
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

McGinniss, Iain (2014) Theoretical and practical aspects of
typestate. PhD thesis.

http://theses.gla.ac.uk/5244/

Reproduced under license CC-BY-NC-ND

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5244/

THEORETICAL AND PRACTICAL ASPECTS
OF TYPESTATE

IAIN MCGINNISS

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

AUGUST 2013

© IAIN MCGINNISS

Abstract

The modelling and enforcement of typestate constraints in object oriented languages has
the potential to eliminate a variety of common and difficult to diagnose errors. While the
theoretical foundations of typestate are well established in the literature, less attention has
been paid to the practical aspects: is the additional complexity justifiable? Can typestate be
reasoned about effectively by “real” programmers? To what extent can typestate constraints
be inferred, to reduce the burden of large type annotations? This thesis aims to answer these
questions and provide a holistic treatment of the subject, with original contributions to both
the theorical and practical aspects of typestate.

Acknowledgements

Scientists are made, not born, and I am grateful for the contribution of many to my forging.

I would like to thank Dr. Simon Gay and Prof. Joe Sventek of the University of Glasgow,
and Dr. David Aspinall of the University of Edinburgh for their supervision, support and
patience throughout my time as a PhD student. Without their guidance and encouragement,
it is unlikely that this document would exist.

Dr. Aspinall and Prof. Donald Sanella provided an excellent opportunity for me to apply
my early research efforts in a practical setting for their business, Contemplate Ltd. The
prototyping of a static and dynamic analysis for the Hanoi language (defined in Chapter 3)
at Contemplate proved to be very influential on my subsequent research. Their patronage is
deeply appreciated.

Dr. Jonathan Aldrich’s invitation to join his research group at Carnegie Mellon University
over the summer of 2011 proved essential to the development of the ideas contained in this
thesis. I am grateful for the interest he took in my research, and the experiences of visiting
a prestigious academic institution which he facilitated. The excursion was financially sup-
ported by the College of Science and Engineering at the University of Glasgow, who have
generally provided an excellent environment in which to learn and conduct research.

The funding for this PhD has been provided by the Scottish Informatics and Computing Sci-
ence Alliance. SICSA provided much more than just financial support; their yearly student
conferences and summer schools have provided additional perspective on my work, and the
opportunity to network with students and established academics throughout Scotland. With-
out SICSA, my life as a student would have been much less interesting.

Finally, the unconditional support of my family and friends provided me the strength to
complete what has become the greatest intellectual challenge of my life. I would like to
thank my parents, John and Edraine McGinniss, for instilling a burning desire to question
everything in me. My partner Sarah Brozio deserves recognition for tolerating my frequent
emotional outbursts while writing; without her stabilising influence, I would not have been
capable of providing the best possible account of my work.

The journey is the reward. — Chinese Proverb

Table of Contents

1 Introduction 1

1.1 Save us from ourselves . 2

1.2 Thesis outline . 4

1.3 Thesis statement . 5

2 Literature Review 6

2.1 Typestate systems . 8

2.1.1 Plural . 9

2.1.2 Plaid . 12

2.1.3 Fugue . 14

2.2 Session types . 17

2.2.1 Sessions for objects . 20

2.3 Dependent types . 23

2.3.1 Encoding typestate in dependent types 25

2.3.2 Effects in Idris . 26

2.3.3 Dependent typestate . 27

2.4 Alias control . 28

2.4.1 Linear and uniqueness types . 28

2.4.2 Fractional permissions . 30

2.4.3 Reference roles . 32

2.5 Tracematches . 34

2.5.1 Clara . 35

2.5.2 Protocols involving multiple objects 35

2.6 Contracts . 37

2.7 Typestate inference . 40

2.7.1 Typestate model inference . 40

2.7.2 Requirement and effect inference using constraints 41

2.8 Language usability & human factors . 43

3 Representing Typestate Constraints 47

3.1 A minimal feature set for typestate modelling 48

3.2 Aspects of typestate modelling languages . 51

3.3 The Hanoi language . 52

3.4 An Introduction to Hanoi state machines . 53

3.4.1 Hanoi Annotations . 55

3.4.2 Representing common patterns in Hanoi 57

3.5 Semantics . 61

3.5.1 Formal definition . 65

3.5.2 Producing state machines from Hanoi models 68

3.5.3 Behavioural subtyping in Java . 77

3.6 A Cognitive Dimensions analysis of Hanoi . 77

3.6.1 Hidden/Explicit Dependencies . 78

3.6.2 Viscosity . 79

3.6.3 Premature commitment . 80

3.6.4 Role-expressiveness . 80

3.6.5 Hard Mental Operations . 80

3.7 Conclusion . 81

4 Dynamic Checking of Hanoi Models for Java 83

4.1 The requirements of a practical dynamic checker 86

4.2 Methods of dynamic checking . 87

4.2.1 Wrapper generation . 87

4.2.2 Dynamic proxies . 88

4.2.3 AspectJ based solutions . 90

4.2.4 Other AspectJ possibilities . 101

4.3 Evaluating the overhead of dynamic checking 105

4.4 Conclusion . 112

5 Can programmers reason about typestate? 115

5.1 Experiments considered . 116

5.2 Experimental design . 119

5.2.1 Null hypotheses . 121

5.3 Experiment questions . 122

5.3.1 Model 1 — DistributedWorkQueue . 122

5.3.2 Model 2 — Calculator . 128

5.3.3 Model 3 — GearControl . 133

5.3.4 Model 4 — Iterator . 140

5.3.5 Survey . 144

5.4 Results . 145

5.4.1 Statistical tests & measures used . 145

5.5 Participant demographics . 151

5.5.1 Scores . 154

5.5.2 Reading times . 155

5.5.3 Answer times . 157

5.5.4 Qualitative results . 160

5.5.5 Survey . 161

5.6 Conclusion . 166

6 Typestate Inference in an Imperative First-Order Calculus 168

6.1 A minimal typestate interaction formalism . 171

6.2 TS - an imperative calculus with typestate . 172

6.2.1 Notational conventions . 172

6.2.2 Values . 174

6.2.3 Term evaluation . 176

6.3 Types . 177

6.3.1 Extra notational conventions for objects 179

6.3.2 Subtyping . 180

6.3.3 Join and meet . 182

6.3.4 Effect types . 186

6.3.5 Strong and weak update . 190

6.3.6 Meet and join for effects . 192

6.3.7 Effect combinators . 193

6.4 Type system . 196

6.4.1 While loops . 201

6.4.2 Soundness . 203

6.4.3 Properties of typings . 204

6.5 Principal typings and typing schemes . 205

6.5.1 Introducing � for principal typings . 208

6.6 Type inference . 208

6.6.1 Correctness . 214

6.6.2 Constraint typing simplification . 215

6.6.3 Constraint solving . 217

6.7 Implementation . 218

6.8 Conclusion . 221

7 Challenges for a typestate-oriented future 222

7.1 Desirable features for a typestate oriented language 223

7.1.1 Type system . 224

7.1.2 Lightweight syntax . 225

7.1.3 Parallel and distributed systems . 229

7.2 The Chimera language . 230

7.2.1 Chimera types . 230

7.2.2 Methods and functions . 231

7.2.3 Function literals . 233

7.2.4 Defining object types and classes . 235

7.2.5 Type parameters . 237

7.2.6 Public fields and global objects . 237

7.2.7 Field overriding . 238

7.2.8 Inheritance . 240

7.2.9 Dynamic state tests . 240

7.2.10 Processes and channels . 242

7.3 Theoretical challenges and opportunities . 245

7.3.1 Mutable collections . 246

7.3.2 Borrow and steal for return values . 246

7.3.3 Function literals with implicit binding 250

7.3.4 Implicit effects . 251

7.4 Conclusion . 255

8 Conclusion 256

8.1 Limitations . 257

8.2 Future Work . 258

8.3 Availability of code . 261

8.4 Closing remarks . 261

A TS language proofs 262

A.1 Soundness . 262

A.2 Constraint typing correctness . 271

A.3 Properties of contexts . 275

A.4 Properties of object and flow effect traces . 278

A.5 Properties of the subtyping relation . 281

A.6 Properties of remap(T,U ≫ V) . 282

A.7 Properties of extracted effects . 283

A.8 Properties of the sub-effect relation . 287

A.9 Properties of join and meet . 289

A.10 Properties of typings . 300

A.10.1 Flow effect specific properties . 303

A.10.2 Upgrade effect specific properties . 304

Bibliography 305

List of Figures

2.1 An infinite state machine for a stack data structure 28

2.2 Fractional permission splitting rules on Plural 31

3.1 The grammar of the Hanoi language . 56

3.2 Formalisation of the Hanoi model of the Iterator type 67

4.1 A regular grammar which captures violations of Listing 4.6 92

4.2 An implementation of fold in Java, with its Hanoi model 108

4.3 Observed overhead for the dynamic proxy based checker 109

4.4 Benchmark times for matrix multiplication . 110

5.1 Java puzzles used to test comprehension of Java’s semantics 120

5.2 Raw participant demographic information . 152

5.3 Choices and scores . 153

5.4 Self-rated proficiencies against final score . 155

5.5 Experience vs. Score . 156

5.6 Question reading times, per participant . 156

5.7 Scatter plot of question reading times . 157

5.8 Question answer timings . 158

5.9 Scatter plot of question answer times . 159

5.10 Frequencies of responses to survey questions and statistical analysis 162

5.11 Participant responses to survey questions (Page 1 of 3) 163

5.11 Participant responses to survey questions (Page 2 of 3) 164

5.11 Participant responses to survey questions (Page 3 of 3) 165

6.1 Example of type inference for an unannotated function. 169

6.2 Grammar of TS . 173

6.3 An example program in TS . 176

6.4 Operational semantics . 178

6.5 Example of a statically indeterminate object state 179

6.6 Subtyping and equivalence rules . 181

6.7 Definition of type join . 184

6.8 Definition of type meet . 185

6.9 Definition of flow and update effect properties 188

6.10 Definition of trace operations . 189

6.11 A simple object protocol . 189

6.12 Definition of join and meet for effect types . 192

6.13 Example applications of the effect combinators 194

6.14 Ordering and equivalance for contexts and typings 197

6.15 Type rules . 199

6.16 Type rule variants for update effects . 200

6.17 Definition of extract operation . 200

6.18 Store typing judgements . 203

6.19 Definition of store update and context update compatibility relation, υ ∶ Υ . . 203

6.20 Possible types for x in function f . 206

6.21 Grammar for typing schemes, constraints, type and effect expressions 210

6.22 Definition of type variable substitution . 211

6.23 The constraint satisfaction judgement, ρ ⊢ C 211

6.24 Constraint typing rules (Page 1 of 2) . 212

6.24 Constraint typing rules (Page 2 of 2) . 213

6.25 Example of type checking output in the TS implementation 219

6.26 Example of constraint typing generation in the TS implementation 220

7.1 Calculating the average age of all males in a collection, in various languages 228

7.2 The client session type for a simple ATM, with an analogous Chimera chan-
nel type . 244

Listings

2.1 A class which allows alternate calls to a() and b() 10

2.2 Plural annotated form of Listing 2.1 . 11

2.3 Definition of an option type in Plaid . 13

2.4 Loss of type information in Plaid . 15

2.5 Fugue specification for a network socket . 16

2.6 The definition of an ATM process, which communicates with a user process
and bank process through sessions, written in the session language of Honda
et al. , defined in [71] . 19

2.7 Session typing and link types as found in Bica, a Java language variant de-
fined in the work of Gay et al. [58] . 22

2.8 Dependently typed manipulation of a list in Java-like pseudo-code 24

2.9 Safe manipulation of a list without checks in Java-like pseudo-code 25

2.10 Dependently typed version of an iterator . 25

2.11 Better form of the iterator type with sample usage, in Java-like pseudo-code 26

2.12 Idris effect DSL code for annotating a tree with unique labels 27

2.13 Wadler’s linear types in an ml-like language 29

2.14 A pair type with views . 33

2.15 A Clara aspect that monitors for attempts to write to closed connections . . . 36

2.16 Code Contracts form of an Iterator . 39

3.1 Hanoi model for java.util.Iterator . 53

3.2 Method which removes the middle elements of a collection 54

3.3 A model for a simple TCP socket . 55

3.4 The iterator model expressed using Hanoi annotations 56

3.5 An Illegal Hanoi model . 63

3.6 A Hanoi model with legal transition overriding 64

3.7 The Standard ML data types for representing a Hanoi model and the produc-
tion of ∆ and χ relations . 69

3.8 A Map interface with a transaction subtype . 77

3.9 Hanoi model for TransactionalMap type in Listing 3.8 78

4.1 Manual enforcement of Iterator constraints . 84

4.2 Invalid usage of a generic type in Java . 85

4.3 Example of using a potentially typestate-constrained object via reflection . . 87

4.4 A generated wrapper for the Iterator interface 89

4.5 Usage of the Hanoi API for dynamic proxies 90

4.6 A type with boundary checks for a and b . 92

4.7 Tracematch for illegal usage of Listing 4.6 . 93

4.8 A bounded queue data structure . 94

4.9 The Hanoi model for BoundedQueue . 95

4.10 The simplified and flattened Hanoi model for BoundedQueue 96

4.11 Enabling or disabling Hanoi dynamic checking using AspectJ 98

4.12 Part of the aspect generated for BoundedQueue 99

4.13 Part of the abstract aspect . 102

4.14 Using inter-type declarations to inject state tracking fields into objects 103

4.15 Monitoring method calls using separate before and after advice 104

4.16 Partial implementation of monitoring aspect generation using Meta-AspectJ . 106

4.17 Output from the foldLeft benchmark . 107

4.18 The simplest dynamic proxy possible . 110

4.19 Matrix multiplication implemented using Iterator to access elements 112

4.20 A fragment of an “optimal” hand-written wrapper for Iterator to check its
typestate constraints . 113

6.1 Example of strong update . 191

7.1 Option types in Chimera . 226

7.2 An example of redundant type annotations in Java 227

7.3 Method definition in Chimera . 233

7.4 Example function literals . 234

7.5 A Hanoi-like syntax for specifying and implementing an iterator 236

7.6 Example of virtual fields . 238

7.7 Example of state entry methods . 239

7.8 An example of refining the type of a parent state’s field 241

7.9 An example of single inheritance in Chimera 242

7.10 Iterator-like behaviour without the need for a hasNext method or condi-
tional transitions . 243

7.11 A mutable linked list . 247

7.12 Temporary state change of borrowed return values 248

7.13 An example of using peek . 249

7.14 A more complex example of scope analysis concerning the parameter f . . . 252

7.15 An example of modifying an implicitly bound parameter 253

1

Chapter 1

Introduction

The primary goal of a type system in a programming language is to detect and prevent errors
in code. A well designed type system should detect the most common and critical errors,
based upon the expected usage of the programming language. This requires that the designer
of the language be aware of the intended use cases for the language, the knowledge and skill
set of the programmers who will be using it, and whether the restrictions imposed by the
type system provide sufficient value to be justifiable.

The programming language research community pursue and devise ever more complex type
systems with the goal of preventing a wide variety of errors. Many of these type systems
are built without maintaining awareness of the practical aspects of the language: the type
systems becomes harder to understand and interact with as they increase in complexity. A
successful type system must balance the desire to statically detect common and critical errors
with the ability of programmers to comprehend and fix the errors reported. For instance,
statically detecting one of the most common forms of programmer error, undeclared or mis-
spelled variable usage, can be presented in a manner that is easy to understand and can save
a programmer a significant amount of time.

The cost of a program failing is an implicit part of the decision making process in selecting
the language to be used for a project. For many web applications, if the application fails,
refreshing the page is often enough to fix it. While it is still desirable to reduce the frequency
at which such transient errors occur, these failures are rarely critical and often easy to mit-
igate — restarting the process and repeating the request can often be done without the end
user ever realising a failure occurred.

As such, a complex, strongly typed language such as Agda [23] is unlikely to be chosen for
building a typical web application. With careful use of such a language much greater confi-
dence in a program can be derived. However the cost of failure does not justify the additional
time, effort and therefore expense involved in satisfying the type checker. Agda may, how-
ever, be an excellent choice for building a safety critical system, where the cost of failure is

1.1. Save us from ourselves 2

significantly higher. Mitigating failure through process restarts in the control systems of an
aircraft or robotic surgical equipment is less likely to be a viable option compared to a web
content delivery system.

Between throw-away scripts and safety critical systems is a spectrum of software with an
increasing and non-trivial cost of failure, where using a language with a stronger type system
is justified. In this middle ground, engineers with a formal education in computer science
build systems where failure is highly undesirable if not catastrophic. Such engineers desire
tool support which can provide confidence in (but not necessarily proof of) the correctness
of their software, particularly in “core” components.

1.1 Save us from ourselves

In object oriented languages such as Java and C#, there are many common errors that are
not dealt with adequately by the static component of the type system. Perhaps the most
common source of error in such languages is dereferencing null — Hoare described the
introduction of the null value for references in the ALGOL W language and the consequent
replication of this feature in the languages it inspired as his “billion dollar mistake” [68]. The
runtime systems of both Java and C# will halt a program immediately when a null value is
dereferenced, rather than allow a program to continue with undefined behaviour (as may
occur in C), but at the expense of additional runtime checks.

The situation is avoidable through the use of an option type in place of null, requiring that
all references be to a valid location in memory. This eliminates the risk of runtime fail-
ure, but programmers are forced to explicitly handle the null equivalent. Interacting with
option types is straightforward in a functional programming language due to pattern match-
ing, higher order functions and closures, as demonstrated by utility functions for the Maybe
monad in Haskell [114, Chapter 14] or the Option type in OCaml [98, Chapter 7]. Java
7 currently lacks these features, making interaction with option-like types cumbersome. A
more sophisticated language such as Scala [111] makes handling option types easier [151];
as such it uses option types pervasively instead of null. Scala’s additional complexity
makes this possible, but this additional complexity is a barrier to wider adoption.

Another very common pattern of errors in object oriented programs arises from the misuse
of mutable private state. Types such as the Iterator interface in Java place stateful re-
strictions on their usage — the method next() may only be called on an iterator when
another element is available, otherwise an unchecked NoSuchElementException will
be thrown. This exception is an indication of programmer error rather than some unexpected,
potentially resolvable error in the system like a network connection being severed. It is the

1.1. Save us from ourselves 3

obligation of the client of an Iterator to call hasNext() and ensure it returns true
before calling next().

While an alternative design for the Iterator interface may avoid this problem by return-
ing an option type on next, this simply moves the fundamental problem — the iterator is
depleted, and the client code must respond to this situation appropriately.

When combined with reference aliasing, the problem is exacerbated. State changes that
occur in one context may not be observable in another, resulting in one alias depleting
an iterator while another still believes the iterator has a value through a previous call to
hasNext(). Such bugs are particularly insidious because the cause of the failure is sepa-
rated from the point of detection by the runtime system in both space and time — the stack
trace emitted for the failure provides no information on other calls that have been made re-
cently on the object, or why the local assumptions about the state of the object are incorrect.

Bugs of this type are so common that a backlash against mutable state is occurring in ob-
ject oriented programming communities. Programmers are recommended to write and use
immutable object types and persistent data structures wherever possible [18, Chapter 4],
specifically to avoid the issues of interacting with objects that have private mutable state in a
shared environment.

Immutability runs contrary to what objects were intended to be — objects in their most
fundamental form can be viewed as entities with private state and a protocol, that specifies the
messages an entity will respond to. An immutable object, meaning an object with constant
private state and a stateless protocol, has much more in common with a type constructor in a
functional language.

A mutable object may have a very simple protocol, where the set of messages (or equiva-
lently, method calls) it is willing to accept is constant throughout its lifecycle — this is what
the type system of programming languages such as Java can express. This is insufficient to
correctly model an object’s behaviour in many cases, as the set of messages to which that
object can correctly respond is dependent upon its private state. State change is typically
synchronous, in response to message receipt, and safety requires that any message sent to
an object is within the set that can be received for the current state. The private state can
often be abstracted such that restrictions on sequences of messages can be expressed as a
deterministic finite state machine.

Describing the allowed sequence of messages which a class of objects can receive, their type-

state [140], produces significantly more complex type signatures than in an object oriented
language without typestate constraints. Functions which take objects as parameters must de-
scribe the type of object they accept, in which state, and what state transformation can occur.
This type annotation burden is particularly heavy in a language with function literals, which
must be succinct in order to be practical.

1.2. Thesis outline 4

1.2 Thesis outline

The theory behind defining and checking typestate constraints is now well-established for
object oriented languages with nominal subtyping such as Java, however little work has been
done to investigate whether such type system extensions fulfil the following important prac-
tical criteria: Can typestate be understood by “real” programmers? How should typestate
constraints be expressed in the source code and documentation of a program? Can the an-
notation burden be reduced, or eliminated, through type inference? How should typestate
errors be presented to the user, to facilitate diagnosis and resolution?

This thesis attempts to answer all of these questions, considering both the theoretical and
practical aspects of this promising branch of object oriented type theory. The work presented
herein specifically attempts to answer the following questions:

1. What essential features of a typestate constrained object must be modelled in order
to accurately capture its protocol? What options exists for expressing typestate con-
straints? What are the strengths and weaknesses of the options for expressing type-
state constraints? These questions are studied in more detail in Chapter 3, where a
new method of expressing typestate constraints for Java is presented and compared to
existing typestate constraint modelling methods.

2. Can a lightweight dynamic checker for typestate constraints be provided for Java-like
languages, without significant modification of the language? This question is studied
in detail in Chapter 4, which evaluates multiple options for providing dynamic enforce-
ment of typestate constraints in Java, and provides a proof-of-concept implementation
of the two most promising options.

3. Can programmers reason effectively about typestate-constrained objects? Does the
method of expressing typestate constraints influence the ability for programmers to
reason effectively about typestate? These questions are studied in detail in Chapter
5, where a user study comparing two methods of expressing typestate constraints is
analysed.

4. Is type inference feasible for code which interacts with typestate-constrained objects?
This question is explored in detail in Chapter 6, where the TS language is defined and
studied with the express purpose of determining what type information can and cannot
be reasonably inferred.

5. What theoretical challenges still remain for future typestate oriented languages? Chap-
ter 7 outlines a hypothetical language based upon Scala, and describes the potential
utility of such a language in addition to the many unanswered questions that the inter-
actions between closures, alias control and effects present.

1.3. Thesis statement 5

Overall, this thesis attempts to examine typestate in a holistic manner, and determine whether
typestate is practical, useful and worthy of further study by the research community.

1.3 Thesis statement

Typestate is a practical and useful extension to the semantics of modern object oriented lan-
guages. Typestate constraints can be understood by real software engineers, and dynamic
checking of typestate for existing languages provides useful safeguards and diagnostic infor-
mation in both production and test environments. The primary barrier to typestate adoption,
cumbersome type annotations, can be overcome through the use of type inference.

6

Chapter 2

Literature Review

Strom and Yemini first defined the term typestate [140] to capture the concept of a reference
having both a type and an associated state that changes during the execution of a program.
The original presentation was concerned with the state of references in a simple impera-
tive language: a reference was either uninitialised or initialised. Reference state transitions
would occur in response to explicit allocation and free operations, and dereferencing in the
null state is undefined. As such, the state of a reference could be represented as a Moore
automaton [101].

The fundamental goal of this formalism is to prevent the execution of undefined operations.
This requires that the state of a reference can be accurately tracked, which was achieved
through a data flow analysis [61]. Critically, references could not be copied:

Languages that allow unrestricted pointer assignment do not support track-
ing typestate at compile-time because the mapping between variable names and
execution-time objects is not one-to-one. As a result, a typestate change result-
ing from applying an operation to an object under one name will not be reflected
in the typestate of the other variable names referring to the same object.

It was also required that procedures declare the effect they have on their parameters, in order
to allow for a modular analysis. Strom and Yemini had therefore identified the core technical
challenges associated with typestate, which persist to this day.

Typestate has many synonyms in the literature. Some refer to the restrictions on operations
in relation to the state as temporal constraints, often referring to the need to do an operation
before or after another.

The typestate concept generalises readily to more complex finite automata, which can be
used to model state transitions and usage restrictions of objects. The type of a value would

7

then define the full set of capabilities of the referenced value, while the state places restric-
tions on which of those capabilities may be used. This idea was independently described by
Nierstrasz [110], using the term active objects to describe objects which have an interface
which could be described as a regular language. Typestate restrictions are common in object
oriented APIs [13], and typestate violations are a common source of difficult-to-diagnose
issues [78]. It would seem, therefore, that programmers would derive benefit from types-
tate modelling and enforcement, if this can be provided in a manner which does not overly
burden the programmer or runtime system.

Literature review outline

Systems which attempt to provide typestate modelling and enforcement for popular object
oriented languages are reviewed in Section 2.1.

A related area to typestate is in the enforcement of communication protocols in distributed
systems, through the use of session types, which are reviewed in Section 2.2.

Typestate in an object oriented language essentially externalises an abstraction of the private
state of an object, of which a client must be aware in order to decide whether an operation is
safe or not. This is somewhat related to the concept of dependent types, which are reviewed
in Section 2.3.

In a typical object oriented language such as Java or C#, aliasing is both common and es-
sential. In order for typestate enforcement to be practical in such languages, a mechanism is
required by which aliasing information can be tracked and interpreted. The theory of alias
control is reviewed in Section 2.4.

The ability to monitor and react to sequences of operations, an essential component of track-
ing state changes in typestate, can be generally useful. Tracematches provide a mechanism
to do this in aspect oriented programming, and are covered in Section 2.5.

The expression and enforcement of contracts between components in a software system is
also somewhat related, and some contract languages can be used to encode typestate con-
straints. These are covered in Section 2.6.

The specification of both contracts and typestate models for software can be a time consum-
ing and error prone task. As such, investigations into the possibility of the inference of such
contracts and models to make this process easier is an active area of research. This is covered
in Section 2.7.

Early attempts to study the human factors of programming languages and the psychology of
programming are covered in Section 2.8.

2.1. Typestate systems 8

2.1 Typestate systems

The integration of typestate into existing type systems has been widely studied for imperative
and object oriented languages, where the problems of mutable state are most obvious and a
system to help uncover bugs related to typestate violation is potentially valuable. The three
most common issues which these systems have attemped to address are:

1. Invalid operations. Functions and methods often carry a set of informally documented
assumptions on the state of the entities they interact with that the programmer must
satisfy in order to avoid error. Very common errors involve invoking an operation too
many times, or out of order.

2. Consistent view of state. Where mutability and aliasing are permitted in a language,
inconsistent views of an entity’s state is a common problem.

3. Resource disposal. In a language without garbage collection and dynamic memory
allocation, memory leaks are common and difficult to diagnose. Less seriously, in a
system with garbage collection if a resource (such as a GUI window handle) is not
explicitly disposed of this may tie up other low-level or scarce resources until the
garbage collector is invoked after an indeterminate period of time.

Systems described in the literature either attempt to extend an existing language in a man-
ner which is compatible with legacy code in the host language, extend a language in an
incompatible way, or create an entirely new language in which to express typestate. The
SLAM system [8] attempts to provide typestate verification for legacy C code, which places
restrictions on what the analysis can conclude without the additional programmer support
that a system such as Vault [36] relies on. Vault does not consider legacy code , allowing
for sound reasoning about code at the cost of requiring significantly more guidance from
the programmer. Plaid [2] takes a more radical approach in designing an entirely new lan-
guage in which to explore deep integration of typestate into a language, where host language
semantic choices are not an issue.

In this section, Plural and Fugue shall be explored in detail as they are recent examples of
typestate systems which have usable implementations for popular languages. Each provides
subtly different semantics for their typestate models and alias control strategy. Plural pri-
marily was used as a vehicle to explore flexible typestate modelling and alias control, and so
provides a rich environment in which to explore these topics. Fugue is notionally a successor
to Vault and attempts to tackle resource disposal directly, with a simpler typestate model and
alias control technique. The similarity of the semantics of the host languages for these sys-
tems (Java and C#, respectively) allows for direct comparison between the chosen typestate
semantics and alias control strategies of each.

2.1. Typestate systems 9

Plaid is also considered in more detail due to its novel presentation as a gradually typed
programming language designed with deeply integrated support for typestate modelling and
enforcement. Its hybrid object-functional nature also presents some interesting possibilities
and challenges which do not exist for Plural and Fugue.

2.1.1 Plural

Aldrich et al. investigated typestate verification for Java using data flow analysis in their
system known as Plural [3, 12, 16]. The work of Aldrich’s group is interesting for a number
of reasons:

• The data flow analysis is modular, meaning it should scale to large, component-
oriented software systems, unlike whole program analyses.

• Sophisticated alias control techniques based on Boyland’s fractional permissions [24]
are employed, allowing stateful objects to be shared in a controlled manner.

• States within the machine can be “refined” — that is, the state machine includes a
form of state subtyping. This can be useful in reducing the number of declarations
required to define a model, by grouping together states based on common properties
and restrictions.

• Java annotations are used to define the state machine associated with an object. This
is necessary to facilitate the modular analysis and declare the fractional permission
requirements of a particular method.

Plural covers many important aspects of defining state-based preconditions in real systems,
but the method of expression in the form of annotations is not ideal — annotations are con-
venient for attaching arbitrary extra information to types that can be consumed by tools, but
the syntactic restrictions make the expression of complex concepts difficult.

Plural’s semantics are complex, and no contextual information is given in typestate violation
warnings produced by its static analysis that would help the programmer understand what is
wrong and how to fix it. With even the simplest code, many typestate violations will be found
that are subtly related and often fixed as a group by small changes to the code or typestate
annotations.

As an example, consider a simple class which allows alternate calls to methods a() and
b(). A skeleton implementation of such a class without any Plural annotations is shown
in Listing 2.1. There are 4 lines of overhead to enforce the state restrictions at runtime (all
pertaining to the maintenance and checking of the variable canCallA). There is an implicit

2.1. Typestate systems 10

1 import static java.lang.System.*;
2
3 public class AlternateMethods {
4
5 private boolean canCallA = true;
6
7 public void a() {
8 assert canCallA;
9 out.println("a called");

10 canCallA = !canCallA;
11 }
12
13 public void b() {
14 assert !canCallA;
15 out.println("b called");
16 canCallA = !canCallA;
17 }
18 }

Listing 2.1: A class which allows alternate calls to a() and b()

assumption here that there can only be one reference to an instance of this class, as there is
no way of determining whether one can call a() or b() dynamically. If the reference is
shared, one client may call a() without the knowledge of other clients, leaving them with
the false assumption that a() can still be called.

Plural can capture this information with its fractional permission system, but the resulting
declarations can be difficult to understand. The Plural annotated form of Listing 2.1 is shown
in Listing 2.2.

As Plural will statically verify that all calls to a() or b() are safe, there is no need to check
that the client is calling the methods correctly at runtime which makes the implementation
simpler. However, the introduction of an empty constructor and its annotation is necessary
for Plural to function. The annotation declares that the reference generated by the constructor
is unique, and that the object starts in state CAN CALL A. This constraint would be violated
if the constructor were to store a reference to this in some other object, as a tree data
structure where nodes have access to their parents may do. The annotations on the a() and
b() method make explicit the required state of the object before the call can be made, and
the state in which the object will be left via the “ensures” property. The use property states
what capabilities the method itself will have, which can be one of four values:

• FIELDS — the method is allowed to access and modify fields of the object, but cannot
make any method calls using this (i.e. a() cannot call b()).

• DISPATCH — the method is allowed to call other methods using this, but cannot
change any fields directly.

2.1. Typestate systems 11

1 import static java.lang.System.*;
2 import edu.cmu.cs.plural.annot.*;
3
4 @States({"CAN_CALL_A", "CAN_CALL_B"})
5 public class AlternateMethods {
6
7 @Perm(ensures="unique(this!fr) in CAN_CALL_A")
8 public AlternateMethods() {}
9

10 @Unique(use=Use.FIELDS,
11 requires="CAN_CALL_A",
12 ensures="CAN_CALL_B")
13 public void a() {
14 out.println("a called");
15 }
16
17 @Unique(use=Use.FIELDS,
18 requires="CAN_CALL_B",
19 ensures="CAN_CALL_A")
20 public void b() {
21 out.println("b called");
22 }
23 }

Listing 2.2: Plural annotated form of Listing 2.1

• DISP FIELDS — the method may both modify fields and call other methods using
this.

• NONE — the method cannot access fields or call other methods. This is the default, if
no value is provided for the use property.

Specifying the least use requirement possible makes Plural’s analysis more precise, particu-
larly when the type in question has subtypes. It can be challenging to reason effectively about
such requirements, especially when the tool can only verify that a choice is sound without
providing any guidance as to whether a weaker use requirement is possible. Plural’s choice
of safe defaults, such as NONE for the use property, result in subtle and initially counter-
intuitive warnings. In Listing 2.2, if the use properties are not set to FIELDS, warnings are
raised that the “ensures” clause of the methods cannot be honoured, as the methods cannot
change the state of the object. This is counter-intuitive as the methods do not in fact access
or modify any fields explicitly. However, Plural may be reasoning that with a use value of
NONE, the methods cannot reasonably have side-effects and therefore no state transition can
take place. The state in this example is purely virtual, but in a more realistic class the state
of an object will be an abstraction of the actual private state of the object. A state transi-
tion in this case would involve changing a private field, which would require a use value
of FIELDS at a minimum. Plural appears to be enforcing this even when it is not required,
which is counter-intuitive when the state is virtual.

2.1. Typestate systems 12

The Plural system does not alter the runtime representation of classes in any way — as a
result, code which retrieves an object of type AlternateMethods and interacts with it
through runtime reflection will be able to violate the constraints of the object. Static analysis
of the form provided by Plural is useful for demonstrating the absence of a class of bugs
in well-behaved code, but dynamic checking is often still required for systems that include
components that are not entirely trusted. Generation of the additional code found in Listing
2.1 from the Plural annotations is possible, and desirable in a language which supports both
typestate and reflection.

2.1.2 Plaid

To date, the only comprehensive attempt at designing and implementing a full general pur-
pose programming language from scratch which draws together the state of the art in the
theory of typestate is the Plaid language [2, 141]. I participated in the development of this
language while working under the supervision of Jonathan Aldrich at Carnegie Mellon Uni-
versity in 2011.

Plaid is a gradually typed [136, 137, 153] language, meaning that it is a dynamically typed
language in which type requirements and guarantees can be specified and statically checked
in a selective manner. This technique largely mitigates the cost to the programmer of large
type annotations, as they are optional, with the trade-off that method availability must be
checked on every method call which adds a significant runtime overhead.

Plaid defines objects as a collection of related state declarations that define a hierarchical,
parallel finite state machine. The state hierarchy is defined explicitly by declaring one state
to be a sub-state of another; Listing 2.3 demonstrates this through the definition of an option
type. Explicitly defined constructors are not necessary in Plaid — instead, a default con-
structor exists for each defined state that initialises all fields and methods that are defined
with an initial value. Other fields can be initialised through the use of an associated code
block as shown on Line 12 of Listing 2.3, where an object is instantiated in state Some with
the value field initialised to the result of f(value).

Plaid does not support parametric polymorphism for states, meaning that we cannot annotate
the Option type with a type parameter and insist that the field value be of this type
statically. As the language is dynamically typed this is of little practical consequence, but is
a major limitation for the static analysis.

Plaid obviates the need for dynamic state test methods by allowing pattern matching on an
object’s type, as shown on Line 22. The hasValue method is defined for option values,
but exists purely for programmer convenience rather than as a necessary part of the object’s
protocol.

2.1. Typestate systems 13

1 state Option {
2
3 method hasValue();
4 method map(f);
5 }
6
7 state Some case of Option {
8 val value;
9

10 method getValue() { value }
11 method hasValue() { true }
12 method map(f) { new Some { val value = f(value); } }
13 }
14
15 state None case of Option {
16 method hasValue() { false }
17 method map(f) { this }
18 }
19
20 val o = makeSome(10)
21
22 match(o) {
23 case Some { print(o.getValue()) }
24 case None { print("none") }
25 }
26
27
28 val y = 2
29 val o2 = o.map(fn (x) => x + y)

Listing 2.3: Definition of an option type in Plaid

2.1. Typestate systems 14

The example also demonstrates that Plaid supports higher order functions, and function lit-

erals with implicit binding, as shown on Line 29. This powerful feature is made practical by
Plaid’s dynamic typing — if the language required the full type of each function literal to be
specified, they would be significantly more verbose and ruin readability. Dynamic typing al-
lows the literals to be kept compact, as the expense of additional runtime checks and weaker
static guarantees of safety. If type inference of the requirements and effect of the function
literals were possible, then additional static guarantees could be provided, but Plaid does not
presently explore this option.

The example in Listing 2.4 shows some types and methods with fully-specified typing in-
formation that can be statically checked. The method callDoX on Line 21 shows an effect

type for the parameter a, specifying that the method requires a unique reference to a value of
type A and will transform this reference to a unique reference of type B. Plaid utilises the
same alias control annotations as Plural for references.

The method declaration on Line 2 specifies that the method requires a unique reference to be
invoked, and will transform that reference (known as this in the scope of the method) to a
unique reference of type B. State changes are enacted imperatively using the <- operator.

Effects are interpreted literally in Plaid, allowing a method to wilfully discard type infor-
mation if desired, as shown by the method discard on Line 25. Given any input which
satisfies the precondition specified by the effect type, the type system will assume the value
is exactly the type specified after the call.

In this example, a value of type D <∶ A is passed as a parameter to the method callDoX,
which has effect A ≫ B, which is compatible with its body which simply calls doX . After
the call x will be treated as though it is of type B. One may have hoped the type system
would have been able to derive that x must in fact be of type C, as doX is the only possible
method that callDoX could invoke to change the type of the parameter from A to B, and
that in state D this results in a transition to C.

Even though the static checker cannot be satisfied that the call to onlyC is safe, this can be
tested at runtime. This idea will be revisited in Chapter 6, where such re-interpretation of
effects for subtypes is a key part of the TS language defined in that chapter.

Plaid’s semantics and static type system have not yet been formally defined or proven to be
sound, though its runtime semantics have been formalised in the work of Sunshine [141].
The static type system is likely to be built upon the theoretical foundations of Plural.

2.1.3 Fugue

Fugue [37, 38] is a system for annotating code in .NET based languages with typestate re-
strictions, and ensures that resources are correctly disposed of. This is achieved through type

2.1. Typestate systems 15

1 state A {
2 method doX() [unique A >> unique B] {
3 this <- B
4 }
5 }
6
7 state B case of A { /* ... */ }
8
9 state C case of B {

10 method onlyC() [unique C >> unique B] {
11 this <- B
12 }
13 }
14
15 state D case of A {
16 method doX() [unique D >> unique C] {
17 this <- C
18 }
19 }
20
21 method callDoX(unique A >> unique B a) {
22 a.doX();
23 }
24
25 method discard(unique A >> none A a) {}
26
27 method main() {
28 val unique D x = new D;
29 callDoX(x);
30 // not statically safe
31 x.onlyC();
32 }

Listing 2.4: Loss of type information in Plaid

2.1. Typestate systems 16

1 [WithProtocol("raw", "bound", "connected", "down")]
2 class Socket {
3 [Creates("raw")]
4 public Socket(...);
5
6 [ChangesState("raw", "bound")]
7 public void Bind (EndPoint localEP);
8
9 [

10 ChangesState("raw", "connected"),
11 ChangesState("bound", "connected")
12]
13 public void Connect (EndPoint remoteEP);
14
15 [InState("connected")]
16 public int Send(...);
17
18 [InState("connected")]
19 public int Receive(...);
20
21 [ChangesState("connected", "down")]
22 public void Shutdown (SocketShutdown how);
23
24 [Disposes(State.Any)]
25 public void Close ();
26 }

Listing 2.5: Fugue specification for a network socket

and method annotations that declare the set of states for an object, state transitions enacted
by a method, and restrictions on method calls based on the current state. Fugue calls the state
machine on an object a “protocol”, drawing on the similarities with stateful communication
in distributed systems (which is also the basis of session types, as described in Section 2.2).
An example of a Fugue specification for a network socket in C#, taken from [38], is given in
Listing 2.5.

The WithProtocol annotation declares the set of states on a type. Creates,
ChangesState and InState all declare the pre- and post-conditions for the methods
in a type. Methods may have multiple annotations to cover their usage under different cir-
cumstances, as shown by the Connect() method, which can either be used after the socket
is bound to a known local port, or directly from its raw state in which case an ephemeral
local port will be assigned.

Fugue’s most interesting feature compared to other typestate systems is that it ensures an
object reaches the end state (through a call to a method with the Disposes annotation)
before it is dereferenced and eligible for garbage collection. This is a subtle and common
cause of bugs that garbage collection only partially alleviates — while a Socket object
may no longer be referenced, it is unpredictable how long it will survive before it is garbage
collected and the connection is closed by a finalizer, allowing the connection to continue to

2.2. Session types 17

waste network resources (data can still be received) and CPU time (processing of incoming
data may still occur despite it not being consumed in any meaningful way). Thus, Fugue can
ensure that programmers correctly dispose of objects which are tied to other resources which
must be explicitly disposed of.

Fugue deals with the aliasing problem by explicitly annotating parameters and fields with
NotAliased, MayBeAliased, and Escaping. If a field or parameter is marked with
MayBeAliased and Escaping, the reference can be duplicated and passed as a pa-
rameter to another method freely. If a parameter is marked as MayBeAliased but not
Escaping, then it can be used and passed as a parameter in a way that the alias will not
be permanently duplicated — it can be “borrowed” for the duration of a method call, but not
stored in another field. Finally, if a field is marked as NotAliased, it can be used locally on
the containing object and passed as a parameter to other methods marked as NotAliased,
or MayBeAliased and not Escaping, allowing it to be borrowed. NotAliased is es-
sentially a form of linear typing, with relaxed semantics with regards to parameter passing.
If an annotation is not specified on a field, then it is assumed to be MayBeAliased, and
unannotated parameters are assumed to be MayBeAliased and Escaping.

Objects can only change state when they are NotAliased, which is quite a strong restric-
tion and more restrictive than Plural’s fractional permissions system.

Fugue implements the checking of typestate and alias control as a data flow analysis over
the compiled .NET CLI assemblies. Due to the annotation based approach, similar to Plural,
the analysis is modular and fast for large code bases — mscorlib.dll, containing 13385
methods, can be checked in under one minute on a Pentium 4 processor in 2004 according
to DeLine [38].

2.2 Session types

Session types model communication protocols between processes in distributed systems [71,
143]. A session type defines the flow of typed messages on a bi-directional channel between
two processes, and enables static checking of channel usage to ensure that a peer sends and
receives messages in the order dictated by the session type.

Session types are formalised as a type system for Milner’s π-calculus [97], which provides a
foundation for the description of parallel computation. The π-calculus, in its simplest form,
is untyped and Turing complete, and has provided an excellent context in which to formalise
process equivalence (defined in terms of a bi-simulation relation) and study the variety of
possible failure modes in distributed systems.

One fundamental class of communication error is for one process to send an unexpected

2.2. Session types 18

message to another process. A simple type may be associated with a communication channel
in order to prevent this, but then a higher-level problem becomes apparent — communication
between processes is typically structured, with an expected order to the flow of messages.
Messages typically contain different content at different times, and therefore cannot really
be considered to be of one type. Session types provide the mechanism to enforce both the
order of communication, and the types of the messages that may be sent. Each end of the
channel has a session type which is the “mirror image” or dual of the other, which is to say
that if the session type for one process dictates that it may only send an integer, then the
other party may only receive an integer. A simple example of session types adapted from
Honda’s work [71] is shown in Listing 2.6 (it is modified for clarity), which demonstrates the
definition of an ATM process which communicates with a user process and a bank process.

In this example, a user process initiates a session with an ATM, sends its user id, and is
then presented with four options: it may deposit cash, withdraw cash, check its balance or
quit the session. When attempting to withdraw, if sufficient funds are available then the user
is informed that the requested amount has been successfully withdrawn. If, however, the
requested amount would exceed the available balance, then the user will be informed that
the requested amount would result in their account being overdrawn. After completing any
transaction other than quit, the user may request any of these four options again.

ATM(user2atm, atm2bank) defines the behaviour of the ATM process in terms of two
channel sources, user2atm and atm2bank, which are shared with the user process(es)
and the bank process(es) respectively.

A user process would initiate communication with an ATM process through an expression
of form request user2atm(c) in P, which creates a channel to a receiving ATM
process which is bound to the variable c in the successor process P . The ATM accepts a
process though an expression of form accept user2atm(c) in P. The roles of the
parties are determined from this point such that if one wishes to send, the other must be
prepared to receive, and this duality is enforced by the session type of the channel on each
end.

Messages may be sent or received on channels through the expressions c![a, b, ...,

n]; P and c?(a, b, ..., n) in P respectively. In the case of receiving, the names
specified in parentheses are bound in the successor process P . A process may offer a choice
in behaviour through the channel with an expression of form c -> { a : Pa, ...,

n : Pn }, where a through n are the labels of the options. A process may select an
option with an expression of form c <- label; P.

The channel sources user2atm and atm2bank are typed with a pair of session types —
the type of user2atm is shown where X is the dual of X ′. The initiator of the channel
will be given a channel of type X while the receiver will be given a channel of type X ′.

2.2. Session types 19

1 ATM(user2atm, atm2bank) =
2 accept user2atm(uchan) in
3 uchan?(userId);
4 Actions[user2atm, atm2bank, userId, uchan]
5
6 Actions(user2atm, atm2bank, userId, uchan) =
7 uchan -> {
8 deposit : request atm2bank(bchan) in
9 uchan?(amount) in

10 bchan <- deposit;
11 bchan![userId, amount];
12 Actions[user2atm, atm2bank]
13
14 withdraw : request atm2bank(bchan) in
15 uchan?(amount) in
16 bchan <- withdraw;
17 bchan![userId, amount];
18 bchan -> {
19 success: uchan <- dispense;
20 uchan![amount];
21 Actions[user2atm, atm2bank]
22
23 failure: uchan <- overdraft;
24 Actions[user2atm,atm2bank]
25 }
26
27 balance : request atm2bank(bchan) in
28 bchan <- balance;
29 bchan?(amount) in
30 uchan![amount];
31 Actions[user2atm, atm2bank]
32
33 quit : ATM(user2atm, atm2bank)
34 }
35
36 user2atm : <X, X’> where
37 X’ = ?nat.Y
38 Y = & {
39 deposit : ?nat.Y ;
40 withdraw : ?nat.+ { dispense : ?nat.Y ; overdraft : Y }
41 balance : !nat.Y
42 quit : exit
43 }

Listing 2.6: The definition of an ATM process, which communicates with a user process
and bank process through sessions, written in the session language of Honda et al. , defined
in [71]

2.2. Session types 20

Therefore, the type of uchan is X ′.

Channel endpoints such as uchan are linear — they must be used to exhaustion and cannot
be duplicated. Channel delegation is possible, where a channel endpoint can be sent through
a channel to another process which is responsible for exhausting the channel from that point.

Session types ensure that a well-typed program cannot send (or receive) a message of the
wrong type to (or from) a channel, and allow messages of different types to be sent at differ-
ent points in the program, unlike in simpler π-calculus based type systems, which must use
a chain of separate channels and results in a much more fragmented description of the same
fundamental communication between two parties.

The expression of session types in functional programming languages has been studied [57],
and two implementations for the Haskell language exist [107, 124]. Object oriented lan-
guages have been designed with support for communication channels between threads or
processes with statically enforced session types [29, 40–42, 103], though perhaps the most
notable is the Session Java (SJ) language [73,74] which extends Java and provides both syn-
chronous and event-driven support for session types, and allows for efficient and type-safe
implementations of common distributed algorithms [108].

Session types have also been extended to model communication between multiple parties
[15, 22, 39, 72, 159], which allows for the modelling and enforcement of communication
protocols between groups of processes. The Scribble modelling language [70] provides a
practical method of specifying such protocols, where processes are assigned roles. An im-
plementation of a suite of tools to check Scribble protocol definitions for deadlock and live-
lock exists [69], with future plans to allow for the static analysis of code for conformance to
such protocols.

2.2.1 Sessions for objects

In a pure object oriented language, all entities are objects and communication between enti-
ties takes the form of messages, or equivalently method calls. Unlike the π-calculus, control
flow is typically sequential, carried with the message and back again when a response is gen-
erated. However, there are fundamental similarities between offering a choice in a session
type and the specified set of methods on the interface of an object: the labels of session types
are effectively method names, and any sequence of sends after choosing a label could be
regarded as the parameters of that method, with the following sequence of responses as the
return values. Callbacks are typically offered by providing the receiver of a method call with
a handle to the initiator, or a proxy to it with a more appropriate interface.

When Java interfaces are viewed as session types, they offer a uniform choice after each
completed transaction, though as already discussed this is often an over-simplification of

2.2. Session types 21

the true behaviour of the object. By treating interfaces as session types, a more dynamic
interface is possible.

Session Java does not attempt to extend its support for the tracking and modification of a
channel’s type to object interfaces in general. This was attempted by Gay and Vasconcelos
[58], where objects with interfaces that are governed by session types are known as non-

uniform objects. This term is derived from the work of Ravara [129, 130], which studies
typestate-like restrictions in an actor-model extension of the π-calculus known as TyCO. A
related set of work based on Nierstrasz’ active objects was undertaken by Puntigam [125,
126].

An example of a non-uniform object specification for an Iterator adapted from Gay and
Vasconcelos’ work is shown in Listing 2.7. The session type declares four states which
enforce the standard set of rules for an iterator:

• S: we do not know if there is another item, and must call hasNext() to determine if
we do.

• T: we have a new item, and can call next().

• U: we have taken an item from the iterator, and can either call remove() to remove
it, or hasNext() to see if there is another item.

• V: we have taken an item from the iterator, and we know there is another item available.
So, at this point we can call both remove() and next().

In short, these rules state that hasNext() can always be called, next() can be called after
hasNext() returns true, and remove() can be called once for each call to next().

One of the primary contributions in Gay and Vasconcelos’ work is the link type, which
associates the return value of a method which represents an internal choice, such as the
method hasNext makes. When hasNext is called on iter, the returned value is of
type boolean link iter, while iter’s type becomes a tagged union <false :

Iterator[S] ; true : Iterator[T]. When the return value is tested, the link

to iter allows us to resolve the actual type of iter. Until this is done iter cannot be
used, though testing the return value need not be performed immediately.

Another major contribution of this work is that an object with a session need not be wholly
consumed within a method — it can be passed as a parameter to other methods, and stored
as a field. The reference cannot be copied or shared however, to ensure that the state of the
object can be accurately tracked.

2.2. Session types 22

1 interface Iterator {
2 session S where
3 S = { hasNext : <false: S, true: T> },
4 T = { hasNext : <false: S, true: T>,
5 next : U
6 },
7 U = { hasNext : <false: S, true: V>,
8 remove : S
9 },

10 V = { hasNext : <false: S, true: V>,
11 next: U,
12 remove: S
13 };
14 boolean hasNext();
15 Object next();
16 void remove();
17 }
18
19 Iterator[S] iter = ... ;
20 boolean moreLeft = iter.hasNext();
21
22 // iter : <false: Iterator[S], true: Iterator[T]>
23 // moreLeft : boolean link iter
24
25 while(moreLeft == true) {
26 // iter : Iterator[T]
27 Object o = iter.next();
28 // iter : Iterator[U]
29
30 System.out.println(o);
31
32 iter.remove();
33 // iter : Iterator[S]
34
35 moreLeft = iter.hasNext();
36 }
37
38 // iter : Iterator[S]

Listing 2.7: Session typing and link types as found in Bica, a Java language variant defined
in the work of Gay et al. [58]

2.3. Dependent types 23

2.3 Dependent types

Dependent types are types which are parameterised by terms [119, Chapter 2], and represent
one axis of Barendregt’s Lambda Cube [9] which enumerates the means through which terms
and types can be related. Dependent types allow for types such as List(4), which can be
chosen to mean a list with exactly 4 elements in it. Here, the type List is dependent on a
term of type nat, meaning it is of kind nat → ∗.

Singleton types can also be constructed in dependent types, for instance SNat(5), which can
be chosen to mean a type with only one value, which is constructed from the nat value 5.

Functions can be defined in a dependently typed language such that they make explicit the
actions of the code they contain in a way that is not otherwise possible. For instance, the
type of the prepend function for a list could be:

prepend ∶ Π(n ∶nat). item → List(n)→ List(n + 1)

This means that the function takes an item and a list of size n, and returns a list of size n+1.
Π is used to indicate a term dependency for a type in the same way that λ indicates a term
dependency for a term: λx.(x + 1) is a term which adds the value 1 to a dependent term x,
for instance.

Dependently typed lists and arrays which declare their size eliminate the need for runtime
bounds checking [157], by declaring the get function for an array to only accept indices
which are less than the size of the array:

get ∶ Π(size ∶nat).Πi ∶{i ∶ int ∣ 0 ≤ i ∧ i < size}.Int(i)→ List(size)→ item

In general, the term parameters in types can be anything, but as the complexity of the terms
allowed by a language increases it becomes increasingly difficult to distinguish between
compilation and execution of the program. However, by constraining the allowable structure
of terms to simple forms, such as values of an enumeration or natural numbers with simple
addition, we can reason about the changes to these terms in a static way and so retain the
separation between compilation and execution.

While the practical utility of dependent types has been explored in functional programming
languages [6, 23, 92, 156], less work has been done in an imperative space [106, 155], and
none in object oriented languages. This is due to the danger that updating a value may
inadvertently change the type of another value, in ways which are difficult to reason about.
Mixing subtyping, a core feature of object orientation, with dependent types is likely to
produce a very complex or overly restrictive type system.

2.3. Dependent types 24

1 \\ x : Σ(x ∶int).List(x)
2 if(x.left > 0) {
3 y = x.right; // y : List(x), where x > 0
4 (item, y) = y.remove();
5 // y : List(z) where z > −1
6 } else {
7 y = x.right; // y : List(x), where x ≤ 0
8 result = y.add(new item("hello"));
9 // result : List(z) where z ≤ 1

10 }

Listing 2.8: Dependently typed manipulation of a list in Java-like pseudo-code

However, dependent types have potential for usage within object oriented languages as a way
of making an abstraction of an object’s private state explicit and part of its interface, which
is the essence of typestate. In the example of a list, it is clear that removing an item from
a list should not be legal if the list is empty. This can be expressed with predicates on the
dependent term:

remove ∶ Π(n ∶{n ∶nat ∣ n > 0}).List(n)→ (item,List(n − 1))

This means that the remove function can be given a list with at least one element, and
will return a pair containing the removed element and a list of size n − 1. The function
is undefined for lists with an integer term n ≤ 0, and so it is the job of the type checking
algorithm to ensure that no attempts are made to call remove when this is the case.

Dependent type theory also defines a generalization of variant types (also known as tagged
unions) for types parameterised by terms, known as sigma types. Sigma types represent a
dependent type with an unknown (but perhaps constrained) term. For instance,
Σ(x ∶nat).List(x) represents a list of unknown size, and values of this type are conceptually
pairs of form (x ∶nat , y ∶List(x)). The first item in the pair can be considered to be a “label”
that disambiguates the type of the second term, but unlike variant types the range of values
on the first term need not be finite. By constraining the value x, we can have a sigma type to
represent a non-empty list:

Σx ∶{x ∶int∣x > 0}.List(x)

Similar to selection of a label on a variant type, we can write code such as that contained in
Listing 2.8. The type checker can determine that the code in each part of the if statement is
type safe due to the check on the value of x.left.

From this example one can see that dependent types can be used as a form of precondition
on a function: by stating that we are only willing to accept a certain range of terms in the

2.3. Dependent types 25

1 myList = createList();
2 // myList : List(0)
3
4 myList = myList.add(new item("hello")); // : List(1)
5 myList = myList.add(new item("world")); // : List(2)
6 (item1, myList) = myList.remove(); // List(1)
7 (item2, myList) = myList.remove(); // List(0)

Listing 2.9: Safe manipulation of a list without checks in Java-like pseudo-code

1 IterState = {S,T,U, V }
2 Iterator :: IterState→ ∗

3 hasNext : Πst ∶{S,U}. Iterator(st)→ ΣnewSt ∶{S,T, V }.Iterator(newSt)
4 next : Πst ∶{T,V }. Iterator(st)→ ΣnewSt ∶{S,U}.Iterator(newSt)
5 remove : Πst ∶{U,V }. Iterator(st)→ ΣnewSt ∶{S,U}.Iterator(newSt)

Listing 2.10: Dependently typed version of an iterator

dependent type, we can control the legal values that can be provided to the function as a
parameter. We can also provide more information about the return value than previously
possible, giving guarantees that the sequence of calls in Listing 2.9 is safe. This can be
viewed as a form of postcondition.

2.3.1 Encoding typestate in dependent types

The list example illustrates one simple case where dependent types can give us static guar-
antees where a simpler type system cannot. Typestate-like constraints can also be encoded
into dependent types by defining the states we desire as an enumeration, and then restriction
function availability to certain states.

Given an enumeration IterState composed of the state labels in Listing 2.7, a set of func-
tions for the Iterator type as shown in Listing 2.10. The acceptable set of input states
can be explicitly declared, and by returning sigma types we can indicate uncertainty in the
return type that must be disambiguated by a switch statement. One important capability we
have lost compared to session types is that we cannot explicitly declare the transitions be-
tween states in this form. However, if instead we use the form shown in Listing 2.11 which
uses two booleans to represent whether next() and remove() can be called, the sigma
types can be removed with the exception of the return type of hasNext(), which is where
we would want a sigma type to exist. The example code contained in Listing 2.11 demon-
strates that we can program in a familiar way, with type safety guarantees that we cannot
call next() or remove() at invalid points in the program. This alternative approach is
particularly interesting, as the boolean dependent terms of the type are like capability bits,
representing the available methods.

2.3. Dependent types 26

1 Iterator :: bool → bool → ∗

2 hasNext : Πa ∶bool.Πb ∶bool.Iterator(a, b)→ Σx ∶bool.Iterator(x, b)
3 next : Πa ∶true.Πb ∶bool.Iterator(a, b)→ (item, Iterator(false, true))
4 remove : Πa ∶bool.Πb ∶true.Iterator(a, b)→ Iterator(a, false)
5
6 // i : Iterator(false,false)
7 var hasNextResult = hasNext(i);
8 while(hasNextResult.left == true) {
9 i = hasNextResult.right;

10
11 // i : Iterator(true,false)
12 var nextResult = i.next();
13 print(nextResult.left);
14
15 // nextResult.right : Iterator(false,true)
16 i = nextResult.right;
17
18 hasNextResult = hasNext(i);
19 canRead = hasNextResult(i);
20 }
21
22 // i : Iterator(false,false) or Iterator(false,true)

Listing 2.11: Better form of the iterator type with sample usage, in Java-like pseudo-code

2.3.2 Effects in Idris

The Idris language [25] is a dependently typed functional programming language with sup-
port for embedded domain specific languages (eDSLs). Very recent work in Idris has ex-
plored the possibility of providing a domain specific language for the composition of ef-
fectful operations using algebraic effects [26]. The goal of this DSL was to provide easier
composition than is possible with monads, which are the primary mechanism of controlling
side-effects in pure functional languages such as Haskell.

Idris’ Effect DSL leverages dependent types to control and track effects on fine grained
mutable resources. The simplest effect, analogous to the State monad in Haskell, allows
for a mutable reference to be retrieved and modified through the course of an imperative
program. The canonical example provided in Brady’s work [26] is to store an integer counter,
and use this to provide unique identifiers to each node in a tree, and is shown in Listing 2.12.

In this example, tag is a function which takes a tree and returns an effect program which
requires access to a STATE Int resource which is labelled Tag, and should exist in the
computation context m. The value in Tag is extracted using the function get on Line 8,
incremented by one and injected back into Tag using put on Line 9.

The effect program generated by tag can be converted into a pure function where the tags
inserted into the tree nodes start at i using the runPure function to which a (pure) envi-
ronment is provided along with the effect program. Environments constructed from monads

2.3. Dependent types 27

1 data Tree a = Leaf
2 | Node (Tree a) a (Tree a)
3
4 tag : Tree a -> Eff m [Tag ::: STATE Int] (Tree (Int, a))
5 tag Leaf = return Leaf
6 tag (Node l x r)
7 = do l’ <- tag l
8 lbl <- Tag :- get
9 Tag :- put (lbl + 1)

10 r’ <- tag r
11 return (Node l’ (lbl, x) r’)
12
13 tagPure : Int -> Tree a -> Tree (Int, a)
14 tagPure i t = runPure [Tag := i] (tag t)

Listing 2.12: Idris effect DSL code for annotating a tree with unique labels

representing I/O or other impure entities can be used via a different function, runWith.

Generally, an environment could contain a labelled entity which provides operations condi-
tionally, based upon its current state. An example from Brady’s work [26] demonstrates this
for file handles, which are either readable or writeable, and thus functions which manipulate
file handles are conditionally available based upon this parameter of the file type.

The primary drawback of this work is that effects are not inferred, and must be fully spec-
ified. Additionally, the type errors generated when a constraint is violated are difficult to
understand, due to the translations that occur between the DSL and the base Idris language.
The system shows promise and is a significant step forward for the practical application of
dependent types, but the inherent complexity of dependent types may present a significant
barrier to uptake.

2.3.3 Dependent typestate

Dependent types, through the use of natural numbers as dependent terms, can model certain
typestate restrictions in ways that finite state machines cannot. The relationship between
the push and pop methods of an unbounded stack data structure (where we cannot call
pop if the stack is empty) cannot be encoded directly into a finite state machine without the
help of a dynamic state test method such as isEmpty. However with a natural number to
represent the size of the stack as part of the type, we can express the stack protocol without
isEmpty. The dependent values could be thought of as being attached to the state rather
than the type, allowing different sets of labelled dependent values to be used as necessary.
This is shown in Figure 2.1 for a stack, where the EMPTY state has no dependent values
whereas the NOT EMPTY state has a natural number representing the number of elements in
the stack. More complex types could be imagined with more state labels and a wider variety

2.4. Alias control 28

EMPTY NOT_EMPTY
(n = 1)

NOT_EMPTY
(n = 2) ...

push push push

poppoppop

Figure 2.1: An infinite state machine for a stack data structure

of dependent values.

Generally, dependent types make it possible to support protocols which are not regular gram-
mars. This is alluded to in DeLine’s work [37] which calls this concept dependent typestate.
This comes at the cost of a vastly more complex type system, but opens new possibilities
for directly specifying some very natural protocols, such as an integer prefix indicating the
number of messages of a certain type that are expected to follow.

2.4 Alias control

If multiple references exist to a typestate-constrained value, then care must be taken to ensure
that the references have a consistent view of the state of that value. In general, state changes
which do not monotonically increase the capabilities of an object can only be permitted on
a unique reference. A method of ensuring that a reference is unique is therefore essential to
typestate enforcement.

The simplest option is to prevent aliasing entirely, as in the original Strom and Yemini paper
on typestate. In a language with procedures and call-by-reference semantics, this requires
that a variable cannot be used as a parameter twice, as in Reynold’s syntactic control of

interference [131, 132].

2.4.1 Linear and uniqueness types

Linear types, an adaptation of the rules of Girard’s linear logic [59], can provide the same
uniqueness guarantee that is necessary to allow safe state changes. Linear logic is a variant of
classical logic in which contraction and weakening are not permitted. In linear type systems
this means that a linear value must be used exactly once; it cannot be discarded or duplicated.

In Wadler’s seminal work [148], mutable array references are permitted without interference
by using a linear type — updating or reading from the array notionally produces a new array
reference, with the old reference consumed. Array references cannot be duplicated, and must
be explicitly discarded. An example of this adapted from Wadler’s work [148] in an ML-like
language is shown in Listing 2.13. Atomic types such as Int which are prefixed with ‘¡’

2.4. Alias control 29

1 alloc : ¡Array
2 lookup : Int → ¡Arr → Int ○ ¡Array
3 update : Int → Int → ¡Array → Int ○ ¡Array
4 dealloc : Int ○ ¡Array → Int
5
6 let arr = alloc in
7 let (x, arr) = lookup 0 arr in
8 let (y, arr) = lookup 1 arr in
9 let arr = update 2 (x + y) arr in

10 dealloc (2, arr)

Listing 2.13: Wadler’s linear types in an ml-like language

are linear, T ○ U is a linear pair type, and T ⊸ U is a linear function. Any data structure
which contains a linear reference must itself be linear, and any closure which captures a
linear reference must be linear.

The primary criticism of this approach is that the “threading” of the arr reference is cum-
bersome. Additionally, for non-destructive operations such as lookup, linearity is overly
restrictive. Wadler resolves this second point by introducing a variant of let-binding which
allows a linear reference to be duplicated temporarily, but it may only be used in a read-only
manner. Systems which relax linear typing in this fashion are highly sought after for object
oriented systems where aliasing is required to express many common patterns.

Linear types have been exploited to support session types in both functional [57] and object
oriented languages [58, 147].

Morrisett’s L3 language [102] exploits linearly typed references to support strong update,
which allows a memory cell to hold values of unrelated types at different points in the ex-
ecution of a program. The ability for a reference to change type is essential to the idea of
typestate.

The Clean language offers uniqueness types [122], which offer essentially the same charac-
teristics as linear types without the need for explicit “threading”.

The Vault system [36] uses linear resource keys to control access to tracked types such as files
and explicitly managed blocks of memory in an imperative language. The distinguishing
feature of Vault is that the key to access a resource is separate from the resource; this allows
the references to the resource to be duplicated, while the key is tracked separately in a key

set which is carried around with the logical thread of control.

Where disposal is not of concern, such as when a garbage collector is in use, affine types may
be used — affine logic permits contraction but not weakening. Affine types have been used
in the Alms language [145, 146] for typestate, providing the uniqueness guarantee required
for safe state change, without the need to also explicitly release a value.

2.4. Alias control 30

2.4.2 Fractional permissions

Plural and Plaid implement an alias control scheme which is based on Boyland’s fractional

permissions [24]. Each reference has an associated fraction, which is conceptually a rational
number between 0 and 1. A whole permission, with value 1, allows full read and write access
to the memory cell to which the reference points, while a fraction f ∈ (0,1) only permits
read-only access. Permissions may be split into pieces; the relative size of the pieces is
unimportant, as long as nothing is lost in the process:

0 < g ≤ g′ g + g′ = 1

f = f.g + f.g′

f.g and f.g′ are complementary fractions. Knowledge of whether two permissions f1 and f2

can be recombined requires proof that they are complementary. If the fractions were reified
in the runtime system in some manner, this may be checked with no assumptions, and would
allow temporary joining of permissions, but would greatly increase the cost of references in
the runtime system. When checking statically, it must be possible to derive that two fractions
are complements, or that this is an assumption that can be satisfied elsewhere in the program
(i.e. as a precondition of a function for two parameters, placing the burden of proof on the
invoker).

Boyland used this system to statically ensure the absence of interference in parallel execution
in a simple, first-order language. A term “captures” the fractions for references it requires to
execute safely, and all terms that are run in parallel (through the parallel execution term t =

t’ | t’’) must use complementary fractions. A term such as y := *x + 1 | z :=

*z - *x is safe, as neither term writes to a variable that the other reads. The term x :=

*x + 1 | y := *x is not safe, as the left term writes to x while the right reads from it.

Plural’s alias control system refines this concept by creating permission types, which are
formalised independently from typestate in the recent work of Naden et al. [104]. While the
same fraction split / join rules are still present, complementary fractions are tagged with a
type that grants different capabilities through the reference:

• Unique — The reference is the only reference to the object, and so no restrictions on
the manipulation of the object are necessary.

• Full — The reference has exclusive control over changing the object’s state. There
may be other read-only references, which are all pure.

• Share — The reference has the non-exclusive ability to change the object’s state. This
requires careful cooperation between the references, and often means very few as-

2.4. Alias control 31

Unique(1) = Full(f) + Pure(f ′)
Unique(1) = Share(f) + Share(f ′)
Unique(1) = Immutable(f) + Immutable(f ′)
Full(f) = Pure(f.g) + Pure(f.g′)
Share(f) = Share(f.g) + Share(f.g′)
Pure(f) = Pure(f.g) + Pure(f.g′)
Immutable(f) = Immutable(f.g) + Immutable(f.g′)

Figure 2.2: Fractional permission splitting rules on Plural

sumptions can be made about the state of an object before it is used. The state will
often have to be dynamically determined every time the object is used.

• Pure — The reference has non-exclusive access to the object, and cannot change its
state. As another reference will exist that has a full permission, care must be taken to
determine what state the object is in before it is used, similar to a share permission.

• Immutable — The reference has non-exclusive access to the object, however all refer-
ences to the object are also immutable. This form of permission is useful for shared
data structures like lookup tables that are set up in advance and then widely shared
throughout the program.

The split / join rules for the fractions are defined in Figure 2.2.

A unique permission can be split into a full and pure pair, or into two share references, or
into two immutable references. A pure permission can be split into as many additional pure
permissions as required, as can share and immutable references.

Permissions may be temporarily split, for instance to pass an immutable reference to a
method with the guarantee that the permission will be released upon return from the method.
A unique permission can be split into two immutable references, and one passed to a method
that wishes temporary access. Upon return from the method we are guaranteed that the bor-
rowed reference is gone, and so the original reference can safely return to unique status. In
Plural “borrowing” permissions for parameters is the default behaviour.

Borrowing permissions can also be applied to values returned from methods. This is useful
for types such as data structures, where we may wish to fetch a value from a set, do something
with it and have it returned to the set with the guarantee that it has not changed in any way that
would affect the set’s assumptions about the object. For instance, it would not be possible
to change the state of the returned object such that the type parameter of the data structure
would be invalid.

It is also necessary to specify that a permission can be captured by a method. For instance,
for the storage of object references in a data structure, it is necessary to capture the reference

2.4. Alias control 32

in order to allow that reference to be useful to the program at a later point.

2.4.3 Reference roles

Plural also contains an interesting feature known as “dimensions”, where an object can have
more than one orthogonal state. This allows for behaviour in the object to be partitioned into
these dimensions, and different permission types to be given and split in those dimensions. A
use case for dimensions would be in a queue data structure: the structure notionally supports
two separate forms of interaction from a “producer”, which inserts elements into the queue,
and a “consumer” which removes elements from the queue.

Militão provides a similar mechanism which provides a more flexible user-defined splitting
mechanism than Plural’s fractions, named views [96]. An example of a pair with views taken
from Militão’s work [96] is shown in Listing 2.14. A Pair type is declared to be composed
of two views, Left and Right, while an EmptyPair is composed of a EmptyLeft and
EmptyRight. The field sets of each are disjoint, ensuring that the views cannot interfere,
though overlapping field sets are possible where those in the intersection are read-only. When
an EmptyPair is instantiated it is also implicitly of type EmptyLeft * EmptyRight

by the defined equivalence.

The declaration of setLeft on Line 11 indicates that the method may only be called on a
EmptyLeft reference, and that it will change this reference to a Left reference. The value
xmust be of type L and will be consumed by the method — the original reference becomes of
type none, on which only effectively static methods such as auto init could be invoked.

We may invoke setLeft with a reference of type EmptyPair, as the EmptyLeft view
can be extracted, modified and re-inserted into the type. The init method on Line 19
demonstrates that a reference can be safely aliased where it is split along distinct view
lines. The this reference is split into three pieces, one of type EmptyLeft, one of type
EmptyRight, and one of type none used for the invocation of auto init.

Unbounded splitting of views is permitted if this is explicitly declared for a view by provid-
ing an exclamation mark suffix to a view name: for instance Integer!, where Integer is
effectively an immutable type.

Militão’s views provide a less rigid system of permission splitting than in Plural or Plaid,
allowing the programmer to specify the intended usage of a type more clearly. The sys-
tem relies heavily on annotations just as Plural does, which may still present a barrier to
acceptance.

2.4. Alias control 33

1 class EmptyPair {
2 view EmptyLeft { none l; }
3 view EmptyRight { none r; }
4 view Pair { L l; R r; }
5 view Left { L l; }
6 view Right { R r; }
7
8 EmptyPair = EmptyLeft * EmptyRight;
9 Pair = Left * Right;

10
11 none setLeft(L>>none x) [EmptyLeft >> Left] {
12 this.l = x;
13 }
14
15 none setRight(R>>none x) [EmptyRight >> Right] {
16 this.r = x;
17 }
18
19 none init() [EmptyPair >> Pair] {
20 this.auto_init(this, this);
21 }
22
23 none auto_init(EmptyLeft >> Left l, EmptyRight >> Right r)
24 [none >> none] {
25 l.setLeft(new L());
26 r.setRight(new R());
27 }
28 }
29
30 var p = new EmptyPair(); // p : EmptyLeft * EmptyRight
31 val l = new L(); // l : L
32 p.setLeft(new L()); // p : Left * EmptyRight, l : none

Listing 2.14: A pair type with views

2.5. Tracematches 34

2.5 Tracematches

Aspect oriented programming allows for the injection of code into a program as a secondary
compile pass or at runtime through bytecode manipulation, at specially identified points
called “join points” [82]. Two common and useful join points are entry to and exit from a
method. This allows one to do various useful tasks, such as dynamically checking method
pre- and postconditions declared as annotations on the method. An extension of this idea
related to state based preconditions is known as a “tracematch”. Tracematches define a
sequence of methods on one or more related objects that, when the sequence occurs, the
aspect is to be executed. While this can be generally useful, it has been identified as a means
of capturing illegal sequences of method calls and throwing an exception in the aspect to
prevent the illegal pattern, or to log its occurrence.

Naı̈ve implementation of tracematches can be devastating to performance [7]. Every method
invocation associated with an object referenced by a tracematch is considered a “potential
point of failure” (PPF), and must be wrapped with additional dynamic checks. Static analysis
can be employed to reduce the list of such PPFs where the tracematch may execute. By
doing this, runtime checking overhead can be reduced to acceptable levels, but not entirely
eliminated [19].

Tracematches, via their aspect oriented roots, have the distinct advantage of not requiring any
changes to the host language. However, this forces any static analysis of tracematches to deal
with aliasing without any annotation support; as a result, tracematch analyses are typically
whole-program and imprecise. The analyses are sound, in that they will not eliminate a PPF
unless absolutely certain it cannot fail, but unnecessary dynamic checks will still potentially
be performed.

Due to the computational cost of whole program analysis and processing of aliasing, many
analyses are incremental, starting with cheap context-insensitive and flow-insensitive anal-
yses to eliminate as many potential points of failure as possible before proceeding with a
more expensive context-sensitive and flow-sensitive analysis [19]. This greatly increases the
precision of the analysis, in the case of Fink’s work [48] eliminating 93% of PPFs on average
in the code they surveyed.

One disadvantage of current tracematch definitions is that they are insensitive to method
return values. A typical tracematch looks much like a regular expression on methods only,
so a pattern like (hasNext next)* next against the Iterator interface in Java would
express illegally calling next() without calling hasNext() first. This pattern does not
capture the fact that if hasNext() returns false, then the call to next is also illegal,
and so will potentially miss illegal sequences of method calls as defined in the interface’s
documentation.

2.5. Tracematches 35

By expressing illegal behaviour in the form of a regular expression, tracematches are not an
ideal means of documenting the intended behaviour and behavioural restrictions of a stateful
interface. However, it should be possible to generate the set of tracematches required to
ensure the safe usage of a stateful interface from an alternative notation, meaning that the
approach is still useful for verification.

2.5.1 Clara

The Clara framework [21] provides the ability to define tracematch-like runtime monitoring
which can be partially checked through static analysis, and inject runtime checks where the
analysis fails. Clara uses a flat finite state machine DSL to declare the available methods in
each state, and the effect the method call has. An example of this adapted from Bodden’s
work [21] is shown in Listing 2.15, which declares the state machine for a Connection
object as a dependent state machine between lines Line 2 and Line 10. The rest of the code
declares the behaviour of a runtime monitor which maintains a list of closed connections
which have not been garbage collected, and raises an error if an attempt is made to write to a
closed connection. The final state of the declared state machine is where a meaningful action
(in this case, the error) would occur — the static analysis attempts to find all places where a
transition to s2 would occur.

Tracematches can be converted into Clara dependent state machines, if desired, though I
believe Clara dependent state machines are clearer than tracematches for all but the simplest
of models. Clara lacks the ability to specify conditional transitions in its state machines,
therefore cannot provide any additional modelling precision over tracematches.

2.5.2 Protocols involving multiple objects

Tracematches are able to track sequences of method calls that occur in groups of related
objects [60,105], something which a system such as Plural cannot. One example of the utility
of this feature is in monitoring the relationship between an Iterator and the collection it
is iterating over. In Java, an iterator over a collection c cannot be used if c is modified —
any operation which modifies c effectively invalidates the iterator. Any calls to an iterator
after the modification occurs may throw a ConcurrentModificationException.
Similarly, one cannot change an object that has been added to a HashSet in a way that
would change its hash code without first removing it from the collection. Such relationships
can be quite complex, and Bodden’s PhD thesis [19] provides many examples.

Such multi-object constraints are similar to multi-party session types, and present a signif-
icant challenge to typestate models which focus on individual objects. Static analysis of

2.5. Tracematches 36

1 aspect ConnectionClosed {
2 dependency {
3 close, write, reconnect;
4
5 initial s0: write -> s0,
6 reconnect -> s0,
7 close -> s1;
8 s1: close -> s1,
9 write -> s2;

10 final s2: write -> s2;
11 }
12
13 Set closed = new WeakIdentityHashSet();
14
15 dependent after close(Connection c) returning:
16 call(* Connection.close()) && target(c) {
17 closed.add(c);
18 }
19
20 dependent after reconnect(Connection c) returning:
21 call(* Connection.reconnect()) && target(c) {
22 closed.remove(c);
23 }
24
25 dependent after write(Connection c) returning:
26 call(* Connection.write(..)) && target(c) {
27 if(closed.contains(c))
28 error("May not write to " + c + "as it is closed");
29 }
30 }

Listing 2.15: A Clara aspect that monitors for attempts to write to closed connections

2.6. Contracts 37

inter-object dependencies in the context of object oriented frameworks such as Spring have
been studied by Jaspan [79].

2.6 Contracts

The interfaces we define in order to achieve modularity, encapsulation and reuse can be
thought of as a form of contract between a client and an implementation. The contract speci-
fies what is required of both parties: what the client can request, and what the implementation
must provide.

Interface declarations in most object oriented languages are very weak contracts — they
specify only what methods are available, the number of parameters to those methods, the
types of those parameters and the type of the return value. Stronger contracts are often de-
sired but a lack of support for the desired constraints results in many of these constraints
being documented informally on the contract. Both the client and the implementation must
then rely on this informal agreement being honoured, or write defensive code to detect con-
tract violations.

The constraints which are typically documented informally in Java fall into the following
categories:

• Parameter requirements — a method may require that a parameter is not null, or that
it is strictly positive. A language may support the specification of such restrictions
through scalar subtypes, such as in Ada [142], but often more complex composite

constraints which express relationships between parameters are often required. For
example, the subList(from, to) method of the List type in Java requires that
0 ≤ from ≤ to < length().

• Return guarantees — a method may guarantee that a return value will be non-null, or
that a return value will be related to a parameter in some way.

• Aliasing restrictions. For instance, if an element is added to a HashSet in Java, it
is expected that the value returned by hashCode() on that object should remain
constant. In practice this translates into a requirement that the client ceases to use the
object — the HashSet claims exclusive ownership of the object.

• Externalised state — A method such as length() may provide some information
which provides bounds for the parameters of other methods, or be used to express
typestate-like constraints on method availability.

2.6. Contracts 38

Such constraints can typically be expressed as pre- and post-conditions, the theoretical foun-
dations of which were established in Floyd-Hoare logic [49, 67]. Eiffel [94] pioneered the
concept of formal pre- and post-condition based contracts in APIs, with combined static and
dynamic analysis for enforcement.

Extensions and external tools have been developed for popular languages such as Java and
C# which do not directly support contracts. These tools typically provide their own contract

languages in the form of embedded DSLs or APIs which are interpreted by static or dynamic
analyses. Code Contracts in .NET 4 [47,95] and ESC/Java2 [30] are two notable tools which
provide pre- and post-condition based specification of contracts. Both can be used to express
some primitive typestate-like constraints.

Code Contracts are the direct descendant of the Spec# research language [10, 11] which
aimed to provide statically enforced API contracts. Spec# extended the C# language, while
Code Contracts are provided as an API in order to allow straightforward integration with
legacy code, and can be used in a variety of .NET Common Language Runtime (CLR) lan-
guages such as C#, F# and Visual Basic. Code contracts can be easily enforced at runtime,
though static analysis of code contracts has also been studied [46].

Code Contracts in .NET 4 allow the specification of pre-conditions on methods that require
another pure method must return a certain value. A pure method is one which does not mod-
ify its associated object in any way. Dependencies on pure methods are useful for specifying
that the parameter to get on an indexed collection must be within the legal index range.
However, it may also be used to express typestate constraints through the use of dynamic
state test methods, such as isEmpty() or isOpen().

The limitation to using “pure” methods in such contract definitions is important: The value
of a pure method can be derived without changing the state of the object.

An example of this is shown in Listing 2.16, which demonstrates a code contract definition
of an iterator. Pre- and post-conditions are specified as method calls within the body of the
associated method; as interfaces do not carry implementations, a surrogate abstract class is
used (IIContract).

Not all stateful behaviour patterns can be correctly captured by this style of specification.
The inability to express any dependency on a method having already been called in the client
code and that it returned a particular value forces the introduction of new pure methods that
would not normally exist in the interface. For example, the methods hasCalledNext()
and hasCalledRemove() could be added to an iterator interface so that the precondition
hasCalledNext() ∧ ¬hasCalledRemove() can be specified on the remove() method.
This places an additional burden on the implementer to provide these methods and correctly
implement them.

2.6. Contracts 39

1 [ContractClass(typeof(IIContract))]
2 interface IntegerIterator {
3 [Pure] boolean hasNext();
4 [Pure] boolean hasCalledNext();
5 [Pure] boolean hasCalledRemove();
6 int next();
7 void remove();
8 }
9

10 [ContractClassFor(typeof(IntegerIterator))]
11 abstract class IIContract : IntegerIterator {
12 boolean hasNext() {
13 Contract.Ensures(false == hasCalledNext());
14 }
15
16 boolean hasCalledNext() {}
17 boolean hasCalledRemove() {}
18
19 int next() {
20 Contract.Requires(true == hasNext());
21 Contract.Ensures(true == hasCalledNext());
22 Contract.Ensures(false == hasCalledRemove());
23 }
24
25 void remove() {
26 Contract.Requires(true == hasCalledNext());
27 Contract.Requires(false == hasCalledRemove());
28 Contract.Ensures(true == hasCalledRemove());
29 }
30 }

Listing 2.16: Code Contracts form of an Iterator

2.7. Typestate inference 40

In contrast, the Java Modelling Language [84] allows for the specification of model fields

and ghost fields [85, Section 2.2] which exist only within the model’s abstraction of the
type. This would allow for a field to be used to represent the typestate of an object and for
methods to specify state requirements and guarantees in terms of this field. It is then the
responsibility of enforcement strategy to maintain an accurate view of this model. A JML
model of the Iterator interface is described in Cok’s work [33], along with a discussion
of ESC/Java2’s ability to dynamically and statically enforce the defined contract.

2.7 Typestate inference

In order for a modular typestate analysis to be possible, it is necessary to precisely specify
the effect that methods and functions have on their parameters, particularly in languages with
dynamic dispatch where the real implementation of a method is difficult to derive statically.
Type inference may offer the possibility to reduce the burden on the programmer.

There are two complementary typestate inference problems: inferring the state model of a
type from its implementation, and inferring the requirements and effect of an expression
which uses typestate-constrained values. Each is discussed separately below.

2.7.1 Typestate model inference

Writing contracts for interfaces and concrete types can be laborious and difficult to do, espe-
cially within a large legacy system — the expense of retrofitting such systems with contracts
and typestate specifications is difficult to justify.

In a corpus of code in which the usage of an interface is widespread, it is possible to extract
sequences for each usage and attempt to derive which sequences are the most common,
which Ramanathan [128] refers to as sequence mining. Given a sufficiently large collection
of such observed sequences a confidence heuristic can be used to decide when a sequence
should be treated as a requirement of the protocol — for instance, in observing usage of an
Iterator we may see hasNext preceding a call to next in the vast majority of code,
and therefore conclude that this is part of the protocol description. Ramanathan recommends
this approach as it allows protocols to be inferred in code bases with bugs: a sequence which
does not fit the pattern of the majority may be a bug. Code in which next is called repeatedly
without checking hasNext can be legitimate if the programmer is using some other piece
of related information to control iteration, such as the length of the collection. Outliers such
as this may give the false impression that next and hasNext are independent in general; a
user-set confidence threshold allows for experimentation and identification of such outliers,
and for the programmer to apply judgement with the assistance of the tool.

2.7. Typestate inference 41

Logical pre- and post-conditions can also be mined during the same analysis, in order to
determine whether parameters should be positive or related in some manner, by observing
defensive code in clients and implementations.

Empirical results of this approach were encouraging — the generated contracts against the
242 library procedures in OpenSSH were 77% accurate using a confidence threshold of 100%
in their algorithm. This figure is based on manual inspection of the generated contracts and
comparing them to the informal documentation and comments in the code. The remaining
23% of incorrect specifications were composed of 5% false positives (contracts which are
overly restrictive), 14% false negatives (contracts did not include restrictions that were spec-
ified in the documentation) and 4% unverifiable (procedures were not documented, so the
intent of the authors could not be determined).

This positive result also demonstrates that while much can be inferred automatically, a pro-
grammer must still evaluate the result. The ability of the approach to draw attention to
specific outliers helps considerably. Adding domain specific knowledge and heuristics to the
analysis, such as in Kremenek’s work [83], can further improve the initial accuracy of the
analysis.

A broader set of sequences can be derived for such an analysis by observing a program’s
execution at runtime, as seen in the work of Ernst [45] and Yang [158]. Such analyses
also benefit from the availability of additional information that can be very difficult to infer
statically, such as exact parameter values, infrequently visited branches of conditional code,
and the interaction of threads in concurrent code.

2.7.2 Requirement and effect inference using constraints

Given an expression which interacts with a potentially typestate-constrained object, we may
wish to infer what the expression demands of the object. This is the essence of type inference,
wherein we wish to derive some principal type for the expression. If no assumptions are
made about the environment in which the term is evaluated, then what we desire is a principal

typing [80, 149], if one exists.

Damas-Milner type inference [35], and algorithm W for the ML family of languages in
particular, have provided the foundation for most theoretical work on type inference. This
approach is fundamentally oriented around constraint generation based on the semantics of
terms in a host language, followed by constraint solving. Types in ML are either atomic,
such as Bool or Unit, or structural, meaning they are composed of other types. Types are
equal if they are structurally equivalent, meaning meaning T = V →W only if T = X → Y

where X = V and W = Y .

2.7. Typestate inference 42

The constraints generated for ML-like languages are equalities between type expressions
which include type variables. As equality entails structural equivalence in ML, such con-
straints are solved by first order unification which builds equivalence classes of variables
and detects violations of structural equivalence (i.e. α = Bool ∧ α = β → γ).

The first algorithm for first-order unification is attributed to Robinson [133], with alterna-
tives later derived which were concerned with efficiency through the use of trees of multi-
equations [91]. Rather than representing the constraint α1 = α2 ∧ α1 = α3 → α4 as a set of
binary equivalences, one can represent it as a set of equivalence classes using a data structure
optimised for fast union of classes and determining to which class an element belongs (the
find operation). An efficient union-find data structure [53] is key to the efficient implemen-
tation of first-order unification, with the most common union-find structure and algorithm
attributed to Tarjan [144].

In languages with subtyping, the constraints generated are inequalities rather than equalities.
Solving such constraints involves deriving type bounds on variables. The ability to solve
such constraints is determined by the nature of the subtyping relation.

Object oriented languages typically employ either structural or nominal subtyping, though
both can co-exist in a language [88]. Structural subtying is where T <∶ U only if T and U
have the same shape (e.g. are both functions of the same arity) and their sub-components are
also in the subtyping relation, in either a co- or contra-variant manner.

In function types, this typically entails that the functions have the same number of arguments,
that the arguments types are contra-variant and the return types are covariant, such that T1 →
U1 <∶ T2 → U2 only if T2 <∶ T1 and U1 <∶ U2. For objects, O1 <∶ O2 only if the method set of
O2 is a subset of O1 and the methods are related in a covariant fashion.

Nominal subtyping is where the subtyping relation is explicitly defined by the programmer,
typically through declarations such as T extends U or T implements U . Nominal subtyping
entails structural subtyping in Java-like languages.

The first algorithm for type inference in a language with atomic subtyping is attributed to
Mitchell [99], which he later extended to structural subtyping [100], concurrently with Fuh
and Mishra [50, 51]. These algorithms require that types are of finite depth, which excludes
recursive types. Simonet later provided a more efficient solver [138] which is within a factor
of three slower than good first-order unification algorithms; this was measured by defining
subtyping to be structural equivalence in an ML-like language: T <∶ U ⇐⇒ T = U .

Subtyping is defined for session types in terms of a simulation relation [56], and typestate can
be viewed in fundamentally the same way. Type inference has been applied to session types
in the MOOSE language [41], where sessions are linear and subtyping is not considered.

An algorithm for session type inference in a linearly typed language which exploits the con-

2.8. Language usability & human factors 43

trol structure of a term was presented by Collingbourne [34]. This algorithm is presented
without proof and is known to fail if procedures are introduced.

No work exists where a constraint generation and solving approach has been used to infer
principal types in a language with typestate. The Anek tool [14] infers the requirements of
terms in Plural using probabilistic and heuristic techniques, but does not constitute a formal
type inference algorithm.

2.8 Language usability & human factors

Programming languages should fundamentally be about the programmer rather than the
computer. Programming language designers, however, often appear to be oblivious to this
basic requirement. Language designers frequently make claims about a feature of their lan-
guage being desirable and an improvement over existing work, but rarely provide anything
other than anecdotal evidence to support such claims, as illustrated in a rather scathing survey
of language claims by Markstrum [90]:

One aspect of the studied papers was consistent. The designers believe that their
own opinions weigh as much as, if not more than, any rigorous survey or user
study.

The psychology of programming is an active research area, though this encompasses a great
deal of scope: software process research, the impact of working environments and culture,
tools such as integrated development environments, how people learn to program, methods
of teaching programming, and so on.

Work which focuses specifically on the impact of syntax and specific language features is
rare. Green’s cognitive dimensions of notations [63] attempts to define a method by which
a syntax should be evaluated. An algorithm can be expressed in many ways, even within
one language, but the notation strongly determines the ease with which a concept can be
expressed. A notation can be measured in terms of a set of properties, or dimensions. Un-
fortunately, defining orthogonal dimensions for measuring notations is difficult, such that
independent choices about notation design could be made along each dimension.

Greene also asserts that design is redesign, which is to say that design is an iterative process
by which a model is progressively refined. Designers are opportunistic, approaching a design
problem from the most convenient angle to make some progress and then perhaps changing
tack entirely based upon an idea or realisation triggered by this refinement.

As such, notations for expressing designs should be built with the awareness that frequent
change and refinement is a necessary part of the process. A notation which expects perfect

2.8. Language usability & human factors 44

expression of a concept in one step, or in which making changes is difficult, is not fit-for-
purpose.

Greene identified the following dimensions, among others, for design notations:

• Viscosity — in what ways does a notation resist or expedite change? This is clearly task
dependent. A language which permits global variables strongly resists the renaming of
those variables: changes must be made in multiple locations, and care must be taken by
the programmer to only change the correct variables if variable names can be reused.
Introducing a new function in an imperative language is relatively painless, in contrast.

• Premature commitment — in what ways does a notation force a programmer to make
decisions before they are relevant? Early languages which required explicit line num-
bering forced a programmer to guess how likely they were to change a section of a
program, with a costly (viscous) change required if they guessed wrong. A less ex-
treme example that exists in Java is requiring a programmer to decide on the type of a
variable as soon as they declare it. When initially sketching out the body of a method,
they may prefer to leave variables types unspecified.

• Role-expressiveness — does the notation employed clearly distinguish different com-
ponents? Programmers require “beacons” [28] which allow them to quickly navigate
a notation, determining where one expression ends and another begins. Appropriate
use of delimiting whitespace, keywords and typographical conventions all help in this
goal.

Greene analyzed the Smalltalk-80 language in terms of these dimensions, in which he finds
that the method of defining inheritance is viscous and forces premature commitment, and that
the ability for methods and fields to have the same name can lead to poor role-expressivity.
This does not necessarily entail that either decision is wrong; this would require careful
consideration of the alternatives, or indicate areas where language-aware tool support will
help. Using a different font weight or colour to distinguish method names from variables,
for instance, can improve role-expressivity.

Attempting to assess a notation against such dimensions for the most common and critical
tasks that a user is likely to perform can help clarify the impact of design decisions in a
notation. The idea of cognitive dimensions has been used to assess visual programming
languages [64], theorem proving assistants [81], and the C# language during its initial design
[32].

Brooks attempted to devise a theory of the process by which programmers approach a pro-
gramming task [27] and derive the meaning of existing code [28]. Brook’s concept of

2.8. Language usability & human factors 45

“beacons” has led to further work in understanding how programmers locate concepts in
code [127], and how tools can be devised to help in this process.

The difficulties in demonstrating, empirically, the impact of a particular notational choice is
summarised by Brooks as follows:

Even among programmers of very similar experience levels, differences of as
much as 100 to 1 were found across programmers in the time taken to write a
given program. Additionally, across problems constructed to be of similar diffi-
culty, an individual programmer often displayed a six-fold difference in writing
time.

As such, quantitative studies of programmer behaviour are very difficult to interpret. Such
studies are often very time consuming, as even small programming problems can take min-
utes to hours to complete.

Attempts have however been made to empirically study the effects of notation, with Gan-
non [55] studying such choices in an early imperative language, TOPPS. In this study, nine
changes were made to the definition of the language, where these changes ranged from rules
concerning semi-colon usage to evaluation order. The original language and the modified
languages were directly compared.

The study identified the difficulty in compensating for the learning effect — programmers
improve with experience, even over very short periods of time. The paper identified the
common problem of confusing := (assignment) and = (equality). In Green’s model, symbols
which are very similar in this manner with radically different meaning constitute both a
discriminability and an action slips problem — they are both easy to mis-read, and easy
to mis-type. A simple solution is to use a different symbol entirely (Gannon proposed <-

for assignment) or to disallow assignment in expressions. This problem persists even in
contemporary languages, highlighting that language designers are slow to learn from the
mistakes of the past.

There is disappointingly little work to be found in the literature that attempts to perform
experiments similar to Gannon’s work on TOPPS for contemporary languages, and none in
the area of typestate modelling.

Recent work by Parnin has attempted to apply advances in cognitive neuroscience to under-
standing the challenges programmers face [115]. Perhaps unsurprisingly, and also identified
by Brooks, the efficacy of our short- and long-term memory is very important to program-
ming, and frequent interruptions are very damaging to our ability to retain a model of a
program in short term memory. Few recommendations are offered from this nascent work
that would influence language design, instead its focus is directed on tools and processes
which help programmers to retain focus and augment their memory.

2.8. Language usability & human factors 46

Parnin rather poignantly summarises the state of usability research in programming lan-
guages:

Nearly 40 years have passed since some of the earliest cognitive models of pro-
grammers have been proposed. Both the programming landscape and our under-
standing of the human brain have dramatically changed. Unfortunately, in the
time since, the impact on practising programmers has been negligible; the pre-
dictive power nearly non-existent; and, our understanding of the mind furthered
little beyond common sense.

47

Chapter 3

Representing Typestate Constraints

Like the representation of any other formal set of rules, there are many different ways in
which typestate constraints can be represented. Visual representations related to Harel’s
statecharts [66] are popular for the abstract representation of state machines, such as in the
Unified Modelling Language [134, Chapter 6].

Graphical languages are not however “obviously” superior to a textual languages [62, 152].
Graphical models can be just as overwhelming as textual models — Both require careful
use of “secondary notation” [117]. The positioning of symbols in a graphical model (such
as a Harel statechart) can strongly influence the ability to understand it, especially if the
positioning does not match the user’s expectations. For instance, if the graph “flows” from
right-to-left or bottom-to-top, this may confuse users who expect the reverse. From my own
experience of working with graphical models of state machines, a significant amount of time
can be spent attempting to find a workable layout for a state machine, and choices of good
layouts is at least as subjective as the formatting of code.

In systems such as Plural and Fugue, the designers sought a way to easily integrate the formal
representation of typestate constraints into the existing grammar of Java and C# respectively,
using the support for arbitrary annotations. These property set based annotations have a very
restrictive syntax, but are already supported by the integrated development environments and
tools available for these languages. This pragmatic choice is suitable while experimenting
but the syntactic restrictions arguably make models difficult to read and present a barrier to
wider adoption.

A variety of different feature sets have also been tried in the design and implementation of
typestate systems, though evaluation of which features end up being useful and justified is
rarely considered. A holistic approach to the design of a typestate modelling language that
can satisfy all of the following criteria would represent a novel and useful contribution:

• The underlying semantics of the language should have a feature set that is simultane-

3.1. A minimal feature set for typestate modelling 48

ously large enough to model the most important and common typestate constraints,
but small enough so as to be easy to learn.

• The language should be easy to adapt such that it can be integrated with commonly
used object oriented languages such as Java or C#.

• It must be possible to implement a dynamic checker for the constraints the language
can represent, without significant runtime overhead.

• It should at least be possible that the constraints can be statically checked.

The language devised to fit these criteria, named Hanoi, is presented in this chapter, with the
implementation of a dynamic checker in Java presented in Chapter 4 and a user study of the
usability of the language presented in Chapter 5.

3.1 A minimal feature set for typestate modelling

Thanks to the empirical study conducted by Beckman and Kim [13], common categories of
typestate constraints that exist in real Java code have now been enumerated, and can be used
as guidance in selecting what semantic features are truly necessary in a typestate modelling
language.

Beckman’s study involved the construction of a static analysis that inspected methods for
defensive checks of field values that throw exceptions. Every defensive check found in this
manner is recorded as a protocol candidates for manual inspection. By running the analysis
over 16 open source applications which collectively defined 15000 classes, 2920 protocol
candidates were found, from which 648 were found to be evidence of typestate constraints.
These were further analysed for similarity and associated informal documentation in com-
ments to devise a set of categories into which the majority of the typestate constraints fell.
In order of frequency of occurrence, the categories identified were:

• Initialisation: A method (or sequence of methods) must be called before the main set of
capabilities of the object are made available. Activation of the main set of capabilities
may be conditional upon a return value, or the absence of an exception being thrown.
initialisation is typically monotonic.

• Deactivation: Calling a particular method will effectively disable the object, removing
the ability to use most or all of its capabilities. Methods such as dispose on Abstract
Window Toolkit (AWT) widgets fit this pattern, as does the close method on IO
streams.

3.1. A minimal feature set for typestate modelling 49

• Type Qualifier: It is a common pattern for object types to be overly general, and dy-
namically specialised in response to the constructor used to initialise them. This is
related to the initialisation pattern but specifically concerns constructors, and once the
object is created the subset of methods made available from the general interface is
fixed.

• Dynamic preparation: In order to call any method in method setm, another methodm′

must be called first. While related to initialisation, the methods in m may not be made
available permanently — repeated reinitialisation may be necessary. The remove

method on iterator is an example of this pattern, where the next method must be
called to enable it, and calling remove immediately disables this capability again.

• Boundary: A method m may only be invoked based on evidence derived from another
methodm′. Iterator is the most common example of this pattern, where hasNext
is used to determine whether next can be called. pop on a stack type, or get on a
list type (where the size must be known) are also examples.

• Redundant operation: A method m may only be called once. This is related to
initialisation and deactivation, but specifically identifies the case where a method
is self-disabling and not idempotent. The method getResultSet on the JDBC
Statement object, used for interacting with an SQL database in Java, fits this pat-
tern.

• Domain mode: The interface of an object has several sets of methods that are related to
particular modes of operation. These modes can be enabled and disabled at will. This
is typical for UI widgets, where input and focus can be enabled and disabled which
consequently enables or disables methods relating to requesting focus or modifying
the data bound to the widget.

• Alternating: Methods m and n must be called in an alternating fashion.

A related (and earlier) attempt at classifying typestate-like restrictions was undertaken by
Dwyer, Avrunin and Corbett [44], which focused on events and event ordering rather than
methods and objects. The most common pattern discovered by Dywer et al. was the response

pattern, where one event must occur after another event within a specified scope — initialis-
ing and disposing of resources is a common example of such a pattern in languages without
garbage collection and finalizers.

Common amongst many of these patterns is that return values and exceptions are important
and unavoidable parts of the contract. The object moves to a new state synchronously in
response to calling a method, but which state is often determined by the return value or the
type of exception thrown. Booleans and enumerations are the most common return types

3.1. A minimal feature set for typestate modelling 50

used to determine which state is reached, followed by integer types. Where integers are used
as a return value to indicate the state of an object, this would often be better represented
using a boolean or enumeration, but integers are used for legacy or traditional presentation
reasons. As an example, size() = 0 may indicate the object is in one state, while size() > 0

indicates another state. This is equivalent to isEmpty on many APIs, and programmers
will often use the two interchangeably. It is important to be able to support either usage for
this reason.

As the return value determines the successor state, this has consequences for the formal
modelling of the object’s semantics. Between the beginning of a method call and its return,
the receiving object is effectively in an indeterminate state — consequently, defining the
semantics of self calls and mutual recursion is problematic. One option is to simply ignore
typestate constraints for self calls, and rely on an alias control strategy to ensure that “self”
can always be distinguished from other references.

Constructors are clearly important in that they often determine the initial state of the ob-
ject. Occasionally the exact values of the parameters passed to the constructor may also be
relevant, as in the type qualifier category of behaviour. It is more common, however, for sep-
arate constructors to be used to distinguish initial state, or for explicit initialisation methods
post-construction (the initialisation category) to be used for this purpose.

Additionally, it is often the case that a method or method set is enabled temporarily, without
disabling any of the other methods which were already available. This provides a justifica-
tion for the use of hierarchical finite state machines in modelling — duplicate definition of
available methods and transitions can be avoided through the use of nested states. Concur-
rently available state machines are also potentially justified, where the object’s behaviour has
clear partitions and each part behaves independently, such as the ResultSet type in Java’s
SQL interface, studied in detail by Bierhoff [16]. However, in my experience such clear
separation is rare, and parallel state machines can be encoded into a single state machine
using superposition.

There are some notable examples of constraints which cannot be directly represented using
a finite state machine (or, equivalently, be considered to be regular grammars). This is most
commonly seen in the boundary category of behaviours. However, in all cases I have ob-
served the interface of such types also includes a way to dynamically test what the current
state of the object is, which allows the interface to be represented as a finite state machine.
Interfaces which are not representable in this form are very inconvenient to work with in
practice — interactions with the object must be very carefully controlled and aliasing is
particularly difficult to reason about in such circumstances.

From the above, it is clear that a modelling language capable of handling the majority of
typestate patterns, without being overly restrictive or verbose, should have the following

3.2. Aspects of typestate modelling languages 51

features:

• Initial state selection based on constructor invocation should be part of the model.

• It should be possible to model transitions which are conditional upon return value, for
the most common return value types used to indicate the successor state.

• Exceptions are just as important as return values to the correct expression of typestate,
and so should have a similar level of support.

• Support for a hierarchical definition is justified, as in most cases a large subset of
methods on an interface are always available.

While alias control is important for static analysis of typestate specifications, it is not nec-
essarily something which is innately part of the typestate constraints on an object. The
only methods which can be safely invoked when an object is shared are those which do not
change the state of the object, or monotonically increase the size of the available method
set. Militão’s work on view-based typestate [96] provides the best approach I have seen for
modelling typestate in a shared object context, where the interface of an object is explicitly
partitioned based on the view (or role) that a client has of the object. This view partitioning
can be emulated through objects with restricted view-like interfaces that indirectly interact
with the shared, hidden intermediary.

As such, it was not deemed that modelling aliasing as part of the typestate constraints is
strictly necessary — the majority of use cases can be handled without this.

3.2 Aspects of typestate modelling languages

In my opinion, there are fundamentally three aspects to the expression of typestate con-
straints:

1. The states in the model can be explicit or implicit. The names of the states themselves
are not important to the underlying semantics of the model, but they often serve a
useful purpose in adding a descriptive aspect to the model that helps a user to under-
stand the purpose of each state (in much the same way as names assigned to interfaces
are useful, but not strictly necessary, in an object oriented language with structural
subtyping).

In regular expression styles of specification, such as when tracematches are used, the
states are implicit. Here, the individual states are not relevant to the model. Report-
ing of errors with such models typically requires that the tool is able to present a full

3.3. The Hanoi language 52

sequence of method calls and highlight the point at which this diverged from the speci-
fication. In contrast, an explicit state model can simply report that an attempted method
invocation is not possible in a named state.

2. Where a model has explicit state it can be state oriented or method oriented. The
distinction between the two is in how the typestate constraints are grouped: if all
constraints pertaining to an individual state are grouped together, the model is state
oriented. If all constraints pertaining to an individual method are grouped together,
then the model is method oriented.

Each presentation potentially has advantages and disadvantages based on the task a
programmer is performing. Where the programmer wishes to understand the overall
structure of the model, a state oriented presentation is likely preferable. Where a pro-
grammer simply wishes to know whether a method can be called in a given state, a
method oriented presentation is likely preferable — the programmer need not read the
entire model to find the declaration of transitions related to a particular method, they
can instead seek out the grouping of declarations for that method.

3. A model can be positive or negative in focus — it can focus on what is legal or what
is illegal, respectively. In a typestate model where the majority of the methods in the
interface are legal with few exceptions, a model which only explicitly describes illegal
usage may be much more concise.

Based on these characterisations, both Plural and Fugue have explicit state, are method ori-
ented and are positive. Plaid has explicit state, is state oriented and positive. Tracematches
have implicit state and are negative.

3.3 The Hanoi language

Hanoi is a domain specific language designed to support the minimum feature set described
in Section 3.1, and is intended primarily to work with Java’s object model. Based on the
characterisation of typestate modelling languages in Section 3.2, Hanoi has explicit states, is
state oriented and positive.

There were a number of considerations that influenced the design of the language. Defini-
tions should, first and foremost, be easy to read and understand as a single unit. Definitions
should also be easy to create and modify, so as to encourage the usage of the system and
iterative refinement of models. Using Hanoi should not require any changes to the Java lan-
guage and it should be possible to retroactively define models for existing code, such as the
Java SE APIs. Hanoi is primarily designed to allow for the implementation of a dynamic

3.4. An Introduction to Hanoi state machines 53

1 ACTIVE {
2 NEXT_AVAILABLE {
3 CAN_REMOVE_MIDDLE { remove() -> NEXT_AVAILABLE }
4 next() -> CAN_REMOVE
5 }
6
7 CAN_REMOVE {
8 remove() -> ACTIVE
9 hasNext() :: true -> CAN_REMOVE_MIDDLE

10 }
11
12 hasNext() :: true -> NEXT_AVAILABLE
13 hasNext() :: <other> -> <self>
14 }

Listing 3.1: Hanoi model for java.util.Iterator

checker, though the design is also careful to not include any features which would make an
accurate static analysis infeasible.

3.4 An Introduction to Hanoi state machines

The formal grammar of the Hanoi language is shown in Figure 3.1, though it is easier to
introduce by example. A Hanoi state model for the Java Iterator interface is shown in Listing
3.1.

Hanoi models are hierarchical, deterministic finite state machines and are bound to a sin-
gle class or interface. The convention for binding a Hanoi model to a type, for in-
stance an interface named com.example.IExample, one simply creates a file named
IExample.state in directory com/example on the program’s classpath. This ap-
proach does not require the original class’ definition to be modified, allowing Hanoi models
to be defined for JDK types such as Iterator easily.

The Hanoi language is structured such that states are declared as labelled braced blocks,
where available methods and child states are declared within a block. Each model has one
root state; in the Iterator model the root state is named ACTIVE. States inherit the
transitions of their ancestors subject to the rules described in Section 3.5. The root state
therefore declares the operations which are available in all states.

In the model for Iterator, the transition on Line 12 states “hasNext() can be called,
and if it returns the value true then the iterator is now in state NEXT AVAILABLE.” Simi-
larly, the transition within NEXT AVAILABLE on line 4 states that “next() can be called,
and the iterator will then be in state CAN REMOVE” (regardless of return value, in this case).
The :: token can be read as ‘returns’, and -> can be read as “transition to”.

3.4. An Introduction to Hanoi state machines 54

Line 13 demonstrates two special tokens, <other> and <self>. The condition type
<other> states that if all other conditions specified for the method call do not match the
returned value, then this condition will match and the associated transition will take place.
This is similar to the “default” branch on switches in Java.

A transition to <self> means that the object will remain in the same state. On Line 13,
the transition can be read as “if hasNext() returns a value which has not been matched,
then stay in the same state”. There is a subtle difference between this and hasNext() ::

<other> -> ACTIVE — if one were to call hasNext() in the CAN REMOVE state and it
were to return false, the definition on Line 13 would leave the object in state CAN REMOVE

while the alternative will trigger a transition to ACTIVE, which is undesirable as it prevents
a legal call to remove().

In Hanoi, the convention is that if no condition is specified then we assume the condition is
<other>. The transition, however, must always be specified. Values of boxed and unboxed
primitives (booleans and numbers) may be used for conditions, as well as enumerations and
the value null.

In addition to inheriting the transitions of a parent state, a child may also override these
transitions subject to some restrictions. An example of overriding is shown on Line 9, where
the transition for hasNext() defined on Line 12 is changed such that the result state will
be CAN REMOVE MIDDLE instead of NEXT AVAILABLE. This override exists to ensure
that we do not lose the ability to call remove() if a call to hasNext() is made, for
instance to ensure the simple method shown in Listing 3.2 is legal.

1 void removeCenter(Iterator it) {

2 boolean first = true;

3 while(it.hasNext()) {

4 it.next();

5 if(!first && it.hasNext()) it.remove();

6 first = false;

7 }

8 }

Listing 3.2: Method which removes the middle elements of a collection

Listing 3.3 demonstrates some additional aspects of the Hanoi language. Where the type
being modelled is a class rather than an interface, constructor transitions are specified that
indicate the initial state of the object, as shown on Line 1 and Line 2. As constructors are
fundamentally different to methods, in that calling a constructor creates an object rather than
mutates an existing object, it was decided that constructor transitions should not appear in
the bodies of the state declarations. Instead, they exist outside the state hierarchy, referring
to it through a “where” clause. A constructor transition must be specified for each public
constructor declared on a class. As shown in the model, it often makes sense for constructors

3.4. An Introduction to Hanoi state machines 55

1 new(InetSocketAddress) -> CONNECTED
2 new() -> DISCONNECTED
3 where
4 CLOSED {
5 DISCONNECTED {
6 connect(InetSocketAddress) :: true -> READABLE
7 connect(InetSocketAddress) :: false -> <self>
8 }
9 CONNECTED {

10 read() :: -1 -> <self>
11 read() :: <other> -> <self>
12 read() !! IOException -> DISCONNECTED
13
14 write(int) -> <self>
15 write(int) !! IOException -> DISCONNECTED
16
17 disconnect() -> DISCONNECTED
18 }
19 close() -> CLOSED
20 }

Listing 3.3: A model for a simple TCP socket

to specify an initial state that is not the root state — here, the root state corresponds to the
set of methods available when the socket has reached the end of its usable life, with no
transitions out of this state. When a model is structured like this, at least one constructor
must necessarily place the object in a more specific child state for it to be usable.

This model also illustrates exception transitions, shown on Line 12 and Line 15. When a
method has a checked exception in its signature, the model must include a transition for
when this exception is thrown. In this case, the model indicates (through !! token, read as
“throws”) that when an IOException is thrown that the socket has been disconnected.

3.4.1 Hanoi Annotations

While the Hanoi language as described above is the primary means of providing a typestate
model in our system, we also support an annotation based approach similar to that found
in Plural or Fugue. The annotation equivalent to the iterator model shown in Listing 3.1
is shown in Listing 3.4. This alternative means of specification was designed in order to
illustrate that the underlying semantics of the Hanoi typestate model are independent of the
mode of expression, and to allow for direct comparison of the two forms of specification in
a user trial (discussed in Chapter 5).

The @States and @Transitions annotations are required due to the restrictions on
annotations in Java — only one annotation of each type can be attached to a definition. The
idiomatic work-around for this is to define an annotation like @States which takes an array

3.4. An Introduction to Hanoi state machines 56

⟨model⟩ ::= [⟨ctrans⟩+ ‘where’] ⟨state⟩

⟨ctrans⟩ ::= ‘new’ ‘(’ ⟨params⟩ ‘)’ ‘->’ ID

⟨state⟩ ::= ID ‘{’ ⟨state⟩* ⟨method⟩* ‘}’

⟨method⟩ ::= ID ‘(’ [params] ‘)’ ⟨trans⟩?

⟨params⟩ ::= ⟨type⟩ (‘,’ ⟨type⟩)*

⟨type⟩ ::= ID (‘.’ ID)*

⟨trans⟩ ::= ⟨condition⟩? ‘->’ ⟨target⟩

⟨condition⟩ ::= ‘::’ ⟨term⟩ | ‘!!’ ID

⟨term⟩ ::= [⟨numop⟩] NUMBER | [‘=’] ID | ‘<other>’

⟨numop⟩ ::= ‘=’ | ‘<’ | ‘<=’ | ‘>=’ | ‘>’

⟨target⟩ ::= ID | ‘<self>’

Figure 3.1: The grammar of the Hanoi language

1 @States({
2 @State(name="ACTIVE"),
3 @State(name="NEXT_AVAILABLE", parent="ACTIVE"),
4 @State(name="CAN_REMOVE_MIDDLE", parent="NEXT_AVAILABLE"),
5 @State(name="CAN_REMOVE", parent="ACTIVE")
6 })
7 public interface Iterator<T> {
8
9 @Transitions({

10 @Transition(from="CAN_REMOVE", to="CAN_REMOVE_MIDDLE",
11 whenResult="true"),
12 @Transition(from="ACTIVE", to="NEXT_AVAILABLE",
13 whenResult="true"),
14 @Transition(from="ACTIVE", to="<self>",
15 whenResult="false")
16 })
17 boolean hasNext();
18
19 @Transition(from="NEXT_AVAILABLE", to="CAN_REMOVE")
20 T next();
21
22 @Transitions({
23 @Transition(from="CAN_REMOVE", to="ACTIVE"),
24 @Transition(from="CAN_REMOVE_MIDDLE", to="NEXT_AVAILABLE")
25 })
26 void remove();
27 }

Listing 3.4: The iterator model expressed using Hanoi annotations

3.4. An Introduction to Hanoi state machines 57

of @State annotations as the default parameter.

This syntax is somewhat cumbersome, and optimised for the convenience of tools that would
consume the annotations rather than that of the programmer. An alternative would have been
to use annotations that contain strings using a custom grammar:

1 @Transitions({

2 "ACTIVE -> NEXT_AVAILABLE :: true",

3 "ACTIVE -> <self> :: <other>",

4 "CAN_REMOVE -> CAN_REMOVE_MIDDLE :: true"

5 })

6 boolean hasNext();

This is a closer match to the main Hanoi language, and arguably easier to read and work with
as a programmer. However, this style was not adopted so as to allow for a comparison to be
made between the Hanoi domain specific language and the style of specification in Plural /
Fugue in Chapter 5.

3.4.2 Representing common patterns in Hanoi

The typestate patterns identified in Beckman’s work [13] are easily represented in Hanoi
models, with abstract examples for each pattern shown below:

Initialisation

This is easily expressed by allowing the initialisation and deactivation method(s) in the root
state, with the initialised functionality of the object represented by a child state. If initialisa-
tion is an idempotent operation, the transition should be overridden to target <self> in the
initialised state.

1 ROOT {

2 initA() -> INITIALISED

3 initB(int) :: true -> INITIALISED

4 initB(int) :: <other> -> <self>

5
6 INITIALISED {

7 initA() -> <self>

8 initB(int) -> <self>

9
10 m() -> <self>

11 // ...

12 }

13 }

3.4. An Introduction to Hanoi state machines 58

If multiple method calls are required to initialise, then this pattern can be modified using
additional states to introduce the extra initialisation methods.

Deactivation

Similar to initialisation, the deactivation method(s) will typically be present in the root state,
which only contains the methods which a deactivated object is capable of:

1 INACTIVE {

2 deactivate() -> INACTIVE

3 n() -> <self>

4
5 ACTIVE {

6 m() -> <self>

7 // ...

8 }

9 }

If the deactivation method(s) are not intended to be invoked more than once, then the model
can be restructured as follows:

1 ROOT {

2 ACTIVE {

3 deactivate() -> INACTIVE

4 m() -> <self>

5 }

6
7 INACTIVE { /* deliberately empty */ }

8
9 n() -> <self>

10 }

Type Qualifier

Hanoi cannot capture type qualification based on the value of a parameter, but it can capture
qualification based on the use of different constructors. this pattern is represented through the
constructors of the object initialising the object into different initial states. Shared methods
can easily be placed in a root state or parent state:

1 new(List) -> A

2 new(Set) -> B

3 ROOT {

4 shared1() -> <self>

5 shared2() -> <self>

3.4. An Introduction to Hanoi state machines 59

6
7 A {

8 m() -> <self>

9 }

10
11 B {

12 n() -> <self>

13 }

14 }

Dynamic preparation

This is demonstrated in the restrictions on remove in Iterator, shown in Listing 3.1.

Boundary

This is demonstrated in the relationship between hasNext and next in Listing 3.1. In
addition to boundary checks based on boolean return values, Hanoi’s support for numeric
return values is also useful for capturing boundary checks based on methods such as size:

1 ROOT {

2 NOT_EMPTY {

3 pop() -> MAYBE_EMPTY

4 }

5
6 MAYBE_EMPTY { }

7
8 push(X) -> NOT_EMPTY

9
10 size() :: >0 -> NOT_EMPTY

11 size() :: <other> -> MAYBE_EMPTY

12 }

Redundant operation

The operation which cannot be invoked more than once can be placed in its own state, as
shown in the following example where re-initialisation is disallowed:

1 new() -> NOT_INITIALISED

2 where

3 ROOT {

4 NOT_INITIALISED {

5 initA() -> INITIALISED

3.4. An Introduction to Hanoi state machines 60

6 initB() :: true -> INITIALISED

7 initB() :: <other> -> <self>

8 }

9
10 INITIALISED {

11 m() -> <self>

12 // ...

13 }

14 }

Domain mode

The methods controlling the selection of a mode can be placed in the root state, with tran-
sitions to substates containing the appropriate method sets. Where multiple modes can be
active, the transition overriding rules of Hanoi unfortunately require some duplication in the
model, as shown for states A AND B and B AND A in the following model:

1 ROOT {

2 enableA() -> A

3 enableB() -> B

4 enableC() -> C

5
6 A {

7 A_AND_B {

8 doY() -> <self>

9 disableB() -> A

10 disableA() -> B

11 }

12
13 doX() -> <self>

14 enableB() -> B_AND_A

15 disableA() -> ROOT

16 }

17
18 B {

19 B_AND_A {

20 doX() -> <self>

21 disableA() -> B

22 disableB() -> A

23 }

24
25 enableA() -> A_AND_B

26 doY() -> <self>

27 disableB() -> ROOT

28 }

3.5. Semantics 61

29
30 C {

31 doZ() -> <self>

32 disableC() -> ROOT

33 }

34 }

States A AND B and B AND A are effectively equivalent, but must be duplicated as the
overrides of enableB() and enableA() must be covariant to the original target states.
A more complex multiple inheritance based semantics for states would eliminate this but at
the cost of losing the tree structured presentation of the model, and additional complexity
which is not needed in most cases.

Alternating

This pattern is easily expressed with two states:

1 new() -> A

2 where

3 ROOT {

4 A {

5 m() -> B

6 }

7
8 B {

9 n() -> A

10 }

11 }

As demonstrated, Hanoi can represent most patterns without difficulty. Conditional transi-
tions based upon passed parameters are not possible in the current model. Conceptually this
would not be difficult to add, but I have observed very few circumstances under which this
is essential for correctly modelling a type.

3.5 Semantics

A state S1 is a substate of another state S2, written S1 ⋖ S2 if S1 = S2 or S1 is a descendant
of S2.

States inherit the transitions of their ancestors, which ensures that a state’s available method
set is a superset of its ancestor’s method sets. Where transitions are overridden, it is required
that the target state of the override is a substate of all the target states of the transitions that

3.5. Semantics 62

are overridden. As this implies, it is possible for a child transition to override multiple
parent transitions simultaneously:

1 PARENT {

2 a() :: <= 0 -> PARENT

3 a() :: > 0 -> CHILD

4
5 CHILD {

6 a() :: >= 0 -> GCHILD

7
8 GCHILD { ... }

9 }

10 }

In this example, the transition override defined in state CHILD overrides both parent transi-
tion definitions, as it overlaps with the first transition condition on value 0 and with the entire
range of the second transition. The override is legal in this case, as the new target GCHILD
is a substate of the original targets, PARENT and CHILD.

The transition override restriction exist to ensure safe substitution of states for their ancestors,
a property which is discussed further and proven in Section 3.5.1.

A transition may override more than one parent transition — for instance, a parent state may
define two transitions for a size method for return values less than 0

The conditions specified on Hanoi models can be easily translated into either numeric inter-
vals (i.e. “[0,10)”) or finite sets of values from the return type of the method. If the return
type is numeric (i.e. one of byte, char, int, long, float, double and the boxed
object types thereof) then the legal set of condition operators are <, <=, =, > and >=.
If the return type is a boolean, an enumeration or an object type which is not a boxed primi-
tive, the only legal condition operator is =. For object types, the special value null may be
matched against. The default operator is ‘=’, such that “x() :: 0 -> Y” is equivalent
to “x() :: =0 -> Y”.

When a set of transitions is defined for a method, all possible return values must be covered
by the conditions on those transitions. This includes the declared checked exceptions on a
method — if a method throws an IOException, a transition must be declared for when
this exception type is thrown. A transition declared for an exception type X also applies
to all subtypes of X . For example, “x() !! IOException -> Y” would trigger a
transition to Y if a SocketExceptionwere thrown, as SocketException is a subtype
of IOException.

Exception transitions need not be declared for unchecked exception types (those which are
subtypes of RuntimeException or Error in Java) — these are automatically treated as
transitions to the root state. This design decision was made based upon the premise that if an

3.5. Semantics 63

1 ROOT {
2 X { a() -> Y }
3 Y { n() :: >0 -> X }
4 a() -> X
5 m() :: >= 0 -> X
6 m() :: <= 0 -> Y
7 }

Listing 3.5: An Illegal Hanoi model

unchecked exception is thrown from an object then either a programmer error has occurred,
or some serious or fatal system error has occurred that has likely not been handled within the
object. Therefore the object is likely not in a consistent state, and the root state of the object
provides the weakest guarantee on what the object is capable of. For this reason, it is often
desirable to define models such that the root state is empty, where it is possible that an object
could become disabled by such a failure. This default transition for unchecked exceptions
can be overridden like any other transition, if this default behaviour is unsuitable.

Declared transitions cannot ‘overlap’, meaning that the set of return values matched by one
transition must be disjoint from the set of return values matched by any other transition,
unless one transition matches values which are all subtypes of the values matched by the
other transition. These rules have some important consequences. The model shown in Listing
3.5 is illegal for a number of reasons:

• The transitions defined for method m() overlap on the value 0. If method m() were
to return 0, it would be unclear whether the object should be in state X or state Y.

• The transition set for method n() is incomplete in state Y. If n returns an integer, it
would be unclear what state the object is in if the method returns a value v ≤ 0. While
the documentation may indicate that method n()will never return such a value, Hanoi
has no way of determining this through inspecting the return type of the method. If the
Java language allowed the definition of scalar subtypes, the method could be formally
specified as returning values in a specific range and the Hanoi model could exploit this
additional information.

• The transition defined for method a() on Line 2 conflicts with the parent definition
on Line 4: the target state Y is not a substate of state X. This, in turn, means that state
X could not be safely substituted for the ROOT state, as the successor states after a
call to a() offer inconsistent sets of methods.

Listing 3.6 demonstrates some legal instances of transition overriding:

• The transition override of method a() on line 4 is legal, as state Y is a substate of
state X (as targeted on line 10).

3.5. Semantics 64

1 ROOT {
2 X {
3 Y { b() -> X }
4 a() -> Y
5 b() -> ROOT
6 m() :: >0 -> Y
7 c() :: <=0 -> Y
8 c() !! Throwable -> Y
9 }

10 a() -> X
11 m() -> <self>
12 c() :: <0 -> X
13 c() :: >= 0 -> ROOT
14 c() !! IOException -> ROOT
15 c() !! EOFException -> <self>
16 }

Listing 3.6: A Hanoi model with legal transition overriding

• The transition override of method b() on line 3 is legal, as state X is a substate of the
ROOT state (as targeted on line 5).

• The transition override of method m() on line 6 is legal. The parent definition on line
10 has a transition to self, which is state X within the context of the definition on
line 12. State Y is a substate of state X, therefore the definition is legal.

• The transition override of method c() on line 7 is legal. This transition overrides both
of the transitions defined in the parent. The target state, Y, is a substate of both X and
ROOT, therefore the override is legal.

• The exception transitions for method c() on lines 14 and 15 are legal, as
EOFException is a subtype of IOException and the target state for when
an EOFException is thrown is a substate of the target state for when an
IOException is thrown.

• The exception transition for method c() declared on line 8 is legal as the target state
Y is a substate of all the target states for thrown exceptions of type Throwable

declared explicitly and implicitly in the parent state. Throwable is the supertype of
all exception types, therefore the target state Y must be a substate of ROOT, which is
the target state for thrown unchecked exceptions (implicitly) and IOException. Y
must also be a substate of <self>which is the target state for when EOFException
is thrown. In this context, <self> is X.

3.5. Semantics 65

3.5.1 Formal definition

In order to formalise the semantics of Hanoi, a flat finite state machine formalism with a
translation from hierarchical to flat models is sufficient.

Some simplifications are required in order to keep the formalisation of Hanoi concise. In
the presentation of conditional transitions, we shall only consider types which can be easily
mapped to integers — floating point values in particular shall not be considered further in
this formalisation. Handling floating point numbers requires a more complex representation
of conditions as bounded ranges. Bounded ranges are also more efficient, and so are used
in the actual implementation of Hanoi — more details can be found on this approach by
studying the source code.

Boundary value and condition translation

V shall denote the finite set of integer values in the Java language. Booleans, reference
values, enums and void can trivially be mapped to V :

Original Translated

Enum value x x.ordinal()

false or null reference 0

true or non-null refernce 1

void 0

Conditions involving booleans, references and enums are rewritten as follows:

Original Translated

m() :: true -> X m() :: =0 -> X

m() :: false -> X m() :: =1 -> X

m() :: null -> X m() :: =0 -> X

m() :: E.x -> X m() :: =n -> X where n = x.ordinal

A state machine formalism for typestate in Java

A typestate model for a Java class O is defined as the tuple FO = ⟨C,M,R,Σ, α,∆, χ⟩,
where:

• C is the set of constructor signatures in type O.

• M is the set of method signatures in type O.

3.5. Semantics 66

• R ∶M → P(V) is a total function which provides the set of possible return values for
a method.

• Σ is the set of states in the model.

• α ⊆ C ×Σ is the relation which determines the initial state for a given constructor. An
initial state function init(C) may be extracted from α such that init(C) = S when
(c, S) ∈ α. This requires that the initial state be deterministic (formalised below).

• ∆ ⊆ Σ × M × V × Σ is a relation which defines the state transitions in response
method calls. A transition function next(S,m, v) may be produced from ∆ such that
(S,m, v) = S′ when (S,m, v,S′) ∈ ∆. This requires that transitions are deterministic
(formalised below).

• χ ⊆ Σ×M ×E×Σ is a relation which defines the state transitions in response to thrown
exceptions. The set of exception types E is a tree, with a greatest element ⊺E (in Java,
this is Throwable) and a parent relation PE ⊆ E ×E such that (e, e′) ∈ PE when e is a
child of e′. The subtyping relation for exceptions, e ≤ e, is the reflexive and transitive
closure of PE .

An exception transition function errnext(S,m, e) may be produced from χ such that
errnext(S,m, e) = S′ when (S,m, e, S′) ∈ χ. This requires that exception transitions
are deterministic (formalised below).

For convenience, we may define the function methods(FO, S) which derives the set of meth-
ods available in state S:

methods(S) = {m ∣ ∃v,S′.(S,m, v,S′) ∈ ∆}

In order for FO to be considered a valid typestate model, the following conditions must be
met:

• There must be a defined initial state for every constructor:
∀c ∈ C.∃S ∈ Σ such that (C,S) ∈ α.

• If a method m is available in state S, then all possible return values of m must have a
transition defined: m ∈ methods(S) Ô⇒ ∀v ∈ R(m).∃S′ such that (S,m, v,S′) ∈
∆.

• An exception transition for ⊺E must be defined for all methods which are legal in a
state: m ∈ methods(S) Ô⇒ ∃S′.(S,m,⊺E, S′) ∈ dom(χ).

3.5. Semantics 67

C = ∅ M = {h,n, r} Σ = {A,NA,CR,CRM }

R(h) = {0,1} R(n) = {0,1} R(r) = {0}

∆ = {(A, h,0,A), (A, h,1,NA)}
∪ {(NA, h, v,NA) ∣ v ∈ R(h)}
∪ {(NA, n, v,CR) ∣ v ∈ R(n)}
∪ {(CR, h,0,CR), (CR, h,1,CRM)}
∪ {(CR, r, v,A) ∣ v ∈ R(r)}
∪ {(CRM , h, v,CRM) ∣ v ∈ R(h)}
∪ {(CRM , n, v,CR) ∣ v ∈ R(n)}
∪ {(CRM , r, v,NA) ∣ v ∈ R(r)}

χ = {(S,m,⊺E,A) ∣ S ∈ Σ,m ∈ methods(S)}

Figure 3.2: The formalisation of the Hanoi model of Iterator. For brevity, method
signatures are abbreviated such that h = hasNext(), n = next() and r = remove(),
while for the state labels are abbreviated such that A = ACTIVE, NA = NEXT AVAILABLE,
CR = CAN REMOVE and CRM = CAN REMOVE MIDDLE.

• The initial state for a constructor must be deterministic: (C,S) ∈ α ∧ (C,S′) ∈ α Ô⇒
S = S′.

• Transitions must be deterministic: (S,m, v,S′) ∈ ∆∧(S,m, v,S′′) ∈ ∆ Ô⇒ S′ = S′′.

• Exception transitions must be deterministic: (S,m, e, S′) ∈ χ ∧ (S,m, e, S′′) ∈ χ Ô⇒
S′ = S′′.

The satisfaction of these conditions shall be represented by the predicate valid f(FO). State
machines which satisfy validf correspond to a simplified form of Hanoi without inheritance.
An example of a state machine for Iterator is shown in Figure 3.2.

Subtyping in typestate

Given an class A whose behaviour is defined by FA = ⟨CA,MA,RA,ΣA, αA,∆A, χA⟩, a
value of of this class is necessarily in a defined state at any point in time: a ∶ A@S where
S ∈ ΣA is the current state of the object. We shall refer to A@S as the typestate, or simply
type of a.

If we have an object value a1 of type A@S1, we say that it can be safely substituted for
another value a2 of type A@S2 if any valid usage of a2 is also a valid usage of a1. In order
for a1 to be safely substitutable for a2, we require that A@S1 be a behavioural subtype of
A@S2.

3.5. Semantics 68

We require a formal definition of subtyping. Informally, a behavioural subtype is capable of
being used in any way that the parent type can be. As usage is controlled by a finite state
machine, this essentially means language inclusion — whatever sequence of method calls
the parent type would accept, the subtype must also accept. As return values are also relevant
in our model, the strings in the language are in fact sequences of pairs of method labels and
return values. These are formalised as interaction traces:

Definition 3.5.1 (Interaction Traces). Let I ⊆M × (V ∪E) be the set of interactions, which
are method calls and the values they can return for an object type O. The set of interaction

traces of O@S, referred to as Tr(O@S), is defined inductively as:

ε ∈ Tr(O@S)
TR EMPTY

(S,m, v,S′) ∈ ∆ δ ∈ Tr(O@S′)
(m,v).δ ∈ Tr(O@S)

TR PREFIX-A

(S,m, e, S′) ∈ χ δ ∈ Tr(O@S′)
(m,e).δ ∈ Tr(O@S)

TR PREFIX-B

▲

The length of an interaction trace (written len(δ)) is the number of interactions it contains,
where len(ε) = 0 and len((m,v).δ′) = 1 + len(δ′).

We can define behavioural subtyping in terms of trace inclusion, as follows:

Definition 3.5.2 (Behavioural Subtyping). Let O2 be a nominal subtype of O1 in the Java
type system. If Tr(O1@S1) ⊆ Tr(O2@S2) then O2@S2 is a behavioural subtype of O1@S1,
written as O2@S2 ≾ O1@S1. ▲

Where a state machine FA is derived from a Hanoi model for type A, we wish to prove that
A@S1 <∶ A@S2 when S1 ⋖ S2. First, we must define how FA is derived from the Hanoi
model.

3.5.2 Producing state machines from Hanoi models

Producing a state machine FO = ⟨C,M,R,Σ, α,∆, χ⟩ from a Hanoi model of typeO requires
defining how to produce the α, ∆ and χ relations from the model. The sets C, M , R are
derived directly from the O, while the set Σ is simply the set of state labels in the Hanoi
model of O.

The original model, as provided by the program, is first transformed to use numeric return
values for all methods, and <other> conditions are made explicit by converting them into
one or more conditions such that the entire return value range of the associated method is

3.5. Semantics 69

1 type method_sig = string
2 type state_label = string
3 type java_ex = string
4
5 type java_info = {
6 topEx : java_ex,
7 parentExOf : java_ex -> (java_ex option)
8 }
9

10 datatype condition = LT | LTEQ | EQ | GTEQ | GT
11 datatype target = SELF | FIXED of state_label
12
13 type transition = {
14 meth : string,
15 cond : condition,
16 bound : int,
17 target : target
18 }
19
20 type ex_transition = {
21 meth : string,
22 ex : java_ex,
23 target : target
24 }
25
26 type state = {
27 label : state_label,
28 transitions : transition list,
29 exTransitions : ex_transition list
30 }
31
32 type method = {
33 name : method_sig,
34 retValues : int list
35 }
36
37 type model = {
38 states : state list,
39 methods : method list,
40 root : state_label,
41 parentOf : state_label -> (state_label option)
42 }
43
44 type call = method_sig * int
45 type gamma = (call * target) list
46 type delta = (state_label * call * state_label) list
47
48 type ex_call = method_sig * java_ex
49 type psi = (ex_call * target) list
50 type chi = (state_label * ex_call * state_label) list

Listing 3.7: The Standard ML data types for representing a Hanoi model and the production
of ∆ and χ relations

3.5. Semantics 70

covered. This step is not presented here as it is straightforward and primarily involves the
manipulation of Java types.

The α relation can also be derived trivially from the Hanoi model, and checked to ensure
that it includes a transition for every constructor as required. The derivation of ∆ and χ is
more complex — both involve multiple steps, which shall be both informally described and
formally defined as Standard ML functions. The Hanoi model shall be represented in SML
as a value of type model, defined in Listing 3.7:

Producing a ∆ relation for a Hanoi model

A ∆ relation will be represented by the type delta in Listing 3.7. In order to produce a
delta, we first first construct a precursor relation γ ⊆ M × V × Φ (where Φ = Σ → Σ) for
each state in the model, represented as type gamma.

A γ relation is essentially a ∆ relation for which transition targets have not yet been fixed.
The “call” (a method signature and return value) is paired with a function φ ∈ Φ which acts
as a placeholder for the target state, primarily designed to abstract <self> transitions until
later in the translation process. The placeholder function can either be the identity function
(λx.x), used for <self> transitions, or a constant function (λs.s′), used for fixed targets.

The construction of a γ relation for a state can be achieved by concatenating γ relation
fragments produced for each defined transition on a state. Producing a γ fragment for a
transition is defined by gammaForTransition:

1 fun conditionFilter condition bound =

2 case condition

3 of LT => (fn n => n < bound)

4 | LTEQ => (fn n => n <= bound)

5 | EQ => (fn n => n = bound)

6 | GTEQ => (fn n => n >= bound)

7 | GT => (fn n => n > bound)

8
9 fun rangeOf methodName ({methods, ...} : model) =

10 case List.find (fn {name, ...} => name = methodName) methods

11 of SOME {retValues, ...} => retValues

12 | NONE => raise InvalidModel "method undefined"

13
14 fun conditionMatches model {meth, cond, bound, target} =

15 case List.filter (conditionFilter cond bound) (rangeOf meth model)

16 of nil => raise InvalidModel "condition matches no values"

17 | xs => xs

18
19 fun gammaForTransition model transition =

20 let

3.5. Semantics 71

21 val returnValues = conditionMatches model transition

22 val {meth, target, ...} = transition

23 in

24 map (fn v => ((meth, v), target)) returnValues

25 end

The function gammaForTransition extracts the set of return values that the transition
condition matches (using conditionMatches), and associates each of these to the target
placeholder for the transition.

Concatenating these fragments is defined by gammaForState:

1 fun isDeterministic nil = true

2 | isDeterministic ((call,_) :: gamma) =

3 not (isSome (List.find (fn (c,_) => c = call) gamma))

4 andalso isDeterministic gamma

5
6 fun gammaForState model ({transitions=ts, ...} : state) =

7 let val gamma = List.concat (map (gammaForTransition model) ts)

8 in

9 if isDeterministic gamma

10 then gamma

11 else raise InvalidModel "non-deterministic transition"

12 end

Multiple targets the same call are detected by isDeterministic and the model rejected
if they are found.

The γ relation produced by gammaForState is incomplete, as it does not include any
transitions defined by its ancestors. We must “overlay” the child γ on the complete γp of its
parent in order to produce the complete γ′ for the child. Overlaying involves replacing all
mappings in the parent where a target is defined in the child for the same call. Additionally,
in order to ensure safe state substitution, it must be confirmed that the child’s target will
always be a substate of the parent’s target. Any transitions defined in the parent for which
there is no override in the child are included in the output γ′ without modification. This step
is defined by overlayGamma:

1 (* targetFor : gamma -> call -> target option *)

2 (* isSubstate : model -> state_label -> state_label -> bool *)

3
4 fun applyTarget SELF s = s

5 | applyTarget (FIXED s2) s = s2

6
7 fun overrideTarget model ({label, ...} : state) origTarget newTarget =

8 let

9 val origStateLabel = applyTarget origTarget label

3.5. Semantics 72

10 val newStateLabel = applyTarget newTarget label

11 in

12 if isSubstate model origStateLabel newStateLabel

13 then newTarget

14 else raise InvalidModel "invalid override"

15 end

16
17 fun overrideMapping model currentState ((call, target), gamma) =

18 let

19 val baseTarget = getOpt (targetFor gamma call, target)

20 val t = overrideTarget model currentState baseTarget target

21 val gammaMinusCall = List.filter (fn (c,_) => c <> call) gamma

22 in

23 (call,target) :: gammaMinusCall

24 end

25
26 fun overlayGamma model currentState base overrides =

27 foldl (overrideMapping model currentState) base overrides

In order to produce the complete γ for each state, we “bubble up” the γ produced by
gammaForState, overlaying it on the γ for each parent state to the root. This step is
defined by the recursive function extractGammas:

1 (* childrenOf : model -> state -> state list *)

2
3 fun extractGammas model state =

4 let

5 val children = childrenOf model state

6 val childGammas = List.concat (map (extractGammas model) children)

7 val gamma = gammaForState model state

8 fun overlay (ch, g) = (ch, overlayGamma model state gamma g)

9 in

10 (#label state, gamma) :: (map overlay childGammas)

11 end

Each complete γ can then be checked for “gaps” — method calls for which one or more
possible return values have no defined target. If any gaps exist, the model is invalid, as
determined by checkGamma:

1 (* methodDomain : gamma -> method_sig list *)

2 (* callsOf : model -> method_sig -> call list *)

3
4 fun findGaps model gamma =

5 let

6 val methods = methodDomain gamma

7 val allCalls = List.concat (map (callsOf model) methods)

3.5. Semantics 73

8 fun hasNoTarget call = not (isSome (targetFor gamma call))

9 in

10 List.filter hasNoTarget allCalls

11 end

12
13 fun checkGamma model (stateLabel, gamma) =

14 if (findGaps model gamma) = nil

15 then (stateLabel, gamma)

16 else raise InvalidModel "gaps in gamma"

A complete γ with no gaps can then be translated to a ∆ relation fragment by applying the
target placeholder function to the state the γ is produced for. These ∆ fragments are then
concatenated to produce the complete ∆ relation for the model:

1 fun gammaToDelta (stateLabel, gamma) =

2 map (fn (c,t) => (stateLabel, c, applyTarget t stateLabel)) gamma

3
4 fun extractDelta model : delta =

5 let

6 val gammasByState = extractGammas model (rootStateOf model)

7 val checkedGammas = map (checkGamma model) gammasByState

8 in

9 List.concat (map gammaToDelta checkedGammas)

10 end

Producing a χ relation from a Hanoi model

The production of a χ relation follows a similar process to the production of a ∆ relation
for a Hanoi model: A precursor relation ψ ⊆ M × E × Φ is built for each state in isolation,
checking that only one target is defined for each method and exception pair.

The ψ for each state is overlaid on the complete ψp for its parent to produce the complete
ψ for each state. The process of overlaying a partial ψ from a child on the complete ψp for
a parent is more complex than for overlaying ∆ fragments, as it must take into account the
subtyping relation for exceptions.

First, the two ψ relations are combined into an intermediate form ω ⊆ {0,1} ×M × E ×
Φ, where transitions are tagged with their “source” — 1 for transitions from ψp and 0 for
transitions from ψ.

Given two entries t1 = (v,m, e, φ) and t2 = (v′,m′, e′, φ′) from ω, we can order these such
that:

3.5. Semantics 74

m <m′ Ô⇒ t1 < t2
m =m′ ∧ e <∗ e′ Ô⇒ t1 < t2
m =m′ ∧ e = e′ ∧ v < v′ Ô⇒ t1 < t2

The ordering on method signatures can be arbitrary, and the ordering <∗ on exceptions can
be any linear extension of the parent relation for exceptions. The ordering of targets is
irrelevant as we are guaranteed by checking for non-deterministic transitions in each ψ that
(v,m, e, φ) ∈ ω ∧ (v,m, e, φ′) ∈ ω Ô⇒ φ = φ′. As such, t < t′ is a total ordering. Let t ≤ t′
be the reflexive, transitive closure of this ordering.

The ω relation is processed from greatest element to least element according to this total
ordering, in order to check and override the targets as necessary.

Let ω′ be a processed fragment of ω and tn = (v,m, e, φ) ∈ ω be the next transition to be
processed, in order to produce a new processed fragment ω′′. We search ω′ for a least upper
bound t′ of t where t′ applies to the same method: t′ = (v′,m′, e′, φ′) such that m = m′,
e ≤∗ e′ and ∀t′′ ∈ ω′.tn ≤ t′′ Ô⇒ t′ ≤ t′′. If t′ does not exist, then tn does not override any
transitions and ω′′ = ω′ + tn. If t′ exists, then there are three cases to consider:

• e = e′ and v < v′, meaning tn is a direct override of t′. If φ(S) ⋖ φ′(S), then the
override is valid and ω′′ = ω′− t′+ tn (in order to avoid introducing a non-deterministic
transition for a call to method m throwing exception e). Otherwise, the override is
invalid.

• e < e′ and v ≤ v′, meaning tn is an indirect override of t′. If φ(S) ⋖ φ′(S), then the
override is valid and ω′′ = ω′ + tn. Otherwise, the override is invalid.

• e < e′ and v′ < v. This case is more difficult to interpret — t is a parent transition that
may override the transition t′ from the child:

– If φ(S) ⋖ φ′(S), the parent defines a more specific target than the child, and
ω′′ = ω′ + tn.

– If φ′(s) ⋖ φ(S), the child defines a more specific target than the parent, but for a
less specific exception type. This is a form of indirect overriding that is permitted
for Hanoi. The transition tn is simply ignored in this case, such that ω′′ = ω′.
An example of this behaviour can be seen in the following hypothetical model:

1 X {

2 m() -> Y

3 m() !! E1 -> X

4 m() !! E3 -> Y

5

3.5. Semantics 75

6 Y {

7 m() !! E2 -> Z

8 Z {}

9 }

10 }

Let E3 < E2 < E1. If an object is in state Y and method m is called with ex-
ception E3 thrown, the target state is Z and not Y. An exception of type E3 is
also an exception of type E2 through subsumption, so it is important that safe
substitutability also apply to exception values in the interpretation of the model.

– If neither case applies, then the parent and child transitions are incompatible, and
the override is invalid.

This logic is expressed by overlayExTrans and overlayExTransKnown, while the
overall process of overlaying ψ on ψp is expressed by overlayPsi:

1 fun removeTrans omega meth ex =

2 List.filter (fn (_,(c,_)) => c <> (meth,ex)) omega

3
4 fun overlayExTransKnown model sLabel t t’ omega’ =

5 let

6 val (v,((m,e),phi)) = t

7 val (v’,((m’,e’),phi’)) = t’

8 val tapp = applyTarget phi sLabel

9 val tapp’ = applyTarget phi’ sLabel

10 val childSub = isSubstate model tapp’ tapp

11 val parentSub = isSubstate model tapp tapp’

12 in

13 case (e = e’, v <= v’, childSub, parentSub)

14 of (true, true, true, _) => t :: (removeTrans omega’ m’ e’)

15 | (false, true, true, _) => t :: omega’

16 | (false, false, true, _) => t :: omega’

17 | (false, false, false, true) => omega’

18 | _ => raise InvalidModel "bad override"

19 end

20
21 fun overlayExTrans model javaInfo sLabel (t as (_,((m,e),_)), omega’) =

22 case omegaTransFor omega’ javaInfo m e

23 of NONE => t :: omega’

24 | SOME t’ => overlayExTransKnown model sLabel t t’ omega’

25
26 fun overlayPsi model javaInfo csLabel parentPsi childPsi =

27 let

28 val omega = buildOmega parentPsi childPsi

29 val omega’ = foldl (overlayExTrans model javaInfo csLabel) nil omega

3.5. Semantics 76

30 fun omegaToPsi omega = map (fn (_,t) => t) omega

31 in

32 omegaToPsi omega’

33 end

By “bubbling up” each constructed ψ in the same manner as performed for γ, we can con-
struct the almost-complete ψ:

1 fun extractPsis model javaInfo (state : state) =

2 let

3 val cs = childrenOf model state

4 val cPsis = List.concat (map (extractPsis model javaInfo) cs)

5 val psi = psiForState state

6 fun overlay (csLabel, childPsi) =

7 (csLabel, overlayPsi model javaInfo csLabel psi childPsi)

8 in

9 (#label state, psi) :: (map overlay cPsis)

10 end

In Hanoi, if no exception transition is specified for a method m then the transition m()

!! Throwable => ROOT is introduced. This behaviour can be included in the model
by creating a “default” ψ which includes a transition for all methods to the root state for
exception ⊺E , and overlaying all the ψ relations generated in the previous step onto this.
Finally, the ψ relations can be converted into χ fragments and concatenated, as expressed in
extractChi:

1 fun buildDefaultPsi (model : model) (javaInfo : java_info) =

2 let

3 val methodNames = map #name (#methods model)

4 val rootEx = #topEx javaInfo

5 val rootState = #root model

6 in

7 map (fn m => ((m, rootEx), FIXED rootState)) methodNames

8 end

9
10 fun psiToChi (sLabel, psi) =

11 map (fn ((m,e),t) => (sLabel, (m, e), applyTarget t sLabel)) psi

12
13 fun extractChi model (jvInfo : java_info) : chi =

14 let

15 val rootState = rootStateOf model

16 val psisByState = extractPsis model jvInfo rootState

17 val defaultPsi = buildDefaultPsi model jvInfo

18 fun finalizer (s,psi) = (s, overlayPsi model jvInfo s defaultPsi psi)

19 val finalPsis = map finalizer psisByState

20 in

3.6. A Cognitive Dimensions analysis of Hanoi 77

1 public class TransactionalMap<K,V>
2 implements Transaction, Map<K,V> {
3 public TransactionalMap() {/*...*/}
4 // methods from Transaction:
5 public void start() {/*...*/}
6 public void commit() {/*...*/}
7 public void rollback() {/*...*/}
8 // methods from Map
9 public V get(K key) {/*...*/}

10 public V put(K key) {/*...*/}
11 public void remove(K key) {/*...*/}
12 }

Listing 3.8: A Map interface with a transaction subtype

21 List.concat (map psiToChi finalPsis)

22 end

3.5.3 Behavioural subtyping in Java

To illustrate behavioural subtyping in Java, consider a simple transactional data structure
such as TransactionalMap shown in Listing 3.8. The interface Map allows any or-
dering of calls on its methods, while TransactionalMap has restrictions as defined in
Listing 3.9: a transaction must be started before the map can be manipulated. Our intu-
ition here should be that TransactionalMap@TRANSACTION ≾ Map@⊺, which is true as the
state TRANSACTION allows all possible sequences of calls allowed by ⊺ in Map. However,
neither ACTIVE or NO TRANSACTION satisfy this property. This reflects the intuition
that if we have a method that expects a Map as a parameter, we can only safely give it
a TransactionalMap instance if it is in state TRANSACTION, as otherwise an illegal
method may be invoked.

3.6 A Cognitive Dimensions analysis of Hanoi

Green’s cognitive dimensions, discussion in Section 2.8, present a useful framework in which
to analyse the notational choices made in the Hanoi language. Each dimension presented in
Green’s seminal work [63] is considered separately below, comparing the DSL and anno-
tations based approaches. The conclusions of this analysis are subjective and potentially
biased by my own opinion of the two notations. An impartial evaluation of the dimensions
could be derived by presenting Blackwell’s cognitive dimensions questionnaire [17] to end
users.

3.6. A Cognitive Dimensions analysis of Hanoi 78

1 new() -> NO_TRANSACTION
2 where
3 ACTIVE {
4 NO_TRANSACTION {
5 start() -> TRANSACTION
6 }
7 TRANSACTION {
8 get(K) -> <self>
9 put(K) -> <self>

10 remove(K) -> <self>
11 commit() -> NO_TRANSACTION
12 rollback() -> NO_TRANSACTION
13 }
14 }

Listing 3.9: Hanoi model for TransactionalMap type in Listing 3.8

3.6.1 Hidden/Explicit Dependencies

In DSL models, dependencies between a state and its ancestors is only partially explicit —
consistent indentation of the states can make the relationship apparent, similar to the nesting
of blocks in C-like languages. This indicates that perhaps the indentation should be part of
the syntax, demanding consistent application from the user to aid future readability. Such a
choice would increase the viscosity of the state hierarchy.

Method overriding in both models is largely implicit: there is no notation to distinguish a
fresh declaration of a transition from one which overrides a transition in a parent. In deeply
nested hierarchies the override may be especially difficult to see.

Children implicitly inherit the legal transition set from their ancestors. This introduces a
similar issue to OO languages where a small subclass can be deceptively simple. Implicit
inheritance of transitions keeps the models small, but a deeply nested hierarchy may be
difficult to interpret.

As DSL models are contained in a separate file from the class that is modelled, there is
an implicit dependency on the type declarations of methods in the main class definition.
Parameter types are made explicit in the DSL to distinguish overloading of methods, however
return types are implicit. This may affect the user’s ability to correctly specify return type
conditions, as they will have to either remember the return types (putting a load on working
memory) or look at the class definition (a change of context that may be disruptive).

In the annotation model, the transitivity of state inheritance is more implicit, as transitions
are not structurally affiliated with the states they belong to. Additionally, no visual cues are
given to indicate the relationship between states, requiring the user to build a mental model of
this from pair-wise declarations of inheritance. The declaration of an @States annotation

3.6. A Cognitive Dimensions analysis of Hanoi 79

could be indented in a manner similar to the DSL to provide such visual cues, but this cannot
be enforced within the Java grammar for annotations.

The spatial separation between the declaration of a state name and where it is used by a
transition in an annotation model makes the purpose of a state more implicit. This may
weaken the ability of the user to determine what as state is for, i.e. how it is distinguished
from its parent states. Descriptive state names helps with this, but cannot be enforced either
notation.

The existence of transition overrides is more explicit in annotation models, however the or-
dering of the overrides is implicit, requiring that the user remember the inheritance hierarchy.
Ordering the declared transitions such that overrides appear after the overridden transition
may help, but is not enforced by the notation.

3.6.2 Viscosity

In DSL models, the inheritance hierarchy of states is viscous, in a similar fashion to the
nesting of control flow in methods. Changing the parent state requires the declaring block to
be cut from inside the parent state declaration and moved into the new parent. The implicit
inheritance of transitions from a parent complicates this process — it may be necessary to
“pull down” inherited transitions into the state before moving it. This process is highly
related to the viscosity of inheritance in Java. Refactoring tools can help with the process.

In the annotation model, the inheritance hierarchy is somewhat less viscous than in DSL
models, as changing the parent of a state does not require structural changes. However,
implicit inheritance of transitions can still introduce unintended consequences, and the sep-
aration of the state hierarchy’s declaration from that of the transitions is likely to make this
operation more viscous in an annotation model in practice.

The introduction of new child states in both models is fluid - the introduction of a child state
does not change the parent’s behaviour, so this can be done freely.

Changing transitions in a state is fluid when it has no overrides. However when this is not
true, the operation is viscous, as the behaviour of child states may also need to be altered.
The implicit nature of transition overriding complicates this process — a user must scan the
definition of every child state for overrides, and decide on a case-by-case basis whether it
must be altered.

When a class has a Hanoi model, adding methods to the class is more viscous. In addition to
adding the method, the user must remember to add a transition for the method in at least one
state of the model. The user may initially add a self-transition to the root state for the method,
which is a low impact and fluid change, but represents a form of premature commitment.

3.6. A Cognitive Dimensions analysis of Hanoi 80

3.6.3 Premature commitment

If the user does not define a Hanoi model for a type, this is equivalent to a fully-permissive
model being defined. So, Hanoi does not present an immediate barrier to implementing code
as the user would normally do. It can be introduced after the fact, when the requirements
are better understood. Constructor transitions need not be specified in either notation - by
default, an object is assumed to be in the root state after construction.

One slightly irritating aspect of the semantics of annotations in Java is the rule that more
than one annotation of the same type cannot be attached to an entity (class, method, field
or parameter). If more than one of the same type is required, then an aggregate annotation,
such as @Transitions to hold an array of @Transition annotations, is required. This
requires that the user guess how many transitions they are likely to need (i.e. is one enough),
or prematurely commit to using an @Transitions annotation, which is syntactically ugly.

3.6.4 Role-expressiveness

The special case transition target of <self> is notationally distinguished from other user-
declared states by the arrow brackets, which clarifies that “self” is not a user-defined state
name.

In DSL models, the structure of the declaration of a transition as opposed to a state makes
the distinction between these two concepts very explicit. Adopting a convention such as
using all-caps names for states distinguishes them further from method names, but this is not
enforced by the notation. Return value conditions and exception transitions are distinguished
by different notation (:: for return value, !! for exception). The symbols are different enough
to express the role clearly, though a user may forget the relative meaning. On most latin
alphabet keyboards the symbols are sufficiently separated that mis-typing one for the other
is unlikely, so they are not likely to be a source of action-slips errors.

In annotation models, The declarations of states and transitions are strongly distinguished by
their position within the source code, as state declarations are annotations on the class body
while transitions are annotations on the individual methods. The different transition types are
distinguished by the annotation type (@ExceptionTransition and @Transition).

3.6.5 Hard Mental Operations

In both notations, deciding whether the space of possible return values is fully covered by
a condition is difficult. As the return type is not part of the declaration in the DSL model,
it is unclear whether a transition for null will be required without looking at the class or

3.7. Conclusion 81

interface declaration. The proximity of this declaration in the annotation model makes this
slightly easier. The use of numeric ranges is expressive, but their independent declaration
makes gaps implicit.

Generally, deciding which transition applies when a method is called may be a difficult
operation due to transition overriding, particularly when conditional transitions are used. The
grouping of transitions around methods in the annotation model reduces the work required
in finding overrides, but requires that the user remember the hierarchy. Conversely, the DSL
model makes the task of determining hierarchy easy, but finding overrides more complex.

Until a user has some experience of modelling common patterns (alternating legal methods,
dynamic tests, etc) it may not be particularly obvious how to encode a particular constraint in
either model. This is not fundamentally different to any other programming task, however —
programmers often rely on examples and existing code to determine the template for solving
a problem.

In annotation models, determining the full set of methods available in a state requires that
the user read the annotations of all methods, filtering irrelevant declarations to find those that
match the current state. This also involves a knowledge of the inheritance hierarchy. This
task is potentially easier in the DSL model, as structural beacons indicate the inheritance
hierarchy and there is less syntactic clutter from the overhead of annotations.

3.7 Conclusion

The Hanoi language provides a simple, expressive means of defining typestate constraints
for the Java language, and could be easily adapted for use in other similar languages. It has
been demonstrated that Hanoi has a sufficient feature set to to express the most common
and important typestate patterns observed in Java code as determined by Beckman [13]. The
semantics of Hanoi’s hierarchical finite state machine have been formalised and it has been
proven that substates are substitutable for their ancestors, as one may intuitively expect.

The language does have limitations, however. Firstly, it does not attempt to model aliasing
constraints on methods or parameters. Superficially, it may seem sufficient that a transition
to <self> on a method would be enough to indicate that an object does not change state in
response to a method call, and therefore would be safe to invoke through a shared reference.
Behavioural subtyping and subsumption invalidate this assumption. For example, consider
the following model for a class O:

1 A { m() -> A }

2 B { m() -> A n() -> B }

3.7. Conclusion 82

An object of type O@B is a subtype of O@A, so subsumption would allow it to be passed
into a context requiring O@A. Within such a context, one may erroneously assume that m
does not change the state of the object, when in fact it will, from B to A, removing the
ability to invoke n() in the future. As such, a mechanism to denote no actual state change in
response to a method call is required. A variant of <self> which is defined such that state
transitions are disallowed in any subtype. This would have the advantage of maintaining
orthogonality between the typestate model and any alias control system. Such a separation
requires further investigation to determine the impact on the semantics of the model and its
practical utility compared to including a permissions system as part of the model.

An additional limitation is that Hanoi does not attempt to represent state change on param-
eters to methods. This is essential for the static enforcement of Hanoi models — as the
implementation of the method is opaque, it is necessary to describe what the method may do
its parameters, particularly where they are typestate constrained objects, in a manner that the
type system can interpret as part of the method invocation.

Finally, as identified in Section 3.4.2, Hanoi cannot directly represent the “type qualifica-
tion” pattern where an object’s initial state after construction is determined by the value of
a parameter passed to the constructor. The generalisation of this is to allow all transitions
to be conditional on the values of parameters, such as defining different behaviour when a
boolean flag or enum is passed as a parameter, resulting in significantly different behaviour
during the execution of the method. Adding this capability would increase the complexity of
∆ relation for a model, and should be possible to support in a dynamic hanoi checker. The
utility of such a change would need to be investigated in more detail, as it would introduce
significant additional complexity.

The limitations of Hanoi in relation to the rest of the thesis are discussed in Section 8.1.

83

Chapter 4

Dynamic Checking of Hanoi Models
for Java

One of the considerations in the design of the Hanoi typestate modelling language was to
allow for a practical dynamic checker to be implemented. When enforcing typestate con-
straints without language or tool support, additional code must be written which can ob-
fuscate the real behaviour of methods and classes. As an example, consider the partial im-
plementation of Iterator for an array in Listing 4.1 — the first four lines of the next
method manually check whether the end of the array has been reached, and throws an ap-
propriate exception (as documented in the contract for Iterator) if this is the case. Simi-
larly, a boolean flag is maintained by next and remove to determine whether the remove
method should be permitted or not. If the protocol for Iterator is obeyed by a client, then
such checks are unnecessary and the bodies of next and remove would contain only the
code that is necessary to provide the required functionality.

In more complex cases where much larger sets of methods are enabled and disabled in re-
sponse to state changes, such checks are duplicated throughout the program code. Unless
the externally relevant state of the object is stored as an enumeration, it must be inferred
through inspection of the fields of the object as is done in our example, but with potentially
many more fields and more complex conditions over them. Where interfaces have many
implementations (such as Iterator), such checks must be duplicated through all of the
implementations.

This is of course assuming a programmer even writes such defensive code — the overhead
of implementing and testing the enforcement of constraints is both tedious and expensive,
and is a cost that is repeatedly paid during maintenance of the software.

Regardless of the cost, the enforcement of typestate constraints can be important to the in-
tegrity of the entire system. Static checking of constraints is often preferable, if meaningful

84

1 class IntArrayIterator extends Iterator<Integer> {
2
3 private int[] array;
4 private int pos = 0;
5 private boolean removeEnabled = false;
6
7 public IntArrayIterator(int[] array) {
8 this.array = array;
9 }

10
11 public boolean hasNext() { return pos < array.length }
12
13 public Integer next() {
14 if(pos >= array.length) {
15 throw new NoSuchElementException("reached the end of the array");
16 }
17
18 removeEnabled = true;
19 return array[pos++];
20 }
21
22 public void remove() {
23 if(!removeEnabled) {
24 throw new IllegalStateException("remove is not enabled");
25 }
26
27 removeEnabled = false;
28 // ...
29 }
30 }

Listing 4.1: Manual enforcement of Iterator constraints

85

1 void addInt(List l) {
2 l.add(1); // "raw" type treats type parameter as Object
3 }
4
5 void main() {
6 List<String> ls = new ArrayList<String>();
7 addInt(ls);
8 String s = ls.get(0);
9 // ClassCastException is thrown

10 }

Listing 4.2: Invalid usage of a generic type in Java

error messages can be provided, as it gives the earliest possible warning of errors. How-
ever static analysis is often not sufficient to ensure safety in runtime systems which permit
dynamic loading and reflection — it is possible for code to be dynamically linked which
interacts with a typestate constrained object in an illegal manner. The relationship between
the client code and implementation cannot necessarily be derived by static analysis. This
problem is well known in Java where type parameters are not reified, meaning they are not
stored in the runtime representation of a parameterised type. As a result, constraints relating
to the type parameters cannot be enforced at runtime, which would allow an Integer to be
added to a List<String>, as shown in Listing 4.2.

This code will compile, albeit with a warning on Line 1 due to the use of a “raw” generic
type. Raw types treat their generic parameter as Object, which allows an integer to be
inserted into a List of any type on Line 2. As a result, the attempt to extract the value
as a String on Line 8 will fail at runtime with a ClassCastException. If the type
parameter were reified and enforced, the attempt to add the value 1 to the collection on Line
2 would be rejected at runtime. The program would have therefore failed at the appropriate
point, which would help the programmer to diagnose the issue.

The situation with unenforced typestate constraints is similar, in that the point at which a
failure is detected is often not the same as the point at which the violation occurs. An object
may operate in a state where its internal invariants are violated for some time before a more
critical problem is detected by the runtime system.

In a language such as Java, static enforcement of typestate constraints (even as performed by
an advanced system such as Plural) is likely to produce many false positives, to the point that
the static analysis becomes an unacceptable source of noise for the programmer. Comple-
mentary static and dynamic analysis, as employed by recent efforts at the implementation of
tracematches [19, 48], can provide better value for programmers in that “obvious” errors are
caught early by the static analysis, while dynamic checking can be used to check potential
errors the static analysis is less certain of, or to ensure safety generally.

4.1. The requirements of a practical dynamic checker 86

4.1 The requirements of a practical dynamic checker

In order for a dynamic checker for Hanoi to be practical, it must meet the following require-
ments:

• The implementation of the dynamic checker cannot require any changes to the Java
language. Changing the language may be acceptable for research projects, but pre-
vents widespread adoption unless very carefully managed, as with the introduction of
generics to Java 5 based on the ideas of Pizza [113].

Finding a means to implement a dynamic checker for Hanoi that does not require
changes to the compiler, runtime system or standard library will ensure that experi-
mentation with existing code and systems is possible, rather than dealing exclusively
with small artificial examples.

• It should be possible to integrate the dynamic analysis with minimal changes to the
configuration of a system. As an example, requiring that modules be pre-processed in
some way before loading into the runtime system, especially if this is not automatic,
is likely to add friction to the process and be a barrier to adoption.

• The ability to configure the analysis to control which objects are monitored and which
are not is desirable, if the analysis adds significant runtime overhead. This is particu-
larly useful for testing and diagnosis.

• The ability to configure the analysis to control the type of enforcement is desirable. It
may not be possible to perfectly model existing classes, especially if they cannot be
modelled using a finite state machine. Reporting warnings to the log for possible viola-
tions is preferable to throwing runtime exceptions, where the model cannot accurately
represent all legal usage.

• The analysis should not require the explicit cooperation of code which uses a typestate
constrained object. Due to reflection in Java, it is possible for code to interact with
objects it has no explicit knowledge of beyond some basic type information. Such
code, especially code written prior to the introduction of Hanoi, is unlikely to have any
knowledge of the typestate constraints on an object used through reflection. As such,
the constraints must be enforced in a defensive manner, from the perspective of the
typestate constrained object only.

As an example, consider Listing 4.3, where an object is constructed using only a string
representing a class name. When this object is used as a Queue, there is the potential
on Line 6 that the call to dequeue could violate a typestate constraint. If the typestate

4.2. Methods of dynamic checking 87

1 String queueImplClass = "...";
2 Class<?> cls = Class.forName(queueImplClass);
3 Object queueObj = cls.newInstance();
4 if(queueObj instanceof Queue) {
5 Queue queue = (Queue) cls.newInstance();
6 Object o = queue.dequeue();
7 }

Listing 4.3: Example of using a potentially typestate-constrained object via reflection

implementation strategy relied on injecting the constraint checks at the call site, it may
not be able to determine whether this call should be verified.

4.2 Methods of dynamic checking

A number of options were considered and tested in the search for a practical means of dynam-
ically checking Hanoi models. Each is described below, with advantages and disadvantages
discussed.

4.2.1 Wrapper generation

Where a Hanoi model is provided for a Java interface, it is possible to generate code for a
wrapper which implements this interface. This wrapper would take a “real” implementation
as a parameter to the constructor, and potentially a known initial state. Invoking a method on
the wrapper would then involve the following:

• Checking that the object is in an appropriate state. If so, invoke the method on the
wrapped object. If not, take appropriate remedial action (typically, logging the error
and / or throwing an exception).

• If an exception is thrown, change the known state based on the appropriate declared
exception transition, then re-throw the exception.

• If a value is returned, change the known state based on the appropriate declared tran-
sition, and return the value.

Part of a wrapper for the Iterator interface is shown in Listing 4.4. The states from
the Hanoi model are encoded as an enumeration type with a substateOf method (the
implementation of which is omitted but straightforward) which would return true for
CAN REMOVE MIDDLE.substateOf(NEXT AVAILABLE) or

4.2. Methods of dynamic checking 88

CAN REMOVE.substateOf(ACTIVE) as expected. The body of next demonstrates
the pattern of checking a state pre-condition, and the body of hasNext demonstrates the
pattern of conditionally interpreting the return value. Both show the default handling of
thrown exceptions, as the model does not declare any more specific handling.

Wrapper generation does not rate favourably against our criteria for a practical approach to
dynamic checking:

• The explicit cooperation of client code is required — “real” implementations must be
wrapped manually and then only the wrapped reference used.

• Types must be processed to generate the wrappers, and the wrapper code will become
increasingly complicated as more useful diagnostic features are introduced beyond the
bare minimum represented in Listing 4.4. This adds additional weight to the deploy-
ment in terms of the amount of generated code that must be included.

• Generation of wrappers against classes, rather than interfaces, is not possible in all cir-
cumstances. Wrappers for classes extend the class itself, which requires the introduc-
tion of object factories into the architecture of the system to make selective wrapping
possible. Where the class in question has public final methods (i.e. those which cannot
be overridden) the wrapper cannot be produced through conventional means.

Despite these disadvantages, wrapper generation can provide a relatively lightweight option
for the enforcement of typestate constraints in a very selective way, which can be useful for
debugging. There are other options with this advantage and fewer disadvantages, however.

4.2.2 Dynamic proxies

Java’s runtime system makes it possible to implement an interface dynamically through the
use of a dynamic proxy, which is an object that can handle method calls for a type which is
unknown at compile time through the use of reflection.

Similar to wrapper generation, a “real” implementation of an interface can be passed to
a dynamic proxy along with code that will be invoked on each method call. This can be
leveraged to enforce the state pre-conditions for a Hanoi model, handle thrown exceptions
and interpret return values for state transitions.

A simple API that uses dynamic proxies to enforce Hanoi models was implemented, and
code using this API to check the usage of an Iterator is shown in Listing 4.5. The
StateInspectorFactory can create a dynamic proxy for any interface through the
create method, which takes the real implementation as the first argument and the class

4.2. Methods of dynamic checking 89

1 public class IteratorEnforcer<T> implements Iterator<T> {
2
3 private static enum State {
4 ACTIVE, NEXT_AVAILABLE, CAN_REMOVE, CAN_REMOVE_MIDDLE;
5 public boolean substateOf(State s) { /* ... */ }
6 }
7
8 private State state;
9 private Iterator<T> wrapped;

10
11 public IteratorEnforcer(Iterator<T> iter) {
12 wrapped = iter;
13 state = State.ACTIVE;
14 }
15
16 public boolean hasNext() {
17 try {
18 boolean result = wrapped.hasNext();
19 if(result == true) {
20 if(state.substateOf(State.CAN_REMOVE))
21 state = State.CAN_REMOVE_MIDDLE;
22 else if(state.substateOf(State.ACTIVE))
23 state = State.NEXT_AVAILABLE;
24 }
25
26 return result;
27 } catch(Throwable t) {
28 state = State.ACTIVE;
29 throw t;
30 }
31 }
32
33 public T next() {
34 if(!state.substateOf(State.NEXT_AVAILABLE))
35 throw new IllegalStateException(
36 "cannot invoke next() in state " + state);
37
38 try {
39 T result = wrapped.next();
40 state = State.CAN_REMOVE;
41 return result;
42 } catch(Throwable t) {
43 state = State.ACTIVE;
44 throw t;
45 }
46 }
47
48 public void remove() { /* ... */ }
49 }

Listing 4.4: A generated wrapper for the Iterator interface

4.2. Methods of dynamic checking 90

1 List<String> list = createList();
2
3 StateInspectorFactory factory = new StateInspectorFactory();
4 Iterator<String> iterator
5 = factory.create(list.iterator(), Iterator.class);
6
7 while(iterator.hasNext()) {
8 Object value = iterator.next();
9 // this would be an illegal second call to next, if uncommented

10 // iterator.next();
11 iterator.remove();
12 }

Listing 4.5: Usage of the Hanoi API for dynamic proxies

object of the interface as the second argument. It can search for a Hanoi DSL model in an
adjacent file or read an annotation based model directly out of the interface’s bytecode. If no
model is found, the object is left uninstrumented.

The created proxy dynamically interprets the Hanoi model against each call. This process is
generally more expensive than the generated wrappers, as it is based entirely on reflection
rather than on bespoke code for each interface. This additional runtime cost is a tradeoff
against a more compact representation — the same code is used to implement the proxy for
all types, and no processing of types is required prior to running the code.

Dynamic proxies are, overall, a better option than generated wrappers, but suffer the same
primary drawbacks: explicit cooperation is required by code that uses types in constructing
and using the wrappers, and working with concrete classes rather than interfaces is problem-
atic. They are however very lightweight, do not require changes to the runtime system, and
are easy to inject into specific modules of code where this is desirable — they are ideal for
use on the boundaries between modules where strict enforcement of contracts is essential to
the stability and security of a system.

4.2.3 AspectJ based solutions

AspectJ provides a powerful Aspect Oriented Programming (AOP) infrastructure for the Java
programming language [82]. AOP involves the creation of advice (code fragments), which
are woven into pre-existing code based on defined join points. The most common join points
are entry to and exit from methods, either within the definition of the method itself or at the
location from where the invocation occurs.

As AspectJ manipulates bytecode directly, it has a great deal of freedom in manipulating
existing classes in a way that cannot be achieved using regular source code. The weaving
process, where advice is injected into the bytecode of existing classes, can either be per-
formed as a preprocessing step before the code is executed, or it can be done dynamically

4.2. Methods of dynamic checking 91

using a specialised class loader. The official Java Virtual Machine allows for the overriding
of the standard class loader in this way, making it very easy to integrate AspectJ into the
runtime infrastructure of a system.

This makes the use of AspectJ especially appealing in meeting the requirements set out in
Section 4.1, particularly in that it may allow for the enforcement of typestate constraints
without the explicit cooperation of client code.

AspectJ Tracematches

Tracematches are a special form of join-point that allow advice to be executed when a se-
quence of calls matching a regular expression is detected [4]. Significant effort has already
been directed at optimising the execution of tracematches [7, 19]. Leveraging this work is
attractive for performance reasons — where pre-processing of the source of an application
before deployment is practical, the overhead of dynamic checking of typestate can be signif-
icantly reduced through the use of whole program static analysis.

Utilising tracematches to enforce Hanoi constraints requires that a Hanoi model be converted
into a regular grammar where final calls are illegal, and that this grammar is then used to
generate a regular expression.

As an example, consider a type with a boundary typestate pattern captured in the Hanoi
model shown in Listing 4.6. Here a method a() can only be called once after enableA()
has been called, after which it is disabled again. The same restriction applies to b() and
enableB(). Both may be enabled at the same time.

A grammar which captures illegal uses of this type is shown in Figure 4.1. This can then
be used to generate a regular expression for a tracematch, shown in Listing 4.7. Conversion
between a finite state machine and a regular expression can, in the worst case, involve an
exponential increase in size, as even a small grammar such as this demonstrates. The regular
expression generated has a “legal prefix” repeated component from Line 15 to Line 30, which
corresponds to all legal sequences which start and end in the INACTIVE state. This is
followed by an “illegal suffix” from Line 31 to Line 46, which corresponds to all sequences
which end with an illegal call to a or b. The longest part of this, from Line 35 to Line 45
contains all the legal sequences that repeatedly revisit the BOTH state before ending in an
illegal repeated call to either a or b.

One disadvantage to this approach is that limited information is available for generating a
useful error message to help with diagnosing the typestate violation. With a regular expres-
sion that captures all possible illegal sequences, we cannot isolate which particular pattern
was detected. A collection of complementary regular expressions could be used which each

4.2. Methods of dynamic checking 92

⟨INACTIVE⟩ ::= enableA ⟨A⟩
| enableB ⟨B⟩
| a
| b

⟨A⟩ ::= enableA ⟨A⟩
| enableB ⟨BOTH⟩
| a ⟨INACTIVE⟩
| b

⟨B⟩ ::= enableA ⟨BOTH⟩
| enableB ⟨B⟩
| a
| b ⟨INACTIVE⟩

⟨BOTH⟩ ::= enableA ⟨BOTH⟩
| enableB ⟨BOTH⟩
| a ⟨B⟩
| b ⟨A⟩

Figure 4.1: A regular grammar which captures violations of Listing 4.6

1 new() -> INACTIVE
2 where
3 ROOT {
4 INACTIVE {
5 enableA() -> A
6 enableB() -> B
7 }
8
9 A {

10 a() -> INACTIVE
11 enableA() -> <self>
12 enableB() -> BOTH
13 }
14
15 B {
16 b() -> INACTIVE
17 enableA() -> BOTH
18 enableB() -> <self>
19 }
20
21 BOTH {
22 a() -> B
23 b() -> A
24 enableA() -> <self>
25 enableB() -> <self>
26 }
27 }

Listing 4.6: A type with boundary checks for a and b

4.2. Methods of dynamic checking 93

1 tracematch(BoundaryCheck bc) {
2 sym enableA before:
3 call(* BoundaryCheck.enableA())
4 && target(bc);
5 sym enableB before:
6 call(* BoundaryCheck.enableB())
7 && target(bc);
8 sym a before:
9 call(* BoundaryCheck.a())

10 && target(bc);
11 sym b before:
12 call(* BoundaryCheck.b())
13 && target(bc)
14
15 (enableA+ a
16 | enableB+ b
17 | (
18 enableA+ enableB
19 | enableB+ enableA
20)
21 (enableB
22 | enableA
23 | b enableA* enableB
24 | a enableB* enableA
25)*
26 (
27 b enableA* a
28 | a enableB* b
29)
30)*
31 (b
32 | a
33 | enableA+ b
34 | enableB+ a
35 | (enableA+ enableB
36 | enableB+ enableA
37)
38 (enableB
39 | enableA
40 | b enableA* enableB
41 | a enableB* enableA
42)*
43 (b enableA* b
44 | a enableB* a
45)
46)
47
48 { // the advice to be executed
49 throw new IllegalStateException("...")
50 }
51 }

Listing 4.7: Tracematch for illegal usage of Listing 4.6

4.2. Methods of dynamic checking 94

1 public class BoundedQueue<E> {
2 public BoundedQueue(int size) {/*...*/}
3 public BoundedQueue(E[] buf) {/*...*/}
4
5 public boolean isEmpty() {/*...*/}
6 public boolean isFull() {/*...*/}
7 public E dequeue() {/*...*/}
8 public void enqueue(E elem) {/*...*/}
9 public E[] flush() {/*...*/}

10 }

Listing 4.8: A bounded queue data structure

identify a different illegal pattern — by generating separate regular expressions which cor-
respond to reaching a particular state in the Hanoi model followed by an illegal method call,
we could regain the ability to report an error like “attempt to call a in state B”. This would
add additional runtime overhead however, as multiple tracematches must be checked against
each typestate constrained object.

Another serious disadvantage is that the join-points used to define the symbols (between
Line 2 and Line 13) used in the regular expressions cannot test the return value of methods.
Consequently, Hanoi models with conditional transitions cannot be converted correctly into
tracematches. The model may be approximated in some cases to provide incomplete but still
potentially useful enforcement of constraints. As an example, consider the BoundedQueue
type shown in Listing 4.8, with its Hanoi model shown in Listing 4.9. This type allows
elements to be enqueue’d when it is not full, and dequeue’d when it is not empty. Similar
to an Iterator, client code must check that the isEmpty or isFull methods return
false before elements can be removed or added respectively.

With such a model, we can at least ensure that client code is calling isEmpty before calling
dequeue or isFull before calling enqueue. The simplified model that enforces this
constraint is shown in Listing 4.10. The generation of such a model can be achieved by
creating a new state with an available method set equal to the union of the sets of each
conditional target. This is likely to be very imprecise in general, but it may at least capture
some obvious typestate violations. The tracematch generated for this simplified model is
similar to that in Listing 4.7, with some added complexity due to the flush method.

Overall, the inability of tracematches to accurately capture the full semantics of Hanoi makes
their use impractical in most cases — conditional transitions are very common and essential
to the enforcement of typestate constraints.

4.2. Methods of dynamic checking 95

1 new(int) -> ACTIVE
2 new(E[]) -> NOT_EMPTY
3 where
4 ACTIVE {
5 NOT_EMPTY {
6 NOT_EMPTY_NOT_FULL { enqueue(E) -> NOT_EMPTY }
7
8 dequeue() -> NOT_FULL
9 isFull() :: false -> NOT_FULL_NOT_EMPTY

10 }
11 NOT_FULL {
12 NOT_FULL_NOT_EMPTY { dequeue() -> NOT_FULL }
13
14 enqueue(E) -> NOT_EMPTY
15 isEmpty() :: false -> NOT_EMPTY_NOT_FULL
16 }
17
18 isEmpty() :: false -> NOT_EMPTY
19 isEmpty() -> <self>
20
21 isFull() :: false -> NOT_FULL
22 isFull() -> <self>
23
24 flush() -> ACTIVE
25 }

Listing 4.9: The Hanoi model for BoundedQueue

Generation of monitoring aspects

Given that tracematches proved to be unsuitable, a more direct approach was attempted
where aspect code would be generated from Hanoi models. This generator takes a set of
JAR files as input and scans them for types which have associated Hanoi models in either
DSL or annotation forms. An aspect is generated for each type with a model that will inter-
cept all calls to constructors and public methods of that type. The aspect behaves in a similar
fashion to the dynamic proxies described in Section 4.2.2 — calls are checked for legality
against the currently known state and rejected if they are illegal.

Consider a Java program which is compiled (without AspectJ) into a single JAR file, named
main.jar, with a main class com.example.Main. The standard mechanism for exe-
cuting this program is shown on Line 43 of Listing 4.11 — this will execute the program
without any dynamic checking of typestate constraints. In order to enable dynamic check-
ing, the generated aspects are compiled and placed into a separate JAR file, which is added
to the classpath of the program to be monitored. The standard Oracle JVM provides a
means to execute additional code prior to the normal start sequence of the program using
the javaagent flag — AspectJ provides a “load-time weaving agent” which can be used
in this manner and weaves applicable advice into all loaded classes. The JVM invocation
starting on line Line 38 of Listing 4.11 demonstrates this, where the compiled aspects are

4.2. Methods of dynamic checking 96

1 new(int) -> ACTIVE
2 new(E[]) -> NOT_EMPTY
3 where
4 ROOT {
5
6 ACTIVE {
7 isEmpty() -> NOT_EMPTY
8 isFull() -> NOT_FULL
9 flush() -> ACTIVE

10 }
11
12 NOT_EMPTY {
13 isEmpty() -> <self>
14 isFull() -> NOT_EMPTY_NOT_FULL
15 dequeue() -> ACTIVE
16 flush() -> ACTIVE
17 }
18
19 NOT_FULL {
20 isEmpty() -> NOT_EMPTY_NOT_FULL
21 isFull() -> <self>
22 enqueue() -> ACTIVE
23 flush() -> ACTIVE
24 }
25
26 NOT_EMPTY_NOT_FULL {
27 isEmpty() -> <self>
28 isFull() -> <self>
29 enqueue() -> NOT_EMPTY
30 dequeue() -> NOT_FULL
31 flush() -> ACTIVE
32 }
33 }

Listing 4.10: The simplified and flattened Hanoi model for BoundedQueue

4.2. Methods of dynamic checking 97

contained in hanoi aspects.jar. The entire script provides a straightforward means
to enable or disable dynamic checking using a command line flag (-d or --dyncheck).

Listing 4.12 shows a fragment of the generated aspect for the BoundedQueue type. The
aspect stores a map of the known states of all objects of this type, and a re-entrant lock is
used to ensure that this map can be updated safely in the presence of concurrency. Advice is
generated for each public method in the type, such that the advice is executed immediately
prior to the call to a BoundedQueue method.

Aspects can work with concrete types as they inject code directly into the existing imple-
mentation rather than wrapping it, therefore the explicit cooperation of client code is not
required. Self calls are ignored (i.e. if a BoundedQueue instance were to invoke a method
on itself) with the conditional on Line 13. The legality of the method call is checked on Line
20 against the current known state — if it is illegal, an exception is thrown, otherwise the
method call is allowed to proceed on Line 31. The return value is then processed to deter-
mine what the new state of the object is after the call, before returning to the normal flow of
execution.

Two separate exception handlers are required for RuntimeException and Error, which
are the supertypes of all unchecked exceptions. It is not possible to unify these into a single
handler for Throwable (the common supertype of both) as exceptions of this type cannot
be rethrown safely — checked exceptions are descendants of Throwable, so this may
represent an attempt to throw a checked exception which is not expected in the context where
the advice is executing.

Instead of using a call based join point, the aspects could use an execution join point, which
would mean that the advice would be injected into the implementation of the method itself
rather than at the site of the call in the client code. This approach is better suited to concrete
types and would avoid the need for a global state map as in the aspect below. Instead, a sep-
arate aspect instance could be created for each BoundedQueue instance to store the local
state for that object. With load time weaving and a program which does not use reflection,
the two approaches are equivalent. Where reflection is potentially used, an execution based
join point is the better choice.

Generating aspects for modelled types and using AspectJ load time weaving provides the
best fit to our requirements amongst all the options evaluated:

• This approach requires no changes to the language or runtime. The AspectJ project,
with its strong emphasis on practicality, has ensured that aspects can be used in a
very straightforward manner with a standard Java virtual machine. The additional
configuration required to enable load time weaving is minimal, as shown in Listing
4.11.

4.2. Methods of dynamic checking 98

1 #!/bin/sh
2 #
3 # Runs com.example.Main with dynamic checking if the
4 # -d/--dyncheck flag is set. Arguments to be passed to
5 # com.example.Main should be provided after a "--"
6 # argument separator.
7 #
8 # Run without monitoring and no args:
9 # > run.sh

10 # Run without monitoring and passing argument "-x":
11 # > run.sh -- -x
12 # Run with monitoring and passing argument "-x":
13 # > run.sh -d -- -x
14 # > run.sh --dyncheck -- -x
15
16 # whether or not to use dynamic checking
17 dyncheck=0
18
19 # use gnu-getopt to validate and sanitize arguments
20 ARGS=‘gnu-getopt --long dyncheck --options d -- "$@"‘
21 if [$? -ne 0]; then
22 echo "Invalid argument(s)" >&2
23 exit 2
24 fi
25 eval set -- $ARGS
26
27 # process the arguments
28 while [$# -gt 0]; do
29 case "$1" in
30 -d | --dyncheck) dyncheck=1;;
31 --) shift; break;;
32 esac
33 shift
34 done
35
36 if [$dyncheck -eq 1]; then
37 # run with monitoring
38 java -javaagent:aspectjweaver.jar \
39 -cp main.jar:hanoi.jar:hanoi_aspects.jar \
40 com.example.Main $@
41 else
42 # run without monitoring
43 java -cp main.jar com.example.Main $@
44 fi

Listing 4.11: Enabling or disabling Hanoi dynamic checking using AspectJ

4.2. Methods of dynamic checking 99

1 public aspect BoundedQueueUsageMonitor issingleton() {
2
3 private final Logger log = // ...
4 private final WeakHashMap<Object, IState> currentStates = // ...
5 private final ReentrantReadWriteLock currentStatesLock = // ...
6 private final StateModelRepository repo = // ...
7
8 boolean around(): call(public boolean isEmpty()) && target(BoundedQueue

Ç) {
9

10 Object thisObj = thisJoinPoint.getThis();
11 Object target = thisJoinPoint.getTarget();
12
13 if(thisObj == target) {
14 return proceed();
15 }
16
17 IState currentState = getState(target);
18 Method m = BoundedQueue.class.getMethod("isEmpty");
19
20 if(!currentState.isLegalCall(m)) {
21 throw new IllegalStateException(
22 "Attempt to call method " +
23 ErrorUtils.buildSignature(m) +
24 " on object of type " +
25 target.getClass().getCanonicalName() +
26 " in illegal state " +
27 currentState.getName());
28 }
29
30 try {
31 boolean result = proceed();
32 processOutcome(target, m, result);
33 return result;
34 } catch(java.lang.RuntimeException e) {
35 processOutcome(target, m, new ThrownExceptionWrapper(e));
36 throw e;
37 } catch(java.lang.Error e) {
38 processOutcome(target, m, new ThrownExceptionWrapper(e));
39 throw e;
40 }
41 }
42
43 // ... monitoring for other methods ...
44 }

Listing 4.12: Part of the aspect generated for BoundedQueue

4.2. Methods of dynamic checking 100

• It is feasible to control the type of enforcement through configuration. The proto-
type implementation of the aspect generator creates aspects which enforce fail fast
behaviour by throwing an exception when an illegal method call is detected. It would
not take significant additional effort to make this behaviour customisable, or config-
urable through properties passed to the program at startup.

• Models can be enforced without changes to the implementation or client code that
interacts with a class or interface, due to the bytecode manipulation managed by As-
pectJ.

• The performance of the analysis is likely to be better than that of dynamic proxies, due
to the approach not relying on reflection and instead on generated code which can be
optimised by the virtual machine. Unfortunately, the performance is likely to be worse
than the tracematch based approach, as tracematches can leverage static analysis of the
code to avoid monitoring usage that can be proven to be safe. However, the generated
aspects can enforce all of Hanoi’s semantics, including conditional transitions, which
the tracematch based approach cannot.

The primary disadvantage of this approach is that Hanoi modelled types must be pre-
processed to generate and compile the aspects, and that the JAR containing these aspects
must be added to the classpath. This requirement is not overly restrictive, but a solution
without this step would be preferable.

Unified monitoring aspect

The generated aspects for each modelled type are structurally very similar. An attempt was
made to determine whether a unified aspect could be defined which could monitor all mod-
elled types, while retaining the practical properties of the individually generated aspects.

The product of this effort is shown in Listing 4.13. The key difference with this aspect from
that shown in Listing 4.12 is that it relies upon an abstract pointcut which must be defined
in a sub-aspect. This may be defined as target(BoundedQueue) to make the aspect
effectively equivalent to Listing 4.12. The defined advice will apply to all public methods on
a type it matches.

This approach poses some additional challenges:

• As previously discussed, the handling of exceptions thrown by the invoked method
in an abstract manner is not possible through conventional means. A possible work-
around when the code is being executed using the standard Sun/Oracle Java Virtual
Machine is to obtain an instance of sun.misc.Unsafe, which contains the method

4.2. Methods of dynamic checking 101

throwException. This method allows exceptions of any type to be thrown, re-
gardless of the declared set of exceptions in the context where it is called. Access
to sun.misc.Unsafe requires the use of a deliberately convoluted process, and
can be disabled entirely via a JVM’s security policy configuration as it offers many
dangerous, low-level operations.

• There is no single pointcut that can be defined for hanoiType that will work for all
Hanoi types. One option is to target all types which have a special annotation: the
pointcut @target(HanoiModelled) will match all types which have the annota-
tion @HanoiModelled. This is acceptable for new types, but for code which cannot
be modified to add this annotation a different approach is required.

For standard library types, a pointcut which lists all the modelled types is possible:
target(Iterator) || target(InputStream) ||
This approach could be adopted for all libraries for which Hanoi models are desired
but the original code cannot be modified.

The unified monitoring aspect is promising, but the need to define multiple sub-aspects to
handle special cases means that it does not fully achieve the goal of a generic, configuration-
less approach — The sub-aspects must still be compiled and added to the runtime environ-
ment in the same way as the generated aspects.

4.2.4 Other AspectJ possibilities

AspectJ allows a number of alternative strategies to the implementation of monitoring as-
pects, which were not used in the current implementation but are mentioned here for com-
pleteness.

Inter-type declarations

The global map of objects to object states on Line 4 of Listing 4.12 is a potential perfor-
mance bottleneck when a large set of monitored objects exists and multiple threads are in
contention to read from or write to the map. This map can be eliminated by injecting fields
to represent the current state into the monitored objects themselves, using AspectJ inter-type

declarations. Inter-type declarations can only rely on static information however in deciding
whether to weave the additional fields into a class — as such, inter-type declarations cannot
be used to add a state field to types which have been modeled using Hanoi DSLs. One can
however use an annotation (such as @States) as the trigger for inter-type declarations, as
shown in Listing 4.14, where all types annotated with @States are modified to implement

4.2. Methods of dynamic checking 102

1 public abstract aspect AbstractHanoiAspect {
2
3 abstract pointcut hanoiType();
4
5 Object around():
6 hanoiType() && call(public * *(..))
7 && !within(AbstractHanoiAspect+) {
8
9 MethodSignature msig = (MethodSignature) thisJoinPoint.

Ç getSignature();
10 Method methodCalled = msig.getMethod();
11 Object target = thisJoinPoint.getTarget();
12 IState currentState = getState(target);
13
14 if(!currentState.isLegalCall(methodCalled)) {
15 // process failure
16 }
17
18 try {
19 Object result = proceed();
20 processOutcome(target, methodCalled, result);
21 return result;
22 } catch(Throwable t) {
23 ThrownExceptionWrapper wrapper =
24 new ThrownExceptionWrapper(re);
25 currentStates.put(target,
26 currentState.getNextState(methodCalled, wrapper));
27 getUnsafe().throwException(t);
28
29 return null; // will not be reached
30 }
31 }
32
33 private sun.misc.Unsafe getUnsafe()
34 {
35 try {
36 Field field = sun.misc.Unsafe.class.getDeclaredField("

Ç theUnsafe");
37 field.setAccessible(true);
38 return (sun.misc.Unsafe)field.get(null);
39 } catch (Exception ex) {
40 throw new RuntimeException("can’t get Unsafe instance", ex);
41 }
42 }
43
44 // ...
45 }

Listing 4.13: Part of the abstract aspect

4.2. Methods of dynamic checking 103

1 interface StateTracking {}
2
3 public aspect InjectState {
4
5 declare parents: (@States *) implements StateTracking;
6
7 IState StateTracking.currentState;
8 }

Listing 4.14: Using inter-type declarations to inject state tracking fields into objects

the new interface type StateTracking, and all implementations of StateTracking
are given an additional field currentState.

A tempting alternative solution would be to add a currentState field to all objects in
Java, by using an inter-type declaration bound to the Object type. However, the Object
type cannot be modified by AspectJ — a more specific subtype is required and therefore
there is no mechanism to add a field to all objects regardless of type.

A better solution would be to augment the aspect generator to generate an additional
aspect which modifies all types with Hanoi DSL models such that they implement
StateTracking. Once this is done, the aspect in Listing 4.14 would then be able to
inject the currentState field on all tracked objects.

Control-flow pointcuts

The self-call exclusion on Line 4 of Listing 4.12 cannot deal with indirect call loops,
such as one might see with mutual recursion between two objects. A potential alter-
native is to use a control flow (cflow) based pointcut, which is sensitive to the entire
call stack. Control flow pointcuts can be used to match all pointcuts which occur during
another pointcut: for example, cflow(call(public boolean isEmpty()) &&

target(Iterator)) will match a call to isEmpty() and all other pointcuts which
occur while this method is executing. A cflowbelow pointcut will instead match the same
set of pointcuts, minus the pointcut for the call to isEmpty itself.

By negating a cflowbelow pointcut, we can exclude all pointcuts that occur during another
pointcut: around(Iterator i): target(i) &&

call(public boolean hasNext()) &&

!cflowbelow(call(public boolean hasNext())) will match any call to
hasNext which has not itself been triggered, directly or indirectly, by any other method
named hasNext. A more useful pointcut would be
around(Iterator i): target(i) &&

call(public boolean hasNext()) && !cflowbelow(target(i))

4.2. Methods of dynamic checking 104

1 public aspect BeforeAfterAspect {
2
3 pointcut isEmpty(BoundedQueue b):
4 call(public boolean isEmpty()) && target(b);
5
6 before(BoundedQueue b): isEmpty(b) {
7 IState currentState = getState(b);
8 Method m = BoundedQueue.class.getMethod("isEmpty");
9

10 if(!currentState.isLegalCall(m)) {
11 // throw IllegalStateException ...
12 }
13 }
14
15 after(BoundedQueue b) returning (boolean result): isEmpty(b) {
16 Method m = BoundedQueue.class.getMethod("isEmpty");
17 processOutcome(b, m, result);
18 }
19
20 after(BoundedQueue b) throwing (Throwable t): isEmpty(b) {
21 Method m = BoundedQueue.class.getMethod("isEmpty");
22 processOutcome(b, m, new ThrownExceptionWrapper(t));
23 }
24 }

Listing 4.15: Monitoring method calls using separate before and after advice

which would match all calls to hasNext which have not been invoked as a result of some
other call to the same Iterator instance. This pointcut is not valid however: pointcuts
which use negation cannot contain variables. The control-flow restriction
!cflowbelow(target(Iterator)) is valid, however it is often too restrictive as it
is insensitive to the specific instance — it will exclude direct and indirect recursive calls as
desired, but it will also exclude a call to iterator i as a result of some other iterator j.

Another possibility is to exclude all pointcuts reached as part of executing the monitoring
advice, through the pointcut
!cflow(adviceexecution() && within(IteratorUsageMonitor)). This
too is overly restrictive for the same reason — it is insensitive to the identity of the objects
and so would exclude monitoring a call to an Iterator instance from another instance.

Before and after pointcuts

Rather than intercepting and completely handling a method call using around() advice,
another possibility is to split the handling into two related before() and after() han-
dlers. This has the specific advantage of allowing the handling of thrown exceptions and
normal return separately, as demonstrated in Listing 4.15, which is an adaptation of the orig-
inal generated aspect shown in Listing 4.12.

4.3. Evaluating the overhead of dynamic checking 105

This presentation is cleaner, as the after() advice does not need to rethrow the exception
or process specific types of exception.

Aspect generation using MetaAspectJ

The current implementation of aspect generation manipulates string templates — a more
maintainable approach would be to use Meta-AspectJ (MAJ) [160], which provides a mech-
anism for generating aspects in a flexible, type safe manner. MAJ provides a minimal
extension to the syntax of Java to provide a convenient and type-safe syntax for meta-
programming. A partial implementation of monitoring aspect generation is shown in Listing
4.16.

In Meta-AspectJ, fragments of code are embedded in generating expressions of form ‘[

<code>], which produce abstract syntax tree (AST) fragments that are typically assigned
to variables of an “inferred” type, as seen on Line 9 and Line 37. AST fragments can be
composed, typically by including a fragment in a larger fragment as seen on Line 15 — the
fragment is referred to by its field name, prefixed by “#”.

The Meta-AspectJ compiler is capable of determining the AST node type of generating ex-
pressions, and can statically enforce syntactically correct composition of aspects, which reg-
ular parameterised string templates cannot. As such, Meta-AspectJ is a better option for the
implementation of any future production-ready version of the monitoring aspect generator.

4.3 Evaluating the overhead of dynamic checking

The overhead of the implemented dynamic checkers for Hanoi is important to the assessment
of their practicality. Both the dynamic proxy based implementation and the AspectJ based
implementation work by instrumenting every method call to a monitored object type, so it is
desirable to determine the per-call overhead.

In order to do this, a simple benchmark was constructed using a type which implements the
common left fold (also known as reduce) operation over a list of values. The code for this
type and its Hanoi model is shown in Figure 4.2 — an artificial typestate restriction was
added such that foldLeft must be called before getResult can be called. foldLeft
is O(n) in the size of the list when the binary operation applied is O(1). The aim of the
benchmark is to measure the time taken for each call to foldLeft with and without dy-
namic checking, to measure the relative overhead.

The test machine used was a 2012 Retina Macbook Pro with a 2.3 GHz Intel Core i7 proces-
sor and 8GB of DDR3-1600 RAM, running Mac OS X 10.8.3 with the Oracle Java Virtual
Machine, version 1.7.0 06.

4.3. Evaluating the overhead of dynamic checking 106

1 public String buildMonitoringAspectFor(Class<?> c) {
2 String pack = c.getPackage().getName();
3 String aspectName = c.getName() + "UsageMonitor";
4 Import[] imports = buildImports();
5 AspectMember[] aspectFields = buildFields(c);
6 AspectMember[] constructorAdvice = buildConstructorAdvice(c);
7 AspectMember[] methodAdvice = buildMethodAdvice(c);
8
9 infer hanoiAspect = ‘[

10 package #pack;
11
12 #imports
13
14 public aspect #aspectName issingleton() {
15 #aspectFields
16 #constructorAdvice
17 #methodAdvice
18 }
19];
20
21 return hanoiAspect.unparse();
22 }
23
24 private AspectMember[] buildMethodAdvice(Class<?> c) {
25 ArrayList<AspectMember> allAdvice = new ArrayList<AspectMember>();
26 for(Method m : c.getMethods()) {
27 // ignore all standard Object methods and non-public methods
28 if (m.getDeclaringClass().equals(Object.class)) continue;
29 if (!Modifier.isPublic(m.getModifiers())) continue;
30 allAdvice.add(buildMethodAdvice(c, m));
31 }
32
33 return allAdvice.toArray(new AspectMember[allAdvice.size()]);
34 }
35
36 private AspectMember buildMethodAdvice(Class<?> c, Method m) {
37 infer returnType = ‘[m.getReturnType().getCanonicalName()];
38 return ‘[
39 #returnType around():
40 target(#[c.getName()]) &&
41 call(public #returnType #[m.getName()]) {
42
43 IState currentState = getState(thisJoinPoint.getTarget());
44 /* ... */
45 }
46];
47 }

Listing 4.16: Partial implementation of monitoring aspect generation using Meta-AspectJ

4.3. Evaluating the overhead of dynamic checking 107

1 $ java -jar perftest.jar 200
2 WARMUP
3 done (7025194 iterations)
4 MAIN RUN
5 done (42519079 iterations)
6 array size: 200
7 dynamic checking: false
8 end-to-end time: 59999.877 ms
9 num iterations: 42519079

10 approximate mean per iteration: 1411ns

Listing 4.17: Output from the foldLeft benchmark

The System.nanoTime() method returns the elapsed time of the program using the
highest precision timer available in the system. With the test machine, the timer is accurate
to the nearest microsecond. The speed of the machine and the precision of the clock are such
that directly measuring the time taken for each iteration is not possible — for lists of length
n < 200, it was found that the system would often measure no elapsed time for the operation,
indicating the clock is too coarse for measuring the time elapsed for operations of this size.
An alternative approach is to invoke foldLeftmillions of times and measure the total time
taken. Dividing this time by the number of iterations gives an approximation of the time per
call to foldLeft.

The benchmark program takes the array size as a parameter, allowing for the overhead to be
determined relative to some known amount of operations. The benchmark first “warms up”
the Java Virtual Machine by repeatedly invoking foldLeft for 10 seconds — this is nec-
essary as the JVM performs a number of tasks from class loading to just-in-time compilation
and optimisation based on observed patterns of execution. After warming up, foldLeft is
repeatedly invoked for 60 seconds and the number of invocations counted, then divided by
the total invocation count to produce an approximation of the call time. This approximation
includes some additional overheads such as the evaluation of a loop condition to determine
whether the 60 second run time is complete, and the incrementing of the counter, though
such operations are inexpensive and necessary regardless of whether dynamic checking is
enabled or not. As such, this should not impact the results derived in any meaningful way.

The benchmark results are printed to the terminal in the form shown in Listing 4.17. The ap-
proximate mean value was collected for lists of exponentially increasing size from 3 to 800
and are plotted in Figure 4.3, with linear lines of best fit. The observed overhead of Hanoi
checking using a dynamic proxy is approximately 58 nanoseconds, which is roughly equiv-
alent to the amount of work undertaken by the body of foldLeft with a multiplication
BinOp and a list of size 3.

This can be quantified more precisely, in terms of the number of method calls and basic

4.3. Evaluating the overhead of dynamic checking 108

1 public class ArrayListFolder<T,U> {
2
3 private T lastResult;
4
5 public void foldLeft(T initVal, ArrayList<U> arr, BinOp<T,U> op) {
6 lastResult = initVal;
7
8 for(U u : arr) {
9 lastResult = op.apply(lastResult, u);

10 }
11 }
12
13 public T getResult() {
14 return lastResult;
15 }
16 }
17
18 public interface BinOp<T, U> {
19 T apply(T t, U u);
20 }
21
22 public class Multiply implements BinOp<Integer, Integer> {
23 @Override public Integer apply(Integer t, Integer u) {
24 return t * u;
25 }
26 }

1 ROOT {
2 GET {
3 getResult() -> ROOT
4 }
5
6 foldLeft(T,C,BinOp) -> GET
7 }

Figure 4.2: An implementation of fold in Java, with its Hanoi model

4.3. Evaluating the overhead of dynamic checking 109

No Checking
No Checking Fit (y = 7x + 25.4)
Dynamic Proxy
Dynamic Proxy Fit (y = 7x + 83.9)

fo
ld

Le
ft

ca
ll

tim
e

(n
s)

100

200

400

800

1600

3200

6400

List size
3 6 12 25 50 100 200 400 800

Overhead of Hanoi Dynamic Checking

Figure 4.3: Observed overhead for the dynamic proxy based checker

operations undertaken in the implementation of foldLeft. The for loop syntactic sugar
used on Line 8 of the implementation of ArrayListFolder is equivalent to a while loop
using an Iterator. As such, the cost of foldLeft with a list of size n is equivalent to:

• one call to iterator() on ArrayList

• n + 1 calls to hasNext()

• n calls to next()

• n calls to apply on the provided BinOp

• n + 1 assignments to lastResult

• n assignments to u, the temporary variable used to hold the values of the list

For a list of size 3, this amounts to 10 method calls, 4 assignments and 3 multiplications.

An unavoidable component of the overhead for a dynamic proxy based checker is the cost
of the dynamic proxy itself. The overhead of a dynamic proxy which does nothing more
than invoke the wrapped object (shown in Listing 4.18) was measured to be approximately
9ns per call, or approximately 15% of the total cost of a proxy which also enforces a Hanoi
model. This overhead can be potentially eliminated by the AspectJ based approach, but both
implementations use the same logic for tracking the state of an object and therefore at a
minimum Hanoi would introduce approximately 50 nanoseconds of overhead for every call
that is monitored. This overhead increases where the return value must also be processed —
in the example above, the transition in the state model is not sensitive to the return value.

4.3. Evaluating the overhead of dynamic checking 110

1 public class DoNothingInvocationHandler implements InvocationHandler {
2
3 private Object wrappedObject;
4
5 public DoNothingInvocationHandler(Object o) {
6 this.wrappedObject = o;
7 }
8
9 public Object invoke(Object proxy, Method method, Object[] args)

10 throws Throwable {
11 return method.invoke(wrappedObject, args);
12 }
13 }

Listing 4.18: The simplest dynamic proxy possible

Checking mode Time Factor of uninstrumented
Uninstrumented 0.7s 1x
Optimal wrapper 1.1s 1.6x
Proxy from Listing 4.18 33s 47x
Hanoi Dynamic Proxy 61s 87x

Figure 4.4: Benchmark times for matrix multiplication

It is clear from the results in Figure 4.3 that if the body of a method is complex, the over-
head of dynamic checking is insignificant. If the body is trivial, however, the overhead is
substantial. This is the case for the implementation of Iterator for most data structures
— implementing hasNext and next involves little more than the maintenance of a pointer
or an index, and so is very inexpensive compared to the cost of the dynamic checking. This
is clearly demonstrated in another benchmark devised to generate a significant volume of
calls to Iterator. The scenario of this second benchmark was involved multiplying large
matrices, where matrices are represented as lists of lists and access to elements is performed
using Iterator exclusively.

Given two matrices A and B such that C = A ×B, the code used to derive the value of Cij
(where i is the row and j the column) is shown in Listing 4.19. This code was executed with
matrices A and B of size 30 × 30, requiring that this method be invoked once for each of the
900 cells of C. By instrumenting the code to count the number of invocations of Iterator
methods, it was determined that 487350 calls are made to hasNext and 486450 calls are
made to next for each matrix multiplication operation. A benchmark was constructed using
1000 matrix multiplication operations, recording the total time to carry out all multiplications
(after a warmup period of 100 such multiplications). The times recorded are presented in
Figure 4.4.

The overhead recorded in this benchmark for using dynamic proxies is substantial — the
dynamic proxy based checker is almost two orders of magnitude slower than the uninstru-

4.3. Evaluating the overhead of dynamic checking 111

mented program. At least half of this overhead is due to the cost of using a dynamic proxy,
as seen in the time taken using the “do nothing” proxy from Listing 4.18.

Some overhead is obviously unavoidable if we wish to enforce the typestate constraints in a
Hanoi model. In order to measure what one could argue would be the minimum overhead
possible using a wrapper-based approach, a simple hand-crafted checker was produced. A
fragment of this is shown in Listing 4.20. The checking performed is similar in structure
to the code for the advice in Listing 4.13. This implementation avoids some unnecessary
checks: hasNext is available in all states, therefore the current state need not be checked
before performing the real call. The return value for next need not be processed as the
transition for next is unconditional. The manipulation of primitive booleans to represent
the state of the object is likely to be significantly cheaper than using an object to represent
the state, as the Hanoi implementation presently does.

The overhead observed for such a simple checker in the matrix multiplication benchmark is
approximately 60%. A more sophisticated implementation of the aspect generator may be
able to produce code as efficient as this for checking Hanoi models. This still represents a
significant overhead compared to the uninstrumented program, though the scenario is rather
extreme — the execution time of the program is dominated by the cost of calls to Iterator
instances, which is unlikely to be the case in a more realistic program.

The lesson that can be derived from these observations is that the current implementation
of Hanoi is suitable for use in checking typestate constrained interfaces in the following
circumstances:

• When safety is more important than performance — this is likely to be the case where
the interface in question controls communication with other modules in a system or
with external systems.

• When the calls are infrequent, and therefore unlikely to seriously impact the perfor-
mance of the program.

• When the calls are complex, and therefore the overhead introduced by dynamic check-
ing is insignificant next to the complexity of the call itself.

• During testing, where performance is less of a concern than finding potential bugs.

With further optimisation, it may be possible to bring the overhead of the AspectJ based ap-
proach down to within an order of magnitude of the uninstrumented run time of the matrix
multiplication benchmark. At this level of overhead, it may be acceptable to use this moni-
toring approach in production code. The overheads of using dynamic, interpreted languages
such as Python compared to Java are routinely accepted for the convenience derived — ac-
cording to the Computer Programming Language Benchmark Game [52], Python 3 code is

4.4. Conclusion 112

1 int getValue(int row, int col) {
2 int value = 0;
3 Iterator<Integer> aRowIter = getNth(a.rows.iterator(), row);
4 Iterator<List<Integer>> bRowsIter = b.rows.iterator();
5
6 while(aRowIter.hasNext()) {
7 int aValue = aRowIter.next();
8
9 if(!bRowsIter.hasNext()) throw new IllegalArgumentException();

10 List<Integer> bRow = bRowsIter.next();
11
12 int bValue = getNth(bRow.iterator(), col);
13
14 value += aValue * bValue;
15 }
16
17 return value;
18 }
19
20 int getNth(Iterator<Integer> iter, int n) {
21 int pos = 0;
22 int last = null;
23 while(pos <= n) {
24 if(!iter.hasNext()) throw new IllegalArgumentException();
25 last = iter.next();
26 pos++;
27 }
28
29 return last;
30 }

Listing 4.19: Matrix multiplication implemented using Iterator to access elements

typically a factor of 40 slower than Java code (while Java code is typically a factor of 2
slower than C code). As such, an order of magnitude slowdown for the convenience of not
having to write defensive code to enforce typestate constraints may be acceptable in some
circumstances.

4.4 Conclusion

A number of approaches have been evaluated and tested for the dynamic checking of Hanoi
models, with an emphasis on approaches which are likely to be practical for deployment
outside of a research project environment. An AspectJ based approach was found to provide
the most practical solution, against the criteria laid out in Section 4.1: no language changes
are required, the checker can be enabled with minimal configuration, explicit cooperation
of client code is not required for checking to be enforced, and the prototype implementation
could be further augmented to allow for selective monitoring within specific regions of a code
base. The current implementation of the AspectJ approach is suitable for use during testing

4.4. Conclusion 113

1 public class OptimalCheckIterator<E> implements Iterator<E> {
2
3 private Iterator<E> realIter;
4
5 private boolean nextAvailable;
6 private boolean canRemove;
7
8 public OptimalCheckIterator(Iterator<E> iter) {
9 this.realIter = iter;

10 resetState();
11 }
12
13 @Override
14 public boolean hasNext() {
15 try {
16 boolean result = realIter.hasNext();
17 if(result) nextAvailable = true;
18 return result;
19 } catch(RuntimeException e) {
20 resetState();
21 throw e;
22 } catch(Error e) {
23 resetState();
24 throw e;
25 }
26 }
27
28 @Override
29 public E next() {
30 if(!nextAvailable) throw new IllegalStateException();
31
32 try {
33 E result = realIter.next();
34 nextAvailable = false;
35 canRemove = true;
36
37 return result;
38 } catch(RuntimeException e) {
39 resetState();
40 throw e;
41 } catch(Error e) {
42 resetState();
43 throw e;
44 }
45 }
46
47 private void resetState() {
48 nextAvailable = false;
49 canRemove = false;
50 }
51
52 /* ... */
53 }

Listing 4.20: A fragment of an “optimal” hand-written wrapper for Iterator to check its
typestate constraints

4.4. Conclusion 114

or to monitor interfaces for which performance is not important. With further optimisation,
it may be possible to bring the overhead of this approach down to a level which would be
acceptable for use in production code.

The matrix multiplication micro-benchmark provides an estimate of the worst-case overhead
that Hanoi can introduce: the performance of the program is strongly determined by the
cost of calling Iterator methods, and the dynamic checking in this example results in
such calls costing two orders of magnitude more than when they are uninstrumented. This
overhead is similar to what one would experience when using a profiler which collects de-
tailed statistics on every method call made by a program — while useful, this overhead is
not acceptable for a program running in a production environment.

However, if instead one were to limit monitoring to methods which are not performance
critical in a program, the overhead would be negligible. Monitoring the state of IO channels
or interactions with graphical user interface elements and remote services would typically fall
into this category — calls are infrequent or expensive, such that the total cost of checking
and updating typestate information is a small fraction of the other work being undertaken by
the program.

Characterising the overhead in the “general” case is difficult due to the variety of differ-
ent behaviours exhibited in programs, and the options available in selecting which classes
are monitored. The selection of what constitutes an important typestate constraint is very
program-specific, and is a trade-off between the value the monitoring provides versus the
acceptable overhead for the program in question.

115

Chapter 5

Can programmers reason about
typestate?

Programming language designers are often accused of inventing new programming con-
structs without having any notion of how well suited such techniques are to industrial soft-
ware development. While they may be able to show small, pedagogical examples of how a
new technique can counter a class of bugs, or allow a more compact expression of a particu-
lar concept, this is rarely supported by a study which demonstrates that the technique fits the
following important criteria:

• Worth learning — the overall productivity gains made possible by the new feature
outweigh the effort of learning the new feature, and any overheads associated with its
use.

• Clearly expressed — the particular syntactic elements used in the expression of the new
feature are the best that could be found, or equivalent to other evaluated possibilities.

• Justified — the increase in complexity of the language due to the addition of the feature
is justifiable, in that the feature is of greater general utility than some other feature that
could be added. All languages have a notional “complexity budget” that cannot be
exceeded without causing confusion and misuse. The feature set of a language must
be chosen carefully to provide the greatest overall utility within that budget for the
domain in which the language is expected to be used.

The introduction of typestate to a language should be evaluated against these criteria as well.
Can a competent programmer learn what typestate is, identify where it should be used, and
reason about code which interacts with objects that have typestate constraints? There are
many aspects of this problem that are difficult to quantify:

5.1. Experiments considered 116

• What qualifies a programmer as “competent”? In other words, what is the expected
or required knowledge that a programmer must have for typestate to be a worthwhile
addition to a language?

• What constitutes effective reasoning? Building an accurate mental model of what
code does is notoriously difficult and a source of many bugs — despite the best efforts
of a type system, mistakes are likely. In the case of typestate, assessing whether a
programmer can reason about state transitions most of the time, such that they are
not constantly surprised by a static analysis tool disagreeing with their mental model,
should be sufficient.

• How can we quantify whether a feature is of more value than another? Such a question
is subjective. The features of a programming language interact in non-trivial ways such
that swapping one feature for another is not always possible; assessing the impact of
such a change is likely to be difficult.

Given the complexity in answering the above questions, it is understandable that applied
programming language research is rarely accompanied by user studies that justify the utility
of a particular type system feature or static analysis tool.

Regardless, assessing the utility of typestate through experimentation is likely to be essential
in convincing those outwith the research community that it has value, and should be included
in contemporary programming languages.

This chapter assesses the practicality of the Hanoi modelling language, and directly com-
pares the DSL and annotation based model types. The annotation model type is a good ap-
proximation of the syntax used to express the typestate specific features of Plural and Vault,
and therefore should contribute some evidence as to the practicality of the relevant subset of
such tools as well. By comparing the DSL and annotation model types, we may be able to
determine whether the difference in presentation of the model has any noticeable impact on
a programmer’s ability to understand a typestate model.

5.1 Experiments considered

In order to evaluate the practicality of the Hanoi language for typestate modelling, an exper-
imental design was desired with the aim of evaluating the following research questions:

• Can programmers reason effectively about the semantics of Hanoi?

• Is the effectiveness with which a programmer can reason about a Hanoi model influ-
enced by the presentation of the model?

5.1. Experiments considered 117

• Will programmers prefer either the DSL or annotation model types?

These questions should be evaluated in the context of one or more of the following tasks:

• Deciding whether a Hanoi model is semantically valid.

• Writing code that does not violate constraints in a Hanoi model.

• Producing a semantically valid Hanoi model against an informal specification.

• Identifying whether code violates constraints in a Hanoi model.

Different experimental designs were considered, oriented around questions related to these
tasks, before settling on a final experimental design.

Can programmers find semantic errors in Hanoi specifications? An experiment
could be devised where participants are presented with Hanoi models of varying complexity,
and asked to identify whether any of the transitions specified are invalid. While such a study
should provide a clear answer as to whether participants understand the rules, and which
rules or rule interactions cause the most difficulty, presenting the models in isolation from
model usage is unlikely to provide a useful assessment of the practicality of the model.
Not only must the model be semantically correct, it should match the intended behavioural
restrictions of a class. This semantic relationship dictates the structure of the model and often
allows for intuitive deduction of when a particular constraint is nonsensical, rather than from
first principles.

It was decided that conducting a study exclusively of this form would not provide sufficient
insight to evaluate the hypotheses, though it could be useful to pose questions of this form
as part of a larger study.

Can programmers write code that conforms to a Hanoi model? An experiment
could be devised where a programmer is asked to write code to solve problems, using an
API with typestate restrictions modelled using Hanoi. Such an experiment would provide a
realistic setting, but it is not clear how the user’s performance should be evaluated. The code
could be scored automatically based on whether it passes a set of unit tests, and whether the
code violates any typestate constraints. With such an experiment, the user’s performance is
primarily determined by their ability to code a working solution, with the typestate violations
as a secondary concern. Therefore, determining the impact of typestate on the programmer’s
ability to solve a problem is likely to be difficult without a large study.

5.1. Experiments considered 118

A qualitative approach may prove better for a small study, however the results are likely
to be similarly indirect and therefore unlikely to adequately evaluate the hypotheses. The
best option for a study of this form may be to assess the performance of a small group of
programmers over a long period of time, writing significantly more code against an API
composed of multiple typestate constrained interfaces, and then interview the participants
about their experiences of using the API and tools that provided static and dynamic analysis
of the API. Unfortunately, such a study is far too ambitious given the limited time available,
and would constitute a PhD in itself.

Can programmers write correct Hanoi models? An experiment to answer this
question could provide participants with the implementation of a class, or an interface with
an informal description of the desired typestate constraints. From this, a user would be asked
to construct a Hanoi model. Such a model could be automatically checked and scored, by
testing whether it would allow or disallow sequences of method calls as desired. Ultimately,
such a model could be checked as to whether it is directly equivalent to a correct model, by
ensuring they are both simulations of each other.

A pilot experiment of this form was conducted with three participants. The time taken for
participants to produce two models was measured, along with a score from 0-10 derived by
automated analysis of the models as described — 5 points for rejecting illegal sequences
of method calls (the exact sequences were not revealed to the participants), and 5 points
for providing a model which was directly equivalent to a correct model. Participants were
assigned to groups, with group A to provide the first model in annotation form and the
second in DSL form, while group B were to do the inverse (this is commonly known as a
within group counter-balanced study).

While the pilot provided useful insight into how participants attempted to construct typestate
models and whether they were correct, it was determined that running a larger scale version
of such a study would take more time and resource than could be reasonably allocated —
times observed for the production of one model, for a small class whose typestate constraints
could be expressed with a 10 line DSL model, were up to 45 minutes. Two models seemed
inadequate to provide enough quantitative or qualitative information to evaluate the hypothe-
ses, therefore additional models would be required and a more detailed scoring system would
have to be devised.

It was desired to conduct a study where the maximum amount of information could be de-
rived in a 90 minute period (which would include a short tutorial on Hanoi), therefore a study
of this form was unlikely to be a good fit.

5.2. Experimental design 119

Can programmers identify typestate violations in existing code? An experi-
ment to answer this question could ask the user to play the role of a static analysis tool,
inspecting a fragment of code for typestate violations, given a Hanoi model. By choosing
realistic models and realistic code using those models, such an experiment may give useful
insight into the performance of programmers in a practical setting. Reading code is at least
as important as writing it, therefore testing that the programmers ability to reason about ex-
isting code that interacts with Hanoi modelled classes is an essential part of assessing the
practicality of Hanoi.

A pilot experiment of this form was conducted with the same three participants from the
model writing experiment. Participants were able to answer questions based on existing
code quickly, typically in under 5 minutes. As such, it seemed likely an experiment of this
form would provide useful data to evaluate the hypotheses, and could be conducted with the
time and resource available.

5.2 Experimental design

Based on experiences from the two pilots conducted, it was decided that the experiment
should last at most 90 minutes per participant, and that each participant would be individ-
ually assessed. Participants (n = 10) were selected on the basis of their experience with
the Java programming language and their ability to pass a simple test (see Figure 5.1) of
their knowledge of the inheritance and overriding rules of Java. Participants were paid the
standard hourly rate of the institution at which the experiment was conducted.

The primary objective of the experiment was to compare the DSL and annotation forms of
Hanoi, in order to determine whether the presentation of the model had a noticeable impact
on performance, or whether users preferred either style of presentation.

The experiment began with a 20 minute tutorial on the conceptual background of typestate,
and then of the syntax and semantics of Hanoi using a motivating example presented ini-
tially as a state chart. Both the DSL and annotation forms of this model were demonstrated
simultaneously, and their semantic equivalence emphasised.

Four typestate models were devised that represented realistic typestate constrained inter-
faces, and four multiple choice questions were chosen for each model to test the ability of
a participant to reason about them effectively. Participants were asked to read a model, and
only proceed to the questions on that model once they felt they had correctly understood the
restrictions the model described, in an attempt to provide data to distinguish reading times
between the two model types. The time taken for a participant to answer a question related
to a model was similarly recorded. Participants were instructed not to guess, with the option

5.2. Experimental design 120

Java Question 1 What does the following code output?
Options: byte, short, int, long

1 class A {
2 public void x(byte b) { System.out.println("byte"); }
3 public void x(long l) { System.out.println("long"); }
4 }
5
6 class B extends A {
7 public void x(short s) { System.out.println("short"); }
8 public void x(int i) { System.out.println("int"); }
9 }

10
11 class Main {
12 public static void main(String[] args) {
13 A a = new B();
14 a.x((short)5);
15 }
16 }

Java Question 2 What does the following code output?
Correct response: 6 4 2 (with newline separators)

1 import java.util.*;
2
3 import static java.util.Arrays.*;
4 import static java.lang.System.*;
5
6 class Main {
7 public static void main(String[] args) {
8 List<Integer> list = asList(1, 2, 3, 4, 5, 6);
9 Stack<Integer> filtered = new Stack<Integer>();

10 Iterator<Integer> it = list.iterator();
11 while(it.hasNext()) {
12 int val = it.next();
13 if(val % 2 == 0) {
14 filtered.push(val);
15 }
16 }
17
18 while(!filtered.isEmpty()) out.println(filtered.pop());
19 }
20 }

Figure 5.1: Java puzzles used to test comprehension of Java’s semantics

5.2. Experimental design 121

to skip a question (providing no specific answer) if they were unable to determine the correct
answer.

It was felt that testing each participant on only one of the two forms of model would not pro-
vide reliable information for comparing the two approaches. With four questions, it would
be possible to give two models of each type to each participant, in an effort to compensate
for the likely differences in innate ability between the participants.

It was also anticipated that a learning effect would be present in the experiment (i.e. the
speed and accuracy of answering questions would improve with experience, even over the
short period of time involved in this experiment), therefore it would be undesirable to show
the annotation models first and then the DSL models, or vice versa. Instead, models were
shown alternately, with participants randomly divided between two groups, A and B. Group
A were shown annotation models for questions 1 and 3, and DSL models for questions 2 and
4. Group B were shown the inverse.

During the course of the experiment, all participants were asked to think aloud while an-
swering the questions, and were recorded with consent, with the aim of collecting qualitative
information on their thought processes, and aspects of the question and models which caused
them difficulty.

Finally, participants would receive one point for each correctly answered question, for a total
of 16 points over the entire experiment.

After answering all questions, anticipated to take roughly 45 minutes, the participants an-
swered a short survey rating their preference for either the DSL or annotation models, inde-
pendent of their performance. Responses were recorded using a standard five point Likert
scale, with care taken to ensure that acquiescence bias (the tendency to agree with a state-
ment as presented) would not favour either of the two models — questions alternated between
statements phrased as “I find it easier to . . . with a DSL model” and those phrased as “I find
it easier to . . . with an Annotation model”.

5.2.1 Null hypotheses

Formally, the following null hypotheses were evaluated during this experiment:

1. The time taken for a participant to read and answer a question related to a Hanoi model
is independent of the model type.

2. The time taken for a participant to read and understand a model is independent of the
Hanoi model type.

5.3. Experiment questions 122

3. Participant performance in answering questions related to the semantics of a Hanoi
model is independent of the model type.

4. Participant performance is independent of their self-rated level of experience with ob-
ject oriented programming, functional programming or formal methods.

5. Participant performance is independent of their number of years experience as a pro-
grammer.

6. Participants express no preference for either Hanoi model type.

5.3 Experiment questions

The description of each Hanoi model and questions related to a model posed to the partic-
ipants, along with a discussion of their intended goal in evaluating the hypotheses, is pre-
sented below. Statechart representations are provided for illustrative purposes, however these
were not shown to the experiment participants. Otherwise, the descriptions of the models and
questions are exactly as presented to the participants during the experiment.

5.3.1 Model 1 — DistributedWorkQueue

A DistributedWorkQueue represents the local handle to a queue of work to be done in
a distributed system. Workers signal they are ready to work by calling join() and signal
they are no longer available to do work by calling leave(). While working, the methods
takeInput() and produceOutput() are used to consume and produce data.

Java interface:

1 public interface DistributedWorkQueue<T,U> {

2 void join();

3 void leave();

4 T takeInput();

5 void produceOutput(U u);

6 }

Hanoi DSL model:

1 UNKNOWN {

2 WORKING {

3 PENDING_OUTPUT {

4 produceOutput(U) -> PENDING_INPUT

5 }

6

5.3. Experiment questions 123

7 CAN_STOP {

8 PENDING_INPUT {

9 takeInput() :: null -> CAN_STOP

10 takeInput() :: <other> -> PENDING_OUTPUT

11 }

12
13 leave() -> DORMANT

14 }

15 }

16
17 DORMANT {

18 join() -> PENDING_INPUT

19 }

20 }

Hanoi annotation model:

1 @States({

2 @State(name="UNKNOWN"),

3 @State(name="WORKING", parent="UNKNOWN"),

4 @State(name="PENDING_OUTPUT", parent="WORKING"),

5 @State(name="CAN_STOP", parent="WORKING"),

6 @State(name="PENDING_INPUT", parent="CAN_STOP"),

7 @State(name="DORMANT", parent="UNKNOWN")

8 })

9 public interface DistributedWorkQueue<T,U> {

10
11 @Transition(from="DORMANT", to="PENDING_INPUT")

12 void join();

13
14 @Transition(from="CAN_STOP", to="DORMANT")

15 void leave();

16
17 @Transitions({

18 @Transition(from="PENDING_INPUT",

19 to="CAN_STOP",

20 whenResult="null"),

21 @Transition(from="PENDING_INPUT",

22 to="PENDING_OUTPUT",

23 whenResult="<other>")

24 })

25 T takeInput();

26
27 @Transition(from="PENDING_OUTPUT",

28 to="PENDING_INPUT")

29 void produceOutput(U u);

30 }

5.3. Experiment questions 124

State chart:

UNKNOWN

WORKING DORMANT

PENDING_OUTPUT

CAN_STOP

PENDING_INPUT
produceOutput

takeInput :: <other>

takeInput :: null

leave

join

Discussion This model exhibits the common alternating behaviour pattern between
takeInput and produceOutput, but with a conditional transition based upon the return
value of takeInput (intended to indicate that no more work is available in the queue).
Client code must take care to correctly check the return value. Additionally, the client may
only call leave when it has not taken a pending work item or there is no more work. The
WORKING and DORMANT states are purely descriptive, as they define no transitions of their
own.

Due to the depth of the hierarchy, it was speculated that this model may be easier to work
with in the DSL form than in the annotation form, as the structure of the hierarchy and the
inherited transitions (in particular, the ability to call leave from PENDING INPUT) may
be more readily apparent.

Question 1A

Consider the method doPrimeWork, which computes whether numbers provided through
the DistributedWorkQueue handle are prime numbers or not.

1 public void doPrimeWork(DistributedWorkQueue<BigInteger,Boolean>

Ç workHandle, int numIters) {

2 workHandle.join();

3 for(int i=0; i < numIters; i++) {

4 BigInteger input = workHandle.takeInput();

5 workHandle.produceOutput(isPrime(input));

6 }

7 workHandle.leave();

5.3. Experiment questions 125

8 }

9
10 private boolean isPrime(BigInteger i) { /*...*/ }

A DistributedWorkQueue instance in state DORMANT will be passed into the method.
Will a typestate constraint be violated? If so, please indicate on which line the violation will
occur. If not, choose “no violation”.

Options: (A) line 2, (B) line 4, (C) line 5, (D) line 7, (E) no violation

Discussion The call to join on Line 2 results in a state transition to PENDING INPUT.

If numIters ≤ 0 then leave on line 7 will be called, resulting in a transition back to
DORMANT (as this transition is inherited from the definition of CAN STOP.

If numIters > 0 then the body of the loop will be executed. The transition triggered by
the call to takeInput on line 4 is conditional upon the return value, which is stored
in input. This value is not inspected and therefore workHandle is either in state
PENDING OUTPUT or CAN STOP. The call to produceOutput on line 5 is not legal in
state CAN STOP, therefore a typestate violation can result from this call.

Correctly answering this question requires that the participant can reason about conditional
transitions, and what can be done with an object in an indeterminate state.

Question 1B

Consider the doSearchWork method, which attempts to count the number of matches of
a regular expression within a large corpus of data shared by each node. This operation can
fail, resulting in an IOException being thrown.

1 public void doSearchWork(DistributedWorkQueue<String,Integer> workHandle)

Ç throws IOException {

2 workHandle.join();

3 String regex = workHandle.takeInput();

4 try {

5 if(regex != null) {

6 findOccurrences(regex);

7 }

8 } catch(IOException e) {

9 workHandle.produceOutput(null);

10 }

11 workHandle.leave();

12 }

13
14 public int findOccurrences(String regex) throws IOException

5.3. Experiment questions 126

15 { /* ... */ }

If doSearchWork is run and an IOException is thrown by findOccurrences on
line 6, what state is the workHandle instance in on line 11 prior to the call to leave?

Options: (A) UNKNOWN, (B) WORKING, (C) PENDING OUTPUT, (D) CAN STOP,
(E) PENDING INPUT, (F) DORMANT

Discussion The calls to join and takeInput (with a non-null value, as checked
on line 5) result in a transition to state PENDING OUTPUT. If an IOException is
thrown as indicated, produceOutput will be called, resulting in a transition to state
PENDING INPUT, prior to the call to leave.

Correctly answering this question requires that the participant be able to reason about the
impact of exception control flow. In this particular scenario, it was not expected that this
combination of exceptions with typestate would prove particularly taxing, but nonetheless
such an assumption was worth checking.

Question 1C

Consider the fetchResources method, which retrieves the String content of a URL
through an HTTP request.

1 public void fetchResources(DistributedWorkList<URL, String> workHandle) {

2 workHandle.join();

3 try {

4 URL resLoc = workHandle.takeInput();

5 if(resLoc != null) {

6 workHandle.produceOutput(fetchPage(url));

7 }

8 } finally {

9 workHandle.leave();

10 }

11 }

12
13 public String fetchPage(URL url) throws IOException { /* ... */}

A DistributedWorkQueue instance in state DORMANT will be passed into the method.
Will a typestate constraint be violated? If so, please indicate on which line the violation will
occur. If not, choose “no violation”.

Options: (A) line 2, (B) line 4, (C) line 6, (D) line 9, (E) no violation

5.3. Experiment questions 127

Discussion The initial call to join results in a transition to PENDING INPUT.

If the call to takeInput on line 4 returns a null value, this results in a transition to
CAN STOP and execution skips to line 9. The call to leave then results in a transition
to DORMANT.

If the call to takeInput returns a non-null value, this results in a transition to
PENDING OUTPUT and execution of line 6 occurs.

If an exception is not thrown by fetchPage, then the call to produceOutput will result
in a transition to PENDING INPUT, followed by the call to leave resulting in a transition
to state DORMANT.

If an exception is thrown by fetchPage, then execution skips to line 9 with workHandle
still in state PENDING OUTPUT. The call to leave is not legal in this state. Therefore, a
typestate violation may occur on line 9.

Correctly answering this question requires that the participant be able to reason about the
impact of exception control flow, in a more complex scenario than in the previous question.
There are multiple paths to the leave call and all must be considered for legality; in partic-
ular, the user must be aware of the fact that fetchPage may throw an exception, and that
this will result in produceOutput not being called.

Question 1D

Consider the method identityWorkStep:

1 public void identityWorkStep(DistributedWorkList<T,T> workHandle) {

2 workHandle.produceOutput(workHandle.takeInput());

3 }

A DistributedWorkQueue instance in state PENDING INPUT will be passed into the
method. Will a typestate constraint be violated? If so, please indicate which method will
cause the violation. If no violation will occur, choose “no violation”.

Options: (A) produceOutput, (B) takeInput, (C) no violation

Discussion As workHandle is already in state PENDING INPUT, the call to
takeInput will result in a transition to CAN STOP if a null value is returned, or to
PENDING OUTPUT otherwise. In the first case, the call to produceOutput is not per-
mitted.

Similar to Question 1, this requires that the user be able to reason about conditional tran-
sitions, and pay attention to the case where null may be returned. Additionally, it breaks

5.3. Experiment questions 128

from the pattern of the previous questions of starting in state DORMANT, to test that they can
reason about interacting with the object from a different start state than they might expect.

5.3.2 Model 2 — Calculator

A Calculator instance represents a simple event driven calculator, which responds to
input from a user interface. Rules govern the order in which symbols may be entered in
order to produce valid expressions, so the UI code must ensure that it only enables the correct
buttons at each stage. The Calculator interface is defined as follows:

Java interface:

1 public interface Calculator {

2 public void begin();

3 public void onNum(int num);

4 public void onPlus();

5 public void onMinus();

6 public int onEquals();

7 }

Hanoi DSL model:

1 TOP {

2 ARG {

3 RESULT_PRODUCING_ARG { onNum(int) -> RESULT_AVAILABLE }

4 onNum(int) -> OP

5 }

6
7 OP {

8 RESULT_AVAILABLE { onEquals() -> END }

9 onPlus() -> RESULT_PRODUCING_ARG

10 onMinus() -> RESULT_PRODUCING_ARG

11 }

12
13 END {}

14
15 begin() -> ARG

16 }

Hanoi annotation model:

1 @States({

2 @State(name="TOP"),

3 @State(name="ARG", parent="TOP"),

4 @State(name="OP", parent="TOP"),

5 @State(name="END", parent="TOP"),

5.3. Experiment questions 129

6 @State(name="RESULT_PRODUCING_ARG", parent="ARG"),

7 @State(name="RESULT_AVAILABLE", parent="OP")

8 })

9 public interface ICalculator {

10
11 @Transition(from="TOP", to="ARG")

12 public void begin();

13
14 @Transitions({

15 @Transition(from="ARG", to="OP"),

16 @Transition(from="RESULT_PRODUCING_ARG", to="RESULT_AVAILABLE")

17 })

18 public void onNum(int num);

19
20 @Transition(from="OP", to="RESULT_PRODUCING_ARG"),

21 public void onPlus();

22
23 @Transition(from="OP", to="RESULT_PRODUCING_ARG")

24 public void onMinus();

25
26 @Transition(from="RESULT_AVAILABLE", to="END")

27 public int onEquals();

28 }

State chart:

TOP

ARG OP

RESULT
PRODUCING

ARG
RESULT

AVAILABLE

END
onNum

onNum

end

begin

onPlus

onMinus

Discussion This model is intended to provide an example of a stateful event-driven in-
terface, as would likely be found in user interface toolkits or SEDA1 networking toolkits like
Netty [86].

1Staged Event Driven Architecture [150]

5.3. Experiment questions 130

The interface exhibits alternating behaviour, expecting calls to onNum and onPlus /
onMinus. Upon entering a full binary operator expression, the onEquals method is en-
abled. At any point, begin can be called to reset the state of the object, as this is in the TOP
state — this is intended to be analogous to the all clear button (AC) on a calculator. The END
state serves no purpose other than documentation, as it does not modify or add any behaviour
to the TOP state.

While conditional transitions are not present in this model (in contrast to Model 1),
inheritance and overriding are present and essential to understanding this model. It
was expected that the syntactic relationship between parent and child states in the DSL
model would make overriding more obvious, particularly in the case of onNum in
RESULT PRODUCING ARG.

Question 2A

Consider the following test code:

1 public int twoPlusTwo(Calculator calc) {

2 calc.begin();

3 calc.onNum(2);

4 calc.onPlus();

5 calc.onNum(2);

6 return calc.onEquals();

7 }

A Calculator instance in state END will be passed into the method. Will a typestate
constraint be violated? If so, please indicate on which line the violation will occur. If no
violation will occur, choose “no violation”.

Options: (A) line 2, (B) line 3, (C) line 4, (D) line 5, (E) line 6, (F) no violation

Discussion The sequence of transitions is as follows:

Line State prior to call Method

1 END begin ⤦
2 ARG onNum ⤦
3 OP onPlus ⤦
5 RESULT PRODUCING ARG onNum ⤦
6 RESULT AVAILABLE onEquals ⤦

— END

Deriving the correct answer for this question requires that the participant be able to cor-
rectly identify that begin is available in the END state, and that the second call to

5.3. Experiment questions 131

onNum results in a transition to a different state from the first due to the override in
RESULT PRODUCING ARG.

It was not expected that this question would be more difficult to answer given either model as
each transition (with the exception of the begin call) is explicitly declared for each relevant
source state.

Question 2B

Which of the following methods is not available in the OP state?

Options: (A) onEquals, (B) begin, (C) onPlus, (D) onMinus

Discussion The OP state explicitly permits onPlus and onMinus, and inherits a tran-
sition for begin from TOP. As a result, the only method that is not permitted is onEquals.

This simple question specifically tests the participant’s ability to understand the inheritance
of the begin method, in isolation from any other concern. It was expected that this should
be marginally easier to identify using the DSL model.

Question 2C

Consider the following sequence of method calls, produced from a user interacting with the
calculator:

1 calc.begin();

2 calc.onNum(2);

3 calc.onMinus();

4 calc.begin();

5 calc.onNum(2);

6 calc.onPlus();

7 calc.onNum(5);

8 calc.onMinus();

What state is the calc instance in at the end of this sequence?

Options: (A) TOP, (B) ARG, (C) RESULT PRODUCING ARG, (D) OP,
(E) RESULT AVAILABLE, (F) END

Discussion The sequence of transitions is as follows:

5.3. Experiment questions 132

Line State prior to call Method

1 ??? begin ⤦
2 ARG onNum ⤦
3 OP onMinus ⤦
4 RESULT PRODUCING ARG begin ⤦
5 ARG onNum ⤦
6 OP onPlus ⤦
7 RESULT PRODUCING ARG onNum ⤦
8 RESULT AVAILABLE onMinus ⤦

— RESULT PRODUCING ARG

This question is intended to test the user’s ability to trace longer sequences of transitions than
in prior questions. They are not provided with an initial state, but should correctly identify
that this is irrelevant as the begin method may be called in any state due to inheritance.

Question 2D

Consider the multiply method, which implements multiplication using a Calculator
instance.

1 public int multiply(Calculator calc, int a, int b) {

2 calc.begin();

3 calc.onNum(0);

4 for(int i=0; i < Math.abs(b); i++) {

5 if(b < 0) {

6 calc.onMinus();

7 } else {

8 calc.onPlus();

9 }

10 calc.onNum(a);

11 }

12 return calc.onEquals();

13 }

A Calculator instance in state TOP will be passed into the method. Will a typestate
constraint be violated? If so, please indicate on which line the violation will occur. If no
violation will occur, choose “no violation”.

Options: (A) line 2, (B) line 3, (C) line 6, (D) line 8, (E) line 10, (F) line 12, (G) no violation.

Discussion If the body of the loop is executed (i.e. abs(b) > 0) then there is no violation.
However, if b = 0, then the call to onEquals occurs when the object is in state OP:

5.3. Experiment questions 133

Line State prior to call Method

2 TOP begin ⤦
3 ARG onNum ⤦

12 OP onEquals ×

onEquals is not permitted in this state, therefore a typestate violation may occur on line
12 if b = 0.

Deriving the correct answer for this question relies on the user being able to correctly identify
all possible paths through the code, and either trace the state of the object in each case
separately or reason about all of them simultaneously, by determining the set of states that
the object may be in prior to each method call.

5.3.3 Model 3 — GearControl

Consider the following type:

1 public interface GearControl {

2 Gear currentGear();

3 void shiftUp();

4 void shiftDown();

5 void neutral();

6 void declutch();

7 void clutch();

8 boolean isDeclutched();

9 }

10
11 enum Gear { NEUTRAL, ONE, TWO }

GearControl represents the sequential gear box and clutch of an automobile controlled
by an engine management unit. The car has two gears and a neutral position represented by
the Gear enum.

Hanoi DSL model:

1 TOP {

2 DECLUTCHED {

3 DC_GEAR_N {

4 shiftUp() -> DC_GEAR_1

5 clutch() -> C_GEAR_N

6 }

7 DC_GEAR_1 {

8 shiftUp() -> DC_GEAR_2

9 shiftDown() -> DC_GEAR_N

10 clutch() -> C_GEAR_1

5.3. Experiment questions 134

11 }

12 DC_GEAR_2 {

13 shiftDown() -> DC_GEAR_1

14 clutch() -> C_GEAR_2

15 }

16
17 currentGear() :: NEUTRAL -> DC_GEAR_N

18 currentGear() :: ONE -> DC_GEAR_1

19 currentGear() :: TWO -> DC_GEAR_2

20
21 clutch() -> CLUTCHED

22 neutral() -> DC_GEAR_N

23 isDeclutched() :: true -> <self>

24 }

25
26 CLUTCHED {

27 C_GEAR_N { declutch() -> DC_GEAR_N }

28 C_GEAR_1 { declutch() -> DC_GEAR_1 }

29 C_GEAR_2 { declutch() -> DC_GEAR_2 }

30
31 declutch() -> DECLUTCHED

32
33 currentGear() :: NEUTRAL -> C_GEAR_N

34 currentGear() :: ONE -> C_GEAR_1

35 currentGear() :: TWO -> C_GEAR_2

36
37 isDeclutched() :: false -> <self>

38 }

39
40 isDeclutched() :: true -> DECLUTCHED

41 isDeclutched() :: false -> CLUTCHED

42 }

Hanoi annotation model:

1 @States({

2 @State(name="TOP"),

3 @State(name="DECLUTCHED", parent="TOP"),

4 @State(name="DC_GEAR_N", parent="DECLUTCHED"),

5 @State(name="DC_GEAR_1", parent="DECLUTCHED"),

6 @State(name="DC_GEAR_2", parent="DECLUTCHED"),

7 @State(name="CLUTCHED", parent="TOP"),

8 @State(name="C_GEAR_N", parent="CLUTCHED"),

9 @State(name="C_GEAR_1", parent="CLUTCHED"),

10 @State(name="C_GEAR_2", parent="CLUTHCED")

11 })

12 public interface GearControl {

5.3. Experiment questions 135

13 @Transitions({

14 @Transition(from="DECLUTCHED", to="DC_GEAR_N", whenResult="NEUTRAL"),

15 @Transition(from="DECLUTCHED", to="DC_GEAR_1", whenResult="ONE"),

16 @Transition(from="DECLUTCHED", to="DC_GEAR_2", whenResult="TWO"),

17 @Transition(from="CLUTCHED", to="C_GEAR_N", whenResult="NEUTRAL"),

18 @Transition(from="CLUTCHED", to="C_GEAR_1", whenResult="ONE"),

19 @Transition(from="CLUTCHED", to="C_GEAR_2", whenResult="TWO")

20 })

21 Gear currentGear();

22
23 @Transitions({

24 @Transition(from="DC_GEAR_N", to="DC_GEAR_1"),

25 @Transition(from="DC_GEAR_1", to="DC_GEAR_2")

26 })

27 void shiftUp();

28
29 @Transitions({

30 @Transition(from="DC_GEAR_1", to="DC_GEAR_N"),

31 @Transition(from="DC_GEAR_2", to="DC_GEAR_1")

32 })

33 void shiftDown();

34
35 @Transitions({

36 @Transition(from="DECLUTCHED", to="DC_GEAR_N")

37 })

38 void neutral();

39
40 @Transitions({

41 @Transition(from="CLUTCHED", to="DECLUTCHED"),

42 @Transition(from="C_GEAR_N", to="DC_GEAR_N"),

43 @Transition(from="C_GEAR_1", to="DC_GEAR_1"),

44 @Transition(from="C_GEAR_2", to="DC_GEAR_2")

45 })

46 void declutch();

47
48 @Transitions({

49 @Transition(from="DECLUTCHED", to="CLUTCHED"),

50 @Transition(from="DC_GEAR_N", to="C_GEAR_N"),

51 @Transition(from="DC_GEAR_1", to="C_GEAR_1"),

52 @Transition(from="DC_GEAR_2", to="C_GEAR_2")

53 })

54 void clutch();

55
56 @Transitions({

57 @Transition(from="TOP", to="DECLUTCHED", whenResult="true"),

58 @Transition(from="TOP", to="CLUTCHED", whenResult="false"),

5.3. Experiment questions 136

59 @Transition(from="DECLUTCHED", to="<self>", whenResult="true"),

60 @Transition(from="CLUTCHED", to="<self>", whenResult="false")

61 })

62 boolean isDeclutched();

63 }

State chart (excluding self transitions):

TOP

CLUTCHEDDECLUTCHED

DC_GEAR_N C_GEAR_N

DC_GEAR_1

DC_GEAR_2

C_GEAR_1

C_GEAR_2

clutch

declutch

clutch

declutch

clutch

declutch

shiftDown

shiftDownshiftUp

shiftUp

neutral
declutch

clutch

currentGear
:: NEUTRAL

currentGear
:: ONE

currentGear
:: TWO

currentGear
:: NEUTRAL

currentGear
:: ONE

currentGear
:: TWO

isDeclutched :: true isDeclutched :: false

Discussion This model has substantially more states and transitions than any of the other
models in the experiment, and exhibits the interaction of all the main features of Hanoi:
inheritance, overriding, conditional transitions and self transitions. Despite this, it has a very
regular, predictable structure, which should help a participant to quickly build a working
mental model of its behaviour.

Neither model is significantly shorter or neater than the other, though it was expected that
the presentation in the DSL model would make the regular structure more apparent.

Question 3A

After an accident, the event log from the automobile ended with the following sequence of
method calls:

1 declutch();

2 shiftUp();

3 clutch();

5.3. Experiment questions 137

4 declutch();

5 shiftUp();

The final call to shiftUp resulted in a typestate violation. What state must the GearBox
instance have been in at the start of the sequence?

Options: (A) TOP, (B) DECLUTCHED, (C) DC GEAR N, (D) DC GEAR 1,
(E) DC GEAR 2, (F) CLUTCHED, (G) C GEAR N, (H) C GEAR 1,
(I) C GEAR 2.

Discussion This question is unique in the experiment in that it asks participants to reason
about a sequence of method calls, knowing that it causes a typestate violation but without
any knowledge of the start or end states. This is similar to the kind of diagnostic abstract
reasoning an engineer may be expected to undertake in response to a bug report.

A possible approach to solving this issue is to first identify all states in which shiftUp

is not permitted — DC GEAR 2 and its parents, CLUTCHED and its children. The call
to declutch on line 5 was permitted, and this method is only permitted in CLUTCHED

and its children, and guarantees that the object will be in one of the DECLUTCHED states.
Therefore, the object must have been in state DC GEAR 2 prior to the call to shiftUp on
line 6.

The calls can be traced back from there:

Line Method State prior to call

5 — DC GEAR 2

4 declutch C GEAR 2

3 clutch DC GEAR 2

2 shiftUp DC GEAR 1

1 declutch C GEAR 1

It was expected that participants would find this question difficult, and that their method of
deriving an answer would provide some useful insight into their mental model of typestate
generally.

Question 3B

Consider the method safeReset, which is intended to take a GearBox in any state and
safely put it into state C GEAR N:

1 public void safeReset(GearBox gb) {

2 if(!gb.isDeclutched()) {

5.3. Experiment questions 138

3 gb.declutch();

4 }

5 gb.neutral();

6 gb.clutch();

7 }

Could a typestate violation occur? If so, please indicate on which line the violation will
occur. If no violation will occur, choose “no violation”.

Options: (A) Line 2, (B) Line 3, (C) Line 5, (D) Line 6, (E) No violation

Discussion The method isDeclutched is permitted in the root state, and therefore
in all states through inheritance. If it returns true, then the object is at least in one of the
DECLUTCHED states, otherwise it is in one of the CLUTCHED states. In the latter case, the
call to declutch on line 3 will transition the object to one of the DECLUTCHED states.
Therefore, prior to the call on neutral on line 5, we are guaranteed that the object is in
one of the DECLUTCHED states, all of which permit a call to neutral as this is inherited
from the definition on state DECLUTCHED. This will result in a transition to DC GEAR N

specifically regardless of which DECLUTCHED state the object is in, as there are no overrides
of this transition. The final call to clutch on line 6 will result in a transition to C GEAR N.
Therefore, no typestate violation will occur.

Line State prior to call Method

2 X <∶ TOP isDeclutched ⤦
3 X <∶ CLUTCHED declutch ⤦
5 X <∶ DECLUTCHED neutral ⤦
6 DC GEAR N clutch ⤦

— C GEAR N

Deriving the correct answer for this question relies on the participant’s ability to reason
about inheritance and overriding of transitions correctly, where the state of the object is not
accurately known. The regular structure of the model and relationship between the method
and state names should make the task manageable.

Question 3C

Consider the method topGear, which is intended to take a GearBox in any state and put
it into state C GEAR 2:

1 public void topGear(GearBox gb) {

2 if(!gb.isDeclutched()) {

5.3. Experiment questions 139

3 gb.declutch();

4 }

5
6 switch(gb.currentGear()) {

7 case NEUTRAL: gb.shiftUp();

8 case ONE: gb.shiftUp();

9 }

10
11 gb.clutch();

12 }

Will this method always result in the GearBox instance reaching state C GEAR 2?

Options: (A) Yes, (B) No

Discussion Similar to the previous question, the participant must be able to reason ef-
fectively about inheritance and overriding. One added complexity is the fall-through in the
control flow of the switch statement from the NEUTRAL case to the ONE case.

Line State prior to call Method

2 X <∶ TOP isDeclutched ⤦
3 X <∶ CLUTCHED declutch ⤦
6 X <∶ DECLUTCHED currentGear ⤦
7 DC GEAR N shiftUp ⤦
8 DC GEAR 1 shiftUp ⤦

11 DC GEAR 2 clutch ⤦
— C GEAR 2

Question 3D

Which method is not available in the DC GEAR 1 state?

Options: (A) shiftUp, (B) shiftDown, (C) neutral, (D) clutch, (E) declutch, (F) isDeclutched,
(G) currentGear

Discussion The DC GEAR 1 state explicitly permits the methods shiftUp,
shiftDown and clutch. It inherits transitions for currentGear and neutral from
DECLUTCHED, and transitions for isDeclutched from TOP. Therefore, the method
declutch is the only method not permitted in this state.

5.3. Experiment questions 140

5.3.4 Model 4 — Iterator

An Iterator is a simple abstraction of a means of traversing and filtering a data structure
in a sequential fashion. In Java, its interface definition is given by:

1 public interface Iterator<T> {

2 T next();

3 boolean hasNext();

4 void remove();

5 }

Hanoi DSL model:

1 CHECK_NEXT {

2 NEXT_AVAILABLE {

3 CAN_REMOVE_MIDDLE { remove() -> NEXT_AVAILABLE }

4 next() -> CAN_REMOVE

5 }

6
7 CAN_REMOVE {

8 hasNext() :: true -> CAN_REMOVE_MIDDLE

9 remove() -> CHECK_NEXT

10 }

11
12 hasNext() :: true -> NEXT_AVAILABLE

13 hasNext() :: false -> <self>

14 }

Hanoi annotation model:

1 @StateModel({

2 @State(name="CHECK_NEXT"),

3 @State(name="NEXT_AVAILABLE", parent="CHECK_NEXT"),

4 @State(name="CAN_REMOVE_MIDDLE", parent="NEXT_AVAILABLE"),

5 @State(name="CAN_REMOVE", parent="CHECK_NEXT")

6 })

7 public interface Iterator<T> {

8
9 @Transitions({

10 @Transition(from="CHECK_NEXT",

11 to="NEXT_AVAILABLE", whenResult="true"),

12 @Transition(from="CAN_REMOVE",

13 to="CAN_REMOVE_MIDDLE", whenResult="true"),

14 @Transition(from="CHECK_NEXT", to="<self>", whenResult="false")

15 })

16 boolean hasNext();

17
18 @Transitions({

5.3. Experiment questions 141

19 @Transition(from="NEXT_AVAILABLE", to="CAN_REMOVE")

20 })

21 T next();

22
23 @Transitions({

24 @Transition(from="CAN_REMOVE", to="CHECK_NEXT"),

25 @Transition(from="CAN_REMOVE_MIDDLE", to="NEXT_AVAILABLE")

26 })

27 void remove();

28 }

State chart (excluding self transitions):

CHECK_NEXT

NEXT_AVAILABLE

CAN_REMOVE
CAN_REMOVE_MIDDLE

hasNext :: true

next

hasNext :: true

removeremove

Discussion This final model is the classic Iterator interface from Java. While com-
pact, this interface contains some subtle restrictions that Java programmers are often not
aware of. The single-use enabling of the remove method in response to a call to next is
often a source of confusion, where programmers occasionally expect that remove is idem-
potent.

This model was included in the experiment as it provides an opportunity to see whether
programmers still explicitly check the model or base their decisions on their intuitive under-
standing of the interface, even when this is potentially incorrect.

Question 4A

Consider the method printAll:

1 void printAll(Iterator<T> iter) {

2 while(iter.hasNext()) {

3 System.out.println(iter.next());

4 }

5 }

5.3. Experiment questions 142

An Iterator instance in state CHECK NEXT will be passed into the method. Will a
typestate constraint be violated? If so, please indicate on which line the violation will occur.
If no violation will occur, choose “no violation”.

Options: (A) Line 2, (B) Line 3, (C) No violation

Discussion This question is a straightforward and intuitively correct with the under-
standing that most Java programmers have of the Iterator interface. Alternate calls to
hasNext and next are permitted when hasNext returns true.

Question 4B

Which method is not available in the CAN REMOVE state?

Options: (A) hasNext, (B) next, (C) remove

Discussion The CAN REMOVE state explicitly permits the remove method and
hasNext method. The next method is the only method that is not permitted.

Question 4C

Consider the method removeMiddle, which will remove all elements from a collection
which are not the first or last.

1 void removeMiddle(Iterator<T> iter) {

2 if(!iter.hasNext()) {

3 return;

4 }

5
6 iter.next();

7 while(iter.hasNext()) {

8 iter.next();

9 if(iter.hasNext()) {

10 iter.remove();

11 }

12 }

13 }

An Iterator instance in state CHECK NEXT will be passed into the method. Will a
typestate constraint be violated? If so, please indicate on which line the violation will occur.
If no violation will occur, choose “no violation”.

Options: (A) Line 2, (B) Line 6, (C) Line 7, (D) Line 8, (E) Line 9, (F) Line 10, (G) No
violation

5.3. Experiment questions 143

Discussion The points of interest are the conditional behaviour on lines 2, 7 and 9. There
are four scenarios to consider:

• If there are no elements available in the iterator, the method exits early on line 3.

• If there is only one element available, the body of the loop does not execute and the
object is left in state CAN REMOVE.

• If there are two elements available, the body of the loop executes but the call to
remove does not occur, the loop does not execute a second time and the object is
left in state CAN REMOVE.

• If there are three or more elements, the body of the loop executes and after the first
execution the object is in state NEXT AVAILABLE. The call to hasNext will result
in no transition, leaving the object in the same state on line 8 as on the first execution
of the loop.

No typestate violation will occur.

To derive the correct answer, the participant must correctly reason about the conditional
behaviour in this manner, tracing the multiple paths through the code.

Question 4D

Consider the method removeLast, which will remove the last element from a collection.

1 void removeLast(Iterator<T> iter) {

2 while(iter.hasNext()) {

3 iter.next();

4 }

5 iter.remove();

6 }

An Iterator instance in state CHECK NEXT will be passed into the method. Will a
typestate constraint be violated? If so, please indicate on which line the violation will occur.
If no violation will occur, choose “no violation”.

Options: (A) Line 2, (B) Line 3, (C) Line 5, (D) No violation

Discussion If the iterator contains no elements (i.e. the first call to hasNext returns
false), then the iterator will be in state CHECK NEXT prior to the call to remove, which is
not permitted in this state. Therefore, a typestate violation can occur on line 5.

5.3. Experiment questions 144

5.3.5 Survey

In the survey at the end of the experiment, the participants were asked to state their level of
agreement with the following questions, on a standard five point Likert scale labelled from
strongly disagree through neutral to strongly agree:

1. I write code that interacts with typestate constraint interfaces. This question was
included as a way to gauge whether the participants believed that typestate, regardless
of whether it was formally presented or not in the language they used, was something
that they regularly had to take into account.

2. I write classes which have typestate constraints of their own. With language features
such as generics in Java, a programmer is much more frequently going to act as a
consumer of generic types than as a producer — the feature is mostly applicable for
collection types and frameworks, but the number of programmers responsible for writ-
ing such APIs is very small compared to the number who use them. Typestate may or
may not fit the same usage pattern as generics, and this question was intended to de-
termine whether participants felt they were both producers and consumers of typestate
by comparing answers to this question to the previous one.

3. The inheritance rules of Hanoi are easy to understand. After an hour of working with
Hanoi, determining whether participants felt that the inheritance rules (arguably the
most complex part of the semantics of Hanoi) were easy to work with would provide
information on whether or not the complexity is justified by the brevity of expression
it affords compared to a flat state machine model.

4. I find it easier to determine whether a method is legal in a state in the annotation

form. It was anticipated that, as the state tree is less readily apparent in the annotation
model, determining whether a method is legal or not in a given state would be harder
in the annotation form than in the DSL form. As such, it was expected that participants
would lean towards the disagree end of the spectrum for this question.

5. I find it easier to determine what state the object will be in after calling a method in

the DSL form. It was anticipated that the visual hierarchical presentation of transition
overrides in the DSL form would make it easier for participants to identify which
transition is relevant for a given state, and therefore to determine the correct target
state after a method call. As such, it was expected that participants would lean towards
the agree end of the spectrum for this question.

6. I find it easier to visualise the state tree with a model defined in the annotation form.
It was anticipated that the hierarchy should be much more readily apparent in the DSL

5.4. Results 145

form than in the annotation form, for all but the most trivial hierarchies. As such, it
was expected that participants would lean towards the disagree end of the spectrum for
this question.

7. I find it easier to determine whether code conforms to the specification with the DSL

form. This very broad question was intended to determine the participant’s overall
view of the two notations, for the primary task presented in this experiment of assess-
ing the correctness of code against a model.

8. I find it easier to determine which legal methods are inherited by a state in the an-

notation form. This question specifically evaluates whether the participants felt that
inherited method sets are easier to determine using the annotation or DSL forms. It
was anticipated that the visual hierarchical presentation of inheritance in the DSL form
would make this particular task much easier. As such, it was expected that participants
would lean towards the disagree end of the spectrum for this question.

5.4 Results

Sourcing suitably qualified candidates (those with sufficient programming experience, gen-
erally excluding undergraduate students) proved difficult, hence the experiment was only
conducted with 10 participants, all of whom were either masters degree students or PhD
students in Computer Science from Carnegie Mellon University or Glasgow University.

5.4.1 Statistical tests & measures used

The alternatives to the null hypotheses presented in Section 5.2.1 in which we are interested
are non-directional. When the null hypothesis states that there will be no difference in per-
formance based on the Hanoi model type provided to the participant, the alternative is that
some difference in performance will be observed, and not specificially that the DSL model
group will perform better than the annotation model group. The former is non-directional,
while the latter is directional. Statistical tests for non-directional alternative hypotheses are
known as two-tailed tests.

Analysis of ordinal data samples

With a small sample size and no prior knowledge of the expected form of the results which
will be collected, it is desirable to use non-parametric statistical tests — those which do not
require that the data fit a particular probability distribution. The Mann-Whitney U test [89]

5.4. Results 146

is a reliable non-parametric statistic that can be used for the ordinal data collected in the
experiment, and is easy to calculate for small sample sizes.

Given two groups a and b of size na and nb, such that samples derived from the members
of each group are independent, we can calculate a statistic U such that 0 ≤ U ≤ na × nb.
For example, consider groups such that na = nb = 5 and the samples collected are times in
seconds to complete a task:

Time: 72 73 91 125 136 247 302 327 337 343
Group: A B B B B A A A B A

U can be calculated by the following procedure:

1. Sort the samples. The above table is already sorted.

2. For each sample ai from group a, count the number of samples which are less than
it that belong to group B. If samples exist which are equal to ai from group b, count
these as 0.5. Refer to this sum as a′i.

3. Add the counts together: Ua = Σna
i=1a

′
i.

Ub can be similarly calculated, however the test is defined such that Ua + Ub = na × nb. The
statistic U = min(Ua, Ub).

From the sample data above, we would derive that U = 8, as Ua = 17 and Ub = 8:

Time: 72 73 91 125 136 247 302 327 337 343

Group: A B B B B A A A B A

a′i: 0 4 4 4 5

b′i: 1 1 1 1 4

The value of U which would indicate that the null hypothesis is false is determined by the
group sizes. For small group sizes (n ≤ 20), such as those found in this experiment, a lookup
table is used to determine the two-tailed significance threshold corresponding to a type I
error rate of α = 0.05 — this is the probability of incorrectly rejecting the null hypothesis
based on the observed data. We shall represent the threshold value as U∗ wherever the U test
statistic is discussed. For na = nb = 5, the threshold is U∗ = 2.

A corresponding measure of the relation between the samples of the two groups can be easily
calculated using the formula ρa = Ua/(na×nb). ρ gives a value on a fixed range while U does
not, therefore it can be useful for determining the relation between two groups at a glance.
A value of ρa = 0.5 indicates perfect overlap (the groups are effectively indistinguishable),

5.4. Results 147

while ρa = 0 indicates perfect separation, with all of group a preceding group b (with ρa = 1

meaning group b precedes group a). There is no fixed ρ value for significance, therefore it it
not a meaningful statistic on its own — for example, if na = nb = 10, then the significance
threshold for ρ would be 0.23 as U∗ = 23 for such a sample size. If na = 20, nb = 4 then
ρ ≤ 0.175 indicates significance as U∗ = 14.

Values such as the mean, median and standard deviation values for reading or question an-
swer times for each group shall be presented where appropriate. Generally, a subscript of D
denotes the DSL group (those who were presented a DSL based model), while a subscript of
A denotes the annotation group (those who were presented an annotation based model). The
symbols tA and tD are used to denote mean times, t̃A and t̃D denote the median times, while
σA and σD denote the standard deviations.

Analysis of contingency tables

In analysing results for a correlation between model type and performance in answering
individual questions, Fisher’s exact test is suitable due to the small sample size and the
categorical structure of the data. The data can be arranged as a 2x2 contingency table, relating
the model type shown to the number of correct / incorrect answers observed against that
model type.

For instance, consider the following contingency table which relates groups A and B to some
measured binary variable v:

Contigency Table A

v = 0 v = 1

Group A m n
Group B o p

The sizes of the groups are given by na =m+n and nb = o+ p. The total number of samples
where v = 0 is given by v0 =m + o, and similarly v1 = n + p.

Fisher’s exact test determines the probability of observing such data under the null hypothe-
sis, that groups A and B are the same:

p(A) =
(na

m
)(nb

o
)

(na+nb

v0
)

In order to derive a significance level which can be used to decide whether to reject the null
hypothesis, the Fisher test requires that we must also consider all other tables which are at

least as extreme as the observed table. Consider the following table:

5.4. Results 148

Contigency Table B

v = 0 v = 1

Group A q r
Group B s t

This table is at least as extreme as the previous table if the following conditions hold:

m + o = q + s n + p = r + t
m + n = q + r o + p = s + t

p(B) ≤ p(A)

The significance value for the observed data is the sum of the probabilities of all tables at
least as extreme as the observed table: p = Σ{p(T) ∣ p(T) ≤ p(A)}. The threshold used
for rejecting the null hypothesis where the Fisher test is used in the following analysis is
p ≤ 0.05.

The Fisher test can be used for samples of any size. It is better suited to smaller sample sizes
due to the exponential growth of the binomial terms involved in the calculation of p(T) —
for large values in the contingency table, the accurate calculation of p becomes prohibitively
expensive.

The Pearson χ2 test

Another common test used for categorical data is the Pearson χ2 test [116]. This test assigns
an expected value Ei for each cell in the contingency table based on the null hypothesis,
while Oi denotes the observed value for each cell in the table (which contains n cells). From
this, the statistic χ2 is calculated using the formula

χ2 = Σn
i=1

(Oi −Ei)2

Ei

This value is then compared to the standard χ2
k probability distribution, where k is the number

of degrees of freedom in the data — for a 2x2 contingency table where the size of the two
groups are fixed, there is one degree of freedom: knowing the value of one cell in the table is
sufficient to derive the values of all other cells. Similarly for a fixed sample size of responses
against a five-point Likert scale, there are 4 degrees of freedom: if we know the number of
responses for four of the columns, the value of the final column can be derived.

Let CDF (χ2
k, x) be a function which provides the probability of observing a value between

0 and x for the χ2
k probability distribution function. Then p(x) = 1 −CDF (χ2

k, x) gives the
probability of observing a value between x and inf. p(χ2) therefore provides the significance

5.4. Results 149

value for an observed χ2 statistic under the null hypothesis — if p(χ2) < 0.05, we may reject
the null hypothesis.

The Pearson χ2 test is known to be potentially inaccurate for small sample sizes, particularly
if any Ei is smaller than 5. This is unfortunately the case for the majority of the results in
this experiment, as such the Fisher test is better suited to the analysis of 2x2 contingency
tables while another approach is used for the analysis of survey results, discussed below.

Analysis of survey results

The survey results collected are a form of multinomial data — the responses that participants
provide to questions are based on a five point Likert scale, which is a a form of categorical
(ordinal, but arguably not interval) data. Participants are not distinguished by which group
they were assigned to for this analysis; they are treated as a single group as it was believed
this would be an irrelevant detail for the questions presented.

The responses are analysed on a per-question basis, against an expected distribution consis-
tent with the null hypothesis: we expect participants to consistently choose values closer to
neutral than the extreme ends of the scale (responses to Likert scale questions suffer from
a central tendency bias, where participants avoid extreme responses), with an equal dis-
tribution of agree and disagree responses. A categorical probability distribution such that
we expect 10% of participants to choose strongly disagree, 25% to choose disagree, 30%
to choose neutral, 25% to choose agree and 10% to choose strongly agree is a reasonable
formulation of this.

Due to the small sample size, Pearson’s chi-square test of goodness-of-fit is not directly
suitable, as the expected frequencies for all of the responses are below 5. A randomization
test of goodness-of-fit is used instead to derive a probability that the observed distribution
of responses fits the expected distribution. First, the χ2 value is derived for the observed
data, and then thousands of samples of the same sample size are randomly drawn from
the expected categorical probability distribution. The observed fraction of these randomly
drawn samples which have a χ2 value greater than that observed in the real data provides
the significance value for the data. The more random samples generated, the greater the
confidence that the derived p-value is correct.

As an example, consider the following responses to a Likert scale question, with the expected
distribution also displayed:

Strongly Disagree Disagree Neutral Agree Strongly Agree

Observed: 1 1 1 5 2
Expected %: 10% 25% 30% 25% 10%

5.4. Results 150

The χ2 value for the above data is 5.733. By generating 10000 random samples from the
expected distribution, and calculating the fraction of those which have a χ2 ≥ 5.733, we may
derive the significance value of p = 0.22.

The significance of p < 0.05 will be used to reject the null hypothesis, therefore in the above
example the null hypothesis could not be rejected.

Computational support

The R project for statistical computing [76, 77] provides a straightforward means of com-
puting the statistics described above. Firstly, the Mann-Whitney U test (also known as the
Wilcoxon-Mann-Whitney test) can be computed for the sample data for groups a and b used
in the discussion using the following commands:

1 > a = c(72, 247, 302, 327, 343)

2 > b = c(73, 91, 125, 136, 337)

3 > U_a = wilcox.test(a, b, alternative="two.sided")$statistic

4 > U_b = wilcox.test(b, a, alternative="two.sided")$statistic

5 > min(ua, ub)

6 [1] 8

7

8 > wilcox.test(a, b, alternative="two.sided")$p.value

9 [1] 0.4206349

As demonstrated, the significance value can be directly derived for the data in addition to the
U value.

Fisher exact test To calculate the Fisher exact test for a 2x2 contingency table, the
following command can be used:

1 > table = rbind(c(6,4),c(1,9))

2 > table

3 [,1] [,2]

4 [1,] 6 4

5 [2,] 1 9

6

7 > fisher.test(table, alternative="two.sided")$p.value

8 [1] 0.05728

5.5. Participant demographics 151

Randomization test To calculate the significance value for survey results, R provides a
randomization test of goodness-of-fit using the Pearson chi-square test, following the same
approach as described previously. This can be used as follows:

1 > responses = c(1, 1, 1, 5, 2)

2 > expected_p = c(0.1, 0.25, 0.3, 0.25, 0.1)

3 > chisq.test(responses,

4 p = expected_p,

5 simulate.p.value = TRUE,

6 B = 100000)

7

8 Chi-squared test for given probabilities with simulated

9 p-value (based on 1e+05 replicates)

10

11 data: responses

12 X-squared = 5.7333, df = NA, p-value = 0.2188

5.5 Participant demographics

At the start of the experiment, participants were asked to state the number of years of ex-
perience they have had as a programmer (professionally or otherwise), and their proficiency
(one of low, medium or high) with object oriented programming, functional programming
and formal methods. Their responses are displayed in Figure 5.2.

The demographic groupings were as follows:

• 70% of participants rated themselves as of “medium” proficiency with object oriented
programming, while 30% rated themselves as of “high” proficiency. This is as ex-
pected, as candidates for the experiment were filtered based on their ability to reason
about non-trivial aspects of the Java programming language.

• 40% of participants rated themselves as of “low” proficiency with functional program-
ming, while 60% rated themselves as of “medium” proficiency.

• 30% of participants rated themselves as of “low” proficiency with formal method re-
lated tools, while 70% rated themselves as of “medium” proficiency.

An analysis of whether self-rated proficiency and experience are correlated with overall score
is presented in Section 5.5.1.

5.5. Participant demographics 152

PID Prog. Experience (Years) OOP Prof. FP Prof. FM Prof.
1 6 Medium Medium Medium
2 4 Medium Medium Medium
3 3 Medium Low Medium
4 12 High Medium Medium
5 12 Medium Medium Medium
6 5 High Low Medium
7 12 Medium Low Low
8 3 Medium Low Low
9 7 High Medium Low
10 5 Medium Medium Medium

Figure 5.2: Raw participant demographic information

5.5.
Participantdem

ographics
153

PID Q1A Q1B Q1C Q1D Q2A Q2B Q2C Q2D Q3A Q3B Q3C Q3D Q4A Q4B Q4C Q4D TOTAL
2 (A) E E D A F A C G G E A E C B G C 13 (81%)
4 (A) C E D A F A C F H E A E C B G C 16 (100%)
6 (A) B C E C F B C G F E A E C B C C 8 (50%)
8 (A) C C E A F A C G H E A E C B G C 14 (88%)

10 (A) C E D A F A C F H E A E C B G C 16 (100%)
1 (B) C D E B A B C G H E A E C B G C 10 (63%)
3 (B) D D D A F A C G H E A E C B G — 11 (69%)
5 (B) C E E A F A C G H E B E C B G C 13 (81%)
7 (B) D E D A F A C G H E A — C B D C 12 (75%)
9 (B) C E D A F A C G H E B E C B G C 14 (88%)
p: 1 1 1 1 1 1 1 0.4 0.4 1 0.4 1 1 1 1 1 0.69

Figure 5.3: Choices and scores. Incorrect answers are highlighted with a black background. Questions correctly answered against a DSL model
are highlighted with a grey background. The p row indicates the probability that the model type and accuracy with which participants answers
questions are independent variables.

5.5. Participant demographics 154

5.5.1 Scores

The responses to questions from each participant are shown in Figure 5.3. The outcome of
the experiment was generally positive, with a mean score of 76% and a median score of 81%,
with the lowest observed score at 50%. This provides evidence that participants were able
to reason effectively about the models after only a 20 minute tutorial. Participants began to
answer questions with greater accuracy towards the end of the experiment, with the majority
of incorrect answers occurring in the questions relating to the first two models.

There is no evidence that the model type presented to a participant is correlated with their
accuracy in answering questions related to that model. All but three questions had answer
accuracy statistics that were entirely consistent with the null hypothesis:

• 2D — only two participants answered correctly, and both were presented an annotation
model. These two participants (PIDs 4 and 10) were also the highest performing across
all participants , for whom the model type presented had no impact on their accuracy.
All other participants answered incorrectly in the same way, missing the possibility
that the loop body in this question may not execute and therefore missing the potential
violation on the final line of the method.

• 3A — two participants answered incorrectly, and both were presented with a DSL
model.

• 3C — two participants answered incorrectly, and both were presented with an annota-
tion model. This is the reverse of the situation for question 3A.

In all three cases, the significance value for the observed data pattern was p = 0.4, which
is insufficient to reject the null hypothesis. In the case of 2D, it does not seem likely that
the ability to answer this question correctly was influenced by the model, but instead on the
participant’s ability to reason about control flow. The results of 3A and 3C contradict each
other, providing further evidence that the results are due to chance rather than any meaningful
correlation between performance and model type.

The relationship between the model type shown and the accuracy of response across all
questions is as follows:

Correct Incorrect

DSL 62 18

Annotation 65 15

Using the Fisher exact test, p = 0.69 that this data distribution would be observed under
the null hypothesis, therefore the results as a whole provide no evidence for a correlation
between model type and accuracy.

5.5. Participant demographics 155

Sc
or

e
(%

)

50

60

70

80

90

100

FP Proficiency
Low Medium

50

60

70

80

90

100

OO Proficiency
Medium High

50

60

70

80

90

100

FM Proficiency
Low Medium

Proficiency vs Score

Figure 5.4: Scatter plot of self-rated proficiencies against score.

Proficiency vs. score Scatter plots of experience and proficiency against score are
shown in Figure 5.5 and Figure 5.4 respectively.

There is no evidence of any correlation between experience and score, and no evidence of
a correlation between object oriented programming proficiency and score (U = 12, U∗ = 1,
ρ = 0.48) or formal methods knowledge and score (U = 8, U∗ = 1, ρ = 0.32). There is a weak
signal of correlation between functional programming proficiency and score (U = 5, U∗ = 2,
ρ = 0.2), but still not at a statistically significant level.

5.5.2 Reading times

The time taken for each participant to read the models is shown in Figure 5.6, with a scatter
plot of these values shown in Figure 5.7.

There is no evidence of a correlation between model type and time spent reading a model.
A large difference in mean time to read all questions between groups A and B is apparent,
with group A being significantly faster on average. This unfortunate random allocation of
participants to groups results in faster mean reading times for the DSL model type for models
1 and 3, and faster mean reading times for the annotation model type for models 2 and 4.

The difference in reading times on a per person basis is attributable to the different ap-
proaches participants took in attempting to gain an understanding of the model. The slowest
participants would often trace through every transition of the model, and draw out statechart-
like diagrams to aid their understanding. The faster participants would often do little more

5.5. Participant demographics 156

Sc
or

e
(%

)

50

60

70

80

90

100

Programming Experience (Years)
2 3 4 5 6 7 8 9 10 11 12 13

Experience vs Score

Figure 5.5: Comparison of programmer’s stated experience as a programmer and their per-
formance in the test, with a line of best fit.

PID Q1 Q2 Q3 Q4 TOTAL
1 5:02 3:33 6:39 2:41 17:55
2 5:37 0:07 0:04 1:53 07:41
3 4:07 7:21 5:54 4:13 21:35
4 2:16 2:43 4:05 2:17 11:21
5 5:43 4:48 6:20 3:14 20:05
6 1:13 0:31 0:44 0:58 03:26
7 5:27 2:14 2:20 1:34 11:35
8 2:05 2:18 1:12 0:49 06:24
9 1:12 1:18 1:51 0:45 05:06

10 1:31 1:11 1:14 0:45 05:05

t : 3:25 2:38 3:02 1:54
σ: 1:56 2:05 2:23 1:11
t̃: 3:11 2:18 2:20 1:43
U : 8 5 2 6
U∗: 2 1 1 2
ρD: 0.32 0.75 0.1 0.76

Figure 5.6: Question reading times, per participant. Times against models provided in DSL
form are highlighted with a grey background. In two cases, participant 2 failed to follow
instructions resulting in abnormally low reading times — these results were discarded from
the analysis.

5.5. Participant demographics 157

Ti
m

e
(s

)

0

100

200

300

400

Question and Model Type
1D 1A 2D 2A 3D 3A 4D 4A

Reading times by model

Figure 5.7: Scatter plot of question reading times. Grey dots (labelled with subscript D on
the x-axis) show times recorded for participants given a DSL model. White dots (labelled
with a subscript A on the x-axis) show times for those given an annotation based model.

than skim the model before moving on to the questions. Participant 2 was a particularly ex-
treme example — after being the second slowest participant in reading the first model, they
changed strategy and spent less than 10 seconds reading models 2 and 3. The participant
justified this behaviour by stating that they preferred to read the models in the context of a
specific question, rather than attempting to read and understand them in isolation as directed.

Consequently, the reading times do not appear to be particularly useful in determining the
difference between the models, as the individual reading styles of the participants are likely
to dominate any smaller effect that the models themselves have.

5.5.3 Answer times

The time taken for each participant to read and answer the questions related to each model
is shown in Figure 5.8, with a scatter plot of these values shown in Figure 5.9.

5.5.
Participantdem

ographics
158

PID Q1A Q1B Q1C Q1D Q2A Q2B Q2C Q2D Q3A Q3B Q3C Q3D Q4A Q4B Q4C Q4D ALL
2 (A) 5:38 4:02 4:55 1:16 2:43 3:05 3:09 2:36 9:09 2:11 1:35 1:02 2:00 1:58 5:41 4:10 55:10
4 (A) 3:51 3:35 2:27 2:08 1:47 0:35 1:48 2:01 3:40 4:02 4:03 0:56 3:47 0:47 8:17 1:38 45:22
6 (A) 1:59 1:44 1:27 1:04 2:00 0:43 2:40 1:45 0:40 1:16 1:47 0:39 1:19 0:26 1:23 0:26 21:18
8 (A) 2:30 2:46 1:34 1:14 1:48 1:35 2:39 3:12 3:39 2:30 3:19 0:51 2:15 0:56 5:29 1:12 37:29
10 (A) 1:10 1:44 2:10 1:16 1:11 0:48 1:51 1:38 2:45 2:23 2:05 0:57 1:59 0:35 3:38 0:46 26:56
1 (B) 5:45 2:19 1:47 1:56 1:55 0:22 2:43 1:26 3:19 2:20 3:46 1:07 2:17 0:28 3:35 2:00 37:05
3 (B) 7:28 2:32 4:18 1:53 1:47 1:29 1:43 2:11 3:55 4:11 2:27 2:14 1:59 1:45 6:21 0:07 46:13
5 (B) 5:28 7:18 3:32 2:31 1:23 1:43 1:59 3:39 1:35 1:16 1:51 1:31 1:34 0:19 3:12 1:23 40:14
7 (B) 1:59 2:52 2:29 1:21 1:31 2:06 2:41 1:34 6:14 3:50 4:51 0:59 2:26 0:33 5:26 1:19 42:11
9 (B) 4:54 2:49 1:52 0:50 2:25 1:00 2:00 3:00 4:04 1:58 1:44 0:48 1:10 0:36 2:22 1:01 32:33

t: 4:04 3:10 2:39 1:33 1:51 1:21 2:19 2:18 3:54 2:36 2:45 1:06 2:05 0:50 4:32 1:33 38:27
σ: 2:05 1:37 1:12 0:32 0:27 0:50 0:30 0:46 2:22 1:04 1:10 0:27 0:44 0:34 2:04 1:05 09:50
t̃: 4:23 2:48 2:19 1:19 1:48 1:15 2:20 2:06 3:40 2:22 2:16 0:58 2:00 0:36 4:32 1:19 38:52
tA: 5:07 3:34 2:48 1:42 1:54 1:21 2:25 2:14 3:49 2:43 2:56 1:20 2:16 0:56 4:54 1:38 —
σA: 2:00 2:06 1:06 0:38 0:33 1:03 0:35 0:39 1:40 1:15 1:21 0:34 0:55 0:36 2:34 1:29 —
t̃A: 5:28 2:49 2:29 1:53 1:48 0:48 2:39 2:01 3:55 2:20 2:27 1:07 2:00 0:47 5:29 1:12 —
tD: 3:02 2:46 2:31 1:24 1:48 1:20 2:13 2:22 3:59 2:28 2:34 0:53 1:53 0:44 4:11 1:26 —
σD: 1:45 1:03 1:24 0:25 0:24 0:40 0:27 0:57 3:08 0:60 1:04 0:09 0:31 0:35 1:39 0:25 —
t̃D: 2:20 2:46 2:10 1:16 1:47 1:29 2:00 2:11 3:39 2:23 2:05 0:56 1:59 0:33 3:35 1:12 —

U : 5 10 9 8 10 11 12 12 10 12 10 5 11 8 9 12 —
ρD: 0.2 0.4 0.36 0.32 0.4 0.56 0.48 0.48 0.4 0.52 0.4 0.2 0.44 0.32 0.36 0.48 —

Figure 5.8: Question answer timings and statistical analysis. Times against models provided in DSL form are highlighted with a grey background.
Times for incorrect answers are highlighted with a black background. U∗ = 2 for each question.

5.5.
Participantdem

ographics
159

Ti
m

e
(s

)

0

100

200

300

400

500

Q1AD Q1AA Q1BD Q1BA Q1CD Q1CA Q1DD Q1DA

Ti
m

e
(s

)

0

50

100

150

200

Q2AD Q2AA Q2BD Q2BA Q2CD Q2CA Q2DD Q2DA

Ti
m

e
(s

)

0

100

200

300

400

500

600

Q3AD Q3AA Q3BD Q3BA Q3CD Q3CA Q3DD Q3DA

Ti
m

e
(s

)

0

100

200

300

400

500

Q4AD Q4AA Q4BD Q4BA Q4CD Q4CA Q4DD Q4DA

Figure 5.9: Scatter plot of question answer times. Grey markers (labelled with a subscript D on the x-axis) show times recorded for participants
given a DSL model. White markers (labelled with a subscript A on the x-axis) show times for those given an annotation based model. Circular
markers indicate correct answers while diamonds are incorrect answers.

5.5. Participant demographics 160

There is no evidence of a correlation between the model type and the time spent answering
questions pertaining to the model.

Unlike with the model reading times, there is no discernible difference in the mean answer-
ing times between groups A and B over all questions, as such the data was more likely to
provide meaningful results. There is however still a great deal of variance in the time taken to
answer each individual question between the participants. This is partly accounted for by the
variance in the amount each participant said while thinking aloud, though differences in the
strategy employed to answer a question and hesitance in committing to an answer dominated
this: Some participants were confident with the first answer they reached and would imme-
diately commit, while others would double- or triple-check their answer before committing
to it.

In general, the mean answer times for the DSL group are faster than those for the annotation
group, but this performance difference is not statistically significant. The answer times for
Q1A and Q3D came the closest to a statistically significant difference between the model
types to reject the null hypothesis (U = 5), but still not beyond the critical value of U∗ = 2.
Additional participants would be required for a definitive result, but based on the current
results it does not appear that any statistically significant difference between the model types
is likely.

5.5.4 Qualitative results

Qualitative data was collected in the form of notes taken during observation of participants
undertaking the experiment, and recordings of their interaction with the experiment and state-
ments made while thinking aloud. The recordings were later reviewed for the emergence of
themes in the actions and statements of the participants. The qualitative data added a layer
of insight to the quantitative results that helped to interpret the results of the experiment.

The following themes were observed:

• Most participants commented that the annotation form of presenting the model was
“ugly” and typically larger than the DSL form — consequently, they found it harder to
find specific declarations they were interested in.

• When exposed to the annotation form, participants complained that more steps were
involved in determining whether one state was a descendant of another; consequently,
more steps were involved in determining whether a transition was inherited by a state,
compared to the other DSL models they were exposed to.

• Participants were adept at reasoning correctly about state transitions, but often failed to
reach a correct answer by missing other possible paths through the code (i.e. missing

5.5. Participant demographics 161

the possibility that the body of a conditional might never be executed, or a loop body
may be executed more than once). It was unclear whether such mistakes were made as
a result of the additional cognitive load that reasoning about typestate added, or if such
mistakes would also have been made regardless in similar situations without typestate.

Overall, the participants seemed more confident while interpreting the DSL model than the
annotation model, and while this did not translate into a statistically significant increase in
performance, this does align with a preference for the DSL model as observed in the survey
results.

5.5.5 Survey

The frequency table of responses to the survey questions with statistical analysis is shown in
Figure 5.10, and frequency diagrams for each question are shown in Figure 5.11.

The survey results are the most definitive from the whole experiment — in general, partici-
pants preferred to work with the DSL model type over the annotation model type.

1. I write code that interacts with typestate constrained interfaces — The null hypoth-
esis cannot be rejected (p = 0.22), though the data weakly supports the notion that
most participants believe they write code that interacts with typestate, with 70% of
participants choosing to agree with the statement, and 20% disagreeing.

2. I write classes which have typestate constraints of their own — The null hypothesis
cannot be rejected (p = 0.42). Support for the statement is weaker than the previous
statement, due to the higher incidence of neutral or disagree responses. This provides
some evidence that users believe they are more likely to interact with code that has
typestate constraints than write code that has typestate constraints, consistent with the
usage pattern of a feature like Java generics.

3. The inheritance rules of Hanoi are easy to understand — The null hypothesis can be
rejected (p = 0.001). Participants all agreed with the statement, with an equal split
between agree and strongly agree.

4. I find it easier to determine whether a method is legal in a state in the annotation form

— The null hypothesis cannot be rejected (p = 0.25). 60% of participants disagreed
with the statement, indicating weak support for it being easier to determine whether a
method is legal in a given state with the DSL model type.

5. I find it easier to determine what state the object will be in after calling a method in the

DSL form — The null hypothesis cannot be rejected (p = 0.12). Weak support exists
for the statement, with 70% of participants agreeing.

5.5. Participant demographics 162

Response Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Meta:
Str. Disagree (1): 1 0 0 3 0 3 0 5 0

Disagree (2): 1 2 0 3 1 5 2 2 8
Neutral (3): 1 2 0 2 2 1 3 1 9

Agree (4): 5 5 5 2 4 1 4 2 18
Str. Agree (5): 2 1 5 0 3 0 1 0 15

Median: 4 4 4.5 2 4 2 3.5 1.5 4
Mode: 4 4 4, 5 1, 2 4 2 4 1 4
p (H0): 0.22 0.42 0.001 0.25 0.12 0.04 0.78 0.01 0

Figure 5.10: Frequencies of responses to survey questions and statistical analysis

6. I find it easier to visualise the state tree with a model defined in the annotation form

— The null hypothesis can be rejected (p = 0.04). 80% of respondents disagreed with
the statement, representing a strong preference for the DSL form in this case.

7. I find it easier to determine whether code conforms to the specification with the DSL

form — The null hypothesis cannot be rejected (p = 0.78) — indeed, the data indi-
cates there may be no overall preference for either the DSL or annotation form for the
general problem of checking the correctness, with only a slight lean towards the DSL
form.

8. I find it easier to determine which legal methods are inherited by a state in the an-

notation form — The null hypothesis can be rejected (p = 0.01). 70% of participants
disagreed with the statement, with a median response of “strongly disagree”. This
provides strong support for the DSL form being preferred for this task.

Meta analysis

Questions 4 through 8 all compare the DSL and annotation forms. By composing the re-
sponses of these questions it may be possible to provide an overall indication of whether
participants preferred one model type to the other.

This can be done by inverting the responses to questions 4, 6 and 8 such that “agree” re-
sponses become “disagree”, and summing all the responses from each category over all the
questions. This shown in the “Meta” column of Figure 5.10, and the null hypothesis (that no
overall preference is shown) can be rejected (p = 0). The meta-analysis strongly supports a
preference towards the DSL model across all the tasks.

5.5. Participant demographics 163

N
um

 R
es

po
ns

es

0

1

2

3

4

5

Response
1 2 3 4 5

Q1: I write code that interacts with typestate constrained
interfaces regularly

N
um

. R
es

po
nd

en
ts

0

1

2

3

4

5

Response
1 2 3 4 5

Q2: I write classes which have typestate constraints of their own

N
um

. R
es

po
ns

es

0

1

2

3

4

5

Response
1 2 3 4 5

Q3: The inheritance rules of Hanoi are easy to understand

Figure 5.11: Participant responses to survey questions (Page 1 of 3)

5.5. Participant demographics 164

N
um

. R
es

po
nd

en
ts

0

1

2

3

Response
1 2 3 4 5

Q4: I find it easier to determine whether a method
is legal in a state in the annotation form

N
um

. R
es

po
ns

es

0

1

2

3

4

Response
1 2 3 4 5

Q5: I find it easier to determine what state the object will be in after
calling a method in the DSL form

N
um

. R
es

po
ns

es

0

1

2

3

4

5

Response
1 2 3 4 5

I find it easier to visualise the state tree with a model
defined in the annotation form

Figure 5.11: Participant responses to survey questions (Page 2 of 3)

5.5. Participant demographics 165

N
um

. R
es

po
ns

es

0

1

2

3

4

Response
1 2 3 4 5

Q7: I find it easier to determine whether code conforms to the
specification with the DSL form

N
um

. R
es

po
ns

es

0

1

2

3

4

5

Response
1 2 3 4 5

Q8: I find it easier to determine which legal methods are inherited by
a state in the annotation form

Ex
pe

ct
ed

 F
re

qu
en

cy
 (%

)

0

10

20

30

Response
1 2 3 4 5

Null hypothesis distribution

Figure 5.11: Participant responses to survey questions (Page 3 of 3)

5.6. Conclusion 166

5.6 Conclusion

The main results derived from this experiment were as follows:

• After 20 minutes of training on both model presentation types, participants answered
76% of questions correctly on average, with a standard deviation of 15%.

• A statistically significant, strong preference for the DSL presentation of Hanoi models
over the annotation presentation was shown.

• No statistically significant correlation between presentation type and completion time
or performance was found.

Based on the observations made during the experiment, the ability for a participant to read
and correctly reason about Hanoi models with minimal training is confirmed, for models of
the size and type present in this study. Such a result is promising, as it indicates that users
are likely to be able to work with existing typestate models as may be found in a standard
library. The experiment does not, however, say anything about how effectively users can
write or modify models, another important aspect of designing such typestate models.

The experiment participants generally expressed frustration with the awkward annotation
syntax and structure of the information presented as compared to the DSL model type. While
the model type does not appear to affect performance directly, an irritating syntax is likely to
have indirect consequences, such as influencing the willingness of a programmer to adopt a
particular language for frequent use.

The main caveat to these results is the small sample size of 10 participants limits the strength
of any claims which can be made. With additional data, we may discover that a statistically
significant difference in performance between the presentation types would emerge, or that
the preference for the DSL presentation would be weakened. The data gathered in this small
experiment cannot provide any indication as to how likely any of these outcomes are.

The results are also quite specific to both the Java language and the model types used —
one cannot make strong claims that these experimental results could be generalised to other
typestate models, or even similar typestate models in other languages with sufficiently dif-
ferent semantics (e.g. a Hanoi typestate model for OCaml). Additionally, the experiment
does not provide any specific guidance as to whether further optimal syntax variants exist —
specific syntactic issues may only be found through a lengthier qualitative study performed
with significantly more participants.

However, I believe that due to the similarity of Hanoi annotations to the Plural language, one
may reasonably infer that a variant of the Hanoi DSL with support for the additional features

5.6. Conclusion 167

of Plural is likely to be preferable to the existing Plural mechanism for defining typestate
models. Providing support for Plural’s fractional permission model and state dimensions
presents a new, interesting syntax design challenge. There are many possibilities for doing
this, which could be evaluated with similar experiments to that conducted here for Hanoi.

Regardless of the specificity of such experiments, conducting them to evaluate language
design decisions adds scientific rigor to the process, substituting conjecture for real data. The
study overall demonstrates the value of exploring different methods of encoding typestate
rules and evaluating them with the target audience — assumptions about what will affect
performance and what users will prefer can be evaluated with meaningful, reproduceable
results. Such experiments are certainly not straightforward to design or execute but the
observations made can be useful in challenging language design assumptions, and better
serving the user.

168

Chapter 6

Typestate Inference in an Imperative
First-Order Calculus

Often it is apparent from a code fragment what demands it makes of the entities it interacts
with, and what effect it will have on those entities. Consider the pseudo-code in Figure 6.1a,
which defines a function f . For such a function to be able to execute without failure at
runtime, we may reasonably assume that the following properties must hold for parameters
a and b given the semantics of a Java-like language:

• It must be possible to invoke methods m, p and q on parameter a. Similarly, it must be
possible to invoke methods n and o on b.

• Method m must be invokable with a single integer parameter. All other methods must
be invokable with no parameters.

• Method m must return a value which can be treated as a Boolean. Method q must
return a value which can be treated as an Integer.

In a language with integrated typestate, it would also be desirable to infer the following:

• Method m must be invokable on a. If this returns false, then p must be invokable, after
which q must be invokable. If m returns true, then q must be invokable.

• Either method n or method o must be invokable on b.

State machines which conform to these typestate constraints are shown in Figure 6.1b. In-
finitely many state machines exist which would permit the usage of parameters a and b in
function f , however we are interested in those which capture just the essential information.

169

1 def f(a, b) : Integer = {
2 if(a.m(1)) {
3 b.n()
4 } else {
5 b.o()
6 a.p()
7 }
8
9 return a.q()

10 }

(a) Example function with unspecified parameter effects

Parameter b
Not Principal

Parameter a

S₁ S₂
m(Int) :: false

S₃
p() :: *

m(Int) :: true

S₄
q() :: Int

Principal

S₁

S₃

n() :: *

o() :: *

S₁
n() :: *

o() :: *

S₂

(b) Possible types for parameters a and b
1 type AType = {
2 S1 { m(Integer) : Bool => S2 }
3 S2 { p() : Top => S3 }
4 S3 { q() : Int => S4 }
5 S4 { }
6 }
7
8 type BType = {
9 S1 {

10 n : Top => S2
11 o : Top => S2
12 }
13 S2 { }
14 }
15
16 def f(a : AType@S1 >> AType@S4, b : BType@S1 >> BType@S2) : Integer = ...

(c) All necessary type declarations and annotations for function f

Figure 6.1: Example of type inference for an unannotated function.

170

The state machine shown for parameter a allows the behaviour required of a in f and nothing
more (it is principal), and does this with the minimum number of states (it is minimal).

The state machine on the left for b is principal but not minimal (states S2 and S3 could be
collapsed into one state), while the state machine on the right is neither — it allows repeated
calls to n and o, which represents much more than what is actually required.

Two very important assumptions have been made in the inference of these constraints: a
and b are not references to the same object, and the references are unique. If it is possible
that a and b are references to the same object, then rather different state machines must be
constructed based upon the semantics of interacting with shared references. A reasonable
choice for such semantics would be that only methods that do not trigger a state change
could be invoked, and therefore we may infer that all methods invoked on a and b in f must
be of this form — essentially, treat the object as though no typestate constraints exist for the
methods used.

If we can guarantee that a and b are references to different objects, but that the references
are potentially not unique, then a variety of other options for inference may be available —
we may allow state changes for the observed methods, but insist that the object be in the
same state at the end of the function as it was at the start. This however would not be valid
in a language with support for concurrency: even temporary state change is unsafe in such a
setting without explicit synchronization [12].

Regardless of these challenges, it is clear that if a typestate inference algorithm can be de-
vised that would allow f to be typed without the addition of any annotations, this is likely to
provide a significant usability and productivity gain for programmers over existing systems
such as Plural, which require parameter effects to be specified manually. The explicit type
definitions for a and b are shown in Figure 6.1c, and require an additional 13 lines of code
that the programmer would have to manually specify if type inference were unavailable.

If f were part of some public API, documenting its requirements and effect as shown is good
practice, and would be significantly easier with tool support that could be provided with a
type inference algorithm. AType and BType could be generated and then modified as the
programmer desired, rather constructing them from scratch, where the type checker only
provides basic support in the form of correctness checking.

In this chapter, the semantics of a minimal imperative language with typestate-constrained
values is described and its properties explored. A typestate inference algorithm for this
language is also presented, though some aspects of it are left unproven and must be tackled
in future work.

6.1. A minimal typestate interaction formalism 171

6.1 A minimal typestate interaction formalism

The language which is to be formalised and explored in this chapter focuses on interac-

tions with typestate constrained objects, and avoids defining a full object-oriented calculus
as might be found in Featherweight Java [75] or the work of Abadi and Cardelli [1]. Formal-
ising the definition of typestate constrained objects with fields and method implementations
involves checking that objects support their defined interface — this is a complex topic in
its own right, requiring model checking, explicit state invariant annotations (as in Plural), or
both. Model checking involves exploring the full state space of the object to ensure that no
errors would arise from a method call sequence that is declared to be legal. Explicit invariants
require that the type system check that fields match the stated invariants for whatever state
they indicate the object should be in after invocation — this is easier to check and less com-
putationally expensive than model checking, but requires the programmer to do significantly
more work in return.

A first-order imperative language with simple object values is sufficient to explore the in-
ference of typestate constraints of the form presented in the introduction to this chapter. As
discussed in Chapter 3, a deterministic finite state machine is adequate to model the most
common typestate constraint patterns. The state machine explicitly describes the states of
the object, the methods which can be called in each state and the transition triggered by
a method call in a specific state. Object fields do not exist in the language, but could be
simulated by paired get / set method calls as is common with Java Beans, or in Abadi and
Cardelli’s formal treatment of objects [1].

For the sake of simplicity and clarity, the language will be based upon a simplified version
of the typestate model in Hanoi:

• The state machine used to represent the capabilities of an object will be flat. As has
already been demonstrated (see Section 3.5.1) a valid hierarchical state machine can be
transformed into a flat state machine. This allows for a simpler formalism without loss
of expressivity, at the cost of additional duplication in the state machine definitions.

• Conditional transitions based on return values will not be considered. While the ad-
ditional syntax and semantic rules to support conditional transitions may be straight-
forward to add to the type system, it may significantly complicate the type inference
process.

• Method parameters shall not be included in the formalism. Hanoi does not consider
method parameters in the definition of method transitions, as there are very few use
cases where the values of parameters are important to state transition decisions.

6.2. TS - an imperative calculus with typestate 172

As a consequence, method overloading is not included in the formalism either. Over-
loading is essentially a trick that allows different methods to have the same name, but
be otherwise unrelated (i.e. different parameter list lengths, different parameter types)
— this is convenient for the programmer, but adds additional unnecessary complexity
to the formalism.

An object value at any point in time may be described as the combination of a finite state
transition system (which we will refer to as the object protocol) and a state from within that
machine. We write this as O@S, which can be read as “protocol O in state S”.

Formally, an object protocol O is defined as a triple (M,Σ,∆) where M is the set of all
method names available in the object, Σ is the set of state labels for the object and ∆ ⊆
Σ ×M ×T ×Σ is the state transition relation, where T is the set of all types in the language.
If (S,m,T,S′) ∈ ∆ then method m is available in state S, and invoking it will return a value
of type T and change the state of the object to S′. Transitions for a given state and method
must be unique, to guarantee that the protocol is deterministic, such that:

(S,m,T,S′) ∈ ∆ Ô⇒ (S,m,T ′, S′′) ∈ ∆ Ô⇒ T = T ′ ∧ S′ = S′′

6.2 TS - an imperative calculus with typestate

TS is a small imperative language which models interactions with typestate-constrained ob-
jects, supports function literals without implicit capture, and employs a form of structural
subtyping. The grammar of the language is shown in Figure 6.2, with operational seman-
tics in Figure 6.4 and typing rules in Figure 6.15. The language uses a technique similar to
Reynold’s syntactic control of interference [131] to avoid the issue of alias control entirely -
there is no means within the language to produce an alias to an object. This focuses attention
on the fundamentals of typestate and typestate inference.

6.2.1 Notational conventions

Definition 6.2.1 (Sets). The notation xi indicates a set of elements, where each element is
assigned a subscript to distinguish it from the others. The subscript does not imply any order.
If the elements need not be distinguished from each other, the subscript is omitted, as in x.
The size (or cardinality) of a set is denoted ∣x∣.

Sets are often used to represent mappings from keys to values, using the notation xi ∶ yi or
xi ↦ yi, where xi is the key and yi is the value for xi. ▲

6.2. TS - an imperative calculus with typestate 173

t ∶= v value
∣ let x = tx in tb let bind
∣ ta ; tb sequencing
∣ x(Ð⇀xi) function call
∣ x.m method call
∣ if tc then tt else tf conditional
∣ while tc do tb repetition

v ∶= unit unit literal
∣ true boolean true
∣ false boolean false

∣ [Si{mij = (vij, Sij)}]@S object literal

∣ λ(ÐÐÐ⇀xi ∶ Ei).T function literal

E ∶= T ≫ U flow effect
∣ T ⋙ U update effect
∣ T sugar for T ≫ T

T,U,V ∶= ⊺ top type
∣ Unit unit type
∣ Bool boolean type
∣ {Si{mij ∶ Tij ⇒ Sij}}@S object type

∣ (Ð⇀Ei)→ V function type

Figure 6.2: Grammar of TS

6.2. TS - an imperative calculus with typestate 174

Definition 6.2.2 (Vectors). The notation Ð⇀xi is an ordered set or vector of elements, where
the subscript distinguishes the elements and also implies their order: x0 precedes x1, and
so on. The length of a vector is denoted ∣Ð⇀x ∣. Vectors are used in the language to describe
parameter and argument lists, and ordered mappings using the notation ÐÐÐ⇀xi ∶ yi. ▲

6.2.2 Values

The language has the following values:

• unit, the sole value of the Unit type, which is used for terms which have no mean-
ingful result.

• true and false, of type Bool, which are used for decisions in conditional evaluation.
The language contains no operations for manipulating booleans, to keep the calculus
small, however such operations would be straightforward to add.

• Function literals of form λ(ÐÐÐ⇀xi ∶ Ei).t, where t is the body of the function and
ÐÐÐ⇀
xi ∶ Ei

is a vector of parameters where each xi must be unique. Each Ei is an effect type

which declares what is required of a parameter and how it will be changed as part of
applying the function. The formal definition and interpretation of effects, particularly
in the presence of subtyping, is described in Section 6.3.4.

Parameters are passed by reference. Function literals do not allow for implicit capture
of variables into their scopes — every free variable of the body must be bound by
a parameter. Defining and interpreting effects for implicitly captured references is
not well understood in the current literature, and is a problem worthy of futher study.
Requiring that all references be explicitly passed to the function allows for all effects
to be explicitly declared.

The explicitly declared effects on function literals exist only for the benefit of the type
system. The primary objective of a type inference algorithm for TS would be to allow
effect declarations to be omitted.

• Object literals of form o@S, where o = [Si{mij = (vij, Sij)}] is the object protocol,

and S is the current state (where S ∈ Si). The object protocol contains a set of distinct
state labels Si, within which is a set of methods mij that can be called in that state.
The actual behaviour of methods is abstracted to just returning a single value of a fixed
type, rather than evaluating some term with a handle to the object. Method evaluation
in a more realistic language often produces a range of values; this could be simulated
in TS by specifying a set of return values for a method and allowing the operational
semantics to return one of these randomly. This does not otherwise affect the semantics

6.2. TS - an imperative calculus with typestate 175

of the language, and could be useful for simulating “external choice” for conditional
transitions.

The language has the following terms:

• Conditionals of form if tc then tt else tf , which evaluates tc first to a boolean result
which decides which of tt (the “true” branch) or tf (the “false” branch) is evaluated.

• Function calls of form x(Ð⇀xi), which extract the function literal stored in x and apply it
to the vector of parameters Ð⇀xi , which must match the declared parameter types. Each
xi must be a distinct variable, and is passed by reference, allowing the typestate of xi
to be changed as a result of the function application.

• Method invocations on objects of form x.m. A method call is only valid when the
method is available in the current state of the object stored in x. After a valid invoca-
tion, the state of the object will have changed as specified by the object’s protocol.

• A let-bind construct let x = tx in tb, which creates a new variable xwithin the scope of
the body term tb, which is a reference to the value derived from the term tx. Rebinding
a variable name is not allowed.

• Sequencing of form t ; t′, which evaluates t, discards the result value and then evaluates
t′. A sequence t ; t′ is effectively equivalent to let x = t in t′, where x is a fresh
variable name that does not occur in t′.

• While loops of form while tc do tb, which evaluate the condition tc and if true,
execute the body tb. This is repeated until tc evaluates to false.

While variables are references to a value, there is no construct which can duplicate a refer-
ence. This very simple mechanism ensures that references are unique, allowing us to focus
our attention on the typestate properties of objects without the added complication of alias
control annotations in the types. The restriction that each variable passed to a function be
unique is for this reason, to prevent implicit duplication by passing the same variable more
than once to the same function.

The example in Figure 6.3 shows a short TS program that emulates the usage of a file handle.
The object file provides a simple contract where a file handle can only be read if the file
is open. The object console is effectively stateless, allowing the method print to be
called without restriction.

The function f interacts with the file, opening it and while read continues to return true
it will invoke print on the console, before closing it.

6.2. TS - an imperative calculus with typestate 176

1 let file =
2 [
3 CLOSED { open = (true,OPEN) }
4 OPEN {
5 read = (true,OPEN) ;
6 close = (unit,CLOSED)
7 }
8]@CLOSED
9 in

10 let console = [S { print = (unit,S) }]@S
11 in
12 let f = λ(fh,c).(
13 fh.open;
14 while fh.read do console.print;
15 fh.close
16)
17 in
18 f(file, console);

Figure 6.3: An example program in TS

As the effects on parameters fh and c are not specified for the function literal assigned to
f, the term is not typeable as is. One would hope that the effect on these parameters could
be inferred, and therefore be able to tell whether file and console would in fact be used
safely by f. If type inference is not possible, then a type would need to be explicitly declared.

The definitions of file and console specify fixed return values for their methods; as
such the evaluation of the while loop in f would be non-terminating as read will always
return true. Consequently the language is very limited in terms of its ability to perform
meaningful computation. This practical limitation has few consequences for the study of
typestate inference in the language however, where the exact values returned by methods are
irrelevant — the structure of a term is much more important, as the control flow of a term
which interacts with an object is strongly tied to what is required of that object.

6.2.3 Term evaluation

As all variables are references, terms are evaluated in the context of a store:

Definition 6.2.3 (Stores). A store is a set of unique variable names mapped to values: µ =
xi ↦ vi. A store location is created (or overwritten) upon entry to the body of a let-binding,
written as µ[x↦ v], which is defined as follows:

µ = xi ↦ vi x ∉ xi
µ[x↦ v] = µ,x↦ v

µ = xi ↦ vi, x↦ v′

µ[x↦ v] = xi ↦ vi, x↦ v

▲

6.3. Types 177

The mechanism for evaluating terms is described using the relation t ∣ µ Ð→ t′ ∣ µ′,
which can be read as “the term t and store µ can be reduced to the term t′ and store µ′ ”.
This relation defines the small step operational semantics of the language, and is defined
inductively in Figure 6.4.

As there is no way for a reference to be duplicated, the mapping from variable names to store
locations is injective and therefore we have no need for explicit “location values” as in the
typical treatment of languages with references (such as in [118, Chapter 13]). There is no
need for a separate store typing, as a well-typed store can be defined directly in relation to a
context as in Figure 6.18. A well-typed store may contain mappings for variables which are
not in the context as shown in rule ST EXTRA. Such mappings are candidates for garbage
collection, or an explicit deallocation instruction could be injected after the evaluation of the
body of a let-binding.

There are three ways the evaluation of a term can become “stuck”:

• An attempt is made to use a variable which does not exist in the store
(R FUN CALL, R METH CALL).

• The value derived for the condition of an if-then-else or while loop expression is not a
boolean (R IF TRUE, R IF FALSE).

• An attempt is made to call a method on a variable which is not an object, or where the
method is not available in the current state (R METH CALL).

We wish to design a type system that will prevent the expression of stuck terms of the above
kinds. First, the types of the language and their properties shall be defined, before describing
the typing relation in Section 6.4.

6.3 Types

There are four kinds of type in TS, corresponding to the four kinds of values: Boolean,
Unit, object types and function types. The boolean, unit and function types are referred to
collectively as the primitive types. Function types of form (Ð⇀Ei)→ T specify the effect Ei that
a function will have on each passed parameter; these include a requirement and guarantee

component, such that a passed parameter must be a subtype of the requirement, and that
after the evaluation of the function the parameter will be of some type determined by the
guarantee. Effects are the main source of complexity in the TS language, and are described
in more detail in Section 6.3.4.

6.3. Types 178

t′ ∣ µ Ð→ t′′ ∣ µ
let x = t′ in t ∣ µ Ð→ let x = t′′ in t ∣ µ′

R LET TERM

let x = v in t ∣ µ Ð→ t ∣ µ[x↦ v]
R LET VALUE

t ∣ µ Ð→ t′′ ∣ µ′
t ; t′ ∣ µ Ð→ t′′ ; t′ ∣ µ′

R SEQ LEFT TERM

v ; t ∣ µ Ð→ t ∣ µ
R SEQ LEFT VALUE

µ(x) = λ(ÐÐÐ⇀yi ∶ Ei).t
x(Ð⇀xi) ∣ µ Ð→ t{xi/yi} ∣ µ

R FUN CALL

O = [. . . S{. . .m = (v,S′) . . .} . . .]
x.m ∣ µ,x↦ O@S Ð→ v ∣ µ,x↦ O@S′

R METH CALL

tc ∣ µ Ð→ t′c ∣ µ′
if tc then tt else tf ∣ µ Ð→ if t′c then tt else tf ∣ µ′

R IF TERM

if true then tt else tf ∣ µ Ð→ tt ∣ µ
R IF TRUE

if false then tt else tf ∣ µ Ð→ tf ∣ µ
R IF FALSE

while tc do tb ∣ µ Ð→ if tc then (tb ; while tc do tb) else unit ∣ µ
R WHILE

Figure 6.4: Operational semantics

6.3. Types 179

m : Bool

n
S₃

o

n

S₂

if x.m then unit else (while x.n do x.o)

S₁S₁

Figure 6.5: The variable x, starting in state S1, can be in state S1, S2 or S3 after the evaluation
of the example term.

Object types in TS are the combination of an object protocol and a set of states, rather than
an individual state. This allows for the convenient description of the statically indeterminate
state of an object after the evaluation of conditionals and loops — depending upon which
branch of a conditional is executed, or how many times the body of a loop is executed, an
object may be in a variety of different states. We can represent this ambiguity with a set of
all possible states the object may be in, which in the worst case is the full set of states defined
in the object protocol.

Consider the term and object protocol in Figure 6.5. If x starts in state S1, then depending
upon the exact return values of m and n, the object will be in state S1, S2 or S3 after eval-
uation. The object is of type O@{S1} before evaluation, and after evaluation it is of type
O@{S1, S2, S3}. In general, we may express the type of an object as O@S where S is some
non-empty set of states, where the specific state labels are not relevant to the discussion at
hand. The type O@{S}, where the exact state of the object is known, can be abbreviated as
O@S.

Intuitively, the only methods that can be safely called on an object of type O@S are those
which are available in all of the states in S. Formally, O@S is equivalent to ⊔{O@S′ ∣
S′ ∈ S}, where T ⊔ T ′ is the least upper bound (or join) of T and T ′. The join (and meet)
operations for types are formally defined in Section 6.3.3.

6.3.1 Extra notational conventions for objects

Given an object type O@S, to save referring to the state set Σ, method set M and transition
relation ∆ that formally define O the following notational conventions shall be used:

• S ∈ O is the state existence predicate asserting S is a state of O. This is equivalent to
S ∈ Σ.

6.3. Types 180

• m ∶ T ⇒ S′ ∈ O@S is the method existence predicate asserting the existence of method
m with return type T in state S, which triggers a transition to state S′ when called
(where both S ∈ O and S′ ∈ O). This is equivalent to (S,m,T,S′) ∈ ∆.

• m ∶ T ⇒ S′ ∈ O@S is the extension of the method existence predicate to state
sets, meaning that for all S ∈ S there exists a state S′ ∈ S′ and type T ′ where
(S,m,T ′, S′) ∈ ∆. T is defined as ⊔S∈S{T ′ ∣ ∃S′. (S,m,T ′, S′) ∈ ∆} and S′ is
defined as {S′ ∣ ∃T ′. (S,m,T ′, S′) ∈ ∆}.

This may also be written as m ∶ T ⇒ U ∈ V , which is to be interpreted as U = O@S′

and V = O@S such that m ∶ T ⇒ S′ ∈ O@S, for some object protocol O and state sets
S and S′, where the specifics of the object protocol and state sets are either irrelevant
or obvious from the context where this is used.

6.3.2 Subtyping

Subtyping in TS is intended to be implicit — it is not necessary for a programmer to declare
that one type is a subtype of another; this can be decided automatically based upon the
definition of the types. Such decisions are made when necessary by the type system, such as
when applying a function. Subtyping is defined by the rules in Figure 6.6.

The subtyping relation in TS exhibits some of the characteristics of structural subtyping —
the decision as to whether A <∶ B is based upon the shape of the types, and the relation
between their sub-components in the same “position”. For instance, () → Unit <∶ (E) →
Unit is false as the types have a different shape: the number of parameters do not match.
However (E) →W <∶ (E′) →W ′ may be true as the types have the same shape, but it must
be the case that E is a sub-effect of E′ and that W <∶ W ′ (rule SUB FN). The sub-effect
relation is defined later in Section 6.3.4.

Object subtyping in TS is defined in a similar manner to Hanoi, using trace inclusion. A
type O1@S1 is a subtype of O2@S2 if Tr(O2@S2) ⊆ Tr(O1@S1) (rule SUB OBJ). Unlike
the description of traces in Hanoi, an interaction is the combination of a method and its
return type, rather than the returned value: (m,T). The set of traces for a type is inductively
defined using rules TR EMPTY and TR PREFIX. The definition of TR PREFIX ensures that
covariance of the return types of methods is enforced. Let O1@S1 and O2@S2 both have a
method m available, such that m ∶ T ′ ⇒ S3 ∈ O1@S1 and m ∶ T ⇒ S4 ∈ O2@S2. In order for
O1@S1 <∶ O2@S2 to hold, it must be the case that T ′ <∶ T , as otherwise (m,T) will not be
an interaction available to O1@S1.

TS includes a greatest type, Top, which is a super-type of all other types. This type is
written as Top in program text but the conventional symbol, ⊺, is often used in the discussion
of the type system. TS does not include a least (�, or Bot) type. The consequences of

6.3. Types 181

T <∶ ⊺ SUB TOP
T <∶ T SUB REFL T <∶ U U <∶ V

T <∶ V SUB TRANS

∣Ð⇀Ei∣ = ∣Ð⇀E′
i∣ ∀i.Ei ≤ E′

i V <∶ V ′

(Ð⇀Ei)→ V <∶ (Ð⇀E′
i)→ V ′

SUB FN Tr(O′@S′) ⊆ Tr(O@S)
O@S <∶ O′@S′

SUB OBJ

T <∶ U ¬(U <∶ T)
T ≪∶ U SUB STRICT T <∶ U U <∶ T

T ≡ U TY EQUIV

ε ∈ Tr(T)
TR EMPTY

m ∶ T ′⇒ S′ ∈ O@S T ′ <∶ T δ ∈ Tr(O@S′)
(m,T).δ ∈ Tr(O@S)

TR PREFIX

Figure 6.6: Subtyping and equivalence rules. It should be noted that while the parameter
effects on functions are covariant, the sub-effect relationE ≤ E′ is contravariant on the effect
input type as expected.

including � were not considered in detail when designing the type system — it is an open
question whether � can be introduced to the type system while retaining soundness, and
whether the type serves any useful purpose, such as simplifying definitions or proofs, or
permitting the introduction of exceptions to the language in a more straightforward manner.
A (hypothetical) value of type � should be usable in any context, in particular it should be
possible to pass it as a parameter to any function, or use it as a function to which other
variables are supplied as arguments. Consequently, it would be necessary to define what the
application of an effect to � would be, and what effect � has on its parameters. While it is
speculated later (in Section 6.5.1) whether � would be beneficial for type inference, no work
has yet been done to fully assess its impact in the formalism.

Type equivalence

As object types are formalised as finite state transition systems, there are often multiple ways
to represent the same object type. Object typesO1@S1 andO2@S2 are considered equivalent,
written O1@S1 ≡ O2@S2, if they are subtypes of each other. Equivalence extends to all other
types, such that T ≡ U if T <∶ U and U <∶ T (defined as rule TY EQUIV in Figure 6.6).

The subtyping relation is a pre-order, as reflexivity and transitivity are provided directly by
the SUB REFL and SUB TRANS rules. The subtyping relation is also a partial order up to
equivalance, which is proven in Lemma A.5.5.

6.3. Types 182

6.3.3 Join and meet

It is often necessary to calculate the least upper bound or greatest lower bound of two or
more types.

Definition 6.3.1 (Type bounds). An upper bound U of two types T1 and T2 is a type such
that T1 <∶ U and T2 <∶ U . A lower bound L of T1 and T2 is a type such that L <∶ T1 and
L <∶ T2.

As ⊺ is a supertype of all types, an upper bound exists for any arbitrary pair of types. How-
ever, a lower bound does not always exist for any arbitrary pair of types. ▲

Definition 6.3.2 (Join). The least upper bound or join of two types, written T1 ⊔ T2 = U , is
an upper bound such that for any other upper bound U ′, U <∶ U ′. Formally:

T1 ⊔ T2 = U Ô⇒ ∀U ′. T1 <∶ U ′ ∧ T2 <∶ U ′ Ô⇒ U <∶ U ′

The join of a set of types Ti is written as ⊔Ti. ▲

Definition 6.3.3 (Meet). The greatest lower bound or meet of two types, written T1⊓T2 = L,
is a lower bound such that for any other lower bound L′, L′ <∶ L. Formally:

T1 ⊓ T2 = L Ô⇒ ∀L′. L′ <∶ T1 ∧L′ <∶ T2 Ô⇒ L′ <∶ L

The meet of a set of types Ti is written ⊓Ti. ▲

The join and meet operators for types are defined in Figure 6.7 and Figure 6.8 respectively.
The join of two types is always defined (see Lemma A.9.2), while the meet of two types is
not always defined (e.g. Bool ⊓Unit).

Deriving the join of two object types (rule TY JOIN OBJ) involves constructing the inter-
section of the state transition systems for each object type. Similarly, deriving the meet
(rule TY MEET OBJ) involves construction the union of the state transition systems in a
similar fashion. As a special case, if we wish to compute the join of two object types with
the same protocol, i.e. O@S ⊔O@S′, it is sufficient to compute the union of the state sets:
O@S ⊔O@S′ = O@S′′ where S′′ = S ∪ S′.

The definition of the union and intersection of the state transition systems requires the ability
to produce fresh state labels with respect to the state label sets of the input state machines.
For this, we define the label composition function L(S,S′) and transposition function Lt(S):

Definition 6.3.4 (State label composition). The function L(Σ1,Σ2, S1, S2) produces a new
state label by combining two state labels from two state sets. It has the following properties:

6.3. Types 183

• The function output is defined when the state labels exist in their respective state sets:
S1 ∈ Σ1 Ô⇒ S2 ∈ Σ2 Ô⇒ ∃S3. L(Σ1,Σ2, S1, S2) = S3.

• Produced labels are fresh relative to the original state sets:
∀S1 ∈ Σ1, S2 ∈ Σ2. L(Σ1, S1,Σ2, S2) ∉ Σ1 ∪Σ2.

• The function is injective with respect to the input state pair:
L(Σ1,Σ2, S1, S2) = L(Σ1,Σ2, S3, S4) ⇐⇒ S1 = S3 ∧ S2 = S4.

The exact definition ofL is irrelevant as long as these properties hold; there are many possible
definitions that could optimise for human readability or simplicity.

Where the identity of Σ1 and Σ2 are obvious from the context in which L is used (typically
in relation to object types with the same subscript), L(S1, S2) = L(Σ1,Σ2, S1, S2) is used as
an abbreviation. ▲

Definition 6.3.5 (State label transposition). The function Lt(Σ1,Σ2, S) produces a new state
label. It has the following properties:

• It is defined for all state labels in Σ2: S ∈ Σ2 Ô⇒ ∃S′.Lt(Σ1,Σ2, S) = S′.

• It is injective: Lt(Σ1,Σ2, S) = Lt(Σ1,Σ2, S′) ⇐⇒ S = S′.

• Labels are guaranteed to be distinct from those in Σ1: S ∈ Σ2 Ô⇒ Lt(Σ1,Σ2, S) ∉
Σ1.

Similar to the label composition function L, the exact definition of Lt is irrelevant as long as
these properties hold.

Where the identity of Σ1 and Σ2 are obvious from the context in which Lt is used (typically
in relation to object types with the same subscript), Lt(S) = Lt(Σ1,Σ2, S) is used as an
abbreviation. ▲

The meet of two object types may not be defined, due to the covariant treatment of return
types on methods. Consider the two object types {S {m ∶ Unit ⇒ S}}@S and {S {m ∶
Bool ⇒ S}}@S. The meet of these two types would require that m return a value that is
a subtype of both Unit or Bool, but no such type exists. Therefore, the meet of these two
object types is undefined. The join of two object types is always an object type, even if it is
simply equivalent to the empty object, {S{}}@S, due to the two joined object types having
no methods in common in their current states.

The join (or meet) of two function types of the same arity is defined as the pair-wise join
(or meet) of each effect and the join (or meet) of the return types (rules TY JOIN FUN and

6.3. Types 184

T ⊔ T = T TY JOIN REFL

∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ ∀i.Ei ⊔ Fi = Gi T ⊔U = V

(Ð⇀Ei)→ T ⊔ (Ð⇀Fi)→ U = (Ð⇀Gi)→ V
TY JOIN FUN

O1 = (M1,Σ1,∆1) O2 = (M2,Σ2,∆2)
M3 =M1 ∪M2 ∆3 = ∆1 ⊔∆2

Σ3 = {L(S1, S2) ∣ S1 ∈ Σ1, S2 ∈ Σ2} S3 = L(S1, S2)
O1@S1 ⊔O2@S2 = O3@S3

TY JOIN OBJ

∆1 ⊔∆2 = {(L(S1, S2),m1, T1 ⊔ T2, L(S′1, S′2)) ∣ (S1,m,T1, S′1) ∈ ∆1,
(S2,m,T2, S′2) ∈ ∆2

}
TRANS JOIN

kind(⊺) = 0 kind(Unit) = 1

kind(Bool) = 2 kind((Ð⇀Ei)→ U) = 3

kind(O@S) = 4

kind(T) ≠ kind(U)
T ⊔U = ⊺ TY JOIN KIND DIFF

∣Ð⇀Ei∣ ≠ ∣Ð⇀Fj ∣

(Ð⇀Ei)→ T ⊔ (Ð⇀Fj)→ U = ⊺
TY JOIN FUN DIFF ARITY

∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ ∃n. En ⊔ Fn is undefined

(Ð⇀Ei)→ T ⊔ (Ð⇀Fi)→ U = ⊺
TY JOIN FUN DIFF EFF

Figure 6.7: Definition of type join. The label composition function L(S1, S2) is described
in Definition 6.3.4.

6.3. Types 185

T ⊓ T = T TY MEET REFL
T ⊓ ⊺ = ⊺ ⊓ T = T TY MEET TOP

∣Ei∣ = ∣Fi∣ V = T ⊓U Gi = Ei ⊓ Fi
(Ð⇀Ei)→ T ⊓ (Ð⇀Fi)→ U = (Ð⇀Gi)→ V

TY MEET FUN

O1 = (M1,Σ1,∆1) O2 = (M2,Σ2,∆2) O3 = (M3,Σ3,∆3)
M3 =M1 ∪M2 Σ′

2 = {Lt(S) ∣ S ∈ Σ2}
Σ3 = Σ1 ∪Σ′

2 ∪R(∆1,∆2, S1, S2) S3 = L(S1, S2)
∆3 = left(∆1) ∪ right(∆2) ∪mid(∆1,∆2, S1, S2)

O1@S1 ⊓O2@S2 = O3@S3

TY MEET OBJ

(S1,m,T1, S′1) ∈ ∆1 (S1,m,T2, S′2) ∈ ∆2

S = L(S1, Lt(S2)) S ∈ R(∆1,∆2, Sa, Sb)
S′ = L(S′1, Lt(S′2)) T1 ⊓ T2 = T

(S,m,T,S′) ∈ mid(∆1,∆2, Sa, Sb)
TRANS MEET MID

(S1, S2) ∈ R(∆1,∆2, Sa, Sb)
(S1,m,T,S′1) ∈ ∆1

∄U,S′2 such that (S2,m,U,S′2) ∈ ∆2

S = L(S1, Lt(S2))
(S,m,T,S′1) ∈ mid(∆1,∆2, Sa, Sb)

TRANS MEET LEFT

(S1, S2) ∈ R(∆1,∆2, Sa, Sb)
(S2,m,T,S′2) ∈ ∆2

∄U,S′1 such that (S1,m,U,S′1) ∈ ∆1

S = L(S1, Lt(S2))
(S,m,T,S′2) ∈ mid(∆1,∆2, Sa, Sb)

TRANS MEET RIGHT

(S1,m,T,S′1) ∈ ∆1

(S1,m,T,S′1) ∈ left(∆1)
TRANS MEET COPY L

(S2,m,T,S′2) ∈ ∆2 S = Lt(S2) S′ = Lt(S′2)
(S,m,T,S′) ∈ right(∆2)

TRANS MEET COPY R

L(S1, Lt(S2)) ∈ R(∆1,∆2, S1, S2)
REACH REFL

(Sa,m,Ta, S′a) ∈ ∆1 (Sb,m,Tb, S′b) ∈ ∆2

L(Sa, Lt(Sb)) ∈ R(∆1,∆2, S1, S2) S ∈ R(∆1,∆2, S′a, S′b)
S ∈ R(∆1,∆2, S1, S2)

REACH ADJ

Figure 6.8: Definition of type meet. The label composition function L(S1, S2) is described
in Definition 6.3.4, and the label transposition function Lt(S1) are described in Definition
6.3.5.

6.3. Types 186

TY MEET FUN, respectively). Join and meet for effect types shall be defined later, once
the full semantics of effects have been described, though it should be noted at this point that
neither is always defined. Consequently, (E) → T ⊔ (E′) → T = ⊺ when E ⊔ E′ is not
defined. In the case of the meet of two function types, if any effect type meet is undefined
then the meet of the two functions is undefined.

6.3.4 Effect types

An effect type describes how the type of a variable may change in response to evaluating a
term, and is an important part of abstracting the behaviour of a function to allow for modular
type checking.

For the TS language, we explore the semantics of two different kinds of effect: update effects
(T ⋙ U) and flow effects (T ≫ U). In both cases, the type T is referred to as the input type

or requirement, and U as the output type or guarantee. For notational convenience, the
functions in(E) and out(E) shall provide the requirement and guarantee of an effect E
respectively.

Given a function f = λ(x ∶ E).t and a variable y ∶ T such that we wish to evaluate f(y), we
must define what the relationship between T and E should be, such that we may decide what
the type of y should be after applying the function.

The semantics of effects can be defined in terms of the following functions and relations:

• valid(E) — a predicate that asserts the requirement and guarantee are compatible,
such that the effect is meaningful.

• E ≤ E′ — a sub-effect relationship. This is necessary to define function subtyping,
such that (x ∶ E) → T <∶ (x ∶ E′) → T when E ≤ E′. This makes effects covariant
to function subtyping, but as shall be described for both update and flow effects, the
effect requirement is contravariant to function subtyping as one might expect. Where
E ≤ E′, we say that E′ is a wider effect than E, or conversely that E is a narrower

effect that E′.

• remap(T,E) — a function which defines the type transformation that occurs when
applying effect E to type T . This is typically used to describe the type of a passed
parameter after applying a function, i.e. the type of parameter y after evaluating f(y).

The sub-effect relationship and remap must be related such that the following property holds:

Definition 6.3.6 (Effect output covariance). Let valid(E), valid(E′), and E ≤ E′. If
remap(T,E′) is defined, then remap(T,E) is also defined such that remap(T,E) <∶
remap(T,E′). ▲

6.3. Types 187

This property is necessary to ensure that a function f ′ which is a subtype of f can be safely
substituted for f : anything that can be done with y after evaluating f(y) must also be possible
after evaluating f ′(y). This is proven in Lemma A.8.7.

The definitions of valid , E ≤ E′ and remap are shown in Figure 6.9, with explanations of
the differences between flow and update effects below.

Update effects

For an update effect T ⋙ U , the requirement T and guarantee U need not be related:
valid(T ⋙ U) is vacuously true for any T and U (rule VALID UP EFF). The sub-effect
relationship is structural: T ⋙ U ≤ V ⋙W if V <∶ T and U <∶W . Finally, for any T ′ <∶ T ,
the application of an update effect is defined such that remap(T ′, T ⋙ U) = U .

Update effects match the semantics used for effects in other typestate systems such as Plural
and Plaid. Update effects are simpler but provide less information on how a value is likely
to be used during the evaluation of a term — they simply state what the term requires, and
what behaviour is guaranteed to be safe after the evaluation of the term.

The definition of remap(T ′, T ⋙ U) for update effects is insensitive to the additional type
information that T ′ may contain over T . As shall be demonstrated later, fewer terms are
typeable when update effects are used as compared to flow effects for this reason.

Flow effects

Flow effects are written as T
δ≫ U , and represent a set of possible interactions with a value,

represented by the set δ, which is a non-empty subset of the full set of permissible interaction
traces for T (represented by Tr(T)).

The type T represents a requirement and U represents a guarantee as for update effects,
however U is defined directly from the values of T and δ. Given a value v of type T and an
interaction trace δ ∈ δ, the function trmap(T, t) (defined in Figure 6.10) specifies the type of
v after invoking the sequence of methods that the interaction trace represents. The type U ,
therefore, is the join of all such resultant types: U = ⊔{trmap(T, δ) ∣ δ ∈ δ}.

For any valid flow effect T
δ≫ U , it is required that δ ⊆ Tr(T). Flow effects with Tr(T) ⊂ δ

are invalid as any trace δ ∉ Tr(T) would contain at least one method call which is not
permitted at the point of the call. This is encapsulated in rule VALID FL EFF in Figure 6.9.

For notational convenience, δ may be omitted such that T ≫ U = T δ≫ U where δ represents
the largest set of traces that would result in a transformation from T to U . The rules for
defining this largest set, Tr(T ≫ U), are shown in Figure 6.9, which is proven to be a subset

6.3. Types 188

valid(T ⋙ U)
VALID UP EFF

V <∶ T U <∶W
T ⋙ U ≤ V ⋙W

SUB UP EFF

∅ ⊂ δ ⊆ Tr(T) U = {trmap(T, δ) ∣ δ ∈ δ}

valid(T δ≫ U)
VALID FL EFF

valid(T δ1≫ U) valid(V δ2≫W) V <∶ T δ1 ⊆ δ2

T ≫ U ≤ V ≫W
SUB FL EFF

E1 ≤ E2 E2 ≤ E3

E1 ≤ E3
SUB EFF TRANS

E1 ≤ E2 E2 ≤ E3

E1 ≡ E2
EFF EQUIV

T <∶ U
remap(T,U ⋙ V) = V

REMAP UP DEF

T <∶ U valid(U δ≫ V)

remap(T,U δ≫ V) = ⊔{trmap(T, δ) ∣ δ ∈ δ}
REMAP FL DEF

ε ∈ Tr(T ≫ T)
TR EFF EMPTY

m ∶ T ′⇒ S′′ ∈ O@S δ ∈ Tr(O@S′′ ≫ O@S′) T ′ <∶ T
(m,T).δ ∈ Tr(O@S ≫ O@S′)

TR EFF PREFIX

δ ∈ Tr(T ≫ U) valid(T ≫ V)
δ ∈ Tr(T ≫ U ⊔ V)

TR EFF BRANCH

Figure 6.9: Definition of flow and update effect properties

of Tr(T) in Lemma A.7.1. We can demonstrate that for any valid flow effect T
δ≫ U that

δ ⊆ Tr(T ≫ U) (Lemma A.7.3). For primitive types T , Tr(T) = {ε} and therefore the only

valid flow effect is T
δ≫ T with δ = {ε} (Lemma A.4.7).

The sub-effect relationship for flow effects is defined in terms of effect trace inclusion and
a contra-variant subtyping relation between the input types (rule SUB FL EFF). As such, if
T ≫ U ≤ V ≫W , then T ≫ U is more specific about what interactions may occur.

Finally, remap(T ′, T
δ≫ U) can be defined simply as the application of all traces in δ to the

type T ′ (rule REMAP FL DEF in Figure 6.9). This is more sensitive to the extra information

provided by T ′ than for update effects: we are guaranteed that remap(T ′, T
δ≫ U) <∶ U

(Lemma A.6.1), and preserves all information on the object protocol of T ′ in the case of
object types.

6.3. Types 189

T = trmap(T, ε)
TR MAP EMPTY

m ∶ U ′⇒ S′ ∈ O@S U ′ <∶ U O@S′′ = trmap(O@S′, δ)
O@S′′ = trmap(O@S, (m,U).δ)

TR MAP PREFIX

ε + δ = δ TR PLUS EMPTY δ + δ′ = δ′′
(m,V).δ + δ′ = (m,V).δ′′

TR PLUS PREFIX

len(ε) = 0
LEN EMPTY

len(δ′) = n
len((m,V).δ′) = n + 1

LEN PREFIX

Figure 6.10: Definition of trace operations

B

C

DA
a : Unit

b : Unit

a : Bool

b : Bool

c : () → Unit

Object protocol O₁

Figure 6.11: A simple object protocol

6.3. Types 190

As an example, consider the object protocol in Figure 6.11, which we shall refer to asO1, and
let O2 = {S1{a ∶ ⊺ ⇒ S2}S2{}}. If we have a function f of type (O2@S1 ⋙ O2@S2) → ⊺
and a function f ′ of type (O2@S1 ≫ O2@S2) → ⊺, intuitively it should be safe to pass a
value x with type O1@A as a parameter to either function.

By definition, remap(O1@A,O2@S1 ⋙ O2@S2) = O2@S2. This would indicate that eval-
uating f(x) ; x.b is potentially unsafe. In contrast, remap(O1@A,O2@S1 ≫ O2@S2) =
O1@B, meaning that we may reasonably expect to be able to type f ′(x) ; x.b.

The remap function over flow effects has a number of useful properties, which fit the intu-
ition we may desire for the application of effects:

• remap(T,T ≫ U) = U (proven in Lemma A.7.5).

• remap(T,U ≫ V) <∶ V (proven in Lemma A.6.1).

• If T ′ <∶ T , then remap(T ′, U ≫ V) <∶ remap(T,U ≫ V) (proven in Lemma A.6.2).

These properties demonstrate that in many ways flow effects are more precise than update
effects, and generally offer stronger guarantees for the type of a value after function applica-
tion. However, as the sub-effect relationship is not structural, T ≫ U ≤ V ≫ W cannot be
decided by comparing T and V or U and W in isolation. Consequently, function subtyping
is no longer structural, which introduces complications to the type inference strategy, as shall
be discussed later.

Finally, a consequence of the definition the sub-effect relation for flow effects is that ⊺ ≫ ⊺
can be used to describe the effect on a variable which is not used in a term, as
remap(T,⊺ ≫ ⊺) = T for all T (proven in Lemma A.6.3). This is particularly useful for
unused parameters to functions, where no type information is lost in applying the function
to variables which will not be used in this manner. There is no equivalent for update ef-
fects; there is no meaningful guarantee we can use which will preserve type information
in this manner without parametric polymorphism (i.e. the ability to define an update effect
∀T. T ⋙ T).

6.3.5 Strong and weak update

In the TS language, once a variable has been bound to a particular value by either a let-bind
or as a parameter to a function, it cannot be changed. Objects values can change state in
response to method calls, but a reference always points to the same object.

As such, there is no facility in the language to overwrite or update the contents of a reference;
it would however be relatively easy to add support for this.

6.3. Types 191

1 \\ o = [S { m = (true, S2) }
2 \\ S2 { n = (unit,S) }
3 \\ S3 { p = (unit,S3) }]
4 \\
5 \\ O1 = { S { m : Bool => S2 }
6 \\ S2 { n : Unit => S3 }
7 \\ S3 { p : Unit => S3 } }
8 \\
9 \\ p = [A { m = (false, B) }

10 \\ B { n = (unit, B) ; p = (unit, B) }]
11 \\
12 \\ O2 = { A { m : Bool => B }
13 \\ B { n : Unit => B ; p : Unit => B } }
14
15 let f = λ(x : O1@S >>> O1@S3).(
16 x.m ;
17 x := o@S3
18) in
19 let y = p@A in f(y)

Listing 6.1: Example of strong update

Weak update of a reference means replacing the contents of a reference with another value of
the same type, while strong update means replacing the contents of a reference with another
of an arbitrary type. The latter is disallowed in most languages as it may be dangerous if
the reference is aliased. However, if the reference is known to be unique then the operation
should be safe.

Supporting either weak or strong update in the TS language has consequences for the effects
that can be ascribed to terms in the language. As an example, consider the code in Listing
6.1 which uses a hypothetical strong update operator := to change the value of reference x.

The function f is declared with an update effect for the parameter x. As can be observed,
O2@A <∶ O1@S and therefore the application of f using y should be safe. After the applica-
tion, the type of y will be remap(O2@S,O1@S ⋙ O1@S3) = O1@S3.

One may question whether the flow effect O1@S ≫ O1@S3 could be used for the parameter
x. In this case, remap(O2@A,O1@S ≫ O@S3) = O2@B which is problematic as the body
of f replaces x with a new value o@S3 ∶ O@S3. Due to the pass by reference semantics
of TS, this new value would be visible through the variable y after the call, where we may
incorrectly assume it would be safe to invoke method n after evaluating f(y).

Flow effects may only be used where we can be guaranteed that the identity of the value in
a reference does not change, such that all operations (in particular, method calls) occur on
the same instance. As such, flow effects may not be used to describe the effect on variables
which are updated, whether the update is strong or weak. If the reference is not overwritten,
then either a flow effect or an update effect may be used, though flow effects are preferred
due to the additional precision they offer.

6.3. Types 192

T = T1 ⊓ T2 U = U1 ⊔U2

T1 ⋙ U1 ⊔ T2 ⋙ U2 = T ⋙ U
EFF JOIN UP

T = T1 ⊔ T2 U = U1 ⊓U2

T1 ⋙ U1 ⊓ T2 ⋙ U2 = T ⋙ U
EFF MEET UP

T = T1 ⊓ T2 δ = δ1 ∪ δ2 U = {trmap(T, δ) ∣ δ ∈ δ}

T1

δ1≫ U1 ⊔ T2

δ2≫ U2 = T
δ≫ U

EFF JOIN FL

T = T1 ⊔ T2 δ = δ1 ∩ δ2 δ ≠ ∅ U = ⊔{trmap(T, δ) ∣ δ ∈ δ}

T1

δ1≫ U1 ⊓ T2

δ2≫ U2 = T
δ≫ U

EFF MEET FL

Figure 6.12: Definition of join and meet for effect types

This intuition, that flow effects are more precise than update effects, could be formalised as
part of the sub-effect relationship: if valid(T ≫ U), then it could be said that T ≫ U ≤ T ⋙
U . This would allow flow effects to be treated as update effects when necessary, allowing
subsumption for function types such that (T ≫ U)→ V <∶ (T ⋙ U)→ V .

Despite the apparent possibility that strong and weak update could be added to the TS lan-
guage and for flow and update effects to co-exist within the type system, this possibility was
not considered further due to time constraints and has been left for future work.

6.3.6 Meet and join for effects

The join and meet of effect types is formally defined in Figure 6.12, and their basic properties
proven in Section A.8.

As the sub-effect relationship for update effects is structural, the join and meet of two update
effects is straightforward to define (rules EFF JOIN UP and EFF MEET UP respectively).
The join of two update effects being defined is contingent on the meet of the requirement
(input) types being defined, while the meet is dependent on the meet of the guarantee (output)
types being defined. Therefore, both join and meet on update effects is partial.

The join of two flow effects T1

δ1≫ U1 ⊔ T2

δ2≫ U2 = T
δ≫ U , defined in rule EFF JOIN FL, is

such that T = T1⊓T2 and δ = δ1∪δ2. The meet of two flow effects is similarly structured such

that T1

δ1≫ U1 ⊓ T2

δ2≫ U2 = T
δ≫ U where T = T1 ⊔ T2 and δ = δ1 ∩ δ2, where this intersection

must not be empty.

Where the effects concern object types, such as in O1@S1 ≫ O1@S′1 ⊔ O2@S2 ≫ O2@S′2,
we may observe that each effect represents a finite state machine with defined entry and exit

6.3. Types 193

states. The join is similar to the standard intersection operation on finite state machines,
while the meet is similar to the union.

6.3.7 Effect combinators

Effects formalise the possible state changes that may occur on a variable in response to
evaluating a term. A term such as ta ; tb composes two sub-terms which each have a separate
effect on the variables they use. It is therefore natural to think of combining effects in ways
that match the structure and evaluation order of such terms. Combinators for update effects
are not very interesting, as the effects do not describe how a term is used. As such, we shall
focus on combinators for flow effects.

Three basic combinators are required for effects in the TS language, which correspond to the
basic combinators for regular languages: concatenation, union and Kleene star. Examples
of their application to flow effects are shown in Figure 6.13, and each is discussed in more
detail below.

Effect concatenation

E ⋅ E′ is referred to as the concatenation of the effects E and E′. Effect concatenation is
defined to be left-associative.

The effect E = E1 ⋅ E2, if defined, represents a value which can be used in a way that is
compatible with the effect E1, then be used in a way that is compatible with the effect E2.
Therefore, it must be the case that in(E) <∶ in(E1) and remap(in(E),E1) <∶ in(E2).

Concatenation for update effects is therefore defined such that T ⋙ U ⋅V ⋙W = T ⋙W

when U <∶ V , otherwise the concatenation is not defined. For flow effects over primitive
types, T ≫ T ⋅U ≫ U = V ≫ V where V = T ⊓U .

Concatenation for flow effects over object types can be defined using the standard algorithm
for state machine concatenation [135, Chapter 1, Section 2.3]. In Figure 6.13, the effect
E1 ⋅E2 is derived using this algorithm. The ambiguity in the end state of E1 and the overlap
of the method a between the state S1 inO1 and state S2 inO2 are the source of the complexity
in E1 ⋅ E2. The traces t1 = ε, t2 = (a,A1).ε and t3 = (a,A1).(c,C1).ε are all members of
Tr(E1), after which the only trace of E2, t4 = (a,A2).(b,B2).ε must be permitted.

As the state machine must be deterministic, we cannot distinguish between t1 + t4 and t2 + t4
in the initial state of E1 ⋅E2. As such, the method a must return a value which can be used
as an A1 or an A2, i.e it is required that a returns a value of type A1 ⊓A2. If this type does
not exist, then the concatenation of E1 and E2 is not defined.

Flow effect concatenation has the following properties:

6.3. Types 194

E₂ = O₂@S₁ ≫ O₂@S₃

S₁ S₂ S₃a : A₂ b : B₂

E₃ = O₃@S₁ ≫ O₁@S₃

S₁ S₂
a : A₃

b : B₃
S₃

c : C₃

E₁ = O₁@S₁ ≫ O₁@{S₁, S₂}

S₁
a : A₁

S₂
c : C₁

E₁ ∣ E₃

S₁ S₃
a : A₁ ⊓ A₃

b : B₃

S₅

a : A₁

S₂

c : C₁

S₄
c : C₁ ⊓ C₃

a : A₁
S₇

c : C₁

S₆S₈ a : A₃

b : B₃
S₉

c : C₃

E₄ = O₄@S₁ ≫ O₄@S₂

S₁ S₂
a : A₄ a : A₅b : B₄

E₁ ⋅ E₂

S₁ S₂
a : A₁ ⊓ A₂

S₃
c : C₁

a : A₁ ⊓ A₂

S₄

b : B₂

S₅

a : A₂

b : B₂
S₆

c : C₁

a : A₂

E₄*

S₂b : B₄

a : A₄ b : B₄

a : A₄ ⊓ A₅

S₁S₁

Figure 6.13: Example applications of the effect combinators

6.3. Types 195

• The effect ⊺≫ ⊺ is the identity element for flow effect concatenation — ⊺≫ ⊺ ⋅ T ≫
U = T ≫ U and T ≫ U ⋅ ⊺≫ ⊺ = T ≫ U .

• T ≫ U ⋅U ≫ V = T ≫ V .

• If X ≫ Y = T ≫ U ⋅ V ≫W is defined, then T ≫ U ≤ X ≫ Z and V ≫W ≤ Z ≫ Y

where Z = remap(X,T ≫ U).

Effect union

E = E1 ∣ E2 is referred to as the union of the effects E1 and E2. E1 ∣ E2, if defined,
would allow a value to be used in a way that is compatible with effect E1 or E2. Therefore,
we require that in(E) <∶ in(E1), in(E) <∶ in(E2) and out(E) <∶ remap(in(E),E1) ⊔
remap(in(E),E2). Effect union must be commutative and associative.

For update effects, union is equivalent to the meet of the two update effect types: T ⋙ U ∣
V ⋙W = (T ⊓ V) ∣ (U ⊔W).

For flow effects over primitive types, T ≫ T ∣ U ≫ U = V ≫ V where V = T ⊓ U . This is
coincidentally the same definition as for effect concatenation.

Union for flow effects over objects types can be defined using the standard algorithm for state
machine union. In Figure 6.13, the effect E1 ∣ E3 is derived using this algorithm. Similar
to the effect concatenation case, the ambiguity in the end state of E1 results in a significant
number of possible end states in E1 ∣ E3. The initial state of E1 ∣ E3 is the union of the initial
states in E1 and E3, therefore both methods a and c are available, and a must return A1 ⊓A3.
State S3 in E1 ∣ E3 is the union of S1 from E1 and S2 from E3, therefore the method c in this
state must return C1 ⊓C3. If either of these are undefined, then E1 ∣ E3 is undefined.

Flow effect union has the following properties:

• ⊺≫ ⊺ ∣ T ≫ U = T ≫ (T ⊔ U) — the union of the effect ⊺≫ ⊺ with any other effect
is equivalent to that effect being applied zero or one times.

• T ≫ U ∣ T ≫ V = T ≫ (U ⊔ V).

• If X ≫ Y = T ≫ U ∣ V ≫W , then T ≫ U ≤ X ≫ Y1 and V ≫W ≤ X ≫ Y2 where
Y1 = remap(X,T ≫ U) and Y2 = remap(X,V ≫W) such that Y1 ⊔ Y2 = Y .

The union of a flow effect and an update effect is less straightforward than for concatentation.
We must treat the union of these effects as an update effect, such that T ≫ U ⊓ V ⋙ W =
(T ⊓ V) ⋙ (U ⊔W), if defined. Without knowing which of the two effects will be applied,
it is safer to treat T ≫ U as its update effect equivalent, T ⋙ U .

6.4. Type system 196

Effect repetition

E′ = E∗ is referred to as the Kleene star or repetition of the effect T ≫ U . If defined, E′

would allow a value to be used in a way that is compatible with E zero or more times, in
sequence. Therefore, we require that in(E′) <∶ in(E), out(E′) <∶ in(E) and out(E′) <∶
in(E′).

For update effects, (T ⋙ U)∗ = T ⋙ (T ⊔ U) when U <∶ T , otherwise it is not defined.
For flow effects over primitive types, (T ≫ T)∗ = T ≫ T .

For flow effects over object types, the repetition of an effect can be generated using the
standard algorithm for deriving the Kleene star of a finite state machine. In Figure 6.13, the
Kleene star of the effect E4 is generated. The existence of the method a on both the input
and output states of E4 requires that the method return A4 ⊓A5 after the first call to b. If this
undefined, then E4∗ is also undefined.

6.4 Type system

We shall consider two closely related type systems for the TS language: one which uses
update effects exclusively for functions, and other which uses flow effects exclusively. As
shall be demonstrated, the typing rules are identical with the exception of the typing rule for
function definitions, though the system with flow effects allows more terms to be typed and
stronger properties can be proven.

As variables are references to values that can change type, it is necessary for the type system
to express changes to the execution context. We must then be able to demonstrate that the
changes in the context correspond to the changes in the store during evaluation.

Definition 6.4.1 (Contexts). A context is a set of unique variable names mapped to types:
Γ = xi ∶ Ti. It is often convenient to treat Γ as a partial function from variable names to types,
such that dom(Γ) = xi and Γ(xi) = Ti, where xi ∈ dom(Γ). A total function variant Γ̂(xi) is
defined such that Γ̂(x) = Γ(x) when x ∈ dom(Γ), otherwise Γ̂(x) = ⊺. ▲

An ordering is defined on contexts in Figure 6.14, such that when Γ ≤ Γ′, we say that Γ is
less specific than Γ′. Γ = ∅ is the smallest (least specific) element. This ordering is a partial
order up to equivalence (proof in Section A.3).

Partial join and total meet operators (up to equivalence) are also defined in Figure 6.14,
which are used in the typing rule for conditionals. The proof that these operators have the
expected properties is given in Section A.3.

Given a definition of a context, we can define typings for the terms of the language:

6.4. Type system 197

dom(Γ) ⊂ dom(Γ′) ∀x ∈ dom(Γ). Γ′(x) <∶ Γ(x)
Γ < Γ′ CTX LT A

dom(Γ) = dom(Γ′) ∀x ∈ dom(Γ). Γ′(x) <∶ Γ(x)
∃x ∈ dom(Γ). Γ′(x) ≪∶ Γ(x)

Γ < Γ′ CTX LT B

dom(Γ) = dom(Γ′) ∀x ∈ dom(Γ). Γ′(x) ≡ Γ(x)
Γ ≡ Γ′ CTX EQUIV

Γ < Γ′ ∨ Γ ≡ Γ′
Γ ≤ Γ′ CTX LEQ

xi = dom(Γ) ∪ dom(Γ′) T (x) = Γ̂(x) ⊓ Γ̂′(x)
Γ ⊔ Γ′ = { x ∶ T (x) ∣ x ∈ xi }

CTX JOIN

xi = dom(Γ) ∩ dom(Γ′) T (x) = Γ(x) ⊔ Γ′(x)
Γ ⊓ Γ′ = { x ∶ T (x) ∣ x ∈ xi }

CTX MEET

Γ2 < Γ1

(Γ1, T1,Γ′
1) < (Γ2, T2,Γ′

2)
TY LT 1 Γ2 ≡ Γ1 T2 ≪∶ T1

(Γ1, T1,Γ′
1) < (Γ2, T2,Γ′

2)
TY LT 2

Γ2 ≡ Γ1 T2 ≡ T1 Γ′
1 < Γ′

2

(Γ1, T1,Γ′
1) < (Γ2, T2,Γ′

2)
TY LT 3

Γ1 ≡ Γ2 T1 ≡ T2 Γ′
1 ≡ Γ′

1

(Γ1, T1,Γ′
1) ≡ (Γ2, T2,Γ′

2)
TY EQUIV

τ < τ ′ ∨ τ ≡ τ ′
τ ≤ τ ′ TY LEQ

Figure 6.14: Ordering and equivalance for contexts and typings

6.4. Type system 198

Definition 6.4.2 (Typings). A typing judgement Γ▷t ∶ T◁Γ′ defines a member of the typing

relation. This may be interpreted as “ given context Γ, the result of evaluating the term tmay
be considered to be of type T , after which the context will have changed to Γ′ ”.

In the terminology of Jim [80] and Wells [149], if Γ ▷ t ∶ T ◁ Γ′ can be derived then
τ = (Γ, T,Γ′) is a typing of the term t. ▲

The typing judgements for each kind of term are defined in Figure 6.15, and may be inter-
preted as follows:

• T UNIT, T TRUE and T FALSE are trivial — the evaluation of a unit or boolean literal
does not change the context, and evaluation does not require anything specific of the
context. As a result, these terms are typeable with any input context (Lemma A.10.4).

• T FUN FL DEF requires that the body of a function literal is typeable using an input
context built from the defined parameters, and that the types of the variables in the out-
put context of this typing correspond to those declared on the effect for each variable.
This rule forbids implicit binding of variables from the input context, as the body of the
function must be typeable without any reference to the input context. Consequently,
function literals can be typed with any input context, and the context is not changed by
evaluation.

T FUN FL DEF defines the derivation for a function which describes the usage of
parameters with flow effects, while T FUN UP DEF defines the equivalent derivation
for update effects. By omitting T FUN FL DEF or T FUN UP DEF, we produce
the two variants of the type system for TS we are interested in studying.

• T OBJECT requires that the values used for the return values of each method are ty-
peable using an empty context, which forbids implicit binding of variables from the
context in a similar manner to function literals. Implicit in this rule is the requirement
that state labels be unique, and that each method within a state be unique, ensuring that
the protocol is deterministic.

• T SEQ requires that in order to type ta ; tb, that there must exist a typing of ta and tb
such that the output context of the typing of ta is the input context of tb. The typing of
the overall statement uses the input context of ta and the type and output context of tb.

• T LET is fundamentally similar to T SEQ— for a term let x = tx in tb, typings must
exist for tx and tb such that the output context of tx, with the addition of a binding of
x to the type assigned to tx, is the input context of tb.

• T FUN CALL requires that in order to type x(Ð⇀xi), that the type of x and the types of
each xi must align such that:

6.4. Type system 199

Γ▷ true ∶ Bool◁ Γ
T TRUE

Γ▷ false ∶ Bool◁ Γ
T FALSE

Γ▷ unit ∶Unit◁ Γ
T UNIT

xi ∶ Ti▷ t ∶ V ◁ xi ∶ Ui
Γ▷ λ(ÐÐÐÐÐÐÐ⇀xi ∶ Ti ≫ Ui).t ∶ (

ÐÐÐÐ⇀
Ti ≫ Ui)→ V ◁ Γ

T FUN FL DEF

∀i, j. ∅▷ vij ∶ Tij ◁∅

Γ▷ [Si{mij = (vij, Sij)}]@S ∶ {Si{mij ∶ Tij ⇒ Sij}}@S ◁ Γ

T OBJECT

x ∉ dom(Γ) Γ▷ tx ∶ Tx◁ Γ′ Γ′, x ∶ Tx▷ tb ∶ T ◁ Γ′′, x ∶ T ′
x

Γ▷ let x = tx in tb ∶ T ◁ Γ′′ T LET

Γ▷ ta ∶ Ta◁ Γ′ Γ′▷ tb ∶ T ◁ Γ′′

Γ▷ ta ; tb ∶ T ◁ Γ′′ T SEQ

Γ(x) = (Ð⇀Ei)→ V ∀i. Ti <∶ in(Ei)
Γ, xi ∶ Ti▷ x(Ð⇀xi) ∶ V ◁ Γ, xi ∶ remap(Ti,Ei)

T FUN CALL

m ∶ T ⇒ S′ ∈ O@S

Γ, x ∶ O@S ▷ x.m ∶ T ◁ Γ, x ∶ O@S′
T METH CALL

Γ▷ tc ∶ Bool◁ Γ1

Γ1 ▷ tt ∶ Tt◁ Γ2 Γ1 ▷ tf ∶ Tf ◁ Γ3

Γ▷ if tc then tt else tf ∶ Tt ⊔ Tf ◁ Γ2 ⊓ Γ3

T IF

Γ1 ▷ tc ∶ Bool◁ Γ2 Γ3 ▷ tb ∶ Tb◁ Γ4

Ec(x) = extract(x,Γ1,Γ2) Eb(x) = extract(x,Γ3,Γ4)
Γ′ = {x ∶ remap(Γ(x),Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗) ∣ x ∈ dom(Γ)}

Γ▷while tc do tb ∶Unit◁ Γ′ T WHILE A

Γ▷ t ∶ T ′◁ Γ′ T ′ <∶ T
Γ▷ t ∶ T ◁ Γ′ T SUB

Γ, x ∶ T ▷ t ∶ U ◁ Γ′, x ∶ V T ≫ V ≤ T ′ ≫ V ′

Γ, x ∶ T ′▷ t ∶ U ◁ Γ′, x ∶ V ′ T WIDEN FL EFF

Figure 6.15: Type rules

6.4. Type system 200

xi ∶ Ti▷ t ∶ V ◁ xi ∶ Ui
Γ▷ λ(ÐÐÐÐÐÐÐ⇀xi ∶ Ti ⋙ Ui).t ∶ (

ÐÐÐÐÐ⇀
Ti ⋙ Ui)→ V ◁ Γ

T FUN UP DEF

Γ▷ tc ∶ Bool◁ Γ′ Γ′▷ tb ∶ T ◁ Γ
Γ▷while tc do tb ∶Unit◁ Γ′ T WHILE B

Γ, x ∶ T ▷ t ∶ U ◁ Γ′, x ∶ V T ⋙ V ≤ T ′ ⋙ V ′

Γ, x ∶ T ′▷ t ∶ U ◁ Γ′, x ∶ V ′ T WIDEN UP EFF

Figure 6.16: Type rule variants for update effects

for flow effects:

extract(x,Γ1,Γ2) = { Γ1(x) ≫ Γ2(x) if x ∈ dom(Γ1)
⊺≫ ⊺ otherwise }

for update effects:

extract(x,Γ1,Γ2) = { Γ1(x) ⋙ Γ2(x) if x ∈ dom(Γ1)
⊺⋙ ⊺ otherwise }

Figure 6.17: Definition of extract operation

– The correct number of parameters are passed.

– The known type for each xi in the input context must be a subtype of the required
type specified in the function type of x.

The type of each xi after the function call is defined by remap, which is dependent
upon the effect type used.

• T METH CALL requires that in order to type x.m, x must have an type O@S such
that the method m is available in all of the states S ∈ S. The type of the term and the
type of x after the call are both derived directly from the definition of the protocol.

• T IF is somewhat similar to T SEQ— the output context used to type the condition
must be usable as the input context for typings of both the true and false branches. The
output context for the entire conditional is the meet of the contexts for the true and
false branches.

• T SUB is the standard subsumption rule — if t can be typed with type T , and T <∶ U ,
then t can also be typed with U .

• T WIDEN FL EFF provides a means to modify a typing built using the flow effect
rules such that a particular variable has a wider effect. An effect T ≫ V extracted
from a typing Γ, x ∶ T ▷ t ∶ U ◁ Γ′, x ∶ V expresses the type tranformation that may

6.4. Type system 201

occur on x by evaluating the term t. We may safely replace the effect with one that
represents a larger set of possible interactions: T ≫ V ≤ T ′ ≫ V ′.

The equivalent for the type system using update effects is given by rule
T WIDEN UP EFF. The definition of the sub-effect relationship for update effects
is such that this rule allows the equivalent of subsumption in the output context, and a
more precise type to be used in the input context.

For both T WIDEN FL EFF and T WIDEN UP EFF, we are guaranteed that T ′ <∶ T ,
therefore we are guaranteed that T ′ may be used in any way that T could be used.

6.4.1 While loops

The rule T WHILE A provides typings for while loops and is the most complex rule in the
type system, requiring a much more in depth explanation. Given typings of the terms tc and
tb, we require that the observed effects in these typings (Ec(x) and Eb(x) respectively) can
be composed into a larger effect Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗ which represents the evaluation of
the loop condition, followed by zero or more evaluations of the loop body and loop condition.
Given an input context Γ, a typing may be derived if remap may be applied to each variable
of Γ using the extracted effects.

The extract(x,Γ,Γ′) function, defined in Figure 6.17, is used to extract the observed effects
for the variable x from an input context Γ and an output context Γ′. This function has two
alternate definitions to produce either flow or update effects as required by the type system
in use. Where a variable does not occur in both contexts, the effect ⊺ ≫ ⊺ is produced to
represent the fact that the variable is not required for the typing.

The T WHILE A rule is perhaps not ideal as it is not algorithmic — the rule does not use
Γ or Γ′ in the typings of the condition or body sub-terms. As such, a type checker cannot
necessarily derive a typing for a while loop in a straightforward manner using this rule.

One may expect that the simpler algorithmic rule T WHILE B (shown in Figure 6.16) would
have been sufficient. Such a rule certainly works for update effects, but not for flow effects.
A crucial property of the type system is that if a term t may be typed such that Γ, x ∶ T ▷ t ∶
U ◁ Γ′, x ∶ V , and we have some type T ′ <∶ T , then a typing must exist for t given input
context Γ, x ∶ T ′. This property, referred to as upgrading and defined formally in Section
6.4.3, cannot be supported by the above rule. Consider the term t = while x.m do x.n, and
the object protocols shown below:

6.4. Type system 202

O₂O₁

A B
m : Bool

n : ⊤

C D E
m : Bool

n : ⊤

m : Bool
o : Unit

p : ⊤

It is clear that we can type t with Γ = x ∶ O1@A and Γ′ = x ∶ O1@B using the proposed rule.
It can also be observed that O2@C <∶ O1@A, therefore we might expect to find a typing for
t with Γ = x ∶ O2@C. The sub-terms may be typed such that x ∶ O2@C ▷ x.m ∶ Bool◁ x ∶
O2@D and x ∶ O2@D▷ x.n ∶ ⊺ ◁ x ∶ O2@E, but there is no way to modify this latter typing
such that x ∶ O2@D▷ x.n ∶ ⊺ ◁ x ∶ O2@C.

Other algorithmic rules have been tried, such as a rule which allows the output context of the
body typing to be such that every variable is a subtype of the input context condition typing
— this will not work for our example types either, as O2@E is not a subtype of O2@C.

The following adaptation of T WHILE A also does not work:

Γ▷ tc ∶ Bool◁ Γ′ Γ′▷ tb ∶ Tb◁ Γ′′

Ec(x) = extract(x,Γ,Γ′) Eb(x) = extract(x,Γ′,Γ′′)
Γ′′′ = {x ∶ remap(Γ(x),Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗) ∣ x ∈ dom(Γ)}

Γ▷while tc do tb ∶Unit◁ Γ′′′

The reason for this is that the effects extracted for the condition and body often describe more
than what is actually required — the effect on x extracted from the typing x ∶ O2@C▷x.m ∶
Bool◁ x ∶ O2@D implies that when evaluating the condition, either m or p may be called.
The effect combinator Ec ⋅ (Eb ⋅Ec)∗ will generally demand much more from a type than the
while loop actually requires.

In reality, we know only m will be called in evaluating the condition but there is no way to
represent this as an effect in the object protocol O2 without changing it. The object protocol
O1 actually represents the minimum requirement for x to type while x.m do x.n — if the
typings for the condition and body are used based on O1 and with the rule T WHILE A,
then any subtype of O1@A may be used as the type of x in the input to this while loop and a
typing will exist. Of course, the selection of O1 as the minimal object protocol to represent
the requirements of the loop is a type inference problem, which is specifically looking for a
principal typing for the condition and body terms. Principal typings are defined and studied
later in Section 6.5.

6.4. Type system 203

∅ ⊢ ∅ ST EMPTY
∀i.∅▷ vi ∶ Ti◁∅
xi ∶ Ti ⊢ xi ↦ vi

ST-VARS Γ ⊢ µ xi ∉ dom(µ)
Γ ⊢ µ,xi ↦ vi

ST-EXTRA

Figure 6.18: Store typing judgements

id ∶ Id
∅▷ v ∶ T ◁∅

replace(x, v) ∶ Replace(x,T) call(x,m) ∶ Call(x,m)

Figure 6.19: Definition of store update and context update compatibility relation, υ ∶ Υ

6.4.2 Soundness

In order to demonstrate that this type system prevents the expression of terms which may
become stuck, it is necessary to relate contexts to stores. The well-typed store relation Γ ⊢ µ
(see Figure 6.18) dictates when a context is a valid abstraction of a store.

For each reduction rule, we also require a way to relate changes to a store to changes in a
context which preserves the well-typed store property. For each reduction rule we may derive
a store update function for each reduction rule which describes the relationship between µ
and µ′. Store update functions are denoted by the meta-variable υ. There are three kinds of
store update function:

• id — the identity function: id(µ) = µ.

• replace(x, v) — replaces the mapping of x in a store to the value v: replace(x, v)(µ) =
µ[x↦ v].

• call(x,m) — calls the method m on the object mapped to x in the store. Unlike id

and replace(x, v) this context update function places specific demands on the existing
contents of µ. In order for call(x,m)(µ) to be defined, it must be the case that method
m is available in µ(x). If µ(x) = o@S where o = [. . . S{. . . ,m = (v,S′), . . .}], then
call(x,m)(µ) = µ[x↦ o@S′].

For each υ there are corresponding context update functions, which are denoted by the meta-
variable Υ: Id , Replace(x,T) and Call(x,m). Where Γ ⊢ µ and Υ(Γ) ⊢ υ(µ), we say that
υ and Υ are compatible, written υ ∶ Υ — this relationship is defined in Figure 6.19.

We can now state the soundness property for the TS language:

Theorem (Progress and Preservation). Given a non-value term t such that Γ▷ t ∶ T ◁Γ′ and

a store µ such that Γ ⊢ µ, then:

1. There exists a term t′ and store update function υ such that t ∣ µ Ð→ t′ ∣ υ(µ).

6.4. Type system 204

2. There exists an Υ such that υ ∶ Υ, and that Υ(Γ) ⊢ υ(µ).

3. There exists a Γ′′ ≥ Γ′ such that Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

This soundness property is proven for the flow effect variant of the type system in Theorem
A.1.1, and for update effects in Theorem A.1.2. Intuitively, this soundness property means
that given a typing of a term with a corresponding well-typed store:

• The term will not become stuck during evaluation.

• The store will remain well-typed during evaluation.

• Both the type of the term and the types of the variables in the output context will
monotonically increase in precision.

6.4.3 Properties of typings

Multiple typings are likely to exist for a term, and it is desirable to be able to state whether
one typing is stronger than another: informally, which has weaker requirements in the input
context, and given this input context derives a stronger result type and provides stronger
guarantees in the output context. A stronger typing has less extraneous details, and provides
a more precise description of the requirements and behaviour of a term.

We may define this formally using a lexicographic ordering of the components of the typing.
The rules ordering rules for contexts and typings are defined in Figure 6.14, which provide
the means to define what the “strongest” typing may be for a particular term.

Definition 6.4.3 (Context ordering). Γ is less specific than Γ′, written Γ < Γ′, if rule
CTX LT A or CTX LT B is satisfied. Γ is equivalent to Γ′, written Γ ≡ Γ′, if the rule
CTX EQUIV is satisfied. Naturally, if either Γ < Γ′ or Γ ≡ Γ′, then Γ ≤ Γ′ (rule CTX LEQ).

▲

The context ordering is a partial order up to equivalence, as proven in Lemma A.3.6 and
Lemma A.3.7. Given this partial ordering over contexts and the subtyping relation we can
define a partial ordering over typings as a lexicographic ordering:

Definition 6.4.4 (Typing ordering). τ1 = (Γ1, T1,Γ′
1) is weaker than τ2 = (Γ2, T2,Γ′

2), written
τ1 < τ2, if any of the following conditions hold:

• Γ2 < Γ1 (rule TY LT 1)

• Γ2 ≡ Γ1 ∧ T1 ≪∶ T2 (rule TY LT 2)

6.5. Principal typings and typing schemes 205

• Γ2 ≡ Γ1 ∧ T1 ≡ T2 ∧ Γ′
1 < Γ′

2 (rule TY LT 3)

τ1 is equal to τ2 if each component is equal (rule TY EQUIV). The satisfaction of either
provides the partial order τ1 ≤ τ2 (up to equivalence, defined by rule TY LEQ). ▲

One important property that should exist for the type system is that if we can derive a typing
Γ1 ▷ t ∶ T ◁ Γ3, and we have a more specific input context Γ2 ≥ Γ1, it should be possible to
derive a new typing using Γ2 as the input:

Lemma (Upgrading). Let Γ1 ≤ Γ2 and t be a term such that Γ1 ▷ t ∶ U ◁ Γ3. It follows that

there exists a Γ4 ≥ Γ3 such that Γ2 ▷ t ∶ U ◁ Γ4.

This is proven for flow effects as Lemma A.10.6, and for upgrade effects as Lemma A.10.7.
The flow effect proof does in fact provide the exact definition of Γ4. This lemma fits the
intuition that a more specific input context, where at least one variable has a more precise
type, should produce a more specific output context for the same term. Such typings are
weaker, based on the defined partial ordering for typings.

6.5 Principal typings and typing schemes

Out of all the possible typings for a term, it is useful to know if any captures the essence of
the behaviour of the term. This typing is the principal typing:

Definition 6.5.1 (Principal typings). Let τ by the set of all typings of t. The principal typing
(up to equivalence) τ ′ of t is the strongest typing of t, if one exists: ∀τ ∈ τ . τ ≤ τ ′.

If τ ′ = (Γ, T,Γ′) is the principal typing of a term t, then Γ is the principal input context

for t. Given Γ, T is the principal type of t and Γ′ is the principal output context. The type
of a variable x ∈ dom(Γ) shall be referred to as a principal variable input type of x in t.
Similarly, the type of x ∈ dom(Γ′) shall be referred to as the principal variable output type

of x in t. ▲

The intuition behind this definition of a principal typing is that it is a typing which has the
weakest possible requirements in the input context, and from this derives the most specific
possible type and strongest guarantees in the output context.

A straightforward observation about principal typings is that the domains of the principal
input and output contexts must be equal, and contain only the free variables of t. Where flow
effects are used, the effect extract(x,Γ,Γ′) is the principal effect of x for t. This is defined
such that if x is not free in t, then ⊺ ≫ ⊺ is the principal effect of x in t, which is to say the
term has no effect on x.

6.5. Principal typings and typing schemes 206

A B

C

F

D

G

E

H

a : ⊤
a : ⊤

b : ⊤ z : ⊤

m : ⊤

n : ⊤ z : ⊤

O₂ - principal, not minimal

A B

C

D

E F
a : ⊤

a : ⊤
b : ⊤

m : ⊤
n : ⊤

O₃ - principal, minimal

z : ⊤

\(x, y).(
 x.a;
 if y then (x.a; x.b)
 else (x.m; x.n);
 x.z
)

Function f

B
a : ⊤

C

a : ⊤

m : ⊤

D

b : ⊤

n : Unit

z : ⊤

O₁ - not principal

A

Figure 6.20: Possible types for x in function f

6.5. Principal typings and typing schemes 207

Given a term t which interacts with an object variable o, the principal effect of o in t has
the smallest possible trace set, permitting only those sequences of methods calls that could
occur in t, with the least specific return types on methods that would allow t to be typeable.

Consider the body term of example function f shown in Figure 6.20. It is clear from the
usage of y that its principal variable input type must be Bool as demanded by the type
judgement of an if-then-else statement, while x is an object. We could ascribe any of the
object types O1@A, O2@A and O3@A to the variable x, and after evaluation the object types
would be O1@A, O2@{E,H} and O2@F respectively. O1@A is not a principal variable in-
put type for x as it will permit many more sequences of method calls than is strictly required,
and also has a lesser return type for the method n than is necessary. O2@A is the principal
variable input type for x, as is the typeO3@A, which is isomorphic. It is arguable thatO3@A

is a preferable solution to O2@A, as it has a minimal object protocol. However as they are
equivalent it is of little consequence which is chosen, and if the latter is preferable for display
to a user it can be computed on demand.

The principal typing of the body of function f is x ∶ O3@A,y ∶ Bool▷ t ∶ ⊺ ◁ x ∶ O3@F, y ∶
Bool. From this, it follows that the principal type of f itself is (O3@A ≫ O3@F,Bool ≫
Bool)→ ⊺.

Unfortunately, principal typings do not exist for all typeable terms in TS, regardless of
whether update or flow effects are used.

Theorem 6.5.1. Principal typings do not exist for all terms.

Proof. by contradiction.

Let t = f(x). Assume a principal typing τ1 = (Γ1, T1,Γ′
1) exists for t.

Let Γ2 = {f ∶ (Bool ≫ Bool) → ⊺, x ∶ Bool} and Γ3 = {f ∶ (Unit ≫ Unit) → ⊺, x ∶
Unit}. It can be observed that τ2 = (Γ2,⊺,Γ2) and τ3 = (Γ3,⊺,Γ3) are typings of t.

As τ1 is the principal typing of t, it follows that τ2 ≤ τ1 and τ3 ≤ τ1, meaning Γ1 ≤ Γ2 and
Γ1 ≤ Γ3.

The minimal domain of Γ1 is {f, x} as the term t cannot be typed without both f and x in
the input context by rule T FUN CALL. It follows that we must have Γ2(f) <∶ Γ1(f) and
Γ3(f) <∶ Γ1(f).

By SUB FN, it must be the case that Γ1(f) = (U ≫ V) → W such that Bool ≫ Bool ≤
U ≫ V and Unit≫Unit ≤ U ≫ V .

By the definition of the sub-effect relation it must be the case that U <∶ Bool and U <∶Unit.
Therefore, U <∶ Bool ⊓ Unit. The meet of Bool and Unit is undefined, therefore the
existence of τ3 is a contradiction — there is no principal typing for t.

6.6. Type inference 208

Generally, free variables used as functions pose a problem: given a function known to have
i > 0 parameters, the principal type (ÐÐÐÐ⇀Ti ≫ Ui)→ V can only exist if a lower bound exists for
each Ti. Lower bounds for each Ti only exist where all parameters are bound variables, such
as in let x = true in f(x), which has a principal input type for f of (Bool ⋙ ⊺) → ⊺ or
(Bool≫ Bool)→ ⊺ depending on which kind of effects are used.

It is believed that principal typings do exist for all terms which have no free variables that
are used as functions:

Hypothesis. Let t be a term with a set of free variables xi, and that there does not exist a

sub-term of t of form y(Ð⇀zi) where y ∈ xi. A principal typing exists for t.

No attempt has yet been made to prove this hypothesis.

6.5.1 Introducing � for principal typings

If a least element can be introduced for the set of all types, principal typings may be possible
for all terms. This can be achieved where update effects are used exclusively by introducing
a Bottom (or �) type to the language: ∀T.� <∶ T . This would make the set of all update
effects a lattice, up to equivalence, with �⋙ ⊺ as the greatest element and ⊺⋙ � as the least
element. A function type (ÐÐÐ⇀�⋙ ⊺) → ⊺ of arity n is then an upper bound for all functions
of the same arity, meaning f(x) has a principal typing (Γ,⊺,Γ) where Γ = f ∶ (� ⋙ ⊺) →
⊺, x ∶ �. Arguably, such a principal typing is of little value, as it describes an impossible
requirement for the variable x — there should be no values of type �. Additionally, no
attempt has yet been made to determine whether the language is still sound when a � type is
included.

With flow effects, no least effect type can exist as such a least effect would need to contain
no traces, but then could not be considered valid. As such, the addition of � does not affect
the existence of principal typings where flow effects are used.

6.6 Type inference

The lack of principal types in general for the TS language means that an alternative approach
is required for capturing the essential requirements and effects of all terms. By using type

variables to represent types for which we have incomplete information, it may be possible
to capture a minimal representation of the requirements and effect of a term.

A notational convention is adopted from this point forward where a previously defined meta-
variable with a dot above it indicates that it may contain type variables. For example, Ṫ

6.6. Type inference 209

is a type expression that may contain a type variable, such as (ÐÐÐÐ⇀αi ≫ α′i) → Bool. The dot
distinguishes this from T , which must be a concrete type with no type variables.

Using type variables, we can define typing schemes, adapting the definition and notation used
by Simonet [138]:

Definition 6.6.1 (Typing schemes). A typing scheme σ = ∀α[C].τ̇ is a typing τ̇ with a
universally quantified set α of type variables and a constraint C over those variables. ▲

Figure 6.21 defines the grammar for typing schemes, constraints and type expressions. Given
a type variable substitution ρ = αi ↦ Ṫi (with the application of a substitution defined in
Figure 6.22) for each variable in α which satisfies a constraint C generated by the constraint
typing rules defined in Figure 6.24, applying the substitution to τ̇ produces a normal typing
τ . The judgement ρ ⊢ C defines what it means for a substitution to satisfy a constraint, and
is defined in Figure 6.23.

Finally, if a substitution ρ satisfies the constraint of a typing, and provides a substitution for
every universally quantified variable, we say that ρ satisfies the scheme:

α ⊆ dom(ρ) ρ ⊢ C
ρ ⊢ ∀α[C].τ̇

SAT SCHEME

It remains to show that an appropriate typing scheme can be generated for all terms t, such
that all satisfying substitutions produce valid typings — this is the correctness property. It
would also be desirable to show that all typings of a term t are weaker than a typing which
could be produced by a satisfying substitution – this is the completeness property.

The grammar for the TS language, as defined in Figure 6.2, includes fixed effect type annota-
tions for function values which must be supplied by the programmer. We define two variants
of this term language, t̂ in which there are no type annotations on function values (they are
of form λ(Ð⇀xi).t), and ṫ in which function values have type expressions that may contain

variables (they are of form λ(
ÐÐÐ⇀
xi ∶ Ė).). Terms from the original grammar shall be referred to

as annotated terms, while t̂ terms are bare terms and ṫ terms are inferred terms. The function
strip(t) = t̂ removes all type annotations from a normal term to produce a typeless term:
strip(λ(ÐÐÐ⇀xi ∶ Ei).t) = λ(Ð⇀xi).t.

Given a bare term, we generate an inferred term with an associated typing scheme using
constraint typing judgements of form ∆ ⊢ t̂ ⇒ ṫ ∶ Ṫ ∣χ C, adapted from the style of Pierce
[118, Chapter 22]. Where t̂ is syntactically unmodified in a judgement, we omit the⇒ ṫ part
of the judgement, such that ∆ ⊢ t̂ ∶ Ṫ ∣χ C, is equivalent to ∆ ⊢ t̂ ∶ t̂ ∣Ṫ χC.

The constraint typing judgements are defined in Figure 6.24. The components of this judge-
ment besides the term are as follows:

6.6. Type inference 210

σ ∶∶= ∀α[C].τ̇ typing scheme

τ̇ ∶∶= (Γ̇, Ṫ , Γ̇) typing with variables

Γ̇ ∶∶= xi ∶ Ṫi context with type variables

∆ ∶∶= xi ∶ Ėi effect context

C ∶∶= type constraint
true

∣ Ṫ <∶ U̇ subtype constraint
∣ valid(Ė) effect validity
∣ C ∧C ′ conjunction

Ṫ , U̇ , V̇ ∶∶= type expression
⊺ top type

∣ Unit unit type
∣ Bool boolean type

∣ (
Ð⇀̇
Ei)→ Ṫ function type

∣ {Si{mij ∶ Ṫij ⇒ Sij}}@S object type

∣ Ṫ ⊔ U̇ join
∣ Ṫ ⊓ U̇ meet
∣ remap(Ṫ , U̇ ≫ V̇) remap application
∣ α type variable

Ė, Ḟ ∶∶= effect expression
Ṫ ≫ U̇ flow effect

∣ Ṫ ⋙ U̇ update effect
∣ Ṫ sugar for Ṫ ≫ Ṫ

∣ Ė ⋅ Ḟ effect concatenation
∣ Ė ∣ Ḟ effect choice
∣ Ė∗ effect repeat

Figure 6.21: Grammar for typing schemes, constraints, type and effect expressions

6.6. Type inference 211

ρ(⊺) = ⊺
ρ(Unit) = Unit
ρ(Bool) = Bool

ρ((
Ð⇀̇
Ei)→ V̇) = (

ÐÐÐ⇀
ρ(Ėi))→ ρ(V̇)

ρ({Si{mij ∶ Ṫij ⇒ Sij}}@S) = {Si{mij ∶ ρ(Ṫij)⇒ Sij}}@S

ρ(Ṫ ⊔ U̇) = ρ(Ṫ) ⊔ ρ(U̇)
ρ(Ṫ ⊓ U̇) = ρ(Ṫ) ⊓ ρ(U̇)

ρ(remap(Ṫ , Ė)) = remap(ρ(Ṫ), ρ(Ė))

ρ(Ṫ ≫ U̇) = ρ(Ṫ) ≫ ρ(U̇)
ρ(Ṫ ⋙ U̇) = ρ(Ṫ) ⋙ ρ(U̇)

ρ(α) = { Ṫ α ↦ Ṫ ∈ ρ
α otherwise

}

Figure 6.22: Definition of type variable substitution

ρ ⊢ true SAT TRUE
ρ ⊢ C ρ ⊢ C ′

ρ ⊢ C ∧C ′ SAT CONJ

ρ(Ṫ) = T ρ(U̇) = U T <∶ U
ρ ⊢ Ṫ <∶ U̇

SAT SUB

ρ(Ṫ) = T ρ(U̇) = U VALID FL EFFTU

ρ ⊢ valid(Ṫ ≫ U̇)
SAT VALID FL

ρ(Ṫ) = T ρ(U̇) = U
ρ ⊢ valid(Ṫ ⋙ U̇)

SAT VALID UP

Figure 6.23: The constraint satisfaction judgement, ρ ⊢ C

6.6. Type inference 212

∅ ⊢ true ∶ Bool ∣∅ true
TC TRUE

∅ ⊢ false ∶ Bool ∣∅ true
TC FALSE

∅ ⊢ unit ∶Unit ∣∅ true
TC UNIT

∆ ⊢ t̂⇒ ṫ ∶ Ṫ ∣χ C dom(∆) ⊆ xi
∅ ⊢ λ(Ð⇀xi).t̂⇒ λ(

ÐÐÐÐÐ⇀
xi ∶ ∆(xi)).ṫ ∶ (

ÐÐÐ⇀
∆(xi))→ Ṫ ∣χ C

TC FUN

∀i, j.∅ ⊢ v̂ij ⇒ v̇ij ∶ Ṫij ∣χij
Cij ⋂(χij) = ∅ χ = ⋃(χij) C = ⋀(Cij)

ô = [Si{mij = (v̂ij, Sij)}] ȯ = [Si{mij = (v̇ij, Sij)}]

∅ ⊢ ô@S ⇒ ȯ@S ∶ {Si{mij ∶ Ṫij ⇒ Sij}}@S ∣χ C
TC OBJ

χ = {α} O = {S{m ∶ α⇒ S′}S′{}}
x ∶ O@S ≫ O@S′ ⊢ x.m ∶ α ∣χ true

TC METH

χ = αi, α′i, α′′i , α ∆ = xi ∶ Ėi, x ∶ (
ÐÐÐÐ⇀
αi ≫ α′i)→ α

Ėi = α′′i ≫ remap(α′′i , αi ≫ α′i) C = ⋀(valid(αi ≫ α′i) ∧ α′′i <∶ αi)
∆ ⊢ x(Ð⇀xi) ∶ α ∣χ C

TC CALL FL

C = ⋀(α′′i <∶ αi) χ = αi, α′i, α′′i , α
∆ = xi ∶ α′′i ⋙ α′i, x ∶ (

ÐÐÐÐÐ⇀
αi ⋙ α′i)→ α

∆ ⊢ x(Ð⇀xi) ∶ α ∣χ C
TC CALL UP

Figure 6.24: Constraint typing rules (Page 1 of 2)

• ∆ = xi ∶ Ėi is an effect context which defines the effect on each variable used in t. ∆

• χ = α is the set of type variables generated.

• Ṫ is the type of the term, which is potentially a type variable.

• C is a constraint, or conjunction of constraints on the type variables in χ.

It is often convenient to treat an effect context as if it is a total function from variables
to effects: ∆(x) = ⊺ ≫ ⊺ if an explicit effect mapping is not defined for x in ∆. Input
and output contexts can be extracted from an effect context ∆ = xi ∶ Ėi using the functions
in(∆) = xi ∶ in(Ėi) and out(∆) = xi ∶ out(Ėi). Where it is necessary to describe removing
an effect for variable x from an effect context, the notation ∆/x is used, defined as follows:

∆/x =
⎧⎪⎪⎨⎪⎪⎩

∆ when x ∉ dom(∆)
∆′ when ∆ = ∆′, x ∶ Ė

⎫⎪⎪⎬⎪⎪⎭

6.6. Type inference 213

∆x ⊢ t̂x⇒ ṫx ∶ Ṫx ∣χx Cx ∆b ⊢ t̂b⇒ ṫb ∶ Ṫ ∣χb
Cb

χx ∩ χb = ∅ χ = χx ∪ χb ∆ = ∆x ⋅ (∆b/x)
C = ⋀{valid(∆(y)) ∣ y ∈ dom(∆)} ∧Cx ∧Cb ∧ Ṫx <∶ in(∆b(x))

∆ ⊢ let x = t̂x in t̂b⇒ let x = ṫx in ṫb ∶ Ṫ ∣χ C
TC LET

∆1 ⊢ t̂1 ⇒ ṫ1 ∶ Ṫ1 ∣χ1 C1 ∆2 ⊢ t̂2 ⇒ ṫ2 ∶ Ṫ2 ∣χ2 C2

χ1 ∩ χ2 = ∅ χ = χ1 ∪ χ2 ∆ = ∆1 ⋅∆2

C = ⋀{valid(∆(x)) ∣ x ∈ dom(∆)} ∧C1 ∧C2

∆ ⊢ t̂1; t̂2 ⇒ ṫ1; ṫ2 ∶ Ṫ2 ∣χ C
TC SEQ

∆c ⊢ t̂c⇒ ṫc ∶ Ṫc ∣χc Cc ∆t ⊢ t̂t⇒ ṫt ∶ Ṫt ∣χt Ct ∆f ⊢ t̂f ⇒ ṫf ∶ Ṫf ∣χf
Cf

χc ∩ χt ∩ χf = ∅ χ = χc ∪ χt ∪ χf ∆ = ∆c ⋅ (∆t ∣ ∆f)
C = ⋀{valid(∆(x)) ∣ x ∈ dom(∆)} ∧Cc ∧Ct ∧Cf ∧ Ṫc <∶ Bool

∆ ⊢ if t̂c then t̂t else t̂f ⇒ if ṫc then ṫt else ṫf ∶ Ṫt ⊔ Ṫf ∣χ C
TC IF

∆c ⊢ t̂c⇒ ṫc ∶ Ṫc ∣χc Cc ∆b ⊢ t̂b⇒ ṫb ∶ Ṫb ∣χb
Cb

χc ∩ χb = ∅ χ = χc ∪ χb ∆ = ∆c ⋅ (∆b ⋅∆c)∗
C = ⋀{valid(∆(x)) ∣ x ∈ dom(∆)} ∧Cc ∧Cb ∧ Ṫc <∶ Bool

∆ ⊢while t̂c do t̂b⇒while ṫc do ṫb ∶Unit ∣χ C
TC-WHILE

Figure 6.24: Constraint typing rules (Page 2 of 2)

6.6. Type inference 214

The constraint typing derivations are algorithmic and compositional, through the use of effect
combinators. Similar to the typing judgements for the type system of TS, we must choose to
interpret function definitions as generating either flow or update effects for their parameters,
and use either TC CALL FL or TC CALL UP to generate constraint typings for function
calls. Similarly, with rule TC FUN any effects that are extracted from the function body can
be subsumed to be update effects if desired.

A typing scheme can be constructed directly from a constraint typing: for a constraint typing
∆ ⊢ ṫ ∶ Ṫ ∣χ C where χ = αi, we may derive the typing scheme ∀αi[C]. (in(∆), Ṫ ,out(∆)).

As an example, let us consider again the term f(x). By rule TC CALL FL, the constraint
typing for this term is:

∆ ⊢ f(x) ∶ α3 ∣χ C where

∆ = f ∶ (α1 ≫ α2)→ α3, x ∶ α4 ≫ remap(α4, α1 ≫ α2)
χ = {α1, α2, α3, α4} and C = valid(α1 ≫ α2) ∧ α4 <∶ α1

One substitution which satisfies the constraint C is:

σ = {α1 ↦ ⊺, α2 ↦ ⊺, α3 ↦ Bool, α4 ↦Unit}

From this, we may derive the typing:

Γ▷ f(x) ∶ Bool◁ Γ

where Γ = {f ∶ (⊺≫ ⊺)→ Bool, x ∶Unit}

Similarly, if rule TC CALL UP were used, we could derive the constraint typing:

∆ ⊢ f(x) ∶ α3 ∣χ C where

∆ = f ∶ (α1 ⋙ α2)→ α3, x ∶ α4 ⋙ α2

χ = {α1, α2, α3, α4} and C = α4 <∶ α1

6.6.1 Correctness

The correctness property for constraint typings is as follows:

Theorem (Constraint typing correctness). Let ∆ ⊢ t̂ ⇒ ṫ ∶ Ṫ ∣χ C and ρ be a substitution

such that ρ ⊢ C and χ ⊆ dom(ρ). It follows that in(ρ(∆))▷ ρ(ṫ) ∶ ρ(Ṫ)◁ out(ρ(∆)).

This is proven as Theorem A.2.1, meaning all satisfying substitutions for typing schemes
generated this way produce valid typings.

6.6. Type inference 215

No attempt has yet been made to prove the completeness of constraint typing, which would
be phrased as follows:

Hypothesis (Constraint typing completeness). Let Γ ▷ t ∶ T ◁ Γ′, strip(t) = t̂ and

∆ ⊢ t̂ ∶ ṫ ∣Ṫ χC. There exists a satisfying substitution ρ such that (Γ, T,Γ′) ≤
(in(ρ(∆)), ρ(Ṫ),out(ρ(∆))).

6.6.2 Constraint typing simplification

Effect expressions are the main source of complexity in deciding whether a particular typing
scheme can be satisfied. The production of a valid type for a type expression containing
variables requires that a substitution ρ provides types that ensure type expressions such as
Ṫ ⊓ U̇ or remap(Ṫ , U̇ ≫ V̇) are defined after substitution. In analysing the structure of such
type expressions, we may derive additional subtyping constraints over the type variables,
that may allow an equivalent but simpler typing scheme to be derived.

Simplifying meet expressions

Meet type expressions are typically generated as a consequence of function type joins, where
the effect input type is contravariant. Meet type expressions are conditionally defined, and
therefore their satisfaction places some strong constraints on the satisfiability of the typing
scheme.

Consider the expression T ⊓α. In order for a valid type to be generated from this expression,
it must be the case that either α = ⊺, or α is structurally similar to T .

Where T = Bool or T =Unit, we may infer that T <∶ α as Bool and Unit do not have any
subtypes. Consequently, T ⊓ α = T regardless of the choice of α.

If T = (ÐÐÐÐ⇀Ui ≫ Vi) →W , then for fresh αi, α′i and α′ we know that (ÐÐÐÐ⇀αi ≫ α′i) → α′ <∶ α such
that Ui ≫ Vi ⊔ αi ≫ α′i must be defined, and W ⊓ α′ must be defined. This provides less
direct information than in the case of Bool or Unit, though further analysis of the meet ex-
pressions it generates for effect inputs and return type may allow for further simplifications.

If T is an object type, then little extra information can be extracted in a general way. If T
allows a method call to m returning a value of type U , then if the substitution for α also
allows a call to m returning a value of type V , then U ⊓ V must also be defined.

In general, O1@S1 ⊓O2@S2 will require all methods along the shared method sequences of
O1@S1 and O2@S2 to have return types for which a meet exists.

Definition 6.6.2 (Method sequences). A method sequence is an interaction trace with the
return types omitted. The set of method sequences seq(T) of a type T are given by the
following rules:

6.6. Type inference 216

ε ∈ seq(T)
s ∈ seq(T ′) m ∶ V ⇒ T ′ ∈ T

m.s ∈ seq(T)

The shared method sequences of two types T and T ′ are therefore given by seq(T)∩seq(T ′).
▲

There is no straightforward way to extract or represent all the additional sub-constraints for
O@S ⊓ α as the structure of α is unknown, therefore seq(α) is unknown.

Simplifying effect expressions

The predicate ρ ⊢ valid(Ė) requires that:

• All constituent type expressions produce valid types after substitution

• The effect expression can then be collapsed into a single effect of form ρ(Ė) = T ≫ U

or T ⋙ U

• The resulting effect is valid: valid(ρ(Ė)).

Effect combinator expressions can often be readily simplified, particularly where they do
not contain variable effects, i.e. those of form α ≫ α′ or α ⋙ α′. Based upon the rules
for effect combinators in Section 6.3.7, we can decide whether two effects can be composed
based upon their structure. This will produce an effect of form Ṫ ≫ U̇ or Ṫ ⋙ U̇ which will
often contain type expressions that provide further constraints by analysing any produced
meet expressions.

Expressions involving update effects With an effect concatenation expression where
at least one of the two effects is an update effect, we may simplify the effect expression and
extract additional constraints in the following ways, regardless of whether either effect is a
variable effect:

• Ṫ ⋙ U̇ ⋅ V̇ ⋙ Ẇ = Ṫ ⋙ Ẇ when U̇ <∶ V̇ , otherwise it is undefined.

• Ṫ ⋙ U̇ ⋅ V̇ ≫ Ẇ may be simplified to Ṫ ⋙ remap(U̇ , V̇ ≫ Ẇ) when U̇ <∶ V̇ . It
may be tempting to simplify this further to Ṫ ⋙ Ẇ , as remap(U,V ≫ W) <∶ W by
Lemma A.6.1, but this potentially loses type information.

• Ṫ ≫ U̇ ⋅ V̇ ⋙ Ẇ may be simplified to Ṫ ⋙ Ẇ when U̇ <∶ V̇ . Any extra information
that would be derived by applying Ṫ ≫ U̇ to some input type is irrelevant as it will be
lost by the subsequent application of V̇ ⋙ Ẇ .

6.6. Type inference 217

With an effect choice expression where at least one of the two effects is an update effect, we
may perform the following simplifications:

• Ṫ ⋙ U̇ ∣ V̇ ⋙ Ẇ = (Ṫ ⊓ V̇) ⋙ (U̇ ⊔ Ẇ). It may be possible to further sim-
plify the meet expression on the input of this effect, with the generation of additional
constraints.

• Ṫ ⋙ U̇ ∣ V̇ ≫ Ẇ (or the inverse, as choice is commutative) could be simplified to
(Ṫ ⊓V̇) ⋙ (U̇⊔Ẇ) as in the previous case, but this may result in the loss of some type
information when the effect is applied: given input type T <∶ Ṫ ⊓ V̇ , remap(T, Ṫ ⋙
U̇ ∣ V̇ ≫ Ẇ) = remap(T, Ṫ ⋙ U̇) ⊔ remap(T, V̇ ≫ Ẇ), which is equivalent to
U̇ ⊔ remap(T, V̇ ≫ Ẇ). This is guaranteed to be a subtype of U̇ ⊔ Ẇ .

As such, it is preferable to avoid directly simplifying effect choice expressions that
mix update and flow effects. Where such a choice effect expression appears in a more
complex expression involving concatenation, such as in E1 ⋅ (E2 ∣ E3), the expression
can be rewritten as (E1 ⋅E2) ∣ (E1 ⋅E3). Where E1 is an update effect, this will allow
simplification without loss of type information, as E1 ⋅E2 and E1 ⋅E3 will simplify to
update effects if defined.

The same rewrite can also occur where the effect expression occurs on the left of the
concatenation: (E1 ∣ E2) ⋅E3 = (E1 ⋅E3) ∣ (E2 ⋅E3).

The Kleene star of an update effect Ṫ ⋙ U̇ is straightforward to simplify: (Ṫ ⋙ U̇)∗ =
Ṫ ⋙ (Ṫ ⊔ U̇) when U̇ <∶ Ṫ .

Flow effects With flow effect concatenation or choice, we may simplify effect expres-
sions where one of the two effects is known to be a primitive flow effect. Let Ṫ be a primi-
tive type expression. Concatenation may be simplified such that Ṫ ≫ Ṫ ⋅ U̇ ≫ V̇ = Ẇ ≫ Ẇ

where Ẇ = Ṫ ⊓ U̇ when U̇ = V̇ . The same is true of choice: Ṫ ≫ Ṫ ∣ U̇ ≫ V̇ = Ẇ ≫ Ẇ . For
Kleene star, (Ṫ ≫ Ṫ)∗ = Ṫ ≫ Ṫ .

For the expressions E ⋅ α ≫ α′ and E ∣ α ≫ α′ where E is not a primitive flow effect, no
simplification can be performed. Similarly, the kleene star of a variable flow effect (α ≫
α′)∗ cannot be simplified.

6.6.3 Constraint solving

Once a typing scheme has been simplified as far as possible, it remains to determine whether
the constraint of the typing scheme has a solution. Where the constraint is a conjunction

6.7. Implementation 218

of subtyping inequalities, and the types are structural, Simonet’s Dalton solver [138] can be
used to determine whether the constraint is satisfiable.

When update effects are used, the validity constraints for effects are all trivially satisfied
and may be removed from the constraint, leaving only inequalities. Object types may be
treated as atomic for the purposes of Dalton, with join and meet expressions involving object
types resolved outwith the main algorithm. Where simplifying such join or meet expressions
produces additional constraints, these can be added to the constraint set for the algorithm.
Once no more constraints are generated in this manner, Dalton will indicate whether the
constraint is satisfiable or not. If it is, the algorithm provides a type variable substitution
which produces a minimal equivalent constraint, eliminating any variables which have only
one type expression as a solution.

This approach has been implemented, and has been found to be successful in all cases tried,
though no proof has yet been attempted to show that simplified typing schemes are equivalent
to those generated, and that the use of Dalton with objects treated as atoms is sound.

Flow effect constraint solving

When flow effects are used, the type expressions generated are not structural, and therefore
Dalton may not be reliably used: constraints such as remap(α1, α2 ≫ α3) <∶ α4 can be gen-
erated when free function variables exist in the term. Such constraints cannot be structurally
decomposed or simplified without a substitution for α2 and α3, and therefore Simonet’s al-
gorithm cannot be used.

The additional complexity that variable flow effects introduce poses a challenge for con-
straint solving which has not yet been studied in detail.

6.7 Implementation

Experimenting with implementing the type checker and various approaches to type infer-
ence proved to be very important to the process of understanding the problem space. The
implementation is approximately 10000 lines of Scala code, half of which is a port of the Si-
monet’s Dalton constraint solver [138] from ML to Scala, and a further quarter implements
the necessary state machine operations: union, intersection, building simulation relations,
and remap for flow effects.

A read-eval-print-loop (REPL) was implemented using the Kiama library [139], into which
a term can be entered and the state of the type checker can be printed in a legible manner, as
shown in Figure 6.25. Each sub-term is given a unique numeric identifier, with the root term
labelled 1, and the typing for each term printed as

6.7. Implementation 219

Figure 6.25: Example of type checking output in the TS implementation

xi ∶ Ti ⊢ t ∶ U ⊣ xi ∶ Vi

The ⊢ and ⊣ symbols are used in place of ▷ and ◁ as they render more consistently in a
terminal. Where the input context is unaltered in a typing of a term, the output context is
rendered as no change to save printing redundant information. Where the type of a variable
changes as part of a typing, the variable in each context is rendered in a different colour.

A trace of generated constraint typings can also be represented, as shown in Figure 6.26. This
output shows the constraint typing generated for the root term, and the constraint typings for
each sub-term from which this is generated. The constraint set of these constraint typings
can then be passed to the port of the Dalton solver to check a solution exists.

6.7. Implementation 220

Figure 6.26: Example of constraint typing generation in the TS implementation

6.8. Conclusion 221

6.8 Conclusion

This chapter has demonstrated a small, convenient type system in which to explore the inher-
ent complexity of typestate and typestate inference. Flow effects represent an advancement
of the state of the art, allowing more precise interpretation of function effects where we can
be guaranteed that the identity and uniqueness of a parameter is preserved, and it appears
that flow effects and update effects can co-exist in a type system, though this idea was not
pursued any further in the type systems of TS, where either flow effects or update effects
were used exclusively for function types.

The absence of principal types in the TS language, particularly where flow effects are used,
demonstrates a fundamental limit to the representation of the requirements and effect of
terms without type variables. Typing schemes serve this purpose better, and the algorithm
presented for generating typing schemes is sound but not yet known to be complete. The
constraint generated for such typing schemes where update effects are used can be solved
using a structural subtyping solver, and the Scala implementation demonstrates that this ap-
proach is promising though not yet proven. Where flow effects are used, the constraints are
not structural and therefore require a different approach to solving, which has not yet been
investigated.

Overall, type inference for typestate languages does not appear to be impossible; indeed,
significant progress has been made in the context of the TS language. While the constraint
solving aspect of the algorithm is not proven, the implementation and lack of any specific
counter-examples to the approach provide confidence that, with further work, the approach
can be fully formalised and proven. It is not known how well the techniques presented in
this chapter will generalise to a larger, more practical language, but the initial results are
encouraging, and represent a useful contribution to the theory of typestate.

222

Chapter 7

Challenges for a typestate-oriented
future

The expression and enforcement of typestate constraints are both complex topics, which are
made more complex in the context of a legacy language’s syntax and semantics. Attempting
to provide a practical implementation of typestate in an existing language is difficult primar-
ily due to the need to interact with legacy code, and working within the constraints of a type
system which was not designed with typestate in mind.

Extracting the necessary information on aliasing requirements and effects in legacy code is
intractable in a practical setting — at best, only partial information can be derived through
expensive whole program analyses. As a compromise, dynamic checking can be used to
enforce requirements on the boundaries between the legacy code and new code which is
written with typestate in mind. Even with such a compromise, the lack of type inference,
and the differences between subtyping with and without typestate, make it unlikely that any
such hybrid system would be accepted as a practical solution which provides sufficient value.

With a clean slate, the essence of typestate can be more clearly articulated. This chapter
attempts to explore the opportunities and challenges that remain in defining a full general
purpose language with deeply integrated support for typestate and alias control. This consti-
tutes a manifesto for such future research, with motivating examples throughout, rather than
a formal treatment of a language as in Chapter 6. A hypothetical language Chimera, based
upon the syntax of Scala, shall be partially defined in order to produce concrete examples,
and the challenges for defining its semantics formally shall be explored.

7.1. Desirable features for a typestate oriented language 223

7.1 Desirable features for a typestate oriented lan-

guage

I believe a new typestate-oriented language should attempt to achieve the following goals:

• Be statically typed, with a type system that will not prove overly restrictive or frustrat-
ing to competent software engineers.

• Provide a lightweight syntax inspired by the best features of other successful, contem-
porary programming languages.

• Provide a coherent strategy for writing parallel code to exploit multi-core processors,
and in general for writing distributed systems.

A language which could perhaps be augmented to satisfy these requirements is OCaml. The
strict functional ML core provides a straightforward syntax and semantics which can be
exploited to write concise, parallel code, while the object sub-language and reference types
provide the scope to explore the challenges of typestate and alias permissions.

While OCaml is popular, it has failed to achieve the widespread popularity of languages
like Java or C#. The Scala language, with a syntax that is more familiar to users of such
languages and with easier integration with legacy Java/C#, is more popular for this reason
and would also serve as a viable basis for a future typestate oriented language. The type
system of Scala is however much more complex and less widely studied than that of OCaml
(and other ML flavours).

I am unaware of any other languages which come closer to satisfying the requirements as
specified, or which could provide a better foundation to work with. Given the additional
challenge of addressing contemporary requirements for parallel and distributed systems, a
new language which borrows heavily from the syntax and semantics of other successful
languages may be the best approach to realising the goals of a typestate oriented language,
much as Scala succeeded in its goals of producing a viable object-functional language by
borrowing from both Java and Odersky’s knowledge of functional languages.

I am hopeful that as the construction of parallel and distributed systems become a standard
and essential skill set in industry, that more attention will be paid to the concept and benefits
of typestate in such a setting, and as a result future languages will be invented or augmented
to support it. Such languages may not be statically typed, and instead take the approach
of Plaid where typestate is enforced dynamically to lower the impact of the type system’s
complexity.

Each of the specific requirements listed above shall be discussed in more detail below.

7.1. Desirable features for a typestate oriented language 224

7.1.1 Type system

The complexity of the type system of a language is strongly tied to its practicality for pro-
grammers at a certain level of experience or education. Most complexity is unavoidable if
certain features such as subtyping or parametric polymorphism are desired. Some complex-
ity, however, derives from attempts to expose runtime performance concerns directly through
the type system, resulting in special cases in the treatment of some terms or values in a lan-
guage. Java’s differentiation of primitive types such as integers or arrays from object types
is an example of such a special case — this exists for performance reasons, as objects carry
a significant overhead in memory usage compared to primitive types.

This early choice in the design of Java had consequences when parametric polymorphism
was introduced. The designers of Java decided, for the purposes of backwards compatibility,
that type parameters would be erased after the type checking of a program. As such, a
consistent way of handling values of the erased type is required, which is problematic as
primitive type fields and object references are handled differently. The decision was made
therefore to only allow object types to be used for type parameters, disallowing a type such as
List<int>. Instead, each primitive (or unboxed) type has a boxed alternative, which is its
object type equivalent, and implicit conversion is provided between the boxed and unboxed
forms. This “auto-boxing” and “auto-unboxing” has a runtime cost, for the creation of an
object or an indirect field lookup respectively. Had the primitive types never existed, the
compiler may have been able to make more intelligent decisions about how to handle this
situation, cleanly separating the concerns of the type system from that of code optimisation.

Javascript provides a good case study for avoiding premature optimisation — the language
has a relatively simple specification, and is not overly concerned with performance as it was
designed to be easy to interpret, rather than easy to compile into efficient native code. Given
the same program written in both C and Javascript, the execution time of the Javascript on a
traditional interpreter compared to the C program compiled with a good optimising compiler
was several orders of magnitude slower. However, good just-in-time compilers for Javascript
which perform complex whole-program analyses are now standard and produce code that is
roughly a factor of three slower than the optimised C program [52]. By comparison, Java
programs running on the standard Oracle JVM are typically a factor of two slower than C.

Pure object oriented languages require all values to be objects, and treat such values con-
sistently. Such languages are experiencing a resurgence in popularity, with Ruby and Scala
as the most recent widely-used examples. Both languages inherit ideas from early pure OO
languages such as Eiffel and Smalltalk. The consistent treatment of values simplifies the type
system, and also means that built in and user-defined types are not fundamentally different.

7.1. Desirable features for a typestate oriented language 225

Structural subtyping I believe that structural subtyping is preferable to nominal sub-
typing in an object oriented language. For one type to nominally be a subtype of another in a
language such as Java, it must also be a structural subtype — it must have the same available
methods, with parameters and return types fitting the necessary contra- and co-variant rela-
tionship to the parent, and so on. Nominal subtyping is typically required for performance
reasons, as the explicit relationship allows the compiler to ensure that objects instances have
the same memory layout for fast lookup of field and method pointer locations. Other lan-
guages such as Google Go [121] and OCaml offer structural subtyping without a significant
performance hit.

As discussed in Chapter 6, a form of structural subtyping is possible in the presence of
typestate and further reduces the burden to explicitly declare the relationship between types,
as is required by the nominal subtyping in Java. Bounded parametric polymorphism for
object interfaces is also clearly important to reuse and accurate specification, especially in a
statically typed language.

No null references In Scala null references are supported as it was designed to interop-
erate with Java, but the use of null is strongly discouraged, in favour of option types. Null
values can be convenient but are dangerous — null is a value which does not provide any of
the guarantees that other values of the type do.

In new languages where backwards compatibility with previous poor language choices is
not necessary, null should be avoided entirely in favour of real union or option types. In a
typestate language, option types can be provided as a type with two states, SOME and NONE,
where the get() method to extract the real value can only be called when the object is
known to be in the SOME state. A hypothetical type expressed in a Hanoi-like syntax is
shown in Listing 7.1, where NONE is represented by the root state.

With suitable language support, option types can be straightforward to work with and ensure
that false assumptions about references are not made, with static enforcement. Where such
static guarantees about freedom from null dereferencing can be provided, there is no need
for a runtime check before every dereference as is required in languages like Java.

7.1.2 Lightweight syntax

Current popular object oriented languages have all made efforts to reduce the syntactic bur-
den on the programmer. This is typically achieved in two ways: by providing more useful
syntactic sugar for common tasks, and eliminating syntax that exists only for the benefit of
the compiler.

7.1. Desirable features for a typestate oriented language 226

1 type Option[T] {
2
3 def isSome() : Bool
4 :: true -> SOME
5 :: false -> ROOT
6
7 state SOME {
8 def get() : T
9 }

10 }

Listing 7.1: Option types in Chimera

Syntactic Sugar and DSLs

Over two decades of experience in working with object oriented code has led to the identifi-
cation of common, low-level patterns. Providing direct support for expressing such patterns
in a language reduces the amount that a programmer must type, and often clarifies the in-
tent of the code, making the language more pleasant to work with. As an example, iterating
over and manipulating data structures is a very common task, and was typically conducted
in imperative code using loop constructs and local variables. An example of code with this
structure is shown in Figure 7.1, where the function derives the average age of all males in a
collection of people.

The Java code, written in a style which was common in Java 1.4, uses an iterator to visit and
process each node. Java 1.5 introduced a specialisation of the for loop to make this pattern
more compact: for(Person p : list) { ... }.

Python’s list comprehensions go much further, providing a mechanism to simultaneously
filter and transform a collection into another collection, as demonstrated in the definition of
the maleAges variable.

The Language Integrated Query (LINQ) syntactic sugar in C# [93] is even more powerful,
providing an SQL-like syntax for performing combined filter, map and reduce operations on
collections of data, as shown in the definition of the averageAgeByGender variable. C#
makes use of higher order functions as part of LINQ — the Average method on the group
g is an example of this in the code above, as it takes a function literal which extracts the age
from each Person object in a group.

The Scala code leverages higher order functions and a convenient syntax for function literals
to filter, map and reduce the collection to derive the result.

The rigid syntax in most languages prevents the programmer from adding their own syntactic
sugar for operations they perform frequently. Research into supporting the embedding of
programmer-defined domain specific languages into general purpose languages has become
a very active area. Scala aimed to demonstrate that higher order functions combined with a

7.1. Desirable features for a typestate oriented language 227

1 public Collection<String> extractEmptyStrings(Collection<String> strs) {
2 ArrayList<String> nonEmptyStrs = new ArrayList<String>();
3 Iterator<String> iter = strs.iterator();
4 while(iter.hasNext()) {
5 String str = iter.next();
6 if(str.length() == 0) continue;
7 nonEmptyStrs.add(str);
8 }
9

10 return nonEmptyStrs;
11 }

Listing 7.2: An example of redundant type annotations in Java

flexible syntax for method invocation could provide a means to support programmer-defined
DSLs. This has allowed libraries to provide convenient mechanisms for data-parallelism and
actor based concurrency, without any changes to the core language.

I believe that Scala’s successes in this area, and the syntactic convenience that can be derived
from them, indicate that higher order functions and closures which allow implicit capture are
essential features for any new language.

Unnecessary syntax

Many languages require programmers to write code which is “obvious” in most situations.
The simplest example of this is the semi-colon in imperative languages derived from C. In the
vast majority of cases, the end of one statement and the beginning of another is completely
obvious to the programmer. The semicolon exists for the sake of the parser, which often
has only fixed look-ahead and no ability to backtrack and attempt alternative interpretations
of a collection of tokens. This may have been justifiable in an era of limited memory and
processing power, but with the several orders of magnitude increase in both over the last two
decades this is no longer the case. Regardless, reasonable conventions involving the use of
whitespace that match the behaviour of programmers in structuring their own code, as found
in Python and Scala, work well in practice and do not require a complex parser.

A much more important class of unhelpful syntax, in some contexts, is that of type annota-
tions. These are a common source of frustration for programmers in many languages — in
Java, for instance, it is very common to have to write code in a manner where type informa-
tion is repeated frequently, as shown in Listing 7.2.

The verbosity of Java is what has driven many programmers to other Java-compatible lan-
guages that do not require so many type annotations. Groovy is a prominent example of a
dynamically typed language for the JVM, while Scala is perhaps the most popular statically
typed alternative to Java on the JVM.

7.1. Desirable features for a typestate oriented language 228

Java:

1 public float getAverageMaleAge(List<Person> list) {
2 Iterator<Person> iter = list.iterator();
3 int totalMen = 0;
4 int totalAge = 0;
5 while(iter.hasNext()) {
6 Person p = iter.next();
7 if(p.male) {
8 totalMen++;
9 totalAge += p.age;

10 }
11 }
12
13 if(totalMen == 0) return -1;
14 return ((float)totalAge) / totalMen;
15 }

Python:

1 def getAverageMaleAge(list):
2 maleAges = [p.age for p in list if p.male]
3 if maleAges:
4 return sum(maleAges) / len(maleAges)
5 else:
6 return -1

C#:

1 public float getAverageMaleAge(List<Person> list) {
2 var averageAgeByGender =
3 from p in list
4 group p by p.isMale() into g
5 select new {
6 male = g.Key(),
7 avg = g.Average(p => (float)p.getAge())
8 };
9

10 return averageAgeByGender.ToDictionary(x => x.male)[true]
11 }

Scala:

1 def getAverageMaleAge(people : Seq[Person]) : Double = {
2 val maleAges = people.filter(_.male).map(_.age)
3 if(maleAges.isEmpty) return -1
4 return maleAges.reduce(_ + _) / (maleAges.length.toDouble)
5 }

Figure 7.1: Calculating the average age of all males in a collection, in various languages

7.1. Desirable features for a typestate oriented language 229

Dynamically typed languages eliminate type annotations entirely at the expense of runtime
overhead and practically no compile-time checking of whether code is correct. Gradual
typing [136, 137] allows for some compile-time guarantees to be provided for code where
type annotations are provided — the Plaid language relies upon this strategy. In a statically
typed language, the only option to eliminate type annotations is to use type inference, if an
appropriate algorithm exists for the type system. Scala provides a contemporary example
of this, and uses a local type inference algorithm [120] to eliminate type annotations in the
majority of cases where they would be required.

It is often possible to write code in Scala that is reminiscent of Python or Ruby in its lack
of type annotations, with the additional static safety guarantees that Scala provides. As the
discussion of type inference for the TS language in Chapter 6 entails, type inference may be
feasible for a typestate-oriented language with a feature set approximating that of Java, or
perhaps even Scala.

7.1.3 Parallel and distributed systems

Concurrency, parallelism and distributed systems generally should also be considered seri-
ously in the design of any new language. More than just low-level primitives such as threads
and atomic compare-and-swap operations are required; programmers require higher level
concepts and tools in order to exploit the capabilities of many-core processors and large
distributed systems.

Functional programming has become recognised as a possible means of abstracting data-
parallel operations, through the pervasive use of parallel implementations of map and
reduce. Scala provides data structures optimised for data-parallel operations. Such op-
erations look identical to their sequential counterparts — they are simply different imple-
mentations of the same interface. These are convenient, and I believe any future language
should include a similar mechanism for providing easy data-parallelism.

The Actor model for distributed systems has become popular as a result of the successes
of the Erlang language, with implementations built around this idea appearing for many
popular languages. The use of named mailboxes in the Actor model, where any actor with
a handle to a mailbox can send a message to it, is more coarse than the duplex channels of
π-calculus inspired languages. A channel, where the endpoints are linearly controlled, could
allow for session-type-like protocol definitions. If the endpoints are permitted to be aliased,
however, then a mailbox-like protocol where messages of a fixed type may only be sent in
one direction can be permitted. Given that it should be possible to send a channel endpoint
over a channel (classic delegation in session types), it should be possible to establish a two-
party restricted channel through a mailbox. As such, in a language which integrates alias

7.2. The Chimera language 230

control and typestate, it should be possible to provide a system that is flexible, type safe, and
offers the best of both the actor model and channels.

7.2 The Chimera language

Chimera is a hypothetical typestate-oriented language inspired by Scala which aims to serve
the requirements outlined above, and provide context for the discussion of the theoretical
challenges in formally defining such a language.

The syntax of Chimera will not be formally specified, but instead introduced by example
amongst the discussion of the language’s features. Some ambiguity is necessary in places
where the theoretical underpinnings of the language are not fully defined or known to be
sound.

The Chimera language is a pure object oriented language — all values are objects, and all
variables are references to objects which are allocated on a heap. There is no null value
in Chimera. Every object value has an associated object protocol and a current state. Every
reference has an associated aliasing annotation which defines whether it is unique or not.
Functions and methods on objects have effects on their parameters which are interpreted in
the same manner as in the TS language. Subtyping in Chimera is behavioural, using the same
definition based on traces as the TS language.

The object protocols in Chimera are hierarchical finite state machines in the same manner as
Hanoi, where the root state is given the standard name ROOT.

7.2.1 Chimera types

The type of a reference in Chimera is a triple composed of the object protocol of the refer-
enced value, the set of possible states that the value is guaranteed to be in, and the permission

to the object through the reference.

It is my belief that the system of fractional permission types used in Plural and Plaid is overly
complex. A simpler system where a reference can be unique, shared or opaque is likely to
be sufficient. An opaque reference is one which points to something, but cannot be used in
any way.

In this system, methods can be annotated with the level of permission that is required, much
as in Plural. State changes are only permitted on methods which require a unique permission.
Unique and shared references can be conceptually split into multiple shared references. This
is effectively the alias control system used in Fugue.

7.2. The Chimera language 231

I do not believe the addition of full and pure references or immutable references as in Plural
adds sufficient value for the additional complexity it brings; if more types of permission were
needed, then a programmer-defined mechanism inspired by Militão’s views [96] would be
preferable.

Let Int be the object protocol for integer values. As in most languages, we may dictate
that integer values are immutable, therefore the protocol only has a single state: ROOT, and
all methods on integers are defined in this state. If we have a unique reference to an integer
value, then the type of this reference is written as !Int@ROOT — the ! indicates that the
reference is unique, while ∼ indicates that the reference is shared, and # indicates a reference
is opaque. This compact syntax is employed in an effort to reduce the amount of typing, and
space, that type annotations will take when they are required.

Stating that an object is in the root state provides very little information — the methods
available in the root state are available in all states. As such, Chimera adopts the convention
that if the state set is not specified as part of a type annotation, then object is effectively in
state {ROOT}. As such, ∼Int is equivalent to ∼Int@ROOT .

Methods must be annotated with their requirements — as integer values are intended to be
immutable, all methods on Int would be annotated to indicate they can be invoked through
a shared reference, while a state-changing method such as next on an Iterator would
be annotated to require a unique reference.

Methods which can be invoked through a shared reference can of course be invoked through
a unique reference, therefore the set of methods available inO@S through a shared reference
is a subset of the methods available through a unique reference. Therefore, !O@S <∶ ∼O@S.

7.2.2 Methods and functions

Chimera supports object-functional programming in the style of Scala. Functions may be
passed as parameters, be partially applied, and may implicitly capture references from the
context in which they are defined. Functions are essentially objects with a single method,
apply(...), and have private fields for each implicitly captured reference. As such, all
function calls in Chimera are in fact method calls, and all code is executed in the context of
an object. Any object which defines an apply method may be considered to be a function.

Method definitions can be annotated with their permission requirement in the same way as
reference types, with a symbol prefix to their name: !next would be a method which re-
quires a unique permission, while ∼getName() is a method which only requires a shared
reference. A convention is adopted in Chimera that if the permission annotation is not pro-
vided, then one of two defaults are adopted:

7.2. The Chimera language 232

1. If the method does not change the state of the object, then the method will be treated
as requiring a shared reference.

2. If the method may could the state of the object, then the method will be treated as
requiring a unique reference.

Parameters on methods may be annotated to declare how they change the properties of an
alias, in addition to any state change the method applies to the object value the method is
associated with. A method can either borrow or steal a parameter reference. A borrowed
reference may be used temporarily but it cannot be stored in a field of the object, or passed to
any other method which may steal the reference. A stolen reference may be stored or passed
to another method which steals the reference. In the latter case, the stolen reference may no
longer be used in the original context.

For instance, consider the behaviour of a method which adds an element to a collection:
the reference provided to the method is stored in the data structure. It follows that such a
function must steal the reference it is provided. However, such a data structure may only
require a shared reference. In the context where the method is called, the original reference
can conceptually be split into two parts, and one part provided to method. The consequence
of this is that if the original reference were unique, then it becomes shared; if the original
reference were shared, then it remains shared. If however the function were specified to steal
a unique reference, then the original reference becomes an opaque reference.

Function objects

A simple example of a class whose instances may be treated as a functions is shown in
Listing 7.3. The apply method is defined to take a shared reference to an Integer i as a
parameter, will not change the state of this parameter and will return a value of type Unit.
Additionally, the function promises not to make a copy of the reference to i through the
borrow annotation on the parameter.

The body of apply demonstrates syntactic sugar for method invocation — the expression
acc + i is an invocation of the method ‘+’ on the acc field: acc.+(i).

The full signature of apply has been specified in this example, but much of what has been
written can be potentially inferred or be provided by implied defaults. Where the state of a
parameter does not change, the effect may be omitted such that t ∶ T ≫ T is equivalent to
t ∶ T . As the state of the parameter i does not change, we may specify it as borrow i :

∼Int.

Finally, it may be inferred that the parameter i is borrowed by observing its usage — it is not
stored in any fields, and not passed to any other functions which would copy the reference.

7.2. The Chimera language 233

1 type Int {
2 def +(borrow other : ∼Int) : ∼Int
3 def -(borrow other : ∼Int) : ∼Int
4 // ...
5 }
6
7 class Accumulator {
8 private var acc : ∼Int = 0
9

10 def apply(borrow i : ∼Int >> ∼Int) : ∼Unit = {
11 acc = acc + i
12 }
13
14 def getTotal() : ∼Int = acc
15 }
16
17 // ...
18
19 val acc = new Accumulator()
20 acc(1)
21 acc(2)
22 println(acc.getTotal())

Listing 7.3: Method definition in Chimera

Similarly, the requirements of the method + would have also provided the required type for
i. As such, the signature of the method apply could simply have been
def apply(i) = For the purposes of documentation however, we may wish to
preserve at least the type, permission and reference copying requirements for i.

7.2.3 Function literals

Function literals are syntactic sugar for creating objects with apply methods, and function
types are similarly sugar for object types. Listing 7.4 shows some examples of function
literals. A function literal defines the names of its parameters between brackets, optionally
declaring the effect type for those parameters, and follows this with an expression body.

The function literal assigned to returnsConstant implicitly captures the reference x
into the context of the body expression. For such a simple function and reference type this is
of little consequence, though permitting this in general is a complex topic which is discussed
in Section 7.3.3.

The function literal assigned to closeIfOpen takes a single parameter of an unspecified
type. We may hope to be able to infer what the type of s may be in this situation, using
similar techniques to those in the TS language. This may indeed be possible, though there
are two rather different answers that may be derived depending on whether s is a unique or
shared reference. If s is unique, then we may derive the following typing scheme:

7.2. The Chimera language 234

1 val x = 1
2 val returnsConstant = () => x
3
4 val closeIfOpen = (s) => if(s.isOpen()) s.close() else unit
5
6 // invalid
7 val addBroken = (x, y) => x.add(y)
8
9 // addWorking : [T](O@S >> O@S’, Int) -> T

10 // where O = { S { add : Int -> T => S’ } S’ {} }
11 val addWorking = (x, ∼y : ∼Int) => x.add(y)
12
13 val factorial = (x) => {
14 var tot = 1
15 var last = x
16 while(last > 1) {
17 tot = tot * last
18 last = last - 1
19 }
20
21 tot
22 }

Listing 7.4: Example function literals

closeIfOpen ∶ ∀α.(!O@S1 ≫!O@{S2, S3})→ (α ⊔Unit) where

O = {S1{isOpen ∶ ()→ Bool⇒ S2}S2{close ∶ ()→ α⇒ S3}S3{}}

However, if s is a shared reference, then s cannot change state. In this case, we may derive
the following typing scheme:

closeIfOpen ∶ ∀α.∼O → (α ⊔Unit) where

O = {isOpen ∶ ()→ Bool⇒ ROOT ; close ∶ ()→ α⇒ ROOT}

Given any choice for the type α, the type of closeIfOpen where s is unique is always
a subtype of the case where s is shared. A legitimate choice may be to always assume a
reference is shared if this is not specified, as a unique reference can always be passed when a
shared reference is requested. However the types place such radically different requirements
on s that it would seem prudent to require the programmer to specify which of the two they
desire explicitly, through a type annotation.

The function literal assigned to addBroken takes two parameters, x and y, and invokes the
method add on the x, using y as an argument. Inferring the type of such a trivial function is
not straightforward. It is clear that x is an object which must have the method add available
in the current state, and that y must be a subtype of the required type of the first parameter
to x. As is the case with functions in the TS language, insufficient information is provided
to decide what the effect type of the method add should be. Furthermore, it is also unclear

7.2. The Chimera language 235

whether add is likely to copy the reference to y, or simply use it temporarily.

If, however, y was defined to be a shared reference which is borrowed, this would provide
sufficient information to know that add may not change the state of y, eliminating the am-
biguity in the possible effects that add may have. This is shown in addWorking, where
an additional type annotation on y provides sufficient information to infer all that we need to
know about x.

7.2.4 Defining object types and classes

The state-oriented syntactic structure of Hanoi can be adapted to provide more than just the
specification of typestate constraints — implementations can be provided within the struc-
ture. In Chimera, state labels for an object type are fully capitalised, for example EMPTY or
CAN READ.

Consider the Iterator type defined and implemented in Listing 7.5. A type declaration

gives a name to an object protocol, and is effectively an interface specification. Both fields
and methods may be defined on types. A class declaration provides an implementation of an
ad-hoc type. An object instance produced from a class’ constructor has an object protocol
derived from the class’ definition and a state as defined on the constructor signature. An
object value may be considered to be of any type which it is compatible with.

The type Iterator[T] specifies the interface for iterator-like objects, with four states in
a hierarchy: ROOT, NEXT AVAIL, MIDDLE and CAN REMOVE. Conditional transitions
can be specified using essentially the same syntax as Hanoi, but as annotations directly on
the declaration of a method. Such method declarations could be overridden in natural ways,
such as in the case of hasNext on Line 13, where the return type and irrelevant transitions
need not be respecified.

More interestingly, methods are declared in the scope of the state they should exist in, and
method implementations can be overridden in child states. This design should provide a very
intuitive relationship between states and their available methods — methods that cannot be
called simply do not exist in the state in question, unlike in Hanoi where the methods do
exist at all times on the object, but are enabled and disabled in accordance with the typestate
constraints. It is also conceivable that states could have their own fields, or override parent
fields in a similar manner.

It is not necessary to explicitly specify that ArrayIterator is an Iterator, or the
mapping between the state labels. The type system can derive on demand that
ArrayIterator[T]@N is a subtype of Iterator[T]@NEXT AVAIL.

7.2. The Chimera language 236

1 type Iterator[+T] {
2 def hasNext() : Bool
3 :: true -> NEXT_AVAIL
4 :: false -> <self>
5
6 state NEXT_AVAIL {
7 def next() : T -> CAN_REMOVE
8 state MIDDLE { def remove() : Unit -> NEXT_AVAIL }
9 }

10
11 state CAN_REMOVE {
12 def remove() : Unit -> ROOT
13 def hasNext() :: true -> MIDDLE
14 }
15 }
16
17 class ArrayIterator[+T] {
18 private var values : Array[T]
19 private var position : Int
20
21 new(arr) -> ROOT = {
22 this.values = arr
23 this.position = 0
24 }
25
26 def hasNext()
27 :: true -> N
28 :: false -> <self>
29 = position < (values.size - 1)
30
31 state N {
32 def next() -> ROOT = {
33 val nextVal = values.get(position)
34 position += 1
35 return nextVal
36 }
37
38 state M {
39 def remove() -> N = values.removeIndex(position - 1)
40 }
41 }
42
43 state R {
44 def hasNext() :: true -> M
45 def remove() -> ROOT = values.removeIndex(position - 1)
46 }
47 }

Listing 7.5: A Hanoi-like syntax for specifying and implementing an iterator

7.2. The Chimera language 237

7.2.5 Type parameters

As the Iterator example demonstrates, both types and classes can be parameterised by
other reference types, and a variance annotation is included. +T indicates the type parameter
is covariant, −T indicates it is contravariant, and no annotation indicates it is invariant. Let
U ′ <∶ U , and ¬(U <∶ U ′). Then the following table demonstrates the subtyping relationship
between T [U] and T [U ′]:

Type parameter T [U ′] <∶ T [U] T [U] <∶ T [U ′]
+ Yes No
− No Yes

None No No

The reference type used as a parameter includes the permission to the type, therefore
T [!O@S] and T [∼O@S] are different types. This is useful as it allows for a collection
of unique references to be differentiated from a collection of shared references, which en-
ables some interesting possibilities for mutable collections, discussed in Section 7.3.1. If a
specifically unique or reference type is required, the parameter may be specified with the
necessary prefix: type O[!T].

It is also likely that methods may wish to return parameterised types with the aliasing annota-
tion modified, such as returning a shared reference to a value stored in a data structure: def
get(key : K) : ∼V. While it would be possible for a collection with type parameter
∼T to specify that a method returns a !T, implementing such a method would require some
means of generating a !T which is not always possible.

One scenario where this may be possible is if the type parameter T provides a method which
returns a !T, such as through a clone() method which creates a deep copy of the value.
In order for a type to require that values of a specified type parameter offers such a method,
a type bound would be required: type O[T <: ∼Cloneable[T]]. The ability to
specify such type bounds is standard in Java and Scala, and Chimera would require such a
feature to satisfy the modelling needs of programmers.

7.2.6 Public fields and global objects

Allowing public mutable fields on an object is not generally considered good design, as it
breaches the encapsulation of the object. It is particularly problematic in a language with
alias control, as a public field is implicitly shared by all contexts that have access to the
field’s containing object. Public immutable fields, in contrast, are relatively harmless and are
effectively constants.

7.2. The Chimera language 238

1 type Person {
2 def name : ∼String
3 def age : ∼Int
4 def age_= : ∼Int
5 }
6
7 def makeOlder(p : ∼Person) : ∼Unit = { p.age = p.age + 1 }
8 def isAdult(p : ∼Person) : ∼Bool = p.age > 18

Listing 7.6: Example of virtual fields

In Scala, a package is effectively an object, which allows other types, objects and functions
(which are actually fields and methods of the package object) to be defined without the need
for any special semantics. Packages are singleton objects, and Scala also provides a con-
venient syntax for defining singleton objects generally. Singletons are both architecturally
useful and dangerous, and unarguably common in real software systems.

As such, it is important that Chimera has a sound strategy for providing singletons, and it
is likely that in order to provide pure object semantics that any package system for Chimera
would need to be based on singleton objects, as it is in Scala.

Public fields could be disallowed in Chimera in favour of properties, which are a pair of get

and set methods. Syntactic sugar for properties is provided in Scala, which allows methods
to be declared which take no parameters, and do not require parentheses to be invoked. C#
provides similar syntactic sugar.

Chimera could adopt Scala’s convention for properties. Consider the following example in
Listing 7.6, which shows a Person type with two properties: name and age. The age
property allows overwriting through the method age =, which is Scala’s convention for
defining a method which writes to a property, while the name property is immutable. Both
name and age can be used as though they were fields in the methods makeOlder and
isAdult.

Though in principle reading or writing a property could change the state of an object, in order
to avoid confusion it would be safer to insist that property methods cannot change the state of
the object, such that their semantics are as close to that of real fields as possible. Regardless,
properties on shared objects such as packages could only be accessed if the property methods
do not change the state of the object.

7.2.7 Field overriding

One interesting possibility for Chimera would be to allow the set of fields, and the type
properties of these fields, to vary by state just as methods do. The main source of complexity
in allowing this is in defining how the fields of a state should be initialised as part of a state

7.2. The Chimera language 239

1 class MutableOption[T] {
2
3 new() -> ROOT = {}
4 new(steal t : T) -> SOME(t) = { }
5
6 def isSome() : ∼Bool = false
7 def set(steal t : T) : Unit -> SOME = { }
8
9 state SOME {

10 private val t : T
11
12 entry(steal t : T) = {
13 this.t = T
14 }
15
16 def isSome() = true
17 def get() : T = t
18 def clear() -> ROOT = { }
19 }
20 }

Listing 7.7: Example of state entry methods

transition. One possibility would be to define entry methods for each state, which would
be responsible for correctly initialising all of the fields related to a state. The entry method
for a state is invoked after the evaluation of a method that declares a transition. If the entry
method takes parameters, then these parameters must be specified as part of the transition
declaration, and may be taken from the set of variables in the output context of the body of
the function. The entry methods cannot be directly invoked — this is to avoid confusion over
allowing an object to temporarily transition between states during a method call.

An example of this is shown in Listing 7.7, which demonstrates an implementation of a
mutable Option type. The SOME state contains a field for storing the value of the option
type; this field could not be declared in the root of the object as the field must have a value,
and null does not exist in the language (see Section 7.1.1). The methods set and clear
transition the instance between the ROOT and SOME states, with the entry method of SOME
simply assigning a provided value of type T into the field.

A likely scenario is that common fields will be defined in a parent state and that child states
will wish to refine the type information of their parent’s fields. The example in Listing 7.8
demonstrates with an implementation of an iterator-like stream for reading from a random-
access binary file handle. The ROOT state of FileStream wraps a potentially closed file
handle, while in the OPEN and READABLE states the file handle is known to definitely be
open. The methods reopen, close and next change the state of the FileStream

instance.

The reopen method is potentially controversial — the type system would need to be sen-

7.2. The Chimera language 240

sitive to the control flow in the method in order to determine that when the method returns
true the file instance is in fact open.

In general, a child state must override the type of a parent’s field with a subtype. Allowing
arbitrary overriding of a field’s type would violate the invariants that inherited methods would
expect — reopen expects the file variable to be at least a !FileHandle@ROOT, and
changing this to a !String in a child state would result in undefined behaviour when this
method is executed.

7.2.8 Inheritance

Inheritance and subtyping are orthogonal features of object oriented languages; we may de-
fine subtyping structurally, and allow inheritance purely for code reuse. Java avoids the issue
of diamonds [87] (also known as fork-join inheritance) by only permitting single inheritance,
while Scala uses linearised mix-in inheritance. In both, subtyping is nominal. Google Go,
which uses structural subtyping, provides no mechanism for inheritance at all. Go mandates
the use of composition for code reuse rather than inheritance, which is the recommended
approach in Gamma et al. ’s seminal work on design patterns [54].

It is unclear what inheritance option would work well for Chimera. If a mix-in based ap-
proach were adopted, and mix-ins were allowed to define their own state machines, then
it is unclear how the state machines of each mix-in should be composed. If mix-ins were
restricted to be stateless, then each state of class could be permitted to select its own set of
mix-ins. Without further investigation, it is unclear if this is particularly useful.

Chimera could forego inheritance altogether as Go has; compositional reuse of code can
work well in practice, and would avoid adding additional complexity to what is already
likely to be a very complex language. However, single inheritance may be a viable option,
which would provide some means of implicit reuse. Inheriting from another class would also
inherit its state hierarchy. An abstract example of this is shown in Listing 7.9. The class B
extends A, and adds a new state Y which is a sub-state of X. The method x() is overridden
in X and Y. This is not conceptually difficult, and the overriding rules for transitions adopted
from Hanoi ensure that B@X is still a subtype of A@X, as is B@Y.

7.2.9 Dynamic state tests

As the typestate of an object in a language such as Java is virtual and only discernible through
dynamic state test methods such as hasNext, it was necessary to model conditional transi-
tions in Hanoi and for an analysis to be sensitive to the return values of methods. In a new
language with the freedom to define any necessary constructs, it may be better to provide

7.2. The Chimera language 241

1 type FileHandle {
2 def isOpen() : ∼Bool
3 :: true -> OPEN
4 :: false -> ROOT
5
6 def close() : ∼Bool -> ROOT
7
8 state OPEN {
9 def length() : ∼Int

10 def read(index : Int) : ∼Int
11 }
12 }
13
14 class FileStream {
15 private val file : !FileHandle@ROOT
16
17 new(file : !FileHandle@ROOT) -> ROOT(file) = {}
18 new(file : !FileHandle@OPEN) -> READABLE(file) = {}
19 entry(steal file : !FileHandle@ROOT) = { this.file = file }
20
21 def reopen() : ∼Bool
22 :: true -> OPEN(file)
23 :: false -> ROOT(file) = {
24 if(file.isOpen()) {
25 file.rewind()
26 return true
27 }
28
29 return false
30 }
31
32 def close() : Bool -> ROOT = file.close()
33
34 state OPEN {
35 private val file : !FileHandle@OPEN
36 private var index : ∼Int
37
38 entry(file : FileHandle@OPEN) = {
39 this.file = file
40 this.index = 0
41 }
42
43 def hasNext() : ∼Bool = index < file.length()
44
45 state READABLE {
46 def next() : Int -> OPEN(file) = {
47 val nextVal = file.read(index)
48 index += 1
49 return nextVal
50 }
51 }
52 }
53 }

Listing 7.8: An example of refining the type of a parent state’s field

7.2. The Chimera language 242

1
2 class A {
3 def a() : !A = new A()
4
5 state X {
6 def x() : ∼Int = 0
7 }
8 }
9

10 class B extends A {
11 state X {
12
13 def x() -> Y : ∼Int = 1
14
15 state Y {
16 def x() -> X = 0
17 def y() -> X : ∼String = "hello"
18 }
19 }
20 }

Listing 7.9: An example of single inheritance in Chimera

dynamic state testing as a fundamental operation, akin to pattern matching in functional lan-
guages, or an equivalent of the instanceof operator in Java. The hasNext operation on
Iterator could be removed and instead code iteration could be written in the recursive
form shown in Listing 7.10.

While this may be more convenient in some scenarios, it is likely to have at an unpredictable
runtime cost due to structural subtyping, with some unintuitive properties. A type which is
a subtype of !Iterator[∼Int]@ROOT can be passed into sum and a simulation relation
must be built to determine which of the Iterator states it could be considered to be in.
There may be more than one state which is a simulation of any given state in Iterator,
and therefore the cases in the stateOf construct must be considered in order and the first
match accepted. This has the consequence that if the cases in sum were reversed, the method
would always return 0, as ROOT has no methods and all object types are a simulation of an
empty state.

7.2.10 Processes and channels

Synchronous duplex directional channels such as those found in the π-calculus [97] are a
good fit for a language like Chimera — a program consists of one or more sequential pro-
cesses which communicate via channels with protocols. The two endpoints of a channel can
be represented by objects that exist in the context of each process.

Session types provide a foundation for the theory of typed communication over such chan-

7.2. The Chimera language 243

1 type Iterator[+T] {
2 state HAS_NEXT {
3 next() : T -> ROOT
4 }
5 }
6
7 def sum(iter : !Iterator[∼Int]@ROOT) : ∼Int = {
8 stateOf(iter) {
9 case HAS_NEXT => {

10 val i = iter.next()
11 return i + sum(iter)
12 }
13 case ROOT => 0
14 }
15 }

Listing 7.10: Iterator-like behaviour without the need for a hasNext method or conditional
transitions

nels. Consider the session type in Figure 7.2 which defines the protocol that an automated
teller machine (ATM) may have with a bank. The card details and the pin entered by the
user are first sent, to which the bank can respond with either welcome or error (the curly
braces represent external choice), with a string describing the problem (incorrect details, un-
known account, etc.) in the latter case. If the login is successful, then the user can request the
account balance or withdraw some funds (with angle brackets representing internal choice).
Withdrawing funds can fail in a similar manner to the login procedure if an attempt is made
to withdraw more funds than are available, but this error does not terminate the session —
this must be done explicitly by sending a logout request.

This protocol can be represented using a typestate-constrained object in a straightforward
manner, and a possible encoding of this in Chimera is also shown in Figure 7.2. The
sendCredentials method takes the card details and pin as parameters, and the return
value indicates the success or failure of this request. Scala-like case classes are used like the
possible values of an enumeration, but with the added benefit that they can carry the data that
is associated with outcome easily. The methods available in the ACTIVE state are equivalent
to the labelled choices that are available in the session type at this point.

A channel’s definition is independent of whether the processes exist on the same machine, or
on different machines across a network. Channels are inherently unreliable — the protocol
defines what should happen, but failures can occur for a number of reasons:

• The receiving process has crashed, due to an unhandled exception of some form, and
therefore would never respond to the message.

• The transport used to implement the channel has failed, e.g. a TCP connection which
could not be re-established within a reasonable period of time.

7.2. The Chimera language 244

Session type:

1 LOGIN = !String . !String . {
2 welcome : ACTIVE,
3 error : ?String . exit
4 }
5 ACTIVE = <
6 balance : ?Int . ACTIVE,
7 withdraw : !Int . {
8 ok : ACTIVE,
9 error : ?String . ACTIVE

10 }
11 logout : exit
12 >

Chimera Channel type:

1 sealed abstract class LoginResponse
2 case object LoginWelcome extends LoginResponse
3 case class LoginFailure(msg : ∼String) extends LoginResponse
4
5 sealed abstract class WithdrawResponse
6 case object WithdrawOK extends WithdrawResponse
7 case class WithdrawError(msg : ∼String) extends WithdrawResponse
8
9 type BankChannel {

10 state LOGIN {
11 def sendCredentials(cardInfo : ∼String, pin : ∼String)
12 : LoginResponse
13 :: LoginWelcome -> ACTIVE
14 :: LoginFailure -> END
15 }
16
17 state ACTIVE {
18 def requestBalance() : ∼Int
19 def withdraw(amount : ∼Int) : WithdrawResponse -> ACTIVE
20 def logout() : Unit -> END
21 }
22
23 state END {}
24 }

Figure 7.2: The client session type for a simple ATM, with an analogous Chimera channel
type

7.3. Theoretical challenges and opportunities 245

• The remote process has gone rogue, sending invalid data for the current expected state
of the channel.

All of these exceptional circumstances are best represented as thrown exceptions, which the
process can handle and attempt to recover from if possible (i.e. attempt to set up a new
channel, potentially to a replacement process). Whether those exceptions should result in
a state change in the object is unclear — if a state change were specified, then the alias
control semantics of Chimera would require a unique reference be used to interact with the
channel. This may prove overly restrictive in practice; there may be some situations where a
protocol is desired that is effectively stateless, which would allow more than one component
in a process is able to use the channel. If exceptions do not trigger state transitions, then the
channel’s state will not be a faithfully represented by the protocol — an exception is thrown
to indicate the channel is broken, but the state of the object would still allow methods to be
called.

Some careful consideration of the memory model for Chimera is also required. The simplest
option would be to require that each Chimera process exist in a separate memory space — no
shared data would exist between processes. Passing data over a channel, when both processes
are local, could be implemented as a deep copy of the object and a passing of a reference to
the copy. If the type were in fact immutable, such as an ∼Int, then the object need not even
be copied. Analysis of user-defined types to determine when they are effectively immutable
in this manner could be used to allow this optimisation for arbitrary types.

7.3 Theoretical challenges and opportunities

Formalising a language like Chimera poses significant theoretical challenges, as it mixes
structural subtyping, parametric polymorphism, alias control and typestate. Attempts have
been made to provide a formal core for the Scala language [5,112], though much of the com-
plexity in such formalisms is as a result of path-dependent types, which allow a restricted
form of dependent typing and are necessary for mix-in inheritance and parametric polymor-
phism. As I am not proposing that Chimera attempt to provide mix-in inheritance, such a
formalism may be a poor choice as a basis for the definition of Chimera.

It may be possible to formalise a language such as Chimera using Abadi and Cardelli’s
seminal work [1] as a foundation.

Beyond this, there are many interesting things that one could potentially do in a language
with deeply integrated support for aliasing and typestate, and also some cases which will
require careful consideration in the theoretical work to retain soundness; each of these are
covered separately below.

7.3. Theoretical challenges and opportunities 246

7.3.1 Mutable collections

The ability to determine whether a reference is unique or not offers the interesting possibility
of allowing the type parameter of an object to change in response to a method call, in addition
to the object’s state. This is particularly interesting in the case of collection types — a higher
order function like map could be permitted to change the type parameter. An example of this
for a mutable linked list node is shown in Listing 7.11. Here, the map function can take a
function which mutates the element type to some new type U , and consequently changes the
type parameter of the node to U . This must be performed along the entire chain, as shown in
the override of map for the PREFIX state.

In order for this to occur, a unique reference is required to the node type in order to allow the
type parameter to be safely changed. This raises the question as to whether we also need to
specify a separate map function for when f ∶ T => T — if the function does not change the
type parameter, then map can be permitted through a shared reference as it does not change
the type parameter.

The ability to do either offers the possibility of efficient operations on data structures which
do not require a deep copies, much as linear types in functional languages permit. Of course,
deep copy based implementations can be permitted, but they would at least be optional.

Allowing the type parameter to change does not appear to be any different to allowing the
state to change — both require uniqueness, and would likely be handled in the same way
in the type system. Nonetheless, further investigation is required to determine whether any
unanticipated complexities exist in allowing this to occur.

7.3.2 Borrow and steal for return values

The borrow and steal annotations on parameters are an essential part of making the alias
control system in Chimera practical — shared references are very restrictive and without
the ability to borrow unique references, they can never leave the local scope of a method or
object, even temporarily.

Return values pose a challenge in a similar manner. Consider a Chimera type which repre-
sents an array:

1 type Array[T] {

2 def set(index : ∼Int, t : T) : Unit

3 def get(index : ∼Int) : T

4 def length() : ∼Int

5 }

7.3. Theoretical challenges and opportunities 247

1 class Node[T] {
2 private var t : T
3
4 new(t : T) = { this.t = t }
5 entry(t : T) = { this.t = t }
6
7 def !map[U](f : T => U) : Unit -> ROOT[U](u) = {
8 val u = f(t)
9 }

10
11 def !prefix(tail : !Node[T]) -> PREFIX(t, tail) = { }
12
13 state PREFIX {
14 private var tail : !Node[T]
15
16 entry(head : T, tail : !Node[T]) {
17 super(head)
18 this.tail = tail
19 }
20
21 def !map(f : T => U) -> PREFIX[U](u, uTail) = {
22 val u = f(u)
23 val uTail = tail.map(f)
24 }
25 }
26 }

Listing 7.11: A mutable linked list

An implementation of Array will store a value of type T for each valid index. The return
values of get pose a problem — if we have an instance of Array[!String], if the value
returned by get is stored in another field or passed to a function which steals it, then the
invariant of the array instance will have been violated.

As such, different semantics for get are required dependent upon whether the returned value
is borrowed or stolen. In the case of an !Array[!String] where a return value is stolen,
the array would effectively become an !Array[∼String] or !Array[#String], de-
pending on whether the the full permission is stolen or not. It is unclear whether such an
automatic transformation of type parameters could realistically be achieved, or is even desir-
able due to the confusion it may cause.

There is also the issue of whether state change should be permitted on the borrowed refer-
ence: if we have an instance of !Array[!Stack[∼Int]@NOT EMPTY], retrieve one
of the references in the array and invoke pop() which would change the state of the refer-
ence. It is unclear whether this state change could be reintegrated into the type parameter of
the array instance, or when this should occur. Consider the example in Listing 7.12, which
demonstrates this in a function which pops the top element off of the first stack, and the
pushes this onto all of the stacks. The firstStack reference ceases to be relevant af-
ter the call to pop on Line 4. After this call, the stack would be in state ROOT as it may

7.3. Theoretical challenges and opportunities 248

1 def copyFirstToAll(borrow a : !Array[!Stack[∼Int]@NOT_EMPTY]) : Unit = {
2 if(a.length() < 1) return;
3 val firstStack = a.get(0)
4 val topElem = firstStack.pop()
5 var i = 0
6 while(i < a.length()) {
7 val stack = a.get(i);
8 stack.push(topElem);
9 i = i + 1;

10 }
11 }

Listing 7.12: Temporary state change of borrowed return values

be potentially empty. The best type we could assign to the array at this point would be
!Array[!Stack[∼Int]@ROOT].

After this, the calls to push on each stack on Line 7 would not change the type of the
array, as changing the state of one stack from ROOT to NOT EMPTY does not change the
upper bound on the state of the stacks which the type parameter represents. This may be
disappointing, as to a programmer it is clear that push will be invoked on every element
of the array and therefore one may reasonably expect that the type of the array should be
!Array[!Stack[∼Int]@NOT EMPTY] again after the completion of the loop. Such
reasoning is unlikely to be possible in general.

As such, the type on the parameter a is actually invalid, as the type parameter on a is not
accurate.

An additional problem exists in the code: the variables firstStack and stack are aliases
of one another during the first iteration of the loop, but it is unlikely that the type system
would be able to derive this association. As such, if the firstStack variable were to be
used again during or after the loop, it would be possible for the two references to have an
inconsistent view of the state of the same object, as both references would be believed to be
unique.

Given the above difficulties, the only sound option may be to require that return values are
explicitly annotated as offering a borrowed or stolen reference, and that the state of borrowed
references cannot be changed. In the case of Array, variants of the get method could be
provided to cater for each possible scenario:

1 def peek(borrow index : ∼Int) : borrow T

2 def share(borrow index : ∼Int) : steal ∼T -> ROOT[∼T]

3 def take(borrow index : ∼Int) : steal T -> ROOT[#T]

The peek method would allow the client to use the value from a given index temporarily,
and in a manner which does not change its state. The share method copies the reference in
the array such that it will become shared, resulting in a change in the type parameter of the

7.3. Theoretical challenges and opportunities 249

1 def countMinors(borrow people : !Array[!Person]) : ∼Int = {
2 var i = 0
3 var minorCount = 0
4 while(i < people.length()) {
5 if(people.peek(i).getAge() < ADULT_AGE) {
6 minorCount += 1
7 }
8 }
9

10 return minorCount
11 }

Listing 7.13: An example of using peek

array. The take method consumes the reference in the array entirely, which would allow
a unique reference to be extracted from an array in a permanent fashion. Both share and
take would require a unique reference to be invoked, as they change the type of the array.

The share method is of little consequence if the type T is already a shared reference type,
and this is perhaps the mostly likely scenario for the use of such a data structure. The peek
method is particularly useful for collections of unique references, where a value is extracted
only for temporary use, such as in the countMinors method shown in Listing 7.13.

The take method is much more destructive and unlikely to be useful in general, as taking
the value at a single index requires that all other indices be treated as opaque references,
making them useless. This is potentially symptomatic of a poor design — an alternative data
structure with potentially better characteristics is a partial map:

1 type PartialMap[K, V] {

2 def swap(steal k : K, steal v : V) : steal Option[V]

3 def peek(borrow k : K) : borrow Option[V]

4 def take(borrow k : K) : steal Option[V]

5 }

The semantics of this partial map would be such that take would remove the mapping for
the value k, if it exists, returning an Option@NONE if the mapping is undefined. If the value
does exist, then the mapping can be stolen without any need change to the type of the map.

The impact of borrow and steal annotations on return values will require further investigation
in order to decide what can realistically be achieved, and also what is necessary. Alternative
interface designs for traditional data structures may be more usable in a typestate-oriented
language; it is important to not just attempt to produce APIs that fit the preconceptions
that programmers may have, but instead to design the best possible APIs for the chosen
characteristics of the language.

7.3. Theoretical challenges and opportunities 250

7.3.3 Function literals with implicit binding

Function literals, combined with higher order functions, are incredibly useful and make the
concise expression of complex logic possible. The ability to pass a function as a parameter
is not particularly new, and can be emulated in languages which do not directly support this
by passing method objects — objects which contain the one function intended to be called.
The Callable interface in Java is a class example of this.

Many object oriented languages offer convenient syntax to define function literals which
implicitly bind values from the context of their definition. In Scala we may define a function
which adds a number to every element in a sequence by exploiting this feature:

1 def addX(x : Int, vals : Seq[Int]) : Seq[Int] = vals.map(_ + x)

In this code, + x defines a function literal which takes one parameter, inferred to be of
type Int. This may be written more explicitly as (y ∶ Int) => y + x. The value of x is
implicitly bound into the scope of this function — it is not passed explicitly as a parameter
to the function on every invocation.

The ability to implicitly bind values is incredibly useful, especially when defining such small
function literals for use with higher order functions such as map.

Implicit binding does not add significant complexity to the type system of a language which
is not concerned with alias control or state change. A typestate-oriented language is however
concerned with these things, and there are two important aspects of implicit binding that
must be formalised and studied:

• Is it possible to distinguish between borrowing and stealing an implicitly bound refer-
ence?

• Can effects on implicitly bound references be tracked and interpreted?

Each of these questions are discussed in more detail below.

Borrow / Steal for implicit bindings

As described earlier, function literals are syntactic sugar for the creation of objects with
apply methods, and implicitly bound references become private fields on such objects. A
safe choice would be to treat such references as stolen, but this is often overly restrictive,
particularly where a unique reference is implicitly bound.

Function literals can be considered to be short lived or long lived. Short lived function literals
are those which exist to fulfil a temporary function before the reference to it is lost and it is

7.3. Theoretical challenges and opportunities 251

eligible for garbage collection. Long lived function literals are those which escape the scope
of their definition, and as such the implicitly bound references they carry also escape.

The vast majority of function literals are short lived, such as in list.map(+ 1) or
list.reduce(*). A short lived function may capture a unique reference and use
it in a manner which changes its state, but after the function has ceased to serve a purpose a
programmer may expect that the original reference should still be unique. For instance, we
may implement copying a list as follows:

1 type List[T] {

2 ...

3 def foreach(borrow f : T => ∼Unit) : ∼Unit

4 }

5
6 def copy(borrow from : ∼List[∼Int]) : !List[∼Int] = {

7 val l = new List[∼Int]()

8 from.foreach(x => l.add(x))

9 return l

10 }

The reference l starts as a unique reference, which is then implicitly bound into the function
literal x => l.add(x). The foreach function is defined such that it borrows the func-
tion literal, therefore we may infer that l will not escape the scope of copy as part of the
function literal. As the function literal is no longer used after the call to foreach, it is not
unreasonable to expect that l is still a unique reference when it is returned as the result of the
function.

This reasoning represents an extension of the proposed inference of borrow and steal anno-
tations for method parameters, though it is unclear how far this can or should be generalised.
For instance, consider the example in Listing 7.14 which splits a list into two pieces. The
function partition borrows the parameter f , which is a unique reference to a function.
This function is provided to the constructor of Partitioner, which steals the reference,
storing it in a private field. However the Partitioner reference is short-lived, existing
only locally within the partition method after which it would be garbage collected. The
parameter f is only temporarily an opaque reference, but it may be reasonable to assume
that it can be treated as a unique reference after the return of partition. This reasoning
is more complex than in the previous example, and further investigation would be required
in order to determine whether this can be proven sound in general.

7.3.4 Implicit effects

As in the description of functions in the TS language, the application of a function may have
an effect on its bound variables. The same is potentially true of an implicitly bound variable,

7.3. Theoretical challenges and opportunities 252

1 class Partitioner[T] {
2 private val f : ∼(T => ∼Bool)
3 private val trueVals : #List[T]
4 private val falseVals : #List[T]
5
6 new Partitioner(steal f : ∼(T => ∼Bool)) => ACTIVE = {
7 this.f = f
8 trueVals = new List[T]()
9 falseVals = new List[T]()

10 }
11
12 state ACTIVE {
13 private val trueVals : !List[T]
14 private val falseVals : !List[T]
15
16 def add(t : T) : ∼Unit =
17 if(f(t)) trueVals.add(t) else falseVals.add(t)
18
19 def extractResult() : !Pair[!List[T], !List[T]] => ROOT = {
20 return new Pair(trueVals, falseVals)
21 }
22 }
23 }
24
25 def partition(borrow list : List[∼T], borrow f : !(∼T => ∼Bool))
26 : !Pair[!List[∼Int], !List[∼Int]] = {
27
28 val partitioner = new Partitioner(f)
29 list.foreach(x => partitioner.add(f))
30 return partitioner.extractResult()
31 }

Listing 7.14: A more complex example of scope analysis concerning the parameter f

7.3. Theoretical challenges and opportunities 253

1 type Stack[T] {
2
3 def push(t : T) : ∼Unit -> NOT_EMPTY
4
5 def isEmpty() : ∼Bool
6 :: true -> ROOT
7 :: false -> NOT_EMPTY
8
9 state NOT_EMPTY {

10 def pop() : T -> ROOT
11 }
12 }
13
14 type List[T] {
15 def ∼foreach(!f : T => Unit) : Unit
16 }
17
18 def addAll(s : !Stack[Int]@ROOT, l : ∼List[Int]) =
19 l.foreach(elem => s.push(elem))

Listing 7.15: An example of modifying an implicitly bound parameter

but it not obvious how the effect should be represented or interpreted. Consider the example
in Listing 7.15, which defines a protocol for an unbounded stack and a method which adds
all the elements of a list to a stack.

The stack is defined such that the method push is always available and ensures that the
stack is in state NOT EMPTY, and method pop is available only in the NOT EMPTY state
and returns the top element of the stack and returns the object to state ROOT.

The function addAll takes a unique reference to a stack and a shared reference to a list.
Through implicit binding, the function literal elem => s.push(elem) adds each ele-
ment of the list to the stack. Intuitively, we know that if the list is non-empty then the stack
will be in state NOT EMPTY after addAll executes. If the list is empty, then the stack will
remain unchanged.

However, the process by which the type system could derive this is unclear. The effect on s
occurs within the function literal, and the code as presented provides no direct information
as to what this effect is. Furthermore, it is also not apparent that the function literal will be
invoked, or how many times it may be invoked. This information is required in order for
the effect on s to be derived, and applied to the context as part of interpreting the effect of
calling the method l.

One way to do this would be to abstract the implicit effects of invoking a function with a
variable. The augmented notation for a function type (Ti ≫ Ui)

∆Ð→ V could mean the same
as in the TS language, but with the addition of an implicit effect represented by ∆. The
method foreach could then be specified as having type:

7.3. Theoretical challenges and opportunities 254

foreach ∶ (T ∆Ð→Unit) ∆∗Ð→Unit

Which specifies that the implicit effect of the function parameter will be applied zero or more
times (the Kleene star of the effect). The exact nature of that implicit effect is irrelevant to
the implementation of foreach; it is only relevant to the context where the function literal
is created.

In the example of Listing 7.15, it can be inferred that the implicit effect of the function literal
passed to foreach is

∆ = {s ∶ Stack[Int]@ROOT ≫ Stack[Int]@NOT EMPTY }
elem => s.push(elem) ∶ Int ∆Ð→Unit

There we could derive that the implicit effect of applying the function foreach is

∆∗ = {s ∶ Stack[Int]@ROOT ≫ Stack[Int]@{ROOT ,NOT EMPTY }}

As NOT EMPTY is a descendant state of ROOT, it follows that
Stack[Int]@{ROOT ,NOT EMPTY } = Stack[Int]@ROOT . We would therefore in
theory be able to correctly derive the state change applied to s, despite those state changes
occurring in a separate context.

The composition of such implicit effects would rely on the same effect combinators as in
the TS language, providing regular language approximations of the implicit effects of higher
order functions such as foreach or more complex functions which have multiple function
parameters. For example, conditional execution could in fact be implemented as a method
branch on boolean values:

branch ∶ ∀α.(() ∆Ð→ α, () ∆′Ð→ α) ∆ ∣∆′ÐÐÐ→ α

It is unclear how likely this approach will work in general. The notation used above is in-
spired by Nielson’s treatment of type and effect systems [109], though the effects in Nielson’s
analyses are typically concerned with behavioural aspects of the program that are orthogonal
to the context and term type, and are useful for the runtime system — memory allocation
information, variable usage, binding time and so on. In the work of Wright [154], effect in-
ference is used to determine the possible type of values in mutable ML references, showing
in principle that effect analyses can be used for purposes which are not completely orthog-
onal to the typing of terms. Through further investigation and experimentation, it may be
possible to devise a mechanism which allows for state change on implicitly bound variables.

7.4. Conclusion 255

7.4 Conclusion

This chapter has presented some of the open questions and challenges for a practical,
statically-typed language with support for typestate and contemporary features. Through
further research it may be discovered that some features, such as functions with implicit
capture, do not mix well with typestate. This would help to clearly define the limitations of
typestate, which is just as important as defining its strengths.

The exploration of using alias control and the ability to express type change for more than
just classic typestate problems, such as in the representation of mutable collections, demon-
strates that the techniques required to support static typestate checking may also have wider
applications. Clearly demonstrating the utility of these other features may help to promote
the adoption of languages with typestate, as the additional complexity required supports
more than just one use case.

Overall, this chapter demonstrates that while a strong case is developing for typestate as
an essential feature for contemporary object oriented languages, and that hope exists for
typestate to co-exist with the features that are now expected in contemporary languages such
as Scala, a significant amount of research remains to be done in order to present a fully
convincing case for this.

256

Chapter 8

Conclusion

The goals of this thesis were broad; it attempted to provide a rare combination of theory, prac-
tice and empirical evaluation that is so often absent from programming language research.
As I hope this work has demonstrated, typestate has great potential as a realistic foundation
for the theory of object oriented programming, capable of being truly representative of the
kinds of constraints that exist in real software systems.

Typestate modelling simply formalises the kinds of constraints that already exist in object
oriented software, and such models make the prospect of automated enforcement of typestate
constraints possible. The Hanoi language presented in Chapter 3 was demonstrated to be
capable of modelling the most common typestate constraints, and Chapter 4 demonstrated
that many options exist for the implementation of dynamic checking of Hanoi models in
existing languages.

The user study in Chapter 5 has demonstrated through a rarely conducted empirical study
that programmers are able to comprehend typestate models. Additionally, it demonstrated
that Hanoi’s state-oriented notation was preferable to method-oriented approach, which is
used in the seminal work of Aldrich et al. on Plural. I believe this study demonstrated the
value in user studies which compare notations, despite the inherent difficulties involved. As
a research community, I feel we should postulate less and measure more, and this was my
attempt to honour this sentiment.

The theoretical work in Chapter 6 aimed to provide a simple setting in which the fundamen-
tal problem of typestate inference could be studied. The remap mechanism for interpreting
effects in the presence of subtyping is novel, and proved to be important component of con-
structing a type system which is not overly restrictive. Additionally, the presentation of
principal types in this language isolates the fundamental requirement that the effect of a
function on its parameter must be known, and that it is possible to define and infer principal
typing schemes. The language, while not practical, provides a useful theoretical foundation

8.1. Limitations 257

in which future experimentation with alias control, implicit effects and other such challenges
can be considered.

Finally, Chapter 7 outlined the possibilities for a statically typed, expressive typestate lan-
guage inspired by Scala. While this presentation is light on technical details, I believe it
does present a useful discourse on why such a language might be desirable, and the technical
challenges which must be overcome in order to make this possible. The unification of the
ideas of session types and typestate has potential to providing a safe, flexible environment
for the construction of parallel and distributed systems.

8.1 Limitations

There are a number of limitations to the research presented herein. Firstly, the work on the
Hanoi language has not yet been connected to the theoretical work on the TS language. The
Hanoi language is focused on syntactic convenience for describing real typestate constraints.
In Section 3.5.2 a method of reducing Hanoi models to flat finite state machines is presented,
which provides the means to relate Hanoi models to TS object protocols. The primary dif-
ference between the finite state machines in Hanoi and those in TS object protocols is that
TS does not represent or support conditional transitions, either based on return values or ex-
ceptions, which are vitally important to the representation of real world typestate constraints.
A simplified form of Hanoi without conditional transitions can be used to represent TS ob-
ject protocols, which would benefit the readability of the type annotations for TS and allow
de-duplication of common transitions using state hierarchies. However, TS itself must be ex-
tended to support conditional transitions and exceptions in order for the connection between
Hanoi and TS to be meaningful.

Both Hanoi and TS also side-step the issue of alias control by requiring unique references.
This is convenient for the theoretical work but problematic in practice — at a minimum, it
must be possible to specify which methods can be safely invoked through a shared refer-
ence. This is very likely to add a significant amount of complexity to the type system. The
nascent type inference algorithm presented as part of the TS language requires further study,
particularly to determine whether inference is still feasible when conditional transitions and
aliasing annotations are included in the formalism. Without the ability to accomodate both,
the practical utility of the type inference algorithm is greatly diminished.

The TS language studies the “interface” perspective of interacting with stateful objects, and
omits the “implementation” aspect of defining objects with real functionality. Doing so
requires the ability to verify that objects conform to their defined protocols, and preferably a
mechanism to infer the protocol of an object from its implementation. Studying this problem

8.2. Future Work 258

in detail, and finding an approach which is compatible with the existing work on the TS
language, will be an essential step towards providing a more complete and realistic language.

Finally, the user study conducted on Hanoi has a variety of limitations. It was not conducted
with enough participants to gain statistically significant results on a number of its hypothe-
ses, diminishing the ability to make any firm claims based on its results. It is also not clear
whether the results can be generalised — can it really be said whether a state-oriented ap-
proach would be preferable to users in any language other than Hanoi? Does evidence of the
ability of programmers to understand Hanoi models in the context of short code examples
predict the ability to understand typestate in real programs? A broader study of typestate
would be required to provide a more definitive answer to this question. Such a study should
also attempt to study programmers as they actually use the language, and build a body of
qualitative evidence over a much longer period of time on the attitudes and experiences of
programmers using typestate.

8.2 Future Work

This thesis has uncovered many possible directions for further research.

Typestate modelling While the Hanoi language has been demonstrated to be capable
of modelling the most common typestate constraints, there are still some areas for potential
improvement:

• The ability to specify conditions based on parameter values, while rarely required,
would generalise the mechanism for expressing conditional transitions. In particular,
the pattern of passing boolean flags to methods to select behaviour is common in some
APIs, and may have an impact on the selection of successor states.

• Modelling “views” on an object, as presented by Militão [96] , is likely to be valuable
when modelling objects which support communication and sharing between compo-
nents in a system, and provide better opportunities for customising the semantics of
such sharing than the parallel state machines of Plural or Plaid.

Implementing views requires much deeper integration into the type system and runtime
system of a language — “splitting” a reference is not typically an explicit operation,
and the runtime system of Java or C# does not typically store the additional meta-data
on each reference that would be required to distinguish which view a reference relates
to.

8.2. Future Work 259

Synthesis of typestate and session types In Section 7.2.10 the idea of using type-
state constrained objects to represent the endpoints of a channel within a hypothetical lan-
guage was investigated. Without further work to formalise such a language and use it to try
and build real distributed systems, it will not be known where the tradeoffs are in represent-
ing session types in such a manner.

With the increasing popularity of functional programming languages as a possible solution
to efficient and safe parallelism and concurrency in many-core and distributed systems, the
broader utility of typestate in representing stateful contracts to mutable objects may yet be-
come irrelevant. Much like garbage collection has replaced manual memory management in
many software systems, it may yet prove simply more convenient to allow a sophisticated
runtime system to optimise away the notional inefficiencies of immutable data types where
possible, providing a simpler and easier to work with language semantics that unburdens
the programmer. If such functional languages were to replace object oriented languages in
mainstream programming, then session types would ultimately become the enduring rep-
resentation of stateful communication, and typestate a footnote in the development of the
topic.

However, given the continuing prevalence of object oriented and imperative languages in
mainstream industrial programming, I believe such a transition to pure functional languages
is not yet within sight. It may never happen for cultural reasons — the decision as to which
language is taught to new students is typically made based on pragmatism and the desire to
equip students with immediately useful skills [43]. As such, imperative and object oriented
languages remain the most popular choices [65], which only serves to reinforce the use
of such languages. Additionally, there is not yet any functional language which has the
explicit backing and marketing might of a major commercial entity, which is often required
for disruptive change in the mix of languages used in industry: Microsoft pushing C# as the
primary language of the .NET Framework and its subsequent demand in the jobs market is
evidence of this [123].

As such, I believe imperative and object oriented languages will continue to dominate, and
slowly adopt useful features and patterns from functional languages identified in the literature
as Scala has done. Efforts are still being made to advance the state of the art in imperative
languages such as Go and object-functional languages like Scala. With the focus on many-
core and distributed systems, the introduction of typestate-like mechanisms for representing
and controlling state is a natural fit for such impure languages and provides more flexibility
to define constraints on objects which are not just communication channels. For this reason,
I believe typestate will “win” over session types in the mainstream, though session types will
continue to be useful for the study of the formal underpinnings of distributed systems, and
be influential on the evolution of typestate.

8.2. Future Work 260

Dynamic Checking The dynamic checker for Hanoi has not been profiled or perfor-
mance optimised, and therefore there are likely to be many ways in which its runtime over-
head could be reduced. The use of static analysis to aid the dynamic analysis, such as pe-
formed for tracematches, could also provide a substantial performance improvement.

If sensitivity to method return values could be added to tracematches (and the respective
dynamic and static aspects of their implementations), then they would provide sufficient
expressivity to enforce the majority of typestate constraints. Furthermore, Hanoi models
could be translated into tracematches, in order to directly leverage the extensive performance
optimisation research [7, 19–21, 31, 48] that has occurred in this area.

User study The user study presented in Chapter 5 provided some important information
on the practicality of typestate and the relative usability of the DSL and annotation model
variants. However, statistical significance could not be established for a number of the quan-
titative aspects of the experiment due to the small sample size used. It is also likely that the
think-aloud aspect of the experiment interfered with the timing data collected. As such, a
follow-up study which focuses purely on the quantitative aspects, with a greater sample size,
would provide more confidence in the results of the experiment.

Effectively the same experiment, in terms of the models and questions presented and the
quantitative metrics gathered, could be repeated in an unsupervised setting with a much
larger sample size. This could be conducted over the Internet with at least 50 participants.
The risk in conducting such an unsupervised experiment is that the timing data is likely to be
less reliable, as participants may be distracted or interrupted during the experiment in ways
that cannot be controlled for. The large sample size may help to mitigate the impact of such
disruptions.

A user study focused on writing Hanoi models, specifically the qualitative aspects of this
task, may provide useful insight. While writing models is likely to be less frequent than
reading and interpreting them, it is still important to determine whether an adequately trained
engineer can construct correct models, and what the most common errors they make during
this process are. This could guide modifications to the language, or provide ideas for tools
that would help with the construction of typestate models.

Typestate inference The formalism and typestate inference algorithm presented in
Chapter 6 provides a foundation for future work on typestate inference. Alias control must
be added to the language and experimented with to determine the practicality of some of the
features presented in the Chimera language. Exploring the limitations of type inference with
implicit binding is also an important area worthy of further research.

8.3. Availability of code 261

A number of important proofs to provide confidence that the type inference approach pre-
sented for the TS language remain to be completed. Where flow effects are concerned, fur-
ther work remains to determine whether a safe approach can be found to solving constraints
with variable flow effects, or whether a different representation for constraints is possible
which makes solving easier.

Adding the ability to clone and overwrite a reference in the TS language would help to
make it more representative of a typical imperative language, and would force aliasing to
be considered in the type system. Investigating type inference in the presence of aliasing
information represents the next significant challenge for this work. Finally, allowing for
the definition of objects with fields and method implementations would result in a language
which could provide a foundation for the study of the features described for the Chimera
language.

8.3 Availability of code

The Java implementation of Hanoi, which includes support for dynamic proxies and the
aspect generator, can be found at https://bitbucket.org/iainmcgin/hanoi.

The Scala implementation of the TS language type checker and type inference algorithm can
be found at http://github.com/iainmcgin/ts-lang.

8.4 Closing remarks

This thesis has demonstrated through the review of existing work and new contributions that
typestate can be practical, and that it is a justifiable addition to object oriented languages
used for producing systems with non-trivial cost of failure. Value can be added to exist-
ing languages through practical dynamic checking based upon the techniques presented in
Chapter 4. Such techniques will ensure programs fail immediately upon typestate violations
with meaningful, contextual error messages that are likely to prove useful in diagnosing and
fixing bugs of this nature.

If a language like Chimera were to be formalised and implemented, then the safety guar-
antees of static checking could be realised for typestate without a significant burden on the
programmer. There are still many open questions and obstacles to be overcome, but they
do not seem insurmountable based on the results presented in this thesis. Typestate has a
promising future, and I look forward to seeing it unfold.

https://bitbucket.org/iainmcgin/hanoi
http://github.com/iainmcgin/ts-lang

262

Appendix A

TS language proofs

A.1 Soundness

Theorem A.1.1 (Progress and preservation, using flow effects). Given a non-value term t

such that Γ▷ t ∶ T ◁ Γ′ and a store µ such that Γ ⊢ µ, then:

1. There exists a term t′ and store update function υ such that t ∣ µ Ð→ t′ ∣ υ(µ).

2. There exists an Υ such that υ ∶ Υ, and that Υ(Γ) ⊢ υ(µ).

3. There exists a Γ′′ ≥ Γ′ such that Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

Proof. by induction on the typing derivation of t. As t is not a value, Γ ▷ t ∶ T ◁ Γ′ must
have been derived by one of the following rules:

• T LET. It follows that:

t = (let x = tv in tb) Γ▷ tv ∶ Tv ◁ Γ1 Γ1, x ∶ Tv ▷ tb ∶ T ◁ Γ′, x ∶ T ′
v

There are two cases to consider:

– tv is a value. Let t′ = tb, υ = replace(x, tv) and Υ = Replace(x,Tv). By
definition, υ ∶ Υ and Υ(Γ) ⊢ υ(µ). Reduction can occur by R LET VALUE such
that t ∣ µ Ð→ t′ ∣ υ(µ). By Lemma A.10.3, Γ = Γ1, therefore by Lemma A.1.3,
Υ(Γ) = Γ1, x ∶ Tv. Let Γ′′ = Γ′, x ∶ T ′

v. Trivially, Γ′′ ≥ Γ′ and Υ(Γ)▷ tb ∶ T ◁ Γ′′.

– tv is not a value. By induction there exists a t′v, υ, Υ and Γ′
1 such that:

tv ∣ µ Ð→ t′v ∣ υ(µ) υ ∶ Υ Υ(Γ) ⊢ υ(µ) Γ′
1 ≥ Γ1 Υ(Γ)▷ t′v ∶ Tv ◁ Γ′

1

Let t′ = (let x = t′v in tb). Reduction can occur by R LET TERM such that
t ∣ µ Ð→ t′ ∣ υ(µ). As Γ′

1 ≥ Γ1, by the upgrade lemma (A.10.6) there exists a
Γ′′ ≥ Γ′ and T ′′

v <∶ T ′
v. such that Γ′

1, x ∶ Tv ▷ tb ∶ T ◁ Γ′′, x ∶ T ′′
v .

By T LET, Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

A.1. Soundness 263

• T SEQ. It follows that t = (tl ; tr) where Γ ▷ tl ∶ Tl ◁ Γmid and Γmid ▷ tr ∶ T ◁ Γ′.
There are two cases to consider:

– tl is a value. Let t′ = tr, υ = id and Υ = Id . By definition, υ ∶ Υ and Υ(Γ) ⊢
υ(µ). Reduction can occur by R SEQ LEFT VALUE such that t ∣ µ Ð→ t′ ∣
υ(µ).

By Lemma A.10.3, Γ = Γmid. Let Γ′′ = Γ′. Trivially, Υ(Γ)▷ t′ ∶ T ◁ Γ′′ and
Γ′′ ≥ Γ′.

– If tl is not a value. By induction there exists a t′v, υ, Υ and Γ′
mid such that:

tl ∣ µ Ð→ t′l ∣ υ(µ) υ ∶ Υ Υ(Γ) ⊢ υ(µ) Γ′
mid ≥ Γmid

Υ(Γ)▷ t′l ∶ Tv ◁ Γ′
mid

Let t′ = t′l ; tr. Reduction can occur by R SEQ LEFT TERM such that t ∣ µ Ð→
t′ ∣ υ(µ′). By the upgrade lemma (A.10.6) , there exists a Γ′′ ≥ Γ′ such that
Γ′
mid▷ tr ∶ T ◁ Γ′′. By T SEQ, Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

• T FUN CALL. It follows that t = x(Ð⇀xi), Γ = Γ1, xi ∶ Ti, Γ(x) = (ÐÐÐÐ⇀Ui ≫ Vi) → T ,
∀i. Ti <∶ Ui and Γ′ = Γ1, xi ∶ remap(Ti, Ui ≫ Vi).

As Γ ⊢ µ, it follows that ∅ ▷ µ(x) ∶ Γ(x) ◁ ∅. It therefore must be the case that
µ(x) = λ(ÐÐÐÐÐÐÐ⇀xi ∶ U ′

i ≫ V ′
i).tb such that ∅▷ µ(x) ∶ (ÐÐÐÐ⇀Ui ≫ Vi)→ T ◁∅.

By Lemma A.10.1, U ′
i ≫ V ′

i ≤ Ui ≫ Vi for each i and yi ∶ U ′
i ▷ tb ∶ T ◁ yi ∶ V ′

i .

Let t′ = tb{xi/yi}, υ = id and Υ = Id . By definition, υ ∶ Υ and Υ(Γ) ⊢ υ(µ). Reduction
can occur by R FUN CALL such that t ∣ µ Ð→ t′ ∣ υ(µ). By the substitution lemma
(A.10.5), xi ∶ U ′

i ▷ t′ ∶ T ◁ xi ∶ V ′
i .

By repeated application of T WIDEN FL EFF, xi ∶ Ui ▷ t′ ∶ T ◁ xi ∶ Vi. Let Γ′′ =
Γ1, xi ∶ V ′

i . By the weakening lemma (A.1.5) , Γ▷ t′ ∶ T ◁ Γ′′, which is equivalent to
Υ(Γ)▷t′ ∶ T◁Γ′′. By Lemma A.8.7, ∀i.remap(Ti, U ′

i ≫ V ′
i) <∶ remap(Ti, Ui ≫ Vi).

Therefore, Γ′′ ≥ Γ′.

• T METH CALL. It follows that t = x.m with Γ = Γ1, x ∶ O1@S1 and
Γ′ = Γ1, x ∶ O1@S2, where m ∶ T ⇒ S2 ∈ O1@S2.

As Γ ⊢ µ, we must have µ(x) = o@S, where o = [. . . S{. . .m = (v,S′)}S′{. . .}] such
that ∅▷µ(x) ∶ O@S◁∅, where O@S <∶ O1@S1. Additionally, ∅▷v ∶ T ′◁∅, where
T ′ <∶ T by SUB OBJ.

Let t′ = v, υ = call(x,m), Υ = Call(x,m) and Γ′′ = Γ′. By definition, υ ∶ Υ, υ(µ) and
Υ(Γ) = Γ′. Reduction can occur by R METH CALL such that t ∣ µ Ð→ t′ ∣ υ(µ). By
the weakening lemma (A.1.5) and T SUB, Υ(Γ)▷ v ∶ T ◁ Γ′′. Reflexively, Γ′′ ≥ Γ′.

A.1. Soundness 264

• T IF. It follows that t = if tc then tt else tf with Γ ▷ tc ∶ Bool◁ Γ1 and Γ1 ▷ tt ∶
Tt◁ Γ2 and Γ1 ▷ tf ∶ Tf ◁ Γ3 where Γ′ = Γ2 ⊓ Γ3 and T = Tt ⊔ Tf .

There are three possibilities for reduction:

– tc = true. Let t′ = tt, υ = id and Υ = Id . By definition, υ ∶ Υ, υ(µ) = µ and
Υ(Γ) = Γ. Reduction can occur by R IF TRUE such that t ∣ µ Ð→ t′ ∣ υ(µ).
Trivially, Υ(Γ) ⊢ υ(µ).

By Lemma A.10.3, Υ(Γ) = Γ1. Let Γ′′ = Γ2. Directly, Υ(Γ)▷ t′ ∶ T ◁ Γ′′. By
Lemma A.3.15, Γ′′ ≥ Γ′.

– tc = false. Let t′ = tf and υ = id , Υ = Id and Γ′′ = Γ3. By similar reasoning to
the case for tc = true, t ∣ µ Ð→ t′ ∣ µ′ where Υ(Γ) ⊢ υ(µ) and
Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

– tc is not a value. By induction there exists a t′c, υ, Υ and Γ′
1 such that:

tc ∣ µ Ð→ t′c ∣ υ(µ) υ ∶ Υ Υ(Γ) ⊢ υ(µ) Γ′
1 ≥ Γ1 Υ(Γ)▷ t′c ∶ Bool◁ Γ′

1

By the upgrade lemma (A.10.6) , there exists a Γ′
2 ≥ Γ2 such that Γ′

1▷ tt ∶ Tt◁Γ′
2

and a Γ′
3 ≥ Γ3 such that Γ′

1 ▷ tf ∶ Tf ◁ Γ′
3.

Let t′ = if t′c then tt else tf . By R IF TERM, t ∣ µ Ð→ t′ ∣ υ(µ). Let
Γ′′ = Γ′

2 ⊓ Γ′
3. By Lemma A.3.19, Γ′′ ≥ Γ′. By T IF, Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

• T WHILE A. It follows that t = while tc do tb. Contexts Γ1 through Γ4 exist where
dom(Γ1) = dom(Γ2) and dom(Γ3) = dom(Γ4), and there exists a type Tb such that
Γ1 ▷ tc ∶ Bool◁ Γ2 and Γ3 ▷ tb ∶ Tb◁ Γ4.

Let Ec(x) = extract(x,Γ1,Γ2) and Eb(x) = extract(x,Γ3,Γ4).

Finally, Γ′ = {x ∶ remap(Γ(x),Ec(x)⋅(Eb(x)⋅Ec(x))∗) ∣ x ∈ dom(Γ)} andU =Unit.

Let tt = tb ; t, tf = unit, and t′ = (if tc then tt else tf). Let υ = id and Υ = Id .
By definition, υ(µ) = µ and Υ(Γ) = Γ. By R WHILE, t ∣ µ Ð→ t′ ∣ υ(µ). Trivially,
Υ(Γ) ⊢ υ(µ).

By definition, Γ′(x) = remap(Γ(x),Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗). Let
f(x) = remap(Γ(x),Ec(x)). By the asserted properties of effect combinators in Def-
inition A.10.1, Γ′(x) = remap(f(x), (Eb(x) ⋅Ec(x))∗).
Let g(x) = remap(f(x),Eb(x) ⋅Ec(x)). Also by Definition A.10.1,
Γ′(x) = f(x) ⊔ remap(g(x), (Eb(x) ⋅Ec(x))∗). By Theorem A.9.1, f(x) <∶ Γ′(x).

In order for f(x) to be defined for each x ∈ dom(Γ1), it must be the case that Γ ≥ Γ1.
By the upgrade lemma (A.10.6) , it follows that there exists a Γ5 ≥ Γ2 such that Γ▷ tc ∶
Bool◁ Γ5, and that ∀x ∈ dom(Γ2). Γ5(x) <∶ f(x).

A.1. Soundness 265

In order for g(x) to be defined, it must be the case that f(x) <∶ Γ3(x). Transi-
tively, Γ5(x) <∶ Γ3(x), therefore Γ5 ≥ Γ3. Additionally, as f(x) <∶ Γ′(x), transitively
Γ5(x) <∶ Γ′(x). Therefore, Γ5 ≥ Γ′.

By the upgrade lemma (A.10.6) , it follows that there exists a Γ6 ≥ Γ4 such that Γ5▷tb ∶
Tb ◁ Γ6, and that ∀x ∈ dom(Γ4). Γ6(x) <∶ remap(Γ5(x),Eb(x)). By Lemma A.6.2,
remap(Γ5(x),Eb(x) ≫<) ∶ g(x). Transitively, Γ6(x) <∶ g(x).

Let Γ7 = {x ∶ remap(Γ6(x),Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗)}.

By Lemma A.6.2, Γ7(x) <∶ remap(g(x),Ec(x) ⋅ (Eb(x) ⋅ Ec(x))∗). Transitively,
Γ7(x) <∶ Γ′(x). Therefore Γ7 ≥ Γ′.

By T SEQ, Γ5 ▷ tt ∶Unit◁ Γ7. By Lemma A.10.4, Γ5 ▷ tf ∶Unit◁ Γ5.
Let Γ′′ = Γ5 ⊓ Γ7. By T IF, Υ(Γ)▷ t′ ∶Unit◁ Γ′′.

As Γ′ ≤ Γ5 and Γ′ ≤ Γ7, it follows by Lemma A.3.16 that Γ′ ≤ Γ′′, which is equivalent
to Γ′′ ≥ Γ′.

• T SUB. It follows that there exists a T ′ <∶ T such that Γ▷ t ∶ T ′ ◁ Γ′. By induction,
there exists a t′, υ and Υ such that t ∣ µ Ð→ t′ ∣ υ(µ), υ ∶ Υ, Υ(Γ) ⊢ υ(µ) and there
exists a Γ′′ ≥ Γ′ such that Υ(Γ)▷ t′ ∶ T ′◁ Γ′′. By T SUB, Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

• T WIDEN FL EFF.

Γ = Γ1, x ∶ U ′ Γ′ = Γ2, x ∶ V ′ Γ′
1 = Γ1, x ∶ U Γ′

2 = Γ2, x ∶ V
Γ′

1 ▷ t ∶ T ◁ Γ′
2 U ≫ V ≤ U ′ ≫ V ′

As Γ ⊢ µ and Γ ≥ Γ′
1, it follows that Γ′

1 ⊢ µ.

By induction, there exists a t′, υ, Υ and Γ′
3 such that:

t ∣ µ Ð→ t′ ∣ υ(µ) υ ∶ Υ Υ(Γ′
1) ⊢ υ(µ) Γ′

3 ≥ Γ′
2 Υ(Γ′

1)▷ t′ ∶ T ◁ Γ′
3

By Lemma A.1.4 as Γ ≥ Γ′
1 and Υ(Γ′

1) ⊢ υ(µ′), it follows that Υ(Γ) ⊢ υ(µ′). By
Lemma A.1.3, Υ(Γ) ≥ Υ(Γ′

1). By the upgrade lemma (A.10.6) , it follows that Υ(Γ)▷
t′ ∶ T ◁ Γ′′, where Γ′′ = {remap(Υ(Γ)(x),Υ(Γ′

1)(x) ≫ Γ′
3(x)) ∣ x ∈ dom(Γ′

3)} and
Γ′′ ≥ Γ′

3.

As Γ′′ ≥ Γ′
3, it follows that there exists a Γ4 and Γ3 such that Γ′′ = Γ4, x ∶ V ′′ and

Γ′
3 = Γ3, x ∶ V3 where Γ4 ≥ Γ3 and V ′′ <∶ V3. Transitively, Γ4 ≥ Γ2.

Let Υ(Γ′
1)(x) = W and Υ(Γ)(x) = W ′. As x was an existing variable in Γ′

1, we can
observe that either Υ = id or Υ = Call(y,m) for some y and m — the only situation
in which Υ = Replace(y,m) is where y ∉ dom(Γ) (see the reasoning for the T LET

rule). Therefore there are two cases to consider:

– Υ = id or Υ = Call(y,m) where y ≠ x. Consequently, W = U , W ′ = U ′

and V ′′ = remap(U ′, U ≫ V). As U ≫ V ≤ U ′ ≫ V ′, By Lemma A.8.7,

A.1. Soundness 266

remap(U ′, U ≫ V) <∶ remap(U ′, U ′ ≫ V ′). By Lemma A.7.5, remap(U ′, U ′ ≫
V ′) = V ′, therefore V ′′ <∶ V .

– Υ = call(x,m) such that there exists an m, X and X ′ where m ∶ X ⇒ W ∈ U
and m ∶X ′⇒W ′ ∈ U ′. As U ′ <∶ U , by Lemma A.5.4 it follows that X ′ <∶X .

In this case, the set of all possible traces that may have been executed on U

(represented by U ≫ V) is potentially reduced by the selection of m as a method
to call. The traces which may be invoked after m are represented by W ≫ V3.
The set of traces {(m,Y).δ ∣X <∶ Y, δ ∈ Tr(W ≫ V3)} is necessarily a subset of
Tr(U ≫ V3), which is in turn a subset of Tr(U ≫ V).

The same reasoning applies to the selection of m as the method to call on U ′:
the traces which may be invoked after m are represented by W ′ ≫ V ′′, and the
set of traces {(m,Y ′).δ ∣ X ′ <∶ Y ′, δ ∈ Tr(W ′ ≫ V ′′)} is necessarily a subset
of Tr(U ′ ≫ V ′′), which is in turn a subset of Tr(U ′ ≫ V ′). Consequently,
U ′ ≫ V ′′ ≤ U ′ ≫ V ′.

By Lemma A.7.5 and Lemma A.8.8,
V ′′ = remap(U ′, U ′ ≫ V ′′) <∶ remap(U ′, U ′ ≫ V ′) = V ′.

As Γ4 ≥ Γ3 and V ′′ <∶ V , it follows that Γ′′ ≥ Γ′.

Theorem A.1.2 (Progress and preservation, using update effects). Given a non-value term t

such that Γ▷ t ∶ T ◁ Γ′ and a store µ such that Γ ⊢ µ, then:

1. There exists a term t′ and store update function υ such that t ∣ µ Ð→ t′ ∣ υ(µ).

2. There exists an Υ such that υ ∶ Υ, and that Υ(Γ) ⊢ υ(µ).

3. There exists a Γ′′ ≥ Γ′ such that Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

Proof. by induction on the typing derivation of t. The proof is very similar to that of The-
orem A.1.1, using Lemma A.10.7 instead of Lemma A.10.6 for upgrading derived typings.
The following proof steps are notably different:

• T FUN CALL. It follows that t = x(Ð⇀xi), Γ = Γ1, xi ∶ Ti, Γ(x) = (ÐÐÐÐÐ⇀Ui ⋙ Vi) → T ,
∀i. Ti <∶ Ui and Γ′ = Γ1, xi ∶ remap(Ti, Ui ⋙ Vi).

By REMAP UP DEF, as Ti <∶ Ui, remap(Ti, Ui ⋙ Vi) = Vi for each i. Therefore,
Γ′ = Γ1, xi ∶ Vi.

As Γ ⊢ µ, it follows that ∅ ▷ µ(x) ∶ Γ(x) ◁ ∅. It therefore must be the case that
µ(x) = λ(ÐÐÐÐÐÐÐÐ⇀xi ∶ U ′

i ⋙ V ′
i).tb such that ∅▷ µ(x) ∶ (ÐÐÐÐÐ⇀Ui ⋙ Vi)→ T ◁∅.

A.1. Soundness 267

By Lemma A.10.1, U ′
i ⋙ V ′

i ≤ Ui ⋙ Vi for each i. Therefore tb is typeable such that
yi ∶ U ′

i ▷ tb ∶ T ◁ yi ∶ V ′
i .

Let t′ = tb{xi/yi}, υ = id and Υ = Id . By definition, υ ∶ Υ and Υ(Γ) ⊢ υ(µ).
Reduction can occur by R FUN CALL such that t ∣ µ Ð→ t′ ∣ υ(µ). By Lemma
A.10.5, xi ∶ U ′

i ▷ t′ ∶ T ◁ xi ∶ V ′
i .

By SUB UP EFF, Ui <∶ U ′
i for each i. Therefore by SUB TRANS, Ti <∶ U ′

i , meaning
that xi ∶ Ti ≥ xi ∶ U ′

i . By the upgrade lemma (A.10.7) there exists a Γ2 ≥ xi ∶ V ′
i such

that xi ∶ Ti▷ t′ ∶ T ◁ Γ2.

Let Γ′′ = Γ1,Γ2. By the weakening lemma (A.1.5) , Γ▷t′ ∶ T◁Γ′′, which is equivalent
to Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

By SUB UP EFF, V ′
i <∶ Vi. As Γ2 ≥ xi ∶ V ′

i , by SUB TRANS Γ2 ≥ xi ∶ Vi. Therefore,
Γ′′ ≥ Γ′.

• T WHILE A. It follows that t = while tc do tb. Contexts Γ1 through Γ4 exist where
dom(Γ1) = dom(Γ2) and dom(Γ3) = dom(Γ4), and there exists a type Tb such that
Γ1 ▷ tc ∶ Bool◁ Γ2 and Γ3 ▷ tb ∶ Tb◁ Γ4.

Let Ec(x) = extract(x,Γ1,Γ2) and Eb(x) = extract(x,Γ3,Γ4), which are both update
effects. Let E(x) = Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗. Finally, Γ′ = {x ∶ remap(Γ(x),E(x)) ∣
x ∈ dom(Γ)} and U =Unit.

Let tt = tb ; t, tf = unit, and t′ = (if tc then tt else tf). Let υ = id and Υ = Id . By
definition, υ(µ) = µ and Υ(Γ) = Γ. By R WHILE, t ∣ µ Ð→ t′ ∣ υ(µ) (1). Trivially,
Υ(Γ) ⊢ υ(µ) (2).

As Γ′ is defined, E(xi) is defined for each xi ∈ dom(Γ). The inner concatena-
tion expression simplifies such that Eb(xi) ⋅ Ec(xi) = in(Eb(xi)) ⋙ out(Ec(xi))
and out(()Eb(xi)) <∶ in(Ec(xi)). The Kleene star expression simplifies such that
(Eb(xi) ⋅Ec(xi))∗ = in(Eb(xi)) ⋙ (in(Eb(xi))⊔ out(Ec(xi))). The outer concate-
nation simplifies such that E(x) = in(Ec(xi)) ⋙ (in(Eb(xi)) ⊔ out(Ec(xi))). and
out(Ec(xi)) <∶ in(Eb(xi)). This final subtyping relation provides one final simplifi-
cation, such that E(x) ≡ in(Ec(xi)) ⋙ out(Ec(xi)).

As Γ′ is defined, it follows that Γ(xi) <∶ in(E(xi)) for all xi ∈ dom(Γ), and Γ′(xi) =
out(E(xi)) ≡ out(Ec(xi)). Therefore Γ ≥ Γ1.

By the upgrade lemma (A.10.7) , there exists a Γ5 ≥ Γ2 such that Γ▷ tc ∶ Bool◁ Γ5.

As out(Ec(xi)) <∶ in(Eb(xi)), Γ2 ≥ Γ3. Transitively, Γ5 ≥ Γ3. Therefore by the
upgrade lemma (A.10.7) , there exists a Γ6 ≥ Γ4 such that Γ5 ▷ tb ∶ Tb◁ Γ6.

As out(()Eb(xi)) <∶ in(Ec(xi)), Γ4 ≥ Γ1. Transitively, Γ6 ≥ Γ1. It follows by
T WHILE A that Γ6 ▷ t ∶Unit◁ Γ′.

A.1. Soundness 268

By T UNIT, Γ5 ▷ tf ∶ Unit◁ Γ5. As Γ′(xi) = out(Ec(xi)) for each xi ∈ dom(Γ), it
follows that Γ5 ≥ Γ′. By T WIDEN UP EFF, Γ5 ▷ tf ∶Unit◁ Γ′.

Therefore by T IF, Γ▷ t′ ∶Unit◁ Γ′, which is equivalent to Υ(Γ)▷ t′ ∶Unit◁ Γ′.
Reflexively, Γ′ ≥ Γ′ (3).

• T WHILE B. It follows that t = while tc do tb and T = Unit, and there exists a
Γ1 ≥ Γ such that Γ▷ tc ∶ Bool◁ Γ′ and Γ′▷ tb ∶ Tb◁ Γ1.

Let tt = tb ; t, tf = unit, and t′ = (if tc then tt else tf). Let υ = id and Υ = Id .
By definition, υ(µ) = µ and Υ(Γ) = Γ. By R WHILE, t ∣ µ Ð→ t′ ∣ υ(µ). Trivially,
Υ(Γ) ⊢ υ(µ).

As Γ1 ≥ Γ, by the upgrade lemma (A.10.7) it follows that there exists a Γ2 ≥ Γ′ such
that Γ1 ▷ t ∶Unit◁ Γ2.

By T SEQ, Γ′▷ tt ∶Unit◁ Γ2. By T UNIT, Γ′▷ tf ∶Unit◁ Γ′.

Let Γ′′ = Γ′. Reflexively, Γ′′ ≥ Γ′. As Γ2 ≥ Γ′, it follows that Γ2 ⊓ Γ′ = Γ′. Therefore
by T IF, Γ▷ t′ ∶Unit◁ Γ′, which is equivalent to Υ(Γ)▷ t′ ∶Unit◁ Γ′′.

• T WIDEN UP EFF.

Γ = Γ1, x ∶ U ′ Γ′ = Γ2, x ∶ V ′ Γ′
1 = Γ1, x ∶ U Γ′

2 = Γ2, x ∶ V
Γ′

1 ▷ t ∶ T ◁ Γ′
2 U ⋙ V ≤ U ′ ⋙ V ′

As Γ ⊢ µ and Γ ≥ Γ′
1, it follows that Γ′

1 ⊢ µ.

By induction, there exists a t′, υ, Υ and Γ′
3 such that:

t ∣ µ Ð→ t′ ∣ υ(µ) υ ∶ Υ Υ(Γ′
1) ⊢ υ(µ) Γ′

3 ≥ Γ′
2 Υ(Γ′

1)▷ t′ ∶ T ◁ Γ′
3

By Lemma A.1.4 as Γ ≥ Γ′
1 and Υ(Γ′

1) ⊢ υ(µ′), it follows that Υ(Γ) ⊢ υ(µ′). By
Lemma A.1.3, Υ(Γ) ≥ Υ(Γ′

1). It follows by the upgrade lemma (A.10.7) that there
exists a Γ′′ ≥ Γ′

3 such that Υ(Γ)▷ t′ ∶ T ◁ Γ′′.

As Γ′′ ≥ Γ′
3, it follows that Γ′′ = Γ4, x ∶ V ′′ such that Γ4 ≥ Γ3 and V ′′ <∶ V . Transitively,

Γ4 ≥ Γ2.

By SUB UP EFF, as U ⋙ V ≤ U ′ ⋙ V ′ it follows that V <∶ V ′. Transitively,
V ′′ <∶ V ′. Therefore, Γ′′ ≥ Γ′.

Lemma A.1.3. Let Υ be a context update function and Γ′ ≥ Γ. If Υ(Γ) is defined, then

Υ(Γ′) ≥ Υ(Γ).

Proof. By case analysis of Υ:

• Υ = Id . It follows that Υ(Γ) = Γ and Υ(Γ′) = Γ′. Trivially, Υ(Γ′) ≥ Υ(Γ).

A.1. Soundness 269

• Υ = Replace(x,T). It follows that Υ(Γ) = Γ[x ↦ T] and Υ(Γ′) = Γ′[x ↦ T].
Trivially, Υ(Γ′) ≥ Υ(Γ).

• Υ = Call(x,m). It follows that Γ = Γ1, x ∶ T such that m ∶ V ⇒ U ∈ T and that
Υ(Γ) = Γ1, x ∶ U . As Γ′ ≥ Γ, it follows that Γ′ = Γ′

1, x ∶ T ′ where Γ′
1 ≥ Γ1 and T ′ <∶ T .

By Lemma A.5.4, there exists a V ′ <∶ V and U ′ <∶ U such that m ∶ V ′ ⇒ U ′ ∈ T ′.
Consequently, Υ(Γ′) = Γ′

1, x ∶ U ′, meaning Υ(Γ′) ≥ Υ(Γ).

Lemma A.1.4. Let υ be a store update function and Υ be a context update function such

that υ ∶ Υ. If Γ′ ⊢ µ, Γ′ ≥ Γ and Υ(Γ) ⊢ υ(µ), then Υ(Γ′) ⊢ υ(µ).

Proof. By case analysis of the context update function υ:

• υ = id . It follows that υ(µ) = µ and Υ(Γ′) = Γ′. Therefore, Γ′ ⊢ µ is equivalent to
Υ(Γ′) ⊢ υ(µ).

• υ = replace(x, v). It follows that υ(µ) = µ[x ↦ v]. and that Υ(Γ) = Γ[x ↦ T] where
∅▷ v ∶ T ◁∅. As Γ′ ⊢ µ, it follows that Υ(Γ′) ⊢ υ(µ).

• υ = call(x,m). As υ(µ) is defined, it follows that µ = µ1, x ↦ o1@S where o1 =
[. . . S{. . .m = (v,S′) . . .} . . .], and that µ′ = µ1, x↦ o@S′.

As Υ(Γ) ⊢ υ(µ), it follows that Γ = Γ1, x ∶ T and Υ(Γ) = Γ1, x ∶ V such that Γ1 ⊢ µ1,
∅▷ o1@S′ ∶ V ◁∅ and m ∶ U ⇒ V ∈ T . Therefore, ∅▷ o1@S ∶ T ◁∅

As Γ′ ≥ Γ, it follows that Γ′ = Γ′
1, x ∶ T ′ such that and T ′ <∶ T . Therefore, there exists

a U ′ <∶ U and V ′ <∶ V such that m ∶ U ′ ⇒ V ′ ∈ T ′. As Γ′ ⊢ µ, it follows that Γ′
1 ⊢ µ1

and that ∅▷ o1@S ∶ T ′◁∅.

By definition, Υ(Γ′) = Γ′
1, x ∶ V ′ and ∅▷ o1@S′ ∶ V ′◁∅. Therefore, Υ(Γ′) ⊢ υ(µ).

Lemma A.1.5 (Weakening). If Γ▷ t ∶ T ◁ Γ′, then for all Γ′′ such that

dom(Γ) ∩ dom(Γ′′) = ∅, it follows that Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

Proof. By Lemma A.10.2, dom(Γ) = dom(Γ′), meaning dom(Γ′) ∩ dom(Γ′′) = ∅.

We proceed induction on the typing derivation of t.

• derived by one of T UNIT, T TRUE, T FALSE, T OBJECT or T FUN FL DEF,
meaning t is a value and Γ = Γ′. By Lemma A.10.4 it follows that Γ,Γ′′▷t ∶ T◁Γ′,Γ′′.

A.1. Soundness 270

• derived by T LET. It follows that t = let x = t′ in t′′ and there exists Γ1,Γ2, T ′, T ′′

such that Γ▷ t′ ∶ T ′◁ Γ1 and Γ1, x ∶ T ′▷ t′′ ∶ T ◁ Γ′, x ∶ T ′′.

By induction, t′ can be typed such that Γ,Γ′′ ▷ t′ ∶ T ′ ◁ Γ1,Γ′′, and t′′ can be typed
such that Γ1,Γ′′, x ∶ T ′ ▷ t′′ ∶ T ◁ Γ′,Γ′′, x ∶ T ′′. We can assume by Barendregt’s
convention that x can be made distinct from any variable names in Γ′′ by relabeling x.
Therefore by rule T LET, Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

• derived by T FUN CALL. It follows that there exists a Γ1, T, Ti and T ′
i such that

Γ = Γ1, x ∶ T,xi ∶ Ti and that Γ′ = Γ1, x ∶ T,xi ∶ T ′
i . As Γ1 can be arbitrary in the rule

T FUN CALL, it follows that we can extend the input and output contexts such that
Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

• derived by T METH CALL. It follows that there exists a Γ1 such that Γ = Γ1, x ∶ O@S

and that Γ′ = Γ1, x ∶ O@S. As Γ1 can be arbitrary in rule T METH CALL, it follows
that we can extend the input and out contexts such that Γ,Γ′′▷ x.m ∶ T ◁ Γ′,Γ′′.

• derived by T SEQ. Therefore t = t′; t′′ and there exists Γ1 and T ′ such that
Γ▷ t′ ∶ T ′◁ Γ1 and Γ1 ▷ t′′ ∶ T ◁ Γ′. By Lemma A.10.2 it follows that
dom(Γ′) = dom(Γ1) = dom(Γ). By induction Γ,Γ′′▷ t′ ∶ T ′◁ Γ1,Γ′′ and
Γ1,Γ′′▷ t′′ ∶ T ◁ Γ′,Γ′′. Therefore by T SEQ, Γ,Γ′′▷ t ∶ T ◁ Γ1,Γ′′.

• derived by T IF. Therefore t = if tc then tt else tf and there exists Γ1, Γ2, Γ3, Tt and
Tf where T = Tt ⊔ Tf and Γ′ = Γ2 ⊓ Γ3 such that:

Γ▷ tc ∶ Bool◁ Γ1 Γ1 ▷ tt ∶ Tt◁ Γ2 Γ1 ▷ tf ∶ Tf ◁ Γ3

By Lemma A.10.2, the domains of all the contexts are the same. By induction:

Γ,Γ′′▷ tc ∶ Bool◁ Γ1,Γ′′ Γ1,Γ′′▷ tt ∶ Tt◁ Γ2,Γ′′ Γ1,Γ′′▷ tf ∶ Tf ◁ Γ2,Γ′′

Therefore by T IF, Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

• derived by T WHILE A. It follows that t = while tc do tb. Contexts Γ1 through Γ4

and type Tb exist such that Γ1 ▷ tc ∶ Bool◁ Γ2 and Γ3 ▷ tb ∶ Tb ◁ Γ4. By definition
Γ′ = {x ∶ remap(Γ(x),Ec(x) ⋅ (Eb(x) ⋅ Ec(x))∗) ∣ x ∈ dom(Γ1)} and T = Unit,
where Ec(x) = extract(x,Γ1,Γ2) and Eb(x) = extract(x,Γ3,Γ4).

As dom(Γ′′) ∩ dom(Γ) = ∅, it follows that Ec(x) ⋅ (Eb(x) ⋅Ec(x))∗ = ⊺ ≫ ⊺ for all
x ∈ dom(Γ′′). By Lemma A.6.3, remap(Γ′′(x),⊺≫ ⊺) = Γ′′(x) for all x ∈ dom(Γ′′).

Therefore, by T WHILE A, Γ,Γ′′▷while tc do tb ∶Unit◁ Γ′,Γ′′.

A.2. Constraint typing correctness 271

• derived by T WHILE B. It follows that t = while tc do tb and T = Unit, with
Γ▷ tc ∶ Bool◁ Γ′ and Γ′▷ tb ∶ Tb◁ Γ.

By Lemma A.10.2, dom(Γ′) = dom(Γ), therefore dom(Γ′) ∩ dom(Γ′′) = ∅. By
induction, Γ,Γ′′ ▷ tc ∶ Bool ◁ Γ′,Γ′′ and Γ′,Γ′′ ▷ tb ∶ Tb ◁ Γ,Γ′′. Therefore by
T WHILE B, Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

• derived by T SUB. It follows that Γ▷ t ∶ T ′◁Γ′ for T ′ <∶ T . By induction, Γ,Γ′′▷ t ∶
T ′◁ Γ′,Γ′′. Therefore by rule T SUB, Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

• derived by T WIDEN FL EFF or T WIDEN UP EFF. It follows that there exists
effects E and E′ such that E ≤ E′, Γ1, x ∶ in(E)▷ t ∶ T ◁ Γ2, x ∶ out(E) and
Γ1, x ∶ in(E′)▷ t ∶ T ◁ Γ2, x ∶ out(E′) where Γ = Γ1, x ∶ in(E′) and
Γ′ = Γ2, x ∶ in(E′).

By induction, Γ1, x ∶ in(E),Γ′′ ▷ t ∶ T ◁ Γ2, x ∶ out(E),Γ′′. By T WIDEN FL EFF

or T WIDEN UP EFF, Γ,Γ′′▷ t ∶ T ◁ Γ′,Γ′′.

A.2 Constraint typing correctness

Theorem A.2.1 (Constraint typing correctness with flow effects). Let ∆ ⊢ t̂ ⇒ ṫ ∶ Ṫ ∣χ C
and ρ be a substitution such that ρ ⊢ C and χ ⊆ dom(ρ). It follows that

in(ρ(∆))▷ ρ(ṫ) ∶ ρ(Ṫ)◁ out(ρ(∆)).

Proof. By induction on the derivation of the constraint typing ∆ ⊢ t̂ ∶ ṫ ∣Ṫ χC:

• Derived by TC UNIT, TC TRUE or TC FALSE. Trivially by rules T UNIT, T TRUE

or T FALSE respectively, in(ρ(∆))▷ ρ(ṫ) ∶ ρ(Ṫ)◁ out(ρ(∆)).

• Derived by TC FUN. It follows that:

t̂ = λ(Ð⇀xi).t̂′ ∆′ ⊢ t̂′⇒ ṫ′ ∶ Ṫ ′ ∣χ C ṫ = λ(
ÐÐÐÐÐÐ⇀
xi ∶ ∆′(xi)).ṫ′

dom(∆′) ⊆ xi ∆ = ∅ Ṫ = (
ÐÐÐ⇀
∆′(xi))→ Ṫ ′

Let ∆′′ = ρ(∆′). As ρ ⊢ C and χ ⊆ dom(ρ), it follows by induction that
in(∆′′)▷ ρ(ṫ′) ∶ ρ(Ṫ ′)◁ out(∆′′). By the weakening lemma (A.1.5) , we can extend
the typing of ṫ′ to xi ∶ in(∆′′(xi))▷ ρ(t′) ∶ ρ(Ṫ ′)◁ xi ∶ out(∆′′(xi)). By definition,
valid(∆′′(xi)) for each xi. Therefore by rule T FUN FL DEF, in(ρ(∆))▷ ρ(ṫ) ∶
ρ(Ṫ)◁ out(ρ(∆)).

A.2. Constraint typing correctness 272

• Derived by TC OBJ. It follows that:

∀i, j. ∅ ⊢ v̂ij ⇒ v̇ij ∶ Ṫij ∣χij
Cij

t̂ = [Si{mij = (v̂ij, Sij)}]@S ṫ = [Si{mij = (v̇ij, Sij)}]@S

Ṫ = {Si{mij ∶ Ṫij ⇒ Sij}}@S ∆ = ∅ C = ⋀Cij χ = ⋃χij

As ρ ⊢ C and χ ⊆ dom(ρ), it follows that ρ ⊢ Cij and χij ⊆ dom(ρ) for each i and j.
By induction, ∅▷ ρ(v̇ij) ∶ ρ(Ṫij)◁∅ for each i and j.

Therefore by rule T OBJECT, in(ρ(∆))▷ ρ(ṫ) ∶ ρ(Ṫ)◁ out(ρ(∆)).

• Derived by TC METH. It follows that:

t̂ = ṫ = x.m χ = {α} ∆ = {x ∶ O@S ≫ O@S′} Ṫ = α C = true

O = { S{m ∶ α⇒ S′ } S′{} }

Trivially by rule T METH CALL, in(ρ(∆))▷ ṫ ∶ ρ(Ṫ)◁ out(ρ(∆)).

• Derived by TC CALL FL. It follows that:

t̂ = ṫ = x(Ð⇀xi) ∆ = xi ∶ Ėi, x ∶ (
ÐÐÐÐ⇀
αi ≫ α′i)→ α Ėi = α′′i ≫ remap(α′′i , αi ≫ α′i)

χ = αi, α′i, α′′i , α C = ⋀ valid(αi ≫ α′i) ∧ α′′i <∶ αi

As ρ ⊢ C, it follows that ρ ⊢ valid(αi ≫ α′i) and ρ ⊢ α′′i <∶ αi for all i. Therefore,
remap(ρ(α′′i), ρ(αi) ≫ ρ(α′i)) is defined for each i.

Therefore by rule T FUN CALL, in(ρ(∆))▷ ρ(ṫ) ∶ ρ(α)◁ out(ρ(∆)).

• Derived by TC SEQ. It follows that:

∆a ⊢ t̂a⇒ ṫa ∶ Ṫa ∣χa Ca ∆b ⊢ t̂b⇒ ṫb ∶ Ṫ ∣χb
Cb

t̂ = t̂a ; t̂b ṫ = ṫa ; ṫb χ = χa ∪ χb ∆ = ∆a ⋅∆b

C = ⋀{valid(∆(x)) ∣ x ∈ dom(∆)} ∧Ca ∧Cb

As ρ ⊢ C, it follows that ρ ⊢ Ca and ρ ⊢ Cb. As χ ⊆ dom(ρ), it follows that χa ⊆
dom(ρ) and χb ⊆ dom(ρ). Therefore by induction in(∆′

a)▷ρ(ṫa) ∶ ρ(Ṫa)◁out(∆′
a)

and in(∆′
b)▷ ρ(ṫb) ∶ ρ(Ṫ)◁ out(∆′

b) where ∆′
a = ρ(∆a) and ∆′

b = ρ(∆b).

Let dom(∆) = xi. As ρ ⊢ valid(∆(xi)) for each xi, it follows that
valid(∆′

a(xi) ⋅∆′
b(xi)) for each xi ∈ dom(∆).

Let ∆′ = ρ(∆). By Definition A.10.1, ∆′ = xi ∶ Ti ≫ Vi such that ∆′
a(xi) ≤ Ti ≫ Ui

and ∆′
b(xi) ≤ Ui ≫ Vi where Ui = remap(Ti,∆′

a(xi)). By repeated application of

A.2. Constraint typing correctness 273

T WIDEN FL EFF and the weakening lemma (A.1.5) , xi ∶ Ti▷ρ(ṫa) ∶ ρ(Ṫa)◁xi ∶ Ui
and xi ∶ Ui▷ ρ(ṫb) ∶ ρ(Ṫ)◁ xi ∶ Vi.

Therefore by T SEQ, in(∆′)▷ ρ(ṫ) ∶ ρ(Ṫ)◁ out(∆′).

• Derived by TC LET. It follows that:

∆x ⊢ t̂x⇒ ṫx ∶ Ṫx ∣χx Cx ∆b ⊢ t̂b⇒ ṫx ∶ Ṫ ∣χb
Cb

t̂ = let x = t̂x in t̂b ṫ = let x = ṫx in ṫb ∆ = ∆x ⋅ (∆b/x) χ = χx ∪ χb
C = ⋀{valid(∆(y)) ∣ y ∈ dom(∆)} ∧ Cx ∧ Cb ∧ Ṫx <∶ in(∆b(x))

As ρ ⊢ C, it follows that ρ ⊢ Cx and ρ ⊢ Cb. As χ = χx ∪ χb, it follows that
χx ⊆ dom(ρ) and χb ⊆ dom(ρ). Therefore by induction in(∆′

x)▷ ρ(ṫx) ∶ ρ(Ṫx)◁
out(∆′

x) and in(∆′
b)▷ ρ(ṫb) ∶ ρ(Ṫ)◁ out(∆′

b) where ∆′
x = ρ(∆x) and ∆′

b = ρ(∆b).

Let dom(∆) = xi. As ρ ⊢ valid(∆(xi)) for each xi, it follows that valid(∆′
x(xi) ⋅

∆′
b(xi)) for each xi ∈ dom(∆).

By Definition A.10.1, ∆ = xi ∶ Ti ≫ Vi such that ∆′
x(xi) ≤ Ti ≫ Ui and ∆′

b(xi) ≤ Ui ≫
Vi where Ui = remap(Ti,∆′

x(xi)). Let Tx = ρ(Ṫx). As ρ ⊢ Ṫx <∶ ∆b(x),
Ux = remap(Tx,∆′

b(x)) is defined. By Lemma A.7.6, ∆′
b(x) ≤ Tx ≫ Ux.

By repeated application of T WIDEN FL EFF and the weakening lemma (A.1.5) ,
xi ∶ Ti▷ ρ(ṫx) ∶ ρ(Ṫx)◁ xi ∶ Ui and
xi ∶ Ui, x ∶ Tx▷ ρ(ṫb) ∶ ρ(Ṫ)◁ xi ∶ Vi, x ∶ remap(Tx,∆′

b(x)).

By T LET, xi ∶ Ti▷ ρ(ṫ) ∶ ρ(Ṫ)◁ xi ∶ Vi, which is equivalent to
in(ρ(∆))▷ ρ(ṫ) ∶ ρ(Ṫ)◁ out(ρ(∆))

• Derived by TC IF. It follows that:

∆c ⊢ t̂c⇒ ṫc ∶ Ṫc ∣χc Cc ∆t ⊢ t̂t⇒ ṫt ∶ Ṫt ∣χt Ct

∆f ⊢ t̂f ⇒ ṫf ∶ Ṫf ∣χf
Cf

t̂ = if t̂c then t̂t else t̂f ṫ = if ṫc then ṫt else ṫf

∆ = ∆c ⋅ (∆t ∣ ∆f) χ = χc ∪ χt ∪ χf
C = ⋀{valid(∆(x)) ∣ x ∈ dom(∆)} ∧Cc ∧Ct ∧Cf ∧ Ṫc <∶ Bool

As ρ ⊢ C, it follows that ρ ⊢ Cc, ρ ⊢ Ct and ρ ⊢ Cf . As χ ⊆ dom(ρ), it follows that
χc ⊆ dom(ρ), χt ⊆ dom(ρ) and χf ⊆ dom(ρ). Therefore by induction:

in(∆′
c)▷ ρ(ṫc) ∶ ρ(Ṫc)◁ out(∆′

c) where ∆′
c = ρ(∆c)

in(∆′
t)▷ ρ(ṫt) ∶ ρ(Ṫt)◁ out(∆′

t) where ∆′
t = ρ(∆t)

in(∆′
f)▷ ρ(ṫf) ∶ ρ(Ṫf)◁ out(∆′

f) where ∆′
f = ρ(∆f)

A.2. Constraint typing correctness 274

As ρ ⊢ Ṫc <∶ Bool and the only subtype of Bool is itself by SUB REFL, it follows
that ρ(Ṫc) = Bool.

Let dom(∆) = xi. As ρ ⊢ valid(∆(xi)) for each xi it follows that
valid(∆′

c(xi) ⋅ (∆′
t(xi) ∣ ∆′

f(xi))).

Let ∆′ = ρ(∆). Let xi ∈ ∆′. By Definition A.10.1, ∆′(xi) = Ti ≫ Vi for some
Ti and Vi such that ∆′

c(xi) ≤ Ti ≫ Ui and (∆′
t(xi) ∣ ∆′

f(xi)) ≤ Ui ≫ Vi where
Ui = remap(Ti,∆′

c(xi) ≫).

Also by Definition A.10.1, ∆′
t(xi) ≤ Ui ≫ Vi and ∆′

f(xi) ≤ Ui ≫ Vi.

By repeated application of T WIDEN FL EFF and the weakening lemma (A.1.5) :

xi ∶ Ti▷ ρ(ṫc) ∶ Bool◁ xi ∶ Ui
xi ∶ Ui▷ ρ(ṫt) ∶ ρ(Ṫt)◁ xi ∶ Vi
xi ∶ Ui▷ ρ(ṫf) ∶ ρ(Ṫf)◁ xi ∶ Vi

By T IF, ρ(in(∆))▷ ρ(ṫ) ∶ ρ(Ṫt ⊔ Ṫf)◁ ρ(out(∆)).

• Derived by TC WHILE. It follows that:

∆c ⊢ t̂c⇒ ṫc ∶ Tc ∣χc Cc ∆b ⊢ t̂b⇒ ṫb ∶ Tb ∣χb
Cb

t̂ =while t̂c do t̂b ṫ =while ṫc do ṫb

∆ = ∆c ⋅ (∆b ⋅∆c)∗ χ = χc ∪ χb
C = ⋀{valid(∆(x)) ∣ x ∈ dom(∆)} ∧Cc ∧Cb ∧ Tc <∶ Bool

As ρ ⊢ C it follows that ρ ⊢ Cc and ρ ⊢ Cb. As χ ⊆ dom(ρ), it follows that χc ⊆
dom(ρ) and χb ⊆ dom(ρ). Therefore by induction:

in(∆′
c)▷ ρ(tc) ∶ ρ(Tc)◁ out(∆′

c) where ∆′
c = ρ(∆c)

in(∆′
b)▷ ρ(tb) ∶ ρ(Tb)◁ out(∆′

b) where ∆′
b = ρ(∆b)

As ρ ⊢ Ṫc <∶ Bool and the only subtype of Bool is itself by SUB REFL, it follows
that ρ(Ṫc) = Bool.

Let dom(∆) = xi. As ρ ⊢ valid(∆(xi)) for each xi, it follows that
valid(∆′

c(xi) ⋅ (∆′
b(xi) ⋅∆′

c(xi))∗).

Let ∆′ = ρ(∆), and x ∈ dom(∆′). By definition, ∆′(xi) = ∆′
c(xi) ⋅(∆′

b(xi) ⋅∆′
c(xi))∗,

therefore out(∆′(xi)) = remap(in(∆′(xi)),∆′
c(xi) ⋅ (∆′

b(xi) ⋅∆′
c(xi))∗) by Lemma

A.7.5.

By rule T WHILE A, ρ(in(∆))▷ ρ(t) ∶ ρ(Ṫt ⊔ Ṫf)◁ ρ(out(∆))

A.3. Properties of contexts 275

A.3 Properties of contexts

Lemma A.3.1. Let Γ1 ≤ Γ2. It follows that dom(Γ1) ⊆ dom(Γ2) and

∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x).

Proof. By CTX LEQ, there are two possibilities:

• Γ1 ≡ Γ2, derived by CTX EQUIV. It follows that dom(Γ1) = dom(Γ2) and that
∀x ∈ dom(Γ1).Γ2(x) ≡ Γ1(x). Trivially, dom(Γ1) ⊆ dom(Γ2).
By TY EQUIV, ∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x).

• Γ1 < Γ2, derived by CTX LT A or CTX LT B. Directly, dom(Γ1) ⊆ dom(Γ2) and
∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x).

Lemma A.3.2. Let Γ1 and Γ2 be contexts such that dom(Γ1) ⊆ dom(Γ2) and

∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x). It follows that Γ1 ≤ Γ2.

Proof. There are three cases to consider:

• dom(Γ1) ⊂ dom(Γ2). By CTX LT A, Γ1 < Γ2, therefore by CTX LEQ, Γ1 ≤ Γ2.

• dom(Γ1) = dom(Γ2) and there exists an x ∈ dom(Γ1) such that Γ3(x) ≪∶ Γ1(x), then
Γ1 < Γ3 by CTX LT B, meaning that by CTX LEQ, Γ1 ≤ Γ3.

• dom(Γ1) = dom(Γ2) and there does not exist an x ∈ dom(Γ1) such that Γ3(x) ≪∶
Γ1(x). This is equivalent to ∀x ∈ dom(Γ1).¬(Γ3(x) ≪∶ Γ1(x)).

Let y ∈ dom(Γ1). We know that Γ3(y) <∶ Γ1(y), and that ¬(Γ3(y) ≪∶ Γ1(y)). By
SUB STRICT, the latter is equivalent to ¬(Γ3(y) <∶ Γ1(y) ∧ ¬(Γ1(y) <∶ Γ3(y))). In
turn this is equivalent to ¬(Γ3(y) <∶ Γ1(y)) ∨ ¬(¬(Γ1(y) ≤ Γ3(y))). It follows that
Γ1(y) ≤ Γ3(y). Therefore by TY EQUIV, Γ3(y) ≡ Γ1(y).

As y was arbitrary in dom(Γ1), it follows that ∀x ∈ dom(Γ1).Γ3(x) ≡ Γ1(x), therefore
by CTX EQUIV, Γ1 ≡ Γ3. Consequently by CTX LEQ, Γ1 ≤ Γ3.

Corollary A.3.3. Γ1 ≤ Γ2 if and only if dom(Γ1) ⊆ dom(Γ2) and ∀x ∈ dom(Γ1).Γ2(x) <∶
Γ1(x).

Lemma A.3.4. Let Γ1 ≤ Γ2 and Γ2 ≤ Γ1. It follows that Γ1 ≡ Γ2.

A.3. Properties of contexts 276

Proof. By Lemma A.3.1 we have that dom(Γ1) ⊆ dom(Γ2), and that dom(Γ2) ⊆ dom(Γ1).
Therefore, dom(Γ1) = dom(Γ2). Also by Lemma A.3.1, we have that
∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x) and that ∀x ∈ dom(Γ2).Γ1(x) <∶ Γ2(x). Therefore by
TY EQUIV, as dom(Γ1) = dom(Γ2), ∀x ∈ dom(Γ1).Γ1(x) ≡ dom(Γ2). Consequently by
CTX EQUIV, Γ1 ≡ Γ2.

Lemma A.3.5 (Context ordering is reflexive). Let Γ be a context. It follows that Γ ≤ Γ.

Proof. By definition, dom(Γ) ⊆ dom(Γ). By SUB REFL, ∀x ∈ dom(Γ).Γ(x) <∶ Γ(x).
Therefore by CTX EQUIV, Γ ≡ Γ, meaning Γ ≤ Γ by CTX LEQ.

Lemma A.3.6 (Context ordering is transitive). Let Γ1 ≤ Γ2 and Γ2 ≤ Γ3. It follows that

Γ1 ≤ Γ3.

Proof. By Lemma A.3.1 dom(Γ1) ⊆ dom(Γ2) and dom(Γ2) ⊆ dom(Γ3). Transitively,
dom(Γ1) ⊆ dom(Γ3).
Additionally, ∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x) and ∀x ∈ dom(Γ2).Γ3(x) <∶ Γ2(x). By
SUB TRANS, ∀x ∈ dom(Γ1).Γ3(x) <∶ Γ1(x). It follows by Lemma A.3.2 that Γ1 ≤ Γ3.

Lemma A.3.7. Let Γ1 ≡ Γ′
1 and Γ2 ≡ Γ′

2. It follows that Γ1 ≤ Γ2 ⇐⇒ Γ′
1 ≤ Γ′

2.

Proof. Assume Γ1 ≤ Γ2. By CTX EQUIV, Γ′
1 ≤ Γ1 and Γ2 ≤ Γ′

2. Therefore by Lemma A.3.6,
Γ′

1 ≤ Γ′
2.

Assume Γ′
1 <∶ Γ′

2. By CTX EQUIV, Γ1 <∶ Γ′
1 and Γ′

2 <∶ Γ2. Therefore by Lemma A.3.6,
Γ1 <∶ Γ2.

Consequently, Γ1 <∶ Γ2 ⇐⇒ Γ′
1 <∶ Γ′

2.

Corollary A.3.8. The context ordering Γ ≤ Γ′ is a partial order, up to equivalence.

Lemma A.3.9. Context join is not defined for all pairs of contexts.

Proof. Let Γ1 = x ∶ Bool and Γ2 = x ∶ Unit. As Bool ⊓Unit is undefined, Γ1 ⊔ Γ2 is also
not defined. Therefore, join on contexts is partial.

Lemma A.3.10. Let Γ1 ⊔ Γ2 = Γ′ be defined. It follows that Γ1 ≤ Γ′ and Γ2 ≤ Γ′.

Proof. By CTX JOIN, dom(Γ′) = dom(Γ1) ∪ dom(Γ2) and ∀x ∈ dom(Γ′).Γ′(x) = Γ̂1(x) ⊓
Γ̂2(x).

Consequently, dom(Γ1) ⊆ dom(Γ′) and dom(Γ2) ⊆ dom(Γ′). By Theorem A.9.1, ∀x ∈
dom(Γ1).Γ′(x) <∶ Γ1(x) and ∀x ∈ dom(Γ2).Γ′(x) <∶ Γ2(x).

Therefore by Lemma A.3.2, Γ1 ≤ Γ′ and Γ2 ≤ Γ′.

A.3. Properties of contexts 277

Lemma A.3.11. Let Γ1, Γ2, Γ3 be contexts such that Γ1 ≤ Γ3 and Γ2 ≤ Γ3. It follows that

Γ1 ⊔ Γ2 ≤ Γ3.

Proof. Let Γ1, Γ2, Γ3 be contexts such that Γ1 ≤ Γ3 and Γ2 ≤ Γ3. Let Γ′ = Γ1 ⊔ Γ2.

By CTX JOIN, dom(Γ′) = dom(Γ1) ⊔ dom(Γ2) and ∀x ∈ dom(Γ′).Γ′(x) <∶ Γ̂1(x) ⊓ Γ̂2(x).

As Γ1 ≤ Γ3 and Γ2 ≤ Γ3, it follows by Lemma A.3.1 that dom(Γ1) ⊆ dom(Γ3) and
dom(Γ2) ⊆ dom(Γ3). Consequently, dom(Γ1) ∪ dom(Γ2) ⊆ dom(Γ3). Therefore
dom(Γ′) ⊆ dom(Γ3).

As Γ1 ≤ Γ3 and Γ2 ≤ Γ3, it follows by Lemma A.3.1 that ∀x ∈ dom(Γ1).Γ3(x) <∶ Γ1(x) and
∀x ∈ dom(Γ2).Γ3(x) <∶ Γ2(x). Let x ∈ dom(Γ′). It follows that Γ3(x) <∶ Γ̂1(x), as either
x ∈ dom(Γ1) and Γ̂1(x) = Γ1(x) where Γ3(x) <∶ Γ1(x) is already known, or x ∉ dom(Γ1)
and Γ̂1(x) = ⊺ with Γ3(x) <∶ ⊺ by SUB TOP. By similar reasoning, Γ3(x) <∶ Γ̂2(x). There-
fore by Theorem A.9.1, it follows that Γ3(x) <∶ Γ̂1(x) ⊔ Γ̂2(x), meaning Γ3(x) <∶ Γ′(x). As
x was arbitrary within dom(Γ′), it follows that ∀x ∈ dom(Γ′).Γ3(x) <∶ Γ′(x).

By Lemma A.3.2, Γ′ ≤ Γ3.

Lemma A.3.12. Let Γ1, Γ2 and Γ3 be contexts such that Γ1 ≤ Γ3 and Γ2 ≤ Γ3.

If Γ3 ≤ Γ1 ⊔ Γ2, then Γ3 ≡ Γ1 ⊔ Γ2.

Proof. Let Γ3 ≤ Γ1 ⊔ Γ2. As Γ1 ≤ Γ3 and Γ2 ≤ Γ3, it follows by Lemma A.3.11 that
Γ1 ⊔ Γ2 ≤ Γ3. By Lemma A.3.4, it follows that Γ′ ≡ Γ3.

Corollary A.3.13. Γ ⊔ Γ′ is a partial join operator, up to equivalence.

Lemma A.3.14. Context meet is defined for any arbitrary pair of contexts.

Proof. Let Γ1 and Γ2 be arbitrary contexts. By definition, dom(Γ1) ∩ dom(Γ2) is always
defined. Let x ∈ dom(Γ1)∩dom(Γ2). By Lemma A.9.2, Γ1(x)⊔Γ2(x) is always defined.

Lemma A.3.15. Let Γ1 ⊓ Γ2 = Γ′. It follows that Γ′ ≤ Γ1 and Γ′ ≤ Γ2.

Proof. Let Γ1 and Γ2 be contexts such that Γ′ = Γ1 ⊓ Γ2. By CTX MEET,
dom(Γ′) = dom(Γ1) ∩ dom(Γ2) and ∀x ∈ dom(Γ′). Γ′(x) = Γ1(x) ⊔ Γ2(x). By definition,
dom(Γ′) ⊆ dom(Γ1) and dom(Γ′) ⊆ dom(Γ2). By Theorem A.9.1,
∀x ∈ dom(Γ′). Γ1(x) <∶ Γ′(x). and ∀x ∈ dom(Γ′). Γ2(x) <∶ Γ′(x). Therefore by Lemma
A.3.2, Γ′ ≤ Γ1 and Γ′ ≤ Γ2.

Lemma A.3.16. Let Γ1, Γ2, Γ3 be contexts such that Γ1 ≤ Γ2 and Γ1 ≤ Γ3. It follows that

Γ1 ≤ Γ2 ⊓ Γ3.

A.4. Properties of object and flow effect traces 278

Proof. Let Γ′ = Γ2 ⊓ Γ3. By CTX MEET, dom(Γ′) = dom(Γ2) ∩ dom(Γ3) and ∀x ∈
dom(Γ′).Γ′(x) = Γ2(x) ⊔ Γ3(x).

As Γ1 ≤ Γ2 and Γ1 ≤ Γ3, it follows by Lemma A.3.1 that dom(Γ1) ⊆ dom(Γ2) and
dom(Γ1) ⊆ dom(Γ3). Consequently, dom(Γ1) ⊆ dom(Γ2) ∩ dom(Γ3).

Also by Lemma A.3.1, it follows that ∀x ∈ dom(Γ1).Γ2(x) <∶ Γ1(x) and
∀x ∈ dom(Γ1).Γ3(x) <∶ Γ1(x). By Theorem A.9.1, ∀x ∈ dom(Γ1).Γ2(x) ⊔ Γ3(x) <∶ Γ1(x),
meaning ∀x ∈ dom(Γ1).Γ′(x) <∶ Γ1(x). Therefore by Lemma A.3.2, Γ1 ≤ Γ′.

Lemma A.3.17. Let Γ1, Γ2 and Γ3 be contexts such that Γ1 ≤ Γ2 and Γ1 ≤ Γ3. If Γ2⊓Γ3 ≤ Γ1,

then Γ2 ⊓ Γ3 ≡ Γ1.

Proof. Let Γ′ = Γ2 ⊓ Γ3. Let Γ′ ≤ Γ1. As Γ1 ≤ Γ2 and Γ1 ≤ Γ3, it follows by Lemma A.3.16
that Γ1 ≤ Γ′. By Lemma A.3.4, Γ1 ≡ Γ′.

Corollary A.3.18. Γ1 ⊓ Γ2 is a total meet operator, up to equivalence.

Lemma A.3.19. Let Γ1 ≤ Γ′
1 and Γ2 ≤ Γ′

2. It follows that Γ1 ⊓ Γ2 ≤ Γ′
1 ⊓ Γ′

2.

Proof. Let Γ = Γ1 ⊓ Γ2 and Γ′ = Γ′
1 ⊓ Γ′

2.

By Lemma A.3.1, dom(Γ1) ⊆ dom(Γ′
1) and dom(Γ2) ⊆ dom(Γ′

2).

By CTX MEET, dom(Γ) = dom(Γ1) ⊓ dom(Γ2) and dom(Γ′) = dom(Γ′
1) ⊓ dom(Γ′

2).

Let x ∈ dom(Γ). It follows that x ∈ dom(Γ1) and x ∈ dom(Γ2). Therefore, x ∈ dom(Γ′
1)

and x ∈ dom(Γ′
2), meaning x ∈ dom(Γ′). As x was arbitrary within dom(Γ), dom(Γ) ⊆

dom(Γ′).

By Lemma A.3.1, ∀x ∈ dom(Γ1).Γ′
1(x) <∶ Γ1(x) and ∀x ∈ dom(Γ2).Γ′

2(x) <∶ Γ2(x).

By CTX MEET, ∀x ∈ dom(Γ).Γ(x) = Γ1(x) ⊔ Γ2(x) and ∀x ∈ dom(Γ′).Γ′(x) = Γ′
1(x) ⊔

Γ′
2(x).

Let x ∈ dom(Γ). As dom(Γ) ⊆ dom(Γ′), it follows that x ∈ dom(Γ′). Therefore, Γ(x) =
Γ1(x) ⊔ Γ2(x) and Γ′(x) = Γ′

1(x) ⊔ Γ′
2(x). By Theorem A.9.1, Γ′(x) <∶ Γ(x). As x was

arbitrary within dom(Γ), ∀x ∈ dom(Γ).Γ′(x) <∶ Γ(x). By Lemma A.3.2, Γ ≤ Γ′.

A.4 Properties of object and flow effect traces

Lemma A.4.1. Let T <∶ U . It follows that Tr(U) ⊆ Tr(T).

Proof. by case analysis of the type U .

A.4. Properties of object and flow effect traces 279

• U is not an object type. The only trace in Tr(U) is ε, by TR EMPTY. Also by
TR EMPTY, ε ∈ Tr(T).

• U is an object type, therefore T must be an object type. By SUB OBJ, Tr(U) ⊆
Tr(T).

Lemma A.4.2. For all δ ∈ Tr(T) and δ′ ∈ Tr(U), if trmap(T, δ) <∶ U then δ + δ′ ∈ Tr(T).

Proof. We proceed by induction on the derivation of δ ∈ Tr(T):

• by TR EMPTY. It follows that δ = ε. By TR MAP EMPTY, trmap(T, δ) = T . By
Lemma A.4.1, Tr(T) ⊆ Tr(T). Therefore, δ′ ∈ Tr(T). By TR PLUS EMPTY,
δ + δ′ = δ′, meaning δ + δ′ ∈ Tr(T).

• by TR PREFIX. It follows that δ = (m,V).δ′′ such that m ∶ V ′ ⇒ W ∈ T where
V ′ <∶ V and δ′′ ∈ Tr(W).

By TR MAP PREFIX, trmap(T, δ) = trmap(W,δ′′). Consequently,
trmap(W,δ′′) <∶ U . By induction, δ′′ + δ′ ∈ Tr(W). By TR PREFIX,
(m,V).δ′′ + δ′ ∈ Tr(T). By TR PLUS PREFIX, δ + δ′ = (m,V).δ′′ + δ′.
Therefore, δ + δ′ ∈ Tr(T).

Lemma A.4.3. If valid(T δ≫ U), δ ∈ δ and δ′ ∈ Tr(U), then then δ + δ′ ∈ Tr(T).

Proof. By VALID FL EFF, U = ⊔{trmap(T, δ) ∣ δ ∈ δ}. Therefore, trmap(T, δ) <∶ U . By
Lemma A.4.2, δ + δ′ ∈ Tr(T).

Lemma A.4.4. Let δ be a trace of length n. For all T and δ′, if δ + δ′ ∈ Tr(T) then

δ′ ∈ Tr(trmap(T, δ)).

Proof. by induction on n. Let δ + δ′ ∈ Tr(T).

• n = 0. It must be the case that δ = ε. By TR PLUS EMPTY, δ + δ′ = δ′. By
TR MAP EMPTY, trmap(T, δ) = T . Therefore, δ′ ∈ Tr(trmap(T, δ)).

• n = n′ + 1. It must be the case that δ = (m,V).δ′′ where len(δ′′) = n′. By
TR PLUS PREFIX, δ + δ′ = (m,V).(δ′′ + δ′). By TR PREFIX, T = O@S, m ∶ V ′ ⇒
S′ ∈ O@S where V ′ <∶ V and δ′′ + δ′ ∈ Tr(O@S′).

By induction, δ′ ∈ Tr(trmap(O@S′, δ′′)). By TR MAP PREFIX, trmap(O@S, δ) =
trmap(O@S′, δ′′). Therefore, δ′ ∈ Tr(trmap(T, δ)).

A.4. Properties of object and flow effect traces 280

Lemma A.4.5. If δ ∈ Tr(T), then δ ∈ Tr(T ≫ trmap(T, δ)).

Proof. by induction on the length n of the trace δ ∈ Tr(T).

• n = 0. It must be the case that δ = ε. By TR MAP EMPTY, trmap(T, δ) = T . By
TR EFF EMPTY, δ ∈ Tr(T ≫ T).

• n = n′ + 1. It must be the case that δ = (m,V).δ′ where len(δ′) = n′. By TR PREFIX,
T = O@S, m ∶ V ′⇒ S′ ∈ T where V ′ <∶ V and δ′ ∈ Tr(O@S′).

By induction, δ′ ∈ Tr(O@S′ ≫ trmap(O@S′, δ′)). By TR MAP PREFIX,
trmap(O@S′, δ′) = trmap(O@S, δ). Therefore by TR EFF PREFIX, δ ∈ Tr(O@S ≫
trmap(O@S, t)).

Lemma A.4.6. Let δ be a trace of length n. For all T and U such that T <∶ U and δ ∈ Tr(U),

trmap(T, δ) <∶ trmap(U, δ).

Proof. by induction on n.

• n = 0. It must be the case that δ = ε. By TR MAP EMPTY, trmap(T, δ) = T and
trmap(U, δ) = U . Trivially, trmap(T, δ) <∶ trmap(U, δ).

• n = n′ + 1. It must be the case that δ = (m,V)δ′ where len(δ′) = n′. By TR PREFIX,
U = O1@S1, m ∶ V ′⇒ S2 ∈ O1@S1 where V ′ <∶ V and δ′ ∈ Tr(O1@S2).

By Lemma A.4.1, δ ∈ Tr(T), therefore by TR PREFIX T = O2@S3, m ∶ V ′′ ⇒ S4 ∈
O2@S3 where V ′′ <∶ V and δ′ ∈ Tr(O2@S4).

By induction, trmap(O2@S4, δ′) <∶ trmap(O1@S2, δ′). By TR MAP PREFIX,
trmap(T, δ) = trmap(O2@S4, δ′) and trmap(U, δ) = trmap(O1@S3, δ). Therefore,
trmap(T, δ) <∶ trmap(U, δ).

Lemma A.4.7. Let valid(T δ≫ U) where T is not an object type. It follows that δ = {ε} and

T = U .

Proof. By VALID FL EFF, ∅ ⊂ δ ⊆ Tr(T). The only trace that exists in Tr(T) is ε, by
TR EMPTY. Consequently, δ = {ε}, which also means that U = trmap(T, ε). Therefore,
T = U by TR MAP EMPTY.

A.5. Properties of the subtyping relation 281

Lemma A.4.8. For all T , δ and δ′ such that δ ∈ Tr(T) and δ′ ∈ Tr(trmap(T, δ)), it follows

that trmap(T, δ + δ′) = trmap(trmap(T, δ), δ′).

Proof. By induction on the derivation of δ ∈ Tr(T).

• by TR EMPTY. It follows that δ = ε. By TR PLUS EMPTY, δ + δ′ = δ′.
By TR MAP EMPTY, trmap(T, δ) = T .

Directly, trmap(T, δ′) = trmap(trmap(T, δ), δ′), which is equivalent to
trmap(T, δ + δ′) = trmap(trmap(T, δ), δ′).

• by TR PREFIX. It follows that δ = (m,V).δ′′ for some m, V and δ′′ such that
len(δ′′) = n′.

By TR PREFIX, there exists a U such that m ∶ V ′ ⇒ U ∈ T where V ′ <∶ V and
δ′′ ∈ Tr(U). By TR MAP PREFIX, trmap(T, δ) = trmap(U, δ′′), therefore δ′ ∈
trmap(U, δ′′).

By induction, trmap(U, δ′′ + δ′) = trmap(trmap(U, δ′′), δ′), which is equivalent to
trmap(U, δ′′ + δ′) = trmap(trmap(T, δ), δ′).

By TR PLUS PREFIX, δ + δ′ = (m,V).(δ′′ + δ′). By TR PREFIX, trmap(T, δ + δ′) =
trmap(U, (m,v).(δ′′+δ′)). Consequently, trmap(T, δ+δ′) = trmap(trmap(T, δ), δ′).

A.5 Properties of the subtyping relation

Lemma A.5.1. For all T and U such that T <∶ U ,

• If U = Bool, then T = Bool.

• If U =Unit, then T =Unit.

• If U = (Ð⇀Ei) → V , then there exists a
Ð⇀
Fi and W such that T = (Ð⇀Fi) → W , ∣Fi∣ = ∣Ei∣,

and ∀i.Fi ≤ Ei and W <∶ V .

• If U = O@S, then there exists an O′ and S′ such that T = O′@S′ and

Tr(O@S) ⊆ Tr(O′@S′).

Proof. Straightforward induction on the derivation of T <∶ U .

Lemma A.5.2. For all T and U such that T <∶ U ,

A.6. Properties of remap(T,U ≫ V) 282

• If T = ⊺, then U = ⊺.

• If T = Bool, then U = ⊺ or U = Bool.

• If T =Unit, then U = ⊺ or U =Unit.

• If T = (Ð⇀Ei) → V , then U = ⊺ or U = (Ð⇀Fi) → W such that ∣Ei∣ = ∣Fi∣, ∀i.Ei ≤ Fi and

V <∶W .

• If T = O@S, then U = ⊺ or U = O′@S′ such that Tr(O′@S′) ⊆ Tr(O@S).

Proof. Straightforward induction on the derivation of T <∶ U .

Lemma A.5.3. If T <∶ U and kind(T) ≠ kind(U), then U = ⊺.

Proof. Straightforward case analysis of the derivation of T <∶ U .

Lemma A.5.4. Let O1@S1 <∶ O2@S2 and m ∶ T ⇒ O2@S4 ∈ O2@S2. It follows that there

exists an S3 and U such that m ∶ U ⇒ O1@S3 where U <∶ T and O1@S3 <∶ O2@S4.

Proof. Let δ be a trace such that δ ∈ Tr(O2@S4). It follows by TR PREFIX that (m,T).δ ∈
Tr(O2@S2). By SUB OBJ, Tr(O2@S2) ⊆ Tr(O1@S1), meaning (m,T).δ ∈ Tr(O1@S1).

By TR PREFIX, there exists a S3 and type U <∶ T such that m ∶ U ⇒ O1@S3 ∈ O1@S1

and δ ∈ Tr(O1@S3). As δ was arbitrary, it follows that Tr(O2@S4) ⊆ Tr(O1@S3). By
SUB OBJ, O1@S3 <∶ O2@S4.

Lemma A.5.5. Let T ≡ T ′ and U ≡ U ′. It follows that T <∶ U ⇐⇒ T ′ <∶ U ′.

Proof. Assume T <∶ U . By TY EQUIV, T ′ <∶ T and U <∶ U ′. Therefore by a double
application of SUB TRANS, T ′ <∶ U ′.

Assume T ′ <∶ U ′. By TY EQUIV, T <∶ T ′ and U ′ <∶ U . Therefore by a double application
SUB TRANS, T <∶ U . Consequently, T <∶ U ⇐⇒ T ′ <∶ U ′.

Corollary A.5.6. Subtyping is a partial order, up to equivalence.

A.6 Properties of remap(T,U ≫ V)

Lemma A.6.1. If remap(T,E) =W , then W <∶ out(E).

Proof. There are two cases to consider:

• E = U ⋙ V . By REMAP UP DEF, remap(T,E) = V . By SUB REFL,
remap(T,E) <∶ V .

A.7. Properties of extracted effects 283

• E = U δ≫ V . By REMAP FL DEF, T <∶ U and W = ⊔{trmap(T, δ) ∣ δ ∈ δ}.

Let δ ∈ δ and δ′ ∈ Tr(V). By Lemma A.4.3, δ + δ′ ∈ Tr(U). By SUB OBJ, δ + δ′ ∈
Tr(T). By Lemma A.4.4, δ′ ∈ Tr(trmap(T, t)). As δ was arbitrary, δ′ ∈ Tr(W). As
δ′ was arbitrary, Tr(V) ⊆ Tr(W). Therefore, W <∶ V by SUB OBJ.

Lemma A.6.2. Let valid(E) and T ′ <∶ T <∶ in(E). It follows that remap(T ′,E) <∶
remap(T,E).

Proof. There are two cases to consider:

• E = U ⋙ V . By REMAP UP DEF, remap(T ′,E) = V and remap(T,E) = V . By
SUB FL EFF, remap(T ′,E) <∶ remap(T,E).

• E = U
δ≫ V such that ∅ ⊂ δ ⊆ Tr(U). Let W1 = {trmap(T, δ) ∣ δ ∈ δ} and

W2 = {trmap(T ′, δ) ∣ δ ∈ δ}. By REMAP FL DEF, remap(T,E) = ⊔W1 and
remap(T,E′ ≫=)⊔W2.

Let δ ∈ δ. By VALID FL EFF, δ ∈ Tr(U). By SUB OBJ, Tr(U) ⊆ Tr(T) ⊆ Tr(T ′),
meaning δ ∈ Tr(T) and δ ∈ Tr(T ′). By Lemma A.4.6, trmap(T ′, δ) <∶ trmap(T, δ).

Consequently, ⊔W1 <∶ ⊔W2, meaning remap(T ′, U
δ≫ V) <∶ remap(T,U δ≫ V).

Lemma A.6.3. Let T <∶ U , where U is not an object type. It follows that

T = remap(T,U ≫ U).

Proof. By definition, remap(T,U ≫ U) = ⊔{trmap(T, δ) ∣ δ ∈ Tr(U ≫ U)}. As U is not
an object type, the only trace in Tr(U ≫ U) is ε. By TR MAP EMPTY, trmap(T, ε) = T .
Therefore, remap(T,U ≫ U) = T .

A.7 Properties of extracted effects

Lemma A.7.1. For all T and U , Tr(T ≫ U) ⊆ Tr(T).

Proof. Let δ ∈ Tr(T ≫ U). It must be shown that δ ∈ Tr(T). We proceed by induction on
the derivation of δ ∈ Tr(T ≫ U).

• derived by TR EFF EMPTY. It follows that δ = ε. By TR EMPTY, δ ∈ Tr(T).

A.7. Properties of extracted effects 284

• derived by TR EFF PREFIX. It follows that δ = (m,V).δ′, T = O@S, m ∶ V ′ ⇒
O@S′ ∈ O@S where V ′ <∶ V and δ′ ∈ Tr(O@S′ ≫ U).

By induction, δ′ ∈ Tr(O@S′). By TR PREFIX, δ ∈ Tr(T).

• derived by TR EFF BRANCH. It follows that there exists a U1, U2 and δ′ such that
δ ∈ Tr(T ≫ U1) and δ′ ∈ Tr(T ≫ U2) such that U1⊔U2 = U . By induction, δ ∈ Tr(T).

Lemma A.7.2. Let T <∶ U . It follows that Tr(U ≫ V) ⊆ Tr(T).

Proof. By Lemma A.7.1, Tr(U ≫ V) ⊆ Tr(U). By Lemma A.4.1 Tr(U) ⊆ Tr(T). Tran-
sitively, Tr(U ≫ V) ⊆ Tr(T).

Lemma A.7.3. Let valid(T δ≫ U). It follows that δ ⊆ Tr(T ≫ U).

Proof. By VALID FL EFF, U = ⊔{trmap(T, δ) ∣ δ ∈ δ}. It follows that trmap(T, δ) <∶ U
for each δ.

Let δ ∈ δ. By repeated application of TR EFF BRANCH using all other δ′ ∈ δ,
δ ∈ Tr(T ≫ U).

Lemma A.7.4. For all types T and U , if δ ∈ Tr(T ≫ U), then there exists a set of traces

δ ⊆ Tr(T ≫ U) where δ ∈ δ such that ⊔{trmap(T, δ) ∣ δ ∈ δ} = U .

Proof. We proceed by induction on the derivation of δ ∈ Tr(T ≫ U):

• derived by TR EFF EMPTY. By TR MAP EMPTY, trmap(T, δ) = U . Let δ = {δ}.
By definition, ⊔{trmap(T, δ) ∣ δ ∈ δ} = U .

• derived by TR EFF PREFIX. It follows that δ = (m,V).δ2 such that m ∶ V ′ ⇒W ∈ T
where V ′ <∶ V and δ2 ∈ Tr(W ≫ U).

By induction, there exists a set δ2 ⊆ Tr(W ≫ U) where δ2 ∈ δ2 such that

⊔{trmap(W,δ′) ∣ δ′ ∈ δ3} = U . Let δ = {(m,V).δ′ ∣ δ′ ∈ δ3}. It follows that
δ ∈ δ. By TR MAP PREFIX, trmap(T, δ) = trmap(W,δ′) for all δ ∈ δ. Therefore,

⊔{trmap(T, δ) ∣ δ ∈ δ} = U .

• derived by TR EFF BRANCH. It follows that δ ∈ Tr(T ≫ U1) and that there exists a
δ2 ∈ Tr(T ≫ U2) such that U1 ⊔U2 = U .

By induction, there exists a set δ′ ⊆ Tr(T ≫ U1) where δ ∈ δ′ such that

⊔{trmap(T, δ′) ∣ δ′ ∈ δ′} = U1. Also, there exists a set δ′′ ∈ Tr(T ≫ U2) where δ2 ∈ δ′′
such that ⊔{trmap(T, δ′′) ∣ δ′′ ∈ δ′′} = U2.

A.7. Properties of extracted effects 285

Let δ = δ′ ∪ δ′′. Trivially, δ ∈ δ. By definition,

⊔{trmap(T, δ) ∣ δ ∈ δ} = (⊔{trmap(T, δ) ∣ δ ∈ δ′}) ⊔ (⊔{trmap(T, δ) ∣ δ ∈ δ′′}).
Therefore ⊔{trmap(T, δ) ∣ δ ∈ δ} = U . By TR EFF BRANCH, δ ⊆ Tr(T ≫ U).

Lemma A.7.5. Let valid(T ≫ U). It follows that remap(T,T ≫ U) = U .

Proof. By definition, remap(T,T ≫ U) = ⊔{trmap(T, δ) ∣ δ ∈ Tr(T ≫ U)}. By Lemma
A.7.4, for each δi ∈ Tr(T ≫ U) there exists a δi ⊆ Tr(T ≫ U) where δi ∈ δi such that

⊔{trmap(T, δi) ∣ δi ∈ δi} = U . Let f(δi) = δi. By definition, ⋃ f(δi) = Tr(T ≫ U). Finally,
it may be observed that
remap(T,T ≫ U) = ⊔{trmap(T, δ) ∣ δ ∈ Tr(T ≫ U)} = ⊔{⊔ f(δi)} = U .

Lemma A.7.6. Let valid(T ≫ U) and T ′ <∶ T . It follows that T ≫ U ≤ T ′ ≫ U ′, where

U ′ = remap(T ′, T ≫ U).

Proof. By REMAP FL DEF, U ′ = ⊔{trmap(T ′, t) ∣ δ ∈ Tr(T ≫ U)}. By VALID FL EFF,
Tr(T ≫ U) ≠ ∅.

Let δ ∈ Tr(T ≫ U). By Lemma A.7.1 and Lemma A.4.5, δ ∈ Tr(T ′ ≫ trmap(T ′, δ)). By
repeated application of TR EFF BRANCH, δ ∈ Tr(T ′ ≫ U ′). As there is at least one such
δ, it follows that valid(T ′ ≫ U ′). As δ was arbitrary, Tr(T ≫ U) ⊆ Tr(T ′ ≫ U ′).

By SUB FL EFF, T ≫ U ≤ T ′ ≫ U ′.

Corollary A.7.7. Let T and U by types such that valid(T ≫ U). Let T ′ <∶ T and U ′ =
remap(T ′, T ≫ U). It follows that valid(T ′ ≫ U ′).

Lemma A.7.8. Let T be a type. It follows that valid(T ≫ T).

Proof. By TR EFF EMPTY, ε ∈ Tr(T ≫ T), therefore Tr(T ≫ T) ≠ ∅.
By VALID FL EFF, valid(T ≫ T).

Lemma A.7.9. Let T , U and V be types such that valid(T ≫ U) and valid(U ≫ V). It

follows that valid(T ≫ V).

Proof. By VALID FL EFF, Tr(T ≫ U) ≠ ∅ and Tr(U ≫ V) ≠ ∅. Let δ ∈ Tr(T ≫ U) and
δ′ ∈ Tr(U ≫ V). By Lemma A.7.10, δ + δ′ ∈ Tr(T ≫ V), meaning Tr(T ≫ V) ≠ ∅. By
VALID FL EFF, valid(T ≫ V).

Lemma A.7.10. If δ1 ∈ Tr(T ≫ U) and δ2 ∈ Tr(U ≫ V) then δ1 + δ2 ∈ Tr(T ≫ V).

A.7. Properties of extracted effects 286

Proof. Let δ2 ∈ Tr(U ≫ V). We proceed by induction on the derivation of δ1 ∈ Tr(T ≫ U).

• derived by TR EFF EMPTY, meaning δ1 = ε and T = U . Therefore, δ2 ∈ Tr(T ≫ V).
By TR PLUS EMPTY, δ1 + δ2 = δ2, therefore δ1 + δ2 ∈ Tr(T ≫ V).

• derived by TR EFF PREFIX, meaning δ1 = (m,V).δ3, T = O@S,m ∶ V ′⇒ S′ ∈ O@S

where V ′ <∶ V and δ3 ∈ Tr(O@S′ ≫ U).

Let δ4 = δ3 + δ2. By induction, δ4 ∈ Tr(O@S′ ≫ V). By TR PLUS PREFIX, δ1 + δ2 =
(m,V).δ4. By TR EFF PREFIX, δ1 + δ2 ∈ Tr(T ≫ V).

• derived by TR EFF BRANCH, meaning that there exists a U1, U2 and δ′1 such that
δ1 ∈ Tr(T ≫ U1) and δ3 ∈ Tr(T ≫ U2) where U1 ⊔U2 = U .

If T is not an object type, then by Lemma A.4.7, T = U1 = U2 = V and δ1 = δ2 = ε.
Trivially, U1 ⊔U2 = U δ1 + δ2 ∈ Tr(T ≫ V).

If T is an object type, then by definition U1 and U2 are also an object types with the
same object protocol. Let T = O@S1, U1 = O@S′2 and U2 = O@S′′2 . By definition,
U = O@S2 where S2 = S′2 ∪ S′′2 . By definition, V has the same object protocol such
that V = O@S3 for some S3.

By Lemma A.7.11, there exists a S′3, S′′3 where S3 = S′3 ∪ S′′3 and δ′2 such that δ2 ∈
Tr(O@S′2 ≫ O@S′3) and δ′2 ∈ Tr(O@S′′2 ≫ O@S′′3).

By induction, δ1+δ2 ∈ Tr(O@S1 ≫ O@S′3). Also by induction, δ′1+δ′2 ∈ Tr(O@S1 ≫
O@S′′3).

By TR EFF BRANCH, δ1 + δ2 ∈ Tr(O@S1 ≫ O@S3), which is equivalent to δ1 + δ2 ∈
Tr(T ≫ V).

Lemma A.7.11. Let δ ∈ Tr(O@S1 ≫ O@S2). For all S′1 and S′′1 such that S1 = S′1 ∪ S′′1 ,

there exists a S′2, S′′2 where S2 = S′2 ∪ S′′2 and δ′ such that δ ∈ Tr(O@S′1 ≫ O@S′2) and

δ′ ∈ Tr(O@S′′1 ≫ O@S′′2).

Proof. By induction on the derivation of δ ∈ Tr(O@S1 ≫ O@S2).

• derived by TR EFF EMPTY. It follows that δ = ε and that O@S1 = O@S2.

Let S′2 = S′1 and S′′2 = S′′1 . Trivially, S2 = S′2 ∪ S′′2 .

Let δ′ = δ. Trivially, δ ∈ Tr(O@S′1 ≫ O@S′2) and δ′ ∈ Tr(O@S′′1 ≫ O@S′′2).

A.8. Properties of the sub-effect relation 287

• derived by TR EFF PREFIX. It follows that δ = (m,T).δ′, m ∶ V ⇒ S ∈ O@S1 where
V <∶ T and δ′ ∈ Tr(OS ≫ O@S2).

The method existence predicate is defined such that m ∶ V ⇒ S ∈ O@S1 holds when,
for each Si ∈ S1, m ∶ Vi ⇒ S′i ∈ O@Si. V and S are defined such that V = ⊔Vi and
S = ⋃S′i .

As S1 = S′1 ∪ S′′1 , it follows that two related method existence predicates hold: m ∶
V ′⇒ S′ ∈ O@S′1 and m ∶ V ′′⇒ S′′ ∈ O@S′′1 such that V = V ′ ⊔ V ′′ and S = S′ ∪ S′′.

By induction, there exists a S′2, S′′2 and δ′′ such that δ′ ∈ Tr(O@S′ ≫ S′2) and δ′′ ∈
Tr(O@S′′ ≫ S′′2) where S2 = S′2 ∪ S′′2 .

By TR EFF PREFIX, δ ∈ Tr(O@S′1 ≫ O@S′2) and (m,V4).δ′′ ∈ Tr(O@S′′1 ≫ O@S′′2).

• derived by TR EFF BRANCH. It follows that there exists a S2a, S2b and δ2 such that
δ ∈ Tr(O@S1 ≫ S2a) and δ2 ∈ Tr(O@S1 ≫ S2b) where S2 = S2a ∪ S2b.

By induction, there exists a S′2a, S
′′
2a and δ3 such that δ ∈ Tr(O@S′1 ≫ O@S′2a) and

δ3 ∈ Tr(O@S′′1 ≫ O@S′′2a) where S2a = S′2a ∪ S′′2a.

Also by induction, there exists a S′2b, S
′′
2b and δ4 such that δ2 ∈ Tr(O@S′1 ≫ O@S′2b)

and δ4 ∈ Tr(O@S′′1 ≫ O@S′′2b) where S2b = S′2b ∪ S′′2b.

Let S′2 = S′2a ∪ S′2b and S′′2 = S′′2a ∪ S′′2b.

By TR EFF BRANCH, δ ∈ Tr(O@S′1 ≫ O@S′2). Let δ′ = δ3. By TR EFF BRANCH,
δ′ ∈ Tr(O@S′′1 ≫ O@S′′2).

A.8 Properties of the sub-effect relation

Lemma A.8.1. For all E and F such that E ≤ F ,

• F = T2

δ2≫ U2 if and only if E = T1

δ1≫ U1 such that T2 <∶ T1 and δ1 ⊆ δ2.

• F = T1 ⋙ U1 if and only if E = T2 ⋙ U2 such that T2 <∶ T1 and U2 <∶ U1.

Proof. Straightforward induction on the derivation of E ≤ F .

Lemma A.8.2. Let E be an effect type such that valid(E). It follows that E ≤ E.

Proof. By case analysis of the effect type E:

A.8. Properties of the sub-effect relation 288

• E = T ⋙ U for some types T and U . By SUB REFL, T <∶ T and U <∶ U . Therefore,
by SUB UP EFF, E ≤ E.

• E = T ≫ U for some types T and U . By SUB REFL, T <∶ T . Trivially, Tr(T ≫ U) ⊆
Tr(T ≫ U). Therefore by SUB FL EFF, T ≫ U ≤ T ≫ U .

Corollary A.8.3. The sub-effect relation is reflexive.

Lemma A.8.4. Let E ≡ E′ and F ≡ F ′. It follows that E ≤ F ⇐⇒ E′ ≤ F ′.

Proof. Assume E ≤ F . By EFF EQUIV, E′ ≤ E and F ≤ F ′. By double application of
SUB EFF TRANS, E′ ≤ F ′.

Assume E′ ≤ F ′. By EFF EQUIV, E ≤ E′ and F ′ ≤ F . By double application of
SUB EFF TRANS, E ≤ F .

Corollary A.8.5. The sub-effect relation is a partial order, up to equivalence.

Lemma A.8.6. Let valid(T δ1≫ U) and valid(T δ2≫ V). It follows that valid(T δ≫ U ⊔ V)
where δ = δ1 ∪ δ2.

Proof. By VALID FL EFF:

∅ ⊂ δ1 ⊆ Tr(T) U = ⊔{trmap(T, t) ∣ δ ∈ δ1}
∅ ⊂ δ2 ⊆ Tr(T) V = ⊔{trmap(T, t) ∣ δ ∈ δ2}

It follows that δ1 ∪ δ2 ⊆ Tr(T). Let W = ⊔{trmap(T, t) ∣ δ ∈ δ}. It follows that W = U ⊔ V ,

and that valid(T δ≫W) by VALID FL EFF.

Lemma A.8.7. Let E ≤ E′ and remap(T,E′) be defined. It follows that remap(T,E) <∶
remap(T,E′).

Proof. There are two cases to consider:

• E′ = T2 ⋙ U2 for some T2 and U2. By Lemma A.8.1, E = T1 ⋙ U1 for some T1 and
U1 such that T2 <∶ T1 and U1 <∶ U2.

By REMAP UP DEF, T <∶ T2 and remap(T,E′) = U2. By SUB TRANS, T <∶ T1 and
therefore remap(T,E) = U1 by REMAP UP DEF. Consequently, remap(T,E) <∶
remap(T,E′).

A.9. Properties of join and meet 289

• E′ = T2

δ2≫ U2 for some T2, U2 and δ2. By Lemma A.8.1, E = T1

δ1≫ U1 such that
T2 <∶ T1 and δ1 ⊆ δ2, and that both effects are valid. By REMAP FL DEF, T <∶ T2.

Let δ = δ2 − δ1. Let W = ⊔{trmap(T, δ) ∣ δ ∈ δ1} and W ′ = ⊔{trmap(T, δ) ∣ δ ∈ δ}.
By REMAP FL DEF, remap(T,E) =W and remap(T,E′) =W ⊔W ′. It follows that
remap(T,E) <∶ remap(T,E′).

Lemma A.8.8. Let U
δ≫ V ≤ U ′ δ′≫ V ′, T <∶ U ′, W = remap(T,U δ≫ V) and

W ′ = remap(T,U ′ δ′≫ V ′). It follows that T
δ≫W ≤ T δ′≫W ′ and W <∶W ′.

Proof. By SUB OBJ, Tr(U ′) ⊆ Tr(T). By SUB FL EFF, valid(U δ≫ V), valid(U ′ δ′≫ V ′)
and δ ⊆ δ′, By VALID FL EFF, ∅ ⊂ δ ⊆ Tr(U) and ∅ ⊂ δ′ ⊆ Tr(U ′). Transitively,
δ ⊆ Tr(T) and δ′ ⊆ Tr(T).

Consequently by VALID FL EFF, valid(T δ≫W) and valid(T δ′≫W ′). As δ ⊆ δ′,
T

δ≫W ≤ T δ′≫W ′ by SUB FL EFF.

A.9 Properties of join and meet

Theorem A.9.1. For all type and effect expressions of form P ◇Q = R:

1. If P is a type and ◇ = ⊔, it follows that Q and R are also types such that:

(a) R is an upper bound of P and Q: P <∶ R and Q <∶ R.

(b) R is a lower bound of any other upper bound of P andQ: P <∶ R′∧Q <∶ R′ Ô⇒
R <∶ R′.

2. If P is a type and ◇ = ⊓, it follows that Q and R are also types such that:

(a) R is a lower bound of P and Q: R <∶ P and R <∶ Q.

(b) R is an upper bound of any other lower bound of P and Q: R′ <∶ P ∧ R′ <∶
Q Ô⇒ R′ <∶ R.

3. If P is an effect and ◇ = ⊔, it follows that Q and R are also effects such that:

(a) R is an upper bound of P and Q: P ≤ R and Q ≤ R.

(b) R is a lower bound of any other upper bound of P and Q: P ≤ R′ ∧Q ≤ R′ Ô⇒
R ≤ R′.

A.9. Properties of join and meet 290

4. If P is an effect and ◇ = ⊓, it follow that Q and R are also effects such that:

(a) R is a lower bound of P and Q: R ≤ P and R ≤ Q.

(b) R is an upper bound of any other lower bound of P andQ: R′ ≤ P ∧R′ ≤ Q Ô⇒
R′ ≤ R.

Proof. By induction on the derivation of the expression P ◇Q = R:

• derived by TY JOIN REFL. It follows that P is a type and ◇ = ⊔ such that P = Q = R.
By SUB REFL, P <∶ R and Q <∶ R, satisfying (1a). Let R′ be some other type such
that P <∶ R′ and Q <∶ R′. As P = R, trivially R <∶ R′, satisfying (1b).

• derived by TY JOIN FUN. It follows that P is a type and ◇ = ⊔ such that P = (Ð⇀Ei)→
X , Q = (Ð⇀Fi) → Y where ∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ and R = (Ð⇀Gi) → Z such that ∀i. Ei ⊔ Fi = Gi and
X ⊔ Y = Z.

By induction, ∀i. Ei ≤ Gi ∧Fi ≤ Gi and ∀i,G′
i. Ei ≤ G′

i ∧Fi ≤ G′
i Ô⇒ Gi ≤ G′

i. Also
by induction, X <∶ Z, Y <∶ Z and ∀Z ′. X <∶ Z ′ ∧ Y <∶ Z ′ Ô⇒ Z <∶ Z ′.

It follows by SUB FN that P <∶ R and Q <∶ R, satisfying (1a).

Let R′ be a type such that P <∶ R′ and Q <∶ R′. By Lemma A.5.1, it follows that
R′ = ⊺ or R′ = (Ð⇀Hi) → A such that ∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ = ∣Ð⇀Hi∣, ∀i. Ei ≤ Hi ∧ Fi ≤ Hi, X <∶ A
and Y <∶ A.

– If R′ = ⊺, trivially R <∶ R′ by SUB TOP, satisfying (1b).

– If R′ = (Ð⇀Hi) → A, as ∀i. Ei ≤ Hi ∧ Fi ≤ Hi and ∀i,G′
i. Ei ≤ G′

i ∧ Fi ≤ G′
i Ô⇒

Gi ≤ G′
i, it follows that ∀i. Gi ≤ Hi. As X <∶ A, Y <∶ A and ∀Z ′. X <∶ Z ′ ∧ Y <∶

Z ′ Ô⇒ Z <∶ Z ′, it follows that Z <∶ A. Therefore by SUB FN, R <∶ R′,
satisfying (1b).

• derived by TY JOIN OBJ. It follows that P is a type and ◇ = ⊔, such that P = O1@S1

and Q = O2@S2 where O1 = (M1,Σ1,∆1) and O2 = (M2,Σ2,∆2). R is defined to be
O3@S3 such that O3 = (M3,Σ3,∆3) where M3 =M1 ∪M2,
Σ3 = {L(S1, S2) ∣ S1 ∈ Σ2, S2 ∈ Σ2}, ∆3 = ∆1 ⊔∆2 and S3 = L(S1, S2).

It must be shown that O1@S1 <∶ O3@S3 and O2@S2 <∶ O3@S3, which requires that
Tr(O3@S3) ⊆ Tr(O1@S1) and Tr(O3@S3) ⊆ Tr(O2@S2). In order to do this, we
prove the following sub-lemma:

For all Sa ∈ Σ1, Sb ∈ Σ2 such that S = L(Sa, Sb), if δ ∈ Tr(O3@S) then δ ∈
Tr(O1@Sa) and δ ∈ Tr(O2@Sb).

We prove this by induction on the length of the trace δ:

A.9. Properties of join and meet 291

– len(δ) = 0, meaning δ = ε. By TR EMPTY, δ ∈ Tr(O1@S1) and δ ∈ Tr(O2@S2).

– len(δ) = n + 1, meaning δ = (m,T).δ′ such that len(δ′) = n. By TR PREFIX,
(S3,m,T ′, S′3) ∈ Σ3 with T ′ <∶ T and δ′ ∈ Tr(O3@S′3). Therefore, by
TRANS JOIN, (S1,m,T1, S′1) ∈ ∆1 and (S2,m,T2, S′2) ∈ ∆2 where T1 ⊔ T2 = T ′

and S′3 = L(S′1, S′2).

By induction, δ′ ∈ Tr(O1@S′1) and δ′ ∈ Tr(O2@S′2). By induction on the
derivation of T1 ⊔ T2 = T ′, T1 <∶ T ′ and T2 <∶ T ′. Therefore by TR PREFIX,
(m,T).δ′ ∈ Tr(O1@S1) and (m,T).δ′ ∈ Tr(O2@S2).

As δ is arbitrary, Tr(O3@S) ⊆ Tr(O1@Sa) and Tr(O3@S) ⊆ Tr(O1@Sb). By
SUB OBJ, O1@Sa <∶ O3@S and O2@Sb <∶ O3@S.

Therefore, P <∶ R and Q <∶ R, satisfying (1a).

Let R′ be a type such that P <∶ R′ and Q <∶ R′. By Lemma A.5.1, R′ = ⊺ or R′ =
O4@S4 such that Tr(R′) ⊆ Tr(P) and Tr(R′) ⊆ Tr(Q).

If R′ = ⊺, by SUB TOPR <∶ R′, trivially satisfying (1b).

If R′ = O4@S4 for some O4 and S4, it must be shown that Tr(R′) ⊆ Tr(R). By
definition, R′ is equivalent to O5@S5 = ⊔{O4@S ∣ S ∈ S4} such that Tr(O5@S5) =
Tr(R′). Let O5 = (M5,Σ5,∆5).

By showing Tr(O5@S5) ⊆ Tr(R), we can establish that Tr(R′) ⊆ Tr(R). In order to
do this, we prove the following sub-lemma:

For all states Sa ∈ Σ1, Sb ∈ Σ2, Sc = L(Sa, Sb) and Sd ∈ Σ5 such that O1@Sa <∶ O5@Sd

and O2@Sb <∶ O5@Sd, it follows that if δ ∈ Tr(O5@Sd) then δ ∈ Tr(O3@Sc).

We proceed by induction on the length of t:

– len(δ) = 0, meaning δ = ε. It follows by TR EMPTY that δ ∈ Tr(O3@Sc).

– len(δ) = n + 1, meaning δ = (m,Td).δ′ such that len(δ′) = n. By TR PREFIX,
(Sd,m,T ′

d, S
′
d) ∈ ∆5 for some T ′

d and S′d such that δ′ ∈ Tr(O5@S′d) and T ′
d <∶ Td.

As O1@Sa <∶ O5@Sd and O2@Sb <∶ O5@Sd, it follows by SUB OBJ that δ ∈
Tr(O1@Sa) and δ ∈ Tr(O2@Sb). By TR PREFIX, (Sa,m,T ′

a, S
′
a) ∈ ∆1 and

(Sb,m,T ′
b , S

′
b) ∈ ∆2 for some T ′

a, S′a, T ′
b and S′b such that T ′

a <∶ T ′
d, T

′
b <∶ T ′

d,
δ′ ∈ Tr(O1@S′a), δ′ ∈ Tr(O2@S′b), O1@S′a <∶ O5@S′d and O2@S′b <∶ O5@S′d. By
TRANS JOIN, (Sc,m,T ′, S′c) ∈ ∆3 such that T ′

a ⊔ T ′
b = T ′ and S′c = L(S′a, S′b).

By induction, δ′ ∈ Tr(O3@S′c) where S′c = L(S′a, S′b). By induction on the deriva-
tion of T ′

a ⊔ T ′
b = T ′, as T ′

a <∶ T ′
d and T ′

b <∶ T ′
d it follows that T ′ <∶ T ′

d. By
TR PREFIX, δ ∈ Tr(O3@Sc).

A.9. Properties of join and meet 292

As δ is arbitrary, it follows that Tr(O5@Sd) <∶ Tr(O3@Sc), meaning O3@Sc <∶
O5@Sd by SUB OBJ. Consequently R <∶ R′, satisfying (1b).

• derived by TY JOIN KIND DIFF. It follows that P is a type and ◇ = ⊔ such that
kind(T) ≠ kind(U) and R = ⊺.

By SUB TOP, P <∶ R and Q <∶ R, satisfying (1a). Let R′ be some other type such that
P <∶ R′ and Q <∶ R′.

It is not possible for kind(R′) to be equal to both kind(P) and kind(Q), as that would
imply that kind(P) = kind(Q), which is a contradiction. Therefore one (or both) of
kind(P) ≠ kind(R′) and kind(Q) ≠ kind(R′) hold. By Lemma A.5.3, R′ = ⊺,
meaning that by SUB REFL, R <∶ R′, satisfying (1b).

• derived by TY JOIN FUN DIFF ARITY. It follows that P is a type and ◇ = ⊔ such
that P = (Ð⇀Ei)→ T , Q = (Ð⇀Fj)→ U and R = ⊺ where ∣Ð⇀Ei∣ ≠ ∣Ð⇀Fj ∣.

By SUB TOP, P <∶ R and Q <∶ R, satisfying (1a).

Let R′ be some other type such that P <∶ R′ and Q <∶ R′. As P <∶ R′, by Lemma
A.5.1 either R′ = ⊺ or R′ = (Ð⇀Gk) → V such that ∣Ð⇀Ei∣ = ∣Ð⇀Gk∣, ∀i. Ei ≤ Gi and T <∶ V .

If R′ = (Ð⇀Gk) → V , then ∣Ð⇀Fj ∣ ≠ ∣Ð⇀Gk∣ meaning that Q <∶ R′ cannot hold, which is a
contradiction. Therefore, R′ = ⊺. By SUB REFL, R <∶ R′, satisfying (1b).

• derived by TY JOIN FUN DIFF EFF. It follows that P is a type and ◇ = ⊔, such that
P = (Ð⇀Ei) → T , Q = (Ð⇀Fi) → U and R = ⊺ where ∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ and there exists an n such
that En ⊔ Fn is undefined.

By SUB TOP, P <∶ R and Q <∶ R, satisfying (1a). Let R′ be some other type such that
P <∶ R′ and Q <∶ R′. As P <∶ R′, by Lemma A.5.1 either R′ = ⊺ or R′ = (Ð⇀Gi) → V

such that ∣Ð⇀Ei∣ = ∣Ð⇀Gi∣, ∀i. Ei ≤ Gi and T <∶ V . Similarly, as Q <∶ R′, by Lemma A.5.1

if R′ = (Ð⇀Gi)→ V then ∣Ð⇀Fi∣ = ∣Ð⇀Gi∣, ∀i. Fi ≤ Go and U <∶ V .

Assume R′ = (Ð⇀Gi) → V . Consequently, En ≤ Gn and Fn ≤ Gn. As En ⊔ Fn is unde-
fined, by Lemma A.9.4 there exists no upper bound for En and Fn. This contradicts
the existence of Gn. Consequently, R′ = ⊺. By SUB REFL, R <∶ R′, satisfying (1b).

• derived by TY MEET REFL, meaning P is a type and ◇ = ⊓ such that P = Q = R. By
SUB REFL, R <∶ P and R <∶ Q, satisfying (2a).

Let R′ <∶ P and R′ <∶ Q. By SUB REFL, P <∶ R, meaning that by SUB TRANS,
R′ <∶ R, satisfying (2b).

• derived by TY MEET TOP, meaning P is a type and ◇ = ⊓ such that P = R and
Q = ⊺ (or vice versa for P and Q). By SUB REFL, R <∶ P , and by SUB TOP, R <∶ Q,
satisfying (2a).

A.9. Properties of join and meet 293

Let R′ <∶ P and R′ <∶ Q. By SUB REFL, P <∶ R, therefore by SUB TRANS R′ <∶ R,
satisfying (2b).

• derived by TY MEET FUN, meaning P is a type and ◇ = ⊓, such that P = (Ð⇀Ei) → X ,
Q = (Ð⇀Fi) → Y where ∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ and R = (Ð⇀Gi) → Z such that ∀i. Ei ⊓ Fi = Gi and
X ⊓ Y = Z.

By induction on the derivation of X ⊓ Y = Z, it follows that Z <∶ X , Z <∶ Y and
∀Z ′. Z ′ <∶X ∧Z ′ <∶ Y Ô⇒ Z ′ <∶ Z.

For each i, by induction on the derivation of Ei ⊓ Fi = Gi, it follows that Gi ≤ Ei,
Gi ≤ Fi and ∀G′

i. G
′
i ≤ Ei ∧G′

i ≤ Fi Ô⇒ G′
i ≤ Gi.

Consequently by SUB FN, R <∶ P and R <∶ Q, satisfying (2a).

Let R′ by a type such that R′ <∶ P and R′ <∶ Q. By Lemma A.5.1 it follows that
R′ = (Ð⇀Hi) → A for some set of effects

Ð⇀
Hi and type A such that A <∶ X , A <∶ Y ,

∣Ð⇀Hi∣ = ∣Ð⇀Ei∣ = ∣Ð⇀Fi∣, and for each i, Hi ≤ Ei and Hi ≤ Fi.

As ∀Z ′. Z ′ <∶X ∧Z ′ <∶ Y Ô⇒ Z ′ <∶ Z, it follows that A <∶ Z.

As ∀i,G′
i. G

′
i ≤ Ei ∧G′

i ≤ Fi Ô⇒ G′
i ≤ Gi, it follows that ∀i. Hi ≤ Gi.

Consequently by SUB FN, R′ <∶ R, satisfying (2b).

• derived by TY MEET OBJ, meaning P is a type and ◇ = ⊓ such that P = O1@S1

where O1 = (M1,Σ1,∆1) and S1 ∈ Σ1, Q = O2@S2 where O2 = (M2,Σ2,∆2) and
S2 ∈ Σ2. R is defined to be O@S such that O = (M,Σ,∆) where M = M1 ∪M2,
Σ = Σ1 ∪ Σ2 ∪ {L(S1, Lt(S2)) ∣ S1 ∈ Σ1, S2 ∈ Σ2}, ∆ = left(∆1) ∪ right(∆2) ∪
mid(∆1,∆2, S1, S2 and S = L(S1, Lt(S2)).

It must be shown that O@S <∶ O1@S1 and O@S <∶ O1@S2, which is equivalent to
Tr(O1@S1) ⊆ Tr(O@S) and Tr(O2@S2) ⊆ Tr(O@S). In order to do this, we prove
the following sub-lemma:

For all Sa ∈ Σ1, Sb ∈ Σ2 and Sc = L(Sa, Lt(Sb)) such that Sc ∈ R(∆1,∆2, S1, S2), if
δ ∈ Tr(O1@Sa) then δ ∈ Tr(O@Sc).

We shall prove this by induction on len(δ):

– len(δ) = 0. By TR EMPTY, δ ∈ Tr(O@Sc).

– len(δ) = n + 1, meaning δ = (m,Ta).t′ where len(δ′) = n, (Sa,m,T ′
a, S

′
a) ∈ ∆1

for some T ′
a <∶ Ta and S′a ∈ Σ1 with δ′ ∈ Tr(O@S′a).

There are two cases to consider:

* There exists a T ′
b and S′b such that (Sb,m,T ′

b , S
′
b) ∈ Σ2.

By TRANS MEET MID, (Sc,m,T ′
c , S

′
c) ∈ ∆ where T ′

c = T ′
a ⊓ T ′

b and S′c =
L(S′a, Lt(S′b)).

A.9. Properties of join and meet 294

By REACH REFL, S′c ∈ R(∆1,∆2, S′a, S′b). By REACH ADJ,
S′c ∈ R(∆1,∆2, S1, S2). By induction, δ′ ∈ Tr(O@S′c). By induction on the
derivation of T ′

a⊓T ′
b = T ′

c , it follows that T ′
c <∶ T ′

a. Therefore by TR PREFIX,
δ ∈ Tr(O@Sc).

* There does not exist any T ′
b or S′b such that (Sb,m,T ′

b , S
′
b) ∈ Σ2.

By TRANS MEET LEFT, (Sc,m,T ′
a, S

′
a) ∈ ∆. By definition, O@S′a ≡

O1@S′a as all transitions are copied verbatim by TRANS MEET COPY L,
therefore δ′ ∈ Tr(O@S′a). By TR PREFIX, δ ∈ Tr(O@Sc).

As δ is arbitrary withinO1@Sa, it follows that Tr(O1@Sa) ⊆ Tr(O@Sc). By SUB OBJ,
O@Sc <∶ O1@Sa. Therefore, O@S <∶ O1@S1.

By very similar reasoning (involving TRANS MEET RIGHT where a transition for m
does not exist in the relevant state in O1), O@S <∶ O2@S2, satisfying (2a).

Let R′ <∶ O1@S1 and R′ <∶ O2@S2. It follows that R′ = O4@S4 for some O4 =
(M4,Σ4,∆4) and S4 ∈ Σ4. It must be shown that R′ <∶ O@S. In order to do this, we
shall prove the following sub-lemma:

For all Sa ∈ Σ1, Sb ∈ Σ2 and Sc = L(S1, Lt(S2)) and Sd ∈ Σ4 such that O4@Sd <∶
O1@Sa, O4@Sd <∶ O4@Sb and Sc ∈ R(∆1,∆2, S1, S2), if δ ∈ Tr(O@Sc) then δ ∈
Tr(O4@Sd).

We shall prove this by induction on the length of the trace δ:

– len(δ) = 0, meaning δ = ε. By TR EMPTY, δ ∈ Tr(O4@Sd).

– len(δ) = n + 1, meaning δ = (m,Tc).δ′ such that len(δ′) = n, (Sc,m,T ′
c , S

′
c) ∈ ∆

where T ′
c <∶ Tc and δ′ ∈ Tr(O@S′c).

There are three possible derivations of (Sc,m,T ′
c , S

′
c) ∈ ∆:

* by TRANS MEET LEFT, such that (Sa,m,T ′
c , S

′
c) ∈ ∆1 and there does not

exist a Tb or S′b such that (Sb,m,Tb, S′b) ∈ ∆2. By definition,O@S′c ≡ O1@S′c
as all transitions are copied verbatim by TRANS MEET COPY L. There-
fore δ′ ∈ Tr(O1@S′c). By TR PREFIX, δ ∈ Tr(O1@Sa). As O4@Sd <∶
O1@Sa, by SUB OBJ, δ ∈ Tr(O4@Sd).

* by TRANS MEET RIGHT. By very similar reasoning to the
TRANS MEET LEFT case, δ ∈ Tr(O4@Sd).

* by TRANS MEET MID, such that there exists types Ta and Tb and states
S′a and S′b such that (Sa,m,Ta, S′a) ∈ ∆1 and (Sb,m,Tb, S′b) ∈ ∆2 where
Ta ⊓ Tb = T ′

c and S′c = L(S′a, Lt(S′b)).
By REACH REFL, S′c ∈ R(∆1,∆2, S′a, S′b).
By REACH ADJ, S′c ∈ R(∆1,∆2, S1, S2).

A.9. Properties of join and meet 295

As O4@Sd <∶ O1@Sa, it follows by Lemma A.5.4 that there exists a Td and
S′d such that (Sd,m,Td, S′d) ∈ ∆4, Td <∶ Ta and O4@S′d <∶ O1@S′a.
As O4@Sd <∶ O2@Sb, it follows by Lemma A.5.4 that Td <∶ Tb and
O4@S′d <∶ O2@S′b.
By induction, δ′ ∈ Tr(O4@S′d).
By induction on the derivation of Ta ⊓ Tb = T ′

c , it follows that
∀T ′. T ′ <∶ Ta ∧ T ′Tb Ô⇒ T ′ <∶ T ′

c . Therefore, Td <∶ T ′
c . By SUB TRANS,

Td <∶ Tc. Therefore by TR PREFIX, δ ∈ Tr(O4@Sd).

Therefore, Tr(O@Sc) ⊆ Tr(O4@Sd), meaning O4@Sd <∶ O@Sc by SUB OBJ.

Consequently, O4@S4 <∶ O@S, satisfying (2b).

• derived by EFF JOIN UP, meaning P is an effect and ◇ = ⊔, such that P = T1 ⋙ U1,
Q = T2 ⋙ U2 and R = T ⋙ U where T1 ⊓ T2 = T and U1 ⊔U2 = U .

By induction on the derivation of T1 ⊓ T2 = T , it follows that T <∶ T1, T <∶ T2 and
∀T ′. T ′ <∶ T1 ∧ T ′ <∶ T2 Ô⇒ T ′ <∶ T . By induction on the derivation of U1 ⊔U2 = U ,
it follows that U1 <∶ U , U2 <∶ U and ∀U ′. U1 <∶ U ′ ∧U2 <∶ U ′ Ô⇒ U <∶ U ′.

Consequently by SUB UP EFF, P ≤ R and Q ≤ R, satisfying property (3a).

Let R′ be an effect such that P ≤ R′ and Q ≤ R′. By Lemma A.8.1, R′ = T3 ⋙ U3 for
some T3 and U3 such that T3 <∶ T1, T3 <∶ T2, U1 <∶ U3 and U2 <∶ U3.

As ∀T ′. T ′ <∶ T1 ∧ T ′ <∶ T2 Ô⇒ T ′ <∶ T , it follows that T3 <∶ T .
As ∀U ′. U1 <∶ U ′ ∧U2 <∶ U ′ Ô⇒ U <∶ U ′, it follows that U <∶ U3.

Therefore by SUB UP EFF, R <∶ R′, satisfying (3b).

• derived by EFF JOIN FL, meaning P is an effect and ◇ = ⊔, such that P = T1

δ1≫ U1,

Q = T2

δ2≫ U2 and R = T δ≫ U such that T = T1 ⊓ T2, δ = δ1 ∪ δ2 and
U = ⊔{trmap(T, δ) ∣ δ ∈ δ}.

By induction on the derivation of T1 ⊓ T2 = T , it follows that T <∶ T1, T <∶ T2 and
∀T ′. T ′ <∶ T1 ∧ T ′ <∶ T2 Ô⇒ T ′ <∶ T . Trivially, δ1 ⊆ δ and δ2 ⊆ δ. Therefore, P ≤ R
and Q ≤ R, satisfying (3a).

Let R′ be an effect such that P ≤ R′ and Q ≤ R′. By Lemma A.8.1 it follows that

R′ = T3

δ3≫ U3 such that T3 <∶ T1, T3 <∶ T2, δ1 ⊆ δ3 and δ2 ⊆ δ3. Consequently, T3 <∶ T
and δ1 ∪ δ2 ⊆ δ3. Therefore by SUB FL EFF, R′ ≤ R, satisfying (3b).

• derived by EFF MEET UP, meaning P is an effect and ◇ = ⊓, such that P = T1 ⋙ U1,
Q = T2 ⋙ U2 and R = T ⋙ U where T1 ⊔ T2 = T and U1 ⊓U2 = U .

By induction on the derivation of T1 ⊔ T2 = T , it follows that T1 <∶ T , T2 <∶ T and
∀T ′. T1 <∶ T ′ ∧ T2 <∶ T ′ Ô⇒ T <∶ T ′.

A.9. Properties of join and meet 296

By induction on the derivation of U1 ⊓ U2 = U , it follows that U <∶ U1, U <∶ U2 and
∀U ′. U ′ <∶ U1 ∧U ′ <∶ U2 Ô⇒ U ′ <∶ U .

By SUB UP EFF, R ≤ P and R ≤ Q, satisfying (4a).

Let R′ be an effect such that R′ ≤ P and R′ ≤ Q. By Lemma A.8.1, R′ = T3 ⋙ U3

such that T1 <∶ T3, T2 <∶ T3, U3 <∶ U1 and U3 <∶ U2.

As ∀T ′. T1 <∶ T ′ ∧ T2 <∶ T ′ Ô⇒ T <∶ T ′, it follows that T <∶ T3. As ∀U ′. U ′ <∶
U1 ∧ U ′ <∶ U2 Ô⇒ U ′ <∶ U , it follows that U3 <∶ U . Consequently by SUB UP EFF,
R′ ≤ R, satisfying (4b).

• derived by EFF MEET FL, meaning P is an effect and ◇ = ⊔, such that P = T1

δ1≫ U1

and Q = T2

δ2≫ U2 and R = T
δ≫ U such that T1 ⊔ T2 = T , δ = δ1 ∩ δ2 ⊃ ∅ and

U = ⊔{trmap(T, δ) ∣ δ ∈ δ}.

By induction on the derivation of T1 ⊔ T2 = T , it follows that T1 <∶ T , T2 <∶ T and
∀T ′. T1 <∶ T ′ ∧ T2 <∶ T ′ Ô⇒ T <∶ T ′.

By definition, δ ⊂ δ1 and δ ⊂ δ2. Consequently by SUB FL EFF, R ≤ P and R ≤ Q,
satisfying (4a).

Let R′ ≤ P and R′ ≤ Q. By Lemma A.8.1, R = T3

δ3≫ U3 such that T1 <∶ T3, T2 <∶ T3,
δ3 ⊆ δ1 and δ3 ⊆ δ2, meaning δ3 ⊆ δ1 ∩ δ2. Consequently, T <∶ T3 and δ3 ⊆ δ, meaning
R′ ≤ R by SUB FL EFF, satisfying (4b).

Lemma A.9.2. For all types T and U , T ⊔U is defined.

Proof. If T = U , then T ⊔U = T by TY JOIN REFL. If T ≠ U , we proceed induction on the
structure of T :

• T = ⊺. As T ≠ U , it follows that kind(T) ≠ kind(U) and T ⊔U = ⊺ by
TY JOIN KIND DIFF.

• T =Unit. As T ≠ U , it follows that kind(T) ≠ kind(U) and T ⊔U = ⊺ by
TY JOIN KIND DIFF.

• T = Bool. As T ≠ U , it follows that kind(T) ≠ kind(U) and T ⊔U = ⊺ by
TY JOIN KIND DIFF.

• T = (Ð⇀Ei)→ V for some
Ð⇀
Ei and V . If U is not a function type, then kind(T) ≠ kind(U)

and T ⊔U = ⊺ by TY JOIN KIND DIFF. If U = (Ð⇀Fj)→W for some
Ð⇀
Fj and W , there

are three possibilities:

A.9. Properties of join and meet 297

– ∣Ð⇀Ei∣ ≠ ∣Ð⇀Fj ∣. It follows that T ⊔U = ⊺ by TY JOIN FUN DIFF ARITY.

– ∣Ð⇀Ei∣ = ∣Ð⇀Fj ∣, but there exists an n such that Ei ⊔ Fi is undefined. It follows that
T ⊔U = ⊺ by TY JOIN FUN DIFF EFF.

– ∣Ð⇀Ei∣ = ∣Ð⇀Fi∣ and Ei ⊔ Fi = Gi is defined for all i. By induction, V ⊔W = X is

defined. It follows by TY JOIN FUN that T ⊔U = (Ð⇀Gi)→X .

• T = O1@S1, where O1 = (M1,Σ1,∆1) and S1 ∈ Σ1. If U is not an object type, then
kind(T) ≠ kind(U) and T ⊔U = ⊺ by TY JOIN KIND DIFF. Let U = O2@S2 where
O2 = (M2,Σ2,∆2) and S2 ∈ Σ2.

Let (Sa,m,Ta, S′a) ∈ ∆1 and (Sb,m,Tb, S′b) ∈ ∆2. By induction, Ta ⊔Tb is defined. As
the transitions were arbitrary, ∆3 = ∆1⊔∆2 is defined. It follows that O1@S1⊔O2@S2

is defined.

In the case where T = O@S, by definition, O@S = ⊔{O@S ∣ S ∈ S}, which by
repeated induction is defined such that O@S = O′@S′. Therefore, T ⊔U is defined for
object types with state sets.

Lemma A.9.3. For all P and Q such that P ⊓Q is undefined, there exists no lower bound of

P and Q.

Proof. Let R be a lower bound of P and Q. We proceed by induction on the structure of P .

• P = Unit or P = Bool. By Lemma A.5.1, it follows that R = P . By Lemma A.5.2,
either Q = P or Q = ⊺ by SUB REFL or SUB TOP. If Q = P , then P ⊓Q is defined
by TY MEET REFL, which is a contradiction. If Q = ⊺, then P ⊓ Q is defined by
TY MEET TOP, which is a contradiction.

• P = (Ð⇀Ei) → R. By Lemma A.5.1, R = (Ð⇀Fi) → W such that R <∶ W and ∀i.Fi ≤ Ei.
By Lemma A.5.2, Q = ⊺ or Q = (Ð⇀Gi) → X such that R <∶ X and ∀i.Fi ≤ Gi. If
Q = ⊺, then P ⊓Q is defined by TY MEET TOP, which is a contradiction. Therefore
Q = (Ð⇀Gi)→X .

As P ⊓Q is undefined, it follows that eitherW ⊓X is undefined orEi⊓Gi is undefined.
By induction, if W ⊓X is undefined then there exists no lower bound of W and X ,
which contradicts the existence of R. By Lemma A.9.3 if Ei ⊓ Gi is undefined then
there exists no lower bound of Ei and Gi, which contradicts the existence of Fi and R.

A.9. Properties of join and meet 298

• P = O1@S1. By Lemma A.5.1, R = O@S such that Tr(P) ⊆ Tr(R). By Lemma
A.5.2, Q = ⊺ or Q = O2@S2 such that Tr(Q) ⊆ Tr(R). If Q = ⊺ then P ⊓Q is defined
by TY MEET TOP, which is a contradiction. Therefore, Q = O2@S2.

Let O1 = (M1,Σ1,∆1) O2 = (M2,Σ2,∆2), and O = (M,Σ,∆).

As P ⊓Q is undefined, there exists some reachable state S′ ∈ R(∆1,∆2, S1, S2) where
S′ = L(Sa, Lt(Sb)) for Sa ∈ Σ1 and Sb ∈ Σ2 such that there exists two transitions
(Sa,m,W1, S′a) ∈ ∆1 and (Sb,m,W2, S′b) ∈ ∆2 where W1 ⊓ W2 is undefined. By
induction, there is no lower bound for W1 and W2.

By Lemma A.9.5, there exists a trace δ such that trmap(P, δ) = O1@Sa and
trmap(Q, δ) = O2@Sb. As R <∶ P , δ ∈ Tr(R) and therefore trmap(P, δ) = O@S′ for
some S′. By Lemma A.4.6, O@S′ <∶ O1@Sa and O@S′ <∶ O2@Sb.

Let δ1 ∈ Tr(O1@S′a) and δ2 ∈ Tr(O2@S′b). By TR PREFIX, (m,W1).δ1 ∈ Tr(O1@Sa)
and (m,W2).δ2 ∈ Tr(O2@Sb). By SUB OBJ, both traces must also be contained in
Tr(O@S′), meaning there exists some W and S′′ such that (S′,m,W,S′′) ∈ ∆ where
W <∶W1 and W <∶W2. This is a contradiction, as there is no lower bound of W1 and
W2.

• P = T1 ⋙ U1. Consequently, Q = T2 ⋙ U2 and R = T ⋙ U such that T1 <∶ T ,
T2 <∶ T , U <∶ U1 and U <∶ U2.

In order for P ⊓ Q to be undefined, it must be the case that T1 ⊔ T2 is undefined or
U1 ⊓U2 is undefined. By Lemma A.9.2, T1 ⊔T2 is always defined, therefore U1 ⊓U2 is
undefined.

By induction, there is no lower bound of U1 and U2, which contradicts the existence of
U .

• P = T1

δ1≫ U1. Consequently, Q = T2

δ2≫ U2 and R = T δ≫ U such that T1 <∶ T , T2 <∶ T ,
∅ ⊂ δ ⊆ δ2 and ∅ ⊂ δ ⊆ δ1. Consequently, ∅ ⊂ δ ⊆ δ1 ∩ δ2.

In order for P ⊓Q to be undefined, T1 ⊔T2 is undefined or δ1 ∩ δ2 is empty. By Lemma
A.9.2, T1 ⊔ T2 is always defined, therefore δ1 ∩ δ2 is empty, which is a contradiction.

Lemma A.9.4. Let E and F be effects such that E ⊔ F is not defined. It follows that there

exists no upper bound for E and F .

Proof. by contradiction. Let G be an effect such that E ≤ G and F ≤ G. By Lemma A.8.1,
there are two cases to consider:

A.9. Properties of join and meet 299

• E = T1

δ1≫ U1, F = T2

δ2≫ U2 and G = T3

δ3≫ U3 such that T3 <∶ T1, T3 <∶ T2, δ1 ⊆ δ3 and
δ2 ⊆ δ3.

As E ⊔ F is undefined, it follows that T1 ⊓ T2 is undefined. By Lemma A.9.3, there
exists no lower bound of T1 and T2, which contradicts the existence of T3 and G.

• E = T1 ≫ U2, F = T2 ≫ U2 and G = T3 ≫ U3 such that T3 <∶ T1, T3 <∶ T2, U1 <∶ U3

and U2 <∶ U3.

As E ⊔F is undefined, it follows that T1 ⊓T2 is undefined or U1 ⊔U2 is undefined. By
Lemma A.9.2, U1 ⊔ U2 is always defined. Therefore T1 ⊓ T2 is undefined. By Lemma
A.9.3, there exists no lower bound of T1 and T2, which contradicts the existence of T3

and G.

Lemma A.9.5. For all O1@S1 and O2@S2 such that L(S′1, Lt(S′2)) ∈ R(∆1,∆2, S1, S2),

there exists a trace δ such that trmap(O1@S1, δ) = O1@S′1 and trmap(O2@S2, δ) = O2@S′2.

Proof. By induction on the derivation of L(S′1, Lt(S′2)) ∈ R(∆1,∆2, S1, S2):

• by REACH REFL. It follows that S1 = S′1 and S2 = S′2. Let δ = ε. By TR MAP EMPTY,
trmap(O1@S1, δ) = O1@S′1 and trmap(O2@S2, δ) = O2@S′2.

• by REACH ADJ. It follows that there exists two transitions (Sa,m,Ta, S′a) ∈ ∆1 and
(Sb,m,Tb, S′b) ∈ ∆2 such that L(Sa, Lt(Sb)) ∈ R(∆1,∆2, S1, S2) and L(S1, Lt(S′2)) ∈
R(∆1,∆2, S′a, S′b).

By induction, there exists a trace δl such that trmap(O1@S1, δl) = O1@Sa and
trmap(O2@S2, δl) = O2@Sb. Also by induction, there exists a trace δr such that
trmap(O1@S′a, δr) = O1@S′1 and trmap(O2@S′b, δr) = O2@S′2.

Let δ′r = (m,⊺).δr. By TR MAP PREFIX, trmap(O1@Sa, δ′r) = O1@S′1 and
trmap(O2@Sb, δ′′) = O2@S′2.

Let δ = δl + δ′r. By Lemma A.4.8, trmap(O1@S1, δ) = trmap(trmap(O1@S1, δl), δ′r),
which is equivalent to trmap(O1@S1, δ) = O1@S′1. Similarly, trmap(O2@S2, δ) =
O2@S′2.

A.10. Properties of typings 300

A.10 Properties of typings

Lemma A.10.1. Let v = λ(ÐÐÐ⇀xi ∶ Ei).t and T = (Ð⇀E′
i) → V such that ∅▷ v ∶ T ◁∅. It follows

that ∀i. Ei ≤ E′
i , and that xi ∶ in(E′

i)▷ t ∶ V ◁ xi ∶ out(E′
i).

Proof. By induction on the derivation of the typing of v:

• Derived by T FUN FL DEF, meaning xi ∶ in(Ei)▷ t ∶ V ◁ xi ∶ out(Ei) and ∀i.Ei =
E′
i . By Lemma A.8.2, ∀i. Ei ≤ E′

i . Directly, xi ∶ in(E′
i)▷ t ∶ V ◁ xi ∶ out(Ei).

• Derived by T SUB. It follows that there exists a T ′ <∶ T such that ∅ ▷ v ∶ T ′ ◁ ∅.
By Lemma A.5.1, T ′ = (Ð⇀E′′

i) → V ′′ such that ∀i. E′′
i ≤ E′

i and V ′′ <∶ V . By in-
duction, ∀i. Ei ≤ E′′

i and xi ∶ in(E′′
i) ▷ t ∶ V ′′ ◁ xi ∶ out(E′′

i). By application of
T SUBand repeated application of T WIDEN FL EFFor T WIDEN UP EFFas ap-
propriate, xi ∶ in(E′

i)▷ t ∶ V ◁ xi ∶ out(Ei). By SUB EFF TRANS, ∀i. Ei ≤ E′
i .

Lemma A.10.2. For any judgement Γ▷ t ∶ T ◁ Γ′, dom(Γ) = dom(Γ′).

Proof. Straightforward induction on the typing derivation of t.

Lemma A.10.3. Let v be a value. It follows that for any typing Γ▷ v ∶ T ◁ Γ′ that Γ = Γ′.

Proof. By induction on the typing derivation.

• v is typed by one of T UNIT, T TRUE, T FALSE, T OBJECT or T FUN FL DEF.
Directly, Γ = Γ′.

• v is typed by T SUB. It follows that there Γ▷ t ∶ U ◁ Γ′ where U <∶ T . By induction,
Γ = Γ′.

Lemma A.10.4. Let v be a value such that Γ▷ v ∶ T ◁Γ′. Let Γ′′ be an arbitrary context. It

follows that Γ′′▷ v ∶ T ◁ Γ′′.

Proof. As v is a value, it can be typed by one of T TRUE, T FALSE, T UNIT,
T FUN FL DEF, T FUN UP DEF or T OBJECT. In each of these rules, the only require-
ment of Γ and Γ′ is that they are equal. Therefore, Γ′′ ▷ t ∶ T ◁ Γ′′ is a valid typing by one
of these rules.

A.10. Properties of typings 301

Lemma A.10.5 (Substitution). If Γ ▷ t ∶ T ◁ Γ′, then Γ{xi/yi}▷ t{xi/yi} ∶ T ◁ Γ′{xi/yi}
where each xi and yi is distinct, and xi ∩ yi = ∅.

Proof. by induction on the typing derivation of t. Γ▷ t ∶ T ◁ Γ′ must have been derived by
one of the following rules:

• T UNIT, T TRUE, T FALSE, T OBJECT, T FUN FL DEF or T FUN UP DEF.
For each of these rules, Γ = Γ′. Therefore, Γ{xi/yi} = Γ′{xi/yi}. and substitution has no
effect on the value. The rule used for derivation has no specific requirements of either
Γ or Γ′ other than that they are equal. Therefore, Γ{xi/yi}▷ v{xi/yi} ∶ T ◁ Γ′{xi/yi}.

• T LET. It follows that t = let x = tv in tb. Substitution is defined on this term such
that
t{xi/yi} ≡ let x = (tv{xi/yi}) in (tb{xj/yj}) , where yj = yi − {x}.

By rule T LET, it follows that there exists Tv, T ′
v,Γ1 such that Γ▷ tv ∶ Tv◁Γ1 and that

Γ1, x ∶ Tv ▷ tb ∶ T ◁ Γ′, x ∶ T ′
v. Additionally, x ∉ dom(Γ).

By induction, tv can be substituted such that Γ{xi/yi} ▷ tv{xi/yi} ∶ Tv ◁ Γ1{xi/yi}.
Additionally, tb can be substituted such that (Γ1{xj/yj}), x ∶ Tv ▷ tb{xj/yj} ∶ T ◁
{(xj/yj}Γ′), x ∶ T ′

v as it is guaranteed that x ∉ yj . As dom(Γ′) = dom(Γ), and that
x ∉ dom(Γ), it follows that Γ1{xi/yi} = (Γ1{xj/yj}) and that xi/yi}Γ′ = xj/yj}Γ′.

Therefore, the requirements of T LETare satisfied such that Γ{xi/yi}▷ t{xi/yi} ∶ T ◁
Γ′{xi/yi}.

• T SEQ. It follows that t = tl; tr, and there exists Γ′′, T ′ such that Γ ▷ tl ∶ T ′ ◁ Γ′′

and Γ′′ ▷ tr ∶ T ◁ Γ′. Substitution is defined on this term such that (tl; tr){xi/yi} ≡
tl{xi/yi}; tr{xi/yi}.

By induction, tl and tr can be typed such that Γ{xi/yi}▷ tl{xi/yi} ∶ T ′◁Γ′′{xi/yi} and
Γ′′{xi/yi}▷ tr{xi/yi} ∶ T ◁ Γ′{xi/yi}.

Therefore, t can by typed using T SEQsuch that Γ{xi/yi}▷ t{xi/yi} ∶ T ◁ Γ′{xi/yi}.

• T FUN CALL. It follows that t = z(Ð⇀zk) and that Γ = Γ1, zk ∶ Tk, Γ′ = Γ1, zk ∶ T ′
k where

Γ1(z) = (Ð⇀Ek) → T with for each k, Tk <∶ Uk and T ′
k = remap(Tk,Ek). Each variable

in zk ∪ {z} is distinct.

Substitution is defined on this term such that z(Ð⇀zk){xi/yi} ≡ z′(Ð⇀z′k) where z′ = z if
z ∉ yi or z = xi for the xi such that z = yi, and similarly for all zi.

The uniqueness of each substitution pair ensures that no variable will be passed twice
as part of the function call. Therefore, the conditions of T FUN CALLare satisfied
such that

Γ{xi/yi}▷ t{xi/yi} ∶ T ◁ Γ′{xi/yi}.

A.10. Properties of typings 302

• T METH CALL. It follows that t = x.m with Γ = Γ1, x ∶ O@S and Γ′ = Γ1, x ∶ O@S′

such that m ∶ T ⇒ S′ ∈ O@S.

Substitution is defined on this term such that x.m{xi/yi} ≡ z.m where z = xj if x = yj
for some yj ∈ yi. Otherwise, z = x.

The conditions of T METH CALL are satisfied such that Γ{xi/yi} ▷ t{xi/yi} ∶ T ◁
Γ′{xi/yi}.

• T IF. It follows that t = if tc then tt else tf , where there exists Γ1, Γ2, Γ3, Tt, Tf
such that Γ▷ tc ∶ Bool◁Γ1 and that Γ1▷ tt ∶ Tt◁Γ2 and that Γ1▷ tf ∶ Tf ◁Γ3 where
Γ′ = Γ2 ⊓ Γ3 and T = Tt ⊔ Tf .

Substitution is defined on this term such that
(if tc then tt else tf){xi/yi} ≡ if tc{xi/yi} then tt{xi/yi} else tf{xi/yi}.

By induction substitution can be performed on tc, tt and tf such that Γ{xi/yi} ▷
tc{xi/yi} ∶ Bool ◁ Γ1{xi/yi} and that Γ1{xi/yi} ▷ tt{xi/yi} ∶ Tt ◁ Γ2{xi/yi} and
Γ1{xi/yi}▷ tf{xi/yi} ∶ Tf ◁ Γ3{xi/yi}. By the definition of substitution on contexts,
Γ2{xi/yi} ⊓ Γ3{xi/yi} = Γ′{xi/yi}.

The conditions of the rule T IF are satisfied such that
Γ{xi/yi}▷ if tc then tt else tf{xi/yi} ∶ T ◁ Γ′{xi/yi}.

• T WHILE A. It follows that t = while tc do tb. Contexts Γ1 through Γ4 exist where
dom(Γ1) = dom(Γ2) and dom(Γ3) = dom(Γ4), and there exists a type Tb such that
Γ1 ▷ tc ∶ Bool◁ Γ2 and Γ3 ▷ tb ∶ Tb◁ Γ4.

Let Ec(x) = extract(x,Γ1,Γ2) and Eb(x) = extract(x,Γ3,Γ4).

Finally, Γ′ = {x ∶ remap(Γ(x),Ec(x) ⋅ (Eb(x) ⋅ Ec(x))∗) ∣ x ∈ dom(Γ1)} and T =
Unit.

Substitution is defined on this term such that
(while tc do tb){xi/yi} ≡while tc{xi/yi} do tb{xi/yi}.

Let Γ′
1 = Γ1{xi/yi}, Γ′

2 = Γ2{xi/yi}, Γ′
3 = Γ3{xi/yi} and Γ′

4 = Γ4{xi/yi}.

By induction, tc and tb can by typed such that Γ′
1 ▷ tc{xi/yi} ∶ Bool ◁ Γ′

2 and that
Γ′

3 ▷ tb{xi/yi} ∶ Tb◁ Γ′
4.

Let Γ′
5 = Γ{xi/yi}. Let E′

c(x) = extract(x,Γ′
1,Γ

′
2) and E′

b(x) = extract(x,Γ′
3,Γ

′
4). Let

Γ′
6 = {x ∶ remap(Γ(x),E′

c(x) ⋅ (E′
b(x) ⋅E′

c(x))∗) ∣ x ∈ dom(Γ′
5)}, which is equivalent

to Γ′{xi/yi}.

By T WHILE A, Γ′
5 ▷ while tc do tb{xi/yi} ∶ T ◁ Γ′

6, which is equivalent to
Γ{xi/yi}▷while tc do tb{xi/yi} ∶ T ◁ Γ′{xi/yi}.

A.10. Properties of typings 303

• T WHILE B. It follows that t = while tc do tb and there exists a Γ′′ ≥ Γ such that
Γ▷ tc ∶ Bool◁ Γ′ and Γ′▷ tb ∶ T ◁ Γ′′.

By induction, tc and tb can be typed such that Γ{xi/yi}▷ tc{xi/yi} ∶ Bool◁ Γ′{xi/yi}
and Γ′{xi/yi}▷ tc{xi/yi} ∶ Bool◁ Γ′′{xi/yi}.

Therefore by T WHILE B, Γ{xi/yi}▷ t ∶Unit◁ Γ′{xi/yi}.

• T SUB. It follows that Γ ▷ t ∶ T ′ ◁ Γ′ for some T ′ <∶ T . By induction, Γ{xi/yi}▷
t{xi/yi} ∶ T ′◁ Γ′{xi/yi}. By rule T SUB, Γ{xi/yi}▷ t{xi/yi} ∶ T ◁ Γ′{xi/yi}.

• T WIDEN FL EFF. It follows that Γ = Γ1, x ∶ U and Γ′ = Γ2, x ∶ V and there exists
a U ′ and V ′ such that Γ1, x ∶ U ′ ▷ t ∶ T ◁ Γ2, x ∶ V ′ and U ′ ≫ V ′ ≤ U ≫ V .
By induction, Γ1, x ∶ U ′{xi/yi}▷ t ∶ T ◁ Γ2, x ∶ V ′{xi/yi}. By T WIDEN FL EFF,
Γ1, x ∶ U{xi/yi}▷ t ∶ T ◁ Γ2, x ∶ V {xi/yi}.

• T WIDEN UP EFF— similar reasoning to T WIDEN FL EFF.

A.10.1 Flow effect specific properties

Definition A.10.1 (Required properties of effect combinators). The following properties of
effect combinators are required and asserted due to the lack of a formal definition:

• If T ≫ U ⋅ V ≫W =X ≫ Y , and remap(X,T ≫ U) = Z, then T ≫ U ≤X ≫ Z and
V ≫W ≤ Z ≫ Y .

• If T ≫ U ∣ V ≫W =X ≫ Y , then T ≫ U ≤X ≫ Y and V ≫W ≤X ≫ Y .

• remap(T, (U ≫ V)∗) = T ⊔ remap(W, (U ≫ V)∗) where W = remap(T,U ≫ V).

• remap(T,E ⋅ F) <∶ remap(remap(T,E), F).

▲

Lemma A.10.6 (Upgrading, with flow effects). Let t be a term such that Γ1 ▷ t ∶ U ◁ Γ3.

If Γ2 ≥ Γ1, then for Γ4 = {remap(Γ2(x),Γ1(x) ≫ Γ3(x)) ∣ x ∈ dom(Γ3)} ∪ {Γ2(x) ∣ x ∉
dom(Γ3)}, it follows that Γ2▷t ∶ U◁Γ4. Additionally, Γ4 ≥ Γ3 and ∀x ∈ dom(Γ3).Γ1(x) ≫
Γ3(x) ≤ Γ2(x) ≫ Γ4(x).

A.10. Properties of typings 304

Proof. As Γ2 ≥ Γ1, there exists a Γ′
2 such that Γ2 = Γ′

2, xi ∶ Ti where dom(Γ′
2) = dom(Γ1)

and ∀x ∈ dom(Γ1).Γ′
2(x) <∶ Γ′

1(x). The set xi ∶ Ti may be empty.

By Lemma A.6.1, ∀x ∈ dom(Γ3).remap(Γ2(x),Γ1(x) ≫ Γ3x) <∶ Γ3(x), which is equiva-
lent to ∀x ∈ dom(Γ3).Γ4(x) <∶ Γ3(x). Therefore, Γ4 ≥ Γ3.

By Lemma A.7.6, ∀x ∈ dom(Γ3).Γ1(x) ≫ Γ3(x) ≤ Γ2(x) ≫ Γ4(x).

By Lemma A.10.2, dom(Γ1) = dom(Γ3). By repeated application of T WIDEN FL EFF

and the weakening lemma (A.1.5) , Γ2 ▷ t ∶ U ◁ Γ4.

A.10.2 Upgrade effect specific properties

Lemma A.10.7 (Upgrading, with update effects). Let Γ1 ≤ Γ2. Let t be a term such that

Γ1 ▷ t ∶ U ◁ Γ3. It follows that there exists a Γ4 such that Γ3 ≤ Γ4 and Γ2 ▷ t ∶ U ′◁ Γ4.

Proof. As Γ1 ≤ Γ2, it follows that there exists a Γ5 and xi ∶ Ti (which is potentially empty)
such that Γ2 = Γ5, xi ∶ Ti where dom(Γ5) = dom(Γ1) and ∀x ∈ dom(Γ1). Γ5(x) <∶ Γ1(x).
Let Γ4 = Γ3, xi ∶ Ti. By T WIDEN UP EFF, Γ5 ▷ t ∶ U ◁ Γ3. By the weakening lemma
(A.1.5) , Γ2 ▷ t ∶ U ◁ Γ4.

BIBLIOGRAPHY 305

Bibliography

[1] ABADI, M., AND CARDELLI, L. A Theory of Objects. Springer, 1996.

[2] ALDRICH, J., ET AL. The Plaid language. URL: http://www.cs.cmu.edu/

˜aldrich/plaid.

[3] ALDRICH, J., SUNSHINE, J., SAINI, D., AND SPARKS, Z. Typestate-oriented pro-
gramming. In OOPSLA 2009, ACM. doi:10.1145/1639950.1640073.

[4] ALLAN, C., AVGUSTINOV, P., CHRISTENSEN, A. S., ET AL. Adding trace match-
ing with free variables to AspectJ. In OOPSLA 2005, ACM. doi:10.1145/

1094811.1094839.

[5] AMIN, N., MOORS, A., AND ODERSKY, M. Dependent object types. In Workshop

on Foundations of Object-Oriented Languages (FOOL) 2012.

[6] AUGUSTSSON, L., AND CARLSSON, M. An exercise in dependent types: A well-
typed interpreter. In Workshop on Dependent Types in Programming, Gothenburg

(1999).

[7] AVGUSTINOV, P., TIBBLE, J., AND DE MOOR, O. Making trace monitors feasi-
ble. ACM SIGPLAN Notices 42, 10 (Oct. 2007), 589. doi:10.1145/1297105.
1297070.

[8] BALL, T., AND RAJAMANI, S. K. Automatically validating temporal safety proper-
ties of interfaces. In Proceedings of the 8th international SPIN workshop on Model

checking of software (2001), Springer-Verlag New York, Inc., pp. 103–122.

[9] BARENDREGT, H. Introduction to Generalized Type Systems. Journal of Functional

Programming 1, 2 (1991), 125–154.

[10] BARNETT, M., FÄHNDRICH, M., LEINO, K. R. M., ET AL. Specification and verifi-
cation: the Spec# experience. Communications of the ACM 54, 6 (June 2011), 81–91.
doi:10.1145/1953122.1953145.

http://www.cs.cmu.edu/~aldrich/plaid
http://www.cs.cmu.edu/~aldrich/plaid
http://dx.doi.org/10.1145/1639950.1640073
http://dx.doi.org/10.1145/1094811.1094839
http://dx.doi.org/10.1145/1094811.1094839
http://dx.doi.org/10.1145/1297105.1297070
http://dx.doi.org/10.1145/1297105.1297070
http://dx.doi.org/10.1145/1953122.1953145

Bibliography 306

[11] BARNETT, M., LEINO, K. R. M., AND SCHULTE, W. The Spec# Programming
System : An Overview. Lecture Notes in Computer Science 3362 (2005), 49–69.
doi:10.1007/978-3-540-30569-9_3.

[12] BECKMAN, N., BIERHOFF, K., AND ALDRICH, J. Verifying correct usage of
atomic blocks and typestate. In OOPSLA 2008, ACM. doi:10.1145/1449955.
1449783.

[13] BECKMAN, N. E., KIM, D., AND ALDRICH, J. An empirical study of ob-
ject protocols in the wild. In ECOOP 2011, Springer. doi:10.1007/

978-3-642-22655-7_2.

[14] BECKMAN, N. E., AND NORI, A. V. Probabilistic, modular and scalable infer-
ence of typestate specifications. In PLDI 2011, ACM. doi:10.1145/1993316.
1993524.

[15] BETTINI, L., COPPO, M., DANTONI, L., DE LUCA, M., DEZANI-CIANCAGLINI,
M., AND YOSHIDA, N. Global progress in dynamically interleaved multiparty ses-
sions. In CONCUR 2008. Springer. doi:10.1007/978-3-540-85361-9_33.

[16] BIERHOFF, K., BECKMAN, N., AND ALDRICH, J. Practical API protocol check-
ing with access permissions. In ECOOP 2009, Springer. doi:10.1007/

978-3-642-03013-0_10.

[17] BLACKWELL, A. F., AND GREEN, T. R. A cognitive dimensions questionnaire opti-
mised for users. In The Psychology of Programming Interest Group (PPIG) Workshop

(2000).

[18] BLOCH, J. Effect Java, Second Edition. Addison-Wesley, 2008.

[19] BODDEN, E. Verifying finite-state properties of large-scale programs. PhD thesis,
McGill University, 2009.

[20] BODDEN, E., HENDREN, L., AND LHOTÁK, O. A staged static program analysis to
improve the performance of runtime monitoring. In ECOOP 2007–Object-Oriented

Programming. Springer, 2007, pp. 525–549.

[21] BODDEN, E., LAM, P., AND HENDREN, L. Clara: a framework for statically eval-
uating finite-state runtime monitors. In Runtime Verification (RV) 2010, Springer.
doi:10.1007/978-3-642-16612-9_15.

[22] BONELLI, E., AND COMPAGNONI, A. Multipoint session types for a distributed
calculus. In Trustworthy Global Computing. Springer, 2008. doi:10.1007/

978-3-540-78663-4_17.

http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1145/1449955.1449783
http://dx.doi.org/10.1145/1449955.1449783
http://dx.doi.org/10.1007/978-3-642-22655-7_2
http://dx.doi.org/10.1007/978-3-642-22655-7_2
http://dx.doi.org/10.1145/1993316.1993524
http://dx.doi.org/10.1145/1993316.1993524
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-642-03013-0_10
http://dx.doi.org/10.1007/978-3-642-03013-0_10
http://dx.doi.org/10.1007/978-3-642-16612-9_15
http://dx.doi.org/10.1007/978-3-540-78663-4_17
http://dx.doi.org/10.1007/978-3-540-78663-4_17

Bibliography 307

[23] BOVE, A., DYBJER, P., AND NORELL, U. A brief overview of Agda — a func-
tional language with dependent types. In TPHOLs 2009. Springer. doi:10.1007/
978-3-642-03359-9_6.

[24] BOYLAND, J. Checking interference with fractional permissions. In SAS 2003,
Springer. doi:10.1007/3-540-44898-5_4.

[25] BRADY, E. C. Idris: systems programming meets full dependent types. In PLPV

2011, ACM. doi:10.1145/1929529.1929536.

[26] BRADY, E. C. Programming and reasoning with algebraic effects and dependent
types. In ICFP 2013 (to appear).

[27] BROOKS, R. Towards a theory of the cognitive processes in computer program-
ming. International Journal of Man-Machine Studies 9, 6 (1977), 737–751. doi:

10.1016/S0020-7373(77)80039-4.

[28] BROOKS, R. Towards a theory of the comprehension of computer programs. Inter-

national journal of man-machine studies 18, 6 (1983), 543–554. doi:10.1016/

S0020-7373(83)80031-5.

[29] CAPECCHI, S., COPPO, M., DEZANI-CIANCAGLINI, M., DROSSOPOULOU, S.,
AND GIACHINO, E. Amalgamating sessions and methods in object-oriented lan-
guages with generics. Theoretical Computer Science 410, 2 (2009), 142–167. doi:
10.1016/j.tcs.2008.09.016.

[30] CHALIN, P., KINIRY, J., LEAVENS, G., AND POLL, E. Beyond assertions: advanced
specification and verification with JML and ESC/Java2. In FMCO 2006, Springer.
doi:10.1007/11804192_16.

[31] CHEN, F., AND ROŞU, G. Mop: an efficient and generic runtime verification frame-
work. In ACM SIGPLAN Notices (2007), vol. 42, ACM, pp. 569–588.

[32] CLARKE, S. Evaluating a new programming language. In The Psychology of Pro-

gramming Interest Group (PPIG) Workshop (2001).

[33] COK, D. R. Specifying java iterators with JML and ESC/Java2. In SAVCBS 2006,
ACM. doi:10.1145/1181195.1181210.

[34] COLLINGBOURNE, P., AND KELLY, P. H. Inference of session types from control
flow. In FESCA 2008, Elsevier. doi:10.1016/j.entcs.2010.06.003.

[35] DAMAS, L., AND MILNER, R. Principal type-schemes for functional programs. In
POPL 1982, ACM. doi:10.1145/582153.582176.

http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1145/1929529.1929536
http://dx.doi.org/10.1016/S0020-7373(77)80039-4
http://dx.doi.org/10.1016/S0020-7373(77)80039-4
http://dx.doi.org/10.1016/S0020-7373(83)80031-5
http://dx.doi.org/10.1016/S0020-7373(83)80031-5
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1007/11804192_16
http://dx.doi.org/10.1145/1181195.1181210
http://dx.doi.org/10.1016/j.entcs.2010.06.003
http://dx.doi.org/10.1145/582153.582176

Bibliography 308

[36] DELINE, R., AND FÄHNDRICH, M. Enforcing high-level protocols in low-level
software. In PLDI 2001, ACM. doi:10.1145/378795.378811.

[37] DELINE, R., AND FÄHNDRICH, M. Typestates for objects. In ECOOP 2004,
Springer. doi:10.1007/978-3-540-24851-4_21.

[38] DELINE, R., AND FÄHNDRICH, M. The Fugue protocol checker: Is your software
baroque. Tech. Rep. MSR-TR-2004-07, Microsoft Research, 2004.

[39] DENIÉLOU, P.-M., AND YOSHIDA, N. Multiparty session types meet
communicating automata. In ETAPS 2012. Springer. doi:10.1007/

978-3-642-28869-2_10.

[40] DEZANI-CIANCAGLINI, M., GIACHINO, E., DROSSOPOULOU, S., AND YOSHIDA,
N. Bounded session types for object oriented languages. In FMCO 2006, Springer.
doi:10.1007/978-3-540-74792-5_10.

[41] DEZANI-CIANCAGLINI, M., MOSTROUS, D., YOSHIDA, N., AND

DROSSOPOULOU, S. Session types for object-oriented languages. In ECOOP

2006. Springer. doi:10.1007/11785477_20.

[42] DEZANI-CIANCAGLINI, M., YOSHIDA, N., AHERN, A., AND DROSSOPOULOU,
S. A distributed object-oriented language with session types. In Trustworthy Global

Computing. Springer, 2005. doi:10.1007/11580850_16.

[43] DUKE, R., SALZMAN, E., BURMEISTER, J., POON, J., AND MURRAY, L. Teaching
programming to beginners-choosing the language is just the first step. In Proceedings

of the Australasian conference on Computing education (2000), ACM, pp. 79–86.

[44] DWYER, M. B., AVRUNIN, G. S., AND CORBETT, J. C. Patterns in property spec-
ifications for finite-state verification. ICSE ’99 (1999), 411–420. doi:10.1145/
302405.302672.

[45] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND NOTKIN, D. Dynamically
discovering likely program invariants to support program evolution. IEEE Transac-

tions on Software Engineering 27, 2 (2001), 99–123. doi:10.1109/32.908957.

[46] FÄHNDRICH, M. Static verification for code contracts. In SAS 2010. Springer. doi:
10.1007/978-3-642-15769-1_2.

[47] FÄHNDRICH, M., BARNETT, M., AND LOGOZZO, F. Embedded contract languages.
In SAC 2010, ACM. doi:10.1145/1774088.1774531.

http://dx.doi.org/10.1145/378795.378811
http://dx.doi.org/10.1007/978-3-540-24851-4_21
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/10.1007/978-3-642-15769-1_2
http://dx.doi.org/10.1007/978-3-642-15769-1_2
http://dx.doi.org/10.1145/1774088.1774531

Bibliography 309

[48] FINK, S. J., YAHAV, E., DOR, N., RAMALINGAM, G., AND GEAY, E. Effective
typestate verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol.

17, 2 (2008), 1–34. doi:10.1145/1348250.1348255.

[49] FLOYD, R. W. Assigning meaning to programs. In Mathematical aspects of computer

science, vol. 19. American Mathematical Society, 1967.

[50] FUH, Y.-C., AND MISHRA, P. Polymorphic subtype inference: Closing the theory-
practice gap. In TAPSOFT 1989, Springer. doi:10.1007/3-540-50940-2_

35.

[51] FUH, Y.-C., AND MISHRA, P. Type inference with subtypes. In ESOP 1988,
Springer. doi:10.1007/3-540-19027-9_7.

[52] FULGHAM, B., BAGLEY, D., ET AL. The computer language benchmarks game.
URL: http://benchmarksgame.alioth.debian.org/.

[53] GALIL, Z., AND ITALIANO, G. F. Data structures and algorithms for disjoint set
union problems. ACM Computing Surveys (CSUR) 23, 3 (1991), 319–344. doi:

10.1145/116873.116878.

[54] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. M. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[55] GANNON, J. D., AND HORNING, J. J. The impact of language design on the
production of reliable software. ACM SIGPLAN Notices 10, 6 (1975), 10. doi:

10.1145/390016.808420.

[56] GAY, S., AND HOLE, M. Subtyping for session types in the pi calculus. Acta Infor-

matica 42, 2-3 (2005), 191–225. doi:10.1007/s00236-005-0177-z.

[57] GAY, S. J., AND VASCONCELOS, V. T. Linear type theory for asynchronous session
types. Journal of Functional Programming 20, 01 (2010), 19–50. doi:10.1017/
S0956796809990268.

[58] GAY, S. J., VASCONCELOS, V. T., RAVARA, A., GESBERT, N., AND CALDEIRA,
A. Z. Modular session types for distributed object-oriented programming. In POPL

2010. doi:10.1145/1706299.1706335.

[59] GIRARD, J.-Y. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101.
doi:10.1016/0304-3975(87)90045-4.

[60] GOPINATHAN, M., AND RAJAMANI, S. K. Enforcing object protocols by combin-
ing static and runtime analysis. In OOPSLA 2008. doi:10.1145/1449764.

1449784.

http://dx.doi.org/10.1145/1348250.1348255
http://dx.doi.org/10.1007/3-540-50940-2_35
http://dx.doi.org/10.1007/3-540-50940-2_35
http://dx.doi.org/10.1007/3-540-19027-9_7
http://benchmarksgame.alioth.debian.org/
http://dx.doi.org/10.1145/116873.116878
http://dx.doi.org/10.1145/116873.116878
http://dx.doi.org/10.1145/390016.808420
http://dx.doi.org/10.1145/390016.808420
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1017/S0956796809990268
http://dx.doi.org/10.1017/S0956796809990268
http://dx.doi.org/10.1145/1706299.1706335
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1145/1449764.1449784
http://dx.doi.org/10.1145/1449764.1449784

Bibliography 310

[61] GRAHAM, S. L., AND WEGMAN, M. A fast and usually linear algorithm for global
flow analysis. Journal of the ACM (JACM) 23, 1 (1976), 172–202. doi:10.1145/
321921.321939.

[62] GREEN, T., PETRE, M., AND BELLAMY, R. Comprehensibility of visual and textual
programs: A test of superlativism against thematch-mismatchconjecture. ESP 91, 743
(1991), 121–146.

[63] GREEN, T. R. G. Cognitive dimensions of notations. In People and Computers V

(1989), pp. 443–460.

[64] GREEN, T. R. G., AND PETRE, M. Usability analysis of visual programming en-
vironments: a ‘cognitive dimensions’ framework. Journal of Visual Languages &

Computing 7, 2 (1996), 131–174. doi:10.1006/jvlc.1996.0009.

[65] GUPTA, D. What is a good first programming language? Crossroads 10, 4 (2004),
7–7.

[66] HAREL, D. Statecharts: A visual formalism for complex systems. Science of

Computer Programming 8, 3 (1987), 231–274. doi:10.1016/0167-6423(87)
90035-9.

[67] HOARE, C. A. R. An axiomatic basis for computer programming. Communications

of the ACM 12, 10 (Oct. 1969), 576–580. doi:10.1145/363235.363259.

[68] HOARE, C. A. R. Null references: The billion dollar mistake. Pre-
sented at QCon London. URL: http://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.

[69] HONDA, K., AND BROWN, G. The Scribble language. URL: http://www.
jboss.org/scribble.

[70] HONDA, K., MUKHAMEDOV, A., BROWN, G., CHEN, T.-C., AND YOSHIDA, N.
Scribbling interactions with a formal foundation. In The 7th International Conference

on Distributed Computing and Internet Technology (ICDIT). Springer, 2011. doi:
10.1007/978-3-642-19056-8_4.

[71] HONDA, K., VASCONCELOS, V., AND KUBO, M. Language primitives and type dis-
cipline for structured communication-based programming. In ESOP 1998, Springer.
doi:10.1007/BFb0053567.

[72] HONDA, K., YOSHIDA, N., AND CARBONE, M. Multiparty asynchronous session
types. In POPL 2008, ACM. doi:10.1145/1328438.1328472.

http://dx.doi.org/10.1145/321921.321939
http://dx.doi.org/10.1145/321921.321939
http://dx.doi.org/10.1006/jvlc.1996.0009
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1145/363235.363259
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.jboss.org/scribble
http://www.jboss.org/scribble
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472

Bibliography 311

[73] HU, R., KOUZAPAS, D., PERNET, O., YOSHIDA, N., AND HONDA, K. Type-
safe eventful sessions in Java. In ECOOP 2010. Springer. doi:10.1007/

978-3-642-14107-2_16.

[74] HU, R., YOSHIDA, N., AND HONDA, K. Session-based distributed programming in
java. In ECOOP 2008. Springer, 2008. doi:10.1007/978-3-540-70592-5_
22.

[75] IGARASHI, A., PIERCE, B. C., AND WADLER, P. Featherweight java: a minimal
core calculus for java and gj. ACM Transactions on Programming Languages and

Systems (TOPLAS) 23, 3 (2001), 396–450. doi:10.1145/503502.503505.

[76] IHAKA, R., AND GENTLEMAN, R. R: A language for data analysis and graphics.
Journal of computational and graphical statistics 5, 3 (1996), 299–314. doi:10.

1080/10618600.1996.10474713.

[77] IHAKA, R., GENTLEMAN, R., ET AL. The R project for statistical computing. URL:
http://www.r-project.org/.

[78] JASPAN, C., AND ALDRICH, J. Are object protocols burdensome?: an empirical
study of developer forums. In PLATEAU 2011, ACM. doi:10.1145/2089155.
2089168.

[79] JASPAN, C., AND ALDRICH, J. Checking framework interactions with relationships.
In ECOOP 2009, Springer. doi:10.1007/978-3-642-03013-0_3.

[80] JIM, T. What are principal typings and what are they good for? In POPL 1996, ACM.
doi:10.1145/237721.237728.

[81] KADODA, G. A cognitive dimensions view of the differences between designers
and users of theorem proving assistants. In The Psychology of Programming Interest

Group (PPIG) Workshop (2000).

[82] KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND

GRISWOLD, W. G. An overview of AspectJ. In ECOOP 2001, Springer. doi:

10.1007/3-540-45337-7_18.

[83] KREMENEK, T., TWOHEY, P., BACK, G., NG, A., AND ENGLER, D. From uncer-
tainty to belief: Inferring the specification within. In OSDI 2006, USENIX Associa-
tion, pp. 161–176.

[84] LEAVENS, G. T., BAKER, A. L., AND RUBY, C. JML: A Java modeling language.
In Formal Underpinnings of Java Workshop at OOPSLA 1998.

http://dx.doi.org/10.1007/978-3-642-14107-2_16
http://dx.doi.org/10.1007/978-3-642-14107-2_16
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1080/10618600.1996.10474713
http://dx.doi.org/10.1080/10618600.1996.10474713
http://www.r-project.org/
http://dx.doi.org/10.1145/2089155.2089168
http://dx.doi.org/10.1145/2089155.2089168
http://dx.doi.org/10.1007/978-3-642-03013-0_3
http://dx.doi.org/10.1145/237721.237728
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/3-540-45337-7_18

Bibliography 312

[85] LEAVENS, G. T., POLL, E., CLIFTON, C., CHEON, Y., RUBY, C., COK, D.,
MÜLLER, P., KINIRY, J., CHALIN, P., AND ZIMMERMAN, D. M. JML Reference
Manual. 2009.

[86] LEE, T., ET AL. The Netty Project. URL: http://netty.io/.

[87] MALAYERI, D., AND ALDRICH, J. CZ: multiple inheritance without diamonds. In
OOPSLA 2009, ACM. doi:10.1145/1640089.1640092.

[88] MALAYERI, D., AND ALDRICH, J. Integrating nominal and structural subtyping. In
ECOOP 2008. Springer. doi:10.1007/978-3-540-70592-5_12.

[89] MANN, H. B., AND WHITNEY, D. R. On a test of whether one of two random
variables is stochastically larger than the other. The Annals of Mathematical Statistics

18, 1 (1947), 50–60. doi:10.1214/aoms/1177730491.

[90] MARKSTRUM, S. Staking claims: a history of programming language design claims
and evidence: a positional work in progress. In PLATEAU 2010, ACM. doi:10.
1145/1937117.1937124.

[91] MARTELLI, A., AND MONTANARI, U. An efficient unification algorithm. ACM

Transactions on Programming Languages and Systems (TOPLAS) 4, 2 (1982), 258–
282. doi:10.1145/357162.357169.

[92] MCBRIDE, C., AND PATERSON, R. Applicative programming with effects.
Journal of Functional Programming 18, 01 (2007), 1–13. doi:10.1017/

S0956796807006326.

[93] MEIJER, E., BECKMAN, B., AND BIERMAN, G. LINQ: reconciling object, rela-
tions and XML in the .NET framework. In SIGMOD 2006, ACM. doi:10.1145/
1142473.1142552.

[94] MEYER, B. Eiffel: A language and environment for software engineering. Jour-

nal of Systems and Software 8, 3 (June 1988), 199–246. doi:10.1016/

0164-1212(88)90022-2.

[95] MICROSOFT. Code Contracts. URL: http://research.microsoft.com/
en-us/projects/contracts/.

[96] MILITÃO, F., ALDRICH, J., AND CAIRES, L. Aliasing control with view-based
typestate. In FTFJP 2010, ACM. doi:10.1145/1924520.1924527.

[97] MILNER, R. Communicating and mobile systems: the pi calculus. Cambridge Uni-
versity Press, 1999.

http://netty.io/
http://dx.doi.org/10.1145/1640089.1640092
http://dx.doi.org/10.1007/978-3-540-70592-5_12
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1145/1937117.1937124
http://dx.doi.org/10.1145/1937117.1937124
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1016/0164-1212(88)90022-2
http://dx.doi.org/10.1016/0164-1212(88)90022-2
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://dx.doi.org/10.1145/1924520.1924527

Bibliography 313

[98] MINSKY, Y., MADHAVAPEDDY, A., AND MINSKY, Y. Real World OCaml. O’Reilly
Media, Inc., 2013.

[99] MITCHELL, J. C. Coercion and type inference. In POPL 1984, ACM. doi:10.

1145/800017.800529.

[100] MITCHELL, J. C. Type inference with simple subtypes. Journal of functional pro-

gramming 1, 03 (1991), 245–285. doi:10.1017/S0956796800000113.

[101] MOORE, E. F. Gedanken-experiments on sequential machines. Automata studies 34,
129–153.

[102] MORRISETT, G. L3: A linear language with locations. Typed Lambda Calculi and

Applications (2005), 293–307. doi:10.1007/11417170_22.

[103] MOSTROUS, D., AND YOSHIDA, N. A session object calculus for structured com-
munication based-programming. Tech. rep., University of Lisbon, 2008.

[104] NADEN, K., BOCCHINO, R., ALDRICH, J., AND BIERHOFF, K. A type system
for borrowing permissions. In POPL 2012, ACM. doi:10.1145/2103656.

2103722.

[105] NAEEM, N. A., AND LHOTAK, O. Typestate-like analysis of multiple interacting
objects. In OOPSLA 2008, ACM. doi:10.1145/1449764.1449792.

[106] NANEVSKI, A., MORRISETT, G., SHINNAR, A., GOVEREAU, P., AND BIRKEDAL,
L. Ynot: dependent types for imperative programs. In ICFP 2008, ACM. doi:

10.1145/1411204.1411237.

[107] NEUBAUER, M., AND THIEMANN, P. An implementation of session types. In Prac-

tical Aspects of Declarative Languages (PADL) 2004. Springer. doi:10.1007/

978-3-540-24836-1_5.

[108] NG, N., YOSHIDA, N., PERNET, O., HU, R., AND KRYFTIS, Y. Safe parallel pro-
gramming with session java. In Coordination Models and Languages (COORDINA-

TION) 2011, Springer. doi:10.1007/978-3-642-21464-6_8.

[109] NIELSON, F., AND NIELSON, H. R. Type and effect systems. In Correct System

Design. Springer, 1999. doi:10.1007/3-540-48092-7_6.

[110] NIERSTRASZ, O. Regular types for active objects. In OOPSLA 1993, ACM. doi:
10.1145/165854.167976.

http://dx.doi.org/10.1145/800017.800529
http://dx.doi.org/10.1145/800017.800529
http://dx.doi.org/10.1017/S0956796800000113
http://dx.doi.org/10.1007/11417170_22
http://dx.doi.org/10.1145/2103656.2103722
http://dx.doi.org/10.1145/2103656.2103722
http://dx.doi.org/10.1145/1449764.1449792
http://dx.doi.org/10.1145/1411204.1411237
http://dx.doi.org/10.1145/1411204.1411237
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1007/978-3-642-21464-6_8
http://dx.doi.org/10.1007/3-540-48092-7_6
http://dx.doi.org/10.1145/165854.167976
http://dx.doi.org/10.1145/165854.167976

Bibliography 314

[111] ODERSKY, M., ALTHERR, P., CREMET, V., EMIR, B., MANETH, S., MICHELOUD,
S., MIHAYLOV, N., SCHINZ, M., STENMAN, E., AND ZENGER, M. An overview
of the Scala programming language. Tech. rep., 2004.

[112] ODERSKY, M., CREMET, V., RÖCKL, C., AND ZENGER, M. A nominal theory
of objects with dependent types. In ECOOP 2003, Springer. doi:10.1007/

978-3-540-45070-2_10.

[113] ODERSKY, M., AND WADLER, P. Pizza into Java: Translating theory into practice.
In POPL 1997 (1997), ACM. doi:10.1145/263699.263715.

[114] O’SULLIVAN, B., GOERZEN, J., AND STEWART, D. B. Real World Haskell.
O’Reilly Media, Inc., 2008.

[115] PARNIN, C. A cognitive neuroscience perspective on memory for programming tasks.
In The Psychology of Programming Interest Group (PPIG) Workshop (2010).

[116] PEARSON, K. On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably sup-
posed to have arisen from random sampling. Philosophical Magazine Series 5 50, 302
(1900), 157–175. doi:10.1080/14786440009463897.

[117] PETRE, M. Why looking isn’t always seeing: Readership skills and graphical pro-
gramming. Commun. ACM 38, 6 (June 1995), 33–44. URL: http://doi.acm.
org/10.1145/203241.203251, doi:10.1145/203241.203251.

[118] PIERCE, B. C. Types and Programming Languages. The MIT Press, 2002.

[119] PIERCE, B. C. Advanced topics in types and programming languages. The MIT
Press, 2005.

[120] PIERCE, B. C., AND TURNER, D. N. Local type inference. ACM Transactions

on Programming Languages and Systems (TOPLAS) 22, 1 (2000), 1–44. doi:10.
1145/345099.345100.

[121] PIKE, R., GRIESEMER, R., THOMPSON, K., ET AL. The Go language. URL: http:
//golang.org/.

[122] PLASMEIJER, R., AND EEKELEN, M. V. Keep it clean: a unique approach to
functional programming. ACM SIGPLAN Notices 34, 6 (1999), 23–31. doi:

10.1145/606666.606670.

[123] PRABHAKAR, B., LITECKY, C. R., AND ARNETT, K. It skills in a tough job market.
Communications of the ACM 48, 10 (2005), 91–94.

http://dx.doi.org/10.1007/978-3-540-45070-2_10
http://dx.doi.org/10.1007/978-3-540-45070-2_10
http://dx.doi.org/10.1145/263699.263715
http://dx.doi.org/10.1080/14786440009463897
http://doi.acm.org/10.1145/203241.203251
http://doi.acm.org/10.1145/203241.203251
http://dx.doi.org/10.1145/203241.203251
http://dx.doi.org/10.1145/345099.345100
http://dx.doi.org/10.1145/345099.345100
http://golang.org/
http://golang.org/
http://dx.doi.org/10.1145/606666.606670
http://dx.doi.org/10.1145/606666.606670

Bibliography 315

[124] PUCELLA, R., AND TOV, J. A. Haskell session types with (almost) no class. ACM

SIGPLAN Notices 44, 2 (2009), 25–36. doi:10.1145/1543134.1411290.

[125] PUNTIGAM, F. Coordination requirements expressed in types for active objects. In
ECOOP 1997, Springer. doi:10.1007/BFb0053387.

[126] PUNTIGAM, F. Synchronization expressed in types of communication channels. In
Proceedings of the European Conference on Parallel Processing (Euro-Par) (1996),
Springer. doi:10.1007/3-540-61626-8_99.

[127] RAJLICH, V., AND WILDE, N. The role of concepts in program comprehension. In
The 10th International Workshop on Program Comprehension (2002), IEEE. doi:
10.1109/WPC.2002.1021348.

[128] RAMANATHAN, M. K., GRAMA, A., AND JAGANNATHAN, S. Static specification
inference using predicate mining. In PLDI 2007, ACM. doi:10.1145/1250734.
1250749.

[129] RAVARA, A. Typing Non-Uniform Concurrent Objects. PhD thesis, University of
Lisbon, 2000.

[130] RAVARA, A., AND VASCONCELOS, V. T. Typing non-uniform concurrent objects.
In CONCUR 2000, Springer. doi:10.1007/3-540-44618-4_34.

[131] REYNOLDS, J. C. Syntactic control of interference. In POPL 1978, ACM. doi:

10.1145/512760.512766.

[132] REYNOLDS, J. C. Syntactic control of interference part 2. In Automata, Languages

and Programming. Springer, 1989. doi:10.1007/BFb0035793.

[133] ROBINSON, J. A. A machine-oriented logic based on the resolution principle. Journal

of the ACM 12, 1 (1965), 23–41. doi:10.1145/321250.321253.

[134] RUMBAUGH, J., JACOBSON, I., AND BOOCH, G. The Unified Modeling Language

Reference Manual. Pearson Higher Education, 2004.

[135] SAKAROVITCH, J. Elements of automata theory. Cambridge University Press, 2009.

[136] SIEK, J., AND TAHA, W. Gradual typing for objects. In ECOOP 2007. Springer.
doi:10.1007/978-3-540-73589-2_2.

[137] SIEK, J. G., AND TAHA, W. Gradual typing for functional languages. In Scheme and

Functional Programming Workshop (2006), vol. 6, pp. 81–92.

http://dx.doi.org/10.1145/1543134.1411290
http://dx.doi.org/10.1007/BFb0053387
http://dx.doi.org/10.1007/3-540-61626-8_99
http://dx.doi.org/10.1109/WPC.2002.1021348
http://dx.doi.org/10.1109/WPC.2002.1021348
http://dx.doi.org/10.1145/1250734.1250749
http://dx.doi.org/10.1145/1250734.1250749
http://dx.doi.org/10.1007/3-540-44618-4_34
http://dx.doi.org/10.1145/512760.512766
http://dx.doi.org/10.1145/512760.512766
http://dx.doi.org/10.1007/BFb0035793
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-3-540-73589-2_2

Bibliography 316

[138] SIMONET, V. Type inference with structural subtyping: A faithful formalization of an
efficient constraint solver. In Programming Languages and Systems. Springer, 2003.
doi:10.1007/978-3-540-40018-9_19.

[139] SLOANE, A. M. Lightweight language processing in kiama. In Generative and

Transformational Techniques in Software Engineering III. Springer, 2011. doi:

10.1007/978-3-642-18023-1_12.

[140] STROM, R. E., AND YEMINI, S. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering 12, 1
(1986), 157–171. doi:10.1109/TSE.1986.6312929.

[141] SUNSHINE, J., NADEN, K., STORK, S., ALDRICH, J., AND TANTER, É. First-
class state change in Plaid. In OOPSLA 2011, ACM. doi:10.1145/2048066.
2048122.

[142] TAFT, S., DUFF, R., BRUKARDT, R., PLOEDEREDER, E., AND LEROY, P. Ada

2005 Reference Manual: Language and Standard Libraries: International Standard

ISO/IEC 8652/1995 (E) with Technical Corrigendum 1 and Amendment 1. Springer-
Verlag, 2006.

[143] TAKEUCHI, K., HONDA, K., AND KUBO, M. An interaction-based language and its
typing system. In Parallel Architectures and Languages Europe (PARLE). Springer,
1994. doi:10.1007/3-540-58184-7_118.

[144] TARJAN, R. E. Efficiency of a good but not linear set union algorithm. Journal of the

ACM 22, 2 (1975), 215–225. doi:10.1145/321879.321884.

[145] TOV, J. A., AND PUCELLA, R. Practical affine types. In POPL 2011, ACM. doi:
10.1145/1926385.1926436.

[146] TOV, J. A., AND PUCELLA, R. Stateful contracts for affine types. In ESOP 2010.
Springer. doi:10.1007/978-3-642-11957-6_29.

[147] VASCONCELOS, V. T., GAY, S. J., RAVARA, A., GESBERT, N., AND CALDEIRA,
A. Z. Dynamic Interfaces. Workshop on Foundations of Object-Oriented Languages

(FOOL) 2009.

[148] WADLER, P. Linear types can change the world. In IFIP TC Working Conference on

Programming Concepts and Methods (1990), vol. 2, pp. 347–359.

[149] WELLS, J. B. The essence of principal typings. In Automata, Languages and

Programming, 29th International Colloquium (ICALP). Springer, 2002. doi:10.

1007/3-540-45465-9_78.

http://dx.doi.org/10.1007/978-3-540-40018-9_19
http://dx.doi.org/10.1007/978-3-642-18023-1_12
http://dx.doi.org/10.1007/978-3-642-18023-1_12
http://dx.doi.org/10.1109/TSE.1986.6312929
http://dx.doi.org/10.1145/2048066.2048122
http://dx.doi.org/10.1145/2048066.2048122
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1145/1926385.1926436
http://dx.doi.org/10.1145/1926385.1926436
http://dx.doi.org/10.1007/978-3-642-11957-6_29
http://dx.doi.org/10.1007/3-540-45465-9_78
http://dx.doi.org/10.1007/3-540-45465-9_78

Bibliography 317

[150] WELSH, M., CULLER, D., AND BREWER, E. SEDA: an architecture for well-
conditioned, scalable internet services. In SOSP 2001, ACM. doi:10.1145/

502034.502057.

[151] WESTHEIDE, D. The neophyte’s guide to scala, part 5: The op-
tion type. http://danielwestheide.com/blog/2012/12/19/

the-neophytes-guide-to-scala-part-5-the-option-type.

html, 2012.

[152] WHITLEY, K. N. Visual programming languages and the empirical evidence for and
against. Journal of Visual Languages & Computing 8, 1 (1997), 109–142.

[153] WOLFF, R., GARCIA, R., TANTER, E., AND ALDRICH, J. Gradual typestate. In
ECOOP 2011. Springer. doi:10.1007/978-3-642-22655-7_22.

[154] WRIGHT, A. K. Typing references by effect inference. In ESOP 1992, Springer.
doi:10.1007/3-540-55253-7_28.

[155] XI, H. Imperative programming with dependent types. In Proceedings of the 15th

Annual IEEE Symposium on Logic in Computer Science (2000), IEEE. doi:10.

1109/LICS.2000.855785.

[156] XI, H., AND PFENNING, F. Dependent types in practical programming. ACM. doi:
10.1145/292540.292560.

[157] XI, H., AND PFENNING, F. Eliminating array bound checking through dependent
types. In PLDI 1998, ACM. doi:10.1145/277650.277732.

[158] YANG, J., EVANS, D., BHARDWAJ, D., BHAT, T., AND DAS, M. Perracotta: Mining
Temporal API Rules from Imperfect Traces. ACM. doi:10.1145/1134285.

1134325.

[159] YOSHIDA, N., DENIÉLOU, P.-M., BEJLERI, A., AND HU, R. Parameterised multi-
party session types. In Foundations of Software Science and Computational Structures

(FOSSACS). Springer, 2010. doi:10.1007/978-3-642-12032-9_10.

[160] ZOOK, D., HUANG, S. S., AND SMARAGDAKIS, Y. Generating aspectj programs
with meta-aspectj. In Generative Programming and Component Engineering (2004),
Springer, pp. 1–18.

http://dx.doi.org/10.1145/502034.502057
http://dx.doi.org/10.1145/502034.502057
http://danielwestheide.com/blog/2012/12/19/the-neophytes-guide-to-scala-part-5-the-option-type.html
http://danielwestheide.com/blog/2012/12/19/the-neophytes-guide-to-scala-part-5-the-option-type.html
http://danielwestheide.com/blog/2012/12/19/the-neophytes-guide-to-scala-part-5-the-option-type.html
http://dx.doi.org/10.1007/978-3-642-22655-7_22
http://dx.doi.org/10.1007/3-540-55253-7_28
http://dx.doi.org/10.1109/LICS.2000.855785
http://dx.doi.org/10.1109/LICS.2000.855785
http://dx.doi.org/10.1145/292540.292560
http://dx.doi.org/10.1145/292540.292560
http://dx.doi.org/10.1145/277650.277732
http://dx.doi.org/10.1145/1134285.1134325
http://dx.doi.org/10.1145/1134285.1134325
http://dx.doi.org/10.1007/978-3-642-12032-9_10

	Table of Contents
	List of Figures
	Listings
	1 Introduction
	1.1 Save us from ourselves
	1.2 Thesis outline
	1.3 Thesis statement

	2 Literature Review
	2.1 Typestate systems
	2.1.1 Plural
	2.1.2 Plaid
	2.1.3 Fugue

	2.2 Session types
	2.2.1 Sessions for objects

	2.3 Dependent types
	2.3.1 Encoding typestate in dependent types
	2.3.2 Effects in Idris
	2.3.3 Dependent typestate

	2.4 Alias control
	2.4.1 Linear and uniqueness types
	2.4.2 Fractional permissions
	2.4.3 Reference roles

	2.5 Tracematches
	2.5.1 Clara
	2.5.2 Protocols involving multiple objects

	2.6 Contracts
	2.7 Typestate inference
	2.7.1 Typestate model inference
	2.7.2 Requirement and effect inference using constraints

	2.8 Language usability & human factors

	3 Representing Typestate Constraints
	3.1 A minimal feature set for typestate modelling
	3.2 Aspects of typestate modelling languages
	3.3 The Hanoi language
	3.4 An Introduction to Hanoi state machines
	3.4.1 Hanoi Annotations
	3.4.2 Representing common patterns in Hanoi

	3.5 Semantics
	3.5.1 Formal definition
	3.5.2 Producing state machines from Hanoi models
	3.5.3 Behavioural subtyping in Java

	3.6 A Cognitive Dimensions analysis of Hanoi
	3.6.1 Hidden/Explicit Dependencies
	3.6.2 Viscosity
	3.6.3 Premature commitment
	3.6.4 Role-expressiveness
	3.6.5 Hard Mental Operations

	3.7 Conclusion

	4 Dynamic Checking of Hanoi Models for Java
	4.1 The requirements of a practical dynamic checker
	4.2 Methods of dynamic checking
	4.2.1 Wrapper generation
	4.2.2 Dynamic proxies
	4.2.3 AspectJ based solutions
	4.2.4 Other AspectJ possibilities

	4.3 Evaluating the overhead of dynamic checking
	4.4 Conclusion

	5 Can programmers reason about typestate?
	5.1 Experiments considered
	5.2 Experimental design
	5.2.1 Null hypotheses

	5.3 Experiment questions
	5.3.1 Model 1 — DistributedWorkQueue
	5.3.2 Model 2 — Calculator
	5.3.3 Model 3 — GearControl
	5.3.4 Model 4 — Iterator
	5.3.5 Survey

	5.4 Results
	5.4.1 Statistical tests & measures used

	5.5 Participant demographics
	5.5.1 Scores
	5.5.2 Reading times
	5.5.3 Answer times
	5.5.4 Qualitative results
	5.5.5 Survey

	5.6 Conclusion

	6 Typestate Inference in an Imperative First-Order Calculus
	6.1 A minimal typestate interaction formalism
	6.2 TS - an imperative calculus with typestate
	6.2.1 Notational conventions
	6.2.2 Values
	6.2.3 Term evaluation

	6.3 Types
	6.3.1 Extra notational conventions for objects
	6.3.2 Subtyping
	6.3.3 Join and meet
	6.3.4 Effect types
	6.3.5 Strong and weak update
	6.3.6 Meet and join for effects
	6.3.7 Effect combinators

	6.4 Type system
	6.4.1 While loops
	6.4.2 Soundness
	6.4.3 Properties of typings

	6.5 Principal typings and typing schemes
	6.5.1 Introducing Bot for principal typings

	6.6 Type inference
	6.6.1 Correctness
	6.6.2 Constraint typing simplification
	6.6.3 Constraint solving

	6.7 Implementation
	6.8 Conclusion

	7 Challenges for a typestate-oriented future
	7.1 Desirable features for a typestate oriented language
	7.1.1 Type system
	7.1.2 Lightweight syntax
	7.1.3 Parallel and distributed systems

	7.2 The Chimera language
	7.2.1 Chimera types
	7.2.2 Methods and functions
	7.2.3 Function literals
	7.2.4 Defining object types and classes
	7.2.5 Type parameters
	7.2.6 Public fields and global objects
	7.2.7 Field overriding
	7.2.8 Inheritance
	7.2.9 Dynamic state tests
	7.2.10 Processes and channels

	7.3 Theoretical challenges and opportunities
	7.3.1 Mutable collections
	7.3.2 Borrow and steal for return values
	7.3.3 Function literals with implicit binding
	7.3.4 Implicit effects

	7.4 Conclusion

	8 Conclusion
	8.1 Limitations
	8.2 Future Work
	8.3 Availability of code
	8.4 Closing remarks

	A TS language proofs
	A.1 Soundness
	A.2 Constraint typing correctness
	A.3 Properties of contexts
	A.4 Properties of object and flow effect traces
	A.5 Properties of the subtyping relation
	A.6 Properties of remap(T, U >> V)
	A.7 Properties of extracted effects
	A.8 Properties of the sub-effect relation
	A.9 Properties of join and meet
	A.10 Properties of typings
	A.10.1 Flow effect specific properties
	A.10.2 Upgrade effect specific properties

	Bibliography

