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Abstract

The strong interaction within a nucleon has been the focus of much theoretical and

experimental work in nuclear and particle physics. Theorists have been improving

lattice QCD calculations and developing quark models that define the inter-quark

interactions, and experimentalists have spent years gathering data to support and

improve these models. Finding nucleon resonance states provides essential infor-

mation for the development of these theories and improves our understanding of

the excited nucleon spectrum. There are a variety of quark models that have been

proposed which each predict a unique resonance spectrum. Currently, these models

predict resonances that have not been observed experimentally. It is important to

experimentally determine which of these resonances exist. Historically, many of the

existing measurements came as a result of nucleon-pion scattering experiments. It

has been suggested, however, that some resonances may couple more strongly to

other reaction channels, such as the KΛ strangeness reaction channel analysed here.

Pseudoscalar meson photoproduction experiments can be used to analyse such a

reaction channel. In these experiments, a photon beam is incident on a station-

ary nucleon target and the reaction products are detected. The polarisation of the

recoiling particle can often be determined or measured. In the KΛ channel, the

recoiling baryon is a Λ whose polarisation can be obtained without the use of any

additional hardware through the self-analysing properties of the hyperon. These

experiments can be completely described by four complex amplitudes, which can be

accessed experimentally through sixteen polarisation observables. The polarisation

observables are bilinear combinations of the amplitudes and as such have nontriv-

ial correlations. They are dependent on the polarisations of the beam, target and

recoiling particle. By selecting different polarisations of the beam or target, or by

using a combination of polarisations, different observables can be measured. The

amplitudes can be obtained once a sufficient selection of observables is determined.

Currently, analyses of pseudoscalar meson photoproduction data is done using a

binned fitting method. The use of binned fitting inevitably leads to some informa-

tion from the data being lost. In this thesis, a new analysis method is presented,

based on Bayesian statistics. The aim of such an approach is to maximise the
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information yield from data. An event-by-event likelihood function reduces the

information lost through histogram binning. It is shown that the use of a prior dis-

tribution in amplitude space can preserve the correlations between observables, also

increasing the information yield. It is found that such an analysis programme leads

to a significant extraction of information from existing data. It is also found that

datasets from different experiments could be concatenated and analysed together

using the programme presented in this work, and successfully extract observables.

Information on observables to which the experiment is not directly sensitive can be

found and visualised graphically. The development of this analysis programme is

detailed in this thesis. Previously analysed data from two experiments are analysed

using this analysis method, and the results are compared to those obtained in the

past. It is shown that this Bayesian approach produces results that are consistent

with accepted results and provides information on observables that are not directly

measurable by a particular experiment. The data from two experiments is combined

and analysed together, and it is shown that the results of the combined analysis are

consistent with those obtained through separate analyses.



Declaration

The work in this thesis is based on research carried out at the Nuclear Physics Exper-

imental Group, School of Physics and Astronomy University of Glasgow, Scotland.

No part of this thesis has been submitted elsewhere for any other degree or qualifi-

cation and is all my own work unless referenced to the contrary in the text.

Copyright c© 2014 by Stefanie Lewis.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v



Acknowledgements

There are many people that have helped me over the past three and a half years,

and I would like to extend my gratitude for everything they have done.

First and foremost, I would like to thank my supervisors, Prof Dave Ireland and Dr

Ken Livingston for the opportunity and for all their help during this project. They

have not only helped in the preparation of my PhD work, but have also helped me

develop my interest and enthusiasm. I am also owing to Dr Wim Vanderbauwhede

for his help developing some of the more complicated computational aspects of my

project. I would also like to thank Bryan McKinnon, Morgan Murray, Daria Sokhan

and David Hamilton for their advice at many points during my PhD. Thanks also

to Brian Vernarsky from CMU for his help with COBRA.

Life as a PhD student has been made much easier by the company of friendly and

interesting colleagues, and for that I have the other PhD students to thank. Si-

mon, Euan and Bruno have been excellent (never boring) officemates. Johan, Sian,

Rachel, Gary, Mark and Jeff - thanks for making the group such a friendly environ-

ment. I would like to extend a special thank-you to two people who have shared

their wisdom with me - Seian Al Jebali and Stuart Fegan. You both have helped

me more than you know.

Towards the outskirts of the academic environment, I would like to express my ap-

preciation for my good friends in the MCMP group who have kept me relatively

sane, especially during the final stretch of my PhD. Thanks to Aaron, Francisco,

Pablo (and Veronica!), and Rob for terrific evenings at the pub.

vi



vii

I would especially like to thank Ciaran, for all of his support and advice (and also

for putting up with me during the writing-up stage). Thanks for your patience and

understanding. Although this may have been a particularly stressful experience, it

was made considerably less so by your company, and I appreciate everything that

you have done for me.

Thanks to my family, for their many years of support and encouragement.

“Don’t panic.”

- Douglas Adams The Hitchhiker’s Guide to the Galaxy



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Quark Models and QCD . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Experimental Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Pseudoscalar Meson Photoproduction . . . . . . . . . . . . . . . . . . 12

1.3.1 The γp → K+Λ reaction . . . . . . . . . . . . . . . . . . . . . 17

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Inference 20

2.1 Bayesian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Nested Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Development of Method with Simulated Data 35

3.1 Current methods of analysis . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Binned Fitting Approach . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Nested Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 41

viii



Contents ix

3.2.1 Prior Generation . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Results on Perfect Simulated Data . . . . . . . . . . . . . . . 46

3.2.5 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Derivation of Likelihood Functions . . . . . . . . . . . . . . . . . . . 60

3.5.1 Extraction of Recoil Observable, P . . . . . . . . . . . . . . . 67

3.6 Single Polarisation Analysis . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Double Polarisation Analysis . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Combining Data from Multiple Experiments . . . . . . . . . . . . . . 82

3.8.1 Combining BLTURY and BCTURY . . . . . . . . . . . . . . . 83

3.8.2 Combining BLTURY and BLTLRN . . . . . . . . . . . . . . . 89

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Analysis and Results of the g8b and g1c experiments 96

4.1 The g8b experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Binning Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.2 Luminosity Asymmetries . . . . . . . . . . . . . . . . . . . . . 98

4.1.3 Acceptance Correction . . . . . . . . . . . . . . . . . . . . . . 102

4.1.4 Consideration of Background . . . . . . . . . . . . . . . . . . 102

4.1.5 Results of g8b . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.6 2-Dimensional Results for All Observables . . . . . . . . . . . 109

4.2 The g1c experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 g1c data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.2 Luminosity Study of g1c . . . . . . . . . . . . . . . . . . . . . 113

4.2.3 Results of g1c Compared to Previous Analysis . . . . . . . . . 114

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Analysis and Results of Combined Data 123

5.1 Combining g1c with g8b data . . . . . . . . . . . . . . . . . . . . . . 124



Contents x

5.2 Results of combining g8b and g1c . . . . . . . . . . . . . . . . . . . . 124

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Summary and Outlook 135

Glossary 141

Bibliography 142

A Parallel Computing 151

A.1 Fundamentals of Computer Architecture and Hardware . . . . . . . . 152

A.2 Parallelising Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2.1 Flynn’s Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Software and Implementations . . . . . . . . . . . . . . . . . . . . . . 159

A.3.1 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3.2 OpenMP R© . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B Additional Plots 164



List of Figures

1.1 The baryon octet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Symmetric quark model . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Nucleon mass predictions from a relativised quark model . . . . . . . 6

1.4 Diquark model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Mass resonances from the quark-diquark model . . . . . . . . . . . . 7

1.6 Photoproduction cross-sections . . . . . . . . . . . . . . . . . . . . . 10

1.7 CEBAF accelerator diagram . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Pseudoscalar mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Pseudoscalar meson photoproduction reaction . . . . . . . . . . . . . 17

2.1 Hyperon histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Hyperon example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Diagram of random walk . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 The nested sampling algorithm . . . . . . . . . . . . . . . . . . . . . 30

2.5 Example likelihood function . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Example nested sampling iteration . . . . . . . . . . . . . . . . . . . 33

3.1 Illustration of basic asymmetry . . . . . . . . . . . . . . . . . . . . . 38

3.2 Two-dimensional histogram of φ and cos(θx) . . . . . . . . . . . . . . 39

3.3 Argand plot of prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Prior distributions of observables . . . . . . . . . . . . . . . . . . . . 44

3.5 Nested sampling results on 1000 events . . . . . . . . . . . . . . . . . 48

3.6 Nested sampling results on 5000 events . . . . . . . . . . . . . . . . . 49

xi



List of Figures xii

3.7 Nested sampling results on 10000 events . . . . . . . . . . . . . . . . 50

3.8 Benchmarking results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Thread test of OpenCL on CPU . . . . . . . . . . . . . . . . . . . . . 56

3.10 Thread test of OpenCL on GPU . . . . . . . . . . . . . . . . . . . . . 57

3.11 Thread test of OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Comparison of runtimes . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.13 Results of BlTuRn (simulated) . . . . . . . . . . . . . . . . . . . . . . 70

3.14 Results of BlTuRy (simulated) . . . . . . . . . . . . . . . . . . . . . . 71

3.15 Results of BcTuRy (simulated) . . . . . . . . . . . . . . . . . . . . . 71

3.16 Results of BuTlRy (simulated) . . . . . . . . . . . . . . . . . . . . . . 72

3.17 Results of BuTtRn (simulated) . . . . . . . . . . . . . . . . . . . . . 72

3.18 Results of BuTtRy (simulated) . . . . . . . . . . . . . . . . . . . . . 73

3.19 Results of BcTlRn (simulated) . . . . . . . . . . . . . . . . . . . . . . 75

3.20 Results of BcTlRy (simulated) . . . . . . . . . . . . . . . . . . . . . . 76

3.21 Results of BcTtRn (simulated) . . . . . . . . . . . . . . . . . . . . . . 77

3.22 Results of BlTlRn (simulated) . . . . . . . . . . . . . . . . . . . . . . 77

3.23 Results of BcTtRy (simulated) . . . . . . . . . . . . . . . . . . . . . . 78

3.24 Results of BlTlRy (simulated) . . . . . . . . . . . . . . . . . . . . . . 79

3.25 Results of BlTtRn (simulated) . . . . . . . . . . . . . . . . . . . . . . 80

3.26 Results of BlTtRy (simulated) . . . . . . . . . . . . . . . . . . . . . . 81

3.27 Results of BlTuRy with Cx and Cz . . . . . . . . . . . . . . . . . . . 84

3.28 Amplitude plot of BlTuRy . . . . . . . . . . . . . . . . . . . . . . . . 85

3.29 Results of BcTuRy with Σ, T , Ox and Oz . . . . . . . . . . . . . . . . 86

3.30 Amplitude plot of BcTuRy . . . . . . . . . . . . . . . . . . . . . . . . 87

3.31 Results of BlTuRy and BcTuRy . . . . . . . . . . . . . . . . . . . . . 88

3.32 Amplitude plot of BlTuRy and BcTuRy . . . . . . . . . . . . . . . . 89

3.33 Results of BlTuRy with G . . . . . . . . . . . . . . . . . . . . . . . . 90

3.34 Results of BlTlRn with P , T , Ox and Oz . . . . . . . . . . . . . . . . 91

3.35 Amplitude plot of BlTlRn . . . . . . . . . . . . . . . . . . . . . . . . 92

3.36 Results of BlTuRy and BlTlRn . . . . . . . . . . . . . . . . . . . . . 93

3.37 Amplitude plot of BlTuRy and BlTlRn . . . . . . . . . . . . . . . . . 94



List of Figures xiii

4.1 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Distribution of g8b data . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Luminosity asymmetries for g8b . . . . . . . . . . . . . . . . . . . . . 101

4.4 Results of Σ from g8b . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Results of P from g8b . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Results of T from g8b . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Results of Ox from g8b . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Results of Oz from g8b . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 2-D likelihood distribution for g8b . . . . . . . . . . . . . . . . . . . . 110

4.10 Amplitude plot for g8b . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.11 Distribution of g1c data . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.12 Luminosity asymmetries for g1c . . . . . . . . . . . . . . . . . . . . . 114

4.13 Results of Cx for g1c . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.14 Results of Cz for g1c . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.15 Results of P for g1c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.16 Plot of observable relation for g8b and g1c . . . . . . . . . . . . . . . 119

4.17 2-D likelihood distribution for g1c . . . . . . . . . . . . . . . . . . . . 120

4.18 Amplitude plot for g1c . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Results of Σ for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Results of T for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Results of Ox for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Results of Oz for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Results of P for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Results of Cx for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . 130

5.7 Results of Cz for g8b and g1c . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Amplitude plot for g8b and g1c . . . . . . . . . . . . . . . . . . . . . 132

5.8 2-D likelihood distribution for g8b and g1c . . . . . . . . . . . . . . . 133

A.1 Basic von Neumann computer architecture . . . . . . . . . . . . . . . 152

A.2 Multi-core CPU diagram . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3 Abstract computer architecture . . . . . . . . . . . . . . . . . . . . . 155



List of Figures xiv

A.4 Interaction between processor and memory . . . . . . . . . . . . . . . 157

A.5 SIMD parallelised algorithm . . . . . . . . . . . . . . . . . . . . . . . 158

A.6 OpenCL architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



List of Tables

1.1 PDG Table of N* Resonant States . . . . . . . . . . . . . . . . . . . . 9

1.2 Table of polarisation observables and amplitude representations . . . 16

3.1 Data transfer results for OpenCL on GPU . . . . . . . . . . . . . . . 59

3.2 Data transfer results for OpenCL on CPU . . . . . . . . . . . . . . . 59

3.3 Reaction types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Reduced Cross Section Equations . . . . . . . . . . . . . . . . . . . . 62

3.5 Single polarisation configurations . . . . . . . . . . . . . . . . . . . . 69

3.6 Double polarisation configurations . . . . . . . . . . . . . . . . . . . . 74

4.1 Bin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xv



1
Introduction

The study of nuclear and particle physics was revolutionised in the mid-20th century

when cosmic ray experiments such as those of Rochester and Butler [1] suggested

the existence of unstable particles. These results are now credited as the discovery

of what we know now as hyperons [2], particles containing at least one strange

quark. This was the beginning of many new particle discoveries. In 1950, the

Λ0 baryon was found by Hopper and Biswas from the University of Melbourne

[3]. Several years later, the first baryon resonance was discovered by Anderson,

Fermi, Long and Nagle [4, 5] by comparing total cross-sections of pion-proton (πp)

systems. The comparison of the π−p cross-section with that of π+p suggested the

presence of a resonance. These events sparked an increased interest in the study

of elementary particles, and many more baryonic states and resonances were soon

discovered [6]. It was not long before scientists attempted to sort these new states,

and in 1961, Gell-Mann and Ne’eman introduced the Eightfold Way, their hadron

1



1.1. Quark Models and QCD 2

classification scheme [7] based on previous efforts by Gell-Mann and Nishijima [8].

Several years previously, the Sakata model had been developed [9] where it was

postulated that protons, neutrons, and Λ particles were the fundamental particles

in baryons and mesons. This model encouraged the symmetry-based approach and

introduced the importance of the SU(3) symmetry group. This paradigm led Gell-

Mann and Ne’eman to the conclusion that, assuming electric charge Q was included

in the symmetry, only particles with an integer charge could be members of certain

groupings, or families. It was determined that, in the simplest case, particles could

either belong to 1-, 8-, or 10-member families. The baryon octet (shown in Fig. 1.1)

was then introduced.

Figure 1.1: The baryon octet, a plot of strangeness against charge, Q [10].

His work on classifying hadrons led Gell-Mann to the concept of quarks, ele-

mentary particles that formed hadrons. Independently, Zweig arrived at the same

conclusion [11]. These postulations incited the development of a variety of models

and theories to explain the strong interaction and quarks.

1.1 Quark Models and QCD

The strong interaction is the fundamental force responsible for maintaining the

structure of a nucleus. The force repelling the positively charged protons in the nu-

cleus is overcome by the strong force, binding the nucleus. The strong interaction is
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experienced by quark-based particles such as baryons and mesons, and is mediated

by gluons through the colour charge. Non-quark-based particles, such as leptons,

do not interact via the strong force.

During the 1970s, developments to the Standard Model [12] were made to include

quarks, evidence of which had recently been found experimentally [13, 14], and the

strong interaction, in the form of quantum chromodynamics (QCD) , the field the-

ory associated with the strong force.

The discovery of the ∆++ hadronic state posed a significant challenge to the devel-

opment of quark models. The ∆++, a baryon made up of three ’up’ quarks with

parallel spin, contained fermionic components that appeared to occupy the same

quantum state - a violation of the Pauli exclusion principle. In order to incorporate

this phenomenon into the existing theories, a new “colour” quantum number was

put forth, thereby allowing particles such as ∆++ to exist in accordance with Fermi

statistics [15]. Three colours - red, green and blue - were introduced. It was sug-

gested that only colour-neutral states could exist, under the rules that red + green

+ blue = white (for baryons), and any colour + its anticolour = white (for mesons).

The introduction of this colour charge gave quantum chromodynamics its name.

QCD is a non-Abelian gauge theory associated with the strong interaction, and pro-

vides an insight into the properties and interactions of the six flavours of quarks (up,

down, strange, charm, top and bottom) featured in the Standard Model through the

inclusion of the ’colour’ quantum number. One interesting feature of QCD is known

as confinement - a phenomenon where free quarks cannot be experimentally ob-

served [16]. This is presumed to be due to the strength of the interaction increasing

as the separation distance increases. For this reason, it is impossible to remove a

quark from a nucleon.

Whilst QCD is relatively successful in describing the strong interaction for quarks

and gluons within a nucleon, complications arise when it is applied in a larger scale,

such as the interactions and properties of nuclei. This is because the calculations

involved in QCD become far more complex. Unlike other couplings, such as that of

the weak interaction, the strong interaction becomes weaker as the distance between

interacting particles decreases, a characteristic property of QCD known as asymp-
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totic freedom. This is reflected in the behaviour of the strong interaction’s running

coupling constant, αs, which decreases as energies increase toward the perturbative

region, but increases towards unity as the energy decreases to the energy scale of

nucleons [17–20]. This is a problem that is at the heart of much particle and nuclear

physics research. Lattice-QCD, initially proposed by Wilson [21], takes a numerical

approach to the complicated path integral calculations by discretising space-time.

The spacing used in this discretisation determines both the accuracy and the compu-

tational cost of the calculation - the smaller the spacing, the more accurate and more

computationally expensive the calculation will be. As developments in computing

and parallelism are made, smaller lattice spacings can be applied and provide more

accurate results. The current state of lattice QCD calculations predict, for example,

a pion mass of around 300-400 MeV/c2, compared to its mass of 134.5 MeV/c2. Cur-

rent developments in lattice QCD aim to exploit the recent advances in hardware

and computing methods to handle the complex calculations. These calculations are

computationally very expensive. Other methods of understanding the properties of

nucleons involve the development of quark models, which can be used to predict

spectra of baryonic states.

Quark models were introduced in an effort to explain the composite nature of mesons

and baryons, as well as the newly discovered baryon states. As more and more

hadronic states were discovered, the quark theories had to be adapted. Originally,

it was thought that only three flavours of quarks existed - up, down and strange,

but new discoveries led to the possibility of other, heavier flavours. The existence of

these heavier quarks (charm, top and bottom) were confirmed in several experiments

conducted between 1970 and 1995. Over time, many quark models were developed,

such as the symmetric quark model and the diquark models, described below. These

models each predicted a spectrum of nucleon resonance states. These predicted res-

onances greatly outnumber those that have been discovered experimentally, which

has created a problem in hadronic physics known as the “missing resonance” prob-

lem. Experiments in a range of international facilities concentrate on learning more

about the excited nucleon spectrum and identifying resonance states predicted by

quark models. As each of these models predicts a unique spectrum of resonance



1.1. Quark Models and QCD 5

states, the experimental evidence of a resonance in one spectrum and not another

would provide valuable insight to the properties and interactions of nucleons in the

low-energy region.

Symmetric Quark Model

The symmetric quark models (SQMs) stemmed from the postulations of Gell-Mann

and Ne’eman, who introduced the idea that hadrons were composed of smaller

constituents, as illustrated in Figure 1.2. The model was based on the premise

that hadrons were composite particles and that their constituents (quarks) were not

point-like, as put forth in the earlier QCD-based theories. SQMs were developed

on the principle that these non-point-like constituent quarks (known as “dressed”

quarks) were symmetrically equivalent and had energy-dependent masses [22, 23].

The key characteristics of QCD - asymptotic freedom and quark confinement - were

incorporated into the theory by introducing various potentials, as described in [24].

The nucleon resonance spectrum predicted by one quark model is shown in Figure

1.3. In this figure, it can be seen that the model predicts many resonances at the

higher end of the mass scale - many more than have been found experimentally.

Figure 1.2: Symmetric quark model.
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Figure 1.3: Nucleon mass predictions from a relativised quark model [25], where

light-coloured boxes represent the one- or two-star resonant masses from the Particle

Data Group (PDG) and darker coloured boxes depict states with three or four stars

in the PDG.

Quark-Diquark Models

There exist a large number of quark-diquark models, which all differ from the con-

stituent quark model by one fundamental assumption. Unlike the SQM, the quark-

diquark model predicts mass resonances by assuming that two of the three quarks

within the hadron are tightly bound [26–29], as illustrated in Figure 1.4. This as-

sumption results in a reduction in the number of degrees of freedom, leading to

the prediction of fewer resonant states, shown in Figure 1.5. Although the diquark

models predict fewer states than the SQM, there still remain numerous resonances
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that have not been discovered experimentally.

Figure 1.4: Diquark model.

Figure 1.5: Mass resonances predicted by the quark-diquark model [29]. Grey-

shaded boxes indicate experimental three- and four-star resonances listed in the

PDG.
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1.2 Experimental Efforts

The “missing resonance” problem is at the focus of many physics programmes around

the world. The Particle Data Group (PDG) [30] is an international organisation

that analyses experimental results and classifies resonant states using a star rating

system. All predicted and experimentally observed resonant states are listed and

assigned a star rating - four stars indicating those which have solid experimental

evidence, are certain to exist and whose properties have been explored, ranging

to one or no stars, for states who have not been observed or that have very poor

evidence of existence. A list of baryon resonant states with their ratings is shown

in Table 1.1.
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Table 1.1: PDG Table of N* Resonant States [30]

N∗ Spin-parity JP Status

p 1/2+ ****

n 1/2+ ****

N(1440) 1/2+ ****

N(1520) 3/2− ****

N(1535) 1/2− ****

N(1650) 1/2− ****

N(1675) 5/2− ****

N(1680) 5/2+ ****

N(1685) *

N(1700) 3/2− ***

N(1710) 1/2+ ***

N(1720) 3/2+ ****

N(1860) 5/2+ **

N(1875) 3/2− ***

N(1880) 1/2+ **

N(1895) 1/2− **

N(1900) 3/2+ ***

N(1990) 7/2+ **

N(2000) 5/2+ **

N(2040) 3/2+ *

N(2060) 5/2− **

N(2100) 1/2+ *

N(2190) 7/2− ****

N(2220) 9/2+ ****

N(2250) 9/2− ****

N(2600) 11/2− ***

N(2700) 13/2+ **

Historically, most of the world data collected on the existence of resonant states

has been obtained through scattering experiments that result in πN final states [31].

The results of these πN scattering experiments, however, do not suggest the exis-

tence of many of these missing resonances predicted by various quark models. More

sensitive measurement techniques were needed to find these states. Meson photo-

production experiments then emerged as a new, more sensitive approach. These

experiments lead to information on resonances through the measurements of polari-

sation observables. Studies by Capstick and Roberts [25] revealed that some of these
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missing resonances may strongly couple to certain reaction channels, in particular

those channels where the final state includes a strange baryon. Figure 1.6 illustrates

the total cross-section as a sum of the cross-sections of the various reaction channels.

Figure 1.6: Cross-sections in photoproduction for the 0.2 - 2.0 GeV energy region.

The separated reaction channels give insight into resonant states. [32]

The analysis presented in this thesis concentrates on meson photoproduction

reactions. Such reactions can provide access to different couplings than pion pro-

duction, and as such are being performed at numerous experimental facilities around

the world, most notably including the Thomas Jefferson National Accelerator Fa-

cility (Jefferson Lab) . Jefferson Lab is home to CEBAF , the Continuous Electron

Beam Accelerator Facility, which generates an electron beam with an energy of up

to 5.7 GeV [33]. A diagram of the CEBAF accelerator is shown in Figure 1.7.

The CEBAF accelerator consists primarily of two superconducting linear accel-

erators and uses steering magnets to arc between them. The injected polarised
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Figure 1.7: Diagram of the CEBAF accelerator used to generate electron beams at

Jefferson Lab, where the end stations refer to the experimental halls [34, 35].

electrons are accelerated through five laps of the accelerator, until its desired energy

is obtained (currently the maximum energy obtainable is 6 GeV). It is capable of

simultaneously delivering the electron beam to three experimental halls - Hall A,

Hall B and Hall C - with luminosities of the order of 1038 cm−2 s−1 in Halls A and

C. The luminosity of the beam delivered to Hall B is significantly lower due to limits

imposed by the detector itself. The collective aims of these three halls are to gain

an understanding of QCD in the strong interaction regime and to increase what

is known about nuclear structure. Hall B houses the CEBAF Large Acceptance

Spectrometer (CLAS), a large acceptance detector with a high solid angle accep-

tance and high efficiency of detection of multiple charged particles in final states.

The detector is used in experiments involving photon and electron beams, and is

ideal for probing the nucleon resonance region. It is also the focus of the CLAS

Collaboration, an international group of researchers involved in experiments using



1.3. Pseudoscalar Meson Photoproduction 12

the CLAS spectrometer in Hall B. The N* programme at CLAS consists of a wide

range of experiments that aim to explore the excited nucleon spectrum and learn

about nucleon resonant states [36–40]. Many experiments are based on pseudoscalar

meson photoproduction reactions, described in Section 1.3. This type of experiment

often requires one or more of the target or photon beam to be polarised in some

way. Photon beams are either linearly polarised through the process of coherent

bremsstrahlung [41], or circularly polarised through scattering of longitudinally po-

larised electrons. Coherent bremsstrahlung is a process in which a crystal radiator

is used to coherently scatter electrons. Circularly polarised photon beams are pro-

duced through bremsstrahlung with an amorphous radiator. Polarisation of a target

can also be done at Jefferson Lab by subjecting a target to cryogenic temperatures

and a strong magnetic field, as discussed in [42, 43].

Currently, the CEBAF accelerator is undergoing an upgrade that will increase the

maximum electron beam energy to 12 GeV, and as a consequence the CLAS detec-

tor is being rebuilt in order to accommodate the increased beam energies [44]. This

work will enable the exploration of the nucleon spectrum in the region where the

dominant degree of freedom is due to dressed quarks [45].

Although research from Jefferson Lab has made a significant contribution to the

world data sets, other international facilities such as Mainz [46, 47] and Bonn [48]

also pursue similar research goals and often perform complementary experiments.

1.3 Pseudoscalar Meson Photoproduction

A pseudoscalar meson is a meson with 0 spin and odd parity, such as the pion. The

0-spin property of pseudoscalar mesons makes them particularly useful in photo-

production reactions as it limits the degrees of freedom. The nonet of pseudoscalar

mesons is shown in Figure 1.8.

Pseudoscalar meson photoproduction reactions can be a more sensitive alter-

native to pion-nucleon scattering experiments in the determination of nucleon reso-

nances because of the different polarisation configurations available. Resonant states

are found through the extraction of polarisation observables, which are related to
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Figure 1.8: Nonet of pseudoscalar mesons.

the polarisations of the beam, target and recoiling particle in the experiment. Such

reactions are often used to analyse strangeness reaction channels, where the recoil-

ing particle is a hyperon - a baryon made up of three light quarks in which at

least one quark is a strange quark. Hyperons, such as Λ and Σ0, are intermediate

states which decay to a pion and nucleon (and γ, in the case of the Σ0). Reactions

featuring a recoiling hyperon present one significant benefit. The hyperon is said

to be “self-analysing” [49, 50] due to its parity-violating weak decay. This implies

that the polarisation of the hyperon can be determined by considering the angular

distributions of its decay products. A polarimeter device is therefore unnecessary in

the detector system.

There are fifteen polarisation observables, referred to as Σ, P , T , E, F , G, H , Cx,

Cz, Ox, Oz, Tx, Tz, Lx and Lz, and a differential cross-section term (σ) that are ex-

perimentally measurable, and are related to the polarisations of the photon beam,

target, and recoiling hyperon. The photon beam can be either linearly polarised

(P γ
L), circularly polarised (P γ

C), or unpolarised. The target can be longitudinally

polarised (P T
L ), transversely polarised (P T

T ), or unpolarised, and information about

the recoiling particle (PR
x , PR

y , PR
z ) may or may not be available. Different configura-

tions of these polarisations can provide experimental access to different polarisation
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observables. The differential cross-section equation of pseudoscalar meson photo-

production is given in Eqn. 1.1, where φ indicates the kaon azimuthal angle with

respect to the photon polarisation. Once one configuration is chosen, this equation

reduces significantly as many terms go to zero. This is discussed in more detail in

Section 3.5.

σ = σ0{1− P γ
LP
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T P
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(1.1)

Pseudoscalar meson photoproduction can be completely described by four ampli-

tudes. These amplitudes are dependent on variables such as energy and scattering

angle and were developed by Chew, Goldberger, Low and Nambu (CGLN) [51].

Whilst CGLN amplitudes are useful in other analyses [52], more convenient represen-

tations such as helicity and transversity amplitudes are more common in strangeness

photoproduction. Helicity and transversity amplitudes are not dependent on energy

or scattering angle. Therefore, analyses that use these amplitudes are applied us-

ing data that fall into a relatively narrow range of these variables as it is assumed

that the terms in Equation 1.1 do not vary much within this range. The available

data is sorted into these ranges prior to analysis. These amplitude representations

differ primarily in the choice of coordinate system. Amplitudes calculated in the

helicity basis reflect the helicity states of the photon and nucleon [53], where com-

ponents are defined in relation to the spin of each particle. Transversity amplitudes

are defined in the basis describing the plane transverse to the scattering plane [54].

Although helicity amplitudes have, in the past, dominated most of the literature,
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the work presented in this thesis will be based upon the transversity representation,

shown below [54]. Transversity amplitudes can be seen to have an advantage over

helicity amplitudes when single-polarisation data is more numerous than double-

polarisation data, as the measurements of single-polarisation observables provides

the moduli of the transversity amplitudes. The transversity amplitudes, b1, b2, b3

and b4 are defined in Eqns. 1.2 - 1.5.

b1 = 〈+|M |+〉⊥ (1.2)

b2 = 〈−|M |+〉⊥ (1.3)

b3 = 〈+|M |−〉‖ (1.4)

b4 = 〈−|M |+〉‖ (1.5)

where M is the transition matrix that describes the transition from the reaction’s

initial to final state.

Due to the behaviour of quantum states, only the moduli and relative phases are

accessible, meaning that there are only seven degrees of freedom [55]. This can be

further reduced to six degrees of freedom by normalising these amplitudes, as shown

in Eqn. 1.6.

ai =
bi√

|b1|2 + |b2|2 + |b3|2 + |b4|2
(1.6)
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Table 1.2: Table of polarisation observables with their amplitude representations,

where S denotes single-polarisation observables, BT refers to beam-target double

polarisation observables, BR to beam-recoil double polarisation observabes and TR

to target-recoil double polarisation observables [54–56].

Type Observable Transversity representation Helicity representation

S σ |a1|2 + |a2|2 + |a3|2 + |a4|2 |h1|2 + |h2|2 + |h3|2 + |h4|2
Σ |a1|2 + |a2|2 − |a3|2 − |a4|2 2ℜ(h1h

∗
4 − h2h

∗
3)

P |a1|2 − |a2|2 + |a3|2 − |a4|2 2ℑ(h1h
∗
3 + h2h

∗
4)

T |a1|2 − |a2|2 − |a3|2 + |a4|2 2ℑ(h1h
∗
3 + h2h

∗
4)

BT E 2ℜ(a1a∗3 + a2a
∗
4) |h1|2 − |h2|2 + |h3|2 − |h4|2

F 2ℑ(a1a∗3 − a2a
∗
4) 2ℜ(h1h

∗
2 + h3h

∗
4)

G 2ℑ(a1a∗3 + a2a
∗
4) −2ℑ(h1h

∗
4 + h2h

∗
3)

H −2ℜ(a1a∗3 − a2a
∗
4) −2ℑ(h1h

∗
3 − h2h

∗
4)

BR Cx −2ℑ(a1a∗4 − a2a
∗
3) 2ℜ(h1h

∗
3 + h2h

∗
4)

Cz 2ℜ(a1a∗4 + a2a
∗
3) |h1|2 + |h2|2 − |h3|2 − |h4|2

Ox 2ℜ(a1a∗4 − a2a
∗
3) −2ℑ(h1h

∗
2 − h3h

∗
4)

Oz 2ℑ(a1a∗4 + a2a
∗
3) 2ℑ(h1h

∗
4 − h2h

∗
3)

TR Tx 2ℜ(a1a∗2 − a3a
∗
4) −2ℜ(h1h

∗
4 + h2h

∗
3)

Tz 2ℑ(a1a∗2 − a3a
∗
4) −2ℜ(h1h

∗
2 − h3h

∗
4)

Lx −2ℑ(a1a∗2 + a3a
∗
4) 2ℜ(h1h

∗
3 − h2h

∗
4)

Lz 2ℜ(a1a∗2 + a3a
∗
4) |h1|2 − |h2|2 − |h3|2 + |h4|2

The amplitudes can be accessed experimentally through fifteen polarisation ob-

servables and a cross-section. These observables are bilinear combinations of the

amplitudes and are therefore correlated. Two examples of such relations are listed

below in Equations 1.7 and 1.8 [56, 57].

C2
x + C2

z +O2
x +O2

z = 1 + T 2 − P 2 − Σ2 (1.7)

FG−EH = P − ΣT (1.8)

By polarising the beam and target in different ways, it is possible to obtain infor-

mation on different polarisation observables. In order to determine the underlying
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amplitudes, a “complete measurement” is required [56, 58]. Such a measurement

requires that at least eight observables, including one from each double-polarisation

category, are measured. It has been argued, however, that this definition of a com-

plete measurement assumes perfectly precise measurements, and practically, ad-

ditional measurements are required to resolve ambiguities arising from imperfect

experimentation [55].

1.3.1 The γp → K+Λ reaction

The reaction of interest in this work involves a polarised photon beam and an un-

polarised stationary proton target, as illustrated in Fig. 1.9, where a Λ hyperon is

an intermediate state.

Figure 1.9: Diagram of a pseudoscalar meson photoproduction reaction where a

photon beam is incident on a stationary proton target. A kaon and Λ are produced.

The Λ then decays and a pion and proton are produced [59].

The Λ hyperon has a mass of 1115.68MeV/c2 and mean lifetime of 2.6×10−10s.

It decays preferentially to a proton and pion (Λ → pπ−) with a branching ratio

of 63.8%, and to a neutron and pion (Λ → nπ0) with a branching ratio of 35.8%.
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As described earlier, the self-analysing characteristic of the Λ is advantageous and

enables the use of recoil information in analyses without the need for additional

hardware. The recoil information is determined through the detection of the decay

products, the proton and pion.

In this thesis, data from two experimental configurations will be analysed, both

of which involve a polarised photon beam and an unpolarised target. One set-up

(known as g8b) involves a linearly polarised beam, whereas the other (known as

g1c) uses circular polarisation of the beam. Both of these experiments were run at

Jefferson Lab and will be discussed further in Chapter 4.

1.4 Outline

The work in this thesis is concentrated on the development and testing of a new

analysis method. A Bayesian approach, called nested sampling [60], is applied to

pseudoscalar meson photoproduction data taken by the CLAS Collaboration at Jef-

ferson Lab. This analysis method is based on an event-by-event likelihood function.

Chapter 2 will discuss the underlying statistical formalism involved in nested sam-

pling. The nested sampling algorithm will be featured, along with a description of

Markov chain Monte Carlo, which also features in the analysis method. The third

chapter will focus on the development of the software programme. The current meth-

ods of analysis will be discussed, followed by the derivations of likelihood functions.

Testing of the analysis programme using simulated data from an event generator will

then be shown, and results are compared to those obtained through other analysis

methods. Chapter 4 features the analysis of real data, taken from the g8b and g1c

experiments at CLAS. Results from the nested sampling analysis are compared to

published results, and comparisons between both experiments are performed. One

significant benefit of a nested sampling analysis programme is illustrated in Chap-

ter 5, where data from both experiments is combined and analysed simultaneously.

The results from this combined analysis are compared to those from the separate

analyses and plots showing new information are shown. Additional plots from these

analyses are included in Appendix B. The summary and outlook are given in Chap-
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ter 6. Appendix A features the computing theory behind data parallelism and GPU

programming, a tool which was employed in Chapter 3.



2
Inference

Data analysis in the field of baryon spectroscopy usually stems from the frequen-

tist branch of statistics. This approach assumes that there exist underlying fixed

statistical parameters and that the measured data are sampled randomly from all

independent and identically distributed values. Bayesian statistics is founded on

the assumption that the data are fixed values, and parameters such as the mean

are variable and are updated as more information is observed. These parameters

are not considered to be fixed, rather they are expressed in terms of probabilities.

There are benefits of using a Bayesian statistics framework. Thomas Bayes’ mathe-

matical theorem, Bayes’ Theorem, was posthumously put forth to the Royal Society

in 1763 [61], but was largely ignored until it was used to develop Laplace’s famous

works [62]. The introduction of Bayesian statistics to a frequentist community was

slow and fraught with controversy. It meant a complete paradigm shift for statis-

ticians, one which proved to take time. In recent years, however, the theorem has

20
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found its place at the heart of many statistical and analytical applications in modern

science, mathematics and computing.

Both statistical approaches have their advantages and disadvantages - one approach

cannot be said to be “better” than the other. They are simply two different inter-

pretations of a statistical problem. In some cases, the conclusions reached through

one method may be more useful than the other, but this depends on the suitability

of each approach on the given problem and the desired information.

In this chapter, the fundamental concepts of statistics and inference relevant

to this work will be discussed. In Section 2.1, the ideas that form the backbone

of Bayesian statistics will be explored and compared to frequentism. Section 2.2

will focus on the use of Markov Chain Monte Carlo methods and their role in data

analysis. A detailed description of the nested sampling algorithm that is integral to

this work will be given in Section 2.3.

2.1 Bayesian Formalism

Many current analysis tools rely on frequentist statistics. Frequentism was heavily

influenced by the likes of Neyman, who introduced the idea of a confidence interval

in the 1930s [63], and Fisher, who developed the maximum likelihood estimation

method and was heavily critical of Bayesian statistics [64]. In frequentist statistics,

it is assumed that the statistical properties of a distribution, such as the mean and

variance, are fixed values, and the data can be repeatedly and randomly sampled [65].

High numbers of data ensure values that vary only very slightly, supporting the idea

that the mean of a distribution is constant. The underlying assumption is that the

randomly sampled data accurately reflects reality, an assumption that is often reli-

able [66]. There are, however, some criticisms. It has been argued that repeating

measurements and trials under identical conditions is impossible. If all conditions

were exactly the same from one measurement to another, there would be no dif-

ference in the outcome. This leads to scepticism in the interpretation of statistical

parameters, such as errors. The mean squared error is the basis on which different
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statistical methods are compared, and is considered to represent the average squared

error expected in repeated measurements taken under identical circumstances. It

is argued that as replicating experiments or measurements under completely un-

changed conditions is impossible, this interpretation is unrealistic [66].

Under the frequentist paradigm, the probability of an event A occurring is based on

its relative frequency in large numbers of trials. For example, rolling an unweighted

6-sided die 100 times would result in a ‘4’ approximately 17 times. The frequency

of rolling a ‘4’ would then be 17/100, or 0.17 (≈ 1
6
). The probability of then rolling

a ‘4’ on a subsequent roll would be described as Pr(4) = 1
6
. This approach does not

require any knowledge or expectation of the results, and this is the key difference

between frequentist and Bayesian statistics [67].

In the Bayesian approach, properties like the mean or standard deviation are

seen as variables that describe some distribution, and the data are treated as fixed

values. An initial ‘guess’, regarded as the prior distribution, is required and the

choice of prior can change the nature of the process of estimation [65]. It can be

considered as an estimate or expectation of the results prior to any calculation or

statistical analysis. It can also be used to introduce physical constraints. The use

of a prior is one of the reasons that Bayesian analysis has been scrutinised for so

many years, and why it continues to cause controversy. The choice of prior does

indeed affect the estimation process, but a poor choice of prior that still includes

all physically allowed values for the variable(s) being estimated will still arrive at

the same conclusion, although it may take significantly longer to reach a convergent

result [62], which is known as the posterior distribution, or simply the posterior .

The statistical quantities that define the posterior are then used to describe the

results of the analysis [62].

It would be helpful at this point to introduce an example where the frequentist

and Bayesian approaches can be compared. The Λ hyperon has a well-measured mass

of 1.1157 GeV/c2. In this example, we want to determine the mass of the Λ hyperon

from a simple distribution. Let us assume that an experiment was performed that
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measured the mass of the hyperon. Usually, the mass distribution is Lorentzian,

but for the sake of simplicity it will be approximated by a Gaussian. Also, for the

sake of simplicity, this will be treated as a one-dimensional problem by assuming

that the width of the distribution is known. Using the more traditional frequentist

analysis, the measured data points are sorted into bins and a frequency histogram

is produced, as shown in Figure 2.1. A pre-defined fit function (given in Equation

2.1.1) is applied, using the χ2 fitting method. The fit is defined over a specified

range. The range is explored by calculating the derivatives of the fit function and

moving towards a minimum.

y =
1√
2π

exp

(
−1

2
(
(x− µ)

σ
)2
)

(2.1.1)

where µ is the mean of the distribution, σ is the width and c is a constant.
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Figure 2.1: Histogram of hyperon mass with a χ2 fit.

The resulting mass is then expressed as the mean mass with an error, M ± δM .
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Using a Bayesian approach, there are several things that need to be defined.

First, the prior distribution must be stated. In this problem, it has been assumed

that the mass must be within the region [1.0, 1.3]. The most intuitive choice of prior

would then be a uniform distribution on this region. This type of prior is known

as an uninformed prior. The likelihood function used in this case is based on the

probability density function of a normal distribution, shown in Equation 2.1.2.

L(µ) =
∑

i

1

σ
√
2π

e
−

(xi−µ)2

(2σ2) (2.1.2)

where µ is the mass, σ is the width (constant in this case) and xi denote the data

points.

For each datum measured, the posterior probability distribution function (pdf)

is updated, as illustrated in Figure 2.2. As more data points are measured, the

distribution converges on a mean mass value (in this case, a value of 1.1157).

In contrast to the result obtained using a binned fitting approach where the mean

mass and an associated error are found (M ± δM), the hyperon mass found using

this method is expressed in the form of a probability distribution.

The posterior is related to the prior and the data via Bayes’ Theorem, shown in

Equation 2.1.3 [62].

Pr(X|Y, I) = Pr(Y |X, I)× Pr(X|I)
Pr(Y |I) (2.1.3)

where I denotes any background information, X represents the hypothesis and

Y is the data. Pr(X|Y, I) refers to the posterior, or the probability of the hypothesis

given the data and other information. Pr(X|I) describes the prior distribution, and
Pr(Y |X, I) is the likelihood, or the probability of the data given the hypothesis. The

term Pr(Y |I) denotes the probability of the data given the background information.

It can generally be considered as a constant of proportionality or normalisation

constant.

The basic premise of Bayesian statistics can be expressed in the form of a simple

expression [60]:

Prior × Likelihood ⇒ Evidence× Posterior (2.1.4)
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Figure 2.2: Evolution of the posterior pdf in the experiment of measuring Λ hyperon

mass. In each plot, the number of events used is indicated in the top right corner.

The values of these data points are shown as crosses along the top border of the plot

(omitted in the last plot).
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or, in mathematical terms,

Prior distribution = π(θ)dθ (2.1.5)

Likelihood function = L(θ) (2.1.6)

Evidence = Z =

∫
L(θ) π(θ)dθ (2.1.7)

Posterior distribution = p(θ)dθ (2.1.8)

where θ represents the variable(s) being obtained through the analysis.

The output of a Bayesian calculation contains two parts: the evidence and the

posterior. The evidence, Z, is useful in comparing different statistical models. This

evidence term is not accessible in many Bayesian analysis methods. It is one of the

main distinguishing features of the nested sampling algorithm, described in detail

in Section 2.3. Bayes factors (K), or ratios of evidence, are used to compare any

two models X1 and X2 at any time without the need for any recalculations [60].

K =
Z1

Z2
=

∫
Pr(X1) Pr(Y |X1dX1)∫
Pr(X2) Pr(Y |X2dX2)

(2.1.9)

A K value of less than one indicates that the data supports model 2. A K value

greater than one suggests that model 1 is more likely, and the strength of this sup-

port is related to the value of K. A K value significantly greater than 1 indicates

that model 1 is substantially more likely.

The evidence can be described as a term that relates to the region where the

posterior is most populated. This region is situated within the prior distribution,

and therefore comprises some fraction of the prior. This fraction is defined as exp−H ,

where H denotes the information, otherwise known as the negative entropy [60].

H =

∫
log(

p(θ)

π(θ)
)p(θ)dθ (2.1.10)

It is essentially a measure of the proportion of the prior distribution that con-

tains the majority of the posterior [60]. This number can range over several orders
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of magnitude. The value of H can be in the thousands in cases where the likeli-

hood is dominant in an unusual area of the prior, such as in the region of boundaries.

2.2 Markov Chain Monte Carlo

In many frequentist analysis methods, a region is explored by calculating the deriva-

tive of a fit function and moving towards a minimum. Often, however, it is useful to

use an alternative method of exploration, especially in cases where a function cannot

be easily differentiated. A popular alternative (especially in multivariate problems)

is the use of a random walk such as Markov chain Monte Carlo, or MCMC. This

is a method usually used to generate random samples from a probability distribu-

tion. In recent years, there has been a significant increase in the use of MCMC,

especially in Bayesian applications [68]. Most often, it is used to sample a posterior

distribution to determine its statistical properties. MCMC is particularly useful in

multi-dimensional problems as it is straightforward to explore a multi-dimensional

space.

A Markov chain is a sequence of random states where the value of the next state

is dependent solely on the value of the current state (and not on the previous values

in the chain) [62, 68]. Let X = X0, X1, X2 ... be a sequence of random variables,

sampled from a distribution π(·). Then X is a Markov chain if the value Xn+1 is

determined from sampling a distribution only dependent on Xn. An example of such

a walk is shown in Figure 2.3. From a computing standpoint, it is generally straight-

forward to construct a Markov chain algorithm. There are many such algorithms,

the most commonly used being the Metropolis-Hastings algorithm.
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Figure 2.3: Diagram of a random walk involving two parameters, a1 and a2. The

initial point is indicated with a green marker, and the final point is shown with a

blue marker.

The Metropolis-Hastings is an extension of the Metropolis algorithm [69], and

was developed by Nicholas Metropolis et al in 1953 [70]. It is a random-walk Markov

chain method used extensively in physics. The algorithm itself is easy to implement

and adheres to the following basic structure [69, 71]:

Select a sample θ0 randomly from the starting distribution, π(θ).

For a given number of iterations (t = 1, ..., m), repeat:

Select a sample randomly from the proposal distribution, q(θ(t) | θ(t−1)).

Calculate the likelihood of this new sample.

Determine the joint posterior distribution, h(θ∗) = L(I|θ)π(θ),
where L(I|θ) is the likelihood of the data (I) given observable(s), θ.

Calculate the acceptance ratio, r = h(θ∗)q(θ(t−1)|θ∗)

h(θ(t−1))q(θ∗|θ(t−1))
.

Accept the new value of θ if r ≥ 1.

If r < 1, the new value of θ is set as θ∗ with a probability of r, and θ(t−1)

with a probability of (1− r).
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The use of m steps in the algorithm ensures that the final value of the sample will

be sufficiently different from its initial value.

MCMC is frequently used to infer statistical quantities of an observable (or ob-

servables) by drawing samples from a distribution [68,72]. These samples are selected

through the use of a Markov chain. Nested sampling is a special case, where MCMC

is applied to the prior distribution, rather than to the posterior [62]. In the nested

sampling algorithm (discussed in Section 2.3), a prior distribution is explored by

selecting a sample to use as an initial state for a Markov chain and evolving it using

the Metropolis-Hastings algorithm [60]. Here, MCMC is being used in a capacity

almost reverse to its more common purpose.

2.3 Nested Sampling

The nested sampling algorithm is a recently developed method in statistical Bayesian

analysis. It was developed by Skilling in 2004 [73] and has since been introduced

into a wide range of scientific and mathematical disciplines. The algorithm is unique

in that it provides access to both pieces of the Bayesian output: the posterior,

which is usually obtained through Bayesian analysis, and the evidence, Z (described

in Section 2.1). It is commonly used as a modern model comparison technique.

Whilst the determination of evidence is the key feature of this method, the posterior

distribution has been the outcome of significance in this project.

The programme itself can be broken up into several functional blocks, as shown in

Figure 2.4.
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Figure 2.4: The nested sampling algorithm. The loop continues to find the least

likely (worst) point until some termination condition is met, at which point the

resulting posterior is output.

The algorithm is generic and can be applied to a wide range of problems, but

some of the components are problem-specific [60]. The prior is one such component.

For a particular problem, a prior distribution that covers the full range of possible

values must be established. When nothing is known about the variables in question,

a uniform prior distribution is often used. The likelihood function is the heart of the

analysis method. The experimental data and the function itself are used to calcu-

late the likelihood of any point in the prior. Once the prior has been defined, a set

of sample points are selected and their associated likelihood values are determined.

At this point, the main loop of the nested sampling algorithm is entered and more

generic aspects of the programme are used [60, 62].

Once in the main event loop, the sample point with the lowest likelihood is found

and stored in the posterior distribution. The sample point is then overwritten with

a copy of a randomly selected surviving sample and is evolved into a new, distinct

point. The evidence, Z, and information, H , are updated based on the value of the

overwritten point. The loop continues until some termination condition is met. In

the simplest case, the termination condition can be a pre-set number of iterations.

For a more robust rule, it is possible to use the information, H , to determine when

the programme should end.
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Such a generic termination condition has been derived by Skilling [60]. The

principle is to end the programme when the current likelihood no longer increases by

more than some small amount. It has been shown [60] that an equivalent termination

condition could be determined:

“continue iterating until the count i significantly exceeds NH” [60]

where N represents the number of iterations that have so far been performed.

This termination condition is useful, but is still a matter for the user’s judgement.

The expression “significantly exceeds” is qualitative and requires an interpretation

by the user.

In many likelihood-based analysis methods, problems can arise in cases where the

likelihood function contains discontinuities, plateaus or other such features. This is

not the case in nested sampling - the algorithm is immune to such problems. There

is no need to differentiate the likelihood function, and therefore any features of the

function that make differentiation difficult or impossible are completely avoided by

this approach [60].

It may be helpful to explore the use of nested sampling in a simple example.

Here, the problem is to find the x-coordinate of an object. In order to keep the

example as trivial as possible, the object’s position is defined by a function, which

has been translated into a likelihood function (Equation 2.3.11). As such, there is

no need to introduce data points. For this problem, it has been assumed that the

object’s position along the x-axis lies between x = 0 and x = 5. An intuitive choice

of prior be a uniform distribution covering all possible x-coordinates.

L(x) = 6x− x2 (2.3.11)

From the prior distribution, a set number of samples are selected (in this case, six

samples were chosen). Each sample’s value is then used to calculate its associated

likelihood value using the likelihood function given (and shown in Figure 2.5).

The likelihood value associated with each sample describes the probability of

that sample point being the true x-coordinate of the object. The sample with the
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Figure 2.5: Plot of quadratic likelihood function, with a maximum at x = 3.

lowest likelihood is found (i.e. the worst sample), and is stored in the posterior. All

values associated with the sample, including the value of the sample point itself (its

x-coordinate) and its associated likelihood, are all stored in the algorithm’s output.

The worst sample is then overwritten with a copy of a randomly selected surviving

sample point. This copy is evolved in order to obtain a distinct new point, usually

through the use of a random walk, such as a Markov chain Monte Carlo. The likeli-

hood of this new point is calculated and compared to that of the overwritten point.

It must be greater than the likelihood of the worst sample, and this condition is

ensured by the random walk algorithm.

The diagram in Figure 2.6 shows the process of the nested sampling algorithm

visually. After the first iteration, the sample point with the lowest likelihood value

is, in essence, moved to a region of the prior that is more likely. The next iteration

moves the next-least-likely point to a region of higher likelihood, and so on, until

a cluster forms around one value. This value is then deemed to be the most likely

x-coordinate of the object.
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Figure 2.6: Diagram of the iterative nature of the nested sampling algorithm. Red

points indicate the new point at each iteration. After each iteration, the values

approach x = 3 - the position of the object.
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2.4 Summary

Bayesian inference is an alternative paradigm to the more conventional frequentist

statistics. Despite its slow and gradual emergence into mainstream statistics, the

Bayesian approach has become widely used in a range of applications, including

physics. The main difference between Bayesianism and frequentism is the way in

which data and statistical properties are regarded. In the more familiar frequen-

tist approach, values such as the mean and standard deviation of a distribution are

treated as fixed values, which can be found by randomly sampling data. The funda-

mental principle is that there exists one true value of the mean (for example), which

can be found by repeatedly sampling data. Bayesianism views the data as fixed,

and statistical properties are expressed as probabilities. Unlike frequentist statistics,

where no previous knowledge or expectation is required, Bayesian methods make use

of a prior distribution. The prior distribution is an initial distribution which covers

the range of possible values for the variable in question. The prior is often regarded

as an initial estimate of the expected result(s). In recent years, there have been sig-

nificant developments into Bayesian analysis methods, including the nested sampling

algorithm introduced by Skilling, and is the focus of this work. Nested sampling

works by associating samples from the prior with a likelihood value, determined by

a likelihood function. The sample with the lowest likelihood value is overwritten

with a copy of another point, chosen at random, and moved in order to obtain a

distinctly new point. This movement, or exploration, is usually done through the

use of a random walk algorithm, and in this work, a Markov chain Monte Carlo was

used. The overwritten point is saved to the posterior distribution, and after many

iterations, the posterior shows the region of highest likelihood for the variable being

determined. The algorithm is immune to features of the likelihood function that

can occasionally result in poor outcomes, such as discontinuities, nondifferentiable

functions and plateaus. It is also unique in that it provides access to the evidence

term, which can be used to compare statistical models.



3
Development of Method with Simulated

Data

Within the CLAS Collaboration and in many other international hadron spec-

troscopy groups, there is a significant effort in analysing the large amounts of data

acquired from pseudoscalar meson photoproduction experiments. The development

of new mathematical analysis methods that can maximise the information yield

from these experiments has been increasingly explored. Bayesian analysis has be-

come more common across many fields of physics, but had not been applied to the

experiments performed at CLAS until very recently. This chapter illustrates some

of the more common current analysis methods and fully details the development

of a Bayesian analysis programme called nested sampling that can be used to in-

crease the amount of information obtained from the same data. Also included in

this chapter is the methodology for deriving likelihood functions, which can, in prin-

35
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ciple, also be applied to some non-Bayesian methods of analysis. Work in combining

datasets from different experiment types is presented, where observables from mul-

tiple experiments can be extracted simultaneously. This is possible by exploiting

the fundamental characteristics of the nested sampling algorithm.

3.1 Current methods of analysis

There are several different approaches currently being applied to data from pseu-

doscalar meson photoproduction experiments in the field of hadron spectroscopy.

Initially, polarisation observables were extracted through a binned fitting method.

This sort of analysis is quick and simple, and effective for single polarisation ob-

servable extraction. There are, however, several disadvantages inherent to binned

fitting, and complications arise in cases where double polarisation observables are

extracted. More recently, a maximum likelihood (ML) method was explored, which

features an event-by-event likelihood function [74]. Both of these analysis techniques,

however, share a common problem, in that they both treat polarisation observables

as independent parameters and do not inherently include the constraints imposed

by observable correlations. As such, both methods result in a loss of the information

contained in the observable correlations. There is no guarantee that, when multiple

observables are extracted from the same data set, the results will be consistent. De-

spite this issue, these two methods are the most common currently in use in data

analysis of pseudoscalar meson photoproduction. They are both described in this

section.

3.1.1 Binned Fitting Approach

Most data analysis used to extract polarisation observables from pseudoscalar meson

photoproduction experiments is still performed using a binned χ2 fit. In this method,

and in the simplest case, data from two polarisation settings are used to fill two

histograms of equal binning. These histograms are then combined to obtain an

asymmetry histogram, using Equation 3.1.1, and a sinusoidal function is fitted. The

amplitude of the function then provides access to the beam asymmetry polarisation
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observable, Σ.

Aσ =
σ⊥ − σ‖

σ⊥ + σ‖
= PγΣcos(2φ) (3.1.1)

Figure 3.1 depicts the process used to extract the beam asymmetry, Σ, from

simulated data with high statistics. Σ is a single polarisation observable, and as

such can be extracted using a simple fit. For double polarisation observables, this

method becomes more complicated.

Once Σ has been determined, its value can then be used to find the other ob-

servables. For the extraction of Oi, where i = x, z, two-dimensional histograms are

filled with φ, the kaon azimuthal angle, and cos θi, the cosine of polar angle defined

by the proton and hyperon rest frame (x and z axes, respectively) for each of the

two beam settings [75]. Two-dimensional asymmetry histograms are created (shown

in Figure 3.2) and “sliced”. Each slice corresponds to a projection of the 2-D asym-

metry onto the φ-axis, resulting in a 1-D histogram. The recoil polarisation of the

hyperon modulates the phase shift of the cos(2φ) distribution, and from this shift,

the beam-recoil double polarisation observables can be determined. The fit shown

in Equation 3.1.2 can then be applied to each slice.

A = Pγ(Σ cos(2φ) + αx(z)Ox(z) sin(2φ)) (3.1.2)
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Figure 3.1: (a) Distribution of φ angles when the beam has parallel polarisation.

(b) similarly shows the φ angles when the beam is polarised perpendicularly. (c)

displays the resulting asymmetry of these two histograms. A cos(2φ) curve is fitted

(shown in red).
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Figure 3.2: Two-dimensional histogram of φ and cos(θx) [76]

The values of parameter p1 are then used to fill a new histogram, a simple linear

fit is applied and the gradient of the fitted line provides the value of the observable.

There are several aspects of this analysis technique that must be mentioned. The

involvement of binned histograms inherently results in the loss of information from

the data. This is unavoidable when histograms are used, and can be subjective based

on the binning choices that are made. Often, a fixed value of a previously measured

observable is required to extract others, such as in this case when the extraction of

Ox and Oz is dependent on the value of Σ. This can lead to compounded errors and

less accurate results. Also, as stated previously, there is no consideration for the

correlations between different observables.
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3.1.2 Maximum Likelihood

Despite its prevalence in data analysis in many related fields, maximum likelihood

techniques in hadron spectroscopy have only recently been introduced. Maximum

likelihood estimation relies on an event-by-event likelihood function and therefore

overcomes several of the shortcomings of the binned fit.

Maximum likelihood is an estimation technique that determines which observable

values make the data most likely [77,78]. The concept is most clearly explained for

the simplest case of a univariable problem. Let x1, ... , xN be a set of data points,

and a be the relevant observable. The maximum likelihood technique then finds the

value of a for which Equation 3.1.3 is a maximum [78]:

L(x1, ... , xN ; a) =
∏

Pr(xi, a) (3.1.3)

The concept can easily be extended to cases with many observables. The set of ob-

servable values that maximises the likelihood of the data is found, usually through

the use of simultaneous equations.

Practically, it is often more convenient to find the maximum of the logarithm of the

likelihood. It can also be beneficial to find the position of the maximum by calcu-

lating the derivative of the likelihood function, although this is not always possible.

Maximum likelihood is a simple and straightforward method of estimation, with

invariance under parameter transformation, no information loss from binning, and

a suitability for problems with multiple observables. Despite these benefits, how-

ever, there are some disadvantages to the maximum likelihood approach. For small

datasets, there can be a bias imposed on the results which can cause the outcome

to be consistently above or below the true value (although this can be remedied by

normalisation) [78]. This bias is reduced as the size of the dataset increases.

In nuclear and particle physics, a minimisation package included in the ROOT frame-

work called TMinuit [79] is often used to minimise the negative of the likelihood (or

log(likelihood)) function. It is commonly used in χ2 fitting as well. The software

package is widely used, but can exacerbate some undesirable features of the max-

imum likelihood method. In most uses of TMinuit, there is a heavy dependence

on the first derivatives. This can, in some cases, prove to be a problem when the
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function cannot easily be differentiated algebraically. It is also possible that using

TMinuit will result in the position of a local maximum, which can be problematic

for multimodal likelihood functions.

3.2 Nested Sampling Algorithm

In previous methods of analysis, observables have been treated as free and indepen-

dent variables in fit functions or maximum likelihood programmes. This approach

therefore forfeits a large amount of information contained in the observable correla-

tions. In contrast, the nested sampling programme developed here explores ampli-

tude space - that is, the prior distribution consists of sets of amplitude probability

density functions rather than polarisation observables. Polarisation observable val-

ues are then calculated from these complex amplitudes in a completely consistent

manner. This leads to a number of significant advantages: The information obtained

from a dataset is maximised by preserving all correlations between polarisation ob-

servables, the results of a nested sampling analysis are always consistent, and it is

possible to obtain information on observables to which a particular experiment is

not directly sensitive. The use of an event-by-event likelihood function also pro-

vides certain benefits over a binned fitting method. Whereas in previous analysis

programmes, information was inherently lost through the binning of histograms,

an event-by-event treatment of data bypasses this issue. More interestingly, the

Bayesian nature of the algorithm and the fact that amplitude space is being explored

makes possible the analysis of concatenated datasets - that is, data from different

(although consistent) experiments can be combined and a Bayesian programme can

be used to extract observables from all included experiments in a completely consis-

tent manner. It should be noted that this method of combining datasets is possible

using other methods of analysis (such as χ2 and maximum likelihood), although this

would be significantly more challenging to implement. The binning of histograms

would need to be consistent across both datasets, and this can result in a substantial

loss of information.
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The analysis was written in C++, using ROOT. Although the heart of the algo-

rithm was kept completely generic, there were several functions that were problem-

specific. The generation of a prior distribution, for example, the likelihood function

and the function responsible for evolving points. These will be discussed below.

3.2.1 Prior Generation

The prior distribution used in this programme consisted of the four normalised com-

plex amplitudes introduced in Section 1.3, from which all polarisation observables

are calculated. Eight independent values (corresponding to the complex amplitudes’

real and imaginary components) were randomly generated from the surface of a unit

7-sphere. They were then used to define the four complex amplitudes, from which

the relevant polarisation observables were calculated. The sample size used in this

code was 3000 - that is, there were 3000 sets of four complex amplitudes and po-

larisation observables. Tests were performed to ensure that this construction of a

prior distribution uniformly covered the physical regions of the observables. A plot

of one of the complex amplitudes is given in Figure 3.3 and the prior distributions

for each of the five observables are shown in Figure 3.4.
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Figure 3.3: Argand plot showing a 3000-sample prior distribution of a complex

amplitude. As all four amplitudes are generated in a similar way, their distributions

are similar.
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Figure 3.4: Prior distributions for the five polarisation observables Σ, P , T , Ox, and

Oz, respectively. These observable values were calculated from the 3000 sets of four

complex amplitudes, one of which is shown in Figure 3.3.
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3.2.2 Likelihood function

Once a prior distribution has been generated, each sample point is assigned a like-

lihood value which is dependent on the data and the values associated with the rel-

evant observable quantities. During the initial development of the nested sampling

program, a simplified likelihood function was adopted. The final likelihood functions

will be discussed in Section 3.5 in detail. The likelihood function is problem-specific,

although in the case of pseudoscalar meson photoproduction data analysis, the form

is usually fairly similar for different experiments. The likelihood function simplified

for a specific configuration is given in Equation 3.2.1.

L =

N∏

i=1

Pr(i) (3.2.1)

where

Pr(i) =
1

2

{
1± Pγi[(Σ + αT cos θyi) cos(2φi) + α(Ox cos θxi +Oz cos θzi) sin(2φi)]

1 + αP cos θyi

}

(3.2.2)

There are several terms to define in Equation 3.2.2 that describe an event. Pγi

is the degree of polarisation of the beam and is bounded by [0, 1]. The cos θx,y,zi

terms represent the direction cosines defined by the polar angles of the proton in the

hyperon rest frame, and φi is the kaon azimuthal angle. The addition or subtraction

in Equation 3.2.2 depends on the beam polarisation state. The other variables are

not event-dependent. α is the weak decay constant of the decaying hyperon, and

Σ, P , T , Ox and Oz are the polarisation observables that serve as an input to the

likelihood function and which define the sample point. Due to the typical sizes of

the likelihood values, the function returns the logarithm of the likelihood value.

Each call to the likelihood function involves looping over all events in the data

file. In cases of moderate statistics, this is typically of the order of 5000 - 10000

events. During each loop of the nested sampling algorithm, the likelihood func-

tion is called twenty times, and the nested sampling algorithm itself loops around

50000 times. The iterative nature of the likelihood function resulted in a run-time

significantly slower than other commonly applied methods of analysis. Because of
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this, multithreading and GPU programming was investigated. The details of this

investigation are discussed in Section 3.4.

3.2.3 Exploration

When each sample in the prior distribution has been given a likelihood value, the

nested sampling algorithm identifies the point with the lowest likelihood, or the least

likely sample. It then overwrites that point with a copy of a surviving point, and

evolves the value slightly. The function ensures that the likelihood of the new point

is higher than that of the original through the use of a Markov Chain Monte Carlo.

This exploration or evolution is performed by the Explore function.

The duplicate sample point is adjusted slightly by adding small random num-

bers to the real and imaginary components of the four complex amplitudes. The

observables are then re-calculated and an associated likelihood value is calculated.

A comparison between the sample’s new likelihood value and the value it originally

held determines whether the magnitude of the small random numbers should be

increased or decreased. This enables a well-distributed exploration of the sample

space.

3.2.4 Results on Perfect Simulated Data

Initial tests of the nested sampling programme were performed using data from a

simulation of an ideal set-up. The data were created with an event generator whose

input was a set of values of the relevant polarisation observables. A consistent set of

observable values were input into the generator, and a text file containing the rele-

vant data members was created. The generated data represented a completely pure

signal and contained no noise or background contributions. The degree of polari-

sation was set to be constant for the purposes of testing. The simplified likelihood

function was used and the results obtained were consistent with the values input

into the event generator.
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A simple Monte Carlo event generator was used to create simulated data for

testing purposes. The main input for the event generator was a configuration file

which contains a value for each relevant polarisation observable, the photon energy

used and the degree of photon polarisation. On the command line, the number of

events to be produced and the polarisation state are specified. Phase space distribu-

tions of K+ and Λ particles were then produced. The Λ particles then decayed into

their decay products (a proton and π−). The relevant kinematic properties (kaon

azimuthal (φ) angle, direction cosines) are generated for each event. Approximately

70% of the events are rejected based on the value of the cross-section determined by

the kinematic variables. For the testing phase, an equal number of events in each

polarisation state were generated for simplicity. The event generator outputs a text

file containing the kaon azimuthal angle (φ), flag indicating the polarisation state,

and the three direction cosines for each event.

The effects of low, moderate and high statistics were studied by varying the size

of the generated dataset. Sets of data consisting of 1000, 5000 and 10 000 events

were tested and the results are shown in Figures 3.5 to 3.7.
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Figure 3.5: Results of nested sampling analysis on dataset of 1000 events. The

prior distributions are illustrated by the green histograms, the resulting posterior

distributions (pdfs) by the blue peaks and the true value (input into the event

generator) of each observable is indicated by the vertical red line. Results obtained

from a χ2 fitting method are shown with a dashed grey line. The observables shown

are (a) Σ, (b) P , (c) T , (d) Ox and (e) Oz.
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Figure 3.6: Results of nested sampling analysis on dataset of 5000 events. The

prior distributions are illustrated by the green histograms, the resulting posterior

distributions by the blue peaks and the true value (input into the event generator)

of each observable is indicated by the vertical red line. Results obtained from a χ2

fitting method are shown with a dashed grey line. The observables shown are (a)

Σ, (b) P , (c) T , (d) Ox and (e) Oz.
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Figure 3.7: Results of nested sampling analysis on dataset of 10000 events. The

prior distributions are illustrated by the green histograms, the resulting posterior

distributions by the blue peaks and the true value (input into the event generator)

of each observable is indicated by the vertical red line. Results obtained from a χ2

fitting method are shown with a dashed grey line. The observables shown are (a)

Σ, (b) P , (c) T , (d) Ox and (e) Oz.
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It was found that even at low statistics, the results of a nested sampling analysis

were accurate and it was determined that the algorithm and simplified likelihood

function were performing as expected.

3.2.5 Systematic Errors

The normalised amplitude values that make up the prior distribution are used to

calculate values of the polarisation observables that are inherently bound by [-1,

1]. This implies that under no circumstances can the values of these polarisation

observables be above +1 or below -1. This is generally an advantage, however there

are some cases where this restriction can be problematic. The normalisation of

the amplitudes assumes a precise knowledge of the polarisations and luminosity,

and in most cases any error in measurement is negligible in comparison to other

sources of systematic errors. It is possible, however, that systematic errors in the

measurement of photon polarisation (for example) can be present. In cases where

the values of some polarisation observables are close to a boundary, the effects of this

systematic error would be difficult to determine, as the observable values would be

suppressed in order to keep them within the allowed region. In a binned fit method,

the resulting observable values would, in this case, be outwith the physical region,

but may provide some information on the scale of the systematic errors present.
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3.3 Benchmarking

The accuracy of the analysis methods described above were compared quantitatively

by benchmarking the obtained results against the input values used to generate the

simulated data. Ten data sets were simulated by an event generator using consistent

sets of polarisation observable values as inputs. These data sets were then analysed

using a binned χ2 fit and nested sampling. The values obtained by each analysis

method were compared to the input parameters through two values, the distance

squared and the residuals squared, given by the following two equations [74]:

D2 =
∑

i

(Otrue
i −Ocalc

i )2 (3.3.1)

R2 =
∑

i

(
Otrue

i −Ocalc
i

σcalc
i

)2 (3.3.2)

where O denotes a generic observable and σcalc indicates the associated error.

The distance squared (Equation 3.3.1) describes, in essence, the difference between

the observable values extracted through analysis and their corresponding input val-

ues. The residuals squared (Equation 3.3.2) provides a quantitative description

of how well the uncertainties are determined. It is expected that the sum of the

squared residuals would be approximately equal to the number of observables be-

ing extracted, with a significantly higher value indicating an underestimation of the

associated uncertainties [74].

The results from each of the ten data sets are shown in the plots in Figure 3.8.

These plots indicate that not only does an unbinned nested sampling extraction

provide more accurate results, but does so more consistently than a binned χ2 fit.

The estimation of uncertainties has also been shown to be more accurate, with the

sum of the squares of residuals clustering close to five, the number of observables

being extracted in this analysis. The binned fit yields a significantly higher value

and suggests that the uncertainties are frequently being underestimated. The plots

also show more consistent behaviour as the number of events used in the nested

sampling analysis is increased.
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Figure 3.8: Benchmarking results comparing accuracy of nested sampling to the

commonly used χ2 fitting technique.
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3.4 Data Parallelism

Throughout the development and testing of the nested sampling programme, it was

found that the runtime was significantly longer than previous analysis programmes.

This made the development a slow, tedious process and it was decided that this

needed to be addressed. The use of data parallelism and GPU programming was

explored in an effort to speed up the analysis programme. There exist multiple

tools for parallelising code, two of which were investigated and tested. The work

described in this section has also been published in [80]. The simplest tool explored

was OpenMP [81], an application programming interface (API) that can be used

to multithread code on a CPU. It works through the use of compiler directives that

specify the loop or region of code that will be parallelised [82]. The implementation

into existing code is relatively quick and uncomplicated, but this approach does not

allow the programme to run on the GPU. The second tool explored was the OpenCL

(Open Computing Language) framework, designed to parallelise code on multicore

devices (including GPUs and multicore CPUs) [83]. This approach required a signif-

icant amount of work and its implementation was nontrivial. Collaboration with the

University of Glasgow’s School of Computing Science resulted in the development

of a wrapper class [84] that simplified the considerable initialisations required to use

OpenCL. The OpenCL implementation allowed the programme to be parallelised

on either a multicore CPU or on a GPU, enabling the user to test the programme

on more than one device. As such, both devices were tested with the OpenCL im-

plementation of the code. A more complete description of the theory behind data

parallelism and GPU programming can be found in Appendix A.

Several methods of multithreading and data parallelisation were attempted us-

ing data generated from a simplified linearly polarised beam with recoiling proton

simulation. Three implementations were made for comparison purposes:

• Multithreading on the CPU with OpenMP

• Data parallelisation on the CPU/GPU with OpenCL

• Optimised unthreaded on the CPU (standard)
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The correlations between dataset size and number of threads over which to par-

allelise the data were explored through a variety of tests. The implementations were

all run on a high-end computer system with the following specifications:

• NVidia R©TeslaTMC2075 Companion Processor

• 448 CUDA Cores

• 1.15 GHz core frequency

• 6GB GDDR5 RAM

• 144 GB/s memory bandwidth

• Intel i7 2700K 3.5GHz Quad Core 8MB cache processor

Software development kits for both the Intel and NVidia implementations of

OpenCL were installed on the system. The OpenCL version of the nested sampling

programme involved a kernel function containing the likelihood calculation. The

kernel function was called from the host programme and the necessary data was

transferred during the kernel call. The kernel programme was written in a language

based on C-99. A rudimentary programme called CLCC [85] tested the kernel

code compilation and provided primitive error messages. It was used to debug the

kernel code before implementing it into the programme. A wrapper class called

OclWrapper was developed by Dr Vanderbauwhede of the University of Glasgow’s

School of Computing Science to reduce the amount of initialisation coding required.

This class allowed the user to specify the number of threads to use and the device on

which the programme was to be run, either the CPU or the GPU. The OclWrapper

class was used in the coding of the OpenCL implementation of the nested sampling

programme.

The OpenMP version of the code was much simpler to implement and required

only a few additional lines of code, in the form of pragmas, or compiler directives.

These OpenMP pragmas were placed around the section of code that was to be

multithreaded (the event loop in the likelihood function), and the number of threads
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over which to parallelise the data was an argument that could be set at the command

line.

For each dataset size and for each implementation of the nested sampling pro-

gram, the optimal number of threads was found by performing timing tests using a

range of numbers of threads. The results of these tests are shown in Figures 3.9-3.11.
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Figure 3.9: Initial thread test of OpenCL implementation run on the CPU.

From these tests, it was found that the optimal number of threads was dependent

on the size of the dataset as well as the implementation selected, and that the impact

of running the programme using the optimal number of threads was significantly

more prominent for larger datasets. Using more threads than the optimal number

results in a slower runtime, as more time is required in combining results from the

many threads. This behaviour can be seen by the clear minimum shown in Figure

3.9.

Once the optimal number of threads was determined for given initial conditions,

the runtimes of the implementations were compared for each dataset size.

The results in Figure 3.12 indicate that, contrary to the initial expectations of

the GPU outperforming all other implementations, the most significant speed-ups
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Figure 3.10: Initial thread test of OpenCL implementation run on the GPU.
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Figure 3.11: Initial thread test of OpenMP implementation run on the CPU.
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were obtained using OpenMP or OpenCL on the CPU. For smaller datasets, in the

region of 0-7000 events, OpenMP multithreading provided the most effective speed-

up. As the size of the datasets was increased, OpenCL on the CPU started to show

the best results, and there are hints that if the dataset sizes were to increase into

millions or billions of events, the OpenCL implementation using the GPU would be

the fastest.

This unexpected result was attributed to the overhead caused by transferring

data to the specified compute unit. To quantify this, data transfer time tests were

performed using OpenCL. For these tests, the OpenCL implementation of the nested

sampling programme was run using an empty kernel function, where no calculations

of any kind were being performed on the compute device. The time per iteration

was then solely attributed to the time to transfer data from the main memory to

the compute unit’s local memory. The results of these tests are displayed in Tables

3.1 and 3.2.
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Figure 3.12: Results showing runtimes of each implementation with increasing

dataset size. Each implementation was run with its optimal number of threads.
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Table 3.1: Data transfer results per iteration for OpenCL on the GPU.

No. events Data transfer time (ms) Total time (ms) % Data Transfer

1000 0.227± 0.008 0.277± 0.0023 82

5000 0.231± 0.010 0.328± 0.0027 70

10000 0.232± 0.004 0.3997± 0.0041 58

100000 0.229± 0.005 1.560± 0.0010 15

Table 3.2: Data transfer results per iteration for OpenCL on the CPU.

No. events Data transfer time (ms) Total time (ms) % Data Transfer

1000 0.021± 0.0007 0.0457± 0.001 46

5000 0.021± 0.0022 0.0776± 0.001 27

10000 0.021± 0.0007 0.114± 0.0006 18

100000 0.021± 0.0011 0.790± 0.0074 3
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It can be seen that much more time is required to transfer data to the GPU

than to the CPU, and that a sufficient number of calculations must be performed

in order to overcome this overhead. It was found that for the expected sizes of data

sets that are likely to be encountered in such pseudoscalar meson photoproduction

data analysis at CLAS, the OpenMP implementation was able to provide the best

speed-up with the simplest code modifications to the nested sampling programme.

3.5 Derivation of Likelihood Functions

The cross section equation of pseudoscalar meson photoproduction has 32 terms in

total. Many of these terms, however, go to zero when the reaction configuration is

specified. Below is the expression of the total cross section of pseudoscalar meson

photoproduction [86].
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(3.5.1)

where σ0 is the reduced cross-section,

Σ is beam polarisation observable,

P is recoil polarisation observable,

T is target polarisation observable,

E, F, G, H are the beam-target double polarisation observables,

Cx, Cz, Ox, Oz are the beam-recoil double polarisation observables,

Tx, Tz, Lx, Lz are the target-recoil double polarisation observables,
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P γ
L , P

γ
C are the linear and circular photon polarisations, respectively,

P T
L, T are the longitudinal and transverse target polarisation components, respec-

tively, and

PR
x, y, z are the recoil polarisation components in the x, y and z directions.

The type of reaction is determined by the polarisations of the beam and target,

and whether the recoil polarisation information was obtained. The different polar-

isation settings for the beam and target result in a number of terms in Equation

3.5.1 going to zero.

Table 3.3: Types of Reactions

Polarisation Values going to zero

Beam Unpolarised P γ
L , P

γ
C

Linear P γ
C

Circular P γ
L

Target Unpolarised P T
L , P

T
T

Longitudinal P T
T

Tranverse P T
L

Recoil Detected n/a

Not detected PR
x , PR

y , PR
z

For each combination of polarisations, a reduced cross section equation was de-

termined.

In Tables 3.3 and 3.4, subscripts are used to denote the reaction types.

BU,L,C specifies beam polarisation - unpolarised, linearly polarised and circularly

polarised, respectively.

TU,L, T specifies target polarisation - unpolarised, longitudinally polarised and trans-

versely polarised, respectively, and

RY,N specifies whether the recoil polarisation was detected or not detected, respec-

tively.
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Table 3.4: Reduced Cross Section Equation, by Configuration

Configuration σRed/σ0
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The likelihood functions derived for each experimental configuration were heavily

dependent on the reduced cross sections shown in Table 3.4.

Asymmetries between experimental settings provide the basis for the derivation

of likelihood functions. The procedure for developing these functions differs ac-

cording to the number of elements that are polarised in the experiment. For the

simpler cases, where either the beam or the target is polarised (but not both), the

asymmetry is straightforward.

A =
σa − σb

σa + σb
(3.5.2)

where the superscripts a and b indicate the two relevant polarisation settings.

For those cases where both the beam and the target are polarised, there are

three asymmetries that are possible. For the purposes of clarity and simplicity,

nomenclature associated with a linearly polarised photon beam will be assumed

(parallel and perpendicular polarisation settings) but can be adapted for the case

of circular beam polarisation. The target polarisation settings will be expressed as

positive and negative. All cross-sections refer to the reduced cross-section equations.

A1 =
(σ+

‖ + σ−
⊥)− (σ−

‖ + σ+
⊥)

(σ+
‖ + σ−

⊥) + (σ−
‖ + σ+

⊥)
(3.5.3)

A2 =
(σ+

‖ + σ−
‖ )− (σ+

⊥ + σ−
⊥)

(σ+
‖ + σ−

‖ ) + (σ+
⊥ + σ−

⊥)
(3.5.4)

A3 =
(σ+

‖ + σ+
⊥)− (σ−

‖ + σ−
⊥)

(σ+
‖ + σ+

⊥) + (σ−
‖ + σ−

⊥)
(3.5.5)

The asymmetry A2 is an asymmetry over the beam polarisation and A3 defines

an asymmetry over the target polarisation. A1 can be viewed as an asymmetry of

the convolution of beam and target polarisations.

For each configuration, the associated reduced cross section is rewritten in the

following form:

σRed

σ0

= fP γ + gP γP T + kP T + h (3.5.6)
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where f contains all terms related only to the beam polarisation, g comprises

the coefficients of the product of beam and target polarisations, k involves all terms

related only to the target polarisation, and h consists of the terms completely unre-

lated to any polarisation.

In cases where only one of the beam or target is polarised, this form reduces to

the simple asymmetry as the g term and either the f term (if only the target is

polarised) or k term (if only the beam is polarised) goes to zero.

Through expanding these cross-sections and making some algebraic substitu-

tions, these asymmetries can be simplified.

A1 =
P γP Tg

h + P γ∆Pγf + P γ∆PγP T∆PTg + P T∆PTk
(3.5.7)

A2 =
−P γf + P γP T∆PTg

h + P γ∆Pγf + P γ∆PγP T∆PTg + P T∆PTk
(3.5.8)

A3 =
P TP γ∆Pγg + P Tk

h + P γ∆Pγf + P γ∆PγP T∆PTg + P T∆PTk
(3.5.9)

where P γ is the mean polarisation of the beam, P T represents the mean polar-

isation of the target, ∆Pγ is the asymmetry of the beam polarisation, and ∆PT is

the asymmetry of the target polarisation.

As the likelihood function involved in this analysis programme is in an event-by-

event form, several simplifications to these asymmetries can be made. The concept

of a mean polarisation can be discarded, as can the concept of a polarisation asym-

metry. The mean polarisation terms can thus be simplified to the raw degree of

polarisation for each event, and the polarisation asymmetry terms go to zero (as the

polarisation asymmetry of one event is meaningless). Then the asymmetry equations

can be expressed as shown in Equations 3.5.10 - 3.5.12.

A1 =
−PγPTg

h
(3.5.10)

A2 =
Pγf

h
(3.5.11)
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A3 =
PTk

h
(3.5.12)

In cases where the target is unpolarised, the asymmetries containing a target

polarisation term reduce to zero. Similarly, for those cases when the beam is unpo-

larised, the asymmetries containing a beam polarisation term are likewise reduced

to zero.

In the simplest case of an asymmetry, it is assumed that the number of events

from each polarisation state are equal. In the case of A2, for example, the simplest

form would occur when the difference between the number of events in one beam

polarisation state and the number of events in the other beam polarisation state

is negligible. When this simplification does not apply, however, it is necessary to

introduce another term, known as the luminosity asymmetry (∆L), before the final

form of a likelihood function can be determined.

Following the formalism described in [74], the measured asymmetries can be

expressed in the following form:

Ãi =
Ai +∆Li

1 + Ai∆Li

(3.5.13)

where a unique ∆L term exists for each of the three asymmetries.

The number of events in each setting (for each asymmetry) in a dataset can be

expressed as N i
a and N i

b . Then, there must exist a ratio r of the number of events in

one setting to the number of events in the second setting [74]. Then the probability

of an event having setting a is equal to this ratio r, and the probability of an event

having the other setting (b) must be equal to (1− r). It is then possible to express

the probability of observing exactly Na (Nb) events in setting a (b) as follows [74]:

Pr(Na, Nb|r) ∝ rNa(1− r)Nb (3.5.14)

This describes a beta distribution with α = Na + 1 and β = Nb + 1.

We then express an asymmetry as a scaled and translated ratio: Ã = 2r − 1 [74]
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and the above expression becomes:

Pr(Na, Nb|Ã) ∝ (1 + Ã)Na(1− Ã)Nb (3.5.15)

We can introduce a normalisation constant, Z, to remove the proportionality:

Pr(Na, Nb|Ã) =
1

Z
(1 + Ã)Na(1− Ã)Nb (3.5.16)

This distribution then has a mean of Na−Nb

Na+Nb+2
and a mode of Na−Nb

Na+Nb
.

In the event-by-event approach, each bin will contain either one or no events.

Each event in the dataset can exist in one and only one asymmetry setting. Then,

for a bin that consists of one event in setting a, the probability can be expressed

as [74]:

Pr(Na = 1, Nb = 0|Ã) = 1

2
(1 + Ã) (3.5.17)

and for a bin consisting of one event in setting b, similarly:

Pr(Na = 0, Nb = 1|Ã) = 1

2
(1− Ã) (3.5.18)

The total likelihood can be considered as the product of probabilities of each

event in the dataset.

L =
∏

i

Pr
i
(Ei|O) (3.5.19)

for all events Ei.

For computing applications, it is not practical to use a likelihood function in this

form. Instead, it is more convenient and effective to use the natural logarithm of

likelihoods.

lnL =
∑

i

Pr
i
(Ei|O) (3.5.20)

In those cases where double asymmetries are performed, the final likelihood value

is given by the following equation.

ln(Ltotal) = ln(LÃ1
) + ln(LÃ3

) + ln(LÃ3
) (3.5.21)
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3.5.1 Extraction of Recoil Observable, P

It was found during the initial stages of development that the recoil observable,

P , could not be extracted using the asymmetry alone. The recoil polarisation ob-

servable, P , features only ever in the denominator of the likelihood function, and

as such, strongly influences the observables found in the numerator. This was also

found to be the case in the maximum likelihood analysis technique [74] as well as

in the binned fitting approaches used in previous analyses [75]. The solution im-

plemented in previous analysis programmes was adapted for the nested sampling

method successfully. The extraction of P can be performed without an asymmetry,

and is dependent on the direction cosine, cos(θy). The likelihood equation asso-

ciated with P alone is derived from the distribution of intensity, and as there is

no asymmetry calculation, is dependent on the acceptance - a term used to denote

the fraction of genuine events that are detected/recorded by the detector system.

This is generally found through independent studies and simulations of the detector.

The probability of an event whose direction cosine is cos(θy) given P is shown in

Equation 3.5.1 [74, 86].

Pr(cos(θy) |P ) = ε(cos(θy))
1

2
(1 + α cos(θy)P ) (3.5.1)

where ε(cos(θy)) is the acceptance. An example of the calculation of acceptance is

given in Section 4.3.

In the nested sampling programme’s likelihood function, this is included as an

additional likelihood term and combined with the standard likelihoods found from

the equations derived earlier in Section 3.5.
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3.6 Single Polarisation Analysis

The development of an analysis method for each potential polarisation configura-

tion can be broken into two distinct sections: the development of single polarisation

programmes and the development of double polarisation programmes (discussed in

Section 3.7). Although the term “single-polarisation” generally refers to observables

that are dependent only on one polarisation (i.e. either the beam polarisation, re-

coil polarisation or the target polarisation), such as Σ, in this case the expression is

used to denote experimental configurations where only one of the beam or target is

polarised. Similarly, “double-polarisation” generally refers to observables, such as

Cx, that depend on multiple polarisations (such as beam and recoil polarisations),

here it is used to in reference to experimental configurations involving two or more

of these components being polarised.

The simulated data for each configuration were generated from one set of ampli-

tudes. Each analysis was tested with 5000 data points and 50000 iterations. The

degrees of beam and target polarisations were constant (Pγ = 0.7, PT = 0.7), and

the luminosity asymmetry (∆L) was 0. Ten different sets of simulated data were

used to test each analysis, although only one set of results are given here.

The simplest case occurs when only one element of the experimental configura-

tion is polarised. Following the formalism discussed in Section 3.5, likelihood func-

tions were derived for each of the possible single polarisation states. The likelihood

equations and results from perfect simulated data are shown in this section. In all

plots included in this section, there are three common features. A green histogram

shows the normalised prior distribution, determined as discussed in Section 3.2.1.

A blue histogram indicates the posterior distribution, the mean of which is taken

as the extracted value of the observable. A vertical red line shows the ’true’ value

of the observable, in other words, the value used as an input in the event generation.

There are six single polarisation configurations that yield information about

polarisation observables. The likelihood functions of all six programmes were derived

as discussed in Section 3.5. Each single polarisation programme was only dependent
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on one asymmetry (either A2 or A3), as only one of the beam or target was polarised

in each case. The resulting posterior distributions of these programmes on simulated

data are shown in Figures 3.13 - 3.18.

Table 3.5: Single polarisation configurations

Configuration Beam Recoil Target

BLTURN Linear No Unpolarised

BLTURY Linear Yes Unpolarised

BCTURY Circular Yes Unpolarised

BUTLRY Unpolarised Yes Longitudinal

BUTTRN Unpolarised No Transverse

BUTTRY Unpolarised Yes Transverse
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Figure 3.13: Using a linearly polarised photon beam, unpolarised target, and no

recoil information, the only observable directly measurable is Σ.
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Figure 3.14: Using a linearly polarised photon beam, unpolarised target, with recoil

information, five observables can be measured. Top: Σ, P , T . Bottom: Ox, Oz.
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Figure 3.15: With a circularly polarised beam, unpolarised target and recoil infor-

mation, P , Cx and Cz can be extracted.
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Figure 3.16: An unpolarised beam, longitudinally polarised target and recoil infor-

mation yields P and Lx.
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Figure 3.17: With an unpolarised beam, transversely polarised target and no recoil

information, T can be measured.
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Figure 3.18: A configuration consisting of an unpolarised beam, transversely po-

larised target and recoil information yields Σ, P , T , Tx, Tz.
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3.7 Double Polarisation Analysis

The cases where both the photon beam and target were polarised resulted in a more

complicated form of likelihood function. In these cases, at least two asymmetry

equations were used. Multiple asymmetries were combined by adding together each

asymmetry’s respective log-likelihood value. Similar to the single polarisation cases,

the analyses for each possible configuration were written and tested. The resulting

plots are shown in Figures 3.19 - 3.26.

Table 3.6: Double polarisation configurations

Configuration Beam Recoil Target

BCTLRN Circular No Longitudinal

BCTLRY Circular Yes Longitudinal

BCTTRN Circular No Transverse

BLTLRN Linear No Longitudinal

BCTTRY Circular Yes Transverse

BLTLRY Linear Yes Longitudinal

BLTTRN Linear No Transverse

BLTTRY Linear Yes Transverse
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Figure 3.19: With a circularly polarised beam, longitudinally polarised target and

no recoil information, E is the only measurable observable.
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Figure 3.20: When recoil information is included with a circularly polarised beam

and longitudinally polarised target, P , E, H , Cx, Cz, Lx and Lz can be extracted.
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Figure 3.21: A circularly polarised beam, transversely polarised target with no recoil

information yields T and F .
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Figure 3.22: A linearly polarised beam and longitudinally polarised target configu-

ration with no recoil information is sensitive to Σ and G.



3.7. Double Polarisation Analysis 78

Σ-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4
Σ

P-1 -0.5 0 0.5 1

pd
f

0

0.5 P

T-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4 T

F-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4 F

G-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4 G

  xC-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4

xC

  zC-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4 zC

  xO-1 -0.5 0 0.5 1

pd
f  

0

0.2

0.4

xO

  zO-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4
zO

  xT-1 -0.5 0 0.5 1

pd
f

0

0.1

0.2

0.3 xT

  zT-1 -0.5 0 0.5 1

pd
f

0

0.2

0.4 zT

Figure 3.23: With a circularly polarised beam, transversely polarised target and

recoil information, it is possible to measure Σ, P , T , F , G, Cx, Cz, Ox, Oz, Tx and

Tz.
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Figure 3.24: Using a linearly polarised beam, longitudinally polarised target and

including recoil information, Σ, P , T , F , G, Ox, Oz, Tx, Tz, Lx and Lz can be

extracted.
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Figure 3.25: A linearly polarised beam and transversely polarised target configura-

tion with no recoil information yields Σ, P , T and H .
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Figure 3.26: With a linearly polarised beam, transversely polarised target and recoil

information, it is possible to extract Σ, P , T , E, H , Cx, Cz, Ox, Oz, Tx, Tz, Lx and

Lz.
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3.8 Combining Data from Multiple Experiments

One of the most unique features of the nested sampling analysis programme is its

ability to analyse data from multiple experiments simultaneously and in a completely

consistent manner. This significant advantage arises because of the exploration of

amplitude space, rather than observable space, and because of the event-by-event

element involved in the algorithm. The incorporation of data from multiple ex-

periments is surprisingly simple, both conceptually and in terms of programming

implementation. All that is required is an additional data term for each event in

the data file(s) indicating which experiment produced it and likelihood equations for

each experiment involved. When the likelihood method is called and the events are

looped over, this additional datum will act as an indicator selecting the appropriate

likelihood equation. Any background effects, systematic variables or experiment-

dependent constant multipliers can be included in the particular likelihood equation.

By combining data from different experiments, extracting polarisation observ-

ables in such a consistent manner and exploring the amplitude space, the amount of

information extracted can be significantly increased. It is possible to constrain pos-

sible values of other observables (those to which none of the included experiments

are sensitive). This surprising result is illustrated in the examples that follow. Using

simulated data, this principle was first tested with data from a linearly polarised pho-

ton beam and unpolarised target configuration with recoil information (BLTURY ),

and a circularly polarised photon beam with unpolarised target configuration with

recoil information (BCTURY ). The second example features simulated data from

a linearly polarised photon beam - unpolarised target configuration with recoil in-

formation (BLTURY ) with simulated data of a linearly polarised photon beam and

longitudinally polarised target configuration, with no recoil information (BLTLRN ).
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3.8.1 Combining BLTURY and BCTURY

It was known at the time of development that real data from BLTURY and BCTURY

experiments would be available for analysis. Based on this, these two types of ex-

periment were initially chosen to develop and test the analysis of combined datasets.

The first experiment, involving a linearly polarised photon beam, unpolarised target,

and recoil information, is sensitive to five polarisation observables: the beam asym-

metry observable Σ, recoil observable P , target observable T , and two beam-recoil

double polarisation observables, Ox and Oz. The second experiment type consisted

of a circularly polarised photon beam, unpolarised target and recoil information.

It can be used to directly measure three observables: the recoil observable P and

another two beam-recoil double polarisation observables, Cx and Cz. Prior to the

datasets for both experiments being combined, they were separately analysed and

plotted to include the information known for all seven measurable observables. Fig-

ure 3.27 shows that the observables measurable by the BLTURY experiment are well

resolved, but Cx and Cz are not determined. The amplitude posterior distributions

after analysing only the BLTURY experiment are shown in Figure 3.28. Similarly,

Figure 3.29 shows the results of analysing only the simulated data from the BCTURY

experiment, and it can be seen that only those three observables to which it is sensi-

tive can be extracted. The posterior distributions of the remaining four observables

are not conclusive. The resulting plots of the complex amplitudes after analysing

only the BCTURY experiment are given in Figure 3.30.



3.8. Combining Data from Multiple Experiments 84

Σ
-1 -0.5 0 0.5 1

pd
f

0

0.1

0.2

0.3

0.4 Σ

P
-1 -0.5 0 0.5 1

pd
f

0

0.1

0.2

0.3
P

T
-1 -0.5 0 0.5 1

pd
f

0

0.1

0.2 T

 xC-1 -0.5 0 0.5 1

pd
f

0

0.05

xC

 zC-1 -0.5 0 0.5 1

pd
f

0

0.02

0.04

zC

 xO-1 -0.5 0 0.5 1

pd
f

0

0.05

0.1

0.15
xO

 zO-1 -0.5 0 0.5 1

pd
f

0

0.05

0.1

0.15 zO

Figure 3.27: Using only simulated data from a BLTURY experiment, the above

observables (Σ, P , T , Cx, Cz, Ox and Oz) were extracted. This set-up is not

sensitive to Cx and Cz. In each of the above plots, the prior distribution is plotted

(green), the posterior distribution is shown (blue), with a red line indicating the

input value of the observable in the event generator.



3.8. Combining Data from Multiple Experiments 85

)
1

Re(a
-1 -0.5 0 0.5 1

) 1
Im

(a

-1

-0.5

0

0.5

1

1a

)
2

Re(a
-1 -0.5 0 0.5 1

)
2

Im
(a

-1

-0.5

0

0.5

1

2a

)
3

Re(a
-1 -0.5 0 0.5 1

)
3

Im
(a

-1

-0.5

0

0.5

1

3a

)
4

Re(a
-1 -0.5 0 0.5 1

)
4

Im
(a

-1

-0.5

0

0.5

1

4a

|
1

|a
0 0.2 0.4 0.6 0.8 1

pd
f

0

0.05

|1|a

|
2

|a
0 0.2 0.4 0.6 0.8 1

pd
f

0

0.05

|2|a

|
3

|a
0 0.2 0.4 0.6 0.8 1

pd
f

0

0.05

|3|a

|
4

|a
0 0.2 0.4 0.6 0.8 1

pd
f

0

0.05

|4|a

)1θ - 2θ(
-100 0 100

pd
f  

0

0.01

0.02

0.03

)1θ - 2θ(

)
1

θ - 
3

θ(
-100 0 100

pd
f  

0

0.01

0.02

0.03

)1θ - 3θ(

)1θ - 4θ(
-100 0 100

pd
f 

0

0.01

0.02

0.03

)1θ - 4θ(

Figure 3.28: Posterior distributions of the complex amplitudes, after analysis of sim-

ulated data of a BLTURY experiment. The first row shows an Argand plot for each

amplitude, ai, relative to the ai. The black scatter plots represent the prior distri-

butions used, and the red scatter plots overlaid depict the posterior distributions.

The second row of plots shows the magnitude of each amplitude, and the third row

shows the relative phase between θ2 to θ1, θ3 to θ1, and θ4 to θ1, respectively. The

blue lines and points in all plots indicate the values input into the event generator.
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Figure 3.29: Using only simulated data from a BCTURY experiment, the above

observables (Σ, P , T , Cx, Cz, Ox and Oz) were extracted. This set-up is only

sensitive to Cx and Cz. In each of the above plots, the prior distribution is plotted

(green), the posterior distribution is shown (blue), with a red line indicating the

input value of the observable in the event generator.
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Figure 3.30: Posterior distributions of the complex amplitudes after analysis of sim-

ulated data of a BCTURY experiment. These plots follow the conventions described

in Figure 3.28.

When the datasets are combined, it is possible to simultaneously extract all seven

observables successfully. These results can be considered as a successful proof-of-

concept.
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Figure 3.31: Using simulated data from both the BLTURY experiment and the

BCTURY experiment, all seven observables (Σ, P , T , Cx, Cz, Ox and Oz) were

extracted. In each of the above plots, the prior distribution is plotted (green), the

posterior distribution is shown (blue), with a red line indicating the input value of

the observable in the event generator.
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Figure 3.32: Posterior distributions of the complex amplitudes after combined anal-

ysis of simulated data of BCTURY and BLTURY experiments. These plots follow

the conventions described in Figure 3.28.

The resulting amplitude plot, Figure 3.32, is further constrained with the addi-

tion of the BCTURY data.

3.8.2 Combining BLTURY and BLTLRN

The further development of a combined analysis programme was focused on the in-

clusion of a polarised-target experiment. The BLTLRN type of experiment featuring

a linearly polarised photon beam incident on a longitudinally polarised target and

no recoil information, and provides a means to measure the beam asymmetry ob-

servable Σ and the beam-target double-polarisation observable G. Data simulated

for a BLTURY type of experiment were analysed as described earlier in this chapter,

and plotted to include the results for the G observable. This is given in Figure 3.33.
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Figure 3.33 shows that even without the inclusion of any target polarisation, the

use of amplitude space and observable correlations can provide access to a significant

amount of information about observables that are not directly measurable. It was

found that there was already a considerable amount of information concerning the

value of the G observable. This was due to the nature of the analysis approach and

the preservation of correlations between observables.
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Figure 3.33: Using only simulated data from a BLTURY type of set-up, the above

observables (Σ, P , T , Ox, Oz and G) were extracted. There is a clear ambiguity in

the sign of G, an observable to which this experimental configuration is not directly

sensitive. In each of the above plots, the prior distribution is plotted (green), the

posterior distribution is shown (blue), with a red line indicating the input value of

the observable into the event generator.

Similarly, simulated data from a BLTLRN style experiment was analysed and

the posterior distributions of P , T , Ox and Oz were included in the results. It can

be seen in Figure 3.34 that no conclusions can be drawn for the values of these

observables from this experiment alone. The two observables to which the BLTLRN
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experiment is sensitive are well resolved in this analysis. The posterior distributions

for the complex amplitudes were also plotted as they were in Section 3.8.1, resulting

from the analysis of the simulated BLTLRN data. This is shown in Figure 3.35.
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Figure 3.34: Using only simulated data from a BLTLRN style of set-up, the above

observables (Σ, P , T , Ox, Oz and G) were extracted. This configuration is only

sensitive to Σ and G, and very little information is found of the other observables

shown here. In each of the above plots, the prior distribution is plotted (green), the

posterior distribution is shown (blue), with a red line indicating the input value of

the observable into the event generator.
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Figure 3.35: Posterior distributions of the complex amplitudes after the analysis

of simulated data of a BLTLRN experiment. These plots follow the conventions

described in Figure 3.28.

The simulated data from both experiments was amended to include an additional

term, a flag term, that was used to select the appropriate likelihood equation for

each event. The two data files were then concatenated and analysed together. The

result of this simple concatenation approach is shown in Figure 3.36. The resulting

amplitude posterior distributions are also shown, in Figure 3.37.
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Figure 3.36: Using simulated data from both BLTURY and BLTLRN set-ups, the

above observables (Σ, P , T , Ox, Oz and G) were extracted. Information on all

observables to which at least one of the configurations is sensitive can be found. In

each of the above plots, the prior distribution is plotted (green), the posterior distri-

bution is shown (blue), with a red line indicating the input value of the observable

into the event generator.
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Figure 3.37: Posterior distributions of the complex amplitudes after the combined

analysis of simulated data of BLTLRN and BLTURY experiments. These plots follow

the conventions described in Figure 3.28.

This method proved to be effective for combining datasets from different exper-

imental configurations and experimental runs and illustrated the wealth of infor-

mation that can be shared from one experiment to another. It can be seen by the

amplitude plots, Figures 3.28, 3.35 and 3.37, that the combined analysis of these

two experiments further constrains the complex amplitudes, indicating an overall

gain in information yield.

3.9 Summary

In this chapter, the development of the nested sampling was described. Currently

used methods, including a binned χ2 fitting method and a maximum likelihood ap-

proach, were discussed and compared to the Bayesian programme presented here.

Neither method currently in use maximise the amount of information that can be
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obtained from existing data, and this was the fundamental motivation for the de-

velopment of a new method.

The prior distribution used in nested sampling analyses of pseudoscalar meson

photoproduction experiments was chosen to be is amplitude space, which were then

mapped to observable space for use in the likelihood function. Early benchmarking

of this approach indicated that the nested sampling programme produced more ac-

curate and precise results compared to those obtained by the more common binned

fitting method, even for datasets with low statistics.

The derivation of the likelihood functions for all possible experimental set-ups

was described and a table of all functions was given. These likelihood equations

were based on asymmetry expressions between different polarisation states of the

beam, target, or both. A luminosity asymmetry term was introduced to the equa-

tions to account for discrepancies between the number of events in one polarisation

over another. These likelihood functions were tested with simulated data for each

possible experiment type, and the results were successful.

The exploration of amplitude space rather than observable space ensured the

preservation of constraints from observable correlations. It also allowed multiple

experiments to be analysed together, by concatenating the data files. Two examples

of this using simulated data were described, and it was shown that the concept of

merging data files and analysing two independent experiments simultaneously pro-

duces results that are at least consistent with the results obtained by analysing each

experiment individually. The amplitude plots produced by separate analyses and a

combined analysis illustrated that a combined analysis resulted in more constrained

complex amplitudes. It was shown that this method of merging data files and

analysing multiple experiments simultaneously increases the amount of information

extracted from a data set.



4
Analysis and Results of the g8b and g1c

experiments

This chapter features the analysis of two experiments performed at CLAS. The g8b

experiment consisted of a linearly polarised photon beam with an unpolarised proton

target, and the g1c experiment was comprised of a circularly polarised photon beam,

also incident on an unpolarised proton target. For each experiment, events from

the K+Λ0 reaction channel were analysed. The results of each separate analysis are

compared to results previously obtained and published, as well as to each other, with

a compatible binning scheme employed. The aim of this chapter is to illustrate the

effectiveness of the nested sampling method in obtaining results from real data and

showing their consistency with accepted values, while ensuring that the observable

values are permitted by the set of complex amplitudes.

Prior to the nested sampling programme being used to analyse data, the correct

96
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events must be identified. This is done by identifying final-state particles and se-

lecting events that match the desired reaction. For the KΛ reaction channel, the

final state particles required are a pion, a kaon and a proton. The missing mass

distribution for accepted events is shown in Figure 4.1. The two prominent peaks

show the two hyperons, Λ and Σ, with this final state. Further cuts are then made

to select only Λ events. The full particle identification and event selection process

is detailed in [75].

)2KX (GeV/c→pγMissing Mass, 
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Figure 4.1: Plot of missing mass, used to identify hyperons [87].

4.1 The g8b experiment

The g8b experiment was performed in Hall B at Jefferson Lab between June 20th

and September 1st, 2005 [75]. The experiment involved a beam of linearly polarised

photons incident on a stationary proton target of liquid hydrogen. An electron beam

with an energy of 4.551 GeV was scattered using a diamond radiator, which produced

the polarised photon beam with an energy ranging between 1.71 GeV and 2.19 GeV

through the process of coherent bremsstrahlung, covering a −0.75 < cos(θCM
K ) <
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0.85 angular region. The reaction −→γ p → K+Λ0 was selected for analysis. Prior

to the nested sampling programme being implemented, it should be noted that all

particle identification had already been performed [75]. All analysis was performed

by first sorting the data into smaller bins defined by the baryon mass (W ) and

angular region (cos(θCM
K )) of the kaon polar angle in the centre of mass frame.

This division of data was chosen based on previous analyses of the same data.

This experiment is sensitive to five polarisation observables: the beam asymmetry

observable (Σ), the recoil observable (P ), the target observable (T ), and two beam-

recoil double polarisation observables (Ox and Oz).

4.1.1 Binning Scheme

The data were binned into smaller files corresponding to a region of baryon mass

and kaon polar angle. It was decided to employ an identical binning scheme as was

used in a previous analysis [75], as this would allow for the most direct comparison

of results. The bin boundaries are given in Table 4.1. Although this binning scheme

had been previously used, it was important to verify that the data populated each

bin sufficiently. A two-dimensional plot of baryon mass W and kaon polar angle

cos(θCM
K ) of all data was created with the bin boundaries superimposed to illustrate

this. This plot is shown in Figure 4.2. It can be seen in this figure that all bins are

indeed sufficiently populated.

4.1.2 Luminosity Asymmetries

The likelihood functions developed for the nested sampling programme are derived

from asymmetries that assume an equal number of events in each beam polarisa-

tion setting (parallel and perpendicular). The experimental data, however, often

featured a disproportionate number of events in one setting. This can be taken

into account by introducing a luminosity asymmetry term, ∆LL, into the likelihood

function as described in Section 3.5. Each luminosity asymmetry was calculated by

performing a nested sampling fit across all events in a W bin (across the whole range
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Figure 4.2: Distribution of all data used for g8b analysis. The magenta lines indicate

the bin boundaries.
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Table 4.1: Bin definitions

W bin (GeV) cos(θK) bin boundaries

(1.71, 1.73) -0.75, 0.05, 0.45, 0.85

(1.73, 1.75) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(1.75, 1.77) -0.75, -0.35, 0.05, 0.25, 0.45, 0.65, 0.85

(1.77, 1.79) -0.75, -0.35, 0.05, 0.25, 0.45, 0.65, 0.85

(1.79, 1.81) -0.75, -0.35, 0.05, 0.25, 0.45, 0.65, 0.85

(1.81, 1.83) -0.75, -0.35, 0.05, 0.25, 0.45, 0.65, 0.85

(1.83, 1.85) -0.75, -0.35, 0.05, 0.25, 0.45, 0.65, 0.85

(1.85, 1.87) -0.75, -0.35, 0.05, 0.25, 0.45, 0.65, 0.85

(1.87, 1.89) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(1.89, 1.91) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(1.91, 1.93) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(1.93, 1.95) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(1.95, 1.97) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(1.97, 1.99) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(1.99, 2.01) -0.75, -0.55, -0.35, -0.15, 0.05, 0.25, 0.45, 0.65, 0.85

(2.01, 2.03) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.03, 2.05) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.05, 2.07) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.07, 2.09) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.09, 2.11) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.11, 2.13) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.13, 2.15) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.15, 2.17) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85

(2.17, 2.19) -0.75, 0.05, 0.25, 0.45, 0.65, 0.85
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of kaon polar angles), and allowing the ∆LL variable to be free and unconstrained.

The luminosity asymmetry is a measure of the asymmetry of photon flux and is

therefore only dependent on photon energy. There is no dependence on scattering

angle or beam polarisation, so is constant across all cos(θK) bins in a W bin. This

value was then used for the analysis of each cos(θK) bin within that W bin.

Initially, the value of ∆LL obtained was used to define a Gaussian distribution

from which a random value was generated. In the nested sampling programme,

the value of ∆LL was originally allowed to vary, but this had a negligible effect on

the results when compared to using the value as a constant. A constant value was

therefore used, simplifying the algorithm and reducing the computation time.

The luminosity asymmetry values for each W bin were obtained through the

nested sampling extraction method and plotted. The results are shown graphically

in Figure 4.3.
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Figure 4.3: Luminosity asymmetry values obtained through nested sampling
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4.1.3 Acceptance Correction

The extraction of the recoil observable, P , was not performed using the asymmetry-

based likelihood functions derived in Section 3.5. This implies that acceptance terms

would not be cancelled during an asymmetry calculation, and would have to be

considered. The likelihood term associated with P was instead found by combining

the probabilities of each event given a value of P , as shown in Equation 4.1.1.

Likelihood =
∏

i

Pr(cos(θyi) |P ) =
∏

i

ε(cos(θyi))
1

2
(1 + α cos(θyi)P ) (4.1.1)

where ε denotes the acceptance.

The value of acceptance used in this equation was dependent on the beam energy,

W , and the kaon polar angle, cos(θCM
K ) and was calculated independently of the

analysis programme [75]. An event generator was used to create events, which were

then passed to a simulation of the detector. Based on the physics of the detector,

events were either accepted or rejected (i.e. not detected). The ratio of generated

events to accepted events gives an acceptance ratio, η, for each data bin. The value

of acceptance for bin i was then determined by Equation 4.1.2.

εi =
1

ηi
(4.1.2)

4.1.4 Consideration of Background

The measured events in the dataset contained a small proportion of background

events in addition to the genuine signal used to extract polarisation observables.

This background can be seen in Figure 4.1, under the two hyperon peaks. It has

been shown that this background accounted for approximately 3% of the data [75,88],

and is straightforward to take into account during analysis. It was assumed that

the number of background events in the data taken when the photon beam was

parallel-polarised was roughly equal to the number of background events present

from a perpendicularly polarised beam. When an asymmetry of the cross-sections

is taken, it can be seen that this background contribution can be treated as a small
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dilution, β [75].

A =
σ⊥ − σ‖

σ⊥ + σ‖

=
σe
⊥ − σe

‖

(1 + β)(σe
⊥ − σe

‖)
(4.1.3)

where σe
⊥(‖) denotes the cross-section due to true events.

The inclusion of this background fraction carries forth to the form of asymmetry

equation used in the nested sampling programme’s likelihood function as shown in

Equation 4.1.4 below [75, 88].

A =
Pγg

(1 + β)f
(4.1.4)

The value of β for each bin of data was established previously (independently)

and was provided in [75].

4.1.5 Results of g8b

The results from analysing the g8b data using the nested sampling programme were

compared to previous results obtained with a maximum likelihood fitting method

[88]. The plots below show the comparisons for all observables that are directly

measurable by g8b: Σ, P , T , Ox and Oz.
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Figure 4.4: Results of beam asymmetry observable, Σ where red squares indicate

previous results obtained through maximum likelihood analysis [88], and black cir-

cles show results from the nested sampling analysis.
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Figure 4.5: Results of recoil observable, P where red squares indicate previous results

obtained through maximum likelihood analysis [88], and black circles show results

from the nested sampling analysis.
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Figure 4.6: Results of target observable, T where red squares indicate previous

results obtained through maximum likelihood analysis [88], and black circles show

results from the nested sampling analysis.
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Figure 4.7: Results of the beam-recoil observable, Ox where red squares indicate pre-

vious results obtained through maximum likelihood analysis [88], and black circles

show results from the nested sampling analysis.
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Figure 4.8: Results of the beam-recoil observable, Oz where red squares indicate pre-

vious results obtained through maximum likelihood analysis [88], and black circles

show results from the nested sampling analysis.

It can be seen by these plots that the results from the nested sampling method

agree strongly with previous values.
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4.1.6 2-Dimensional Results for All Observables

One of the main features of the nested sampling programme is its use of amplitude

space as the prior distribution. By constraining the amplitudes (through the use

of the likelihood function(s)), information about observables that are not directly

measurable by the experiment can be found. In order to visualise this informa-

tion, two-dimensional likelihood plots were created for each observable, and for each

bin. Regions of warmer colour indicate the more likely values of each observable

in a particular bin. In many cases, it can be seen that observables that are not

directly measurable by the experiment are constrained to a smaller region of observ-

able space, or have a bi-modal probability density function indicating a reasonably

resolved magnitude with a sign ambiguity. One such plot is shown in Figure 4.9.

The plot shows the full results for one energy bin, and each cell of the plot cor-

responds to a polarisation observable. Each vertical band is the two-dimensional

histogram of the observable’s probability density function for a particular angular

bin. The darker colours indicate the most probable values. Plots for all energy bins

are included in Appendix B.

Amplitude plots similar to those introduced in Chapter 3 were produced for

g8b data. Figure 4.10 shows the posterior distributions of the complex amplitudes

for one bin in W and cos(θCM
K ). The rings seen in the top row indicate that the

magnitude of each amplitude is determined.
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Figure 4.9: Plot showing likelihood distributions for all 15 polarisation observables in one energy bin, 1.75 < W < 1.77 GeV.
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Figure 4.10: Posterior distributions of the complex amplitudes after the analysis of

one bin of g8b data. These plots follow the conventions described in Figure 3.28.
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4.2 The g1c experiment

The g1c experiment took place in Hall B of Jefferson Lab during late 1999 [89].

A beam of circularly polarised photons were incident on a stationary, unpolarised

proton target, and the events from the γp → K+ Λ0 reaction channel were anal-

ysed. This experiment was sensitive to three polarisation observables: the recoil

observable, P , and two beam-recoil double polarisation observables, Cx and Cz. An

electron beam incident on a gold foil radiator was used to produce a beam of cir-

cuarly polarised photons through coherent bremsstrahlung [59]. The proton target

used was an 18cm target cell containing liquid hydrogen.

During the g1c experimental run, three datasets were produced, corresponding to

three electron beam energies: 2.445, 2.897 and 3.115 GeV [89]. The 2.445 and 2.897

GeV datasets involved the photon beam being circularly polarised, whereas the 3.115

GeV dataset did not. In this analysis, only the 2.445 GeV dataset was considered.

4.2.1 g1c data

A copy of the 2.445 GeV dataset was obtained from collaborators at Carnegie Mel-

lon University (CMU). The data was stored in a format developed at CMU, and

additional software (COBRA) was required to identify and extract events from the

K+Λ0 reaction channel. This extraction involved the use of kinematic fitting to

identify particles in the final state. The COBRA software [90] enabled relevant data

to be easily identified from the full dataset. The desired final state particles (K+

and p) were specified, and a kinematic fit on the missing mass of K+p was performed

to identify final-state pions. A confidence interval was then chosen, and verified by

examining the effects of the kinematic fit.

The binning scheme used for analysing the g8b data was implemented here to allow

for like-for-like future comparisons between the experiments. The angular and en-

ergy distribution of g1c data is shown in Figure 4.11, where the bin boundaries are

featured.
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Figure 4.11: Distribution of all g1c data analysed. The magenta lines indicate the

bin boundaries.

4.2.2 Luminosity Study of g1c

Before the analysis of g1c was carried out, luminosity asymmetry values were calcu-

lated in a similar manner to that described in Section 4.1.2. The value of ∆LC was

included in the nested sampling programme’s likelihood function as a free variable,

and determined using all events in an energy bin, across all values of cos(θCM
K ). The

results of this study are shown in Figure 4.12. These results deviate only slightly

from zero, suggesting a relatively equal number of events in both polarisation set-

tings (clockwise and anticlockwise circular beam polarisations).
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Figure 4.12: Plot of luminosity asymmetry values against photon beam energy, W

for g1c data binned in the same bins as g8b.

4.2.3 Results of g1c Compared to Previous Analysis

A nested sampling analysis was used to extract the observables P , Cx and Cz. The

values of the double polarisation observables (Cx and Cz) were compared to pub-

lished results [59], and this comparison is shown in Figures 4.13 and 4.14. The

extracted results of the recoil observable P were compared to the results from the

analysis of g8b, using an identical binning scheme. The results from both experi-

ments are displayed in the graph in Figure 4.15 below.

In general, the results for Cx and Cz appear strongly consistent with previous

results, although there do exist some differences. There are several reasons for this

slight discrepancy. Both sets of results correspond to the same experiment, but

different datasets were analysed. The results from [59] were obtained by analysing

a dataset where the electron beam used to produce photons had an energy of 2.897

GeV, and the dataset analysed with the nested sampling programme corresponded
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Figure 4.13: Comparison of previous results (red squares) with results from nested

sampling (blue circles) for the Cx observable.



4.2. The g1c experiment 116

1.6 1.8 2 2.2 2.4 2.6
-1

-0.5

0

0.5

1

) < -0.05Kθ-0.25 < cos(

W (GeV)
1.6 1.8 2 2.2 2.4 2.6
-1

-0.5

0

0.5

1

) < 0.55Kθ0.35 < cos(

1.6 1.8 2 2.2 2.4 2.6
-1

-0.5

0

0.5

1

) < 0.15Kθ-0.05 < cos(

W (GeV)
1.6 1.8 2 2.2 2.4 2.6
-1

-0.5

0

0.5

1

) < 0.75Kθ0.55 < cos(

1.6 1.8 2 2.2 2.4 2.6
-1

-0.5

0

0.5

1

) < 0.35Kθ0.15 < cos(

W (GeV)
1.6 1.8 2 2.2 2.4 2.6
-1

-0.5

0

0.5

1

) < 0.95Kθ0.75 < cos(

Figure 4.14: Comparison of previous results (red squares) with results from nested

sampling (blue circles) for the Cz observable.
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to the most stable dataset, stemming from an electron beam of energy 2.445 GeV.

All run conditions were constant for both datasets, although the statistics of the

datasets may slightly differ. The photon beam energies produced for both datasets

covered an equivalent range. It should be stated that this analysis was performed

with no acceptance corrections implemented. Initial comparisons of results agreed

strongly with published values for g1c despite this lack of correction, and as the

required acceptance information was no longer available, it was assumed that the

acceptance ratio was sufficiently constant across the decay proton’s direction cosine,

cos(θy), region in the Λ rest frame.

When compared to the results of P from g8b, it was also found that the values

agreed. This suggested that the datasets were consistent with each other.
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Figure 4.15: Comparison of results from g8b (red) with results from g1c (blue) for

the recoil observable, P , where nested sampling was used in both analyses.

The results from g8b and g1c were also compared using one of the observable

relations described in Section 1.3. Equation 1.7 was rearranged to the form shown

in Equation 4.2.1 below.

C2
x + C2

z = 1− Σ2 − P 2 + T 2 − O2
x −O2

z (4.2.1)

The values obtained for Cx and Cz from analysis of g1c data were used to cal-
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culate a value for the left hand side of Equation 4.2.1, and the right hand side was

determined from the values of Σ, P , T , Ox and Oz obtained through g8b analysis.

This was done for each bin and plotted in order to verify that the results obey this

relation. The comparison is shown in Figure 4.16.
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Figure 4.16: Comparison of g8b results (red) with results from g1c (blue) for the

relation described in Equation 4.2.1 .

Full two-dimensional likelihood plots of all observables were produced for each

energy bin, as they were for the analysis of g8b. Figure 4.17 shows the plot corre-

sponding to the 1.75 − 1.77 GeV energy bin. Plots for all energy bins can be found

in Appendix B.

Again, amplitude plots showing the resulting posterior distributions of the com-

plex amplitudes after analysis were produced. Figure 4.18 illustrates the amount

of information learned about the amplitude space from the g1c data in a particular

bin.
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Figure 4.17: Plot showing likelihood distributions for all 15 polarisation observables in one energy bin, 1.75 < W < 1.77 GeV.
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Figure 4.18: Posterior distributions of the complex amplitudes after the analysis of

one bin of g1c data. These plots follow the conventions described in Figure 3.28.
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4.3 Summary

The g8b experimental run at CLAS consisted of a linearly polarised photon beam

incident on an unpolarised proton (liquid hydrogen) target. The data were binned

in terms of photon energy (W ) and kaon polar angle (cos(θCM
K )). They were then

analysed and compared to results from previous analyses of the same data sets. The

asymmetry expression from which the likelihood function was derived was amended

to include the effects of having unequal numbers of events in each of the beam po-

larisation settings. This was done by considering the luminosity asymmetry, ∆L,

for each data bin. The values of ∆L were found by performing a nested sampling

analysis over all data in an energy bin and extracting the ∆L term as an indepen-

dent variable. The detector acceptance and background were considered using the

techniques implemented in previous analysis methods.

A second experiment, g1c, was also analysed and compared to published results. Lu-

minosity asymmetries for g1c were calculated using the same methodology that was

employed for g8b luminosity asymmetry extraction. The values obtained through

nested sampling were largely consistent with those previously published, despite a

subset of the total data being used and no acceptance corrections. This was un-

surprising as the run conditions were very much the same for all datasets. The

agreement further suggested that the acceptance of the detector was fairly constant

across the y-direction cosine of the decay proton in the Λ rest frame.

Including these considerations, it was found that the nested sampling programme

produced results consistent with those of past analyses of the same data. These

results further suggest that the values obtained for the five observables directly

measurable by each experiment can be considered as “consistent”, implying that

they are allowed by the constraints imposed by the observable correlations. By

using the amplitudes as a prior distribution, it was possible to extract information

about all 15 observables, and this was shown using 2-dimensional likelihood plots. It

can be seen that, although the true values of all observables cannot be determined

from each of these experiments individually, they are constrained to some degree

through the observable correlations.



5
Analysis and Results of Combined Data

In this chapter, one of the fundamental benefits of exploring amplitude space is

investigated. The two datasets previously analysed separately, g8b and g1c, will be

combined and analysed together. All seven observables that were measured in the

two separate analyses will be extracted simultaneously from this combined dataset,

ensuring that the obtained values are permitted by the constraints imposed by the

observable correlations. The impact of this combined analysis on other observables

will be shown graphically using two-dimensional likelihood plots.

Section 5.1 will describe how the datasets are combined and how the likelihood

function was adapted. The next section will then show the results and compare

them to the results obtained from the separate analyses.

123
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5.1 Combining g1c with g8b data

The procedure for merging datasets from two experiments was straightforward. For

each bin defined by W and cos(θK), the dataset from each experiment was edited

to include an additional term, an integer flag used to indicate the event’s associated

experiment. The two datasets were then simply concatenated.

The likelihood function was also revised to include both relevant likelihood equa-

tions. The newly included flag determined which likelihood equation (from those

listed in Table 3.4) would be used for a given event, and after all events had been

looped over, the likelihood components from each equation were combined. The

luminosity asymmetry values given in Sections 4.1.2 (g8b) and 4.2.2 (g1c) were used

in this analysis in their relevant likelihood equations. Although simple, this method

uses information from both datasets to further constrain the values of all observables

and ensure that all results are allowed by the restrictions introduced by the set of

complex amplitudes.

5.2 Results of combining g8b and g1c

Aside from the introduction of a slightly more complex likelihood equation, the

procedure for analysing the combined data was identical to the analyses described

in Chapter 4. The results of the observables Σ, P , T , Ox, Oz, Cx and Cz proved to

be in excellent accordance with the values obtained in the separate analyses of g8b

and g1c, as illustrated in Figures 5.1 to 5.7.

The above plots indicate that it is possible and, indeed, straightforward to com-

bine datasets from different experiments in this manner, and at the very least, obtain

sufficiently similar results as separate analyses would yield. The distinguishing fea-

ture that is used in the combined analysis is that the observables are all extracted

in a way such that the correlations imposed by the complex amplitudes on the

observables are preserved.
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Figure 5.1: Results of combined analysis of g8b and g1c (green) compared to results

from g8b analysis (red) of the beam asymmetry observable, Σ.
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Figure 5.2: Results of combined analysis of g8b and g1c (green) compared to results

from g8b analysis (red) of the target observable, T .
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Figure 5.3: Results of combined analysis of g8b and g1c (green) compared to results

from g8b analysis (red) of the beam-recoil double polarisation observable, Ox.
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Figure 5.4: Results of combined analysis of g8b and g1c (green) compared to results

from g8b analysis (red) of the beam-recoil double polarisation observable, Oz.
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Figure 5.5: Results of combined analysis of g8b and g1c (green) compared to results

from g8b analysis (red) and g1c analysis (blue) of the recoil observable, P .
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Figure 5.6: Results of combined analysis of g8b and g1c (green) compared to results

from g1c analysis (blue) of the beam-recoil double polarisation observable, Cx.
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Figure 5.7: Results of combined analysis of g8b and g1c (green) compared to results

from g1c analysis (blue) of the beam-recoil double polarisation observable, Cz.
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Just as they were for the analyses presented in Chapter 4, two-dimensional like-

lihood plots of all fifteen observables for each energy bin were produced. The plot

of one energy bin is given in Figure 5.8, and plots for all other energy bins can be

found in Appendix B.

As was done in Chapters 3 and 4, amplitude plots depicting the posterior dis-

tributions of the four complex amplitudes were produced for the combined analysis

of g8b and g1c. Figure 5.9 shows these results, which can be compared to Figures

4.10 and 4.18 to visualise the amount of information gained by analysing these two

experiments together.
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Figure 5.9: Posterior distributions of the complex amplitudes after the combined

analysis of one bin of g8b and g1c data. These plots follow the conventions described

in Figure 3.28.

In general, there is little difference between these results and the g8b two-

dimensional plots. This is understandable as both experiments are beam-recoil

experiments, and no additional information on target polarisation is introduced. It

is therefore unsurprising that a significant amount of new information is not dis-
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Figure 5.8: Plot showing likelihood distributions for all 15 polarisation observables in one energy bin, 1.75 < W < 1.77 GeV, after

combined analysis of g8b and g1c.
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covered. These plots do, however, show that both analyses are compatible and well

understood.

5.3 Summary

Datasets from two kinematically consistent experiments were combined and analysed

simultaneously. This allowed the complex amplitudes in the prior distribution to be

constrained by the likelihood functions associated with both experiments, increasing

the amount of information extracted from the data. By extracting observables in

this way, it is ensured that the values found are always compatible.

The results of the combined analysis were compared to those found in separate

analyses. It was shown that these were sufficiently consistent with those found by

analysing each experiment separately (as shown in Chapter 4). Two-dimensional

plots of the combined analysis were created, and show how all fifteen observables

are affected by analysing these merged datasets. It was found that there was not a

substantial gain in information on those observables not directly measured in this

case, but this was not unexpected. The two experiments used in this analyses were

both beam-recoil experiments, implying that no information on target polarisation

was included. This method of combining datasets can be easily generalised for any

number and any type of experiments.



6
Summary and Outlook

The field of hadronic physics is focused on the understanding of the strong interac-

tion in nucleons. Although QCD provides a suitable explanation in the perturbative

region, the mass of a nucleon falls within the non-perturbative regime and there

has not been sufficient developments in lattice QCD as of yet. A variety of quark

models exist and vary based on the number of degrees of freedom and quark inter-

actions. In order to learn which models are the most reliable, it is crucial to provide

experimental evidence that can be used to support or oppose them. Each quark

model predicts a unique nucleon mass resonance spectrum. We can develop our

understanding of quark interactions by experimentally measuring resonances that

are predicted by some models and not others. By merely examining a differential

cross-section for meson photoproduction, it is impossible to determine all possible

resonances. Instead, different reaction channels can be isolated and examined indi-

vidually. It has been found that some channels have a greater sensitivity to certain
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resonances, including the KΛ strangeness channel.

Pseudoscalar meson photoproduction is one method of experimentally determin-

ing these resonances, and is completely described by four complex amplitudes. These

amplitudes can be accessed experimentally through 15 polarisation observables and

the cross-section. Each polarisation observable (and the cross-section) is a bilinear

combination of the complex amplitudes, and by polarising different components of

the experiment (photon beam and target) in different ways, it is possible to select a

subset of these observables which can be extracted from data. There is a worldwide

effort to analyse data from pseudoscalar meson photoproduction experiments, and

several facilities around the globe dedicate many resources to this field. The CLAS

Collaboration at Jefferson Lab in Newport News, Virginia is home to one such facil-

ity (the CLAS detector, housed in Hall B), and their excited nucleon (N*) program

has resulted in many new measurements of polarisation observables over the last

few decades.

The analysis of data from pseudoscalar meson photoproduction experiments is

performed most commonly by a binned χ2 fitting method. Data is binned into

histograms based on the polarisation state, and an asymmetry between these his-

tograms is found. A predefined fit is then applied and the parameters of such a fit

are used to determine the values of various polarisation observables. This method

has several disadvantages that result in a loss of information, including histogram

binning and the absence of constraints inherently imposed by observable correla-

tions. For this reason, a new method based on Bayesian statistics was developed to

maximise the information yield from existing datasets. The method presented here,

called nested sampling, consists of three fundamental components: a prior distri-

bution, a likelihood function, and a posterior distribution. The prior distribution

is made up of a set of points that cover the entire physical region. In its applica-

tion to the analysis of pseudoscalar meson photoproduction, the prior distribution

implemented was in amplitude space and consisted of the four complex amplitudes.

These amplitude values were then used to map into observable space, inherently
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maintaining the constraints imposed by the correlations between observables. The

likelihood function used in this work was event-by-event, reducing the information

loss further by removing the need for histogram binning. In the nested sampling

algorithm, each point in the prior distribution is assigned a likelihood value based on

this likelihood function. The point in the distribution with the lowest likelihood is

determined, and overwritten with a copy of a surviving point. The value of this new

point is slightly altered in a manner that ensures its likelihood is higher than that

of the overwritten point. This is an iterative process, and after a sufficient number

of iterations (determined by a termination condition), peaks form around the values

of highest likelihood. This has several benefits over other numerical maximisation

techniques, as it has no requirements of differentiability. It can also be used for

multimodal problems, and the presence of multiple local extrema do not cause any

complications. The posterior distribution is the resulting probabilility density func-

tion and is made up of the points that are deleted, over time developing peaks at

regions of high likelihood.

The development of this programme led to the derivations of likelihood functions

of any potential experimental configuration. Each likelihood function involved at

least one asymmetry between cross-sections corresponding to different polarisation

settings. A generic method of derivation was determined and a table of likelihood

equations for each experimental configuration was compiled. Then, simulated data

was used to develop and test the nested sampling programme for each experimental

configuration. It was then hypothesised that the use of a prior distribution corre-

sponding to amplitude space rather than observable space could conveniently lead

to a method of analysing datasets from multiple (different) experiments. This was

tested with simulated data by adding a flag to each datafile (used to select the ap-

propriate likelihood equation for that event) and concatenating the two datasets.

The simulation of this procedure proved successful, and it was shown that addi-

tional information pertaining to the amplitudes themselves could be discerned by

this approach.



Chapter 6. Summary and Outlook 138

After its initial success on simulated data, the nested sampling programme was

applied to the extraction of polarisation observables from experimental data. Two

experiments were analysed separately, and then as a combined dataset. The first

experiment, g8b, consisted of a linearly polarised photon beam incident on an un-

polarised proton target. The polarisation of the hyperon was determined through

its self-analysing properties. Five observables (Σ, P , T , Ox and Oz) were measured

directly and the obtained values were compared to results from a previous anal-

ysis and found to be consistent. Two-dimensional likelihood distributions for all

15 observables were plotted for each energy bin, and it was shown that additional

information was gained about observables to which the g8b experiment was not sen-

sitive. Plots of the complex amplitudes, including magnitudes and relative phases

were shown and were used to illustrate the amount of information acquired about

the amplitudes.

Similarly, data from the g1c experiment consisting of a circularly polarised photon

beam incident on an unpolarised proton target were analysed using the nested sam-

pling programme. This experiment was sensitive to three polarisation observables,

P , Cx and Cz. Once again, the results of this analysis were compared to published

values and found to be consistent. The recoil observable, P , was compared to the

values obtained from the g8b experiment, and again found to agree strongly. Two-

dimensional likelihood plots of all 15 observables for each energy bin were again

produced and illustrated the information gained about each observable. Amplitude

plots were also produced, again indicating the amount of information known about

the amplitudes after analysis of the g1c data.

The final analysis performed was that of a combined dataset, including events from

g8b and g1c. An additional term was added to the data files, indicating the ex-

periment from which an event was produced. The likelihood function was adapted

to include likelihood equations from the two relevant experiments. This combined

analysis proved to give values consistent with those that had been obtained in the

separate analyses of each experiment, for all seven measurable observables. Once

again, two-dimensional likelihood plots of the 15 observables for each energy bin

were shown, and it could be seen that more information was learned through this
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combined analysis. Plots of the amplitudes from the combined analysis compared

to those from separate analyses also suggested an increase in information yield.

Development of a combined analysis programme for the analysis of the g9a experi-

ment at CLAS is seen as the next milestone in the nested sampling project. The g9a

experiment, known as FROST (FROzen Spin Target) [43, 91] consists of a linearly

polarised photon beam and a longitudinally polarised proton target. This experi-

ment would provide direct measurements of a multitude of polarisation observables:

Σ, P , T , F , G, Ox, Oz, Tx, Tz, Lx and Lz, and would constitute a “complete mea-

surement”. The target is made up of butanol (CH4H9OH), with additional targets

of carbon and polythene to aid in the consideration of background. The target po-

larisation is expected to be around 70%, however only approximately 20% of protons

within the target are polarisable. This leads to considerable complications when at-

tempting to account for the background. Currently, the background contributions

are not sufficiently well understood to perform a rigorous analysis of the data. It

is anticipated that once the target background is sufficiently well understood, the

nested sampling programme will be able to extract these polarisation observables

and reveal important information about the underlying complex amplitudes. It is

also expected that the combination of data from the FROST experiment with data

from g8b and g1c would lead to a highly reliable measurement of most of the 15

polarisation observables.

This analysis programme can also be applied to experimental data from other facil-

ities. A similar experiment were performed recently at Mainz, where data from the

pπ0 reaction channel will be analysed to extract the polarisation observable, G [92].

A polarised proton (butanol) target was used, and the experiment produced a high

statistics data set. It is anticipated that nested sampling could play a part in the

analysis of this experiment.

The nested sampling method of analysis described in this thesis can be applied

to pseudoscalar meson photoproduction experiments from any experimental facil-

ity. This analysis technique has already been used to analyse data from CLAS and

can contribute significantly to addressing the missing resonance problem in nuclear

physics.
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CLAS CEBAF Large Acceptance Spectrometer, 10
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FROST Frozen Spin Target, 135
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Jefferson Lab Thomas Jefferson National Accelerator Facil-

ity, 9

MCMC Markov chain Monte Carlo, 26
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OpenMP Open Multiprocessing, 50, 159

PCI-e Peripheral Component Interconnect Express,
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pdf Probability distribution function, 23

PDG Particle Data Group, 6

Posterior The posterior distribution resulting from

Bayesian analysis of data, 21

Prior A prior distribution, 21

QCD Quantum Chromodynamics, 2

SIMD Single Instruction stream Multiple Data, 153
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A
Parallel Computing

The extremely quick developments in the field of computing science have resulted in

a reduced focus on efficient programming techniques. In many cases seen in physics,

programmes require a negligible amount of time to provide results and any speed-up

gained from employing an efficient programming style would go unnoticed. There

are some algorithms, however, that can benefit greatly from shrewd programming

and, in some cases, data parallelisation.

In order to take full advantage of the available computing power, it is important

to recognise how some of the basic computer hardware components interact. Section

1 will detail the key aspects of computer hardware interaction, Section 2 will provide

some theory on data parallelisation, and Section 3 discusses the software tools and

implementations relevant to this work. Much of this appendix has been published

in [80].

151
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A.1 Fundamentals of Computer Architecture and

Hardware

It is crucial to understand the components and various interactions that occur within

the computer to exploit the performance of the hardware available. Some of the key

components have undergone significant developments in the last decade, and these

evolutions have resulted in massively increased computing power. The development

of the multi-core processor has led the way in advancing the performance capabili-

ties - but apart from speeding up computers, the fundamental interactions occurring

within the computer’s hardware have changed. Realising how these components in-

teract can have a great impact on programme development and can save a staggering

amount of time.

A computer can be described by a collection of interconnected hardware com-

ponents. The standard computer architecture is the von Neumann machine (Figure

A.1), shown below.

Figure A.1: Basic von Neumann computer architecture [93]

The central processing unit, or CPU , can be considered the ”brain” of a com-

puter. It is essentially a highly optimised serial von Neumann processor, designed
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to execute sequential operations quickly [96]. This is generally where data are

processed, and interactions with memory are frequent during the execution of a

programme. This memory interaction takes place via an interface known as the

front-side bus [94]. A bus is a collection of copper wires that are used to transmit

data, memory addresses and control signals [95]. A variety of buses are present in

a standard computer, and they can have significant differences. Properties such as

clock frequency can vary from one type of bus to another, and this can have an

impact in programme performance.

Up until the early 2000s, computers were improved by increasing the processor

frequency. As frequency was increased, the processor speed also improved. This

trend hit a wall however, due to the amount of power required by the CPU [96]. The

power consumption per unit area was on track to match that of a nuclear reactor.

It was at this point that no further improvement to the CPU could realistically

be obtained and other methods of computing improvements had to be developed.

Parallelism in computers then became the focus - from multicore CPUs to GPU

(graphical processing unit) computing. Graphics cards lend themselves naturally to

parallel programming.

The fairly recent introduction of multi-core CPUs has resulted in the bulk of all

computing devices (from desktop computers to mobile phones) reaping the benefits

of multi-core processing. A multi-core CPU can be defined as an individual com-

ponent containing at least two independent processing units, which are generally

referred to as cores (shown in Figure A.2). These cores can process data, execute in-

structions and interact with memory concurrently. The simultaneous use of multiple

processing units is particularly well suited for parallel programming.

The developments made in graphical processing are generally due to the grow-

ing demands made by the gaming industry, but the benefits are increasingly being

exploited within the scientific community. The GPU was specifically designed to

render increasingly detailed images. Images are broken down into simple geometric

units, usually triangles. In gaming, the graphics must be able to adjust quickly to

new camera angles and positions. This requires the GPU to quickly transform these

triangles from one coordinate system to a new one [97]. Each pixel is treated as
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Figure A.2: Multi-core CPU diagram (quad-core Intel processor) [98]

an independent object, and the calculations required to transform each pixel into a

new coordinate system are generally performed in parallel. Once the ”power wall”

was reached with raw CPU power, efforts were made to generalise the approach

taken by most GPUs in order to improve computer performance. The transition

from treating pixels as independent objects to parallelising operations or data for

programming structures or objects is fairly intuitive. As GPUs became more main-

stream in scientific disciplines, hardware vendors released higher level, non-graphics

languages to allow for more straightforward parallel programming. This led to a sub-

stantial amount of research and development into general-purpose GPU (GPGPU)

computing. There are hundreds of smaller cores within a GPU, with each simple

core able to handle thousands of hardware threads, each of which identifies a task

or programme that can be run concurrently [96] - and the number of smaller cores

is increasing steadily. Performance improvements through GPGPU computing are

therefore sustainable and increasingly inexpensive.

The GPU’s memory is broken down into three types - the registers, the shared

memory, and the global memory. These are illustrated in Figure A.3. Of these

memory types, the registers are the fastest units. One register file exists for each

multiprocessor, and is split amongst the threads [96]. They provide private memory

for each thread, so one thread cannot access another thread’s memory. The GPU’s

shared memory is accessible to all threads within the core. Data can be shared

between threads, but access to shared memory is not as fast as access to a register



A.1. Fundamentals of Computer Architecture and Hardware 155

file. The global memory is considerably slower than both the register files and the

shared memory [96]. It forms the main memory of the GPU and as such is not

private to any threads or blocks. It has a high latency, which can decrease the

effectiveness of parallel programming if not taken into consideration. The latency

can be hidden by making appropriate choices of parallelisation parameters, such as

number of threads and blocks over which to parallelise data or instructions. This is

generally dependent on the algorithm(s) as well as the hardware architecture of the

system.

Figure A.3: Abstract computer architecture showing bus connections between com-

ponents [99]

Data from the main memory is transferred to the cache of a compute unit in

quantised amounts, known as cache lines. The transfer of instruction and data from

memory to the CPU occurs via the front-side bus. The GPU is connected to the

global memory by the PCI-express (PCI-e, or peripheral component interconnect

express) bus [96], which is considerably slower than the front-side bus. The main

difference between the two buses is the data transfer time, which is significantly

longer with the PCI-e bus. This means that transferring data to the GPU has much

more overhead than transferring it to the CPU would have. Data transfer across the

PCI-e bus for a single element of data is equivalent to transferring an entire cache
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line, so there are cases where running parallelised code on a GPU is not the most

effective method.

A.2 Parallelising Data

Since the performance of a serial CPU has reached its pinnacle, parallel program-

ming has become the focus of computing performance development. The use of

massively multi-core GPUs has become mainstream in everything from scientific

computing and state-of-the-art gaming technology to standard desktop computers

and laptops. There is now a sustainable path to improving computing technologies

for the foreseeable future. Although the spotlight is currently on GPGPU comput-

ing, it must be remembered that all programmes and algorithms must include some

amount of sequential code, even if they exist solely to execute kernel functions or

perform or some standard initialisations. In most cases, these serial sections of a

programme create bottlenecks that no amount of parallelisation can avoid. For this

reason, heterogeneous computers are favoured - that is, the combination of highly

optimised serial CPU cores with the massively parallelisable GPU cores. These two

main components of a computer must complement each other - if the CPU is out-

dated and obsolete, any speed-up obtained from a high-end GPU will be hidden by

the slow processing at one of these bottlenecks. In order to make the most of the

available hardware, both components must be taken into consideration.

A.2.1 Flynn’s Taxonomy

A processor fetches instructions and data from memory. Conceptually, this can be

considered as two separate streams of information being transferred between the

processor and the memory (as shown in Figure A.4).

Traditionally, hardware systems have been classified using Flynn’s taxonomy,

which categorises systems into four types: Single Instruction stream Single Data

(SISD) , Single Instruction stream Multiple Data (SIMD) , Multiple Instruction

stream Single Data (MISD) and Multiple Instruction stream Multiple Data (MIMD)

[100].
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Figure A.4: Interaction between processor and memory [100]

In the first instance, SISD, a computer contains a single CPU solely capable of

simple, sequential algorithms. This type of machine can perform one operation on

one piece of data at a time and there is no scope of parallelisation. The second

category, SIMD, is much more common. In this case, there exists one processor, but

with multiple means of independent execution. MISD systems are extremely rare.

They are parallel computers with multiple processors operating on one datum. These

are generally only useful if fault-tolerance is the main objective of a system. Lastly,

MIMD systems are currently the most common and consist of multiple processors

capable of running multiple programmes simultaneously [100].

Although initially used to categorise the various types of computer hardware

systems, Flynn’s taxonomy has recently been applied to software and algorithms in

a similar manner. SISD refers to a sequential algorithm (one piece of data being

used in a single operation), SIMD includes programmes that perform the same

operation on many data concurrently, MISD (although highly uncommon) would

describe an algorithm that performs many operations on a single datum, and MIMD

indicates a programme that can perform a multitude of operations on multiple data

simultaneously.

SIMD algorithms are at the heart of data parallelisation. There are many cases

in data analysis where an algorithm performs operations on many data points inde-

pendently. For these situations, a considerable speed-up can be achieved by dividing

the data set into smaller sections and performing the same operations in parallel,

with one thread handling one section of data. The results from each thread can then

be combined, as illustrated in Figure A.5.

It is important to note that not all algorithms can be parallelised; recursive and
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Figure A.5: Visual representation of a SIMD parallelised algorithm
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sequential programmes, or even serial sections of code, can form bottlenecks that

impede the run-time of a programme. There are some cases where parallelising data

over multiple threads or cores can result in a slower run-time as no speed-up is

gained and time is lost during data transfer or thread initialisations. Even in cases

where an algorithm lends itself naturally to parallelism, it is crucial to understand

exactly where and how it should be done in order to obtain the greatest benefit.

A.3 Software and Implementations

In this work, efforts were made to make analysis algorithms as efficient as pos-

sible. Two types of implementations were explored, in addition to the standard

(unthreaded) programming methods. The software used for this will be introduced

and explained here.

A.3.1 OpenCL

Until recently, writing programmes to run on a GPU required a substantial amount

of initialisations and ”boiler-plate” programming. The software tools and packages

required were dependent on the manufacturer, and creating portable programmes

was non-trivial. In 2008, the Khronos Group developed OpenCL (Open Computing

Language) , a framework that allowed programmes to be executed on heterogeneous

systems. With OpenCL, a programme can be parallelised and run on a GPU or

indeed on a CPU (single- or multi-core).

A programme written using the OpenCL framework is comprised of two parts:

the host and the kernel. The host contains the bulk of the programme, essen-

tially everything that is not parallelised. There are convenient bindings for several

standard programming languages, including C++ [83]. The kernel contains the

function(s) that will be parallelised and is called by the host. The host programme

passes all necessary data and variables to the kernel in each call. Using OpenCL,

it is possible to run a programme over a specified number of cores (compute units)

and a specified number of threads (processing elements), which can be passed as

arguments to the kernel as well. The kernel is written in a language based on C-99,
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and can occasionally be limited by the available hardware (in many cases, a par-

ticular GPU does not support the ’double’ typedef, for example). Each instance

of the kernel is known as a work-item, and can be identified by a global ID. Each

work-item is allocated some predetermined amount of data, over which it performs

the same calculation(s). These work-items are organised into work groups, in which

each work-item is assigned a unique local ID. The work groups themselves are also

assigned a work-group ID. These IDs are required for combining results of calcu-

lations in a clear and robust manner. Within a work group, the work-items run

concurrently on the processing elements within a compute unit [83].

Figure A.6: Platform model showing of OpenCL architecture [83]

OpenCL provides support for both data parallel programming as well as task

parallel programming. Data parallel programming involves performing the same

calculation or programme over a wide set of data. The data is distributed across a

number of threads, and all threads execute the same code over the subset of data

[101]. The task parallel programming model is focused on the principle of running

multiple programmes on different threads simultaneously [102]. In the field of nuclear

physics data analysis, it is more common to encounter situations where the same

instructions are carried out over large datasets, so the task parallel programming
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model will not be discussed in any more detail here.

It is only recently that OpenCL has included C++ bindings in the software

development kit. The introduction of these bindings has done much to simplify the

intialisations and instantiations required when building an OpenCL programme.

Despite this, there is still a considerable amount of tedious programming involved.

The structure of an OpenCL programme involves many explicit definitions and

initialisations that are not usually considered when programming in C or C++.

First, a platform must be declared. The platform includes the host programme and

a list of devices and allows the sharing of resources and execution of kernel functions

on included devices [83]. Next, a context is set up, which refers to an environment

where kernels are executed and memory management is prescribed. Devices then

must be found - typically, a device would refer to a GPU or multicore CPU. More

formally, a device can be considered as a list of compute units. Once the devices are

found, the kernel can be loaded and built. OpenCL handles arrays of data slightly

differently to C or C++, in the sense that specific buffer objects must be created

and initialised. A buffer object stores a collection of data and can be used as a

pointer in the kernel. In the declaration of a buffer object, the memory type must

be explicitly set - either a buffer object is a read buffer (where the contents cannot be

changed in the kernel), a write buffer (where the contents are written in the kernel

and cannot be read inside a kernel), or a read-write buffer (where the contents can

be both read and changed in the kernel) [83]. Any other arguments to be passed

to the kernel function must then be set. A command-queue is then created which

contains a list of commands that are to be executed on a given device. The arrays

from the CPU are then pushed to the appropriate compute device and the kernel

can then be executed. Once the kernel is executed successfully, the results can be

read from the device and, once the command-queue is finished, the programme can

exit [83].

Most of these explicit initialisations described above are very similar from one

programme to the other, and for this reason a very helpful class (OclWrapper) was

developed to take care of most of the more standard operations that are required

in OpenCL. The OclWrapper class was developed by W. Vanderbauwhede [84], a
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collaborating colleague from the University of Glasgow’s School of Computing Sci-

ence. The main aim of the class was to simplify the arduous initialisations required

by OpenCL. It also provides a platform-portable build script, allowing any OpenCL

programme to be run on a variety of system architectures (assuming the appropriate

software is installed).

There are many benefits of using OpenCL over other available software devel-

opment kits and frameworks (such as CUDA). OpenCL is supported on most of

the widely distributed platforms, including NVidia, Intel and AMD, on Microsoft,

Apple and Linux operating systems. This results in a portability of parallelised

programmes that has not been available prior to OpenCL’s development. It is also

possible to specify the compute unit used (e.g. GPU or CPU). Running a parallelised

programme on a multicore CPU can provide significantly faster runtimes, even com-

pared to running the same programme on a GPU. This is seen to be the case in

situations where the dataset is fairly small and the kernel is called many times. The

data is passed to the kernel in each iteration, and significantly more time is spent

transferring data from the host to the GPU in comparison to the CPU.

Despite the numerous advantages of OpenCL over other implementations, there

are some important disadvantages that need to be discussed. The fact that each

manufacturer (NVidia, Intel, etc.) provides their own software development kit

means that the level of support available varies from one manufacturer to another.

Also, the programming required is generally nontrivial. In many situations, easier

and more efficient solutions may exist. In cases as described previously where a rel-

atively small dataset is being passed to the kernel many times, other software tools,

such as Open Multiprocessing (OpenMP) , can prove to be much more successful.

A.3.2 OpenMP R©

It is often more straightforward to parallelise a programme (or function) by mul-

tithreading on a CPU instead of using the more powerful software like OpenCL.

OpenMP is an application progamming interface (API) that can be used to manip-

ulate threads and parallelise functions [82]. It was designed to allow programmers

to use threads without the hassles associated with creating, destroying and synchro-
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nising individual threads [81]. It is supported by multiple platforms and is easily

portable. In contrast to OpenCL, it is relatively simple to incorporate OpenMP into

existing C, C++, or FORTRAN code. There is no accommodation for GPU pro-

gramming (or running code on different devices) with OpenMP as it is restricted to

the CPU. In C and C++, OpenMP is essentially a collection of #pragma compiler

directives. Using these compiler directives, it is possible to specify the variables

used, their scopes, and the number of threads over which the region of code is to

be parallelised [82]. The handling of race conditions, where multiple threads access

shared memory at the same time (either to read it or write to it), can be managed

in a straightforward manner as well. OpenMP provides locks and semaphores for

this reason. Despite not being able to use on other compute devices, OpenMP can

provide significant speed-ups with relatively few (and simple) adjustments to pre-

existing code. It is particularly suited to problems where the parallelised region of

code is called iteratively or where the dataset size is relatively small (in most cases

less than one million events can be considered small). Unlike OpenCL, OpenMP

is already supported by most platforms - it is included in more recent versions of

the gcc/g++ compilers, for example. This allows greater portability from system

to system, and it is not necessary to install software development kits to enable its

use [81].



B
Additional Plots

All additional plots can be found online at:

http://nuclear.gla.ac.uk/∼stefl/Thesis/slewis thesis appendixB.pdf
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