulation and the signal is 
outside the interval for 6 msec. The second period of inhibit ion 
started after 108 msec and was outside the interval for 39 msec. 
The EMG signal goes outside the confidence interval on a 
number of other occasions, for example between 350 and 500 
msec after stimulat ion but the period outside the interval is too 
short to be signif icant.   
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The latency of the ref lex was measured as the time between 

the f irst st imulus pulse and the time at which the integrated 

EMG moved outside the confidence interval.  
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Chapter 3 

Reflexes Elicited by per-cutaneous Stimulation of t he 

Medial and Lateral Ligament of the Knee during Sitt ing 

and Standing.  

 

3.1. Introduction 

The earliest experiments investigat ing ref lexes from joints 

were carried out in laboratory animals such as the cat (Stener 

(1959), Andersson and Stener (1959), Johansson, Sjo lander 

and Sojka (1986), Baxendale et al (1987)). This l iterature was 

reviewed in sect ions 1.5 and 1.6 of the general introduction.  

Stener (1959), Andersson and Stener (1959) el icited ref lexes 

in the Rectus Femoris, Vastus Lateral is, Vastus Medial is,  

Sartorius, Graci l is, Semitendinosus, Semimembranosus and 

the medial head of Gastrocnemius of decerebrate cats by 

stretching the MCL. In a third paper in this series Petersen and 

Stener (1959) attempted to elicit ref lexes in conscious humans 

by mechanical stretching of the MCL. They tested 35 

volunteers, but they never observed any signs of re f lexes. 

Other researchers have tr ied to investigate ref lexes in humans 

using electr ical st imulation of the knee ligaments. Palmer 

(1958) succeeded in demonstrating ligamento-muscular 

ref lexes in Sartorius, Semimembranosus and Vastus medial is 

after electrical stimulation of the medial collateral l igaments of 

the knee joint in man.  

Kim et al (1995) used f ine-wire electrodes implanted in the 

MCL and LCL of eleven healthy volunteers during arthroscopy 

to stimulate the col lateral knee ligaments. They used f ine-wire 

intramuscular electrodes for EMG recording to study: 

Sartorius, Gracil is, Vastus Medialis, Vastus Lateral is, 
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Semitendinosus, Biceps Femoris long head and Tensor Fascia 

Latae. This technique did elici t ref lexes and they believed that 

the muscles on the medial side of the joint were activated 

following electrical stimulat ion of the MCL and the lateral 

muscles were activated fol lowing st imulation of the LCL. The 

latencies of ref lexes that they observed were 69 to 144 msec.  

Dyhre-Poulsen and Krogsgaard (2000) used similar techniques 

to insert f ine-wire electrodes into the anterior cruciate l igament 

of eight patients during arthroscopy. They could el icit 

inhibitory ref lexes in Rectus Femoris and Semitendinosus 

following ACL st imulation with latencies ranged between 45 to 

85 msec.  

The aims of this current study were to extend earl ier 

invest igations by using transcutaneous st imulat ion of lateral 

and medial knee ligaments in humans. The intra-l igamentous 

stimulat ion technique is invasive and it is unl ikely that it  could 

be used to study ref lexes during movement. The longer term 

aim of this project is to use this technique to investigate 

ligamentous ref lexes during movement in athletes.  
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3.2. Materials and Methods 

The general methods were described earl ier in chapter 2. 

Information specif ic to these experiments is given below. 

3.2.1. Subjects 

Twenty-six volunteers (1 woman, 25 men), who were healthy 

and had no history of injury, participated in two series of 

experiments. 17 volunteers part icipated in the f irst series and 

9 in the second series. Their ages ranged from 21 to 49 years. 

The Faculty of Biomedical and Life Sciences Ethics Committee 

for Non Clinical Research Involving Human Subjects approved 

the experimental protocols. Al l subjects gave informed consent 

and they were free to withdraw from the test at any stage.  

 3.2.2. First Series of Experiments 

The aim was to investigate if  ref lexes can be el ici ted by 

stimulat ion of the l igaments. The subjects sat on a chair with 

their hip joint at 100° and the knee at 180°. The posit ion of the 

subject is shown in f igure 2.1. 

The volunteer was encouraged to make maximal voluntary 

contract ions of their quadriceps. The protocol for measuring 

the maximal voluntary contract ion consisted of asking the 

volunteer to make 3 maximal contractions. Each contraction 

lasted for 2 to 3 seconds and they were separated by about 

the same period. A typical set of contract ions can be seen in 

f igure 2.2 

Stimulation electrode pairs were placed in two locations on the 

MCL and LCL, which were localized by palpation and 
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knowledge of the bony landmarks. The ligaments were 

electrical ly stimulated by a train of three pulses with an inter-

stimulus interval of 10 msec.  

Before each experimental run, the perceptual threshold was 

determined for each subject. This was done by gradually 

increasing the intensity of the stimulation until the volunteer 

reported the f irst signs of sensation. This was typical ly below 2 

mill iamps. Volunteers had dif ferent perceptual thresholds and 

the current intensit ies required were between 0.75 -1.75 

mill iamps.  

When testing for ref lexes, the experiment started with a low 

current, typical ly at 10 mill iamps, and on subsequent runs the 

current was increased. This process was repeated until  it  

reached the current l imit at which i t became too painful to 

continue. The experiment was ended at that point. Obviously, 

the maximum intensity was not the same in al l subjects. The 

duration of intensity was 10 to 45 mil l iamps.  

3.2.3. Second Series of Experiments  

Nine healthy subjects (al l men) aged between 22 to 47 years 

participated in this experiment. After cleaning the site of the 

electrodes, recording electrodes were placed over the Medial 

Gastrocnemius, Lateral Gastrocnemius, and Soleus muscles. 

The postural EMG in the muscles was increased by asking the 

volunteers to raise their heels clear of the ground and to 

balance on their toes. The ligaments were electrical ly 

stimulated by a train of three pulses of 1 msec duration given 

at 100 Hz. Before each experimental run, when the volunteers 

were relaxed, the perceptual threshold was determined for 

each subject. Most of this experiment was the same as the 
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f irst experiment, which has been explained in chapter 2 

sections 2.1 and 2.2. 

Figure 3.1.shows a subject during the test. 

3.2.4. Electromyography 

Surface electromyograms were recorded from the following 

muscles: Rectus Femoris, Vastus Lateral is, Vastus Medial is, 

Soleus, Medial Gastrocnemius and Lateral Gastrocnemius. The 

technique of electromyography has been explained in section 

2.3.1. All signals were digit ised by C.E.D. 1401 Micro interface 

(C.E.D. Ltd, Cambridge, England).The data were recorded and 

processed using Spike2 version 3.5 (C.E.D. Ltd, Cambridge, 

England). A sample of EMG recording is shown in f igure 3.2. 
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Figure 3.1 
The f igure shows a subject during the test. The volunteer is 
standing on his toes and the three recording electrodes are 
placed over the MG, LG and Sol muscles. The CED 1401 Micro 
Interface and the DS7 stimulator are also shown. 
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Figure 3.2 
The f igure shows a sample of unprocessed EMG recorded during 
an experiment. The top trace shows the trigger pulses used to 
init iate st imulat ion over the ligament. EMG from VL, VM and RF 
is shown and each channel clearly shows the stimulat ion 
artefacts. 
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3.3. Results 

3.3.1. Ligamento-muscular Reflexes 

First ly, no excitatory ref lexes were ever observed in relaxed 

muscles in any volunteers. It is clearly impossible for 

inhibit ions to be recorded in a silent EMG. However, 

stimulat ion applied over the MCL and LCL did not el icit muscle 

contract ions in Rectus Femoris, Vastus Lateralis, Vastus 

Medialis, Lateral Gastrocnemius, Medial Gastrocnemius or 

Soleus. In contrast, inhibitory and excitatory ref lexes were 

frequently observed in active muscles even when the 

contract ions were as small as 5% of MVC. An example of 

ref lexes in Vastus Medialis after st imulation of MCL is shown 

in f igure 3.3. The averaged rectif ied EMG signal is relatively 

f lat in the 400 msec before the artefacts between 0 and 30 

msec. This signal continues almost unchanged unti l i t  goes 

below the confidence interval at 75 msec for a period between 

20 to 70 msec. The signal subsequently r ises above the upper 

confidence interval for a period of 12 msec at 440 msec after 

the stimulation. This later event is too long after the 

stimulat ion to be classif ied as a simple ref lex.  

The recordings in f igure 3.4 show three rect if ied averaged 

electromyograms from Vastus Lateral is in the same volunteer. 

As it can be seen the background EMG increases with 

increasing the percentage of MVC. With the contract ion held at 

5% of MVC the post st imulus EMG is modulated and it  crosses 

the upper confidence interval at 64, 65 and 58 msec. As the 

background contraction is increased to 10 and then 20% of 

MVC the ref lexes become more obvious and signif icant.  
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Figure 3.3  
The f igure shows rectif ied averaged EMG recording f rom 
VM after LCL stimulation. The st imulus current was 40 
mamps and the volunteer sustained a background 
contract ion of 20% of MVC. The vert ical axis shows the 
EMG in volts. The horizontal axis is t ime The horizontal 
l ine indicates 100 msec 
There is an early inhibitory ref lex recorded after a latency 
of 75 msec. The signal is below the confidence interval for 
a least 20 msec. There are later periods where the signal 
rises above the confidence interval but these are too short 
to be signif icant. 
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A 

B 

  C 

Figure 3.4  
The f igure shows rectif ied averaged EMG during three 
sustained contractions recorded from VL in one volunteer. 
The maintained contract ions were 5, 10 and 20% of MVC. 
The vert ical axis shows the EMG in volts. The horizontal 
axis is t ime The horizontal l ine indicates 100 msec 
Each trace shows a period of background EMG before the 
stimulat ion artefacts. In each case the MCL was 
stimulated with the same current intensity.  
Shortly after the artefact the EMG decreases in each 
case. The magnitude of the inhibit ion increases as the 
force of contraction increases.  
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In other volunteers the inhibit ion was combined with a second 

response. This could be a later excitation or a second wave of 

inhibit ion. Examples of these responses are shown in f igure 

3.5. The trace A shows a short latency inhibit ion response 

which starts at 61 msec then a long latency excitat ion which 

starts 99 msec after the st imulation artefact. Trace B shows a 

similar short latency inhibit ion followed by a long latency 

inhibit ion start ing 103 msec after the stimulat ion artefact. The 

latencies of the later responses ranged between 91-150 msec.  
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 A 

 B 

Figure 3.5  
The f igure shows two examples of rectif ied averaged EMG 
showing longer latency responses. The vert ical axis shows the 
EMG in volts. The horizontal axis is t ime in seconds.  
The upper trace (A) shows a shorter latency inhibit ion at about 
62 msec followed by a longer latency excitat ion at 99 msec after 
stimulat ion artefact. 
The lower trace (B) shows a shorter latency inhibit ion followed 
by a longer latency inhibit ion. The ref lex latencies are 62 and 
103 msec respectively.  
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3.3.2. The Frequency with which Ligamento-muscular 

Reflexes were Observed 

The results for all 17 volunteers are summarised in table 3.1. 

This shows the frequency with which ref lex responses, either 

inhibitory or excitatory, were observed in Rectus Femoris, 

Vastus Medial is,  Vastus Lateral is, Medial Gastrocnemius, 

Lateral Gastrocnemius and Soleus after LCL stimulat ion. For 

example, ref lexes were observed in the Rectus Femoris in 12 

of the 17 volunteers. Of these 12 volunteers, 8 showed 

inhibit ions and 6 showed excitat ions. The frequency of ref lexes 

was similar in the other heads of quadriceps.  

When muscles in the lower segment of the limb were tested, 

ref lexes were observed in Lateral Gastrocnemius, Medial 

Gastrocnemius and Soleus in 6 of 9 volunteers. The pattern 

was similar to that in quadriceps. Inhibit ions were observed 

more frequently than excitat ions. In summary, it is clear that 

ref lexes can be elicited by repetit ive stimulat ion over LCL in 

the majority of volunteers. 

One might wonder why some volunteers did not show any 

signs of ref lexes. This question is addressed by the data 

shown in table 3.2. It shows the maximum current tolerated by 

each volunteer and the presence or absence of ref lexes. It can 

be seen that the volunteers who did not display ref lexes 

tended to have a low tolerance of electr ical stimulation. The 

experiment allowed volunteers to l imit  the intensity of stimulus 

current. It may be that in a number of cases the low tolerance 

of the volunteer kept the stimulat ion below threshold for 

l igament afferent activat ion.  
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Muscle tested 

Number of 
volunteers 

showing  
ref lexes 

Number of 
volunteers 

showing  
inhibit ions  

Number of 
volunteers 

showing 
excitat ions 

Rectus Femoris 12/17 8/12 6/12 

Vastus Lateralis 12/17 8/12 4/12 

Vastus Medial is 11/17 7/11 4/11 

Lateral 
Gastrocnemius 

6/9 5/9 2/9 

Medial 
Gastrocnemius 

6/9 6/9 3/9 

Soleus 6/9 5/9 4/9 

 

Table 3.1  
The table shows the number of subjects who had ref lexes 
following electrical stimulat ion of the LCL. For example, in the 
f irst row of data, 12 of 17 volunteers had ref lexes in RF. Of 
those 12, 8 showed inhibit ions, 6 showed excitat ions and 2 
had both excitat ions and inhibit ions. The most commonly 
observed ref lex effect was inhibit ion.  
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Volunteers 

Max Stimulat ion 
Intensity 

(mil l iamps) 

 
Reflex Present 

Subject 7 10 No 

Subject 17 15 No 

Subject 3 15 No 

Subject 1 20 No 

Subject 5 20 No 

Subject 8 20 Yes 

Subject 12 20 Yes 

Subject 14 20 Yes 

Subject 16 25 Yes 

Subject 4 25 Yes 

Subject 6 25 Yes 

Subject 10 25 Yes 

Subject 2 30 Yes 

Subject 13 30 Yes 

Subject 11 35 Yes 

Subject 15 35 Yes 

Subject 9 45 Yes 

 

Table 3.2  
The table shows a l ist of volunteers with the maximum 
stimulat ion intensity they received. It also shows if  this 
stimulat ion el icited ref lexes.  
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The maximum current intensity tolerated varied considerably 

between subjects. The highest intensity recorded was for 

subject 9 with 45 mill iamps and the lowest current is for 

subject 7 with 10 mil l iamps.  

12 out of 17 of subjects displayed a ref lex. No ref lexes were 

observed in experiments where the volunteer l imited the 

maximum current to 10 or 15 mill iamps. 5 volunteers l imited 

the maximum current to 20 mill iamps and 2 showed no ref lexes 

whilst 3 did. Al l the volunteers who tolerated currents stronger 

than 25 mill iamps exhibited ref lexes.  

3.3.3. Reflexes Elicited at Different Percentages o f 

Maximum Voluntary Contraction 

The aim of these experiments was to investigate if  the ref lexes 

elicited by ligament stimulat ion were affected by the intensity 

of the muscle contract ion. The maximal voluntary contractions 

of the quadriceps were measured at 180° of knee extension. 

This was then used to set the magnitude of subsequent sub-

maximal contractions at 5, 10 and 20% of MVC. An identical  

stimulat ion sequence was delivered during sustained 

contract ions.  

Figure 3.6 shows another example of increasing the 

background contraction in a dif ferent subject. As the 

background contraction is increased from 5% to 10% of MVC 

the ref lexes become more obvious and signif icant. The ref lex 

is recorded in Rectus Femoris after st imulation of the LCL. The 

upper panel shows a barely noticeable ref lex excitat ion at 116 

msec el ici ted when the background contraction was 5% of 

MVC. Increasing the background contract ion to 10% elicits 

stronger ref lexes.  
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The effect of posture on the ref lexes was investigated. In 

these experiments the same stimulation was delivered with the 

volunteer sitt ing and standing. The EMG recorded during 

standing was closely matched by adjusting the intensity of an 

isometric voluntary contract ion whilst sitt ing. Figure 3.7 shows 

examples of ref lexes el icited in Vastus Medial is and Soleus by 

stimulat ion of 20 mil l iamps in these two postures.   

Only very minor changes in ref lexes occurred when the 

postures were changed. These small effects can attr ibuted to 

small changes in background EMG rather than to any effects of 

posture. 
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Figure 3.6  
The f igure shows the ref lex responses in the rect if ied averaged 
EMG of RF in volts during contractions at dif ferent forces. The 
background contractions are 5 and 10% of MVC in traces A and B 
respectively. Trace A shows an excitatory ref lex with a duration of 
15 msec recorded 116 msec after the stimulat ion artefact. By 
increasing the background contraction (trace B) stronger ref lexes 
were elicited. An inhibitory ref lex was recorded at 62 msec with a  
duration of 16 msec. A larger excitatory ref lex was recorded at 
112 msec with a duration of 21 msec.  

 



    

  57 

 

 

A  B 

 C  D 

Figure 3.7  
The f igure shows rectif ied averaged EMG recordings in the same 
subject during two recording sessions. The LCL was stimulated 
with currents of 20 mill iamps on al l occasions. The upper traces 
are EMG recordings from Sol during standing (A) and sitt ing (B). 
The lower traces are recordings from VM during standing (C) and 
sitt ing (D). 

The form of the ref lex responses is similar in both postures. 
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3.3.4 Reflex Latencies 

The aim of this section was to investigate if  the excitat ions and 

inhibit ions following stimulat ion are similar.  Tables 3.3 and 3.4 

show the latencies of inhibit ions and excitations observed in 

experiments. 

The distribution of ref lex latencies was init ially investigated by 

pooling al l the ref lex latencies, both excitat ions and inhibit ions 

in the muscles tested. The distr ibutions are shown in f igure 

3.8. It is clear than the excitat ions and inhibit ion must come 

from different ref lex pathways and could use dif ferent afferent 

f ibres. The aim in pooling the latencies was to investigate if  a 

simple division of responses into shorter and longer latency 

groups could be achieved. 

The latencies range from 46-150 msec. Two peaks can be 

seen in the distr ibutions in both muscle groups. There is no 

clear separat ion of these. For quadriceps ref lexes of 90 msec 

was used as an arbitrary division between the short  and long 

latency ref lexes. The triceps data also show two peaks 

representing the earl ier and later ref lexes. The peaks and the 

cut-off  for short/ long latency components l ie about 10-msec 

after those in f igure 3.8A. This probably ref lects the longer 

ref lex pathway to tr iceps.  

These arbitrary t imes were used to separate the ref lexes into 

long and short latency groups for subsequent analysis.  
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 Figure 3.8   
The f igure shows the distribut ion of pooled data of  the 
ref lexes latencies in quadriceps (A) and triceps (B) after 
stimulat ion of both MCL and LCL.  
The most common latency for earlier latency ref lex in 
quadriceps is 65 msec and for longer latency is 110 msec, 
but the mean latency for al l ref lexes is 90 msec. In 
comparison, the equivalent latencies in triceps are 75 msec, 
and 110 msec. The mean latency for ref lexes in triceps is 
100 msec. 
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The latencies of the ref lexes are tabulated below in tables 3.3 

and 3.4. The f irst summary table 3.3 shows the effects 

separated into long and short latency excitat ions and 

inhibit ions in quadriceps. The latencies following st imulat ion of 

the LCL and MCL are shown. The following table 3.4 shows 

the data from measurements made on triceps.  
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Table 3.3   
The table shows the latencies of inhibitory and excitatory 
ref lex responses in quadriceps following electrical stimulation 
of MCL and LCL. * This value omitted from statist ical analysis. 
It is an outl ier and it compromises the normal distr ibut ion of 
values. See Figure 3.13. 

Quadriceps   Inhibit ion 

(msec) 

Quadriceps Excitat ion 

(msec) 

LCL LCL MCL MCL LCL LCL MCL MCL 

Short Long Short Long Short Long Short Long 

68 103 54 107 55 98 57 105 

71 130 74 101 54 96 60 98 

73 138 72 150* 46 98 61 93 

82 108 47 118 57 109 55 109 

59 116 55 98 59 109 50 105 

64 120 50 118 57 107 70 104 

62 109 65 103 62 105 57 92 

65 112 90 119 68  46 98 

60 117 85 105 72  58 103 

63 110 78 103     

77 117 61 94     

51 118 68 105     

66 121 59 110     

58 112 57 105     

59  65 108     

70  76 121     

72  77 116     

68  72 107     

62  78      

  85      

  56      

 

  77      

Mean  66 117 68 110 57 103 57 101 

SD 7 9 12 12 

 

6 6 6 6 
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Triceps Inhibit ion  

(msec) 

Triceps Excitat ion 

(msec) 

LCL MCL LCL MCL 

Short Long Short Long Short Long Short Long 

81 138 81 118 75 119 74 109 

82 143 70 116 82 116 75 108 

85 135 74 114 74 109 71 114 

73 125 79 108 66 108 62 113 

78 105 73 106 70 112 66  

79 132 71 113 66 99 68  

69 124 68 108 63 108 64  

86 119 71 110  102   

87 131 78 110     

80 123 80 117     

65 108 86 137     

82 109 78 130     

72 105 66 125     

79 104 82 121     

78 123 66      

82 126 82      

80 117       

 

78        

Mean  79 122 75 117 71 109 69 111 

SD 6 12 6 9 

 

7 7 5 3 

 

Table 3.4  
The table shows the latencies of inhibitory and excitatory 
ref lex responses in triceps following electr ical st imulation of 
MCL and LCL. 
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3.3.5. A Comparison of Reflex Latencies after MCL a nd LCL 

Stimulation  

The aim of this section was to investigate if  there is a 

dif ference in ref lex latency after stimulation of the two 

ligaments.  

3.3.5.1. Statistical Analysis 

All statistical analyses were performed using Minitab 14 

(Copyright ©2008 Minitab Inc).  The f irst step in the stat ist ical 

analysis of latencies was to test if  the data were normally 

distributed. Ryan Joiner tests were used for this purpose. If 

the data were normally distr ibuted then summary statist ics 

such as means and standard deviations were calculated. One 

way ANOVA tests were used to search for dif ference. If  

signif icant dif ferences were found post hoc t tests were used 

to search for dif ferences in means.  

3.3.5.2. Short Latency Inhibitions in Quadriceps . 

The f irst comparison was made using the short latency 

inhibit ions in quadriceps. The f irst step in the stat ist ical 

analysis of latencies was to confirm that the data were 

normally distr ibuted. A Ryan Joiner test confirmed that the 

values in tables 3.3 and 3.4 were normally distr ibuted (P>0.1).  

The mean latency of early inhibit ion in quadriceps muscles 

after LCL st imulation was 66 + 7 msec and after MCL 

stimulat ion was 68 + 12 msec. The difference was not 

signif icant when tested with a one way ANOVA. (P=0.451). No 

post hoc t test was needed. 

These data are i l lustrated in f igure 3.9. 
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Figure 3.9 

Panel A shows the short latencies of ref lex inhibit ions in 
quadriceps following stimulat ion of LCL and MCL.   
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). A one way ANOVA showed 
no signif icant dif ferences P=0.451.  
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A similar analysis was performed with the short latency 

excitat ions in quadriceps. The data are summarised in f igure 

3.10. The normality of the distribut ion of data was confirmed 

using a Ryan Joiner test (P>0.1). The mean latency of early 

excitat ion after LCL stimulat ion was 57 + 6 msec and for the 

MCL stimulat ion was not signif icantly dif ferent. A one way 

ANOVA showed no signif icant dif ferences P=0.611. 
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Figure 3.10 

Panel A shows the short latencies of ref lex excitat ions in 
quadriceps following stimulat ion of LCL and MCL.  
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). A one way ANOVA showed 
no signif icant dif ferences P=0.611.  
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Similar data for the ref lexes in tr iceps are shown table 3.4. 

Statist ical tests confirmed that the distr ibutions of latencies of 

inhibit ions and excitat ions were normally distr ibuted (Ryan 

Joiner, P>0.1).The mean latency of early inhibit ion after LCL 

stimulat ion was 79 + 6 msec and for MCL it was 75 + 6 msec.  

A one way ANOVA showed no signif icant dif ferences 

(P=0.113). 

The mean latency of early excitation after LCL stimulat ion was 

71 + 7 msec and for MCL it was 69 + 5 msec. A one way 

ANOVA showed no signif icant dif ferences (P=0.478).  

The latencies of the inhibit ions in triceps are shown in f igure 

3.11 and the excitations are shown in f igures 3.12.   
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Figure 3.11 

Panel A shows short the latencies of ref lex inhibit ions in 
triceps following stimulation of LCL and MCL.  
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). 
A one way ANOVA showed no signif icant dif ferences 
(P=0.113).  
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Figure 3.12 

Panel A shows the short latencies of ref lex excitat ions in 
triceps following stimulation of LCL and MCL.  
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). 
A one way ANOVA showed no signif icant dif ferences (P=0.478 
ANOVA)  
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3.3.5.3. Longer Latency Reflexes 

These analyses were extended to the longer latency inhibit ions 

and excitat ions.  

Statist ical tests showed that the distribut ion of excitation 

latencies was normally distributed (Ryan Joiner, P>0.1) and a 

one way ANOVA showed no signif icant dif ferences (P=0.137). 

The latencies for inhibit ions after LCL stimulat ion were 

normally distributed but those after MCL st imulat ion were not 

normally distr ibuted (Ryan Joiner, P<0.01). Inspect ion of the 

data in table 3.3 shows that there is a single outlying value. It 

is clearly dif ferent from the other values and it l ies almost four 

standard deviations from the mean. It is very unlikely to be 

part of the same distr ibution and is most l ikely a chance 

observation. When the point was omitted, the remaining 

population was normally distr ibuted (Ryan Joiner, P>0.1). 

Tests were performed on the remaining points.  

These data are plotted in f igure 3.13 

The mean latencies for longer inhibit ion responses in 

quadriceps after LCL st imulat ion was 117 + 9 msec and after 

MCL st imulat ion it was 110 + 12 msec for all values and 108 + 

8 msec with the outlying point removed. These values were 

signif icantly dif ferent when tested with an ANOVA (P=0.01). A 

subsequent post hoc t test showed that the means were 

signif icantly dif ferent (P=0.005 unpaired t test).  

The mean latencies for longer excitat ion responses in 

quadriceps after LCL and MCL stimulation were 103 + 6 and 

101 + 6 msec respectively. Statistical tests confirmed that the 

data were normally distr ibuted (Ryan Joiner, P>0.1). 
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A one way ANOVA showed no signif icant dif ferences (P=0.428 

ANOVA). These are shown in f igure 3.14.   

The distr ibutions of the longer latency excitat ions and 

inhibit ions in tr iceps after st imulat ion of MCL and LCL are 

compared in f igures 3.15 and 3.16. Statist ical tests confirmed 

that the distribut ions of latencies of both inhibit ions and 

excitat ions after LCL and MCL st imulation were normally 

distributed (Ryan Joiner, P>0.1).  

The mean latencies for longer latency inhibit ion responses in 

triceps after LCL and MCL stimulation were 122 + 12 and 117 

+ 9 msec respectively. A one way ANOVA showed no 

signif icant dif ferences (P=0.608 ANOVA).  

The mean latencies for longer latency excitation responses in 

triceps after LCL and MCL st imulat ion were 109 +7 and 111 + 

3 msec respectively. A one way ANOVA showed no signif icant 

dif ferences (P=0.218 ANOVA). 
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Figure 3.13  
Panel A shows the distribut ion of longer latency ref lex 
inhibit ions in quadriceps following st imulation of LCL and 
MCL.  
Panel B shows the box and whisker plots of the same data. 
The value of 150 msec in the MCL column lies far from the 
other values. When the data were tested for normali ty, it  was 
found that the population was not normally distributed (Ryan 
Joiner, P<0.01). When this point was omitted the remaining 
population was normally distributed (P>0.1).  

A one way ANOVA showed that the latencies are signif icantly 
dif ferent (P=0.01).  

Unpaired t test P=0.005 
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Figure 3.14 
Panel A shows the distribut ion of longer latency ref lex 
excitat ions in quadriceps following stimulation of LCL and 
MCL.  
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). 
A one way ANOVA showed no signif icant dif ferences (P=0.428 
ANOVA). 
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Figure 3.15 

Panel A shows the distribut ion of longer latency ref lex 
excitat ions in triceps following st imulation of LCL and MCL.  
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). 
A one way ANOVA showed no signif icant dif ferences (P=0.608 
ANOVA). 
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Figure 3.16 

Panel A shows the distribut ion of longer latency ref lex 
inhibit ions in triceps following st imulat ion of LCL and MCL.  
Panel B shows the box and whisker plots of the same data. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). 
A one way ANOVA showed no signif icant dif ferences (P=0.218 
ANOVA).  
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In summary, these results show that the mean latencies of the 

short latency excitations and inhibit ions elicited by st imulation 

LCL and MCL were not statistical ly dif ferent in quadriceps and 

triceps.  

The long latency inhibit ions and excitations in triceps are not 

signif icantly dif ferent after LCL and MCL stimulat ion. The long 

latency excitat ions in quadriceps are not signif icantly dif ferent 

after LCL and MCL stimulat ion. The only signif icant dif ference 

is that after MCL stimulat ion the long latency inhibit ions in 

quadriceps are slower than after LCL stimulat ion.  
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3.3.5.4. The Response Latency of Excitations and 

Inhibitions. 

Since no signif icant dif ferences were found between the mean 

latencies of short latency responses after LCL and MCL 

stimulat ion the data were pooled and then re-plotted to 

examine the relative latencies of the excitat ions and 

inhibit ions. The data for ref lexes observed in quadriceps are 

il lustrated in f igure 3.17 and for triceps in 3.18. Stat ist ical 

tests confirmed that the data were normally distr ibuted for both 

excitat ions and inhibit ions (Ryan Joiner, P>0.1). A one way 

ANOVA showed that there is a signif icant dif ference between 

the latencies of excitat ions and inhibit ions in quadriceps (P = 

0.031). An unpaired t test confirmed a signif icant dif ference in 

means (P=0.016). There was a similar dif ference in the data 

for triceps. An ANOVA showed a signif icant dif ference 

(P=0.02) and an unpaired t test showed a signif icant dif ference 

in means (P=0.01). 

The mean latency of the excitations was 59 msec for 

quadriceps and 71 msec for triceps. The equivalent values for 

the inhibit ions were 66 and 79 msec.  
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Figure 3.17 

This shows a comparison of the distr ibutions of short latency 
excitat ions and inhibit ions in quadriceps after stimulation of 
MCL. 
Statist ical tests confirmed that the data were normally 
distributed (Ryan Joiner, P>0.1). 
A one way ANOVA showed signif icant dif ferences (P = 0.031 
ANOVA, P=0.016 unpaired t test).  
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Figure 3.18 

This shows a comparison of the distr ibutions of short latency 
excitat ions and inhibit ions in triceps after st imulat ion of MCL.   
Statist ical tests confirmed that the data were normally distr ibuted 
(Ryan Joiner, P>0.1). 
A one way ANOVA showed signif icant dif ferences (P= 0.02 
ANOVA, P=0.01 unpaired t test).  
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The longer latency ref lexes were analysed in a similar way and 

the data are plotted in f igures 3.19 and 3.20.  

Statist ical tests had already confirmed that the data for triceps 

latencies were normal as were the longer latency excitations in 

quadriceps. The distr ibution of longer latency inhibit ions was 

corrected by the exclusion of single outlying point.  

A one way ANOVA showed that the mean of the longer latency 

excitat ions and inhibit ions are signif icantly dif ferent in 

quadriceps but not in triceps. The values were (P=0.038 

ANOVA for quadriceps and P=0.244 ANOVA for tr iceps). A 

subsequent t test (P=0.019 unpaired t test) showed that the 

mean latency of excitat ions was shorter in quadriceps. The 

mean latency of excitat ions was also shorter in triceps but this 

was not statistical ly signif icant. 

In both quadriceps and triceps the longer latency excitations 

had shorter latencies than the longer latency inhibit ions. The 

numbers of long latency excitations observed in tr iceps were 

very small (n=4) and this may have compromised the test.  

In conclusion, it is clear that the mean latency for early 

inhibit ions is longer than the mean latency for early 

excitat ions. The dif ference is 9 msec in quadriceps and 8 msec 

in tr iceps. The dif ference was statist ical ly signif icant in 

quadriceps but not in triceps. A similar result  is found when 

the longer latency ref lexes are tested. Again the inhibit ions 

occur signif icantly later than the excitations. 
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Figure 3.19 

This shows a comparison of the distr ibutions of long latency 
excitat ions and inhibit ions in quadriceps after stimulation of MCL.  
The value of 150 msec in the inhibit ion column l ies far from the 
other values. When the data were tested for normali ty, it  was 
found that the population was not normally distributed (Ryan 
Joiner, P<0.01). When this point was omitted the remaining 
population normally distr ibuted (P>0.1). A one way ANOVA 
showed signif icant dif ferences (P=0.038 ANOVA, P=0.019 
unpaired t test). 
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Figure 3.20 

This shows a comparison of the distr ibutions of long latency 
excitat ions and inhibit ions in triceps after st imulat ion of MCL. 
Statist ical tests confirmed that the data were normally distr ibuted 
(Ryan Joiner, P>0.1). 
A one way ANOVA showed no signif icant dif ferences (P=0.244 
ANOVA). 
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3.4.  Discussion  

The main aim of the current experiments was to investigate if  

ref lexes can be elicited by electr ical stimulat ion of the medial 

and lateral collateral knee ligaments. It is clear from the data 

shown in f igures 3.9 to 3.20 that ref lexes can be e l ici ted 

following electr ical stimulation of the MCL and LCL provided 

that the st imulat ion intensity was strong enough i.e. ≥20 

mill iamps. Also the muscles must have developed a sustained 

contract ion. The results in this chapter agree in most respects 

with those of Kim et al (1995). They also found ligamentous 

ref lexes with the shortest latency components start ing between 

69 and 144 msec. One signif icant dif ference is that Kim et al in 

1995 found evidence that the ref lexes following medial 

l igament st imulat ion were strongest in muscles l ike Vastus 

Medialis. The data in this chapter did not support any 

topographical organisation of the ref lexes.  

The next aim of these experiments was to investigate if  these 

ref lexes can be modulated by posture or muscle act ivity. The 

amplitude of the ref lexes was not signif icantly changed. There 

is no evidence to suggest that the ref lexes are changed by 

movement from a seated to the standing posture. 

The f inal aim of the research was to compare the inhibit ion 

and excitat ion latencies in the quadriceps and triceps muscles. 

It can be seen from data in tables 3.3 and 3.4 that ref lexes 

were frequently observed in both muscle groups. Inhibit ions 

tend to be seen more frequently than excitat ions in  both 

groups. Thus st imulation of MCL and LCL seems to el icit  

ref lexes widely in the limb and to affect muscles acting above 

and below the knee. The pattern of the ref lexes from MCL and 

LCL was similar.  
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When the distributions of short latency excitations and 

inhibit ions were compared, it was found that there were no 

signif icant dif ferences between the ref lexes el ici ted by LCL 

and MCL st imulation. There is no evidence of topographical 

organisat ion of l igamento-muscular ref lexes in terms of 

dif ferences in latencies of response. 

 

The short latency excitatory ref lexes were consistently quicker 

than short latency inhibitory ref lexes. This was seen in both 

quadriceps and triceps after stimulation of MCL and LCL. One 

possibil ity is that the excitat ions and inhibit ions are associated 

with dif ferent populations of afferents. The afferent pathway 

length must be the same for both and so we might speculate 

that the afferents which mediate excitat ions have higher 

conduction velocit ies. Alternatively, the inhibit ions could be 

the result of a longer of more complex spinal pathway. There 

is no experimental evidence here to suggest which of these 

possibil it ies is more important. There was certainly so sign 

that two groups of afferents could be separated by st imulation 

thresholds.  

  

The mean latency for the earliest ref lexes was consistently 

shorter in quadriceps than it was in triceps. Tables 3.3 and 3.4 

show the earl iest inhibit ions are 66 msec for LCL, 68 msec for 

MCL and for excitations both LCL and MCL are 57 msec in 

quadriceps. The equivalent values in triceps are 79, 75 and 71 

and 69 msec respectively.  

 

The afferent delay will be identical for these ref lexes and the 

later responses in triceps can be largely explained by the 

longer efferent distance. There is l it t le evidence to support the 

suggestion of a more complex organisation of postural ref lexes 

of the sort investigated by Nashner in 1977. In his experiments 

rapid joint rotations elicited the shortest latency response in 
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the most distal muscles tested. He interpreted these data to 

show delays in the central pathways that maintained posture 

by stabil ising the ankle f irst, then the knee then the trunk. 

These muscle stretch ref lex systems seem distinct f rom 

ligament ref lexes. 
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Chapter 4 

Control Experiments to Investigate the Possible 

Contribution of Cutaneous Afferents 

4.1. Introduction  

The data shown in the previous chapter i l lustrate that i t is 

possible to elicit ref lexes fol lowing electrical st imulat ion of 

the col lateral knee ligaments. These ref lexes are associated 

with relatively intense st imulat ion, typical ly above 20 

mill iamps. These currents are well  above the perceptual 

thresholds for cutaneous sensation and it is sensible to ask: 

do the ref lexes come from ligament mechanoreceptors or 

possibly from cutaneous receptors?  

There is an extensive l iterature describing cutaneo-muscular 

ref lexes in normal individuals and in pathological cases. To 

take a few examples: Jenner and Stephens (1982) elicited 

cutaneo-muscular ref lexes in thirty-six healthy volunteers. 

Reflexes were recorded in the averaged EMG from the First 

Dorsal Interosseous and Extensor Digitorum Brevis muscles 

following electrical stimulat ion of the digital nerves of the 

index f inger and second toe respectively. The ref lex 

responses were triphasic: an init ial short latency excitation 

(E1) was followed by an inhibit ion (I1) and f inally a long 

latency excitation (E2). The ref lex latencies were 34 msec 

for E1, 40-45 msec for I1 and 65 msec for E2. A similar 

triphasic pattern was seen in Extensor Digitorum Brevis. The 

latencies were longer, 51 msec for E1, 60 msec for I1 and 81 

msec for E2, probably as a result of  the longer conduction 

distances. 
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Becker, Hayashi, Lee and White (1987) attempted to elicit  

cutaneo-muscular ref lexes in Flexor Carpi Radial is and 

Extensor Carpi Radial is by stimulation of digital nerves. 

They could el icit ref lexes with a pattern similar to those 

described earl ier when they stimulated at 2-3 times the 

perceptual threshold. The ref lex latencies were 38.5 + 5.3 

msec for early inhibit ion and 54.2 + 3.3 msec for late 

inhibit ion. The early excitation latency was 30 msec and the 

longer excitat ion latency was 60 msec.  

The next invest igation of cutaneo-muscular ref lexes 

examined the effects in the lower l imb. Gibbs et al (1995) 

succeeded in elicit ing ref lexes in Extensor Digitorum Brevis, 

Tibial is Anterior, Soleus, Quadriceps Femoris and Erector 

Spinae in ten healthy subjects. The responses were 

recorded following electrical st imulation of the digital nerves 

of the second toe. Again polyphasic ref lexes were found with 

an init ial excitation, followed by inhibit ion and followed by a 

second excitation. The ref lex latencies ranged between 43-

78 msec for early excitat ion, 48-81 msec for inhibit ion and 

60-103 msec for late excitat ion.  

Bagheri and Baxendale (1995) found similar results in lower 

l imb muscles of 62 healthy volunteers. They elicited 

cutaneo-muscular ref lexes in Tibial is Anterior,  

Gastrocnemius, Quadriceps, Hamstring and Abductor 

Hallucis muscles following electr ical stimulat ion at three 

times perceptual threshold of the skin of: the hallux, the 

heel, the lateral border of the foot, the plantar surface of the 

foot and the shank. The pattern of the ref lexes in Bagheri 's 

work is similar to those in the earl ier papers.  

The earliest studies of cutaneomuscular ref lexes during 

walking were conducted in cats (Duysens and Stein (1978), 
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Grillner and Rossignol (1978), Forssberg (1979), Duysens 

and Loeb (1980), Abraham, Marks and Loeb (1985)). 

Subsequently, very similar procedures were used in human 

volunteers. Duysens, Tax, Murrer and Dietz (1996) conducted 

a similar invest igation of cutaneo-muscular ref lexes in 

Semitendinosus, Biceps Femoris, Rectus Femoris and 

Tibial is Anterior. They el icited ref lexes after low-intensity 

stimulat ion from 10 volunteers during walking on treadmill.  

The stimulation electrodes were posit ioned on the left leg on 

the mid point of muscle between the external malleolus and 

the Achilles tendon. The ref lex latencies they observed were 

between 70 to 80 msec. Crenna and Frigo (1987) and 

Belanger and Patla (1987) st imulated cutaneous afferents of 

the human foot and they el icited ref lexes with medium 

latency within the step cycle during walking.  

In summary, cutaneo-muscular ref lexes can be el icited with 

relat ively low intensity st imulat ion of some areas of skin or 

digital nerves. The immediate aim of the experiments 

reported here is to compare the ref lexes elicited by 

stimulat ion over the LCL before and after cutaneous 

anaesthesia.  

4.2. Materials and Methods 

4.2.1. Subjects 

The FBLS Ethics Committee for Non-Clinical Research 

Involving Human Subjects approved the experimental 

protocols. Al l subjects gave informed consent and they were 

free to withdraw from the test at any stage.  

The f ive volunteers who part icipated in these experiments 

had already part icipated in those experiments descr ibed in 
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chapter 3. Thus the characteristics of their ref lexes were 

already known. The subjects were invited to give separate 

consent for this second experiment. 

4.2.2. Experiment Procedure 

The experimental protocol described in chapter 3 was 

repeated to establish the presence of a ref lex in Vastus 

Lateral is, Rectus Femoris and Lateral Gastrocnemius.  

The 5% anaesthetic cream containing a mixture of l idocaine 

and pri locaine at 25mill igrams/gram (Emla, AstraZeneca UK 

Limited) was applied to the area. After 20 to 30 minutes, the 

cutaneous sensation was tested by pricking the area with a 

sharp pin or l ight brushing. If  the sensation persisted, the 

Emla cream was reapplied and then the sensation was re-

tested after a further 5 or 10 minutes. This process was 

repeated unti l the cutaneous sensation was abolished.  

When the cutaneous anaesthesia had been achieved as 

assessed by repeating the pin prick and light touch tests, the 

stimulat ing electrodes were re-applied. The minimum current 

needed to elicit barely perceptible sensations was not 

reassessed. The stimulation over the ligament was repeated 

at the intensity which had formerly elicited ref lexes was 

repeated and where possible higher intensit ies were also 

used. 

4.3. Results 

The minimum current needed to elicit a sensation was 

measured several t imes in each volunteer. This perceptual 

threshold current ranged between 0.85 and 1.2 mill iamps in 
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the f ive volunteers. It was consistent in any one volunteer. 

The results for all 5 volunteers are summarised in table 4.1.  

Stimulation at perceptual threshold did not elicit any ref lexes 

in the volunteers. An example is shown in f igure 4.1. The left 

panel shows the averaged electromyogram following 

stimulat ion at the perceptual threshold. No change is seen. 

The right panel shows the same volunteer when the 

stimulat ion current has been increased to 25 mill iamps. A 

clear ref lex can now be observed. The same pattern 

occurred in al l f ive volunteers (see table 4.2). 

The volunteers did not report any sensation when the 

perceptual st imulat ion was repeated after the applicat ion of 

the Emla cream. The maximum tolerated current increased 

by up to three times after application of Emla. These 

observations support the hypothesis that the perceptual 

threshold is determined by low threshold cutaneous afferent 

which can be si lenced by topical anaesthesia. It also 

suggests that the tolerance for current is l imited by 

cutaneous nociceptors. 

The data in table 4.1 also shows that the minimum current 

needed to produce ligamento-muscular ref lexes is at least 

18 times greater than that needed to evoke a perception of 

stimulat ion. 
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Subjects Perceptual 
Threshold 

(mil l iamps) 

Minimum Stimulat ion 
Current needed to elicit 

a ref lex (mil l iamps) 
 

1 0.85 20 

2 1.1 20 

3 1.2 25 

4 0.95 20 

5 0.90 25 

 
Table 4.1  
The table shows the minimum stimulat ion current needed 
to elicit a barely perceptible sensation (perceptual 
threshold) in dif ferent subjects. None of the volunteers 
showed any ref lexes when st imulated with perceptual 
threshold currents. Reflexes could be elicited by 
increasing the intensity of st imulation. The minimum 
current needed to produce l igamento-muscular ref lexes 
was at least 18 t imes greater than that needed to evoke a 
perception of st imulation. 

It should be noted that however, the minimum stimulation 
current needed to elicit a ref lex was 20 mill iamps. As 
shown in table 3.2, of the 5 subjects who limited the 
stimulat ion current to 20 mil l iamps, 3 showed ref lexes and 
two did not. (See table 3.2 subjects 1 and 5). 
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Figure 4.1  
The left trace shows the rectif ied averaged EMG in RF after 
stimulat ion at perceptual threshold, in this case 0.90 mill iamps. 
The vert ical axis shows the EMG in volts. The horizontal axis is 
t ime in seconds. 
No signs of any ref lex can be seen.  
The right trace shows data from the same volunteer after the 
intensity of stimulation had been increased to 25 mil l iamps. 
Signif icant excitation and inhibit ion ref lexes are now clear.  
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Subjects Maximum Current 

before Emla 

(mil l iamps) 

Maximum Current 

after Emla 

(mil l iamps) 

a 20 30 

b 20 35 

c 25 30 

d 25 40 

e 35 45 

 

Table 4.2 
The table shows maximum current tolerated before and after 
topical anaesthesia. The volunteers had dif ferent tolerances 
for maximum current. The current was always greater after 
anaesthesia. 
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The experimental protocol repeated the stimulat ion intensity 

needed to elicit a ref lex after the application of Emla. 

Specimen recordings are shown in f igures 4.2 and 4.3. The 

upper panel of f igure 4.2 shows a short latency excitatory 

ref lex in Lateral Gastrocnemius el icited at 58 msec after 

stimulat ion. The lower panel shows recordings from the 

same volunteer with the same st imulus protocol repeated 

after topical anaesthesia of the skin under the st imulating 

electrodes. The ref lexes have a very similar form. 

The data in f igure 4.3 show that the increased st imulation 

current, which can be tolerated after topical anaesthesia, 

has increased the amplitude of the observed ref lex. In the 

upper panel before the application of Emla, a ref lex cannot 

be seen. The signal does cross the upper confidence interval 

but its t ime outside the confidence interval is too short to 

characterise the event as a ref lex. After topical anaesthesia 

the current rose to 30 mill iamps and the more intense 

stimulat ion elicited a clear ref lex is seen to start after a 

latency of 77msec. The signal is above the confidence 

interval for 8 msec. 

In some experiments, after l igamento-muscular ref lexes had 

been elicited by stimulation over the LCL, the stimulating 

electrodes were removed and placed elsewhere on the leg. 

They were posit ioned over the patella and the tibia at sites 

where no muscle contraction could be el ici ted when the 

stimulus was repeated. When the stimulation protocol was 

repeated at these sites, no ref lexes were el icited.  
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Figure 4.2 
The upper trace shows a short latency ref lex excitat ion in 
LG with a latency of 58 msec following stimulat ion of LCL. 
The stimulation current was 25 mill iamps.  
The lower trace shows result of the experiment repeated 
after topical anaesthesia of the skin at the stimulat ion site. 
The ref lexes are essential ly unchanged. 
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Figure 4.3 
These traces show rect if ied averaged EMG in the RF 
following stimulat ion of LCL. Both recordings were made 
in a volunteer before and after the cutaneous anaesthesia 
of the skin under the stimulat ion electrodes.  
The upper trace, before topical anaesthesia, shows no 
signs of a signif icant ref lex when stimulated at 20 
mill iamps. The lower trace, after topical anaesthesia, 
shows the stimulation repeated at a higher intensity (30 
mill iamps). The result was an excitat ion ref lex with a 
latency of 77 msec with duration of 8msec.  
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4.4. Discussion 

The immediate aim of these experiments was to compare 

ref lexes elicited by stimulation over the LCL before and after 

cutaneous anaesthesia. It is clear that ref lexes can be 

elicited by st imulation of the l igaments after cutaneous 

anaesthesia. This can be seen in f igures 4.2 and 4.3. A 

second interest ing observation is that the volunteer’s 

tolerance of high intensity st imulation is increased by the 

topical anaesthesia immediately underneath the site of 

stimulat ion. This can be seen in the data in table 4.2.  

These observations address the question of the nature of the 

afferents which give rise to the ref lexes observed in 

chapters 3 and 4. The stimulation in all these experiments 

clearly excites cutaneous afferents under the electrodes. 

However, st imulation at perceptual threshold never elicited 

any ref lexes. An example of this is shown in f igure 4.1. This 

observation was originally made by Bagheri and Baxendale 

(1995). Cutaneo-muscular ref lexes could be elicited in their 

experiments when the stimulat ion was increased to three 

times perceptual threshold. However, in those exper iments 

ref lexes from the skin covering the lower part of the limb 

below the knee and the foot were examined. Gibbs et al 

(1995) could also elici t cutaneo-muscular ref lexes by 

stimulat ion of the digital nerve of the second toe at 2 t imes 

the perceptual threshold. Becker et al (1987) stimulated the 

second, third and fourth digits while maintaining a steady 

contract ion of the wrist f lexors. They could el icit  short 

latency inhibit ion ref lexes at 2-3 times the perceptual 

threshold.  

Willer, Boureau and Albe-Fessard (1978) performed a 

detailed electrophysiological study of the role of cutaneous 
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afferent groups in the development of nociceptive ref lexes in 

humans. Their experiment allowed good control of the 

stimulat ion of the sural nerve and they were able to record 

the sensory evoked potentials and ref lex excitations in 

Biceps Femoris. They described this as an RIII ref lex. It is 

clear in their experiment, and likely in these experiments, 

that cutaneous A-delta f ibres were stimulated. Their stimulus 

conditions fell in the range of 4-6 shocks of 0.1–0.5 msec 

duration at 100 Hz and intensit ies up to 40 mill iamps and so 

their condit ions were very close to those used in the 

experiments described in this thesis. However, there are 

also very signif icant dif ferences. First ly, the results shown in 

this chapter suggest that cutaneous afferents play l itt le part 

in the observed ref lexes. Secondly, the RIII ref lexes are 

associated with nociception and are particularly clear when 4 

or more pulses are delivered in the train. The latency of the 

RIII ref lexes is over 100 msec in Biceps. The shorter latency 

ref lexes described in this thesis have latencies of  less than 

100 msec in latency; the shortest latency observed was 46 

msec.  In addition, the ref lexes reported here are often 

excitat ions in extensors, see f igures 4.2 and 4.3, rather than 

excitat ions in f lexors.  Lastly, the short latency ref lexes are 

only observed when stimulation is applied to skin over the 

LCL or MCL and are not observed when identical stimulation 

is applied to other adjacent areas of skin. It seems unlikely 

that the observed short latency ref lexes are RIII ref lexes.  

In summary, st imulation of the lowest threshold cutaneous 

receptors does not elicit  ref lexes. Stimulat ion of higher 

threshold cutaneous receptors can elicit ref lexes as 

described by Willer et al (1978). However, in this study 

topical cutaneous anaesthesia does not alter the ref lexes 

elicited by intense stimulation over the lateral co llateral 

l igaments. The st imulation used in these experiments is 20 
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to 25 times greater than perceptual threshold. Stimulat ion at 

lower intensit ies, say 10 times perceptual threshold, did not 

elicit l igamentous ref lexes. Thus, currents far greater than 

that used by previous studies to investigate cutaneous 

ref lexes failed to init iate ref lexes and so it  can be concluded 

that there is no signif icant cutaneo-muscular ref lex 

contribution to the observed ref lexes.  

After applying the topical anaesthetic cream the volunteers 

reported decreased touch and pinprick sensations and 

increased tolerance of stimulus intensity. This is i l lustrated 

in table 4.2. It appears that the unpleasant sensat ions 

associated with intense stimulation have a cutaneous 

component but these sensations are dist inct and do not 

contribute to the observed ref lexes.  

Because the site of electrical st imulation was over the 

collateral knee ligaments and not near any muscle i t  was 

improbable that muscle spindle sensory afferents played any 

role in the responses recorded. Toft, Sinkjaer, Anderassen 

and Larsen (1991) showed that muscle afferent responses 

are much shorter latency than the ref lexes observed in this 

study. They found typical latencies of 40 msec for responses 

after muscle afferent stimulat ion whereas those in chapter 3 

are in the range of 46 to 150 msec as shown in table 3.3.  

In addit ion, no muscle twitches or H ref lexes were ever 

observed in the averaged electromyogram during 

experiments. If  the stimulus current had spread to excite 

muscle afferents or low threshold motor axons, there would 

have been short latency synchronised act ivity in the 

electromyogram. These M response or H ref lexes are 

typically much larger than the observed ref lexes.  
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There is one f inal other possible afferent contribution to the 

observed ref lexes; there could be act ivat ion of capsular joint 

receptors. Their ref lex actions were discussed in chapter 1 

section 1.6. Indeed, during experiments in experimental 

animals it is often dif f icult to be certain of the exact location 

of receptors in l igaments, tendons or the capsule even when 

the structure are exposed and can be activated by d irect 

pressure or stretch (Baxendale, personal communicat ion). It  

wi l l be even harder to be sure that activat ion is confined to 

the ligament receptors when electr ical st imulation is used 

because of uncertainties about the precise current path. It 

should be noted that ref lexes were not observed when the 

stimulat ing electrodes were moved from the skin over the 

ligaments to adjacent areas even though they would sti l l  

have been over the capsule.  

The f inal conclusion which can be drawn from the 

experiments in this chapter is that the ref lexes identif ied as 

ligamento-muscular in chapters 3 and 4 did not come from 

the skin or muscle afferents, but that they can be 

provisionally attr ibuted to afferents in the ligaments with a 

possible contribut ion from capsular joint afferents. For 

clarity and convenience they wil l be described as ‘ l igamento-

muscular’ ref lexes for the remainder of this thesis.  
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Chapter 5 

Reflexes Elicited after Lateral Knee Ligament 

Stimulation during Walking 

5.1. Introduction and Literature Review 

Electrophysiological recording techniques capable of 

invest igating responses during locomotion were developed and 

demonstrated f irst in cats by Engberg and Lundberg (1969). 

Their techniques can be slightly modif ied and used to analyse 

ref lex contribut ions to human locomotion. 

There are clearly some common features shared between the 

underlying neuronal mechanisms which control quadripedal 

locomotion in cats and those act ive during bipedal gait in 

humans. However, there are dist inct dif ferences between 

locomotion in cats and humans (Forssberg, Gri l lner and 

Rossignol (1975), Forssberg and Nashner (1982), Armstrong 

(1988)).  

5.2. Human Gait Cycle  

Repetit ive features occurring during each gait cycle can be 

used to characterise human gait. A gait cycle is def ined as the 

time interval between two successive occurrences of  one of 

the repetit ive events during walking. The instant of heel strike 

is often used to identify the init ial event of gait  cycle. The 

cycle is divided into stance and swing phases. The former 

(stance) is the period when the foot is in contact with the 

ground and it accounts for about 60% of the cycle. The latter 

phase (swing) is the period that the foot is moving forward in 

the air and it  accounts for about 40% (Whitt le 1996). However, 

the relat ive durat ions vary with the speed of walking and the 
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swing phase becomes proport ionately longer as the speed of 

walking increases (Murray 1967).  

The stance phase can be divided into 4 sub-phases (Rose and 

Gamble, 1994): 

1. Loading response: starts from heel strike until the time 

when the other foot is l if ted from the f loor (toe-off  of the 

opposite foot). 

2. Midstance: starts from the toe off  of the opposite foot 

until the body is posit ioned direct ly over the stance foot. 

3. Terminal stance: starts from the end of midstance unti l 

the heel strike of the opposite foot. 

4. Pre-swing: starts from the heel strike of the opposite foot 

until the foot is l if ted from the f loor. 

Dif ferent parts of stance phase are shown in f igure 5.1 

5.3. Reflex Modulation during the Gait Cycle 

The Hoffmann ref lex (H-ref lex) is perhaps the most extensively 

studied ref lex in the literature on human and mammalian 

neurophysiology (Misiaszek, 2003). The H-ref lex can be 

elicited in dif ferent muscles (Day, Marsden, Obeso and 

Rothwell (1984), Dietz, Faist and Pierrot-Deseill igny (1990)).  

In humans, the Soleus H-ref lex amplitude is deeply modulated 

during locomotion (Capaday and Stein 1986). These authors 

also confirmed that the amplitude of the H-ref lex in Soleus 

during walking is lower than standing at the same level of 

muscle activity. Similar observations have been made on the 

H-ref lex in Tibial is Anterior (Schneider, Lavoie and Capaday 

2000). 
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Figure 5.1 
The f igure shows stance and swing phase of the gait  cycle. The 
stance phase is the period when the foot is in contact with the 
ground covering about 60% of the gait  cycle and the latter phase 
is the period that the foot is moving forward in the air covering 
about 40%. 
Figure is from Sutherland, Olshen, Biden and Wyatt (1988) The 
Development of Mature Walking, Cambridge University Press. 
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5.3.1.Ib Reflexes during Locomotion in Humans 

The Golgi tendon organ afferents from extensor muscles are 

an important source of the posit ive force feedback signals 

during the stance phase of gait cycle (Pratt 1995).  Many 

studies have demonstrated the role of Ib afferents during rest 

and locomotion in cats and humans (Nichols and Houk (1976), 

Conway et al (1987), Yang et al (1991), Pearson and Collins 

(1993), Sinkjaer et al (1999)). It  has been argued that the Ib 

afferents affect both stat ic and locomotion posit ions. In several 

subsequent studies, it became clear that Ib afferent activity 

has a posit ive feedback effect during the locomotion situation 

(Conway et al (1987), Pratt (1995), Prochazka et al  (1997b), 

Pearson et al (1998), McCrea (1998), Stephens and Yang 

(1999)). 

Muscle afferent ref lexes can be modulated during gait and it  

remains an open question if  the l igamentous ref lexes can be 

modulated in a similar way. One might speculate that since 

ligaments play an important role in force transmission through 

the limb and that the ligament innervation may be important in 

protect ing joints for force overload, the ligamentous ref lexes 

may be more prominent during gait. The aim of the 

experiments performed in this the section was to investigate 

the effects of l igament stimulat ion during normal walking on a 

treadmil l. 
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5.4. Materials and Methods 

5.4.1. Subjects 

Thirteen healthy subjects (4 women, 9 men), without any 

history of injury, participated in this experiment.  The age range 

of the volunteers was from 21 to 45 years. The FBLS Research 

Ethics Committee approved the experiment. Al l subjects had 

given informed consent and they were free to withdraw from 

the test at any stage. 

5.4.2. Experimental Procedure 

The site of the electrodes was shaved then cleaned by alcohol 

wipe. Stimulat ion electrodes were placed over the lateral 

collateral knee ligament. EMG recording electrodes were 

posit ioned over the Vastus Lateral is and lateral head of the 

Gastrocnemius muscles of the left leg of the subjects. The 

volunteers walked on the treadmill for periods of one minute at 

4 kmph. Figure 5.2 shows the equipment. Before each 

experimental run, during relaxation, the perceptual threshold 

was determined for each subject. The experiment started with 

the lowest current and on subsequent runs the current was 

increased. An electrode gel was used under the electrodes to 

decrease the contact resistance. 

Figure 5.3 shows the volunteer during the experiment. 

5.4.3. Electrical Stimulation 

The electrical stimulation equipment was the same for all of 

the experiments. The electr ical st imulation procedure has been 

explained on chapter 2. 
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Figurer 5.2 

The f igure shows the equipment used in the experiment.  
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Figure 5.3  
The f igure shows a volunteer during walking on treadmill.  The 
apparatus is described in chapter 2 section 2.3.1 and f igure 5.3.  

 



    

  108 

 

 

5.4.4. Triggering the Stimulation on Heel strike 

A small pressure switch (1cm×2cm) was located on the heel of 

the sole of the volunteer's left shoe. The switch was secured in 

place by strong adhesive tape. The posit ion of the heel switch 

was selected to close at heel str ike when the foot makes 

contact with the f loor. This identif ied the start of the stance 

phase of the gait cycle.  

Closure of the switch provided a trigger for the st imulation 

circuit . The output of the DS7A could be delayed by f ixed 

periods between 0 and 400 msec after heel strike by a 

Neurolog NL-403 delay-width module. The switch closure also 

provided a synchronisation signal for the 1401. The time of 

heel str ike and the time of stimulation was stored as an event 

channel and recorded in the computer along with the EMG 

recordings. These were subsequently used to tr igger peri-

stimulus averages of the EMG recording. 

5.4.5. Electromyography Recordings 

Surface EMGs were recorded from Vastus Lateral is and 

Lateral Gastrocnemus muscles. The process of the EMG 

recording was the same in the three experiments and has been 

explained in chapter 2 section 2.3.1. The EMG was recorded 

by the Spike 2 system. The EMG was rect if ied and averaged. 

The data were exported as text f i les from Spike 2 and 

transferred to Excel spreadsheets for further analysis.   

Figure 5.4. shows a sample of raw EMG from Vastus Lateral is 

and Lateral Gastrocnemius muscles recorded during walking.  
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Figure 5.4  
A sample of raw data of EMG activity from a volunteer recorded 
during walking.  
The upper trace shows the trigger signals derived f rom the heel 
switch at heel strike. The middle and the lower traces are EMG 
recordings from VL and LG muscles, which were recorded 
simultaneously. 
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 5.5. Results 

Thirteen volunteers participated in these experiments. Ten of 

the volunteers had already part icipated in the experiments 

detailed in chapter 3 and so the characterist ics of  their 

‘ l igamento-muscular’ ref lexes were well known. The three 

novice volunteers all had clear ‘ l igamento-muscular’ ref lexes 

during walking.  

In total, ‘ l igamento-muscular’ ref lexes were observed in eleven 

of the thirteen volunteers. All  of these volunteers were able to 

tolerate st imulus currents of about 20 mill iamps and so the 

failure to record ref lexes in two volunteers cannot be attr ibuted 

to inadequate st imulation. The major diff iculty in these cases 

lay in the variabi l ity of the gait  cycles even though the 

volunteers walked at the same average speed. The averaged 

EMG records did not al low unambiguous identif ication of any 

peri-st imulus changes. The ref lex could be elicited at the very 

end of the swing phase and reached its peak shortly after heel 

str ike. The period from midstance to terminal swing phase was 

absolutely aref lexic.  

Eleven out of thirteen of the volunteers had a ref lex in one 

muscle or in both Vastus Lateralis and Lateral Gastrocnemius.  

5.5.1. Ligamento-muscular Reflexes in Vastus Latera lis.  

Figure 5.5 shows averaged EMG recordings from Vastus 

Lateral is in one of the volunteers during walking. The right 

panel (B) shows the EMG during walking without st imulation. 

The EMG prof ile is exactly as expected from classical gait 

studies. The EMG begins to rise before heel strike, shown as 0 

msec. It reaches a peak at 150 msec before heel str ike and 

then falls silent at 250 msec after heel str ike. There is a 
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second wave of EMG about 700 msec after heel str ike. The 

other panel in this f igure (A) shows the similar recordings 

made during walking at the same speed but with the l igament 

stimulat ion applied at zero msec after heel str ike. The EMG 

waves start and stop at very similar points on the gait  cycle. 

However, it  is obvious that the large stimulation artefacts 

occur during the main period of EMG activity. It is  not clear by 

simple visual inspection of these recordings if  any ref lex is 

elicited. In the examples shown earl ier in chapters 3 and 4, i t 

is easy to identify ref lexes because confidence intervals can 

be calculated from the pre-stimulus period and then 

extrapolated. Reflexes are identif ied when they cross these 

confidence intervals. It is clear that EMG changes during gait  

and so it is not sensible to calculate a mean EMG and 

confidence intervals. No clear examples of ref lexes were seen 

by simple visual inspection. The natural variabi l ity in the step-

by-step EMG probably obscured any ref lexes.  

A new approach was adopted to search for ref lexes. This is 

i l lustrated in f igure 5.6. The f igure shows subtract ion result  

from Vastus Lateralis. Panels A and B show the averaged EMG 

with and without l igament st imulat ion. Again, there are no 

obvious ref lexes in the averaged EMG. Panel C shows the 

dif ference in these two signals. The two recordings were 

synchronised by the heel strikes and the averaged EMG 

signals were subtracted. When the two signals are s imilar the 

dif ference signal is close to zero. This is obvious from about 

300 msec to just about heel strike. The signal clearly identif ies 

the artefact as a very large deviation. The difference signal 

returns to near zero by about 75 msec and this is fol lowed by a 

second deviat ion at about 85 msec before the signal returns to 

close to zero where it stays unti l the end of the recording. 

Thus the two EMG signals dif fer at the time of the stimulus 

artefact and about 66 msec later the second deviat ion occurs  
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Figure 5.5 
The f igure shows rectif ied averaged EMG recordings from VL in 
one of the volunteers during walking. The vert ical axis shows the 
EMG in volts. The horizontal axis is t ime. 
The averaged EMG data on the left shows walking with 
stimulat ion applied at heel strike indicated as 0 msec. The large 
stimulat ion artefact is clear. The data on the right shows the 
averaged EMG of the same volunteer walking at the same speed 
without stimulation. 
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A B 

C  

Figure 5.6 
The f igure shows result of EMG subtraction for VL. The upper 
traces (panel A and B) show the rect if ied averaged EMG with (A) 
and without (B) st imulation of LCL. The vert ical axis is the EMG 
in volts. In panel B, EMG begins to rise before heel str ike, shown 
as 0 msec. It reaches a peak at 80 msec after heel strike and 
then falls silent by 200 msec after heel strike. There is a second 
wave of EMG about 500 msec after str ike. The panel A shows the 
similar recordings made during walking at the same speed but 
with the l igament st imulation applied at 0 msec after heel str ike. 
The EMG waves start and stop at very similar points on the gait 
cycle. Panel C shows the dif ference in these two signals. The 
vert ical axis shows the EMG in volts. The horizontal axis is t ime 
The difference signal is close to 0 up to 100 msec before heel 
str ike. The large negative dif ference between 0 and 0.05 sec is 
due to the artefacts. The difference returns to zero before a 
sharp negative dif ference, indicat ing a ref lex excitat ion is seen 
about 66 msec after st imulat ion.  
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at just the expected latency of the excitat ion ‘ l igamento-

muscular’ ref lexes observed in chapter 3 table 3.3 and table 

3.4.  

Figure 5.7.shows a second example of a clear dif ference in the 

two EMG signals in Vastus Lateralis. In this case the 

stimulat ion was delivered at heel str ike and the artefact 

causes a sharp change in the dif ference signal at t ime zero. 

This returns to zero and is fol lowed by two short periods of 

posit ive dif ference and then a longer last ing negat ive 

dif ference about 74 msec after the stimulat ion artefact. The 

dif ference then returns close to zero for the later part of the 

step cycle. 
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Figure 5.7  
The f igure shows dif ference between rectif ied averaged EMG 
recorded from VL during gait with and without stimulation. The 
vert ical axis is volts.  
Heel str ike occurs at 0 msec. The dif ferences are small during 
the 300 msec before heel strike. There is a big dif ference during 
the stimulat ion artefact. Short lasting posit ive dif ferences are 
seen between 60 and 71 msec before a larger longer last ing 
negative dif ference also occurs after 74 msec after heel strike.  
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In two of the volunteers no ‘l igamento-muscular’ ref lexes could 

be detected in the EMG dif ference signal. Figure 5.8 shows an 

example of this. The EMG shown was recorded from Vastus 

Lateral is. In this case the stimulat ion was delivered with a 50 

msec delay after heel strike. The f igure shows the small 

dif ferences in EMG unti l the time of the artefact. The 

dif ference also stays small and close to zero in the period 

after the artefact suggesting that the EMG prof ile is almost 

identical in the st imulation and no stimulat ion walking i.e. 

there is no dif ference due to any ‘l igamento-muscular’ ref lex in 

the period 50 to 150 msec after stimulation.  

Table 5.1 shows the latencies of excitat ions and inhibit ions 

detected using the EMG dif ference method. The recordings 

were made in VL and the LCL was stimulated. Ryan Joiner 

tests showed that both sets of data were normally d istr ibuted. 

ANOVA and a post hoc t test confirmed that the latencies of 

excitat ions were signif icantly shorter than inhibit ions (P>0.1, 

ANOVA P=0.001, t test P=0.0002). The latencies of excitations 

were also shorter when the volunteers were sitt ing or standing. 

See tables 3.3 and 3.4. However, the latencies during walking 

are signif icantly longer that those recorded in chapter 3. The 

mean latency for excitat ions in VL after LCL stimulation was 

57 + 6 msec when sitt ing and 71 + 5 msec during walking. 

ANOVA tests calculate P= 0.008. The mean latency for 

inhibit ions in VL following LCL st imulation was 66 + 7 msec 

when sitt ing and 87 + 1 msec during walking. ANOVA tests 

calculate P<0.001.  
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Figure 5.8  
A sample of EMG dif ferences from VL showing no indication of 
‘ l igamento-muscular’ ref lex during walking. The vertical axis 
shows the EMG in volts. The horizontal axis is t ime. 
In this case the stimulation is delayed to 50 msec after heel 
str ike. The dif ference in EMG signals before the st imulat ion is 
close to zero unti l just before heelstrike. The stimulation 
artefacts are clear between 50 msec and 80 msec. The 
dif ference signal stays close to zero for the rest of the record.  
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VL Latency (msec) 

Excitation Inhibit ion 

66 85 

69 87 

69 87 

74 88 

 

78   

Mean 71 87 

SD 5 1 

 
Table 5.1  
This shows the latencies of excitations and inhibit ions 
detected using the EMG dif ference method. The recordings 
were made in VL and the LCL was st imulated. Both sets of 
data were normally distributed. ANOVA and a post hoc t test 
confirmed that the latencies of excitations were signif icantly 
shorter than inhibit ions (Ryan Joiner P>0.1, ANOVA P=0.001, t 
test P=0.0002).  
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5.5.2. ‘Ligamento-muscular’  Reflexes in Lateral 
Gastrocnemius 

Similar methods were used to investigate the Lateral 

Gastrocnemius EMG for signs of ‘ l igamento-muscular’ ref lexes 

elicited by l igament stimulat ion. The recordings of  Lateral 

Gastrocnemius EMG were made concurrently with the 

recordings of Vastus Lateralis shown earl ier in this chapter.  

Figure 5.9 shows the averaged rectif ied integrated EMG 

recorded from Lateral Gastrocnemius during walking. The right 

panel B shows the EMG during walking without st imulation. 

There is a low level of EMG activity which begins before heel 

str ike. The main peak of activity starts at about 250 msec after 

heel str ike. It reaches a peak at about 400 msec and then falls 

silent by 600 msec after heel str ike. Panel A in th is f igure 

shows similar recordings made during walking at the same 

speed but with l igament stimulat ion applied at 350 msec after 

heel str ike. The EMG waves start and stop at very s imilar 

points on the gait cycle.  

Panel C shows the EMG dif ference signals when the st imulus 

is del ivered 350 msec after heel strike. Before heel strike 

there is no sign of a signif icant dif ference in the EMG. The two 

signals dif fer substantial ly just after heel str ike and so i t can 

be concluded that the gait cycles are not entirely similar at this 

t ime. However, the signal returns to close to zero between 250 

and 350 msec after heel strike. This is just before the delivery 

of the stimulation at 350 msec. After a delay of 100 msec, a 

sharp inhibit ion ref lex started. There is a clear dif ference in 

the EMG showing that the EMG is bigger after st imulation than 

it is the control condition.  
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A B 

C 

Figure 5.9 
The f igure shows EMG recording from LG during walking. The 
right panel (B) shows the EMG during walking without 
stimulat ion. The EMG begins to rise before heel str ike, shown 
as 350 msec. It reaches a peak at 400 msec before str ike and 
then falls silent by after heel strike. The left panel (A) shows 
the similar recordings made during walking at the same speed 
but with the l igament stimulat ion applied at 350 msec after 
heel strike EMG from Lateral LG. The lower trace (C) is the 
dif ferences between panel A and B.  
Heel str ike is at zero msec, where the axes cross. The 
stimulat ion artefact delivered 350 msec after heel str ike.  
A sharp inhibit ion ref lex is indicated by the rising dif ference 
signal which starts about 98 msec after st imulat ion artefact.  
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Table 5.2 shows the latencies of excitat ions and inhibit ions 

detected in LG after LCL was st imulated. The EMG difference 

method was used as described earlier. Both sets of data were 

normally distr ibuted (Ryan Joiner P>0.1 for both sets). The 

latencies of excitations were signif icantly shorter than 

inhibit ions (ANOVA P=0.001, post hoc t test P<0.001). The 

mean latency for the excitat ion in LG was 82 + 2 msec. The 

excitat ions seen during walking are of longer latency than the 

excitat ions during standing st i l l  (mean 71 + 7 msec, see table 

3.4). When these data were compared using a one way 

ANOVA, P=0.001. The mean latency of inhibit ions in LG during 

standing was 79 + 6 msec. The mean latency of inhibit ion 

during walking was 94 + 3 msec. Again this dif ference was 

signif icant P < 0.001.  

Figure 5.10 shows the dif ference signal in EMG recorded from 

LG with and without stimulat ion of LCL. The stimulation was at 

heel strike. The dif ference signal was almost zero before and 

after the artefact. A sharp excitat ion ref lex is indicated by the 

rapid fall in the dif ference signal which starts about 85 msec 

after stimulat ion artefact.
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LG Latency (msec) 

Excitation Inhibit ion 

80 90 

80 92 

80 95 

82 96 

 

82 98 

 83  

 85  

Mean 82 94 

SD 2 3 

 
Table 5.2 
This shows the latencies of excitations and inhibit ions 
detected using the EMG dif ference method. The recordings 
were made in LG and the LCL was st imulated. Both sets of 
data were normally distributed. ANOVA and a post hoc t test 
confirmed that the latencies of excitations were signif icantly 
shorter than inhibit ions (Ryan Joiner P>0.1, ANOVA P=0.001, t 
test P=0.001) 
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Figure 5.10 
The f igure shows the dif ference signal in EMG recorded from 
LG during walking with and without st imulation of LCL. 
Stimulation was at zero t ime i.e. at heel strike. The EMG 
dif ference before and after the stimulation artefact is close to 
zero. 
A sharp increase in dif ference, indicat ing an excitat ion ref lex, 
starts about 85 msec after the stimulation artefact. 
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Figure 5.11 shows the effect of changing the st imulat ion delay 

to 50 msec after heel strike. At this point the Lateral 

Gastrocnemius EMG is almost silent. As before, the upper two 

panels show the averaged Lateral Gastrocnemius EMG in the 

two conditions: with and without stimulation. The lower panel 

shows the dif ference signal. Like the data in f igure 5.13. the 

dif ference signal is close to zero before heel strike, except for 

period at about 100 msec before heel strike. The dif ference 

returns to about zero before the stimulation is applied. In this 

case the signal difference stays very small after st imulation 

and no signs of a ‘ l igamento-muscular’ ref lex can be detected. 

This is rather similar to what was seen previously in f igure 5.8. 

In both Vastus Lateral is and Lateral Gastrocnemius it is not 

possible to el icit a ref lex if  the muscle EMG is si lent because 

there is no EMG activity to modulate. 
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A B 

C 

Figure 5.11 
The f igure shows the effect of changing the stimulat ion delay 
to 50 msec after heel strike. At this point the LG EMG is 
almost silent. The traces A and B show the averaged LG EMG 
in the two condit ions: with (A) and without (B) st imulation. The 
lower panel shows the dif ference signal between two panels. 
In this case the dif ference signal stays very small  after 
stimulat ion and no signs of a ref lex can be detected. 
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5.5.3. Effect of Ligament Stimulation at Various Po ints in 
the Gait Cycle 

The stimulation of the ligaments was repeated at various 

points in the step cycle by delaying the time of st imulation with 

respect to heel str ike. The previous f igures have shown the 

effects of stimulation at heel str ike. This sect ion wil l describe 

the effects of stimulation at 0, 50, and 350 msec after heel 

str ike i.e. at two dif ferent t imes during the stance phase and 

then in the swing phase. 

Figure 5.12 shows examples of the EMG dif ference signals in 

two volunteers when the stimuli are delivered with delays of 0 

and 50 msec after heel strike. Volunteer A shows ‘l igamento-

muscular’ ref lexes with a latency of 90 msec when the 

stimulat ion is del ivered at heel strike and when it  is del ivered 

50 msec after heel str ike. Volunteer B shows similar ref lex 

excitat ions when the delays are 0 and 50 msec. Figure 5.13 

shows a dif ference in EMG signals. In this case the stimulation 

of LCL was delayed by 350 msec after heel str ike. There is no 

sign of a ‘ l igamento-muscular’ ref lex in the EMG dif ference 

signal.   

This places the stimuli in a period of relat ive EMG silence as 

can be seen in f igure 5.6 A, B. Inhibitory ref lexes should be 

dif f icult or impossible to detect at this t ime but it should 

theoretical ly be possible to detect in excitat ions. 
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Volunteer A Volunteer B 

 

 

 

 

 

 

Figure 5.12   
The traces above have been recorded from VL in two subjects 
during walking. The left traces come form one volunteer the 
right traces from the other. In the top pair of traces the 
stimulat ion is del ivered at heel str ike. The traces have the 
stimulat ion delayed by 50 msec after heel strike. 
The excitation ref lexes can be seen in both volunteers when 
the stimuli are delivered at heel strike. The excitat ion is 
present but reduced in volunteer B when the stimuli  are 
delayed. The ref lex excitat ion is less clear with delayed 
stimulat ion in volunteer A.  
In the right panels the data show large f luctuations in the 
control period about 100 msec before the artefact. The 
appearance of these events means that the interpretat ion of 
results has to be treated with caution. 
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Figure 5.13  
The f igure shows EMG dif ference signal. VL act ivity was 
compared with and without stimulation of LCL. The stimulation 
was delayed to 350 msec after heel str ike. Heel str ike occurs 
at zero t ime.  
The data show relatively large f luctuations at about heel str ike. 
The appearance of these events means that the interpretation 
of results has to be treated with caution. However,  the signal 
returns close to zero before the time when a ref lex might be 
expected.  There is no sign of a ‘ l igamento-muscular’ ref lex in 
the EMG dif ference signal. 
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5.5.4. The Relative Frequencies of Excitations and 
Inhibitions in ‘Ligamento-muscular’  Reflexes  

The data in the tables of ref lex latencies during standing or 

sitt ing shown in chapter 3 and those for latencies during 

walking shown in chapter 5 indicate that inhibit ion are more 

common when the volunteer is sti l l  and excitations are more 

common when the volunteer is walking. The relat ive 

frequencies are shown in table 5.3. 

A chi squared test was used to test these data to investigate is 

the differences were statistical ly signif icant. The differences 

were not signif icant when the two muscles were tested 

separately. The Chi-Squared value was 2.862, and P-Value 

was 0.09 for the VL data. The Chi-Squared value was 3.172 

and P-Value was 0.075 for the LG data. The low number of 

counts created problems in both analyses. However when the 

data was pooled and test repeated as signif icant result  was 

obtained (Chi-Sq = 6.012, P = 0.014). 
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Vastus Lateral is Standing/Sit t ing  Walking 

Number  of  exc i tat ions observed  8 6 

Number  of  inh ib i t ions observed  19 4 

   

Latera l  Gast rocnemius Standing/Sit t ing  Walking 

Number  of  exc i tat ions observed  7 7 

Number  of  inh ib i t ions observed  18 5 

 

Table 5.3 
The relative frequencies of excitations and inhibit ions seen 
during experiments when the volunteer was moving and sti l l .   
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5.6. Discussion 

The aims of these experiments were to investigate: if  

‘ l igamento-muscular’ ref lexes can be elicited during the gait 

cycle, if  the pattern of responses were similar to those seen 

during sitt ing and standing and if  the latencies of  the ref lexes 

were changed.  

The data shown in the f igures and tables in this chapter 

confirm that ‘ l igamento-muscular’ ref lexes can be elicited 

regularly in both Vastus Lateral is and Lateral Gastrocnemius 

during walking.  The latencies of excitation and inhibit ions are 

15-20 msec longer during walking than when the volunteer in 

not moving. This difference is signif icant. The excitat ions have 

shorter latencies than the inhibit ions in both situat ions. 

The most common ‘l igamento-muscular’  ref lexes are inhibitory 

when the volunteer is not moving and this changes to 

excitat ions being more common when the volunteer is walking. 

The relatively small number of volunteers compromises the 

test for individual muscles but a signif icant result is obtained 

when the data for VL and LG are combined. 

Whilst it is possible to elici t l igamento-muscular ref lexes when 

the volunteer is stationary and moving, it is not c lear if  the 

same pathways are active in both states. The afferent and 

efferent pathways are almost certainly the same and the 

longer latency suggests a longer or more complex central path. 

The change in the relat ive frequency of excitations and 

inhibit ions also supports this suggestion. However,  in both 

states the magnitude of the ref lexes remain relat ively modest. 

The main problem encountered in these experiments lay in 

inconsistent walking style by the volunteers. They were all  

experienced treadmill walkers and they all walked at the same 
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average speed of 4 kmph. However, the natural variat ion in 

str ide length and small variat ions in speed stride by str ide 

resulted in averaged EMG which resembled published patterns 

of activity but which were subtly dif ferent on two walks. These 

were clear when the dif ference between the two signals was 

calculated. For the most part these dif ferences are close to 

zero, as shown in f igures 5.6, 5.7, 5.10 and 5.12 but at t imes 

close to heel str ike, noticeable dif ferences occur.  

It was not possible to detect evoked ‘l igamento-muscular’  

ref lexes in the raw EMG signals. There was simply too much 

variation in the period after st imulat ion. However, ‘ l igamento-

muscular’ ref lexes were relatively easy to detect in the 

dif ference signals, as can be seen in f igures 5.6 to 5.13. It is 

not possible to make definit ive statements about the relative 

amplitudes of ‘ l igamento-muscular’  ref lexes during standing 

and walking due to dif ferences in the baseline EMG. This was 

constant during the experiments in the sitt ing condition but 

constantly changing during walking. Thus there is no absolute 

baseline to compare with each ref lex amplitude. In favourable 

circumstances the EMG signals in the two conditions (with and 

without st imulat ion) are well matched special ly in the ‘control 

period’ just before the delivery of st imuli  and should return 

close to zero between the artefact and the appearance of any 

putative ref lex.  Examples of this can be seen in f igures 5.7, 

5.9 and 5.10. Other f igures show examples where these 

criteria are not met so clearly. For example in f igure 5.12 and 

5.13 there are large deviat ions in the signal before the stimuli  

artefact. These could be chance events or the residual effect 

of single atypical step during the walking. The appearance of 

these events means that the interpretation of results has to be 

treated with caution. The f igures are included to i l lustrate the 

range of results.   
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The EMG difference technique helped in the identif ication of 

‘ l igamento-muscular’ ref lexes. The ‘l igamento-muscular’ 

ref lexes could be elicited in Rectus Femoris and Lateral 

Gastrocnemius at the very end of the swing phase and 

reached their peak shortly after heel strike. The period from 

midstance to terminal swing phase was absolutely aref lexic. 

One possibi l ity is that no ref lex inhibit ions are observed at this 

t ime because there is no EMG activity to modulate. However, 

ref lex excitations were also observed, see f igures 5.6, 5.7, 510 

and excitations can be detected against a silent EMG if  they 

were suff iciently intense to raise motor neurones above 

threshold. 
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Chapter 6 

General Discussion  

The aims of the experiments reported in the present study 

were: to extend our knowledge of ref lexes el icited by 

stimulat ion of the medial and lateral collateral knee 

ligaments in humans. The second aim was to investigate if  

dif ferent muscles are affected differently by these ref lexes. 

The third aim was to investigate if  these ref lexes can be 

modulated by posture, muscle act ivity or movement. 

The results of the experiments described in chapters 3, 4 

and 5 show that st imulation applied over the collateral knee 

ligaments produce inhibitory and excitatory ref lex responses 

in several muscles of the lower l imb. Forty-four vo lunteers 

participated in four series of experiments. Reflexes were 

elicited in 34 of the 44 volunteers. The volunteers without 

ref lexes had a low tolerance for stimulation, on the other 

hand any volunteer who tolerated 25 mill iamps or greater 

showed ref lexes. Data are shown in table 3.2.  

The experiments reported in chapter 4 specif ically 

addressed the role of cutaneous afferents. St imulat ion with 

low intensity currents between 0.85 and 1.2 mill iamps was 

capable of elicit ing unambiguous sensations in the 

volunteers. There can be no doubt these currents excited the 

lowest threshold cutaneous afferents. The volunteers were 

all aware of the stimulat ion. However, this low intensity 

stimulat ion never elicited any signs of ref lexes in the 

muscles tested. Increasing the st imulus intensity up to 10 

times the perceptual threshold was similarly ineffective in 

elicit ing ref lexes.  The minimum intensity of stimulation, 

which successfully elicited ref lexes, was about twenty t imes 
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greater than perceptual threshold. The maximum intensity of 

stimulat ion used was about 45 t imes greater than perceptual 

threshold. These observations strongly suggest that low 

threshold cutaneous afferents did not elicit these ref lex 

effects and that even st imulation of group II/III cutaneous 

afferent are ineffective. When these afferents are 

anaesthetised by topical applicat ion of Emla cream there is 

no change in the ref lexes observed following stimulat ion.  

The stimulus conditions, the intensity, pulse durat ion and 

pulse frequency resemble those used by Willer et al (1978) 

to excite the sural nerve and el icit nociceptive f lexor ref lexes 

in human volunteers. Willer's experiment used up to 6 

shocks in the stimulus train compared with the three used in 

these experiments. The volunteers tested in the experiments 

reported here did not show f lexion ref lexes and the short 

latency excitation observed in extensor muscles indicate that 

the ref lexes described here are not the RIII ref lexes reported 

by Willer et al (1978).  

The experiments described in chapter 3 repeat the stimuli at 

intervals of 1 second. This was a compromise between the 

need to col lect a number of repetit ions for averaging and the 

need to keep the total recording time relat ively short to 

minimise fatigue. Final ly, this interval is close to the normal 

str ide t ime as seen in the experiments in chapter 5. One 

possibil ity is that this repetit ion interval could cause 

habituation of the ref lexes and decrease the magnitude of 

responses as described by Desmedt and Godeaux (1976). 

However, other authors have used st imuli  frequency linked 

to stride durations without signif icant problems (Capaday 

and Stein 1986).  
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Stimulation over the LCL and MCL is effective in el icit ing 

ref lexes but when the site of stimulation is moved away to 

sites on the patella or elsewhere, and the currents are 

reapplied, it is impossible to el ici t ref lexes. The requirement 

for the electrodes to be placed over the MCL or LCL strongly 

suggests that the afferents responsible are located in or 

near the ligaments and that they have a relat ively high 

threshold for electrical stimulat ion. Group II and group III  

afferents arising from the ligament are one obvious source of 

these ref lexes. It is not possible to eliminate act ivat ion of 

capsular afferent by the same st imulus current. However, 

since the joint capsule extends well beyond the l igament 

area it seems likely that moving the electrodes away from 

the ligaments should continue to activate the capsular 

receptors. Yet no ref lexes were observed when this was 

done. On balance, the author believes that stimulat ion of 

l igament receptors is the primary cause of the observed 

ref lexes. Any capsular contribution will probably be small but 

to be fair the ref lexes are best described as "Ligamento-

muscular" ref lexes to avoid implying certainty of the causes.  

The latencies of the ref lexes from quadriceps and triceps 

muscles after MCL and LCL stimulation were between 46 to 

150 msec. Both sites of stimulat ion el ici ted ref lexes with the 

same latencies. However, the short latency excitat ions were 

signif icantly shorter that the short latency inhibit ions in both 

quadriceps and triceps (see f igures 3.17 and 3.18).  The 

latencies of excitations were also signif icantly shorter than 

those of inhibit ions when elicited during walking. In this case 

both excitat ions and inhibit ions had longer latencies than 

was seen when the subject was at rest (see tables 5.1 and 

5.2). During sitt ing and during walking the dif ference 

between excitat ion and inhibit ion latencies was less than 10 

msec and could be attributed to the excitat ions being 
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associated with faster afferent f ibres or with simpler central 

connections.  

The conduction distance from the spinal cord to Rectus 

Femoris is typical ly about 50 cm, giving a conduction delay 

for efferent f ibres of 10 msec. The shortest ref lex latency 

observed in the current study was 46 msec. If  an al lowance 

of 5 msec is made for the central delay, the afferent delay 

must be a minimum of 31 msec. The afferent distance is 

typically 65 cm and this suggests an afferent velocity of 

about 21 m/sec i.e. compatible with the slower group II or 

faster group III f ibres. The shortest latency inhibit ion was 47 

msec and this suggests almost identical afferent t imes and 

velocit ies. It supports the suggestion that inhibit ion latencies 

are longer because of additional interneurones in the 

pathway.  

The mean latency for excitatory ref lexes in quadriceps was 

57 msec. In this the afferent velocity must be about 12 

m/sec. This is in the middle of the range of human group III 

conduction velocit ies, 7-15 m/sec reported in textbooks 

(Jennett 1989). This does nothing to resolve the discussion 

about the source of the afferents since both l igament and the 

capsule give rise to group III afferent f ibres.  

Similar calculat ions can be done for the ref lexes in triceps. 

The efferent conduction distance to Lateral Gastrocnemius is 

about 75 cm, giving a conduction t ime for efferent f ibres of 

15 msec. The shortest latency ref lex observed in the current 

study was 62 msec. This suggests an afferent delay of 42 

msec and an afferent velocity of 12 m/sec. Thus the ref lex 

effects described are likely to have been mediated by group 

III joint afferents. 
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The difference in mean  latencies of ref lexes in quadriceps 

and triceps is almost 10 msec and this is almost certainly 

due to the longer efferent pathway to tr iceps than 

quadriceps.  

In the init ial experiments, the volunteers were sit t ing 

relaxed, and the background EMG was silent. Ligament 

stimulat ion never elicited any signs of ref lex activity in 

relaxed muscles. This was shown in f igure 3.5. Reflexes 

were observed during sitt ing, standing and walking in 

conditions when there was muscle activity. However,  there 

were signif icant differences when ref lexes were compared 

during walking and when the subject was stat ionary.  The 

latencies of excitations and inhibit ions were signif icantly 

longer during walking than when the subject was sit t ing. The 

increase was between 15 and 20 msec. In addit ion at rest 

the frequently observed response was inhibit ion whilst 

excitat ions were more common during walking. No 

comparable changes were seen when the force of 

contract ion was changed whilst the subject was sitt ing. It  

can be speculated that the l igamento-muscular ref lexes are 

mediated by two dif ferent pathways in these two states. 

Probably the effects mediated by longer or more complex 

paths during movement.  

The experiments described in chapter 5 were performed in 

the hope that the ref lexes would be enhanced during 

walking, possibly to aid protecting the joint during the higher 

force loading. However, no observations were made which 

would direct ly support this suggestion. The ref lexes are of 

longer latency and shif t in sign from mostly inhibitory to 

mostly excitatory in VL and LG. The ult imate biomechanical 

action of these ref lexes is no clear. If  ref lexes f rom the 

ligaments do act to protect the joint,  they must be active in 
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circumstances requir ing higher forces and greater velocit ies 

of movement than those used in normal walking.  

The general experiment methods were described in chapter 

2. The techniques and equipment used were mostly well  

established and usually worked without problems.  

All volunteers were healthy and they co-operated well during 

the experiments. In addition, most of the volunteers were 

male; (4 females and 40 males).  It was noted in sect ion 1.1 

of the introduction that female athletes have a higher risk of 

knee injury than male athletes. Time constraints prevented 

the recruitment of more female volunteers. Most volunteers 

tolerated the intense stimulat ion over the ligaments with only 

minor complaints. There was a range of individual tolerance 

to the discomfort caused by stimulation. 10 of the 44 

volunteers had a l imit of tolerance that lay between 10 and 

20 mill iamps. They terminated the experiment with 

stimulat ion currents too low to elicit  ref lexes. However, they 

were at their personal l imit.  It was clear from the protocol 

submitted to the Glasgow University Research Ethics 

Committee that volunteers could terminate the exper iment. 

This can be viewed as a success of the experimental design; 

volunteers were recruited and understood the protocol and 

operated it to protect themselves. However, it did reduce the 

total number of individuals in whom ref lexes could be 

elicited. It is l ikely that the unpleasant sensations which 

caused the 10 volunteers to terminate the experiment arose 

from cutaneous afferents. The experiments described in 

chapter 4 showed that the tolerance for currents increased 

after topical anaesthesia of the skin under the st imulating 

electrodes.  
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34 of the 44 volunteers tolerated the high intensity 

stimulat ion and ref lexes were elicited in all of them. The 

biggest current used was 45mil l iamps. There was no obvious 

characteristic identifying whether the volunteer had a high or 

low tolerat ion for st imulation. 

Surface EMG recording was used in all the experiments. 

There were no serious problems with this during the 

experiments in chapter 3 and 4 because the volunteers 

developed constant isometric contractions. However, during 

the experiments in chapter 5, where volunteers walked on a 

treadmil l, there were sometimes problems with movement 

artefacts. These could be remedied by reducing the cable 

movements and appropriate use of high-pass f i lters.  

During the experiments described in chapter 5 ref lexes were 

elicited while the volunteers walked on a treadmill  at an 

average speed of 4 km/h. The Vastus Lateral is act iv ity 

consisted of two prominent bursts. The f irst burst was 

associated with the knee extension, which occurs late in the 

swing phase. The second burst is the time which the heel 

contacted the ground (the early part of the stance phase). 

The f irst burst from Gastrocnemius occurs in the middle part 

of the stance phase when the heel is off the ground. The 

second burst occurs the late part of the pre swing phase 

(Whitt le 1996). 

It often proved impossible for volunteers to exactly 

reproduce identical averaged EMG activity in their two 

walks. This is easy to see in f igure 5.7 of chapter 5. Some of 

this is due to minor variat ions in stride length. The 

volunteers maintained the same average walking speed but 

small short term changes al low them to move forward or 

backwards on the treadmil l belt. Volunteers were famil iarised 
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with the treadmill but it was not possible to el iminate this 

problem completely. Ult imately, it shows up as non-zero 

sections on the EMG dif ference signals of the f igures in 

chapter 5. 

There have been two previous reports of the successful use 

of the EMG dif ference methods. Duysens, Tax, Murrer and 

Dietz (1996) used it  to invest igate cutaneous ref lexes in 

humans. The subtraction technique al lowed them to measure 

both excitatory and inhibitory responses. In addition, Baken, 

Nieuwenhuijzen, Bastiaanse, Dietz and Duysens (2006) 

invest igated cutaneous ref lexes during human walking. In 

each case the technique has al lowed ref lexes to be 

investigated during on going movements. This may be more 

relevant than testing ref lexes during periods of inact ivity. 

The increased frequency of excitations during gait  means 

that ref lexes should in theory be detectable even when the 

muscles are inactive. Inhibit ions would need a background 

EMG to be detected. The ref lex excitations were never seen 

during periods of muscle inact ivity and so the ref lex effect is 

either too weak to raise motor neurones to their threshold or 

is modulated by some unknown mechanism.  

Anatomical local isation of muscles and ligaments was done 

by physical examination of the limb with reference to 

anatomical landmarks. As a result , the author is confident 

that the recording and st imulat ing electrodes were 

posit ioned in correct places. Care was taken in the 

placement of electrodes to avoid restricting normal 

movement. As described above, ref lexes were only ever 

elicited with the st imulating electrodes placed directly over 

the MCL or LCL.  
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The results in this study show that a wide range of  muscles 

in the thigh and shank can be activated through short and 

medium latency ref lexes elicited by stimulat ion of the LCL 

and MCL. It is not possible to predict the ult imate 

biomechanical act ions of these ref lexes but they may 

stabil ize the knee during movement.  

The ref lexes in the current study were recorded in 34 

volunteers during repeated experiments when they were 

standing, sitt ing and walking on the treadmil l. The ref lexes 

were el icited following st imulat ion of the medial and lateral 

collateral knee ligaments. MCL and LCL elicit very similar 

ref lexes and there was no indicat ion that MCL had stronger 

or faster act ions on medial muscles such as Vastus Medial is 

than it had on Vastus Lateral is. Kim et al (1995) el icited 

ref lexes with a protocol very similar to that used in this 

study. They observed ref lexes in Sartorius, Gracil is, Vastus 

Medialis, Vastus Lateral is, Semitendinosus, Biceps Femoris 

Longus, and Tensor Fascia Lata following stimulat ion of the 

collateral l igaments of the human knee. However they 

reported that "medial muscles will be activated signif icantly 

more after MCL stimulation than LCL stimulation, and vice 

versa for lateral muscles". The data in this current study 

does not provide any evidence to support that view.  

 

The most commonly observed pattern of the ref lexes during 

sitt ing and standing in this study was a short latency 

inhibit ion but mixed inhibitory and excitatory responses were 

also observed. Dyhre-Poulsen et al (2000) also found a 

pattern of inhibitory ref lexes following intra-capsular 

stimulat ion of the Anterior Cruciate Ligament. The shortest 

ref lex latency which was el icited in this study was 46 msec 

after l igament st imulation. This is consistent with Golgi 
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tendon afferents and a short spinal pathway. The longest 

latency ref lex was 150 msec after l igament stimulat ion.  

The range of latencies observed in this study in stationary 

subjects is very similar to that reported by Kim et al (1995). 

This study found a range of 60 + 7 msec for the fastest 

responses in Rectus Femoris to 125 + 9 msec for the 

slowest responses in Lateral Gastrocnemius. Kim et al 

reported 88.4 + 19.4 for the fastest responses in Sartorius to 

115 + 27.9 for the slower responses in Semitendinosus. In a 

study of ref lexes el ici ted following st imulation of  the Anterior 

Cruciate Ligament, Dyhre-Poulsen and Krogsgaard (2000) 

reported ref lexes latencies ranging between 45 to 85 msec. 

Yang and Stein (1990) elicited cutaneous ref lexes f rom 

Tibial is Anterior, Soleus and Rectus Femoris following t ibial 

nerve st imulation during human walking on treadmil l . They 

could el icit inhibit ion and excitation ref lexes but the most 

reproducible ref lexes that they el icited were inhib itory. The 

ref lexes latencies were between 50 to 90 msec after the 

stimulat ion artefact. McIlroy and Brooke (1987) invest igated 

Soleus, Lateral Gastrocnemius, Tibialis Anterior, Vastus 

Medialis and Rectus Femoris. They recorded ref lexes with 

two dif ferent latencies. The earl iest responses lay within a 

range between 85 to 132 msec after the onset of the 

movement interruption and the range of the later responses 

was between 121 to 195 msec.  

Several investigat ions have reported detailed studies of 

muscle act ivity during joint and ligament stimulat ion. Most of 

the studies have been done on cats (Duysens and Stein 

(1978), (Gri l lner and Rossignol (1978), Forssberg (1979), 

Duysens and Loeb (1980), Baxendale and Ferrell (1981), 

Abraham et al (1985), Buford and Smith (1990), Perel l,  

Gregor, Buford and Smith (1993)). Some studies have been 
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carried out in humans (Gri l lner and Rossignol (1978), 

Rossignol and Gauthier (1980), Crenna and Frigo (1987), 

Belanger and Patla (1987), Duysens, Tax, Trippel and Dietz 

(1993), Kim et al (1995), Duysens et al (1996), Dyhre-

Poulsen and Krogsgaard (2000)). The ligament which has 

been investigated most frequently in humans is the ACL 

(Dyhre-Poulsen and Krogsgaard 2000). There are few 

studies that elicited responses after collateral knee ligament 

stimulat ion in human (Kim et al 1995) and cat (Andersson 

and Stener 1959).  

Biomechanical studies in cadavers show that MCL and LCL 

work cooperat ively to protect the knee against excessive 

valgus motion (Piziali, Seering, Nagel and Schurman (1980), 

Nielsen (1987), Kim et al (1995)). It may be physiologically 

signif icant that the vast i muscles are likely to support and 

stabil ize the joint in the varus-valgus plane. In the 

experiments reported here it is obvious that the quadriceps 

were responsive to ref lexes el icited by MCL and LCL 

stimulat ion. It also reinforces the need for rehabi l itat ion and 

strengthening of quadriceps after knee ligament injury. The 

extent to which rehabil itation affects muscles and ref lexes is 

an open question. 

The results of this study support the suggestion by Kim et al 

(1995) that the knee ligaments not only have a role of 

passive joint stabi l ity but they have an important role in 

active stabi l isation of the joint through l igamento-muscular 

ref lexes.  

The Nature of the Reflexes  

Voluntary contract ions might have played a role in the 

ref lexes, since it  was essential to have a background 
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contract ion against which the ref lex was identif ied. However, 

the onset latencies observed are typically 55-65 msec. This 

is much too rapid for voluntary modulation of ongoing 

contract ions. Even the slower ref lex responses seen during 

gait are sti l l  much too fast to have a voluntary component. A 

range of 215 to 220 msec is reported for voluntary 

contract ion onset t imes of knee muscle (Pope, Johnson, 

Brown and Tighe (1979), Wojtys and Huston (1994)).  

Distinguishing the source of responses to be either from 

receptors in capsules or l igaments is dif f icult. Observation of 

latencies shows that probably the main source of ref lexes is 

from the stimulation of particular mechanoreceptors in the 

capsule and l igaments. It  is unlikely that receptors with the 

very largest afferents, for example the Golgi tendon organs, 

are solely responsible, since relatively high intensity 

stimulat ion was needed to elicit ref lexes. The minimum 

ref lex latencies of 55-65 msec suggest afferent delays more 

consistent with slower group II or group III afferents. Thus a 

wide range of receptor types may be involved but probably 

not afferents from free nerve endings which would be very 

dif f icult to act ivate from electrodes on the skin. 

These experiments have shown that l igamento-muscular 

ref lexes are widespread after relat ively strong electrical 

stimulat ion of medial and lateral collateral l igaments. They 

are present during maintained postural contract ions and 

during walking. It  is not possible to make any definit ive 

statement of the biomechanical actions in protect ing the 

joint. This is one obvious direction for future research. The 

experiments were all done in volunteers with healthy joints 

moving in a conservative way with low forces and low 

velocit ies. It would also be interest ing to investigate if  the 

ref lexes are more powerful in high speed and high force 
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movements more closely resembling those used in sports 

where the joints are exposed to the risk of damage.  It would 

also be useful to investigate the changes in ref lexes during a 

period of recovery after joint injury.  

There have been several recent studies in which the anterior 

and posterior cruciate l igaments have been st imulated 

directly during arthroscopic procedures Ochi, Iwasa, Uchio, 

Adachi and Sumen (1999)). The ref lex effects described by 

(Kim et al (1995), Dyhre-Poulsen and Krogsgaard (2000)) 

were discussed earl ier in section 1.6. The more recent 

studies have shown that ACL stimulation causes sensory 

evoked potentials in human volunteers (Pitman, Nainzadeh, 

Menche, Gasalbert i and Song (1992) Ochi et al (2002)), so 

supporting the belief that a neurosensory function is 

important. In particular Ochi’s paper reports that sensory 

evoked potentials were found in approximately half  of their 

patients who had undergone ACL reconstruction and that 

those patients had better knee function that those whose 

ACL had not been re-innervated. Krogsgaard, Dyhre-Poulsen 

and Fischeer-Rasmussen (2002), reviewed the current  

l iterature on this f ield and concluded that the existence of 

long latency ref lexes following ACL and PCL stimulat ion are 

unlikely to contribute directly to protecting the joint because 

of the delays involved. They believe that this system updates 

motor programmes which inf luence knee dynamics. This is 

consistent with Sjolander’s summary diagram shown in f igure 

6.1. It is unfortunate that so far nobody has performed 

experiments with arthroscopic st imulation of the collateral 

l igaments. 

Reflexes associated with l igament receptors contribute to 

proprioception, kinaesthesia, muscle co-ordination and joint 

stabil ity. They act through projections in ascending 
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pathways, directly on alpha motor neurones or indirectly 

through ref lex effects on the gamma motor neurone-muscle 

spindle system.  

Information from joint afferents reaches supra-spinal 

structures via several ascending pathways. Signals from 

joint afferents travel through the dorsal columns, the spino-

thalamic, the spino-ret icular, the spino-cervical and the 

spino-cerebellar tracts to reach many dif ferent parts of the 

brain stem such as the cerebellum, the reticular formation, 

the thalamus and the somatosensory cortex. Neurones found 

in these supra-spinal structures are remarkably inf luenced 

by activity in low threshold joint afferents (Gardner and Noer 

(1952), Mountcastle, Poggio and Werner (1963), Sjolander et 

al (2002)).   

Electrical st imulat ion of afferents found in the normal 

anterior cruciate l igament (ACL) during arthroscopic surgery 

elicits clear-cut somatosensory evoked potentials, which 

indicates that ACL afferents indeed activate pathways with 

cort ical project ions in man (Pitman et al (1992), Lavender, 

Laurence, Bangash and Smith (1999)). It is possible that 

l igament afferents may contribute to the control of  muscle 

stif fness and co-ordination.  

All of these neuro-anatomical and neuro-physiological 

observations combine with the results presented in this 

thesis to suggest strongly that l igament afferents may make 

important contribut ions to motor control. These ideas were 

recently reviewed by Sjolander et al (2002) and their 

summary is presented in the f igure 6.1. The observation in 

this thesis of slower l igamento-muscular ref lexes during gait  

and the change of balance from excitat ion to inhibit ions 
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suggests that a locomotor controller might be added to this 

schema.  

The results in this thesis support their idea of l igamento-

muscular ref lexes contributing to muscle co-ordinat ion. The 

possible contribut ion made by ligament afferents to 

movement and posit ion sense and to the process of learning 

new movements remains to be investigated. This wil l  be 

particularly interesting for the ski l led high velocity and high 

force movements required in sports. It wi l l be doubly 

important if  better understanding of these movements can 

reduce the frequency and severity of injuries caused by poor 

motor skil ls.  
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Figure 6.1.   
The f igure shows a schematic representation of the principal 
pathways by which mechanosensit ive l igament receptors can 
contribute to joint stabil ity, muscle co-ordination and 
proprioception.  
Modif ied f igure from Sjolander et al (2002).  
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Appendix I 

The following 2 f igures il lustrate the probability plots 

generated by Ryan Joiner tests performed in Minitab 15. 

Figure 1 shows the results of a normally distributed population 

of inhibit ion latencies after LCL st imulation of the quadriceps 

muscles from table 3.3 in this thesis. The data points l ie close 

to the line and the p value shown in the inset (p>0.01) confirm 

the normality of the distribut ion. 

Figure 2 shows the result of a Ryan Joiner test applied to a 

population which is not normally distributed. The data are from 

long latency inhibit ions after MCL st imulation of the quadriceps 

muscles from table 3.3. The data points did not l ie along the 

line but show systematic deviations and the p value was 

P<0.01.  
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Figure 1. The f igure shows a Ryan Joiner test applied to a 
population that shows the results of a normally distr ibuted 
population of inhibit ion latencies after LCL st imulation of the 
quadriceps muscles (P> 0.1).  

The values are from table 3.3.  
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Figure 2. The f igure shows a Ryan Joiner test applied to a 
population, which is not normally, distributed (P< 0.01). The 
data shows long inhibit ion latencies after MCL stimulat ion of 
the quadriceps muscles.  

The values are from table 3.3. 
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Appendix II 

An invest igat ion of  ref lex el ic i ted by percutaneous  st imulat ion 
of  the medial  and latera l  l igaments of  the human kn ee 

 
Abstract of  the thes is  presented on 13 t h  of  sc ient i f ic  conference of  
the union of  I ranian student  in  Europe, Leeds Univers i ty,  UK. 2005. 

 
The pr inc ipal  purpose of  th is s tudy was to ex tend our  knowledge of  
ref lexes assoc iated wi th jo int  d isease and in jury of  jo ints ,  which are 
major causes of  pain and disabi l i t y in the populat ion.  Surpr is ingly,  
there have been very few neurophys io logical  studies of  the ref lex  
ef fects assoc iated with s t imulat ion of  jo ints,  l igaments  and tendons. 
Similar  exper iments  have been performed in humans and the 
ex istence of  ref lexes has been conf irmed (1,2).  
The immediate a im of  th is  project was to invest igate ref lexes 
e l ic i ted fo l lowing percutaneous s t imulat ion of  the media l and la tera l 
l igaments (MCL, LCL)  of  the knee, dur ing s i t t ing pos it ion. 
The longer- term aim is  to provide a s trong sc ient i f ic  foundat ion,  
which wi l l  gu ide the coaching of  athletes  to reduce the r isk  of  jo int  
injury and to enhance the rehabi l i tat ion of  ath letes  af ter  injury.  
Seventeen subjects  were seated on a test ing bench and hip angle 
was 90 degrees. The age range of  the subjec ts was f rom 21 to 49 
years . The maximal  vo luntary contract ions (MVC) of  the quadr iceps 
were measured at  180°  of  knee extens ion. This was then used to set  
the magnitude of  subsequent sub-maximal  contract ions at 5,  10 and 
20% of  MVC. An ident ica l s t imulat ion sequence was del ivered 
dur ing susta ined contract ions elec trodes were p laced over the 
latera l  and media l knee l igaments separate ly.  The l igaments were 
st imulated by 3 pulses of  1 msec durat ion at 100 HZ. The 
st imulat ion in tens ity was the ranged of  0-45mamps. The EMG 
act iv i t y f rom three muscles was monitored s imultaneous ly us ing 
surface e lec tromyography by 1401 Electromyogram, and for  data 
analys is used to Spike2 sof tware sys tem. Electrodes were p laced 
over  the musc les . The muscles  selec ted were Rectus Femoris ,  
Vastus Media l is  and Vastus Latera l is .  Fi rst  o f  a l l  no ref lexes were 
e l ic i ted in  very low current,  ef fects have star ted in 20 mamps. The 
pattern of  the musc le response and e lectromyography was re levant  
to  the st imulat ion in tens ity.  By increas ing the s t imulat ion in tens ity 
the EMG waves became bigger and also the magnitudes of  the 
responses were increased. Inhib it ions and excitat ions ref lexes 
e l ic i ted and there is  no s ignif icant  dif ference between responses 
af ter  MCL and LCL s t imulat ion.  Most ly ef fec ts were inhib it ion in  
both l igaments.  The mean latency of  ear ly inh ib i t ion af ter  LCL 
st imulat ion was 66 + 7 msec and Af ter  MCL s t imulat ion was 68 + 12 
msec. The d if ference was not s ignif icant  (P=0.26).  The mean 
latency of  ear ly exc itat ion af ter  LCL s t imulat ion was 57 + 6 msec. 
And for  the MCL s t imulat ion was ident ica l .   

1.Dyhre-Poulsen,  P.  and Krogsgaard, M.  R. (2000):  Muscular 
ref lexes e l ic i ted by e lectr ica l s t imulat ion of  the anter ior  cruc iate 
l igament in humans.  Journal Appl .Phys io logy.  Vol .89 ,  2191-2195,  
2249-2257. 

 
2.  Kim, A. W ., Rosen, A.  M. ,  Brander,  V.  A.  and Buchanan T. S. 
(1995).  Selec t ive muscle act ivat ion fo l lowing e lec tr ical  s t imulat ion 
of  the col la tera l knee l igaments of  the human. 
knee.Arch.Phys.Med.Rehabil .Vol .  76:750-757. 
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UNIVERSITY OF GLASGOW 

FACULTY OF BIOMEDICAL AND LIFE SCIENCES 

 

ETHICS COMMITTEE FOR NON CLINICAL RESEARCH 

INVOLVING HUMAN SUBJECTS, M ATERIAL OR DATA  

 

APPLICATION FORM FOR ETHICAL APPROVAL  

NOTES: 

 
THIS APPLICATION FORM SHOULD BE TYPED, NOT HAND WRI TTEN. 
 
ALL QUESTIONS MUST BE ANSWERED. “NOT APPLICABLE”  IS  A 
SATISFACTORY ANSWER WHERE APPROPRIATE. 
 

Projec t T it le :  An invest igat ion of  Ref lex el ic i ted by percutaneous 
st imulat ion of  the medial  and latera l l igaments of  the knee. 
 
Is  th is projec t f rom a commercial  source? No 
 
I f  yes, g ive deta i ls  and ensure that this  is  stated on the Informed 
Consent form. 
 
Date of  submission to be entered: 13th May 
2005________________________________________ 
 
Name of  a l l  person(s) submit t ing research proposal  
 Dr  Seyed Mohsen Rahimi,  Dr Ronald Baxendale 
 
____________________________________________________________
___________________ 
 
Posi t ion(s)  held 
PhD. s tudent ( IBLS) , Senior Lecturer ( IBLS)  
 
____________________________________________________________
____________________ 
 
Div is ion:  Neuroscience and Biomedical Systems_ 
 
 
Address for  correspondence re lat ing to th is submission: Dr Mohsen 
Rahimi,  Lab 427 Kelv in Bui ld ing, Glasgow Univers i ty.  
____________________________________________________________
____________________ 
 
Name of  Pr incipal Researcher ( i f  d i f ferent  f rom above e.g.,  Student ’s  
Supervisor)    
Dr Ronald Baxendale 
Posi t ion held  Senior Lecturer ( IBLS)  
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2. Please g ive a summary of  the design and methodol ogy of  the 
pro ject .   Please also inc lude in these sect ion deta i ls of  the proposed 
sample size, g iv ing indicat ions of  the calculat ions  used to de termine 
the requi red sample size,  inc lud ing any assumpt ions  you may have 
made. ( I f  in doubt ,  p lease obta in  stat ist ical  advic e) .  
W e seek permiss ion to inv i te up to 30 adults to par t ic ipate in the 
exper iment.  Both male and female wi l l  be inv ited s ince there is  no reason 
to suspect that  the ref lexes are d if ferent  in men and women. The 
volunteers wi l l  be in good health and have no h is tory of  skeleto-muscular 
injury or d iseases. Each volunteer wi l l  a t tend the lab for  one v is i t  last ing 
approx imately on hour.  Dur ing this per iod they wi l l  be famil iar ised with 
the exper iment informed consent wi l l  be sought before the exper iment  
star ts.The volunteer wi l l  know they are f ree to stop the exper iment at any 
t ime. 
I f  they agree to part ic ipate, the surface e lec tromyogram wi l l  be recorded 
f rom muscles of  the lower l imb us ing smal l  sk in mounted ampl i f iers.  A 
pair  of  s t imulat ing e lectrodes wi l l  be p laced aver the col la tera l l igaments  
of  the knee. Smal l  swi tch is  taped to the heel of  the shoe to a l low 
ident i f icat ion of  the instant  of  ground contact dur ing walk ing and running. 
The volunteer is  then invi ted to stand for  a few minutes. Dur ing th is  
per iod e lec tr ical currents wi l l  be del ivered once every two seconds to 
exc ite sensory receptors in the l igament .  Ref lex ef fects are ident i f ied by 
per i-s t imulus averaging of  the e lectromyogram. The averaged 
e lec tromyogem before each st imulat ion is  compared with that  
immediate ly af terwards when the ref lex  should occur.  The technique is  
i l lus trated on a separate at tached sheet with data f rom a pol i t  exper iment 
on one of  the appl icant.  
 
As essent ia l ly s imi lar  process is  repeated dur ing walk ing and running on 
treadmil l .  The modif icat ion required is  to  t ime the appl icat ion of  the 
st imulus re lat ive to a f ixed point on the gait  cyc le (ground contact)  rather  
than at a f ixed t ime interval .  Most adul ts walk  at  l i t t le s lower than one 
step per second and so th is ef fect ive ly requires st imulat ion on every 
second or th ird step. 
 
There is  no data in the sc ient i f ic  l i terature to a l low a formal power 
calculat ion to be employed. However ,  the results can be safe ly analysed 
s ince in each test  the volunteer provides their  own internal  contro l  per iod 
in the form of  the averaged elec tromyogram for the pr iod before 
st imulat ion. This can be d irect ly compared with the averaged 
e lec tromyogram recorded at the same si te immediately af ter  st imulat ion.  
There is  a widespread convent ion in ref lex s tudies  to cons ider the ref lex  
to be s ignif icant  i t  exceeds two s tandard deviat ions for  the mean 
averaged e lectromyogram in the pre-st imulus contro l per iod.  When a 
s ignif icant  ref lex  is  ident i f ied, i ts  magni tude is  measured as the area 
above or below the mean background e lec tromyogram. 
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3. Describe the research procedures as they af fect  t he research 
subject  and any other part ies invo lved.  
 
The volunteer is  inv i ted to part ic ipate, given an informat ion sheet,  the 
nature of  the exper iment is  expla ined and any quest ions answered. The 
volunteer is  then invi ted to s ign the consent form. The volunteer  wi l l  
know they are f ree to stop the exper iment  at  any t ime. 
 
The volunteer wi l l  have their  sk in c leaned wi th an a lcohol wipe at the 
s ites where e lec trodes wil l  be appl ied. The elec trodes wi l l  be f ixed to 
sk in us ing adhes ive tape. They wi l l  be inv i ted to stand and walk  on a 
treadmil l  for  per iods of  up to 5 minutes. 
 
The volunteer wi l l  have elec tr ica l currents ,  each las t ing 1 mil l isecond, 
appl ied to their  leg over the media l or  la tera l col latera l l igaments of  their  
knee. The current  in tens i ty wi l l  be increased incremental ly.  The f irs t  
ser ies are a lways too weak to be preceived by the volunteer.  W ith each 
increment the sensat ion becomes stronger unt i l  the volunteer ind icates  
they wish to stop. I t  is  hard to def ine an absolute current  l im it  s ince th is  
depends on the re lat ive pos it ion of  l igament and e lec trodes as wel l  as  
the to lerance of  the volunteer.  The pr inc ipal appl icant has exper ienced 
st imulat ion up to 45 mi l l iamps in pol i t  exper iments. This is  uncomfortable 
but not  damaging to t issues. I t  is  impor tant  that  the s t imulat ion does not 
cause f rank pain both to protect  the volunteer and to avoid unwanted 
wi thdrawal  ref lexes. 
 
The volunteer remains in contro l of  the st imulat ion at a l l  a t imes and is  
able to reduce or  stop the s t imulat ion wherever they wish. 
 
 
 
 
4. What  in  your op inion are the eth ica l  co nsiderat ions invo lved in 
th is proposal?  (You may wish for example to commen t on issues to 
do with consent ,  conf ident ial i ty,  r isk to  subjects,  etc.)  
 
In  our  opinion the eth ica l cons iderat ions are minor.   
Each volunteer  is  fami l iar ised wi th the exper iment and informed consent  
is  sought before the exper iment s tar ts .  
The exper iment is  short  and pus the volunteer at  no addit ional r isk .   
The volunteer is  able to s top the exper iment  at  any t ime. 
The f i le naming s trategy ensures the volunteer ’s anonymity.   
 

5.  Outl ine the reasons which lead you to be sat is f ied that  the 
possible benef i ts to be gained f rom the pro ject  jus t i fy any r isks or  
discomforts involved. 
 
There is  a reasonable balance between r isk  and benef i t .   
The “r isk”  or “d iscomfort”  as exp lained above is ve ry mi ld,  i f  i t  
ex ists at  al l .  The gain is  modest in terms of  a bet ter understanding  
of  the behaviour of  the cent ral  nervous system.  
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6. Who are the invest igators ( inc lud ing assistants)  who wi l l  conduct 
the research and what are their  qual i f icat ions and exper ience?  
Seyed Mohsen Rahimi,  M.D.,  phys ic ian to the Iranian student  Nat ional 
Team attending Student Olympic Games in China, 1998,Spain 2000,and 
Canada,  2001. 
Dr Rahimi is  a ful l  t ime Ph.D.  student  in  the Univers ity of  Glasgow. 
 
Ronald Baxendale BSc PhD is  a senior  lecturer in the Div is ion of  
Neurosc ience in Glasgow Univers i ty.   
Both have extens ive exper ience of  test ing motor sk i l ls  in  humans.   
 
7.  Are arrangements for  the prov is ion of  cl in ical  f ac i l i t ies to  handle 
emergencies necessary?  I f  so, br ief ly descr ibe the  arrangements 
made. 
No. The appl icants do not think  such an emergency is  l ikely.  
There is  a f i rs t  aid box in the laboratory where the exper iment  wi l l  take 
p lace.   
There is  a telephone to cal l  for  ass is tance 
 
 
 
 
8. In cases where subjects wi l l  be ident i f ied f rom informat ion held by 
another party ( for example, a doctor or hospital)  d escr ibe the 
arrangements you in tend to make to gain  access to t h is informat ion 
inc lud ing, where appropr iate, which  Mult i  Cent re R esearch Ethics 
Commit tee or  Local Research Ethics Commit tee wi l l  b e appl ied to.  
No 
9. Specify whether sub jects wi l l  inc lude students o r o thers in a  
dependent  re lat ionship. 
Students are not in a dependent re lat ionship wi th the exper imenter .  

10. Specify whether the research wi l l  include ch i ld ren or people with  
menta l  i l lness, d isabi l i ty or handicap.  I f  so, p le ase exp la in the 
necessity of  involv ing these indiv iduals as researc h subjects.  
The exper iment wi l l  not tes t ch i ldren or people with menta l i l lness, 
d isabi l i t y or  handicap 
 
11. Wi l l  payment  or  any other incent ive, such as a g i f t  or f ree 
serv ices, be made to any research subject?  I f  so,  p lease  specify 
and state the level o f  payment to be made and/or th e source of  the 
funds/g i f t / f ree serv ice to  be used. Please explain the just i f icat ion for 
of fer ing payment  or other  incent ive. 
Yes,  where appropr iate. 
A max imum payment  of  £10-15 wi l l  be made to cover  expenses in  
travel l ing to the laboratory.   
This wi l l  come f rom Dr . Rahimi,  s  bench fees. 
12. Please g ive deta i ls o f  how consent is to be obt a ined. A copy of  
the proposed consent form, along with  a separate in format ion sheet,  
wri t ten in simple, non-technical  language MUST ACCO MPANY THIS 
PROPOSAL FORM. 
The volunteer wi l l  be g iven an informat ion sheet.   
They wi l l  be inv ited to d iscuss the exper iment and any quest ions  
answered.  
They wi l l  be inv ited to s ign a consent  form.  
 

13. Comment on any cul tura l ,  soc ia l  or  gender-based  character ist ics 
of  the subject  which have af fected the design of  th e pro ject  or  which 
may af fect  i ts  conduct.  
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In our opinion there are no cultural ,  soc ia l or  gender-based issues in th is 
project   
 
14. Please state who wi l l  have access to the data a nd what measures 
which wi l l  be adopted to mainta in the conf ident ia l i ty of  the research 
subject  and to comply with data protect ion requirem ents e.g . w i l l  the 
data be anonymised? 
The exper imenter  wi l l  have access to the data. 
The data wi l l  be anonymised us ing a code known only to the 
exper imenter .  
The data f i les wi l l  be destroyed at the end of  the exper iment,  to comply 
wi th the Data Protec t ion Act .  
 
15. Wi l l  the intended group of  research subjects,  t o your knowledge,  
be invo lved in  other research?  I f  so, p lease just i fy.  
I t  is  poss ib le that  the volunteers wi l l  par t ic ipate in other exper iments.  
I t  is  not the in tent ion to recru it  f rom other exper iments.   
The s imple nature of  this  study wi l l  not  p lace the volunteer  at  any 
addit ional  r isk   
 
16.Date on which the project  w i l l  beg in 
25th May 2005. . .  and end . . .30th June 2005  
 
17. Please state locat ion(s)  where the pro ject  w i l l  be carr ied out.  
Laboratory of  Human Performance, Lab 427, Kelv in Bui lding, Univers ity 
of  Glasgow. 
 
18. Please state brie f ly any precaut ions being take n to protect  the 
health and safety o f  researchers and others associa ted with the 
pro ject  (as d ist inct  f rom the research subjects)  e. g . where blood 
samples are being taken 
The researchers are at no addit ional heal th and safety r isk .  
 

Signed ____________________________________________ _______    

Date  ________________ 

(Proposer of  research) 
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Where the proposal is f rom a student ,  the Superv iso r is  asked to  

cert i fy the accuracy of  the above account .  

Signed ____________________________________________ _______   

Date  ________________ 

Superv isor o f  student)  

Emai l  the completed form to :  S.Morr ison@bio.g la.ac .uk  

And send the s igned hard copy to:  

 

Stuart  Morr ison 

Faculty Research Off ice 

Faculty of  Biomedical & L i fe  Sciences 

West  Medical  Bui ld ing 

Univers i ty of  Glasgow 

Gilmorehi l l  

Glasgow 

G12 8QQ 
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CONSENT FORM 

 

Volunteer ident i f icat ion number 
 
T ITLE OF THE PROJECT :  An invest igat ion of  ref lexes e l ic i ted by 
percutaneous st imulat ion of  the medial  and lateral  l igaments of  the knee. 
 
Name of  the Researchers :  Dr Seyed Mohsen Rahimi and Dr Ronald 
Baxendal 
 
1) .  I  conf irm that I  have read and unders tood the informat ion sheet for  
the above mentioned study and I  have had the oppor tunity to ask 
quest ions 
 
2) .  I  understand that my part ic ipat ion is  vo luntary and that I  am free to 
wi thdraw at  any t ime, wi thout   
       g iv ing any reason. 
 
3) .  I  agree to take par t  in  th is s tudy. 
 
Name                                                            date                               
s ignature 
 
 
 
Researcher                                                   date                                
s ign 
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VOLUNTEER INFORMATION SHEET 
 

TITLE OF THE PROJECT: An invest igat ion of  Ref lex e l ic i ted by 
percutaneous st imulat ion of  the medial  and lateral  l igaments of  the knee. 
 
You are inv ited to take par t  in a research s tudy.  Before you decide i t  is  
impor tant  for  you to unders tand why the research is being done and what  
i t  wi l l  involve. Please read the fol lowing information carefu l ly and d iscuss 
i t  wi th others i f  you wish. Ask us i f  there is  anyth ing that i t  is  not c lear or  
i f  you wish more information. Take t ime to dec ide whether  or  not  you 
wish to take part .  
Thank you for  reading th is .  
 
 
FREQUENTLY ASKED QUESTIONS 

WHAT IS THE PURPOSE OF THE STUDY? 
 
The immediate purpose of  this s tudy is  to invest igate ref lexes that  fol low 
st imulat ion of  the l igaments in your knee. 
 
The longer- term purpose is  to unders tand how informat ion f rom l igaments  
is  used by the centra l nervous system. This should lead to a more 
scient i f ic  approach to coaching movement in sport  and better  
rehabi l i tat ion of  people wi th knee injur ies . 
 
WHY HAVE I BEEN CHOSEN? 

You have been chosen because you are a healthy adult .  
 

DO I HAVE TO TAKE PART? 

I t  is  up to you to dec ide whether or  not to take par t  you wi l l  be g iven an 
informat ion sheet and you wi l l  be asked to s ign a consent form. I f  you 
dec ide to take par t  you are st i l l  f ree to wi thdraw at any t ime and wi thout  
g iving a reason.  
 

WHAT WILL HAPPEN IF I  TAKE PART? 

You wi l l  have a ser ies  of  wires taped on your sk in to a l low the act iv i t y of  
muscle in your leg to be studied.  A second set of  wires wi l l  de l iver  
st imuli  to  the l igaments at the s ide of  your  knee. 
 
You wi l l  be asked to stand for  a few minutes and then to walk  and then 
run at a moderate speed on a treadmil l .  W hils t  you are standing or  
moving your l igament wi l l  be st imulated .You may feel this  as a 
mechanical tap on your knee or as  movement of  the knee. 
 

You wi l l  contro l the s trength of  the s t imulat ion. You wi l l  be inv i ted to 
increase i t .  The st imulat ion is  not  dangerous but  i t  may feel 
uncomfortable at t imes. However ,  you wi l l  l im it  i ts  strength and you can 
stop i t  at  any t ime. 
 
The muscle act iv i t y wi l l  be record on a computer for  later  analys is.  Your 
anonymity is  protec ted by us ing a ser ial  number  to name the f i le .  
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WHAT ARE THE POSSIBLE DISADVANTAGES AND RISKS OF TA KING 
PART? 

The exper iment is short  and there is no signi f icant  addit ional r isk 
associated with part ic ipat ion..  
WHAT ARE THE POSSIBLE BENEFITS OF TAKING PART?  
 
The “r isk”  or  “discomfort”  to you is  very small ,  i f  i t  ex is ts at a l l .  The gain 
is  in terms of  a better  understanding of  how movements are contro l led. 
 

WHAT IF SOMETHING GOES WRONG? 

The chances of  something going wrong are ex tremely smal l .  A l l  the 
procedure involved in  th is  study are very low r isk .  
In  the unl ike ly event that you are harmed due to someone’s negl igence, 
you may have grounds for  a legal  ac t ion, but  you may have to pay for  i t .  
 

WILL MY TAKING PART IN THIS STUDY BE KEPT CONFIDENT IAL? 

Al l the informat ion col lected about you dur ing the course of  the research 
wi l l  be kept  str ic t ly conf ident ia l .  Any informat ion about you which leaves 
the Univers i ty wi l l  have your name and address removed so that you 
cannot  be recognised f rom it .  
 
WHO HAS REVIEWED THE STUDY? 

This s tudy has been reviewed and approved by the Research Eth ics  
Committee. 
 

CONTACT FOR FURTHER INFORM ATION  

Any quest ions about the procedures used in th is s tudy are encouraged. I f  
you have any doubts or quest ions, p lease ask for  fur ther explanat ions by 
contact ing e i ther :  
 

Dr Seyed Mohsen Rahimi 

Tel:  0141 330 6197                E-Mai l :   0223723r@student.g la.ac.uk   

Dr Ron Baxendale 

Tel:  0141 330 5344                E-Mai l :    R.Baxendale@bio.gla.ac .uk  

You wi l l  be given a copy of  th is informat ion sheet and a s igned consent  

form to keep for  your records. 

 

 


