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Abstract The theory of outer automorphism groups allows us to better understand

groups through their symmetries, and in this thesis we approach outer automorphism

groups from two directions. In the first direction we start with a class of groups and

then classify their outer automorphism groups. In the other direction we start with a

broad class of groups, for example finitely generated groups, and for each group Q in this

class we construct a group GQ such that Q is related, in a suitable sense, to the outer

automorphism group of GQ.

We give a list of 14 groups which precisely classifies the outer automorphism groups

of one-ended two-generator, one-relator groups with torsion. We also describe the outer

automorphism groups of such groups which have more than one end. Combined with recent

algorithmic results of Dahmani–Guirardel, this work yields an algorithm to compute the

outer automorphism group of a two-generator, one-relator group with torsion.

We prove a technical theorem which, in a certain sense, writes down a specific subgroup

of the outer automorphism group of a particular kind of HNN-extension. We apply this

to prove two main results. These results demonstrate a universal property of triangle

groups and are as follows. Fix an arbitrary hyperbolic triangle group H. If Q is a finitely

generated group then there exists an HNN-extension GQ of H such that Q embeds with

finite index into the outer automorphism group of GQ. Moreover, if Q is residually finite

then GQ can be taken to be residually finite. Secondly, fix an equilateral triangle group

H = 〈a, b; ai, bi, (ab)i〉 with i > 9 arbitrary. If Q is a countable group then there exists an

HNN-extension GQ of H such that Q is isomorphic to the outer automorphism group of

GQ. The proof of this second main result applies a theory of Wise underlying his recent

work leading to the resolution of the virtually fibering and virtually Haken conjectures.

We prove a technical theorem which, in a certain sense, writes down a specific subgroup

of the outer automorphism group of a semi-direct product H o Z. We apply this to an

open problem of Bumagin–Wise, which asks if every countable group can be realised as the

outer automorphism group of a finitely generated, residually finite group. We resolve this

question for finitely generated, recursively presented groups. Our resolution is dependent

on a positive solution to a question of Osin, and Sapir has stated in a recent paper that

he has an (unpublished) proof of a positive solution. If Osin’s problem does not admit

a positive solution then we obtain the following, slightly weaker result: for every finitely

generated, recursively presented group Q there exists a finitely generated, residually finite

group GQ whose outer automorphism group is isomorphic to either Q or Q× C2.
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Chapter 1

Introduction

When given a group G it is a natural question to ask what its automorphism and outer

automorphism groups are. Finding these groups is often both an interesting and challeng-

ing problem, and allows us to better understand the group G through its symmetries. For

example, in topology certain surfaces have the property that their mapping class group is

isomorphic to the outer automorphism group of the fundamental group of the surface, and

so studying the outer automorphism group allows us to better understand the surface, and

so its fundamental group. In this thesis we describe, in an appropriate sense, the outer

automorphism groups of three classes of groups. The second two classes are related and

each very broad, so we give some specific examples. These examples demonstrate that, in

a suitable sense, every group can be realised as the outer automorphism group of a group

from each of these two classes.

Outline of the thesis. In Chapter 2 we provide background and motivation for this

thesis, and include preliminary results on which the later chapters rely. The purpose

of Chapter 3 is to prove Theorem A, which completely classifies the outer automorphism

groups of two-generator, one-relator groups with torsion. In Chapter 4 we analyse the outer

automorphism groups of a certain class of HNN-extensions and a related class of semidirect

products, and use this work to prove Theorems B, C and D, each of which constructs groups

which all appear well behaved but can have pathological outer automorphism group.

The first class of groups. In Chapter 3 we investigate our first class of groups, which

is the class of two-generator, one-relator groups with torsion. These groups are precisely

those with a presentation of the form 〈a, b;Rn〉, n > 1. When attempting to find the outer
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CHAPTER 1. INTRODUCTION 6

automorphism group of a group it is often fruitful to find something, such as an action

on a space, a subgroup or a group element, which is invariant under automorphisms (up

to conjugacy) and work backwards to describe the automorphisms. We find two such

invariants for two-generator, one-relator groups with torsion, and we use them separately

to give two independent proofs of the following theorem.

Theorem (Theorem 3.1.16). Let G = 〈a, b;Rn〉, n > 1, be a one-ended two-generator,

one-relator group with torsion. Then either Out(G) is virtually-cyclic or G ∼= 〈a, b; [a, b]n〉.

The restriction to one-ended groups is reasonable because if G has more than one

end then G ∼= Z ∗ Cn and the automorphisms of such groups have been much studied

[FR40, Gil87]. However, for completeness we state the isomorphism class of the outer

automorphism group of Z ∗ Cn, and give a skeleton proof of this fact.

The first of the two invariants which help us to describe the automorphisms of a two-

generator, one-relator group with torsion 〈a, b;Rn〉 is the root R of the relator Rn. More

precisely, results of Magnus [MKS04, Theorem N5] and of Pride [Pri77a] imply that ev-

ery outer automorphism has a natural representative which either freely fixes the word R

or sends it freely to R−1. In Section 3.1.3 we apply results of Touikan on equations in

free groups [Tou09] to this observation, and so prove the above result, Theorem 3.1.16.

A more subtle approach is to note that two-generator, one-relator groups with torsion

are hyperbolic, and therefore they have a canonical decomposition as a graph of groups,

called a JSJ-decomposition [Bow98]. Because this decomposition is canonical it is invari-

ant under automorphisms. Work of Levitt gives a description of the outer automorphism

group of a hyperbolic group using this invariant [Lev05]. Therefore, the purpose of Sec-

tions 3.1.1 and 3.1.2 is to prove a structural result regarding the possible JSJ-decomposition

of a one-ended two-generator, one-relator group with torsion. This structural result is The-

orem 3.1.15, and we apply it to prove the above result, Theorem 3.1.16. We favour the

JSJ-decomposition proof over using the root R of the relator Rn as the invariant, and

this is because our investigation of the structure of possible JSJ-decompositions in Sec-

tions 3.1.1 yields information about the virtually-cyclic splittings of arbitrary one-relator

groups with torsion.

The above result, Theorem 3.1.16, is a vast improvement on previous results regarding

the outer automorphism groups of two-generator, one-relator groups with torsion. For

example, certain specific classes of these groups were known to have residually finite outer

automorphism groups [KT09, KT10], but this theorem proves that those groups actually
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have virtually-cyclic outer automorphism groups or are isomorphic to 〈a, b; [a, b]n〉. On the

other hand, Theorem 3.1.16 parallels results of Kapovich–Weidmann [KW99], who prove

that one-ended two-generator torsion-free hyperbolic groups have virtually-cyclic outer

automorphism groups, and indeed the JSJ-decomposition proof of Section 3.1.2 closely

follows the path of their proof. Proving that we can follow this path is the purpose of

Section 3.1.1.

Now, Theorem 3.1.16 is not the complete classification of 14 groups we mentioned in

the abstract. The classification is obtained by viewing how the automorphisms act on the

abelianisation. We prove that if an automorphism acts trivially on the abelianisation then

it is inner. This, along with a result of Pride, proves the following theorem.

Theorem (Theorem 3.2.1). If G is a one-ended two-generator, one-relator group with

torsion then Out(G) embeds into GL2(Z).

We restate Theorem 3.2.1 later, where we explicitly give the embedding. Theorem 3.2.1

implies that if Out(G) is finite it is a subgroup of either the dihedral group of order twelve

or the dihedral group of order eight. There are nine such subgroups, and these all appear

in our classification. If G has virtually-Z outer automorphism group then we can apply a

result of Levitt which allows us to write G as 〈a, b;Sn(a, b−1ab)〉, and thus when we embed

the outer automorphism group into GL2(Z) the following matrix is in the image. 1 1

0 1


We prove that, up to isomorphism, there are only four virtually-cyclic subgroups of GL2(Z)

which contain this matrix. In Section 3.5 we investigate the case of infinitely-ended two-

generator, one-relator groups with torsion. This all yields the following theorem.

Theorem A. Let G be a two-generator, one-relator group with torsion.

• If G ∼= 〈a, b; [a, b]n〉 then Out(G) ∼= GL2(Z).

• If G is one-ended and G 6∼= 〈a, b; [a, b]n〉 then,

– If Out(G) is infinite then it is isomorphic to D∞ × C2, D∞, Z× C2 or Z.

– If Out(G) is finite then it is isomorphic to a subgroup of D6 or of D4.

• If G is infinitely ended, so G ∼= Z ∗ Cn, then Out(G) ∼= Dn o Aut(Cn).
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In Sections 3.3.2 and 3.4 we prove that each of the possibilities from Theorem A occurs.

The second and third class of groups. In Chapter 4 we investigate the outer auto-

morphism groups of HNN-extensions G = 〈H, t; kt = kφ, k ∈ K〉 where the isomorphism φ

is induced by an automorphism of the base group H. We call these automorphism-induced

HNN-extensions. A result of the author with Atȩs and Pride allows one to view such an

HNN-extension as a Zappa-Szép product of the base group H with the free group on the

cosets of H/K, G ∼= H ./ F (H/K) [ALP14]. If H = K then this is simply the given

semidirect product decomposition. We split these HNN-extensions into two cases, which

are the second and third classes we investigate. The first case is when K � H, so G is a

proper HNN-extension, and the second case is when K = H, so G is a semi-direct product

with Z (a “mapping torus”). These cases are different because in the semi-direct product

case the inducing automorphism φ is always associated to an inner automorphism of G

while in the former case it may be associated to a non-inner automorphism of G.

We approach these two cases by applying the same technical analysis of (outer) au-

tomorphisms, after which the proofs fork. Instead of focusing on the entire outer au-

tomorphism group we restrict ourselves to the subgroup OutH(G) consisting of outer

automorphisms having a representative which setwise fixes the base group H and which

sends the stable letter t to an element of t-length one. That is, we artificially take H

and the form of the image of t as the invariants and analyse the resulting subgroup of

the outer automorphism group. In both cases we produce technical theorems classifying

this subgroup of the outer automorphism group. We shall now state a rough form of the

technical theorem for the K � H case and state two of our applications. We shall then

state the technical theorem for the K = H case and state our application.

Theorem (Theorem 4.2.15). Let G = 〈H, t; kt = kφ, k ∈ K〉 with φ ∈ Aut(H) and

K � H, and let OutH(G) be the outer automorphisms of G which fix H and the form of

t. Then there exists a short exact sequence

1→ N → Out0
H(G)→ A→ 1

where N is given in terms of subgroups of H, A is a subgroup of Out(H) and Out0
H(G) is

a subgroup of OutH(G) of index one or two.

We restate Theorem 4.2.15 later, where we both give a more explicit description of the

groups N and A and classify when Out0
H(G) has index two in OutH(G). Theorem 4.2.15



CHAPTER 1. INTRODUCTION 9

is particularly nice if K has trivial centraliser in G, as then N is isomorphic to NH(K)/K.

Our main applications of this theorem both involve fixing a group Q such that there exists

K � H which has trivially centraliser and either NH(K)/K ∼= Q or Q embeds with finite

index into NH(K)/K. Our first main application of the above theorem, Theorem 4.2.15,

is the following result.

Theorem B. Fix a triangle group H := 〈a, b; ai, bi, (ab)i〉 with i > 9. Then every countable

group Q can be realised as the outer automorphism group of an HNN-extension GQ of H.

Moreover, Aut(GQ) ∼= H oQ.

Our second main application of Theorem 4.2.15 is the following result, which comple-

ments Theorem B.

Theorem C. Fix a hyperbolic triangle group H = 〈a, b; ai, bj , (ab)k〉. Then every finitely-

generated group Q can be embedded as a finite index subgroup of the outer automorphism

group of an HNN-extension GQ of H, where GQ is residually finite if Q is.

In both Theorem B and Theorem C the base group H is a triangle group and so

has Serre’s property FA, which, along with certain technical conditions on either φ or

the embedding of K in H (for example, if φ is inner), implies that OutH(G) = Out(G).

Moreover, the outer automorphism group of a triangle group is finite and so A must be

finite. Therefore, if K is chosen to have trivial centraliser and φ is chosen to be trivial

then NH(K)/K embeds with finite index into Out(G). In Theorem C we find for every

finitely generated group Q a subgroup K ≤ H such that Q has finite index in NH(K)/K,

which proves the main statement of the theorem. To obtain the result regarding the

residual finiteness of the HNN-extension GQ, we ensure that K has the property that

its normaliser NH(K) has finite index in H, and the result then follows from a technical

theorem, which is Theorem 4.1.3.

The proof of Theorem B is substantial, but we give the general idea now. Take the

triangle group H = 〈a, b; ai, bi, (ab)i〉, i > 9, and take φ to be the automorphism a 7→ b,

b 7→ (ab)−1 of H. In Section 4.3.4 we introduce the notion of a “malcharacteristic”

subgroup, which is a generalisation of malnormality, and if K is such that NH(K) is

malcharacteristic and forming G = 〈H, t; kt = kφ, k ∈ K〉, it follows from the above

technical theorem, Theorem 4.2.15, that Out(G) ∼= NH(K)/K. Using rather technical

tools, in Section 4.3.4 we prove that H contains a malcharacteristic subgroup which is free

of rank two. We shall now explain why doing so proves Theorem B. Suppose Q is an
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arbitrary countable group, then Q has a presentation 〈X; r〉 with |r| ≥ 1. Because M is

free it contains malnormal subgroups of arbitrary rank, and so specifically of rank |X|. We

denote such a malnormal subgroup by M|X|. The definition of malcharacteristic implies

that M|X| is malcharacteristic in H, and so taking K to correspond to the normal closure of

r in M|X| we obtain the group GQ = 〈H, t; kt = kφ, k ∈ K〉, and we see that Out(GQ) ∼= Q

as required. Our proof that such equilateral triangle groups have a malcharacteristic

subgroup which is free of rank two utilises fibre products of maps of graphs and a small

cancellation theory in this setting, which was developed by Wise. This theory of Wise

(and its generalisation) is a cornerstone of his recent work which lead to the resolution

of Thurston’s virtually fibering and Waldhausen’s virtually Haken conjectures, as well as

his resolution of G. Baumslag’s conjecture that all one-relator groups with torsion are

residually finite [Wis12].

We shall now state the technical result for the second case, when G ∼= H oZ, and give

an application. We shall write φ̂ for the class of φ in Out(H).

Theorem (Theorem 4.2.17). Let G = 〈H, t;ht = hφ, h ∈ H〉 with φ ∈ Aut(H), and let

OutH(G) be the outer automorphisms of G which fix H. Then we have the following iso-

morphism, where Out0
H(G) has index one or two in OutH(G), and has index two precisely

when φ̂ is conjugate to φ̂−1.

Out0
H(G) ∼= COut(H)(φ̂)/〈φ̂〉

Bumagin–Wise have asked whether every countable group can be realised as the outer

automorphism group of a finitely generated, residually finite group [BW05]. We apply

Theorem D to prove the following theorem, which partially resolves Bumagin–Wise ques-

tion.

Theorem D. Every finitely generated, recursively presented group can be realised as the

outer automorphism group of a finitely generated, residually finite group.

To prove Theorem D, if Q is a finitely generated, recursively presented group we use

an embedding of Sapir [Sap13] to realise Q × C3 as a malnormal subgroup of a finitely

presented group P . We then use a result of Bumagin–Wise [BW05] to realise P as the

outer automorphism group of a finitely presented, residually finite group H. Then taking

φ̂ to correspond to a generator for the cyclic group we have attached to Q, we have that

COut(H)(φ̂)/〈φ̂〉 ∼= Q. Finally, taking φ ∈ φ̂, we form G = H oφ Z, and certain properties

of Bumagin–Wise’s result are such that Out0
H(G) = Out(G), and so Out(G) ∼= Q.



Chapter 2

Preliminaries

In this chapter we give an overview of a variety of relevant theories and include results

from the literature which we apply in subsequent chapters. We begin, in Section 2.1, by

defining automorphism and outer automorphism groups. This is in order to motivate the

results of Chapter 4, where in Theorem B we prove that every group can be realised as the

outer automorphism group of some group, by giving an example of a group which cannot

be realised as the automorphism group of a group.

While most of this chapter will be familiar to many readers, note that Section 2.2

and Section 2.10 introduce non-standard concepts which are used in the Chapters 3 and 4

respectively. Section 2.2 introduces the theory of Nielsen equivalence classes, upon which

our approach in Chapter 3 is based, while Section 2.10 introduces the theory of maps of

graphs, which is a novel way of viewing subgroups of free groups and which we apply in

the proof of Theorem B from Chapter 4.

We begin here with a fundamental definition: If a group G has a presentation of the

form 〈X;Rn〉 with n > 1 and X contains at least two elements then we say that G is an

one-relator group with torsion. If X consists of precisely two-elements then G is a two-

generator, one-relator group with torsion. The reader is referred to Section 2.9 for more

information on one-relator groups and a discussion on the “with torsion” label. Note that

because X contains at least two elements, a one-relator group is always infinite.

Throughout the thesis ε (or some variation such as ε′, ε0, εt) will denote an integer of

absolute value 1.

All of the results in this chapter can be found in the literature or can be easily derived

from known results. The only exception to this is Lemma 2.9.7, which is an original result

of the author.

11
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2.1 Automorphism and Outer Automorphism Groups

This thesis deals with outer automorphism groups of certain classes of groups. Therefore,

in this section we recall the definition of automorphism groups and outer automorphism

groups. We prove that not every (countable) group occurs as the automorphism group of

some group, which contrasts with Theorem B from Chapter 4 where we prove that every

countable group can be realised as the outer automorphism group of a specific kind of

group.

Automorphisms. An endomorphism of a group G is a homomorphism from G to itself,

φ : G → G. An automorphism of a group G is an endomorphism which is both injective

and surjective. We shall write down an endomorphism by prescribing where the generators

are sent to. This is sufficient, as endomorphisms are homomorphisms. The automorphisms

of a group G form a group in their own right, called the automorphism group of G, denoted

Aut(G).

In the following example we write C2 for the cyclic group of order two. We maintain

this notation throughout this thesis, writing Cn for the cyclic group of order n. At different

points we shall write C∞ and Z for the infinite cyclic group.

Example 2.1.1: An easy example is the automorphism group of the non-cyclic group of

order four, G = C2×C2. Here, all permutations of the three non-trivial elements preserve

the group structure, while every pair of non-trivial elements generates G. Therefore,

surjective endomorphisms correspond to permutations of the non-trivial elements. As G

is finite, surjective endomorphisms are automorphisms. Thus, Aut(G) ∼= S3.

In this thesis we shall write group homomorphisms on the right, so for g ∈ G and

φ ∈ Aut(G) we write gφ as opposed to φ(g). We do this because it makes the working in

Chapter 4 clearer. More generally, we shall write arbitrary actions on the right.

Outer automorphism groups. A group acts on itself by conjugation. As we are writing

actions on the right, the conjugation action is written h · g = g−1hg. The action of an

element g ∈ G corresponds to an automorphism of G, denoted γg. This automorphism

conjugates every element by g, so γg : h 7→ g−1hg for all h ∈ G. Such an automorphism

is called an inner automorphism of G. Inner automorphisms form a normal subgroup

of Aut(G), denoted Inn(G), which allows us to form the quotient group. The quotient
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group is called the outer automorphism group of G, denoted Out(G) := Aut(G)/ Inn(G).

If φ ∈ Aut(G) then we shall write both φ̂ and φ Inn(G) for the coset of Out(G) containing

φ. This thesis deals with the outer automorphism groups of certain classes of groups.

Theorem B is one of the main results of Chapter 4, and it proves that every countable

group can be realised as the outer automorphism group of an HNN-extension of a fixed tri-

angle group. This result is proven in Section 4.3.4. The following lemma on automorphism

groups contrasts with Theorem B.

Lemma 2.1.2. The infinite cyclic group C∞ cannot occur as the automorphism group of

any group.

Proof. To begin, we observe that Inn(G) ∼= G/Z(G). This is because the automorphism

γg is trivial if and only if g ∈ Z(G).

Now, suppose that there exists some group G such that Aut(G) ∼= C∞. We shall look

for a contradiction. Note that every non-trivial subgroup of C∞ is infinite cyclic, and so

Inn(G) is either infinite cyclic or trivial. Thus, G/Z(G) is either infinite cyclic or trivial.

However, G/Z(G) can never be cyclic. Thus, G must be abelian.

As G is an abelian group, the map φ which inverts every element of G, so φ : h 7→ h−1

for all h ∈ H, is an automorphism of G. This map is either trivial or has order two, and as

Aut(G) contains no elements of order two we have that φ is trivial. Thus, h = h−1 for all

h ∈ G, so every element of G has order two. Therefore, G is a direct sum of some groups of

order two. However, switching two of the groups in this decomposition is an automorphism

which has order two. This is a contradiction, and so the lemma is complete.

2.2 Nielsen Equivalence Classes

The related notions of “Nielsen equivalence” of generating tuples and of “tame auto-

morphisms” are used in Chapter 3, and so we introduce them here. These notions are

fundamental to Chapter 3, where we investigate the outer automorphism groups of two-

generator, one-relator groups with torsion. The notions are so fundamental because of

Proposition 2.2.2, which states that a (one-ended) two generator, one-relator group with

torsion contains a single Nielsen equivalence class of generating pairs, which implies that

every automorphism is tame. Chapter 3 contains two important technical theorems, both

of which rely on Nielsen equivalence and tame automorphisms. If G = 〈a, b;Rn〉 is a one-

ended two-generator, one-relator group with torsion then the second technical result is
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Theorem 3.2.1 from Section 3.2, where we use tame automorphisms and Proposition 2.2.2

to prove that Out(G) embeds into GL2(Z). One of the purposes of this current section

is to explain our method of proof used in Theorem 3.2.1. The first technical theorem is

Theorem 3.1.16, which says that either Out(G) is virtually cyclic or G ∼= 〈a, b; [a, b]n〉. We

prove this theorem twice. Our first proof is spread over Sections 3.1.1 and 3.1.2 and is

based on JSJ-decompositions, while the second proof is confined to Section 3.1.3 where we

give a skeleton proof using equations in free groups.

We favour the JSJ-decomposition proof of Sections 3.1.1 and 3.1.2 as it allows for a

more rigorous analysis of the structure of one-relator groups with torsion. However, in

this proof much of the Nielsen theory is hidden from view, appearing in statements and

proofs of results which we apply. For example, the proofs of Proposition 2.4.2, Proposi-

tion 2.4.6 and Proposition 2.9.12 all use Nielsen equivalence classes, and are all applied

in Sections 3.1.1 and 3.1.2. The equations in free groups approach of Section 3.1.3 uses

Nielsen equivalence classes in a more explicit way. This is because if G = 〈a, b;Rn〉 is

one-ended then every automorphism a 7→ A, b 7→ B of G must be a Nielsen transfor-

mation which solves one of the equations R(a, b) ≡ R(A,B) or R(a, b) ≡ R(A,B)−1, by

Proposition 3.1.17. However, this second proof is heavily reliant on a paper of Touikan

which “solves” equations in free groups which have this form [Tou09], and this approach

yields less information about the structure of G than the JSJ-decomposition proof. Sec-

tion 3.1.3 is therefore included not to give a rigorous proof of Theorem 3.1.16, but rather

to demonstrate how Nielsen’s theory can be used in the context of two-generator groups

to prove results about outer automorphism groups.

Note that the results in this section are only applied in Chapter 3, where the objects

of study are two-generator, one-relator groups with torsion. The fact that the groups are

two-generated is important. The methods of Chapter 3 do not lift to more generators

(although the discussion after Theorem 2.2.6, below, points out that they can be applied

to groups with more relators). The reason for the methods’ restrictive nature is that they

are so reliant on Nielsen’s theory, a theory which works particularly well for two-generated

groups. We now give the relevant obstacles to three-or-more generation.

For our first technical theorem, Theorem 3.1.16, recall that we give two proofs. For

the first proof, from Sections 3.1.1 and 3.1.2, Proposition 2.4.2 gives us information about

the generators of HNN-extensions while Proposition 2.4.6 gives us information about the

generators of free products with amalgamation and our applications of both of these propo-
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sitions are reliant on two-generation (and both use Nielsen’s theory). For the second proof,

from Section 3.1.3, the most obvious obstacle is that we combine Propositions 2.2.2 and

Proposition 3.1.17 using Nielsen’s theory. They combine to tell us that in a two-generator,

one-relator group with torsion every automorphism a 7→ A, b 7→ B must be a solution to

one of the equations R(a, b) = R(A,B) or R(a, b) = R(A,B)−1 and the proof only holds

in the case of two generators.

For the second technical theorem, we apply Proposition 2.2.2 which gives us information

about the Nielsen equivalence classes of two-generator, one-relator groups with torsion.

This result is not applicable when there are more generators. Indeed, in Section 3.2 we

combine Proposition 2.2.2 with Proposition 2.2.1, which is a classical result of Nielsen

saying that Out(F2) = Out(F2/F
′
2), but this result of Nielsen only works in the two-

generator case. This means that our method of proof for our second technical theorem,

Theorem 3.2.1, does not lift to groups with more generators.

Nielsen transformations. Let X = (x1, . . . , xn) be a sequence of letters. An elementary

Nielsen transformation is one of the following maps. All other x-terms are fixed.

• Swap xi with xj , i 6= j.

• Replace xi with x−1
i .

• Replace xi with xixj , i 6= j.

A Nielsen transformation is a map which is the composition of some elementary Nielsen

transformations. Nielsen proved that elementary Nielsen transformations generate the

automorphism group of F (x1, . . . , xn), and so a map is an automorphism of F (x1, . . . , xn)

if and only if it is a Nielsen transformation of (x1, . . . , xn) [MKS04, Theorem 3.2]. A

primitive element of F (x1, . . . , xn) is an element which is the image of x1 under some

Nielsen transformation (equivalently, this is an element which is contained in some basis

for the free group).

We shall introduce some notation used in this section and in the rest of the thesis.

Suppose G = 〈X; r〉, r ⊆ F (X), and let U, V,W be words in F (X), the free group on X.

We shall write U ≡ V if U and V represent the same word of F (X). If U and V define

the same element of G then it will be said that U is equal to V in G, written U =G V , or

simply U = V if the group G is understood. For a generator c ∈ X±1 of G, an exponent

of c in W is an integer e such that U ≡ V ceW where neither the last symbol of V nor the
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first symbol of W are c or c−1. We shall denote the sum of the exponents by σc(W ). If

U is a freely reduced word then the sum of the absolute values of the exponents of all the

generators of G in U is the length of U , and is denoted |U |.

The Nielsen transformations of the free group on two generators have a well-defined

structure. This structure can be seen through the equivalence of Out(F (a, b)) with GL2(Z),

which is given in the following propositions. This is a variant of a classic result of Nielsen

[MKS04, Corollary N4], and is used in Section 3.2 to prove that the outer automorphism

groups of one-ended two-generator, one-relator groups with torsion embed into GL2(Z).

Proposition 2.2.1. (Nielsen, 1924) Taking φ : a 7→ A, b 7→ B to be an arbitrary Nielsen

transformation of F (a, b), then the following map is an epimorphism.

ξ : Aut(F (a, b))→ GL(2,Z)

φ 7→

 σa(A) σb(A)

σa(B) σb(B)


Moreover, ker(ξ) = Inn(F (a, b)).

Nielsen equivalence. Two generating n-tuples Y = (y1, . . . , yn) and Z = (z1, . . . , zn) of a

group G = 〈x1, . . . , xn; r〉 are Nielsen equivalent if there exists some Nielsen transformation

φ of (x1, . . . , xn) such that if xiφ = wi(x1, . . . , xn) then the following holds.

(w1(Y ), . . . , wn(Y )) =G (z1, . . . , zn)

The equivalence classes of this equivalence relation are called Nielsen equivalence classes

(of generating n-tuples).

The following proposition classifies the Nielsen equivalence classes of generating pairs

in a two-generator, one-relator group with torsion. It was proven by Pride in 1977, who

used it to solve the isomorphism problem for these groups [Pri77a]. It is fundamental

to Chapter 3 where we apply it to investigate the outer automorphism groups of such

groups.1

1It should be noted that a footnote in Pride’s paper makes reference to a (at the time) forthcoming

joint paper of McCool and Pride [Pri77a] which would have proven that the automorphism groups of two-

generator, one-relator groups with torsion are finitely generated. However, according to Professor Pride

(who is the author’s PhD supervisor) this paper was never written.
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Proposition 2.2.2 (Pride, 1977). Let G = 〈a, b;Rn〉 with n > 1 and R is not a proper

power. Suppose that R is not a primitive element of F (a, b), or R is a primitive element

and n = 2. Then G has only one Nielsen Equivalence Class of generating pairs. Suppose,

on the other hand, that R is primitive and n > 2. Then G has 1
2ϕ(n) Nielsen Equivalence

Classes (where ϕ is the Euler totient function).

Note that the “with torsion” is necessary. To demonstrate this we give the following

example.

Example 2.2.3: Consider the following group.

G = 〈a, b; a3ba−1b−2a−1b〉

The map (a, b) 7→ (b−1a−1ba, a−1b−1a−2b−1ab) defines an automorphism and so is invert-

ible [Rap59]. However, Rapaport proved that the pairs are not Nielsen equivalent [Rap59].

T -systems. T -systems shall allow us to connect Nielsen transformations and tame auto-

morphisms. They partition the set of generating n-tuples in a coarser way than Nielsen

equivalence classes. Two n-tuples Y = (y1, . . . , yn) and Z = (z1, . . . , zn) ofG lie in the same

T -system if there exists some automorphism ψ of G such that (y1ψ, . . . , ynψ) is Nielsen

equivalent to (z1, . . . , zn). Proposition 2.2.2 implies that a one-ended two-generator, one-

relator group with torsion has a single T -system. Again, the “with torsion” label is nec-

essary, as the following example demonstrates.

Example 2.2.4: Consider the following group.

BS(2, 3) = 〈a, t; t−1a2t = a3〉

The map (a, t) 7→ (a2, t) defines a surjective endomorphism but it is not invertible [BS62].

Brunner proved that the pairs lie in different T -systems [Bru74].

Tame automorphisms. Let G = 〈x1, . . . , xn; r〉, then the following set is the group of

tame automorphisms of G corresponding to the generating tuple (x1, . . . , xn).

Tame(x1,...xn)(G) := {φ : φ ∈ Aut(G),

(x1φ, . . . , xnφ) is Nielsen equivalent to (x1, . . . , xn)}

Tame automorphisms are sometimes called free automorphisms [MKS04] or lifting au-

tomorphisms [GS95]. Note that Proposition 2.2.2 implies that if a group is given by a
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presentation G = 〈a, b;Rn〉 where R is non-primitive and n > 1 then Tame(a,b)(G) is the

whole automorphism group, while for the group G = 〈a, b; a3ba−1b−2a−1b〉 from Exam-

ple 2.2.3 we have that Tame(a,b)(G) is a proper subgroup of the automorphism group.

If X is a generating n-tuple, the following lemma allows us to connect the number of

Nielsen equivalence classes of n-tuples in the T -system of X to the index of TameX(G)

in Aut(G). This lemma is applied to groups of the form 〈a, b; bn〉, n > 1, in Section 3.5,

where we pin together our knowledge of the tame automorphisms with our knowledge of

the Nielsen equivalence classes of these groups (which we get from Proposition 2.2.2). This

“pinning together” yields a complete description of Out(Z ∗ Cn) in terms of n, which is

Theorem 3.5.1. An appropriate interpretation of Lemma 2.2.5 is given immediately below

the proof.

Lemma 2.2.5. Let G be an arbitrary, finitely generated group defined by the presenta-

tion 〈x1, . . . , xn; r〉. Then, for every Nielsen equivalence class C of G in the T -system

of (x1, . . . , xn) there exists some ψc ∈ Aut(G) with (x1ψc, . . . , xnψc) ∈ C such that if

τ ∈ Aut(G) and (x1τ, . . . , xnτ) ∈ C then there exists some φ ∈ Tame(x1,...,xn)(G) with

τ = φψc.

Proof. By the definitions of T -systems and Nielsen equivalence classes, if C is a Nielsen

equivalence class lying in the same T -system of G as (x1, . . . , xn) then there exists some

automorphism of G which maps (x1, . . . , xn) into C. So, we can pick some ψc ∈ Aut(G)

arbitrarily, with ψc : x1 7→ y1, . . . , xn 7→ yn, and (y1, . . . , yn) ∈ C.

Now, let τ be an automorphism of G which takes (x1, . . . , xn) to (z1, . . . , zn) where

(z1, . . . , zn) ∈ C, so τ : x1 7→ z1, . . . , xn 7→ zn. Then by the definition of Nielsen equivalence

class there exists a Nielsen transformation φ of (x1, . . . , xn) with xiφ = wi(x1, . . . , xn),

where the following equalities hold.

(y1, . . . , yn)φ = (w1(y1, . . . , yn), . . . , wn(y1, . . . , yn)) =G (z1, . . . , zn)

Then we have the following sequence of equalities.

xiτ = zi

=G wi(y1, . . . , yn)

= wi(x1ψc, . . . , xnψc)

= wi(x1, . . . , xn)ψc

= xiφψc
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Noting that φ is an automorphism because φ = τψ−1
c we conclude that φ ∈ Tame(x1,...,xn)(G),

as required.

This lemma tells us that if we fix an automorphism ψc for every Nielsen equivalence

class then, taking X = {x1, . . . , xn}, they form a set of left coset representatives for

the cosets of TameX(G) in Aut(G). This set is a left transversal, by the definition of

TameX(G). Therefore, writing m for the number of Nielsen equivalence classes in the T -

system of X, we have the equality |Aut(G) : TameX(G)| = m. This proves the following

theorem.

Theorem 2.2.6. If G = 〈x1, . . . , xn; r〉 and there are only finitely many Nielsen equiv-

alence classes in the T -system of (x1, . . . , xn) then Aut(G) is virtually Tame(x1,...,xn)(G)

and Out(G) is virtually Tame(x1,...,xn)(G)/ Inn(G).

Theorem 2.2.6 is of interest because it is applicable to two-generated presentations with

small-enough cancellation, in the sense of Section 2.3 [HPV84]. Now, the ideas underlying

Section 3.2 easily generalise to prove that if G = 〈a, b〉 and has infinite abelianisation then

Tame(a,b)(G)/ Inn(G) is either virtually cyclic or embeds into GL2(Z). Therefore, two-

generated groups with small-enough cancellation and infinite abelianisation have linear

outer automorphism groups.

We now discuss a difficulty when talking about tame automorphisms. This difficulty is

that we must necessarily specify the generating tuple we are dealing with when discussing

tame automorphisms, because the set of tame automorphisms can change when we change

the generating tuple. This is demonstrated by the following proposition.

Proposition 2.2.7 (Theorem 3.10, [MKS04]). Let G = 〈x1, . . . , xn; r〉 be a group which

has only finitely many Nielsen equivalence classes in the T -system of (x1, . . . , xn). Then

there exists a finite generating set (y1, . . . , ym) for G such that there is only one Nielsen

equivalence class in the T -system of (y1, . . . , ym). Moreover, if r is finite then there exists

a finite set s ⊂ F (y1, . . . , ym) such that 〈y1, . . . , ym; s〉 is a finite presentation for G.

Proof. Let G = 〈x1, . . . , xn; r〉 be a finitely generated group, and write X = {x1, . . . , xn}.

Let ψ ∈ Aut(G) where (x1ψ, . . . , xnψ) is not Nielsen equivalence to (x1, . . . , xn). We shall

begin by giving a presentation for G such that ψ is tame. Now, if Wi(X) =G xiψ then

the 2n-generated group with the following presentation is isomorphic to G and is finitely

related if r is a finite set.

〈x1, . . . , xn, z1, . . . , zn; r, z−1
1 W1(X), . . . , z−1

n Wn(X)〉
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We shall now prove that we have the following Nielsen equivalence.

(x1ψ, . . . , xnψ, z1ψ, . . . , znψ) ∼N.e. (x1, . . . , xn, z1, . . . , zn)

To see this, write Z = {z1, . . . , zn} and consider the mapping xi 7→ zi, zi 7→ xiV
−1
i (Z)Wi(Z)

where Vi(X) is a word on the X such that Vi(X)ψ = xi. This is a Nielsen transformation,

because V −1
i (Z)Wi(Z) are words over Z. Moreover, this defines ψ as xiψ = zi while noting

that xi = Vi(X)ψ = Vi(Z) we have the following sequence of equalities.

xiV
−1
i (Z)Wi(Z) = xix

−1
i Wi(Z)

= Wi(Z)

= Wi(Xψ)

= Wi(X)ψ

= ziψ

Therefore, the two generating tuples are Nielsen equivalent, so in the altered presentation ψ

is tame. We prove that |Aut(G) : Tame(x1,...,xn) | > |Aut(G) : Tame(x1,...,xn,z1,...,zn) |. This

means that we can algorithmically re-write the presentation as above and at every step

reduce the index of the Tame automorphisms, and so the number of Nielsen equivalence

classes. This proves the result as there are only finitely many Nielsen equivalence classes

in the T -system of (x1, . . . , xn).

To prove that the index decreases, we prove that if φ is a Nielsen transformation of

(x1, . . . , xn) which defines an automorphism of G then there is a Nielsen transformation

φ′ of the 2n-tuple (x1, . . . , xn, z1, . . . , zn) which defines an automorphism of G and with

the following equalities.

x1φ
′ = x1φ, . . . , xnφ

′ = xnφ

So, let φ be a Nielsen transformation of (x1, . . . , xn) which defines an automorphism of G,

and let Ui(X) =G xiφ. Then take φ′ to be the following Nielsen transformation.

xi 7→ Ui(X)

zi 7→ ziW
−1
i (X)Wi(U1, . . . , Un)

This Nielsen transformation is an automorphism as recalling that zi = Wi(X) we have the

following sequence of equalities.

ziW
−1
i (X)Wi(U1, . . . , Un) =G Wi(U1, . . . , Un)

=G Wi(X)φ
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Noting that φ′ and φ define the same automorphism of G, the proof is complete.

Example 2.2.8: Consider the group G = 〈a1, a2; a12
1 〉. This has ϕ(12) = 4 Nielsen equiv-

alence classes by Proposition 2.2.2. However, the following presentation for G has only

one Nielsen equivalence class.

G ∼= 〈a1, a2, b1, b2, c1, c2, c3, c4, d1, d2, d3, d4, d5, d6, d7, d8;

a12
1 = 1,

b1 = a5
1, b2 = a2,

c1 = a7
1, c2 = a2, c3 = b71, c4 = b2,

d1 = a11
1 , d2 = a2, d3 = b11

1 , d4 = b2, d5 = c11
1 , d6 = c2, d7 = c11

3 , d8 = c4〉

Therefore, Tame(a1,...,d8)(G) = Aut(G).

The method of proof from Section 3.2. In Section 3.2 we prove that if G is a one-

ended two-generator, one-relator group with torsion then Out(G) embeds into GL2(Z). We

now explain the method of proof we employ to do this. Recall that tame automorphisms

are sometimes referred to as lifting automorphisms. The reason for this name is because,

taking X = (x1, . . . , xn), if we define HX to be the subgroup of Aut(F (X)) which define

automorphisms of G then there exists a surjection from HX to TameX(G). This means

we have Figure 2.1. Now, Inn(F (X)) ≤ HX and elements of Inn(F (X)) induce inner

automorphisms of G. In Section 3.2 we prove that for G given by a presentation of the

form 〈a, b;Rn〉 with R non-primitive and n > 1, any two (tame) automorphisms of G are

equal mod Inn(G) if and only if their lifts are equal mod Inn(F (X)). That is, we prove

that ker(θ) is trivial, where θ is the map from Figure 2.2.

Aut(F (X))

HX TameX(G)

Figure 2.1: Tame automor-

phisms are precisely those which

lift to automorphisms of the am-

bient free group.

Out(F (X))

HX
Inn(F (X))

TameX(G)
Inn(G)

θ

Figure 2.2: If the canoni-

cal map θ is injective then

TameX(G)/ Inn(G) embeds into

Out(F (X)).
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Note that the homomorphism θ, and hence the associated embedding, is canonical

in the sense that it is pairing tame automorphisms of G with their associated Nielsen

Transformations.

2.3 Small Cancellation Theory

In this section we state certain results in small cancellation theory. This theory is funda-

mental to the proof of Theorem B, one of the main results of Chapter 4. In Theorem B we

take a group G = 〈a, b; ai, bi, (ab)i〉 with i > 9, we take a specific subgroup M of G, and we

use small cancellation theory to prove that certain properties of the lift M of M to F (a, b)

are preserved when we drop down to M . For example, Lemma 4.3.6 is an important step

in the proof of Theorem B, and this lemma uses small cancellation theory to prove (in our

specific situation) that because M is malnormal in F (a, b) then M is malnormal in G. We

also introduce this theory here because Section 2.10 gives an introduction to a similar but

disjoint small cancellation theory which uses the category of graphs. This novel theory,

due to Wise [Wis01], is again used in the proof of Theorem B. The theory using graphs

mirrors the classical theory of this current section, and therefore a familiarity with the

current section is useful for the understanding and motivation behind Wise’s theory in

Section 2.10.

(Classical) small cancellation theory deals with presentations of groups which allow for

an explicit solution to the word problem and the conjugacy problem for groups. Its study

was initiated by Tartakovskii [Tar49] in 1949, who used algebraic methods to solve the word

problem for certain groups. The geometric significance of the theory was independently

uncovered in 1966 using van Kampen diagrams by Lyndon [Lyn66] and Weinbaum [Wei66].

Note that all the definitions and results in this section can be found Chapter V of Lyndon–

Schupp’s book [LS77], unless other references are given.

Decision problems for groups. In 1911 Max Dehn posed the three fundamental decision

problems in group theory. These problems, along with a desire to generalise associated

work of Dehn, provide a motivation for small cancellation theory. The three problems are

the word problem, the conjugacy problem, and the isomorphism problem, which are each

defined as follows. Note that in a group presentation P = 〈X; r〉, a word w is said to

represent the empty word (in P) if w ∈ 〈〈r〉〉, where 〈〈r〉〉 denotes the normal closure of r.
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• Let P = 〈X; r〉 be a presentation of a group. The word problem asks if it is possible

to determine if a given word over X represents the empty word in P.

• Let P = 〈X; r〉 be a presentation of a group. The conjugacy problem asks if it is

possible to determine if for two given words u, v over X there is a third word w over

X such that u−1w−1vw represents the empty word in P.

• Let P = 〈X; r〉 and Q = 〈Y ; s〉 be presentations of groups. The isomorphism problem

asks if it is possible to determine if P and Q define isomorphic groups.

These three problems are insoluble in general [Mil92]. However, when Dehn posed these

problems he provided algorithms to solve the word problem and the conjugacy problem

for the fundamental groups of closed, orientable two-dimensional manifolds. We shall now

point out the key observation which allows the algorithms Dehn provided to be generalised

(and which led to the development of small cancellation theory). The fundamental group

of a closed orientable two-dimensional manifold of genus greater than two has presentation

with a single defining relator R. This relator has the following important property: if S

is a cyclic shift of R or R−1 then there is very little free cancellation (in proportion to the

length of the word R) when we form the product RS. This “small cancellation” is the

vital observation, and allows us to generalised Dehn’s algorithms to presentations of other

groups.

Graphs. We wish to define a geometric way of applying small cancellation theory, called

“van Kampen diagrams”. In order to do this we must state the notation and conventions

which we shall be using when discussing graphs. A graph Γ consists of a set of edges EΓ

and a vertex set VΓ under the following restrictions:

• There exists an origin function ι : EΓ → VΓ and a terminal function τ : EΓ → VΓ.

• There exists an inverse involution − : EΓ → EΓ, such that ι(e) = τ(e) (and so also

τ(e) = ι(e)).

We shall occasionally write e−1 in place of e, especially in the context of van Kampen

diagrams. Note that the inverse involution partitions EΓ into two disjoint sets E+
Γ and

E−Γ , where e ∈ E+
Γ if and only if e ∈ E−Γ , and we shall refer to E+

Γ and E−Γ as the set of

positive and negative edges of Γ respectively. A graph Γ is said to be trivial if it consists

of a single vertex and no edges, that is, |VΓ| = 1 and |EΓ| = 0. We shall say that a graph
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Γ is finite if both |VΓ| and |EΓ| are finite. When we draw graphs we shall often omit

the negative edges and draw the remaining (positive) edges, sometimes without direction.

The degree of a vertex v ∈ Γ, denoted d(v), is the number of edges e with ι(e) = v. Note

that if Γ consisted of a single vertex v with a single positive edge e then d(v) = 2. A

path p in a graph Γ is a sequence of edges p = [e1, . . . , en] such that τ(ei) = ι(ei+1) for

1 ≤ i < n, and we shall define a trivial path to be the empty path (that is, it contains no

edges). Associated to every path p is an inverse path p = [en, . . . , e1], which is the path

p in reverse. A graph Γ is said to be connected if there exists a path between any two

arbitrary vertices. A path is reduced if it contains no subpaths [ei, ei], and a path can be

made reduced by removing all such subpaths: this process is called reduction.

van Kampen diagrams. We shall now define “(van Kampen) diagrams”. These give

a geometric view of small cancellation theory. We use a result regarding the structure

of certain van Kampen diagrams, called “annular diagrams”, in Lemma 4.3.6, which is

an important lemma in the proof of Theorem B. Moreover, it is easier to understand

the significance of the conditions underlying small cancellation theory using diagrams (as

opposed to merely stating the conditions algebraically). Now, consider an embedding Γ of

a graph into a sphere Sand note that as it is an embedding no two non-equal edges of the

embedded graph intersect. A region of S is a bounded subset homeomorphic to the open

unit disk. Note that associated to an embedding Γ of a connected graph is a set of regions

of S, each of which has empty intersection with Γ but has boundary contained within Γ.

Fixing a presentation P = 〈X; r〉, we can associate to an embedding Γ of a graph a

map L : F (X)→ Γ which assigns each oriented edge a label. Then, a van Kampen diagram

over the presentation P = 〈X; r〉, or simply a diagram over the presentation P, denoted B,

is an embedding ΓB of a graph ΓB into a sphere together with certain specified associated

regions and with a labeling map L : EΓB
→ F (X) such that L(e−1) = L(e)−1, such that

L(e) 6= 1 for all edges e ∈ ΓB, and such that if a vertex v ∈ ΓB has degree two then the

graph ΓB consists of a single vertex with a single positive loop edge. If the presentation is

clear, we shall omit the phrase “over the presentation P”. A diagram is called reduced if

there are no two edges e, f with τ(e) = v = ι(f) and L(e) = (L(f))−1. Note that the union

of any the regions of a diagram with their boundaries form subdiagrams of the diagram

B with labeling map inherited from B. A disk diagram is a contractible diagram, while

an annular diagram is one whose fundamental group is infinite cyclic. (Note that simply
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connected does not imply contractible as we are mapping into a sphere.)

Note that a disk diagram has a boundary, ∂D := ∂(S \D). This boundary is a path,

and so fixing a vertex in ∂D and fixing an orientation we obtain an element of F (X).

We shall say that this element is a boundary label of D. The following lemma allows disk

diagrams to be used to give a geometric representation of relators in a presentation.

Lemma 2.3.1 (Lyndon–Schupp, Lemma V.1.2). Consider the presentation P = 〈X; r〉.

A word W ∈ F (X) is equal to the trivial word in P if and only if W is a boundary label

of a disk diagram D where all regions of D have a boundary label contained in r.

The small cancellation conditions. We shall now give the conditions underlying small

cancellation theory. However, before we can do this we need to define the “symmetrised

closure” of a set of definite relators and we need to define a “piece”. Let 〈X; r〉 be a group

presentation such that every element of r is cyclically reduced. The symmetrised closure

of r, denoted r∗, is the minimal set of words over X which contains r and such that if

R ∈ r then every cyclically reduced conjugate of R and of R−1 is in r. If a set r is its

own symmetrised closure, so r = r∗, then we say that r is symmetrised. A piece relative

to the set r is a word p over X such that pu and pv are freely reduced with u 6≡ v, and

both pu, pv ∈ r∗. We shall omit the phrase “relative to the set r” when the set r is clear.

For example, the fundamental group of a closed, orientable two-dimensional manifold of

genus g has the following presentation.

Pg = 〈a1b1, . . . , ag, bg; a
−1
1 b−1

1 a1b1 . . . a
−1
g b−1

g agbg〉

Here, non-trivial pieces are single letters.

We shall now give the small cancellation conditions. There are three such conditions,

denoted by C ′(λ), C(n), and T (n) respectively. In this thesis we only apply the C ′(λ)

condition. This is in Lemma 4.3.6 from Section 4.3.4, which contributes to the proof of

Theorem B. However, in Section 2.10 we state conditions which are analogous to each of

these three conditions, but using the category of graphs. Therefore, it is pertinent to state

all the conditions here. If r is a word over an alphabet X then we use the notation |r| to

mean the length of this word.

The C ′(λ) condition: A presentation P = 〈X; r〉 satisfies the C ′(λ) condition if whenever

pu ∈ r∗ where p is a piece relative to r then |p| < λ|pu|. A group which has a presentation
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which satisfies C ′(1/6) is called a sixth-group, while one which satisfies C ′(1/8) is an

eighth-group.

The C(n) condition: A presentation P = 〈X; r〉 satisfies the C(n) condition if no element

of r∗ is the product of fewer than n pieces. Equivalently, every interior region of every

disc diagram over P is bounded by at least n edges, where an interior region B is a region

where ∂D ∩ ∂B is empty.

The T (n) condition: A sequence R1, R2, . . . , Ri is reduced if no two successive elements

are an inverse pair. Then, a presentation P = 〈X; r〉 satisfies the T (n) condition if for

3 ≤ i < n every reduced sequence of i elements of r∗, R1, R2, . . . , Ri, is such that at least

one of the products R1R2, R2R3, . . . , RiR1 is reduced without cancellation. This definition

is rather cryptic. However, it makes much more sense from the viewpoint of van Kampen

diagrams. In the language of diagrams, this condition holds if and only if for every disc

diagram D over P every interior vertex v of D has degree at least n, where an interior

vertex v is a vertex where v ∈ D \ ∂D.

Example 2.3.2: In Pg every piece has length one and so this presentation satisfies the

C ′(1/(4g − 1)) condition. Further, Pg satisfies the C(4g) condition.

Example 2.3.3: Note that if a presentation satisfies C ′(λ) then it satisfies C(n) for λ =

1/(n − 1). In this example we show that the converse is not true. That is, C(n) does

not necessarily imply C ′(λ) for λ = 1
n−1 . To see this, take the group with the following

presentation.

G = 〈a1, b1, a2, b2, x, y; (x8y)1000, x8[a1, b1][a2, b2]〉

This presentation satisfies C(9), but x8 is a piece so this presentation cannot satisfy C ′(λ)

for λ < 8/16 = 1/2, and so does not satisfy C ′(1/8).

Dehn’s algorithm and hyperbolic groups. The algorithm which Dehn used to solve

the word problem for the fundamental groups of closed, orientable two-dimensional man-

ifolds is related to the specific given presentation Pg. It turns out that the identical

algorithm works for C ′(1/6) presentations. We shall give this algorithm now and define

“hyperbolic groups” using this algorithm. Hyperbolic groups appear sporadically in this

thesis. We shall then state the result which proves that Dehn’s algorithm solves the word

problem for C ′(1/6)-presentations, which is Proposition 2.3.4.
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Let P = 〈X; r〉 be a group presentation. We shall say that a word w contains > 1
2R

if there exists a word S ∈ r∗ where S ≡ S0S1 such that no free cancellation occurs when

forming S0S1, where |S0| > 1
2 |S|, and where w ≡ uS0v is freely reduced. A word w over X

is Dehn reduced if w does not contain > 1
2R. If the word w contains > 1

2R, and so is not

Dehn reduced, then w ≡ uS0v can be replaced with a new word w1 ≡ uS−1
1 v such that

w =G w1 and |w| > |w1|. This replacement process is called Dehn reduction, while the

process of repeated Dehn reduction on a word is called Dehn’s algorithm. Suppose that P

has the property that every freely reduced word w which represents the trivial word is not

Dehn reduced. This supposition implies that w represents the trivial word in P if and only

if Dehn’s algorithm terminates at the trivial word. This implies that P has soluble word

problem, and so we shall say that the word problem in P is soluble by Dehn’s algorithm.

A group is said to be hyperbolic if it admits a presentation whose word problem is soluble

by Dehn’s algorithm [BH99, Theorem III.Γ.2.6].

In his study of the word problem for closed, orientable two-dimensional manifolds,

Dehn proved that for the presentations Pg, g > 1, if w =P 1 then w is not Dehn reduced.

Therefore, the word problem in Pg is soluble by Dehn’s algorithm. As the word problem is

a group invariant, this means that the word problem is soluble for the fundamental groups

of closed, orientable two-manifolds.

The word problem. The observation which Dehn made for the presentations Pg, g > 1,

holds for C ′(λ) presentations when λ ≤ 1/6. Therefore, sixth-groups have soluble word

problem and are hyperbolic. Indeed, much stronger conditions than the “more than half”

required for hyperbolicity hold, which is Greendlinger’s Lemma for Sixth-Groups [LS77,

Theorem V.4.5]. We apply this in Lemma 4.3.6, which is a key step in the proof of

Theorem B from Section 4.3.4. As with > 1
2R, we shall say that a word w contains > a

bR

if there exists a word S ∈ r∗ where S = S0S1 such that no free cancellation occurs when

forming S0S1, where |S0| > a
b |S|, and where w ≡ uS0v is freely reduced.

Proposition 2.3.4 (Greendlinger’s Lemma for Sixth-Groups). Let G be given by a presen-

tation P = 〈X; r〉 which satisfies the C ′(1/6) condition. Let w be a non-trivial, cyclically

reduced word which represents the trivial word. Then either w ∈ r∗ or some cyclically

reduced conjugate of w contains one of the following.

• Two disjoint subwords, each > 5
6R.
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• Three disjoint subwords, each > 4
6R.

• Four disjoint subwords, two > 4
6R and two > 3

6R.

• Five disjoint subwords, four > 3
6R and one > 4

6R.

• Six disjoint subwords, each > 3
6R.

The conjugacy problem. Sixth-groups have soluble conjugacy problem as well as soluble

word problem. This is given by the following theorem. Note the strengthened form for

eighth-groups (the small cancellation groups we work with in Section 4.3.4 are eighth-

groups). If w is a word over X then a cyclic shift of w is a word w∗ ≡ vu such that w ≡ uv

and no free cancellation occurs when forming uv.

Proposition 2.3.5 (Lyndon–Schupp, Theorem V.5.4). Let G be given by a presentation

P = 〈X; r〉 which satisfies the C ′(1/6) condition. Let u and v be non-trivial, cyclically

reduced words over X which are Dehn reduced and are not conjugate in F (X). Then u

and v are conjugate in G if and only if there exists a word h = r1r2 over X and cyclic

shifts u∗ and v∗ of u and v respectively such that the following hold.

• u∗ =P h
−1v∗h

• r1 and r2 are subwords of relators R1, R2 ∈ r∗. If P satisfies C ′(1/8), r2 can be

taken to be the empty word.

• |ri| < 12 max(|u|, |v|).

Therefore, the conjugacy problem is soluble for finitely generated, recursively presented

sixth groups.

Annular diagrams give a geometric view of the conjugacy problem. We use this view in

Lemma 4.3.6, which is an important lemma in the proof of Theorem B from Section 4.3.4.

This lemma uses the properties of eighth-groups. We shall now explain how annular

diagrams encode conjugation. We then state the result which we apply in the proof

of Lemma 4.3.6. This result is Proposition 2.3.6, which gives the structure of annular

diagrams for C ′(1/8) presentations.

An annular diagram A contains precisely two disjoint boundary components which we

shall denote by ∂I and ∂E. The component of S\A with boundary ∂I shall be the interior
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p pp

Figure 2.3: An annular diagram is not a disc diagram, but splits along a path

to become a disc diagram.

region of A and denoted I, while we obtain the exterior region E in an analogous way. A

boundary edge of A is an edge contained in either ∂I or ∂E. Then there exists a path p

in the underlying graph ΓA of A which connects I to E, that is, ι(p) ∈ ∂I and τ(p) ∈ ∂E.

Let W be the label of p, let U be the label of ∂I starting at ι(p) and reading in a clockwise

direction, and let V be the label of ∂E starting at τ(p) and reading widdershins. Then

when A is split along this path p in the sense of Figure 2.3 we obtain a disc diagram D

with boundary label UW−1VW . Therefore, annular diagrams encode conjugation in the

following sense: two words U and V denote conjugate elements of the group given by P if

and only if there exists some annular diagram A such that U is a label for ∂I and V is a

label for ∂E, where labels are read in opposite directions. The following proposition gives

us the structure of reduced annular diagrams over C ′(1/8) presentations.

Proposition 2.3.6 (Lyndon-Schupp, Theorem V.5.3 and Theorem V.5.5). Let P = 〈X; r〉

satisfy C ′(1/8), and assume the following two hypotheses.

• A is a reduced annular diagram.

• Every label of ∂I and of ∂E is Dehn reduced.

Then every region D of A has edges on both ∂I and ∂E, and ∂D contains no more than

two pieces which do not intersect with ∂I or ∂E.

If A is an annular diagram described by Proposition 2.3.6 then it is split into islands,

which are reduced subdiagrams of A whose boundary is not self-intersecting and of the

form ση with σ ⊂ ∂I and η ⊂ ∂E, and bridges, which are non-trivial paths in ∂I ∩ ∂E.

An example of an annular diagram described by Proposition 2.3.6 is given by Figure 2.4.

Centralisers. We shall now give a theorem which describes centralisers in sixth-groups.



CHAPTER 2. PRELIMINARIES 30

Figure 2.4: An annular diagram with four islands and three bridges. We do

not count a single vertex connecting two islands as a bridge.

We apply this result in Section 4.3.4 as a technical step in the proof of Theorem B.

We further apply this result in Lemma 2.6.2, which uses Rips’ construction to give groups

with pathological outer automorphism groups. Greendlinger proved, first for eighth-groups

[Gre62] and then for sixth-groups [Gre66], that if two elements in such a group commute

then they are powers of a common element. This forms the basis of a proof that elements of

sixth groups have cyclic centralisers. Note that the result does not immediately follow, as in

an arbitrary group powers of elements can commute even through the elements themselves

do not (for example, take the free product with amalgamation G = 〈a, b; a2 = b3〉, then

G centralises a2 but G is non-cyclic). The key additional property needed for the proof

is that elements of sixth groups have unique roots, that is, if an =G bn 6= 1 then a =G b.

Lipschutz proved that elements of infinite order in eighth-groups have unique roots [Lip72],

while Truffault improved this result to sixth-groups [Tru74a] and extended it to show

that elements of finite order in sixth-groups also have unique roots [Tru74b]. Seymour

independently proved the same results as Truffault [Sey74]. Therefore, elements of sixth-

groups have cyclic centralisers. The result we use in Section 4.3.4 and in Section 2.6 is the

following.

Proposition 2.3.7. If G is a sixth-group then every finitely generated, non-cyclic subgroup

has trivial centraliser.

Proof. Let g and h be two elements of a non-cyclic subgroup H of G, and suppose that they

are not contained in a common cyclic subgroup. Such elements exist because H is finitely

generated and non-cyclic. Suppose 1 6= k ∈ CG(H), then k ∈ CG(g) and k ∈ CG(h).

Therefore, k and g are contained in a common cyclic subgroup, as are k and h. Applying

the fact that elements of G have unique roots, this means that g and h are contained in a

common cyclic subgroup, a contradiction.
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2.4 Free Constructions

In this section we review HNN-extensions and free products with amalgamation. These

notions are entirely fundamental to this thesis because Chapter 4 investigates the outer

automorphism groups of certain HNN-extensions, while Section 3.1 analyses how a two-

generator, one-relator group with torsion splits as an HNN-extension or free product with

amalgamation over a virtually cyclic subgroup. Almost all of the results stated in this

section are applied in Section 3.1, and many of them are also used sporadically throughout

this thesis. We refer to HNN-extensions and free products with amalgamation collectively

as free constructions, in the sense of Kharlampovich–Myasnikov [KM98].

In Section 3.1 we study the virtually cyclic splittings of (two-generator) one-relator

groups with torsion, that is, the splittings of such groups as HNN-extensions or free prod-

ucts with amalgamation over virtually-Z subgroups. We undertake this analysis because

such splittings encode the JSJ-decomposition of a one-ended two-generator, one-relator

group with torsion and such groups are the objects of study in Chapter 3. The JSJ-

decomposition is invariant under automorphisms and so proving results on the structure

of the JSJ-decomposition of such a group allows us to prove results on the outer auto-

morphism group of the group (the reader is referred to Section 2.8 for more details on

JSJ-decompositions). The structural result on the JSJ-decompositions of one-ended two-

generator, one-relator groups with torsion is Theorem 3.1.15, while the application to the

outer automorphism groups of these groups is Theorem 3.1.16. Most of the results of this

section are used in the (rather substantial) build up to these two theorems. Specifically,

they are used in Proposition 3.1.13, which analyses how a two-generator, one-relator group

with torsion can split as a free product with amalgamation over a virtually cyclic subgroup,

and in Proposition 3.1.14, which analyses how such a group can split as an HNN-extension

over a virtually cyclic subgroup.

The theories of HNN-extensions and free products with amalgamation parallel one

another, and so we begin this section by reviewing certain results on HNN-extensions

and then review often analogous results for free products with amalgamation. We finish

by stating some results due to Kharlampovich–Myasnikov regarding the hyperbolicity of

these constructions. The results at the start of this section can be found in the books

of Lyndon–Schupp [LS77, Chapter IV.2] or Magnus–Karrass–Solitar [MKS04, Chapter 4]

unless other references are given.
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HNN-extensions. If H is a fixed group, A and B isomorphic subgroups with isomor-

phism ϕ : A → B, then the HNN-extension of H relative to A, B and ϕ is the group G

with the following presentation.

G = 〈H, t; at = aϕ, a ∈ A〉

The group H is called the base group, the subgroups A and B are called the associated

subgroups, and t is called the stable letter. We shall often write G as H∗At=B or as

〈H, t;At = B〉.

The fundamental result on HNN-extensions is due to Higman–Neumann–Neumann

[HNN49], and states that the base group H embeds into the HNN-extension H∗At=B in

the natural way.

The elements of an HNN-extension have a relative normal form (that is, there is a

canonical way of writing each element of the HNN-extension relative to the base group H)

and we use the normal form in the proof of Proposition 3.1.14. To give the relative normal

form of an HNN-extension G = 〈H, t;At = B〉 we first define a “reduced sequence” for

a word U over H and t. To do this, begin with a sequence w0, t
ε1 , w1, . . . , t

εk , wk. Then

this sequence is reduced if there is no subsequence of the form t−1, wi, t with wi ∈ A, or

t, wj , t
−1 with wj ∈ B. This sequence represents the word U if U is the concatenation of

the elements in the sequence, U ≡ w0t
ε1w1 · · · tεkwk.

Proposition 2.4.1 (Britton’s Lemma [LS77]). A reduced sequence with k ≥ 1 represents

a non-trivial element of G.

Note that this implies a reduced sequence with k ≥ 1 does not represent an element

of H, and to see this implication suppose otherwise. Then there exists g−1 ∈ H which

is represented by a reduced sequence w0, t
ε1 , w1, . . . , t

εk , wk with k > 1, and so g−1g has

a reduced sequence g−1w0, t
ε1 , w1, . . . , t

εk , wk which represents the empty word, a contra-

diction. It can be shown that every element g ∈ G can be written in a unique way, up

to equality of elements of H, as (the concatenation of elements in) a reduced sequence,

and the set of reduced sequences yield a relative normal form for the elements of an

HNN-extension [LS77, Theorem 2.1]. A word represented by a reduced sequence is called

t-reduced, and a word is called t-free if it does not contain a t-term.

We finish this subsection on HNN-extensions with the following proposition, which is

due to Pride [Pri75, Theorem 6]. It gives information on how certain HNN-extensions can

be generated. We discuss our motivation below the statement. To state Pride’s result we
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need the notion of a malnormal subgroup, which is a subgroup H of a group G such that

the following implication holds.

Hg ∩H 6= 1⇒ g ∈ H

Pride’s result is as follows.

Proposition 2.4.2 (Pride). Suppose that G = 〈H, t;At = B〉 can be generated by two

elements. Further suppose that A and B are proper, malnormal subgroups of G. If (u, v)

is a generating pair for G such that the words u and v define reduced sequences then (u, v)

is Nielsen equivalent to a pair (tu′, v′) such that u′ ∈ H and v′ ∈ A.

We use Proposition 2.4.2 in our proof of Proposition 3.1.14. In the proof, we consider

Pride’s result in the case when the HNN-extension is additionally a one-relator group with

torsion and prove that the analogous result holds if at least one of A and B is malnormal.

Free products with amalgamation. If H and K are fixed groups containing isomorphic

subgroups A ≤ H, B ≤ K with isomorphism ϕ : A → B, then the free product of H and

K, amalgamating the subgroups A and B by the isomorphism ϕ is the group G with the

following presentation.

G = 〈H,K; a = aϕ, a ∈ A〉

The groups H and K are called the factors of the free product with amalgamation, while

A and B are called the amalgamated subgroups. We shall often write G as H ∗A=B K or

as H ∗C K, where C is the subgroup of G associated to both A and B. We shall often

refer to free products with amalgamation as amalgams, in the sense of Serre [SS03]. The

fundamental result on free products with amalgamation is that H and K embed into G

in the natural way [LS77, Theorem IV.2.6].

The elements of a free product with amalgamation have a relative normal form and

a length function L, which measures the “length” of the normal form. We apply these

two concepts in the proof of Proposition 3.1.13. Let G = H ∗C K be a free product with

amalgamation, then to give the relative normal form of an element g ∈ G \ {1} begin with

a sequence w1, w2, . . . , ws where each syllable wi is in H or K, where successive syllables

wi, wi+1 come from different factors H or K, and if s > 1 then each syllable wi is not

contained in C while if s = 1 then w1 6= 1. This is a relative normal form for elements of

H ∗C K [LS77, Theorem IV.2.6]. The length function of H ∗C K is the function such that
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L(c) = 0 if c ∈ C, L(g) = 1 if g ∈ (H ∪K) \C, and L(g) = s if g 6∈ H ∪K, where s is the

number of syllables in the normal form of g.

The relative normal form addresses the word problem in free products with amalga-

mation. The following proposition addresses conjugation, and we apply this proposition

in the proof of Proposition 3.1.13. We shall say that an element of G is cyclically reduced

if either L(g) ≤ 1 or the normal form for g, written g = w1w2 . . . wk, is such that w1 and

wk come from different factors.

Proposition 2.4.3 (Theorem 4.6 [MKS04]). Let G = H ∗C K be a free product with

amalgamation. Then every element of G is conjugate to a cyclically reduced element of G.

Moreover, for g a cyclically reduced element of G then one of the following happens.

1. If g is conjugate to an element h ∈ C then g is in some factor and there is a sequence

h, c1, c2, . . . , ct, g

where ck ∈ C and consecutive terms in the sequence are conjugate in a factor.

2. If g is conjugate to an element h which is in some factor but not in a conjugate of

C then g and h are in the same factor and are conjugate in that factor.

3. If g is conjugate to an element h with normal form w1 . . . ws such that s ≥ 2, then g

can be obtained by cyclically permuting the normal form and then conjugating by an

element of C.

We apply Proposition 2.4.3 in Lemma 3.1.10, a technical lemma in the proof of Propo-

sition 3.1.13. The proof of Lemma 3.1.10 involves using Proposition 2.4.3 to prove that if

G = H ∗CK then under certain conditions an element of one of the factors H or K is cen-

tralised by an element of the amalgamated subgroup C. The following proposition gives us

information about this centralising element, and so is useful in the proof of Lemma 3.1.10.

Proposition 2.4.4 (Theorem 4.5 [MKS04]). Let G = H ∗C K be a free product with

amalgamation. Suppose g, h ∈ G such that gh = hg. Then one of the following happens.

1. g is in a conjugate of C.

2. h is in a conjugate of C.

3. Neither g nor h is in a conjugate of C but g is in a conjugate of a factor. In this

case, h is in that same conjugate of a factor.
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4. Neither h nor g is in a conjugate of C but h is in a conjugate of a factor. In this

case, g is in that same conjugate of a factor.

5. Neither g nor h is in a conjugate of a factor. In this case, g = U−1cU ·W i, h =

U−1c′U ·W j where U,W ∈ G, c, c′ ∈ C and U−1cU , U−1c′U , W pairwise commute.

In Section 3.1 we are investigating how one-ended one-relator groups with torsion can

split over virtually-Z subgroups. These groups are well-studied, and so we already posses

information about their subgroups. For example, if G = 〈X;Rn〉, n > 1, then every

two-generator subgroup is either a free product of cyclic groups or a one-relator group

with torsion [Pri77b], while the normal closure T of the element R, T := 〈〈R〉〉, is isomor-

phic to the free product of infinitely many cyclic groups of order n [FKS72]. We play our

knowledge of the subgroup structure of these groups off against the Kurosh Subgroup The-

orem [MKS04, Corollary 4.9.1], which gives the form subgroups of free products (without

amalgamation) take, and in the built-up to Lemma 3.1.8 we apply this to the subgroup T .

Proposition 2.4.5 (Kurosh Subgroup Theorem). Every subgroup A of a free product

G = H ∗K is a free product of a free group F with the subgroups of conjugates of H and

K which intersect A.

A = F ∗
∏
g∈G

(A ∩Hg) ∗
∏
g∈G

(A ∩Kg)

The following proposition gives us Corollary 2.4.7, below. This corollary is used in the

proof of Proposition 3.1.13, which is our analysis of how a two-generator, one-relator group

with torsion can split as a free product with amalgamation over virtually-cyclic subgroups,

and gives us information regarding generating pairs in a two-generated free product with

amalgamation. The proposition is due to Zieschang [Zie70]2.

Proposition 2.4.6 (Zieschang). Suppose G = A ∗C B with C 6= 1. Then any generating

set X of G is Nielsen equivalent to another generating set X ′ such that one of the following

holds.

1. Any element g ∈ G can be written as a product Wg of elements of X ′ such that

L(x) ≤ L(g) for every x ∈ X ′ that occurs in Wg.

2. There is a subset X of X ′ that lies in a conjugate of either A or B, and there is an

element of 〈X〉 that is conjugate to an element of C \ {1}.
2Zieschang’s paper is written in German. The result is stated and proved in English in a paper of

Collins-Zieschang [CZ88].
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Suppose X consists of two elements, and suppose (1) from Proposition 2.4.6 happens.

If g ∈ A \ C then L(g) = 1, so if x ∈ X ′ occurs in Wg then x is in one of A, B or C,

and indeed as g ∈ A \ C there must exist some x which occurs in Wg and is in A \ C.

Thus, X ′ ∩ (A \ C) is non-empty. By identical logic, X ′ ∩ (B \ C) is non-empty. Now,

if g ∈ C then L(g) = 0, and so there exists some x ∈ X ′ which occurs in Wg such that

x ∈ C. Thus, X ′ ∩ C is non-empty. As A \ C, B \ C and C are pairwise disjoint we have

that |X ′| ≥ 3, which implies |X| ≥ 3, a contradiction. Therefore, we have the following

corollary due to Kapovich–Weidmann.

Corollary 2.4.7 (Kapovich–Weidmann). Suppose G = A ∗C B with C 6= 1. Then any

generating set X of G which contains two elements is Nielsen equivalent to another gen-

erating set X ′ such that there is a subset X of X ′ that lies in a conjugate of either A or

B, and there is an element of 〈X〉 that is conjugate to an element of C \ {1}.

The following proposition, due to Karrass–Solitar [KS71, Theorem 6], also relates to

two-generated free products with amalgamation. It immediately gives us that the amal-

gamating subgroup in a one-ended two-generated free product with amalgamation cannot

be malnormal in both of the factor groups. This is used alongside the above result, Corol-

lary 2.4.7, in the proof of Proposition 3.1.13.

Proposition 2.4.8 (Karrass–Solitar). Suppose G = A∗C1=C2 B where C1 is a malnormal

subgroup of A and C2 is a malnormal subgroup of B. Then any two-generated subgroup of

G is the free products of two cyclic groups or is contained in a conjugate of a factor.

Hyperbolic groups and free constructions. In Section 3.1 we prove results regarding

the structure of the JSJ-decomposition of a one-ended two-generator, one-relator group

with torsion. This involves studying how these (hyperbolic) groups can be decomposed as

H∗A=BK where H and K are hyperbolic and A and B are virtually-Z, or as H∗At=B where

H is hyperbolic and A and B are virtually-Z. Kharlampovich–Myasnikov give concrete

algebraic conditions which relate the hyperbolicity of the group with the hyperbolicity of

the factor group(s) [KM98]. We state certain algebraic conditions from Kharlampovich–

Myasnikov’s paper now and we apply them in Section 3.1. Indeed, the following two

propositions immediately imply Lemma 3.1.12. Two torsion-free subgroups A and B of H

are separated3 if A ∩Bg is trivial for all g ∈ H.

3We discuss the wording “separated” before Lemma 3.1.12 in Section 3.1.2.
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Proposition 2.4.9 (Corollary 1, Kharlampovich–Myasnikov). Let H be a hyperbolic

group, with A and B infinite cyclic subgroups. Then the HNN-extension G = H∗At=B
is hyperbolic if and only if A and B are separated and one of A or B is malnormal in H.

Proposition 2.4.10 (Corollary 2, Kharlampovich–Myasnikov). Let H and K be hyper-

bolic groups with infinite cyclic subgroups A ≤ H and B ≤ K. Then the free product with

amalgamation G = H ∗A=B K is hyperbolic if and only if either A is malnormal in H or

B is malnormal in K.

The following two propositions are used in the proof of Lemma 3.1.11. Note that they

are not precisely the statements given by Kharlampovich–Myasnikov, who give identical

results but when A and B are “quasiconvex”. Our statements follow immediately because

cyclic subgroups of hyperbolic groups are quasiconvex [BH99, Chapter III.Γ.3].

Proposition 2.4.11 (Theorem 4, Kharlampovich–Myasnikov). Let G = H∗At=B be hy-

perbolic with A and B cyclic. Then H is hyperbolic.

Proposition 2.4.12 (Theorem 6, Kharlampovich–Myasnikov). Let G = H ∗A=B K be

hyperbolic with A and B cyclic. Then H and K are hyperbolic.

2.5 Residually Finite Groups

In this section we give an introduction to residually finite groups. We do this for two

reasons. Our primary reason is that in Chapter 4 we prove results regarding the outer

automorphism groups of residually finite groups. Most notable is Theorem D, from Sec-

tion 4.3.5, which yields finitely generated, residually finite groups with (almost) arbi-

trary outer automorphism groups, and thus gives a partial answer to an open problem

of Bumagin–Wise. Our secondary reason for introducing residual finiteness is that our

motivation for undertaking the work in Chapter 3 was to prove that every two-generator,

one-relator group with torsion G = 〈a, b;Rn〉, n > 1, has residually finite outer automor-

phism group. When the author of this thesis began the work which evolved into Chapter 3

this was a timely problem, as newly published results had proven certain special cases (for

example, when R has the form a−1biabj [KT10]). The results obtained in Chapter 3 solve

this problem, but this is not why they are interesting. Rather, the results of Chapter 3

are interesting because they completely classify the possible outer automorphism groups of

such groups and in doing so obtain much stronger properties than residual finiteness. Note
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that a recent result of Carette proves that every one-relator group with torsion has a resid-

ually finite outer automorphism group, and thus Carette solves our motivating problem in

much greater generality [Car13].

A group G is residually finite if for all g ∈ G there exists some finite group K and

some homomorphism φ : G → K such that gφ 6=K 1. We shall write H ≤f G to mean

that H is a finite-index subgroup of G. Then g is associated to such a homomorphism if

and only if there exists some Ng Ef G such that g 6∈ Ng (one simply takes Ng = kerφ).

In this section we prove that finitely presented residually finite groups have soluble

word problem, we give examples of residually finite and non-residually finite groups, we

review certain links between the structure of a group and the residual finiteness of the

automorphism and outer automorphism groups, and we give a condition concerning the

residual finiteness of HNN-extensions, which we apply in the proof of Theorem 4.1.3, an

important technical result from Chapter 4. Along the way we prove that the results of

Chapter 3 prove that a two-generator, one-relator group with torsion has a residually

finite outer automorphism group. Now, Theorem A from Chapter 3 classifies the possible

outer automorphism groups, and a rough form of this classification is as follows: a two-

generator, one-relator group with torsion has an outer automorphism group which is either

finite, virtually-Z, or isomorphic to GL2(Z). Then, finite groups are trivially residually

finite, while Example 2.5.1 and Example 2.5.6 prove, respectively, that virtually-Z groups

are residually finite and that GL2(Z) is residually finite.

The word problem. Residual finiteness is a strong finiteness condition. This strength

can be demonstrated by noting that finitely presented residually finite groups have soluble

word problem. We prove this now by giving two algorithms, one of which will terminate

if a word represents the empty word while the other will terminate if the word does not.

Executing the algorithms in parallel therefore yields a solution to the word problem (note

that this new algorithm will always terminate). So, suppose 〈X; r〉 is a finite presentation

of a residually finite group G and let W be a word over the alphabet X±1. The first algo-

rithm is the enumeration of all consequences of the defining relations, and this algorithm

terminates if it obtains W as a consequence of the relations. As the set r is finite, this

algorithm will always terminate if W represents the empty word. The second algorithm is

more complicated. This algorithm enumerates all finite groups, and when it enumerates a

finite group K it further enumerates the homomorphisms from G = 〈X; r〉 to K, of which
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there are only finitely many as X is finite, and with each homomorphism φ the algorithm

checks to see if Wφ 6=K 1 holds. This second algorithm terminates when a finite group K

and a homomorphism φ : G→ K are found such that Wφ 6=K 1, and will always terminate

if W does not represent the empty word because G is residually finite.

Examples and non-examples. We shall now give an example of a class of residually

finite groups. We then give an example of a non-residually finite group.

Example 2.5.1: Virtually-Z groups are residually finite. Note that these groups occur

in the classification from Chapter 3. To see that virtually-Z groups are residually finite,

consider the infinite cyclic group Z. Suppose n ∈ Z \ {0}, then n 6∈ 〈2n〉Ef Z and so Z is

residually finite. The following lemma then proves the result.

Lemma 2.5.2. Subgroups of residually finite groups are residually finite. On the other

hand, suppose that H is a finite-index subgroup of a group G and suppose that H is

residually finite, then G is residually finite.

Proof. Suppose H is a subgroup of a residually finite group G and take some h ∈ H.

Consider h as an element of G, so we can associate a homomorphism φ : G→ K where K

is finite and g 6=K 1. Then the restriction of φ to H is a homomorphism, φ|H : H → K,

and moreover hφ|H 6=K 1. This proves the first point.

Suppose H is residually finite and is a finite-index subgroup of G. As H has finite-

index in G it has finitely many conjugate subgroups. Intersecting these conjugates gives a

finite-index, normal subgroup N of G. Note that N is a subgroup of H so N is residually

finite. Consider an element g ∈ G. If g 6∈ N we are done, so suppose g ∈ N . As N is

residually finite there exists some subgroup Ng Ef N with g 6∈ Ng. Taking N ′g to be the

intersection of the (finitely many) conjugates of Ng in G, we are done.

Example 2.5.3: A group G is called Hopfian if every surjective endomorphism φ : G→ G

is injective. We shall give an example of a non-Hopfian group, and then prove that this

implies that the group is also not residually finite. Consider the following Baumslag–Solitar

group.

BS(2, 3) = 〈a, t; t−1a2t = a3〉

This group became famous because it is the non-Hopfian group with the simplest possible

presentation. Hopfian groups first arose in a topological context, with Hopf asking whether

a finitely generated group can be isomorphic to a proper factor of itself and drawing
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parallels with the problem of listing all classes of maps of the closed orientable surface

of genus g onto the closed orientable surface of genus g [Hop31]4. The first answer was

due to B. H. Neumann who gave a two-generator group with infinitely many defining

relators [Neu50]. Higman gave a three-generator group with two defining relations, which

was the first finitely presented example [Hig51]. Finally, G.Baumslag–Solitar proved that

their group BS(2, 3) is non-Hopfian, which is the simplest possible example in terms of

presentations [BS62]. To see that BS(2, 3) is non-Hopfian, consider the following map.

φ : a 7→ a2

t 7→ t

Noting that t−1a2ta−3 is mapped to t−1a4ta−6 = 1, we have that φ is a homomorphism.

Further, φ is surjective because a3 = a−2(t−1a2t). Thus, to prove that BS(2, 3) is non-

Hopfian it suffices to prove that φ has non-trivial kernel. To do this, consider the following

word.

t−1a−1tat−1a−1ta2

This is t-reduced, and so by Britton’s Lemma it does not define the trivial word. However,

this word is mapped to the identity because of the following sequence of equalities.

(t−1a−1tat−1a−1ta2)φ = t−1a−2ta2t−1a−2ta4

= a−3a2a−3a4

= 1

Therefore, BS(2, 3) is non-Hopfian, as required. Then, BS(2, 3) is not residually finite by

the following proposition due to Mal’cev [Mal40].

Proposition 2.5.4 (Mal’cev). A finitely generated, residually finite group is Hopfian.

Proof. Suppose G is residually finite and non-Hopfian, and we shall find a contradiction.

As G is non-Hopfian, there exists a map φ : G → G such that kerφ 6= 1. Consider

4Hopf [Hop31] wrote “I believe the problem of listing all classes of maps of the closed orientable surface

of genus g onto the closed orientable surface of genus g is interesting, both on account of the connection with

function-theoretical [analytic?] questions...as well as from a purely topological viewpoint. This question is

only solved for special cases...Apart from these, it is easy to show that the sought-after list is identical to

that of all homomorphisms of the fundamental group of the manifold into the fundamental group of the

same manifold. However, this group-theoretic problem is most likely no easier to solve than the original

geometric one.” Translated from the original German.
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g ∈ kerφ \ {1}. Then as G is residually finite there exists a subgroup Ng Ef G such

that g 6∈ Ng, with associated map ψ : G → K = G/Ng. As G is finitely generated

there are only finitely many, n say, homomorphisms G → K = G/Ng. We shall denote

these homomorphisms by ψ1, . . . , ψn. Now, each of the maps φψi are distinct and so they

constitute all the homomorphisms from G to K. However, gφψi =K 1 for all i but gψ 6= 1.

This is a contradiction, as required.

Note that the finitely generated assumption in Proposition 2.5.4 is necessary. For

example, the free group on countably many generators is residually finite but is non-

Hopfian.

Automorphism and outer automorphism groups. We shall now discuss certain

connection between residually finite groups and automorphism and outer automorphism

groups. We mention these results as the first, Proposition 2.5.5, allows us to prove, in

Example 2.5.6, that GL2(Z) is residually finite (which is the final, remaining group from

the classification of Chapter 3) and because the second result, Proposition 2.5.7, was

employed by Kim–Tang to prove that certain specific two-generator, one-relator groups

with torsion have residually finite outer automorphism groups and so motivated Chapter 3.

The first result we mention is the following remarkable result of G. Baumslag [Bau63]. It

is remarkable for its implications, for the elegance of the statement, and for the brevity of

the proof.

Proposition 2.5.5 (G. Baumslag). Suppose G is finitely generated and residually finite.

Then G has residually finite automorphism group.

The proof uses the following definition: a subgroup N of a group G is called charac-

teristic if Nφ = N for all φ ∈ Aut(G).

Proof. Begin by noting that if H ≤f G then there exists a characteristic subgroup N of G

with N ≤f H, which is obtained by intersecting the subgroups of index |G : H| =: n. The

resulting group is characteristic because automorphisms preserve index, and it has finite

index because there are only finitely many subgroups of index n as G is finitely generated.

Now, suppose φ ∈ Aut(G) is non-trivial. We shall find a finite group K such that

Aut(G)→ Aut(K) and φ is not mapped to the identity under this homomorphism. To do

this, note that as φ is non-trivial there exists some g ∈ G such that g−1(gφ) 6= 1. Choose

x 6= g−1(gφ). Then there exists some characteristic subgroup Nx Ef G with x 6∈ Nx. Set
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K = G/Nx. Then φ acts on G/Nx because Nx is characteristic, and as g−1(gφ) 6∈ Nx we

have that gNx 6= (gNx)φ. Therefore, the action of φ on K is non-trivial, as required.

Example 2.5.6: The group GL2(Z) is residually finite. This is because Z× Z is finitely

generated and residually finite and so we can apply Proposition 2.5.5 to get that its

automorphism group is residually finite. As its automorphism group is GL2(Z), the result

follows.

Note that Proposition 2.5.5, using Example 2.5.6, gives a remarkably simple proof that

free groups are residually finite. The proof is as follows: By Lemma 2.5.2 it is sufficient to

prove that the free group on two generators F2 is residually finite, because every countable

free group embeds into F2. The result then holds because the following two matrices from

GL2(Z) generate a free group of rank two.

F2
∼=

〈 1 2

0 1

 ,

 1 0

2 1

〉

It is natural to wish to see if the proof of Proposition 2.5.5 extends to the outer

automorphism group. We shall, however, need additional assumptions, as Wise has proven

that there are finitely generated, residually finite groups whose outer automorphism groups

are not residually finite [Wis03]. The most obvious assumption to add would be conjugacy

separability, that is, for every pair of elements g, h ∈ G such that g is not conjugate to

h there exists a homomorphism φ onto a finite group K, φ : G → K, such that gφ is

not conjugate to hφ. Taking h = 1, we see that if G is conjugacy separable then it is

also residually finite, so this is the conjugation-analogue of residual finiteness. Now, we

wish to extend G. Baumslag’s proof of Proposition 2.5.5 to the outer automorphism group

situation. It turns out that simply replacing “residually finite” by “conjugacy separable”

is not enough. We need a further assumption, as the following proposition shows. A

group G has Grossman’s Property A if the only automorphisms α ∈ Aut(G) which are

such that gα is conjugate to g for all g ∈ G are the inner automorphisms. Grossman

proved the following result and applied it to prove that mapping class groups of compact,

two-dimensional manifolds are residually finite [Gro74].

Proposition 2.5.7 (Grossman). Suppose G is finitely generated, conjugacy separable and

has Grossman’s Property A. Then Out(G) is residually finite.

This proposition has found recent applications in numerous situations. For exam-

ple, it has been applied to Fuchsian groups [AKT05, MS06], to certain Seifert 3-manifold



CHAPTER 2. PRELIMINARIES 43

groups [AKT09], to certain HNN-extensions [WW11], and to hyperbolic groups [MO10,

LM13]. We mention this proposition here, however, because its application was the method

favoured by Kim–Tang in their proofs that the outer automorphism groups of certain, spe-

cific two-generator, one-relator groups with torsion are residually finite [KT10], and this

result motivates our Chapter 3. We shall now say a few words on their proof. When Kim–

Tang’s paper was published, proving the residual finiteness of all one-relator groups with

torsion was a famous unsolved conjecture of G. Baumslag [Bau67]. Therefore, Kim–Tang

could not extend their method of proof to all (two-generator) one-relator groups with tor-

sion. However, between the publication of their paper and the writing of this thesis, Wise

has proven that all one-relator groups with torsion are residually finite [Wis12] and this has

been applied by Minasyan–Zalesskii to prove that they are conjugacy separable [MZ13].

Therefore, it is conceivable that Proposition 2.5.7 could be applicable to all one-relator

groups with torsion. Note, however, that it is already known that all one-relator groups

with torsion have residually finite outer automorphism group. This is a result of Carette,

who proves that if G is a one-relator group with torsion then Out(G) contains a finite

index subgroup which embeds into Aut(G) [Car13]. To see that this is sufficient, note that

by Wise’s result G is residually finite and so Proposition 2.5.5 implies that Aut(G) is resid-

ually finite. Lemma 2.5.2 then completes the proof. Note that our results in Chapter 3 do

not use Wise’s (very deep) results.

Residually finite HNN-extensions. In Example 2.5.3 we gave an example of a non-

residually finite HNN-extension. However, HNN-extensions can be residually finite, and

the following lemma, due to B.Baumslag–Tretkoff [BT78, Lemma 4.4], gives conditions

which imply certain HNN-extensions are residually finite. In Theorem 4.1.3 we use this

lemma to give a necessary and sufficient condition for certain HNN-extensions to be resid-

ually finite.

Proposition 2.5.8 (B.Baumslag–Tretkoff). Let H be a finitely generated group, let K be a

subgroup of H and let φ be an automorphism of H. Let G be the following HNN-extension

of H induced by the automorphism φ.

G = 〈H, t; t−1kt = kφ, k ∈ K〉

Then G is residually finite if the following conditions hold.

• H is residually finite.
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• The subgroup K is such that for an arbitrary finite set of elements not from H,

{g1, g1, . . . , gn} with each gi not an element of H, then there exists a normal subgroup

N of finite index in H such that giK ∩N is empty.

In Chapter 4 we study such “automorphism-induced” HNN-extensions, and in Theo-

rem 4.1.3 we combine Proposition 2.5.8 with Proposition 2.5.5, along with an observation

about the automorphism group of G, to prove that if the base group H is finitely gener-

ated and residually finite and if K is such that NH(K) has finite index in H, then G is

residually finite if and only if NH(K)/K is residually finite.

2.6 Rips’ Construction

Rips’ construction is a way of using small cancellation theory to produce hyperbolic groups

whose subgroups have certain pathological properties. It does this by constructing a short

exact sequence, and Wise observed that these pathological properties can often be lifted

to the outer automorphism group of the kernel of the sequence [Wis03]. Bumagin–Wise

refined this observation and gave an alternative version of Rips’ construction [BW05]. For

every countable group Q, their construction obtains a finitely generated, residually finite

groups N with Out(N) ∼= Q. This result of Bumagin–Wise motivates Chapter 4, and one

of the two key steps in the proof of Theorem D from Section 4.3.5 is an application of this

result. Section 4.3.2 also includes a minor application of Rips’ construction.

In this current section we give Rips’ original construction and then prove Wise’s ob-

servation regarding outer automorphism groups. We then outline the variation of Rips’

construction due to Bumagin–Wise, which proves Propositions 2.6.4 and 2.6.5. Theorem B

gives an alternative proof of Proposition 2.6.4. We end this section by stating an open

problem of Bumagin–Wise, and Theorems C and D from Chapter 4 each provide partial

answers to this problem.

Rips’ construction. Rips’ original version of this construction is as follows [Rip82].

Theorem 2.6.1 (Rips). Let λ > 0 be given and let Q be a finitely presented group. Then

there exists a short exact sequence of groups

1→ N → HQ → Q→ 1

such that the following hold.
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1. HQ is a finitely presented group which has a presentation satisfying the C ′(λ) small

cancellation condition.

2. N is finitely generated.

Proof. Let Q be given by the following presentation.

Q = 〈x1, x2, . . . , xm;R1, R2, . . . , Rn〉

Consider the following infinite word.

W = abab2ab3 . . . abiabi+1a . . .

Note that for any number k there is a set of k disjoint partitions of W which satisfies

the C ′(λ′) small cancellation condition for arbitrary λ′ > 0. We shall take HQ to be the

following group, where the finite set {Ui, Vj,ε,Wj,ε : 0 < i ≤ n, 0 < j ≤ m} consists of

disjoint partitions of W and satisfies C ′(λ′), where λ′ << λ is such that the following

presentation satisfies C ′(λ) (for example, take λ′ such that Mλ′ < λ, where M is the

maximum length of a relator R ∈ r).

HQ = 〈a, b, x1, x2, . . . , xm;

R1U1, R2U2, . . . , RnUn

xε1ax
−ε
1 V(1,ε), x

ε
2ax
−ε
2 V(2,ε), . . . , x

ε
max

−ε
m V(m,ε)

xε1bx
−ε
1 W(1,ε), x

ε
2bx
−ε
2 W(2,ε), . . . , x

ε
mbx

−ε
mW(m,ε)〉

Define the map φ : HQ → Q given by φ : a 7→ 1, b 7→ 1, xi 7→ xi for 0 < i ≤ m. Writing

N = 〈a, b〉, then as xεiax
−ε
i , xεibx

−ε
i ∈ N for all 0 < i ≤ m we have that N C G, and so

N = kerφ. This proves the theorem.

Rips’ construction is of general interest because it implies finitely generated subgroups

of hyperbolic groups can be badly behaved. For example, if Q has insoluble word problem

thenN has insoluble membership problem. A more complicated implication is as follows. If

Q contains a finitely generated subgroup which is not finitely presentable then so does HQ,

and to see this suppose that K is a finitely generated but not finitely presentable subgroup

of the finitely presented group Q. Then the full preimage Kφ−1 is finitely generated but

cannot be finitely presented as K has relative presentation 〈Kφ−1, a, b; a, b〉, as required5.

5Note that it follows from a result of Bieri that N is finitely presented if and only if Q is finite [Bie76].

However, we have been unable to obtain this reference. This application of Bieri’s result was pointed out

by Bridson [Bri06, Section 5.1]. See also Bridson–Haefliger [BH99, Exercise 5.47].
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Note that such a group Q exists, for example, Grigorchuk’s group is finitely generated but

not finitely presentable [dLH00, Chapter VIII] while it is recursively presentable and so

embeds into a finitely presented group by Higman’s Embedding Theorem [LS77, Theorem

7.1]. The above two consequences of the construction are both due to Rips’ [Rip82].

Numerous variations of Rips’ construction exist, where the groups HQ and N are be-

stowed with additional properties. For example, Wise gave a version of Rips’ construction

where HQ, and so N , is residually finite [Wis03], and Cotton-Barratt–Wilton [CBW12]

proved that here N is conjugacy separable, while Bridson–Grunewald used this construc-

tion to settle a problem of Grothendieck [BG04] (note that recent results of Wise show

that the groups HQ and N in Rips’ original construction are residually finite [Wis12]).

Olliver–Wise gave a version where N has Kazhdan’s Property T , which allows them to

give Property T groups with infinite outer automorphism group. Belegradek–Osin gave

a version where N is the quotient group of a fixed (but arbitrary) non-elementary hy-

perbolic group, which allows them to prove that certain properties, such as Property T

and Serre’s Property FA, are not recursively recognisable within the class of hyperbolic

groups [BO08]. Baumslag–Bridson–Miller–Short give an enhanced version of Rips’ con-

struction where conditions (relating to homotopy) are placed on the complex associated

to the given presentation of HQ, and this allows them to prove that there exists a torsion-

free hyperbolic group H and a finitely presented subgroup P ≤ H × H such that there

is no algorithm to decide membership of P , and the conjugacy problem for P is insolu-

ble [BBMS00].

Rips’ construction and outer automorphism groups. Wise and Bumagin–Wise have

altered Rips’ construction to produce finitely generated groups with pathological outer au-

tomorphism groups. Consider the subgroup N from the short exact sequence. Wise proved

that Q embeds into Out(N) [Wis03] while Bumagin–Wise altered Rips’ construction in

such a way that Q can be an arbitrary countable group and that Out(N) ∼= Q [BW05].

Both Wise and Bumagin–Wise are motivated by residual finiteness, that is, if HQ is resid-

ually finite then so is N and so they produce finitely generated, residually finite groups

whose outer automorphism groups have pathological properties. Note that Bumagin–Wise

prove that HQ is residually finite only when Q is finitely presented (Wise’s construction

is only applicable when Q is finitely presented).

We shall first explain Wise’s result and then Bumagin–Wise’s result. Wise gives an
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altered version of Rips’ construction which is designed to allow certain previous results to

be applied, and these results mean that HQ is residually finite. Cotton-Barratt–Wilton

extended the proof to show that HQ (and therefore N) is conjugacy separable [CBW12].

Wise combined his alternative construction with the following result on outer automor-

phism groups.

Lemma 2.6.2 (Wise). Suppose we have a short exact sequence

1→ N → HQ → Q→ 1

such that HQ satisfies C ′(1/6). Then Q embeds into Out(N).

Proof. Note that HQ acts by conjugation on N , so there is a homomorphism ψ : HQ →

Out(N). Then, N ≤ ker(ψ). We shall prove that N = ker(ψ), which is clearly sufficient.

Suppose h ∈ ker(ψ) but h 6∈ N . Then there exists g ∈ N such that kh = kg for all

k ∈ N . Thus, gh−1 ∈ CHQ(N). By Proposition 2.3.7, CHQ(N) is trivial so h = g ∈ N , a

contradiction. Therefore, ker(ψ) = N , and the result follows.

Wise used his residually finite version of Rips’ construction and Lemma 2.6.2 to es-

sentially obtain the following corollary. It is enhanced here by Cotton-Barratt–Wilton’s

result that N is conjugacy separable. Note that this implies that, in general, the additional

assumption of Grossman’s Property A in Proposition 2.5.7 is necessary.

Corollary 2.6.3 (Wise, Cotton-Barratt–Wilton). For each finitely presented group Q

there exists a finitely generated, conjugacy separable group N such that Q embeds into

Out(N).

We shall now give Bumagin–Wise’s version of Rips’ construction. We shall outline

the proof that the group HQ in this construction is C ′(1/6) for Q an arbitrary countable

group, which means that we can apply Lemma 2.6.2. However, we shall not prove that

the groups N and Q from their construction are such that Out(N) ∼= Q.

Bumagin–Wise’s version of Rips’ construction uses a variation of the infinite word used

in Rips’ construction. Specifically, they use partitions of the following infinite word.

W = ab(ab2)ab(ab2)2ab(ab2)3 . . .

They prove that for each infinite sequence of natural numbers {n1, n2, . . .}, one can find

an infinite family of finite-length partitions of W

W∞ = {w1, w2, . . .}
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which satisfies the C ′(1/20) small-cancellation condition and such that for each i we have

|wi| ≥ ni [BW05, Lemma 6]. Bumagin–Wise’s construction is then as follows. Suppose

Q = 〈X; r〉 and r = {R1, R2, . . .}. Take the sequence of numbers

{1, 1, 1, 1, 30|R1|, 1, 1, 1, 1, 30|R2|, . . .}

which consists of quintuples of the form {1, 1, 1, 1, 30|Ri|}. This is associated to a family

of non-empty finite-length partitions of W

W∞ = {W(1,1),W(1,−1), V(1,1), V(1,−1), U1,

W(2,1),W(2,−1), V(2,1), V(2,−1), U2,

... }

which satisfies the C ′(1/20) small-cancellation condition and so that |Ui| ≥ 30|Ri| for each

i. Pick p > 97 and q = 45. We then form the following presentation.

HQ = 〈a, b, x1, x2, . . . , xm;

R1U1, R2U2, . . . , RnUn

xε1ax
−ε
1 V(1,ε), x

ε
2ax
−ε
2 V(2,ε), . . . , x

ε
max

−ε
m V(m,ε)

xε1bx
−ε
1 W(1,ε), x

ε
2bx
−ε
2 W(2,ε), . . . , x

ε
mbx

−ε
mW(m,ε)

ap, bp, abab2ab3ab4 . . . abq〉

This presentation is a C ′(1/11) presentation, and hence the map Q → Out(N), where

N = 〈a, b〉, is injective by Lemma 2.6.2. Bumagin–Wise prove that this map is also

surjective [BW05, Lemma 9], and therefore they prove the following result.

Proposition 2.6.4 (Bumagin–Wise). Every countable group can be realised as the outer

automorphism group of a finitely generated group.

Theorem B of Chapter 4 gives a very different proof of this theorem, and indeed

Theorem B is interesting in its own right. Now, if the group Q is finitely presented then

so is the group HQ, and this allows Bumagin–Wise to apply a previous result of Wise to

obtain that HQ is residually finite, and so N is residually finite. This proves the following

result.

Proposition 2.6.5 (Bumagin–Wise). Every finitely presented group can be realised as the

outer automorphism group of a finitely generated, residually finite group.
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They then ask the following question.

Question 1. Is every countable group Q isomorphic to Out(N) where N is finitely gener-

ated and residually finite?

Theorem D of Chapter 4 (almost) resolves this question for finitely generated, recur-

sively presented groups, and the proof utilised Bumagin–Wise’s construction. Theorem C

of Chapter 4 gives a partial answer to this question for finitely generated residually finite

groups.

2.7 Bass–Serre Theory

This section serves as an introduction to Bass–Serre theory, which is the theory of groups

acting on trees, and is split into two parts. A graph of groups encodes the action of a

group G on a tree T , and in the first part, Section 2.7.1, we describe, without proof, how

to recover the group G, the tree T and the action of G on T from this description. In the

second part, Section 2.7.2, we define Serre’s property FA and prove that triangle groups

posses this property. All the information in this current section can be found in Serre’s

book on Bass–Serre theory [SS03]. An alternative reference is the introductory book of

Meier [Mei08]. We give this introduction to Bass–Serre theory for three reasons.

The first reason is that Section 3.1.2 from Chapter 3 investigates how a one-ended

two-generator, one-relator group with torsion splits as a specific kind of graph of groups,

called a JSJ-decomposition. The relevant structural result is Theorem 3.1.15.

The second reason is that if a group H has Serre’s property FA then, in Section 4.2,

Theorem 4.2.15 combined with Lemma 4.2.2 and Theorem 4.2.3 gives descriptions of the

outer automorphism groups of certain HNN-extensions G = H∗At=B of H, called “au-

tomorphism induced” HNN-extensions. Triangle groups posses Serre’s property FA, and

Theorems B and C each use the description of the outer automorphism groups of these

HNN-extensions to construct for every group Q in a specific class HNN-extensions of tri-

angle groups whose outer automorphism groups are, in an appropriate sense, related to

Q.

The third reason is that in Section 2.11 we outline a bridge between the work of

Chapter 3 and the work of Chapter 4, and this bridge is an analysis, due to Levitt,

of the outer automorphism groups of groups acting on trees. Moreover, Section 2.11

includes an important result, Proposition 2.11.6, which relates how the automorphisms



CHAPTER 2. PRELIMINARIES 50

of a vertex group in certain types of graphs of groups can lift to automorphisms of the

fundamental groups of the graph of groups, and we apply this proposition to the JSJ-

decompositions of outer automorphism groups of two-generator, one-relator groups with

torsion in Theorem 3.1.16.

Trees. Bass–Serre theory is the theory of groups acting on trees, and trees are a spe-

cific kind of graph (recall the definition of a graph from Section 2.3). A cycle is a path

(e1, . . . , en) in a graph which begins and ends at the same vertex (that is, ι(e1) = τ(en))

but after reduction is non-trivial. A tree is a connected graph which contains no cycles.

A forest is a graph where all the connected components are trees. If u and v are vertices

of a tree we shall write [u, v] for the unique geodesic connecting them.

2.7.1 Graphs of groups

A graph of groups Γ is a concise way of describing an action of a group G on a tree T , and

consists of a connected graph Γ with an associated set of vertex groups {Gv; v ∈ VΓ} and

edge groups {Ge; e ∈ EΓ, Ge = Ge}, and a set of injections θe : Ge → Gι(e). The groups Gv

are called vertex stabilisers or vertex groups, while the groups Ge are called edge stabilisers

or edge groups. Throughout this thesis we assume that a group element g ∈ G acts without

inversion on a tree T , that is, there is no edge e ∈ ET such that e · g = e.

In this section we explain how obtain the action of a group on a tree encoded by a

graph of groups, with a specific emphasis on HNN-extensions. This emphasis is because in

Chapter 4 we analyse the outer automorphism groups of a specific class of HNN-extension,

and this is related to an analysis of Levitt on the outer automorphism groups of the

fundamental groups of graphs of groups. The relationship is based on the fact that HNN-

extensions can be given as the fundamental group of a (non-trivial) graph of groups, and

we discuss these connections in Section 2.11.

The fundamental group of a graph of groups. In order to define the fundamental

group G of a graph of groups Γ, take a maximal subtree TΓ of the underlying graph Γ and

define N to be the normal closure of the following set in
∏
v∈VΓ

Gv ∗ F (EΓ).

{ee; e ∈ EΓ} ∪ {e; e ∈ ETΓ
} ∪ {e−1(gθe)e = (gθe); e ∈ EΓ, g ∈ Ge}

Then the fundamental group of the graph of groups Γ with respect to the maximal subtree



CHAPTER 2. PRELIMINARIES 51

TΓ is defined to be the following group.

π1(Γ, TΓ) =
∏
v∈VΓ

Gv ∗ F (EΓ)/N

It should be noted that picking a different maximal subtree T ′Γ yields an isomorphic group,

π1(Γ, TΓ) ∼= π1(Γ, T ′Γ). The graph of groups Γ encodes an action of G ∼= π1(Γ, TΓ) on a

tree T , called the “Bass–Serre tree” T of Γ.

Example 2.7.1: Consider the graph of groups Γ with underlying graph from Figure 2.5,

with Gv = 〈a〉, Ge = 〈x〉 = Ge and 〈a〉 ∼= Z ∼= 〈x〉. The injections are θe : x 7→ a2,

θe : x 7→ a3. Then, necessarily, TΓ = {v} so we have the group BS(2, 3), which is an

HNN-extension of the infinite cyclic group.

π1(Γ, v) = 〈a, e, e; ee = 1, e−1a2e = a3〉

∼= 〈a, t; t−1a2t = a3〉 = BS(2, 3)

v

e

Figure 2.5: The graph Γ underlying the natural graph of groups Γ associated

to an HNN-extension.

HNN-extensions. An HNN-extension can be viewed as a graph of groups Γ where Γ

is a graph with a single vertex v and a single positive (loop) edge e, as in Figure 2.5.

The base group is the vertex stabiliser, Gv = H, and the associated subgroups are the

embeddings of the edge stabiliser in Gv, θe(Ge) = A and θe(Ge) = B. For example, the

group BS(2, 3) = 〈a, t; t−1a2t = a3〉 from Example 2.7.1 is an HNN-extension of the infinite

cyclic group where H = 〈a〉, A = 〈a2〉 and B = 〈a3〉.

Bass–Serre trees. Given a graph of groups Γ, we have just discussed how to obtain

a presentation for the group G described by this decomposition, but a graph of groups

encodes an action of this group G on some tree T called the Bass–Serre tree. Therefore,

we now briefly explain how to obtain this tree and action before giving an instructive

example in Example 2.7.2, below. Define a hanging tree to be a tree but possibly with
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certain degree one vertices removed. To obtain the tree Bass–Serre tree T , begin by taking

the maximal subtree TΓ associated to G = π1(Γ, TΓ), and attach only one end of each of

the remaining edges (in such a way that the inverse involution is preserved) to obtain a

hanging tree TH . Then tiling together copies of the hanging tree TH using the information

given by G yields the tree T .

Example 2.7.2: We shall now give an example of a Bass–Serre tree with the associated

action of the fundamental group G of a graph of groups Γ. The example is illustrated in

Figure 2.6. Let Γ be the graph of groups from Example 2.7.1, and this has underlying

graph consisting of a single vertex with a single positive loop edge e. There are then two

choices for the hanging tree TH , which correspond to taking v = τ(e) or taking v = ι(e)

where e is the edge in TH , and we shall choose the hanging tree to be such that ι(e) = v.

Recall that π1(Γ, v) ∼= 〈a, t; t−1a2t = a3〉. Now, no power of the element t ∈ G is equal to a

power of a, and so no power of t fixes an edge or a vertex. Therefore, we begin constructing

T by tiling infinitely many copies of TH to obtain a linear tree TL, that is, an infinite tree

where every vertex has degree two. Fix a copy of TH in TL with vertex v ∈ VTL and positive

edge e1 ∈ ETL , so ι(e1) = v, and write f1 for the edge with τ(f1) = v. We shall take the

action of t on TL to be such that f1 · t = e1. The first injection θe : x 7→ a2 given by the

graph of groups Γ implies that the edge e1 is fixed by a2 but not by a, so in T the vertex

v will have precisely two edges e1 and e2 with initial vertex v, ι(e1) = v = ι(e2). This

corresponds to attaching a copy of the infinite linear tree beginning at v and extending

along e1, and tells us how G acts on the edges with initial vertex v. The second injection

θe : x 7→ a3 given by the graph of groups implies that the edge f1 is fixed by a3 but not by a

or by a2. We therefore attach two additional infinite linear trees corresponding to the orbit

of f1 under G. As every vertex is in the orbit of the vertex v under G, every vertex has the

same local structure as v. Therefore, we have the tree T illustrated in Figure 2.6, which

is is the (infinite) tree where every vertex has degree five, with precisely three positive

incoming edges and precisely two positive outgoing edges, that is, for every vertex v there

are positive edges fv1 , fv2 , fv3 , ev1, ev2 such that τ(fvi ) = v and ι(evi ) = v. The group G acts

on T by letting the generator a cycle the (trees extending from the) two positive incoming

edges and cycle the (trees extending from the) three positive outgoing edges of the fixed

vertex v, so fvi ·a = fvi+1 (subscripts computed modulo three) and evi ·a = evi+1 (subscripts

computed modulo two), while t acts by translating the graph along the edge fv1 , that is,

v · t = ι(fv1 ) while fvi · t = f
ι(f1)
i and evi · t = e

ι(f1)
i , fv1 · t = ev1. Both generators act on the
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appropriate inverse edges in the analogous way. Note that because e1 = f1 · t−1, we have

that f1 · t−1a2t = f1 · a3, and so the group G = BS(2, 3) acts on T in the way described.

This tree T is the Bass–Serre tree.

v
f1

f2

f3

e1

e2

Figure 2.6: The tree represents the infinite tree T and where the bold vertex

and bold edge represent the hanging tree TH which tiles to give T .

2.7.2 Serre’s property FA

A finitely generated group G has a decomposition as a non-trivial graph of groups only if

G acts without a global fixed point on a tree T [SS03, Theorem 15]. A group G is said to

have Serre’s property FA, or simply property FA, if every action of G on a tree has a global

fixed point. Examples of groups with property FA are finite groups and triangle groups,

which are groups with presentation of the form 〈a, b; ai, bj , (ab)k〉, i, j, k > 0. In this section

we prove that finite groups have property FA, and we apply this to prove that triangle

groups have property FA. We do this because property FA allows a technical theorem from

Chapter 4, Theorem 4.2.15, to be applied to the outer automorphism groups of a certain

kind of HNN-extensions of triangle groups. This application is proven in Lemma 4.2.2

and Theorem 4.2.3, and is applied in Theorems B and C from Chapter 4 which are two

of the three main results from Chapter 4. Without property FA, Theorem 4.2.15 is only

applicable to a specific subgroup of the outer automorphism group.

We begin this section by proving that whenever a finite group acts on a tree then there

is a global fixed point. Note that this means that if G = π1(Γ, TΓ) is the fundamental

group of a non-trivial graph of groups and g ∈ G is an element of finite order then g fixes

some vertex v ∈ VT and thus is contained in a conjugate of some vertex group Gw of Γ.

Proposition 2.7.3. Finite groups have Serre’s property FA.

Proof. Suppose G is a finite group acting on a tree T . Let v ∈ VT be a vertex of T and

consider the orbit OG(v) = {v · g; g ∈ G}. Note that if the orbit consists only of v then

we are done, thus we can assume |OG(v)| ≥ 2. Form the tree T 0 which consists of OG(v)
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along with, for each g ∈ G, the geodesics [v, v · g] connecting v to v · g. Note that for

g, h ∈ G arbitrary then the geodesic [v · g, v · h] connecting v · g and v · h is in T 0. Now,

G acts on T 0 as it acts on OG(v). Then, because |OG(v)| ≥ 2, T 0 contains some degree

one vertices which are permuted by the action of G. Removing these vertices yields a tree

T 1 upon which G acts. Note that T 0 was finite, and so repeating this pruning process for

finitely many, m say, steps yields a single vertex or two vertices connected by a positive

edge, and G acts upon this subtree Tm. As G acts without inversion, the vertices of Tm

are fixed by G, as required.

We shall now prove that triangle groups have Serre’s property FA. The proof uses the

above result, Proposition 2.7.3, along with the following fact: if G acts on a tree T and

H is a subgroup of G, H ≤ G, then the fixed points of the action of H on T form a tree,

denoted FixT (H). Note that FixT (H) is a tree because if v, w ∈ VT are vertices of T which

are fixed by H then the geodesic [v, w] connecting them must also be fixed by H. If H is

cyclic and generated by an element g then we shall write FixT (g). Figure 2.7 serves as a

companion to the proof of the following proposition, Proposition 2.7.4.

Proposition 2.7.4. Triangle groups have Serre’s property FA.

ww · a w · b−1

ua ub−1

va · a vb−1 · b−1
va vb−1

e1

Figure 2.7: The line pa = [w, ua] is the geodesic connecting FixT (a) to

FixT (ab), and have ua ∈ FixT (a) and w ∈ FixT (ab), while [w, ub−1 ] is the

geodesic connecting FixT (b) to w. The dashed line indicates that w ·a = w ·b−1.

Thus, [w,w · a] = [w,w · b−1] and so ua = ub−1.

Proof. Suppose G = 〈a, b; ai, bj , (ab)k〉 acts on a tree T . Note that because a and b generate

G, the fixed points of the action of G on T correspond precisely to the points fixed by

both a and b, that is, FixT (G) = FixT (a) ∩ FixT (b). Now, a, b and ab each have a fixed

point, by Proposition 2.7.3. Consider the geodesic pa = [e1, . . . , en] connecting FixT (a) to

FixT (ab), with ua = ι(e1) ∈ FixT (a) and w = τ(en) ∈ FixT (ab). Then va = τ(e1) is not
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fixed by a but ι(e1) is fixed. Therefore, the path [e1 · a, e1, . . . , en] is the geodesic from

ι(e1 · a) to τ(en). We can repeat this extending process and obtain the following path,

which, because FixT (a) is a tree, is the geodesic connecting w · a to w.

p′a = [en · a, en−1 · a, . . . , e1 · a, e1, . . . , en]

Note that the midpoint of this geodesic is ua ∈ FixT (a). Now, consider the geodesic pb−1

connecting w to FixT (b)(= FixT (b−1)). One can repeat the above working with b−1 in

place of a to obtain the geodesic p′b−1 from w to w · b−1, and the midpoint of this geodesic

is ub−1 ∈ FixT (b). Then because w · ab = w we have that w · b−1 = w · a, and so p′a = p′b−1 .

Therefore, ua = ub−1 , and so FixT (a) ∩ FixT (b) = FixT (G) is non-trivial, as required.

2.8 JSJ-decompositions

In this section we give the definition of the JSJ-decomposition of a one-ended hyperbolic

group. In Chapter 3 we apply the theory JSJ-decompositions of one-ended hyperbolic

groups to the outer automorphism groups of two-generator, one-relator groups with tor-

sion. This allows us to prove Theorem 3.1.16, the first of two keystone theorems in

Chapter 3.

Hyperbolic groups. Recall that in Section 2.3 we defined a hyperbolic group to be a

group which admits a presentation whose word problem is soluble by Dehn’s algorithm.

This definition is most relevant to this thesis as it allows us to see that sixth-groups

are hyperbolic by Greendlinger’s lemma (this is Proposition 2.3.4), and that one-relator

groups with torsion are hyperbolic by the Newman–Gurevich spelling theorem (this is

Proposition 2.9.5). However, many other, equivalent, definitions exist, and these are often

based on geometric notions (for example, the word metric satisfying certain conditions

relating to hyperbolic geometry). Indeed, Gromov’s seminal work on hyperbolic groups

greatly developed the idea of adopting geometric notions, tools and results to obtain

algebraic results on the structure of hyperbolic groups and their subgroups [Gro87]. We

mention the general, geometric approach to hyperbolic groups because the purpose of this

section is to explain how a certain geometric notion, the notion of the JSJ-decomposition

of a 3-manifold, can be adapted to the context of hyperbolic groups.

Classical JSJ-decompositions. A 3-manifold can be split along spheres in a unique
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way [Jac80] [Hat00, Theorem 1.5]. This is the prime decomposition. One can then split

the components of the prime decomposition along tori [Hat00, Theorem 1.9]. In general

this splitting is not unique, as Seifert manifolds decompose along tori in a non-unique way.

Jaco–Shalen [JS79] and Johannson [Joh79] independently proved that decomposing along

tori gives a unique decomposition if Seifert manifolds are treated as pieces to be left intact

and not decomposed.

Group-theoretic JSJ-decompositions. Sela proved that one-ended, torsion-free hyper-

bolic groups decompose in a similar way to 3-manifolds, that is, they decompose as a graph

of groups where edge groups are infinite cyclic and certain subgroups, which correspond to

quadratically hanging vertices in the graph of groups, are treated as pieces to be left intact

and not decomposed [RS97]. Such a decomposition is referred to as a JSJ-decomposition

(of a one-ended, torsion-free hyperbolic group). However, these JSJ-decompositions are

not unique, but rather are unique up to certain operations on the graph of groups. We

give an example of one such operation, a “slide move”, in Example 2.8.1. Sela used his

JSJ-decompositions to obtain results regarding the outer automorphism groups of one-

ended, torsion-free hyperbolic groups [RS97] and regarding the isomorphism problem for

one-ended torsion-free hyperbolic groups [Sel95].

Bowditch generalised Sela’s JSJ-decomposition to one-ended hyperbolic groups with

torsion [Bow98]. The addition of torsion means that edge groups are virtually-Z as op-

posed to infinite cyclic. The notion of JSJ-decomposition due to Bowditch also differ from

Sela’s notion in that Bowditch’s JSJ-decompositions are unique. Bowditch gains unique-

ness by adding vertices whose corresponding groups are virtually-Z (called elementary

vertices). We shall give an instructive example in Example 2.8.1. Levitt used Bowditch’s

JSJ-decompositions to analyse the outer automorphism groups of one-ended hyperbolic

groups [Lev05]. We review parts of Levitt’s proof in Section 2.11, but his main result is

Propisition 2.8.2, below.

A key observation regarding Bowditch’s JSJ-decompositions is that an edge group

“contributes” to the outer automorphism group if and only if it has infinite center [Lev05,

Theorem 1.4] [MNS99]. This observation led to Dahmani–Guirardel’s notion of the Z-

max JSJ-decomposition of a hyperbolic group, where edge groups are virtually-Z but have

infinite center [DG11]. As with Sela’s notion, this decomposition is, in a certain sense,

unique, and is used by Dahmani–Guirardel to resolve the isomorphism problem for all
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hyperbolic groups and to give an algorithm which obtains the generators of the outer

automorphism group of a hyperbolic group. We use this latter algorithm in Section 3.6.2

of Chapter 3 to prove that given a presentation 〈a, b;Rn〉, n > 1, there exists an algorithm

to determine the outer automorphism group of the group defined by this presentation.

The notion of a group-theoretic JSJ-decomposition is not restricted to the theory

of hyperbolic groups. For example, Kropholler developed JSJ-decompositions for some

Poincaré duality groups [Kro90], and many authors have developed theories applicable to

various classes of finitely presented groups [DS99,DS00,SS02,FP06].

Orbifold vertices. Recall that in torsion-free hyperbolic groups, quadratically hanging

vertices of the JSJ-decomposition are the analogue of Seifert manifolds. If we add torsion

then orbifold vertices form the appropriate analogue: orbifold vertices correspond to vertex

groups which can decompose in a non-unique way whilst maintaining the graph of groups

structure, and, as with Seifert manifolds in the 3-manifold setting, the JSJ-decomposition

of a one-ended hyperbolic group treats these vertices as pieces to be left intact and not

decomposed. We shall formally define orbifold vertices now. In order to do this we (loosely)

define the related notions of a “bounded Fuchsian group”, which is a specific kind of

Fuchsian group, and a “(maximal) hanging Fuchsian subgroup” of a hyperbolic group. A

bounded Fuchsian group F is a finitely-generated, non-virtually-cyclic group which acts on

the hyperbolic plane H such that the corresponding quotient 2-orbifold H/F is canonical

and such that if K is the “convex core” of H/F then K has a non-empty set of boundary

components, and these have empty intersection [Bow98]. The peripheral subgroups of a

bounded Fuchsian group F are the maximal virtually-cyclic subgroups which project onto

the fundamental groups of the boundary components of the convex core K. A subgroup

H ≤ G is a hanging Fuchsian subgroup if there is a finite splitting of G as a graph of

groups such that H is a vertex stabiliser and such that H admits an isomorphism with a

bounded Fuchsian group F where the incident edge groups of H in the graph of groups

are precisely the peripheral subgroups of F . A subgroup is maximal hanging Fuchsian if

it is not contained in any other hanging Fuchsian subgroup. It is a theorem that every

hanging Fuchsian subgroup of a one-ended hyperbolic group is contained in a maximal

hanging Fuchsian subgroup [Bow98]. An orbifold vertex is one whose associated subgroup

is maximal hanging Fuchsian.

The above definition of orbifold vertices is rather technical. In Section 3.1.2 we prove
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that the JSJ-decomposition of a one-ended two-generator, one-relator group with torsion

cannot have an orbifold vertex. However, our proof of this fact side-steps the above

definition. Rather, orbifold vertices contribute infinitely many outer automorphisms to

the hyperbolic group, and in Theorem 3.1.16 we prove that every vertex in the JSJ-

decomposition of a one-ended two-generator, one-relator group with torsion contributes

only finitely many outer automorphisms. The proof of this part of Theorem 3.1.16 uses

Proposition 2.11.6, which is a technical result of Levitt [Lev05, Proposition 2.3.].

The JSJ-decomposition of a one-ended hyperbolic group. We shall now define

the canonical JSJ-decomposition of a one-ended hyperbolic group. This definition is due

to Bowditch, who proved that it is canonical [Bow98]. First, however, we define certain

terms used in the definition. An elementary subgroup of a hyperbolic group is a virtually-Z

subgroup, and a maximal elementary subgroup is an elementary subgroup not contained

in any other elementary subgroup. A refinement of a graph of groups is a splitting of a

vertex group Gv which respects the graph of groups structure. More formally, a refinement

is a splitting of a vertex group Gv in one of the following two ways.

• Gv = A ∗C B such that if ι(e) = v then θe(Ge) ≤ A or θe(Ge) ≤ B

• Gv = A∗C such that if ι(e) = v then θe(Ge) ≤ A.

If such a splitting exists then we say that Gv can be refined over C.

Let G be a one-ended hyperbolic group which is not a Fuchsian group. Then a JSJ-

decomposition of G is a splitting of G as a graph of groups Γ with three types of vertices.

1. Elementary vertices, whose group is a maximal elementary subgroup.

2. Orbifold vertices, whose group is a maximal hanging Fuchsian subgroup.

3. Rigid vertices, whose group cannot be refined over an elementary subgroup.

Every edge connects an elementary vertex to either a rigid or an orbifold vertex. Edge

groups of orbifold vertices correspond to the peripheral subgroups of the hanging Fuchsian

group. Finally, edge groups are maximal elementary in the corresponding rigid or orbifold

vertex group.

A JSJ-decomposition of a one-ended hyperbolic group is unique and so we can talk

about the JSJ-decomposition of a one-ended hyperbolic group. However, Sela’s definition

(for one-ended, torsion-free hyperbolic groups) yielded non-unique splittings. The key
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difference is that Sela did not include elementary vertices. To illustrate the issue which

elementary vertices resolve, we give the following example.

Example 2.8.1: Let Gt = 〈at, bt; aitt , b
jt
t , (atbt)

kt〉 for t = 1, 2, 3 be three triangle groups

with it, jt, kt >> 1, write xt := a2
t bt and take the free product with amalgamation

G1 ∗〈x1=x2〉 G2 ∗〈x2=x3〉 G3. Note that each of the groups Gt have Serre’s property FA,

and so this splitting cannot be refined any further. However, it is not unique as permuting

the Gt result in different splittings, for example, G2 ∗〈x2=x1〉G1 ∗〈x2=x3〉G3. The operation

of moving between these splittings is called a slide move. Inserting an elementary vertex,

as in Figure 2.8, results in a unique splitting, as it encodes all of the permutations of the

Gt. Note that the decomposition described by Figure 2.8 is the JSJ-decomposition of the

group (the group is hyperbolic by Proposition 2.4.10). Sela proved that in his definition,

G1

G2 G3

〈y〉

Figure 2.8: Edge groups are 〈xt = y〉 for t = 1, 2, 3.

the splittings are unique up to conjugation, slide moves, and “modifying the boundary

monomorphisms by conjugation”.

JSJ-decompositions and outer automorphism groups. The JSJ-decomposition of

a one-ended hyperbolic group is entirely canonical. Therefore, it is invariant under auto-

morphisms and Levitt used this invariance to study the outer automorphism group of a

one-ended hyperbolic group. The purpose of Sections 3.1.1 and 3.1.2 is to apply Proposi-

tion 2.8.2, which is a theorem of Levitt on the outer automorphism groups of hyperbolic

groups, in the case of one-ended two-generator, one-relator groups with torsion. We state

Proposition 2.8.2 below.

We shall write V1 for the number of elementary vertices, V2 for the number of orbifold

vertices and V3 for the number of rigid vertices, while E2 shall denote the number of edges

whose initial vertex is an orbifold vertex, and E3 the number of edges whose initial vertex
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is a rigid vertex. Then E∞ and V∞1 are used to respectively denote the set of edges and

the set of elementary vertices with infinite center.

Proposition 2.8.2. Let G be a one-ended hyperbolic group. Then there is an exact se-

quence

1→ T → Out2(G)→
∏
v∈V2

PMCG(Gv)→ 1

where Out2(G) has finite index in Out(G). The kernel T is virtually Zn where n =

|E∞| − |V∞1 |. The group PMCG(Gv) is the mapping class group of the punctured surface

corresponding to the hanging Fuchsian group Gv.

Proposition 2.8.2 connects the JSJ-decomposition of a one-ended hyperbolic group with

its outer automorphism group, and we apply it in Theorem 3.1.16 at the culmination of Sec-

tions 3.1.1 and 3.1.2. However, Sections 3.1.1 and 3.1.2 deal with virtually-cyclic splittings

of one-ended two-generator, one-relator groups with torsion, not with JSJ-decompositions.

The following lemma allows us to apply Proposition 2.8.2 using our work on virtually-cyclic

splittings. The lemma is a naive statement of the fact that the JSJ-decomposition encodes

all virtually-Z splittings of a one-ended hyperbolic group, and is easily proven by sinking

each elementary vertex group into some adjacent vertex group.

Lemma 2.8.3. Suppose Γ is the JSJ-decomposition of a one-ended hyperbolic group G.

Then there exists a virtually-Z splitting of G as a graph of groups Γ′ such that no vertex

groups are virtually-Z and there are precisely E2 + E3 − V1 positive edges and V2 + V3

vertices.

In Chapter 3 we prove that if a two-generator, one-relator group with torsion splits over

a virtually-Z subgroup such that no vertex group is elementary then the underlying graph

of the decomposition is either a single vertex or a single vertex with a single positive loop

edge. This, combined with Lemma 2.8.3, means that the graph underlying the “modified”

JSJ-decomposition of such a group is either a single vertex or two vertices joined by two

positive edges (we define modified JSJ-decompositions before Theorem 3.1.16).

Fuchsian groups. Note that JSJ-decompositions are only valid if the group is one-ended

and not Fuchsian. In Chapter 3 we prove results regarding the possible JSJ-decompositions

of certain two-generator, one-relator groups, but for this chapter to be exhaustive we

must also study the Fuchsian groups of this form. Fuchsian groups which occur in this
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chapter are two-generated, and two-generator Fuchsian groups have been classified [FR93,

Theorem A] [Kat92]. We use this classification in Theorem 3.1.16.

Proposition 2.8.4. A two-generator Fuchsian group has one of the following presenta-

tions.

• 〈a, b; a2, a−1ba = b−1〉.

• G = 〈a, b;−〉.

• G = 〈a, b; ai〉 for i > 1.

• G = 〈a, b; ai, bj〉 for i ≥ j ≥ 2 such that i+ j ≥ 5.

• G = 〈a, b; ai, bj , (ab)k〉 for i ≥ j ≥ k ≥ 2 such that i−1 + j−1 + k−1 < 1.

• G = 〈a, b; [a, b]i〉 for i > 1.

• G = 〈a, b, c; a2, b2, c2, (abc)i〉 for i ≥ 3 odd.

2.9 One-Relator Groups

Chapter 3 classifies the outer automorphism groups of certain one-relator groups with

torsion. In this section we give some background on these groups and we state certain

results used in Chapter 3. A group G is called a one-relator group if it has a presenta-

tion of the form G = 〈X;S〉 where S is a non-empty word over X and X contains at

least two elements. We assume that |X| ≥ 2 as otherwise G is cyclic (and possibly triv-

ial). The general study of one relator groups was instigated by Magnus. He proved the

“Freiheitssatz” [Mag30] and resolved the word problem for one-relator groups [Mag32].

In his paper resolving the word problem, Magnus introduced a general method for prov-

ing results about one-relator groups. This method involves inducting on the length of

the relator S and is called Magnus’ method. Proofs which utilise the original version of

this method involve passing to a larger class of groups, groups with “staggered” presen-

tations [MKS04]. Moldovanskii modified Magnus’ method using HNN-extensions [Mol67],

and this more modern adaptation allows for neater proofs without the need for staggered

presentations [MS73].

The Freiheitssatz. Underlying Magnus’ method is the famous Freiheitssatz (that is,
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Freeness Theorem). One can prove the Freiheitssatz using Magnus’ method [MKS04,

MS73, FR94]. The proof inducts on the length of the relator, so the argument is not

circular.

Proposition 2.9.1 (Freiheitssatz). Let G = 〈x1, x2, . . . , xn;S〉 be a one-relator group.

Suppose that the relator S is cyclically reduced in the free group F (x1, . . . , xn) and con-

tains all the generators. Then the subgroup of G generated by x1, . . . , xn−1 is free on the

generators x1, . . . , xn−1.

Note that this implies that, under the conditions of Proposition 2.9.1, every proper

subset of the generators generates a free group on those generators, and also note that, by

taking free products, this result can be extended to arbitrary one-relator groups. That is,

a subgroup which is generated by a subset of the generators while omitting a generator

which occurs in the (cyclically reduced) relator is free. Such a subgroup is called a Magnus

subgroup. The following result is due to B. B. Newman [New73], which we apply in

Section 3.2 to prove that the outer automorphism groups of certain two-generator, one-

relator groups with torsion embed into GL2(Z).

Proposition 2.9.2. Magnus subgroups of a one-relator group with torsion are malnormal.

A similar result is due to Wise, who proved that Magnus subgroups of a one-relator

group with torsion are quasiconvex [Wis12] (this is a key step in Wise’s proof that one-

relator groups with torsion are residually finite).

Moldovanskii rewriting. Moldovanskii adapted Magnus’ method so that proofs use

HNN-extensions as opposed to staggered presentations. In order to do this, he gave a

method for re-writing a relator S of a group 〈x1, . . . , xm;S〉 to get another word S′ such

that the following hold.

• 〈x1, . . . , xm;S〉 ∼= 〈x1, . . . , xm;S′〉.

• S′ is cyclically reduced.

• x1 occurs in S′.

• σx1(S) = 0.

This rewriting process is called Moldovanskii rewriting, and given a word S there is an

algorithm which will put it in this form. In Chapter 3, we often assume that if G =
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〈a, b;Rn〉 then σa(R) = 0, and we can only assume this due to Moldovanskii rewriting.

For example, in Lemma 3.2.4 this assumption gives us a useful view of the abelianisation

of G. We shall now give the rewriting algorithm, followed by an example. Rewrite S such

that it is cyclically reduced, such that 0 ≤ σx1(S) ≤ σx2(S) ≤ . . . ≤ σxk(S) and such that

xj does not occur in S for j > k. Suppose that σx1(S) 6= 0 (otherwise we are done). Take

i to be the greatest integer such that iσx1(S) < σxk(S). Then, taking S1 to be the cyclic

reduction of the word S(x1x
−i
k , x2, . . . , xm) we see that 〈x1, . . . , xm;S〉 ∼= 〈x1, . . . , xm;S1〉

and σxk(S1) < σxk(S) while all other exponent sums are unchanged. Therefore, repeating

we see that this algorithm will terminate at a word Sn such that some generator has

exponent sum zero, and then relabelling so that x1 has exponent sum zero we obtain a

word S′ with the required properties.

Example 2.9.3: Consider the group G = 〈a, b; a2b−1a4b5〉, so the relator S is the word

S := a2b−1a4b5. Then σa(S) = 6 while σb(S) = 4. Our first step is to rewrite S so that

σa(S) ≤ σb(S), so S become b2a−1b4a5. Then we have i := 1, so we obtain the following

word.

S′1 := S(ab−1, b)

≡ b2(ab−1)−1b4(ab−1)5

≡ b3a−1b4(ab−1)5

⇒ S1 := b2a−1b4a(b−1a)4

Repeating these steps, we re-write S1 as a2b−1a4b(a−1b)4 and i := 2 so we obtain the

following word.

S′2 := S1(ab−2, b)

≡ (ab−2)2b−1(ab−2)4b((ab−2)−1b)4

≡ ab−2ab−3(ab−2)4(b3a−1)4b

⇒ S2 := ab−2ab−3(ab−2)4(b3a−1)4b

Then S′ := ba−2ba−3(ba−2)4(a3b−1)4a is the required word, so after rewriting the group

G becomes G ∼= 〈a, b; ba−2ba−3(ba−2)4(a3b−1)4a〉.

2.9.1 Torsion

In this thesis we shall write the relator of a one-relator group G either using the letter S,

so G = 〈X;S〉, or using Rn where the letter R denotes a word which is not a proper power
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of an element of F (X), so G = 〈X;Rn〉. This latter convention is because in Chapter 3 we

study the case when n > 1. Therefore, a one-relator group has a presentation G = 〈X;Rn〉

for some n ≥ 1, and also G = 〈X;S〉 if we do not want to state whether the relator is a

proper power or not.

If G has a presentation 〈X;Rn〉 where n > 1 then we shall say that G is a one-relator

group with torsion. In the theory of one-relator groups there is a divide between those

“with torsion” and those “without torsion”. The remainder of this section illustrates some

of these differences. First, however, we shall note that the “with torsion” label makes

sense. That is, it is conceivable that there exists a one-relator group G = 〈X;R〉 where R

is not a proper power but such that G has torsion. However, this cannot happen by the

following result [MKS04, Theorem 4.12].

Proposition 2.9.4. Let G = 〈x1, x2, . . . , xm;Rn〉 be a one-relator group. Suppose R is

cyclically reduced and not a proper power of any element from F (x1, . . . , xm). If n = 1

then G is torsion free. If n > 1 then G has an element of order n and all elements of

finite order are conjugates of powers of R.

The word problem. Magnus used his Freiheitssatz and his method to prove that one-

relator groups have soluble word problem. The following spelling theorem gives a stronger

result in the case of one-relator groups with torsion, proving that the word problem for the

standard presentation 〈X;Rn〉 of a one-relator groups with torsion is soluble by Dehn’s

algorithm. As with Greendlinger’s Lemma for small cancellation groups, if n >> 1 then

this theorem gives a much quicker solution to the word problem than the “more than

half” needed for Dehn’s algorithm. We use this spelling theorem extensively in Chapter 3.

Suppose G = 〈X;Rn〉 with n ≥ 1, then a Gurevich subword for Rn of a word W is a

subword of W which has the form Sn−1S0 where S = S0S1 is a cyclic shift of R or R−1,

and every generator which appears in R appears in S0

Proposition 2.9.5 (Newman–Gurevich Spelling Theorem [HP84]). Let G = 〈X;Rn〉,

n ≥ 1. Suppose W =G 1 but W is freely reduced and not the empty word. Then W

contains a Gurevich subword for Rn. If, further, W is cyclically reduced, then either W

is a cyclic shift of Rn or R−n, or some cyclic shift of W contains two disjoint subwords,

each of which is a Gurevich subword for Rn.

Note that the Newman–Gurevich Spelling Theorem implies that one-relator groups
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with torsion are hyperbolic. It is not true that all one-relator groups are hyperbolic.

Indeed, no Baumslag–Solitar group BS(m,n) = 〈a, t; t−1amt = an〉 is hyperbolic, or even

isomorphic to a subgroup of a hyperbolic group [GS91].

Note also that if G is the fundamental group of a closed, orientable surface of genus

g ≥ 2 then the Newman–Gurevich Spelling Theorem can be used in place of Greendlinger’s

Lemma to resolve the word problem for G. Therefore, the Newman–Gurevich Spelling

Theorem generalises Dehn’s original result but in a different direction to Greendlinger’s

Lemma.

The ends of a one-relator group. We shall prove a result which relates the number

of ends of a one-relator group with torsion G = 〈X;Rn〉 to the structure of the related

one-relator group without torsion Ĝ = 〈X;R〉. This result is Lemma 2.9.7, which is used in

Lemma 3.1.4 and Lemma 3.1.8 from Section 3.1 to prove that if a one-relator group with

torsion splits as an HNN-extension or free product with amalgamation over a virtually

cyclic subgroup C then C is a subgroup of a malnormal infinite cyclic subgroup.

If we write Γ(G,X) to be the Cayley graph of G with finite generating set X, and

write B(n) for the set of words over X of length less than or equal to n, then the number

of ends of Γ(G,X) is the limit as n tends to infinity of the number of disjoint connected

components in Γ(G,X) \ B(n). The ends of the Cayley graph are a group invariant, and

so we can talk about the ends of a group as opposed to just of the Cayley graph [Mei08].

Stallings’ proved the following important theorem which classifies the number of ends in

a finitely generated group [Sta68,Sta71].

Proposition 2.9.6 (Stallings’ Theorem on Ends of Groups). Let G be a finitely generated

group.

• G has zero ends if and only if G is finite.

• G has two ends if and only if G is virtually infinite cyclic.

• G has infinitely many ends if and only if either G splits as a free product with

amalgamation where the amalgamating subgroup is finite and does not have index

two in both of the factor groups, or G splits as an HNN-extension such that the

associated subgroups are finite and are not both of index two in the base group.

• G has one end otherwise.
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We shall now apply Stallings’ theorem to one-relator groups with torsion. Recall that

a primitive element of a free group F (X) is an element which is contained in some basis of

F (X). We shall generalise the following observation: a two-generator, one-relator group

with torsion G = 〈a, b;Rn〉 is infinitely ended if and only if the relator R is a primitive

element of F (a, b), and G is one-ended otherwise. To generalise this, note that if G is an

(arbitrarily-generated) one-relator group with torsion then G surjects onto a one-relator

group without torsion Ĝ in the obvious way:

G = 〈x1, x2, . . . ;R
n〉� 〈x1, x2, . . . ;R〉 = Ĝ

The kernel of this map is T := 〈〈R〉〉. The following lemma links the structure of Ĝ to the

number of ends of G, and is essential to Section 3.1, where we prove that if a one-relator

group with torsion splits as an HNN-extension or free product with amalgamation over a

virtually cyclic subgroup C then C is infinite cyclic and a subgroup of a malnormal infinite

cyclic subgroup which intersects T trivially.

Lemma 2.9.7. Let G = 〈X;Rn〉 with n > 1 be a one-relator group with torsion. Then G

is infinitely ended if and only if Ĝ is either infinitely ended or infinite cyclic. Otherwise

both G and Ĝ are one-ended.

The proof of Lemma 2.9.7 is based on the following three results.

Proposition 2.9.8 (Proposition II.5.10 [LS77]). Let G = 〈x1, x2, . . . , xm;S〉 be a one-

relator group. If G is a free group then S is a primitive element of Fm.

Proposition 2.9.9 (Proposition II.5.13 [LS77]). Let G = 〈x1, x2, . . . , xm;S〉 be a one-

relator group. Suppose that S is of minimal length under Aut(Fm) and contains precisely

the generators x1, x2, . . . , xk for some 1 ≤ k ≤ m. Then G ∼= G1 ∗ G2 where G1 =

〈x1, . . . , xk;S〉 is freely indecomposable and G2 is free with basis xk+1, . . . , xm.

Proposition 2.9.10 (Fischer–Karrass–Solitar [FKS72]). Suppose that G = 〈x1, x2, . . . , xm;Rn〉

with n > 1 is finitely generated and has more than one end. Then it has infinitely many

ends and is a free product of a nontrivial free group and an indecomposable one-relator

group.

Proof of Lemma 2.9.7. Let G = 〈x1, x2, . . . , xm;S〉 be a one-relator group with torsion.

Without loss of generality, we can assume that S has minimal length in Aut(Fm), because

we can re-write S to get that G ∼= G∗ = 〈x1, x2, . . . , xm;S∗〉 where S∗ has minimal length

in Aut(Fm) and Ĝ ∼= Ĝ∗.
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Now, G and Ĝ are infinite (as we always assume m > 1 so the Freiheitssatz yields an

element of infinite order in each case). Thus, G and Ĝ are each either one-ended, two-

ended or infinitely ended, by Stallings’ Theorem, while Proposition 2.9.10 tells us that G

is either one-ended or infinitely ended.

Suppose G has infinitely many ends. Then by Proposition 2.9.10, G is a free product

of a nontrivial free group and an indecomposable one-relator group or a finite cyclic group.

Then Proposition 2.9.9 tells us that there exists some 1 ≤ k < m such that G ∼= G1 ∗G2

where G1 = 〈x1, . . . , xk;S〉 is freely indecomposable and G2 is free with basis xk+1, . . . , xm.

Thus, Ĝ = Ĝ1 ∗G2. If Ĝ1 is non-trivial then Ĝ is infinitely ended. If Ĝ1 is trivial then Ĝ

is free, and so is either infinite cyclic or has infinitely many ends, as required.

In order to prove the lemma, it is now sufficient to prove that if Ĝ is infinitely ended

or infinite cyclic then G is infinitely ended. Firstly, suppose that G = 〈x1, x2, . . . , xm;Rn〉,

n > 1, is one-ended but Ĝ is infinitely ended. Again, we can assume that S = Rn has

minimal length in its Aut(Fm) orbit, and so R also has minimal length. As Ĝ is a one-

relator group (note that it is possibly isomorphic to a free group) it can be decomposed as

Ĝ1 ∗G2 where Ĝ1 = 〈x1, . . . , xk;R〉 is freely indecomposable (possibly trivial) and where

G2 is free, by Proposition 2.9.9. Note that as Ĝ = Ĝ1 ∗G2 we have that G = G1 ∗G2. We

can then apply the fact that G is one-ended to get that G2 is trivial, and so Ĝ = Ĝ1 is freely

indecomposable. As Ĝ is torsion-free and freely indecomposable it is not infinitely ended,

a contradiction. Secondly, suppose that G = 〈x1, . . . , xm;Rn〉, n > 1, is one-ended but Ĝ

is two-ended, and again assume that Rn, and so R, has minimal length in its Aut(Fm)

orbit. Then Ĝ is free of rank one, because the only two-ended torsion-free group is the

infinite cyclic group. Therefore, R is primitive by Proposition 2.9.8. As R has minimal

length in Aut(Fm), G has presentation 〈x1, . . . , xm;xn1 〉 and so cannot be one-ended, a

contradiction. This completes the proof of the proposition.

Recall that our application of Lemma 2.9.7 uses the subgroup T := 〈〈R〉〉. For this

application we need a description of the subgroup T , and this description is given by the

following result.

Proposition 2.9.11 (Fischer–Karrass–Solitar [FKS72]). Suppose that G = 〈x1, x2, . . . , xm;Rn〉

with n > 1. Then the subgroup T = 〈〈R〉〉 is isomorphic to the free product of infinitely

many copies of the cyclic group of order n.

We finish this section with the following result of Pride, which classifies the two-
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generator subgroups of a one-relator group with torsion. This is used in Lemma 3.1.1 and

Lemma 3.1.3 of Section 3.1 to classify the virtually cyclic subgroups of one-relator groups

with torsion.

Proposition 2.9.12 (Pride [Pri77b]). Suppose that G = 〈x1, x2, . . . , xm;Rn〉 with n > 1.

If H is subgroup of G which can be generated by two elements then H is either cyclic, a

free product of cyclic groups, or is a one-ended one-relator group with torsion.

2.10 Maps of Graphs

A map of graphs is a map α between graphs ΓA and Γ, α : ΓA → Γ, such that vertices

are mapped to vertices, edges are mapped to edges, and such that the graph structure

is preserved, that is, ι(e) 7→ ι(α(e)) and e 7→ α(e). In this section, we shall define

Wise’s small cancellation theory of maps of graphs [Wis01]. This theory allows one to

determine if a finitely generated subgroup of a free group is malnormal and we apply it in

Lemma 4.3.6, a lemma in the proof of Theorem B from Chapter 4. The underlying idea

of this theory is the analysis of fibre products of these maps, and we use this underlying

idea in Lemma 4.3.11, another lemma in the proof of Theorem B from Chapter 4, to give

conditions under which it is decidable to determine if a subgroup of a two-generated free

group is “malcharacteristic”, which is a generalisation of malnormality.

A one-relator group 〈X;S〉 is positive if no more than one of x and x−1 appears in S

for all x ∈ X. For example, 〈a, b; ab−2a3b−1〉 is positive. The small cancellation theory of

maps of graphs was introduced by Wise [Wis01], who used it to prove that every positive

C ′(1/6) one-relator group is residually finite. Wise further developed the theory to obtain a

“graded” small cancellation theory of maps of graphs [Wis02], which he used to prove that

if a one-relator group G = 〈X;S〉 is “sufficiently small cancellation” and S is “sufficiently

positive” then G is residually finite. More recently, Wise has faithfully generalised this

theory to the setting of cubical presentations, and cubical small cancellation theory also

faithfully generalises the classical small cancellation theory. The small cancellation theory

of cubical presentations is a key tool in Wise’s work on groups with a quasi-convex hierarchy

[Wis12]. This work resolves Waldhausen’s Virtually Haken Conjecture and G. Baumslag’s

conjecture that all one-relator groups with torsion are residually finite. Agol has applied

Wise’s results on groups with a quasi-convex hierarchy to resolve Thurston’s Virtually

Fibering Conjecture [AGM13].
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We begin this section by describing a canonical way of viewing a subgroup of a free

group as a map of graphs. We then discuss fibre products in preparation for their use in

the proof of Lemma 4.3.11. We then state Wise’ small cancellation conditions for maps of

graphs and use these to prove Proposition 2.10.5, which we apply in Lemma 4.3.6. Both

of Lemma 4.3.6 and Lemma 4.3.11 are important steps in the proof of Theorem B from

Chapter 3. These lemmata are each applied in a similar way. Consider the following

subgroup of G = 〈x, y;xi, yi, (xy)i〉, i > 9, where ρ >> i.

M = 〈x3(xy−1)3x3(xy−1)4 . . . x3(xy−1)ρ+2, x3(xy−1)ρ+3 . . . x3(xy−1)2ρ+2〉

Then Lemma 4.3.6 uses Wise’s small cancellation theory to prove that the lift M of M to

F (a, b) is malnormal, while Lemma 4.3.11 uses fibre products of maps of graphs to prove

that the same subgroup M is malcharacteristic. Both of these lemmata then use classical

small cancellation theory to prove that the relevant property falls down to the subgroup

M of G.

Conventions. Unless otherwise stated, we shall assume the graphs ΓA and Γ involved

in a map of graphs α : ΓA → Γ are connected. We shall assume Γ is labelled, and we

shall label the edges of ΓA with their image under α. Similarly, we shall call an edge

of ΓA positive (respectively negative) if it is mapped under α to a positive (respectively,

negative) edge of Γ.

Subgroups of free groups as maps of graphs. For A and B finitely generated sub-

groups of the free group Fk on k generators, in Chapter 4 we use maps of graphs to

investigate the space consisting of subgroups A ∩ Bw for w ∈ Fk. Doing so allows us to

determine if a subgroup is malcharacteristic in Fk. This investigation is based around

computing the fibre products of maps of graphs. In order to think of a subgroup A as a

map of graphs we shall view the free group on k generators as a graph ΓF with a single

vertex and k positive edges. For example, if k = 2 then label one positive edge by x and

the other by y, and then π1(ΓF ) = F (x, y). Now, let A = 〈a1, . . . , an〉 where the ai are

elements of Fk, and assume k = 2 (if k > 2 then it is analogous). Let ΓA be the graph

with a single root vertex v, where positive edges have labels from {x, y} while negative

edges have labels from {x−1, y−1}, such that there are n paths each beginning and ending

at v, the labels of each path spells out one of the words ai, and the path labels are in

one-to-one correspondence with the generators ai of A. We associate A with the map of
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graphs α : ΓA → ΓF given by wrapping the edges of each path around the corresponding

edge of ΓF , as in Figure 2.9. We shall call the map α the canonical map associated to

the subgroup A of Fk, or simply the canonical map associated to A if the free group Fk is

understood. We call the loops corresponding to each generator ai of A the arcs, and call

the central vertex distinguished.

Note that every loop of ΓA is subdivided into edges corresponding to x±1 and y±1.

This ensures that the map of graphs is entirely combinatorial (so edges map to single

edges and vertices map to vertices). We adhere to this convention, but it is pertinent to

point out that Wise does not [Wis01].

an a2

a1

x y

Figure 2.9: The map α : ΓA → ΓF acts by wrapping each letter of every word

ai around the corresponding edge of ΓF .

2.10.1 Fibre products

If A and B are subgroups of a free group Fk then fibre products of maps of graphs allow one

to study the space consisting of all subgroups of the form Aw∩B, w ∈ Fk. In Lemma 4.3.6

we are interested in the space when B = A, and this space is related to “malnormal” maps

of graphs. In Lemma 4.3.11 we are interested in each of the spaces when B = Aφ and

φ is an automorphism of Fk (note that if φ is trivial then we get B = A). We begin by

defining certain motivating terms.

A map of graphs α : ΓA → Γ is said to be π1-injective if every essential closed path

in ΓA maps to an essential closed path in Γ. This corresponds to the map α defining an

injection on the fundamental groups. A map of graphs is said to be an immersion if it is

locally injective. Note that immersions are not necessarily embeddings. An example of a

non-embedded immersion is given in Figure 2.10. Note that immersions are π1-injective.

Recall that a subgroup H of a group G is called malnormal if the following implication



CHAPTER 2. PRELIMINARIES 71

Figure 2.10: Gluing together the top and bottom edges gives an immersion.

holds.

Hg ∩H 6= 1⇒ g ∈ H

Denote by α∗ the map on fundamental groups induced by a map of graphs α : ΓA → Γ,

so α∗ : π1(ΓA, v) → π1(Γ, α(v)). A map of graphs α : ΓA → Γ is malnormal if it is an

immersion and if for any two distinct vertices v1 and v2 in ΓA such that α(v1) = w = α(v2),

the following intersection is trivial in π1(Γ, w).

α∗(π1(ΓA, v1)) ∩ α∗(π1(ΓA, v2))

As ΓA and Γ are connected, this is equivalent to α∗(π1(ΓA, v1)) being a malnormal sub-

group of π1(Γ, w).

Fibre products. Let α : ΓA → Γ and β : ΓB → Γ be arbitrary maps of graphs and write

A and B for the respective subgroups of Fk associated to the images of ΓA and ΓB in Γ.

We define the fibre product of these maps, denoted ΓA ⊗ΓF ΓB, to be the graph whose

vertices are pairs of vertices (vA, vB) where vA ∈ ΓA and vB ∈ ΓB and whose edges are

pairs of edges (eA, eB) where eA ∈ ΓA and eB ∈ ΓB are such that α(eA) = β(eB). Then,

A ∩ Bw = 1 for all w ∈ Fk if and only if ΓA ⊗ΓF ΓB is a forest, while A is a malnormal

subgroup of Fk if and only if the non-diagonal components of the fibre product ΓA⊗ΓF ΓA

are trees. Note that the fibre product is such that the diagram in Figure 2.11 commutes.

We give an example of a fibre product in Example 2.10.1, below. This example also

includes “folding”.

Stallings’ foldings. Stallings’ Folding Algorithm [Sta83] allows for a simplification when

computing fibre products. We use this algorithm in the remainder of this section, so we

define it now. Let α : ΓA → Γ be a map of graphs. A fold is a map ΓA → Γ1
A obtained by
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ΓA ⊗ΓF ΓB ΓB

ΓA ΓF
α

β

Figure 2.11: ΓA ⊗ΓF ΓA is the fibre product of the maps α and β. Arrows

represent maps of graphs.

identifying two edges with a common vertex and which are mapped to the same edge of

Γ. If no such edges exist then ΓA is said to be folded. A fold yields a factorisation of α as

ΓA → Γ1
A → Γ. If Γ1

A is not folded then we can perform a folding on the map Γ1
A → Γ. The

process of repeated folding is Stallings’ Folding Algorithm, and it terminates at a folded

graph ΓnA =: Γ̂A. The algorithm yields a composition of maps where each map ΓiA → Γi+1
A

is π1-surjective and the map Γ̂A → Γ is an immersion and so π1-injective.

ΓA → Γ1
A → Γ2

A → · · · → ΓnA = Γ̂A → Γ

Stallings proved that the decomposition ΓA → Γ̂A → Γ is unique. However, the individual

steps of the algorithm are not necessarily unique.

The map α : ΓA → Γ is π1-injective if and only if the folding map ΓA → Γ̂A is π1-

injective, because Γ̂A → Γ is π1-injective. If α is π1-injective then performing Stallings’

foldings on ΓA does not change the image of the map. Thus, one can fold ΓA and ΓB then

take the fibre product of the these new graphs Γ̂A and Γ̂B, and the fibre product Γ̂A⊗ΓF Γ̂B

has the same fundamental groupoid as ΓA⊗ΓF ΓB. This can be seen in Figure 2.12. Thus,

ΓA⊗ΓF ΓB is a forest if and only if Γ̂A⊗ΓF Γ̂B is a forest, while the non-diagonal components

of ΓA⊗ΓF ΓA are trees if and only if the non-diagonal components of Γ̂A⊗ΓF Γ̂A are trees.

This means that if a pair of maps of graphs are π1-injective, we can fold each one and

then take the fibre product as opposed to simply taking the fibre product, and this yields

much neater proofs.

Example 2.10.1: Let A be the subgroup A = 〈x−1y−1xyx〉 of G = F (x, y). Then A is

malnormal in G as maximal cyclic subgroups of free groups are malnormal. We shall verify

malnormality using maps of graphs. Consider the canonical map α : ΓA → Γ associated

to A. This folds as in Figure 2.13. The fibre product ΓA ⊗Γ ΓA has 25 vertices, while

Γ̂A ⊗Γ Γ̂A has 9 vertices. We compute Γ̂A ⊗Γ Γ̂A in Figure 2.14. Note that the non-

diagonal components of the fibre product Γ̂A ⊗ΓF Γ̂A are trees. This means that the map

α is malnormal, and so A is a malnormal subgroup of G.
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ΓA ⊗ΓF ΓB ΓB

Γ̂A ⊗ΓF Γ̂B Γ̂B

ΓA Γ̂A ΓF

δ

Figure 2.12: Taking the fibre product without first folding yields a space with

the same fundamental groupoid as that produced by first performing Stallings’

foldings and then taking the fibre product. This is because the map δ folds the

fibres of ΓA ⊗ΓF ΓB.

Figure 2.13: An example of folding.

2.10.2 Small cancellation theory of maps of graphs

We shall now define Wise’s small cancellation theory of maps of graphs. This theory allow

us to determine if a subgroup of a free group is malnormal. It does this by giving conditions

which imply that the non-diagonal components of the fibre product Γ̂A ⊗ΓF Γ̂A of a map

of graphs α : ΓA → Γ with itself are trees, and therefore the map α is malnormal. That

is, it allows one to view the structure of the fibre product Γ̂A ⊗ΓF Γ̂A without actually

computing the product. Note that the intuition behind the classical small cancellation

theory is of fitting “circles” (disk diagrams) together to tile a disk (word problem) or an

annulus (conjugacy problem). Here, the intuition is lying “lines” (paths) on top of one

another. In order to present this theory we need some definitions.

A set D ⊂ VΓA is a set of distinguished vertices if each component of ΓA \ D is

homeomorphic to an open interval and each end of this interval is connected to a vertex

from D. That is, each interval consists of a reduced path with initial and terminal vertices

from D. We shall refer to these intervals as arcs. Note that every cycle in ΓA is the

concatenation of arcs.
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(v1, v2)

(v2, v1)

(v1, v3)

(v2, v3)

(v3, v1)

(v3, v2)

(v1, v1)

(v2, v2)

(v3, v3)

Figure 2.14: The fibre product Γ̂A ⊗Γ Γ̂A of the map α from Example 2.10.1

after performing Stallings’ foldings. There are 9 vertices while ΓA ⊗Γ ΓA has

25 vertices. Note that the non-diagonal fibres are trees, so α is malnormal.

Consider a map of graphs α : ΓA → Γ with a set of distinguished vertices D such that

each arc of ΓA is immersed into Γ. A piece is a reduced subpath p of an arc of ΓA such

that there exists a non-equal reduced subpath q of an arc of ΓA such that p and q are sent

by α to the same path in Γ, that is, p 6= q but α(p) = α(q). Such a pair p and q is called

a piece pair. In what follows, we shall always assume that maps are such that no arc is a

piece.

Example 2.10.2: Consider the the canonical map associated to the subgroup 〈a10〉 of

F (a), illustrated in Figure 2.15. Here, ΓA is a loop with a single distinguished vertex and

pieces correspond to subpaths of the loop which do not pass through (but can contain) the

distinguished vertex, so to words ai for 0 < i < 10. However, in classical small cancellation

theory the presentation 〈a; a10〉 does not have any pieces.

Figure 2.15: The map α : ΓA → Γ given by Example 2.10.2. The graph ΓA

consists of a single arc, beginning and ending at the distinguished (bold) vertex.

Every reduced subpath of this arc is a piece.
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We shall now give the small cancellation conditions.

The c′(λ) condition: A map α : ΓA → Γ satisfies the c′(λ) condition if every piece p which

is a subpath of an arc r of ΓA is such that |α(p)| < λ|α(r)|.

The c(n) condition: A map α : ΓA → Γ satisfies the c(n) condition if no arc r in ΓA is the

concatenation of fewer than n pieces. Note that if a map satisfies c′(λ) then it satisfies c(n)

for λ = 1/(n − 1) (as with the classical theory, the inverse implication is not necessarily

true). Our assumption that no arc is a piece is therefore the assumption that all our maps

satisfy c(2).

The t(n) condition: A cycle of m pieces is a set of pairs of pieces {(pi, qi); 1 ≤ i ≤ m} such

that the following three conditions hold.

1. pi and qi are subpaths of the same arc of ΓA.

2. pi and qi have the same terminal vertex, τ(pi) = τ(qi).

3. pi+1 and qi form a piece pair, where i is computed modulo m.

Then the map α satisfies the t(n) condition if there does not exist a cycle of m pieces for

2 < m < n. An illustration of a cycle of four pieces is given in Figure 2.16.

Figure 2.16: A cycle of four pieces.

Small cancellation and canonical maps. Note that if α : ΓA → ΓF is the canonical

map associated to the subgroup A = 〈a1, . . . , ak〉 of F , then if the set of words {a1, . . . , ak}

satisfies the classical C(n) condition (respectively the C ′(λ) condition) then the map α

satisfies the c(n) condition (respectively the c′(λ) condition), where D is taken to consist
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of only the central vertex of ΓA. Note that this implies that the subgroup M of F (x, y),

defined at the beginning of Section 2.10 and used in the proof of Theorem B from Chapter 3,

has associated map which satisfies c′(λ) for some λ << 1.

The t(n) condition. In the current section we focus on the c(n) condition, because all

the results we need follow from an analysis of the c(5) case. However, we shall now briefly

examine the t(n) condition, specifically the t(4) condition, as the c(4) − t(4) conditions

give the same results which we need and are applicable in our case. Reviewing the proofs

of these results for the c(4) − t(4) condition would be superfluous (as the proofs of the

c(5) case are much shorter and less involved). Therefore, we shall state these results here

without proof. As with the classical theory, the t(n) condition is rather cryptic. However,

Wise points out that one can verify the t(n) condition by constructing and analysing

the “cycle graph” of the map, which is analogous to the star graph from the classical

theory [EH88]. A map of graphs α : ΓA → Γ with distinguished vertices D is said to be

orientation preserving if every arc of ΓA is mapped to only positive or only negative edges

of Γ. Cycle graphs can be use to show that an orientation preserving map satisfies t(4).

We shall now give an example of an orientation preserving map. Suppose a subgroup A of

F (x1, x2, . . .) is given by a positive generating set, that is, A = 〈a1, . . . , ak〉 and no x−1
i is

a subword of any aj . Then the canonical associated map is orientation preserving, and so

t(4). Wise then proves that a c(4)− t(4) map is malnormal. Thus, we have the following

result.

Proposition 2.10.3. If a subgroup A of a free group F is generated by a positive set of

words which satisfies the C(4) condition then A is a malnormal subgroup of F .

Note that Proposition 2.10.3 can be applied to prove that the subgroup M of F (x, y)

is malnormal.

The c(5) condition. The goal of the remainder of this section is to prove that if a

subgroup A of a free group F is generated by a set of words which satisfies the C(5)

condition then A is a malnormal subgroup of F . We shall do this by proving that if

α : ΓA → Γ is a map of graphs which satisfies the c(5) condition then it is a malnormal

map of graphs. This result implies that the subgroup M defined at the beginning of

Section 2.10 is a malnormal subgroup of F (x, y), and we use this fact in the proof of

Lemma 4.3.6, which is an important step in the proof of Theorem B from Chapter 4. In
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the remainder of this section we prove that c(5) maps are π1-injective and malnormal, and

therefore explicitly prove this property of the subgroup M .

Crowns. A circle is a reduced path which forms a cycle and which is homeomorphic

to a topological circle, that is, a reduced cycle which contains no proper subgraph which

is a cycle. After folding a circle c ⊂ ΓA the image ĉ is either null-homotopic or after

reduction is a circle. If the image is not null-homotopic we call the image a crown. If

α : ΓA → Γ is a map of graphs then as the map α̂ : Γ̂A → Γ is π1-injective, α is π1-

injective if and only if every circle c folds to give a crown. Therefore, crowns are useful

tools for determining if a map is π1-injective. It turns out that they are also useful for

showing a map is malnormal. Note that a graph C which embeds to give a crown is a

cycle which reduces to a circle such that every vertex in C has degree no more than three

as a vertex of C. Moreover, all valency one vertices of a crown are distinguished while all

other distinguished vertices lie in the circle of the crown. An example of a crown is given

in Figure 2.17. If v is a distinguished vertex contained in a crown C with underlying circle

c then the tail of C containing v is the subgraph of (C \ c)∪ v containing v. A tail is trivial

if it consists entirely of v, and note that the tail of w in Figure 2.17 is trivial. Note that

tails correspond to piece-pairs. The segments of the underlying circle c are the paths of c

which join consecutive distinguished vertices or tails of distinguished vertices. A segment

and a tail have been pointed out in Figure 2.17.

Tail

Segment

v

w

Figure 2.17: A crown with five segments and four tails. All drawn vertices are

distinguished. The tail of the vertex w is trivial.

We shall now apply crowns to the injectivity of fundamental groups in the follow-

ing proposition. We then apply them to show that c(5) maps are malnormal. This is

Proposition 2.10.5.
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Proposition 2.10.4. If a map of graphs α : ΓA → Γ satisfies c(3) then α is π1-injective.

Proof. Begin by noting that a circle in ΓA is the concatenation of at least two arcs, by the

definition of distinguished vertices. Suppose pqr is a path in ΓA where p, q and r are arcs

and q = stu where s is the maximal initial subpath of q which forms a piece pair with an

initial path of p and where u is the maximal terminal subpath of q which forms a piece

pair with a terminal path of r. That is, after folding pqr we have Figure 2.18. By the c(3)

condition, t is non-trivial.

s
t

u
p r

Figure 2.18: Bold vertices are distinguished. The map satisfies the c(3) con-

dition and so t is non-trivial.

Now, suppose c = p1p2 · · · pn is a circle in ΓA, n ≥ 2. Then each pi is an arc and so

has the form aip
′
iai+1 where each p′i is non-trivial (and subscripts are computed modulo

n). After folding we have a crown with underlying circle ĉ = p′1p
′
2 · · · p′n. Therefore,

every essential closed path in ΓA maps to an essential closed path in Γ̂A and so folding

is π1-injective. As α̂ : Γ̂A → Γ is π1-injective, we can conclude that α is π1-injective, as

required.

The following proposition implies that the subgroup M defined at the beginning of

Section 2.10 is a malnormal subgroup of F (x, y), which is the result we apply in the proof

of Lemma 4.3.6.

Proposition 2.10.5. If α : ΓA → Γ satisfies c(5) then it is malnormal.

Proof. Note that α is π1-injective, by Proposition 2.10.4. Therefore, it is sufficient to prove

that there does not exist circles c1, c2 ⊂ ΓA which are inequivalent but where α(c1) and

α(c2) are equivalent. Suppose otherwise, and as in the proof of Theorem 2.10.4 note that

α(c1) folds to give a crown with underlying circle p′1p
′
2 · · · p′n contained in Γ̂. By the c(5)

condition, each p′i is the concatenation of no fewer than three pieces. Similarly, α(c2) folds

to give a crown with underlying circle q′1q
′
2 · · · q′n and each q′i is the concatenation of no

fewer than three pieces. Consider the path p′1p
′
2, and write p′1 = p∗1z1 where z1 is a piece.
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Similarly, write p′2 = x2p
∗
2 where x2 is a piece. As α(c1) and α(c2) are equivalent, the

terminal end of p′1 overlaps with some path q′i.

Note that the overlap of the terminal end of p′1 with some path q′i must be a piece

but it cannot be an internal piece of q′i, as otherwise by the definition of pieces we have

that one of p′1 or q′i is a subword of the other and so is a piece. This contradicts the c(3)

assumption. Therefore, the overlap must be an initial or a terminal piece of q′i, and without

loss of generality it is an initial piece ai, so q′i = aiq
∗
i . However, this overlap cannot contain

more than z1, as z1 is a piece. Therefore, the terminal end of q′i overlaps with the initial

end of p′2, and again this overlap cannot contain more that x2. Therefore, q′i is a subword

of z1x2 where z1 and x2 are pieces. This is illustrated in Figure 2.19. This means that q′i

is the concatenation of fewer than three pieces and so the arc qi is the concatenation of

fewer than five pieces, a contradiction. This completes the proof.

x1 y1 z1 x2 y2 z2

ai bi ci

p′1 p′2

q′i

Figure 2.19: The paths ai and z1 form a piece-pair, as do ci and x2. Therefore,

bi is trivial.

2.11 Automorphisms of Graphs of Groups

In Chapter 3 we apply a result of Levitt (Propositions 2.8.2) on the outer automor-

phism groups of one-ended hyperbolic groups. This proposition is related to the JSJ-

decomposition of these groups, that is, a canonical action of these groups on a canonically

determined tree. In Chapter 4 we analyse the outer automorphism groups of certain HNN-

extensions, and our analysis closely parallels certain aspects of the aforementioned work of

Levitt. Levitt uses the theory of groups acting on trees while our work on HNN-extensions

is entirely algebraic. In this section we review Levitt’s work, so that the reader can under-

stand the connections between Chapter 4 and the work of Levitt. We also state a technical

result of Levitt, Proposition 2.11.6, which we apply in the proof of Theorem 3.1.16 from

Chapter 3 to coarsely classify the outer automorphism groups of two-generator, one-relator
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groups using a result on the structure of their JSJ-decompositions.

It should be noted that the results we obtain regarding certain HNN-extensions in

Chapter 4 do not follow from Levitt’s work, and this is for the following reasons. Firstly,

we have a different starting point from Levitt: we analyse “Pettet’s subgroup” of the outer

automorphism group (of an HNN-extension) while Levitt analyses “Levitt’s subgroup”.

Secondly, we look at a specific class of HNN-extensions which allows us to gain more

detailed results than Levitt, who works in a more general setting. Finally, our algebraic

approach in Chapter 4 is applicable to mapping tori G = H oZ, while Levitt’s results are

not. The application of our methods to mapping Tori is Section 4.2.3, which leads to the

proof of Theorem D, and this section is similar to our approach to proper HNN-extensions

in Section 4.2.2.

Levitt studies the outer automorphism group of the fundamental group of a “minimal”

graph of groups which is not a “mapping torus”. We define these terms now. Let G be the

fundamental group of a graph of groups Γ with associated Bass–Serre tree T . We shall say

that the graph of groups Γ is minimal if π1(Γ′) is a proper subgroup of π1(Γ) for every

proper, connected subgraph Γ′ of Γ. Two conditions which are equivalent to minimality

are that T contains no G-invariant subtree, and that if v is a leaf of Γ then Ge � Gv. We

shall say that G is a mapping torus if G is isomorphic to a semidirect product G ∼= HoZ.

2.11.1 Levitt’s and Pettet’s subgroups

If G is given by a minimal graph of groups Γ and G is not a mapping torus then we can

define and study two subgroups of Out(G), “Levitt’s subgroup” and “Pettet’s subgroup”.

In this section we shall define these subgroups and prove a certain connection between

them. Levitt’s starting point for his work on the outer automorphism groups of hyperbolic

groups is Levitt’s subgroup, while the starting point for our applications in Chapter 4 is

Pettet’s subgroup. We first define the analogues of Levitt’s subgroup and of Pettet’s

subgroup in Aut(G). These both contain Inn(G), and so in each case we quotient out to

obtain the respective subgroup of Out(G).

Before we define Levitt’s and Pettet’s subgroups we shall prove the following rather

useful lemma, Lemma 2.11.1. This is used to prove that Levitt’s subgroup is actually a

subgroup. For G given by a graph of groups Γ with Bass-Serre tree T , we shall write g

for the automorphism of T associated to g ∈ G, that is, we shall write g for the image of

g in the map G → Aut(T ). We say that c ∈ Aut(T ) centralises the action of G on T if
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x · ch = x · hc for all h ∈ G and x ∈ T . By a linear tree we mean the infinite tree where

every vertex has degree two, that is, a tree isomorphic to the Cayley graph of 〈a;−〉.

Lemma 2.11.1. Suppose G acts minimally on a tree T . Then this action has trivial

centraliser in Aut(T ), or T is a linear tree and Aut(T ) ∼= Z.

Proof. Suppose c ∈ Aut(T ) and define Vc to be the vertices x of T such that the geodesics

[x, x · c] are of minimal length. Define Tc to be the minimal subtree of T whose vertex set

contains Vc. If c fixes some point then Tc = FixT (c). Otherwise, Tc is a linear subtree,

and to see that Tc is a linear subtree begin by supposing otherwise. Then there exists two

vertices u and v of Tc such that u, v and u · c do not lie in a linear subtree. Consider

the geodesic [u, u · c]. Write pv for the geodesic connecting v to [u, u · c] and pv·c for the

geodesic connecting v · c to [u · c, u · c2]. Note that we can replace u with u · ci for some

i such that pv does not contain an edge of [u · c−1, u] or of [u · c, u · c2]. Then pv·c does

not contain an edge of [u, u · c] or of [u · c2, u · c3]. Because v is not contained in [u, u · c],

we have that pv and pv·c have length at least one. Now, write w for the vertex where pv

meets [u, u · c]. Then pv·c meets [u · c, u · c2] at w · c and the geodesic [w,w · c] has minimal

length. Thus, [v, v · c] is the concatenation of pv · [w,w · c] · pv·c. Thus, [v, v · c] cannot have

minimal length, a contradiction. Therefore, either Tc = FixT (c) or Tc is a linear subtree

of T

Suppose that the action of G has non-trivial centraliser in Aut(T ), and take 1 6= c ∈

CAut(T )(G). Then Tc is G-invariant, as if [v, v · c] is minimal then [v · g, v · gc] is minimal

by the following.

[v · g, v · cg] = [v · g, v · gc] = [v′, v′ · c]

Therefore, because T contains no G invariant subtree (by minimality) we have that Tc = T

and so T is a linear tree, as required.

Levitt’s subgroup. We define Levitt’s subgroup of Aut(G), denoted AutΓ(G), to be the

set of automorphisms α ∈ Aut(G) such that there exists Hα ∈ Aut(T ) which induces the

action of α on the elements of g ∈ Aut(T ) in the following sense.

Hαg = (gα)Hα

We shall now prove that Hα is unique, and so the map α 7→ Hα defines an action of

AutΓ(G) on T . To see that Hα is unique, suppose otherwise. Then there exists Kα ∈
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Aut(T ) such that Hα 6= Kα and HαgH
−1
α = KαgK

−1
α for all g ∈ G. Therefore, K−1

α Hα ∈

CAut(T )(G). However, CAut(T )(G) is trivial by Lemma 2.11.1 and because G is not infinite

cyclic (as it is not a mapping torus). Therefore, Kα = Hα, a contradiction. Thus, α 7→ Hα

is an action of AutΓ(G) on T , as required.

Noting that Inn(G) ≤ AutΓ(G) by the map γg 7→ g−1, we can define Levitt’s subgroup

of Out(G) to be OutΓ(G) := AutΓ(G)/ Inn(G). Levitt subjected OutΓ(G) to a detailed

analysis and applied his results to the case where G is a one-ended hyperbolic group

[Lev05], while Gilbert–Howie–Metaftsis–Raptis proved that ifG is a generalised Baumslag–

Solitar group, that is, Gx is infinite cyclic for all x ∈ T , then under certain conditions

OutΓ(G) = Out(G) [GHMR00].

An alternative description of AutΓ(G) is that it is the maximal subgroup of Aut(G)

such that the diagram in Figure 2.20 commutes, where θ is the canonical map from G to

Aut(G) whose image is the inner automorphisms.

G AutΓ(G)

Aut(T )

θ

Figure 2.20: The map θ is the canonical homomorphism whose image is the

inner automorphisms Inn(G). Levitt’s subgroup AutΓ(G) is the maximal sub-

group of Aut(G) such that this diagram commutes.

In the case of HNN-extensions, an alternative description of OutΓ(G) is that it is

the maximal subgroup of Out(G) consisting of elements α̂ with a representative α where

Hα = H and tα has t-length one, so tα = h1t
εh2 for some h1, h2 ∈ H.

Pettet’s subgroup. We define Pettet’s subgroup of Aut(G), denoted AutΓ(G), to be

the subgroup consisting of automorphisms which send each vertex group of Γ to a G-

conjugate of some vertex group. As every inner automorphism sends each vertex subgroup

to a conjugate of itself, we can define Pettet’s subgroup of Out(G) to be OutΓ(G) :=

AutΓ(G)/ Inn(G).

Relating Levitt’s and Pettet’s subgroups. Levitt’s and Pettet’s subgroups are re-

lated through a common subgroup, which we shall now define. The action of Levitt’s
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subgroup AutΓ(G) on T induces an action of OutΓ(G) on Γ = T/G. As Γ is finite, this

means that there exists a finite index subgroup of OutΓ(G) which acts trivially on Γ.

We shall denote this subgroup by OutΓ
0 (G), and we shall denote its pre-image in Aut(G)

by AutΓ
0 (G). Karrass–Pietrowski–Solitar studied the relationship between Pettet’s and

Levitt’s subgroups in the case of free products with amalgamation [KPS84] while M. Pet-

tet extended their analysis to graphs of groups, proving that under certain conditions

OutΓ(G) = OutΓ(G) [Pet99]. We shall now prove that OutΓ
0 (G) is a subgroup of Pettet’s

subgroup, OutΓ
0 ≤ OutΓ(G), and so Levitt’s subgroup virtually embeds into Pettet’s sub-

group. The proof begins with Lemma 2.11.2, which is an observation on the actions of G

and of Levitt’s subgroup OutΓ(G) on the edge and vertex stabilisers of T .

Lemma 2.11.2. Let x ∈ T . If α ∈ AutΓ(G) then GxHα = Gxα
−1, while if g ∈ G then

Gx·g = g−1Gxg.

Proof. Suppose α ∈ AutΓ(G). Then GxHα = Gxα
−1 because, taking g ∈ G, we have the

following sequence of equivalences.

x ·Hα = x ·Hαg

⇔ x = x ·HαgH
−1
α

⇔ x = x · (gα)

Suppose g ∈ G and let h ∈ Gx·g. Then x ·gh = x ·g so ghg−1 ∈ Gx, and so Gx·g ≤ g−1Gxg.

Suppose k ∈ Gx and consider g−1kg. Then x · g · g−1kg = x · g, so g−1kg ∈ Gx·g, and so

g−1Gxg ≤ Gx·g. Therefore, g−1Gxg = Gx·g, as required.

The following lemma immediately implies that OutΓ
0 (G) is a subgroup of Pettet’s

subgroup, OutΓ
0 (G) ≤ OutΓ(G), and so Levitt’s subgroup virtually embeds into Pettet’s

subgroup.

Lemma 2.11.3. For all x ∈ T and all α ∈ AutΓ
0 (G), Gx is conjugate in G to Gxα.

Proof. Take Hα such that α ∈ AutΓ
0 (G), and take x ∈ T . Note that as Hα acts trivially

on Γ = T/G, for all vertices x ∈ T there exists some g ∈ G such that xHα = x · g. The

result then holds as, applying Lemma 2.11.2, we have the following sequence of equalities.

Gxα
−1 = GxHα

= Gx·g

= g−1Gxg
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Note that if we are viewing G = H∗Kt=K′ as an HNN-extension then Levitt’s subgroup

is a subgroup of Pettet’s subgroup. This is because if α ∈ AutΓ(G) then Hα is conjugate

to H. Therefore, we can view OutΓ(G) as the subgroup of OutΓ(G) consisting of elements

α̂ with a representative α where Hα = H and tα has t-length one, so tα = h1t
εh2 for some

h1, h2 ∈ H.

In Chapter 4 we prove a technical theorem, Theorem 4.2.15, about the finite index

subgroup OutΓ
0 of Levitt’s subgroup. Our main results of Chapter 4 apply this theorem,

but these applications require us to prove that, in the groups we are interested in, Pettet’s

and Levitt’s subgroups are equal.

2.11.2 Levitt’s Analysis

Suppose that G is given by a minimal graph of groups Γ and that G is not a mapping torus.

In this section we state a technical result of Levitt, Proposition 2.11.6, which we use in

the proof of Theorem 3.1.16 from Chapter 3. The statement of Proposition 2.11.6 requires

a substantial introduction, which is what this section provides. Theorem 3.1.16 is one of

the two keystone theorems of Chapter 3, and it uses an analysis of the JSJ-decomposition

of a one-ended two-generator, one-relator group with torsion G = 〈a, b;Rn〉, given by

Theorem 3.1.15, to prove that such a group either has virtually-cyclic outer automorphism

group or is isomorphic to 〈a, b; [a, b]n〉. Note that the results of this section are from the

build-up to Levitt’s result which connects the structure of the JSJ-decomposition of a one-

ended hyperbolic group to the outer automorphism group of the hyperbolic group [Lev05].

We mentioned at the end of Section 2.11.1 that in our analysis of Levitt’s subgroup

of certain groups we study OutΓ
0 (G). It turns out that our method of approaching this

subgroup OutΓ
0 (G) is very similar to Levitt’s approach, in the sense that both investigations

begin by splitting the subgroup using essentially identical short exact sequences: Levitt

calls this method the extension construction.

The extension construction. Levitt’s investigation of OutΓ(G) is based around a

decomposition of OutΓ
0 (G) as a short exact sequence, using a homomorphism ρ.

1 −→ N −→ OutΓ
0 (G)

ρ−→I −→ 1

The groups N and I are then analysed, and this is what we do now. Levitt refers to
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this decomposition as the extension construction. In Theorem 4.2.15, we give a detailed

analysis of this short exact sequence for the specific groups we are interested in, and classify

when OutΓ
0 (G) = OutΓ(G).

The map ρ is defined by its restriction to the vertex stabilisers. That is, fix a vertex

v ∈ VΓ in the graph of groups Γ, then by Lemma 2.11.3 every coset α̂ has a representative

which fixes Gv, while one can prove that the class of β ∈ α̂ in Out(Gv) depends only

on α̂. Therefore, for each vertex v ∈ VΓ there exists a homomorphism ρv : OutΓ
0 (G) →

Out(Gv). We can then extend these homomorphisms to define ρ =
∏
ρv : OutΓ

0 (G) →∏
v∈V Out(Gv).

The image of ρ, which we shall denote by I, preserves the peripheral structure of Gv.

This is more formally given by the following lemma of Levitt (which we do not prove).

Lemma 2.11.4. For α̂ ∈ OutΓ
0 (G), if β is in the coset α̂ρv ∈ Out(Gv) then there exists

ge ∈ Gv such that Geβ = g−1
e Gege.

Define the (pure) mapping class group PMCG(Gv) to be the subgroup of Out(Gv)

consisting of those cosets containing automorphisms which act on each edge group Ge as

conjugation by some ge ∈ Gv. The technical result of Levitt which we use in Chapter 3,

which is Proposition 2.11.6, involves the relationship of the subgroup
∏

PMCG(Gv) to the

image I. Levitt proves the following lemma, which is the first step towards proving this

relationship.

Lemma 2.11.5. For every vertex v, PMCG(Gv) is a subgroup of I.

Note that this does not prove that
∏

PMCG(Gv) = I. This is because although I

preserves the peripheral structure it is not necessarily acting by conjugation. That is, if

Gvβ = Gv and ι(e) = v then there exists ge ∈ Gv such that for all g ∈ Ge there exists

h ∈ Ge such that gβ = g−1
e hge. In PMCG(Gv), we require h = g. An example of a graph

of groups Γ where
∏

PMCG(Gv) is a proper subgroup of the image I is the usual graph

of groups decomposition of the following Baumslag–Solitar group.

G = 〈a, t; t−1a2t = a−2〉

Here, the underlying graph is a single vertex v with a positive loop edge e, while the

stabilisers are Gv = 〈a〉 and Ge = 〈a2〉 = Ge. Consider the following map.

α : a 7→ a−1

t 7→ t
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Now, α inverts the relator t−1a2ta2 and so α ia a surjecvtive homomorphism of G, and

then because G is Hopfian α is an automorphism [Mes72]. Clearly, α̂ ∈ OutΓ
0 (G). Now,

we shall prove that if g ∈ G is such that Gvαγg = Gv then g ∈ Gv = 〈a〉, and we then

explain why this is sufficient. So, taking such a g ∈ G we have that g−1ag = ai for some

i ∈ Z and also g−1ajg = a for some j ∈ Z, but then g−1ajg = aij and so ij = 1. This

means that |i| = 1 = |j|, and so g−1ag = aε. Now, taking g to be t-reduced we have that

g−1aga−ε is t-reduced so g must be t-free, so g ∈ Gv = 〈a〉. Therefore, α does not act on

Ge by conjugation although clearly Geα = Ge. Thus, the coset containing α : a 7→ a−1 is

not in PMCG(Gv) and so PMCG(Gv) � I.

We shall now state the proposition of Levitt which we apply in Theorem 3.1.16. In

Theorem 3.1.16 we wish to prove that no two-generator, one-relator group with torsion can

be a bounded Fuchsian group. The following proposition, Proposition 2.11.6, allows us to

side-step the definition of a bounded Fuchsian group from Section 2.8 by letting us instead

prove that no two-generator, one-relator group with torsion can be the fundamental group

of a vertex v of a JSJ-decomposition of a two-generator, one-relator group with torsion

such that PMCG(Gv) is infinite.

Proposition 2.11.6. Suppose that Γ is the JSJ-decomposition of a hyperbolic group G.

Then
∏
v∈V PMCG(Gv) has finite index in the image I while the kernel of ρ is virtually-Zn,

where n = E∞ − V∞.

Proving results about the kernel of ρ is beyond the scope of this section. However,

we shall prove that
∏

PMCG(Gv) has finite index in I. This is based on the fact that

virtually-Z groups have finite outer automorphism groups [Pet95, Theorem 3.4].

Proof. To prove that
∏
v∈V PMCG(Gv) has finite index in the image I it suffices to prove

that PMCG(Gv) has finite index in the image of ρv. To do this, consider φ̂ ∈ Im ρv ≤

Out(Gv). Then φ is such that Geφ = g−1
(e,φ)Geg(e,φ) for e with ι(e) = v, that is, there exists

an automorphism ψ of Ge such that the following holds.

gφ = g−1
(e,φ)(gψ)g(e,φ)∀ g ∈ Ge

Consider the subgroup N = 〈γh;h ∈ NGv(Ge)〉. Now, every class φ̂ ∈ Im ρv induces a

fixed class [ψ̂] of Out(Ge)/N Therefore, we have a map Im ρv → Out(Ge)/N whose kernel

consists of the φ̂ which induce the trivial outer automorphism of Ge. As Out(Ge) is finite,

the kernel has finite index in Im ρv. Intersecting these (finitely many) kernels yields a
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finite index subgroup K of Im ρv such that if φ̂ ∈ K and e is such that ι(e) = v then

gφ = g−1
(e,φ)gg(e,φ). Thus, K ≤ PMCG(Gv), as required.

To prove Levitt’s main theorem, Proposition 2.8.2, it would suffice to prove that if G is

a hyperbolic group with JSJ-decomposition Γ then firstly the “group of twists”T (this is

the same T as in Proposition 2.8.2) is virtually-Zn, where n = |E∞| − |V∞|, and secondly

PMCG(Gv) is infinite only if v is an orbifold vertex. The latter point holds as if v is an

elementary vertex then Gv is virtually-cyclic so Out(Gv) is finite, while Levitt points out

that if v is a rigid vertex then PMCG(Gv) is finite by Paulin’s Theorem [Pau91] and by

certain results of Bestvina–Feighn on Rips’ theory of R-trees [BF95] (these are substantial

black-boxes). To prove that T is virtually-Zn, Levitt changes the exact sequence we are

working with. We shall now give this exact sequence. Now,
∏
v∈V2

PMCG(Gv) has finite

index in I and so its pre-image, denoted Out1(G), has finite index in Out0(G), and so has

finite index in Out(G). Consider the following homomorphism.

ρ1 : Out1(G)�
∏
v 6∈V2

PMCG(Gv)

Take Out2(G) to be the kernel of ρ1. Then once again Out2(G) has finite index in Out(G)

and we have the following short exact sequence.

1→ N2 → Out2(G)→
∏
v∈V2

PMCG(Gv)→ 1

Levitt proves that T = N2, and then that N2 is virtually-Zn, and so he recovers the main

result of his paper, Proposition 2.8.2.



Chapter 3

Two-Generator, One Relator

Groups with Torsion

A two-generator, one-relator group with torsion is a group of the form G = 〈a, b;Rn〉,

where R is not a true power of any element of F (a, b) and where n > 1. The “with

torsion” label is because G has torsion if and only if n > 1, by Proposition 2.9.4.

Two-generator, one-relator groups with torsion are interesting in their own right, but

they are hyperbolic and as such they serve as important testbeds for this larger class

of groups. For example, the isomorphism problem for two-generator, one-relator groups

with torsion was shown to be soluble [Pri77a] long before Dahmani–Guirardel’s recent

resolution of the isomorphism problem for all hyperbolic groups [DG11]. Another example

of one-relator groups with torsion being used in this capacity is in the residual finiteness of

hyperbolic groups. Wise recently resolved the classical conjecture of G. Baumslag that all

one-relator groups with torsion (equivalently, all two-generator, one-relator groups with

torsion) are residually finite [Wis12], while it is still an open question as to whether all

hyperbolic groups are residually finite.

Writing Dn for the dihedral group of order 2n, the main result of this chapter is as

follows.

Theorem A. Let G be a two-generator, one-relator group with torsion.

• If G ∼= 〈a, b; [a, b]n〉 then Out(G) ∼= GL2(Z).

• If G is one-ended and G 6∼= 〈a, b; [a, b]n〉 then,

– If Out(G) is infinite then it is isomorphic to D∞ × C2, D∞, Z× C2 or Z.

– If Out(G) is finite then it is isomorphic to a subgroup of D6 or of D4.

88
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• If G is infinitely ended, so G ∼= Z ∗ Cn, then Out(G) ∼= Dn oAut(Cn).

We give examples to demonstrate that every possibility occurs. Combining Theorem A

with recent work of Dahmani–Guirardel on algorithms in hyperbolic groups [DG11], we

give an algorithm to compute the outer automorphism group of a two-generator, one-

relator group with torsion. We also explain how to write down the full automorphism

group of such a group.

A general theory exists for the outer automorphism groups of hyperbolic groups, based

on JSJ-decompositions. However, this theory is limited as it describes only a finite-index

subgroup of the outer automorphism group. Our characterisation in Theorem A im-

proves upon the finite-index description by combining JSJ-decompositions with faithful

linear representations over Z of the outer automorphism groups. It is a recent result

of Carette [Car13] that the outer automorphism group of an arbitrarily-generated one-

relator group with torsion has a faithful linear representation over Z, so it may be possible

to generalise our method of combining the JSJ-decomposition with a faithful linear repre-

sentation of the outer automorphism group to give complete descriptions of the possible

outer automorphism groups of all one-relator groups with torsion.

JSJ-decompositions. The standard approach to analysing the outer automorphism

groups of classes of (one-ended, non-Fuchsian) hyperbolic groups is to prove structural

results for their JSJ-decompositions. Section 3.1 proves results on the structure of the

JSJ-decomposition of a one-ended two-generator, one-relator group with torsion G.

Kapovich–Weidmann proved that a one-ended two-generated torsion-free hyperbolic

group has virtually-cyclic outer automorphism group [KW99]. Clearly this case is disjoint

from, but similar to, the case of one-ended two-generator, one-relator groups with torsion.

Indeed, the analysis of the outer automorphism groups in each of these two cases yields

similar results, with the outer automorphism group of a two-generator, one-relator group

with torsion being virtually-cyclic unless the group has the form 〈a, b; [a, b]n〉. The results

are similar because the possibilities for the graph underlying the JSJ-decompositions in

each case are identical, and the exceptional groups are precisely the Fuchsian ones. In-

deed, in Section 3.1.1 we prove that the treatment by Kapovich–Weidmann [KW99] of the

structure of the JSJ-decompositions for the torsion-free case applies to the present setting

with minimal alterations, while in Section 3.1.2 we give a version of Kapovich–Weidmann’s

proof altered to the current setting.
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Previous results. Much of the previous work on the outer automorphism groups of

one-relator groups with torsion is based around residual finiteness. For example, Kim–

Tang proved certain specific two-generator, one-relator groups with torsion have residually

finite outer automorphism groups [KT09, KT10], while it is a recent result of Carette

that an (arbitrarily-generated) one-relator group with torsion has residually finite outer

automorphism group [Car13]. Note that Carette uses the fact that one-relator groups with

torsion are residually finite [Wis12]. Theorem A gives a complete description of the outer

automorphism groups of two-generator, one-relator groups with torsion, and so this is a

much stronger theorem than the previous results. Note that Theorem A implies that such

outer automorphism groups are residually finite.

It is worth mentioning that our results show that the outer automorphism groups

of two-generator, one-relator groups with torsion are very similar to the outer automor-

phism groups of one-relator groups with non-trivial center [GHMR00] and to the outer

automorphism groups of Baumslag–Solitar groups BS(m,n) = 〈b, s; s−1bms = bn〉 with

|m| ≥ |n| and n is not a proper divisor of m [Cla06]. In each of these two cases, the groups

involved are non-hyperbolic two-generator, one-relator groups without torsion, but their

outer automorphism groups are found in the list given in Theorem A.

Overview of the chapter. Let G be a two-generator, one-relator group with torsion,

then G is either one-ended or infinitely ended. Note that G is infinitely ended if and only

if G ∼= Z∗Cn, and the outer automorphism groups of such free products have been studied

before [FR40,Gil87]. Therefore, in this chapter we focus on the one-ended case. Our proof

of the main result, Theorem A, is built around two keystone theorems: Theorem 3.1.16,

which uses JSJ-decompositions to prove that if G is one-ended and G 6∼= 〈a, b; [a, b]n〉 then

Out(G) is virtually-cyclic, and Theorem 3.2.1, which gives a faithful linear representation

for Out(G) when G is one-ended.

In Section 3.1 we prove our first keystone theorem, Theorem 3.1.16. In Section 3.2 we

prove our second keystone theorem, Theorem 3.2.1, and we prove that if G ∼= 〈a, b; [a, b]n〉

then Out(G) ∼= GL2(Z). In Section 3.3 we determine the possibilities for Out(G) if G

is one-ended, Out(G) is infinite, and G 6∼= 〈a, b; [a, b]n〉. In Section 3.4 we determine the

possibilities for Out(G) if G is one-ended and Out(G) is finite. In Section 3.5 we sketch

a proof that if G is infinitely-ended then Out(G) ∼= Dn o Aut(Cn). In Section 3.6 we

assemble the proof of Theorem A from the previous sections, we give an algorithm to
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compute Out(G), and we explain how to obtain a presentation for Aut(G).

Acknowledgements. The author would like to thank his PhD supervisor, Stephen J.

Pride, and Tara Brendle for many helpful discussions about this chapter. He would also
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Weidmann to prove Theorem 3.1.16, which led to the work of Sections 3.1.1 and 3.1.2.

3.1 The JSJ-decompositions of one-relator groups with tor-

sion

In this section we determine the possible structure of the JSJ-decomposition of a one-

ended two-generator, one-relator group with torsion. The JSJ-decomposition of a group

G is a specific type of decomposition of G as a graph of groups where every edge group is

virtually-cyclic. If G is a hyperbolic group then this decomposition is canonical [Bow98]

and so yields information about the outer automorphism group of G, by Proposition 2.8.2.

The reader is referred to Section 2.8 for more details on JSJ-decompositions. We use our

main structural result on JSJ-decompositions, Theorem 3.1.15, to prove that if G is a one-

ended two-generator, one-relator group with torsion then either Out(G) is virtually-cyclic

or G is Fuchsian (and so G ∼= 〈a, b; [a, b]n〉).

JSJ-decompositions encode the virtually-cyclic splittings of a group, so we begin this

section by classifying, in Lemma 3.1.4 and Lemma 3.1.8, the virtually-cyclic subgroups

which a one-relator group with torsion can split over. In Proposition 3.1.13 and Propo-

sition 3.1.14 we apply these two lemmata to prove results regarding the structure of a

virtually-cyclic splitting of a two-generator, one-relator group with torsion. We then com-

bine these two propositions to prove Theorem 3.1.15, which is our structural result on the

JSJ-decompositions of one-ended two-generator, one-relator groups with torsion. We in

turn apply Theorem 3.1.15 to prove Theorem 3.1.16, which proves that a one-ended non-

Fuchsian two-generator, one-relator group with torsion has virtually-cyclic outer automor-

phism group. The purpose of this current section, Section 3.1, is to prove Theorem 3.1.16,

and in Section 3.1.3 we outline an additional proof of this theorem using Nielsen transfor-

mations and equations in free groups. This second approach is in-line with the ideas of the

later sections but it yields less structural information about arbitrary one-relator groups

with torsion than the proof based on JSJ-decompositions of Sections 3.1.1 and 3.1.2.
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The subgroup T . If G = 〈X;Rn〉 is a one-relator group with torsion, then throughout

this section we shall use the fact that the subgroup T := 〈〈R〉〉 is isomorphic to the free

product of infinitely many cyclic groups of order n, by Proposition 2.9.11.

Two-generator subgroups. Throughout this section we shall also use the fact that if

H is a two generated subgroup of an arbitrary one-relator group with torsion then H is

either a one-ended one-relator group with torsion or a free product of cyclic groups, by

Proposition 2.9.12.

3.1.1 Virtually cyclic splittings of one-ended one-relator groups with

torsion

In this section we prove that if a one-ended one-relator group with torsion G splits as an

HNN-extension or free product with amalgamation over a virtually-cyclic group C then

either C is a subgroup of a malnormal infinite cyclic subgroup ofG orG ∼= A∗CB ∼= 〈X;R2〉

where A and C are infinite dihedral. We do not know if this latter case, when A and C are

infinite dihedral, ever occurs. However, even if this case does occur it has no impact on

our analysis of the outer automorphism groups of two-generator, one-relator groups with

torsion.

Therefore, the results of this section show that, with some possible exceptions, the

possible JSJ-decompositions of one-ended one-relator groups with torsion are similar to

the JSJ-decompositions of one-ended torsion-free hyperbolic groups, in the sense that in

both cases all edge groups in a JSJ-decomposition are subgroups of malnormal infinite

cyclic groups (note that all maximal virtually-cyclic subgroups of a torsion-free hyperbolic

group are malnormal and infinite cyclic). This similarity allows us, in Section 3.1.2, to

transfer proofs relating to the JSJ-decompositions of one-ended two-generator torsion-free

hyperbolic groups [KW99] to the setting of one-ended two-generator one-relator groups

with torsion.

In this current section, G is not necessarily two-generated. We begin with the following

observation which we apply at numerous points in this section.

Lemma 3.1.1. If G is a one-relator group with torsion and x−1yix = yj with yi 6= 1 6= yj

then H = 〈x, y〉 is either cyclic or a free product of cyclic groups.

Proof. Note that H is either cyclic, a free product of cyclic groups, or a one-ended two-
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generator, one-relator group with torsion, by Proposition 2.9.12. We wish to prove that

this latter case cannot happen.

Suppose H = 〈x, y〉 is a one-ended one-relator group with torsion. Then as such

groups contain a single Nielsen equivalence class of generating pairs, by Proposition 2.2.2,

the pair (x, y) yields a presentation 〈x, y;Sm〉. However, this is a contradiction as in such

a presentation 〈x〉 and 〈y〉 are malnormal, by Proposition 2.9.2.

Virtually cyclic subgroups. In order to analyse the virtually-cyclic splittings of G

we first classify, in the following lemma, the isomorphism classes of the virtually-cyclic

subgroups of a one-relator group with torsion. We then classify, in a certain sense, those

virtually-Z subgroups which are not contained in an infinite dihedral subgroup of G. Recall

that for G = 〈X;Rn〉, T := 〈〈R〉〉 denotes the normal closure of the element R. Thus,

every element of finite order of G is contained in the subgroup T .

Lemma 3.1.2. If C is a virtually-Z subgroup of a one-relator group with torsion then C

is either infinite cyclic or infinite dihedral.

Proof. Suppose C is virtually-Z but not infinite cyclic. We shall prove that C is a subgroup

of T , C ≤ T . As T is the free product of infinitely many cyclic groups of order n, this

proves that C is infinite dihedral by the Kurosh Subgroup Theorem.

Begin by taking a subgroup C ′ generated by two elements g and h which are not powers

of a common element, so C ′ is non-cyclic. However, C ′ is either a free product of cyclic

groups or a one-ended one-relator group with torsion, and as it is two-ended it is infinite

dihedral, C ′ ∼= C2 ∗ C2. Therefore, the subgroup C ′, and so C, must contain an element

of order two, x say. Now, take an arbitrary element y ∈ C of infinite order. Then 〈x, y〉 is

again either a free product of cyclic groups or a one-ended one-relator group with torsion,

and again it is two-ended it must be infinite dihedral. As the infinite dihedral group can

be generated by two elements of finite order we have that y ∈ T . Thus, every element of

C is in T , as required. This proves the lemma.

Our current goal is to prove that, apart from possibly certain specific cases, every edge

group of the JSJ-decomposition of a one-ended two-generator, one-relator group with

torsion G is a subgroup of a malnormal infinite-cyclic group. We shall prove that if such a

group G splits as an amalgam or HNN-extension over a virtually-cyclic subgroup C with

non-virtually-cyclic edge group(s) then C cannot be contained in the normal closure T :=
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〈〈R〉〉 of the element R, and so, by Lemma 3.1.3, below, we achieve our aim. Lemma 3.1.4

proves the result for HNN-extensions while Lemma 3.1.8 proves it for free products with

amalgamation.

We now prove the following lemma, the proof of which relies on the fact that in

hyperbolic groups every cyclic subgroup is contained in a unique maximal virtually-cyclic

subgroup [Bow98].

Lemma 3.1.3. Let C be a virtually-Z subgroup of G = 〈X;Rn〉, n > 1. If C is not a

subgroup of an infinite dihedral group then C a subgroup of a malnormal infinite-cyclic

subgroup of G.

Proof. It suffices to prove that a maximal virtually-Z subgroup C of G which is not a

subgroup of an infinite dihedral subgroup of G is malnormal in G. Note that such a

subgroup C is in fact infinite cyclic, by Lemma 3.1.2. Suppose that our result is false:

there exists some maximal virtually-Z subgroup C which is not malnormal but is not a

subgroup of an infinite dihedral group. Then, writing C = 〈x〉, there exists y ∈ G \C and

integers i, j ∈ Z \ {0} such that y−1xiy = xj .

Consider the subgroup H = 〈x, y〉 which is either cyclic, a free product of cyclic

groups, or a one-ended two-generator, one-relator group with torsion. Note, however, that

H cannot be cyclic as C is maximal, and H cannot be a one-ended one-relator group by

Lemma 3.1.1. Therefore, H must be a free product of cyclic groups, H = K1 ∗K2. We

shall now use the conjugacy theorem for free products, which is Proposition 2.4.3, to prove

that |i| = |j|. To see this, conjugate the generator x to some word z which is a cyclically

reduced word in the free product H = K1 ∗ K2, z = u1u2 . . . um. Then (u1u2 . . . um)i is

conjugate to (u1u2 . . . um)j , so |m · i| = |m · j|. Thus, |i| = |j|.

Now, consider Hi := 〈xi, y〉. Again, this cannot be a one-ended one-relator group

with torsion and it cannot be infinite cyclic as C = 〈x〉 is the unique maximal virtually-

cyclic subgroup containing xi and y 6∈ C. Thus, Hi must be a free product of cyclic

groups, Hi = K3 ∗K4. However, Hi is the homomorphic image either of 〈z, y; y−1zy = z〉

or of 〈z, y; y−1zy = z−1〉. Both these groups do not contain non-abelian free subgroups

(they are soluble) and so Hi cannot contain non-abelian free subgroups. Thus, Hi =

K3 ∗ K4 is infinite dihedral which contradicts the fact that xi is contained in a unique

maximal virtually-Z subgroup which is infinite cyclic. Therefore, C is malnormal in G, as

required.
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Virtually cyclic splittings. We shall now prove that if G is a one-ended one-relator

group with torsion which splits over a virtually-cyclic subgroup C then either C is con-

tained in a malnormal infinite cyclic subgroup of G or G ∼= A ∗C B where A and C are

infinite dihedral. Recall that if G = 〈X;Rn〉 then T := 〈〈R〉〉 denotes the normal closure

of the element R while Ĝ = G/T = 〈X;R〉 denotes the associated torsion-free one-relator

group.

Lemma 3.1.4. Assume that G is a one-ended one-relator group with torsion which splits

as an HNN-extension G ∼= H∗At=B. If A and B are virtually-cyclic groups then A,B 6≤ T

and so A and B are subgroups of malnormal, infinite cyclic subgroups of G.

Proof. Suppose, without loss of generality, that A ≤ T . As G = 〈H, t;At = B〉, we further

have that B ≤ T as B is contained in the normal closure of A. Therefore, Ĝ is the free

product Ĥ ∗ 〈t〉 where Ĥ is obtained from H by quotienting out the normal closure of the

torsion elements of H. Thus, by Lemma 2.9.7, G is infinitely ended, a contradiction. So

A,B � T and the result follows from Lemma 3.1.3.

We shall prove the corresponding result, Lemma 3.1.8, for free products with amal-

gamation. This states that if G is a one-ended one-relator group with torsion and if

G = A ∗C B where C is virtually-cyclic then either C 6≤ T , as in Lemma 3.1.4, or C and

one of A or B is infinite dihedral. The proof of Lemma 3.1.8 is much longer than the

HNN-case and comprises of Lemma ??, which gives a form for one of the factor groups A

or B, Lemma 3.1.6, which proves that if C is infinite cyclic then C 6≤ T , and Lemma 3.1.7,

which proves that if G is one-ended and if C ≤ T then C is infinite dihedral and one of A

or B is infinite dihedral.

Note that Lemma 3.1.5 and Lemma 3.1.6 include the case of Z ∗ Cn. This inclusion

allows us to prove Proposition 3.1.13 for two-generator, one-relator groups with no restric-

tion on the number of ends, and we wish to do this because we apply Proposition 3.1.13 in

the proof of Proposition 3.1.14 and this application requires no restriction on the number

of ends.

We begin our proof of Lemma 3.1.8 by giving a form for one of the factor groups A or

B of G = A ∗C B when the the amalgamating subgroup C is subgroup of T := 〈〈R〉〉. A

splitting A ∗C B is called non-trivial if C � A,B.

Lemma 3.1.5. Assume that G is a one-ended one-relator group with torsion or G ∼=

Z ∗Cn, for n > 1. Suppose that G splits non-trivially as a free product with amalgamation
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G ∼= A ∗C B where C is a subgroup of T . Then either A ≤ T or B ≤ T . If A ≤ T (the

case of B ≤ T is analogous) then A ∼= Fm ∗ A1 ∗ A2 ∗ . . . with each Ai = 〈ai〉 non-trivial

cyclic of order ni dividing n and Fm is free of rank m ≥ 0. There may be only finitely

many Ai, and indeed there may be none.

Proof. Let Â and B̂ be the images of A and B in Ĝ = G/T . Note that the image Ĉ of C

in Ĝ is trivial, Ĉ = 1, and so Ĝ = Â ∗ B̂. If G is one-ended then one of the factors Â or

B̂ must be trivial, by Lemma 2.9.7. If G ∼= Z ∗Cn then Ĝ is infinite cyclic so again one of

the factors Â or B̂ must be trivial. Thus, either A ≤ T or B ≤ T .

Suppose that A ≤ T . As T is the free product of infinitely many cyclic subgroups of

order n, we can apply the Kurosh Subgroup Theorem to see that A is the free product of a

free group with some (non-trivial) cyclic subgroups of order dividing n, A ∼= Fm∗A1∗A2∗. . .

with each Ai non-trivial cyclic of order ni dividing n. This proves the lemma.

Now, if G = A∗CB is a one-relator group with torsion and C is virtually-Z then either

C is infinite cyclic or infinite dihedral, by Lemma 3.1.2. We shall now, in Lemma 3.1.6,

investigate the case when C is infinite cyclic, while in Lemma 3.1.7, below, we investigate

the case when C is infinite dihedral. We shall write CA (respectively CB) for the copy of

C in A (respectively B), and so G = A ∗CA=CB B.

If A is a (not necessarily proper) subgroup of a group G we define the A-normal closure

of a set S ⊂ A, denoted 〈〈S〉〉A, to be the normal closure of the set S in the abstract group

A, as opposed to the normal closure of S in G. Recall that a splitting A ∗C B is called

non-trivial if C � A,B.

Lemma 3.1.6. Assume that G is a one-ended one-relator group with torsion or G ∼=

Z ∗Cn, for n > 1. Suppose that G splits non-trivially as a free product with amalgamation

G ∼= A ∗C B where C is infinite cyclic. Then C is not a subgroup of T .

Proof. Suppose that C is infinite cyclic and is contained in T , and we shall find a con-

tradiction. As C ≤ T , we can apply Lemma 3.1.5 to get that, without loss of generality,

A ∼= Fm ∗A1 ∗A2 ∗ . . . with each Ai = 〈ai〉 non-trivial cyclic of order ni dividing n and Fm

is free of rank m. Now, we have two cases: either the root R of the relator Rn is contained

in a conjugate of A or is contained in a conjugate of B.

• Suppose R ∈ g−1Bg. If A contains torsion, so A1 = 〈a1〉 is non-trivial, then a1 is

conjugate in G to a power of gRg−1 ∈ B, and by the conjugacy theorem for free
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products with amalgamation, which is Proposition 2.4.3, we have that a1 is conjugate

to an element of CA, a contradiction as CA is torsion-free.

If A is torsion-free then A ∼= Fm is the A-normal closure of CA ∼= Z, as A ≤ T , and

so the abstract group A is the normal closure of a single element. As a group with

more generators than relators is infinite, we have that m = 1, and indeed CA = A,

a contradiction. Therefore, if CA ∼= C is infinite cyclic then R cannot be contained

in a conjugate of B.

• Suppose that R ∈ g−1Ag, and by re-writing R we can assume that R ∈ A and indeed

that R = a1, where A1 = 〈a1〉. If A2 is non-trivial then the generator a2 of A2 is

conjugate to a power of a1, and so there exists some k ∈ Z such that ak1 and a2 are

conjugate in G but not in A. Therefore, by the conjugacy theorem for free products

with amalgamation, ak1 and a2 are both contained in conjugates of the amalgamating

subgroup CA, a contradiction as CA is torsion-free. Thus, A ∼= Fm ∗A1 where Fm is

free and A1 is finite cyclic.

Now, as the subgroup T is the G-normal closure of R = a1, and because A is a

subgroup of T we have that CA intersects the A-normal closure of a1 non-trivially,

〈〈a1〉〉A ∩CA 6= 1. Then, as A/〈〈a1〉〉 ∼= Fm is torsion-free and because CA is infinite

cyclic, we have that CA is completely contained in the A-normal closure of a1. On

the other hand, as A is contained in the G-normal closure of a1 we have that the

A-normal closure of a1 and CA must be the whole of A, 〈〈a1, CA〉〉A = A. However,

as CA ≤ 〈〈a1〉〉A this means that the group A ∼= Fm ∗ A1 is the normal closure of

a single element, and so m = 0. Thus, A = A1 is finite cyclic, a contradiction.

Therefore, if CA ∼= C is infinite cyclic then R cannot be contained in a conjugate of

A.

We conclude that if C is infinite cyclic then R cannot be contained in a conjugate of A or

of B. This is a contradiction, as required.

We shall now analyse how a one-ended one-relator group with torsion can split as a

free-product with amalgamation over an infinite dihedral group. This, combined with

Lemma 3.1.6, shall complete our proof of Lemma 3.1.8. We shall again use CA to denote

the copy of the amalgamating subgroup C contained in the factor group A.

If A is a (not necessarily proper) subgroup of a group G we say two elements g, h ∈

A ≤ G are A-conjugate if there exists an element k ∈ A such that k−1gk = h. Recall that
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a splitting A ∗C B is called non-trivial if A � C and B � C.

Lemma 3.1.7. Assume that G = 〈X;Rn〉 is a one-ended one-relator group with torsion.

Suppose that G splits non-trivially as a free product with amalgamation G ∼= A∗C B where

C is infinite dihedral. Then n = 2 and either A or B is infinite dihedral.

Proof. As C is infinite dihedral it is generated by two elements of order two, C ∼= C2 ∗C2,

and so C ≤ T . We can then apply Lemma 3.1.5 to get that, without loss of generality,

A ≤ T and A ∼= Fm ∗A1 ∗A2 ∗ . . . with each Ai = 〈ai〉 non-trivial cyclic of order ni dividing

n and Fm is free of rank m. Then m = 0, because A is equal to the A-normal closure

of CA along with the finite cyclic factors, A = 〈〈CA, A1, A2, . . .〉〉A. Note that A1 = 〈a1〉

and A2 = 〈a2〉 must be non-trivial as otherwise A is finite cyclic. Suppose, without loss of

generality, that A1 is of maximal order in the free-factor groups Ai = 〈ai〉.

In order to prove the lemma it is sufficient to prove that A is infinite dihedral. To

prove this we shall use the fact that, for all i > 1, a1 and ai are both conjugates of powers

of the element R. There are two cases: either R is contained in a conjugate of A or R is

contained in a conjugate of B.

• Suppose R ∈ g−1Bg. Then by the conjugacy theorem for free products with amal-

gamation we have that conjugates of a1 and ai are contained in the free-factor group

CA, and so a1 and each ai for i > 1 have order two. Suppose A is not infinite

dihedral, then A3 = 〈a3〉 is non-trivial. As A is a free product with a1, a2 and a3 in

different free factors we have that these three elements are pairwise non-conjugate

in A. However, they are each A-conjugate to an element of CA and CA is infinite

dihedral. As infinite dihedral groups have precisely two conjugacy classes of ele-

ments of finite order, we have that two of a1, a2 and a3 are A-conjugate, which is a

contradiction. Thus, A is infinite dihedral, as required.

• Suppose R ∈ g−1Ag. Then we can re-write R to get that R ∈ A, and indeed that

R = a1 (because A1 has maximal order in the subgroups Ai). Therefore, ai is a

G-conjugate of a power of a1, ak1 say, but not an A-conjugate of ak1. Thus, applying

the conjugacy theorem for free products with amalgamation, we have that an A-

conjugate of a
n/2
1 is contained in CA and an A-conjugate of ai is contained in CA.

As with the previous case, applying the fact that the infinite dihedral group has two

conjugacy classes of elements of order two yields that A = A1 ∗ A2 with A2
∼= C2,

and here A1
∼= Cn.
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Note that we can rewrite G using some inner automorphism so that we can assume

a
n/2
1 is contained in CA, and we shall write â2 := h−1a2h for the conjugate of a2

contained in CA, so a
n/2
1 , â2 ∈ CA. We shall now prove that we can assume that

CA = 〈an/21 , â2〉. To see this, note that a
n/2
1 and â2 are both contained in CA

but are not conjugate in CA ∼= C2 ∗ C2. As the infinite dihedral group has two

conjugacy classes of elements of order two, we have that CA is generated by a CA-

conjugate of a
n/2
1 and a CA-conjugate of â2. Therefore, CA = 〈h−1

1 a
n/2
1 h1, h

−1
2 â2h2〉

where h1, h2 ∈ CA, and we can rewrite G such that CA = 〈an/21 , h−1
3 â2h3〉 where

h3, â2 ∈ CA. Now, CA = 〈an/21 〉 ∗ 〈h
−1
3 â2h3〉 because both a

n/2
1 and h−1

3 â2h3 have

order two and have no relations between them (otherwise CA would not be infinite

dihedral), and so as â2 ∈ CA = 〈an/21 〉 ∗ 〈h
−1
3 â2h3〉, we have that h3 ∈ 〈an/21 〉.

Therefore, CA = 〈an/21 , â2〉, as required.

To complete the proof of this case it is sufficient to prove that n = 2, as A ∼= Cn ∗C2.

Now, G = 〈X;Rn〉 and consider G′ = 〈X;Rn/2〉. Then the image of C in G′ is

trivial and so G′ ∼= A′ ∗ B′ where A′ ∼= Cn/2 and B′ is non-trivial (as Ĝ′ ∼= 〈X;R〉

is non-trivial and B′ surjects onto Ĝ′). Thus, G′ is infinitely ended. Then, because

Ĝ′ ∼= Ĝ we can apply Lemma 2.9.7 to get that G is infinitely ended, a contradiction.

Thus, n = 2 and A is infinite dihedral, as required.

We therefore conclude that if G = 〈X;Rn〉 is one-ended and splits as a free product with

amalgamation G ∼= A ∗C B where C is infinite dihedral then n = 2 and either A or B is

infinite dihedral, as required.

We now give our classification of the ways in which a one-ended one-relator group

with torsion and the group Z ∗ Cn can split as a free product with amalgamation over a

virtually-cyclic subgroup. Recall that for G = 〈X;Rn〉, T := 〈〈R〉〉 denotes the normal

closure of the element R and that a splitting A ∗C B is called non-trivial if C � A,B.

Lemma 3.1.8. Let G = 〈X;Rn〉 be a one-ended one-relator group with torsion. If G

splits non-trivially as a free product with amalgamation G ∼= A ∗C B over a virtually-Z

subgroup C then one of the following occurs.

• C 6≤ T , and so C is a subgroup of a malnormal, infinite cyclic subgroup of G.

• n = 2 and both C and A are infinite dihedral.

• n = 2 and both C and B are infinite dihedral.
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Proof. Recall that by Lemma 3.1.2, C is either infinite cyclic or infinite dihedral. By

Lemma 3.1.3, if C 6≤ T then C is a subgroup of an infinite cyclic, malnormal subgroup of

G. Thus, it suffices to prove that if C ≤ T then C is infinite dihedral, n = 2, and one of A

or B is infinite dihedral. So, suppose C ≤ T . Then, by Lemma 3.1.6, C is infinite dihedral,

and then by Lemma 3.1.7 n = 2 and one of A or B is infinite dihedral, as required.

We conclude Section 3.1.1 with the following theorem, which gives a description of the

JSJ-decompositions of one-ended one-relator groups with torsion.

Theorem 3.1.9. Suppose G = 〈X;Rn〉 is a one-ended one-relator group with torsion.

Suppose n > 2. If v is an elementary vertex in the JSJ-decomposition of G then Gv 6≤

T . Therefore, every elementary vertex group is a subgroup of malnormal, infinite cyclic

subgroup of G. Suppose n = 2. Then there is the additional possibility of elementary

vertices of degree one whose vertex groups and adjacent edge groups are infinite-dihedral.

Proof. Let Γ be the graph underlying the JSJ-decomposition of G. Let v be an arbitrary

elementary vertex of Γ and let e be an edge incident to v. We shall prove that either

Ge 6≤ T (which implies Gv 6≤ T ) or n = 2 and v is an elementary vertex of degree one

whose vertex group and adjacent edge group are each infinite dihedral. This proves the

theorem. Recall that Ge is virtually-Z.

Suppose e is not a separating edge of Γ. Then G splits as an HNN-extension over Ge,

so G = A∗Gte=G′e . Thus, by Lemma 3.1.4, we have that Ge 6≤ T , as required.

Suppose e is a separating edge of Γ. Then G splits as a free product with amalgamation

over Ge, so G = A ∗Ge B where Ge � A,B. Thus, by Lemma 3.1.8, we have that either

Ge 6≤ T or n = 2 and one of A or B is infinite dihedral. Suppose, without loss of generality,

that A is infinite dihedral, then A corresponds to an elementary vertex v of degree one in

the JSJ-decomposition, where Gv = A is infinite dihedral and Ge is infinite dihedral, by

Lemma 3.1.8, as required.

3.1.2 JSJ-decompositions in the two-generator case

In this section we give, in a certain sense, the possibilities for the JSJ-decomposition of a

one-ended two-generator, one-relator group with torsion. We begin with three technical

lemmata, which we then combine with Lemma 3.1.4 and Lemma 3.1.8 to see how a two-

generator, one-relator group with torsion can split over a virtually-cyclic subgroup. We

do this for splittings as free products with amalgamation in Proposition 3.1.13 and for
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splittings as HNN-extensions in Proposition 3.1.14, and both of these propositions have

substantial proofs. We then apply this analysis in Theorem 3.1.15 to determine the possible

graphs underlying the JSJ-decomposition of a one-ended two-generator, one-relator group

with torsion, and in Theorem 3.1.16 we apply this structural theorem to obtain a finite-

index description of the outer automorphism groups of these groups. The purpose of the

later sections of this chapter, beginning at Section 3.2, is to use this finite-index description

to give a classification of these outer automorphism groups up to isomorphism.

Applying torsion-free results. One-ended two-generator torsion-free hyperbolic groups

have a very strict structure, in the sense that the graph underlying the JSJ-decomposition

(in the sense of Sela) of such a group is either a single vertex or a single vertex with a loop

edge. This was proven in a paper of Kapovich–Weidmann [KW99]. Now, Lemma 3.1.4 and

Lemma 3.1.8 prove that the virtually-Z subgroups which a one-ended two-generator, one-

relator group with torsion can split over are similarly placed in the groups as the virtually-

Z subgroups of torsion-free hyperbolic groups, in the sense that they are subgroups of

malnormal infinite cyclic subgroups (apart from when G ∼= A ∗C B with C and one of A

or B infinite dihedral, but, it turns out, we can ignore this case). This observation allows

us to apply the proofs from Kapovich–Weidmann’s paper with very little modification

to the setting of two-generator, one-relator groups with torsion. This section, especially

Propositions 3.1.13 and 3.1.14, parallels their argument. Theorem 3.1.16, which is our

finite-index description of the outer automorphism groups of two-generator, one-relator

groups with torsion, then follows.

We begin with the following technical lemma, Lemma 3.1.10, on malnormality. It is

applied in Proposition 3.1.13 and is proven using Propositions 2.4.3 and 2.4.4, which deal

with, respectively, conjugation and commutativity in free products with amalgamation.

Lemma 3.1.10 appears in Kapovich–Weidmann’s paper without proof, but we include the

proof for completeness.

Lemma 3.1.10. Suppose G = A ∗C B where A = 〈h〉 is infinite cyclic and where C is

malnormal in B. Then A is malnormal in G.

Proof. Suppose that A is not malnormal in G. Then there exists some integers i, j ∈ Z

and some g ∈ G such that g−1hig = hj . Note that both L(hi) ≤ 1 and L(hj) ≤ 1, which

means that one of (1) or (2) from Proposition 2.4.3 is applicable here (but (3) is never

applicable). There are two cases: Either L(hi) = 0 or L(hi) = 1. The proof of the former
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case is substantially longer then the latter case, so we begin with the shorter case.

Firstly, suppose that L(hi) = 1, and so hi ∈ A \ C. Then, hi and hj are conjugate in

A, so i = j. Thus, g centralises hi, and applying Proposition 2.4.4 we have that g ∈ A, as

required.

Secondly, suppose that L(hi) = 0, and so hi ∈ C. Then hj is conjugate to hi and so,

applying (1) from Proposition 2.4.3, there is a sequence

hi, c1, c2, . . . , ct, h
j

where ck ∈ C\{1} and consecutive terms in the sequence are conjugate in a factor. Assume

that t ≥ 1 is minimal for such a sequence connecting hi and hj . Then hi is conjugate to

c1 in a factor. As C is malnormal in B, we have that hi is conjugate to c1 in A. However,

A is abelian and so hi = c1. Thus, we can remove c1 from the sequence, which contradicts

the minimality of t. Therefore, we have that hi is conjugate to hj in a factor, and again

using the malnormality of C in B this factor must be A, so hi = hj which implies that

i = j.

Write g using the normal form for free products with amalgamation, so g = w1 . . . wt

and if t > 1 then wi 6∈ C. We shall prove that t = 1 which proves that g ∈ A, as

required, because C is malnormal in B. Now, L(w−1
t . . . w−1

1 hiw1 . . . wt) = 0 because

g−1hig = hi ∈ C. The only place where reduction can happen is over the subword

w−1
1 hiw1. There are three cases: w−1

1 hiw1 ∈ C, w−1
1 hi ∈ C, or hiw1 ∈ C. If either of the

latter two cases happen then w1 ∈ C and so t = 1, as required. So, suppose w−1
1 hiw1 ∈ C

and suppose t ≥ 2, then as C is malnormal in B we have that w1 ∈ A and so g is equal to

the following word, where hi0 ∈ C.

w−1
t . . . w−1

2 hi0w2 . . . wt

Again, reduction must happen in this word, and the only place where this can happen is

over the subword w−1
2 hi0w2, and again because w2 6∈ C we require w−1

2 hi0w2 ∈ C, which,

again using the malnormality of C in B, implies that w2 ∈ A. This means that w1, w2 ∈ A,

and therefore w1w2 . . . wt is not a normal form for g, a contradiction. Thus, t = 1 and so

g ∈ A, which lets us conclude that A is malnormal in G, as required.

The following lemma tells us how virtually-cyclic subgroups not contained in T are

embedded into G = 〈X;Rn〉, and is the analogue of Kapovich–Weidmann’s Proposition

3.4. Recall that if G = 〈X;Rn〉 then T := 〈〈R〉〉 denotes the normal closure of the word

R.
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Lemma 3.1.11 (Proposition 3.4, Kapovich–Weidmann). The following properties hold

for G = 〈X;Rn〉 an arbitrary one relator group with torsion.

• Every cyclic subgroup of G which is not a subgroup of T is contained in a unique

maximal cyclic subgroup of G.

• Every cyclic subgroup of G which is not a subgroup of T is maximal cyclic if and

only if it is malnormal.

• If a virtually-cyclic subgroup has non-trivial intersection with T then it is wholly

contained in T .

Proof. Recall that the only virtually-cyclic subgroups of G are either cyclic or infinite

dihedral, by Lemma 3.1.3.

To prove the first point, suppose 〈g〉 6≤ T and let C be the unique maximal virtually-

cyclic group containing g (recall that this subgroup C exists because G is hyperbolic). If

C is not cyclic it must be infinite dihedral, and thus can be generated by two elements of

order two. Thus, C ≤ T , so g ∈ T , a contradiction.

We shall now prove the second point. Suppose C 6≤ T is malnormal but not maximal

cyclic. Then C � C0 with C0 cyclic. Let g ∈ C0 \C, then g commutes with every element

of C and so Cg = C. This contradicts the malnormality of C. Therefore, C is maximal

cyclic, as required. On the other hand, suppose C 6≤ T is maximal cyclic in G. Then by

Lemma 3.1.3, C is contained in a malnormal cyclic subgroup C0 of G. As C is maximal

cyclic we have that C = C0, so C is malnormal in G.

To prove the third point, note that G/T = 〈X;R〉 where R is not a proper power.

Thus, G/T is torsion-free. Now, suppose C is cyclic and that C ∩ T 6= 1, then G/T is

torsion free so C ≤ T . As infinite dihedral groups are wholly contained in T , this proves

the third point.

Separated subgroups. Let G be a group and let A and B be torsion-free subgroups of

G. Then A and B are said to be separated1 if for every g ∈ G the following holds.

Ag ∩B = 1
1Kapovich–Weidmann call this concept “conjugacy separated”. However, Kharlampovich–Myasnikov

reserve the term “conjugacy separated” for a different notion, and this notion underlies the results

from which Lemma 3.1.12 follows [KM98]. Our definition of “separated” is related to Kharlampovich–

Myasnikov’s definition of a “separated HNN-extension” [KM98].
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The following lemma is an immediate consequence of Propositions 2.4.9 2.4.10 2.4.12 and 2.4.11

because G is hyperbolic. It allows us to apply malnormality in our analysis of virtually-

cyclic splittings.

Lemma 3.1.12 (Lemma 3.6, Kapovich–Weidmann). Let G be an arbitrary one-relator

group with torsion.

• Suppose that G is an amalgamated free product of the form A ∗〈a=b〉B where a and b

are non-trivial elements of infinite order. Then at least one of the subgroups CA = 〈a〉

and CB = 〈b〉 is malnormal in A and B respectively.

• Suppose that G is an HNN-extension of the form 〈H, t; at = b〉 where a and b are

non-trivial elements of H. Then A = 〈a〉 and B = 〈b〉 are separated in H. Moreover,

at least one of the subgroups A, B is malnormal in H.

• If G = A ∗〈a=b〉 B then A and B are hyperbolic.

• If G = 〈H, t; at = b〉 then H is hyperbolic.

We shall now prove Proposition 3.1.13, which is our first main technical result of this

section. This result classifies how a two-generator, one-relator group with torsion G can

split as a free product with amalgamation over an infinite cyclic subgroup. Note that we

make no assumption about the number of ends of G, while in the analogous result for

HNN-extensions, which is Proposition 3.1.14, we assume that the group G is one-ended.

We cannot assume one-ended in the following proposition as in the HNN-case we apply

Proposition 3.1.13 to an arbitrary two-generator, one-relator group with torsion, making no

assumptions about the number of ends. At certain points in the proof of Proposition 3.1.13

we split our analysis into the one-ended and the infinitely ended case, so the case when G

is freely indecomposable and the case when G ∼= Z ∗Cn, although whenever we do this we

obtain identical intermediate results for both cases.

Proposition 3.1.13 (Proposition 3.7, Kapovich–Weidmann). Let G = A ∗C B be a two-

generator, one-relator group with torsion and let C = 〈c〉 be infinite-cyclic. Assume also

that the splitting is non-trivial, that is A 6= C and B 6= C. Then either A or B is cyclic.

In the case that A is cyclic (the case that B is cyclic is analogous) we further get the

following.

1. The group G is an amalgam of the form G = 〈a〉∗〈am=c〉B where a generates A = 〈a〉

and C = 〈am〉 = 〈c〉 is malnormal in B.



CHAPTER 3. TWO-GENERATOR, ONE RELATOR GROUPS WITH TORSION 105

2. There exists an element b ∈ B such that G = 〈a, b〉 and B = 〈am = c, b〉. In

particular B is also two-generated.

Proof. As C is cyclic it is not a subgroup of T , by Lemma 3.1.8, and has trivial intersection

with the subgroup T , by Lemma 3.1.11. We shall begin by proving that, simultaneously,

either A or B is cyclic and that (1) holds. By Lemma 3.1.12, C is malnormal in A or B,

so suppose, without loss of generality, that C is malnormal in B. Now, C is contained in

a unique maximal virtually-cyclic subgroup A0 of G, and because C intersects T trivially

A0 is infinite cyclic while by Lemma 3.1.11 we have that A0 is malnormal in G. Note that

A0 ≤ A because C is malnormal in B. Now, by Lemma 3.1.12, A is hyperbolic and so C is

contained in a unique maximal, virtually-cyclic subgroup of A, and this must be A0. We

shall now prove that A0 = A, which will complete the proof of (1). Assume otherwise, so

A0 � A, and we shall look for a contradiction. Then G can be written as an amalgam in

the following way.

G = A ∗C B

= A ∗A0 A0 ∗C B

= A ∗A0 B0

Suppose G is one-ended. Then we know that A0 is malnormal in A while, by Lemma 3.1.10,

its image is malnormal in B0 = A0∗CB. However, one-ended two-generated groups cannot

have the form P ∗QR where Q is malnormal in both P and R, by Proposition 2.4.8. Thus,

we have our required contradiction, and so A = A0. Therefore, (1) holds for G one-ended.

Now, suppose G is infinitely ended. Then G ∼= Z ∗ Cn = 〈x, y;xn〉, and recall that

G = A ∗A0 B0 where A0
∼= Z. Consider the generator x ∈ G of finite order. As it has finite

order it must be contained in one of the factor groups A or B0. However, x ∈ T while A0

intersects T trivially and so A0 is not contained in the normal closure of x. This means

that when we quotient out the subgroup T to obtain Ĝ we yield an amalgam where one

of A or B0 is unaffected, so we have that Ĝ = A ∗A0 B̂0 or Ĝ = Â ∗A0 B0. However, Ĝ is

infinite cyclic and so the first case implies that A = A0 = B̂0 while the second case implies

that Â = A0 = B0. However, by assumption we have that A0 6= A, and so A0 = B0. This

means that B = C, which contradicts the non-triviality of the splitting G = A∗CB. Thus,

we have our required contradiction, and so A = A0. This completes the proof of (1).

In order to prove (2) we consider a generating pair X = (p, q) of G. By Corollary 2.4.7,

this pair is Nielsen equivalent to another generating pair X ′ such that there is a subset
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X of X ′ that lies in a conjugate of either A or B, and there is an element of 〈X〉 that

is conjugate to an element of C \ {1}. Now, if |X| = 2 then X = X ′. This means that

X ′ lies in a conjugate of A or of B, and so cannot generate G, a contradiction. Thus, X

consists of a single element x such that xk is conjugate to an element of C for some integer

k. Without loss of generality, we can assume that xk ∈ C, as we can conjugate X ′ and

conjugation is a Nielsen transformation. Therefore, x is contained in the maximal infinite

cyclic subgroup of G containing C, which is the subgroup A = 〈a〉. Thus, G = 〈g, a〉

for some g ∈ G. We shall prove that g ∈ B and then that B = 〈am = c, g〉, which will

complete the proof of (2).

Pick g such that the length of g, L(g), is minimal such that g generates G with a.

Then the normal form of g begins and ends with elements of B \ C, and so g is of the

following form where ui ∈ B \ C and vi ∈ A \ C.

g = u1v1 . . . ul−1vl−1ul

We shall prove that l = 1, and so g ∈ B. It is then sufficient to prove that B = 〈c = an, g〉.

Assume l ≥ 2, so L(g) ≥ 3.

We begin by showing that we can assume ulc
ku1 6∈ C for all non-zero integers k ∈

Z \ {0}. To do this, suppose ulc
ku1 ∈ C for some non-zero integer k ∈ Z \ {0}. Then

replace g with gck (so replace ul with ulc
k) where 〈c〉 = C. As C is a subgroup of both A

and B, this does not change the length of g, and because c ∈ 〈a〉 we have that G is still

generated by a and the new g. It then holds that in the new g, ulc
pu1 6∈ C for all non-zero

integers p ∈ Z \ {0}, and this is because ulu1 ∈ C so ul = cqu−1
1 for some integer q ∈ Z,

and so ulc
pu1 = cqu−1

1 cpu1 6∈ C by the malnormality of C in B (recall that u1 ∈ B \ C).

Therefore, we can assume that ulc
ku1 6∈ C for all non-zero integers k ∈ Z \ {0}.

Our next step is to show that any positive power gk has a normal form of type u1 . . . ul

and L(gk) ≥ 3. This is clear unless the normal form of g is of one of the following two

forms.

(i) g = waiw−1 with w = u1v1 . . . ut and ai ∈ A \ C.

(ii) g = wbw−1 with w = u1v1 . . . ut and b ∈ B \ C.

Case (i) cannot happen as then w generates G with a, but as L(w) < L(g) this is a

contradiction. In (ii), the normal form for gk has the following form and so is of the

required type.

U1V1 . . . Vt−1(Utb
kU−1

t )V −1
t−1 . . . V

−1
1 U−1

1
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We shall write gk = u1Vkul where Vk has a normal form which begins and ends with

elements of A.

We shall now combine the assumption that ulc
ku1 6∈ C for all non-zero integers k ∈

Z \ {0} with the above fact regarding the form of gk to prove that the number l in the

normal form of g cannot be greater than one, so l 6≥ 2, and so g ∈ B (because g generates

G with a ∈ A). To do this, pick some element h ∈ B \ C. As L(h) = 1 and h 6∈ A, h is

not a power of a nor of g (all powers of g have length greater than one). Combining this

with the fact that G = 〈a, g〉, we have that h = ai0gj0 . . . aipgjp where iq 6= 0 for 0 < q ≤ p

and jq 6= 0 for 0 ≤ q < p. This means that h has the following form, where w0 = ai0u1

and wt = ula
itu1 for 0 < t ≤ p.

h = (ai0u1Vj0ul)(a
i1u1Vj1ul) . . . (a

ip−1u1Vjp−1ul)(a
ipu1Vjpul)

= w0Vj0w1Vj1w2 . . . wp−1Vjp−1wpVjpul

Note that w0 = ai0u1 6∈ A as u1 ∈ B \ C. Also note that wt 6∈ A for 0 < t ≤ p and

to see this suppose otherwise. Then ula
itu1 is not a normal form so ait ∈ C (because

ul, u1 ∈ B \C). This means that ula
itu1 ∈ B, but that we have that ula

itu1 ∈ A∩B = C,

which contradicts the assumption that ulc
ku1 6∈ C for all non-zero integers k. We now

observe that L(h) ≥ L(w0) +L(Vj0) + 1 ≥ 3, where the final “+1” comes from w1 if p > 1

and from ul otherwise. This means that the case l ≥ 2 is impossible, and so g ∈ B.

Therefore, there exists a generating pair (a, b) of G where 〈a〉 = A and b ∈ B. To

complete the proof of (2), it suffices to prove that B is generated by b and c = am where

C = 〈c〉. To do this, let g ∈ B be arbitrary and view g as a word of minimal length over

a and b as follows, where it 6= 0 for 0 < t ≤ p and jt 6= 0 for 0 ≤ t < p.

g = ai0bj0 . . . aipbjp

Suppose there exists some it which does not divide m (and so ait 6∈ B) and look for a

contradiction. We can isolate those a-terms ait with m not dividing it and write wt for the

words partitioning them as follows, where m does not divide kt and kt 6= 0 for 0 < t ≤ r.

g = ak0W0a
k1W1 . . . a

krWr

Note that Wt ∈ B \ C for 0 ≤ t < r, because Wt ∈ B by construction while if Wt ∈ C

then Wt ∈ 〈a〉 which contradicts the minimal length of g. Therefore, this expression is a

normal form for g. By assumption, there exists some it which does not divide m and so
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L(g) > 1. Therefore, g 6∈ B, a contradiction. Thus, g must be a word in am and in b, and

so B = 〈c = am, b〉 which completes the proof of (2).

We shall now prove Proposition 3.1.14, which is our second main technical result of

this section. This result classifies how a one-ended two-generator, one-relator group with

torsion G can split as a HNN-extension over a virtually-cyclic subgroup. Note that we

assume G is one-ended, while in the analogous result for free products with amalgamation,

which is Proposition 3.1.13, we make no assumptions about the ends of G.

Proposition 3.1.14 (Proposition 3.8, Kapovich–Weidmann). Let G be a one-ended two-

generator, one-relator group with torsion which splits as an HNN-extension over a virtually-

cyclic subgroup G = H∗CtA=CB
. Then either CA or CB is malnormal in G. In the case

that CB is malnormal (the case that CA is malnormal is analogous) we get that G has

the following HNN-presentation where a, b are non-trivial elements of H, the subgroups

A = 〈a〉 and B = 〈b〉 are malnormal in H, and CA = 〈am〉 while CB = 〈b〉.

G = 〈H, t; t−1amt = b〉

Moreover, the following hold.

1. The group G has a generating pair (th, a), where h ∈ H.

2. The group H is not cyclic.

3. The group H has a generating pair (a, h−1bh), where h is as in (1).

4. The group H is a two-generator, one-relator group with torsion.

Proof. Suppose G = H∗CtA=CB
where CA ∼= CB are isomorphic virtually-cyclic groups.

Then, by Lemma 3.1.4, CA (respectively CB) is a subgroup of a malnormal infinite cyclic

subgroup A = 〈a〉 (respectively B = 〈b〉). Moreover, by Lemma 3.1.12, either A = CA or

B = CB, so we can assume that B = CB. Thus, G has the prescribed HNN-presentation.

The group H cannot be cyclic because Lemma 3.1.12 gives us that 〈am〉 and B are

separated, which is impossible if H is cyclic. Thus, (2) holds.

We shall prove (3) under the assumption that (1) holds. Write d = h−1bh and s = th,

so 〈s, a〉 = G and we shall prove that 〈a, d〉 = H. Note that 〈a, d〉 ≤ H, so we assume that

it is a proper subgroup and look for a contradiction. So, suppose there exists g ∈ H \〈a, d〉.

Then g can be written in terms of a and s, as these elements generate G, and, moreover,

g can be written in terms of a, s and d. Write g as a word W in a, s and d such that
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the number of occurrences of s is minimal. That is, write g in the following way, where

hj ∈ 〈a, d〉 and k is minimal (note that hi can be trivial).

g =G W (a, s, d) = h0s
ε1h1s

ε2h2 . . . s
εkhk

Note that k > 0 as g 6∈ 〈a, d〉. If W has a subword of the form s−1alms(= (h−1t−1amth)l)

then this can be replaced by dl to gain a word with fewer s-terms. Similarly, if W has

a subword of the form sdls−1(= (tbt−1)l) then this can be replaced by alm to gain a

word with fewer s-terms. Therefore, as k is minimal W contains no subwords of the form

s−1alns or of the form sdls−1. It follows that this is a reduced sequence for g which

contains k t-terms. Applying Britton’s Lemma (Proposition 2.4.1), we have that g 6∈ H, a

contradiction. Therefore, H = 〈a, d〉, as required.

We shall now prove (1). Note that if m = 1 then there exists some integer i ∈ Z such

that G = 〈th, ai〉 where h ∈ H, by Proposition 2.4.2. Thus, G = 〈th, a〉 and so the result

holds when m = 1. Therefore, (3) holds when m = 1.

We use the case of m = 1 to prove the result for m > 1. To do this, assume m > 1

and begin by re-writing G in the following way, where H0 is the amalgam H ∗〈b=bm0 〉 〈b0〉.

G = 〈H, t; t−1amt = b〉

∼= 〈H, t; (t−1at)m = b〉

∼= 〈H, t0; t−1
0 at0 = b0, b

m
0 = b〉

∼= 〈H0, t0; t−1
0 at0 = b0〉

Note that 〈a〉 is malnormal in H0 as 〈a〉 is malnormal in H and 〈a〉 and 〈b0〉 are separated,

while 〈b0〉 is malnormal because it is conjugate to 〈a〉. The case of m = 1 can now be

applied. Therefore, G is generated by a pair (t0h0, a) with h0 ∈ H0, and we can apply (3)

to get that H0 is generated by the pair (h0ah
−1
0 , b0) (note that we have conjugated by h0).

We now prove that h0 ∈ H.

Now, because (t0h0, a) is a generating pair for G then so is (h0t0, t
−1
0 at0) = (h0t0, b0).

Thus, (bi0h0t0, b0) is a generating pair of G for all integers i which means that we can

assume that the word h0 ∈ H0 is not contained in 〈bm0 = b〉. Therefore, h0 has the

following form in the amalgam H0 = H ∗〈b=bm0 〉 〈b0〉, where hj ∈ H \〈b〉 and bj ∈ 〈b0〉\ 〈bm0 〉

but h1 and hl+1 are possible trivial.

h1b1h2b2 . . . hlblhl+1
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As A = 〈a〉 is separated from B = 〈b〉, it is also separated from 〈b0〉, as b0 is a root of

b. This means that hl+1a
kh−1

l+1 ∈ H \ 〈b〉 for all non-zero integers k ∈ Z \ {0}, and so

h0a
kh−1

0 has a reduced sequence, with respect to the decomposition H0 = H ∗bm0 =b 〈b0〉, of

the following form, where hj and bj are as above and hl+1ah
−1
l+1 ∈ H \ 〈b〉.

h0a
kh−1

0 = h1b1 . . . hlbl(hl+1a
kh−1

l+1)b−1
l h−1

l . . . b−1
1 h−1

1

Assume that h0 6∈ H, which implies that l > 0 and L(h0a
kh−1

0 ) ≥ 3. Note that h−1
1 bj0h1 6∈

B for j 6= 0 as B = 〈b〉 is malnormal in H and b0 is a root of b. This means that an

arbitrary word over b0 and h0ah
−1
0 is either a proper power of b0 or has length greater

than or equal to 3. Now choose an element g ∈ H \ 〈b〉. Then L(g) ≤ 1 but g is not a

power of b0, and so g 6∈ 〈b0, h0ah
−1
0 〉, a contradiction. Thus, h0 ∈ H.

As h0 ∈ H and taking h := h−1
0 , we have that H0 = H ∗〈b=bm0 〉 〈b0〉 = 〈b0, hah−1〉

with h ∈ H, and by conjugating by b we can further assume that either h is trivial or

h ∈ H \ 〈b〉. Now, H0 is a two-generator subgroup of a one-relator group with torsion,

and so is either a two-generator, one-relator group with torsion or a free product of cyclic

groups. If H0
∼= Cp ∗ Cq with p and q both finite then H0 ≤ T := 〈〈R〉〉 so G/T = Ĝ ∼= Z

which means that G is infinitely ended by Lemma 2.9.7, a contradiction. If H0 is free

of rank two then G is torsion-free as amalgams of torsion-free groups are torsion free, a

contradiction. Therefore, H0 is a one-relator group with torsion and so we can apply (2)

from Proposition 3.1.13 to get that (b, hah−1) is a generating pair for H. Thus, as h ∈ H

we can conjugate this generating pair by h to get that (h−1bh, a) = (h−1t−1amth, a) is a

generating pair for H. Thus, (th, a) is a generating pair for H where h ∈ H, as required.

We conclude by proving (4), that H is a two-generator, one-relator group with torsion.

Suppose otherwise. Note that H is two-generated, by (3), so applying the fact that G is

a one-relator group with torsion this means that H is either a free product of two finite

cyclic groups or is free of rank two. If H is a free product of two finite cyclic groups

then H ≤ T := 〈〈R〉〉 so G/T = Ĝ ∼= Z and so G is infinitely ended, by Lemma 2.9.7,

a contradiction. Thus, H must be free of rank two. However, then H is torsion free

and as an HNN-extension of a torsion-free group is torsion-free we have that G is torsion

free, a contradiction. Therefore, H is a two-generator, one-relator group with torsion, as

required.

The JSJ-decompositions of one-ended two-generator, one-relator groups with
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torsion. We shall now apply Propositions 3.1.13 and 3.1.14 to prove the following results

on the structure of the JSJ-decomposition of a one-ended two-generator, one-relator group

with torsion. The first is the analogue of Theorem A from Kapovich–Weidmann’s paper

on the JSJ-decompositions of two-generator hyperbolic groups without torsion, and the

second is the analogue of Theorem B from their paper [KW99].

Theorem 3.1.15. Let G be a one-ended two-generator, one-relator group with torsion.

Suppose that G is the fundamental group of a graph of groups Γ where all edge stabilisers

are virtually-cyclic and no vertex-stabiliser is virtually-cyclic. Then the graph Γ underlying

Γ is one of the following.

• A single vertex with no edges.

• A single vertex with a single positive loop edge.

Proof. Consider a collapsing tree T for the graph of groups Γ, and write k for the number

of positive edges in Γ \T . Now, recall that G is isomorphic to the fundamental group of Γ

with respect to this collapsing tree, and so G can be described in the following way, where

the subgroup N is defined below.

π1(Γ, TΓ) =
∏
v∈VΓ

Gv ∗ F (EΓ)/N

Here, N is the normal closure of the following set.

{ee; e ∈ EΓ} ∪ {e; e ∈ ETΓ
} ∪ {e−1(gθe)e = (gθe); e ∈ EΓ, g ∈ Ge}

Therefore, G maps onto the free group on k generators, by collapsing the vertex groups

Gv. As G is a non-free two-generated group we have that k = 0 or k = 1. This means that

in order to prove the theorem it is sufficient to prove that T consists of a single vertex,

which is what we shall do.

Now, T inherits a graph of groups structure T from Γ, and the fundamental group H

of T is a subgroup of G. Indeed, if k = 0 then G = H while if k = 1 then G = H∗At=B
where A is the stabiliser of the positive edge from Γ\T . We shall begin by proving that H

is a two-generator, one-relator group with torsion. If k = 0 this clearly holds, as H = G.

Suppose k = 1. Then G = H∗At=B and as A is an edge stabiliser in Γ we have that A is

virtually-cyclic and so by Proposition 3.1.14, H is a two-generator, one-relator group with

torsion.
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We shall now prove that T consists of a single vertex, which completes the proof.

Suppose otherwise, then T contains a separating edge and so H splits as a free product

with amalgamation over this edge. As the edge stabilisers of T are virtually-cyclic, this

means that H = A ∗C B where C is virtually-Z. By Theorem 3.1.9, C is infinite cyclic.

Then, by Proposition 3.1.13, one of A or B is virtually-cyclic and so Γ contains a vertex

stabiliser which is virtually-cyclic, a contradiction. This completes the proof.

Modified JSJ-decompositions. Note that the JSJ-decomposition of a group (as defined

by Bowditch) may have elementary vertices of degree one, but that sinking each of these

into their unique adjacent vertex yields a canonical decomposition of the group as a graph

of groups. We shall call this new decomposition the modified JSJ-decomposition. We

maintain the notation rigid and orbifold from Bowditch’s definition, that is, a vertex in

the modified JSJ-decomposition of a group is a rigid (respectively, orbifold/elementary)

vertex if it corresponds to a rigid (respectively, orbifold/elementary) vertex in the JSJ-

decomposition.

We shall now use the above result, Theorem 3.1.15, to prove the following theorem,

Theorem 3.1.16, on the outer automorphism groups of two-generator, one-relator groups

with torsion. The proof shows that if G = 〈a, b;Rn〉 is one-ended then either G is Fuchsian

or G has modified JSJ-decomposition consisting of a single rigid vertex or a single rigid

vertex and a single elementary vertex connected by two positive edges, as in Figure 3.1,

and in each case the rigid vertex group is a two-generator, one-relator group with torsion.

In the proof we use the fact that if G ∼= Z∗Cn then Out(G) is finite, which is a well-known

result and is easily proven using the normal form for free products. However, for the sake

of completeness, we prove this fact on the outer automorphism groups of free products in

Section 3.5, and Section 3.5 is proven entirely independently of this current section.

Theorem 3.1.16. Let G be a one-ended two-generator, one-relator group with torsion.

Then either Out(G) is virtually-cyclic or G ∼= 〈a, b; [a, b]n〉 for some n > 1.

Proof. Note that G is a Fuchsian group if and only if G ∼= 〈a, b; [a, b]n〉 for some n > 1,

by Proposition 2.8.4. Therefore, we shall prove that if G is not Fuchsian then Out(G)

is virtually-cyclic. So, assume that G is not Fuchsian. We shall analyse the modified

JSJ-decomposition of G. Write V1 for the number of elementary vertices of the modified

JSJ-decomposition of G, V2 for the number of orbifold vertices, and V3 for the number of
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rigid vertices. Write E2 for the number of edges with origin an orbifold vertex, and E3 for

the number of edges with origin a rigid vertex.

We begin by proving that the modified JSJ-decomposition of G has an underlying

graph Γ which is either a single vertex, or two vertices connected by two positive edges.

To see that Γ has this form, push every elementary vertex into some adjacent vertex v

(note that this operation may change the group Gv of the adjacent vertex v). In this new

graph of groups Γ0 there are precisely V2 + V3 vertices, none of which are elementary,

and there are E2 + E3 − V1 positive edges. Now, all edge stabilisers are virtually-cyclic

and no vertex stabilisers are virtually-cyclic, so we can apply Theorem 3.1.15 to get that

the underlying graph Γ0 of Γ0 consists of a single vertex or a single vertex with a single

positive loop edge. Therefore, V2 +V3 = 1 and so Γ necessarily consists of a central either

orbifold or rigid vertex and k elementary vertices which are connected to the central vertex

with two positive edges. As each of these elementary vertices would result in a positive

edge of Γ0, k ≤ 1 as required.

If |VΓ| = 1 then Out(G) is finite by Proposition 2.8.2, as G is non-Fuchsian. So,

suppose that |VΓ| = 2, and we shall prove that neither vertex is an orbifold vertex by

proving that neither vertex contributes, in a certain sense, infinitely many automorphisms

to the outer automorphism group. Now, because |VΓ| = 2 we have that G is isomorphic

to an HNN-extension G = H∗At=B where A and B are virtually-cyclic, by sinking the

elementary vertex into the non-elementary one. Therefore, by Proposition 3.1.14, H is a

two-generator, one-relator group with torsion and G has a presentation of the following

form for some m 6= 0 (note that we have replaced t with th−1 in the results given by

Proposition 3.1.14).

G ∼= 〈a, b, t;R(a, b)n, t−1amt = b〉

This HNN-decomposition implies that G splits as a graph of groups as in Figure 3.1, with

vertices v and w such that Gv = 〈a, b;R(a, b)n〉, Gw = 〈c〉, positive edges e and f with

ι(e) = v = ι(f) such that Ge = 〈x〉 and Gf = 〈y〉, and with injections as follows.

θe : x 7→ a θe : x 7→ c

θf : y 7→ bm θf : y 7→ c

This graph of groups satisfies all the properties of a modified JSJ-decomposition, and by

uniqueness we conclude that this is, indeed, the modified JSJ-decomposition of G.

Therefore, by Proposition 2.11.6, to prove the theorem it is sufficient to prove that
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〈x〉 〈y〉

〈c〉

Gv = 〈a, b〉

Figure 3.1: If a non-Fuchsian two-generator, one-relator group with torsion

has a non-trivial modified JSJ-decomposition then it must look like the graph

of groups pictured. The group Gv is generated by the elements a and b and is

a two-generator, one-relator group with torsion while x, y and c all generate

infinite cyclic groups. Edge maps are given by x 7→ c, by y 7→ c, by x 7→ a and

by y 7→ bm.

PMCG(Gv) and PMCG(Gw) are finite. Note that PMCG(Gw) is finite as Out(Gw) ∼= C2

is finite. We shall now prove that PMCG(Gv) is finite, that is, we shall prove that there

are only finitely many outer automorphisms β̂ of Gv with a representative β ∈ Aut(Gv)

such that a 7→ g−1ag and bm 7→ h−1bmh for some g, h ∈ Gv. To do this, begin by noting

that taking βγ−1
h we can assume that h is trivial. Recall that Gv is a two-generator, one-

relator group with torsion, and therefore is either a free product Z∗Cn or Gv has only one

Nielsen equivalence class of generating pairs, by Proposition 2.2.2. If Gv ∼= Z ∗ Cn, then

Out(Gv) is finite which means that PMCG(Gv) is finite, as required. So, suppose that Gv

has a single Nielsen equivalence class of generating pairs. Then we can assume that β is a

Nielsen transformation and so a 7→ g−1ag, b 7→ b. By Proposition 2.2.1 we therefore have

that β̂ is trivial and so PMCG(Gv) is trivial, as required. This completes the proof of the

theorem.

3.1.3 Equations in free groups

An alternative approach to proving Theorem 3.1.16 (which is the purpose of Section 3.1)

would be to observe, as we do below using Proposition 3.1.17, that Out(G) is related

to equations in free groups, and then one can use Touikan’s treatment of these [Tou09]

to get the required results. We do this here. The solutions to equations in free groups

are relevant to these outer automorphism groups because finding automorphisms up to

conjugacy corresponds to solving the equations R(x, y) = R±1(a, b) in free groups (x and

y are the variables), which follows from the following proposition due to Magnus [MKS04,
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Theorem N5] and from the fact that the proposition’s converse is also true.

Proposition 3.1.17. Let G be a group on generators xν (ν = 1, 2, . . . , n) with a single

defining relator R(xν). If there exists a set of words Wν(xµ) such that the mapping

xν 7→Wν(xµ) (ν = 1, 2, . . . , n)

is a Nielsen transformation acting on the xν which defines an automorphism of G, then

R(Wν) is freely equal (as a word in the xν) to a transform

T (xν) ·R(xν)±1 · T−1(xν)

of R±1.

The converse of this Proposition is also true: If there exists a set of words Wν(xµ) such

that the mapping

xν 7→Wν(xµ) (ν = 1, 2, . . . , n)

is a Nielsen transformation φ acting on the xν and R(Wν) is freely equal (as a word in the

xν) to a transform

T (xν) ·R(xν)±1 · T−1(xν)

of R±1 then the Nielsen transformation φ defines an automorphism of G. This is true

because the mapping φ is a homomorphism, and because φ is a Nielsen transformation it

is surjective, and as two-generator, one-relator groups with torsion are Hopfian [Pri77a],

the map φ is in fact an automorphism.

We now call on the work of Touikan [Tou09]. Specifically, we need the following

proposition which outlines the forms a rank 2 solution to the equation w(x, y) = u can

take, u ∈ F (a, b). In the proposition, a solution is a map φ : x 7→ x′, y 7→ y′ with

x′, y′ ∈ F (a, b), such that w(x′, y′) ≡ u, or equivalently a pair (x′, y′) under the same

conditions. A rank 2 solution is a solution such that x′, y′ are not contained in some

cyclic subgroup of F (a, b). A primitive solution is a solution (x′, y′) such that (x′, y′) is

a primitive pair of F (a, b). Two equations w(x, y) = u and w′(x, y) = u′ are rationally

equivalent if there is a Nielsen Transformation of (x, y), ϕ say, such that wϕ = w′.

If (t, p) is a primitive pair of F (x, y), write

δ̄t : t 7→ pt

p 7→ p
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while γv denotes the (inner) automorphism of F (a, b) corresponding to conjugation by v,

γv : a 7→ v−1av, b 7→ v−1bv.

Proposition 3.1.18. Suppose that w(x, y) = u has rank 2 solutions and that w(x, y) is

neither primitive nor a proper power. Then there exists a finite set of solutions {φi : i ∈ I}

such that the rank 2 solutions are given by one of the following.

1. All solutions are of the form φiγ
j
u, j ∈ Z.

2. We have 〈x, y〉 = 〈H, t; t−1pt = q〉, with H = 〈p, q〉, w ∈ H, and we can write the

elements x, y as words x = X(p, t), y = Y (p, t). All solutions are are of the following

form, where j, k ∈ Z.

δ̄kt φiγ
j
u

3. Up to rational equivalence, w(x, y) ≡ [x, y] and all solutions are of the following form

where σ ∈ 〈δ̄x, δ̄y, γw〉.

σφi

Touikan specifies the finite set of solutions {φi : i ∈ I}, and these are precisely the

“∆-minimal” solutions. The map φ : x 7→ a, y 7→ b is a ∆-minimal solution to the equation

R(x, y) ≡ R(a, b), and so we can abuse notation to equate x with a and y with b, so we

can write τ̄ ◦ φ = τ̄ , φ ◦ τ = τ , and wφ = w for w ∈ F (a, b), and working mod Inn(G) we

see that if G = 〈a, b;Rn〉 then one of only precisely three things happen.

1. There are only finitely many solutions to R(x, y) ≡ R±1(a, b),

2. G ∼= 〈a, b;Sn〉, S ∈ 〈a−1ba, b〉,

3. G ∼= 〈a, b;Sn〉 with S = [a, b].

We now use Touikan’s solutions to prove the following result about the structure of

Out(G).

Theorem 3.1.16 (Alternative proof). Let G be a one-ended two-generator, one-relator

group with torsion. Then either Out(G) is virtually-cyclic or G ∼= 〈a, b; [a, b]n〉 for some

n > 1.

Proof. Firstly, note that if Out(G) is finite then it is trivially virtually-cyclic. So we restrict

ourselves to the case where Out(G) is infinite; to the second two cases of Touikan’s solution

to R(x, y) ≡ R(a, b). If the third case of Touikan’s solution holds then G ∼= 〈a, b; [a, b]n〉.
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We prove that if the second case of Touikan’s solution holds then Out(G) is virtually-

cyclic. Re-write R in terms of p and t, and then δ̄t ∈ Aut(G). We essentially prove that

the subgroup 〈δ̄t Inn(G)〉 has finite index in Out(G)2.

Assume the second case of Touikan’s solution holds, and define Sp to be the set of

automorphisms of G which (freely) fix R or send it to R−1. One can view the set Sp as the

set of primitive solutions to R(x, y) ≡ R(a, b) unioned with the set of primitive solutions

to R(x, y) ≡ R(a, b)−1. Clearly, Sp is closed under products and inverses, and contains

the identity automorphism, so Sp ≤ Aut(G), and noting that Sp Inn(G) = Aut(G), this

means that we have the following isomorphism.

Out(G) ∼=
Sp

Sp ∩ Inn(G)

We prove that Sp/Sp ∩ Inn(G) is virtually-cyclic, which proves the result. The subgroup

Sp contains as a normal subgroup Stabp(R) := Sp ∩ Stab(R), the primitive stabiliser of

R. We prove that Stabp(R)/Sp ∩ Inn(G) is virtually-cyclic, which is sufficient by certain

results from Touikan’s paper which we outline now. Proposition 2.21 of [Tou09] tells us

that if φ0, φ1 ∈ Sp and φ0, φ1 have the same terminal pair and the same terminal word

then there exists some element β ∈ Stabp(R) such that φ0β = φ1, while Proposition 2.19

of [Tou09] gives us that there are only finitely many possible terminal pairs and terminal

words. That is, Stabp(R) is of finite index in Sp, as required.

Write N := 〈γR〉 ≤ Inn(G), and clearly N ∩ Inn(G) = N because γR is inner, while

N E Stabp(R) because if Rφ ≡ Rε then γRφ = φγRε . We therefore have the following

factorisation of the map Stabp(R)� Stabp(R)/(Sp ∩ Inn(G)).

Stabp(R)�
Stabp(R)

N
�

Stabp(R)

Sp ∩ Inn(G)

We shall now use results from Touikan’s paper to prove that Stabp(R)/N is virtually-

cyclic, which proves the theorem. Looking at Touikan’s paper, Corollary 2.12 and Section

2.4.1 combine to give us that ∆ = 〈γR , δ̄t〉 is of finite index in Stabp(R). Thus, as ∆/N is

virtually-cyclic so is Stabp(R)/N , as required.

3.2 Out(G) embeds into Out(F (a, b))

In this section we assume that G is one ended and prove that Out(G) embeds into GL2(Z).

This embedding gives us a particularly nice way of viewing Out(G). We use this view,

2Later, in Theorem 3.2.1 from Section 3.2, we prove that no power of δ̄t is inner. Therefore, what we

are actually proving here is that Out(G) is virtually-Z.
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along with our knowledge of the JSJ-structure of G, in Sections 3.3 and 3.4 to determine

the possibilities for Out(G).

As G is one-ended there is a single Nielsen equivalence class of generating pairs of G,

by Proposition 2.2.2, and so every automorphism is tame, that is, every automorphism of

G = 〈a, b;Rn〉 lifts to an automorphism of the ambient free group F (a, b). As we explained

in Section 2.2, this implies that there exists a homomorphism θ from some subgroup H

of Out(F (a, b)) onto Out(G), θ : H � Out(G). The purpose of this section is to prove

Theorem 3.2.1, which states that the homomorphism θ is an isomorphism. Therefore,

using Proposition 2.2.1 we can view the elements of Out(G) as elements of GL2(Z). This

representation turns out to be a very powerful tool in our analysis of Out(G).

Recall that such a group G has a single Nielsen equivalence class by Proposition 2.2.2,

and so every automorphism has the form φ : a 7→ A, b 7→ B and this lifts to an automor-

phism φ0 of the ambient free group.

Theorem 3.2.1. Let G = 〈a, b;Rn〉 with n > 1 and R non-primitive. Then Out(G)

embeds in Out(F (a, b)). Moreover, the embedding is as follows. First realise an automor-

phism φ as a Nielsen transformation φ0 : a 7→ A, b 7→ B. Then the following map gives

the embedding.

Out(G)→ GL(2,Z)

φ̂ 7→

 σa(A) σb(A)

σa(B) σb(B)


Note that the embedding is the composition of the map φ̂ 7→ φ̂0 with the isomorphism

ξ : Out(F (a, b)) → GL2(Z) induced by the map ξ from Proposition 2.2.1. Therefore, to

prove the theorem it is sufficient to prove that if φ is an inner automorphism of G which

can be realised by the Nielsen transformation φ0 then φ0 defines an inner automorphism

of F (a, b).

Theorem 3.2.1 gives us the following corollary, which is proven by combining the

theorem with the fact that every automorphism of F (a, b) maps [a, b] to a conjugate of

[a, b]±1 [MKS04, Theorem 3.9].

Corollary 3.2.2. If G = 〈a, b; [a, b]n〉 with n > 1 then Out(G) ∼= GL2(Z).

Recall that GL2(Z) ∼= Out(F (a, b)). Then note that one can interpret this corollary as

saying Out(G) = Out(F (a, b)), rather than just Out(G) ∼= Out(F (a, b)). This is because
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the embedding given by Theorem 3.2.1 is the obvious embedding given by lifting the

automorphisms to the ambient free group.

The proof of Theorem 3.2.1 is split between two lemmata, corresponding to the cases

R ∈ F (a, b)′ and R 6∈ F (a, b)′, where F (a, b)′ denotes the derived subgroup of F (a, b). The

first case, when R ∈ F (a, b)′, is proven easily and we do this in Lemma 3.2.3. The proof

of the second case, when R 6∈ F (a, b)′, is more substantial, and is proven in Lemma 3.2.5

using Lemma 3.2.4.

Lemma 3.2.3. Let G = 〈a, b;Rn〉 with n > 1 and R ∈ F (a, b)′. Then Out(G) embeds in

Out(F (a, b)) by the map given in Theorem 3.2.1.

Proof. It is sufficient to prove that if φ is a Nielsen transformation and φ ∈ Inn(G) then

φ ∈ Inn(F (a, b)). So, let φ be some Nielsen transformation of (a, b) with aφ := A and

bφ := B and such that there exists W ∈ F (a, b) with aW =G A and bW =G B, and we

shall prove that φ ∈ Inn(F (a, b)). As aW = A and bW = B in G it must hold that aW = A

mod G′ and bW = B mod G′. However, Gab = 〈a, b; [a, b]〉 ∼= Z × Z, as R ∈ F (a, b)′.

Therefore, it must hold that σa(A) = 1 and σb(A) = 0, and that σa(B) = 0 and σb(B) = 1.

Then Proposition 2.2.1 implies that under the homomorphism ξ : Aut(G)→ GL2(Z), φ is

mapped to the identity matrix. This means that φ ∈ Inn(F (a, b)), as required.

We shall now prove Theorem 3.2.1 in the case when G = 〈a, b;Rn〉 with R 6∈ F (a, b)′.

We begin by proving Lemma 3.2.4, which gives a description of the automorphisms of

G by looking at their action on the abelianisation. We use this to prove Lemma 3.2.5,

which completes the proof of Theorem 3.2.1. The description of automorphisms given by

Lemma 3.2.4 is used at a number of points in the remaining sections of this chapter.

Now, by applying Moldovanskii rewriting to the relator R we can assume that σa(R) =

0. After rewriting, σb(R) 6= 0 while G being primitive corresponds to R = bε. We shall now

give the form which (outer) automorphisms of G = 〈a, b;Rn〉 must have when R 6∈ F (a, b)′.

Recall that if ψ ∈ Aut(G) then ψ̂ denotes the element of Out(G) with representative ψ.

The proof uses the fact that every automorphism of G is tame by Proposition 2.2.2.

Lemma 3.2.4. Let G = 〈a, b;Rn〉 with n > 1, σa(R) = 0, σb(R) 6= 0, and R 6= bε cyclically

reduced. Let ψ be an arbitrary automorphism of G. Then ψ̂ ∈ Out(G) has a representative

φ ∈ Aut(G) of the following form.

φ : a 7→ aε0bk

b 7→ bε1
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Proof. Note that if φ : a 7→ aε0bk, b 7→ bε1 is a homomorphism then it is also an auto-

morphism. Now, begin by assuming that ψ is a Nielsen transformation of (a, b) (we can

do this by Proposition 2.2.2). We shall write aψ := A and bψ := B, and so (A,B) is a

primitive pair of F (a, b).

Let π : G → Gab be the abelianisation map. The abelianisation has presentation

Gab = 〈x, y; ym, [x, y]〉 because σa(R) = 0 but σb(R) 6= 0 (here, x := aπ and y := bπ while

m := σb(R)). Let xiyα := Aπ and let xjyβ := Bπ. Then as G′ is characteristic in G,

automorphisms of G define automorphisms of Gab = G/G′, so Bπ has order m 6= 0. We

therefore have the following implications.

(xjyβ)m = 1⇒ xmjymβ = 1⇒ xmj = 1

This means that mj = 0 as x has infinite order in Gab. Thus, j = 0 and so Bπ = bβ.

Therefore, σa(B) = 0.

By Proposition 2.2.1, the Nielsen transformation ψ corresponds to the following matrix

of GL2(Z).  σa(A) σb(A)

0 σb(B)


Therefore, |σa(A)| = 1 = |σb(B)|. Taking k := σb(A), ε0 := σa(A) and ε1 := σb(B), the

Nielsen transformation, φ : a 7→ aε0bk, b 7→ bε1 also corresponds to this matrix. Now,

if two Nielsen transformations are equal mod Inn(F (a, b)) they must also be equal

mod Inn(G), and so we are done.

We now apply the above lemma, Lemma 3.2.4, to prove the following lemma which

completes the proof of Theorem 3.2.1. The fact that 〈b〉 is a malnormal subgroup of G =

〈a, b;Rn〉, n > 1, is used throughout the proof of the lemma (this fact is Proposition 2.9.2).

Lemma 3.2.5. Let G = 〈a, b;Rn〉 with n > 1, σa(R) = 0, σb(R) 6= 0 and R 6= bε. Then

Out(G) embeds in Out(F (a, b)).

Proof. It is sufficient to prove that if φ is an inner automorphism of G, φ ∈ Inn(G),

such that φ : a 7→ aε0bk, b 7→ bε1 then a ≡ aε0bk and b ≡ bε1 , by Lemma 3.2.4. So, let

φ : a 7→ aε0bk, b 7→ bε1 with either ε0 6= 1, or ε1 6= 1, or k 6= 0, and assume that φ is

inner, φ ∈ Inn(G). Therefore, there exists some word W (a, b) such that aW =G a
ε0bk and

bW =G bε1 . Now, W =G bi for some i ∈ Z and ε1 = 1, as 〈b〉 is malnormal in G, and so

we can assume W ≡ bi. We shall now prove that i 6= 0, or equivalently, that W 6=G 1.
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To do this, suppose that i = 0, so a =G aε0bk and b =G bε1 . If ε0 = −1 then a2 = bk,

but a has infinite order in the abelianisation while b has finite order, a contradiction.

Therefore, ε0 = 1 and so bε1 =G b and bk =G 1. Now, the assumptions of the lemma tells

us that b has infinite order, and so ε1 = 1 and k = 0, a contradiction. Thus, we have that

i 6= 0. Therefore, we have that b−iabi = aε0bk, so aε0bk−ia−1bi =G 1. We shall prove that

aε0bk−ia−1bi cannot represent the trivial word, which is a contradiction and so proves the

lemma.

To begin our proof that aε0bk−ia−1bi 6=G 1, we shall prove that ε0 = 1 and i 6= k. To

do this, note that if U =G 1 then σa(U) = 0. This is because the order of a under the

abelianisation map is infinite. Thus, σa(a
ε0bk−ia−1bi) = 0 and so ε0 = 1. We shall now

prove that i 6= k. If i = k then we have that bi = 1, and because i 6= 0 this means that

b has finite order. However, by the assumptions of the lemma b has infinite order. Thus,

i 6= k.

We now analyse words of the form abpa−1bq, p, q 6= 0, and prove that they cannot

represent the trivial word in G = 〈a, b;Rn〉. As a±1 ≤ R, we can apply the Newman-

Gurevich spelling theorem, which is Proposition 2.9.5, to get that either abpa−1bq is a

cyclic shift of Rn or R−n, or there exists two disjoint subwords Sn−1S0 and Tn−1T0, where

a±1 ≤ S, S0, T, T0. We shall now prove that neither case can happen. Suppose the latter

case occurs. The four words S, S0, T , and T0 are disjoint and each contain an a±1-term,

but there are only 2 occurrences of a±1 in abpa−1bq so we have a contradiction. On the

other hand, the former case cannot happen as this word is not a proper power in F (a, b),

which we shall now prove. To see that abpa−1bq is not a proper power in F (a, b), suppose

otherwise. Then abpa−1bq ≡ Sn, n > 1, and S must begin with an a and end in a bε. This

means that no free cancellation happens when forming the word Sn, and so there exist

two positive a-terms in Sn which is a contradiction.

3.3 The possibilities for Out(G) when it is infinite

In this section we work under the assumption that G is a one-ended two-generator, one-

relator group with torsion which has infinite outer automorphism group and determine

the possible isomorphism classes for Out(G). We prove that every possibility occurs. Note

that Out(G) ∼= GL2(Z) when G ∼= 〈a, b; [a, b]n〉, by Corollary 3.2.2. Therefore, in this

section we assume that G 6∼= 〈a, b; [a, b]n〉. We maintain our assumptions from Section 3.2

that G is one-ended, that is, we assume that that R is not primitive.
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Theorem 3.2.1 tells us that there is a faithful linear representation for Out(G). In

this Section we use this representation to determine the possible forms which (outer)

automorphisms of G = 〈a, b;Rn〉 can take when Out(G) is infinite (but G is one-ended and

not isomorphic to 〈a, b; [a, b]n〉). Note that we know the possible forms when R 6∈ F (a, b)′,

by Lemma 3.2.4. The possible forms for R arbitrary are still very restrictive, and under the

assumptions of this section the forms are precisely those given in Lemma 3.2.4. However,

the proofs in this section are very different from the proof of Lemma 3.2.4. We use these

forms to prove that Out(G) must be one of Z, Z× C2, D∞, or D∞ × C2.

3.3.1 The form of (outer) automorphisms when Out(G) is infinite

Note that under the assumptions of this section Out(G) is virtually-Z, by Theorem 3.1.16.

Lemma 3.3.1. Suppose G 6∼= 〈a, b; [a, b]n〉. Then the following equivalence holds.

Out(G) is virtually-Z⇐⇒ G ∼= 〈a, b;Sn(a, b−1ab)〉

Proof. Suppose G ∼= 〈a, b;S(a, b−1ab)n〉. Then the map a 7→ ab, b 7→ b is an automorphism

of G. It has infinite order by Theorem 3.2.1. As G 6∼= 〈a, b; [a, b]n〉, Theorem 3.1.16 implies

that Out(G) is virtually-Z.

Suppose Out(G) is virtually-Z. Then G splits as an HNN-extension or free product

with amalgamation with vertex group(s) having finite center and edge group virtually

cyclic with infinite center [Lev05, Theorem 1.4]. Thus, G must split as an HNN-extension

with infinite cyclic edge group, then by Proposition 3.1.14 the vertex group is a two-

generator, one-relator group with torsion. This implies that G is isomorphic to a group of

the required form.

We shall prove, under the assumptions that R ∈ 〈a, b−1ab〉 and G 6∼= 〈a, b; [a, b]n〉,

that if ψ is an automorphism of G, ψ ∈ Aut(G), then there exists some automorphism

φ ∈ Aut(G) such that ψ = φ mod Inn(G) and φ : a 7→ aε0bk, b 7→ bε1 . Thus, as in

Lemma 3.2.4, the automorphisms can be assumed to take one of the following four forms.

αi : a 7→ a−1bi βi : a 7→ abi ζi : a 7→ a−1bi δi : a 7→ abi

b 7→ b b 7→ b−1 b 7→ b−1 b 7→ b

We shall use the labels αi, βi, ζi, and δi in the rest of the chapterto refer to these forms.

Virtually cyclic subgroups. Note that we can assume that δ1 is an automorphism of
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G by Lemma 3.3.1. We shall work out all possible virtually cyclic subgroups of GL2(Z)

which contain the following matrix.

∆1 =

 1 1

0 1


This approach shall give a description of Out(G) because it embeds into GL2(Z) by The-

orem 3.2.1, and the embedding maps δ1 to ∆1. To work out these subgroups of GL2(Z we

begin with the following lemma, Lemma 3.3.2, which allows one to compute roots of the

matrix ∆i, i 6= 0. This lemma is easily proven by induction on m, and so the proof is left

to the reader.

Lemma 3.3.2. Let A be a matrix from GL2(Z).

A =

 a b

c d


Then Am has the following form where xm, ym and zm are such that xm−ym = zm(a−d).

Am =

 xm bzm

czm ym


We apply this lemma to the following result, which tells us about certain virtually

cyclic subgroups of GL2(Z).

Lemma 3.3.3. If ψ ∈ Aut(F (a, b)) is such that 〈ψ̂, δ̂1〉 is a virtually cyclic subgroup of

Out(F (a, b)) then, modulo the inner automorphisms, ψ corresponds to one of αi, βi, ζi,

or δi.

Proof. We prove this by using the equivalence of Out(F (a, b)) and GL2(Z). So, write

∆ := ∆1 for the matrix corresponding to δ1 and Ψ for the matrix corresponding to ψ.

Take A := Ψ in Lemma 3.3.2, and we shall use Lemma 3.3.2 to prove that c = 0. This is

sufficient as then |xm| = 1 = |ym|, by looking at the determinant of Ψ, which implies that

ψ is of the required form.

Suppose that Ψ has infinite order, which implies that Ψj = ∆k for some j, k 6= 0.

Then, and applying the fact that Ψj = ∆k we have that xj = 1 = yj , czj = 0 and bzj 6= 0.

Thus, zj 6= 0 and so c = 0, as required.

Suppose Ψ has finite order. Then, Ψ∆Ψ−1 has infinite order and so because we are

in an infinite cyclic group there must exist integers j, k 6= 0 such that Ψ∆jΨ−1 = ∆k.
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Writing ε := det(Ψ) = ±1, we have the following equivalences.

Ψ∆jΨ−1 = ε

 a b

c d

 1 j

0 1

 d −b

−c a


= ε

 ad− bc− jac ja2

−jc2 jac+ ad− bc


= ∆k

Then because j 6= 0 we have that c = 0, as required.

The following lemma, Lemma 3.3.4, gives a form which the elements of Out(G) take

if Out(G) is virtually-Z. We use this form in Section 3.3.2 to determine the possible

isomorphism classes for Out(G). The above lemma, Lemma 3.3.3, immediately implies

Lemma 3.3.4 as subgroups of virtually cyclic groups are themselves virtually cyclic.

Lemma 3.3.4. Suppose G ∼= 〈a, b;S(a−1ba, b)n〉. If ψ ∈ Aut(G) then there exists some

φ ∈ Aut(G) such that ψ = φ mod Inn(G) and φ ∈ {αi, βi, ζi, δi}.

3.3.2 The possibilities

We wish to give the possible isomorphism classes for Out(G) when it is virtually-Z. So, in

this section we take G = 〈a, b;Rn〉 and assume that R ∈ 〈aba−1, b〉 but G 6∼= 〈a, b; [a, b]n〉,

and we write down the possible isomorphism classes for Out(G). As R ∈ 〈aba−1, b〉, so

δ ∈ Aut(G), one can view ζi as δ−iζ where ζ := ζ0, and so if ζi ∈ Aut(G) then so is ζj

for all j ∈ Z. Similarly, αi = δiα and βi = δ−iβ, where α := α0 and β := β0, and so if

αi ∈ Aut(G) (respectively βi ∈ Aut(G)) then so is αj (respectively βj) for all j ∈ Z. Now,

as αβ = ζ, if α and β are in Aut(G) then so is ζ. Similarly, if ζ and α are then so is β and

if ζ and β are then so is α. What this means is that we have five choices of generating set

for Out(G) if Out(G) is virtually-Z. We always have δ ∈ Aut(G), and we either have none

of, one of or all three of α, β and ζ. We shall prove that the following isomorphisms hold.

1. If α, β, ζ 6∈ Aut(G) then Out(G) ∼= Z.

2. If α ∈ Aut(G) but β, ζ 6∈ Aut(G) then Out(G) ∼= D∞.

3. If β ∈ Aut(G) but α, ζ 6∈ Aut(G) then Out(G) ∼= D∞.

4. If ζ ∈ Aut(G) but α, β 6∈ Aut(G) then Out(G) ∼= Z× C2.
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5. If α, β, ζ ∈ Aut(G) then Out(G) ∼= D∞ × C2.

Each of these possibilities occurs, and the following examples can be verified by checking

if Rφ is freely conjugate to R±1 or not for each φ ∈ {α, βζ}. This works because none

of these maps change the length of the relator R so we can apply the Newman–Gurevich

Spelling Theorem, which is Proposition 2.9.5.

1. If R = aba−1b2ab3a−1b4 then α, β, ζ 6∈ Aut(G).

2. If R = aba−1b2ab3a−1bab2a−1b3 then α ∈ Aut(G) but β, ζ 6∈ Aut(G).

3. If R = aba−1b2 then β ∈ Aut(G) but α, ζ 6∈ Aut(G).

4. If R = aba−1b2ab2a−1bab3a−1b3 then ζ ∈ Aut(G) but α, β 6∈ Aut(G).

5. If R = aba−1b then α, β, ζ ∈ Aut(G).

The possibile isomorphism classes. We wish to verify the isomorphisms for Out(G)

in each of these five cases. If Out(G) = 〈δ〉 then clearly Out(G) ∼= Z. Otherwise, the

presentations are easily acquired as there is a normal form; every element is of the form

δiσ̂ with σ ∈ {α, β, ζ, e}, where e denotes the trivial automorphism. By Theorem 3.2.1,

an element of this normal form is trivial modulo the inner automorphisms if and only if

i = 1 and σ = e. This means that once we have added the relators to the group which get

elements into this normal form (which we can work out as we have a representation for

Out(G) in terms of Nielsen transformations) we need add no more relators. The groups

are as follows. Note that for the sake of clarity we have abused notation in the following

presentations and written φ in place of φ̂ for each φ ∈ {α, β, ζ, δ}.

1. α, β, ζ 6∈ Aut(G), and so Out(G) ∼= Z.

2. α ∈ Aut(G) but β, ζ 6∈ Aut(G), and so we have the following isomorphism.

Out(G) ∼= 〈δ, α;α2, αδ = δ−1α〉 ∼= D∞

3. β ∈ Aut(G) but α, ζ 6∈ Aut(G), and so we have the following isomorphism.

Out(G) ∼= 〈δ, β;β2, βδ = δ−1β〉 ∼= D∞

4. ζ ∈ Aut(G) but α, β 6∈ Aut(G), and so we have the following isomorphism.

Out(G) ∼= 〈δ, ζ; ζ2, [δ, ζ]〉 ∼= Z× C2
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5. α, β, ζ ∈ Aut(G), and so we have the following relations, modulo the inner automor-

phisms.

α2 = e, β2 = e, ζ2 = e, αδα = δ−1, βδβ = δ−1, δζ = ζδ

αβ = ζ, αζ = β, βα = ζ, βζ = α, ζα = β, ζβ = α

All of the relations in the second line are consequences of the following relations.

α2 = e, β2 = e, ζ2 = e, αβζ = e

We therefore have the following isomorphism.

Out(G) ∼= 〈α, β, δ, ζ;α2, β2, ζ2, [δ, ζ], αδα = δ−1, βδβ = δ−1, αβζ〉

Replacing β with αζ, and following the Tietze transformations through we obtain

the required isomorphism:

Out(G) ∼= 〈α, δ, ζ;α2, ζ2, αδα = δ−1, [α, ζ], [δ, ζ]〉

∼= D∞ × C2

This section yields the following lemma.

Lemma 3.3.5. Suppose G is a one-relator group with torsion and G 6∼= 〈a, b; [a, b]n〉. Then

Out(G) is one of Z, Z×C2, D∞ or D∞×C2. Moreover, each of these possibilities occurs.

Note that this proves that there exists an algorithm to find Out(G) if R ∈ 〈a−1ba, b〉.

One determines if φ ∈ Aut(G) for each σ ∈ {α, β, ζ}. The isomorphism class of Out(G) is

obtained by comparing which of these maps φ are in Aut(G) with the above list.

3.4 The possibilities for Out(G) when it is finite

In this section we work under the assumption that G is a one-ended two-generator, one-

relator group with torsion which has finite outer automorphism group and we determine

the possible isomorphism classes for Out(G). We prove that every possibility occurs. Note

that in Section 3.3.2 we did this for when Out(G) is infinite.

Suppose Out(G) is finite, then Out(G) must be isomorphic to a finite subgroup of

GL2(Z), by Theorem 3.2.1. Every finite subgroup of GL2(Z) is a subgroup of D6 or of

D4 [Zim96], where Dn denotes the dihedral group of order 2n. We shall now show that

the groups D6, D4, D3, C6, C4 and C3 can be realised as the outer automorphism group of
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a two-generator, one-relator group with torsion. The remaining three groups which occur

as subgroups of D4 or D6, which are C2 × C2, C2 and the trivial group, also each occur

as the outer automorphism group of a one-ended two-generator, one-relator group with

torsion. However, these cases require more working to prove and so are treated later, in

Section 3.4.1.

Lemma 3.4.1. For Q ∈ {D6, D4, D3, C6, C4, C3} there exists a group G = 〈a, b;Rn〉,

n > 1, such that Out(G) ∼= Q. The following groups give explicit examples.

• If G = 〈a, b; (a2bab2a−2b−1a−1b−2)n〉 then Out(G) ∼= D6.

• If G = 〈a, b; [a2, b2]n〉 then Out(G) ∼= D4.

• If G = 〈a, b; (a2(ab)−2b2)n〉 then Out(G) ∼= D3.

• If G = 〈a, b;Rn〉 where R is the word

a2b3aba−1b−2ababa2ba−1b−1a−1b−1a2b−1ab

a−2b−3a−1b−1ab2a−1b−1a−1b−1a−2b−1ababa−2ba−1b−1

then Out(G) ∼= C6.

• If G = 〈a, b; (ab2aba−2ba−1b−2a−1b−1a2b−1)n〉 then Out(G) ∼= C4.

• If G = 〈a, b; (ab−1a2b−1a−2b−1a−1b−1a−1bab3)n〉 then Out(G) ∼= C3.

Proof. We shall use the fact that if Out(G) is infinite and G 6∼= 〈a, b; [a, b]n〉 then any

finite order elements of Out(G) have order two, which follows from Lemma 3.3.5. We also

use the fact that none of the groups G in the statement of the lemma are isomorphic to

〈a, b; [a, b]n〉, as 〈a, b;Rn〉 ∼= 〈a, b; [a, b]n〉 if and only if R is freely conjugate to [a, b]±1,

which follows from the solution to the isomorphism problem for two-generator, one-relator

groups with torsion [Pri77a]. Note that by Theorem 3.2.1, all interactions between outer

automorphisms can be verified by viewing them as elements of GL2(Z).

Proof of D6: Note that the maps φ : a 7→ b−1, b 7→ ab and ψ : a 7→ ab, b 7→ b−1 define

automorphisms of G = 〈a, b; (a2bab2a−2b−1a−1b−2)n〉. Now, Out(G) is finite because φ̂

has order six but G 6∼= 〈a, b; [a, b]n〉. Therefore, Out(G) is isomorphic to a subgroup of D4

or D6 which contains an element of order six, and so it is isomorphic to either D6 or C6.

Then, as φ̂3 6= ψ̂ but ψ̂ has order two, we conclude that Out(G) ∼= D6, as required.

Proof of D4: Note that the maps φ : a 7→ b, b 7→ a−1 and ψ : a 7→ b, b 7→ a define
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automorphisms of G = 〈a, b; [a2, b2]n〉. Now, Out(G) is finite because φ̂ has order four

but G 6∼= 〈a, b; [a, b]n〉. Therefore, Out(G) is isomorphic to a subgroup of D4 or D6 which

contains an element of order four, and so it is isomorphic to either D4 or C4. Then, as

φ̂2 6= ψ̂ but ψ̂ has order two, we conclude that Out(G) ∼= D2, as required.

Proof of D3: Note that the maps φ : a 7→ a−1b−1, b 7→ a and (β1 =)ψ : a 7→ ab, b 7→ b−1

define automorphisms of G = 〈a, b; (a2(ab)−2b2)n〉. As in the D6 case, Out(G) is finite

because φ̂ has order three but G 6∼= 〈a, b; [a, b]n〉. Noting that ψ̂ has order two, Out(G)

is isomorphic to a subgroup of D4 or D6 which contains an element of order three and

an element of order two, and so it is isomorphic to one of D6, C6 or D3. We shall prove

that Out(G) does not contain an element of order six, which is sufficient. To do this, we

look at the embedding of Out(G) in GL2(Z). There are two matrices, Ω1 and Ω2, which

satisfy the relation Ω2 = Φ, where the matrix Φ is the image of φ in GL2(Z), and so there

are only two possible Nielsen transformations which would have order six in Out(G). The

corresponding matrices are as follows:

Ω1 =

 0 −1

1 1

 Ω2 =

 0 1

−1 −1


We can ignore the matrix Ω2 = Φ−1. Now, any Nielsen transformation which corresponds

to Ω1 does not preserve the relation of the group, (a2(ab)−2b2)n, and so does not correspond

to an automorphism of G. Thus, Out(G) contains no element of order six and so Out(G) ∼=

D3, as required.

Proof of C6: Note that the map φ : a 7→ b−1, b 7→ ab defines an automorphism of G =

〈a, b;Rn〉, where R is as in the statement of the lemma. As in the D6 case, Out(G) is

finite because φ̂ has order six but G 6∼= 〈a, b; [a, b]n〉. Therefore, Out(G) is isomorphic to a

subgroup of D4 or D6 which contains an element of order six, and so it is isomorphic to

either D6 or C6. Suppose Out(G) ∼= D6, and we shall find a contradiction. There are six

matrices, Ψ1, . . . ,Ψ6, which are of order two and which satisfy the relator (ΦΨi)
2, where

Φ is the image of φ in GL2(Z), and so there are only six possible Nielsen transformations

which will generate Out(G) ∼= D6 with φ̂. The matrices, up to multiplication by −Id, are

as follows:  0 1

1 0

  1 1

0 −1

  −1 0

1 1


Note that −Id = φ̂3, and so we only need to verify that the above three matrices do not

correspond to automorphisms of G. However, any Nielsen transformation which corre-
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sponds to one of these six matrices do not preserve the relator of the group, and so do not

define automorphisms of G. This is our required contradiction, and so Out(G) ∼= C6.

Proof of C4: Note that the map φ : a 7→ b, b 7→ a−1 defines an automorphism of

G = 〈a, b; (ab2aba−2ba−1b−2a−1b−1a2b−1)n〉. As in the D4 case, Out(G) is finite because

φ̂ has order four but G 6∼= 〈a, b; [a, b]n〉. Therefore, Out(G) is isomorphic to a subgroup of

D4 or D6 which contains an element of order four, and so it is isomorphic to either D4

or C4. Suppose Out(G) ∼= D4, and we shall find a contradiction. There are two matrices,

Ψ1 and Ψ2, which are of order two and which satisfy the relator (ΦΨi)
2, where Φ is the

image of φ in GL2(Z), and so there are only two possible Nielsen transformation which

will generate Out(G) ∼= D4 with φ̂. The matrices are as follows: 0 1

1 0

  0 −1

−1 0


However, any Nielsen transformation which corresponds to one of these two matrices do

not preserve the relator of the group and so do not define automorphisms of G. This is

our required contradiction, and so Out(G) ∼= C4.

Proof of C3: Note that the map φ : a 7→ a−1b−1, b 7→ a defines an automorphism of

G = 〈a, b; (ab−1a2b−1a−2b−1a−1b−1a−1bab3)n〉. As in the D6 case, Out(G) is finite because

φ̂ has order three but G 6∼= 〈a, b; [a, b]n〉. Therefore, Out(G) is isomorphic to a subgroup

of D4 or D6 which contains an element of order three, and so it is isomorphic to one of

D6, C6, D3 or C3. We shall prove that the former three cases cannot happen. Applying

identical logic to the D3 case (the same matrices appear), we get that Out(G) cannot

contain an element of order six and so must be isomorphic to either D3 or C3. Finally,

applying identical logic to the C6 case (again, the same matrices appear) we get that

Out(G) cannot be isomorphic to D3 and so is isomorphic to C3.

The remaining three finite subgroups of GL2(Z), which are C2×C2, C2 and the trivial

group, do each occur as the outer automorphism group of a one-ended two-generator,

one-relator group with torsion. The purpose of the following section is to prove this.

3.4.1 The relator is not in the derived subgroup of F (a, b)

In this section we assume R 6∈ F (a, b)′. We begin with Lemma 3.4.2, which proves that if

G ∼= 〈a, b;Rn〉 is a one-ended two-generator, one-relator group such that R 6∈ F (a, b)′ that

either δk ∈ Aut(G) for some k 6= 0 or Out(G) is isomorphic to one of C2 × C2, C2 or the
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trivial group. We analyse the implications of the presence of an automorphism δk, which

allows us to give an algorithm which determines Out(G) if it is finite with R 6∈ F (a, b).

This allows us, in Lemma 3.4.6, to construct two-generator, one-relator groups G such that

Out(G) ∼= C2, Out(G) ∼= C2 × C2 and Out(G) is trivial. This completes the proof that

each of the possibilities given in Theorem A occur for the case of one-ended two-generator,

one-relator groups with torsion.

Lemma 3.4.2. Let G = 〈a, b;Rn〉 with n > 1, R not primitive, σa(R) = 0, and σb(R) 6= 0.

Then Out(G) is either infinite, C2 × C2, C2 or trivial. If Out(G) is infinite then there

exists k ∈ Z such that δk ∈ Aut(G).

The proof of this result uses certain equalities between Nielsen transformations. These

can be quickly and easily verified by using the corresponding matrices in GL2(Z), given

by Theorem 3.2.1.

Proof. Firstly, note that Lemma 3.2.4 tells us that every element of Out(G) can be viewed

as one of α̂i, β̂i, ζ̂i or δ̂i, i ∈ Z.

Now, by Theorem 3.2.1, if δi is an automorphism of G then it has infinite order modulo

the inner automorphisms, for i 6= 0. Then, ζ̂i
2

= δ̂−2i and so if ζi ∈ Aut(G) with i 6= 0

then Out(G) is infinite. Next, α̂iα̂j = δ̂i−j and so if αi and αj ∈ Aut(G) with i 6= j then

Out(G) is infinite. Now, β̂iβ̂j = δ̂j−i and so if βi and βj ∈ Aut(G) with i 6= j then Out(G)

is infinite. Finally, β̂jα̂i = ζ̂i+j and so if αi and βj ∈ Aut(G) with i+ j 6= 0 then Out(G) is

infinite. Therefore, if Out(G) is finite we only have the following possibilities. Note that

the isomorphisms can be obtained using the corresponding matrices in GL2(Z).

Out(G) is trivial.

or Out(G) = 〈α̂i〉 ∼= C2.

or Out(G) = 〈β̂i〉 ∼= C2.

or Out(G) = 〈ζ̂0〉 ∼= C2.

or Out(G) = 〈α̂i, β̂−i〉 ∼= C2 × C2.

Otherwise, δk ∈ Aut(G) for some k ∈ Z, as required.

Note that the above lemma, Lemma 3.4.2, says that Out(G) is infinite if and only

if there exists some k ∈ Z such that δk ∈ Aut(G). This is similar to Lemma 3.3.1.

The difference is that if R 6∈ F (a, b)′ then the Lemma 3.4.2 can be interpreted (using
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Lemma 3.4.4, below) as saying that, after Moldovanskii rewriting, if G is infinite then it

has a presentation of the form given by Lemma 3.3.1, while Lemma 3.3.1 merely states that

such a presentation exists. Note that it is not obvious that if δk defines an automorphism

of G for |k| > 1 then δ1 defines an automorphism of G, but we prove this in Lemma 3.4.4,

below.

We wish to find out when the Nielsen transformations αk, βk and δk define automor-

phisms of G for a given k ∈ Z. This will allows us to use Lemma 3.4.2 to verify that

each of C2 × C2, C2 and the trivial group occur as the outer automorphism group of a

one-ended two-generator, one-relator group with torsion. Lemma 3.4.4, below, proves that

δ1 ∈ Aut(G) if and only if Out(G) is infinite, and, further, that δ1 fixes R or a cyclic shift

of R if and only if Out(G) is infinite, where σa(R) = 0 and σb(R) 6= 0. The lemma also

proves that if Out(G) is finite then one can find a finite set of integers AR (respectively

BR) obtained from the relator R such that αk (respectively βk) can be in Aut(G) only if

k ∈ AR (respectively k ∈ BR). Note that this yields an algorithm to compute Out(G) (for

G satisfying the assumptions of this section): rewrite G = 〈a, b;Rn〉 such that σa(R) = 0,

then Out(G) is infinite if δ1 defines an automorphism of G while if δ1 does not define an

automorphism of G then one obtains the sets AR and BR and checks if αi and βi define

automorphisms of G, and finally one checks if ζ0 defines an automorphism of G. One can

then apply this knowledge to Lemma 3.4.2 or to Section 3.3.2 to obtain the isomorphism

class of Out(G).

Recall that the purpose of this current section is to realise each of C2×C2, C2 and the

trivial group as the outer automorphism group of a two-generator, one-relator group with

torsion. In Lemma 3.4.6, the algorithm given by Lemma 3.4.4 allows us to realise these

groups in this way. To prove Lemma 3.4.4 we need the following technical result.

Lemma 3.4.3. Let φk be the following Nielsen transformation.

φk : a 7→ aε0bk

b 7→ bε1

Let W be an arbitrary, freely reduced word in F (a, b). Then we have the following.

1. If W begins in a, Wφk begins in aε0.

2. If W begins in a−1, Wφk begins in b−ka−ε0.

3. If W ends in a−1, Wφk ends in a−ε0.
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4. If W ends in a, Wφk ends in aε0bk.

Proof. Note that once we have proven (1) and (2) then (3) and (4) follow immediately, by

looking at W−1. To prove (1) and (2) we assume that W ≡ aεW is a word starting with

an a-term and induct on the number of a-terms in the word W .

If W contains one a-term then W = aεbi so Wφk = aε0bε1i+k if ε = 1 while Wφk =

b−ka−ε0bε1i if ε = −1, as required.

Assume the result holds for all words beginning with an a-term and containing n a-

terms, and let W be a word containing n+1 a-terms and beginning with an a-term. Then

W = aεbiaε
′
W where aε

′
W satisfies the induction hypothesis and i 6= 0 if ε + ε′ = 0. We

thus have four cases to consider, which are as follows. These prove the lemma.

• ε = 1, ε′ = 1: Wφk = (abi)φk(aW )φk = aε0(bε1i+kaε0Ŵ ).

• ε = 1, ε′ = −1: Wφk = (abi)φk(a
−1W )φk = aε0(bε1ia−ε0Ŵ ).

• ε = −1, ε′ = 1: Wφk = (a−1bi)φk(aW )φk = b−ka−ε0(bε1iaε0Ŵ ).

• ε = −1, ε′ = −1: Wφk = (a−1bi)φk(a
−1W )φk = b−ka−ε0(bε1i−ka−ε0Ŵ ).

We shall now prove the following lemma, Lemma 3.4.4, which gives us an algorithm

to calculate Out(G) if Out(G) is finite and R 6∈ F (a, b)′. The lemma also proves that

if R 6∈ F (a, b)′ then performing Moldovanskii rewriting on R will show you if Out(G) is

infinite or not. We use this algorithm in the proof of Lemma 3.4.6 to verify that C2 ×C2,

C2 and the trivial group each occur as the outer automorphism group of a one-ended

two-generator, one-relator group with torsion. Define min+ to be the least integer such

that abia is a subword of some cyclic shift of Rn and define max+ to be the greatest such

integer. Further, define min− to be the least integer such that a−1bia−1 is a subword of

some cyclic shift of Rn and define max− to be the greatest such integer.

Lemma 3.4.4. Let G = 〈a, b;Rn〉 with n > 1, R not primitive, and σa(R) = 0 but

σb(R) 6= 0. If aε
′
biaε

′
is a subword of some cyclic shift of Rn for i ∈ Z then the following

points hold.

• αk ∈ Aut(G) only if either k = −(max+ + min+) or k is in the following range.

min−−min+ ≤ k ≤ max−−max+
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• βk ∈ Aut(G) only if either k = min+ + max+ or k is in the following range.

max+−max− ≤ k ≤ min+−min−

• δk 6∈ Aut(G) for k 6= 0.

Proof. Note that if aε
′
biaε

′
is a subword of some cyclic shift of Rn then there exists some

j ∈ Z such that a−ε
′
bja−ε

′
is a subword of some cyclic shift of Rn. This is because

σa(R
n) = 0. Therefore, we assume that abia is a subword of some cyclic shift of Rn and

prove that the points hold.

We prove the following points which prove the lemma. We explain, below, why they

prove the lemma, and we then prove that they hold.

• If αk ∈ Aut(G) and abia is a subword of some cyclic shift of Rn then a−εb(i+k)εa−ε

is a subword of some cyclic shift of Rn.

• If βk ∈ Aut(G) and abia is a subword of some cyclic shift of Rn then aεb(k−i)εaε is a

subword of some cyclic shift of Rn.

• If δk ∈ Aut(G) and abia is a subword of some cyclic shift of Rn then either abi−ka

or abi−2ka is a subword of some cyclic shift of Rn.

Too see that these points prove the lemma, note that i can take any value between min+

and max+, min+ ≤ i ≤ max+, so:

Consider αk and suppose ε = −1. Then min+ ≤ −i − k ≤ max+, and so substituting

in i := min+ and separately i := max+ we get two inequalities which combine to give

−(min+ + max+) ≤ k ≤ −(min+ + max+) which yields the required equality. Suppose

ε = −1, then we have min− ≤ i + k ≤ max−, and so substituting in i := min+ and

separately i := max+ we obtain the following two inequalities.

min−−max+ ≤ k ≤ max−−max+

min−−min+ ≤ k ≤ max−−min+

These combine to give min−−min+ ≤ k ≤ max−−max+ as required.

Consider βk, and suppose ε = 1. Then min+ ≤ k − i ≤ max+, and so substituting

in i := min+ and separately i := max+ we get two inequalities which combine to give

min+ + max+ ≤ k ≤ min+ + max+ which yields the required equality. Suppose ε = −1,
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then we have min− ≤ i − k ≤ max−, and so substituting in i := min+ and separately

i := max+ we obtain the following two inequalities.

min+−min− ≥ k ≥ min+−max−

max+−min− ≥ k ≥ max+−max−

These combine to give max+−max− ≤ k ≤ min+−min− as required.

Consider δk and note that δ−1
k = δ−k so we can assume k > 0. Then, taking i to be

the least integer such that abia is a subword of some cyclic shift of Rn (so, i = min+) we

have that abi−ka is a subword of a cyclic shift of Rn, a contradiction.

We now prove the three statements. note that in each statement we can cyclically shift

the word Rn to obtain a new word Sn which contains the subword abia. Therefore, we

shall assume that abia is a subword of Rn

To prove the statements, we start by using the Newman–Gurevich Spelling Theorem,

which is Proposition 2.9.5. We begin by proving that for all φ ∈ Aut(G) there exists

ε ∈ {1,−1} such that aεbεiaε ≤ Rnφ. This is because we have that Sn−1S0 ≤ Rnφ, S a

cyclic shift of R or R−1, and either aεbεiaε ≤ S or S ≡ bεjaεS̄aεbεk, i = j + k, and in each

case aεbεiaε ≤ SS0, as required. 3 Note that we have that aεbεiaε is a subword of Rnφ,

not just a subword of a cyclic shift.

Writing γg for the automorphism inducing conjugation by g, so aγg = g−1ag and

bγg = g−1bg, we investigate the three cases:

Let αk define an automorphism of G: As abia is a subword of Rn we have that aεbεiaε is a

subword of Rnαk, so Rnαk ≡ UaεbεiaεV . Then as α−1
k = αkγb−k we can apply Lemma 3.4.3

to Rnαk to obtain Rn as follows.

Rn ≡ (Uaε)αkγb−k(bεi)αkγb−k(aεV )αkγb−k

≡ (U ′a−εb(i+k)εa−εV ′)γb−k

≡ bkU ′a−εb(i+k)εa−εV ′b−k

This yields the required result.

Let βk define an automorphism of G: As abia is a subword of Rn we have that aεbεiaε is

a subword of Rnβk, so Rnβk ≡ UaεbεiaεV . Then as β−1
k = βk we can apply Lemma 3.4.3

3Newman’s original spelling theorem merely stipulated that |S0| ≥ 1 []. Note that this is insufficient

here, and instead we need enhancement due to Gurevich. The enhanced result is the version stated in

Proposition 2.9.5.



CHAPTER 3. TWO-GENERATOR, ONE RELATOR GROUPS WITH TORSION 135

to Rnβk to obtain Rn as follows.

Rn ≡ (Uaε)βk(b
εi)βk(a

εV )βk

≡ U ′aεb(k−i)εaεV ′

This yields the required result.

Let δk define an automorphism of G: As abia is a subword of Rn we have that aεbεiaε is

a subword of Rnδk. We have two cases, ε = 1 and ε = −1.

1. Assume ε = 1. That is, abia is a subword of Rnδk, so Rnδk ≡ UabiaV . Then as

δ−1
k = δ−k we can apply Lemma 3.4.3 to Rnδk to obtain Rn as follows.

Rn ≡ (Ua)δ−k(b
i)δ−k(aV )δ−k

≡ U ′abi−kaV ′

This yields the required result.

2. Assume ε = −1. That is, a−1b−ia−1 is a subword of Rnδk but abia is not. We thus

have Rnδk ≡ Ua−1b−ia−1V . Then as δ−1
k = δ−k we can apply Lemma 3.4.3 to Rnδk

to obtain Rn as follows.

Rn ≡ (Ua−1)δ−k(b
−iδ−k)(a

−1V )δ−k

≡ U ′a−1bk−ia−1V ′

Therefore, a−1bk−ia−1 is a subword of a cyclic shift of Rn.

Now, by the Newman-Gurevich Spelling Theorem there exists a cyclic shift S of R

or R−1 such that Sn−1S0 is a subword of Rnδk. Note that abia is a subword of

Sn−1S0, and as abia is not a subword of Rnδk but is a subword of Rn we must have

that S is a cyclic shift of R−1. Then as a−1bk−ia−1 is a subword of Rn we have that

a−1bk−ia−1 is a subword of Sn−1S0 and so abi−ka is a subword of Rnδk. Therefore,

Rnδk ≡ U0ab
i−kaV0. Then as δ−1

k = δ−k we can apply Lemma 3.4.3 to Rnδk to

obtain Rn as follows.

Rn ≡ (U0a)δ−k(b
i−kδ−k)(aV0)δ−k

≡ U ′0abi−2kaV ′0

This yields the required result.

Therefore, the lemma holds.
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The above result, Lemma 3.4.4, leads to the following theorem, which can be sum-

marised as saying “if R 6∈ F (a, b)′ then Moldovanskii rewriting determines if Out(G) is

infinite or not”.

Theorem 3.4.5. Let G = 〈a, b;Rn〉 with n > 1, R 6∈ F (a, b) and R not primitive. After

re-writing R such that σa(R) = 0, the following are equivalent.

1. Out(G) is infinite.

2. R ∈ 〈aba−1, b〉 ∪ 〈a−1ba, b〉.

The proof of Theorem 3.4.5 is an easy application the following three facts. Firstly, R

has a subword of the form aεbiaε if and only if R 6∈ 〈aba−1, b〉 ∪ 〈a−1ba, b〉. Secondly, G is

Hopfian [Pri77a]. Thirdly, if δ : a 7→ ab, b 7→ b is a homomorphism of G = 〈a, b;Rn〉 then

Out(G) is infinite, by Theorem 3.2.1. We therefore leave the proof to the reader.

We end the section by giving three one-ended two-generator, one-relator groups whose

outer automorphism groups are respectively isomorphic to C2×C2, to C2 and to the trivial

group. This means that if G = 〈a, b;Rn〉, n > 1, is one-ended with Out(G) finite then the

possibilities for Out(G) are D6, D4, D3, C2×C2, D6, C4, C3, C2 or the trivial group, and

every possibility occurs.

Lemma 3.4.6. For Q one of C2 × C2, C2 or the trivial group there exists a group G =

〈a, b;Rn〉, n > 1, such that Out(G) ∼= Q. The following groups give explicit examples.

• If G = 〈a, b; (a2ba−2b)n〉 then Out(G) ∼= C2 × C2.

• If G = 〈a, b; (a2ba−3b)n〉 then Out(G) ∼= C2.

• If G = 〈a, b; (a−2ba4ba−3ba5b)n〉 then Out(G) is trivial.

Proof. Note that a2 is a subword of each of the three words and σa(R) = 0, and so each

group has finite outer automorphism group by Theorem 3.4.5. In each case we apply

Lemma 3.4.4 to determine the possible αi and βj which define automorphisms of G. We

then apply ζ0 and each of the αi and βj given by Lemma 3.4.4 to work out which of these

finitely many maps define automorphisms of G. Finally, applying Lemma 3.4.2, we obtain

the isomorphism class of Out(G).

The maps α0 and β0 define automorphisms of G = 〈a, b; (a2ba−2b)n〉. Hence, Out(G) ∼=

C2 × C2, as required.
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If R ≡ a2ba−1ba−1b, we have that min+ = 0 = max+ and that min− = 0 = max−.

Thus, the only possible elements of Out(G) are (the cosets of) α0, β0 and ζ0. The only one

of these maps which defines an automorphism of G is ζ0 and so Out(G) ∼= C2, as required.

If R ≡ a2ba−1baba−1ba−1b, we have that min+ = 0 = max+ and that min− = 1 =

max−. Thus, the only possible elements of Out(G) are (the cosets of) α0, β0, and ζ0. None

of these maps define automorphisms of G and so Out(G) is trivial, as required.

3.5 Out(G) for G infinitely-ended

Let G = 〈a, b;Rn〉 with R primitive. Equivalently, G has more than one end. We shall

now give a skeleton proof of the following theorem.

Theorem 3.5.1. If G = 〈a, b;Rn〉 R is a primitive element of F (a, b) then the following

isomorphism holds, where Aut(Cn) commutes with the flip generator of Dn and acts on

the rotation generator in the natural way as automorphisms of Cn.

Out(G) ∼= Dn oAut(Cn)

To see this theorem, recall that as R is primitive then Moldovanskii rewriting yields

G ∼= 〈a, b; bn〉. That is, G ∼= Z ∗ Cn. There are a number of ways of approaching the

outer automorphism group of such a group, and indeed the automorphism groups of free

products have been much studied [FR40, Gil87]. We have chosen to give a proof using

ideas surrounding Nielsen equivalence classes, ideas which are in line with the the rest of

this chapter. We begin by stating the following two lemmata, both of which generalise

lemmata from earlier sections to the setting of tame automorphisms. Both lemmata can

be proven using easy modifications of the results they generalise, and so the proofs are left

to the reader. The first lemma is an adaption of Lemma 3.2.4, and is as follows.

Lemma 3.5.2. Let G = 〈a, b; r〉 such that σa(R) = 0 for all R ∈ r and r 6⊂ F (a, b)′.

Then, every tame automorphism ψ ∈ Tame(a,b)(G) has a representative φ ∈ ψ̂ such that

φ ∈ Tame(a,b)(G) and has the following form.

φ : a 7→ aε0bk

b 7→ bε1

The second lemma, Lemma 3.5.3, is a generalisation of Lemma 3.2.5, in the sense that

it is the statement of what we prove in Lemma 3.2.5. However, Lemma 3.2.5 only holds
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when G is one-ended but Lemma 3.5.3 makes no assumptions about ends. Lemma 3.5.3

implies Lemma 3.2.5 if G is one-ended, and is as follows. Recall that if φ ∈ Aut(G) then

φ̂ denotes the coset of Out(G) containing φ.

Lemma 3.5.3. Let G = 〈a, b;Rn〉 with n > 1 and σa(R) = 0. Then if

φ1 : a 7→ aε0bi

b 7→ bε1

and

φ2 : a 7→ aε
′
0bj

b 7→ bε
′
1

are two automorphisms of G (ε0 6= ε′0, or ε1 6= ε′1, or i 6= j) which are non-equal in Aut(G)

then they lie in different cosets of Aut(G)/ Inn(G), so φ̂1 6= φ̂2.

Proof of Theorem 3.5.1. Recall that G ∼= Z ∗ Cn, so we can assume that G = 〈a, b; bn〉

with n > 1.

It is clear that every function of the form φ : a 7→ aε0bi, b 7→ bε1 is in an automorphism

of G. Now, Lemma 3.5.3 gives us that these are all non-equal modulo Inn(G) for 0 ≤ i < n,

while by Lemma 3.5.2 these are the only automorphisms, modulo the inner automorphisms,

which keep (a, b) in the same Nielsen equivalence class. Therefore, keeping the same

notation as Section 3.3.2, α, β, δ and ζ are all in Aut(G), are all non-equal modulo Inn(G)

(unless n = 2), and every tame automorphism has a representative in Out(G) of the form

δiσ where σ ∈ {α, β, ζ, e}. Note that δ ∈ Aut(G) and δ̂ both have order n. Thus, by

Lemma 2.2.5, every outer automorphism is of the form δiσψc where σ ∈ {α, β, ζ, e}, and

where ψc is the distinguished automorphism such that (aψc, bψc) is contained in the Nielsen

equivalence class C. Note that there are only finitely many choices for ψc, by Proposition

2.2.2, and so we have that Out(G) is finite.

If n = 2 there is only one Nielsen equivalence class, so the ψc can be ignored and we

get that Out(G) = 〈α̂, δ̂〉 and indeed Out(G) ∼= C2 × C2
∼= D2, as required.

If n > 2 we want to find out what the ψc are; what are the maps which take (a, b)

to the other Nielsen equivalence classes. Now, the Grushko–Neumann Theorem implies

that if G = H ∗ K and G = 〈g1, g2〉 then the pair (g1, g2) can be obtained by a Nielsen

transformation from a generating pair (h, k) such that h ∈ H and k ∈ K. Therefore, one
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can take the automorphisms ψc to be (a certain subset of) the automorphisms ψk : a 7→ a,

b 7→ bk where gcd(k, n) = 1 and 0 < k < n. Now, the generator (a, bn−k) is in the

same Nielsen equivalence class as (a, bk) for all i, as (a, bk) is mapped to (a, bn−k) via the

automorphism α : a 7→ a, b 7→ b−1, which is a Nielsen Transformation. Thus we restrict

the range for k to 0 < k < n
2 .

We shall now prove that no two maps δiσψk are equal modulo the inner automorphisms,

for σ ∈ {α, β, ζ, δ}, gcd(k, n) = 1 and 0 < k < n
2 . As inner automorphisms will keep the

generating pair (a, b) in the same Nielsen equivalence class, none of the automorphisms ψk

are equal modulo the inner automorphisms.

So, we have that the maps φ : a 7→ aε0bi, b 7→ bε1 are pairwise non-equal modulo

the inner automorphisms, and that the ψk are also pairwise non-equal modulo the inner

automorphisms. It now suffices to prove that no two automorphisms of the form φ1ψj and

φ2ψk, with 0 < j, k < n
2 , are equal modulo the inner automorphisms. Now, note that if

φ is some Nielsen transformation, φ : a 7→ Ua(a, b), b 7→ Ub(a, b) say, then (aφψk, bφψk) =

(aψk, bψk)φ because of the following equivalencies.

(aφψk, bφψk) = (Ua(a, b)ψk, Ub(a, b)ψk)

= (Ua(aψk, bψk), Ub(aψk, bψk))

= (aψk, bψk)φ

So, suppose φ1ψj = φ2ψkγg for some g ∈ G but φ1ψj 6= φ2ψk. Now, because φ1ψj =

φ2ψkγg, we have that (aφ1ψj , bφ1ψj) = (aψj , bψj)φ1 (as φ1 is a Nielsen transformation) is

in the same Nielsen equivalence class as (aφ2ψk, bφ2ψk) = (aψk, bψk)φ2, and so (aψj , bψj)

and (aψk, bψk) are Nielsen equivalent. Thus, j = k. This means that ψ̂kφ̂1 = ψ̂kφ̂2, and

so φ̂1 = φ̂2. Thus, φ1 = φ2, by Lemma 3.5.3, and so φ1ψj = φ2ψk, a contradiction. Thus,

the maps δiσψk, where σ ∈ {α, β, ζ, δ}, gcd(k, n) = 1 and 0 < k < n
2 , form a transversal

for Out(G).

Now, we have that the elements α̂, β̂, δ̂, ζ̂ and ψ̂k for 0 < k < n, gcd(k, n) = 1, generate

Out(G) (note that we have included ψk for n
2 < k < n). The generators α̂, β̂, δ̂ and ζ̂ give

a homomorphic image of the group with the following presentation by Section 3.3.2 and

because δ has order n (as b has order n). As in Section 3.3.2, we abuse notation and write

φ in place of φ̂ for each φ ∈ {α, β, ζ, δ}.

〈α, β, δ, ζ;α2, β2, ζ2, [δ, ζ], αδα = δ−1, βδβ = δ−1, αβζ, δn〉
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Further, we have the following relations modulo the inner automorphisms.

δψi = ψiδ
i

αψi = ψiα

βψi = ψiβ

ζψi = ψiζ

ψiψj = ψij mod n

Therefore, Out(G) is a homomorphic image of the following group.

〈α, β, δ, ζ, ψi; β = ψn−1, α
2, β2, ζ2, δn, [δ, ζ], αδα = δ−1, βδβ = δ−1, αβζ,

ψ−1
i δψi = δi, [α,ψi], [β, ψi], [ζ, ψi], ψiψj = ψij mod n〉

However, every element in the group given by this presentation has the form δiσψk for

σ ∈ {α, β, ζ, δ}, gcd(k, n) = 1 and 0 < k < n
2 (as β = ψn−1), but there is no element

δiσψk in the kernel of this homomorphism. Therefore, Out(G) is isomorphic to this group.

Replacing ζ with αβ and β with ψn−1, and following the Tietze transformations through

yields the following isomorphism.

Out(G) ∼= 〈α, δ, ψi; α2, δn, αδα = δ−1,

ψ−1
i δψi = δi, [α,ψi], ψiψj = ψij mod n〉

Writing H = 〈α, δ〉 and K = 〈ψk (0 ≤ k < n, gcd(k, n) = 1);ψiψj = ψij mod n〉, clearly

G = HK, H ∩K = 〈1〉 and H CG. Thus, G = H oK. Finally, H ∼= Dn while the group

K is the automorphisms group of Cn, Aut(Cn). This completes the proof.

3.6 Conclusion

We conclude this chapter by completing the proof of Theorem A, by providing an algorithm

to compute the outer automorphism group of a two-generator, one-relator group with

torsion, and by using the knowledge we have obtained so far in this chapter to describe

how to give the presentation of the automorphism group of a two-generator, one-relator

group with torsion.

3.6.1 The proof of Theorem A

We shall now assemble the proof of Theorem A, which was stated in the introduction to

this chapter.
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Proof of Theorem A. Let G = 〈a, b;Rn〉, n > 1, be a two-generator, one-relator group

with torsion. Note that G is either one-ended or G ∼= Z ∗ Cn.

If G ∼= 〈a, b; [a, b]n〉 then Out(G) ∼= GL2(Z) by Corollary 3.2.2.

If G is one-ended, not isomorphic to 〈a, b; [a, b]n〉 and Out(G) is infinite then Out(G)

is one of D∞ × C2, D∞, Z× C2 or Z, by Lemma 3.3.5.

If G is one-ended, not isomorphic to 〈a, b; [a, b]n〉 and Out(G) is finite then Out(G)

is isomorphic to a finite subgroup of GL2(Z). Then every finite subgroup of GL2(Z) is

isomorphic to a subgroup of D4 or D6 [Zim96], as required.

If G has more than one end then G ∼= Z∗Cn [Pri77a], and then Out(G) ∼= DnoAut(Cn)

by Theorem 3.5.1.

Note that in Section 3.3.2 we give examples of one-ended two-generator, one-relator

groups with torsion which realise each of the groups D∞ × C2, D∞, Z× C2 or Z as their

outer automorphism group. In Lemma 3.4.1 we give examples of one-ended two-generator,

one-relator groups with torsion which realise each of the groups D6, D4, D3, C6, C4 and

C3 as their outer automorphism group. In Lemma 3.4.6 we give examples of one-ended

two-generator, one-relator groups with torsion which realise each of the groups C2 × C2,

C2 and the trivial group as their outer automorphism group.

3.6.2 An algorithm to compute Out(G)

In this section we give an algorithm to compute Out(G), where G is given by a presentation

〈a, b;Rn〉 with n > 1 and R not a proper power. The algorithm uses certain results of

Dahmani–Guirardel, specifically that it is decidable if a hyperbolic group splits over a

virtually-cyclic group with infinite center [DG11] and that there exists an algorithm to

determine the generators of the outer automorphism group of a hyperbolic group [DG11,

Theorem 3]. Note that if it is known that the JSJ-decomposition of G splits then G ∼=

〈a, b;Sn(a−1ba, b)〉 for some word S and the word S can be found by enumerating the

Nielsen transformations of F (a, b) and applying them to R [Pri77a]. The algorithm to

compute Out(G) where G = 〈a, b;Rn〉 with n > 1 is as follows.

• Rewrite R such that σa(R) = 0 and R is cyclically reduced.

– If R = bε then Out(G) ∼= D2n oAut(Cn).

– If R is a cyclic shift of [a, b]±1 then Out(G) ∼= GL2(Z).
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• Does the JSJ-decomposition of G split?

– If yes then rewrite R as S(a−1ba, b) and apply Section 3.3.2 to find Out(G).

– If no then obtain the generators for Out(G) and apply Section 3.4 to find

Out(G).

3.6.3 What does Aut(G) look like?

In this section we describe how to write down a presentation for Aut(G) using Out(G),

where G is an arbitrary one-ended two-generator, one-relator group with torsion (the

infinitely-ended case has appeared in print before [FR40, Gil87]) and we give examples.

Begin by noting that G is centerless [BT67]. Then, take a transversal T for Out(G) which

consists of Nielsen transformations and denote by O a subset of this transversal which will

generate Out(G). Note that this transversal T exists by Theorem 3.2.1.

To obtain a presentation for Aut(G), note that the inner automorphisms are isomorphic

to G in the canonical way (as G has trivial center), so we immediately have the following

relation.

γ
Rn

= 1

Next, we have that γψw = γwψ for all ψ ∈ Aut(G). Therefore, we have the following

relations for all ψ ∈ O.

γψa = γaψ

γψb = γbψ

We now have to ascertain how the elements of O multiply together. However, this is easily

computed: let 〈X; r〉 be a presentation for Out(G) which corresponds to the generators

O, then if S ∈ r is a relator we have that S = γw is a relation in Aut(G) where γw is the

appropriate inner automorphism. These three kinds of relations are all the relations, as any

other non-trivial relation would have one of the two following forms, where U(a, b) 6=G 1

and where W (O) is a word over O.

U(γa, γb) = 1 (3.1)

V (γa, γb) = W (O) (3.2)

However, (3.1) cannot happen as G ∼= Inn(G) under the isomorphism a 7→ γa, b 7→ γb,

because G is centerless, while (3.2) cannot happen as it corresponds to a relator in Out(G)

and we have captured all of these.
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For example, writing w for γw (so w represents the automorphism corresponding to

conjugation by w), if Out(G) = 〈α̂i〉 then Aut(G) is the following group.

Aut(G) = 〈αi, a, b;Rn(a, b), α2
i = bi, aαi = a−1bi, bαi = b〉

If Out(G) = 〈β̂i〉 then Aut(G) is the following group.

Aut(G) = 〈βi, a, b;Rn(a, b), β2
i = 1, aβi = abi, bβi = b−1〉

∼= Go C2

Our final example corresponds to G being Fuchsian: if G ∼= 〈a, b; [a, b]n〉 and writing

Aut(F (a, b)) = 〈a, b,X; r〉 then we have the following group.

Aut(G) = 〈a, b,X; r, [a, b]n〉



Chapter 4

Automorphism-Induced

HNN-Extensions

Every group can be realised as the outer automorphism group of some group [Mat89]. One

can ask what restrictions can be placed on the groups involved. Notably, Bumagin–Wise

proved that every countable group Q can be realised as the outer automorphism group of

a finitely generated group GQ [BW05]. Several other authors have achieved results in a

similar vein (see, for example, [Koj88], [GP00], [DGG01], [BG03], [FM05]).

To prove their results, Bumagin–Wise construct GQ as the kernel of a short exact

sequence using a version of a construction due to Rips’ [Rip82]. Their proof also shows

that if Q is finitely presented then GQ can be taken to be residually finite. They then pose

the question: can every countable group be realised as the outer automorphism group of

a finitely generated, residually finite group?

In this chapter we give partial answers this question of Bumagin–Wise, and we give

a new proof of their result that every countable group Q can be realised as the outer

automorphism group of a finitely generated group GQ. Our construction in this new proof

is explicit and more elementary than that of Bumagin–Wise, in the sense that we construct

the group GQ as an HNN-extension obtained from any countable presentation of Q.

A triangle group is a group with a presentation of the following form.

Ti,j,k := 〈a, b; ai, bj , (ab)k〉

A hyperbolic triangle group is one where i−1 + j−1 + k−1 < 1. If i = j = k we shall

write Ti := Ti,i,i for the corresponding equilateral triangle group. Our first two theorems

reveal a certain universal property possessed by hyperbolic triangle groups. Our first main

144
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theorem of this section, Theorem B, implies Bumagin–Wise’s result, that every group can

be realised as the outer automorphism group of a finitely generated group, as the group

GQ in the statement of the Theorem B is finitely generated.

Theorem B. Fix an equilateral triangle group H := Ti with i > 9. Then every countable

group Q can be realised as the outer automorphism group of an HNN-extension GQ of H.

Moreover, Aut(GQ) ∼= H oQ.

Our second main theorem, Theorem C, gives a partial answer to the question asked

by Bumagin–Wise, as again the group GQ in the statement of the theorem is finitely

generated. As in Theorem B, the construction is both explicit and elementary, with GQ

being an HNN-extension obtained from a presentation of Q.

Theorem C. Fix a hyperbolic triangle group H := Ti,j,k. Then every finitely-generated

group Q can be embedded as a finite index subgroup of the outer automorphism group of

an HNN-extension GQ of H, where GQ is residually finite if Q is.

Our third main theorem, Theorem D, gives a stronger result than Theorem C, in

the sense that Q being “residually finite” is replaced by being “recursively presented”

(or equivalently, “embeds in a finitely presented group”), and because it gives a much

more precise description of the outer automorphism group. The proof is based upon the

construction of Bumagin–Wise and utilises an embedding theorem of Sapir [Sap13].

Theorem D. If Q is a finitely generated, recursively presented group then either Q or

Q×C2 can be realised as the outer automorphism group of a finitely-generated, residually

finite group GQ.

This theorem admits a possible improvement: a positive answer to a question of Osin

would allow us to dispense of the Q × C2 possibility, and thus implies that every finitely

generated, recursively presented group can be realised as the outer automorphism group of

a finitely generated, residually finite group. We discuss this in more detail in Section 4.3.5.

Automorphism-induced HNN-extensions. Our main tool in the proofs of the above

theorems is the notion of an automorphism-induced HNN-extension. Such HNN-extensions

have been studied before [BT78,ALP14], but their outer automorphism groups have not yet

been closely analysed. We do this in Section 4.2. The second class of groups from the title

of this thesis is the class of automorphism-induced HNN-extensions G = 〈H, t;Kt = K ′〉
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where the associated subgroups are proper subgroups of the base group H, K,K ′ � K.

The third class of groups is the class of automorphism-induced HNN-extensions G =

〈H, t;Kt = K ′〉 where the base group H has trivial center and where the associated

subgroups are both H, and so the group G is a mapping torus G = H o Z.

The class of HNN-extensions exhibits a variety of pathological properties, and the

standard examples of badly-behaved HNN-extensions are Baumslag–Solitar groups, that

is, HNN-extensions of the infinite cyclic group. However, if a Baumslag–Solitar group is

automorphism-induced then it is “nice”: it is residually finite and has virtually cyclic outer

automorphism group. The constructions in Sections 4.3 are surprising because they show

that automorphism-induced HNN-extensions can still be “wild”, even when the base group

is well-behaved. In particular, we prove that an automorphism-induced HNN-extension is

not necessarily residually finite, and can have arbitrary outer automorphism group.

We show that an underlying reason for these wild properties is that if H is a hyperbolic

triangle group then for every countable group Q there exists some subgroup K of H

such that Q ∼= NH(K)/K, where NH(K) is the normaliser of K in H. This is proved

in Section 4.3.4. In an automorphism-induced HNN-extension G = 〈H, t;Kt = K ′〉, the

quotient NH(K)/K embeds into Aut(G) and, under certain conditions, into Out(G). Thus

the properties of NH(K)/K are in a certain sense bestowed upon G. However, if H is

cyclic (and hence G is a Baumslag–Solitar group) then NH(K)/K is necessarily cyclic and

so G inherits no pathological properties from this subgroup quotient.

Outline of the chapter. In Section 4.3 we prove our three main theorems, Theo-

rems B, C and D, and we give two other constructions of groups and classes of groups

with pathological properties. These results rely on three technical results which we prove

in Sections 4.1 and 4.2. In Section 4.1 we define automorphism-induced HNN-extensions,

introduce a way of viewing them as Zappa-Szép products, and prove the first technical

result, Theorem 4.1.3, which gives a criterion under which these groups are residually

finite. In Section 4.2 we use the Zappa-Szép product viewpoint to prove the second and

third technical results of the chapter, Theorems 4.2.15 and 4.2.17. Theorem 4.2.15 deals

with the second class of groups from the title of the thesis, and gives a decomposition of

a certain subgroup of the outer automorphism groups of a proper automorphism-induced

HNN-extensions, while Theorem 4.2.17 does this for the second class of groups from the

title of the thesis, specifically, when the base group has trivial center and the associated
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subgroups are equal to the base group, so the HNN-extension is a semi-direct product.
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4.1 Automorphism-induced HNN-extensions as Zappa-Szép

products

In this section we define automorphism-induced HNN-extensions and explain how to view

them as Zappa–Szép products. We use this approach to prove results regarding their

residual finiteness. This view allows us to think of such HNN-extensions as “generalised

Mapping Tori”, and it, along with most of the results contained in this section, were first

observed by Ateş–Logan–Pride [ALP14].

Automorphism-induced HNN-extensions. Let H be a group and let K,K ′ ≤ H

be non-trivial, isomorphic subgroups of H. Then we say that an HNN-extension G =

〈H, t; kt = k′, k ∈ K, k′ ∈ K ′〉 is automorphism-induced if the isomorphism K → K ′,

k 7→ k′ is induced by an automorphism of H, that is, there exists φ ∈ Aut(H) such that

kφ = k′ for all k ∈ K. We shall write G = 〈H, t;Kt = Kφ〉, and here Kt = Kφ means

kt = kφ for all k ∈ K.

Zappa–Szép products. A group Z is an (internal) Zappa–Szép product of A,B ≤ Z if

AB = Z and A∩B = 1. We write Z = A ./ B. This is also known as a general product or

knit product, and is the “next obvious thing” after one has defined direct and semi-direct

products.

Denote by Fk the free group on the cosets of H/K, Fk := F (H/K), let T be a transver-

sal for H/K = {Kg : g ∈ H}, and for h ∈ H let h̄ denote the unique element of T such

that h̄h−1 ∈ K. We have the following proposition.
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Proposition 4.1.1 (Ateş–Logan–Pride). Let H be a group, K ≤ H a subgroup and φ ∈

Aut(H) an automorphism. Then the associated automorphism-induced HNN-extension

can be viewed as a Zappa–Szép product in the following way.

G = 〈H, t;Kt = Kφ〉

∼= 〈H,xa, a ∈ T ;xah = (hφ)xah (h ∈ H, a ∈ T )〉

= H ./ Fk

Proof. We use Tietze transformations to prove that G can be presented in this way, be-

ginning at the proposed Zappa-Szép product Z.

Z = 〈H,xa, a ∈ T ;xah = (hφ)xah (h ∈ H, a ∈ T )〉

∼= 〈H,xa, a ∈ T ;x1a = (aφ)xa, xah = (hφ)xah (h ∈ H, a ∈ T )〉

∼= 〈H,xa, a ∈ T ;xa = (aφ)−1x1a, xah = (hφ)xah (h ∈ H, a ∈ T )〉

∼= 〈H,x1; (aφ)−1x1ah = (hφ)(ahφ)−1x1ah (h ∈ H, a ∈ T )〉

∼= 〈H,x1;x1ahah
−1
x−1

1 = (aφ)(hφ)(ahφ)−1 (h ∈ H, a ∈ T )〉

∼= 〈H,x1;x1ahah
−1
x−1

1 = (ahah
−1

)φ (h ∈ H, a ∈ T )〉

∼= 〈H,x1;x1kx
−1
1 = kφ (k ∈ K)〉

∼= G

To complete the proof, we need to prove that Z is, indeed, a Zappa-Szép product, which

reduces to proving that H ∩ 〈xa, a ∈ T 〉 = 1. So, suppose g =Z W (xa, a ∈ T ) for some

g ∈ H and W a freely reduced word on the xa. We shall prove that W is the empty word.

Now, the above working shows that the following map is an isomorphism.

Z → G

h 7→ h ∀h ∈ H

xa 7→ (aφ)−1ta ∀a ∈ T

Thus, to prove that Z is a Zappa-Szép product it suffices to prove that if the following

holds then W is the empty word.

W ((aφ)−1ta, a ∈ T ) =G g ∈ H

Suppose g−1W ((aφ)−1ta, a ∈ T ) =G 1, then this cannot be t-reduced by Britton’s Lemma

and thus there exists some subword of the form tkt−1 with k ∈ K or some subword of the
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form t−1(kφ)t with k ∈ K. However, this corresponds to W (xa, a ∈ T ) having a subword

of the form xax
−1
a or of the form x−1

a xa, which contradicts the assumption that it was

freely reduced. Therefore, Z is a Zappa-Szép product and so the proposition holds.

Therefore, G is isomorphic to a Zappa-Szép product of H with the free group on the

set H/K. This is the way we shall view G for the remainder of the Chapter.

Residual finiteness. We now apply the above viewpoint in an elementary way to the

residual finiteness of an automorphism-induced HNN-extension. Let g ∈ NH(K), and so

g ·K = Kg. Then g ·Ka = Kga so we have that the following function is an automorphism

of G.

ψg : h 7→ h

xa 7→ xga

Noting that the maps ψg1 and ψg2 define the same automorphism of G if and only if

g1g
−1
2 ∈ K we have the following proposition.

Proposition 4.1.2 (Ateş–Logan–Pride). If G = 〈H, t; kt = kφ, k ∈ K〉 with K non-trivial

and φ ∈ Aut(H) then NH(K)/K ≤ Aut(G).

This allows us to prove the following theorem, which is our first technical theorem of

the chapter. This result is applied in the proof of Theorem C.

Theorem 4.1.3. Suppose that G = 〈H, t; kt = kφ, k ∈ K〉 with K non-trivial and φ ∈

Aut(H). Suppose H is finitely generated and residually finite, and suppose that NH(K)

has finite index in H. Then G is residually finite if and only if NH(K)/K is residually

finite.

Proof. As H finitely generated, G is finitely generated. This means that if G is residually

finite then so is Aut(G), by Proposition 2.5.5, and so NH(K)/K is residually finite by

Proposition 4.1.2.

Now, G is residually finite if for all finite sets {g1, . . . , gn} with gi ∈ H \K there exists

some finite index normal subgroup N of H, N Ef H, such that giK ∩N is empty for all

i ∈ {1, . . . , n}, by Proposition 2.5.8. This condition holds if NH(K)/K is residually finite.

To see this, we shall find for each gi a normal subgroup Ni of finite index in H such that

gi 6∈ Ni. Then, intersecting the finitely many subgroups Ni, each of which has finite index
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in H, yields a finite-index subgroup N := ∩Ni with the required properties. So, begin

by noting that if gi 6∈ NH(K) we can take the normal subgroup Ni to be contained in

NH(K) (for example, take Ni to be the intersection of the (finitely many) conjugates of

NH(K). We shall now consider the case when gi ∈ NH(K). Then giK 6= K and because

NH(K)/K is residually finite there exists a map ψi from NH(K)/K onto a finite group

Qi, ψi : NH(K)/K → Qi, such that giK is not contained in the kernel of ψi. Therefore,

these exists a map ψ̃i : NH(K) → NH(K)/K
ψi−→ Qi such that gi is not contained in the

kernel of ψ̃i, and take Ni to be the kernel of the map ψ̃i. Therefore, the condition holds

and so G is residually finite.

4.2 The outer automorphism groups of automorphism-induced

HNN-extensions

In this section we prove Theorems 4.2.15 and 4.2.17, which are the two main technical

results of the chapter. Theorem 4.2.15 gives a short exact sequence for an index-one or

-two subgroup of Levitt’s subgroup of Out(G) for G a proper automorphism-induced HNN-

extension, while Theorem 4.2.17 gives an explicit isomorphism for the analogous subgroup

for G a mapping torus of a group H with trivial center, G = H o Z and Z(H) = 1.

Theorem 4.2.15 forms the basis of the proofs of Theorem B and C from Section 4.3 while

Theorem 4.2.17 forms the basis of the proof of Theorem D, also from Section 4.3.

The layout of this current section is as follows. We begin by recalling Levitt’s and

Pettet’s subgroups and providing certain conditions, in Lemma 4.2.1 and Lemma 4.2.2,

which imply that Pettet’s subgroup is the whole outer automorphism group, and we then

provide, in Theorem 4.2.3, conditions which imply that Levitt’s subgroup is equal to

Pettet’s subgroup. We then prove that the elements of Levitt’s subgroup have a specific

form, which we do in Lemma 4.2.6 from Section 4.2.1. This lemma forms the basis of

this current section, Section 4.2, and we prove this lemma by viewing G as a Zappa–

Szép product, as in Section 4.1. In Section 4.2.2 we prove Theorem 4.2.15, which gives a

description of Levitt’s subgroup of proper automorphism-induced HNN-extensions, and in

Section 4.2.3 we prove Theorem 4.2.17, which is the analogous result Levitt’s subgroup of

mapping tori of groups with trivial centre.

Levitt’s subgroup. The main results of this section look at Levitt’s subgroup of Aut(G)
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and of Out(G), denoted AutH(G) and OutH(G) respectively, in the specific case where

G is an automorphism-induced HNN-extension. We now recall the definition of Levitt’s

subgroup from Section 2.11. Let G = 〈H, t;Kt = K ′〉 be a (not-necessarily automorphism-

induced) HNN-extension where K � H, then Levitt’s subgroup of Aut(G), denoted

AutH(G), is the maximal subgroup of Aut(G) such that the diagram in Figure 4.1 com-

mutes, where θ is the canonical map from G to Aut(G) whose image is the inner automor-

phisms. As inner automorphisms are contained in this subgroup, Inn(G) ≤ AutH(G), we

G AutH(G)

Aut(T )

θ

Figure 4.1: The map θ is the canonical homomorphism whose image is the

inner automorphisms Inn(G). Levitt’s subgroup AutH(G) is the maximal sub-

group of Aut(G) such that this diagram commutes.

can define Levitt’s subgroup of Out(G) in the obvious way, OutH(G) := AutH(G)/ Inn(G).

If G is a mapping torus, so G = 〈H, t;Ht = Hφ〉 ∼= H oφ Z, then we define Levitt’s

subgroup AutH(G) to be the subgroup of Aut(G) consisting of those automorphisms of G

which send H to a conjugate of H, and again this contains the inner automorphisms so we

define OutH(G) in the obvious way. Note that this is the same definition as that of Pettet’s

subgroup, below. This is because Levitt’s subgroup can be thought of as the subgroup of

Pettet’s subgroup consisting of elements α̂ with a representative α where Hα = H and tα

has t-length one, so tα = h1t
εh2 for some h1, h2 ∈ H.

Conditions implying OutH(G) = OutH(G). Levitt’s subgroup is most of interest when

OutH(G) = Out(G). We shall now give certain conditions which imply that this is so.

Our first condition is for mapping tori, so the case when H = K. The observation we

prove, below, appears in a paper of Arzhantseva–Lafont–Minasyan [ALM11], although it

is somewhat hidden in the proof of their Proposition 2.1.

Lemma 4.2.1 (Arzhantseva–Lafont–Minasyan). Suppose H has no epimorphisms onto

Z. If G = HoZ then every automorphism of G maps H to itself. Thus, Pettet’s subgroup

OutH(G) of the outer automorphism group is the whole outer automorphism group.

Proof. Consider the following composition of maps, where the first embedding is the nat-
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ural one of H into G, where the map φ : G→ G is an automorphism of G, and where the

final surjection is the natural one of G onto Z by quotienting out H.

H ↪→ G
φ−→ G� Z

As H does not map onto Z, these maps compose to give the trivial map. Therefore,

Hφ ≤ H. Using the same argument with φ−1, we see that Hφ−1 ≤ H and so Hφ = H as

required.

We now wish to prove an analogous result for proper automorphism-induced HNN-

extensions, for the case when K � H. The following results use an additional subgroup

of Out(G), “Pettet’s subgroup”. The first result gives conditions when Pettet’s subgroup

is the whole of the outer automorphism group, and the second result gives conditions

when Pettet’s subgroup is equal to Levitt’s subgroup. Therefore, we begin by defining this

subgroup: Pettet’s subgroup of Aut(G) is the subgroup consisting of automorphisms of G

which send H to a conjugate of H.

AutH(G) := {ψ ∈ Aut(G) : Hψ = Hg}

As inner automorphisms are contained in this subgroup, Inn(G) ≤ AutH(G), we can define

Pettet’s subgroup of Out(G) in the obvious way, OutH(G) := AutH(G)/ Inn(G). M. Pettet

has studied AutH(G), proving that if K is conjugacy-maximal in H (that is, no conjugate

of K properly contains K) then Pettet’s subgroup is equal to Levitt’s subgroup [Pet99].

We shall now prove that Pettet’s subgroup of G = 〈H, t;Kt = Kφ〉, K � H, is equal

to the whole outer automorphism group when H has Serre’s property FA. Note that our

proof shows that the base group H is always conjugacy maximal in the HNN-extension G,

and is an extension of an argument of Pettet [Pet99]. We shall write γg to mean the inner

automorphism corresponding to conjugation by g, that is, hγg = g−1hg for all h ∈ G.

The following proofs use the fact that in an automorphism-induced HNN-extension

G = 〈H, t;Kt = Kφ〉, if g, h ∈ H are conjugate in G then g = hφiγp for some p ∈ H.

This is because when we view uWgW−1u−1(= h) in the Zappa-Szép product (u ∈ H,

W ∈ F (H/K)) we have that (gφi)WW−1 = u−1hu and WW−1 must be trivial by the

properties of a Zappa-Szép product.

Lemma 4.2.2. Suppose H has Serre’s property FA. If G is an automorphism-induced

HNN-extension of H then every automorphism of G maps H to a conjugate of itself.
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Thus, Pettet’s subgroup OutH(G) of the outer automorphism group is the whole outer

automorphism group.

Proof. Let ψ be an automorphism of G. We shall begin by proving that Hψ is a subgroup

of a conjugate of H. Note that G is an HNN-extension and so acts on the associated

Bass–Serre tree T . Consider the action of Hψ on T . Now, Hψ has Serre’s property FA

and so acts with a global fixed point on T . Thus, Hψ stabilises some vertex. Every vertex

stabiliser of T is a conjugate of H. Therefore, Hψ is a subgroup of a conjugate of H,

Hψ ≤ Hg1 , as required.

Suppose that Hψ � Hg and we shall look for a contradiction. Using the above argu-

ment with ψ−1, we see that Hψ−1 ≤ Hg2 for some g2 ∈ G, and so Hg3 ≤ Hψ for some

g3 ∈ G. Thus, we have that Hg3 � Hg1 , and so Hg � H. It is therefore sufficient to prove

that, for all g ∈ G, if Hg ≤ H then Hg = H (that is, H is conjugacy maximal in G). So,

let h ∈ H be arbitrary, and let g = uW ∈ G be an arbitrary element of g with u ∈ H

and W ∈ Fk, and assume hg ∈ H. Then W−1u−1huW = (u−1hu)φi = hγuφ
i for some

i ∈ Z. Noting that i depends on W not on h, conjugation by an element of G induces an

automorphism of H, and so Hg = H as required.

We now give conditions which imply that Levitt’s subgroup is equal to Pettet’s sub-

group. Combining this with the above result, Lemma 4.2.2, gives conditions which imply

that Levitt’s subgroup is the whole of the outer automorphism group.

Theorem 4.2.3. Suppose that G = 〈H, t;Kt = Kφ〉 is an automorphism-induced HNN-

extension, and further suppose that one of the following holds.

1. K is conjugacy maximal in H.

2. The automorphism φ sends K to a conjugate of K, so Kφ = Kγh for some h ∈ H.

3. There does not exist any h ∈ H such that Kφ � Kγh and there does not exist any

g ∈ H such that Kγg � Kφ.

Then Pettet’s subgroup OutH(G) is equal to Levitt’s subgroup OutH(G) of Out(G).

What we prove is that every element ψ̂ ∈ OutH(G) has a representative ψ ∈ Aut(G)

such that Hψ = H and tφ = g1t
εg2 for some g1, g2 ∈ H. This implies that AutH(G)

acts on the Bass–Serre tree in the appropriate way as by definition Pettet’s subgroup

acts on the vertices and this result implies that the action on the vertices extends to the

corresponding action on the edges.
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Proof. If either (1) or (2) hold then the theorem holds by results of Pettet [Pet99, Lemma

2.6 and Theorem 1]. We shall suppose that there does not exist any g ∈ H and εg = ±1

such that Kγg � Kφεg and use this to conclude that tφ = g1t
εg2 for some g1, g2 ∈ H.

Note that as ψ̂ ∈ OutH(G) there exists a representative ψ ∈ Aut(G) such that Hψ =

H. We begin by picking such an automorphism ψ. Now, let v be the vertex such that

Gv = H and let p be the vertex such that Gp = tHt−1. Note that v and p are connected

by a single edge, e′, which is stabilised by the subgroup K. Let w be the vertex stabilised

by (tψ)H(tψ)−1, and consider the geodesic [v, w]. Note that the first edge in this geodesic

is stabilised by either an H-conjugate of K or of Kφ, and as we are working modulo the

inner automorphisms can assume that the first edge of the geodesic [v, w] is fixed by either

K or Kφ, and we shall denote this subgroup K1.

There exists a positive edge e in the geodesic [v, w] such that Ge = Kψ [Pet99, Lemma

2.2]. Note that Kψ is G-conjugate to K as it is an edge stabiliser, and so we can re-write

Kψ as Z−1g−1KgZ for some g ∈ H, Z ∈ F (H/K). Now, Kψ stabilises [v, w] and so

Kψ = Z−1g−1KgZ =≤ K1, which means that Ge = Kφrγh0 for some r ∈ Z, h0 ∈ H.

We shall now shift to an algebraic viewpoint. Write tψ = g1t
ε1g2t

ε2 . . . gnt
εngn+1 in

its t-reduced form, and more generally write Xi = git
εi . . . gnt

εngn+1. Algebraically, we

have shown that there exists some j ∈ {1, . . . , n} such that XjK1X
−1
j = Kφrγhj for

some hj ∈ H, and that for each i ∈ {1, . . . , n} there exists some hi ∈ H such that

Kφrγhi ≤ XiK1X
−1
i . Consider Xj−1K1X

−1
j−1. Then we have the following.

Kφrγhj−1
≤ Xj−1K1X

−1
j−1

= gj−1t
εj−1(Kφrγhj )t

−εj−1g−1
j−1

This means that every element of Kφrγhj−1
is equal to an element of the following form.

gj−1t
εj−1(kφrγhj )t

−εj−1g−1
j−1

Such an element is equal to an element of the form kφr+εj−1γh′j . Hence, Kφrγhj−1
≤

Kφr+εj−1γh′j , and so there exists some g ∈ H such that Kγg ≤ Kεj−1 . This is a contradic-

tion, and so we conclude that j = 1. However, repeating the above argument with Xj+1

in place of Xj−1 proves that there exists some g ∈ H such that Kγg ≤ Kεj+1 and so we

obtain another contradiction. Hence, j = 1 and n = 1, so tφ = g1t
εg2 for some g1, g2 ∈ H

as required.
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4.2.1 The form of (outer) automorphisms

Let G denote an automorphism-induced induced HNN-extension, G = 〈H, t;Kt = Kφ〉,

and recall that such a group G can be viewed as a Zappa–Szép product with the following

presentation.

〈H,xa, a ∈ T ;xah = (hφ)xah (h ∈ H, a ∈ T )〉

Our two main technical theorems, Theorems 4.2.15 and 4.2.17, follow from a classification

of the elements of Levitt’s subgroup OutH(G). That is, to prove the two main technical

theorems we begin by finding coset representatives for OutH(G). The purpose of this

section is to prove Lemma 4.2.6, which gives this classification. The proof of this lemma

views G as a Zappa–Szép product as above.

We begin by proving that certain maps, which are used as representatives for elements

of Out(G) in Lemma 4.2.6, define automorphisms of G. There are two forms these rep-

resentatives take, and Lemma 4.2.4 considers the first form while Lemma 4.2.5 considers

the second form.

Lemma 4.2.4. If δ ∈ Aut(H) and g ∈ H such that Kδ = K and (kδφ) = g−1(kφδ)g for

all k ∈ K then the pair (δ, g) induces an automorphism of G in the following way, where

v1 := g, va = (a−1φδ)v1(aδφ), and τa = aδ.

α(δ,g) : h 7→ hδ ∀h ∈ H

xa 7→ vaxτa

Proof. We begin by proving that each α(δ,g) is a homomorphism. We then prove that they

are each surjective and then that they are right-invertible (that is, injective).

To see that α(δ,g) is a homomorphism note that it satisfies all the relators of H, as

α(δ,g)|H = δ ∈ Aut(H), so it is sufficient to prove that (xah)α(δ,g) = (hφxah)α(δ,g) for all

a ∈ T , h ∈ H. So, the left hand side is evaluated as follows.

(xah)α(δ,g) = (a−1φδ)g(aδφ)xaδ(hδ)

= (a−1φδ)g ((ah)δφ)x
(ah)δ

We now evaluate the right hand side as follows. Note that (4.1), below, is obtained because

ahδ = (kah)δ = ahδ as Kδ = K, while (4.2), below, is obtained because g is such that
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(kδφ) = g−1(kφδ)g for all k ∈ K, which is rearranged to give the substitution used.

(hφxah)α(δ,g) = (hφδ)
(
(ah)−1φδ

)
g(ahδφ)x

(ah)δ
(4.1)

= (hφδ)
(
(h−1a−1k−1)φδ

)
g ((kah)δφ)x

(ah)δ

= (a−1φδ)(k−1φδ)g(kδφ) ((ah)δφ)x
(ah)δ

= (a−1φδ)g ((ah)δφ)x
(ah)δ

(4.2)

Thus, the left and right hand sides are equal and so α(δ,g) is a homomorphism.

To see that α(δ,g) is surjective, note that its restriction to H is surjective, and further

note that x1 7→ u1x
ε
1 for some u1 ∈ H so x1 is in the image. Then because (a−1φ)x1a = xa,

each xa for a ∈ T is contained in the image. As G is generated by H and the xa we are

done.

To see that α(δ,g) is right-invertible, and so injective, we shall prove that α(δ−1,g−1δ−1) is

also a homomorphism and that α(δ,g)α(δ−1,g−1δ−1) is trivial. To prove that α(δ−1,g−1δ−1) is a

homomorphism, it suffices to prove thatKδ−1 = K and that (kδ−1φ) = (g−1δ−1)−1(kφδ−1)(g−1δ−1).

Now, Kδ = K and so Kδ−1 = K, while for all k ∈ K we have the following implications

(note that we replace k with kδ−1, which is a valid step because K = Kδ−1).

(kδφ) = g−1(kφδ)g

⇒ (kφ) = g−1(kδ−1φδ)g

⇒ (kφδ−1) = (g−1δ−1)(kδ−1φ)(gδ−1)

⇒ (kδ−1φ) = (g−1δ−1)−1(kφδ−1)(g−1δ−1)

Therefore, the two required properties hold and so α(δ−1,g−1δ−1) is a homomorphism. This

map is the right inverse of α(δ,g) as clearly hα(δ,g)α(δ−1,g−1δ−1) = h while we have the

following working.

x1α(δ,g)α(δ−1,g−1δ−1) = (gx1)α(δ−1,g−1δ−1)

= (gδ−1)(g−1δ−1)x1

= xa

Then, because α(δ,g) is a homomorphism and because G is generated by x1 and H, we

have that α(δ,g) is injective, as required.

The second form which automorphism can take is given by the following lemma.
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Lemma 4.2.5. If δ ∈ Aut(H) and g ∈ H such that Kδ = Kφ, Kδ2γg = K, and

g−1(kφδ)g = kδφ−1 for all k ∈ K then the pair (δ, g) induces an automorphism of G

in the following way, where v1 := g, va = (a−1φδ)v1(aδφ−1), and τa = aδφ−1.

ζ(δ,g) : h 7→ hδ ∀h ∈ H

xa 7→ vax
−1
τa

Proof. We begin by proving that each ζ(δ,g) is a homomorphism. We then prove that they

are each surjective and then that they are right-invertible (that is, injective).

To see that ζ(δ,g) is a homomorphism note that it satisfies all the relators of H, as

ζ(δ,g)|H ∈ Aut(H), so it is sufficient to prove that (xah)ζ(δ,g) = (hφxah)ζ(δ,g) for all a ∈ T ,

h ∈ H. So, the left hand side is evaluated as follows.

(xah)ζ(δ,g) = (a−1φδ)g(aδφ−1)x−1

aδφ−1
(hδ)

= x−1

g−1(aφδ)
(a−1φδφ)(gφ) ((ah)δ)

We now evaluate the right hand side as follows. Note that (4.3), below, is obtained because

ahδφ−1 = (kah)δφ−1 = (ah)δφ−1 as Kδ = Kφ so Kδφ−1 = K, while (4.4), below, is

obtained because g is such that kδφ−1 = g−1(kφδ)g for all k ∈ K, which is rearranged to

give the substitution used.

(hφxah)ζ(δ,g) = (hφδ)
(
(ah)−1φδ

)
g(ahδφ−1)x−1

(ah)δφ−1
(4.3)

= (hφδ)
(
(h−1a−1)φδ

)
(k−1φδ)g(kδφ−1)

(
(ah)δφ−1

)
x−1

(ah)δφ−1

= (a−1φδ)g
(
(ah)δφ−1

)
x−1

(ah)δφ−1
(4.4)

= x−1

g−1(aφδ)
(a−1φδφ)(gφ) ((ah)δ)

Thus, the left and right hand sides are equal and so ζ(δ,g) is a homomorphism.

To see that ζ(δ,g) is surjective, note that its restriction to H is surjective, and further

note that x1 7→ u1x
ε
1 for some u1 ∈ H so x1 is in the image. Then because (a−1φ)x1a = xa,

each xa for a ∈ T is contained in the image. As G is generated by H and the xa we are

done.

In order to prove that ζ(δ,g) is right-invertible, and so injective, we shall prove that

α(δ2γg ,g−1(gδ)) is an automorphism and that ζ2
(δ,g)γg = α(δ2γg ,g−1(gδ)). This is sufficient,

because we have already proven that ζ(δ,g) is a homomorphism. To prove that α(δ2γg ,g−1(gδ))

is an automorphism, by Lemma 4.2.4 we are required to prove that Kδ2γg = K and that
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we have the following equality.

kδ2γgφ = (gδ)−1g(kφδ2γg)g
−1(gδ)

(
= kφδ2γgδ

)
The first point, that Kδ2γg = K, holds by the definition of ζ(δ,g) (that is, this equality is

explicitly assumed). To prove the second point, we verify that kδ2γgφδ
−1 = kφδγg for all

k ∈ K, which is sufficient. To do this, recall that Kδ = Kφ, so we can replace k with

kφδ−1 throughout, or with kδφ−1 throughout. The following working then proves that

α(δ2γg ,g−1(gδ)) is an automorphism of G, as required. Our starting point is kδφ−1 = kφδγg,

which holds by the definition of ζ(δ,g).

kδφ−1 = kφδγg

⇔ k = kφδ−1φδγg (k 7→ kφδ−1 throughout)

⇔ kδφ−1φδ−1 = kφδ−1φδγg

⇔ kφδγgφδ
−1 = kφδ−1φδγg (kδφ−1 7→ kφδγg)

⇔ kδ2γgφδ
−1 = kφδγg (k 7→ kδφ−1 throughout)

To complete the result, it is now sufficient to prove that ζ2
(δ,g)γg = α(δ2γg ,g−1(gδ)). To see

this, note that as as their restriction to H is identical and because ζ2
(δ,g) is a homomorphism,

it is sufficient to prove that x1ζ
2
(δ,g)γg = g−1(gδ)x1

(
= x1α(δ2γg ,g−1(gδ))

)
. This holds by the

following working.

x1ζ
2
(δ,g)γg = (gx−1

1 )ζ(δ,g)γg

=
(
(gδ)(gx−1

1 )−1
)
γg

=
(
(gδ)x1g

−1
)
γg

= g−1(gδ)x1

Therefore, ζ(δ,g) is an automorphism of G, as required.

It should be noted that it is sometimes possible to replace certain restrictions on the

maps from Lemma 4.2.4 and Lemma 4.2.5 with others to obtain surjective endomorphisms

with non-trivial kernel, and so automorphism-induced HNN-extensions are not necessarily

Hopfian. For example, in the definition of the map ζ(δ,g) from Lemma 4.2.5, replacing the

condition Kδ2γg = K with the condition Kδ2 = K yields a surjective endomorphism, but

this is an injection only if the element g from the pair (δ, g) is contained in the normaliser

of K, g ∈ NH(K).
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Classifying the elements of OutH(G). Our classification of the coset representatives

for OutH(G) is as follows.

Lemma 4.2.6 (Main technical lemma). Every element ψ̂ of OutH(G) has a representative

in AutH(G) of the form α(δ,g) or of the form ζ(δ,g). Moreover every map α(δ,g) and ζ(δ,g)

defines an automorphism of G.

The proof of the first part of this lemma, that every element of AutH(G) has a repre-

sentative in OutH(G) of one of the stipulated forms, is substantial, but note that we have

already proven, in Lemma 4.2.4 and Lemma 4.2.5, that the prospective representatives

define automorphisms of G. We shall now prove the following lemma, Lemma 4.2.7, which

gives a rough form of the representatives of OutH(G) and is the first step in the proof of

the first part of Lemma 4.2.6, on the form of the representatives.

Lemma 4.2.7. If ψ ∈ AutH(G) then, modulo the inner automorphisms, ψ is of the form,

ψ : h 7→ uh

xa 7→ vax
ε
τa

where uh, va ∈ H, τ1 = 1 and ε is fixed for ψ. Further, ψ|H ∈ Aut(H).

Proof. Note that as we are working modulo the inner automorphisms we can assume

Hψ = H. Thus, the restriction of ψ to H must be an automorphism of H, ψ|H ∈ Aut(H).

Therefore, as G is a Zappa–Szép product of the form H ./ Fk every automorphism must

be of the following form, modulo Inn(G), where Wa ∈ Fk and uh, va ∈ H (recall that

Fk := 〈xa; a ∈ T 〉).

ψ : h 7→ uh

xa 7→ vaWa

Now, for notational convenience, we shall let W∗ and v∗ be (non-injective) functions from

H to respectively Fk and H, so W∗ : H → Fk and v∗ : H → H. This allows us to write

Wh and vh for any h ∈ H meaningfully.

We shall now prove that Wa is of the form xεaτa , where τa ∈ T . to see this, begin by

noting that as ψ is a homomorphism we must have the following equalities.

(xaψ)(hψ) = (hφψ)(xahψ)

⇒ vaWauh = uhφvahWah (4.5)
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Note that as G = H ./ Fk is a Zappa–Szép product, and be looking at the Zappa–Szép

presentation, we have that Wag can be written as ĝŴa where ĝ ∈ H and |Ŵa| = |Wa|,

that is, Wag = ĝŴa. Then, as vaWauh = uhφvahWah we have that |Wa| = |Wah| and so

the length of Wa is constant for all a ∈ T . Now, x1 corresponds to the generator t of the

HNN-extension, and so |x1ψ| = 1 as we are in Levitt’s subgroup. Therefore, |Wa| = 1 for

all a ∈ T , and so we can write Wa = xεaτa .

Writing Wa = xεaτa in (4.5), we have that the equality v1x
ε1
τ1ua = uaφvax

εa
τa holds for all

a ∈ T , and so we must have that ε1 = εa for all a ∈ T . Thus, Wa = xετa and ε is fixed for

all a ∈ T .

To complete the proof of the lemma it suffices to prove that we can assume that τ1 = 1.

To see this, begin by recalling that we are working modulo Inn(G). Let ψ′ : h 7→ uh, xa 7→

vax
ε
τa be an automorphism of G, so x1ψ

′ = hxεa. Then we can take ψ := ψ′γa−1 if ε = 1

or take ψ := ψ′γa−1φ if ε = −1 to get that x1ψ = gxε1 for some g ∈ H. This completes the

proof of the lemma.

In a similar way to W∗ and v∗, we can define τ∗ to be a non-injective function from H

to the transversal T of H/K, so τ∗ : H → T , and so we can write τh meaningfully for all

h ∈ H. We shall prove that for ψ to be a homomorphism we need the functions v∗ and τ∗

to be well-defined, that is, we need vh = vh̄ and τh = τh̄ all to hold for all h ∈ H. Doing

so and replacing h ∈ H with a ∈ T yields certain of the conditions in Lemma 4.2.6.

Proof of Lemma 4.2.6. We use Lemma 4.2.7 to prove Lemma 4.2.6, and proving this

lemma is the purpose of this current section, Section 4.2.1.

Proof of Lemma 4.2.6. We shall write δ ∈ Aut(H) for ψ|H from now on. So, by Lemma 4.2.7,

modulo the inner automorphisms of G, if ψ ∈ AutH(G) then there exists some δ ∈ Aut(H)

such that ψ has the following form, where va ∈ H, τ1 = 1 and ε is fixed for ψ.

ψ : h 7→ hδ

xa 7→ vax
ε
τa

We have two cases: ε = 1 and ε = −1.

The case of ε = 1: Suppose ε = 1. We must establish the following facts, and doing so

proves the lemma for this case (by replacing h ∈ H with a ∈ T in (i) and (ii)).

(i) τh = hδ holds for all h ∈ H (that is, τ∗ is a well-defined function).
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(ii) vh = (h−1φδ)v1(hδφ) holds for all h ∈ H (that is, v∗ is a well-defined function).

(iii) K = Kδ.

(iv) kδφ = v−1
1 (kφδ)v1 holds for all k ∈ K.

We begin by proving that (i) holds. That is, (hδ)τ−1
h ∈ K for all h ∈ H. This holds

because of the following sequence of implications.

xah = (hφ)xah

vaxτa(hδ) = (hφδ)vahxτah

va(hδφ)x
τa(hδ)

= (hφδ)vahxτah (4.6)

τa(hδ)τ
−1
ah ∈ K

Then, τ1 = 1 so (hδ)τ−1
h ∈ K, as required.

We shall now prove that (ii) holds, that is, vh = (h−1φδ)v1(hδφ) for all h ∈ H. To see

this, by (4.6) we have that va(hδφ) = (hφδ)vah which means, taking a = 1, we have that

vh = (h−1φδ)v1(hδφ) for all h ∈ H as required.

We shall now prove that (iii) holds, that is, Kδ = K (recall that ψ|H = δ). Note

that because (i) holds we have that τk = 1 for all k ∈ K, and so Kδ ≤ K. On the

other hand, suppose gδ ∈ K. Then τg = 1, which means that ψ : (v−1
g δ−1)xg 7→ x1.

As (v−1
1 δ−1)x1 7→ x1 we have that (v−1

g δ−1)xg = (v−1
1 δ−1)x1 which means that g = 1 so

g ∈ K. Thus, Kδ = K, as required.

Finally, we prove that (iv) holds, that is, kδφ = v−1
1 (kφδ)v1 for all k ∈ K. To do this,

note that because (ii) holds we have that vh = va for all h ∈ H such that ah−1 ∈ K. So,

for ah−1 ∈ K we have the following.

vh = va

(h−1φδ)v1(hδφ) = (a−1φδ)v1(aδφ)

v1 = (ah−1)φδ · v1 · (ha−1)δφ

Then, because ah−1 ∈ K, and because we could take a = 1 and h = k ∈ K, we have that

v1 = (k−1φδ)v1(kδφ) for all k ∈ K. This completes the proof of the ε = 1 case.

The case of ε = −1: Suppose ε = −1. We must establish the following facts, and doing so

proves the lemma for this case (by replacing h ∈ H with a ∈ T in (i) and (ii)).
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(i) τh = hδφ−1 holds for all h ∈ H (that is, τ∗ is a well-defined function).

(ii) vh = (h−1φδ)v1(hδφ−1) holds for all h ∈ H (that is, v∗ is a well-defined function).

(iii) Kδ = Kφ.

(iv) Kδ2γv1 = K.

(v) v−1
1 (kφδ)v1 = kδφ−1 holds for all k ∈ K.

To establish these facts we begin with the following implications.

xah = (hφ)xah

⇒ vax
−1
τa (hδ) = (hφδ)vahx

−1
τah

⇒ x−1

τav
−1
a

(vaφ)(hδ) = x−1

τahv
−1
ah (h−1φδ)

(hφδφ)(vahφ)

These give us the following facts.

τahv
−1
ah (h−1φδ)vaτ

−1
a ∈ K

(vaφ)(hδ) = (hφδφ)(vahφ)

Picking a = 1 in both equations, and recalling that τ1 = 1, we get the following facts, with

(4.9) following from (4.8).

τhv
−1
h (h−1φδ)v1 ∈ K (4.7)

(v1φ)(hδ) = (hφδφ)(vhφ) (4.8)

v1 = (hφδ)vh(h−1δφ−1) (4.9)

By replacing the v1 in (4.7) using (4.9), we see that τh(hδφ−1)−1 ∈ K. Thus, (i) holds,

while (ii) follows from (4.9).

We now prove (iii) holds. To begin, we prove that if there exists an automorphism

with ε = −1 then Kδφ−1 = K (and so Kδ = Kφ). Now, Kδφ−1 ≤ K as, by (i), kδφ−1 =

τk = τ1 = 1 for all k ∈ K. Now, suppose Kδφ−1 6= K. This means that Kδφ−1 � K,

and so there exists h ∈ H \ K such that hδφ−1 ∈ K. Then, ψ : (v−1
h ψ−1)xh 7→ x−1

1

and ψ : (v−1
1 ψ−1)x1 7→ x1, so x1 = xh, and so h ∈ K, our required contradiction. This

establishes (iii).

To establish (iv), note that x1ψ
2γv1 = ((v1ψ)x1v

−1
1 )γv1 and so ψ2δv1 is of the form

investigated in the previous case (the case of ε = 1). All automorphisms with ε = 1 fix K

(not necessarily pointwise), and so Kψ2γv1 = K. Therefore, (iv) holds.
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We now establish (v). We need to prove that vh = vh̄ for all h ∈ H, that is, we need

v∗ to be a well-defined function. Thus, by (ii), we require the following equality to hold.

(
vh =

)
(h̄−1φδ)v1(h̄δφ−1) = (h−1φδ)v1(hδφ−1) (= vh)

This means we need that (hh̄−1)φδ · v1 · (h̄h−1)δφ−1 = v1. As h̄h−1 ∈ K we get that

v1 = (k−1φδ)v1(kδφ−1) for all k ∈ K, and (v) holds.

Therefore, every automorphism is equal, modulo the inner automorphisms, to an au-

tomorphism of the form α(δ,g) or an automorphism of the form ζ(δ,g). Then, as every

map α(δ,g) and ζ(δ,g) defines an automorphism of G by, respectively, Lemma 4.2.4 and

Lemma 4.2.5, the proof of the lemma is complete.

The subgroup Out0
H(G). Having proven Lemma 4.2.6, we know, in a certain sense, what

the elements of OutH(G) are. We shall write α̂(δ,g) to denote the coset of Aut(G)/ Inn(G)

containing α(δ,g). In the remainder of Section 4.2 we describe the group formed by the

elements of the form α̂(δ,g), denoted Out0
H(G), in the two disjoint cases of when H � K

(Theorem 4.2.15) and when H = K and Z(H) = 1 (Theorem 4.2.17). Note that the

purpose of Section 4.2 is to prove Theorems 4.2.15 and 4.2.17, and these two results form

the basis of the proofs of the main theorems, Theorems B, C and D.

We shall now explain why we do not consider the automorphisms ζ(δ,g), but instead

restrict our investigations to the subgroup Out0
H(G) of OutH(G). If there does not exist

any automorphisms of the form ζ(δ,g) then Out0
H(G) = OutH(G). Otherwise, noting that

the α(δ,g) maps x1 to gx1 while ζ(δ′,g′) maps x1 to g′x−1
1 , we see that Out0

H(G) is an index

two subgroup of OutH(G). Therefore, we have the following lemma.

Lemma 4.2.8. The subgroup Out0
H(G) consisting of the outer automorphisms of the form

α̂(δ,g) has index two in Levitt’s subgroup OutH(G) if there exists an automorphism ζ(δ,g)

of G. Otherwise, Out0
H(G) is equal to Levitt’s subgroup OutH(G) itself.

This lemma is why in Theorems 4.2.15 and 4.2.17 we restrict our analysis to Out0
H(G).

Note that Lemma 4.2.6 classifies when Out0
H(G) has index one or two in OutH(G) as it

classifies when an automorphism ζ(δ,g) exists.

Note that the automorphisms of the form α(δ,g) are such that the following hold. We
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use these equalities throughout the remainder of Section 4.2.

α(δ,g)α(ξ,h) = α(δξ,(gξ)h)

α−1
(δ,g) = α(δ−1,g−1δ−1)

4.2.2 Proper automorphism-induced HNN-extensions

Take G to be a proper automorphism-induced HNN-extension, that is, G = 〈H, t;Kt =

Kφ〉 where φ is an automorphism of H and where K is a proper subgroup of H, K � H.

These are the second class of groups from the title of this thesis. In this section we prove

Theorem 4.2.15, which gives a description of OutH(G) for G in this class of groups.

In many of the proofs in this section the calculations are written in terms of cosets,

for example we write α̂(γh1
,g1)α̂(γh2

,g2) = α̂(γh1h2
,h−1

2 g1h2g2) in the proof of Lemma 4.2.9.

However, without exception, all of the calculations hold for the written automorphisms.

For example, it holds that α(γh1
,g1)α(γh2

,g2) = α(γh1h2
,h−1

2 g1h2g2).

Automorphisms acting on the base group as inner automorphisms. We shall now

analyse the subgroup Inn(H) of Out(G), which consists of the outer automorphisms α̂(δ,g)

such that δ is an inner automorphism of H, δ ∈ Inn(H), that is, those outer automorphisms

who have a representative which acts on the base group as an inner automorphism. Recall

that the purpose of the current section, Section 4.2.2, is to prove Theorem 4.2.15, which

gives a description of Out0
H(G) by splitting this subgroup using a short exact sequence.

The subgroup Inn(H) forms the kernel of this short exact sequence.

By definition, the maps α(δ,g) form a set of coset representatives for Out0
H(G) (al-

though not necessarily a transversal). We wish to break down this set into parts we can

understand, and to do this we use the subgroup Inn(H), which is formally defined as

follows.

Inn(H) = {α̂(γh,g) : γh ∈ Inn(H), hg(hφ)−1 ∈ CH(Kφ), h ∈ NH(K)}

In Lemma 4.2.9 we prove that Inn(H) is normal while in Lemma 4.2.11 we prove that

Inn(H) splits as a semidirect product. In Lemma 4.2.12 and in Lemma 4.2.13 we give

a description of each of the factor groups in this semidirect product decomposition. In

Lemma 4.2.14 we consider the quotient Out0
H(G)/Inn(H). We use the subgroup Inn(H)

and the resulting short exact sequence in the proof of Theorem 4.2.15. We begin by proving

that Inn(H) is normal in Out0
H(G).
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Lemma 4.2.9. Taking Inn(H) as above, we have Inn(H)EOut0
H(G).

Proof. Note that, by definition, Inn(H) consists of those cosets of Aut(G)/ Inn(G) con-

taining some α(δ,g) with δ ∈ Inn(H). Let α̂(γh1
,g1), α̂(γh2

,g2) ∈ Inn(H), then the following

equalities hold.

α̂−1
(γh1

,g1) = α̂(γh1
−1 ,h1g

−1
1 h1

−1) ∈ Inn(H)

α̂(γh1
,g1)α̂(γh2

,g2) = α̂(γh1h2
,h−1

2 g1h2g2) ∈ Inn(H)

Therefore, noting that Inn(H) is non-empty, we have that Inn(H) is a subgroup of

Out0
H(G). Then, Inn(H) is closed under conjugation, as the following working shows.

α̂−1
(δ,g2)α̂(γh,g1)α̂(δ,g2) = α̂(δ−1,g−1

2 δ−1)α̂(γhδ,(g1δ)g2)

= α̂(δ−1γhδ,(g
−1
2 δ−1γhδ)(g1δ)g2)

= α̂(γhδ,(h−1δ)g−1
2 (hδ)(g1δ)g2) ∈ Inn(H)

Thus, we conclude that Inn(H)EOut0
H(G), as required.

So, the subgroup Inn(H) is a normal subgroup of Out0
H(G), and in Lemma 4.2.14

we gave a description of the quotient group Out0
H(G)/Inn(H). Comparing this to the

statement of Theorem 4.2.15, we see that in order to prove this theorem we are required

to write Inn(H) as a semidirect product using subgroups of H.

Splitting Inn(H). We wish to break down the representatives α̂(γh,g) for Inn(H) into

parts we can understand, and to do this we use the subgroups BK and CK , defined below.

In the definition of BK the symbol 1 denotes the trivial automorphism of H.

BK = {α̂(1,g) : g ∈ CH(Kφ)}

CK = {α̂(γh,h−1(hφ)) : γh ∈ Inn(H), h ∈ NH(K)}

In Lemma 4.2.11 we prove that Inn(H) is a semidirect product of the subgroups BK

and CK , Inn(H) = BK o CK . In Lemma 4.2.12 we give the isomorphism class of BK

while in Lemma 4.2.13 we give the isomorphism class of CK . However, we begin with the

following technical lemma, Lemma 4.2.10, which is used in the proofs of Lemma 4.2.11

and Lemma 4.2.12.
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Lemma 4.2.10. Assume K � H. Let W ∈ Fk, and let u, g1, g2 ∈ H. Suppose that both

of the following hold.

u−1W−1g2x1Wu = g−1
1 (g1φ)x1

u−1W−1hWu = g−1
1 hg1 ∀ h ∈ H

Then W is the empty word and u ∈ K.

Proof. Rearranging u−1W−1hWu = g−1
1 hg1 gives us that W−1h = ug−1

1 hg1u
−1W−1 for

all h ∈ H. Then, taking h := g2 and post-multiplying by x1W , we have the following.

W−1g2x1W = ug−1
1 g2g1u

−1W−1x1W (4.10)

Now, we can conjugate the first equality in the statement of the lemma by u to get that

W−1g2x1W = ug−1
1 (g1u

−1)φx
u−1 , and we can use this to replace W−1g2x1W in (4.10).

This yields the following.

g2g1u
−1W−1x1W = (g1u

−1)φx
u−1

This means that x
u−1 = x1, and so u ∈ K, as required. It also means that W = xi1, i ∈ Z.

We therefore have the the following holds for all h ∈ H.

x−i1 hxi1 = ug−1
1 hg1u

−1∀h ∈ H

We wish to prove that i = 0. If i 6= 0 then we either have x1hx
−1
1 ∈ H for all h ∈ H or

that x−1
1 hx1 ∈ H for all h ∈ H. However, if x1hx

−1
1 ∈ H then h ∈ K, while if x−1

1 hx1 ∈ H

then h ∈ Kφ. Thus, H = K, a contradiction. Therefore, i = 0 and so W is the empty

word, as required.

In the following lemma we prove that Inn(H) is a semidirect product of BK and CK .

It is an easy observations that the action of CK on BK is α
α(γg,g−1(gφ))

(1,h) = α(1,hγgφ).

Lemma 4.2.11. Taking BK , CK and Inn(H) as above, we have Inn(H) = BK o CK .

Proof. We begin by proving that CK ≤ Inn(H) and then that BK E Inn(H). We use

these to prove that Inn(H) = BK o CK . To see that CK is a subgroup of Inn(H), let

α̂(γg ,g−1(gφ)), α̂(γh,h−1(hφ)) ∈ CK and note that the following equalities hold.

α̂(γg ,g−1(gφ))α̂(γh,h−1(hφ)) = α̂(γgh,h−1g−1(gh)φ) ∈ CK

α̂−1
(γh,h−1(hφ))

= α̂(γh−1 ,h(h−1φ)) ∈ CK
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Then, each product is contained in CK as NH(K) is a subgroup of H. Therefore, noting

that CK is non-empty, we conclude that CK is a subgroup of Inn(H).

We shall now prove that BK is a normal subgroup of Inn(H). Let α̂(1,g1), α̂(1,g2) ∈ BK .

Then the following equalities hold.

α̂(1,g1)α̂(1,g2) = α̂(1,g1g2) ∈ BK

α̂−1
(1,g1) = α̂(1,g−1

1 ) ∈ BK

Note that each product is contained in BK as CH(Kφ) is a subgroup of H. Therefore,

noting that BK is non-empty, we conclude that BK is a subgroup of Inn(H). Now, to see

that BK is closed under conjugation consider the following working, where α̂(γh,g2) is an

arbitrary element of Inn(H), so h ∈ NH(K) and g3 := hg2(h−1φ) ∈ CH(Kφ).

α̂−1
(γh,g2)α̂(1,g1)α̂(γh,g2) = α̂(γh−1 ,hg

−1
2 h−1)α̂(γh,h−1g1hg2)

= α̂(1,g−1
2 h−1g1hg2)

= α̂(1,(h−1g3(hφ))−1h−1g1h(h−1g3(hφ)))

= α̂(1,(hφ)−1g−1
3 g1g3(hφ))

Then, as h ∈ NH(K) we have that hφ ∈ NH(Kφ), and so CH(Kφ) is normal in NH(Kφ)

we have that (hφ)−1g−1
3 g1g3(hφ) ∈ CH(Kφ). Therefore, α̂(1,(hφ)−1g−1

3 g1g3(hφ)) ∈ BK , as

required.

Next, we prove that Inn(H) = BK o CK . We begin by proving that BK ∩ CK =

Inn(G). Assume that α(γg1 ,g
−1
1 (g1φ)) = α(1,g2) mod Inn(G), and we shall prove that α(1,g2)

is an inner automorphism of G, α(1,g2) ∈ Inn(G). Now, as these two automorphisms are

equal modulo the inner automorphisms of G, there exists some Wu ∈ G, with W ∈ Fk
and u ∈ H, such that u−1W−1hWu = g−1

1 hg1 for all h ∈ H and u−1W−1g2x1Wu =

g−1
1 (g1φ)x1. Then by Lemma 4.2.10 we have that W = 1 and u ∈ K. We thus have

that u−1hu = g−1
1 hg1 for all h ∈ H and so ug−1

1 ∈ Z(H). Note that this means that

hα(1,g2) = (g1u
−1)−1h(g1u

−1). Further, because u ∈ K we have the following equalities.

g2x1 = ug−1
1 (g1φ)x1u

−1 = ug−1
1 (g1u

−1)φx1

This implies that g2 = ug−1
1 (g1u

−1)φ, and so we have the following equalities

x1α(1,g2) = ug−1
1 (g1u

−1)φx1 = (g1u
−1)−1x1(g1u

−1)

Therefore, α(1,g2) acts as conjugation by g1u
−1 on H and on xa, and so α(1,g2) = γg1u−1 is

an inner automorphism of G, as required.
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Finally, note that if α̂(γg ,v1) ∈ Inn(H) then the following holds.

α̂(γg ,v1) = α̂(γg ,g−1(gφ))α̂(1,(gφ)−1gv1)

Therefore, Inn(H) ≤ CKBK , and so as CK , BK ≤ Inn(H), we have that CKBK = Inn(H).

We thus conclude that Inn(G) = BK o CK , as required.

Describing the subgroup Inn(H) = BK o CK . We shall now give descriptions of

the subgroups BK and CK of OutH(G) in terms of subgroups of H. Doing this gives a

description of the normal subgroup Inn(H) = BK o CK in terms of subgroups of H, and

recall that Inn(H) is to be the kernel of the short exact sequence in Theorem 4.2.15. We

begin, in the following lemma, by giving the isomorphism class of BK .

Lemma 4.2.12. If L = {k−1(kφ) : k ∈ K ∩ Z(H)} then the following holds.

BK ∼=
CH(Kφ)

L

Proof. Note that because BK = {α̂(1,g) : g ∈ CH(Kφ)} we have that BK is a homomorphic

image of CH(Kφ). It is therefore sufficient to prove that α(1,g) ∈ Inn(G) if and only if

g ∈ L. Suppose that g ∈ L and write g = k−1(kφ) for some k ∈ K ∩Z(H). Then we have

the following two equalities, the first of which is obtained using the fact that k, kφ ∈ Z(H)

while the second uses the fact that x
ak−1 = xa as k ∈ K ∩ Z(H).

hα(1,g) = (kφ)−1khk−1(kφ) = h ∀h ∈ H

xaα(1,g) = k−1(kφ)xa = k−1xak

Therefore, we conclude that α(1,g) is the inner automorphism corresponding to conjugation

by k, so α(1,g) = γk.

We now prove the other direction of the equivalence, that is, suppose α(1,g) ∈ Inn(G)

and we shall prove that g ∈ L. As α(1,g) ∈ Inn(G), it acts as conjugation by uW for

some u ∈ H and some W ∈ Fk. Thus, we have W−1u−1huW = h for all h ∈ H and

W−1u−1xauW = gxa. Then, taking g1 to be trivial in Lemma 4.2.10, we have that

W is the empty word and u ∈ K. Therefore, we have u−1hu = h for all h ∈ H and

u−1xau = gxa, where u ∈ K. The first equality implies u ∈ Z(H) (and so u ∈ Z(H)∩K),

while the second implies g = u−1(uφ). Thus, if α(1,g) ∈ Inn(G) then g ∈ L, as required.
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Having dealt with the subgroup BK , we now wish to give the isomorphism class of

the subgroup CK . Indeed, we wish to prove that taking J = Z(H) ∩ Fix(φ) we have

CK ∼= NH(K)/JK. To ease the proof of this we take the coset representative used in the

proof of Proposition 4.1.2, that is, if we take g ∈ NH(K) then because g ·Ka = Kga we

have that the following function is an automorphism of G.

ψg : h 7→ h

xa 7→ xga

Moreover, the maps ψg1 and ψg2 define the same automorphism if and only if g1g
−1
2 ∈ K.

Now, notice that for all g ∈ NH(K) we have that ψg−1 = α(γg ,g−1(gφ))γ
−1
g and so ψg−1

and α(γg ,g−1(gφ)) are equal modulo the inner automorphisms of G and so we can take

the automorphisms ψg as representatives for the elements of CK . We now use these

representatives to prove that CK ∼= NH(K)/JK.

Lemma 4.2.13. If J = Z(H) ∩ Fix(φ) then the following holds.

CK ∼=
NH(K)

JK

Proof. Taking the coset representatives ψg, we see that CK is a homomorphic image of

NH(K). We prove that ψg ∈ Inn(G) if and only if g ∈ JK, which is therefore sufficient.

If g ∈ JK then g = uk, k ∈ K and u ∈ Z(H) ∩ Fix(φ) = J , and hψg = h = uhu−1 for

all h ∈ H while we obtain the following for xaψg. Note that as u ∈ Fix(φ) we have that

u(uφ)−1.

xaψg = xkua = xua = u(uφ)−1xau = uxau
−1

Thus, ψg = γ−1
u ∈ Inn(G), as required.

On the other hand, let Wu ∈ G with u ∈ H and W ∈ Fk, and assume that ψg is inner

an acts as conjugation by Wu. Then we have the following.

h = u−1W−1hWu ∀ h ∈ H (4.11)

xga = u−1W−1xaWu ∀ a ∈ T

The second equality gives us that u(u−1φ)x
gau−1 = W−1xaW , which implies that u = uφ,

that x
gau−1 = xa and that W = xia for some i ∈ Z. However, as a ∈ T is arbitrary but W

is fixed we have that W is the empty word (that is, i = 0). As W is empty, (4.11) gives

us that u ∈ Z(H). Thus, we have that u ∈ Z(H), that u = uφ and that x
gau−1 = xa for

all a ∈ T . This last fact means that Kgau−1 = Ka, and as u ∈ Z(H) this means that

gu−1 ∈ K, so g = ku for some k ∈ K and u ∈ Z(H) ∩ Fix(φ) = J , as required.
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The proof of Theorem 4.2.15. We shall now prove our first main technical theorem,

Theorem 4.2.15. We begin by considering the quotient of Out0
H(G) by the normal subgroup

Inn(H). The image is given in terms of a subgroup AK of Aut(H), which is defined as

follows.

AK := {δ ∈ Aut(H) : Kδ = K, ∃ g ∈ H s.t. (kδφ) = g−1(kφδ)g ∀ k ∈ K}

Note that this image is precisely the image of the short exact sequence in Theorem 4.2.15,

below, while putting H = K into the definition of AK the quotient is COut(H)(φ̂) which

is related to the statement of Theorem 4.2.17. Recall that if ψ is an automorphism of a

group Q then ψ̂ denotes the element of Out(Q) with representative ψ.

Lemma 4.2.14. Let G = 〈H, t;Kt = Kφ〉 be an automorphism-induced HNN-extensions,

and assume K � H. Then the following map has kernel Inn(H) and image AK Inn(H)/ Inn(H).

χ : Out0
H(G)→ Out(H)

α̂(δ,g) 7→ δ̂

Proof. Note that χ is a homomorphism as α̂(δ1,g1)α̂(δ2,g2) = α̂(δ1δ2,(g1δ2)g2). Clearly the

kernel consists of all cosets containing those α(δ,g) with δ = γh. Moreover, if δ = γh then,

by the definition of α(δ,g) in Lemma 4.2.4, Kγh = K and (h−1kh)φ = g−1h−1(kφ)hg for

all k ∈ K, so h and g are such that h ∈ NH(K) and hg(h−1φ) ∈ CH(Kφ). Therefore, the

kernel is Inn(H). That is, we have the following working.

ψ Inn(G) 7→ Inn(H)

⇔ ψ̂ = α̂(γh,g) for some γh ∈ Inn(H)

⇔ ψ̂ = α̂(γh,g) with h ∈ NH(K) and hg(h−1φ) ∈ CH(Kφ)

⇔ ψ̂ Inn(G) ∈ Inn(H)

Thus, the map χ is also well-defined. Its image is AK Inn(H)/ Inn(H) as AK consists

precisely of those automorphisms δ ∈ Aut(H) of H forming a pair (δ, g) which defines an

automorphism α(δ,g) of G, by Lemma 4.2.6.

Our first main technical theorem is now as follows, where AK is defined as above

(before Lemma 4.2.14).
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Theorem 4.2.15. Let G be a proper automorphism-induced HNN -extension of H with

associated subgroup K � H and associated automorphism φ.

G ∼= 〈H, t; kt = kφ, k ∈ K〉

Let L = {k−1(kφ) : k ∈ K∩Z(H)} and let J = Z(H)∩Fix(φ). Then we have the following

short exact sequence,

1→ CH(Kφ)

L
o
NH(K)

JK
→ Out0

H(G)→ AK Inn(H)

Inn(H)
→ 1

where either Out0
H(G) = OutH(G) or there exists some δ ∈ Aut(H) and some g ∈ H such

that Kδ = Kφ, Kδ2γg = K and g−1(kφδ)g = kδφ−1 for all k ∈ K, whence Out0
H(G) has

index two in OutH(G).

Proof. By Lemma 4.2.8, Out0
H(G) has index one or two in OutH(G), and further has

index two precisely when there exists a pair (δ, g) such that ζ(δ,g) is an automorphism of

G. Lemma 4.2.5 thus gives the conditions stipulated by the theorem which imply Out0
H(G)

has index two.

We shall now prove that Out0
H(G) splits as in the statement of the theorem, which

completes the proof of the result. By Lemma 4.2.14, we have that Out0
G(G)/Inn(H) =

AK Inn(H)/ Inn(H) which yields a short exact sequence. The description of Inn(H) given

by combining Lemma 4.2.11 with Lemma 4.2.12 and with Lemma 4.2.13 then completes

the proof.

An alternative view. It is interesting to note that the following isomorphism holds,

where Inn(NH(K)) = {γg : g ∈ NH(K)}.

AK
Inn(NH(K))

∼=
AK Inn(H)

Inn(H)

This is because Inn(H) ∩AK = Inn(NH(K))EAK , and to see this note that Kγg = K if

and only if g ∈ NH(K), while if Kγg = K then γg ∈ AK because of the following equality.

(kγgφ) = (g−1(gφ))−1(kφγg)(g
−1(gφ))

Describing Aut0
H(G) completely. We finish this section with the following lemma,

Lemma 4.2.16, which is used in Corollary 4.3.3 (and thus in Theorem B) to give a complete

description of Aut(G) and Out(G) under certain conditions. We write Aut0
H(G) for the

pre-image of Out0
H(G) in Aut(G).
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Lemma 4.2.16. If Ak ≤ Inn(H) and CH(K) = 1 then Out0
H(G) ∼= NH(K)/K and

Aut0
H(G) can be described as follows.

Aut0
H(G) = Inn(G)oOut0

H(G)

∼= Go
NH(K)

K

Proof. We have Out(G) ∼= NH(K)/K immediately by looking at the short exact sequence

from Theorem 4.2.15. The imposed conditions further give us that, modulo the inner

automorphisms, every element of Aut0
H(G) is an element of the subgroup CK and so

has the following form (by using the coset representatives described before, and used in,

Lemma 4.2.13).

ψg : h 7→ h

xa 7→ xga

We shall call the set of maps of this form Ψ, Ψ = {ψg; g ∈ NH(K)}. Then, a map ψg ∈ Ψ is

inner if and only if g ∈ K, and so is inner if and only if it is the trivial automorphism. Thus,

Ψ ∼= NH(K)/K and Ψ∩Inn(G) is trivial, and so Aut0
H(G) = Inn(G)oΨ ∼= GoNH(K)/K

as Inn(G) ∼= G because G has trivial center. Applying the natural equivalence of Ψ and

Out0
H(G), the proof is complete.

4.2.3 Mapping tori

Take G to be a mapping torus with base group H, that is, G = 〈H, t;Ht = Hφ〉 = HoφZ

where φ is an automorphism of H, and also assume that H has trivial center, Z(H) = 1.

These are the third class of groups from the title of this thesis. In this section we prove

Theorem 4.2.17, which gives a description of OutH(G) for G in this class of groups.

Our proof of the theorem considers a map similar to the homomorphism χ from

Lemma 4.2.14, but the map “goes the other way”, in the sense that it has image OutH(G)

as opposed to pre-image OutH(G).

Theorem 4.2.17. Let G = H oφ Z be a mapping torus with base group H and associated

automorphism φ. Assume H has trivial center and has no epimorphisms onto Z. Then

we have the following isomorphism,

Out0(Hφ) ∼=
COut(H)(φ̂)

〈φ̂〉
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where either Out0(G) = Out(G) or φ̂ is conjugate to φ̂−1 in Out(H), whence Out0(G) has

index two in Out(G).

Proof. By Lemma 4.2.8, Out0
H(G) has index one or two in OutH(G), and further has

index two precisely when there exists a pair (δ, g) such that ζ(δ,g) is an automorphism of

G. Lemma 4.2.5 thus gives the conditions stipulated by the theorem which imply Out0
H(G)

has index two.

Consider the following map. We shall prove that it is a well-defined surjective homo-

morphism with kernel 〈φ̂〉, which proves the theorem.

η : COut(H)(φ̂)→ Out0
H(G)

δ̂ 7→ α̂(δ,g) g is such that [δ, φ] = γg

Note that the map η is a homomorphism by the following working.

(δ̂1η)(δ̂2η) = α̂(δ1,g1)α̂(δ2,g2) = α̂(δ1δ2,(g1δ2)g2)

To see that η is well-defined, suppose that δ2 = δ1γh. Note that [δ1, φ] = γhg2(h−1φ)).

α(δ2,g2) = α(δ1γh,g2)

= α(δ1γh,hg2(h−1φ))γh

Writing g1 := hg2(h−1φ) we have that α̂(δ2,g2) = α̂(δ1,g1), as required.

Finally, to prove that the map η has kernel 〈φ̂〉 begin by supposing that α̂(δ,g) is inner,

and so α̂(δ,g) = γkti for some k ∈ H and i ∈ Z. This means that h = t−ik−1 · (hδ−1) · kti

for all h ∈ H, so hφi = hδ−1γk for all h ∈ H, and so δ̂ = φ̂j in Out(H) for some j ∈ Z.

Therefore, ker η ≤ 〈φ̂〉. On the other hand, the image of φ̂ is α̂(φ,1), and α̂(φ,1) is inner

because hα̂(φ,1) = hφ = tht−1 while tα̂(φ,1) = t. Therefore, 〈φ̂〉 ≤ ker η. Thus, we conclude

that α̂(δ,g) ∈ Inn(Hφ) if and only if δ̂ ∈ 〈φ̂〉, as required.

4.3 Main theorems

In this section we give four applications of Theorem 4.2.15 and one application of Theo-

rem 4.2.17. The first two applications, Theorems 4.3.1 and 4.3.2, are novel by seem to be

of no real significance. The second two applications, Theorems B and C, demonstrate a

universal property of triangle groups. Note that we prove Theorem C before Theorem B,

and this is because its proof is the shorter of the two and serves as a good introduction to
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the proof of Theorem B. The application of Theorem 4.2.17 is Theorem D, which gives a

partial answer to an open problem of Bumagin–Wise.

4.3.1 A triply-universal finitely-presented group

Our first theorem proves the existence of a, in a certain sense, triply universal finitely

presented group.

Theorem 4.3.1. There exists a finitely presented group G such that each of G, Out(G)

and Aut(G) contain every finitely presented group as a subgroup.

Proof. Let us begin by noting that there exists a finitely presented group P which con-

tains every finitely presented group as a subgroup. To see this, one first enumerates all

finite presentations on two generators then takes their free product. Applying Higman’s

embedding theorem to this we obtain P [Mil92].

To construct the group G, rewrite P := P ∗ Z, so P is centerless. Take K := 〈k; k2〉

to be cyclic of order two and form H := P ×K = 〈P, k〉. Then, we obtain the following

group.

G = 〈H, t; kt = k〉

Now, NH(K) = H while KJ = K(Z(H) ∩ Fix(φ)) = K so we have that P ∼= H/K =

NH(K)/K is a subgroup of G, of Aut(G) (by Proposition 4.1.2) and of Out(G) (by The-

orem 4.2.15). This proves the theorem as P contains every finitely presented group.

4.3.2 Using Rips’ construction

Let Q be a finitely presented group. Recall that Rips’ construction allows us to construct

a short exact sequence

1→ N → H → Q→ 1

such that H is a torsion-free finitely-presented C ′(1/6) group and N is finitely generated

with trivial centraliser. Variations of this construction give H and N additional properties.

Using the groups H and N from Rips’ construction, we can form the following HNN-

extension which is finitely presented because N is finitely generated.

G = 〈H, t; gt = g ∀g ∈ N〉

This is a very natural place for Rips’ construction to live. Now, the group H in Rips’

construction can be taken to be residually finite [Wis03], and so G is residually finite if
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and only if Q is, by Theorem 4.1.3, while because CH(N) is trivial we have that Q ∼=

H/N ≤ Out(G), by Theorem 4.2.15. We thus have the following theorem.

Theorem 4.3.2. For all finitely presented groups Q there exists a finitely presented group

G such that Q embeds into Out(G). If Q is residually finite then G can be taken to be

residually finite.

We state this construction because it is in a certain sense more natural than the similar

constructions of Wise [Wis03] and Bumagin–Wise [BW05], where they take G to be the

kernel N . Indeed, the result presented here is similar to Wise’s Corollary 3.3 [Wis03]. The

difference is that in the constructions of Wise and Bumagin–Wise the group G is always

residually finite and it is never finitely presented for Q infinite [Bri06, Section 5.1].

4.3.3 Proof of Theorem C

Recall from the introduction that a triangle group is a group with a presentation of the

following form.

Ti,j,k := 〈a, b; ai, bj , (ab)k〉.

A hyperbolic triangle group is one where i−1 + j−1 + k−1 < 1. If i = j = k we shall write

Ti := Ti,i,i for the corresponding equilateral triangle group. Triangle groups have Serre’s

property FA, by Proposition 2.7.4, and so OutH(G) = Out(G), by Lemma 4.2.2. In this

section we prove Theorem C, which we now recall.

Theorem C. Fix a hyperbolic triangle group H := Ti,j,k. Then every finitely-generated

group Q can be embedded as a finite index subgroup of the outer automorphism group of

an HNN-extension GQ of H, where GQ is residually finite if Q is.

Note that this theorem does not imply Theorem 4.3.2, as in Theorem C the group GQ

is finitely generated but not necessarily finitely presented. We use Fn to denote the free

group of rank n.

Proof. We give the construction, and then we prove that the required properties hold. The

group GQ is an automorphism-induced HNN-extension, and we shall begin by specifying

the associated subgroup K. The inducing automorphism φ shall be the trivial automor-

phism.

As 1/i + 1/j + 1/k < 1, H is a large group [BMS87], that is, H has a finite-index

subgroup V which maps onto F2. Let N be the subgroup of H such that V/N ∼= F2. Note
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that we can assume V is torsion-free, as H contains a torsion-free subgroup of finite index

U [Feu71], then noting that the image of V ∩ U under the map induced by N is free and

non-abelian we can rewrite V := V ∩ U . Then, for every natural number n it holds that

H contains a torsion-free finite-index subgroup Vn which maps onto Fn, because the free

group on two-generators contain finite-index free subgroups of arbitrary rank and applying

the correspondence theorem.

LetQ be a finitely-generated group. Then take a presentation 〈X; r〉 ofQ with |X| <∞

and r non-empty, and so Vn maps onto Q with n := |X|. Take K to be the subgroup of

Vn (and so of H) associated with the kernel of this map, so Vn/K ∼= Q. Note that because

Vn has finite index in H, NH(K) has finite index in H and Vn/K has finite index in

NH(K)/K.

We shall take GQ to be the group GQ = 〈H, t;Kt = K〉, where the inducing automor-

phism is trivial.

We shall now prove that the required properties hold. As NH(K) has finite index in

H we can apply Theorem 4.1.3 to get that GQ = 〈H, t;Kt = K〉 is residually finite if and

only if Q is residually finite.

We now prove that Q can be embedded as a finite index subgroup into Out(GQ), which

completes the proof. We begin by proving that the kernel of the short exact sequence given

in Theorem 4.2.15 has finite index in Out(GQ), and to see this begin by recalling that the

base group H is a triangle group. Thus, H possesses Serre’s property FA and has finite

outer automorphism group. As H has Serre’s property FA we have that OutH(GQ) =

Out(GQ), by Lemma 4.2.2, while as Out(H) is finite we have that the kernel of the short

exact sequence embeds with finite index in OutH(GQ). Finally, noting that the inducing

automorphism is trivial, so OutH(GQ) = OutH(GQ) by Theorem 4.2.3, we have that the

kernel of the short exact sequence has finite index in Out(GQ), as required.

It is therefore sufficient to prove that Vn/K ∼= Q has finite index in the kernel of

the short exact sequence. To do this we prove that CH(K) is trivial. This implies that

the kernel of the short exact sequence is isomorphic to NH(K)/K, because CH(Kφ) and

Z(H) are trivial, and as Vn/K ∼= Q has finite index in NH(K)/K this completes the

proof of the theorem. So, suppose CH(K) is non-trivial, so there exists 1 6= g ∈ CH(K),

and look for a contradiction. As g ∈ CH(K) we have K ≤ CH(g). As H is hyperbolic,

|CH(g) : 〈g〉| < ∞ [BH99, Corollary 3.10]. Thus, K is virtually cyclic, and so cyclic (as

it is torsion-free). However, K is non-cyclic because the map Vn → Vn/K factors through
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a non-cyclic free group (because we assumed that the set of relators r in the presentation

for Q was non-empty).

This means that Vn/K ∼= Q embeds with finite index into Out(GQ), as required.

4.3.4 Proof of Theorem B

In this section we prove Theorem B, which we now recall.

Theorem B. Fix an equilateral triangle group H := Ti with i > 9. Then every countable

group Q can be realised as the outer automorphism group of an HNN-extension GQ of H.

Moreover, Aut(GQ) ∼= H oQ.

The construction of the group GQ is given in the proof of Lemma 4.3.4.

We begin by giving, in Corollary 4.3.3, conditions which make the short exact se-

quence in Theorem 4.2.15 “collapse”. We then define malcharacteristic subgroups, and

in Lemma 4.3.4 we use Corollary 4.3.3 to prove that if Ti contains a malcharacteristic

subgroup which is free of rank two then Theorem B holds. The remaining lemmata prove

that Ti contains such a subgroup, by first proving that the ambient free group F (a, b)

contains such a subgroup M , and then by using this, along with some small cancellation

theory, to prove that the image M of M in Ti is free of rank two and malcharacteristic.

Applying Theorem 4.2.15. To prove Theorem B, we require the following corollary

of Theorem 4.2.15 giving conditions on H, K and φ which “collapse” the short exact

sequence. The corollary is applied by proving that if H := Ti is an equilateral triangle

group with i > 9 then for all countable groups Q there exists a subgroup K and an

automorphism φ such that the triple (H,K, φ) satisfies the conditions of Corollary 4.3.3

and such that NH(K)/K ∼= Q. Recall that φ̂ denote the image of φ ∈ Aut(H) in Out(H).

Corollary 4.3.3. Suppose H, K and φ are such that the following properties hold.

1. H has Serre’s property FA.

2. CH(K) is trivial.

3. Kψ ∩K = 1 for all automorphisms ψ 6∈ Inn(H).

4. φ 6∈ Inn(H).

5. φ̂ has odd order in Out(H).
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Then Out(G) ∼= NH(K)/K and Aut(G) ∼= GoNH(K)/K.

Proof. First, note that if Kψ∩K = 1 for all automorphisms ψ 6∈ Inn(H) then OutH(G) =

OutH(G), by Theorem 4.2.3 and (4), while ifH also has Serre’s property FA then OutH(G) =

Out(G), by Lemma 4.2.2, so we establish that OutH(G) ∼= NH(K)/K and the result on

Out(G) immediately follows. Now, by (2), Z(H) and CH(Kφ) are both trivial so we have

the following short exact sequence.

1→ NH(K)

K
→ Out0

H(G)→ AK Inn(H)

Inn(H)
→ 1

By (3), Kψ 6= K for all ψ 6∈ Inn(H), and this means that AK ≤ Inn(G), and so Out0
H(G) ∼=

NH(K)/K. Then, by Lemma 4.2.16, Aut0
H(G) = GoNH(K)/K.

To complete the proof we establish that Out0
H(G) = OutH(G). To do this it is sufficient

to prove that there does not exist a pair (δ, g) with δ ∈ Aut(H) and g ∈ H such that

Kδ = Kφ, Kδ2γg = K and g−1(kφδ)g = kδφ−1 for all k ∈ K. Suppose otherwise, then

there exists some pair (δ, g) such that Kδφ−1 = K = Kδ2γg. Now, Kδ2γg = K implies

that δ2 ∈ Inn(H), by (3), and so either δ ∈ Inn(H) or δ̂ has order two in Out(H). On

the other hand, Kδφ−1 = K implies that δ̂ = φ̂, again by (3), and so δ̂ has odd order in

Out(H) by (5). Therefore, δ ∈ Inn(H), and so as δ̂ = φ̂ we have that φ ∈ Inn(H), which

contradicts (4). Therefore, such a pair (δ, g) cannot exist, and so Out0
H(G) = OutH(G),

which proves the result.

In Lemma 4.3.4, below, we prove that Corollary 4.3.3 combined with the existence

of a subgroup M of Ti which is free of rank two and “malcharacteristic” in Ti proves

Theorem B.

Malcharacteristic subgroups. A subgroup M ≤ H is malnormal in H if Mg ∩M = 1

for all g 6∈ M . We define a subgroup M ≤ H to be malcharacteristic in H if M is

malnormal in H and for all δ ∈ Aut(H) the following implication holds.

Mδ ∩M 6= 1⇒ δ ∈ Inn(H)

We now make two observations which are central to the construction given in Lemma 4.3.4,

which is the construction underlying Theorem B. Firstly, note that if M is malcharac-

teristic in H and M ′ is malnormal in M then M ′ is malcharacteristic in H. This means

that if H contains a malcharacteristic subgroup M which is free of rank at least two then

H contains a malcharacteristic subgroup Mn which is free of rank n where n is arbitrary
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(possibly countably infinite). Secondly, note that if M is malcharacteristic in H and K is

a normal subgroup of M then NH(K) = M .

We shall now prove the following lemma, which reduces the proof of Theorem B to

proving the existence of a malcharacteristic subgroup of Ti which is free of rank two.

Lemma 4.3.4. Let Ti = 〈a, b; ai, bi, (ab)i〉 be a equilateral triangle group. If for all i > 9 the

group Ti contains a malcharacteristic subgroup which is free of rank two then Theorem B

holds.

Proof. Fix i > 9 and take H := Ti. Suppose M is a malcharacteristic subgroup of H

which is free of rank two. We shall prove that for every countable group Q there exists

an automorphism-induced HNN -extension of H, GQ = 〈H, t;Kt = Kφ〉 say, such that

Out(GQ) ∼= Q and Aut(GQ) ∼= GQ oQ.

We shall take the inducing automorphism φ to be the following automorphism of H

of order three, φ : a 7→ b, b 7→ b−1a−1. We choose K as follows: The group Q has

a presentation 〈X; r〉 where r is non-empty and |X| > 1 (possibly countably infinite).

Choose M|X| to be malnormal in M of rank |X| and take K to be the normal subgroup of

M|X| associated with the normal closure of r. Note that as NH(K) = M|X| we have that

NH(K)/K ∼= Q.

To see that the construction works we just need to prove that H, K and φ satisfy the

conditions of Corollary 4.3.3, as NH(K)/K ∼= Q. So:

1. H has Serre’s property FA because it is a triangle group.

2. CH(K) is trivial. To see this, recall that K is a normal subgroup of M|X|, the

malnormal free subgroup of rank |X| > 1 of H. Now, if [k, g] = 1 for all k ∈ K

and 1 6= g ∈ H then g ∈ M|X|, by malnormality, and so CH(K) is a subgroup of

M|X|. As M|X| is free we have that g ∈ K and K is cyclic, but normal subgroups of

non-cyclic free groups can never be cyclic. Thus, CH(K) is trivial, as required.

3. Kψ ∩ K = 1 for all automorphisms ψ 6∈ Inn(H) because K is a subgroup of the

malcharacteristic subgroup M .

4. φ 6∈ Inn(H) by our choice of φ.

5. φ̂ has order three in Out(H).

Therefore, we can apply Corollary 4.3.3 to get that Theorem B holds, as required.
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Note that because the subgroup K is free the presentation in the construction is as-

pherical, and so minimal [CCH81] (we thank Jim Howie for this observation). Thus, the

group GQ in the construction is finitely presented if and only if Q ∼= Out(GQ) is finite.

The malcharacteristic free subgroup. We now work towards proving Lemma 4.3.13,

which proves that Ti = 〈a, b; ai, bi, (ab)i〉, i > 9, contains a malcharacteristic subgroup

which is free of rank two. Applying Lemma 4.3.4, this proves Theorem B. Indeed, let M

be the subgroup of Ti = 〈a, b; ai, bi, (ab)i〉 which is generated by the following elements,

with ρ >> i.

x := a3(ab−1)3a3(ab−1)4 . . . a3(ab−1)ρ+2

y := a3(ab−1)ρ+3 . . . a3(ab−1)2ρ+2

We shall prove that when i > 9 the subgroup M = 〈x, y〉 of Ti is free of rank two and

malcharacteristic. Recall that Malcharacteristic subgroups are malnormal, and in order

to prove that M is malcharacteristic we shall first prove that it is malnormal. To do

this we need to understand how a word U(a, b) can be conjugate to a word V (x, y), and

the following lemma aids our understanding of this. A word U(a, b) is Dehn reduced in

Ti = 〈a, b; ai, bi, (ab)i〉 if it contains no more than half of a±i, b±i, (ab)±i or (ba)±i as a

subword. Recall that x and y are specific words over a and b, defined above.

Lemma 4.3.5. Take Ti = 〈a, b; ai, bi, (ab)i〉 with i > 9. Suppose that U(a, b) and W (a, b)

are Dehn reduced words such that there exists a word V (x, y) such that the following holds.

1 6≡ U(a, b)W (a, b)V −1(x, y)W−1(a, b) =Ti 1

Then U(a, b) contains one of a±6, b±6, (ab)±5 or (ba)±5 as a subword.

Figure 4.2 serves as a companion to the proof of this lemma.

Proof. Note that no cyclic shift of V (x, y) in F (a, b) contains the subwords a±5, b±5 or

(abab)±1, that is, when V (x, y) is considered as a word over a and b and written on a circle

then the boundary label of the circle does not contain these subwords.

Suppose that U(a, b)W (a, b)V −1(x, y)W−1(a, b) =Ti 1 but that this word is not the

empty word. This means that there exists some annular diagram A where U(a, b) is a

label of the interior boundary ∂I, V (x, y) is a label of the exterior boundary ∂E, and

W (a, b) connects the two labels. Now, recall that Ti is given by a C ′(1/8) presentation,



CHAPTER 4. AUTOMORPHISM-INDUCED HNN-EXTENSIONS 181

a5 a5

a b

(ba)4

(ab)5

b

b4

b5

Figure 4.2: Suppose, for example, H = 〈a, b; a10, b10, (ab)10〉. Any annular

diagram has the above form. This example has four islands. Note that no label

of either the interior or exterior boundaries can be a word over x and y.

and so by the structural theorem for annular diagrams (Proposition 2.3.6) the diagram

A is split into islands, which are reduced subdiagrams of A whose boundary is not self-

intersecting and of the form ση with σ ⊂ ∂I and η ⊂ ∂E, and bridges, which are non-trivial

paths in ∂I∩∂E. We shall analyse the islands of A and this analysis shall yield the required

subwords.

Suppose A contains a diagram D with boundary label (ab)i. Now, V (x, y) does not

contain (abab)±1 and so neither does ∂D ∩ ∂E. This means that |D ∩ ∂E| ≤ 3. Now,

the pieces of D have length one and D borders no more than two diagrams. Therefore,

∂D ∩ ∂I has length at least |ab| · i− 3− 2 = 2i− 5 > i, so we conclude that either (ab)±5

or (ba)±5 is a subword of ∂D ∩ ∂I, and so is contained in U(a, b).

Suppose A contains an island A′ such that A′ has more than one subdiagram. Then

one of these subdiagrams D has boundary ∂D = (ab)i as otherwise A is not reduced.

Therefore, by the above working, we have that either (ab)±5 or (ba)±5 is a subword of

U(a, b).

The only cases left to consider are islands consisting of a single diagram with boundary

a±i or b±i. So, suppose D is an island of A with boundary label ci where c ∈ {a±1, b±1}.

Now, the highest power of c contained in ∂E is c±4, and as i > 9 we conclude that ∂I

contains c±6. This completes the proof of the lemma.

To prove that M = 〈x, y〉 is free, and to begin the proof that M is malcharacteris-

tic in Ti, we use the following lemma, Lemma 4.3.6. The proof uses the above lemma,

Lemma 4.3.5, to prove that M is malnormal in Ti. Taking U and V to be words over the

alphabet X±1, we shall write 〈U, V 〉F to mean the subgroup of F (X) generated by the

words U and V , and 〈U, V 〉H to mean the corresponding subgroup of H = 〈X; r〉. Recall
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that a word U(a, b) is Dehn reduced in Ti = 〈a, b; ai, bi, (ab)i〉 if it contains no more than

half of a±i, b±i, (ab)±i or (ba)±i as a subword.

Lemma 4.3.6. Let M be the subgroup of Ti = 〈a, b; ai, bi, (ab)i〉, i > 9, which is generated

by the following elements, with ρ >> i.

x := a3(ab−1)3a3(ab−1)4 . . . a3(ab−1)ρ+2

y := a3(ab−1)ρ+3 . . . a3(ab−1)2ρ+2

Then M is free of rank two. Moreover, M is a malnormal subgroup of Ti.

Proof. We shall write H := Ti. Note that, because i > 9, H is given by a small cancellation

C ′(1/8) presentation. Suppose that M = 〈x, y〉H is not free of rank two, then there exists

some freely reduced, non-empty word U(x, y) such that U(x, y) =H 1. However, every

word over x and y is Dehn reduced, and so no such word U exists by Greendlinger’s

lemma (Proposition 2.3.4). Therefore, M is free of rank two.

To prove malnormality, begin by noting that the lift of M to F (a, b), denoted M :=

〈x, y〉F , is a malnormal subgroup of F (a, b). This holds because as ρ >> i the generators

x, y satisfy Wise’s c(5) small cancellation condition and so M is malnormal, by Propo-

sition 2.10.5. Now, recall that x and y are words over a and b, and suppose U(x, y),

V (x, y) and W (a, b) are such that U(x, y)W (a, b)V −1(x, y)W−1(a, b) =H 1 and W (a, b)

is Dehn reduced. Then because neither U(x, y) nor V (x, y) contains a±6, b±6, (ab)±5 or

(ba)±5, we can apply Lemma 4.3.5 to get that U(x, y)W (a, b)V −1(x, y)W−1(a, b) ≡ 1.

This then proves the lemma because as M = 〈x, y〉F is malnormal in F (a, b) we have that

W ∈ 〈x, y〉F , so W ∈ 〈x, y〉H , as required.

The automorphic orbit of M . Recall that, by Lemma 4.3.4, to prove Theorem B it

is sufficient to prove that the candidate subgroup M = 〈x, y〉 is free of rank two and is

malcharacteristic in Ti = 〈a, b; ai, bi, (ab)i〉 for i > 9. Now, Lemma 4.3.6 proves that it is

free of rank two and malnormal in Ti, and so to prove Theorem B it is sufficient to prove

that if φ ∈ Aut(Ti) such that M ∩Mφ 6= 1 then φ ∈ Inn(Ti). Our approach is based on
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the following transversal for Out(Ti), denoted Ψ [Zie76].

φ(1,ε) : a 7→ aε φ(2,ε) : a 7→ bε φ(3,ε) : a 7→ (ab)ε

b 7→ bε b 7→ aε b 7→ a−ε

φ(4,ε) : a 7→ aε φ(5,ε) : a 7→ bε φ(6,ε) : a 7→ (ab)ε

b 7→ (ab)−ε b 7→ (ab)−ε b 7→ b−ε

Now, to prove that if M∩Mφ 6= 1 then φ ∈ Inn(Ti) we prove, in Lemma 4.3.9, that for φ =

φ(l,ε) ∈ Ψ, if U(x, y)W (a, b)V −1(xφ, yφ)W−1(a, b) represents the identity in Ti then this

word is the empty word. Then, because every automorphism of Ti lifts to an automorphism

of the ambient free group F (a, b), in order to prove that M is malcharacteristic in Ti it is

sufficient to prove that the lift M of M to F (a, b) is malcharacteristic in F (a, b), and we

do this in Lemma 4.3.12.

In order to prove that if U(x, y)W (a, b)V −1(xφ, yφ)W−1(a, b) represents the identity in

Ti for φ ∈ Ψ then this word is the empty word, we wish to understand the image U(xφ, yφ)

of U(x, y) under such an automorphism φ = φ(l,ε) ∈ Ψ from the transversal. Lemma 4.3.7

and Lemma 4.3.8, below, gives us the information we require.

Lemma 4.3.7. Let Ti = 〈a, b; ai, bi, (ab)i〉, with i > 9. Suppose φ := φ(l,ε) is contained in

the transversal Ψ for Out(Ti), and we shall write A := aφ, B := (aφ)(b−1φ). Then for all

j ∈ Z with |j| ≥ 3 the word BjA3B−j does not contain a±4, b±4, (ab)±4 or (ba)±4, and so

is Dehn reduced.

Proof. The proof is simply by inspection of the appropriate words. Indeed the following

words are all Dehn reduced for j ∈ Z with |j| ≥ 3 and the longest subwords of relators

occurring are a3, b3, (ab)3, and (ba)3. Each word represents BjA3B−j for the indicated

φ ∈ Ψ.
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φ(1,1) : (ab−1)ja3(ab−1)−j = . . . ab−1ab−1a3ba−1ba−1 . . . j > 0

or = . . . ba−1ba3b−1ab−1 . . . j < 0

φ(2,1) : (ba−1)jb3(ba−1)−j = . . . ba−1ba−1b3ab−1ab−1 . . . j > 0

or = . . . ab−1ab3a−1ba−1 . . . j < 0

φ(3,1) : (aba)j(ab)3(aba)−j = . . . aba2ba(ab)3a−1b−1a−2b−1a−1 . . . j > 0

or = . . . a−1b−1a−1(ba)3aba . . . j < 0

φ(4,1) : (aba)ja3(aba)−j = . . . aba2ba3b−1a−2b−1a−1 . . . j > 0

or = . . . a−1b−1a−2b−1a3ba2ba . . . j < 0

φ(5,1) : (b2a)jb3(b2a)−j = . . . b2ab2ab3a−1b−2a−1b−2 . . . j > 0

or = . . . a−1b−2a−1b3ab2a . . . j < 0

φ(6,1) : (ab2)j(ab)3(ab2)−j = . . . ab2ab(ba)3b−1a−1b−2a−1 . . . j > 0

or = . . . b−2a−1b−1(ab)3bab2 . . . j < 0

Noting that if the result holds for φ(l,1) then it holds for φ(l,−1), the proof is complete.

Lemma 4.3.8. Let Ti = 〈a, b; ai, bi, (ab)i〉, with i > 9. Suppose φ := φ(l,ε) is contained in

the transversal Ψ for Out(Ti), and we shall write A := aφ, B := (aφ)(b−1φ). Then for all

j, k ≥ 3 the word A3BjA3Bk is freely reduced and does not contain a±6, b±6, (ab)±5 or

(ba)±5, and so is Dehn reduced.

Proof. As with Lemma 4.3.7, the proof is simply by inspection of the appropriate words.

Indeed the following words are all freely reduced for j, k ≥ 3 and the longest subwords of

relators occurring are a5, b5, (ab)4a, and b(ab)4. Each word represents A3BjA3Bk for the

indicated φ ∈ Ψ.

φ(1,1) : a3(ab−1)ja3(ab−1)k

φ(2,1) : b3(ba−1)jb3(ba−1)k

φ(3,1) : (ab)3(aba)j(ab)3(aba)k

φ(4,1) : a3(aba)ja3(aba)k

φ(5,1) : b3(b2a)jb3(b2a)k

φ(6,1) : (ab)3(ab2)j(ab)3(ab2)k

Noting that if the result holds for φ(l,1) then it holds for φ(l,−1), so the proof is complete.
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We shall now prove the implication which reduces the proof that M = 〈x, y〉 is malchar-

acteristic in Ti = 〈a, b; ai, bi, (ab)i〉 to proving that the lift M of M to F (a, b) is malchar-

acteristic in F (a, b). the proof is based on the above two lemmata, Lemma 4.3.7 and

Lemma 4.3.8, and on Lemma 4.3.5, which deals with conjugacy. Recall that a word

U(a, b) is Dehn reduced in Ti = 〈a, b; ai, bi, (ab)i〉 if it contains no more than half of a±i,

b±i, (ab)±i or (ba)±i as a subword.

Lemma 4.3.9. Let φ := φ(l,ε) be an element of the transversal Ψ for Out(Ti). Suppose

that the following holds, where W (a, b) is Dehn reduced.

U(x, y)W (a, b)V −1(xφ, yφ)W−1(a, b) =Ti 1

Then U(x, y)W (a, b)V −1(xφ, yφ)W−1(a, b) is the empty word in F (a, b).

Proof. Recall that x and y are specific words over a and b, defined before Lemma 4.3.5,

and so x = X(a, b) and y = Y (a, b). Then by xφ and yφ we mean, respectively, the words

X(aφ, bφ) and Y (aφ, bφ).

We first prove that if φ := φ(l,ε) is one of the elements of the transversal Ψ for Out(Ti)

then after free reduction V (xφ, yφ) does not contain any of the words a±6, b±6, (ab)±5 or

(ba)±5, and so is Dehn reduced (note that U(x, y) is Dehn reduced). We then use this

along with Lemma 4.3.5 to prove the implication in the statement of the theorem. We

shall call the potential subwords a±6, b±6, (ab)±5 and (ba)±5 illegal subwords.

To prove that if φ ∈ Ψ then V (xφ, yφ) does not contain any illegal subwords for all freely

reduced words V , begin by noting that if A := aφ and B := (aφ)(b−1φ) then A3BjA3Bj+1

is freely reduced and does not contain any illegal subwords for all j > 3, by Lemma 4.3.8.

This implies that both X(aφ, bφ) = xφ and Y (aφ, bφ) = yφ are freely reduced and do not

contain any illegal subwords, as they are both built up from overlapping words of the form

A3BjA3Bj+1. Now, because X(aφ, bφ) = xφ and Y (aφ, bφ) = yφ are both freely reduced,

when we form the word (xφ)(yφ) any free cancellation corresponds to free cancellation in

the product xy. Then, as ρ >> i the words x, y are small cancellation C ′(1/6)-words,

and so when we form any product PQ where P,Q ∈ {x±1φ, y±1φ} we obtain a word

P0Q0 such that P0 is a subword of P with |P0| > 5
6 |P |, and Q0 is a subword of Q with

|Q0| > 5
6 |Q|. Therefore, the word V (xφ, yφ) has the following form, where each Pj is of

length |Pj | > 2
3 min{|xφ|, |yφ|} and does not contain any illegal subwords.

V (xφ, yφ) = P1P2 . . . Pn
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Now, because each Pj does not contain any illegal subwords, and because each Pj is

sufficiently long (as ρ >> i), any illegal subwords must bridge two of these Pj terms,

that is, if V (xφ, yφ) contains an illegal subword then there exists some j such that PjPj+1

contains an illegal subword, but both Pj and Pj+1 do not contain any illegal subwords. We

shall now prove that PjPj+1 cannot contain any illegal subword, and so V (x, y) contains

no illegal subwords. Now, again writing A := aφ and B := (aφ)(b−1φ) we see that if

PjPj+1 contains an illegal subword then one of the following products contains an illegal

subword.

A3Bρ+2 ·A3Bρ+3 (4.12)

Bρ+1A3Bρ+2 ·B−2ρ−2 = Bρ+1A3B−ρ+2 (4.13)

B−4A−3B−3A−3 ·A3Bρ+2 = B−4A−3Bρ−1 (4.14)

B−3A−3 ·B−2ρ−2A−3 (4.15)

Now, (4.12) and (4.15) do not contain any illegal subwords by Lemma 4.3.8, while (4.13)

and (4.14) do not contain any illegal subwords by Lemma 4.3.7. Thus, we conclude that

V (xφ, yφ) does not contain any illegal subwords for φ := φ(l,ε) an arbitrary element of the

transversal Ψ for Out(Ti), as required.

Finally, suppose that U(x, y)W (a, b)V −1(xφ, yφ)W−1(a, b) =Ti 1. If this word is not

the empty word then, by Lemma 4.3.5, we have that V (xφ, yφ) contains an illegal subword.

However, we have already established that no such subword exists, and so we conclude

that U(x, y)W (a, b)V −1(xφ, yφ)W−1(a, b) is the empty word in F (a, b), as required.

Malcharacteristic subgroups of free groups. In Lemma 4.3.13 we use Lemma 4.3.9 to

reduce the proof that M = 〈x, y〉 is malcharacteristic in Ti = 〈a, b; ai, bi, (ab)i〉 to proving

that the lift M of M to F (a, b) is malcharacteristic. Now, in Lemma 4.3.11 we use fibre

products of maps of graphs to obtain an algorithm which determines whether certain

subgroups of F (a, b) are malcharacteristic. This allows us to prove, in Lemma 4.3.12,

that the lift M of M to F (a, b) is malcharacteristic in F (a, b). We then use this in

Lemma 4.3.13 to prove that M is malcharacteristic in Ti, which proves Theorem B. The

following lemma allows us to obtain the algorithm of Lemma 4.3.11. We shall call an

automorphism ψ ∈ Aut(F (a, b)) length-preserving if |aψ| = 1 = |bψ|. We shall call a word

W fully cyclically reduced if either |W | = 1 or W is both freely and cyclically reduced and
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begins and ends with different letters. Note that a cyclically reduced word W ′ is always a

cyclic shift of a fully cyclically reduced word.

Lemma 4.3.10. Suppose that φ is an automorphism of F (a, b) which is not inner and

not length-preserving. Then there exists an inner automorphism γ such that both of the

words aφγ and bφγ are fully cyclically reduced and either both do not contain a±3 or both

do not contain b±3.

Proof. As φ is not length preserving, we have that either |aφ| > 1 or |bφ| > 1. Begin by

noting that if A and B are a primitive pair (so either aφ = A and bφ = B or aφ = B and

bφ = A for some Nielsen transformation φ) then either there exists an inner automorphism

γ and some length-preserving automorphism ψ such that Aγψ = a and Bγψ = bak for

some k ∈ Z, or there exists inner automorphisms γ1 and γ2 and some length-preserving

automorphism ψ and ε ∈ {1,−1} such that Aεγ1ψ and Bεγ2ψ have the following forms,

where α1, . . . , αm, β1, . . . , βn ∈ {k, k + 1} for some fixed k [CMZ81].

Aεγ1ψ = aα1baα2b . . . aαmb

Bεγ2ψ = aβ1bε
′
aβ2bε

′
. . . aβnbε

′

Therefore, to prove the theorem it is sufficient to prove that there is an inner automorphism

γ such that Aγ and Bγ are fully cyclically reduced, as then Aεγψ and Bεγψ will have the

above forms so Aγ and Bγ do not contain a±3 or do not contain b±3. To prove that such

an inner automorphism exists, consider the following three automorphisms of F (a, b).

ψ0 : a 7→ ab ψ1 : a 7→ b ψ2 : a 7→ a−1

b 7→ b b 7→ a b 7→ b

These three automorphisms generate the automorphism group of F (a, b), because Aut(F (a, b))

is generated by the elementary Nielsen transformations [MKS04, Theorem 3.2] and every

elementary Nielsen transformation can be written in terms of these three generators (see

Section 2.2 for the definition of an elementary Nielsen transformation). We shall write φ

as a word over these three generators, φ = φN . . . φ2φ1 where φεj ∈ {ψ0, ψ1, ψ2}, and induct

on the length of the word, so induct on the number N .

If N = 0 the result holds. Suppose aφγ and bφγ are fully cyclically reduced and

consider φN+1φ where φN+1 is an elementary Nielsen transformation. If φN+1 = ψ1 then

aφNφ = bφ and bφNφ = aφ, while if φN+1 = ψ2 then aφNφ = (aφ)−1 and aφNφ = bφ,
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and in both cases aφN+1φγ and bφN+1φγ are fully cyclically reduced, as required. So it

suffices to prove the result for φN+1 = ψ0. So, writing aφ = A, bφ = B and aψ0φ = AB,

bψ0φ = B, and so to prove the result it suffices to prove that if W−1AW and W−1BW

are fully cyclically reduced then there exists some word W0 such that W−1
0 ABW0 and

W−1
0 BW0 are fully cyclically reduced, and indeed we can assume W is trivial (so A and

B are fully cyclically reduced). If AB is not fully cyclically reduced then there exists a

word C such that A = CA1 and B = B1C
−1 are freely reduced words such that A1B1

is cyclically reduced. If C−1B1 is not fully cyclically reduced then consider C−1B2c
−j ,

where |c| = 1, j ∈ Z and c−jC−1B2 is fully cyclically reduced. Then take W0 = Ccj . Now,

W−1
0 BW0 = c−jC−1B2 is fully cyclically reduced while W−1

0 ABW0 = c−jA1B2 is fully

cyclically reduced as c−jB2 is fully cyclically reduced and because A1B2c
−j is cyclically

reduced (so this cyclic shift induces no free reduction), as required.

We now give conditions which allow for an algorithm to determine if a subgroup

of the free group on two generators is a malcharacteristic subgroup or not. Note that

the conditions imply the existence of an algorithm because there are only finitely many

length-preserving automorphisms, and because malnormality is decidable in free groups.

In Lemma 4.3.12, we apply this result to prove that the subgroup M is a malcharacter-

istic subgroup of F (a, b). By a positive word in F (a, b) we mean a word over {a, b} not

containing a−1 or b−1.

Lemma 4.3.11. Let W1, . . . ,Wn be a finite collection of freely reduced positive words in

the free group F (a, b), and write C := 〈W1, . . . ,Wn〉. Suppose the following hold:

• Every circuit in the folded Stalling’s graph Γ̂C contains some a-term and some b-

term.

• If z ∈ {a, b} then every instance of z in any word Wi is part of a z3 term.

Then C is malcharacteristic in F (a, b) if and only if C is malnormal and for all non-trivial

ψ ∈ Aut(F (a, b)) such that |aψ| = 1 = |bψ| the fibre product ΓC ⊗ΓF (x,y)
ΓCψ is a forest.

Proof. We begin by noting that these conditions imply that every instance of some z ∈

{a, b} in any circuit of Γ̂C is part of a z3.

Now, if ψ ∈ Aut(F (a, b)) then by Lemma 4.3.10 we have that, modulo the inner

automorphisms, either |aψ| = 1 = |bψ| or no positive word over aψ and bψ contains a±3,

or no positive word over aψ and bψ contains b±3. Note that inner automorphisms leave
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the Stallings graph unchanged after folding. Thus, if we assume that either |aψ| > 1 or

|bψ| > 1 then either no a±3 or no b±3 can appear in Γ̂Cψ and so Γ̂C ⊗ Γ̂Cψ is a forest.

Therefore, to verify that C is malcharacteristic we only need to verify that C is mal-

normal and that Γ̂C ⊗ Γ̂Cψ is a forest for the non-trivial automorphisms ψ such that

|aψ| = 1 = |bψ|. Thus, the proof is complete.

The following lemma, Lemma 4.3.12, proves that the subgroup M is malcharacteristic

in F (a, b), which is used in Lemma 4.3.13 to prove that M is malcharacteristic in Ti.

Theorem B then follows.

Lemma 4.3.12. Let M be the subgroup of F (a, b) which is generated by the following

elements, with ρ >> 1.

x := a3(ab−1)3a3(ab−1)4 . . . a3(ab−1)ρ+2

y := a3(ab−1)ρ+3 . . . a3(ab−1)2ρ+2

Then M is a malcharacteristic subgroup of F (a, b).

Proof. We shall write M0 for the subgroup of F (a, b) which is generated by the following

elements.

x0 := a3b3a3b4 . . . a3bρ+2

y0 := a3bρ+3 . . . a3b2ρ+2

As M0 = 〈x0, y0〉 is in the automorphic orbit of M = 〈x, y〉, we have that M is malchar-

acteristic in F (a, b) if and only if M0 is malcharacteristic in F (a, b). We shall prove that

M0 is malcharacteristic in F (a, b), which therefore proves the lemma.

Now, M0 is malnormal in F (a, b) because these words satisfy Wise’s c(5) small can-

cellation condition for ρ >> 1 (by Proposition 2.10.5). To prove that M0 = 〈x0, y0〉 is

malcharacteristic suppose ψ is non-trivial such that |aψ| = 1 = |bψ|. Then any word over

x0ψ and y0ψ either does not include a b5-term or does not include a subword of the form

(a3bpaε3bq)±1 where p, q > 0. This means that the fibre product ΓM0
⊗ΓF (x,y)

ΓM0ψ
is a

forest for each non-trivial length-preserving automorphism ψ. We can then apply Lemma

4.3.11 to get that M0 is malcharacteristic.

Proof of Theorem B. We shall now prove Theorem B. Indeed, by Lemma 4.3.4, it is
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sufficient to prove that Ti = 〈a, b; ai, bi, (ab)i〉 contains a malcharacteristic subgroup which

is free of rank two. The following lemma proves the existence of such a subgroup. Recall

that φ̂ denote the image of φ ∈ Aut(H) in Out(H).

Lemma 4.3.13. Let M be the subgroup of Ti = 〈a, b; ai, bi, (ab)i〉, i > 9, which is generated

by the following elements, with ρ >> i.

x := a3(ab−1)3a3(ab−1)4 . . . a3(ab−1)ρ+2

y := a3(ab−1)ρ+3 . . . a3(ab−1)2ρ+2

Then M is free of rank two. Moreover, M is a malcharacteristic subgroup of Ti.

Proof. By Lemma 4.3.6, M is free of rank two and is a malnormal subgroup of Ti. There-

fore, to prove the lemma it is sufficient to prove that if ψ ∈ Aut(Ti) such that Mψ∩M 6= 1

then ψ ∈ Inn(Ti). So, suppose that there exists an automorphism ψ of Ti, ψ ∈ Aut(Ti),

and two words U and V such that U(x, y) = V (xψ, yψ), and we wish to prove that ψ is

inner. Now, ψ̂ ∈ Out(Ti) has representative φ := φ(l,ε) from the transversal Ψ for Out(Ti),

that is, ψ = φγW where γW ∈ Inn(Ti) and W (a, b) is Dehn reduced. Therefore, we can

re-write V (xψ, yψ) as V (xφγW , yφγW ) = V (xφ, yφ)γW . Thus, U(x, y) and V (xφ, yφ) are

conjugate in Ti, and by Lemma 4.3.9 the word U(x, y)W−1V −1(xφ, yφ)W is the empty

word and so U(x, y) ≡ V (xψ, yψ). Now, because ψ lifts to an automorphism of the am-

bient free group F (a, b) we can apply the fact that the lift M of M to the ambient free

group F (a, b) is malcharacteristic in F (a, b), by Lemma 4.3.12, to get that the lift of ψ to

F (a, b) is inner. Thus, ψ is an inner automorphism of Ti, as required.

We shall now formally prove Theorem B.

Proof of Theorem B. By Lemma 4.3.4, Theorem B holds if Ti = 〈a, b; ai, bi, (ab)i〉 contains

a malcharacteristic subgroup which is free of rank two, where i > 9 is arbitrary. By

Lemma 4.3.13, Ti contains such a subgroup for all i > 9. Thus, Theorem B holds.

4.3.5 The Bumagin–Wise question for recursively presented groups

In this section we prove Theorem D. We do this by analysing the outer automorphism

groups of certain mapping tori, G = Hφ = 〈H, t;ht = φ(h), h ∈ H〉, using Theorem 4.2.17.

We shall write φ̂ for the coset of Out(H) containing φ.

Sapir’s embedding. To use Theorem 4.2.17 we need to have some knowledge or control
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over the centralisers of elements in Out(H). To do this, we use an embedding theorem

of Sapir [Sap13]. If A is a finitely generated, recursively presented group and x ∈ A

then Sapir’s embedding gives a finitely presented group P such that CA(x) = CP (x). It

is an open problem of Osin that every recursively presented group can be embedded as

a malnormal subgroup of a finitely presented group [Sap13], and Sapir remarks that in

his embedding A is malnormal in P , and so the open problem of Osin has a positive

solution. However, he does not give a proof, but rather states that this will be proven

in his next paper. Our following construction has two possible outcomes, with a stronger

result occurring if Osin’s problem has a positive solution.

The Bumagin–Wise question. We now prove two theorems, which combine to prove

Theorem D. The first theorem, Theorem 4.3.14, gives a partial answer to Bumagin–Wise’s

question for certain groups, while the second theorem, Theorem 4.3.15, gives a complete

answer to Bumagin–Wise’s question for certain groups. Theorem 4.3.15 is of most interest

if Osin’s problem has a positive solution.

Theorem 4.3.14. Let Q be a finitely generated, recursively presented group. Then there

exists a finitely-generated, residually finite group G such that Out(G) ∼= Q× C2.

Proof. Form Q2 = Q × C2. As Q is finitely generated and recursively presented, we can

use Sapir’s embedding to construct a finitely presented group P which contains Q2 and

such that CP (g) = Q2 where g is the element of order two we added to Q (we equate Q

and g with their images in P ). As P is finitely presented, there exists a finitely generated,

residually finite group H such that Out(H) ∼= P [BW05]. Note that this group H is

generated by elements of finite order, and so does not map onto Z, and also note that

H is a (possibly infinitely presented) C ′(1/6) group and therefore has trivial center, by

Proposition 2.3.7.

Now, as H does not map onto Z, we can apply Lemma 4.2.1 to get that OutH(G) =

Out(G) for any G = H o Z. We shall write Out0(G) for the subgroup corresponding to

Out0
H(G) in the case that OutH(G) = Out(G). Thus, Out0(G) has index one or two in

Out(G).

Let φ̂ by the element of Out(H) associated with g ∈ Q2. Thus, COut(H)(φ̂) ∼= Q2.

Form G = 〈H, t;ht = φ(h)〉 for some φ ∈ φ̂. Then Out0(G) ∼= Q by Theorem 4.2.17. Note

that G is finitely generated and residually finite.

To complete the theorem, it is sufficient to prove that Out(G) = Out0(G)×C2. To see
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this, note that g = g−1. Thus, the following the automorphism can be taken as the coset

representative for Out(G)/Out0(G).

ψ : h 7→ h

t 7→ t−1

This automorphism has order two and generates a normal subgroup of Out(G). Therefore,

Out(G) = Out0(G)× 〈ψ̂〉 ∼= Q× C2, as required.

The following theorem will allow us to apply a positive solution of Osin’s problem

to get a positive solution to Bumagin–Wise’s question for finitely generated, recursively

presented groups. This is because if Q is finitely generated and recursively presented then

the conditions of the theorem hold if, for example, Q × C3 embeds malnormally into a

finitely presented group, and a positive solution to Osin’s question gives us this embedding.

Theorem 4.3.15. Let Q′ = Q × C where C = 〈g〉 is cyclic of order greater than two

(possibly infinite.)Suppose that Q′ can be embedded into a finitely presented group P where

g is not conjugate to g−1 in P . Then there exists a finitely generated, residually finite

group G such that Out(G) ∼= Q.

Proof. Write H for the finitely generated, residually finite group such that Out(H) ∼= P ,

and, as in the proof of Theorem 4.3.14, form the finitely generated, residually finite group

G ∼= H o Z such that Out0(G) ∼= Q. Finally, because g is not conjugate to g−1 in P we

conclude that Out(G) = Out0(G) ∼= Q, as required.

Then Theorem D follows immediately from Theorems 4.3.14 and 4.3.15.

Theorem D. If Q is a finitely generated, recursively presented group then either Q or

Q×C2 can be realised as the outer automorphism group of a finitely-generated, residually

finite group GQ.

Note that if Osin’s open problem has a positive solution, so every finitely generated,

recursively presented group is a malnormal subgroup of a finitely presented group, then we

can use Theorem 4.3.15 and disregard Theorem 4.3.14 to get the following improvement.

Theorem D (Dependent on Osin’s problem). Every finitely generated, recursively pre-

sented group can be realised as the outer automorphism group of a finitely-generated, resid-

ually finite group.
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Recursive presentability. It is natural to ask if Theorem D is the complete solution

to Bumagin–Wise’s question. This is not so, and the reason is that there exist a finitely

generated, residually finite group Q which is not recursively presentable (Bridson–Wilton

point out that this follows from work of Slobodskoi [BW13]). Applying this group Q to

Theorem C yields the following corollary of Theorem C.

Corollary 4.3.16. There exists a finitely generated, residually finite group G such that

Out(G) is finitely generated but not recursively presentable.

Proof. Let Q be a finitely generated, residually finite group which is not recursively pre-

sentable. Then by Theorem C, Q embeds with finite index into the outer automorphism

group Out(GQ) of a finitely generated residually finite group GQ. As Out(GQ) contains a

finitely generated group which is not recursively presentable, namely Q, Out(GQ) cannot

be recursively presentable. As Q is finitely generated and has finite index in Out(GQ) we

have that Out(GQ) is finitely generated. Taking G := GQ, this proves the result.

Note, however, that the group GQ is not recursively presentable. We end this chapter

by suggesting the following question, which asks if (the stronger version of) Theorem B

gives a complete solution to Bumagin–Wise’s original problem in the restricted case of

finitely generated, residually finite groups which are recursively presentable.

Question 2. Does there exist a finitely generated group Q which is not recursively pre-

sentable but which occurs as the outer automorphism group Out(G) of a recursively pre-

sented finitely generated, residually finite group G?



Notation

ε, ε′, ε0, εi, . . . Integers of absolute value 1.

Aut(G), Inn(G) Automorphism group, inner automorphism group of G.

Out(G) Outer automorphism group of G, Out(G) := Aut(G)/ Inn(G).

φ, ψ Greek symbols denote homomorphisms (usually automorphisms) of a group.

gφ, Kφ The image of the element g, subgroup K under the homomorphism φ.

γg The inner automorphism corresponding to g. So hγg = h−1gh.

φ̂ The element of Out(G) with representative φ ∈ Aut(G).

gh gh := h−1gh.

[g, h] [g, h] := g−1h−1gh.

U ≡ V Equality of words.

U =G V The words U(X) and V (X) represent the same element of the group G = 〈X〉.

σa(U) The exponent sum of the generator a in the word U .

|U | The length of the word U .

Gab, G′ Abelianisation of G, derived subgroup of G.

CH(G), NH(G) Centraliser, normaliser of H in G.

〈S〉H Subgroup generated by set S in a subgroup H ≤ G.

〈〈S〉〉 Normal closure of the set S in a previously-specified group G.

〈〈S〉〉H Normal closure of the set S in a subgroup H ≤ G, the H-normal closure of S.

H oK,H ./ K Semidirect product, Zappa–Szép product of H with K.

〈X; r〉 Group given by generators X and relators r.

〈X;S〉, 〈X;Rn〉 A one-relator group, a one-relator group where the word R has order n.

Fn The free group of rank n ∈ Z ∪ {N}.

GL2(Z) Group of two-by-two matrices with integer entries and non-zero determinant.

Ti,j,k The triangle group Ti,j,k := 〈a, b; ai, bj , (ab)k〉.

Ti The equilateral triangle group Ti := 〈a, b; ai, bi, (ab)i〉.
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