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Abstract:  

 

Autophagy is an evolutionarily conserved process that is important for the 

maintenance of cellular homeostasis and also genomic integrity. Autophagy is a 

self-digestive process that takes place in the cytoplasm, however recent studies by 

Eileen White and colleagues demonstrated that defective autophagy leads to 

accumulation of DNA damage in vitro and in vivo [1] [2]. This discovery leads to a 

question: whether there is increased DNA damage incidences or defective DNA 

damage repair in autophagy deficient cells. Autophagy and DNA damage are two 

important areas for cancer research. The aim of this project is to provide a better 

understanding of the role of autophagy plays in DNA damage and DNA damage 

response.  

 

The activation of Chk1 facilitates its degradation. The results presented in this 

project illustrate that autophagy deficient cells exhibit elevated proteasomal 

activities and autophagy inhibition leads to activation of Chk1. These combined 

factors contribute to increased degradation of Chk1 in autophagy deficient cells. 

This was manifested first as decreased phospho-Chk1 in response to DNA damage, 

later on when the loss of autophagy effect is more pronounced; decrease in total 

Chk1 protein level was observed. Chk1 is a crucial DNA damage response mediator 

that plays roles in cell cycle checkpoints and DNA damage repair. Cells without 

autophagy appear to have intact cell cycle checkpoints in response to starvation or 

DNA damaging agents; however they show deficiency in homologous 

recombination (HR) repair pathways. Autophagy deficient cells display increased 

spontaneous cell death and formation of micronuclei. Defective HR pathways in 

autophagy deficient cells lead to hyper-dependency on non-homologous end-joining 

(NHEJ) process.  Since HR and NHEJ are the two main ways of repairing double 

strand breaks (DSB), it is not surprising that inhibition of NHEJ following DSB 

inducing agents in autophagy deficient cells results in persistence of damage lesions 

and increased cell death.  
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This project demonstrated that loss or inhibition of autophagy leads to defective 

DNA damage response pathways. We established that Chk1 is de-regulated in 

autophagy deficient cells and this has differential downstream effects on DNA 

damage response.   

 

These findings potentially provide a novel synthetic lethal strategy to selectively 

kill autophagy-deficient cells, which are implicated in a number of diseases 

including certain cancers.  
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Chapter 1. Introduction  

 

1.1 Autophagy – Definition and Classification.   

 

Autophagy is a fundamental catabolic process that is well conserved from yeast to 

higher eukaryotic cells. It is a self-digestive mechanism where metabolites are 

recycled in the cells. During the process, cellular proteins, organelles (e.g. 

mitochondria and endoplasmic reticulum (ER) membranes) and cytoplasm are 

sequestered and degraded in the lysosomes by hydrolases.  

 

Autophagy is constitutively active at basal levels in the cells; it is thought to 

degrade long-lived proteins and organelles in bulk as a mean of recycling cellular 

building blocks and maintaining cellular homeostasis and integrity. Autophagic 

activities are up-regulated when the cells undergo metabolic stress such as 

starvation and hypoxia [3]. In this case it plays the role of an adaptive survival 

mechanism; autophagy acts as a ‘cannibalistic’ process that fuels cell bioenergetics 

through self-digestion and recycling of cellular contents. Because of its self-eating 

nature, autophagy mediated survival is temporary and provides an opportunity for 

the cells to deal with the stressful environment. Prolonged activation of autophagy 

due to continuous metabolic stress can contribute towards cell death [4]. It is 

thought that autophagy is an accelerator rather than effector in programmed cell 

death under normal physiological conditions. Dying cells very often display 

accumulation of autophagosomes and autophagy is considered to be an important 

mediator of the clearance of cell corpses [5]. In cancer cells, there is evidence that 

autophagy can act as a cell death mechanism, alternative to apoptosis [6]. It is well 

acknowledged that defective apoptosis is one of the major transformations during 

tumourigensis [7], therefore autophagic cell death can be potentially utilised to 

eliminate tumour cells. In fact, Autophagy is required for a number of cancer 

therapeutic drugs to achieve sufficient killing [8]  [9]. 
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The relationships between apoptosis and autophagy is complex and the two 

processes frequently overlap each other. ATG1 overexpression in Drosophila leads 

to cell death which display apoptotic characteristics [10]. Autophagy has been 

found to be a apoptosis-independent cell death mechanism in Dictyostelium, which 

does not have genes that encode proteins in the apoptotic pathways [11]. 

 

Three main types of autophagy have been described; they are macroautophagy, 

microautophagy, and chaperone-mediated autophagy. The three processes share 

common molecular machinery to a certain degree, the protein/organelle cargoes are 

degraded in the lysosomes for all three types. The three processes are well 

coordinated and complement each other’s functions to maintain cellular 

homeostasis [12] [13]. Macroautophagy (hereafter autophagy) is the most 

characterized process which degrades long-lived proteins and removes damaged 

organelles. The formation of autophagosomes that contain bulk proteins and 

organelles distinguishes this type of autophagy from other autophagic processes.  

Microautophagy is a process where cytoplasm is directly engulfed by the lysosome 

through invagination [14]. Chaperone-mediated autophagy is able to degrade 

cytosolic proteins selectively. Specific substrate proteins containing the amino acid 

motif KFERQ are recognised by the hsc70 chaperone in the cytoplasm [15]. Hsc70 

and its substrate protein bind to lysosome-associated membrane protein type 2A 

(LAMP-2A) which is localized on the lysosomal membrane. The substrate protein 

is unfolded by hsc70 and translocated into lysosomes where it is degraded [16]. 

Selective autophagy is a process where specific organelles, pathogens and proteins 

are post tranlationsl modified and recognised by adaptor proteins such as p62 and 

NBR1, which bind to autophagosome proteins including LC3. The cargo is tethered 

to the site of autophagosome and engulfed into the vesicle [17] .  

 

1.2 The process of autophagy 

 

Autophagy is a highly dynamic process where a series of membrane-trafficking 

events take place. As illustrated in Figure 1.1, the autophagy process consists of 



 18 

four major steps, namely initiation, elongation, maturation and fusion. mTOR 

(mammalian target of Rapamycin) is an inhibitory regulator of autophagy in 

response to a number of stimuli,  phosphorylating and inhibiting the ULK complex. 

The ULK complex activates Beclin 1, which is the key component of a complex 

which generates double membranes to form phagophores. Phagophores grow to 

enclose cellular contents in the cytoplasm such as proteins and organelles and fuse 

at both ends forming vesicular autophagsosomes. Autophagy is completed when 

autophagosomes fuse with lysosomes forming autolysosomes where the contents 

are degraded.  

 

Autophagy is a housekeeping process that takes place in nearly all cell types, and is 

up-regulated by a range of stimuli, such as starvation, hypoxia and DNA damage. 

These signalling pathways are described as follows.  
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Figure 1.1 Autophagy is a multi-step process.  
 

(Figure adapted from Liu and Ryan, 2012.) Double membraned phagophores 

elongate to enclose cytoplasm and organelles into vesicles called autophagosomes, 

which are eventually fused with lysosomes where the contents are degraded. mTOR 

kinase is a sensor initiating autophagy in response to growth factors and nutrients. 

Double membraned structures called phagophores elongate to enclose cellular 

contents and fuse to form autophagosomes. Autophagosomes are trafficked to fuse 

with lysosomes which contain acidic hydrolases that degrade the contents of 

autophagosomes.  
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1.2.1 Autophagy levels are modulated in response to a variety of stimuli in 

mammalian cells. 

  

mTOR kinase [18] is a key inhibitory regulator of autophagy in response to a 

spectrum of signals including growth factors (e.g. insulin-like factors, PDGF 

(platelet-derived growth factor), VEGF (vascular endothelial growth factor) and 

EGF (epidermal growth factor)), nutrients (e.g. amino acids and glucose), energy 

(ATP) and oxygen as demonstrated in figure 1.2. When there are sufficient nutrients 

in the cells, autophagy is kept at low levels. mTOR constitutively inhibits the 

initiation of autophagy through the phosphorylation of the Atg13-ULK-FIP200 

complex. Autophagy can be regulated in both mTOR dependent or independent 

manners, depending on the stimuli, as illustrated in Figure 1.2. Besides autophagy, 

mTOR is also a master regulator of protein synthesis, cell cycle control and cell 

proliferation, in accordance with nutrient availability [19]. mTOR kinase exits in 

two structurally and functionally distinct complexes mTORC1 and mTORC2. 

mTOR signalling pathways are frequently hyper-activated in human cancers and 

deregulated in metabolic diseases [20].  

 

In recent years, it was discovered that nutrient-availability signals are relayed to 

mTORC1 by different pathways. AMPK mediates mTORC activities in response to 

glucose availability [21]  and Class III PI3K regulates mTORC according to the 

availability of amino acids and growth factors [22]. 

 

Growth factors are molecules secreted by cells, which stimulate the proliferation 

and/or differentiation of the secreting cells by autocrine signalling, or stimulate 

neighbouring cells by paracrine interactions. Growth factors bind to receptor 

tyrosine kinases (RTKs) on the cell surface and in turn PI(3)K is recruited to the 

cell membrane and activated generating PIP3 (phosphatidylinositol-3,4,5-

trisphosphate). This leads to a signalling cascade at the membrane. Akt, Rheb and 

mTORC1 complex are in turn activated [23].  
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The concentrations of amino acids are the dominating signals for the activation of 

the multi-protein complex mTORC1 [24]. During the final steps of autophagy, 

autophagosomes containing proteins and organelles fuse with lysosomes where the 

macromolecules are broken down to small basic parts. Proteins are digested into 

amino acids by the acidic hydrolases. Recent studies have demonstrated that 

mTORC1 can localise to the outer surfaces of lysosomes and sense amino acids 

within the vesicles [25]. mTOR lysosomal activation pathways are conserved from 

yeast to mammalian cells [26]. The pathway is regulated by Rag GTPases, 

GATOR1 and GATOR2 complexes [27] [28]. Since mTOR is a key inhibitory 

regulator of autophagy, the cells may utilise this mechanism to lower autophagic 

activity in response to lysosomal amino acids.  

 

Lysosomes have been thought to be a cellular factory of degradation and recycling; 

in recent years, works from Sabatini and Ballabio’s labs have demonstrated that 

lysosomal surfaces are also a signalling hub regulating mTOR and autophagy 

activities [27] [29]. In addition, the positioning of lysosomes is regulated by 

nutrient availability and this also plays a role in mTORC1 signalling and autophagy 

activation [30]. mTOR is the best characterised nutrient sensing autophagy 

regulator; other mTOR independent amino acid signalling pathways that negatively 

regulate autophagy have also been reported [31] [32]. The molecular details of these 

mTOR-independent pathways remain to be explored. 

 

Glucose is the primary energy source for mammalian cells [33] and autophagy 

activities are modulated in accordance with glucose availability. AMPK is activated 

when the cells are under conditions of glucose starvation. AMPK activates 

autophagy through two mechanisms - it activates the ULK1 complex through 

phosphorylation and it inactivates mTORC1 by phosphorylating Raptor and TSC2 

(tuberous sclerosis 2) [34]. The activation of the ULK1 complex marks the 

initiation of autophagy (Chapter 1.2.2), which promotes cell survival in the 

presence of energy stress.   

 



 22 

Besides nutrient availability as outlined above, autophagy can also be up-regulated 

by genotoxic stress such as DNA damage and reactive oxygen species (ROS) [35]. 

The p53 tumour suppressor plays important roles in cell cycle regulation, DNA 

damage responses and programmed cell death. It is reported that p53 is lost in over 

50% of cancers [36]. Nuclear p53 and cytosolic p53 have been found to play 

opposing roles in autophagy regulation. In the nucleus, p53 plays the role of a 

transcription factor [37], and in the presence of genotoxic stress, p53 can activate a 

number of autophagy genes including AMPK, ULK1 and ULK 2 [38] [39] [40]. 

Nuclear p53 also activates damage-regulated autophagy modulator 1 (DRAM1) 

[41], which consists of multiple splice variants that regulate autophagy [42]. The 

exact mechanisms through which DRAM1 modulates autophagy remain to be 

elucidated. In contrast, cytoplasmic p53 mainly inhibits autophagy [37]. Moreover, 

p73 is a tumour suppressor transcription factor that belongs to the p53 protein 

family. p73 can also induce autophagy, in a DRAM-independent way [43].  

 

Other autophagy-modulating molecules include Bcl-2 [44] and BNIP3 (Bcl-

2/adenovirus E1B 19-kDa interacting protein 3) [45]. These are also frequently 

involved in cancer. Bcl-2 protein is an important regulator of programmed cell 

death, inhibiting autophagy indirectly through its interaction with Beclin-1, a 

protein essential for autophagy initiation, through BH3 (Bcl-2 homology 3) 

domains. Bcl-2, as an anti-apoptotic protein, is considered to modulate autophagy 

levels to prevent over-eating of the cells and cell death [44]. Autophagy is also 

activated in response to hypoxia. BNIP3 and BNIP3L are two essential elements for 

hypoxia-induced autophagy; they contain BH3 domains that disrupt the interactions 

between Beclin-1 and Bcl-2 [46]. Hypoxia induced autophagy is thought to be a 

pro-survival mechanism utilized by cancer cells.  

 

To summarise as shown in Fig. 1.2, autophagy is constitutively kept at low levels 

when there are sufficient nutrient signals and can be activated by energy stress or 

genotoxic stress.  
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Figure 1.2 Autophagy levels are modulated in response to a variety of stimuli in 

mammalian cells.  

 

Autophagy is inhibited in the presence of sufficient glucose, amino acids and 

growth factors and the nutrient-sensing kinase mTOR is a master inhibitor of 

autophagy. Autophagy is up-regulated by stress signals such as hypoxia, ROS and 

DNA damage.  
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A number of small molecules have been found to activate autophagy; some of them 

have shown potential to be used to treat protein aggregate diseases ( as reviewed in 

[47] and [48]). Rapamycin is an mTOR inhibitor and has been shown to reduce 

protein aggregates through up-regulation of autophagy [49]. Trehalose, an mTOR-

independent autophagy activator, is a chemical chaperone and how it activates 

autophagy is not fully understood. Resveratrol induces autophagy through 

deacetylase sirtuin 1. Other molecules such as Ca2+ channel inhibitors, calpain 

inhibitors and dopamine antagonists have also been shown to inhibit autophagy in 

an mTOR-independent way [48]. Autophagy is an important mechanism that 

mediates the clearance of protein aggregates. These molecules have shown 

protective effects against protein neurodegenerative diseases such as Huntington’s 

[47].  

 

1.2.2 Initiation of autophagy  

 

To date more than 30 genes in yeast [50] have been identified to be directly 

involved in the execution of autophagy, they are known as the Atg gene family. 

Most Atg proteins are well conserved from yeast to mammalian cells and it is likely 

that there are more autophagy related genes expressed in higher eukaryotic cells 

[51]. ULK1 and ULK2 (Unc-51 like kinase) are the mammalian homologues of 

yeast Atg1.  They are found in a stable complex with Atg13 and FIP200 (focal 

adhesion kinase family-interacting protein). As demonstrated in Fig. 1.2, mTORC1 

is a molecular switch for autophagy in response to glucose, amino acids, growth 

factors and DNA damage. mTORC1 phosphorylates all members of the Atg13-

ULK-FIP200 complex during nutrient replete conditions and this leads to the 

inhibition in the kinase activities of the complex. The initiation of autophagy is 

constitutively kept at low levels. The activity of the Atg13-ULK-FIP200 complex is 

controlled by phosphorylation at different sites. During starvation, mTORC1 kinase 

activity is suppressed in response to the lack of growth factor signalling, ULK1/2 

complex is activated through auto-phosphorylation and it in turn  phosphorylates 
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Atg13 and FIP200 [52]. Activated Atg13-ULK-FIP200 complex drives the 

induction of autophagy.  

 

During the initiation of autophagy, double membranes are isolated to form a unique 

structure termed a phagophore. Phagophores elongate to sequester cellular contents 

such as proteins and organelles. There has been much debate on where the 

membrane forming phagophore / autophagosome originates. Based on studies of 

specific markers on autophagosome membranes, it was speculated that it came from 

plasma membrane and/or mitochondrial membrane and/or ER [53] [54]. There were 

no direct experiments demonstrating the origin of autophagosomes, until recently, 

Hamasaki and colleagues have shown compelling direct evidence that 

autophagosomes form at the contact sites between mitochondria and ER [55].  

 

There are a number of genes critical for phagophore formation (Fig. 1.1). Beclin 1 

protein is the mammalian ortholog of yeast Atg6; it provides structural scaffolding 

for autophagosome biogenesis. Beclin 1 was first discovered as an interacting 

partner of anti-apoptotic protein Bcl-2 [56]. Bcl-2 sequesters Beclin 1 through 

interaction with the Beclin 1 BH3 domain. This interaction can be disrupted either 

by competitive replacement by other proteins containing BH3 domains or by 

phosphorylation of Bcl-2 [57]. During starvation, Beclin 1 is released from the Bcl-

2 complex. Free Beclin 1 then forms a core complex with Vps34 and Vps15, two 

proteins involved in vacuolar sorting pathways. Vps34 is a class III 

phosphoinositide-3-kinase (PI3K) [58] and Vps15 is a non-catalytic regulatory unit 

in the complex.  

 

In the nutrient replete state, AMBRA (autophagy/beclin-1 regulator 1) protein binds 

to the PI3K core complex through interaction with Beclin 1, and it tethers the 

complex to the dynein cytoskeleton. AMBRA is activated by ULK1 through 

phosphorylation during autophagy, releasing the PI3K core complex to sites of 

phagophore nucleation [59]. The Beclin core complex can recruit other subunits, 

forming protein complexes that regulate autophagy or other membrane trafficking 
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events differentially. ATG14 is the mammalian homologue of yeast Atg14L, it is 

also known as BARKOR (Beclin 1-associated autophagy-related key regulator) [60]. 

[Vps15-Vps34-Beclin]-ATG14 targets the protein complex to sites of phagophore 

nucleation, now known to be the contact sites between mitochondria and ER. It was 

recently discovered that the activated Atg13-ULK-FIP200 complex phosphorylates 

Beclin-1 on Ser14 to enable autophagy induction of Vps15-Vps34-Beclin]-ATG14 

complex  [61]. The kinase activity of the Vps15-Vps34-Beclin complex converts 

phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI3P), leading to an 

enrichment of PI3P on the inner membrane where the autophagosome is to be 

formed. PI3P in turn recruits the Atg18−Atg2 complex [62]. UVRAG (UV-

irradiation-resistance-associated gene) is another binding partner to the [Vps15-

Vps34-Beclin] PI3K complex. It is mutually exclusive to ATG14L and is also a 

positive regulator of autophagosome formation [63].  These initial events mark the 

initiation of autophagy.  

 

1.2.3 Elongation of autophagosomes during autophagy  

 

During the elongation stage of autophagosome formation, two molecular 

conjugation systems are recruited to the PI3P signalling hub on the inner membrane 

of autophagosomes. They are the Atg12-Atg5-Atg16 complex and the LC3-

phosphatidylethanolamine (PE) complex. Autophagy conjugation systems share 

structural and functional similarities to ubiquitin conjugation pathways during 

proteasomal degradation. Proteasomal target proteins are covalently tagged with 

ubiquitin molecules on lysine residues. Three enzymes are involved in the process, 

namely E1, E2 and E3. E1 is the ubiquitin-activating enzyme, which covalently 

attaches the ubiquitin molecule onto itself. The ubiquitin on E1 is subsequently 

transferred to the intermediate protein E2, before it is finally transferred to the E3 

ubiquitin ligase. As ubiquitination progresses, specificity increases. E3 protein 

mediates target substrate protein recognition and the transfer of ubiquitin from E2 

to target protein [64].  
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Figure 1.3 Two conjugation systems are required for the formation and 

elongation of phagophores into an enclosed autophagosome.  

 

A series of conjugation events converts LC3-I to LC3-II and leads to the formation 

of the Atg12-Atg5-Atg16 complex.  
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As illustrated in Fig 1.3, Atg7 is an E1-like enzyme which activates and covalently 

transfers ubiquitin-like protein Atg12 to an E2-like enzyme Atg10. Atg10 in the 

Atg10-Atg12 complex is then replaced by Atg5. Atg16L (Mammalian homologues 

of yeast Atg16) is subsequently recruited, forming the Atg12-Atg5-Atg16L 

complex. Atg16 targets the complex to the membrane of the phagophore [65]. 

 

In the other conjugation system, newly synthesised LC3 (Atg8 in yeast) was first 

processed by cysteine protease Atg4 forming cytosolic LC3-I [66]. Upon autophagy 

induction, E1 like Atg7 activates LC3-I and transfers it to the E2-like enzyme Atg3, 

Atg12-Atg5 covalently attaches PE to LC3-I, which leads to the formation of the 

LC3-II–PE complex. Atg16L in the Atg12-Atg5-Atg16L complex facilitates the 

localisation of the anchoring LC3-II-PE complex to phagophores. These two 

conjugation systems are crucial for phagophore elongation and enclosure; 

phagophores eventually fuse at both ends to form enclosed autophagosomes. 

 

1.2.4 Fusion of autophagosomes with lysosomes  

 

Completed autophagosomes are transported towards endosomes and lysosomes 

along actin microfilaments and microtubules. Autophagosomes eventually fuse with 

endosomes and/or lysosomes. The fused vesicles are sometimes referred to as 

autolysosomes. The molecules involved in this step are part of the membrane-

trafficking pathways and are less specific to autophagy. Lysosome-associated 

membrane protein LAMP2 and the small GTPase Rab7 are essential for the docking 

and fusion of autophagosomes with lysosomes [67].   

 

Once the cargoes of autophagosomes are degraded in the lysosomes, cellular 

building blocks such as amino acids, carbohydrates and lipids are released from the 

vacuoles into the cytoplasm where they can be picked up and re-used. Lysosomes 

are not exclusive to autophagic pathways; endosome vesicles resulting from 

endocytosis also fuse with autophagosomes or lysosomes.  
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Amino acids are actively transported by proton-powered transporters embedded in 

lysosomal membranes [68] [69], and it is less clear how other building blocks are 

released and recycled. As mentioned previously, mTORC1, the master regulator of 

autophagy, is localised to the surface of lysosomes in response to amino acid 

release. The redistribution of mTORC1 to the lysosomes is essential for mTORC1 

activation and subsequent inhibition of autophagy [27] [70]. This feedback 

mechanism avoids over-activation of autophagy, which can be detrimental to the 

cells.  

 

During nutrient replete conditions, the cellular pool of amino acids is mainly 

mediated by the proteasomes [71].  Inhibition of proteasome leads to shortage of 

amino acids in the cells and an up-regulation of autophagy activities [72]. During 

starvation, autophagy is up-regulated as an adaptive mechanism and is thought to be 

the main source of amino acids. It was reported that during starvation, amino acid 

levels decrease in the absence of autophagy [73] [74].  

 

Macroautophagy involving the formation of autophagosomes can also take place in 

an Atg5/Atg7 independent way [75]. Atg5/Atg7 independent autophagosomes differ 

from conventional autophagosomes, and they orginate from the membranes of 

trans-Golgi and late endosomes [75]. This alternative macroautophagy pathway is 

activated by metabolic stress and is found to play a role in erythrocyte development 

[75]. It may have a role in other physiological processes. It is not completely 

understood how Atg5/Atg7 independent autophagy is regulated or its relative 

importance in different organs. It remains to be determined what is the relative 

contribution of bulk protein degradation through this pathway in the cells.  

 

It has been 20 years since the process of autophagy was first characterised in yeast 

[76]. Since then a wide range of physiological functions of autophagy have been 

discovered and it has been found to be linked with human aging and disease.  
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1.3 The importance of autophagy in human aging and disease. 

  

Considering the important role of autophagy in maintaining cellular homeostasis 

and integrity, it is not surprising that loss of autophagy would perturb this balance 

and result in human diseases. Autophagy plays a role in a number of physiological 

aspects and it has been implicated in a spectrum of pathological conditions 

including neurodegenerative disorders, infections, autoimmune diseases, diabetes,  

muscular diseases and cancer [50]. It is also found to play a role in human aging. A 

summary of the role of autophagy is shown in table 1.  

 

 

 

Health and 

diseases 

Pro or against 

diseases 

Mechanisms 

Aging Pro Autophagy plays a role in the clearance of 

damaged proteins and organelles [77] . 

Against 

 

Exact mechanism unknown. Up-regulation 

of autophagy has been linked to pre-mature 

aging in mouse models [78]. 

Autoimmune 

diseases 

Against 

 

Autophagy is involved in MHCII 

presentation and it maintains T cell and B 

cell homeostasis.  

Cancer Pro Autophagy can be utilised by cancer cells 

to promote cell survival. See Chapter 1.4 

Against 

 

Autophagy maintains cellular homeostasis 

through the removal of damaged proteins 

and organelles. See Chapter 1.4 

Diabetes Pro Fatty acids can up-regulate autophagy 

which contributes to pancreatic β-cell death 

[79]. 
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Against 

 

 Atophagy protects against diabetes-

induced cellular stresses in  β-cells (As 

reviewed in [80]). 

Infections Pro Certain microbes have even evolved 

mechanisms that utilize components of the 

autophagic machinery to facilitate viral 

maturation [81] 

Against Infectious agents are recognized and 

engulfed by autophagosomes which are 

then fused with lysosomes [82]. 

Muscular 

diseases 

Pro Excessive levels of autophagy can lead to 

muscle wasting and myopathies [83].  

Against 

 

Autophagy maintains cellular homeostasis 

through the removal of damaged proteins 

and organelles [83]. 

Neurodegenerat

ive disorders, 

Pro Abnormal clearance of β-amyloid proteins 

through autophagy generate disease 

promoting peptides [84]. 

Against 

 

Autophagy maintains cellular homeostasis 

through the removal of damaged proteins, 

protein aggregates and organelles [83]. 

 

Table 1 Summary of the role of autophagy in disease. 

 

Cells have developed precise mechanisms to rapidly remove misfolded or damaged 

proteins; this is mediated by the proteasome and autophagic pathways. If these 

proteins are not cleared and accumulate in cells, they can lead to increasing 

oxidative stress and cellular toxicity. In general, proteasomes degrade smaller 

proteins which are normally specifically recognised by E3 ligases. Autophagy, on 

the other hand, degrades bulky proteins and aggregates. In general, autophagy 

substrates are less specific, though a number of specific autophagy targets have 

been identified, such as p62 and NBR1. Autophagy is also capable of the 
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degradation of insoluble protein aggregates which can not access the catalytic 

cavity buried within the proteasome structures.  

  

In response to unfolded or misfolded proteins in the ER, mammalian cells are able 

to activate the ER stress response where chaperones are activated to carry out ER-

associated degradation. Autophagic pathways are also up-regulated by ER stress 

activating in parallel with ER stress chaperones [85]. Cells become more sensitive 

to ER stress and display increased cell death upon inhibition of autophagy [85]. 

Misfolded proteins result in neuronal inclusions or plaques in the brain, which are 

responsible for a number of neurodegenerative conditions [86] [87]. Autophagy 

deletion in mouse models has been linked to protein inclusion bodies in the brain 

and neurodegeneration [88] and autophagy has been found to be a crucial factor for 

neuronal development and homeostasis. Autophagy pathways have been linked to 

Alzheimer's disease [89], Huntington's disease [90], Parkinson's disease [91] and 

Creutzfeldt-Jakob disease [92]. These conditions often result from inheritable 

mutations, which lead to protein misfolding and aggregate formation. Autophagy 

plays a protective role against these orders.  A range of small molecule activators of 

autophagy have shown therapeutic potential in mouse models of Huntington’s 

disease [47].  

 

Ageing is a complex and unavoidable process influenced by a number of signalling 

mechanisms and environmental factors. In ageing cells, the accumulation of 

damaged organelles such as mitochondria and proteins is a common feature. Since 

autophagy is a housekeeping process that mediates the degradation of aberrant 

cytosolic proteins and organelles, it is not surprising that it plays a part in the ageing 

process. Genetic studies provide evidence that in Caenorhabditis elegans and 

Drosophila models, elevation of basal autophagy decreases the rate of ageing in 

cells and increases lifespan [93].  

 

Although autophagy is a mechanism of self-digestion, autophagic pathways have 

been utilized as a defense mechanism by mammalian cells. It takes part in the 
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removal of invading microorganisms such as bacteria, viruses, protozoa and 

parasites [94] [95] [96]. Autophagy has been found to be up-regulated during 

infections. Infectious agents are recognized and engulfed by autophagosomes which 

are then fused with lysosomes. For example, when inside cells, the bacterium 

Legionella pneumophila which is responsible for Legionnaires' disease forms 

vacuoles, the vacuoles are recognized and ubiquitinated [82]. The vacuoles then 

bind to specific autophagy adaptor protein p62/SQSTM1 and are engulfed [82]. 

However, under selective pressure, certain bacteria and viruses have developed 

strategies to antagonize autophagy functions to avoid removal. The Bacterium 

Shigella flexneri avoids recognition by autophagic pathways and hence removal by 

expressing modified surface proteins [97].  Some microbes have even evolved 

mechanisms that utilize components of the autophagic machinery to facilitate viral 

maturation [81]. A better understanding of the roles of autophagy in infection would 

be beneficial to the studies of autophagy in other diseases such as cancer and also to 

the development of anti-bacterial or anti-viral therapies. 

 

Aberrant autophagy activity has been linked to the pathogenesis of autoimmune 

diseases such as multiple sclerosis (MS) [98] and lupus [99]. These autoimmune 

diseases are characterized by deregulated immune responses against the body’s own 

cells or tissues. Rapamycin, which activates autophagy through inhibition of 

mTORC1, displays immunosuppressant properties. It has shown therapeutic 

potential to treat lupus in pre-clinical studies [100].    

 

A number of mouse models, especially genetic knockout models, have been 

established to investigate the roles of autophagy in human pathology. Studies in 

mouse models have confirmed the links between autophagy and these diseases 

described above. Targeted deletion of autophagy essential genes 

Atg5 or Atg7 in mice lead to an accumulation of poly-ubiquitinated proteins in 

neurons and in turn lead to neuro-degeneration. Rapamycin, an autophagy inducer, 

has been found to prolong the lifespan of mice. Female mice have been found to 

live longer by 14% and male 9% when rapamycin administration starts at 600 days 
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of age [101]. p62 knockout mice also presented accelerated aging, and defective 

mitochondrial functions and increased oxidative stress were detected in these mice 

[102]. Studies in mouse models have also confirmed that autophagy is crucial for T 

cell and B cell survival. Mice with Atg5 or Atg7 deficiency have elavated amount 

of mitochrondria in T cells which lead to cell death [103]. Targeted deletion of Atg5 

in B cells also lead to increased B cell death [104]. Targeted ablation of Atg7 in 

muscle result in smaller myofiber in mice and the degenerative phenotype is 

manifested with age [105]. Moreover, GFP-LC3 transgenic mice have been 

generated by Mizushima and colleagues, the detectable LC3 punctate corresponds 

to autophagic activities [106].  

 

Since the first genetic link was established between autophagy and cancer in 1999, 

when Beclin 1 gene was found to be frequently deleted in human cancers [56], there 

has been an explosion in autophagy research in the context of cancer. Like most 

areas of scientific exploration, the more knowledge we gain in the field, the more 

we realize how much work remains to gain full understanding of the role autophagy 

plays in cancer.  

 

1.4 The complex role autophagy plays in tumourigenesis  

 

The functions and outcome of autophagy in cancer are highly context specific; 

paradoxically it can either promote cancer cell survival [107] or cancer cell death 

[108]. For this reason, reports have referred to autophagy as ‘a double edged sword’ 

or ‘janus-faced’ [109, 110]. Understanding the exact role of autophagy in cancer 

under each context has now become a priority.  

 

Cancer development is a highly complicated, multi-step process where normal cells 

go through a series of aberrant transformations that involve a global change in gene 

expression, into malignant cells that proliferate uncontrollably and invade into other 

parts of the body [111]. Cancer itself is a diverse group of diseases, and there are 

more than 100 distinct types of cancer [7].  The carcinogenesis of each cancer is 
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varied; only 10% of all cancers are due to germline mutations such as in genes such 

as TP53 or BRCA1/2 genes, the majority of cancers resulting from somatic 

mutations [112]. Oncogenesis is a multifactorial process; cancer epidemiology 

studies have revealed a number of risk factors such as ethnicity, diet, hormones, 

infections, weight, and radiation. Each type of cancer has a different set of risk 

factors.  

 

Cancer in general can be divided into three critical stages: initiation, promotion and 

progression. To become neoplastic, normal cells first acquire insensitivity to growth 

suppressors and undergo uncontrolled over-growth [7]. Tumour cells are able to 

evade programmed cell death and achieve replicative immortality. Primary tumours 

can migrate from the site of origination and invade into a secondary part of the body. 

Metastatic cancer can establish itself by recruiting blood supply and modify 

surrounding cells to form a tumour microenvironment [111]. As summarized in 

Figure 1.4, autophagy, being an important catabolic adaptive mechanism, plays 

important and complex roles in nearly all aspects of carcinogenesis.    
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Figure 1.4 Autophagy plays important and paradoxical role in every stage of 

carcinogenesis 

 

Autophagy is active constitutively at basal levels to maintain cellular homeostasis 

and limit genomic damage. These autophagic functions are thought to inhibit 

primary tumour formation. In order for tumour cells to invade into a secondary 

location, cancer cells need to detach from the primary tumour. Anoikis, which is a 

type of programmed cell death activated when cells are detached from the 

extracellular matrix (ECM), can occur. Autophagy has been found to promote 

cancer cell survival against anoikis. Paradoxically, autophagy inhibits angiogenesis 

which is needed by a solid tumour to recruit increased blood supply. Finally, 

autophagy can be a pro-survival mechanism for cancer cells to deal with metabolic 

stress especially in regions where blood supply is limited.  
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1.4.1 Autophagy plays a role of tumour suppressor during oncogenesis  

 

Autophagy was first linked with cancer through genetic studies. It was found that a 

number of autophagy genes are frequently lost in certain types of cancers. For 

example, human BECN1 (a gene encoding beclin 1) is hemizygously-deleted in 

around 50% of breast, ovarian and prostate cancers [113] [56]. Autophagy and 

apoptosis share certain upstream signals and Beclin 1 is thought to be one of the 

major convergence molecules for the two processes. Monoallelic deletion of beclin 

1 in mice increased the incidence of cancer including hepatocellular carcinoma, 

lung carcinoma and lymphoma [114]. When beclin 1 was stably transfected into 

MCF-7 cells, autophagy activities were up-regulated [56]. The tumourigenesis of 

these cells was decreased after injection in nude mice [56].  

 

A number of autophagy executor genes, ATG2B, ATG5, ATG9B and ATG12 have 

also been linked to carcinogenesis [115]. It was discovered that frame-shift 

mutations in these ATG genes with mononucleotide repeats are common in gastric 

and colorectal carcinomas with microsatellite instability [115]. Tumour suppressor 

genes prevent the cells from progressing to cancer, and pre-malignant cells with 

genetic instability frequently develop loss-of-function mutations in these genes. The 

fact that a number of autophagy genes are lost in cancers indicates that autophagy 

can act as a tumour suppressor.  

 

Several genetic studies in mouse models also show that autophagy can prevent 

tumour formation. For example, the lack of certain autophagy genes such as BECN1 

[114] can lead to cancer. In contrast, Beclin 1 over-expression, which leads to up-

regulation of autophagy, can inhibit tumour development [56]. Also, mice form 

benign liver adenomas after either mosaic deletion of Atg7 specific in the liver or 

mosaic deletion of Atg5 [116].   

 

Autophagy can inhibit the initiation of tumourigenesis through limiting genomic 

instability and inflammation [107]. Defective proteins and mitochondria generate 
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excessive free radicals that saturate the cells ability to scavenge them and these free 

radicals lead to reactive oxygen species and oxidative stress. Free radicals can 

attack DNA molecules, leading to structural lesions. If unrepaired, these DNA 

lesions result in genetic mutations which may eventually contribute to genetic 

instability [117]. Normal cells undergo a series of genetic changes to become 

transformed cancer cells and genetic instability is one of the most important factors 

for carcinogenesis. For pre-malignant cells, genetic instability enables them to 

diversify, evolve and finally to acquire mechanisms to reach malignancy [7].  

 

A few mechanisms have been proposed to explain how autophagy acts as a tumour 

suppressor. Autophagy mediates the degradation of mitochondria in a process 

referred to as mitophagy, accumulation of defective mitochondria contributes 

towards increased oxidative stress and carcinogenesis [118]. Autophagy regulates 

p62 levels in the cells and loss of autophagy leads to p62 accumulation, which 

contributes to tumourigenesis [119]. Autophagy also limits inflammation and 

mediates oncogene-induced senescence [119].  

 

Mitochondria in the cells are specifically turned over by autophagy as a way of 

controlling the amount of mitochondria and also to remove damaged ones. The 

selective engulfment of mitochondria by autophagy is refered to as mitophagy.  

Parkin is a ubiquitously expressed E3 ligase that plays a role in Parkinson’s disease. 

It is activated and recruited to damaged mitochondria by PINK1 (PTEN-induced 

putative kinase protein 1) protein [120]. The outer layer of the mitochondrial 

membrane is ubiquitinated by Parkin and p62 is also recruited to mitochondria to 

mediate mitophagy [121]. The expression levels of parkin have been found to be 

down-regulated or ablated in a number of cancers including ovarian and breast 

cancers and leukemia [122].  It should be noted that the tumour suppressive role of 

parkin may also be due to its role in the regulation of glucose metabolism. The loss 

of parkin up-regulates glycolysis and inhibits mitochondrial respiration, resulting in 

the Warburg effect [123]. Defective mitophagy is directly linked to tumourigenesis 
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in mouse models [124]. ROS accumulates in mitophagy deficient cells and in turn 

this promotes genetic instability and cancer.  

 

p62, also known as sequestosome-1 or SQSTM1 is a cytoplasmic protein with 

multiple functions. It contains a ubiquitin binding domain and an LC3 binding 

domain [125]. In general autophagy is a bulk degradation process that non-

selectively engulfs organelles and cytoplasm. p62 is a autophagy receptor molecule 

that can mediate selective autophagy [125]. It can act as a ubiquitin-binding 

chaperone that recognises and sequesters specific ubiquitinated cargoes destined to 

be degraded by autophagy. For example, p62 has been found to surround mutant 

huntingtin aggregates and reduce the cytotoxicity of protein aggregates by 

promoting their autophagic degradation [126]. p62 is also a regulator of 

mitochondrial dynamics and functions [127] [128]. The degradation of p62 itself is 

mediated by autophagy, and the lack of autophagy leads to accumulation of p62 in 

the cells [129]. dIn healthy cells, p62 serves as a protective scavenger, removing 

potentially toxic protein waste (e.g. misfolded proteins) from the cells through 

autophagic degradation; however the beneficial role of p62 is reversed when there 

are elevated levels of p62 in the cells. Excessive intracellular p62 due to loss of 

autophagy has been found to have a number of detrimental effects on the cells. It 

has been found to be responsible for the formation of ubiquitin-positive protein 

aggregates in the cells, which correlate closely with neurodegeneration, liver injury 

and hepatocellular carcinoma [130]. Accumulation of p62 has also been linked with 

increased ROS production which promotes endoplasmic reticulum (ER) stress and 

accumulation of DNA damage [119].  

 

Nrf2 is ( nuclear factor-erythroid 2-related factor-2) is a transcription factor that 

plays dual roles in tumourigensis. It can reduce ROS levels and protect the cells 

from oxidative damages, but it also assists cancer cell survival and progression [131] 

[132] [133]. Nrf2 protein is constitutively turned over in the proteasomes, by 

binding to an adaptor protein of the ubiquitin ligase complex - Keap1 (kelch-like 

ECH-associated protein 1) [134]. p62 interacts with Keap1 through Nrf2-binding 
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site,  excessive p62 disrupts the interactions between Keap1 and Nrf2, leading to the 

stabilization of Nrf2 [131]. Over activation of Nrf2 proteins, through inactivation of 

Keap1 or over-expression of p62, have been reported in a number of human cancers 

[135].  

 

Moreover, p62 is often found to be up-regulated in human cancers and this is 

thought to promote tumorigenesis [119]. In this regard, the link between p62 

accumulation from defective autophagy and oncogenesis was also shown in a study 

where p62 knock-out mice were found to be protected from Ras oncogene-induced 

lung carcinomas relative to Atg7f/f counterparts [136].  

 

The lack of autophagy leads to increased inflammation. Inflammation is a localized 

protective mechanism in tissues of higher eukaryotes in response to irritation, injury 

or infection. During inflammation, blood vessels are dilated and the rate of blood 

flow increased. Leukocytes and macrophages migrate through the blood vessels into 

areas of inflammation in order to clear away injured tissues or infections. 

Inflammation is now thought to play important roles during the multiple stages of 

carcinogenesis [112][111]. Chronic inflammation caused by bacterial infections, 

viral infections, tobacco smoking [137] and obesity increases cancer risk [138, 139]. 

Multiple kinds of innate immune cells are often found in tumours. These immune 

cells produce cytokines, chemokines, growth factors and ROS, which contribute to 

uncontrolled cell growth and genetic instability and hence promote tumour 

progression. One of the hallmarks of cancer is its ability to evade recognition by 

immune cells [7] and it is generally accepted that in more established tumours, the 

inflammation and immune responses are more pro-tumourigenic.  In an 

inflammatory microenvironment cancer cells have increased growth rate and 

mutation rates [140]. 

 

Autophagy may protect against tumorigenesis by limiting chronic necrosis and 

inflammation. Hepatocellular tumours due to disruption of the BECN 1 gene display 

increased inflammation which is thought to promote tumourigenesis [114]. In the 
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context of cancer, autophagy plays a role in inflammation through at least two 

mechanisms.  

 

Firstly, cells undergoing apoptosis are cleared efficiently by phagocytes in normal 

tissues, without the activation of the immune systems [141]. If these apoptotic 

corpses remain un-cleared, they can potentially lead to necrosis. Necrotic cells  

release signals to recruit inflammatory cells of the immune system and this 

increases tumour-promoting potential [112]. Autophagy plays a role in the 

engulfment of the apoptotic corpse, thereby limiting inflammation. Secondly, 

tumour cells often acquire defective apoptotic pathways to evade cell death. If 

autophagy is down regulated in these cells, it also leads to necrosis [142].  In mice 

with Atg5 deletions, their retinas and lungs display infiltration of inflammatory 

cells due to a defect in apoptotic corpse clearance [143]. Autophagy pathways are 

required for the release of signals by apoptotic cells to attract engulfment, a process 

which limits inflammation. The autophagy pathway has also been reported to 

negatively regulate inflammatory signalling, for example, caspase 1 activity and IL-

1β production, both of which are pro-inflammatory signals that can be regulated by 

autophagy [144-146].  

 

Autophagy’s role in innate and adaptive immune responses is implicated in 

immuno-surveillance for pre-malignant cells. Immuno-deficient mice are prone to 

spontaneous and chemically induced cancers [147]. Patients with prolonged 

treatment of immunosuppressant drugs after transplant operations have a markedly 

higher chance of developing cancer [148]. Autophagy is crucial for T cell 

development, proliferation and differentiation [149], and is important in 

macrophage functions [150]. Autophagy is also required for antigen presentation on 

MHC II (major histo-compatibility complex class II) molecules.  

 

Additionally, autophagy contributes towards tumour suppression by playing a role 

in inducing senescence. Senescence is a phenomenon where diploid cells withdraw 

from cell cycle progression and cease proliferation. Alongside programmed cell 
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death, cellular senescence acts as a barrier to oncogenesis [151]. Senescence can be 

triggered by DNA damage or the activation of oncogenic signals, and autophagy is 

found to mediate the establishment of oncogene-induced senescence [152].  

 

All studies described above provide both genetic and mechanistic evidence that 

autophagy can act as a tumour suppressor, especially in the initial stages of 

tumourigenesis. As mentioned before, constitutively active autophagy functions to 

provide cells with nutrients and removes defective proteins and organelles, assisting 

cells to deal with stressful metabolic environments. Therefore it is not surprising 

that autophagy plays a role in promoting tumour formation. There are studies 

providing evidence that autophagy pathways can be utilized by cancer cells to 

promote survival and establish malignancy, as reviewed in the following paragraphs 

(Chapter 1.4.2).   

1.4.2 Autophagy can also promote tumour progression 

 

During the initial stages of oncogenesis, cancer cells undergo uncontrolled 

proliferation and avoid programmed cell death; solid tumours frequently encounter 

harsh environments such as hypoxia and the lack of nutrients. Autophagy is 

frequently up-regulated in solid tumours, especially in the core region of the tumour. 

In less perfused areas, there is limited availability of nutrients (growth factors, 

amino acids etc) and oxygen [153]. Autophagy is thought to maintain energy 

metabolism and help cancer cells deal with the harsh conditions until the 

environment is improved. In this regard autophagy can act as a survival mechanism 

promoting cancer cell survival and propagation [154].   

 

Certain cancer cell lines display higher basal autophagic activities to maintain their 

energy balance. When these cells encounter stressful environments, they often fail 

to elevate autophagy activities much further. They are described to be addicted to 

autophagy pathways [155]. For example, pancreatic cancers have constitutively 

high levels of autophagy and they require autophagy to survive and progress. These 

pancreatic cancer cells are exquisitely sensitive to autophagy inhibition [156]. RAS 
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is a well characterised oncogene that promotes cancer growth; RAS signalling also 

activates autophagy and cancer cells driven by mutant RAS depend on autophagy to 

promote oncogensis.  There is a synthetic lethal situation when autophagy is 

inhibited in cancer cells with RAS hyper-activation [157].  

 

Cancers do not progress and metastasize in isolation; they require the appropriate   

tumour microenvrioment which is characterized by the presence of a variety of 

factors including immune cells, endothelial cells, fibroblasts and ECM (Extra 

Cellular Matrix) [158]. Tumour microenvironment plays a decisive role in cancer 

prognosis and responses to therapeutics. Autophagy has been found to influence 

nearly every aspect of the tumour microenvironment:  Autophagy in endothelial 

cells is found to mediate hypoxia induced angiogenesis [159]. It acts as a mediator 

in both adaptive and innate immune responses [160]. Autophagy limits 

inflammatory responses and necrosis (Chapter 1.5.1), however it is found that 

autophagy can act as an alternative secretary pathway for inflammatory molecules 

(e.g. chemokines and cytokines) and ECM modulators, in a process termed 

‘autosecretion’ [161] [162]. Autophagy-mediated cancer cell senescence limits 

oncogenic potential; however, the autophagy-senescence transition in cancer-

associated fibroblasts has been found to promote tumour growth [163]. These 

fibroblasts undergo constitutively active mitophagy and they undergo elevated 

aerobic glycosis producing and secreting ketone bodies, lactic acid and fatty acids 

that fuel neighbouring cancer cell growth [164]. 

 

The oncogenic role autophagy plays is supported by several genetic studies. For 

example, depletion of FIP200, a gene essential for autophagy, inhibits RAS 

oncogene-driven mammary carcinogenesis [165]. As mentioned previously, mice 

with mosaic deletion of Atg5 or deletion of Atg7 in the liver leads to benign 

tumours. It should be noted that these tumours do not progress into malignant 

adenocarcinoma or acquire the capacity to metastasize. This indicates that cancer 

cells may require autophagy to become more established and achieve malignancy 

[116]. 
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1.4.3 Autophagy promotes metastasis  

 

Metastatic cancer is the main cause of lethality in cancer patients [166]. A number 

of studies have demonstrated that autophagy plays a role in metastasis. For example, 

recent work from our lab using a 3D organotypic model demonstrated that the 

inhibition of autophagy in cancer cells impairs their invasiveness [167].  DRAM1, a 

p53 target gene that regulate autophagy and p62, a selective autophagy substrate 

have been demonstrated to regulate cell motility and invasions in glioblastoma stem 

cells [168].  

 

TNF-related Apoptosis Inducing Ligand (TRAIL) mediates death-ligand-induced 

apoptosis in cells and it is found to be crucial for the suppression of metastasis 

[169]. Autophagy contributes to the resistance to TRAIL mediated cell death in 

cancer cells [170].  

 

In order to metastasize, cancer cells from primary tumours need to detach from 

extracellular matrix (ECM), migrate through blood vessels and invade into 

secondary tissues, where they can settle, expand and colonize. When normal cells 

are detached from the ECM, they undergo a type of apoptosis termed anoikis [171]. 

Cancer cells acquire the capacity to evade anoikis and achieve anchorage-

independent growth. A number of pathways have been identified to be involved in 

this critical step of tumourigenesis, including aberrance in Ras and PI3K cell 

proliferation signal pathways [171]. Autophagy is not only able to assist cancer cell 

survival in the blood stream by maintaining energy balance; it also has been found 

to be activated during anoikis and it is thought to be one of the mechanisms that are 

utilized by cancer cells to promote metastasis [172]. Isolated metastasising cancer 

cells eventually establish interaction with ECM in a distant organ.  

 

Some cancer patients can develop recurrent metastatic cancer after a dormancy 

period that can last from years to decades. The cause of this can be explained by 

tumour cell dormancy [173]. Primary tumour cells can metastasize to distant 
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secondary sites and enter a dormancy period before resuming malignancy. These 

cells are difficult to detect and can evade conventional anti-cancer therapies that 

target rapidly growing cancer cells [174]. Autophagy has been shown as a pro-

survival mechanism for cancer cells in dormancy [175].  

 

In summary, autophagy limits tumour initiation by maintaining cellular homeostasis, 

limiting genetic instability and inflammation; however it promotes tumour 

establishment and progression by enabling cancer cells to cope with the harsh 

environment during cancer development and to evade cell death [176].  

 

1.5 The role of autophagy in cancer therapeutics 

 

1.5.1 Autophagy is frequently up-regulated by cancer therapeutic drugs. 

 

The important role autophagy plays in carcinogenesis provides the possibility that 

autophagy may be targeted for cancer therapy. However, the role of autophagy in 

cancer therapeutics is also highly context dependent. It may be a pathway induced 

by cancer therapeutics to achieve drug efficacy or it may be a pro-survival 

mechanism promoting drug resistance.  

 

A variety of cancer therapeutic treatments have been shown to up-regulate 

autophagy in cancer cells (Fig. 1.5).  

 

These autophagy inducing treatments include conventional DNA damaging agents 

such as IR [177], etoposide and camptothecin [178]; novel targeted drugs such as 

the estrogen receptor inhibitor taxomifen, anti HER2 receptor antibodies, tyrosine 

kinase inhibtors and proteasome inhibitors [179]. In some cases, autophagy levels 

are elevated as a secondary adaptive mechanism struggling cancer cells use to 

promote survivial. Increasing number of novel anti-cancer drugs up-regulates 

autophagy by targeting the PI3K/Akt/mTOR pathways [180] and this is an 

undesired effect that enables cancer cells to cope with stressful environment. 
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Figure 1.5 Anti-cancer treatments frequently lead to autophagy activation. 

 

(Information from this figure was compiled from references [177-179]). The 

diagram illustrates that current anti-tumour drugs are developed against a number of 

pathways. Through various anti-cancer mechanisms, these anti-cancer drugs (In 

green circles) frequently up-regulate autophagic activities. Generally it is thought 

that autophagy in this context was induced by cancer cells to deal with the toxicity 

and promote cell survival. Cancer cells have been found to be hyper-sensitive to 

autophagy inhibitors such as chloroquine (CQ) and 3-Methyladenine (3-MA) (In 
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red circles) in combination with other anti-cancer drugs. CQ has been selected to 

enter clinical trials as part of anti-cancer therapy.   

1.5.2 Certain cancer therapies require autophagy to achieve maximal efficacy  

 

Autophagy can assist cells to cope with cytotoxicity until the environment has 

improved but it does not maintain cell viability in a sustainable way. Autophagy is a 

catabolic mechanism that recycles energy and cellular building blocks through self-

eating. Over stimulation of autophagy can lead to cell death. The pro-death 

properties of autophagy are thought to play a positive role in anti-cancer treatments. 

As mentioned previously, many cancer cells develop defects in apoptotic pathways 

to evade cell death during their transformation. Autophagy induced by anti-cancer 

treatments can serve as an alternative mechanism to elicit cell death in cancer cells 

[9]. For example, triptolide, an agent that efficiently inhibits pancreatic cancer cell 

growth, is found to destroy cancer cells through the induction of autophagy [8].   

 

Cancer therapies induce cell death, and the dying cells may act as signals that 

recruit the immune system to target residual tumour cells [181]. Certain drugs such 

as anthracyclines and oxaliplatin are found to induce immunogenic cell death and 

these agents require the immune system to be effective [182]. ATP is released by 

dying cancer cells following cancer treatment, and it is critical for chemotherapy 

induced immune response against cancer cells [183]. Autophagy in cancer cells has 

been found to be a crucial factor for their immunogenicity [6]. A study by Guido 

Kroemer and colleagues demonstrated that only autophagy proficient cancer cells 

can release ATP when they undergo cell death and autophagy deficient cancer cells 

fail to attract dendritic cells and lymphocytes into the tumour [6].  

 

Rapamycin (and its derivatives) have shown promising therapeutic potential for 

cancer treatment because of their anti- proliferation and immunosuppressant 

properties [184]. Rapamycin leads to up-regulation of autophagic activities through 

mTOR inhibition; a number of recent studies have shown that autophagy is in fact a 
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critical factor for the anti-tumour effects of rapamycin [185] [186]. Cytotoxicity 

inflicted by rapamycin in cancer cells is attenuated when autophagy is inhibited.   

 

In summary, autophagy is up-regulated by a number of chemotherapeutic drugs and 

certain drugs require autophagy to achieve maximal efficacy. A screening study 

carried out in Kroemer’s team tested for autophagy, apoptosis and necrosis 

induction of chemotherapeutic drugs. 59 out of 1400 drugs potently activate 

autophagy in cancer cells, however none of these drugs kill cancer cells via 

autophagy [187]. The study indicates that in most cases, autophagy may be a cyto-

protective mechanism. It may be postulated that inhibition of autophagy in 

combination with these drugs would not reduce drug efficacy during in 

chemotherapy and actually may enhance synergistic killing of cancer cells.  

 

1.5.3 Autophagy as a cytoprotective mechanism promoting cancer survival 

during cancer treatment  

 

Cancer cells have a resilient nature and can develop drug resistance through a 

number of pathways, and autophagy overall is a pro-survival response that assists 

cells to deal with a range of cytotoxic insults. In some cases autophagy is induced 

as a pro-cancerous mechanism during cancer treatments, and it can be exploited by 

tumour cells to promote survival and recovery against cancer therapeutic drugs 

[188].  

 

There has been compelling evidence that inhibition of autophagy promotes cancer 

cell sensitivity to certain cancer therapeutic treatments such as IR, tyrosine kinase 

inhibitors [189] and Src kinase inhibitors [190]. Moreover, although autophagy can 

inhibit tumour initiation, it promotes tumour progression and metastasis. These 

observations underscore the use of autophagy inhibitors as adjuvant anti-cancer 

therapies.  
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3-MA (3-methyladenine) and wortmannin are PI3K kinase inhibitors which block 

autophagy initiation. These agents have been evaluated in pre-clinical studies and 

have been found to potentiate the sensitivity of cancer cell lines to drugs such as 5-

FU and cisplatin [191] [192]. However these agents also affect other physiological 

processes and have a relatively high cytotoxicity at clinically relevant 

concentrations.  

 

Chloroquine is a drug that has been widely used to treat malaria and it is also used 

as an anti-inflammatory agent against rheumatoid arthritis and lupus. It is is well 

tolerated by non-transformed cells. Because autophagy is utilised by cancer cells as 

a survival mechanism and many current cancer therapies have been found to 

activate autophagy, the inhibition of autophagy may be beneficial to cancer patients. 

In fact, a correlation study carried out in the late 80s revealed that the use of anti-

malarial chloroquine was associated with lowered incidence of Burkitt lymphoma, 

which was an endemic in Africa around that time [193].  

 

There is increasing amount of evidence that chloroquitin has potentials as a death-

sensitising agent when used in combination with other cancer therapies [194]. A 

number of clinical trials have been carried out or in progress using the lysosomal 

inhibitor hydroxychloroquine (a derivative of chloroquine) as a part of cancer 

treatment (Details available at ClinicalTrials.gov). So far chloroquine is thought to 

be promising as a novel anti-cancer treatment [195]. For example, a randomised, 

and double blind trial revealed that chloroquine when used as combination therapy 

for glioblastoma multiforme, the patients survival time is doubled comparing to 

placebo control [195]. Since chloroquine inhibits all lysosomal functions and also 

has other functions in the cells such as activation of ATM and immnosuppression. 

The exact mechanism of anti-cancer properties of chloroquine is unknown but one 

likely mechanism is through autophagy inhibition. Whether the central anti-tumour 

action of chloroquine is due to the inhibition of autophagy or other functions of 

chloroquine remains to be determined.  
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In summary (Fig. 1.4), autophagy is frequently up-regulated by anti-cancer 

therapeutics and can assist drug resistance in cancer cells. Autophagy inhibiting 

drugs have shown promising effects in clinical trials. However in some scenarios, 

autophagy facilitates efficient killing by anti-cancer drugs. Therefore it is important 

to investigate the role autophagy plays during cancer treatment in a context 

dependent way, and to inhibit autophagy only when it is playing a pro-survival role.  

 

Because of its importance in tumourigenesis as well as cancer therapeutics, a better 

understanding of the functions of autophagy under specific contexts is of great 

importance. This is becoming one of the main areas for cancer research. Another 

critical area of cancer research is the DNA damage response. DNA damage 

response pathways are frequently altered in cancer cells and a great proportion of 

current drugs used to treat cancer are DNA damaging agents. Studies of DNA 

damage response not only helps to understand the carcinogenesis process, but may 

reveal additional therapeutic approaches in cancer treatment.   

 

Autophagy is a cytoplasmic process, whereas DNA damage and repair take place in 

the nucleus. There is an increasing amount of evidence that the two processes are 

closely linked. Under normal circumstances, autophagy is found to play a role in the 

maintenance of genomic integrity. It has been reported that depletion of autophagy 

leads to increased DNA damage in the cells. Cells lacking Atg7, a gene essential for 

autophagy, is reported to accumulate DNA aberrations including increased double 

strand breaks, polyploid nuclei and gene amplification [1] [2]. When the cells are 

challenged with DNA damaging agents, such as chemotherapeutic drugs, autophagy 

is frequently reported to be up-regulated [196]. As mentioned previously, inhibition 

of autophagy potentiates cancer cell sensitivity to DNA damaging drugs.  

 

The exact mechanisms how loss of certain autophagy genes such as Beclin1, Atg5 

and Atg7 lead to tumours remain to be determined. Because autophagy 

constitutively removes damaged proteins and organelles to minimise the production 
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of ROS in the cells, it is speculated that lack of autophagy leads to an increased 

incidence of DNA damage.  
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1.6 DNA damage response and cancer genetics  

 

Genomic integrity is crucial for higher life forms, since genetic mutations or 

chromosomal instabilities can lead to diseases which can be inheritable. One of the 

most distinctive traits of cancer cells is genetic instability, and the genetic alteration 

enables tumour cells to acquire a series of functions. These gain of functions are 

referred to as ‘the hallmarks of cancer’ [111]. Genetic instability is driven by a 

number of factors such as DNA damage accumulation, defective DNA repair 

machinery, and failure to prevent mitotic entry where DNA lesions get passed to 

daughter cells.     

 

In our body, genomic integrity is constantly being challenged. As each cell acquires 

1000 to 1,000,000 DNA lesions every day [197]. These lesions can block 

replication fork formation during DNA synthesis and can block transcription in the 

short term. If left unrepaired, these lesions induce genomic mutations and 

aberrations [198]. Some of the lesions are due to environmental factors such as 

untra-violet radiation (UV) and heavy metals. Some lesions are caused by 

physiological processes, for example, DNA replication apparatus such as DNA 

polymerases occasionally mismatch nucleotides during replication, and reactive 

oxygen species produced during the oxidative respiration chain can cause damage 

to the DNA as well. Luckily for most of us, most of this DNA damage is repaired 

efficiently by our complex DNA repair pathways. For difficult to resolve lesions, 

the cell can alternatively activate programmed cell death pathways. Occasionally, 

some DNA lesions escape being identified by DNA repair mechanisms and result in 

mutations. Humans have a mutation rate of around 1x10
-4

 - 1x10
-6

 per gamete for a 

given gene [199].  

 

The links between DNA damage accumulation and carcinogenesis have long been 

established. Two notable examples are skin cancer from over-exposure to the sun 

and lung cancer from tobacco smoking. UV radiation from the sun [200] causes 

mainly two types of lesions - cyclobutane pyrimidine dimers and 6-4 photoproducts. 
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Both of these are bulky in size and can lead to distortions in the helical DNA 

structure, hindering transcription and replication [201]. Carcinogens from tobacco 

such as polycyclic aromatic hydrocarbons and aromatic amines are able to react 

with DNA molecules directly or through intermediate metabolites [202].     

 

Defects in the DNA damage response (DDR) are responsible for certain human 

genetic disorders and people with these genetic traits are commonly pre-disposed to 

cancer. Notable disorders include ataxia-telangiectasia (AT), a neuro-degenerative 

motor disease due to the cell’s failure to resolve oxidative damage in the brain. 

Patients with AT mutations have defective ATM protein (more details will be 

covered in the next section). Xeroderma pigmentosum (XP), a condition 

characterized by extreme sensitivity to sunlight is due to a deficiency in the ability 

to repair damage caused by ultraviolet (UV) damage in the skin. People with AT 

have a 25% higher chance of developing cancer in their life [203] and fewer than 

40% of people with XP survive beyond the age of 20 [204]. Malignant melanoma 

and squamous cell carcinoma are the two most common causes of death in XP 

patients [204]. Besides the genetic disorders outlined above, a number of cancer 

specific susceptibility genes have been identified. Tumour suppressor gene TP53 

which encodes p53 is mutated or lost in a large proportion of human tumours [205]. 

People with mutations in BRCA genes are predisposed to various forms of cancers, 

especially breast cancer and ovarian cancer. BRCA 1 and 2 (Breast Cancer 1 and 2) 

are tumour suppressor proteins involved in the process of homologous 

recombination DNA repair process [206].  
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1.6 DNA damage response network  

 

Mammalian cells have evolved a complex set of DNA repair machinery dealing 

with the high incidence of lesion formations. There are three main aspects of DNA 

damage response; DNA repair, cell cycle arrest and apoptosis. They are tightly 

coordinated to minimise the amount of heritable mutations. Defects in these 

pathways can lead to human diseases including cancer, as discussed in the previous 

section.    

 

In the event of DNA damage, cells activate their cell cycle checkpoints to prevent 

DNA replication and also to provide an opportunity for the cells to repair the 

lesions. If the lesions fail to be repaired, programmed cell death can be activated. 

Checkpoint pathways share many common components with DNA repair response. 

Two master kinases, ATM and ATR are responsible for downstream signalling 

cascades that eventually lead to cell cycle arrest and DNA damage repair.  

1.6.1 Cell Cycle Checkpoints   

 

The cell cycle is tightly controlled in mammalian cells to ensure correct cell 

division and genomic integrity. If disrupted, potentially harmful genetic defects 

may be passed on to daughter cells.  A series of tightly regulated signalling events 

take place to arrest the cell cycle upon DNA damage, as illustrated in Fig. 1.6.  
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Figure 1.6 Cell cycle checkpoints in response to double strand breaks are 

mediated by ATM-Chk2, ATR-Chk1 and p53 pathways. 

 

(Adapted from [207]) Double strand breaks on DNA molecules trigger a series of 

signalling events leading to activation of cell cycle checkpoints.  
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ATM is one of the first molecules to be activated in response to double strand DNA 

breaks. Under normal conditions, ATM kinase is in its inactive dimer form. It can 

rapidly sense double strand breaks and auto-phosphorylate at Ser1981, which 

causes structural changes and promotes dimer dissociation into active monomeric 

ATM [208]. Scaffolding complex MRN (MRE11, Rad50 and NBS1) functions as a 

docking site for ATM to the site of double strand breaks (DSB) [209] . ATM kinase 

has multiple substrates including histone H2AX, Chk2 and p53. In terms of cell 

cycle arrest, ATM activates the p53 tumour suppressor protein by phosphorylation 

at multiple sites (Ser15, Ser46 and Ser9) [210]. p53 protein level is normally kept 

low in a healthy cell, through constitutive degradation by MDM2 [211]. 

Phosphorylation of p53 stabilises the protein [212] and p53 level is rapidly elevated 

in response to ATM activation [213]. p53 transcriptionally activates p21, which 

arrests cell cycle transition from G1 to S [214, 215]. The cell cycle functions of p53 

are of particular importance if DSBs take place during the G1 phase of the cell 

cycle [216].  

 

When DNA damage occurs after the G1 phase, ATM is able to arrest the cell cycle 

before mitosis through an alternative mechanism. ATM phosphorylates and 

activates Chk2 (check point protein 2) which signals to activate G2 and intra-S 

checkpoints [217]. Moreover, Chk2 is also able to phosphorylate p53, at Ser15 

[218]. Besides cell cycle arrest, p53 plays a central role in programmed cell death. 

The choices between cell cycle arrest or apoptosis depends on a variety of factors 

including the degree of DNA damage, the types of lesions, the protein levels of p53, 

and the presence of other pro-death or pro-survival signals [219] .   

 

Both ATM and ATR are serine-threonine kinases containing similar functional 

domains. The two molecules were historically thought to act in parallel with 

overlapping functions [220]. They both mediate cell cycle arrest and DNA damage 

repair. Recent studies have shown that ATM is required for ATR activation in 

response to double strand breaks [207], with some exceptions.   
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Once activated and recruited to the site of double strand breaks, ATM kinase 

phosphorylates and activates a number of substrates including CtIP, which forms a 

complex with BRCA1 protein. The complex is a crucial component for Exo1 

nuclease mediated strand resection [221]. Strand resection is controlled in a cell-

cycle dependent manner. Strand resection is mainly observed in S-phase cells where 

most spontaneous damage occurs [222]. The determination of which repair pathway 

to undertake depends on the cell cycle (See Chapt. 1.6.2). During strand resection, 

3’ single strand DNA (ssDNA) overhangs are generated on each end of DNA 

breaks. ssDNA is readily coated with Replication Protein A (RPA) proteins. ATR 

protein is recruited, docking to ssDNA region via adaptor protein ATRIP (ATR-

Interacting Protein). ATR activates the Chk1 mediator Claspin via phosphorylation. 

Active Clapsin recruits Chk1 to the site of damage where Chk1 is also 

phosphorylated by ATR at Ser317 and S345 sites, which are crucial for Chk1 

functions [223]. Activated Chk1 is then dissociated from the complex, interacting 

with its substrates both in the nucleus and cytoplasm [224]. Similar to the function 

of Chk2 in cell cycle regulation, Chk1 also contributes to G2 and intra-S checkpoint 

activation.   

 

The ATR-Chk1 pathway is activated in the presence of single strand DNA. Since 

ATM mediates strand resection during blunt end double strand breaks, ATM is 

required for ATR activation [225] [226]. ATR can also be activated without ATM, 

when there are single-stand DNA overhangs caused by replication arrest for 

example. RPA (Replication protein A) is a small protein that binds to single strand 

DNA, it stimulates the binding of ATRIP which recruits ATR to the site of DNA 

damage [227]. 

 

Chk1 and Chk2 are able to phosphorylate the Cdc25 protein family [228], and this 

in turn inhibits CDK (cyclin dependant kinase) functions. 14-3-3 protein promotes 

CDK1-cyclin B and mitotic entry. Phosphorylated Cdc25 binds and sequesters 14-

3-3 protein in the cytoplasm. In summary, ATM-Chk2 and ATR-Chk1 pathways 

sense and mediate cell cycle arrest upon double strand breaks.  
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1.6.2 Repair of double strand breaks   

 

During cell cycle arrest, the cells are given the opportunity to repair the damage. 

The cells have complex mechanisms to deal with different types of DNA damage. 

There is base excision repair (BER) for damaged bases, single strand break or 

abasic sites, nucleotide excision repair (NER) pathways remove and repair bulky 

lesions or dimerisation, and DNA mismatched repair (MMR) for mismatched bases. 

These lesions are efficiently recognised and regularly repaired in the cells [229]. 

Among all types of DNA damage, double strand breaks (DSBs) are especially 

difficult to repair. This type of damage is highly hazardous because it can lead to 

loss of genetic information; and chromosomal re-arrangements. If two breaks are 

wrongly joined onto different chromosomes. Tumour suppressor inactivation and 

oncogene activation can take place in the process. Defects in double strand break 

repair lead to genetic instability and a higher probability of carcinogenesis [230].  

 

A number of DNA damaging agents cause double strand DNA breaks, such as 

ionising irradiation (IR), etoposide and doxorubicin. These agents have also been 

used in cancer therapeutics that target rapidly proliferating cells with defective 

DNA repair mechanisms. Natural causes of DSBs include free radicals produced by 

oxidative metabolism, and replication fork collapse when polymerase encounters a 

single brand break.  

 

DSBs take place in our cells at a frequency of 10 times per cell per day [231]. Cells 

can repair DNA double-strand breaks by two principle mechanisms - non-

homologous end-joining (NHEJ) and homologous recombination (HR). The choice 

of pathway depends on the cell-cycle phase and the type of DSB ends. ATM and 

ATR, the two master cell-cycle regulators during DNA damage, are also implicated 

in DNA damage repair. Both ATM and ATR are required for HR pathways. The 

key catalytic protein that mediates NHEJ is another serine/threonine kinase called 

DNA-PKcs (DNA protein kinase catalysing subunit). ATM, ATR and DNA-PKcs 

all belong to phosphatidylinositol-3 kinase related protein kinases (PIKKs) family. 
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They are well conserved large proteins and they share similar functional catalytic 

domains [232]. 

 

The process of mammalian NHEJ is illustrated in Fig. 1.7. During NHEJ, the first 

protein that binds the DNA ends is thought to be KU protein complex, which has 

high affinity for the ends of DSBs [233]. It is a heterodimer consisting of KU70 and 

KU80 proteins and provides scaffolding for other NHEJ components. Two KU 

complexes bind to each broken strand and each interacts with a molecule of DNA-

PK protein.  The two DNA termini are joined in three steps. DSBs are rarely blunt 

ended and they frequently contain overhangs and phosphate groups [234]. Firstly, 

DNA-PK protein forms a complex with nuclease Artemis which mediates broken 

ends processing. Nucleotides are removed from the broken ends to create blunt ends. 

Then DNA polymerases are recruited to the complex and fill in the gaps at NHEJ 

junctions. Finally, Ligase IV/XRCC4 complex joins the ends. Since short sequences 

are sometimes removed by nucleases and this can lead to loss of genetic 

information, the NHEJ process is considered to be an error-prone process. 
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Figure 1.7 Non-Homologous End-Joining (NHEJ) repair mechanism in 

mammalian cells in response to double strand DNA breaks. 

 

(Adapted from [207]) KU heterodimetric complex recognises the double strand 

breaks and bind to the ends. Downstream NHEJ factors including Artemis, DNA-

PK, LIG4, XRCC4 and XLF are recruited forming a complex. Nucleotides are 

added and/or removed at the end of breaks and the ends are joined.  
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In contrast to NHEJ, HR is more or less error-free, as a homologous chromosome is 

used as a repair template. The process of HR is demonstrated in figure 1.8. During 

HR, strand resection takes place along the site of damage from 5’ to 3’. This 

process is carried out by Exo1 exonuclease and facilitated by a few protein 

mediators including BRCA1-CtIP, MRN complex and BRCA2. Nearly all single 

strand DNA in the cells is coated with RPA molecules [235], which prevents 

ssDNA forming secondary structures. Rad51 is a crucial factor for HR DNA repair 

pathways, promoting homology match on a different chromosome and DNA strand 

invasion – a process where the broken single strand DNA pairs with an intact DNA 

molecule through homology. Once activated, Rad51 replaces RPA on the ssDNA 

[236], which is paired with a complementary strand by homology on a different, 

undamaged chromosome. DNA polymerases fill in the gaps using the partner 

chromosome as a template. Finally a Holliday junction is formed to resolve the 

DNA structure, giving rise to two intact DNA molecules.  

 

Mediated by the two master kinases ATM and ATM, cell cycle checkpoints occur 

in parallel with DNA damage repair pathways. Cell cycle checkpoints are important 

for two main reasons. When there is DNA damage, the cells cease to grow and 

proliferate; otherwise it could potentially lead to inheritable mutations. Also, during 

cell cycle arrest, the cells are given a period of time to repair the DNA lesions.  

 

In the case of heavily damaged DNA where the cells cannot resolve the lesions, 

activated p53 induces programmed cell death [237].  
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Figure 1.8  Homologous recombination DNA repair is activated when there are 

double strand DNA breaks or when there is DNA replication fork collapse. 

 

ATM and ATR are the two master kinases that get activated, forming a core for 

signalling hubs at sites of damage and mediate downstream signalling events that 

complete the repair.  
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There is a significant amount of cross-talking in DNA damage response networks. 

In recent years, it has been discovered that in addition to cell cycle regulations, 

checkpoint proteins Chk1 and Chk2 can also regulate DNA damage repair. Chk2 is 

reported to phosphorylate BRCA1 [238] and Chk1 is found to phosphorylate 

BRCA2 [239] and Rad51 [240]. These molecules are important components of 

HRR pathways. The cell cycle mediator protein Chk1 has been reported to be a 

crucial factor for HR DNA repair pathways [240]. In the study lead by Thomas 

Helleday, Chk1 is found to activate Rad51 through phosphorylation on Thr 309 site, 

which is a key molecule for homologous recombination. Cells depleted of Chk1 and 

cells with T309A inactivation mutant fail to form Rad51 nuclear foci in response to 

DNA damage [240].  

 

Although HR is error-free and NHEJ is error-prone, HR can only take place after 

DNA replication because of its requirement for a sister chromatid. NHEJ can take 

place throughout the cell cycle. During S phase, HR is the predominant repair 

mechanism for DSBs. During G0 and G1 phases, NHEJ is the main pathway. Both 

processes are thought to be crucial and defects in either pathway lead to diseases 

and even lethality.  

 

1.7 cancer therapeutics and synthetic lethality  

 

The trait of defective DNA repair mechanisms in cancer cells has been exploited in 

cancer treatments such as conventional chemotherapy and radiotherapy. Platinum-

containing compounds such as carboplatin and cisplatin are DNA damaging agents 

that intercalate in DNA structure, resulting in distortive DNA lesions. Specific 

inhibitors of DDR components have been developed and used effectively to treat 

cancers, for instance, etoposide and irinotecan are agents that inhibit topoisomerase, 

an enzyme that unwinds DNA by breaking and rejoining the phosphodiester bonds 

on the DNA backbone in order for transcription or replication to take place. Double 

strand breaks occur wherever topoisomerase is inhibited. Thanks to the robust DNA 

repair response in mammalian cells; these lesions are repaired in most of the normal 
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cells in the body. On the other hand, cancer cells with a defective DNA repair 

mechanism may not be able to resolve the damage and this leads to cell death. 

Moreover, cancer cells are often insensitive to signals suppressing growth and they 

generally proliferate more rapidly than non-transformed cells. DNA molecules are 

synthesized at a faster rate; therefore cancer cells are more sensitive to these DNA 

damaging agents. However, one of the major problems of these conventional killing 

strategies is not tumour specific, these agents frequently lead to cell death in non-

transformed cells, especially those with fast proliferation rates. Therefore these 

drugs have a limited therapeutic window. Patients frequently suffer from a wide 

range of side effects including hair loss, diarrhea and immuno-suppression.  

 

Clearly, development of targeted therapies is much needed; utilizing synthetic 

lethality in strategies of cancer therapy is becoming a focus of cancer research. Due 

to genetic instability, cancer cells develop gain-of-function mutations and they also 

harbour many non-lethal loss-of-function genetic defects. Novel cancer therapies 

have been developed to specifically target gain-of-function cancer mutations. For 

example, anti-HER2 antibodies have been used to treat breast cancers that over-

express HER2 receptor [241]. However, loss-of-function defects can not be easily 

reversed [242]. Synthetic lethality is a situation where two non-lethal genetic 

defects are not compatible with each other. The combination of the two defects lead 

to cell death [243].  

 

The multiple pathways in DDR functionally complement each other and there is 

some redundancy to certain degree. The tumour cells can be viable after loss of 

certain pathways. A number of DDR synthetic lethal situations have been identified. 

For example, cancer cells with dysfunctional BRCA are hypersensitive to PARP 

inhibitors [244]. Cancer cells with loss of BRCA1 or BRCA2 display defect in HR 

repairs, inhibition of PARP leads to increased single strand DNA breaks that 

become double strand breaks with overhangs. These damages can only be repaired 

by HR pathways [245]. A better understanding of synthetic lethal relationships in 

cancer genetics will potentially lead to breakthroughs in targeted cancer therapies.     
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1.8 Aim of project - to investigate the role of autophagy in DNA damage repair 

 

The current understanding on the relationships between autophagy and DNA 

damage is that loss of autophagy leads to accumulation of DNA damage. Eileen 

White and colleagues discovered that defective autophagy leads to DNA damage 

response both in vitro and in mammary cancer cells in vivo, and increased γH2AX 

foci was observed in autophagy deficient cells [1]. Increased DNA damage was also 

observed. Gene amplification, aneuploidy (A state of cells which have more or less 

numbers of chromosomes than normal.) and eventually genomic instability take 

place which contribute towards tumourigenesis [2].  

 

There is also other links recently discovered between autophagy and DNA damage. 

Protein acetylation and deacetylation are post-translational modifications that are 

implicated in gene activation/silencing, chromatin dynamics, DNA damage 

responses [246] and protein stability. Certain acetylated proteins are reported to be 

degraded through autophagy [247]. Thomas Robert and colleagues showed that 

yeast sae2 (human CtIP), a recombination protein involved in strand resection is 

acetylated and degraded by autophagy [248]. The cells possibly use this mechanism 

to keep levels of HR repair proteins low, especially during cell cycle phases when 

HR is inactive. FIP200 is a gene essential for autophagy activities, since cells with 

FIP200 (200 kDa FAK-family interacting protein) depletion are hypersensitive to 

DNA damaging agents and show deficient DNA damage repair. [249].  

 

The exact mechanism of how autophagy regulates the DNA damage response is still 

unknown. Since autophagy deficient cells have an accumulation of DNA damage 

[2], which could be either due to increased incidences of DNA damage occurrences, 

or due to certain defects in DNA damage response pathways. DNA damage 

response is a multi-step process and it involves a complex network of molecules. 

The main aim of this project is to dissect the pathways and investigate the exact role 

of autophagy in this process.  
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Chapter 2: Materials and methods 

 

2.1 Composition of routinely used solutions and media 

 

Phosphate 

Buffered Saline 

(PBS) 

170 mM NaCl, 3.3 mM KCl, 1.8 mM Na2HPO4, 10.6 mM 

KH2PO4 

PBS-Teen (PBT)  0.5% BSA, 0.1% Tween 20 in PBS 

5x RIPA 0.75M NaCl, 5% NP40, 2.5% Sodium Deoxycholate, 0.5% 

SDS, 0.25M Tris pH8.0  

SDS Running 

Buffer: 

0.1% SDS, 192 mM glycine, 25 mM Tris pH8.3 

Stripping Buffer 

for Western Blots 

0.2M Glycine, 1%SDS and pH adjusted to 2.5 with HCl  

Tris-acetate-

EDTA (TAE): 

40 mM Tris, 0.1% glaciel acetic acid, 1 mM EDTA 

Transfer Buffer: 192 mM glycine, 25 mM Tris, 20% methanol, 0.01% SDS 

Tris-Buffered 

Saline (TBS): 

25 mM Tris-HCl, pH 7.4, 137 mM NaCl, 5 mM KCl 

Tris-EDTA (TE): 10 mM Tris-HCl, pH 8.0, 1 mM EDTA 

TBST TBS + 0.1% Tween-20 
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2 x Western 

Sample Buffer 

100 mM Tris, pH 6.8, 2% SDS, 5% ß- mercaptoethanol, 15% 

glycerol, bromophenol blue 

5 x Western 

Sample Buffer 

60 mM Tris-HCL, pH 6.8, 2% SDS, 4 mM ß-

mercaptoethanol, 25% glycerol, 0.1% bromophenol blue 

 

Table 2 Composition of routinely used solutions and media 

 

2.2 Cell culture and treatments 

 

2.2.1 Cell culture 

 

Mouse Embryo Fibroblast (MEF) cells were grown at 37°C in Dulbecco's modified 

Eagle's medium (DMEM) (Invitrogen) supplemented with 10% fetal calf serum 

(FCS), 2 mM L-glutamine (Invitrogen), 60 μg/ml penicillin (Sigma) and 100 μg/ml 

streptomycin (Sigma). Cells were routinely grown in a humidified atmosphere 

containing 5% CO2 at 37°C. Cell culture was performed in a Class II hood, using 

aseptic technique and sterile equipment and reagents. 

 

Cells were passaged at a frequency of every 2-3 days. After media was aspirated 

from the flask or culture dishes, 10ml of PBS was added to the cells to wash the 

cells and it was then aspirated. 3ml 0.25% trypsin in PE buffer was added to the 

flask/dish for approximately 3 minutes at 37°C to detach the cells. Following 

trypsinisation pre-warmed fresh media was immediately added to the dissociated 

cells to neutralise trypsin reactions. The cell suspension was then transferred into a 

fresh flask/dish at a ratio of 1:2 to 1:3.  

 

Cryo-freezing was routinely used for long term deposit of cell lines. Cells were 

trypsinised and centrifuged at 1000g for 5 minutes at room temperature. The 

medium/trypsin solution was removed and the cell pellet was resuspended in a 

solution consist of 90% FCS, 10% dimethylsulphoxide (DMSO). Cells were 
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aliquotted into cryo-tubes and frozen at -80°C. For longer term storage, the cryotubs 

were then transferred to liquid Nitrogen tanks which held the cells at -180°C.  

 

Thawing of cells was carried out by placing cryo-tubes in a 37°C water bath at until 

just thawed. Cells were then mixed with 10ml pre-warmed fresh media, centrifuged 

at 1000g for 5 minutes and the supernatant was removed to eliminate DMSO from 

cell freezing medium. The cell pellet was finally resuspened in 10% FCS DMEM. 

 

2.2.2 Cell number counting  

 

The number of cells in suspension was determined using the automated Casy® Cell 

Counter system (Innovatis). Following trypsinisasion and resuspension in a small 

amount of medium, the cells were diluted by 50 fold with PBS in a cell counting 

cup. The cell number was automatically determined by the machine which also 

provides information about the viability in cell population. For growth curve 

measurements the cells were counted in triplicate.  

 

2.2.3 Growth Curve construction 

 

Cells from sub-confluent cultured flasks or dishes were trypsinised and diluted in 

10% FCS medium. 10
6
 cells were plated onto each 10mm dishes and the cells were 

harvested and counted. For each data point, triplicate of dishes were used and the 

errors were calculated as standard deviation.  

 

2.2.4 Primary MEF cell isolation 

 

13 – 14 days after female plugging was noticed, the pregnant female was culled and 

immersed in 500ml deionised water with one Presept tablet dissolved in it. The 

carcass was sprayed with 70% Ethanol and the uterus containing embryos was 

excised using sterile dissection tools. The uterus was rinsed in a 15cm tissue culture 

dish containing 50ml 33ug/ml gentamycin (Invitrogen) in PBS. Once transferred to 
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a Class II hood, the embryos were freed from the uterus using fine forceps and 

decapitated using scalpels. Red internal embryonic organs were removed and 

discarded. The remaining tissues were torn into small pieces using forceps and 

transferred into a falcon tube with 10ml 0.05% trypsin in PE buffer. The tube was 

then incubated at 37°C for 30 minutes with gentle shaking every 10 minutes before 

800μl of 2.5% trypsin was added to the tube for a further 10 minutes. At the end of 

the incubation, the cells were seeded into 15cm tissue culture dishes containing 

40ml pre-warmed medium at a density of 2-embryo-equivalence of cells per dish.   

 

2.2.5 Transient transfection of plasmid DNA using Calcium Phosphate 

Precipitation.  

 

Cells to be transfected were seeded onto 100 mm tissue culture plates the day prior 

to transfection. A total of 20 μg DNA plasmid was diluted in 440 μl distilled H20 

(Invitrogen), the DNA was mixed with 500 μl 2 x HBS thoroughly. Finally 60μl of 

2 M CaCl2 solution was rapidly added to the mixture which was then vigorous 

mixed. DNA calcium phosphate precipitate was allowed to form for 20 minutes at 

37°C then added drop-wise to tissue culture plates. The plates were incubated at 

37°C in a humidified incubator for 16h – 18h when plasmid DNA was introduced 

into the cells through the calcium phosphate precipitate. The medium was then was 

removed after 16 hours before fresh 10% FBS DMEM added.  

 

2.2.6 Eletroporation transfection of primary MEFs.  

 

1x10
6
 cells MEFs in exponential growth phase were trypsinised centrifuged at room 

temperature. The supernatant was removed and the pellet was washed with 10ml 

PBS. The pellet was re-suspended in100μl Nucleofector® Solution (Lonza).The 

cells were then transferred to an electro-curvette (Lonza) where 10μg DNA plasmid 

was added. The mixture was electroporated using T20 program. The cells were then 

rapidly placed in a dish containing 10% FBS DMEM.  Transfected cells were 

incubated in a 37°C/5% CO2 environment until analysis.  
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2.2.7 Retroviral infections 

 

Retroviral infections were carried out using phoenix-eco retroviral packaging cells 

which produce retrovirus that targets mouse cells. 1.5x10
6
 phoenix-eco cells were 

plated in a 100 mm dish the day before, and 20 μg retroviral DNA plasmid was 

transfected into each plate using Calcium Phosphate Precipitation method as 

described above. The supernatant containing retrovirus in 20% FBS DMEM was 

collected and added to target MEF cells three times within two days. 5 μg/ml final 

concentration of polybrene (hexadimethrine bromide; Sigma) was added to the 

supernatant. The MEF cells were plated the day before infection at 0.8 x10
6
 

/100mm. The supernatants containing retrovirus were filtered through 0.45 μm 

filters to remove any phoenix eco cells and it was then added to the MEFs cultures. 

24h after the last round of infection, MEF cells were selected for three days in 2.5 

μg/ml puromycin (sigma) containing 10% FCS DMEM. 

 

2.2.8 Generation of primary Atg7-/- cell lines.  

 

Primary MEF cell lines with stable deletion of Atg7 were generated using Phoenix-

eco as a packaging cell line. Retroviral infection with a control plasmid and a 

plasmid containing cre-recombinase was performed in primary Atg7flox/flox MEFs.  

 

2.2.9 Establishment of cell lines for detecting HR capacity.   

 

Atg7
flox/flox 

MEFs were transfected with 0.5µg of HR reporter constructs from Kevin 

Hiom, University of Dundee. Puromycin, at 2.5μg/ml, was added to the media 1 

day post-transfection. Colonies were isolated after 8–10 days on selection. Genomic 

DNA was then extracted and analyzed by Southern blotting to confirm that the cell 

lines contained a single integrated copy of the reporter cassettes, this was carried 

out by supervisor Kevin Ryan. Subsequently several colonies were picked and 

infected with cre recombinase retrovirus to remove Atg7 gene. By following the 
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steps above, Atg7f/f and Atg7-/- cells with stable genomic insert of HR reporter 

construct were established.   

 

2.2.10 γ –ray ionizing Irradiation (IR) of cells 

 

IR treatment is a method of damaging DNA by causing double strand breaks. The 

cells to be irradiated were plated the day before on 10mm dishes. The dishes with 

adherent cells were irradiated using Alcyon II Cobalt-60 Teletherapy Unit. 

Depending on the half life of cobalt element, length of treatment was calculated 

according to dose rates that varied between 2-10 Gymin-1. The dishes were placed 

underneath the cobalt source and irradiated. Control cells were also brought to the 

Co-60 source at the same time without being irradiated.  

 

2.3 Molecular cloning 

 

2.3.1 Restriction digests 

 

Restriction Digests were carried out with enzymes and buffers from New England 

Biolabs (NEB). Five to ten-fold unit excess of enzyme was incubated with 10μg 

plasmid DNA in the appropriate NEB buffer overnight at for 1 hour 37ºC. After 

digestion, cleaved vector plasmid was incubated for a further 30 minutes at 37ºC 

with 5U Shrimp Alkaline Phosphatase (NEB). Finally digested DNA was purified 

to remove enzymes using Qiagen PCR purification kit and resuspended in Tris-

EDTA (TE) buffer.  

 

2.3.2 Ligation 

 

DNA fragments following restriction enzyme treatment were purified before 

ligation reactions. The fragments were separated by gel electrophoresis followed by 

excision using a Qiagen Gel Band Purification Kit. Ligations were carried out at 

room temperature overnight using Rapid DNA Ligation Kit (Roche). An 
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approximate twice the amount of the insert fragment over the vector plasmid was 

combined in a final volume of 10μl DNA Dilution Buffer. 10 μl T4 DNA Ligation 

buffer was then added along with 5U T4 DNA ligase. 

 

2.3.3 Transformation of competent cells 

 

E.Coli DH5α supercompetent cells (Stratagene) were transformed for plasmid 

preparation. The cells were aliquoted into 50μl volumn and stored at -80ºC. For 

each plasmid, one aliquot was thawed on ice before 10-20 ng of plasmid DNA (in 

1ul TE or water) was gently added into supercompetent cells. The cells were 

incubated for 15 minutes on ice before heat shock treatment at 42ºC for 30 seconds. 

The tubes were then rapidly transferred to ice, where 250 μl of 37ºC LB broth was 

added. The competent cells were incubated in suspension for 45 minutes on an 

orbital shaker (225-250 rpm). 150 μl of the transformation mixture was then added 

to and spread on LB agar plates containing 50 μg/ml ampicillin or kanamycin. The 

plates were incubated at 37ºC overnight in order for colony-formation of the 

transformed cells. 

 

2.3.4 Screening of transformants – minipreps 

 

Single colonies were isolated from the transformation plates. They were grown 

overnight at 37ºC in 10ml LB medium with 50 μg/ml ampicillin/kanamycin. 

Plasmid DNA miniprep were performed using QIAprep Spin Miniprep Kits 

(Qiagen #27104) (Routinely carried out by Molecular Technology Service, Beatson 

Laboratories). Analytical restriction digests were performed with appropriate 

enzymes and buffers and resolved by agarose gel eletrophoresis to validate 

successful insert of DNA fragments. DNA plasmids with inserts were subsequently 

sequenced (Carried out by Central Services).  

 

2.3.5 Preparation of plasmid DNA – maxipreps 
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Maxipreps were carried out for large scale plasmid DNA preparation. After the 

DNA plasmid was transformed into competent cells, a single bacterial colony was 

isolated from the bacteria plate and inoculated into 4 ml LB medium containing 

50μg/ml ampicillin/kanamycin. The mini culture was incubated for 4 hours with 

vigorous shaking at 37ºC. The culture was then transferred to a conical flask 

containing 200 ml LB containing 50μg/ml ampicillin/kanamycin. Following an 

overnight incubation at 37ºC on an orbital shaker (300 rpm), cells were pelleted by 

centrifugation at 3000g for 20 minutes at 4ºC and plasmid DNA retrieved using the 

Qiagen Plasmid Maxi Kit following kit instructions (routinely performed by 

Molecular Technology Service in the institute).  

 

2.3.6 Agarose gel electrophoresis 

 

1% - 2% agarose gel was prepared by adding agarose (Sigma) to 200ml TAE buffer, 

before microwave heated to dissolve the agarose. Ethidium Bromide was added to 

give a final concentration of 0.5μg/ml in the agarose solution. Agarose was poured 

into a gel tray with combs inserted and allowed to solidify for at least 45 minutes. 

Samples for electrophoresis were prepared by the addition of 5 x gel loading buffer 

(30% glycerol, bromophenol blue) and electrophoresed at 120V for approximately 

1h in TAE gel running buffer. DNA bands were visualised using a UV 

transilluminator. 

 

2.4 RNA/cDNA techniques 

 

2.4.1 Preparation of total cellular RNA 

 

Total cellular RNA was isolated from sub-confluent growing cells using Qiagen 

RNeasy Spin Column kit, in accordance with the manufacturer’s instructions. 

Before the cells were lysed in RLT buffer, Media was aspirated from 6-well plates 

or 100 mm plates and the cells were rinsed with PBS once.  After RNA isolation, 

the concentration was determined by UV spectrophotometry. A ratio of absorbance 
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at 260 nm to 280 nm in the range of 1.8-2.0 indicated the RNA samples were 

relatively free from DNA or protein contamination.  

 

2.4.2 Preparation of cDNAs from RNA using reverse transcriptase 

 

Template RNA was isolated from whole cell lysate as described above. cDNAs 

were prepared using using DyNAmo™ SYBR® Green 2-Step qRT-PCR kits 

(Finnzymes), in accordance with manufacturers instructions. 20 μl reaction mix was 

prepared by mixing 1μg RNA, 10μl RT buffer 1μl Random Hexamers (300 ng/μl) 

and 2 μl M-MuLV Rnase H+ reverse transcriptase. 

 

Reverse transcriptase reactions were carried out using a Peltier Thermal Cycler (MJ 

research, Helena Bioscience) under the following parameters: 25ºC for 15min, 37ºC 

for 30min and 85ºC for 5min. cDNAs were then stored at -20ºC. 

 

2.4.3 Quantitative Real Time Polymerase chain reaction (qRT-PCR) 

 

Prior to analysis, a bulk preparation of serially diluted total RNA from genetically 

unmodified MEFs was made, aliquoted and stored at -20ºC. The RNA was used as 

stardards in each qRT-PCR reactions.  

 

qRT-PCR was carried out with 2 μl of cDNA, 10 μl 2x qPCR master mix provided 

in DyNAmo™ SYBR® Green 2-Step qRT-PCR kits (Finnzymes), 5.5 μl H2O and 

2.5 μl designed primers as indicated (QuantiTect Primer Assays – Qiagen) for gene 

of interest.  

 

The reaction mix was pipetted into 96 well optical plate (BioRad) with an optically 

clear flat cap strips (BioRad). qPCR was carried out under the following cycling 

parameters using MJ Opticon Moniter Analysis Software version 3.1, on a Peltier 

Thermal Cycler (MJ Research) with a Chromo 4 continuous fluorescence detector. 

Data analysed using MJ Opticon Moniter Analysis Software version 3.1 
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PCR reaction were carried out using cDNA template prepared as described 

previously under the following cycling parameters: 95°C for 15min, [94°C 10 sec, 

55°C 30 sec, 72°C 30 sec] 40 cycles, 72°C 10 min. Expression levels of genes 

analysed by qPCR were normalized relative to levels of 18S rRNA. 

The following Primers were used 

 

Primers for Atg7:  

5′-ATGCCAGGACACCCTGTGAACTTC-3′  

5′-ACATCATTGCAGAAGTAGCAGCCA-3′. 

 

Atg5:  

5’-AAGTCTGTCCTTCCGCAG-3’  

3’-TGAAGAAAGTTATCTGGGTAG-5’ 

 

Mouse 18S primers were from Qiagen (QT01036875). 

 

2.5 Protein immunoblotting (Western Blotting) 

 

2.5.1 Cell lysis and protein extraction  

 

Immediately prior to use, 10ml 1x RIPA was prepared and kept on ice by diluting 

5x RIPA buffer in deionised water, 1 protease inhibitor tablet and 200μL Na3VO4 

was added to the buffer to inhibit proteolysis and dephosphorylation after cell lysis.   

 

Plates to be harvested were washed twice with ice cold PBS, 400μL RIPA lysis 

buffer was added to each 100mm dish. Lysates were collected from plates and 

transferred to 1.5mL eppendorf tubes, which were incubated on ice for 45 minutes. 

Subsequently, the whole cell lysates were centrifuged at maximum speed in a 

desktop minicentrifuge (21,000g) for 10mins at 4°C to pellet DNA and debris. The 

supernatants were transferred to fresh eppendorf tubes and stored at -20°C until use. 
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2.5.2 Separation of proteins by polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Protein lysates in RIPA buffer was diluated with 2x western sample buffer. Prior to 

loading on denaturing polyacrylamide gels, the samples were boiled on a 100°C 

heat block for 5 minutes. 20μL of protein samples were loaded into a Nupage® 

Novex® Bis-Tris 4-12% (Invitrogen) gradient gel or a homemade 10% - 15% gel. 

8μL of Pre-stained protein standard (Thermo PageRuler®) was loaded into a well 

so as to determine the molecular weight of the proteins within the samples. Gels 

were run in 1X NuPAGE® MOPS SDS running buffer for the precast gels, or 

homemade 1X running buffer for the homemade gels, at 150V in an Invitrogen 

XCell SureLock
TM

 mini-cell electrophoresis system. The voltage was terminated 

when the blue dye front had reached the bottom of the gel. For gels to be probes 

with antibodies recognizing small proteins such as LC3 or H2AX, the voltage was 

stopped before the dye front had reached the bottom.  

Depending on the molecular weight of the protein to be probed and detected, the 

homemade 10-15% gels were made with from 30% stock acrylamide solution 

(37.5:1 acrylamide:bis acrylamide) Severn Biotech Ltd) and constituted 375mM 

Tris-HCl, pH8.8, 0.1% SDS, polymerised with 0.05% ammonium persulphate (APS) 

(Sigma), 0.1% TEMED (Sigma). Stacking gel was 4% acrylamide and with 125mM 

Tris-HCl, pH 6.8 , 0.1% SDS, polymerised with 0.05% ammonium persulphate, 

0.1% TEMED. 

 

2.5.3 Western blotting 

 

Electrophoretic transfer of separated proteins resolved by SDS-PAGE gels to 

nitrocellulose (Amersham Biosciences) or PVDF membranes was achieved using 

Invitrogen XCell SureLockTM mini-cell tanks. An extra step applied for PVDF 

membranes, they were activated by soaking in methanol for 2min before soacking 

in transfer buffer for 2 min until uniformly opaque. SDS Gels were blotted onto 

membranes in a sandwich with sponge and 2 sheets of Whatman 3MM paper, all 



 77 

pre-soaked in transfer buffer, the gel faces cathode side of the sandwich and the 

membrane anode. Gel transfer was carried out in Transfer Buffer at 0.4 Amps for 

1.5 hours in an XCell IITM blot module. After transfer, ponceau-S (Sigma) staining 

was performed to assess transfer fidelity. 0.1%. The ponceau S stained membrane 

was subsequently detained by 2 washes with dH2O and 1 wash in TBST. A list of 

antibodies used for western blotting analysis and FACs analysis was presented as in 

table 2.  

   

Antibody Dilution Company 
   

actin (clone 1A4) 1:10,000 Sigma 

BrdU  1:200 Dako 

Claspin H300 1:1000 Santa Cruz 

S345 p-Chk1 1:1000 Cell Signalling 

total Chk1 G4  1:1000 Santa Cruz 

ERK p42 1:1000 Santa Cruz 

γ-H2AX 1:1000 millipore 

S10-Phospho-

Histone-3  

1:100 Santa Cruz 

LC3B 1:1000 Cell Signalling 

Wip1 1:1000 Santa Cruz 

Anti mouse IgG HRP 

linked 

1:3000 Cell Signalling 

Anti rabbit IgG HRP 

linked 

1:3000 Cell Signalling 

 

Table 3  List of antibodies used for western blotting and flow cytometry analysis.  
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2.5.4 Probing and signal detection  

 

After electrophoric transfer, membranes were blocked in TBST milk blocking 

buffer (TBST + 5% skimmed milk powder (Marvel) for 30 min at room temperature 

on with gentle shaking on a rocker. Membranes were then were incubated with 

primary antibodies typically a 1:1000 dilution in 5% BSA in TBST with gentle 

rotation overnight at 4°C.  

 

After incubation in primary antibody, the membranes were washed 3 times with 

TBST for 15 minutes each time and incubated with for horseradish peroxidase-

conjugated secondary antibody for 1 hour at room temperature with gentle rotation. 

The blots were then washed 3 times for 15 minutes with TBST before protein 

signals were activated using enhanced chemiluminescence reagents (ECL 

Amersham), in accordance with manufacturer’s instructions.  X-ray films (Fuji 

Medical X-ray film) were used to capture the signals and developed in an X-ray 

processor (AGFA).  

 

2.5.5 Stripping of Western Blots  

 

In order to detect a different protein band on the same membrane, the membrane 

was incubated in stripping buffer for 30 min at 50°C with constant agitation, to 

remove bound primary antibodies without removing transferred proteins. The 

membranes were then washed twice in TBST and incubated in 5% milk in TBST 

blocking buffer for 30 min at room temperature.  

 

2.6 Flow Cytometry Assays  

 

2.6.1 Sample collection for flow cytometry analysis 

 

Cells were grown on 10mm or 6-well dishes and treated accordingly. At time of 

sample collection, media that includes floating cells was collected into a 15ml 
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Falcon tube. The cells were washed with 2ml PBS which was also transferred into 

the same tube. 2ml of 0.25% trypsin in TE buffer was added to the cells to detach 

the cells and the cell suspension was combined in the tube. The tubes were 

centrifuged at 1000g for 5min and the supernatant was aspirated and discarded. 

Cells were re-suspended in 500 μl PBS by pipetting up and down a few times. 5ml 

ice cold methanol was added to the cells while vortexting which helped to avoid 

clumping. The cells were incubated in fixative methanol for a minimum of 2 hours 

before further sample processing.   

 

2.6.2 Cell Cycle profile assessment with propodium iodide (PI) staining 

 

Prior to FACS analysis, the cells in methanol fixation pelleted by centrifugation and 

re-suspended in 400 μl PBS, 20 μl 1 mg/ml PI (Sigma) and 0.2 μl RNase (100 

mg/ml). The samples were incubated for 30 min at room temperature in the dark to 

allow for PI incorporation. The cells were then sorted for and analysed for DNA 

content by measurement of fluorescent signals in the FL2 channel. The percentage 

of cells with sub-G1 DNA content was taken as a measure of the percentage of 

apoptotic cells in the cell population. The flow cytometry assays were performed on 

a Becton Dickinson FACS machine and the acquired data was subsequently 

analysed using FlowJo software. 

 

2.6.3 S-phase analysis 

 

To determine the percentage of actively proliferating cells in the cell population, the 

capacity of cells to incorporate either the synthetic thymidine analogue 5-bromo-2’-

deoxyuridine (BrdU) into their DNA was tested. Before the cells were harvested 

and fixed in methanol, 25μM BrdU was added into cell culture medium for the 

appropriate length of time.  

 

For BrdU flow cytometry analysis, the cells were centrifuged at 1000g for 5 min 

and the methanol was removed. The cell pellets were re-suspended in 2ml of PBS 
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before 1ml of 4M Hydrochloric acid (HCl) was added. The samples were incubated 

at room temperature for 15 min to in order to denature the DNA structures, which 

allow BrdU epitopes to be exposed and recognized by subsequent antibodies. The 

cells were washed with 5ml PBS and then with PBT solution. The cells were 

centrifuged and the pellet was re-suspended in 300μl of PBT containing a 1:200 

dilution of the anti-BrdU antibody (Dako). The samples were then incubated at 

room temperature for 30min in the dark. After the incubation, the cells were washed 

with 2ml PBT to remove excess primary antibody and re-suspended in 300μl PBT 

containing a 1:300 dilution of the Alexa 488 conjugated anti-mouse antibody and 

incubated for 30 minutes in the dark. The excess secondary antibodies were 

removed by washing with 2ml PBT. Finally the pellet was re-suspended in 400 μl 

PBS, 20 μl 1 mg/ml PI (Sigma) and 0.2 μl RNase (100 mg/ml). The flow cytometry 

assays were performed on a Becton Dickinson FACS machine and the acquired data 

was subsequently analysed using FlowJo software. 

 

2.6.4 Mitosis determinations  

 

The percentage of mitotic cells was determined by detection of cells with 

phosphorylated Histone H3 protein at ser10. pS10 Histone H3 is a mitotic marker 

commonly used in flow cytometry analysis or immunofluorescence microscopy. 

Cell were treated accordingly, fixed and stored as described above.  

 

Prior to analysis, the cells were centrifuged at 1000g for 5min and the fixative was 

removed. The cells were re-suspended in 2ml of 0.3% Triton-X-100 in PBS and 

incubated on ice for 15 min. The cells were then pelleted and Triton-X-100 in PBS 

was aspirated and discarded. The pellet was re-suspended in 200μl of PBT (0.5% 

BSA, 0.1% Tween 20 in PBS) containing 1:100 dilution of anti-pS10 H3 antibody 

(Santa Cruz). The samples were incubated for 1 hour at room temperature. The cells 

were then washed with 5ml PBT and pelleted. The cell pellet was re-suspended in 

200μl of PBT containing a 1:100 dilution of the FITC conjugated anti-rabbit 

antibody for 30 min in the dark. Excess secondary antibodies were removed by 
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washing with 5ml PBS. The samples were finally pelleted and re-suspended in 400 

μl PBS, 20 μl 1 mg/ml PI (Sigma) and 0.2 μl RNase (100 mg/ml). The flow 

cytometry assays were performed on a Becton Dickinson FACS machine and the 

acquired data was subsequently analysed using FlowJo software. 

 

2.6.5 Detection of homologous recombination  

 

Plasmid encoding restriction enzyme I-Sce I was transfected into Atg7
f/f

 and Atg7
-/-

 

cell lines that contain stable insert of HR plamid as described in Chapter 2.2.9. 48 

hours after I-Sce I transfection using electroporation method, Atg7
flox/flox 

and Atg7
-/-

 

cells were analysed by flow cytometry in a FL1 versus FL2 dot plot with 20% FL2 

– FL1 compensation. GFP positive cell population appears off the autofluorescence 

diagonal towards FL1. They represented cells that were capable of carrying out HR.  

 

2.6.6 Detection of Non-homologous End-joining (NHEJ)  

 

Plasmids to tests HNEJ activity were kindy provided by Vera Gurbunova and have 

been previously described [250].  NHEJ reporter plasmid was linearised with 

HindIII restriction enzyme and purified with Qiagen Spin Column. 10μg of the 

plasmid was tranfected by electroporation (Amaxa MEF2 Nucleofector Kit by 

Lonza) together with an RFP-expressing plasmid (2μg) to control for transfection 

efficiency. 48 hours after transfection, 
/flox 

and Atg7
-/-

 cells were analysed by flow 

cytometry.  Atg7
flox/flox 

and Atg7
-/-

 cells were analysed by flow cytometry in 610 

(red channel) versus 530 (green channel) dot plot.  
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2.7  Immunofluorescence microscopy  

 

2.7.1 Cell fixation on coverslips  

 

16mm Coverslips (VWR) were autoclave-treated to achieve sterilization before use. 

Each coverslip was placed in a well in a six-well plate. 20,000 cells were added to 

each well in 2ml medium. The plates were agitated slowly to ensure even 

distribution of cells on the coverlips. The cells were incubated in a tissue culture 

incubator at 37°C/5%CO2 overnight. Following treatment, the medium was 

removed from the six-well plate and the cells were washed once with PBS to 

remove excess medium. Fixative solution was freshly prepared; it contained 4% 

paraformaldehyde (PFA) (Electron Microscopy Sciences) in PBS.  2 ml fixation 

solution was added to each well and incubated at room temperature for 15 min. The 

solution was aspirated and discarded, 2ml PBS was added to each well and the 

plates were stored at 4°C before permealibisation step. PFA fixation method was 

routinely performed for most antibodies. For RPA and CtIP immunocytochemistry, 

cells were fixed first with PFA and then treated with 70% ethanol in PBS at −20°C. 

For ATR, pATR and ATRIP immunocytochemistry, cells were fixed in ice cold 

acetone/methanol (1:1) for 15 min at room temperature.  

 

2.7.2 Permeabilisation and blocking  

 

To permeabilise the cells, the coverslips with adhered cells were incubated in 2ml 

of 0.3% Triton-X-100 in PBS solution per well for 10min at room temperature. The 

coverslips were then washed with PBS and blocking solution (3% BSA, 10% FBS, 

and 5%milk in PBS) was added to the wells. The plates were blocked at room 

temperature with gentle agitation for 1.5h.  
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2.7.3 Probing with primary and secondary antibodies 

 

Following blocking, the coverslips were washed 3 times with blocking buffer 

without milk (3% BSA and 10% FBS in PBS) before incubation in primary 

antibodies. The antibodies were diluted in blocking buffer without milk as indicated 

(table 3). For each coverslip, 20μl primary antibody solution was dropped onto 

parafilm (Pechiney Plastic Packaging Company) which was placed in a light-

shielded square dish. The coverslips were placed onto the droplets of primary 

antibody solutions, with the side with adhered cells covered by the solutions. The 

dish was placed at 37°C for 1 hour in a tissue culture incubator. Meanwhile, three 

flasks each containing 100ml of 0.1% Triton-X-100 in PBS solution was prepared. 

At the end of incubation in primary antibody, the coverlips were washed by dipping 

three times in each of the three flasks. The coverslips were than incubated in 

secondary antibodies against the appropriate species in the same manner and 

washed by the dipping methods.  

 

The coverlips were fixed onto microscope slides using VECTASHIELD® 

mounting medium with DAPI. 2 drops the mounting medium were placed on the 

slides and the coverslips were placed onto the droplets, with the side with cells 

facing the solution. The edge of coverlips was sealed with clear nail varnish.   
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Antibody Dilution  Company  

   

S1981 p-ATM 1:500 Cell signaling 

ATR  1:100 Santa Cruz 

ATRIP  1:100 Bethyl Laboratory 

p-ATR  1:100 Santa Cruz 

CtIP  1:100 Santa Cruz  

H2AX  1:250 Millipore 

KU-70  1:100 Santa Cruz 

Rad51  1:1000 Calbiochem 

γRPA  1:200 EMD 

Alexa Fluor® 488  1:200 Invitrogen 

Texas Red 1:200  Invitrogen 

 

Table 4 List of antibodies used in immunofluorescent microscopy.  

 

2.7.4 Visualization  

 

Fluorecent microscope images were acquired using a laser scanning confocal 

microscope (A1R [Nikon]; or FV1000 [Olympus]) using either a Plan-Apochromat 

VC60× NA 1.40 oil immersion lens or UPLSAPO 60× NA 1.35 oil objective 

together with NIS-Elements AR (Nikon) or Fluoview version 1.7c (Olympus) 

software, respectively. 

 

2.7.5 EdU detection with immunofluorescence microscopy 

 

After sedding on glass coverslips MEF cells were treated as required and 1 hour 

before fixation, 25μM EdU (Invitrogen) was added to cell culture medium. The 

cells were then fixed with 4% PFA for 15 minutes at room temperature and washed 

twice with 3% BSA in PBS. The cells were permeabilised with 0.5% triton X-100 



 85 

in PBS for 20 minutes at RT. Following fixation and peameabilisation, the cells 

were then washed twice with 3% BSA in PBS. EdU reaction buffer (Click-iT 

reaction buffer, CuSO4, Alexa Fluor 488 azide and 10x reaction buffer additive) 

(Invitrogen) was added according to manufacturer’s instructions and incubated at 

for 30 min in the dark at room temperature. The excess reaction buffer was removed 

and the cells were washed twice with 2ml of 3% BSA in PBS. Fixed cells were then 

blocked in 3% BSA in PBS for 30 min before incubation in required primary and 

secondary antibodies as described above.  

 

2.7.6 Statistical Analyses 

 

Image analysis of Rad51 foci was undertaken using an Image J/Fiji Macro to detect 

enhanced fluorescence (foci) within nuclei.  At least 50 cells were examined in each 

population and the foci density calculated as the foci area of a nucleus relative to 

total nuclear area (as assessed by DAPI stain).   

 

Statistical analysis of the results obtained using Image J/Fiji Macro assessment of 

Rad51 foci formation following γ-irradiation was via a Student’s t-test (2-sides with 

unequal variance). 

 

2.8 Analysis of proteasome activity 

 

The proteasome assays were performed in primary Atg7
f/f

 and Atg7
-/-

 cells. The 

assayw were also performed after treatment of Atg7f/f MEFs with 100nM 

Bafilomycin A1 for 16 hours, and/or with Lactacystin (10μM) for 3 hours where 

indicated. The medium was removed from the adherent cells plated in 10mm dishes 

the day before. The cells were detached with 2ml of 0.25% trypsin in PE buffer and 

diluted with 8ml room temperature medium, they were then transferred to a 15ml 

falcon tube. The cells were washed carefully with PBS 3 times to remove traces of 

trypsin which could affect experimental results. The final pellet was resuspended in 

room temperature medium and plated into 96 well plates at 10,000 cell per well. 
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Proteasome-Glo™ Cell-Based Reagents (Promega Bioscience) were prepared in 

accordance with manufacturer’s instructions. The cells were equilibrated at room 

temperature (approximately 22°C), before 100μl reagents was added to the cells in 

each well. Luminescence generated from each reaction condition was detected with 

a Veritas Microplate luminometer according the manufacturer's instruction.  
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Chapter 3. Investigating whether autophagy deficiency leads to 

DNA damage accumulation 

 

3.1 Primary Atg7
flox/flox 

and Atg7
-/-

 MEF cell lines were established.  

 

As described in Chapt 1, Atg7 is a gene essential for autophagy. Atg7 protein is 

required for both ubiquitin-like conjugation systems that form the Atg12-Atg5-

Atg16 complex and lipid bound LC3-II, and these two are crucial for phagophore 

formation.  

 

Mice with whole body Atg7 deletion are born with a normal frequency but they can 

not survive the neonatal starvation period (48 hours after birth) [74]. Genetically 

modified mice containing Atg7 gene flanked by loxP sites are commonly used as an 

experimental model. The loxP sites can be targeted for recombination by Cre 

recombinase and Atg7 can be deleted in this system [251]. Atg7
flox/flox

 embryos 

were isolated from pregnant mice at 13 to 14 days after the plug was detected. 

Primary MEF cell lines were established from the embryos and the cells were 

pooled. Retroviral vectors with Cre recombinase (pBabe-puro-Cre) were used to 

induce conditional deletion of Atg7 in these MEFs in vitro. Empty vector with 

selection marker was used as a control. Comparing to Atg7
flox/lox 

(hereafter referred 

to as Atg7f/f ) and Atg7
-/-

 MEFs isolated from different embryos, the use of cre-

mediated in-vitro Atg7 deletion also avoids potential artifacts due to genetic 

variability between different individuals. 

 

After 3 days of selection in puromycin (2.5μg/ml) for infected cells, Atg7 levels 

were assessed by qPCR (Fig.3.1). It was revealed that Atg7 mRNA is significantly 

lower in cre recombinase expressing Atg7
flox/flox

 MEFs. The depletion of Atg7 

mRNA occurred within 5 days (Fig. 3.1).   
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Figure 3.1 Atg7
flox/flox 

locus is efficiently recombined by retroviral Cre 

recombinase.   

 

Relative mRNA expression of Atg7 was measured by RT-qPCR in Atg7
flox/flox 

cells 

which were retrovirally infected with either pBabe-Puro or pBabe-Puro-Cre. The 

experiment was carried out in various batches of MEFs and done at least three times 

overall.   
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Atg7 is a long-lived protein that has a half-life of about one week [251]. Three days 

following the antibiotic selection period, western blotting for Atg7 protein was 

carried out. Complete Atg7 depletion at the protein level was verified as shown in 

Fig. 3.2, and the depletion is sustained for at least two weeks after infection.     

   

Atg7 is an E1 like enzyme that is essential for the conversion of LC3-I to LC3-II 

(Figure 1.3), which is embedded on the inner and outer membrane of the 

autophagosome. The amount of LC3-II is proportional to the number of 

autophagosomes [252]. LC3-I (19kD) to LC-II (17kD) conversion on western blots 

has been used to determine autophagic flux and is a general indicator of autophagy 

activity. Figure 3.2a shows that both LC3-I and LC3-II were detectable in Atg7f/f  

cells (Atg7
flox/flox

), indicating that there is constitutively active autophagy in these 

cells. As expected, LC3-II band is absent in Atg7
-/-

 cells, and there is no significant 

difference in LC3-I between Atg7f/f  and Atg7
-/-

 cells.    

 

Autophagy is generally thought to be a non-selective process that bulk degrades 

proteins and organelles. However several selective autophagy substrates have been 

identified. p62/SQSTM1,  a well characterized autophagy substrate, is a 

cytoplasmic chaperone-like protein associated with polyubiquitinated protein 

cargoes that are destined for degradation via the autophagic machinery. The 

molecular structure of p62 contains an LC3 binding domain and a ubiquitin binding 

domain [125]. The LC3 binding domain on p62 allows its association with 

autophagosomes and therefore selective degradation via autophagy. Under normal 

conditions, basal autophagy continuously clears p62 and associated cargo (such as 

toxic aggregate-prone proteins) from the cytoplasm. It is generally accepted that, 

with a few exceptions, inhibition of autophagy is correlated with increased levels of 

p62 at protein levels [129]. The levels of p62/SQSTM1 were examined in cre 

recombinase treated Atg7
flox/flox

 cells. It was revealed that the p62 level was 

elevated significantly in Atg7
-/-

 cells a week after selection and the up-regulation 

persisted for at least two weeks (Figure 3.2b).  
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Figure 3.2 Loss of Atg7 depletes LC3-II conversion and leads to p62 up-

regulation. 

 

(a) Atg7 level and LC3-I to LC3 conversion were assessed by Western blotting after 

Atg7
flox/flox

 cells were infected with cre recombinase containing retrovirus. (b) The 

sustainability of Atg7 depletion and p62 upregulation were examined by western 

blot analysis. The experiment was carried out at least three times for different 

batches of MEFs to ensure Atg7 protein was depleted in cre treated Atg7flox/flox 

cells. 
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To summarise, Atg7 is completely deleted in cre recombinase infected Atg7
flox/flox

 

cells as verified by qPCR and western blotting. Loss of Atg7 leads to failure of 

LC3-I – LC3-II conversion and accumulation of p62.  

 

3.2 Investigation of the effect of loss of autophagy on DNA damage repair.  

 

Mammalian cells have a complex set of DNA damage responses which are finely 

coordinated in order to maintain genomic integrity and limit oncogenic 

transformation. Primary MEF cells were used to dissect the role of autophagy in 

DNA damage response, because transformed cells frequently harbour genetic 

defects in DNA damage repair pathways leading to genetic instability and immortal 

transformation.  

 

A number of molecular components are known to be localised at the sites of DNA 

damage in the nucleus, forming nuclear foci when visualised by 

immunofluorescence [253]. Histone protein H2AX is one of the first proteins that 

become activated via phosphorylation following DNA damage and it is reported 

that focus formation occurs within 3 minutes [254] [255]. Phospho-H2AX is 

commonly referred to as γ - H2AX because it was first discovered in cells exposed 

to γ rays, and can be phosphorylated by ATM, ATR and DNA-PKcs. H2AX 

facilitates ATM recruitment to the site of DNA breaks [256]  and ATM is 

considered to be the main modulator of H2AX activity [208]. Some of the DNA 

damage response molecules form foci during certain stages of the cell cycle, 

whereas γ - H2AX foci formation can take place at any stage of the cell cycle [257]. 

γ-H2AX focus formation in the nucleus has been used as a cellular marker for DNA 

damage, especially double strand breaks. Each focus formation covers megabases 

on the chromatin and represents a repair center for damaged DNA [255].   
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Figure 3.3 Double strand breaks after DNA damage are repaired in Atg7f/f and 

Atg7-/- cells at similar rates.   

 

Atg7f/f and Atg7-/- cells were irradiated (10Gy) and parameters of DNA repair 

monitored over time.  (a) Analysis of the accumulation of γ-H2AX by 

immunofluorescence microscopy was carried out to detect focus formation 1h and 

8h after ionizing radiation (IR, 10Gy).  (b) γ-H2AX was detected by western 

blotting at the indicated times following ionizing radiation (IR, 10Gy). *The experiment 

was carried out at least three times and a representative figure is presented here. 
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To investigate how the loss of autophagy affects DNA repair, wild-type and Atg7
-/-

 

cells were exposed to 10 Gy IR to induce DSBs and γ-H2AX foci formation was 

monitored (Fig.3.3a).  

 

As shown in Fig. 3.3a, no detectable difference in γ-H2AX nuclear foci was 

observed at resting state between Atg7f/f and Atg7
-/-

 cells. Comparable levels of 

focus accumulation were observed in the nucleus for the two cell lines 1 hour after 

IR, indicating a significant amount of double strand breaks were induced by 

irradiation.  The foci were no longer visible after 8 hours by immunofluorescence in 

both cell lines. These observations indicate that autophagy deficient cells are able to 

resolve IR-induced DSBs. Western blotting for γ-H2AX provides a more 

quantitative assessment of DSB repair (Fig. 3.3b), revealing that  Atg7-/- cells are 

able to repair IR-induced double strand DNA breaks, at a similar rate to Atg7f/f  

cells. These images also demonstrate the cells can repair damaged DNA fairly 

efficiently, the repair rate varies across different cell lines and is dependent on the 

proliferation speed of the cells. For example Fast growing neuroblastoma cells can 

repair most DNA damage 2 hours after 10Gy IR [258]. We found that in freshly 

isolated MEFs, most of γ-H2AX foci disappear 8 hours after 10Gy IR.   

 

As described in chapter 1, there are multiple pathways for DNA damage repair; 

sometimes these mechanisms buffer each other’s functions. Double strand breaks 

are mainly repaired by HR and NHEJ pathways, with less characterized pathways 

such as microhomology-mediated end joining also able to mediate the repair of 

DSBs [259]. Assays for γ-H2AX provide evidence that Atg7-/- cells repair DSBs 

but did not reveal how these lesions were resolved. Further assays examining the 

activation of downstream parameters the DNA damage response network were 

performed.  

 

Assessment of the activation of ATM and ATR, the two master kinases for double 

strand break DNA responses was carried out using immunofluorescence 

microscopy (Fig. 3.4 and Fig. 3.5). Comparable nuclear foci formation of p-ATM 
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(S1981), ATR, p-ATR and ATRIP were detected in Atg7f/f  and Atg7
-/-

 cells after 

10Gy IR. CtIP is an important strand resection protein activated by ATM, and it is 

also important for ATR activation in response to IR-induced double strand breaks. 

Equivalent amounts of RPA protein foci, which mark the presence of single strand 

DNA, were observed in Atg7f/f  and Atg7-/- cells.  This indicates that there was a 

comparable extent of strand resection after IR in autophagy deficient cells.  It was 

also revealed that equivalent amounts of CtIP foci were formed in the two cell lines. 

Immunofluorescence microscopy images for ATR, p-ATR, ATRIP and CtIP were 

performed by Naihan Xu.   

 

These results (Fig. 3.3 – Fig. 3.5) indicate that autophagy deficient cells are able to 

sense IR-induced DNA damage, which mainly consists of double strand breaks. 

ATM and its downstream targets all appear to be efficiently activated upon DNA 

damage. These DSB ends are efficiently processed and strand resection was able to 

take place. Strand resection after IR-induced DSB is necessary for the activation of 

ATR. ATR kinase also was found to be efficiently recruited to the site of damage in 

the absence of autophagy.  
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Figure 3.4 Equivalent levels of ATM activation were detected in Atg7f/f and 

Atg7
-/- 

cells.   

 

Activation of ATM in Atg7f/f  and Atg7
-/-

 cells was assessed by the measurement of 

phospho-ATM (Ser1981) nuclear foci using immunofluoresence microscopy, 

before and 1h after 10Gy IR. DAPI was used to stain the nucleus.  

*The experiment was carried out at least three times and a representative blot is presented here. 
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Figure 3.5 Autophagy deficient cells appear to have intact strand resection 

machinery during DNA damage response. 

 

(Experiments performed by Naihan Xu, a former BICR member). (a) The 

levels of ATR, ATRIP and phospho-ATR nuclear foci were assessed by 

immunofluorescence 1h after irradiation (IR, 10Gy) in wild-type and Atg7
-/-

 cells. 

(b) The sub-cellular localization of CtIP and RPA was assessed by 

immunofluorescence 1h after irradiation (IR, 10Gy) in wild-type and Atg7
-/-

 cells. 
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Chk1 phosphorylation is considered to be the main functional readout for ATR 

kinase activities [260]. Chk1 is one of the key molecules in the DNA damage 

response and it activates different cell cycle checkpoints – G1/S, the intra-S, G2-M 

and the mitotic spindle checkpoint [207]. In response to genotoxic stress, Chk1 is 

activated by ATR and initiates a signalling relay that eventually arrests the cell 

cycle. This provides an opportunity for the cell to repair the DNA damage. Both IR 

and etoposide are able to induce double strand breaks [261]. Thus we examined 

Chk1 activation after exposure to IR or etoposide-induced DNA damage. It was 

revealed that phosphorylation of Chk1 at serine 345, a site phosphorylated by ATR, 

was greatly impaired in autophagy deficient cells in response to these DNA 

damaging agents (Fig. 3.6).   
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Figure 3.6 Atg7 null cells have a deficiency in Chk1 activation. 

 

(a,b) Phosphorylation of Chk1 at S345 was measured by Western blotting in wild-

type and Atg7
-/-

 cells at the indicated times following exposure to 10Gy IR (a) or 

25μM etoposide (b). *The experiment was carried out at least three times and a representative blot is presented here. 
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3.3 Investigation of the mechanisms through which Chk1 is de-regulated.  

 

Chk1 activation is tightly modulated by a number of pathways, such as Claspin and 

WIP1. Claspin is an adaptor protein for Chk1 and it is also a target of ATR kinase. 

The phosphorylation of Claspin in the Chk1 binding domain promotes its 

association with Chk1 [262]. Claspin facilitates Chk1 phorphorylation by ATR and 

is required for Chk1 activation. Claspin protein levels are known to be modulated 

during cell cycle progression and also during the DNA damage response [263]. 

Claspin is normally degraded by the ubiquitin-proteasome system, and the 

degradation of Claspin is thought to terminate Chk1 activation and promote cell 

cycle progression [264]. In order to investigate whether the claspin level was 

affected in autophagy deficient cells, leading to Chk1 deficiency, western blotting 

analysis was carried out.  The same levels of claspin protein were detected in 

Atg7f/f  and Atg7-/- cells (see Fig. 3.7a).  

 

WIP1/PPM1D is a phosphatase that dephosphorylates Chk1 at Ser345 [265]. 

Similar to the functions of Claspin, WIP1 is thought to inactivate DNA damage 

response signalling after the lesion is repaired. WIP1 protein level is also tightly 

regulated in the cells [266]. If WIP1 for some reason is up-regulated in autophagy 

deficient cells, this would lead to decreased levels of phosphorylated Chk1. 

However identical levels of WIP1 were observed in Atg7f/f  and autophagy 

deficient cells (Fig. 3.7b).  

 

In fact, Analysis of Chk1 by western blot showed that both phospho- and total Chk1 

levels were diminished at a later time point (e.g. after 2 weeks) following loss of 

autophagy (Fig. 3.8).  
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Figure 3.7 Levels of Chk1 modulators Claspin and WIP1 were unchanged after 

loss of autophagy. 

 

(a,b) Levels of Claspin (a) and WIP1 (b) were measured by Western blotting in 

Atg7
flox/flox   

and Atg7
-/-

 cells following treatment with ionising irradiation (10Gy). 

*The experiment was carried out at least three times and a representative blot is presented here. 
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Figure 3.8 Total Chk1 protein level diminishes at later time points in autophagy-

deficient cells. 

 

Levels of phoshorylated Chk1 and total Chk1 were assessed by Western blotting in 

Atg7
flox/flox 

  and Atg7
-/-

 cells 2 weeks after recombination following 10Gy of 

ionising irradiation. *The experiment was carried out at least three times and a representative blot is presented here. 
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To summarise the findings so far, autophagy deficient cells appeared to be able to 

resolve IR induced DNA damage. They can activate molecules upstream of Chk1 

upon the induction of DSBs and no obvious defects were observed. However cells 

lacking autophagy displayed defective Chk1 activation. Less phosphorylated Chk1, 

and at a later time point lower levels of total Chk1 were observed in autophagy 

deficient cells. The decrease in phosphorylated Chk1 was observed after induction 

of DSBs; and the decrease in total protein level was observed in the absence or 

presence of DNA damaging agents. Chk1 activities are not only regulated by 

adaptor protein Claspin and phosphatase WIP1, the activation of Chk1 is actually 

coupled to its own degradation [267]. The phosphorylation of Chk1 at Ser345 

facilitates its proteasome mediated degradation [267].  

 

Our observations that impaired phosphorylation of Chk1 followed by deceased total 

protein levels could be explained by activation mediated degradation of Chk1.  It is 

generally accepted that autophagy deficient cells, which cannot efficiently remove 

damaged mitochondria and proteins, generate more reactive oxygen species (ROS) 

leading to more DNA damage [268]. ROS can act as signalling molecules at 

physiological levels in the cells, and they are produced in the mitochondria where 

oxygen metabolism occurs [269]. At elevated levels, ROS can cause oxidative 

damage to DNA molecules and accumulation of DNA damage leads to genomic 

instability and contributes to tumourigenesis. Mitochondria, as the main source of 

ROS in the cells are dynamic structures that are cleared by autophagy, and the 

process is referred to as mitophagy. Mitophagy constitutively degrades damaged or 

unwanted mitochondria. Mitophagy-deficient cells have de-regulated ROS levels 

which can cause damage to DNA, protein and lipids [270].   

 

Since DNA damage leads to activation of Chk1 and there’s increased DNA damage 

in autophagy deficient cells, it was reasoned that possibly the regulation of Chk1 

activation by upstream kinases, adaptor protein Claspsin or phosphotase WIP1 is 

not perturbed, but that Chk1 is constitutively activated in autophagy deficient cells 

due to the increased incidences of DNA damage. Activation of Chk1 leads to its 
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degradation and over time it would then have an impact on the total pool of Chk1. 

More mechanistic details on how the degradation occurs will be covered in chapter 

5. 

 

A different system, without the use of retroviruses was utilized to investigate the 

role of autophagy in Chk1 activation. Atg7
flox/flox 

mice were crossed with B6 CAG-

Cre-ER mice, which express a Cre recombinase targeted deletion system that can be 

induced by tamoxifen treatment. In contrast to in-vitro infection with cre 

recombinase, the tamoxifen -ER system does not require three rounds of infections 

and sequential selection. It was found that 6 days after the cells were first exposed 

to 4-hydroxytamoxifen (TAM), Atg7 was successfully removed, as assessed by 

western blotting shown in Fig. 3.9. Total Chk1 was also diminished in the absence 

of Atg7 (Fig. 3.9). In Atg7f/f  cells, Chk1 was activated 1h after IR, as assessed by 

western blotting for Ser345 p-Chk1; in Atg7
-/-

 cells, less phosphorylation-activation 

was observed in response to DNA damage. It can also be seen that the basal 

phosphorylation of Chk1 in Atg7
-/-

 is higher than that of Atg7f/f  cells.        
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Figure 3.9 Tamoxifen induced deletion of Atg7 in CAG-Cre MEFs also leads to 

decreased total Chk1 level.  

 

MEFs isolated from Atg7flox/flox – CAG-Cre embryos were treated with 2μM 4-

hydroxytamoxifen (TAM) for 48h, and incubated in TAM free medium for a further 

96h. The cells were harvested for western blotting 1h after 10Gy IR. *The experiment was 

carried out at least three times and a representative blot is presented here. 
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Both in-vitro infection of Atg7flox/flox MEFs and the Tamoxifen mediated Atg7 

deletion method involves the use of cre recombinase, which has been reported to 

have DNA damaging effects in cells without the LoxP site. Cre recombinase is an 

enzymatic protein originally found in P1 Bacteriophage and it catalyses site specific 

recombination between its specific recognition sites on the DNA, termed loxP sites 

[271]. Cre recombinase is a widely used tool in molecular biology to knock in/out 

specific genes. DNA flanked between two same-orientation loxP sites is excised 

[272]. Although being a powerful tool, the use of cre recombinase has raised 

concerns due to its associated toxicity. Naturally occurring sequences with high 

homology to loxP have been discovered in mammalian cells [273]. These pseudo-

LoxP sites can undergo cre-mediated recombination. Cre expression in mammalian 

cells in the absence of loxP sites have been reported to cause accumulated DNA 

damage and apoptosis [274] [275]. Therefore it was important to find out whether 

Chk1 deficiency after loss of autophagy was due to an off-target effect by cre-

recombinase, before any further characterization on the effect of autophagy loss on 

Chk1.  To test this, wild type primary MEFs were isolated from day 13-14 embryos 

with B6 background. These MEF cells were infected with cre-transgene-containing 

retrovirus and selected with puromycin for 3 days. Western blotting was carried out, 

and it was revealed that there was no difference in Chk1, either the activated Chk1 

or total Chk1 protein level, in cre treated Atg7f/f MEFs (Fig. 3.10).   
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Figure 3.10 WT MEFs treated with cre plasmid do not impede Chk1 activation 

or decreased Chk1 levels. 

 

Western blotting analysis showing the effect of Cre recombinase on Chk1 

phosphorylation (S345) in genetically unmodified (wild-type) primary MEFs. *The 

experiment was carried out at least three times and a representative blot is presented here. 
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Chapter 4. Investigating the downstream effect of Chk1 

deregulation in autophagy deficient cells  

 

Chk1 is one of the key molecules in the DNA damage response (either DNA strand 

breaks or blocked replication fork) and it activates different cell cycle checkpoints – 

G1/S, the intra-S, G2-M and the mitotic spindle checkpoint. Chk1 deletion in mouse 

models is embryonic lethal [276]. As early as the blastocyst stage before embryo 

formation, nuclear aberrations and apoptotic cell death can be detected. Chk1 is 

considered to be essential for cell survival and growth [276]. Chk1 and Chk2 are the 

two main cell cycle mediators, Chk is from checkpoint kinase, like their name 

suggests, Chk1 and Chk2 are proteins that play central roles in the crossroads 

between DNA damage response and cell cycle checkpoints. Once activated by 

stimuli such as genotoxic stress, the two checkpoint proteins trigger downstream 

signalling responses leading to cell cycle arrest. Although Chk1 and Chk2 are not 

structurally related to each other, they are functionally similar and share common 

substrates including Cdc25A and Cdc25C which are cell cycle checkpoint 

mediators. In recent years, it was found that the two kinases do not have complete 

overlapping functions and Chk1 may play a more essential role than Chk2 in the 

cells. Homozygous Chk1 deletion in mouse is embryonic lethal; however Chk2 

knockout mice are viable and fertile without any obvious defects [277], Chk2 

deficient mouse cells display normal cell cycle profiles, in contrary to findings in 

human immortalized cell lines [278], Chk2 was found to be insignificant in damage 

induced cell cycle checkpoint in mice [279] [280].  

 

As described in the previous chapter, soon after loss of Atg7, Chk1 activation is 

impaired in autophagy deficient cells; and at later times both total Chk1 protein 

levels and phosphorylated Chk1 are depleted in Atg7
-/-

 cells. These phenomena lead 

us to ask the question whether cell cycle regulation is abnormal in autophagy 

deficient cells, and whether these cells show abrogation in cell survival or 

proliferation.  
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4.1 Analysis of cell cycle checkpoints in response to DNA damaging 

agents in Atg7f/f  and Atg7-/- cells.  

 

Both mammalian and chicken somatic cells with complete Chk1 depletion are 

viable but they display significant checkpoint defects. Chk1 was found to be crucial 

for the DNA damage induced G2 checkpoint [276] [281]. Cells lacking Chk1 are 

expected have a de-regulated cell cycle. We therefore examined the cell cycle 

checkpoints in Atg7-/- cells in response to the genotoxic agent etoposide. Etoposide 

is a topoisomerase II inhibitor and cells undergo G2/M arrest upon treatment with 

etoposide [282]. The cell cycle arrest gives the cells some time to repair the double 

stand breaks caused by etoposide before entry into mitosis.    

 

Cell cycle distribution in Atg7f/f  and Atg7
-/-

 MEF cells before and after etoposide 

treatment was assessed. Equivalent cell cycle distribution was observed in the two 

cell lines before DNA damage challenge. After etoposide treatment, both cell lines 

displayed S phase and G2 arrest to a similar extent (Fig. 4.1). The results indicate 

that autophagy deficient cells, though appearing to have deficiency in Chk1 activity, 

have an intact G2 checkpoint.  
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Figure 4.1 Autophagy deficient cells have equivalent cell cycle distribution to 

Atg7f/f  cells prior to and after DNA damage. 

 

Atg7
flox/flox 

and Atg7
-/-

 cells were treated with 25μM etoposide for 8h after which 

cell-cycle analysis was undertaken by flow cytometry.  *The experiment was carried out at least 

three times and a representative figure is presented here. 
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During mitosis and meiosis, histone protein H3 becomes phosphorylated at ser10 

and this facilitates chromosomal condensation [283]. Mitosis occurs rapidly in the 

cells and at any given time only a small fraction of cells are pH3 positive. 

Nocodazole is an agent that inhibits the polymerization of microtubules. Cells 

treated with nocodazole fail to form metaphase spindles and the cell cycle cannot 

progress beyond the mitosis stage. The use of nocodazole allows the quantification 

of the percentage of cells that are going through mitosis.  

 

Checkpoint activities were examined in Atg7f/f  and Atg7
-/-

 cells. It was revealed 

that both cell lines efficiently undergo cell cycle arrest upon treatment with 

etoposide and neither cell line progresses into mitosis (Fig. 4.2). Results as shown 

in Fig.4.1 and Fig.4.2 indicate that the G2/M checkpoint is intact in Atg7
-/-

 cells.  
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Figure 4.211 deficient cells have intact G2/M checkpoints. 

 

The ability of cells to promote entry into mitosis or undergo G2/M cell cycle arrest 

was scored by detection of phosphorylated Ser 10 in histone H3 (pH3). Etoposide 

(25μM) and/or Nocodazole (100nM, to arrest cells in mitosis) was added to the cells 

for 8 hours where indicated.  *The experiment was carried out at least three times and a representative figure  is 

presented here. 



 112 

Serum starvation induces reversible G1 cell cycle arrest [284, 285]. Atg7f/f  and 

Atg7
-/-

 cells were synchronized in G1 phase by incubation in serum free medium for 

16 hours.  Final concentrations of 10% serum or/and etoposide (25μM) were added 

for a further 8 hours before the cells were harvested for flow cytometry analysis.  It 

was found that there were comparable G1 checkpoint activities between the two 

cells lines (Fig. 4.3). In nutrient replete conditions, around half of the cell 

population was detected as BrdU positive, indicating that they had been going 

through S-phase. After starvation, the cells were arrested in G1 phase and did not 

progress into S-phase. When serum was added back to starved cells, both wild-type 

and Atg7
-/-

 cells resumed their cell cycle progression and entered S-phase, as 

indicated by BrdU incorporation. When etoposide was added together with serum, 

neither of the two cell lines progressed into S-phase, indicating that autophagy 

deficient cells have an intact DNA-damage mediated G1 checkpoint.  
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Figure 4.3 Autophagy deficient cells have intact G1 checkpoints. 
 

 

The ability of Atg7
flox/flox 

and Atg7
-/-

 cells to promote entry into S phase or undergo 

G1 cell cycle arrest was determined by BrdU incorporation. Where indicated, cells 

were synchronized via incubation in serum free medium for 16 hours prior to 

addition of serum or/and etoposide (25μM).  *The experiment was carried out at least three times and a 

representative figure is presented here. 
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No obvious aberrations in DNA-damage-induced cell cycle controls were observed 

in Atg7-/- cells. Chk1 mediates cell cycle arrest through downsteam molecules such 

as Cdc25A and CDK1. Cdc25A is a phosphatase that drives G2/M phase transition 

by removing the inhibitory phosphorylation (Thr14 and Tyr15) on Cdk1 so Cdk1 

can form a complex with cyclin B [286]. Human Cdc25A activity is inhibited by 

Chk1 via phosophorylation and the protein is rapidly targeted for degradation [287]. 

Levels of Cdc25A and phosphorylation of CDK1 (Tyr15) in response to IR were 

examined (Fig. 4.4). Cdc25A levels were found to be constant before or after IR 

treatment and also there was no difference in the phosphorylation of CDK1. 

Cdc25A levels were not perturbed in the absence of autophagy, where Chk1 was 

de-regulated.  
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Figure 4.4 Loss of autophagy has no effect on Chk1 downstream molecules 

Cdc25A and pCDK1. 

 

(a) Levels of Cdc25A were assessed by western blotting prior to, 1h and 2h after 

10Gy IR. (b) p-CDK1 (Tyr 15) levels were examined in a similar manner. *The 

experiment was carried out at least three times and a representative blot is presented here. 
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4.2 Investigation of the effect of autophagy-deficiency on DNA 

repair of double strand breaks.  

 

Besides cell cycle control, Chk1 is also an important regulator of DNA damage 

repair [288]. It is found to phosphorylate Rad51 at Thr309, a nuclear protein that 

mediates homologous recombination during DNA damage repair [240]. Rad51 

normally displays a defuse pattern in the nucleus. The phosphorylation of Thr309 is 

crucial for Rad51 function, and Rad51 fails to form nuclear foci in Chk1 deficient 

cells (Sorensen et al., 2005). Once activated, Rad51 rapidly replaces RPA on single 

stranded DNA, and initiates homologous recombination.      

 

Because Chk1 is de-regulated in Atg7
-/-

 cells, we examined Rad51 foci formation in 

the nucleus after the cells were exposed to IR. Rad51 localises to sites of double 

strand breaks and forms microscopically detectable foci when cells are challenged 

with DNA damaging agents such as etoposide or IR [289]. In healthy growing cells, 

Rad51 foci are also frequently detected during the S-phase of the cell cycle, where 

most spontaneous double strand breaks occur due to stalled or collapsed replication 

forks [290]. To differentiate Rad51 focus formation caused by exogenous agents 

and spontaneous DSBs, proliferation marker EdU (5-ethynyl-2´-deoxyuridine) was 

used to identify S-phase cells. EdU is a modified nucleoside, an analogue of 

thymidine that can be incorporated into the DNA. It is similar to BrdU, but 

detection of EdU does not require DNA denaturation. It was revealed that Rad51 

fails to form foci in Atg7
-/-

 cells after DNA damage, whether they are in S-phase or 

not (Fig 4.5).  Nuclear foci formation was further quantified using an Image J/Fiji 

Macro to detect enhanced fluorescence (foci) within the nuclei.  At least 50 cells 

were examined in each population and the foci density calculated as the foci area of 

a nucleus relative to total nuclear area (as assessed by DAPI stain). The macro used 

for data analysis was built by Dave Strachan (BICR). 
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Figure 4.5 Rad51 focus formation does not occur in Atg7
-/-

 cells after DNA 

damage. 

 

(a) Rad51 nuclear focus formation (IR) was examined by immunofluorescence in 

wild-type and Atg7
-/-

 cells, 1h after exposure to 10Gy IR. Where indicated in each 

panel, DAPI was used to stain DNA. (b) The graph represents Rad51 positive 

nuclear area (foci) normalised against total nuclear area in Atg7f/f  and Atg7
-/-

 cells. 

*The experiment was carried out at least three times and a representative figure  is presented here. 
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The difference in Rad51 foci between Atg7f/f and Atg7-/- cells was visibly small; 

this was because of the limitations of the antibody available to us. The use of a 

macro quantifying (Rad51 Foci / Nuclear area) of the cells was able to reveal the 

difference and its significance, as presented in Fig 4.5(b).  

  

It is important to note that  Rad51 expression level is cell cycle dependent, the 

protein level is lowest during G1 phase, and it increases during S-phase and peaks 

during G2-M phase [291]. The expression levels coincide with the availability of 

sister chromatid as a template for HR. As shown in Fig. 4.1, the cell cycle 

distribution is comparable between Atg7f/f and Atg7-/- cells therefore the 

difference in foci formation was not due to a difference in cell cycle distribution.  

 

As mentioned previously, Rad51 is a central player in HR DNA repair, Rad51 

nucleofilament mediates homology search on an adjacent chromosome and 

stimulates DNA strand exchange process. To determine the effect of loss of 

autophagy on HR repair pathways, GFP-plasmid-based flow-cytometry assays were 

performed to quantify HR capacities in Atg7f/f and Atg7-/- cells.  

 

Atg7f/f  and Atg7-/- cells lines that contain stably inserted HR substrate reporter 

plasmid were established as described in Chapter 2.2.9. The primary structure of the 

recombination reporter substrate was shown in Fig 4.6a. The reporter has two 

consecutive copies of modified and inactive GFP (Green Fluorescence Protein) 

genes. The first copy of GFP gene was modified to contain a restriction enzyme site 

for I-SceI, an endonuclease which recognises 18bp sequence and cut the sequence 

leaving 4 base pair overhangs [292].  The second copy of GFP is truncated at 3’ end 

and is also inactive. When I-SceI is introduced into the HR reporter expressing cells, 

double strand breaks with overhangs were generated by the enzyme, and these 

lesions can only be fully resolved through HR pathways. NHEJ pathway may be 

able to repair such lesions; however nucleosides may be added or deleted at 

breakage ends randomly, resulting in a mutant GFP that is inactive. 48 hours after I-

SceI transfection using electroporation method, Atg7
flox/flox 

and Atg7
-/-

 cells were 
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analysed by flow cytometry in a FL1 versus FL2 dot plot with 20% FL2 – FL1 

compensation. GFP positive cell population has a higher FL1 signal relative to that 

autofluorescence diagonal, as shown in Fig. 4.6b. They represented cells that were 

capable of carrying out HR.  

 

 

Figure 4.6 recombination is impaired in autophagy-deficient cells. 

 

(a) (Adapted from [293]) The plasmid used in reporter HR assays encodes two 

copies inactive GFP proteins. When restriction enzyme I-SceI introduces double 

strand breaks with overhangs, HR takes place to repair the breaks using sequence 
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information from the second copy of GFP, located on a sister chromatin. (b) 

Plasmid-based assays were used to measure HR activity in wild-type and Atg7-null 

cells. (c) The results of 3 repeated experiments were quantified as represented graph. 

*The experiment was carried out at least three times and a representative figure is presented here. 

Results from flow cytometry assays as in Fig. 4.6 showed that Atg7-/- cells have 

diminished capacity to carry out HR relative to Atg7f/f  cells. This finding is 

supported by the fact that Rad51 fails to form foci in autophagy deficient cells.  

 

The two main ways of repairing DSBs are HR and NHEJ. HR appeared to be 

defective in autophagy deficient cells. Since DNA damaging pathways frequently 

buffer each other’s functions, i.e. NHEJ can be up-regulated when HR is inhibited 

and vice versa. The next step in this study was to investigate whether there was any 

irregularity in NHEJ pathways.   

 

The first step of NHEJ involves Ku complex recognizing and assembling at each 

end of DSBs (Figure in Intro). Ku is a heterodimeric protein complex consisting of 

two subunits Ku70 and Ku80. Once bound to DNA, it recruits downstream catalytic 

proteins such as DNA Protein kinase and DNA ligase IV. Identical amounts of 

Ku70 foci formation were observed in Atg7f/f  and Atg7-/- cells in response to IR 

(Fig 4.7). This would indicate NHEJ is carried out to the same extent in the 

presence or absence of autophagy.  
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Figure 4.7 Atg7
-/-

 cells have comparable levels of KU positive foci relative to 

Atg7f/f  cells as assessed by immunofluorescence. KU70 nuclear foci formation 

was monitored in Atg7f/f and Atg7-/- cells 1h after 10Gy IR treatment. DAPI was 

used to stain the nucleus.  
*The experiment was carried out at least three times and a representative figure is presented here. 
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A more definitive measurement of NHEJ is to use a GFP-readout plasmid-rejoining 

assay. It was revealed that there are equivalent NHEJ capacities in Atg7f/f and 

Atg7-/- cells, as measured by the plasmid-based assay (Fig. 4.8).    

 

The use of NHEJ substrate plasmid pEGFP-Peml-Ad2 was first published by 

Gorbunova lab [250]. The plasmid encodes a GFP sequence which has an inserted 

adenoviral exon flanked by two introns. The GFP is inactive because of the 

additional exon. Both introns contain a restriction site for HindIII enzyme, which 

generates compatible ends for NHEJ. Following treatment with HindIII, NHEJ 

causes end-joining of the DNA break resulting an active GFP, as illustrated in Fig 

4.8 (a).  
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Figure 4.8 Non-Homologous End-Joining is unaffected in autophagy-deficient 

cells as assessed by flow cytometry assays. 

 (a) (Adapted from [250]) GFP sequence in reporter substrate (pEGFP-Peml-Ad2) 

has an artificially inserted adeno-exon flanked by two introns, both of which 

contain restriction sites for HindIII. The GFP is inactive until the plasmid is 

digested by HindIII enzyme and rejoined through NHEJ pathways. (b) Plasmid-

based assays were used to measure NHEJ activity in wild-type and Atg7-null cells. 

(c) The graph represents the quantification of repeated experiments.  

*The experiment was carried out at least three times and a representative figure is presented here. 
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The results above show that autophagy deficient cells have defects in HR pathways 

but they appear to have intact NHEJ pathways.  

 

It has been reported that defects in HR pathways can lead to an accumulation of 

chromosomal breaks and promote genomic instability [294]. Cells lacking HR 

components such as Rad51 or BRCA1 are often viable but they accumulate 

spontaneous damage and are hypersensitive to DNA damaging agents such as IR or 

UV [295]. Mouse cells lacking critical HR mediators such as Rad51 or Xrcc2 have 

chromosomal re-arrangement and aneuploidy and knocking out these genes in mice 

leads to embryonic lethality [296] [297].  

 

Because of their importance in guarding genomic integrity, it is not surprising that 

these HR mediator genes are frequently found to be mutated in cancer. Defects in 

DNA repair pathways promote neoplasmic transformation [298]. Cancer cells 

lacking HR capacity have been found to be more dependent on alternative repair 

mechanisms including NHEJ, base excision repair and other less-defined 

mechanisms [299] [300]. This property of tumour cells has been utilized in 

synthetic lethal anti-cancer therapeutics. For example, breast cancer cells lacking 

BRCA1/2 have been found to be hypersensitive to PARP (poly ADP ribose 

polymerase) inhibitors [301], which is an important mediator for base excision 

repair pathways, and PARP is frequently found to be up-regulated in cancer cells 

[302].  

 

Alternative pathways to HR are more error prone because they are not homology-

based and they often involve loss of genetic information at the sites of breakage. 

HR is the predominant repair pathway for cells that have finished DNA synthesis 

and before they divide into two daughter cells [303]. The lack of HR during these 

scenarios can potentially contribute to neoplastic transformation. For example, 

chromosomal re-arrangement can occur if the ends from different chromatids are 

wrongly joined together [299].   
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4.3 Characterisation and quantification of genetic instability in autophagy 

deficient cells.  

 

The profound genetic instability due to loss of HR capacity promotes cancer cell 

transformation, yet in most cases; cell death is induced when there is an 

accumulation of chromosomal breakage [294]. Sub-G1 DNA content is a reliable 

measure of apoptotic cell death. To investigate whether autophagy deficient MEFs 

have more spontaneous cell deaths, Sub-G1 DNA contents over a period of 3 weeks 

were monitored in Atg7f/f and Atg7-/- cells. At any given time, Atg7-/- cells 

displayed increased basal cell death relative to Atg7f/f cells. During the first three 

weeks after Atg7 recombination, Atg7-/- cells displayed twice the amount of cells 

going through spontaneous cell death relative to Atg7f/f cells. By the end of 3 

weeks, Atg7-/- MEFs entered crisis and had a drastic portion of apoptotic cells (Fig 

4.9). 
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Figure 4.9  Autophagy deficient cells have increased spontaneous cell death. 

 

Sub-G1 DNA content was measured by flow cytometry analysis in Atg7f/f and 

Atg7
-/-

 cells at the indicated time points after Atg7 recombination. 

*The experiment was carried out twice and a representative figure is presented here. 
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Before Atg7
-/-

 entered crisis point at the end of the three-weeks after recombination, 

the absolute percentages of cells going through spontaneous cell death were 

relatively low (around 2-4% in Atg7f/f cells and 4-8% for Atg7-/- cells). It was 

expected that increased spontaneous cell death would manifest as defects in cell 

growth, therefore cell proliferation rates of Atg7f/f and Atg7
-/-

 cells were monitored 

over a period of 4 weeks. Growth curve analysis revealed that autophagy deficient 

cells had a significant slower rate of growth (Fig. 4.10). Crystal violet staining 

assay was also used to detect the difference in growth rates between Atg7f/f and 

Atg7
-/-

 cells. 10
6
 cells were seeded onto 10mm dishes and incubated in a humidified 

5% CO2 incubator, after 48h, the dishes were stained with crystal violet solutions. 

Crystal violet is a chemical that binds sugar containing molecules such as DNA, 

and it can be easily visualized. The intensity of purple colour is generally 

correlative to the amount of cells on the dishes. Results as shown in Fig. 4.10b 

revealed that there was significant less of Atg7
-/-

 cells on the dishes and hence that 

they grow at a slower rate.   
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Figure 4.10 Atg7
-/-

 have a significant longer doubling time relative to Atg7f/f 

cells.  

 

(a) The difference in cell proliferation rate between Atg7
flox/flox 

and Atg7
-/-

 cells was 

monitored over a time course of 4 weeks. (b) 10
6
 Cells were plated onto 10mm 

dishes on day one and the dishes containing adherent cells were stained with crystal 

violet dye on day 3. *The experiment was carried out twice and a representative figure is presented here. 
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Micronuclei formation is commonly used as a biomarker to quantify chromosomal 

damage, especially damage related to double strand breaks [304]. A micronucleus is 

an irregular small nucleus that is formed during mitosis. Micronuclei are commonly 

seen in cancer, as a result of chromosomal instability [305]. It contains 

chromosomal fragments or a whole chromosome that fails to be segregated into a 

daughter cell. It can be easily visualized using DAPI, which is a dye binding to 

DNA. Micronuclei can form through multiple mechanisms. Deficiency in HR 

pathways such as BRCA or Rad51 results in micronuclei accumulation in the cells 

[306] [307]. It was considered that HR deficient cells become hyper-dependent on 

NHEJ. NHEJ is an error-prone way of repairing DSBs and is more likely to form 

dicentric chromosomes (chromosomes attached to two centromeres) and acentric 

chromosomal fragments (chromosomes unattached to centromere) [305]. These 

chromosomal aberrations eventually manifest as micronuclei formation.  

 

It was observed that there was increased micronuclei formation in autophagy 

deficient cells and the difference was quantified (Fig. 4.11). This observation 

supports that autophagy deficient cells have increased genetic instability, and is 

possibly due to the fact that HR pathways are defective in autophagy deficient cells.  
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Figure 4.11 Loss of autophagy leads to micronuclei accumulation. 

 

Occurrence of micronuclei was examined and quantified in Atg7f/f and Atg7
-/-

 cells 

at the indicated time points after Atg7 recombination. *The experiment was carried out at three 

times and a representative figure is presented here. 
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4.4 Investigation of synthetic lethal effects due to HR defect in autophagy 

deficient cells.   

 

Most of DSBs are repaired by NHEJ which is available throughout the cell 

cycle[303]. Both HR and NHEJ pathways are crucial for the cells to maintain 

genetic stability; the two pathways can not replace each other and mutations in 

either pathway leads to diseases including cancer [298]. If one of the two pathways 

is lacking in the cells, the other pathway can be up-regulated to mediate the repair 

of DSBs. This plasticity has been demonstrated by several studies. For instance, HR 

is up-regulated in cells that have defective NHEJ pathways [308]. NU7441 is potent 

specific DNA-PK inhibitor [309], it has been shown to inhibit NHEJ and increase 

dependence on HR pathways in cancer cell lines [310].  

 

Autophagy deficient cells have defective HR pathways and intact NHEJ pathways. 

NHEJ does not appear to be up-regulated by the loss of autophagy. To investigate 

whether cells became hyper-dependent on NHEJ pathways after the loss of 

autophagy, Atg7f/f and Atg7
-/-

 cells were treated with DNA-PK inhibitor NU7441 

following exposure to 10 Gy IR. Our results, as shown in Fig. 4.12, indicated that 

Atg7f/f cells were able to repair IR induced DSBs after 30 hours in the absence or 

presence of DNA-PKi. In Atg7-/- cells where HR was found to be defective, 

treatment of DNA-PK inhibitor lead to persistence of DNA damage, as marked by 

γ-H2AX staining, 30 hours following DSB inducing IR treatment (Fig 4.12).  
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Figure 4.12 DNA double strand breaks persist in autophagy deficient cells 

following inhibition of DNA-PK.  

 

Immunofluoresent microscopy analysis for the persistence of γ-H2AX foci 30h 

after 10Gy irradiation (IR) in control and ATG7
-/-

 cells was assessed either in the 

absence or presence of 10μM DNA-PKcs inhibitor, NU7441 (DNA-PKi).  DAPI 

was used to stain DNA in the nucleus. *The experiment was carried out at twice and a representative 

figure is presented here. 
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The accumulation of un-repaired DSBs leads to cell cycle arrest and eventually 

programmed cell death is activated [311]. As Atg7-/- cells displayed persistent 

DNA damage after inhibition of NHEJ pathways, cell death analysis was carried out 

to investigate whether the loss of autophagy leads to increased cell death in 

response to DSB inducing agents in combination with an NHEJ inhibitor (Fig. 4.13). 

Atg7f/f and Atg7
-/-

 cells were exposed to 10Gy IR, followed by 48h incubation with 

or without 10μM NU7441 (DNA-PKi). The cells were harvested for flow cytometry 

analysis and it was revealed that loss of autophagy leads to hypersensitivity to IR in 

combination with DNA-PKi.  

 

Higher does of IR (25Gy) led to higher percentage of cell death in autophagy 

deficient cells (Fig. 4.14). There was limited amount of apoptosis (< 5%) in lower 

dose IR (10Gy) treated cells, in the absence or presence of autophagy. Inhibition of 

DNA-PK and therefore NHEJ pathways did not appear to affect cell viability after 

DNA damaging treatment in Atg7f/f cells. However, in Atg7
-/-

 cells there was a 

marked increase in  cell death in DNA-PKi treated cells after DNA damage induced 

by 10Gy IR (Fig. 4.13).  
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Figure 4.13 Atg7
-/-

 cells are dependent on DNA-PK/NHEJ following treatment 

with IR.  

 

Sub-G1 DNA contents were analysed by flow cytometry in Atg7f/f and Atg7
-/-

 cells 

48h following 10Gy IR in the absence or presence of 10μM DNA-PKcs inhibitor, 

NU7441 (DNA-PKi).  *The experiment was carried out at least three times and a representative figure is presented 

here. 
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Numerous studies have shown that the loss of HR capacities in non-transformed or 

cancer cell lines leads to hypersensitivity to IR, as reviewed in [312]. Results as 

presented in Fig. 4.13 showed that autophagy deficient cells did not display any 

radio-sensitivity when exposed to 10Gy IR. However, when cells were treated with 

25Gy IR, there was an increase in cell death for cells lacking autophagy (Fig. 4.14). 

There was increased spontaneous cell death in Atg7
-/-

 cells and upon 25Gy IR, the 

death was further increased. Atg7f/f primary cells did not display any increase in 

cell death following IR.  

 

Etoposide is a commonly used chemotherapeutic drug that induces double strand 

breaks. Etoposide also induces double strand breaks through the inhibition of 

topoisomerase II [261]. Similar to the synergy in cell death observed with IR and 

DNA-PKi, Atg7
-/-

 cells were also found to be hypersensitive to etoposide (25μM) in 

combination with treatment with DNA-PKi (10μM) (4.15).  
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Figure 4.14  Higher dose of IR leads to increased cell death in autophagy 

deficient cells.  

 

Atg7f/f and Atg7-/- cells were exposed to 25Gy IR and harvested for flow 

cytometry analysis 48h later. Sub-G1 DNA contents were analysed. *The 

experiment was carried out at least three times and a representative figure is presented here. 
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Figure 4.15 Atg7
-/-

 cells are hypersensitive to DNA-PKi (10μM) after treatment 

with Etoposide. 

 

Sub-G1 DNA contents were analysed by flow cytometry in Atg7f/f and Atg7
-/-

 cells 

48h following 25μM Etoposide in the absence or presence of 10μM DNA-PKcs 

inhibitor, NU7441 (DNA-PKi).  *The experiment was carried out at least three times and a representative 

figure is presented here. 
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To test whether autophagy deficient cells were intrinsically hypersensitive to 

etoposide, Atg7f/f and Atg7
-/-

 cells were treated with titrating concentrations of 

etoposide of up to 60μM. It was found that loss of autophagy had no effect on 

apoptosis after treatment with etoposide (Fig 4.16).    

 

It has been reported that loss of autophagy is linked to hypersensitivity to 

chemotherapeutic drug camptothecin (CPT). FIP200 is an autophagy essential gene. 

Camptothecin does not have a great impact on cell viability in Atg7f/f cells, while 

FIP200 knockout MEFs have greatly diminished cell viability [249]. In breast 

cancer cell line MCF-7, inhibition of either Beclin1 or Atg7 leads to 

hypersensitivity to CPT [313].  

 

In order to test whether autophagy deficient MEFs are hypersensitive to CPT, 

Atg7f/f and Atg7
-/-

 cells were treated with titrating concentrations of CPT for 16 

hours and the cells were harvested for Sub-G1 DNA content analysis using flow 

cytometry. Autophagy deficient cells displayed marked sensitivity to CPT (Fig. 

4.17). 
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Figure 4.16 Loss of autophagy does not affect etoposide induced apoptosis.  

 

Sub-G1 DNA contents were analysed by flow cytometry in Atg7f/f and Atg7-/- 

cells 48h following treatment with 25μM etoposide as indicated.  *The experiment was 

carried out at least three times and a representative figure is presented here. 
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Figure 4.17 Atg7-/- cells are hypersensitive to Camptothecin.  

 

Wild-type and Atg7
-/-

 cells were treated with indicated concentrations of 

Camptothecin for 16 hours and cell death was accessed by flow cytometry analysis 

of sub-G1 DNA content.  *The experiment was carried out at least three times and a representative figure is 

presented here. 

 

 



 141 

As shown in Fig 4.16 and 4.17, Atg7
-/-

 MEFs did not display increased sensitivity to 

etoposide however they are hypersensitive to CPT. Both CPT and etoposide are 

topoisomerase inhibitors, they form covalent complexes with cleaved DNA 

molecules and lead to DSBs [314, 315]. CPT is an inhibitor of DNA topoisomerase 

I, and etoposide of topoisomerase II. The types of DSBs they form are different and 

they exert different toxicity on cells. CPT leads to DSBs when the replication fork 

collides with CPT cleavage complex during S-phase [316]. Etoposide forms a 

cleavage complex with a long half life and eventually the single strand break turns 

into DSBs. DSBs by etoposide are repaired through HR and NHEJ [317]. The 

breakages created by CPT have overhangs of ssDNAs and resemble DNA ends 

after processed by strand resection mediators. DSBs mediated by CPT are primarily 

repaired with HR pathways [318, 319].  

 

Homologous recombination repair pathways involve DNA synthesis and stable 

cellular nucleotide levels are required to support DNA biogenesis. The lack of 

sufficient nucleotide pool in the cells leads to deficiency in DNA damage response 

and ultimately genetic instability [320]. Autophagy inhibition may limit the size of 

the cellular nucleotide pool, and so there is a possibility that the intrinsic sensitivity 

to CPT of Atg7
-/-

 cells was due to the lack of sufficient nucleotide. However, 

addition of exogenous nucleosides which elevate nucleotide pool did not reverse the 

effect (Fig 4.18).  

 

Atg7 is an E1-like enzyme crucial for autophagy process; a recent study reported 

that Atg7 can also form a complex with p53 protein both in the cytoplasm and the 

nucleus, playing a role in nutrient withdrawal induced cell cycle arrest [268]. It is 

unclear whether Atg7 plays a role in other pathways of DNA damage response. To 

ascertain whether the synergetic effects we observed were due to loss of autophagy 

or specifically Atg7 protein, Atg5
flox/flox

 MEFs were isolated and it was found that 

loss of Atg5 also leads to hypersensitivity to etoposide when treated with DNA-PKi 

(Fig 4.19).   
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Figure 4.18 Addition of exogenous nucleosides does not rescue CPT sensitivity in 

autophagy deficient cells. 

 

Apoptotic cell death was assessed 24h after treatment with Camptothecan (CPT) 

with or without nucleosides (10μM each of adenosine, guanosine, uracil and 

cytidine) as indicated. Total cell populations were collected and assessed for sub-

G1 DNA content by flow cytometry. *The experiment was carried out at least three times and a 

representative figure is presented here. 
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Figure 4.19 Atg5
-/-

 cells display synergy in cell death when treated with DNA PKi 

after DNA damage. 

 

Atg5
flox/flox 

MEFs were infected with Cre recombinase or empty retroviral vector as 

contol.  (a) Following antibiotic selection, cells were, where indicated, exposed to 

etoposide and/or DNA-PKi for 48h. Total cell populations were collected and 

assessed for sub-G1 DNA content by flow cytometry. (b) Relative mRNA 

expression of Atg5 was measured by qRT-PCR in ATG5
flox/flox 

cells which were 

retrovirally infected with either pBabe-Puro or pBabe-Puro-Cre. *The experiment was carried 

out at least three times and a representative figure is presented here. 
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Chapter 5. Investigating the Mechanisms through Which Chk1 

Level Is Down Regulated 

 

Protein degradation is a central process in the cells which is crucial for nearly all 

fundamental cellular activities including cell cycle progression, cell signalling, cell 

death, DNA transcription and DNA repair [321]. There are two main ways of 

degrading proteins and organelles in eukaryotic cells; they are the ubiquitin-

proteasome pathway and autophagy. The 26S proteasomes are large protein 

complexes found in all eukaryotic cells. They mainly degrade short-lived nuclear or 

cytosolic proteins [322]. Target proteins for proteasomal degradation are 

specifically marked by covalently attached ubiquitin molecules [323]. They are 

loaded into the catalytic cavity of proteasome complex where they are degraded. On 

the other hand, autophagy is a bulk degradation process that mainly degrades long-

lived proteins. Autophagy can also degrade bulkier proteins that otherwise do not fit 

in the barrel structure of proteasomes [324]. Both systems are important for the 

clearance of misfolded proteins and deficiency in either pathway can lead to various 

neurodegenerative conditions [325].  

 

Most ubiquitinated proteins are targeted for degradation in the proteasome. As 

described in Chapter 1, certain proteins, such as p62, NBR1 and HDAC6, can be 

ubiquitinated and specifically degraded via the autophagic machinery. Numerous 

proteins can be degraded by both proteasome and autophagy pathways, inhibition of 

either pathway can often lead to the up-regulation of the other [326] [327] [105]. 

There is also a study showing that the inhibition of autophagy can lead to 

suppression of proteasome mediated protein degradation through up-regulation of 

p62 [328]. Accumulation of p62, which contains a ubiquitin binding domain, is 

thought to delay the delivery of ubiquitinated proteins to the 26S proteasome. p62 

itself does not appear to have any effects on the proteasomal activities [328].  

 

Chk1 is a protein degraded by the proteasome. Chk1 protein is rapidly 

phosphorylated at multiple sites by ATR in response to genotoxic or replicative 
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stress. The phosphorylation of Ser345 site is thought to relieve the auto-inhibition 

of Chk1 and promote its kinase activities [329]. DNA damage responses consist of 

three main aspects: cell cycle arrest, DNA damage repair and programmed cell 

death. The three processes are finely coordinated and Chk1 is found to play a part in 

all three processes. The activation of Chk1 promotes cell cycle arrest and DNA 

repair. When the genotoxic stress is removed and DNA damage is repaired, Chk1 is 

inactivated and cell cycle resumes. A few mechanisms of Chk1 inactivation have 

been characterized to promote cell cycle recovery. Chk1 adaptor protein Claspin is 

regulated to modulate Chk1 activities [330] and phosphatase WIP1 specifically 

dephosphorylate Chk1 on a Ser345 [331]. Prolonged cellular stress leads to cell 

death and phosphorylated Chk1 is thought to be one of the intrinsic timers deciding 

cell fate. Activation of Chk1 facilitates its degradation. [332] [267]. 

Phosphorylation of Chk1 leads to its exposure to SCF E3 ligase, which mediates the 

ubiquitination and proteasomal degradation. Eventual depletion of Chk1 leads to 

permanent S phase arrest and subsequent cell death [333].  

 

5.1 Investigation of proteasomal activities in cells when autophagy is inhibited. 

 

Since p-Chk1 and later total Chk1 were diminished in autophagy deficient cells, it 

became apparent to test proteasomal activities in Atg7f/f and Atg7
-/-

 cells. The 

Proteasome-Glo™ Cell-Based Assays (Promega) was used to test proteasomal 

activities. The assay consists of artificially engineered substrates that can be 

recognised by the proteasome and cleaved by the chymotrypsin-like protease 

activities. The cleavage of the substrates leads to production of luciferin, which 

reacts with luciferase, producing luminescence signal. The strength of signal 

correlates with proteasomal activities.       

 

Proteasome activity luminescence assays were performed with Atg7f/f and Atg7
-/- 

cells (Fig. 5.1). Where indicated, 10μM lactacyctin was added to the cells 3h prior 

to harvest. Luminescence generated by proteasomal activities was measured and 

Atg7
-/-

 cells displayed nearly two fold of activity relative to Atg7f/f cells. The 
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signals are diminished after treatment with lactacystin, indicating that the signal is 

truly representative of proteolytic activity of the 26S proteasome complex. 

Lactacystin is a commonly used specific proteasome inhibitor. It is an compound 

first identified in bacteria streptomyces [334] , it binds covalently to the active site 

N-terminal threonine residue in beta-subunits of proteasome, inhibiting the catalysis. 

Lactacycstin was included in all proteasomal activity assays as a negative control.   
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Figure 5.1 Proteasomal activities are up-regulated in Atg7
-/-

 cells.  

 

Proteasomal activity was determined in wild-type and Atg7
-/-

 cells using a 

luciferase-based assay kit (Promega). Where indicated, lactacyctin (10μM) was 

added to the cells 3h prior to harvest. *The experiment was carried out at least three times and a 

representative figure is presented here. 
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As described previously (Fig. 3.4), there was less phosphorylated Chk1 in response 

to DNA damage in autophagy deficient cells soon after recombination, and later on 

there was decreased total Chk1 protein level in autophagy deficient cells (Fig. 3.8). 

No defects in Chk1 activation pathways were observed. Since activation of Chk1 

facilitates its proteasomal mediated degradation, we wanted to find out whether 

inhibition of proteasomal activities can reverse the effect on Chk1 after loss of 

autophagy. MG132 (carbobenzoxy-Leu-Leu-leucinal) is another commonly used 

proteasome inhibitor. While lactacystin inhibition involves covalent modification 

and is irreversible, MG132 is a potent and reversible peptide inhibitor that inhibits 

catalytic activities of the 26S proteasome complex [335]. 

 

It was found that the proteasomal inhibitor MG132 partially rescued 

phosphorylation of Chk1 at S345 in Atg7
-/-

 cells after irradiation. This is the case 

during early stages of recombination when only p-Chk1 is affected in Atg7-/- cells 

(Fig. 5.2) or when total Chk1 is also diminished at later times (Fig 5.3). Freshly 

recombined Atg7f/f and Atg7-/- cells were exposed to 10Gy IR and harvested for 

western blotting an hour later. The cells were treated with MG132 for 6h where 

indicated. In this case, total Chk1 levels were not noticeably diminished in Atg7
-/- 

cells, however there is decreased level of p-Chk1 (Ser345) after 10Gy IR in 

autophagy deficient cells (Fig. 5.2). In the presence of MG132, there were increased 

basal levels of p-Chk1 in both wild-type and Atg7-/- cells. Following treatment with 

MG132, Chk1 in Atg7
-/-

 cells was activated to a comparable extent as Atg7f/f cells.     
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Figure 5.2 Down-regulation of phosphorylated Chk1 in Atg7
-/-

 cells can be 

rescued by proteasomal inhibitors MG132. 

 

Chk1 phosphorylation at Ser345 and total protein levels in wild-type and Atg7
-/-

 

cells were examined 1h post 10Gy IR in either the absence or presence of 10μM 

MG132 for 6h. Actin was used as a loading control. *The experiment was carried out at least three 

times and a representative figure is presented here. 
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We were also interested to find out whether MG132 can rescue diminished total 

Chk1 protein in Atg7
-/-

 cells. Since Chk1 levels are not elevated after 6h of MG132 

treatment (Fig 5.2), in subsequent experiments, the treatment time was extended to 

16h (Fig. 5.3). After 16h MG132 treatment, there are higher levels of 

phosphorylated Chk1 in response to 10Gy IR in Atg7f/f and Atg7
-/-

 cells. 

Surprisingly, prolonged treatment with MG132 lead to the degradation of total 

Chk1 in Atg7f/f cells and did not raise the levels of total Chk1 in Atg7
-/-

 either. 

Since proteasomal activities are elevated in autophagy deficient cells, it remained a 

possibility that other proteasomal substrates were also degraded faster in these cells. 

In order to test this, protein levels of Mcl-1, a well characterized proteasomal 

substrate, were investigated in Atg7f/f and Atg7
-/-

 cells. Mcl-1 (myeloid leukemia 

cell differentiation protein) is a protein belongs to the Bcl-2 family; it is degraded 

by the ubiquitin-proteasome pathway and is known to have a very short half-live. 

Mcl-1 is rapidly turned over in the cells and the half life of Mcl-1 is around 3 hours 

[336]. Loss of autophagy does not affect levels of Mcl-1 at basal levels, this 

indicates that the up-regulation of proteasomal activities do not affect all short-lived 

proteins. After MG132 treatment, levels of Mcl-1 became elevated (Fig 5.3).   

 

A more definitive assay to test whether Chk1 is degraded faster in the absence of 

autophagy was carried out using Cycloheximide (CHX). Proteins in the cells are 

constantly recycled and renewed. The half life of a short-lived protein can be 

determined by western blotting analysis when protein synthesis is inhibited. CHX is 

a small molecule that blocks eukaryotic translation by binding to the ribosome and 

inhibits eEF2-mediated translocation [337]. It has been commonly used in assays to 

determine protein half life in eukaryotic cells. As shown in Fig. 5.4, Autophagy 

deficient cells were able to degrade Chk1 faster.  
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Figure 5.3 Downregulation of p-Chk1 in Atg7-/- cells can be rescued by 

proteasomal inhibitors MG132 and long term MG132 treatment leads to Chk1 

degradation.  

 

Chk1 activation in wild-type and Atg7
-/-

 cells was examined 1h post 10Gy IR in 

either the absence or presence of 10μM MG132 for 16h.  *The experiment was carried out at 

least three times and a representative figure is presented here. 
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Figure 5.4 Loss of autophagy decreases Chk1 half life.  

 

(a) Endogenous Chk1 levels were determined by western blotting in Atg7
flox/flox 

and 

Atg7
-/-

 cells, after treated with cycloheximide (10μg) for various length of time as 

indicated. (b) Chk1 levels as shown in (a) were quantified using ImageJ software 

after normalisation to ERK/p42 loading controls. *The experiment was carried out at least three 

times and a representative figure is presented here. 
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In Cre mediated recombination system of Atg7
flox/flox 

MEFs where the procedure 

takes a week including selection with antibiotics, the deletion of autophagy activity 

is complete and the system is thought to have minimized off-target effects. 

However, it is difficult to find out how long exactly after infection with cre 

recombinase containing virus the cells start to lose autophagy. As shown in Fig. 5.1, 

Atg7-/- cells were found to have elevated levels of proteasomal activities. Cells 

with Atg7 depletion can not initiate autophagy and it remained a possibility that 

Atg7 has other functions in the cells independent of its E1 like enzyme activities. 

The use of a pharmacological inhibitor such as Bafilomycin A1 for autophagy 

would allow us to find out whether the up-regulation of proteasomal activities only 

occurred in Atg7
-/-

 cells or the effect is genuinely due to autophagy. Bafilomycin 

A1 is a natural compound first identified in the bacteria streptomyces griseus. It is a 

specific inhibitor of vacuolar-type hydrogen ATPase and can prevent the re-

acidification of lysosomes [338]. Bafilomycin hence inhibits the final step of 

autophagy when autophagosomes fuse with lysosome and the autophagic cargo is 

degraded.  

 

Atg7f/f primary MEFs were found to have elevated proteasomal activities after 

treatment with Bafilomycin A1 in a time-dependent manner. After 12 hours 

treatment, there was a detectable up-regulation. By 18 hours, the proteasome 

activity increased by three fold in Bafilomycin treated cells (Fig 5.5). This 

confirmed our findings in Atg7
-/-

 cells that loss of autophagy leads to increased 

proteasome activities. In response to dysfunctional lysosomes, the cells respond 

rapidly by up-regulating proteasomal activities as an adaptive mechanism.    
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Figure 5.5 Bafilomycin A1 up-regulates proteasomal activities in a time-

dependent manner.  

 

Proteasomal activity was determined in cells in the presence of absence of 

Bafilomycin A1 (100nM) for indicated length using a luciferase-based assay kit 

(Promega). Where indicated, lactacystin (10μM) was added to the cells 3h prior to 

harvest.  *The experiment was carried out at least three times and a representative figure is presented here. 
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To investigate whether short term autophagy inhibition has any effects on Chk1 

activation or total Chk1, cells were pre-treated with 100nM Bafilomycin A1 for 2 

hours where indicated before the addition of 25μM etoposide for indicated length of 

time. It was revealed that Chk1 is activated as assessed by p-Ser345 after 1 hour 

etoposide treatment to the same extent in the absence or presence of Bafilomycin. 

In accordance with published literature [333] [332] [267], Chk1 activation is not 

sustained in the presence of DNA damage agents, such as etoposide in this case. 

Comparing to 1h after etoposide treatment, there was decreased p-Chk1 signals in 

cells after 2h and 4h treatment in etoposide (Fig. 5.6). This is possibly because 

phosphorylated Chk1 is rapidly targeted for degradation. Total Chk1 protein levels 

were not affected by short-term Bafilomycin treatment. After 4h exposure to 

etoposide, Bafilomycin treated cells appeared to have a slightly weaker p-Chk1 

signal relative to cells without Bafilomycin.   

 

As shown in Fig 5.6, short term treatment (2 hours) with autophagy inhibitor 

Bafilomycin did not have any obvious effects on either total Chk1 or Chk1 

activation in response to DNA damaging agent etoposide. 2-hour Bafilomycin 

treatment itself also did not have any effect on Chk1 phosphorylation. However, 

longer term (12h) treatment of Bafilomycin appeared to have a differential effect on 

Chk1 activation depending on the presence of DNA damage inducing agent 

etoposide (Fig. 5.7). Treatment of Bafilomycin for 12 hours caused an increase in 

Chk1 activation (Fig. 5.7). In the presence of etoposide which creates double strand 

breaks, Bafilomycin failed to activate Chk1 further. In the presence of proteasome 

inhibitor MG132, Chk1 is strongly activated after etoposide treatment with or 

without Bafilomycin. This result indicated that loss of autophagy induced Chk1 

activation continuously and phosphorylated Chk1 is readily degraded by the 

ubiquitin-proteasome pathway. LC3 was probed as an indicator for autophagic 

activities. As Bafilomycin inhibits lysosomal functions, there was an accumulation 

of LC3-II in Bafilomycin treated samples.      
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Figure 5.6 Short term treatment of Bafilocymin does not have obvious effects on Chk1 activation 

in response to DNA damage.  

 

Phopho-Chk1 (S345) activation after Bafilomycin or/and Etoposide treatment was 

examined by western blotting. Cells were pre-treated with 100nM Bafilomycin for 

2h before addition of 25μM Etoposide where indicated. *The experiment was carried out at least 

three times and a representative figure is presented here. 
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Figure 5.7 Longer period of Bafilomycin treatment has differential impact on 

Chk1 phosphorylation in the absence or presence of DNA damaging agent.  

 

Levels of p-Chk1 (S345) were examined by Western Blotting in either the absence 

or presence of Bafilomycin A1 (100nM) for 12h and/or 10μM MG132 for 4h and/or 

Etoposide (25μM) for 4h where indicated. *The experiment was carried out at least three times and a 

representative figure is presented here. 
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5.2 Pharmacological Inhibitors of Autophagy Leads to Chk1 Activation, 

Followed by Chk1 degradation.   

 

To further explore the relationship between loss of autophagy and Chk1 functions, 

Atg7f/f primary MEFs were treated with either Bafilomycin or Chloroquine (CQ). 

Chk1 activations was then monitored over 8 hours (Fig 5.8 and 5.9). It was found 

that both Bafilomycin and CQ were able to activate Chk1 in a time-dependent 

manner, CQ also caused total Chk1 level to decrease within 8 hours (Fig 5.9).  

 

Similar to Bafilomycin, chloroquine (CQ) is an autophagy inhibitor that disrupts 

lysosomal functions. CQ is a basic molecule that enters lysosome and other acidic 

compartments in the cells where it becomes protonated in the vacuole and leads to 

less acidic environment. As previously described, Chloroquine has been 

traditionally used as an anti-malarial drug. In recent years it has shown potential as 

a promising anti-cancer agent. It has positive anti-tumour effects in a number of 

clinical trials [195]. The precise mechanism of the anti-tumour effect of CQ is 

unclear and it is thought that the effects are partially mediated by autophagy 

inhibition [339]. It should be noted that CQ has also additional effects besides 

autophagy inhibition [340]. CQ can cause chromatin structural changes that lead to 

ATM autophosphorylation at serine 1981, which results in the phosphorylation of 

Chk1 at serine 345 [208]. Therefore the p-Chk1 activation by CQ observed may be 

largely autophagy-independent. Indeed CQ mediated Chk1 activation (Fig. 5.9) is 

more pronounced than that of Bafilomycin (Fig. 5.7). CQ also caused Chk1 protein 

level to decrease within 8 hours, these observation further ties in with the fact that 

activation of Chk1 facilitates its degradation.      
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Figure 5.8 Short term Bafilomycin treatment leads to Chk1 activation. 

 

Primary MEFs were treated for the indicated time points with 100nM Bafilomycin 

A1. Cells were harvested and extracts were subjected to Western blotting with p-

Chk1 and total CHk1. Actin was used as a loading control.  *The experiment was carried out at 

least three times and a representative figure is presented here. 
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Figure 5.9 Short term Chloroquine (CQ) treatment leads to Chk1 activation.  

 

Primary MEFs were treated for the indicated time points with CQ (100μM). Cells 

were harvested and extracts were subjected to Western blotting with p-Chk1 and 

total Chk1.  *The experiment was carried out at least three times and a representative figure is presented here. 
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Since Bafilomycin and CQ activated Chk1 within hours and activation of Chk1 

leads to its degradation, this lead us to speculate that treatment with these agents for 

longer terms may lead to degradation of total Chk1 protein levels. Indeed, when the 

cells were treated with Bafilomycin for 18 hours, total Chk1 level was diminished 

(Fig 5.10). Chk1 fails to be activated in Bafilomycin treated cells, very likely due to 

the decrease of total Chk1 proteins.       

 

The down-regulation of Chk1 mediated by lysosomal inhibitor Bafilomycin can be 

rescued by MG132 or Lactacystin (Fig 5.11). MG132 treatment for 8h alone does 

not raise Chk1 level significantly but does appear to reverse the effect of 

Bafilomycin treatment on Chk1.    
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Figure 5.10 Bafilomycin treatment eventually leads to Chk1 degradation.   

 

Where indicated, primary MEFs were treated for 18 hours with Bafilomycin or/and 

exposed to 10Gy IR 1h before harvested. The cells were harvested and extracts 

were subjected to Western blotting with p-Chk1 and total Chk1.  *The experiment was 

carried out at least three times and a representative figure is presented here. 
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Figure 5.11 The effect of Bafilomycin on total Chk1 can be reversed by 

treatment of proteasomal inhibitors.  

 

Primary MEFs were treated with Bafilomycin for 16h; and with MG132 or 

Lactacystin for the indicated time points. Cells were harvested and extracts 

were subjected to Western blotting. *The experiment was carried out at least three times and a 

representative figure is presented here. 
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Chapter 6   Discussion  

 

6.1 Summary  

 

In this study, progress was made in dissecting the roles of autophagy in DNA 

damage responses.  It was found that the loss of autophagy leads to Chk1 de-

regulation. Soon following autophagy inhibition, the activation of Chk1 is impaired. 

Two weeks after Atg7 deletion, the total protein levels of Chk1 were down-

regulated. It was also observed that the inhibition of autophagy, with either genetic 

knockout or pharmacological inhibitors, led to an up-regulation of proteasomal 

activity in primary MEFs. It is known that phosphorylation and activation of Chk1 

facilitates its degradation [267]. Soon after loss of autophagy, Chk1 activation 

induced by DNA damage was found to be impaired. Our results indicated that this 

observation may be due to elevated proteasomal activity in Atg7
-/-

 cells.  

 

Prolonged autophagy inhibition leads to a decrease in total Chk1 levels and 

therefore the amount of Chk1 that could be activated in response to cellular stress. 

In either case, Chk1 activation was found to be impaired in autophagy deficient 

cells.  

 

Published studies have shown that Chk1 is a critical factor for HR repair [240] and 

autophagy deficient cells are more sensitive to CPT, a chemotherapeutic agent that 

causes double strand breaks that can only be repaired via HR [249]. Autophagy 

deficient cells accumulate more DNA damage [2] and also display a deficiency in 

the HR repair pathway as shown in Fig4.6. Atg7
-/-

 cells were however viable and 

appear to have intact cell cycle checkpoints. As shown in Fig. 6.1, HR and NHEJ 

are the two main pathways for DNA double strand break repair. The current study 

shows that Atg7-/- cells were hyper-dependent on the NHEJ pathways, since the 

inhibition of NHEJ with DNA-PKi increased etoposide or IR induced apoptosis in 

cells lacking autophagy. In other words, the inhibition of NHEJ pathway gives rise 

to a synthetic lethal situation when combined with autophagy deficiency.  
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Figure 6.1 Loss of autophagy leads to Chk1 deficiency and defective HR DNA 

repair pathway.  

 

Atg7
-/-

 cells were found to be hyper-dependent on NHEJ following DNA damaging 

agents, inhibition of which leads to increased cell death.  
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 6.2 Up-regulation of proteasomal activity following autophagy 

inhibition 

 

The two pathways have been traditionally thought to function in parallel to maintain 

cellular homeostasis under normal physiological conditions. In recent years there is 

emerging evidence that the two processes can cross talk. When one of the two 

pathways is altered, the other is subsequently perturbed. The interplay between the 

ubiquitin-proteasomal system and autophagy is complex and is not completely 

understood [341].  

 

There are several main steps in the ubiquitin-proteasome mediated degradation 

process – substrate recognition, ubiquitination, substrate delivery and degradation 

[64]. Autophagy possibly has multiple effects on the proteasomal degradation steps. 

p62 is frequently found to be up-regulated in autophagy deficient cells, where it has 

been found to inhibit the delivery of ubiquitinated substrates to the proteasome. As 

a result, there is an increased level of certain short-lived proteins such as p53 [328]. 

In contrast, our studies indicate that autophagy may be directly linked to 

proteasomal activity. The proteasome-Glo
TM

 cell based assay contains specific 

peptide substrates that can readily access protease sites within the cavity without 

interaction with E1, E2 and E3 ubiquitin delivery system.  The assay is a direct 

measurement of catalytic activity of the proteasome. It would be interesting to find 

out which of the two opposing effects – autophagy and proteasome dominates 

within the cell and whether the effects are cell-type dependent. Korolchuk and 

colleagues reported an accumulation of p53 as a result of inhibition of substrate 

protein delivery to the proteasomes [328]. We report here that the half life of Chk1 

protein decreases after loss of autophagy. Therefore it would also be interesting to 

find out whether proteasomal substrates are differentially affected by autophagy 

inhibition.  

 

Both the proteasome degradation system and autophagy are essential for the 

maintenence of cellular homeostasis. Proteasomes are thought to be the 
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predominant organelle that degrades proteins in an un-challenged state and short-

lived proteins. Autophagy on the other hand has been found to degrade 40% of all 

long lived proteins in the cells. [342].  A number of proteins have been identified to 

be degraded by both systems, such as as α-synuclein [343] and aggregate-prone 

proteins with polyglutamine and polyalanine expansions [344].  

 

Proteasomes in mammalian cells have relatively long half lives, approximately 1 

week in rat liver cells [345]. It is unclear how proteasomes are turned-over but 

autophagy possibly plays a role in it, since autophagy is thought to be the major 

mechanism through which large cellular structures are degraded. Proteasomes are 

largely abundant in the cells and they constitute around 1% of total soluble proteins 

[346]. When the cells encounter stressful conditions such as starvation, autophagy is 

up-regulated to degrade cytosolic proteins and organelles as an adaptive mechanism. 

Proteasomes are large structures and energetically costly for the cells to synthesize 

or degrade. It has been reported that instead of being degraded during cellular stress, 

proteasomes are sequestered into storage granules that evades autophagic 

degradation in yeast cells [347]. It is unclear whether mammalian cells adopt the 

same mechanism and it remains possible that autophagy inhibition leads to 

accumulation of proteasomes in MEF cells. One way of testing this is to assess the 

levels of proteasome subunits through western blotting in Atg7 knockout cells and 

in Bafilomycin A1 treated cells. In addition, mRNA assessment following 

autophagy inhibition may reveal any transcriptional regulation of autophagy on 

proteasome functions.  

 

One important question that remains to be answered is whether autophagy 

inhibition leads to proteasomal up-regulation in tumour cells and whether it occurs 

in vivo. Both proteasomal and autophagy inhibitors have shown potential in cancer 

therapeutics. Autophagy and proteasomes are the two main pathways of protein 

degradation; if inhibition of one pathway leads to the up-regulation of the other, one 

may expect that combinational use of the two inhibitors would have synergetic 

effects in cancer killing. The synergetic concept has been demonstrated in vitro 
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[348] but the feasibility of using the two inhibitors in combination therapies awaits 

further clinical investigation.   

 

Apart from cancer, autophagy disruption is implicated in a number of diseases such 

as autoimmune conditions and diabetes. It is unknown whether proteasomes in 

those diseased states are also affected.  
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6.3 Loss of autophagy, Chk1 activities and DNA damage response. 

 

Although Chk1 is generally thought to be a tumour suppressor that is crucial in the 

maintenance of genetic stability; however Chk1 mutations are very rare occurrences 

in either sporadic or hereditary cancers [349]. Recent studies have demonstrated 

that Chk1 inhibition. Cell cycle and cell death are two closely-related processes. A 

number of cancer treatments target specifically rapidly proliferating cells and some 

cancer cells can enter temporary growth arrest [350]. Because of the multiple cell 

cycle checkpoints, cancer cells lacking p53 fail to undergo G1 cell cycle arrest but 

instead arrest at G2/M mediated by Chk1. Tumour cells are thought to develop drug 

resistance by undergoing cell cycle arrest and protected from programmed cell 

death. Besides playing a role in cell cycle arrest, chk1 has also been shown to be 

required for cell cycle re-entry after stalled replication [351]. Chk1 has been found 

to be critical for cancer cell survival following anti-metabolite cancer treatments 

[352]. Chk1 inhibitors have shown promising chemo-sensitising effects in 

combinational cancer therapies and they are being developed for clinical use (as 

reviewed in [353]).  

 

Many cancer therapeutic drugs can up-regulate autophagy, which in response to 

many of those drugs is thought to be an adaptive mechanism that promotes drug 

resistance in cancer cells. Autophagy inhibitor CQ has shown promising clinical 

efficacy in cancer treatment, especially in combination therapies. It has not been 

explored whether autophagy inhibition leads to disruption of Chk1 functions in a 

tumour setting. It is also not known whether Chk1 is down regulated following CQ 

treatment in cancer cells. Both Chk1 and autophagy are thought to promote drug 

resistance in cancer cells. It would be of clinical importance to find out whether the 

synergy between autophagy inhibition and Chk1 deficiency exist in tumour settings. 

Further studies are needed to address these questions relevant to cancer therapies. 

 

Autophagy deficiency in primary MEFs leads to hypersensitivity to DNA-PK 

inhibitor NU7441 in combination with DNA damaging agents, as shown in Fig. 6.2. 
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NU7441 has shown promising potential as a part of cancer therapeutics in pre-

clinical evaluations [309]. DNA-PKcs share structural similarities in its kinase 

domains with PI3K family proteins and NU7441 is a structurally analogous to 

LY294002, a PI3K inhibitor. It has been reported that NU7441 also weakly inhibits 

PI3K [354]. Therefore it is possible that the chemo-sensitization of NU7441 on 

autophagy deficient cells may also be due to PI3K inhibition. MEFs from DNA-

PKcs knockout mice were isolated to address the question. DNA-PKcs knockout 

mice are more commonly known as SCID (severe combined immunodeficiency) 

mice because NHEJ pathways are critical for VDJ recombination during antibody 

maturation. Another member of our lab (Jim O’Prey) has found that SCID MEFs 

also display synergetic killing following autophagy inhibition with CQ and 

etoposide (data not shown here), confirming that inhibition of NHEJ pathway leads 

to increased apoptosis in autophagy deficient cells in response to DNA damage.  

 

Autophagy has been found to inhibit tumour onset, loss of autophagy accelerates 

tumour formation [116]. It would insightful to find out whether the effect of 

autophagy inhibition on Chk1 contributes towards the role autophagy plays in 

tumourigenesis. An initial experiment can be done to see whether loss of autophagy 

in vivo leads to Chk1 down-regulation. If it does, whether Chk1inhibition or Chk1 

knockdown can affect the outcome of tumourigenesis in wild type and autophagy 

deficient mice should be investigated.  

 

6.4 Loss of autophagy has differential effects on Chk1 functions   

 

It has long been established that complete Chk1 deficiency leads to severe 

proliferation defects and cell death [276]. Heterozygous Chk1 leads to defective S-

phase and mitotic checkpoint as well as DNA damage accumulation [355]. In this 

study, Chk1 functions are impaired in Atg7
-/-

 primary MEF cells, and these cells 

displayed growth defects. However they are viable for approximately one month 

before they enter crisis. Chk1 is important in cell cycle checkpoints [260] and HR 

DNA damage repair pathways [240]. Our assays demonstrated that Atg7
-/-

 cells 
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have intact G1 and G2/M cell cycle checkpoints but defective HR pathways. G1 

checkpoint is mediated by p53 upon DNA damage [356]. In contrast, Lee and 

colleagues previously discovered that Atg7
-/-

 cells have defective G1 checkpoint 

[268]. The differences in conclusions could be due to differed experimental 

strategies. While cell cycle arrest was assessed 3 hours after amino acid and serum 

withdrawal in their study; we examined cell cycle progression and found that both 

cell lines arrest their cell cycles after 16 hour serum starvation. There may be 

difference in the kinetics of cell cycle arrest between Atg7f/f and Atg7-/- cells and 

this remained to be determined. The reason we did not observe any defect in cell 

cycle arrest may be that the extent of Chk1 down-regulation was not sufficient to 

disturb cell cycles. To test this, Chk1 may be knocked-down to even lower levels in 

Atg7-/- cells and cell cycle analysis can then be carried out.  

 

Chk1 has been reported to be a haplo-insufficient tumour suppressor [260] and 

partial Chk1 inhibition is adequate to impair Chk1 functions in cell cycle controls 

and DNA damage repair [355]. Indeed, our data shows the HR repair pathway to be 

severely impaired in Atg7
-/-

 cells.  It was not expected that Atg7
-/-

 cells also 

displayed intact G2/M cell cycle checkpoint, as Chk1 activation was found to be 

down-regulated in Atg7
-/-

 cells and Chk1 has been shown to be a critical factor for 

G2/M arrest. Since CDC25A promotes cell cycle progression by activating CDKs 

[357], it was then reasoned that regulation of Cdc25A would provide mechanistic 

details of Chk1 function in cell cycle control. Studies in a number of human or 

immortalised MEF cell lines have shown that Cdc25A is degraded rapidly upon 

DNA damage treatments such as IR [286, 287]. In this report, it was found that 

Cdc25a levels did not change in either Atg7f/f or Atg7-/- cells following IR. This 

observation is consistent with Cann and Hick’s published study, Cdc25A does not 

get degraded following DNA damage in primary MEFs [358]. This indicates that 

MEF cells might have other Chk1 targets similar to Cdc25A regulating CDKs and 

cell cycle progression.  

 

 



 172 

Though the HR pathways in Atg7-/- cells have been found to be defective, and it is 

established the defective HR repair is a disinctive trait for BRCA1/2 cells [244].  

The phenotype of Atg7-/- cells is different from BRCA1/2 KO cells, for example,  

Atg7-/- cells are not hyper-sensitive to etoposide or irradation  [359]. BRCA1/2 KO 

cells are embryonic lethal in mice and Atg7-/- mice can survival untill the neonatal 

starvation period [360]. Again, the difference could be because of the levels of 

depletion, Chk1 is reduced significantly in Atg7-/- cells and the remaining pool of 

Chk1 may be sufficient to mediate certain repairs.  

 

In Atg7f/f MEFs, Chk1 is strongly activated in response to DNA damaging agents 

such as etoposide and IR within 1 hour, and the signal intensity decreases over time, 

as shown in Fig 5.6 lysosomal inhibition also leads to the phosphorylation of Chk1 

at Ser345; but the response was weaker and slower than damage induced activation. 

It is unclear how lysosomal inhibition leads to Chk1 activation. One potential link 

may be that autophagy is required for the cells to clear damaged mitochondria. 

Since mitochondria are considered to be the main source of ROS production, the 

inhibition of autophagy leads to ROS accumulation and increased DNA damage. 

Studies from Eileen White’s group convincingly showed that autophagy plays an 

important role in regulating ROS and limiting genetic instability [2, 107, 153]. 

However it has been reported that lysosomes and/or autophagosomes are another 

major source of intracellular ROS besides mitochondria [361] [362], and the 

pharmacological inhibition of lysosome or autophagy actually decreases ROS 

production [362]. Therefore, more studies need to be carried out to determine the 

mechanism by which lysosomal inhibition up-regulate Chk1 activity. Assessment of 

DNA damage, ROS production and p62 levels can be performed to address this 

question.  

 

In general, cells were harvested one hour after treatment with etoposide or IR in this 

study, and it has been reported that Chk1 gets activated within 15 minutes following 

DNA damage [363]. It remains possible that Chk1 activation may be observed in 

response to IR or etoposide in Atg7
-/-

 cells minutes following treatment. Further 
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experiments could be carried out to address this, for example, the cells can be 

harvested 10 minutes after IR or etoposide for western blotting and p-Chk1 and 

total Chk1 can be probed. 

 

Autophagy deficient cells displayed high levels of spontaneous cell death, it would 

be insightful to test whether spontaneous and oncogene induced senescence is 

affected by loss of autophagy.  

 

The loss of autophagy has been reported to give rise to increased DNA damage, 

which activates Chk1 kinase. Inhibition of autophagy with CQ or Bafilomycin A1 

leads to increased phosphorylation of Chk1 (Fig. 5.8 and 5.9), however it is not 

known that whether cells have increased Chk1 phosphorylation immediately after 

loss of Atg7 after cre recombination. A direct cause and effect relationship has not 

been established in this project. The retrovirus-mediated Cre infection procedure 

and subsequent antibiotic selection takes approximately one week including 

antibiotics selection. As shown in Fig 3.9, MEF cells from CAG-Cre-ER mice 

containing Atg7
flox/flox 

transgene were treated with Tamoxifen and there was 

increased phosphorylated Chk1 6 days after the cells were first exposed to 

Tamoxifen. One potentially insightful experiment would be to monitor phopho-

Chk1 and total Chk1 over a time course of a week following Tamoxifen treatment 

in these cells. Since CQ and Bafilomycin A1 suppress all lysosomal functions, 

besides autophagy inhibition, genetic approaches of autophagy inhibition should 

rule out potential artefacts.    

 

6.5 Modulation of autophagy for therapeutic purposes 

 

Cancer is a group of diseases with divergent pathologies; and unavoidably there 

were varied responses to anti-tumour treatments. Autophagy is induced by certain 

cancer drugs, possibly a survival mechanism for cancer cells to countract 

chemotherapy, whereas other cancer treatments require intact autophagy pathways 

to achieve sufficient killing. It is therefore important to find out whether autophagy 
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is beneficial or detrimental for each type of cancer during specific treatments. 

Cancer cells that up-regulate autophagy as a pro-survival mechanism in response to 

cancer-killing drugs are referred to as being ‘addicted to autophagy’ [155].   

 

In human patients, autophagosome accumulation has been used as the readout for 

autophagy activity. This method of monitoring autophagy can be misleading; 

because autophagosomes can accumulate after activation of autophagy due to 

increased cargo trafficking but it can also build up due to inhibition of lysosomes, 

which fuse with and degrade autophagosomes. Better ways of monitoring 

autophagy activities in cancer patients are needed in order for the appropriate 

therapies to be applied.  

 

MEF cells which are deficient in Atg7 or treated with CQ or Bafilomycin have been 

used as autophagy-deficient models. In general, both methods of autophagic 

inhibition provided similar experimental conclusions. Fundamental differences exist 

between the two methods and will be discussed here.  

 

Chloroquine (CQ) and Bafilomycin A1 are late stage autophagy inhibitors. They 

both inhibit lysosomal functions [364] [339]. Hydroxychloroquine (HCQ) is 

derivative of CQ; in clinic, CQ has been associated with retinal toxicity in patients 

and is now generally replaced by HCQ, a derivative of CQ, in clinical treatments or 

trials [365]. At least 16 phase I/II clinical trials are currently in progress [366], and 

HCQ has shown promising results in a number of clinical trials as part of 

combination therapy [367]. The current dose of HCQ used for cancer treatment is 

around 400mg -800mg per day (Clinicaltrials.gov) [366], Amaravadi and colleagues 

reported that the clinical dose of HCQ may not efficiently inhibit autophagy in all 

patients [367]. Development of more potent autophagy inhibitors for cancer 

therapies is currently under way. Among these candidates, compound Lys05 is 

structurally related to CQ/HCQ, and it has 10 times more efficacy in autophagy 

inhibition. It has been shown to be a promising anti-cancer drug in mouse studies 

[368]. 
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CQ has been found to activate ATM, by distorting DNA structures. The activation 

of ATM in turn activates Chk1. Baf on the other hand has not been found to have 

similar effects on DNA, and the Chk1 activation from Baf treatment (Fig 5.8) is 

weaker than that of CQ (Fig 5.9).  A potential experiement that can be done is to 

treat the cells with ATM inhibitors and repeat the experiments as shown in Fig 5.8 

and Fig 5.9 and compare between the effect of Baf and CQ on Chk1 levels.  

 

CQ also caused Chk1 protein level to decrease within 8 hours, these observation 

further ties in with the fact that activation of Chk1 facilitates its degradation.      

 

In this study, most majority of the works has been carried out in primary MEFs, the 

advantage of the system is that it is a clean system with complete Atg7 removal and 

DNA damage repair networks are all intact in freshly isolated MEFs. Conclusions 

from this study apply to untransformed cells. Cancer cells harbour genetic defects 

especially in DNA repair pathways, therefore it would be interesting to carry out the 

same experiments in cancer or transformed cell lines and investigate the effect of 

loss of autophagy on Chk1.  

 

Atg7 knockout leads to complete autophagy inhibition, as Atg7 is an essential 

protein for the formation of autophagosomes [369]. In terms of therapeutics, 

knocking down Atg7 in targeted organs is unrealistic due to limitations in the 

availability of gene therapy techniques. Autophagy is a surveillance process 

guarding cellular homeostasis and integrity. Complete inhibition of autophagy may 

contribute towards tumourigenesis and a number of other diseased states. Atg7 is an 

E1-like enzyme; following the successful development of an inhibitor for NEDD8-

activating E1-enzyme, Millennium has undertaken the task of developing Atg7 

small molecule inhibitors [367]. Our studies of autophagy in DNA damage response 

are relevant to the development and potential use of small molecule inhibitors.  

p53  
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The p53 tumour suppressor plays important roles in cell cycle regulation, DNA 

damage responses and programmed cell death. It is reported that p53 is lost in over 

50% of cancers [36]. Chk1 has been found to phosphorylate p53 on multiple sites at 

both N [370] and C termini [371].  The phosphorylation sites include S20, which is 

of particular importance to the half life and activity of p53. Future experiments may 

be carried out to determine the effect of loss of autophagy on p53. It was found that 

autophagy can inhibit tumour progression in transgenic mice with Kras mutation 

when p53 is present; however if p53 is lost then loss of autophagy actually 

accelerates cancer onset. If mice lacking p53 and with Kras mutation are treated 

with CQ, which is being evaluated for its use as combinational therapy for cancer, 

these mice form cancer faster comparing to mice with p53.  
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