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ABSTRACT  VIII 

ABSTRACT 

This thesis focuses on the development of modular approaches that permit the integration 

of hybrid polyoxometalates (POMs) into peptide chains. This goal is of considerable 

interest in the field of POM chemistry, as it could provide a new approach to explore, 

develop and tune the properties of POM clusters (e.g. toxicity, self-assembly and 

recognition properties). The organic-inorganic Mn-Anderson cluster, a bi-substituted 

cluster incorporating two TRIS-based moieties, was used as a model compound to develop 

these methodologies. 

A “modification tool box” was created to facilitate the reaction of hybrid metal-oxide 

building blocks with peptides. Solvent compatibility was first explored and four DMF- and 

water-soluble TRIS Mn-Anderson compounds were synthesised by adapting the original 

synthesis protocol to different octamolybdate salts. Peptide bond formation investigations 

on an amine functionalised hybrid POM were then carried out, and anhydride 

intermediates were found to be suitable reagents for amide bond formation. Furthermore, 

cyclic anhydrides proved an efficient means of incorporating carboxylic acid functions 

onto TRIS-based Mn-Anderson POM clusters, a functionality which had never been 

introduced on this hybrid type. Activation of the carboxylic acid function by formation of 

an N-hydroxysuccinimide (NHS)-ester hybrid POM building block permitted the formation 

of amide bonds by reaction with amines. 

With this synthetic “tool box” established, the activated NHS-ester hybrid POM building 

block approach was further explored and proved a simple and efficient means to graft pre-

synthesised peptides onto the metal-oxide framework in solution. Using this technique, a 

POM hybrid of unprecedented scale, 30 amino acid residues, was synthesised. This 

introduction of the POM cluster as a linking component between two peptides 

demonstrated an impact on the spatial arrangement of the chains, with the observation of 

an unexpected α-helix conformation. 

The aforementioned work solely focused on symmetric TRIS-based Mn-Anderson clusters, 

which was due to a dearth of methods permitting the isolation of asymmetric clusters from 

symmetric by-products. To fully exploit the potential of the di-substituted hybrid Mn-

Anderson unit, the problem of its isolation as an asymmetric cluster had to be dealt with. A 

chromatographic methodology to isolate asymmetric hybrids was developed relying on the 

difference in affinity of the compounds’ organic moieties for reverse phase (RP) media. 



ABSTRACT  IX 

For cases where this method could not be applied, a “universal” asymmetric Mn-Anderson 

precursor was designed and isolated, and its use as a precursor to synthesise practically any 

asymmetric Mn-Anderson system was demonstrated. 

This new set of methods permitting the routine isolation of asymmetric Mn-Anderson 

clusters allowed the first hybrid POM combining one amine and one carboxylic acid 

functional group to be designed and synthesised. This new building block, which could be 

produced in large batches, is the first unnatural hybrid POM amino acid ever isolated. An 

in-depth study was carried out to establish the reaction conditions that permit its use in 

solid phase peptide synthesis (SPPS). From this study, a customised SPPS protocol was 

created which allows the ‘hybrid POM amino acid’ unit to be introduced into growing 

peptide chains as easily as any natural amino acid. Following this SPPS protocol, the first 

POM-peptide hybrid, embedding an amino acid Mn-Anderson residue in its sequence, was 

synthesised and isolated. 
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1 Introduction 

Engineers and physicists are developing sophisticated techniques (e.g. lithography, 

patterning) to manipulate always smaller pieces of matter and produce nanosized materials. 

This process of miniaturisation, called the “top-down” approach, permits the construction 

of devices “as small as” 100 nm. This size, very small by common standards (one 

thousandth of the width of a human hair) can also be viewed as very large if compared to 

atoms and molecules. As highlighted by the Nobel physicist Richard Feynman fifty years 

ago: “there is plenty of room at the bottom”.
[1]

  

Chemists have learnt to tailor molecules and create “programmable” building blocks that 

can self-assemble into super-structures to form new smart materials. This enlargement 

strategy, the “bottom-up” approach, finds its founding principles in the field of 

supramolecular chemistry and in particular in the pioneering work of Pedersen, Cram and 

Lehn.
[2]

 Molecular components can now be designed to self-assemble into larger functional 

materials under specific recognition processes and may be able to fill the current gap in the 

engineering of small-scale devices.  

Moreover, biology has now evolved from a purely descriptive and phenomenological 

discipline to a molecular science. Nature’s building blocks can rationally be used to design 

and produce bio-mimicking assemblies and an important field of science is now based on 

the fusion of biotechnology and material science.
[3,4]

 

As described by the Nobel laureate Jean Marie Lehn “The essence of chemical science 

finds its full expression in the words of that epitome of the artist – scientist Leonardo da 

Vinci ‘Where Nature finishes producing its own species, man begins, using natural things 

and with the help of this nature, to create an infinity of species’”.
[5]
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1.1 Polyoxometalates 

Polyoxometalates (POMs) or polyoxoanions are defined metal-oxygen clusters of early 

transition metal in their highest oxidation states.
[6,7]

 This class of materials is often divided 

into two groups: iso- and hetero-polyoxometalates. Clusters of the former group are made 

of numerous oxygen atoms, sometimes hydrogens and only one type of transition metal 

(M, addenda atoms) giving the general Formula 1. On the other hand, POMs in the latter 

group also incorporate one or more p- d- or f-block element in positive oxidation state 

(Formula 2). These additional atoms are known as heteroatoms. 

[HnMmOx]
q- 

Formula 1: General formula of iso-polyoxometalate clusters, with M the early transition metal (addenda 

atom) in its highest oxidation state and q the overall charge. 

[XyHnMmOx]
q- 

Formula 2: General formula of hetero-polyoxometalate clusters, with X the heteroatom, M the early 

transition metal (addenda atom) in its highest oxidation state and q the overall charge. 

POMs are formed through a polymerisation process which occurs in acidified solution. 

Tetrahedral metal-oxide building blocks {MO4}, rearrange upon acidification as octahedral 

units which polymerise via corner, edge or face sharing to form discrete polyoxoanion 

complexes (e.g. in Equations 1 and 2). Elements that can act as addenda atoms should 

therefore: i) be able to change their coordination to oxygen from 4 to 6, ii) bear a high 

positive charge and iii) have a small ionic radius for favourable octahedral packing with 

oxygen.
[7]

 The ability to form double bonds with unshared oxygen atoms (pπ-dπ metal 

oxygen bonds) is also an important feature of addenda atoms. W
(VI)

, Mo
(VI)

 and V
(V)

 are the 

most common addenda atoms encountered in POM chemistry.
[6-9]

  

8 H
+
 + 7 [WO4]

2-
  →  [W7O24]

6-
 + 4 H2O  (1) 

23 H
+
 + [HPO4]

2-
 + 12 [MoO4]

2-
  →  [PMo12O40]

3-
 + 12 H2O (2) 

Equation: (1) formation of isopolyoxotungstate in acidic conditions;
[10]

 (2) formation of 

heteropolyoxomolybdate in acidic conditions.
[11]
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In POMs, the addenda atom is located off-centre of its polyhedra toward the unshared 

oxygen atoms (exterior of the framework; see Figure 1). This distortion of the addenda 

polyhedra can be explained by the formation of double bonds between the unshared 

oxygens and the metal centre (by definition shorter than single bonds) and the greater 

polarisability of these oxygen atoms creating strong ion-induced dipole attractions between 

the unshared oxo groups and the addenda atoms.
[7]

 Polyoxoanion clusters are thus 

“wrapped” by a layer of unshared oxygen atoms strongly polarised toward the interior of 

the framework which prevents further polymerisation. These distortion and polarisation 

phenomenon are responsible for the existence of POMs as discrete species and not as 

infinite solid matrixes.  

 

Figure 1: Distortion of the addenda octahedra illustrated through the Keggin structure with zoomed in 

representation of a single octahedral unit. Colour scheme: addenda atom (M), blue (polyhedra); heteroatom 

(X), yellow (polyhedra); O, red. 

POMs are an interesting class of molecules, since nearly all the properties that influence 

their reactivity can be modified during their synthesis. This includes size, shape, electron 

and proton transfer/storage abilities, redox potential, surface charge distribution and high 

Brönsted acidity.
[12]

 They are therefore promising candidates for numerous applications
[13]

 

including medicine,
[14]

 catalysis,
[15,16]

 hydrogen and oxygen evolution,
[17]

 data storage 

devices
[18]

 and dopants of polymer matrices.
[19-21]

 However, the full exploration of the 

potential of POMs is still hampered by the lack of a reliable processing step to incorporate 

them into materials and devices. Recent developments are focusing on the alteration of 

POMs to increase their functionality and possible applications.
[8,9,22-29]

 One approach is the 

design and synthesis of organic-inorganic hybrid POM complexes, which will be discussed 

further in Section 1.2. 
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1.1.1 Polyoxometalates history and discoveries 

POM chemistry is an important field in contemporary research, but its journey started two 

centuries ago, when, in 1826, J. J. Berzelius observed the formation of “the yellow 

precipitate” produced by the addition of excess ammonium molybdate to phosphoric 

acid.
[11]

 This compound, now known as ammonium 12-molybdophosphate 

((NH4)3[PMo12O40]), was an enigma which took almost a century, as well as the 

contribution of numerous scientists, to elucidate its composition and structure. Analytical 

chemistry studies were first undertaken by Svanberg and Struve in 1848,
[30]

 but the final 

composition of the complex was revealed only in 1864 by Marignac’s publication.
[31]

 

Scientists, including A. Werner (1893),
[32]

 A. Miolati and R. Pizzighelli (1908)
[33]

 and A. 

Rosenheim (1917),
[34]

 tried to understand the chemistry behind this phenomenon, 

proposing diverse theories on the coordination of complexes. These theories, although later 

proven proved to be incorrect, were essential steps toward the comprehension of the 

formation of metal-oxygen clusters. Two breakthroughs allowed for definitive structural 

determination of POMs; first Laue
[35]

 and Bragg’s
[36]

 publications on the development of 

X-ray crystallography in 1913, followed by L. Pauling’s proposition in 1929 that the “rules 

for the structures of complex ionic crystals” (theory established by Pauling in 1927
[37]

) 

should also apply to the internal structure of POMs.
[38]

 The combination of these two major 

developments permitted the structural characterisation of POM clusters. In 1933, J. F. 

Keggin exploiting 17 powder X-ray lines established the first POM structure – the cubic 

H3[PW12O40] · 5H2O, of which the exact formula is nowadays known as: 

(H5O2)3[PW12O40].
[39,40]

 The structure elucidation was an incredible challenge and only the 

positions of tungsten atoms were established directly with this technique; the location of 

the oxygen atoms had to then be deduced from the interatomic distances between the 

tungstens. Since then, many 12-heteropolyoxoanions have demonstrated the same atomic 

arrangement and are now classified as the Keggin structure, of general formula 

[XM12O40]
q-

. Four years after Keggin’s discovery, J. S. Anderson published a paper 

suggesting a structure for the 6-molybdoperiodate ion [I
VII

Mo6O24]
5-

 based exclusively on 

Pauling’s theory (no experimental work was involved).
[41]

 In 1948, the structure elaborated 

by Anderson was confirmed by a single crystal X-ray experiment carried out by H. T. 

Evans on [Te
VI

Mo6O24]
6-

.
[42]

 This crystal structure type often encountered in POM 

chemistry is now referred to as the Anderson – Evans structure, of general formula 

[XM6O24]
q-
. In 1945, A. F. Wells suggested a theoretical structure based on Pauling’s 

principles for the dimeric 9-tungstophosphate anion.
[43]

 The structural arrangement was 

confirmed eight years later by a single crystal X-ray study conducted by B. Dawson.
[44]
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Wells’s prediction of the tungsten atom positions in the [P2W18O62]
6-

 were correct and a 

new POM structure type was established named the Wells – Dawson structure of general 

formula [X2M18O62]
q-

. In 1950, Lindqvist published the structure of an isopolyoxoanion; 

structure now known as the Lindqvist structure type of general formula [M6O19]
q-

.
[45]

 

In the second half of the 20
th

 century, many structures with ever increasing structural 

accuracy were discovered thanks to vast improvements in diffraction instruments coupled 

with the advent of cheap and powerful computing power for structure solution and 

refinement. Technology advances allowed scientists to focus on matters beyond simply the 

structure of POMs, allowing scientists to study their mechanisms of formation,
[6,8,9,29]

 and 

to investigate potential applications.
[13,23,25-27]

  

1.1.2 Specific polyoxometalate structures 

Although the traditional one-pot reaction which leads to the formation of POMs can appear 

somewhat simple, the number of reaction parameters to accurately adjust to form the 

desired product complicates this task significantly. The most important parameters to 

consider when controlling the formation of a specific POM cluster are: the reaction 

medium, the temperature, the pH, the transition metal precursor, the addition of 

heteroatoms, the salt addition of alkali or alkaline earth metals to adjust the ionic strength 

and the crystallisation process.
[6,8,9,29,46]

 Automatic systems have recently been 

implemented to explore the variation of these parameters.
[47,48]

 

The work presented in this thesis focuses on the organic-inorganic TRIS-based Mn-

Anderson hybrid complexes (TRIS-based ligands having the general formula: 

(HOCH2)3CR). Their formation is well-established and is presented along with the reaction 

conditions in Figure 2.
[49,50]

 The POM structures discussed in this thesis are essentially the 

ones of the octamolybdate isopolyoxoanion and the Anderson heteropolyoxoanion; these 

structures are presented in details in this section.  

 

Figure 2: Reaction scheme of the synthesis yielding TRIS-based Mn-Anderson complexes. Colour scheme: 

Mn, orange (polyhedra); Mo, blue (polyhedra); C, black; O, red; H, grey.   
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1.1.2.1 The octamolybdate isomers 

The α-octamolybdate isomer isolated as a tetra-n-butylammonium (TBA) salt, ((TBA)4[α-

Mo8O26], is the starting material employed in the formation of the hybrid TRIS-based Mn-

Anderson complexes.
[49]

 Its structure was first reported by Fuchs and Hartl in 1976
[51]

 and 

consists of a planar ring arrangement of six {MoO6} units, similar to the one observed for 

the Anderson structure (see Section 1.1.2.2.),
[42]

 with two tetrahedral {MoO4} units 

capping the central cavity. This gives rise to an approximate D3d symmetry (Figure 3).  

 

Figure 3: Polyhedral and ball-and-stick representations of the eight isomers of the octamolybdate [Mo8O26]
4-

. 

α, β, γ and δ isomers are isolated by conventional methods while ε, ζ, η, and θ isomers are only observed 

under hydrothermal conditions. Colour scheme: Mo, blue (polyhedra); O, red. 

However, this isomer is only one of the eight isomers that have been discovered from this 

isopolyoxoanion (Figure 3). Three other isomers, β-
[52,53]

, γ-
[54]

 and δ-
[55]

, were also 

isolated by conventional methods – crystallisation from acidified aqueous solution in the 

presence of the appropriate cation – while the ε-,
[56]

 ζ-,
[57]

 η-
[58]

 and θ-
[59]

 isomers were 

observed under hydrothermal conditions with the use of organic or metal based cations to 

direct the polyoxometalate assemblies. The structural compositions of each isomeric form 

are given in Table 1.   
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Table 1: List of the isomers observed for the isopolyoxoanion [Mo8O26]
4-

 with description of the polyhedral 

components and the oxo-group types of each structure. 

Isomer Polyhedra Oxo-group types 

 6 octahedra, 2 tetrahedra 14t, 6µ
2
, 6µ

3
 

 8 octahedra 14t, 6µ
2
, 4µ

3
, 2µ

5
 

 6 octahedra, 2 square pyramids 14t, 10µ
2
, 2µ

3
 

 4 octahedra, 4 tetrahedra 14t, 10µ
2
, 2µ

3
 

 6 square pyramids, 2 octahedra 16t, 4µ
2
, 6µ

3
 

 4 octahedra, 4 square pyramids 14t, 6µ
2
, 6µ

3
 

 6 octahedra, 2 square pyramids 14t, 4µ
2
, 8µ

3
 

 6 octahedra, 2 square pyramids, 2 tetrahedra 14t, 8µ
2
, 4µ

3
 

 

The most common isomers, α and β, are both isolated from aqueous solution of molybdate 

at pH 2-5;
[60]

 the main parameter used for the discrimination of one isomer over the other is 

the nature of the organic cation. Large cations, such as TBA or PPrPh3
+
, lead to the 

crystallisation of the α type, while smaller organic molecules (e.g. NH4
+
, Me4N

+
, Et4N

+
) 

lead to the isolation of the β form.
[61,62]

 Both isomers were proven to give an α – β mixture 

once dissolved in acetonitrile (MeCN), this equilibrium can then be shifted toward one 

structural arrangement by addition of the appropriate cation.
[62]

 Two isomerisation 

mechanisms were proposed to explain this phenomenon;
[61,63]

 the isolation of the γ-isomer 

by Niven et al. in 1991,
[54]

 an intermediate species suggested by Kemperer and Shum in 

their mechanism in 1976,
[61]

 would tend to favour their theory.  

1.1.2.2 The Anderson – Evans structure 

Two isomers, α and β, are known for the POM clusters of general formula 

[Hy(XO6)M6O18]
q-

 (y = 0; 6, q = 2 – 6, M= Mo or W; X: metallic or non-metallic 

heteroatom).
[6]

 The β-isomer is a non-planar bent arrangement of edge-sharing octahedra 

(Figure 4a) and was observed for the isopolyoxoanions [Mo7O24]
6- [64]

 and [W7O24]
6-

.
[10,65]

 

The α-isomer, also called the Anderson – Evans structure, is a planar arrangement of six 

edge-sharing octahedra around a central heteroatom (Figure 4b).
[42]
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Figure 4: (a) Crystal structure of the isopolyoxoanion [Mo7O24]
6-

 characteristic of the β-isomer;
[64]

 (b) Crystal 

structure of the heteropolyoxoanion [H6Mn
III

Mo6O24]
3-

 characteristic of the α-isomer also called Anderson (- 

Evans) structure.
[66]

 Cations and hydrogen atoms are omitted for clarity. Colour scheme: Mn, orange 

(polyhedra); Mo, blue (polyhedra); O, red.  

In 1937, through a letter to Nature, J. S. Anderson suggested the following structure:
[41]

 “It 

may readily be seen that six {MoO6} octahedra may be so arranged, by sharing corners 

with each of two neighbouring octahedra, that a hexagonal {Mo6O24} annulus is built up. 

The central cavity of this structure is then the same size and shape as one of the {MoO6} 

octahedra, and can therefore accommodate another cation in the same 6-fold 

co-ordination.”. This suggestion was later confirmed by H. T. Evans
 

with the 

crystallographic determination of the hexamolybdotellurate structure, K6[TeMo6O24].
[42]

 

From these discoveries, polyoxometalates composed of the same metal arrangements are 

now referred to as Anderson – Evans structures. Evans is frequently omitted when 

referring to this structure; herein the structure will be referred to only as the Anderson 

structure. 

Two types of Anderson structure are present in the literature, A-type and B-type. In both 

cases this structural arrangement is only obtained for heteropolyoxometalates with 

molybdenum or tungstate as the addenda atoms.
[6,67]

 The A-type, the non-protonated form, 

is observed in clusters where the heteroatoms are in high oxidation states, while the 
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protonated form, B-type, is observed for systems containing heteroatoms of low oxidation 

states. A list of compounds that display the classic Anderson structure is given in Table 2. 

Table 2: Heteropolyoxo molybdates and tungstates displaying the Anderson structure with the corresponding 

heteroatom and its oxidation states. 

 Formula Heteroatom (X) 

A-Type [XO6Mo6O18]
q-

 Te
VI

, I
VII

 

 [XO6W6O18]
q-

 Mn
IV

, Ni
IV

, Te
VI

, I
VII

 

B-Type  [X(OH)6Mo6O18]
q-

 Fe
II
, Co

II
, Ni

II
, Cu

II
, Zn

II
, 

Al
III

, Ga
III

, Cr
III

, Fe
III

, Co
III

, Rh
III

, Mn
III

, 

 [X(OH)6W6O18]
q-

 Ni
II
 

 

The six non-acidic protons found in the B-type structure can be located at two different 

positions; the positioning of the hydrogen atoms on the six oxygen atoms bound to the 

central heteroatom is the most common protonation mode (Figure 5a),
[66]

 but protonation 

of the oxygen atoms surrounding cavities can also be observed (Figure 5b).
[68]

 

 

Figure 5: Representation of the protonation modes observed for the B-Type Anderson compounds. (a) most 

common protonation mode depicted for Mn
III

 as the heteroatom;
[66]

 (b) less common protonation mode 

depicted with Pt
IV

 as the heteroatom.
[68]

 Colour scheme: Mn, orange (polyhedra); Pt, pink (polyhedra); Mo, 

blue (polyhedra); O, red; H, light grey.  
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1.2 Organic-inorganic hybrid polyoxometalate clusters 

The idea of mixing organic and inorganic components to tune the properties of materials is 

not new;
[69]

 one of the most famous examples of this concept comes from the paint 

industry, with the suspension of inorganic pigments (e.g. TiO2) in organic media (e.g. 

solvent or surfactant…). Nowadays the field of organic-inorganic hybrid materials is 

extremely diverse but is always pursuing the same goal: forming innovative advanced 

materials, not only from the combination of the properties of the organic and inorganic 

components, but also by exploring the synergy that could result from interactions between 

the two entities. 

POMs promise new applications in many fields, but the poor processability of POM 

materials, which are often isolated as crystalline insoluble inorganic salts, hampers their 

use in materials and devices. The incorporation of organic functions could improve 

solubility, enhance bioavailability, increase selectivity and facilitate integration of POMs 

into devices, which explains the rising interest in organic-inorganic hybrid POM clusters. 

POMs can be “mixed” with organic compounds in many different ways.
[22,27,46,70-72]

 

Organic-inorganic hybrid POM materials are often divided into two types (class I and class 

II) depending on the nature of the interactions between the POM and the organic 

components.
[22]

 The system is of class I when only weak interactions (electrostatic 

interactions, hydrogen bonds or van der Waals interactions) govern the assembly of the 

inorganic parts with the organic components.
[22,23,46,72]

 Class II involves systems in which 

the metal-oxygen cluster is linked via covalent or iono-covalent bonds to organic moieties 

(commonly called ligands).
[22,70,71]

 Due to the anionic character of POMs, class I systems 

can readily formed by association with organic counter cations during the synthesis of 

POMs. Class II compounds require an anchorage point for the organic ligand to be grafted 

on. So far, this feature has been established only for an extremely narrow set of clusters 

compared to the large number of POM structures discovered. Two main categories are 

found in the investigation of class II POMs;
[22]

 the first is where ligands are incorporated in 

the metal-oxygen framework directly through p-block elements; and the second is where 

ligands are linked to f- and d-block elements which are embedded in POM structures or 

linked to the surface of the POM assembly. 

The work in this thesis focuses on class II compounds, the covalent bond offering a better 

control at the molecular level and a greater chance of conserving the hybrid material 

properties from the solid state to the solution phase. Within the class II POMs, this work 
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explores the direct grafting of the ligand via p-block elements. Comprehensive reviews on 

other types of organic-inorganic hybrid POMs are given in references [22] and [70].
[22,70]

 

1.2.1 Class II – via p-block elements 

Conventionally, the functionalisation of POM clusters via p-block elements arises from 

bond formation with oxygen atoms located at the periphery of the POM structure (M-O-X 

coordination mode, with X a p-block element). Many p-block elements can be linked to 

oxygen atoms bound to the metal centre,
[22,71]

 the main coordination modes being via i) 

alkoxide groups (Figure 6a),
[73]

 ii) carboxylate groups (Figure 6b),
[74]

 iii) organosilyl 

groups (Figure 6c),
[75-77]

 and iv) organotin groups (Figure 6d).
[78]

 The organosilyl and 

organotin coordination modes occur predominantly for lacunary POM species, as the 

nucleophilic properties of the oxygen atoms localised at the surface of the lacuna are 

increased, enhancing their reactivity towards electrophilic groups such as organotins, 

organosilyls, etc. Other elements such as organogermanyl
[79,80]

 derivatives have also been 

reported but are less common in this field. 

 

Figure 6: Examples of the main coordination modes via p-block elements found in class II hybrid POMs: (a) 

via alkoxide groups,
[73]

 (b) carboxylate groups ,
[74]

 (c) organosilyl groups
[77]

 (d) organotin groups
[78]

 Colour 

scheme: P, pink (polyhedra); W, green (polyhedra); Mo, blue (polyhedra); O, red; C, black; N, cyan; S, 

yellow; Si, light blue; Sn, light yellow. 
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Systems with a nitrogen linkage were found to have an unconventional coordination mode 

compared to other p-block elements; the nitrogen atom is directly linked to metal centres of 

POMs via multiple metal-nitrogen bonds. This organoimido derivation was extensively 

studied for the hexamolybdate Lindqvist type POM
[81]

 and with only few examples for 

other POM systems.
[82-84]

 Several synthetic paths were established to selectively synthesise 

mono- or di-substituted hexamolybdate hybrid species;
[81,85]

 over the course of these 

studies multi-substituted clusters were found ranging from di- up to hexa-substituted 

(Figure 7).
[86,87]

  

 

Figure 7: ball-and-stick crystal structure of hexamolybdate organoimido derivatives. (left) Example of a 

mono-substituted mode obtained with the 4-ethynyl-2,6-dimethylphenylimido ligand;
[85]

 (right) example of a 

hexa-substituted cluster containing six 2,6-diisopropylphenylimido ligands.
[86]

 Cations and H are omitted for 

clarity. Colour scheme: Mo, blue; O, red; C, black; N, cyan.  

1.2.1.1 Hybrid formation with alkoxide ligands 

The present work will focus on organic-inorganic hybrid POM of class II formed by 

incorporation of alkoxide ligands in their metal oxygen-framework and, more precisely, on 

the hybrid obtained for the Anderson structure. The formation of such hybrid POMs is 

presented here in further detail.  

The TRIS compound (tris-(hydroxymethyl)-aminomethane; represented in Figure 8a) is 

commonly used either as a tris-alkoxide ligand directly incorporated into the POM 

structure or as a precursor for the synthesis of TRIS-based ligands (general formula 

(HOCH2)3CR; Figure 8b). Hereafter “TRIS” hybrid POMs refers to compounds 
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incorporating the TRIS molecule as a ligand, while “TRIS-based” hybrid POMs is used as 

a generic term for any tris-alkoxide ligand.  

 

Figure 8: Tris-alkoxide ligands commonly used for organic-inorganic hybrid POM systems. (a) tris-

(hydroxymethyl)-aminomethane (TRIS); (b) TRIS-based ligand. Colour scheme: O, red; C, black; N, cyan; 

H, light grey.  

It has been known for more than two decades, mostly through the investigations carried out 

by J. Zubieta, that alkoxide ligands (e.g. methanol) and TRIS-based ligands can be 

incorporated in the metal-oxygen framework of POMs,
[88-90]

 but it is only recently that 

these ligands are viewed as remote sites to control the POM properties and form novel 

hybrid POM-based materials. The covalent link formed between the metal-oxygen 

framework and the tris-alkoxide ligands allows a direct interaction of the two moieties and 

has been found to stabilise the POM structures.  

This stabilising effect of TRIS-based ligands is best illustrated through the 

polyoxovanadate species. Polyoxovanadates containing “naked” trinuclear units ([V3O13]
q-

 

with q = 14 for V
IV 

and q = 11 for V
V
) are rare due to their high negative charge density, 

explaining why the “naked” hexavanadate Lindqvist structure has never been obtained.
[91]

 

In order to access these low nuclearity systems, the overall charge of the polyoxovanadate 

clusters should be decreased, which is realised by the incorporation of tris-alkoxide ligands 

whose geometry correlates the one of the trinuclear units. Many TRIS-based hybrid 

polyoxovanadates not accessible without the stabilising effect of the ligand have since been 

reported,
[88,89,91-95]

 examples of which are given in Figure 9. Interestingly, mixed valence 

clusters were also isolated, demonstrating the diverse aggregation patterns that 

polyoxovanadate chemistry offers.
[91]

 Organic-inorganic hybrid chemistry of the 

hexavanadate POM has been further developed and more intricate ligands were 

incorporated into the cluster, yielding the formation of coordination complexes
[94]

 and 

polymers.
[92]

 The hybrid hexavanadate system is interesting because of its stability towards 
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hydrolysis and its capacity to be extensively and reversibly reduced. It also offers the 

possibility of forming “asymmetric” clusters, bearing two different ligands at each 

coordination site, as established by C. Hill et al.;
[95]

 nevertheless, the pure asymmetric 

cluster was never isolated. 

 

Figure 9: Examples TRIS-based hybrid polyoxovanadate clusters. (a) Hexavanadate cluster 

[V6
V
O11(OH)2((OCH2)3CCH3)2];

[89]
 (b) [H4V6

IV
P4O30((OCH2)3CCH2OH)2]

6-
;
[91]

 (c) mixed valence clusters 

[H7V12
IV

V7
V
O50((OCH2)3CCH2OH)]

7-
;
[91]

 (d) Pyrene moieties di-substituted hexavanadate structure 

[V6
V
O13((OCH2)3CNHCOCH2CH2CH2(C16H9))2]

2-
.
[95]

 Cations and H are omitted for clarity. Colour scheme: 

V, purple (polyhedra); O, red; C, black; N, cyan. 

Similarly it was demonstrated that methanol and tris-alkoxide ligands can, through an 

esterification process, substitute the hydroxyl groups bridging the vanadium atoms in the 

{V3} capping unit of the Dawson type cluster [H4P2V3W15O62]
5-

.
[96]

 Depending on the 

organic ligand designed, this process was shown to lead to the formation of monomers,
[97]

 

“dumb-bells”
[98-100]

 as well as dendrimers
[96,100]

 (Figure 10). 
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Figure 10: Examples of POM architectures accessible by esterification of [H4P2V3W15O62]
5-

 depending on the 

ligand design: (top) mono-(tridentate) ligand leads to monomeric architectures;
[97]

 (center) bi-(tridentate) 

ligand forms dumbbell like structures;
[98]

 (bottom) poly-(tridentate) ligand yields dendrimeric clusters.
[96]

 

Colour scheme: P, pink (polyhedra); V, purple (polyhedra); W, green (polyhedra); O, red; C, black; N, cyan. 

Another substitution mode involving 2-acetamido-2-ethyl-1,3-propanediol as a ligand has 

recently been demonstrated (Figure 11).
[101]

 This ligand was linked to the POM cluster via 

substitution of three hydroxy groups located in the {V3} cap of the POM but, unlike tris-

alkoxide ligands, one of these oxo group was replaced by the carbonyl oxygen atom, 

leading to the formation of a double bond type linkage between the organic moieties and 

the POM cluster. This new substitution mode demonstrated better electronic exchange 

properties among the two components of the hybrid POM cluster, attributed to the presence 

of a double bond. 
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Figure 11: Scheme of the reaction of {P2W15V3O62} with the 2-acetamido-2-ethyl-1,3-propanediol ligand, 

resulting in the substitution of one of the bridging oxo group by a carbonyl group (while the two other 

bridging oxo groups are substituted by alkoxo groups).
[101]

 Colour scheme: P, pink (polyhedra); V, purple 

(polyhedra); W, green (polyhedra); O, red; C, black; N, cyan; H, grey. 

1.2.1.2 TRIS-based Mn-Anderson clusters 

The substitution of the six non acidic protons found in the B-type Anderson structure by 

alkoxo groups was first demonstrated by P. Gouzerh et al. with the formation of a TRIS-

based hybrid Anderson series: [XMo6O18((OCH2)3CR)2]
3-

 for X = Mn
III

, Fe
III

 and 

[H2XMo6O18((OCH2)3CR)2]
2- 

for X = Ni
II
, Zn

II
 with R = CH3, NO2 and CH2OH.

[49]
 In this 

now standard protocol, TRIS-based ligands are incorporated during the formation of the 

metal-oxygen cluster by treatment of the octamolybdate precursor (TBA)[α-Mo8O26] with 

acetylacetonate or acetate complexes of the suitable heteroatom (Mn
III

, Fe
III

, Ni
II
 or Zn

II
) in 

refluxed MeCN. This yields TBA salts of the corresponding heteroatom di-substituted 

Anderson hybrid cluster.  

As for the B-type Anderson structure, the TRIS-based Anderson hybrids present two 

different isomers depending on the location of the two grafted ligands (Figure 12). The two 

tris-alkoxide ligands can be capping the two faces of the central octahedron on either side 

of the planar arrangement of the Anderson structure (δ isomer), or capping one tetrahedral 

cavity on each side (χ isomer). The δ isomer is a highly symmetric cluster (D3d symmetry) 

in which the organic moieties are equivalent, as shown by the presence of a unique signal 

for all six CH2O groups by NMR.
[49]

 The χ structure is of lower symmetry (close to C2h) 

where the CH2O hydrogen atoms are no longer equivalent, but can be divided into three 

groups (giving rise to three signals in 
1
H NMR), the carbon atoms into two (giving two 

signals in 
13

C NMR) while seven types of oxygen atoms are present in the cluster.
[49]

 The δ 
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isomer is systematically observed for the tri-valent heteroatoms (Mn
III

 and Fe
III

) while 

formation of either of the δ- or χ-isomers, or even mixtures of both, are observed for 

divalent heteroatoms (Ni
II
 and Zn

II
).

[49]
 

 

Figure 12: polyhedral and ball-and-stick representation of the δ-isomer (left) and the χ-isomer (right) 

observed for TRIS-based Anderson compounds.
[49]

 Colour scheme: Mn, orange (polyhedra); Zn, grey 

(polyhedra); Mo, blue (polyhedra); O, red; C, black; N, cyan. 

The mechanism leading to the formation of TRIS-based hybrid Anderson systems was 

explored through real-time electrospray ionisation mass spectrometry (ESI-MS) studies of 

the synthesis of the TRIS Mn-Anderson compound 

(TBA)3[MnMo6O18((OCH2)3CNH2)2].
[102]

 ESI-MS analysis is based on a “soft” ionisation 

technique, which allows the transfer from solution to the gas phase of large inorganic POM 

clusters with minimal or no fragmentation. The technique thus permits the investigation of 

the building blocks present in solution during the synthesis of the POM clusters and allows 

elucidation of the formation mechanisms. The formation of the TRIS Mn-Anderson cluster 

was studied following the original protocol consisting of the reaction of (TBA)4[α-Mo8O26] 

with the TRIS ligand and Mn
III

 acetate in refluxed MeCN.
[50]
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Figure 13: ESI-MS spectra taken at the start (13 minutes) of the reaction of (TBA)4[α-Mo8O26] with Mn
III 

acetate and TRIS and assignment table of the most intense peak envelopes.
[102]

 Colour scheme: Mn, orange 

(polyhedra); Mo, blue (polyhedra); O, red.  

ESI-MS analysis of the reaction mixture 13 minutes after mixing all the reagents in MeCN 

at room temperature indicates a rearrangement of the (TBA)4[α-Mo8O26] cluster into 

smaller isopolyoxomolybdate fragments (Figure 13). Reaction intermediates such as 

[Mo2O5((OCH2)3CNH2)]
-
, [Mo3O10TBA]

-
 and [Mn

III
Mo3O8((OCH2)3CNH2)2]

-
 were 

identified as the prominent species after 1 h 20 min of reaction, hence the general 

mechanism proposed for the formation of the TRIS Mn-Anderson cluster presented in 

Figure 14. 

 

Figure 14: General mechanism proposed for the formation of the TRIS Mn-Anderson cluster 

[MnMo6O18((OCH2)3CNH2)2]
3-

 (labelled g) through rearrangement of the starting material, [α-Mo8O26]
4-

 

anion (a).
[102]

 Structures (b-f) (based on crystallographic data
[50]

) represent the following fragment ions 

identified during the ESI-MS investigations: (b) [(TBA)1Mo4O13]
-
, (c) [(H)1Mo2O7]

-
, (d) [(TBA)1Mo3O10]

-
, 

(e) [Mo2O5((OCH2)3CNH2)]
-
, (f) [MnMo3O8((OCH2)3CNH2)2]

-
. Colour scheme: Mn, orange (polyhedra); Mo, 

blue (polyhedra); O, red; C, black; N, cyan. 
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Syntheses of more intricate TRIS-based hybrid Anderson systems were also explored with 

the development of pre-functionalisation
[103-106]

 and post-functionalisation techniques. 

[50,107-109]
 Pre-functionalisation methods are based on the synthesis by standard organic 

reactions of complex tris-alkoxide ligands (TRIS-based ligands) which are then introduced 

in the standard protocol to form the new hybrid complexes, while post-functionalisation 

techniques exploit readily available hybrid clusters (typically the TRIS Anderson 

compound (TBA)3[XMo6O18((OCH2)3CNH2)2] with M = Mn or Fe; TRIS ligand being 

commercially available) to then modify the hybrid compound by post-synthetic reactions. 

The post-functionalisation introduces the concept of exploiting POM clusters as modular 

building blocks which can be modified and incorporated into more intricate chemistries 

(this approach is detailed in Section 1.2.2).  

Synthetically, TRIS-based Mn-Anderson compounds are solely formed from (TBA)4[α-

Mo8O26] following the procedure established in 2002 by P. Gouzerh et al.
[49]

 and therefore 

isolated as TBA salt compounds soluble in organic solvents such as DMF, MeCN and hot 

MeOH. However, the properties of the synthesised hybrid POMs can be further tuned by 

post-synthetic cation exchange treatments giving the cluster new solubility and self-

assembly properties.
[110-112]

  

The Anderson structure being able to accommodate two TRIS-based ligands, 

“asymmetric” clusters, bearing two different ligands at each binding site, should 

intrinsically be accessible. Nevertheless, to date no synthetic methodology exists that allow 

the sole formation of the asymmetric cluster, symmetric compounds being systematically 

present as by-products of the reaction. The isolation of the first asymmetric hybrid POM 

by separation based on fractionalised crystallisation was demonstrated on the Mn-

Anderson type by Cronin et al. (Figure 15).
[113]

 Since then, a few reports have described 

the synthesis of Mn-Anderson asymmetric clusters and have demonstrated that the ligands 

are another parameter that can be used to tune the hybrid POM properties.
[112,114,115]

 Still, 

systematic synthesis of asymmetric clusters is hampered by low isolation yields and the 

lack of reliable and widely applicable isolation techniques with current published 

procedures requiring constant alterations depending on the ligand system used.  
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Figure 15: Crystal structure of asymmetric TRIS-based Mn-Anderson compounds [MnMo6O18((OCH2)3CR1) 

((OCH2)3CR2)]
3-

; (left) R1     NO2 and R2     NH2; (right) R1     NO2 and R2     NHCH2(C5NH5).
[113]

 Colour 

scheme: Mn, orange (polyhedra); Mo, blue (polyhedra); O, red; C, black; N, cyan. 

Recently, two novel substitution modes were established for a {CrMo6O24} Anderson type 

cluster (Figure 16). A mono-substituted species was formed by the post-functionalisation 

of the parent compound [CrMo6O18(OH)6]
3-

 by treatment in refluxed water with a 

pentaerylthritol ligand.
[116]

 Following similar reaction conditions, two carboxylic acid 

containing ligands (3-hydroxy-2-hydroxymethyl-2-methyl-propionic acid) were 

incorporated symmetrically into the metal-oxide framework, one oxygen of the carboxyl 

group substituting an oxo group and the two other bridging oxo being replaced by alkoxo 

groups.
[117]

  

 

Figure 16: Crystal structure of the mono-substituted TRIS-based Anderson cluster [CrMo6O21((OCH2)3C- 

CH2OH)]
3-

 (left)
[116]

 and the symmetric cluster incorporating two 3-hydroxy-2-hydroxymethyl-2-methyl-

propionic acid ligands [CrMo6O21((OCH2)2(COO)CCH3)2]
3-

 (right).
[117]

 Colour scheme: Cr, grey (polyhedra); 

Mo, blue (polyhedra); O, red; C, black. 
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1.2.2 Hybrid POMs as modular building blocks 

Two different approaches exist to covalently functionalise POMs: pre-functionalisation 

and the post-functionalisation.
[24,28]

 The pre-functionalisation approach requires the 

incorporation of a pre-synthesised target ligand into the metal-oxide framework, whereas 

the post-functionalisation approach is based on the synthesis of hybrid POM precursors 

from generic ligands presenting at least one active site, which are then modified by 

standard organic reactions to introduce more complex functions (Figure 17). While both 

approaches present some advantages, the post-functionalisation approach with the prospect 

of generic building blocks which can be modified in a modular manner seems a more 

robust strategy for the discovery of viable applications of hybrid POMs. However, 

modification by organic reactions is not a straight forward process, and protocols 

established for organic components have to be adapted to the unusual reactivity of the 

metal-oxide core. The narrow solubility of POMs, their incompatibility with strong bases 

or acids and their oxidant nature, drastically reduce the reaction conditions available and 

the number of organic molecules that can be employed. 

 

Figure 17: Schematic representation of the two approaches for the synthesis and design of complex organic-

inorganic hybrid POMs. Route (i): direct functionalisation by pre-synthesis of a target ligand which is then 

grafted onto the metal-oxide framework; Route (ii) followed by (iii): synthesis of a hybrid POM precursor 

via incorporation of a generic ligand into the POM cluster, which can then be used as a modular building 

block and get further functionalised by organic reactions. Colour Scheme: POM, blue; anchoring tether, lilac; 

added functional moiety, beige. Adapted from Ref. 28 with permission from The Royal Society of 

Chemistry. 



INTRODUCTION  22 

In the present thesis, the concept of organic-inorganic POM precursors for the rational 

design of functional materials is explored, thus an overview of the existing post-

functionalisation techniques is given here (comprehensive reviews can be found in the 

literature).
[22,28]

 These post-functionalisation techniques require the synthesis of hybrid 

POM precursors; examples of common precursors encountered in post-functionalisation 

strategies are given in Figure 18. For the purpose of this thesis a particular emphasis is 

placed upon the incorporation of amino acids or peptide units into hybrid POMs, since the 

functionalisation of hybrid POMs with these ligands is the object of this thesis. 

 

Figure 18: Schematic representation of common precursors encountered in post-functionalisation strategies; 

the metal-oxide framework is represented by geometric forms to highlight their role as a “spectator” in post-

functionalisation processes. POM core: Tris Mn-Anderson: {MnMo6O24};
[49]

 I-Lindvist: {Mo6O18};
[85]

 P-

Dawson: {P2W17O61};
[118]

 propanoic-Sn-Dawson: {P2W17O61}. The α1-isomer is observed when the lacuna 

is formed on the “belt”, while for the α2- type the lacuna is located on the “cap”;
[119]

 Si-Dawson and Si-

Keggin: {P2W17O61} and {PW11O39}, respectively;
[118,120]

 I-Sn-Dawson and I-Sn-Keggin: {P2W17O61} and 

{PW11O39}.
[121]
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1.2.2.1 Peptide bond formation 

The first protocol for the functionalisation of POMs by amide bond formation was 

established by B. Hasenknopf and M. Malacria et al. in 2003
[119]

 and consists of the post-

functionalisation of the propanoic-Sn-Dawson precursor
 
(α1 and α2)

 
via the reaction of 

primary amines and 2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) refluxed in 

MeCN. As highlighted by its authors “it should be noted that simple α-aminoacids failed to 

give any amide (no conversion)” and only the NH2-Tyr-Boc (tert-butyloxycarbonyl (Boc) 

protected tyrosine) led to a reasonable yield (90%). The reason for the amino acids’ poor 

reactivity is their low solubility in the solvent system (MeCN). Nevertheless, the reaction 

condition established (EEDQ in MeCN) are often employed for post-functionalisation 

through amide bonds of this Dawson building block
[122-125]

 and were found to be applicable 

to other POM units such as the TRIS Mn-Anderson type.
[109,115]

  

Further developments of the post-functionalisation methodology of the propanoic-Sn-

Dawson unit were later reported by the same group.
[126-128]

 Firstly, an in-depth study of the 

coupling reagents and reaction conditions (reflux, room temperature, 0 °C) was 

realised.
[126]

 Chloroformate mediated coupling in the presence of base was found to be the 

most suitable path for amide formation; yet no actual peptide chains were used as reagents 

in this report, only a series of amines and a few amino acids (Phe, Tyr). Interestingly, the 

same reaction in absence of a nucleophile was found to lead to the formation of an 

acylated-Sn-Dawson precursor
 
(α1 and α2; Figure 19).

[127]
 The α1- type exhibiting a chiral 

arrangement, a mixture of the two enantiomers was isolated. 

 

Figure 19: Synthesis of an acylated-Sn-Dawson precursor which can react to form peptidic bonds with 

peptide chains under mild conditions, as shown here with the addition of the tri-peptide NH2-Val-Ala-Leu-

OMe.
[128]

 

The ligand of this novel building block is activated by the POM-framework allowing 

reactions with primary amines to occur under very mild conditions (in MeCN or DMSO 

and at room temperature) without the addition of coupling agents.
[127]

 Using this approach, 
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tri-peptides were successfully grafted onto the POM cluster without the requirement of a 

protecting group (Figure 19).
[127,128]

 It was demonstrated that these tri-peptides could be 

used for enantiomeric kinetic resolution of the α1-acylated precursor since the amino acid 

sequence was able to interact with the metal-oxygen framework and therefore 

preferentially react with one of the enantiomeric compounds.
[128]

  

Pre-activated organic moieties, by N-Hydroxysuccinimide (NHS)-ester or acyl chloride 

groups, were also proven to successfully form amide bonds on pre-formed hybrid POM 

precursors.
[95,107]

 

1.2.2.2 “Click chemistry” type reaction 

The concept of “click chemistry” was introduced by Sharpless in 2001 to describe 

reactions that “must be modular, wide in scope, give very high yields, generate only 

inoffensive by-products that can be removed by non-chromatographic methods, and be 

stereospecific (but not necessarily enantioselective). The required process characteristics 

include simple reaction conditions (ideally, the process should be insensitive to oxygen and 

water), readily available starting materials and reagents, the use of no solvent or a solvent 

that is benign (such as water) or easily removed, and simple product isolation.”
[129]

 While 

POMs are not necessarily compatible with the “green” click chemistry idea, the reactions 

that result are still applicable and are particularly interesting for modular modification of 

preformed hybrids.  

Many reactions fall into the large definition of “click chemistry” among which are the 

nucleophilic opening of spring-loaded rings and cycloaddition reactions.
[129,130]

 Only the 

latter type was explored for POM post-functionalisation through the copper catalysed 

Huisgen 1,3-dipolar cycloaddition and the Diels-Alder reaction. 

The copper-catalysed 1,3-dipolar cycloaddition reaction between alkynes and azides to 

form selectively 1,4-disubstituted 1,2,3-triazoles
[131,132]

 is intensively used as a “fusion” 

process in polymer chemistry,
[133,134]

 nanotechnology
[135]

 and chemical biology.
[136]

 Its 

ability to link together two complex molecules was also explored in POM chemistry but 

exclusively for polyoxotungstate species since they are weaker oxidants than 

polyoxomolybdate clusters.
[122]

 Reaction conditions for the formation of the triazole bond 

were first established by Malacria et al.
[122]

 using the propanoic-Sn-Dawson precursors 

and its Keggin equivalent ({PW11O39} POM core) modified by amidation to introduce an 

alkyne or an azide group using the peptide bond formation technique reported in Section 

1.2.2.1.
[126]

 Although not drastically different from standard protocol,
[131]

 the reaction 
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conditions were adapted to the solubility of the POM and its tendency to form ion pairs 

with Cu
2+

. A water/MeCN mixture was preferred to the usual water/alcohol conditions and 

the number of equivalents of sodium ascorbate, the reductant, was increased to ensure the 

in situ formation of the Cu
I
 catalyst. These reaction conditions allowed the grafting of the 

propanoic-Sn-Dawson precursor to carbohydrates, amino acids (such as tyrosine), and a 

tri-peptide (tri-valine; Figure 20). 

 

Figure 20: Copper-catalysed 1,3-dipolar cycloaddition reaction performed on the azide functionalised 

propanoic-Sn-Dawson precursor yielding a covalently grafted tri-peptide onto a Sn-Dawson POM. 

Similar reaction conditions applied on Si- and P-Dawson type precursors with an azide or 

alkyne anchoring tether led to the formation of POM-chromophore dyads, with the 

introduction of perylene
[118]

 (Figure 21) and porphyrin
[137]

 pendant groups. A fluorescence 

quenching was observed, attributed to an intramolecular electron transfer from the 

chromophore to the POM. However, poor electronic conductivity of the triazole bond was 

observed: one electron reduced POM species were formed but the electron transfer from 

the organic antenna to the POM was a slow process.  

 

Figure 21: POM-chromophore dyad synthesised by copper-catalysed 1,3-dipolar “click reaction” on the P-

Dawson precursor. 
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Through these reactions, the copper-catalysed 1,3-dipolar cycloaddition proved to be an 

efficient mean of linking covalently intricate organic functional units with 

polyoxotungstate precursors.  

The Diels-Alder reaction of a diene with an alkene to form a six membered ring present 

numerous advantages for modular additions of two components: no intermediate is 

generated over the course of the reaction, no catalyst is required, and under specific 

conditions the process can be reversible.
[138,139]

 This reaction was explored for the TRIS 

Mn-Anderson precursor functionalised with diene and dienophile moieties by peptide 

bond techniques. A large variety of organic motifs – among which a biotin group, a 

polyhedral oligomeric silsesquioxane cluster and a second generation poly(urethane amide) 

were grafted onto the POM precursor by [4+2] cycloaddition in refluxed MeCN or DMF 

(examples given in Figure 22). Surprisingly, this report
[109]

 is the only recent use of the 

Diels-Alder click reaction for the post-functionalisation of POMs; Prior to this, in 1986, a 

publication
[140]

 described the use of this reaction to post-functionalise some Keggin and 

Dawson type cyclopentadienyltitanium polyoxotungstates, which led to the introduction of 

a wide range of organic functions.  

 

Figure 22: Diels-Alder click reaction on the TRIS Mn-Anderson precursor. The POM unit is first 

functionalised with a dienophile via peptide bond formation to then react by [4+2] cycloaddition with an 

anthracene group bearing functional side chains, here a biotin moiety.
[109]
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1.2.2.3 Pd-catalysed cross coupling reactions 

Pd-catalysed cross coupling reactions are powerful organic chemistry tools which permit 

the formation of carbon-carbon or carbon-heteroatom bonds under mild conditions and are 

compatible with a wide range of functional groups.
[141-143]

 Such modification tools are 

interesting for post-functionalisation of hybrid POM precursors and some reported studies 

have explored the compatibility of these organic reactions with the metal-oxide core. 

 

Figure 23: A dumbbell like cluster synthesised by Sonogashira coupling performed on the I-Lindvist 

precursor.
[144]

 

The Sonogashira coupling reaction was widely employed to modify iodoaryl functionalised 

POM precursors. The penchant for this type of coupling may be explained by the fact that 

the reaction conditions established for purely organic compounds are compatible as is with 

most POM precursors.
[145]

 The modification of the I-Lindqvist by the Sonogashira 

coupling reaction was intensively explored by Peng’s group;
[146]

 using this technique they 

introduced the POM unit into dumbbell like clusters
[144,147]

 (Figure 23) or polymers.
[148]

 

For these reactions, the POM precursor was treated with the appropriate alkyne in presence 

of triethyl amine, Copper(I) iodide, potassium carbonate and the palladium catalyst, 

[PdCl2(PPh3)2] in MeCN at room temperature. They noticed that, not only did the POM 

cluster survive in these conditions, but the iodo group presented an unusually high 

reactivity, resulting in the completion of the reaction in only a few minutes.
[146]

 This 

enhanced reactivity is explained by the electron withdrawing effect of the Mo≡N bond. 

This coupling type was further used with similar reaction conditions to attach 

organometallic (a cyclometalated Ru
II 

polypyridine complex) and organic (pyrene) 

chormophores on Si-Keggin and Si-Dawson (with R = I in Figure 18) to form photoactive 

hybrid POM based materials.
[120,149]

 A fluorescence quenching was observed, attributed to 

an intramolecular electron transfer from the chromophore to the POM: a phenomenon 

which was faster for the pyrene functionalised materials. Comparison of the covalent bond 
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with electrostatic interactions demonstrated the importance of the covalent bond for a 

faster transfer. The results suggest that this type of linkage (the triple C-C bond) is a better 

candidate for POM-chromophore dyads and electronic conductivity than the previously 

viewed triazole bond in Section 1.2.2.2. 

The reaction conditions for a Pd-catalysed Heck reaction on the I-Lindqvist precursor 

were explored.
[150]

 The protocol established for this type of coupling is somewhat unusual 

as a bromomagnesium compound was used as a base. 

Recently, an in depth study was carried out to establish the reaction conditions of a handful 

of C-C cross coupling reactions on the I-Sn-Keggin and I-Sn-Dawson units.
[121]

 The 

reaction conditions for each reaction were carefully optimised and the resulting procedures 

are summarised in Figure 24. This work is of high importance since Suzuki, Miyaura and 

Hiyama couplings had never been attempted before in hybrid POM chemistry. 

 

Figure 24: Pd-catalysed cross coupling reactions established for the I-Sn-Keggin (left) and I-Sn-Dawson 

(right) building blocks. For optimised reaction conditions see reference.
[121]
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1.2.2.4 Polymerisation 

The incorporation of POMs into ductile polymer host matrices could be a simple and 

practical means of developing POM-based materials and devices. Early work toward this 

goal was mainly involving a free radical polymerisation process which led to highly 

polydisperse materials and difficulties in the characterisation of the resulting polymers.
[151-

154]
 The recent development of controlled polymerisation processes,

[155,156]
 such as atom 

transfer radical polymerisation (ATRP) and reversible addition-fragmentation chain-

transfer (RAFT), permits better control of the polydispersities and molecular weights of the 

obtained polymers, allowing the design of POM-polymer hybrid system.  

The formation of a hybrid POM-polymer can be achieved following three different routes: 

“graft onto”, “grown onto” and “grown with”. Firstly, the “graft onto” approach, consists 

of synthesising a polymer chain functionalised in such a way that post-functionalisation 

can then be used to graft it onto the POM precursors. This was demonstrated for the α2-

acylated-Sn-Dawson building block, the Si-Dawson precursor (with R = -CH2N3) through 

peptide bond formation
[123]

 and a click chemistry reaction (see Figure 25),
[157]

 respectively.  

 

Figure 25: Example of the “graft onto” technique on the Si Dawson building block functionalised with an 

azide group. 1,3- Dipolar cycloaddition reaction is used to attach the polymer moiety to the hybrid POM 

unit.
[157]
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In the second approach, a “grown onto” route, the POM precursor is first modified to 

incorporate a polymerisation initiator and then the polymer is grown onto the POM cluster 

using controlled polymerisation techniques. In the literature, three examples illustrate this 

method: an ATRP performed on a TRIS-based {P2W15V3} type cluster (Figure 26),
[158-160]

 

a RAFT performed on a α1-Sn-Dawson
[125]

 and a ring opening polymerisation (ROP) on a 

TRIS Mn-Anderson unit.
[108]

 The “grown onto” approach leads to the localisation of the 

POM at one end of the polymeric chain. It permits, when hydrophobic monomers are 

employed, the formation of amphiphilic clusters as demonstrated by Wang et al.
[158-160]

 

with their synthesis of a polystyrene (PS) tail via ATRP onto the TRIS-based {P2W15V3} 

type POM precursor (Figure 26). Kinetically favoured vesicular aggregates of an average 

diameter of 166 ± 32 nm were proved to form when dissolved in DMF. Upon annealing, 

the self-assembly was modified and nanotubes were formed, showing that over time the 

POM-polymer molecules rearrange into a more thermodynamically stable assembly. 

 

Figure 26: Example of a “grown onto” route with a polystyrene (PS) polymer synthesise on a TRIS-based 

{P2W15V3} building block functionalised with an ATRP initiator. 
[158-160]

 The resulting POM-polymer hybrid 

exhibited anamphiphilic behaviour: self-assembly into vesicular structures was observed via TEM analysis in 

DMF upon protonation. Annealing of the polymer makes the vesicules rearrange into fibrils, a more 

thermodynamically stable structure.  
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In the third approach, the polymer is “grown with” the POM moiety as part of the 

monomer employed, resulting in the POM being evenly distributed along the polymer 

backbone; this approach was recently demonstrated through the synthesis of a norbornene 

TRIS-based {P2W15V3} monomer (obtained by pre-functionalisation technique) which was 

then polymerised by ring-opening metathesis polymerisation (ROMP) catalysed by a 

Grubbs catalyst (Figure 27).
[161,162]

 Good quality thin films of the hybrid POM-polymer 

observed by TEM (Figure 27; homogenous and with the POM cluster evenly distributed) 

were obtained, proving that the incorporation of POMs in polymer matrices is an efficient 

way to improve their processabilities. 

 

Figure 27: (left) Schematic representation of a “grown with” POM-polymer hybrid by ROMP from a 

norbornene TRIS-based [P2W15V3]. (right) Transmission electron microscopy (TEM) images of a thin film 

prepared by casting/annealing of an MeCN solution of the POM-polymer hybrid. (A) Scale bar represents 1 

µm; (B) Scale bar represents 20 nm. 

 

  



INTRODUCTION  32 

1.3 Amino acids, peptides and proteins 

With functions such as transcription, regulation, transport, storage and structural support, 

peptides and proteins are key components to most biomolecular functional systems, even 

mechanisms of DNA replication and of gene expression are controlled by proteins. This 

functional diversity can be bewildering considering that they are all bio-polymers made out 

of the same fundamental building units, i.e. amino acids. Most of this functional diversity 

comes from their remarkable ability to fold into supramolecular superstructures. Their 

relative compositional simplicity and their astounding range of properties generated 

chemist’s and material scientist’s interests to reliably organise molecules and tailor their 

properties.  

In this section an overview of the structure of peptides is given, followed by the 

presentation of their chemical synthesis. The use of peptides in nanotechnologies is then 

shown through a series of recent examples. 

1.3.1 Structures of peptides and proteins 

Peptides and proteins are formed, under the control of nucleic acids, by the assembly of 20 

building blocks (Figure 28): L-α-amino acids (which differ from one another by the 

composition of their side chain (R)).
[163,164]

 In numerous articles, the term “amino acid” is 

used as shorthand for L-α-amino acid; although not strictly correct this convenient and 

common shorthand is used hereafter. Proteins can consist of thousands of amino acids, thus 

for convenience amino acids are often referred to using their abbreviated name or one-

letter code (given in Figure 28).
[165]

  

Amino acids are linked to each other in a head-to-tail fashion by amide or “peptide” bonds, 

which result in the formation of linear polypeptide backboned macromolecules with a free 

amino group at one end (termed N˗terminus) and a free carboxylic acid group (termed 

C˗terminus) at the other end of the chain. Some exceptions to this simple presentation 

exist, like the potassium carrier, valinomycin, made of a macrocycle “biting its own tail”. 

The amino acids in the chain are commonly referred to as residues; a polypeptide chain can 

be as short as two residues (di-peptide) up to thousands of residues long. The frontier 

between “peptides” and “proteins” is unclear since the differentiation of the terms does not 

rely on a scientific reality. Conventionally the word peptide is used for short amino acid 

chains (up to 50 amino acids), while the term protein is usually favoured for longer chains. 
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Figure 28: Presentation of the building blocks of peptide chains: the 20 L-α-amino. The amino acids are 

sorted by side chain functions and each are given with their abbreviated name and their one letter code. L-

Proline, the only one made of a secondary amine, is represented separetly. 

Peptides and proteins are not just randomly coiled chains of amino acids; spatial 

organisations are critical characteristics for their activity and function. To assess the 

complex structure of proteins, their structure is described at four levels of organisation: 

primary, secondary, tertiary and quaternary structure (Figure 29).
[166]

 The primary structure 

is defined by the amino acid sequence, always given from the N˗terminus to the 
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C˗terminus (in view of being unambiguous about the start and the end of a sequence). The 

secondary structure gives the conformation of the peptide backbone into regular structural 

domains such as α˗helices and β˗sheets. The relationship of the different domains of the 

secondary structure and the interactions of the amino acid substituent groups (R) are given 

by the tertiary structure: the complete three-dimensional structure of the polypeptide chain. 

A full protein can consist of several polypeptide chains, these chains being able to form 

inter- or intra-chain covalent connections, like disulphide bridges, or be chemically 

modified (acetylation, hydroxylation, carboxylation…), but non-amino acid components 

such as minerals, lipids and carbohydrates can also be components of proteins. The 

quaternary structure describes the interactions of all these different protein components. 

 

Figure 29: Representation of the four levels of organisation of a protein: primary, secondary tertiary and 

quaternary structure; example of the crystallographic structure of human deoxyhaemoglobin.
[167]

  

While protein tertiary and quaternary structures are mostly determined by X-ray 

crystallography
[168-170]

 (structures accessible in the protein data bank (PDB)),
[171]

 other 

complementary techniques facilitate the evaluation of the structural organisation on various 

levels. Primary structures can be investigated by peptide sequencing techniques,
[166,172,173]

 

these are well established protocols mostly based on mass spectrometry analyses. Circular 

dichroism (CD) is a technique often used to explore the secondary or tertiary arrangement 

of proteins since different chromophores found in peptide chains can give rise to CD 

signals.
[174,175]

 The usual regular structures found in peptides (α-helix, β-turn…) display 

well-known specific CD signals in the far UV region (240-180 nm; see Figure 30). The 

study of this region of the electromagnetic spectra, characteristic of the peptide bond 

absorption, allow the overall secondary structure content of a protein to be assessed. 

Furthermore, CD spectra in the near UV region (320-260 nm) are representative of the 
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aromatic amino acids’ side chains environment and their study can give information about 

the tertiary structure of proteins.  

 

Figure 30: CD spectra of the far UV region and examples of characteristic signals of specific secondary 

structure: α-helix (blue), anti-parallel β-sheet (cyan) and type I β-turn (red). In black is presented an example 

of irregular structure signal. 

1
H Nuclear magnetic resonance (NMR) spectroscopy also permits the exploration of the 

tertiary structure of proteins and gives further insight on the protein structure in near-

physiological conditions
[173,176,177]

 – since NMR data can be recorded in solution, 

parameters such as the pH, the temperature and the salt concentration can be altered to 

mimic biological environment. Three complementary 2D experiments are widely used to 

explore the structure of proteins: COSY, TOCSY and NOESY (Figure 31). In the 2D 

COSY spectra only signals of protons which are two to three bonds apart are visible. The 

cross peaks due to the coupling of the HN and Hα protons are of special importance since 

the 
3
J coupling constant between them can be used to determine the torsion angle of the 

protein backbone (secondary structure). The TOCSY experiment which correlates all 

protons of a same spin system allows the amino acid composition to be determined. It can 

then be compared to the NOESY experiment to investigate how the amino acids are linked 

to each other and obtain the primary structure of the protein. The NOESY experiment also 

correlates protons which are distant in the amino acid sequence but close in space giving 

precious information to explore the tertiary structure of proteins.  
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Figure 31: Schematic representation of the information given by each 
1
H-

1
H 2D NMR experiment commonly 

used for peptide structure determination. 

The combination of all these structural studies at different scale and in different media 

brings a better insight on the structure-function relationship of proteins. 

1.3.2  Chemical synthesis of peptides 

Understanding the relationship between the structures of peptides and their biological 

activity was a key element to be able to reliably use them in pharmacology or material 

sciences. Synthetic peptides offer the possibility of substituting one or several amino acids 

by another or even by unnatural amino acids; the synthesis of numerous analogues to a 

same sequence can then permit the identification of active sites or the role of an amino acid 

in the organisation of a chain. The creation of a reliable method for their synthesis was 

therefore a crucial step for their use in therapeutics and peptide-based materials.  

Peptide bonds are easily formed by the reaction of amines with activated carboxylic acids 

(derivatives which have been extensively developed
[178]

), however, since amino acids are 

at least bi-functional units (or more depending on the side chain) and peptides are made of 

the repetition of these units, the control of which functionalities are reacting is a 

fundamental point for the chemical synthesis of peptides. This control is obtained by the 

use of temporary protecting groups, whose role is to deactivate the functions that should 

not react; these protecting groups are only temporary and, when required, can be removed 

to retrieve the original reactivity.
[179]

 Peptides are thus synthesised in a stepwise fashion 

punctuated by amide formation and function deprotection. Since several functions may 

necessitate protection simultaneously but not necessarily be activated all at once, 

orthogonal protecting systems have been developed to offer a better selectivity on the 

function deprotected.
[179]
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Another major requirement for efficient peptide synthesis is that the amide couplings 

should be as complete as possible. The reason for this is that, as illustrated in Figure 32, the 

overall yield decreases rapidly with the number of addition cycle; for steps yields of 90% 

the overall yield for a peptide of 25 residues being even less than 10%. The completion of 

each addition steps is critical since changing or omitting just a single amino acid in a key 

position in a peptide can significantly alter its activity and function.  

 

Figure 32: Impact of the step yield on the overall yield. Yield for each coupling cycle: 90% (blue), 99% 

(red).  

Originally the chemical synthesis of peptides was based on a solution synthesis approach, 

which required the isolation and the purification of the peptide product after each cycle 

leading to a time consuming and laborious process, with loss of yield even with efficient 

coupling steps.
[180]

  

In 1963, R. B. Merrifield revolutionised the chemical synthesis of peptides by introducing 

a new synthetic protocol: the solid-phase peptide synthesis (SPPS).
[181]

 The principle of the 

SPPS technique, based on the use of an insoluble and filterable cross-linked PS support, is 

represented in Figure 33.
[163,182]

 In this approach, the growing peptide chain is attached to a 

solid support via its C˗terminus and the peptide is synthesised stepwise from the 

C˗terminus to the N˗terminus by repetition of coupling/deprotection steps (SPPS cycle). 

Once the desired peptide sequence is completed, all protecting groups can be removed and 

the peptide cleaved from the solid support. Since reagents and side products can easily be 

separated from the growing peptide by filtration and washings, a large excess of reagent is 

used to drive each coupling step to completion and ensure the synthesis of a peptide of 

good purity. Another advantage of this approach is that by having the growing peptide 
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chain covalently attached to a solid support the solubility issues encountered in solution 

with protected peptide chains does not arise. 

 

Figure 33: Schematic representation of a standard SPPS process from the resin loading to the isolation of the 

final product. 

Since the publication of the original SPPS method by Merrifield, many aspects of the 

synthesis have been the object of studies and optimisations giving rise to general simple 

procedures
[182-184]

 with many tuneable parameters such as the matrix polymer,
[185]

 the 

linker and cleavage type,
[186]

 the protection system
[187]

 and the coupling reagents.
[178]

 Since 

the chemical synthesis of peptides is a stepwise process which involves a lot of repetitions 

and cycles, and because the product is immobilised on a solid support, their synthesis was 

automated and peptide synthesisers are now commercially available with in-line UV 

detectors monitoring Fmoc deprotection to deduce each step yield and microwave reactors 

for faster syntheses.  
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1.3.3 Use of chemically synthesised peptides in material science 

Peptides and proteins have unparalleled self-organisation properties and can form 

functional structures with unmatched characteristics which inspire chemists to create 

artificial molecules with similar capabilities. Recent progress in instrumentation coupled 

with the developments of SPPS now permit the automated synthesis of designed peptides 

targeting specific properties. Since proteins can act as both building scaffolds and 

functional entities, their use in nanotechnology could generate a large variety of smart 

functional materials. 

The amount of work in this field is tremendous and continuously increasing, thus the 

hereafter description of the application of peptides in material science is not exhaustive and 

has for objective to give a brief overview of synthetic peptides applications; 

comprehensive reviews on this subject can be found in the literature.
[188-190]

 

1.3.3.1 Aromatic short peptide derivatives 

Short peptides, also called very short peptides or oligopeptides, can spontaneously 

associate to form discrete nanostructures such as nanotubes, nanotapes or 

nanofibrils.
[188,191]

 The source of this nanoscale organisation is mostly non-covalent 

interactions and therefore peptide building blocks designed for these materials display 

groups which can be involved in these interactions (charge complementarity, amphiphile 

character, π–π stacking, etc.). Aromatic groups containing peptides, source of π–π stacking 

interactions, are a major type of short peptide exhibiting self-assembly behaviours. The 

aromatic moiety can be present in the sequence (Phe, Tyr, Trp) and/or as pendant groups 

attached to the peptide chain (peptide derivatives). 

The design of peptide building blocks for highly ordered supramolecular architectures is 

often inspired by Nature. Amyloid fibrillation is the cause many diseases of unrelated 

origin (prion diseases, type II diabetes and Alzheimer’s disease) and although the 

mechanism of the formation of these fibrils is not fully understood, aromatic residues 

found in the amyloid-related sequences may be the origin of these highly order 

assemblies.
[192]

 For example, the FF motif located in diverse regions of the β-Amyloid 

peptide sequence could be the source of the Alzheimer’s disease. When studied on its own, 

this di-peptide proved to form well-ordered hollow nanotubes (Figure 34), similar to 

amyloid fibrils, by supramolecular interactions.
[193]
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Figure 34: Self-assembly of highly organised peptide hollow nanotubes formed by the FF motif. (A) FF 

motif; (B) TEM images of the negatively stained nanotubes; (C) HR-TEM of the negatively stained 

nanotubes, visualised by field emission gun microscope. Adapted from Ref. 193 with permission from The 

American Association for the Advancement of Science. 

These highly ordered nanostructures were then used in a “bottom-up” approach to create a 

nanosized material. The hollow FF fibrils were used as degradable casting mould by filling 

the tubes’ cavities with a silver solution. This solution was then reduced to produce a silver 

nanowire of 20 nm diameter (Figure 35), a size that could not be reached by traditional 

“top-down” approaches.
[193]

  

 

Figure 35: (A) schematic representation of the silver nanowire formation process: silver ions filling the tube 

cavity were reduced by treatment with sodium citrate to form a silver-filled nanotube, the peptide mould was 

then eliminated by enzymatic degradation. (B) TEM images of the silver-filled peptide nanotube. (C and D) 

TEM images of the silver nanowire obtained following this process. Reproduced from Ref. 193 with 

permission from The American Association for the Advancement of Science.  
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When functionalised with an aromatic pendant group, short peptides were revealed to act 

as low molecular weight gelators forming highly organised supramolecular fibrils which 

interact with one another to give stable self-supporting hydrogels.
[194]

 These hydrogels are 

highly hydrated (more than 99% water) “solid-like” networks formed by non-covalent 

interactions (π–π stacking, hydrogen bonding, electrostatic interactions). Aromatic 

fluorenyl groups
[195-198]

 are the most common derivatives used for hydrogel formation 

since their incorporation in sequences is directly obtained from peptide syntheses using 9-

Fluorenylmethyloxycarbonyl (Fmoc) strategies. Their fluorescence properties also gives an 

mean of following the arrangement of the molecules, which permits some study of the self-

assembly.
[198]

 However, hydrogels based on other aromatic units, such as naphthalene and 

pyrene, have also been reported.
[194]

  

 

Figure 36: (A) Cryogenic scanning electron microscopy (cryoSEM) image of the nanofibrils obtained by 

self-assembly of the Fmoc-FF peptide derivative at pH 7. 
[197]

 Scale bar represents 1 µm. (B) Schematic 

representation of the proposed self-assembly mechanism to explain the fibril formation: the Fmoc groups, 

depicted in blue, stack through π-π interactions and assemble to form well organised nanofibers. (C) 

Examples of self-supporting hydrogels formed at pH 7: 7, Fmoc-FF; 8, Fmoc-FF/Fmoc-GG 50:50 mol/mol 

mixture; 9, Fmoc-FF/Fmoc-K 50:50 mol/mol mixture. Adapted from Ref. 197 with permission from John 

Wiley and Sons.
 [197] [197] [197] 

 

The properties of the resulting gels are strongly dependent of the composition of the 

aromatic peptide derivatives. The Fmoc-FF motif demonstrated probably the most 

interesting behaviour since it forms gel under pH as high as 8, when most Fmoc-di-peptide 

only form gels at pH below 4. This motif can also be mixed with other dipeptides (50% 

molar ratio) to produce stable gels at pH around 7.5, proving that the Fmoc-FF improve the 

poor gelation properties of other dipeptides (Figure 36).
[197]

 These properties were used to 

form a nanofibrous hydrogel network from Fmoc-FF and Fmoc-RGD units (a short peptide 

sequence known to promote cell adhesion).
[199]

 The obtained hydrogel was mimicking 
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some aspects of extracellular matrices and demonstrated to permit cell adhesion, through 

RGD-integrin binding, as well as cell spreading and proliferation. Potentially, these 

hydrogels may thus be used as 3D-scaffold for in-vitro tissue regeneration for anchorage 

dependent cells.  

By introducing a phosphonyl group onto the Fmoc-FF di-peptide, its self-assembly 

behaviour in water was totally modified: the resulting molecules acted as amphiphiles, 

with a hydrophobic Fmoc-FF tail and a polar phosphonyl head, which self-assembled into 

micelles.
[198]

 This supramolecular arrangement could be disrupted by enzyme catalysed 

phosphatase to obtain highly ordered fibrils and thus a hydrogel (Figure 37). This property 

could lead to self-assembled materials whose arrangement is triggered by their 

environment.  

 

Figure 37: Schematic representation of the self-assembly rearrangement from vesicle to fibrils triggered by 

enzyme catalysed phosphatase.
[198]

 Reproduced from Ref. 198 with permission from the Royal Society of 

Chemistry. 

1.3.3.2 Controlled assembly by coiled-coil formation 

Coiled-coil assemblies, which consist of several right handed α-helixes wound into a left 

handed superhelix, were first described in 1953 by Pauling and Corey
[200]

 and Crick
[201]

 

(Figure 38). However, they only started generating interest with the description of the 

leucine zipper in 1988, as it revealed to be a source of dimerisation found in DNA binding 

proteins.
[202]

 

The study of coiled-coils arrangement in natural proteins permitted the establishment of 

some “rules” to create these assemblies.
[203,204]

 Only right-handed α-helices were found to 

form coiled-coil arrangements and a distortion of the α-helix was observed. The distorted 

helices possess 3.5 residues per turn, against 3.6 residues for “standard” α-helices, which 

allow the amino acids to occupy equivalent positions every two turns/seven residues. Their 
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sequences can therefore be represented as heptads repeats usually written as [abcdefg]n. 

The amino acids in each position are not necessarily identical, but often present similar 

properties. For example in the case of a double strand: the residues at the interface between 

the helixes, a and d, are often non-polar and hydrophobic; charged residues are 

encountered in e and g positions while polar units are located in c, d and f. The strands can 

interact in a parallel or an anti-parallel fashion; the a and d residues are then lined up with 

d’ and a’ in parallel coiled-coils but with a’ and d’ in anti-parallel ones. Many sequences 

are known to form coiled-coil assemblies;
[205]

 they have been either designed following the 

established rules or were part of a sequence of a natural protein. 

 

Figure 38: Example of a dimeric coiled-coil and helical wheel representing the heptads arrangements and 

interactions in a parallel and an anti-parallel coiled-coil. The hydrophobic interaction between a, a’, d and d’ 

is highlighted. 

This recognition process results inherently in the formation of fibrous structures and is 

mostly used for the rational design of self-assembling bio-compatible scaffolds.
[206-208]

 By 

the use of complementary peptide sequences, which when mixed form coiled-coils, these 

peptide motifs have also been used in nanotechnology to reliably assemble building 

blocks.
[209-211]

 For example, nanoshell (NS) functionalised with complementary sequences 

were found to form NS-NS complexes.
[209]

 Due to the NS photothermal properties, it was 

possible to trigger the disassembly of these complexes by near IR-illumination (Figure 39). 

 

Figure 39: Controlled assembly of NS functionalised with complementary peptide sequence through coiled-

coil formation. The assembly process was found to be reversible by exposition to near-IR light.
[209]

 Adapted 

with permission from Ref. 209. Copyright 2007 American Chemical Society. 
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1.3.3.3 Peptides for therapeutic developments and cell delivery 

In 1988, it was discovered that the trans-activator of the transcription (Tat) protein of the 

human immunodeficiency virus was able to cross the cellular membrane,
[212]

 contrary to 

the thinking of the time that the plasma membrane was impermeable to hydrophilic 

molecules. Since then, many peptides have demonstrated similar behaviours, forming a 

class of peptides commonly called cell-penetrating peptides (CPPs) or protein transduction 

domains (PTDs).
[213,214]

 CPPs are made of short sequences of no more than 30 residues and 

can be of three origins: natural (part of a protein), fusion of two natural sequences 

(chimeric peptides) or synthetic (obtained by rational design based on structure-activity 

studies). Sequences and origins of well-known CPPs are given in Table 3.  

Table 3: origin and sequence of some well-known CPPs 

Peptide Origin Sequence Ref. 

Protein-derived    

Penetratin Antennapedia (43-58) RQIKIWFQNRRMKWKK [215]
 

Tat Tat (48-60) GRKKRRQRRRPPQ [216]
 

Chimeric    

Transportan Galamine/mastoparan GWTLNSAGYLLGKINLKALAALAKKIL [217]
 

MPG HIV-gp41/SV40 T-antigen GALFLGFLGAAGSTMGAWSQPKKKRKV [218]
 

Synthetic    

MAP de novo KLALKLALKALKAALKLA [219]
 

R6W3 Based on penetratin RRWWRRWRR [220]
 

 

Due to their cell specificity and their ability to cross the cellular membrane, CPPs are used 

in targeted cellular therapies as a vector to transport macromolecules at a specific site and 

deliver them in the cytoplasm.
[221-223]

 Cell penetrating peptides present several benefits for 

the therapeutic developments inherent to their biological nature and their recognition 

ability: they possess a low cytotoxicity, they permit an increase of the cellular uptake, their 

side effects are limited and they permit lower dosage. There is almost no limitation on the 

type of cargo that can be delivered by CPPs, as illustrated by the large variety in size and 

nature that have already been the object of studies: peptides, proteins, viruses, 

nanoparticles, DNA, antibodies.
[224]

 

The use of peptides in therapeutic developments is well illustrated by a recently published 

nanosystem comprising a tumour-specific vascular homing peptide, a pro-apoptotic 
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peptide, an iron oxide nanoparticle and a CPP.
[225]

 In this system the tumour-specific 

vascular homing peptide (CGKRK, sequence established by phage display) acts as a 

recognition motif to selectively target tumour blood vessels (glioblastoma), while iRGD 

CPP sequence, a non-cell specific CPP, permits the nanostructure to penetrate the cell 

membrane. Once in the cell, the pro-apoptotic peptide (D[KLAKLAK]2) acts as a drug 

which targets the mitochondria and its effect was found to be enhanced by the iron oxide 

nanoparticle. This complex nanosystem, made of three peptide sequences, has proven to 

eradicate most tumour blood vessels present into mice, suggesting a potential clinical use 

for this tumour therapy and illustrate the potential complementary role of peptides in drug 

delivery and targeting. 
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2 Aims 

POMs show promise in a wide range of applications such as medicine, nanotechnology and 

catalysis, but their poor processability, their lack of bio-specificity and their high toxicity 

hamper their broad use. The creation of organic-inorganic hybrid polyoxometalate systems, 

in which POM properties are not only combined with those of organic ligands but a 

synergistic effect between the two moieties can be expected, seem to be a viable route to 

tune the properties of the POM and, depending on the type of ligand introduced, reach 

novel properties.  

Peptides, bio-polymeric chains of Nature’s building blocks, the amino acids, offer an 

unmatched variety of functions and properties which are highly related to their remarkable 

capability of folding into extremely ordered superstructures. The evolution of the chemical 

synthesis of peptides now permits the design and synthesis of specific structures targeting 

particular arrangements and/or properties.  

POMs and peptides both have remarkable properties and, in our group, we started to 

wonder what properties could result from of their fusion. Could the properties of peptide 

moieties be used to reliably organise, assemble and structure POM hybrids? Could new 

functions arise from the introduction of a charged metal-oxide cluster in the middle of a 

peptide chain? Would the incorporation of specific peptide sequences improve the bio-

availability, the toxicity and the specificity of POMs? But before starting to think about 

answering these questions, one major point had to be addressed: how can POM-peptide 

hybrid materials be formed? 

The covalent bond, and therefore class II hybrids were favoured, because they offer a 

better control at the molecular level and a greater chance of preserving the hybrid material 

properties from the solid to the liquid state. Among the large variety of covalent linkage 

available, the one via p-block elements was selected and more precisely, the one through 

tris-alkoxo groups. In the literature, as we have seen in Section 1.2.2, one hybrid POM 

cluster functionalised via Sn elements was grafted onto tri-peptide chains, but the post-

functionalisation techniques employed for this synthesis are very specific to the POM 

building block and could not be applied to other types of POM units. To the best of our 

knowledge, no synthetic approach yet exists to incorporate tris-alkoxide functionalised 

hybrid POMs into peptide chains. 
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As described in Section 1.2.1.1, several POM clusters can form organic-inorganic hybrids 

through the incorporation of one or several tris-alkoxide ligands into their metal-oxide 

framework. The TRIS-based Mn-Anderson cluster was chosen as a model of TRIS-based 

hybrid POM on which to base the development of new methodologies, hoping that the 

method’s applicability could then be extended to the other type of Anderson structures 

(e.g. with Fe and Cr as the heteroatom) or to the TRIS-based Lindqvist cluster or the TRIS-

based Dawson {P2W15V3}. TRIS-based Mn-Anderson clusters present several advantages 

which facilitate methodology developments: (i) these hybrids are very stable to air, water 

and light which makes them easy to handle; (ii) compounds presenting this metal-oxide 

core usually crystallise well (when the ligand is of reasonable size), which permits good 

purification and structure elucidation by X-ray crystallography; (iii) the obtained 

compounds can be analysed by NMR (
1
H and 

13
C) which is an important tool to follow the 

completion of a reaction and to determine the structure of synthesised products; (iv) the 

paramagnetic nature of the heteroatom affects the resonance of the protons of the CH2 of 

the TRIS moieties in 
1
H NMR experiments, resulting in a broad signal downfield at around 

65 ppm. This signal can be used as a signature for the presence of TRIS-based Mn-

Anderson clusters. Moreover, this POM hybrid offers the possibility of creating 

asymmetrical units that could bear different peptide chains on either side and allow the 

metal-oxide cluster to be part of a peptide sequence as a novel hybrid “amino acid”. 

To be widely applicable the methodology should be as modular as possible; the peptide 

part should be introduced without modification of the sequence (no activation or 

protection). With this goal in mind, post-functionalisation approaches were favoured to 

form new TRIS-based Mn-Anderson building blocks that could be synthesised and isolated 

in large batches and would then react with peptide chains to form POM-peptide hybrids. 

To summarise, the aim of the work presented in this thesis is to establish a set of 

methodologies permitting the incorporation the TRIS-based Mn-Anderson cluster into 

peptide chains. If possible, the full potential of this hybrid POM will be explored, by its 

use as an asymmetrical unit inserted in the middle of a peptide backbone. A modular 

approach will be undertaken and general building blocks will be synthesised and 

introduced in peptide chains by post-functionalisation techniques. The creation of these 

methods should permit the study of the effect of the POM on peptides sequence functions 

and the self-assembly behaviour that peptide could bring to POM clusters.  



RESULTS AND DISCUSSION  48 

3 Results and Discussion 

3.1 TRIS-based Mn-Anderson building blocks modification tool box 

TRIS-based Mn-Anderson clusters are robust and stable to a wide range of reaction 

conditions; their synthesis, either by pre-functionalisation or post-functionalisation 

methods, is widely documented but, to be able to fully explore the potential of this building 

block for covalent linkage with peptides, some synthetic parameters had to be studied – 

thus the construction of a “modification tool box”.  

As seen in the introduction (Section 1.2.1.2), synthetically obtained TRIS-based Mn-

Anderson hybrids are exclusively formed as TBA salts soluble in organic solvents. The 

TBA cations can later be replaced through cation exchange treatments, but the synthesis of 

pure material by cation exchange is still a difficult task (the process often results in 

partially exchanged and therefore mixed cation products). While DMF soluble clusters are 

readily available, no straightforward procedure yet exists for the synthesis of water soluble 

TRIS-based Mn-Anderson compounds. Having the objective of reacting TRIS-based Mn-

Anderson building blocks with peptides, compatible solubility was necessary and the first 

part of this chapter focuses on the synthesis of water soluble TRIS Mn-Anderson 

compounds. 

Investigations into new methodologies to easily form amide bonds by post-

functionalisation of hybrid clusters are presented herein. Acyl chloride
[107]

 post-

functionalisation of the TRIS Mn-Anderson cluster to form amide bonds was reported, but 

these reaction conditions are incompatible with the idea of a building block methodology 

(as it would require a difficult chemical modification of peptide chains).  

Carboxylic acid functionalised Mn-Anderson compounds had, to our knowledge, never 

been reported; the pre-functionalisation protocols, mostly based on amide formation, are 

hardly compatible with this reactive group and no post-functionalisation method seems 

adequate for their introduction. For the realisation of this project the synthesis of 

carboxylic acid functionalised Mn-Anderson clusters, which could then react with the N-

terminus of peptide chains, was crucial and is investigated in this section. 
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3.1.1 Synthesis of water-soluble TRIS Mn-Anderson clusters 

The poor water solubility of TRIS-based Mn-Anderson compounds is mostly due to the 

hydrophobicity of the cation used for their synthesis: TBA. The use of smaller ammonium 

cations such as tetra-n-methylammonium (TMA), tetra-n-ethylammonium (TEA), tetra-n-

propylammonium (TPA) (hereafter referred to as TXA cations, with X= M, E and P, 

respectively) should yield more water-soluble compounds. As cation exchange processes 

are messy and complicated, the investigation of the direct synthesis of TRIS Mn-Anderson 

clusters as TXA salts seemed a better strategy. For this purpose, the syntheses of 

octamolybdate clusters incorporating these cations were carried out and a novel adapted 

protocol for the synthesis of TXA TRIS Mn-Anderson compounds was investigated. 

The work discussed in this sub-section was presented in a publication in Dalton 

Transactions in 2012.
[226]

 

3.1.1.1 Synthesis of TXA octamolybdate salts 

Three octamolybdate salts (products 1, 2 and 3) were synthesised by adaptation of the 

reported method for synthesising (TBA)4[α-Mo8O26];
[227]

 here the TBA·Br salt was 

replaced by TMA·Br, TEA·Br and TPA·Br, respectively. Elemental analysis of the white 

precipitates obtained allowed the cation ratios (organic/Na) to be determined, giving the 

following overall formula for each product: (TMA)2Na2[Mo8O26] (1), (TEA)3Na1[Mo8O26] 

(2) and (TPA)2Na2[Mo8O26] (3), which is consistent with literature reports.
[61]

  

 

Figure 40: Overview of the synthesis of octamolybdate salts, highlighting that multiple crystal structures with 

various cation ratios and isomers are obtained from the same bulk material.  

Characterisation of the POM clusters by crystallography was attempted by dissolving the 

bulk material obtained for 1-3 in DMF. A large amount of crystallographic data was 
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gathered for each compound presenting various cation ratios and isomer configurations 

(Figure 40 gives an overview of the structures obtained for each product). This data 

demonstrates that the adapted protocol yields octamolybdate clusters but the ratio of 

isomers configuration seems to vary within the crystalline material. Because of the close 

relationship between these two isomers,
[61]

 the isomeric configuration may also vary from 

the bulk material to the crystalline material. The octamolybdate salts mostly crystalise as 

the β-isomer; examples of the crystal structures obtained are given in Figure 41. As the 

TXA octamolybdate configurations are only of little interest for this study, no further 

investigation of their structure is presented here. 

 

Figure 41: Crystal structures obtained for the TXA octamolybdate salts showing the different ways Na can 

coordinate to the terminal oxo ligands, and hence link up octamolybdate units. Structures obtained for: (a) 

Na1(TEA)3[β-Mo8O26], (b) Na2(TPA)2[β-Mo8O26], (c) Na4[β-Mo8O26].TXA cations are omitted for clarity. 

Colour scheme: Mo, blue (polyhedra); O, red; C, black; N, cyan; H, light grey; Na, beige. 

Important building blocks formed immediately after the dissolution of the reagents were 

identified in the published ESI-MS study of the formation mechanism of the TBA TRIS 

Mn-Anderson cluster (see in Section 1.2.1.2 and Figure 14).
[102]

 These building units are 

formed by the rearrangement of the octamolybdate cluster, (TBA)[α-Mo8O26], into smaller 

species essential for the formation of the TRIS Mn-Anderson cluster. In order to establish 

whether the TXA octamolybdate salts could be suitable for the synthesis of TRIS Mn-

Anderson compounds, the formation of similar building blocks was investigated by ESI-

MS analysis. Unlike the TBA salt, TXA salts of the octamolybdate cluster are insoluble in 
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MeCN, making the analysis under identical conditions difficult. Compounds 1-3 were thus 

first dissolved in a minimum amount of DMF and the resulting solution diluted with 

MeCN prior to analysis. The ESI-MS spectra obtained for compound 1-3 are given in 

Figure 42 along with a peak assignment table of the most intense peak envelopes. 

 

Figure 42: ESI-MS spectra obtained for compound 1 (blue), 2 (red) and 3 (black) and peak assignment table; 

for each compound a rearrangement into the {Mo4O13} unit is observed.  

The deviation from the original analysis conditions does not seem to affect the 

rearrangement of the octamolybdate cluster into the main building block, {Mo4O13}, as it is 

observed for each compound. The observation of this unit, identified as the first 

mechanistic step toward the synthesis of TRIS Mn-Anderson clusters, supported the idea 

that compounds 1-3 could be used to synthesise TRIS Mn-Anderson clusters. The 

investigation of this synthesis was thus explored.  

3.1.1.2 Synthesis of TXA TRIS Mn-Anderson clusters 

Suitable reaction conditions yielding the TRIS Mn-Anderson cluster with the novel cations 

had to be established, since the poor solubility of compounds 1-3 in MeCN could not allow 

the synthesis to occur in this solvent. Since TXA octamolybdates salts have greater 

solubility in DMF, the reaction in DMF was investigated and the synthesis of TBA TRIS 
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Mn-Anderson was attempted as a test reaction. The solvent was the only parameter 

modified in the standard protocol previously reported.
[50]

 This reaction yielded the TBA 

TRIS Mn-Anderson compound and confirmed that DMF is a suitable solvent to explore the 

formation of TXA Mn-Anderson compounds from octamolybdate starting materials 1-3. 

To ensure dissolution, compounds 1-3 were dissolved in DMF at room temperature 30 

minutes prior the addition of the Mn
III

 acetate and the TRIS ligand. After incorporation of 

all the reagents, the reaction mixtures were heated at 80°C for 20 h. Over the course of the 

reaction the colour of the mixtures changed from dark brown to orange, and brown 

precipitates appeared (transformations that also occur for the standard synthesis of TBA 

TRIS Mn-Anderson complex). The reaction mixtures were then cooled to room 

temperature, the precipitates removed by centrifugation and the clear orange solutions set 

up for crystallisation under diethyl ether (Et2O) diffusion at 4 °C.  

 

Figure 43: Schematic representation of the crystallisation pattern leading to the isolation of compounds 4-7. 

Solutions resulting from starting materials 1 and 3 followed the same pattern of 

crystallisation: Et2O diffusion produced a crystalline material and a precipitate; their 

separation and recrystallisation from DMF yielded two different products. The original 

crystalline material was TRIS Mn-Anderson as a Na salt 

((Na)3[MnMo6O18((OCH2)3CNH2)2], 7) while the crystals obtained from the precipitate 

was the TXA Mn-Anderson ((TMA)3[MnMo6O18((OCH2)3CNH2)2], 4 or 

(TPA)2(Na)[MnMo6O18((OCH2)3CNH2)2], 6). The TEA octamolybdate salt 2, with lower 

sodium content than 1 and 3, only yielded TEA Mn-Anderson compound 
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((TEA)3[MnMo6O18((OCH2)3CNH2)2], 5). An overview of the synthetic route is given in 

Figure 43. Interestingly, all four compounds were soluble in both water and DMF which 

could be a property interesting for post-functionalisation of the hybrid clusters in organic 

solvent followed by studies in biological media (water based). The purity of each product 

was confirmed by elemental analyses and the compounds were fully characterised.  

1
H NMR analysis is an interesting tool for TRIS-based Mn-Anderson cluster 

characterisation due to the paramagnetic nature of the Mn
III 

central heteroatom. When 

analysing TRIS-based Mn-Anderson compounds, the resonance of the 12 protons located 

on the CH2 of the TRIS moiety, closest to the paramagnetic centre, are observed as a broad 

peak around 65-60 ppm.
[49]

 Broad peaks in this region were observed for all four 

compounds (Figure 44), giving a strong suggestion that TRIS Mn-Anderson clusters were 

formed.  

 

Figure 44: 
1
H NMR spectra of the TXA TRIS Mn-Anderson compounds obtained on a 400 MHz 

spectrometer in deuterated DMSO; some DMF solvent peaks are observed. Colour scheme: 4, red; 5, green; 

6, purple; 7, blue. 

ESI-MS analyses all confirmed the successful synthesis of the TRIS Mn-Anderson 

compounds with the observation of fragments of the metal oxide core; peak envelopes 

from the ESI-MS spectra obtained for compounds 4, 5, 6 and 7 are shown in Figure 45, 

with the simulated peaks shown below in black: m/z 1303.6 corresponds to [(TMA)2[Mn-

Mo6O18((OCH2)3CNH2)2]]
1-

; m/z 1418.8 corresponds to [(TEA)2[MnMo6O18((OCH2)3C-

NH2)2]]
1-

; m/z 1527.8 corresponds to [(TPA)2[MnMo6O18((OCH2)3CNH2)2]]
1-

 and m/z 
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1201.4 corresponds to [(Na)2[MnMo6O18((OCH2)3CNH2)2]]
1-

. The ESI-MS envelope peaks 

obtained for TRIS-based Mn-Anderson clusters are generally more complex than their 

corresponding simulated patterns (as seen in Figure 45). This is due to an overlapping of 

envelopes of species possessing different charge states but the same m/z ratio. These 

species are the result of a supramolecular assembly of the hybrid POM cluster and their 

separation was demonstrated by the use of ion-mobility mass spectrometry (IMS/MS) in a 

previous report.
[106]

 

 

Figure 45: Representation of the main peak envelopes observed in the ESI-MS spectra of compounds 4, 5, 6 

and 7 (purple) with the corresponding simulated pattern shown in black. 

The structures of compounds 4-7 were determined by single crystal X-Ray diffraction. 

Structurally, compounds 4 and 5 are very similar to TBA TRIS Mn-Anderson structures 

where the compound is solely made of the POM cluster and its three cations (and solvent 

molecules); only unit cell data is given for these compounds. A more detailed description 

of the structural arrangement of compounds 6 and 7 is given as the Na cations introduce 

some interesting coordination patterns.  
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Compound 4 crystallises as orange block-shaped crystals in a monoclinic crystal system, in 

space group C2/c. The unit cell is a = 29.0498(10), b = 9.2853(3), c = 24.0873(8) Å. β = 

102.186(3) °, the volume V is 6350.8(4) Å
3

, and Z is 4. 

Two unit cells were observed for compound 5, depending on solvent content; the notation 

5a (1 DMF molecule) and 5b (2 DMF molecules) is used to differentiate these structures. 

Compound 5a crystallises as orange block-shaped crystals in a monoclinic crystal system, 

in space group C2/m. The unit cell is a = 15.0770(13), b = 23.102(2), c = 15.0791(14) Å. β 

= 92.336(5) °, the volume V is 5247.9(8) Å
3
 and Z is 4. Compound 5b crystallises as 

orange needle-shaped crystals in a monoclinic crystal system, in space group C2/c. the unit 

cell is a = 24.6971(16), b = 12.6758(8), c = 18.8241(10) Å. β = 90.641(5) °, the volume V 

is 5892.6(6) Å
3
 and Z is 4. 

Compound 6 crystallises as orange block-shaped crystals in an orthorhombic crystal 

system, in space group Pnma. The unit cell is a = 52.926(3), b = 27.5135(10), c = 

9.5169(4) Å, the volume V is 13858.3(10) Å
3
 and Z is 8. Within the unit cell two kinds of 

cluster arrangement coexist; the first kind consists of the “standard” TRIS Mn-Anderson 

structure, while the second is a TRIS Mn-Anderson coordinated to two Na atoms through 

terminal oxo groups, each Na atom additionally coordinates three DMF molecules (see 

Figure 46). 

 

Figure 46: Polyhedral and ball-and-stick representation of the two types of TRIS Mn-Anderson cluster 

observed within one unit cell. TPA cations are omitted for clarity. Colour scheme: Mn, orange (polyhedra); 

Mo, blue (polyhedra); O, red; C, bleck; N, cyan; Na, grey. 
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Three unit cells were observed for compound 7 depending on solvent content; the notation 

7a (3 DMF and 5 H2O molecules), 7b (4 DMF and 4 H2O molecules), 7c (10 DMF 

molecules) is used to differentiate these structures. Compound 7a crystallises as orange 

needle-shaped crystals in a triclinic crystal system, in space group Pī. The unit cell is a = 

9.1905(5), b = 12.7684(6), c = 12.8684(6) Å. α = 102.444(3), β = 106.754(3), γ = 

110.418(3) °, the volume V is 1268.31(11) Å
3
 and Z is 1. Compound 7b crystallises as 

orange needle-shaped crystals in a triclinic crystal system, in space group Pī. The unit cell 

is a = 8.6386(4), b = 10.0132(5), c = 14.3392(8) Å. α = 109.102(2), β = 92.590(2), γ = 

93.587(2) °, the volume V is 1166.91(10) Å
3
 and Z is 1. Compound 7c crystallises as 

orange needle-shaped crystals in a triclinic crystal system, in space group Pī. The unit cell 

is a = 9.5374(3), b = 13.5364(5), c = 28.3397(9) Å. α = 91.169(2), β = 90.065(2), γ = 

109.346(2) °, the volume V is 3451.3(2) Å
3
 and Z is 2. The spatial complexity of the 

structures decrease as the number of solvent molecules within the structure increases as 

more solvent molecules are coordinated to the Na atoms (see Figure 47). In 7a, the 

structure which has the lowest solvent content, the TRIS Mn-Anderson clusters are 

arranged in a 3D array through Na coordination (8 Na coordinated to each POM cluster), 

while in 7c (highest solvent content) the POM clusters are arranged in a linear 1D 

arrangement with only two Na atom coordinated to each POM cluster. 7b, which possesses 

an intermediate solvent content, consists of a planar arrangement of POM clusters 

coordinated to 4 Na atoms. 
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Figure 47: Polyhedral and ball-and-stick representation of the different crystal structures obtained for 

compound 7 differing from one another by their solvent content. (a) 3D arrangement; (b) planar arrangement; 

(c) linear arrangement. Colour scheme: Mn, orange (polyhedra); Mo, blue (polyhedra); O, red; C, black; N, 

cyan; Na, beige. 

3.1.1.3 Summary 

The objective of this first method of the “synthetic tool box” was to synthesise water-

soluble TRIS Mn-Anderson clusters in a way which permits the circumvention of the 

somewhat complicated cation exchange procedures. This was made possible by the 

synthesis of octamolybdate salts incorporating other cations (1-3), and some small 

alterations to the standard synthesis protocol. This study shows the close relationship 

between the different octamolybdate species and their capacity to rearrange into similar 

building units, essentials for the formation of the TRIS Mn-Anderson clusters. The 

resulting hybrid compounds (4-7) are soluble in water and DMF, properties which are 

interesting as traditional post-functionalisation of POM clusters are carried out in organic 

solvents, while biological interaction studies occur in aqueous media; both could thus be 

explored with these new compounds. 
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3.1.2 Peptide bond formation via the C-terminus and introduction of 

carboxylic acid functional groups 

One TRIS Mn-Anderson post-functionalisation procedure leading to amide bond 

formations was reported,
[107]

 but the reaction conditions used in this method (requiring a 

chemical modification of the terminal carboxylic acid of peptides by acylation) was 

inappropriate for a modular approach. Milder reaction conditions had to be investigated in 

order to graft amino acids or peptide chains via the C-terminus in a straightforward 

manner. 

Carboxylic acid groups can be modified to form activated intermediates in many different 

ways;
[178]

 one well know activated intermediate type is the anhydride (easily formed, for 

example, by reaction with carbodiimide reagents) which reacts under mild conditions with 

amines and alcohols to form amides and esters respectively. The esterification of alcohol 

groups by post-functionalisation treatment of TRIS-based polyoxovanadate hybrids with 

anhydrides was reported,
[228]

 however the post-functionalisation of the amine of the TRIS 

Mn-Anderson cluster by these reagents was never explored and is investigated here. The 

mild reaction conditions should allow the easy formation of peptide bonds, while the study 

of cyclic anhydrides could permit the insertion of carboxylic acid functional groups, a 

functional group never grafted to TRIS-based Mn-Anderson clusters. 

Compounds discussed in this sub-section were presented in a study published in 

CrystEngComm in 2012.
[229]

 

3.1.2.1 Peptide bond formation via the C-terminus 

To investigate amide bond formation by treatment of the TRIS Mn-Anderson cluster by 

anhydrides, a couple of commercially available anhydrides presenting different organic 

groups was selected: propionic anhydride (reagent A) and benzoic anhydride (reagent B), 

see Figure 48. An excess of each anhydride (10 equiv.) was introduced in a solution of 

TBA TRIS Mn-Anderson compound in MeCN and the reaction was heated at 50 °C 

overnight. The reaction products were isolated by crystallisation under Et2O vapour 

diffusion, washed with Et2O and dried under vacuum. 
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Figure 48: Anhydrides A and B used as starting material to react on the amine groups of the TRIS Mn-

Anderson cluster. 

Under these reaction conditions, reagents A and B yield compounds 8 ((TBA)3[MnMo6-

O18((OCH2)3CNHCOCH2CH3)2]) and 9 ((TBA)3[MnMo6O18((OCH2)3CNHCO(C6H5))2]) 

by amide bond formation on both amines of the POM cluster. The purity of the products 

was established by elemental analysis and the compounds were fully characterised.  

1
H NMR analyses (spectra given in Figure 49) confirmed the structural integrity of the 

hybrid POMs with the observation in both products of a broad peak in the region of 60 

ppm (characteristic of the incorporation of TRIS moieties into the metal-oxygen 

framework). In the more common ppm range (i.e. from 8 to 0 ppm) the characteristic 

resonance peak of the amine of the TRIS Mn-Anderson compound at 3.60 ppm was not 

observed
[50]

 but a peak at 7.4 ppm for 8 and 7.6 for 9 attributed to the –NH of the amide 

was present (Figure 49). For compound 8 the integrations of the observed peaks were in 

agreement with the presence of three TBA cations and two –CH2CH3 groups (one on each 

ligand) with the –CH2– observed at 2.40 ppm (4H) and the –CH3 superimposed with the –

CH3 of the TBA at 0.94 ppm resulting in an overall integration of 42 protons (36H for 

TBA + 6 H for –CH3). Similarly, the integrations for compound 9 confirms the given 

formula and the peptide bond formations on both reactive sites; peaks attributed to the two 

phenyl moieties are observed at 7.77 ppm (4H) and 7.43 ppm (6H). 
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Figure 49: 
1
H NMR spectra of compounds 8 (top) and 9 (bottom) obtained on a 400 MHz spectrometer in 

deuterated DMSO.  

ESI-MS analyses of compounds 8 and 9 were carried out in MeCN and confirmed the 

identity of the products. Figure 50 shows the spectrum obtained for compound 8 in which 

the fragment observed at m/z 1750.99 (z = -1) was assigned as [(TBA)2[MnMo6-

O18((OCH2)3CNHCOCH2CH3)2]]
1-

 (predicted: 1752.01); no peaks of the starting material 

or the mono-reacted species could be identified ([(TBA)2[MnMo6O18((OCH2)3CNH2)2]]
1-

 

expected signal at m/z 1639.95 and [(TBA)2[MnMo6O18((OCH2)3CNHCOCH2CH3) 

((OCH2)3CNH2)]]
1- 

expected at m/z 1695.98, respectively), attesting to the completion of 

the reaction and the purity of the product. 
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Figure 50: ESI-MS spectrum obtained for compound 8 with magnified representation of the main peak 

envelope at m/z 1750.99 assigned to [(TBA)2[MnMo6O18((OCH2)3 CNHCOCH2CH3)2]]
1-

. 

Similarly, for compound 9 the main peak envelope observed in the spectrum (Figure 51) at 

m/z 1848.07 (z = -1) was assigned to [(TBA)2[MnMo6O18((OCH2)3CNHCO(C6H5))2]]
1-

(predicted: 1848.01); no peaks could be identified as belonging to the starting material or 

the mono-reacted species ([(TBA)2[MnMo6O18((OCH2)3CNHCO(C6H5))((OCH2)3-

CNH2)]]
1-

 expected at m/z 1743.98).  

 

Figure 51: ESI-MS spectrum obtained for compound 8 with magnified representation of the main peak 

envelope at m/z 1848.07 assigned to [(TBA)2[MnMo6O18((OCH2)3CNHCO(C6H5))2]]
1-

. 

Crystal structures were obtained by single crystal X-Ray diffraction analyses. Suitable 

single crystals were obtained for 8 from MeCN solution while DMF was used for 9; both 

solutions were exposed to Et2O vapour diffusion. Compound 8 crystallises as orange 

block-shaped crystals in a triclinic crystal system, in space group Pī. The unit cell is a = 
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14.8991(11), b = 16.8272(12), c = 22.2685(17) Å, α = 73.868(4), β = 74.700(4), γ = 

66.883(3) °, the volume V is 4856.2(6) Å
3
 and Z is 2. The TBA cations and solvent 

molecules surround the hybrid POM cluster preventing them from interacting within the 

crystal packing (see packing diagram Figure 52a). Compound 9 crystallises as orange 

block-shaped crystals in an orthorhombic crystal system, in space group Pca21. The unit 

cell is a = 18.0293(7), b = 20.8575(8), c = 26.7597(11) Å, the volume V is 10062.9(7) Å
3
 

and Z is 4. The TBA cations and solvent molecules surround the hybrid POM cluster; a 

weak π-stacking interaction was observed between benzene units (distance measured 

between two centroids: 4.09 Å) creating 1D chains (see packing diagram Figure 52b). No 

evidence of hydrogen bonding between the aromatic group and the metal-oxygen 

framework was observed. 

 

Figure 52: Polyhedral and ball-and-stick representation of a layer of the crystal packing found in compound 8 

(a) and 9 (b). Colour scheme: Mn, orange (polyhedra); Mo, blue (polyhedra); O, red, C, black, N, cyan; TBA 

cations and solvent molecules are omitted for clarity. 

These present analyses prove the formation of amide bonds by post-synthetic treatment of 

the TRIS Mn-Anderson cluster with an excess of anhydrides. This formation occurs at 50 

°C in MeCN, reaction conditions which should be compatible with peptides.  
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3.1.2.2 Introduction of carboxylic acid functional groups 

A modular approach to incorporate TRIS-based Mn-Anderson building units into peptide 

backbones requires the easy access to carboxylic acid functionalised Mn-Anderson 

clusters. No synthetic approach available in the literature could lead to the straightforward 

introduction of this functionality. The anhydride reaction reported here offers the 

possibility, when using cyclic anhydrides (i.e. activated intermediates of di-carboxylic acid 

molecules), of simultaneously forming an amide bond and introducing a terminal 

carboxylic acid functional group.  

Succinic anhydride (reagent C, see Figure 53), a commercially available anhydride, was 

selected to demonstrate this post-functionalisation method. In a first attempt, ten 

equivalents of C were reacted with one equivalent of the TRIS Mn-Anderson cluster in 

MeCN at 50 °C, but 
1
H NMR study of the resulting isolated product suggested that the 

reaction had not reached completion. It was established that the reaction reached 

completion when carried out in DMF at 50 °C in presence of 20 equivalents of reagent C. 

The resulting TRIS-based Mn-Anderson compound (10) ((TBA)3[MnMo6O18((OCH2)3C-

NHCO(CH2)2COOH)2]) was isolated pure (purity established by elemental analysis) and 

fully characterised. 

 

Figure 53: Reaction scheme for the synthesis of compound 10 from the reaction of reagent C and the TRIS 

Mn-Anderson building block. Colour scheme: Mn, orange (polyhedra); Mo, blue (polyhedra); O, red. 

1
H NMR analysis confirms that the TRIS ligands were still grafted onto the metal-oxygen 

framework as a peak at 65 ppm was clearly observed (Figure 54). The integrations of the 

two peaks assigned to the two    CH2 groups (observed at 2.37 and 2.70 ppm) and of the 

ones assigned to the TBA cations are consistent with the presence of two ligands and three 

TBA cations per cluster, which confirmed the completion of the reaction. A broad peak 

observed at 12.07 ppm assigned to the protons from the carboxylic acid groups confirmed 

the incorporation of these functional groups into the hybrid POM compound. 
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Figure 54: 
1
H NMR spectra of compound 10 obtained on a 400 MHz spectrometer in deuterated DMSO. 

Residual solvent peak can be seen at δ = 2.07 ppm (MeCN).  

ESI-MS analysis was carried out by dissolving a small amount of the reaction product in 

MeCN; the obtained spectrum is shown in Figure 55. Peak envelopes observed in the 

spectrum correlate with the successful synthesis of compound 10, with the main peak 

envelope observed at m/z 1840.09 (z = -1) was assigned to the anionic species [(TBA)2 

[MnMo6O18((OCH2)3CNHCO(CH2)2COOH)2]]
1-

 (predicted: 1839.99) and the signal 

observed at m/z 2081.37 (z = -1) to the mono deprotonated cluster [(TBA)3[MnMo6O18-

((OCH2)3CNHCO(CH2)2COOH)((OCH2)3CNHCO(CH2)2COO)]]
1-

 (predicted: 2081.26). 

No peak could be assigned to the starting material (expected m/z 1639.95), proof of the 

completion of the reaction and the purity of the product 10. 

 

Figure 55: ESI-MS spectrum obtained for compound 10 with magnified representation of the main peak 

envelope at m/z 1840.09 assigned to [(TBA)2[MnMo6O18((OCH2)3CNHCO(CH2)2COOH)2]]
1-

. 
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The crystal structure of compound 10 was determined by single crystal X-ray diffraction 

analysis of crystals grown in MeCN under Et2O vapour diffusion. Compound 10 

crystallises as orange block-shaped crystals in an orthorhombic crystal system, in space 

group Pnma. The unit cell is a = 28.3641(5), b = 23.7876(5), c = 15.0216(3) Å, the volume 

V is 10135.3(3) Å
3
 and   is 4. The    CH2CH2COOH moieties are highly disordered, 

making the analysis of the structure difficult, but no intermolecular interactions were 

identified within the structure (see Figure 56). The TBA cations and solvent molecules are 

surrounding the hybrid POM cluster, preventing most of these interactions. Within the 

crystal structure the aliphatic chains are highly disordered (see Figure 56). This absence of 

regular order is in agreement with an absence of supramolecular interactions influencing 

the arrangement of the organic moieties. 

 

Figure 56: Polyhedral and ball-and-stick representation of a layer of the crystal packing found in compound 

10. TBA cations and solvent molecules are omitted for clarity. Colour scheme: Mn, orange (polyhedra); Mo, 

blue (polyhedra); O, red, C, black, N, cyan;  

All characterisation of the reaction product undertaken was in agreement with the synthesis 

of 10, and thus the first successful incorporation of a terminal carboxylic acid functional 

group on a TRIS-based Mn-Anderson cluster was achieved. The synthetic method 

established is simple (excess of reagent C, in DMF, 50 °C; product isolated in high yield 

and purity by crystallisation) which made this method suitable for a modular approach. 

This reaction makes the access of carboxylic acid functionalised Mn-Anderson clusters “as 

easy as” the amine functionalised one, which was important for peptide study.   
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3.1.2.3 Summary 

The work presented in this sub-section demonstrates that anhydride reagents are a 

straightforward means to form amide bonds under mild reaction conditions (50 °C in 

MeCN or DMF) and thus represent a suitable path to introduce amino acids or peptides to 

hybrid Mn-Anderson clusters via the C-terminus. Anhydride intermediates can easily be 

formed by treatment of the appropriate carboxylic acid with carbodiimides,
[178]

 reagents 

widely used in both peptide synthesis and post-functionalisation of POM clusters
[112,126,230]

 

which underline the compatibility of this synthetic path. Anhydrides of di-carboxylic acids 

offer the possibility of forming cyclic intermediates which, as demonstrated here through 

the succinic anhydride (reagent C), can react with the amine functional group of the TRIS 

and release a terminal carboxylic acid. Compound 10 is the first example of a carboxylic 

acid-functionalised TRIS-based Mn-Anderson cluster. The establishment of a 

straightforward method to introduce a carboxylic acid group on the POM cluster was 

crucial in order to be able to graft peptides onto the metal-oxide framework through the N-

terminus. Since this functionality was made available, the formation of peptide bonds via 

the N-terminus could be investigated. 
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3.1.3 Peptide bond formation via the N-terminus 

Since carboxylic acid functionalised Mn-Anderson clusters had been synthesized, 

formation of amide bonds by reaction with the N-terminus of peptides could be 

investigated. In our search for a modular approach, we started to explore the possibility of 

forming a TRIS-based Mn-Anderson intermediate that could be isolated pure and in large 

batches to then react with a diverse range of peptide chains.  

The work presented in this section made up part of the article published in Angewandte 

Chemie Int. Ed. in 2014.
[231]

  

3.1.3.1 Activated TRIS-based Mn-Anderson precursor synthesis 

NHS ester-activation has been used in POM chemistry
[126]

 but never with a TRIS-based 

system as carboxylic functions were not available; hybrid Mn-Anderson compounds 

covalently grafted onto a surface have been reported with NHS-activation of the 

surface,
[230]

 proving the compatibility of this reagent with this POM cluster.  

 

Figure 57: Reaction scheme for the synthesis of compound 11 from compound 10 by reaction with NHS with 

N,N’-Dicyclohexylcarbodiimide (DCC) as an activating agent. Colour scheme: Mn, orange (polyhedra); Mo, 

blue (polyhedra); O, red. 

A NHS ester-activated TRIS-based Mn-Anderson precursor (11, (TBA)3[MnMo6O18-

((OCH2)3CNHCO(CH2)2COON(COCH2)2)2]) was synthesised by treatment of compound 

10 with NHS in DMF solution in the presence of N,N’-Dicyclohexylcarbodiimide (DCC) 

(Figure 57). Compound 11 was isolated in high yield (75%) by crystallisation as a pure 

solid (purity checked by elemental analysis).  
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Figure 58: 
1
H NMR spectrum of compound 11 obtained on a 400 MHz spectrometer in deuterated DMSO. 

1
H NMR analysis showed a peak around 65 ppm characteristic of the TRIS-based ligands 

grafted onto the metal-oxygen framework. The analysis also confirmed the introduction of 

the activating groups and the formation of ester bonds (Figure 58), with the observation of 

a broad peak at 2.82 ppm (integrating for 16H) assigned to the 8    CH2   groups present in 

the molecule and the absence of a peak at 12.07 ppm (observed for compound 10, 

characteristic of the carboxylic acid group).  

 

Figure 59: ESI-MS spectrum obtained for compound 11 with magnified representation of the main peak 

envelope at m/z 2034.12 assigned to [(TBA)2[MnMo6O18((OCH2)3CNHCO(CH2)2COON(COCH2)2)2]]
1-

. 

ESI-MS analysis was carried out by dissolving a small amount of the reaction product in 

MeCN; the obtained spectrum in shown in Figure 59. Two main peak envelopes were 

observed both in agreement with the proposed composition of 11. The first peak envelope 

observed at m/z 1275.32 (z   -3) was assigned as a dimeric ion of the proposed compound: 

[(TBA)3[MnMo6O18((OCH2)3CNHCO(CH2)2COON(COCH2)2)2]2]
3-
 (predicted: 1275.25); 
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the second observed at m/z 2034.12 (z   -1) was assigned as a monomeric ion formed by 

the loss of one TBA cation: [(TBA)2[MnMo6O18((OCH2)3CNHCO(CH2)2COON-

(COCH2)2)2]]
1-
 (predicted: 2034.02). 

 

Figure 60: Ball-and-stick representation of the structure of 11 obtained by single crystal X-ray diffraction 

analysis of crystals grown from DMF under Et2O vapour diffusion. TBA cations and solvent molecules are 

omitted for clarity. Colour scheme: Mn, orange; Mo, blue; O, red; C, black; N, cyan. 

Crystal structure of compound 11 was established by single crystal X-ray diffraction 

analysis of crystals grown in DMF under Et2O vapour diffusion. Compound 11 crystallises 

as orange block-shaped crystals in a monoclinic crystal system, in space group C2/c. The 

unit cell is a = 30.7813(16), b = 23.7409(12), c = 18.4631(10) Å, β = 121.095(2)°, the 

volume V is 11553.7(10) Å
3
 and Z is 4. The crystal structure obtained was in agreement 

with the formula given for 11 and the post-functionalisation of compound 10 by the 

formation of an activated ester group (Figure 60). 

3.1.3.2 Proof of concept 

To investigate the ability of 11 to react with peptides by the formation of amide bonds, 

simple amino acids were first tested. Since the TRIS-based Mn-Anderson intermediate 11 

is pre-activated and isolated as a pure material, no protecting group was required for the 

amino acid; L-glycine (Gly, G) and L-Phenylalanine (Phe, F) were therefore introduced in 

their native forms to generate the expected products 12 ((TBA)3[MnMo6O24-

(C10H15N2O4)2]) and 13 ((TBA)3[MnMo6O24(C17H21N2O4)2]), respectively. The reaction 

was carried out in stoichiometric ratios (1 equiv. of 11 for 2 equiv. of amino acid) in DMF 

solution at room temperature in the presence of an excess of N,N-diisopropylethylamine 

(DIPEA). The reaction was left overnight and the products, isolated by precipitation in 

Et2O, were orange powders. These powders were fully analysed to investigate whether the 

reaction had reached completion and yielded the expected products 12 and 13.  
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Figure 61: ESI-MS spectrum obtained for compound 12 with magnified representation of the main peak 

envelope at m/z 1953.94 assigned to [(TBA)2[MnMo6O24(C10H15N2O4)2]]
1-

. 

ESI-MS analyses of the reactions products, carried out by dissolving a small amount of the 

powders in MeCN, confirmed the identity of each compound (see Figure 61 and Figure 

62). Assignments of the main peak envelopes observed are consistent with proposed 

formulae of compounds 12 and 13 with ligands present in their protonated and 

deprotonated forms and a varying number of cations. For compound 12, anionic species 

such as [(TBA)3[MnMo6O24(C10H15N2O4)2]2]
3-
, [(TBA)2[MnMo6O24(C10H15N2O4)2]]

1-
 and 

[(TBA)3[MnMo6O24(C10H15N2O4)(C10H14N2O4)]]
1- 

respectively at m/z 1221.88 (predicted: 

1221.93), 1953.94 (predicted: 1954.03) and 2196.19 (predicted: 2196.31) were observed. 

Similarly, peak envelopes assigned to [(TBA)3[MnMo6O24(C17H21N2O4)2]2]
3-

 at m/z 

1342.08 (predicted: 1341.99), [(TBA)2 [MnMo6O24(C17H21N2O4)2]]
1-

 at m/z 2134.26 

(predicted: 2134.12) and [(TBA)3[MnMo6O24(C17H21N2O4)(C17H20N2O4)]]
1-

 at m/z 2376.53 

(predicted: 2376.40) confirmed the synthesis of 13. Additionally, no signal could be 

assigned to the starting material (11, [(TBA)2[MnMo6O24(C12H15N2O5)2]]
1-

 expected at m/z 

1839.99) or the mono-reacted species ([(TBA)2[MnMo6O24(C10H15N2O4)(C12H15N2O5)2]]
1-

 

(predicted: 1994.02) for the reaction with Gly and [(TBA)2 

[MnMo6O24(C17H21N2O4)(C12H15N2O5)]]
1-

 (predicted: 2084.07) for the reaction with Phe). 

The absence of starting material and mono-substituted species suggest that the reactions 

reached completion. 
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Figure 62: ESI-MS spectrum obtained for compound 13 with magnified representation of the main peak 

envelope at m/z 2134.26 assigned to [(TBA)2[MnMo6O24(C17H21N2O4)2]]
1-

. 

 

Figure 63: 
1
H NMR spectrum of compound 12 obtained on a 400 MHz spectrometer in deuterated DMSO. 

1
H NMR also confirmed the synthesis and isolation of the expected compounds 12 and 13; 

for both compounds, a broad peak was observed in the 65 ppm region, suggesting that the 

metal-oxygen cluster was still intact and linked to TRIS groups. The spectra in the 14 to 0 

ppm range were consistent with the structures proposed for compounds 12 and 13, with the 

integrations for the TBA cations matching the ones of the two ligands. For compound 12 

the resonance observed at 3.73 ppm and integrating for 4H is assigned to the    CαH2   group 

of the glycine and the broad signal at 8.18 ppm is attributed to the –NH of the newly 

formed amide. A broad signal at 8.16 ppm is also observed for compound 13 confirming 

that it can be assigned to the –NH of the amide; the aromatic protons of the phenyl groups 

were observed as a multiplet in the region from 7.85 to 7.00 ppm. This region also 

corresponds to the signal observed for the amide the closest to the POM structure giving an 
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overall integration of 12H. The protons of the alpha carbons were observed for 13 at 4.38 

ppm.  

 

Figure 64:
 1
H NMR spectrum of compound 13 obtained on a 400 MHz spectrometer in deuterated DMSO. 

Single crystal X-ray diffraction analysis of crystals grown in DMF under Et2O vapour 

diffusion was attempted for both compounds, but due to the poor quality of the crystals, 

suitable diffraction was only reached for compound 13. Compound 13 crystallises as small 

sheet-shaped orange crystals in a monoclinic crystal system, in space group C2/c. The unit 

cell is a = 50.1637(14), b = 29.4838(12), c = 29.5767(12) Å, β = 124.851(3) °, the volume 

V is 35898(3) Å
3

, and Z is 12. The structure proves the formation of an amide bond at each 

reactive site and the incorporation of the amino acid into the hybrid POM cluster (Error! 

Reference source not found.). 

 

Figure 65: Ball-and-stick representation of the structure of 13 obtained by single crystal X-ray diffraction 

analysis of crystals grown from DMF under Et2O vapour diffusion. TBA cations and solvent molecules are 

omitted for clarity. Colour scheme: Mn, orange; Mo, blue; O, red; C, black; N, cyan. 
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The purity of each compound was confirmed by elemental analyses (see experimental 

section). 

These analyses demonstrate that the reaction of the precursor 11 with unmodified amino 

acids, Gly and Phe, in stoichiometric ratios led to the formation of peptide bonds and the 

desired compounds (12 and 13 respectively), in high purity without tedious purification 

processes (just precipitation in Et2O). 

3.1.3.3 Summary 

An NHS-activated Mn-Anderson precursor (11) was successfully obtained by post-

functionalisation of compound (10) through the addition of the NHS leaving group. This 

precursor was isolated pure and its reactivity towards peptides tested by reaction with 

amino acids, Gly and Phe, yielding compound 12 and 13 respectively. The peptide bond 

formation reaction occurs at room temperature in DMF with the unprotected peptide in 

stoichiometric ratio. 

This result is important for the rest of the study as it demonstrates many positive aspects of 

the activated precursor approach: the NHS ester/amine reaction is stoichiometric; the 

precursor can be produced and isolated in large batches; peptides are used in their native 

form; the reaction conditions are mild and well-established as compatible with biological 

building blocks; little variation in conditions should be required, bar the solubility demands 

of different peptides. 

3.1.4 Section summary 

In this section, important synthetic tools to make the TRIS Mn-Anderson building block 

compatible with peptide chemistry were developed. Solvent compatible TRIS Mn-

Anderson building blocks were synthesised without the use of cation exchange processes. 

Reaction conditions for amide bond formation through amine and carboxylic acid additions 

were also established, allowing us to fully focus on the addition of peptide chains on the 

TRIS Mn-Anderson building block and its incorporation as a peptide sequence unit. 
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3.2 Incorporation of Mn-Anderson clusters as linking components 

In the previous section, a NHS precursor method was tested with amino acids resulting in 

their incorporation on the Mn-Anderson cluster in a symmetric fashion.  

The aim of this section is to further explore this method by briefly studying the 

introduction of TRIS-base Mn-Anderson clusters as linking components between two 

identical pre-synthesised peptides chains (Figure 66). The incorporated POM building 

block, a symmetric precursor, cannot be considered as part of the amino acid sequence. 

Nonetheless, interesting properties could arise from the introduction of a charged metal-

oxide core between two peptide chains. This approach is also quite simple: a one pot 

reaction, at room temperature, with no protection or activation of the peptide chain 

required, and could be applied for studies in which the POM would not be required to be 

part of the sequence.  

 

Figure 66: Schematic representation of the approach explored in this section: incorporation of the hybrid Mn-

Anderson motif as a linking component between two pre-synthesised peptides. 

The work presented in this section made up part of the article published in Angewandte 

Chemie Int. Ed. in 2014.
[231]
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3.2.1 Short peptide sequences 

As the precursor methodology proved to function with amino acids, the same methodology 

is reported here for short peptides. Whilst simple, oligopeptides are known to display 

interesting self-assembly behaviour, especially di-phenylalanine (NH2-Phe-Phe-OH)
[193]

 

and tri-phenylalanine (NH2-Phe-Phe-Phe-OH),
[232,233]

 which have been employed as 

organising motifs in many nanostructured materials.
[191]

 

3.2.1.1 Synthesis 

Compounds 14 and 15 (Figure 67) were synthesised following the established procedure, 

by reacting the NHS-ester activated Mn-Anderson building block (11) with the targeted 

peptides NH2-Phe-Phe-OH and NH2-Phe-Phe-Phe-OH respectively. 14 and 15 were 

isolated by simple precipitation and were then fully characterised.  

 

Figure 67: Schematic representation of compounds 14 and 15. Colour scheme: Mn, orange (polyhedra); Mo, 

blue (polyhedra); O, red. 

ESI-MS analyses proved the identities of the products isolated (Figure 68), the main peak 

envelopes observed being consistent with the expected general formulas of 14 and 15 

((TBA)3[MnMo6O24(C26H30N3O5)2] and (TBA)3[MnMo6O24(C35H39N4O6)2], respectively). 

In the ESI-MS spectrum of 14, the four main peak envelopes observed at m/z 1538.45 (z = 

-3), 1618.54 (z = -4), 2430.31 (z = -1) and 2549.44 (z = -2) were assigned as [(C16H36N)3 

[MnMo6O24(C26H30N3O5)2]2]
3-

 (predicted: 1538.41), [(C16H36N)4[MnMo6O24(C26H30N3O5) 

(C26H29N3O5)]2]
4-

 (predicted: 1618.50), [(C16H36N)2[MnMo6O24(C26H30N3O5)2]]
1-

 

(predicted: 2429.26) and [(C16H36N)5[MnMo6O24(C26H30N3O5)(C26H29N3O5)][MnMo6O24-

(C26H30N3O5)2]]
2-

 (predicted: 2549.40), respectively. Similarly, the ESI-MS spectrum of 15 

revealed four main peak envelopes at m/z 1734.61 (z = -3), 1815.04 (z = -4), 2602.90 (z = -

2) and 2723.55 (z = -1) which were assigned as [(C16H36N)3[MnMo6O24(C35H39N4O6)2]2]
3-

 

(predicted: 1734.50), [(C16H36N)4[MnMo6O24(C35H39N4O6)(C35H38N4O6)]2]
4-

 (predicted: 
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1814.59), [(C16H36N)3H[MnMo6O24(C35H39N4O6)2]2]
2-

 (predicted: 2602.26) and 

[(C16H36N)2[MnMo6O24(C35H39N4O6)2]]
1-

 (predicted: 2723.40), respectively. 

 

Figure 68: (Top) ESI-MS spectrum obtained for compound 14 with magnified representation of the main 

peak envelop at m/z 2430.31 assigned to [(C16H36N)2[MnMo6O24(C26H30N3O5)2]]
1-

. (Bottom) spectrum 

obtained for compound 15 with magnified representation of the main peak envelop at m/z 2723.55 assigned 

to [(C16H36N)2[MnMo6O24(C35H39N4O6)2]]
1-

. 

1
H NMR results were also in agreement with the predicted structure of the compounds, 

with characteristic broad peaks observed in the 65 ppm region and the integrations of the 

aromatic resonances (7.85 - 6.85) matching the number of phenylalanine residues and the 

presence of three TBA cations (see Appendix Figure A1 and A2 for full spectra). 

Surprisingly, the protons of the –CH2 groups of the phenylalanine side chains were not 

observed as well-defined peaks but very broad multiplets 3.10 to 2.50 ppm were obtained. 

Further investigations by COSY NMR permitted to prove that the peaks in this region are 

correlated to the protons of the Cα which appear around 4.5 ppm and present also cross 

peaks with the NH signal (over 8 ppm). These observations were in agreement with the 

assignment of the peaks in this region as the protons of the Cβ (see COSY NMR spectra 

Figure 69). 
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Figure 69: COSY NMR spectra of compounds 14 (a) and 15 (b) obtained on a 400 MHz spectrometer in 

deuterated DMSO. Correlation peaks of interest are highlighted in green; problematic region in highlighted in 

pink.  

Purity of the samples was verified by elemental analyses and is also in agreement with the 

proposed formula.  

These results prove that the precursor approach established is suitable to symmetrically 

graft oligo-peptides onto the hybrid Mn-Anderson unit without having to chemically 

modify the peptide chains: the NHS-activated Mn-Anderson precursor reacts with peptides 

in their native forms and under very mild reaction conditions. Although this technique 

resulted in the Mn-Anderson unit being introduced as a linking component between two 

peptide chains, its simplicity makes it an interesting path to functionalise POMs with 

peptides.   
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3.2.1.2 Self-assembly studies 

Since Reches and Gazit discovered the self-assembling behaviour of di-phenylalanine 

peptides,
[193] 

this motif was introduced in many bio-inspired nanostructured materials such 

as nanofibrils, nanowires, nanotubes (as seen in Section 1.3.3.1). A series of experiments 

to establish the self-assembly properties of the di-phenylalanine and tri-phenylalanine 

grafted Mn-Anderson compounds was therefore undertaken.  

 

Figure 70: Far UV region CD spectra obtained for compounds 12-15 and TRIS Mn-Anderson in MeCN (10 

µmol/L).  

Self-assembly of peptides can give rise to regular secondary arrangement of the peptide 

chains and therefore, in some cases, characteristic CD signals may be observed (see 

Section 1.3.1). In order to study the self-assembly properties of the POM-peptide hybrid 

series, CD spectra of compounds 13-15 along with the Gly TRIS-based Mn-Anderson (12) 

and TRIS Mn-Anderson compounds (used as control) were recorded. As expected, the CD 

spectra obtained for the TRIS Mn-Anderson compound and 12 are featureless (see Figure 

70), which confirms that on its own and without the appropriate ligand, TRIS-based Mn-

Anderson compounds do not undergo spontaneous self-assembly. For compounds 13-15 

CD signals were observed but were not characteristic of any regular arrangements. 

Interestingly, intensities of the signals increased as the number of phenylalanine residue 

increases (from compound 13 to 15), suggesting stronger interactions with increasing 

phenylalanine chain length.  
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A set of measurements at various concentrations was carried out for compounds 14 and 15 

to investigate the eventual concentration dependency of the interactions observed in the 

previous CD measurements (see Figure 71). Unfortunately, in the range of accessible 

concentrations (hybrid POM concentration from 0.1 to 1 mg/mL), once the CD signal were 

normalised, the results were near identical. This concentration independency could suggest 

that the observed interactions are intra-molecular ones. 

 

Figure 71: Normalised far UV CD spectra of compounds 14 (left) and 15 (right) in MeCN. Concentrations: 

0.1 mg/mL (black), 0.5 mg/mL (blue), 0.8 mg/mL (green) and 1.0 mg/mL (red). 

Organogels were obtained at much higher concentration (35 mg/mL, 13 mmol/L, 4.5 

w/w%) in MeCN. For compound 15, consisting of the tri-phenylalanine peptide, the 

gelation was only observed at low temperatures (-20 °C) and the gel obtained was not 

stable at room temperature. However, self-supporting gels which were stable at room 

temperature (around 20 °C) were formed upon cooling (5 °C) for solutions of 14 (Figure 

72). The gel formation was a reversible process: upon heating, the solution was recovered 

which could then reform a gel if cooled appropriately.  

 

Figure 72: Self-supporting organogel stable at room temperature obtained upon cooling of an MeCN solution 

of 14 (4.5 w/w%). The gel formation is reversible and a solution was obtained upon heating. 
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With a lack of suitable techniques to fully characterise the gel, no further information 

concerning its structure or its properties are available. Atomic force microscopy (AFM) 

analysis of a drop of solution after cooling did not allow any structure elucidation, the 

product concentration being too high for such analysis, while dilution of the solution did 

not result in gel formation.  
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3.2.2 Long peptide sequences 

To demonstrate that the NHS-precursor methodology’s broad applicability reaches beyond 

small oligopeptides, a 15-amino acid peptide (NH2-Ala-Asn-Thr-Leu-Ser-Ser-Thr-Ala-Ser-

Thr-Leu-Glu-Ser-Tyr-Leu-OH, hereafter referred to as P1) was reacted in solution with the 

NHS-activated Mn-Anderson building block (compound 11). This sequence was selected 

for its variety of amino acids to prove that that the precursor approach is compatible with a 

wide range of amino acids. The resulting organic-inorganic hybrid was produced in good 

yields (> 80%) and fully characterised.  

Purity of the isolated material was ascertained by elemental and thermogravimetric 

analysis (TGA) analyses and showed a small cation exchange (from TBA to sodium); both 

analyses are in agreement with the final formula for 16: Na0.2(C16H36N)2.8 

[MnMo6O24(C74H118N17O29)2]. 

 

Figure 73: Mass spectrum obtained for the analysis of 16, (Na0.2(C16H36N)2.8[MnMo6O24(C74H118N17O29)2]); 

all major peaks are consistent with the desired product. 16 is represented in the case of the whole peptide 

chain adopting an α-helix arrangement. 

The identity of the product was confirmed by ESI-MS, with all the main peak envelopes 

observed being consistent with the proposed structure with the peptide ligand in protonated 

and deprotonated forms, and varying cation mixes (see Figure 73). Peak envelopes 
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observed at m/z 1108.33 (z = -4), 1478.12 (z = -3), 1485.44 (z = -3) and 1558.89 (z = -3) 

were assigned as [[MnMo6O24(C74H118N17O29)(C74H117N17O29)]]
4-

 (predicted: 1108.23), 

[[MnMo6O24(C74H118N17O29)2]]
3-

 (predicted: 1477.97), [Na[MnMo6O24(C74H118N17O29) 

(C74H117N17O29)]]
3-

 (predicted: 1485.30) and [(C16H36N)[MnMo6O24(C74H118N17O29) 

(C74H117N17O29)]]
3-

 (predicted: 1558.73), respectively. 2D NMR further confirmed the 

isolation of the target compound (see Figure 75), with full identification of peptide chains’ 

components, proving the chain to remained intact, and an NH signal clearly observed from 

the first alanine residue of P1 (for the free amine no signal would have been detected).  

 

Figure 74: UV (left) and CD (right) spectra obtained for compound 16 (blue) and P1 (red) in the far UV 

region; measured on saturated solution (around 10
-5

 mol/L) in MeCN. 

Compound 16 is a well-defined covalent POM-peptide hybrid of unprecedented scale and 

can be seen as a POM cluster having been incorporated as a linker between two peptide 

chains of 15 amino acids each. Since the different structural motifs found in peptides 

exhibit distinct CD spectral features, and the overall secondary structure content of a 

protein can be assessed by the study in the far UV region (see Section 1.3.1),
 
CD was 

chosen to investigate the new hybrid’s secondary structure. Given its size and sequence, P1 

alone was not expected to manifest any regular secondary structure, it was not established 

if the presence of the charged metal-oxide cluster would give rise to a specific folding of 

the peptide ligand. UV and CD spectra were acquired for both 16 and P1 in MeCN (Figure 

74). As expected, each compound presents a UV signal characteristic of the peptide bond 

adsorption (from 190 nm to 250 nm). While the CD spectrum of P1 in this region is 

featureless as anticipated, that of 16 is dominated by a signal characteristic of an α-helix 

arrangement (see Section 1.3.1 and Figure 30), with two troughs at 208 nm and 222 nm.  
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Figure 75: Expanded Ha-HN and HN-HN regions of the 2D homonuclear spectra of 16 in DMSO illustrating 

the inter-residue NOE connectivities. The spectra shown are magnitude COSY (dark blue), TOCSY (light 

blue) and NOESY (red) and were recorded at 500 MHz. 
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It is not clear if this feature results from a regular secondary structure in part of the 

molecule, or if the cluster inclusion leads to the entire peptide chain adopting a helical 

arrangement. Unfortunately the limited solubility of 16 in MeCN did not permit further 

investigation for this structure in a 2D NMR study; no peak characteristic of α-helices was 

observed during such a study in DMSO (unsurprising, DMSO being a more competitive 

solvent than MeCN). Further characterisation of the source of the CD signal in 16 is 

difficult considering the low solubility of the compound, nonetheless, its observation 

highlights how the incorporation of the POM cluster into proteins/peptides can result in 

significant new structural features. 

3.2.3  Section summary 

In this section, the NHS-ester activated Mn-Anderson building block (11; synthesised in 

previous section) was successfully reacted with a series of peptides of different length and 

composition without activation or protection of the peptides in a one-pot fashion. This 

variety of peptide chains introduced and the simplicity of the reaction conditions 

demonstrate the broad applicability of this NHS-precursor approach. 

In this approach the POM cluster is only introduced as a linking unit between two identical 

peptide chains and not as part of a sequence. However, its relative simplicity could permit 

peptide directed POM self-assembly studies or investigations of charged metal-oxide 

clusters effects on peptide chain folding, as illustrated through compounds 14-16. 
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3.3 Tackling the isolation issue of asymmetric hybrid Mn-Anderson 

clusters 

Using the methodologies discussed in Section 3.1.3 TRIS-based Mn-Anderson units were 

successfully incorporated as linking components between two identical peptide chains, 

both grafted through the N-terminus. In order for the POM cluster to be incorporated into 

the backbone of a peptide sequence with one side linked to an amine and the other to an 

acid, the synthesis of asymmetric clusters was essential (Figure 76).  

 

 

Figure 76: Schematic representation of the peptide grafting strategies available with TRIS-based Mn-

Anderson building blocks. Symmetric building blocks can only be used as linking components between two 

peptide chains (top) while asymmetric building blocks could potentially lead to the incorporation of the POM 

into the backbone of a peptide sequence (bottom). 

The work presented in this section was presented in a publication in Chemical Science in 

2013;
[234]

 further details related to the analytical results are given in this section.  
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3.3.1 Isolation of asymmetric TRIS-based Mn-Anderson – A problem to be 

solved 

TRIS-based Mn-Anderson POMs are interesting clusters as they present two ligands 

grafted to their structure, one on each side of the planar arrangement formed by the metal-

oxygen framework. This feature offers the possibility, when two different ligands are used 

during the formation of the hybrid cluster, of forming asymmetric clusters with a different 

ligand at each biding site. Unfortunately, during this synthesis two unwanted symmetrical 

by-products are also obtained and the one pot reaction results in a mixture of the three 

possible clusters present in statistical ratios (Figure 77). Methods to isolate the asymmetric 

cluster from the by-products by fractional crystallisation have been reported
[112-115]

 but are 

efficient for only a narrow set of ligands and hard to adapt when attempting a novel kind of 

functionality. 

 

Figure 77: Schematic representation of the one pot reaction yielding an asymmetric TRIS-based Mn-

Anderson cluster and two symmetric by-products. Colour scheme: Mn, orange (polyhedra); Mo, blue 

(polyhedra); O, red. 

Before being able to pursue the peptide incorporation project, the isolation issues of 

asymmetric clusters had to be addressed and the results of the investigations are presented 

herein. A modular approach would require a reliable, simple and robust method to isolate 

pure asymmetric building units in good yields.   
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3.3.2 Implementation of a novel robust methodology 

Liquid chromatography (LC) is a powerful technique which allows the analytical and 

preparative separation of materials from mixtures by exploiting the competitive 

interactions of the molecules with the stationary and mobile phases of a column. While 

extensively used in organic chemistry, LC is barely mentioned in hybrid POM chemistry. 

One attempt to purify a symmetrically grafted Mn-Anderson compound via normal phase 

chromatography was published by W. Wang et al.,
[235]

 but lead to an undesired cation 

exchange process (protonation of the cluster, which creates solubility issues) and poor 

yields. This inconvenience resulted in them later reporting a post-functionalisation method 

which did not require further purification and writing: “the ability to circumvent 

chromatographic purification is extremely important […]”.
[109]

 Since reverse phase LC has 

been successfully applied to the resolution of various charged metal complexes,
[236-238]

 

investigations on whether it could be used to resolve, and hence purify, hybrid Mn-

Anderson mixtures were carried out. 

3.3.2.1 Exploration of LC resolution of hybrid Mn-Anderson mixtures – study of a 

model compound 

In order to separate an asymmetric Mn-Anderson compound from the two corresponding 

unwanted symmetric by-products, the affinities of the two ligands for the stationary phase 

must be significantly different, yielding an asymmetric product of intermediate affinity – 

therefore, as a model compound, an Anthracene-TRIS/TRIS Mn-Anderson compound 

((TBA)3[MnMo6O24(C19H16NO)(C4H8N)], 17) was chosen. The fluorescent Anthracene-

TRIS ligand, a very hydrophobic moiety (strongly retained by RP media), could be used to 

form modular polymers
[239]

 or be further functionalized by Diels-Alder reactions.
[138,240]

 

The TRIS ligand, a far less hydrophobic moiety (less strongly retained by RP media), 

could be further modified by established post-functionalisation techniques
 
or used as an 

anchorage point for covalently functionalising surfaces. The asymmetric compound was 

formed following the published one pot pre-functionalisation reaction set up
[49,113]

 where 

the two tris-alkoxide ligands are reacted with (TBA)4[-Mo8O26] and manganese acetate in 

a refluxing solution of MeCN. This reaction leads to the formation of the asymmetric 

product (17) along with two unwanted symmetric by-products: TRIS Mn-Anderson and 

Anthracene Mn-Anderson (TBA)3[MnMo6O24(C19H16NO)2] (Figure 78). These products 

were all collected together as a mixture, from here on referred to as the crude mixture. 
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Figure 78: Schematic representation of the one pot pre-functionalisation reaction yielding asymmetric 

Anthracene-TRIS/TRIS Mn-Anderson compound (17) and two symmetric by-products: TRIS Mn-Anderson 

and Anthracene Mn-Anderson. Colour scheme: Mn, orange (polyhedra); Mo, blue (polyhedra); O, red. 

Test separation of the crude mixture was first performed on an analytical scale using 

standard C18 RP-HPLC columns eluted with a gradient of 0.05 M ammonium acetate (pH = 

6.7 - 6.9) /MeCN (A/B) solvent mixture and revealed three peaks (Figure 79a): the first 

one (0.85 minutes) is the least hydrophobic product, while the two subsequent products 

(10.22 and 11.25 min) have higher affinities for the column, being more hydrophobic. This 

was confirmed by comparison with analysis under the same conditions of pure samples of 

the symmetric by-products, synthesised following the standard protocol for symmetric 

synthesis.
[50]

 As expected, each pure compound produced a single peak, with TRIS Mn-

Anderson barely retained on the column (matching the 0.85 min peak in the crude mixture; 

see Figure 79b) and the Anthracene Mn-Anderson compound (synthesised by adaptation of 

a reported procedure;
[49]

 synthesis given in the experimental section) exhibiting a high 

affinity for RP media (matching the 11.25 min peak in the crude mixture, see Figure 79c). 

The remaining peak could thus be reasonably assigned as the asymmetric product (17), 

which as expected displayed an intermediate affinity for the RP media. 
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Figure 79: RP-HPLC chromatograms obtained on an analytical scale of the crude mixture (a), the 

symmetrically pure TRIS Mn-Anderson (b) and the symmetrically pure Anthracene Mn-Anderson (c). Peaks 

assigned to the same compound are highlighted in grey. 

This analytical RP-HPLC method was then adapted to a preparative scale using standard 

commercially available C18 silica flash columns. Due to the poor solubility of the crude 

material in solvent A, it was introduced by a ‘dry loading’ method (adsorbed on celite, 

20wt%) and the fraction of solvent B at the beginning of the gradient was increased to 

ensure prompt transfer from the celite adsorbant onto the RP-silica column (ensuring 

separation by affinity, not solubility). Elution was detected by UV and an evaporative light 

scattering detector (ELSD), giving the chromatograms shown in Figure 80: the sharp peaks 

observed in RP-HPLC are very much broadened, but are still manifested as three distinct 

regions (I, II and III).  

 

Figure 80: Chromatograms of the crude mixture separation on a preparative scale. Regions highlighted (I, II 

and III) correspond to the three products of reaction being eluted pure; in region II compound 17 is eluted 

pure. UV at λ = 254 nm: blue line; ELSD: green line. 

Eluent corresponding to each region was collected (denoted as solution I, II and III) and 

analysed by ESI-MS and RP-HPLC using the previously established conditions allowing 
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the confirmation of the identity and the purity of the products eluted (ESI-MS spectra 

along with RP-HPLC chromatograms for each solution are given in Figure 81). The ESI-

MS analysis of II confirmed the presence of the asymmetric Mn-Anderson product 17, as 

several of the observed peaks can be assigned to fragments from the Anthracene-

TRIS/TRIS Mn-Anderson cluster (Figure 81 and Table 4), while no peaks could be 

assigned to fragments of the symmetric by-products. RP-HPLC analysis of II confirmed its 

purity: only one peak was observed (at 10.17 minutes, corroborating the assignment in the 

analytical separation), with both symmetric by-product peaks absent. Similarly, ESI-MS 

and RP-HPLC analyses of solutions I and II confirmed their identities as pure symmetric 

products (TRIS and Anthracene Mn-Anderson, respectively). 

 

Figure 81: ESI-MS spectra (left) and RP-HPLC chromatogram (right) obtained by analysis of the eluent 

collected for each region (top, red) region I; (middle, green) region II in which is found compound 17; 

(bottom, blue) region III. Assignment table of the main peak envelopes observed in the ESI-MS spectra is 

given in Table 4. 
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Table 4: Assignment table of the main peak envelopes observed during ESI-MS analyses of solution I (red), 

II (green) and III (blue); see Figure 81. 

 

To isolate 17, solution II was collected and an excess of TBA bromide was added to 

ensure that 17 was isolated as a pure TBA salt (during ESI-MS analysis some protonated 

fragments were observed leading to the suspicion that some minor cation exchange may 

occur in solution). The MeCN was evaporated leaving an aqueous solution from which an 

orange precipitate forms; this precipitate was crystallised from MeCN under slow Et2O 

diffusion to yield pure compound 17. 

Resulting crystals were analysed by single crystal X-ray crystallography, which 

demonstrated the typical Mn-Anderson organisation of the POM framework and the 

asymmetric feature of the compound with the TRIS ligand on one side of the metal-oxygen 

framework and the Anthracene-TRIS ligand on the other (Figure 82). The structure 

determination also confirmed the isolation of the POM as a TBA salt with the clear 

observation of three TBA cations per cluster. Compound 17 crystallises as orange block 

shaped crystals in a monoclinic crystal system, in space group P21/c. The unit cell is a = 

27.455(3), b = 29.007(3), c = 24.974(2) Å. β = 94.450(5) °, the volume V is 19 829(3) Å
3
 

and Z is 8. 
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Figure 82: Ball-and-stick representation of the structure of 17 obtained by single crystal X-ray diffraction 

analysis of crystals grown from MeCN under Et2O vapour diffusion. TBA cations and solvent molecules are 

omitted for clarity. Colour scheme: Mn, orange; Mo, blue; O, red; C, black; N, cyan. 

Elemental analysis of the isolated dried powder was consistent with the proposed formula 

of 17 and the purity of the isolated compound was further proved by RP-HPLC analysis, 

and the presence of a unique signal at 10.21 min assigned to the asymmetric compound 

(given in the appendix Figure A3 and A4). ESI-MS analysis in MeCN is in agreement with 

the given structure of 17 and the absence of by-products (spectra and assignment table 

given in Figure A5 and Table A1). 

1
H NMR analysis of the isolated material is in agreement with the asymmetric character of 

the hybrid cluster with the integrations assigned to one anthracene ligand (aromatic region 

and NH of the amide from 8.6 to 7.5 ppm integrating for 10H) matching the presence of 

three TBA cations (Figure 83).  

 

Figure 83: 
1
H NMR spectra of compound 17 after isolation by chromatography obtained on a 400 MHz 

spectrometer in deuterated DMSO. 
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The separation by flash chromatography and the isolation of compound 17 is highly 

reproducible. Figure A6 (Appendix) shows chromatograms for repetition of the same 

separation under the same conditions producing comparable yields and purity. The 

efficiency of the separation, repeatability of the result, and the simplicity of the workup, 

make this chromatographic method suitable for the isolation of 17. Nevertheless, a widely 

applicable method should be valid for a variety of pendant groups, so a study of its 

applicability was carried out for other asymmetric Mn-Anderson clusters.  

3.3.2.2  Exploration of the robustness of the LC-methodology ˗ Post-functionalisation 

approaches  

To investigate whether the chromatographic methodology would be broadly applicable, 

two other ligand systems were studied under the same conditions as those established for 

compound 17. In literature reports, asymmetric hybrid Mn-Anderson compounds have only 

been synthesised via pre-functionalisation routes, so the formation of asymmetric Mn-

Anderson compounds using different post-functionalisation approaches was investigated. 

Here, the crude mixtures were synthesised by modification of the TRIS Mn-Anderson 

building block using the reactive amine groups grafted on the POM as anchorage points to 

introduce more complex ligands. The use of a general precursor allows the circumvention 

of the ligand synthesis step and the direct access of certain functional groups which might 

make free ligands difficult to isolate (e.g. carboxylic acids). 

The crude mixture of compound 18 was produced by reacting the preformed TRIS Mn-

Anderson cluster with two different anhydrides: palmitic and succinic (Figure 84). These 

ligands were selected firstly for their different hydrophobicities as well as other properties. 

Clusters with the hydrophobic palmitic ligand have been proven to form self-assembled 

amphiphilic features,
[107]

 while the succinic anhydride introduces a carboxylic acid group 

on the cluster (see Section 0), which could subsequently be used as an anchorage point for 

further post-functionalisation. The reaction conditions were briefly refined to give the 

asymmetric compound as the major product. It was found that 4 equivalents of succinic 

anhydride and 2 equivalents of the palmitic anhydride (compared to the TRIS Mn-

Anderson compound) lead to compound 18 ((TBA)3[MnMo6O24(C20H38NO)(C8H12NO3)]) 

as the major product.  
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Figure 84: Schematic representation of the one-pot post-functionalisation reaction yielding asymmetric 

TRIS-based Mn-Anderson compound (18) and two symmetric by-products. Colour scheme: Mn, orange 

(polyhedra); Mo, blue (polyhedra); O, red. 

The synthesis of the crude mixture of compound 19 was adapted from a reported procedure 

where palmitoyl chloride was used to react with both amines forming a symmetrically 

grafted Mn-Anderson amphiphile.
[107]

 Here, the number of equivalents of palmitoyl 

chloride was reduced to obtain asymmetric compound 19 ((TBA)3[MnMo6O24(C20H38NO) 

(C4H8N)]) as the major product (Figure 85) but, as for other synthetic procedures, two 

symmetric by-products are also present in the reaction mixture (not represented on the 

figure). 

 

Figure 85: Schematic representation of the one pot post-functionalisation reaction, yielding asymmetric 

TRIS-based Mn-Anderson compound (19) as the major product and two symmetric by-products (not 

represented). Colour scheme: Mn, orange (polyhedra); Mo, blue (polyhedra); O, red. 
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The mother liquors of both reactions were directly adsorbed on celite and purified using 

the chromatographic methodology established for compound 17. As for compound 17, the 

chromatograms of compounds 18 and 19 consisted of three distinct regions with the middle 

one corresponding to the asymmetric product (Figure 86). Compounds 18 and 19 were 

both isolated as pure TBA salts using the same work up as that established for the isolation 

of compound 17. 

 

Figure 86: Chromatograms of the crude mixture separations on a preparative scale. Regions highlighted (I, II 

and III) correspond to the three products of reaction being eluted pure. (a) Crude mixture yielding 18; (b) 

crude mixture yielding 19. UV at λ = 254 nm: blue line; ELSD: green line. 

The identity of the isolated compounds was established by ESI-MS and 
1
H NMR analyses. 

In the ESI-MS spectrum of both products, only peak envelopes assigned to the 

corresponding asymmetric clusters were observed (Figure 87). In the spectrum obtained for 

compound 18, the signals observed at m/z 1978.19 (z = -1), 2098.83 (z = -2) and 2220.46 

(z = -1) are assigned respectively to the mono-charged species 

[(TBA)2[MnMo6O24(C20H38NO)(C8H12NO3)]]
1-

 (predicted: 1978.20), the doubly-charged 

dimer [(TBA)5[MnMo6O24(C20H38NO)(C8H12NO3)][MnMo6O24(C20H38NO)(C8H11NO3)]]
2-

 

(predicted: 2098.84) and the mono-deprotonated cluster [(TBA)2[MnMo6O24(C20H38NO) 

(C8H11NO3)]]
1- 

(predicted: 2220.48). For compound 19 two mono-charged species with 

different cations [(TBA)H[MnMo6O24(C20H38NO)(C4H8N)]]
1-

 and [(TBA)2[MnMo6O24-

(C20H38NO)(C4H8N)]]
1-

 are observed respectively at m/z 1635.90 (predicted: 1636.90) and 

1878.18 (predicted: 1878.18). The obtained NMR spectra (Figure A7 and A8) are in 

agreement with the isolation of asymmetric Mn-Anderson clusters as pure TBA salts with 

the observation of the characteristic peak in the 60 ppm region and the integrations of the 

resonances assigned to the ligands matching the ones of the three TBA cations. 
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Figure 87: ESI-MS spectra obtained for compound 18 (top) and 19 (bottom) with respective magnified 

representations of the main peak envelopes (at m/z 1978.19 assigned to [(TBA)2[MnMo6O24(C20H38NO) 

(C8H12NO3)]]
1-

 and m/z 1878.18 assigned to [(TBA)2[MnMo6O24(C20H38NO)(C4H8N)]]
1-

). 

Purity was checked by elemental analyses for both compounds and analytical RP-HPLC 

was also used to give further insight into the purity and the identity of each isolated 

product. As shown in Figure 88, only one compound, the one of intermediate affinity, is 

present, giving a single signal on the chromatograms. 

 

Figure 88: RP-HPLC chromatograms obtained before and after resolution of the crude mixtures by 

preparative chromatography. (a) Synthesis of compound 18; (b) synthesis of compound 19. Crude mixture 

before chromatography: orange line (top); pure compound after isolation by chromatography: green line 

(bottom). 
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The isolation of compound 18 and 19 following the same methodology as that established 

for compound 17, without any alterations, demonstrates that this method can be reliably 

applied to purify a range of asymmetric hybrid Mn-Anderson clusters, so long as the 

ligands have sufficiently different affinities for RP media. However, to entirely eradicate 

the asymmetric isolation ‘issue’, thereby allowing full focus on the design and study of the 

asymmetric compounds rather than their separation, resolution of Mn-Anderson clusters 

with different ligands of similar affinity for the RP media must also be addressed. 
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3.3.3 Precursor approach to the asymmetric synthesis - A “universal” 

asymmetric Mn-Anderson building unit 

The chromatographic methodology presented herein uses the differences of affinity for the 

RP stationary phase of the three compounds present in the crude mixture. Compounds 17 

to 19 all have one hydrophilic and one hydrophobic ligand, hence the reaction mixtures are 

readily resolved. However, if two similarly-hydrophobic ligands were used, this method 

would not give sufficient resolution for a preparative separation (i.e. asymmetric products 

with two hydrophobic or two hydrophilic ligands would not be separated from their 

symmetric by-products). To overcome this issue, the idea of an asymmetric compound that 

could be isolated using the present chromatographic methodology and could then be used 

as a “universal” precursor for the synthesis of asymmetric Mn-Anderson compounds arose. 

Such a compound should have a reactive site which can be modified easily by post-

functionalisation techniques and a protected site that can be deprotected by simple reaction 

steps compatible with the metal-oxide core.  

3.3.3.1 Design of the “universal” precursor 

The Fmoc,
[241]

 group used for the protection of amines, which can be removed under mild 

conditions potentially compatible with the POM cluster (treatment with a solution of 

piperidine), is extremely hydrophobic, making it an appealing candidate for the protection 

of a “universal” precursor. Thus, an Fmoc protected TRIS ligand was synthesised 

following a reported procedure
[242]

 and used to form an Fmoc-TRIS/TRIS Mn-Anderson 

compound (20, (TBA)3[MnMo6O24(C19H18NO2)(C4H8N)]), via a pre-functionalisation 

approach. The reaction mixture was easily resolved using the chromatographic method 

(Figure 89) and the asymmetric compound 20 was isolated.  

 

Figure 89: Chromatograms of the crude mixture separation on a preparative scale. Regions highlighted (I, II 

and III) correspond to the three products of reaction being eluted pure; in region II compound 20 is eluted 

pure. UV at λ = 254 nm: blue line; ELSD: green line. 
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The purity of the isolated product was controlled by elemental and RP-HPLC analyses. In 

the RP-HPLC chromatogram (Figure A9 and A10) a single peak is observed at 10.27 min, 

retention time which correlates with the central peak observed during the RP-HPLC 

analysis of the reaction mixture and assigned as the asymmetric POM. 

ESI-MS and 
1
H NMR analyses both confirmed the identity of the compound isolated and 

the absence of symmetric by-product within the obtained material. During ESI-MS 

analysis (Figure 90), the two main peak envelopes observed at m/z 1620.73 (z = -1) and 

1862.02 (z = -1) are assigned respectively to the species [(TBA)H[MnMo6O24(C19H18NO2) 

(C4H8N)]]
1-

 (predicted: 1620.74) and [(TBA)2[MnMo6O24(C19H18NO2)(C4H8N)]]
1-

 

(predicted: 1862.02). Signals of the symmetric by-products would be expected at m/z 

1639.95 for [(TBA)2[MnMo6O24(C4H8N)2]]
1-

 and at m/z 2085.09 for [(TBA)2 

[MnMo6O24(C19H18NO2)2]]
1-

, but are not observed. 
1
H NMR analysis confirmed the 

isolation of a TRIS-based Mn-Anderson compound with the observation of the 

characteristic broad peak in the 60 ppm region (spectra given in the Appendix Figure A11). 

Furthermore, the integrations of the Fmoc protected TRIS ligand moiety are in agreement 

with the asymmetric feature of the molecule and the presence of three TBA cations.

 

Figure 90: ESI-MS spectrum obtained for compound 20 with magnified representation of the main peak 

envelope at m/z 1862.02 assigned to [(TBA)2[MnMo6O24(C19H18NO2)(C4H8N)]]
1-

. 

The structure of 20 was obtained by single crystal X-ray crystallography, confirming the 

Fmoc protection of one amine of the TRIS Mn-Anderson cluster (Figure 91). Compound 

20 crystallises as orange block shaped crystals in an orthorhombic crystal system, in space 

group Pnma. The unit cell is a = 28.257(2), b = 21.8128(16), c = 16.5796(14) Å, the 

volume V is 10219.1(14) Å
3
 and Z is 4. The Fmoc moiety is equally disordered between 

two positions within the crystal structure as shown in Figure 91. 
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Figure 91: Ball-and-stick representation of the crystal structure obtained for the Fmoc-TRIS/TRIS Mn-

Anderson compound (20). Colour scheme: Mn (orange); Mo (blue); O (red); C (black); N (cyan). Disorder is 

shown as 50 % opacity, TBA cations and solvent molecules are omitted for clarity. 

3.3.3.2 Proof of concept 

To illustrate the idea that compound 20 could be used as a “universal” asymmetric 

precursor to synthesise practically any asymmetric organic-inorganic Mn-Anderson 

cluster, it was used to synthesise 21 ((TBA)3[MnMo6O24(C7H12NO)(C4H8N)]), an 

asymmetric Propylamide/TRIS Mn-Anderson compound which could not previously be 

isolated using the chromatographic methodology, since neither the symmetric nor the 

asymmetric compounds are sufficiently hydrophobic to be retained on the column. A two-

step synthesis was designed to yield 21 (Figure 92); 20 was first reacted with 10 

equivalents of propionic anhydride and the intermediate product isolated by crystallisation 

to remove the excess of acid. Before proceeding to the next step of the synthesis, ESI-MS 

analysis of the isolated compound was carried out to verify that the intermediate species 

had been successfully produced (the ESI-MS spectrum obtained is given in the Appendix 

Figure A12). Signals observed during this analysis were in agreement with the expected 

structure of the intermediate and no peak envelopes could be assigned to the starting 

material (see assignment table), proving the completion of the reaction.  
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Figure 92: Schematic representation of the synthetic route for the synthesis of 21 by post-functionalisation of 

the “universal” asymmetric Mn-Anderson precursor (20). Colour scheme: Mn, orange (polyhedra); Mo, blue 

(polyhedra); O, red. 

The intermediate product was then treated with a 20% solution of piperidine in DMF to 

remove the Fmoc group and the resulting material was isolated by crystallisation with Et2O 

diffusion.  
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Crystal structure of the obtained product was determined by single crystal X-ray 

crystallography analysis. Compound 21 crystallises as orange flat sheet shaped crystals in 

an orthorhombic crystal system, in space group Pcca. The unit cell is a = 23.3192(17), b = 

28.200(2), c = 30.215(2) Å, the volume V is 19 869(3) Å
3
 and Z is 8. The structure, 

analogous to that of TRIS-based Mn-Anderson compounds, proves that the POM cluster is 

stable to the reaction conditions used during the post-functionalisation and that the addition 

of a propylamide group on the reactive site and the deprotection of the amine function 

were successful (Figure 93). 

 

Figure 93: Ball-and-stick representation of the crystal structure obtained for the Propylamide/TRIS Mn-

Anderson compound (21). Colour scheme: Mn (orange); Mo (blue); O (red); C (black); N (cyan). TBA 

cations and solvent molecules are omitted for clarity. 

Identity of the product was further investigated by ESI-MS and 
1
H NMR analyses. All 

peak envelopes observed in the ESI-MS spectrum could be assigned to ionic fragments of 

21 (Figure 94). No starting material or intermediate product could be observed during this 

analysis (signals expected at m/z 1862.02 (z = -1) and 1918.05 (z = -1) for the starting 

material and the intermediate product, respectively). Main peak envelopes displayed in the 

spectrum at m/z 1453.44 (z = -1), 1586.05 (z = -2) and 1695.68 (z = -1) could be assigned 

respectively as [(TBA)H[MnMo6O24(C7H12NO)(C4H8N)]]
1- 

(predicted: 1453.70), [(TBA)3-

Na[MnMo6O24(C7H12NO)(C4H8N)]2]
2-

 (predicted: 1586.33) and [(TBA)2[MnMo6O24-

(C7H12NO)(C4H8N)]]
1-

 (predicted: 1695.98). 
1
H NMR analysis clearly proved the 

successful deprotection of the amine group, with no aromatic proton signal observed in the 

spectra, and the stability of the hybrid POM cluster (observation of the broad peak in the 

60 ppm region; Figure A13). The peak integrations are in agreement with the asymmetric 

feature of the cluster (i.e. the presence of only one propylamide-TRIS ligand) with the 

observation of a broad peak at 7.37 ppm integrating for 1H (assigned to the proton of the 
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amide) and the integrations of the propyl group matching the ones of the three TBA 

cations. 

 

Figure 94: ESI-MS spectrum obtained for compound 21 with magnified representation of the main peak 

envelope at m/z 1695.68 assigned to [(TBA)2[MnMo6O24(C7H12NO)(C4H8N)]]
1-

. 

The purity of the synthesised asymmetric compound 21 was verified by elemental analysis.  

All these analyses revealed that the amine was fully deprotected while the hybrid Mn-

Anderson remained intact and as a pure TBA salt. 20 can therefore be considered a 

“universal” asymmetric Mn-Anderson precursor (barring unstable or reactive groups) since 

its structure allows for the formation and isolation of practically any other asymmetric Mn-

Anderson compound by a succession of post-functionalisation steps.  

3.3.4 Section summary 

A reliable chromatographic methodology which drastically simplifies the isolation of 

asymmetric Mn-Anderson compounds, providing a difference in affinity for RP media 

between the two ligands was established. Where this condition is not met, the difficulty can 

be overcome by post-functionalisation of a synthesised “universal” asymmetric Mn-

Anderson precursor (20). This suite of approaches should allow the routine isolation of 

practically any asymmetric Mn-Anderson compound, as illustrated by the diversity of the 

new compounds (17-21) presented in this section. 

The isolation issues hampering the synthesis of asymmetric TRIS-based Mn-Anderson 

clusters being now resolved, the incorporation of the cluster into peptide backbones can be 

fully explored. 
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3.4 Incorporation of Mn-Anderson clusters into peptide backbones. 

In the work presented in Section 3.2, a symmetric Mn-Anderson building unit was 

introduced as a linking component between two identical pre-synthesised peptide chains. 

Having now achieved the isolation of asymmetric clusters (Section 3.3), the integration of 

hybrid Mn-Anderson clusters into peptide backbones, with an amine on one side and an 

acid group on the other side, can be explored. 

Much of the unique characteristics of chemically-synthesised peptides is derived from the 

stepwise modular nature of their synthesis. The aim of this section is to explore the 

incorporation of the metal-oxide building block directly during the synthesis of a peptide 

as conveniently as any other amino acid (Figure 95). This approach would give a great 

flexibility to investigate molecular recognition motifs, catalytically active or structurally 

important proteins.  

 

Figure 95: Schematic representation of the approach explored in this section: incorporation of the hybrid Mn-

Anderson motif as an unnatural amino acid unit into a growing peptide chain during SPPS. 

The work presented in this section made up part of the article published in Angewandte 

Chemie Int. Ed. in 2014.
[231] 



RESULTS AND DISCUSSION  105 

3.4.1 Synthesis of a hybrid POM amino acid 

The first step before using hybrid POM amino acids in solid phase peptide synthesis 

(SPPS) protocols was the isolation of a hybrid amino acid building block itself, so that it 

could easily be synthesised in large batches. With the methodologies developed in Section 

3.1 and the universal asymmetric building block designed and developed in Section 3.3.3 

(compound 20), all the components were present to synthesise the first hybrid POM amino 

acid.  

Compound 22, an NHS ester-activated acid/Fmoc-protected amine Mn-Anderson cluster, 

(TBA)3[MnMo6O24(C12H15N2O5)(C19H18NO2)], was synthesised via the two-step post-

functionalisation of compound 20 (Figure 96). 20 was first treated by an excess of succinic 

anhydride to introduce an acid carboxylic function which was then activated by an ester 

formation through treatment with DCC and NHS (post-functionalisation reactions 

developed in Section 3.1). 

 

Figure 96: Schematic representation of the two-step synthesis yielding compound 22, an NHS ester-activated 

acid/Fmoc-protected amine asymmetric Mn-Anderson cluster. Colour scheme: Mn, orange (polyhedra); Mo, 

blue (polyhedra); O, red. 
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Figure 97: ESI-MS spectrum obtained for compound 22 with magnified representation of the main peak 

envelope at m/z 2059.05 (z = -1) assigned to [(TBA)2[MnMo6O24(C12H15N2O5)(C19H18NO2)]]
1-

. 

The product was analysed by elemental analysis to confirm its purity, while ESI-MS and 

1
H NMR techniques were employed to confirm its identity. During ESI-MS analysis, two 

main peak envelopes were observed both in agreement with the proposed formula of 

product 22 (Figure 97). The first signal at m/z 1291.61 (z = -3) was assigned as 

[(C16H36N)3[MnMo6O24(C12H15N2O5)(C19H18NO2)]2]
3-

 (predicted: 1291.94) while the peak 

envelope at m/z 2059.05 (z = -1) was identified as [(C16H36N)2[MnMo6O24(C12H15N2O5) 

(C19H18NO2)]]
1- 

(predicted: 2059.05).
 1

H NMR also confirmed the synthesis of the 

expected product. The characteristic broad peak in the 65 ppm region was observed, and 

the resonances integrations in the 9 - 0 ppm region are in agreement with its asymmetric 

character as well as the presence of three TBA cations (Figure 98). Resonances from 7.9 to 

7.3 ppm (integrating in total for 8H) are attributed to the aromatic protons of the Fmoc 

group (8H) while the broad peak observed at 2.83 ppm integrating for 8H is assigned to the 

two –CH2 of the NHS group and the two –CH2 resulting from the addition of the succinic 

anhydride (8 protons in total). 
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Figure 98: 
1
H NMR spectra of compound 22 obtained on a 400 MHz spectrometer in deuterated DMSO 

(contains 0.03 % (v/v) TMS). 

Growth of single crystals was attempted by slow Et2O diffusion into DMF solution of 22, 

but the quality of the crystals obtained (thin needle-shaped) was too poor for single crystal 

X-ray crystallographic analysis. 

The hybrid amino acid building block could be synthesised in large batches, high yield 

(>85 %) and good purities, making it an excellent building block to use for the study of 

POM-peptide hybrid synthesis.  
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3.4.2 Making solid phase peptide synthesis (SPPS) compatible with hybrid 

POM amino acids 

Before starting the synthesis of a POM-peptide hybrid many parameters had to be tested to 

verify the compatibility of the POM cluster with the reaction conditions of the different 

steps of SPPS. The three main points to investigate were: i) How can the POM-peptide 

hybrid synthesised be cleaved from the solid support without damaging the metal-oxide 

cluster? ii) How can the Mn-Anderson building block unit be coupled to the solid support? 

iii) How can the peptide synthesis continue after the incorporation of the Mn-Anderson 

residue? 

Test reactions were thus carried out to study the parameters that would allow the synthesis 

of a POM-peptide hybrid chain (including retrieving it from the solid support). A small 

amount of material was used for each test (typically 10 - 20 mg) and ESI-MS analysis was 

used to check results in a binary manner (working/not working).  

3.4.2.1 Choice of the solid support, the linker and cleavage conditions 

The choice of the solid support, the linker and the cleavage conditions were key aspects 

that required careful consideration, given the somewhat low compatibility of the hybrid 

with SPPS reagents (sensitivity of the POM to acids, oxididant, reductant and strong 

bases). Examples of hybrid POMs immobilised
[80,230,243]

 and post-functionalised
[244]

 on a 

solid support are present in the literature, but solid phase was never used as an intermediate 

state, and no method yet exists to retrieve the hybrid POMs from the support. 

Out of the range of solid supports available, a polyethylene glycol (PEG) grafted PS resin 

was considered, for broader reactivity than standard PS supports, due to a reduced steric 

hindrance and an amphiphilic character;
[245]

 furthermore previous efforts in our group had 

suggested that standard PS resins may not be compatible with hybrid clusters. 

The goal was to select a linker which could be cleaved in conditions compatible with the 

POM cluster as if this step was unsuccessful any attempt of synthesis would have been 

pointless. Peptide synthesis protocols usually involves an orthogonal protecting group 

strategy with a step-by-step construction of the peptide under basic conditions (Fmoc 

removed by piperidine), followed by a final deprotection and cleavage under acidic 

conditions (with reagents such as trifluoroacetic acid (TFA) or hydrofluoric acid (HF) 

being commonly employed).
[187]

 These cleavage reaction conditions, especially the use of 
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strong acids, would not be compatible with the metal-oxide core; investigations had to be 

carried out to find a linker that could be cleaved under mild conditions.  

Of the somewhat narrow range of linker chemistries meeting these requirements, the trityl 

linker (triphenylmethyl, Trt) was considered (Figure 99). This linker is easier to handle 

than photo-cleavable linkers (photosensitive) and its cleavage was established under very 

mild conditions (solution of 20% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) in DCM).
[246]

 

 

Figure 99: Schematic representation of a trityl (Trt) linker grafted on a solid support.
 

A test reaction (Test A) was conducted to see if TRIS-based Mn-Anderson clusters would 

be stable under the cleavage conditions used for the trityl linker. The TRIS Mn-Anderson 

compound was treated with the cleavage mixture for 1 h at room temperature and the 

resulting product was isolated after evaporation of the solvent. ESI-MS analyses were 

realised on the starting material and the isolated product to investigate the stability of the 

hybrid POM under these conditions (spectra given in Figure 100). The mass spectrum of 

the isolated product after treatment did not show any signs of degradation of the metal-

oxide cluster (by comparison with the spectrum recorded for the starting material before 

treatment) and the peak envelopes observed were characteristic of the TRIS Mn-Anderson 

cluster.
[102]

 The four main peak envelopes observed at m/z 689.91 (z = -1), 706.67 (z = -1), 

1397.58 (z = -1) and 1639.85 (z = -1) were assigned to [(C16H36N)[Mo3O10]]
1-

 (predicted: 

689.95), [MnMo3O14(C4H8N)2]
1-

 (predicted: 706.72), [(C16H36N)H-

[MnMo6O24(C4H8N)2]]
1-

 (predicted: 1397.68) and [(C16H36N)2[MnMo6O24(C4H8N)2]]
1-

 

(predicted: 1639.95), respectively.  
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Figure 100: ESI-MS spectra obtained for Test A. (Top) analysis of the starting material, TRIS Mn-Anderson 

compound before treatment with HFIP; (bottom) analysis of the isolated compound after treatment with 

HFIP. The difference in peak intensity can be attributed to a variation of the concentration of the samples. 

This test suggests that TRIS-based Mn-Anderson compounds are stable under the cleavage 

conditions of the trityl group and therefore this linker, grafted on a PEG grafted PS 

support, could be a good candidate for the SPPS protocol. 

3.4.2.2  Addition of the hybrid POM amino acid to a growing peptide chain 

The elaboration of a SPPS protocol adapted to the hybrid amino acid required the study of 

the reaction conditions under which the unnatural amino acid building block could be 

grafted to a growing peptide on a solid support (Figure 101). For the test reactions a 

Tentagel® S Trt resin preloaded with one alanine residue was used; the alanine unit acts as 

a control to verify that the hybrid POM was grafted at the expected reacting site. Without 

this residue it would be difficult to know whether the cleaved product was coupled to the 

solid support or was only interacting electrostatically with the polymer matrix.  
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Figure 101: Schematic representation of the SPPS parameter studied in the present series of test. 

The first attempt of the addition of compound 22 to the solid support was accomplished by 

mixing the functionalised resin with 3 equiv. of the pre-activated hybrid Mn-Anderson 

amino acid (22) in DMF for 1 h and in the presence of DIPEA (Test B). An hour after 

addition, the reagents were removed from the reaction vessel and the resin was washed 

with some solvent. The solid support, originally pale yellow, maintained this colour after 

completion of Test B. Since TRIS-based Mn-Anderson compounds have a strong 

characteristic orange colour, this absence of colour change seemed to suggest that the 

reaction did not occur. Another test was therefore carried out with similar conditions, 

however reagents were left to react for 2 h (Test C). At the end of Test C no colour change 

was observed. 

In a last attempt, the first resin from Test B that had already been in presence of the 

reagent mixture for 1 h was re-used and left to react overnight with a newly made reaction 

mixture (equivalent to a double coupling: one of 1 h and second one of 16 h; Test D). 

Once the liquid phase was removed by vacuum and the resin washed with solvent, a bright 

orange coloured solid support was observed. In order to establish if the hybrid Mn-

Anderson cluster was grafted at the expected reactive site (the amine of the alanine 

residue), the solid support was treated with the cleaving mixture (20% HFIP in DCM). The 

resulting orange solution was collected by filtration (the resin return to its original pale 

yellow colour) and the product was isolated by removal of the solvent. ESI-MS analysis 

was carried out in MeCN (Figure 102); the expected product has the general formula 

(TBA)3[MnMo6O24(C19H18NO2)(C11H17N2O4)]. Three main peak envelopes at m/z 1551.52 

(z = -1), 1791.80 (z = -1) and 2033.08 (z = -1) were observed and could be assigned as 

[H2[MnMo6O24(C19H18NO2)(C11H17N2O4)]]
1- 

(predicted: 1550.52), [H(C16H36N)[MnMo6-

O24(C19H18NO2)(C11H17N2O4)]]
1-

 (predicted: 1791.80), [(C16H36N)2[MnMo6O24(C19H18-

NO2)(C11H17N2O4)]]
1-

 (predicted: 2033.08).  



RESULTS AND DISCUSSION  112 

 

Figure 102: ESI-MS spectrum of the isolated product obtained in Test D with magnified representation of the 

main peak envelope at m/z 2033.08 assigned to [(TBA)2[MnMo6O24(C19H18NO2)(C11H17N2O4)]]
1-

. 

The main signals observed during the analysis were consistent with the expected 

compound formula, proving that compound 22 reacted as expected with the amine group of 

alanine; the reaction conditions used in Test D are thus appropriate for the use of 22 in our 

SPPS protocol. The fact that the coupling can be followed by the naked eye, as the 

characteristic bright orange colour of the hybrid Mn-Anderson cluster is retained on the 

solid support, is an interesting feature which is used hereafter as a rough means to follow 

the subsequent tests. 

In an attempt to optimise or at the very least reduce the reaction time required for this 

coupling, additional tests were carried out; the two most significant are presented herein. 

Test E was reduced to a single coupling of 16 h; the resulting solid support was of a pale 

yellow colour suggesting an absence of reaction (a bright orange colour was obtained only 

when a second coupling of 16 h was completed). For Test F, the solid support was treated 

with a double coupling of 1h and then 7 h and a light orange resin was isolated, colour 

suggesting that the reaction did not reach completion. Although not exhaustive, this series 

of tests suggests that the double coupling is important for this reaction and that the reaction 

is a slow process (which may be due to interactions between the matrix polymer and the 

charged POM species). 

In order to establish whether the activation of the amino acid TRIS-based Mn-Anderson by 

NHS ester groups was important, another kind of coupling reaction was investigated (Test 

G). N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate 

(HBTU) with DIPEA, a more common coupling reagent mixture,
[178]

 was used with the un-

activated acid/Fmoc protected TRIS-based Mn-Anderson cluster 
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((TBA)3[MnMo6O24(C8H12NO3)(C19H18NO2)]). After 1 h of treatment the solid support 

still maintained its pale yellow colour. This colour was also observed after a double 

coupling of 16 h and the reaction was considered unsuccessful. This test highlights the 

importance of the NHS activated precursor methodology developed in this study. 

Other coupling reagent mixtures are available, but the exhaustive study of the different 

coupling methods is beyond the scope of this work. For the under construction SPPS 

protocol, the Mn-Anderson amino acid (22) will be introduced into growing peptide chains 

following the reaction conditions established in Test D.  

3.4.2.3 Reaction conditions after the introduction of the hybrid POM amino acid  

After the introduction of the hybrid POM amino acid into the growing peptide chain, 

reaction conditions to carry on the peptide synthesis had to be established. In the following 

tests, the solid support was functionalised with the hybrid amino acid by following the 

reaction conditions established in Test D, the Fmoc protection was removed by treatment 

with piperidine and the reaction conditions for the addition of an amino acid were tested 

(using the Fmoc-Phe-OH unit; Figure 103). Two different synthetic paths were considered: 

the first one was using a common SPPS protocol (HBTU/DIPEA, Test H) and the second 

was to use DIC as an activating agent to form anhydrides in situ (which would correspond 

to the same type of reaction established in Section 3.1.2.1; Test I). 

 

Figure 103: Schematic representation of the SPPS parameter studied in this series of tests 

The activating reagent mixtures and the Fmoc-Phe-OH amino acid had to be introduced in 

large excess for these tests, otherwise the small scale at which these tests were carried out 

would imply either a small volume of solution (which could not fully cover the solid 

support) or a low concentration (which may have influenced the reactivity and therefore 

the results of the tests). Both tests were realised as double coupling and each coupling were 

carried out for 1 h. The resulting products were then cleaved, isolated and analysed by ESI-

MS.   
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The expected product has the general formula (TBA)3[MnMo6O24(C28H27N2O3) 

(C11H17N2O4)]. ESI-MS analysis from Test H revealed two main peak envelopes at m/z 

1327.49 (z = -1) and 1412.56 (z = -1 but also involving dimers of z= -2) which could not 

be assigned to the expected product or the starting material, the product of this test remains 

unidentified (Figure 104a). Two main peak envelopes at m/z 1698.63 (z = -1) and 1938.88 

(z = -1) which could be assigned as [H2[MnMo6O24(C28H27N2O3)(C11H17N2O4)]]
1- 

(predicted: 1697.59) and [(C16H36N)1H[MnMo6O24(C28H27N2O3)(C11H17N2O4)]]
1-

 

(predicted: 1938.87) were observed during the analysis of the product of Test I (Figure 

104b).  

 

Figure 104: ESI-MS spectra obtained after isolation of the product obtained in Test H (a) and Test I (b). 

Since the expected peptide-POM product was observed in the analysis of Test I, DIC was 

considered as a good candidate for our adapted SPPS protocol. The product observed in 

this test can be considered as the first tri-peptide synthesised with a POM amino acid. 
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3.4.3 Synthesis of the first POM-peptide hybrid cluster 

Having established the common cluster core to be stable to SPPS conditions in isolation, a 

simple sequence synthesis was attempted manually: compound 23, which can be described 

as NH2-Val-Leu-Hyb-Ala-Val-Leu-Ala-OH, where ‘Hyb’ denotes the hybrid amino acid 

residue resulting from incorporation of 22 (Figure 105). 

 

Figure 105: Representation of 23 (NH2-Val-Leu-Hyb-Ala-Val-Leu-Ala-OH) with Hyb being the hybrid 

amino acid resulting from incorporation of 22. The arrow indicates the addition order of the amino acids 

during the synthesis in an Fmoc-based solid phase synthesis. 

For the section prior to the incorporation of 22 (Ala-Leu-Val), a standard SPPS protocol (5 

equiv. of each amino acid and double coupling of 30 min each) using N,N’-

diisopropylcarbodiimide (DIC) as the activating agent was employed. The hybrid amino 

acid (22) was then incorporated using a “double coupling”, with a first reaction allowed to 

proceed for one hour, and the second overnight (same conditions than Test D). The excess 

of 22 was collected and reactivated to be re-used in the synthesis of other peptides. The 

same SPPS protocol was then continued for the addition of the remaining amino acids, 

then the resulting peptide was deprotected (treatment with a 20% piperidine solution in 

DMF), cleaved (20% HFIP in DCM), and isolated. ESI-MS analysis (Figure 106) was used 

to identify the product isolated. The expected product, compound 23, should have the 

general formula (TBA)3 [MnMo6O24(C25H42N5O7)(C15H28N3O2)] but peak envelopes 

observed at m/z 805.31 (z = -2) and 1611.62 (z = -1) could only be assigned as fragments 

consistent with NH2-Hyb-Ala-Val-Leu-Ala-OH: [H[MnMo6O24(C25H42N5O7)(C4H8N)]]
2-

 

(predicted: 805.32) and [H2[MnMo6O24(C25H42N5O7)(C4H8N)]]
1- 

(predicted:
 

1611.64), 

respectively. This ESI-MS results showed that while the Mn-Anderson amino acid was 

successfully coupled to the growing peptide sequence, amino acids added subsequently had 

failed to react with the amine of the Hyb residue.  
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Figure 106: ESI-MS spectrum obtained after the first attempt of synthesis of compound 23. 

It was clear that, following addition of the Hyb residue, the coupling protocol needed to be 

altered to take into account the unusual reactivity of the new residue, presumably 

stemming from the hindered nature of TRIS –NH2 group. During Test I, because of the 

small scale and the need of a sufficient reaction volume, the number of equivalents of 

coupling reagents was significantly higher (30 equiv. during the test). The synthesis was 

thus repeated and the amino acids quantities used after the introduction of the Hyb residue 

were increased six-fold; the reaction time was also increased to 3 h. The product resulting 

from this improved method was deprotected, cleaved, isolated and analysed by ESI-MS 

(Figure 107). Some major peak envelopes observed during this analysis were consistent 

with the proposed structure of 23: m/z 911.33 (z = -2) and 2065.91 (z = -1) assigned as 

[H[MnMo6O24(C25H42N5O7)(C15H28N3O2)]]
2-

 (predicted: 911.39) and [(C16H36N)H- 

[MnMo6O24(C25H42N5O7)(C15H28N3O2)]]
1-

 (predicted: 2066.07). Other peak envelopes 

observed could not be identified and are probably fragments of the POM-peptide chain (no 

starting material or not-fully-reacted species were observed). 
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Figure 107: ESI-MS spectrum obtained after the second attempt of synthesis of compound 23 with magnified 

representation of the peak envelope at m/z 2065.91 assigned to 

[(TBA)H[MnMo6O24(C25H42N5O7)(C15H28N3O2)]]
1-

. 

Further characterisation by elemental and TGA analyses (see Section 5.4.6.2) suggested a 

small cation exchange occurring during the synthesis, therefore the following general 

formula was established for compound 23: (TBA)1.4H1.6[MnMo6O24(C25H42N5O7) 

(C15H28N3O2)]. 

The synthesis and the isolation of compound 23 is the proof that, using the adapted SPPS 

protocol and the activated POM amino acid building block (22), Mn-Anderson units and be 

introduced as unnatural amino acids into the backbone of a peptide chain. This approach 

outlined in this first solid-supported synthesis of POM hybrids and should find 

considerable application in the wider hybrid cluster field. 

3.4.4 Section summary 

In this section, the first amino acid hybrid POM was synthesised: compound 22 an amine-

protected acid activated TRIS-based Mn-Anderson cluster. Reaction conditions permitting 

its use in SPPS were carefully studied through a series of test reactions (Test A-I). From 

this study, an adapted SPPS protocol was created which permit the insertion of the amino 

acid POM unit as part of peptide sequence, as demonstrated by the synthesis of compound 

23, the first POM-peptide hybrid ever synthesised. 
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4 Conclusions and Outlook 

The work presented in this thesis focused on developing modular approaches that permit 

the introduction of polyoxometalates (POMs) in peptide chemistry. POMs and peptides 

both present remarkable properties which make them appealing for a wide range of 

applications, especially in medicine and nanotechnology. In order to study the properties 

that result from their fusion, reliable methods to synthesise these POM-peptide hybrid 

systems had to be established (Figure 108). 

This work is centred on the hybrid organic-inorganic Mn-Anderson cluster, a hybrid POM 

first discovered by P. Gouzerh et al. in 2002.
[49]

 This cluster was used as a model 

compound to establish robust methodologies.  

 

Figure 108: Cartoon representing the initial ideas and aims of this thesis along with the result, i.e. a TRIS-

based Mn-Anderson cluster introduced into the backbone of a peptide chain. 
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4.1 TRIS-based Mn-Anderson building blocks modification tool box 

In the first part of this thesis, a set of methodologies was established to adapt TRIS-based 

Mn-Anderson clusters chemistries to peptides’ requirements. The variables explored 

included: solvent compatibility, reactivity toward amine and carboxylic acid groups, and 

availability of carboxylic acid functionalised clusters. 

While DMF soluble clusters were readily available as TBA salts, no straightforward 

synthetic procedure would have led to water soluble compounds. The standard protocol for 

the synthesis of TRIS-based Mn-Anderson complexes consists of a one pot reaction in 

which (TBA)4[α-MO8O26] is reacted with the TRIS ligand and Mn
III

 acetate and refluxed in 

MeCN yielding the hybrid cluster as a TBA salt.
[50]

 The introduction of different counter 

cations can then be realised through cation exchange processes on the resultant TBA salt 

species.
[110,111]

 However, these cation exchange procedures are not trivial and isolation of 

pure compounds by this process is achieved with difficulties. With the objective of a 

modular approach, water-soluble TRIS Mn-Anderson building block syntheses should be 

as easy as the synthesis of the TBA salt, therefore the possibility of altering the standard 

protocol to directly synthesise TRIS-based POM with other cations was explored. 

Three octamolybdate salts ((TMA)2Na2[MO8O26], 1; (TEA)3Na[MO8O26], 2; 

(TPA)2Na2[MO8O26], 3) were synthesised by altering the published procedure to the 

synthesis of the TBA octamolybdate cluster by replacing the TBA·Br reagent for the 

appropriate TXA·Br (X = M, E, P, respectively). ESI-MS analyses of 1-3 revealed a 

rearrangement in solution of the POM clusters into {Mo4O13} building units. The 

formation of this intermediate is known to be the first mechanistic step of the TRIS Mn-

Anderson cluster formation.
[102]

 This observation led to the synthesis of the hybrid 

complex. The standard protocol to synthesise the TRIS Mn-Anderson had to be modified 

due to the difference of solubility in TXA octamolybdate compounds compared to that of 

the TBA salt. The reaction solvent was thus changed to DMF and the TXA compounds 

were dissolved in this solvent prior to the addition of the other reagents. Four novel TRIS 

Mn-Anderson compounds were isolated from these reactions (Figure 109): three TXA 

TRIS Mn-Anderson salts ((TMA)3[MnMo6O18((OCH2)3CNH2)2], 4; 

((TEA)3[MnMo6O18((OCH2)3CNH2)2], 5; (TPA)2(Na)[MnMo6O18((OCH2)3CNH2)2], 6; 

formed from 1-3, respectively) and a sodium species ((Na)3[MnMo6O18((OCH2)3CNH2)2], 

7; obtained from 1 and 3). Over the crystallisation process of the solution obtained for the 

reactions of compounds 1 and 3, a crystalline material and precipitate were isolated. After 
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recrystallisation of each product the former revealed to be the Na salt species (7) while the 

precipitate recrystallised as the TXA TRIS Mn-Anderson cluster (4 and 6).  

 

Figure 109: Overview of the synthesis and isolation pattern of compounds 4-7. 

These compounds are the first examples of TRIS Mn-Anderson complexes synthesised 

from compounds other than (TBA)4[α-MO8O26] and represent an alternative to the cation 

exchange procedures. These clusters present interesting solubility properties from the 

perspective of using POM-peptides hybrids for cell targeting drugs. Their solubility in 

DMF permits their post-functionalisation by organic reactions while their solubility in 

water makes them compatible with biological studies in aqueous media.   
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In order to covalently link the POM cluster to peptides, the formation of peptide bonds was 

investigated (Figure 110). The synthesis of compounds 8 and 9 demonstrated that the use 

of anhydride intermediates is an efficient means to graft organic molecules to the TRIS 

Mn-Anderson building block in reaction conditions compatible with peptides (50 °C in 

DMF). Furthermore, when using cyclic anhydrides, this reaction led to the introduction of 

terminal carboxylic acid functional groups. This synthetic route was demonstrated through 

compound 10, the first carboxylic acid functionalised Mn-Anderson cluster. 

 

Figure 110: Overview of the strategies established in order to graft onto the POM cluster either carboxylic 

acid functionalised or amine functionalised ligands.  

The newly obtained acid functionalised compound was then treated to form an NHS ester-

activated precursor (11) which, as illustrated by the formation of compounds 12 and 13, 

can react under mild conditions (DMF at room temperature) with the amine functional 

group of amino acids to form peptide bonds. This peptide bond formation methodology is 

highly compatible with the modular approach: the activated precursor can be synthesised in 

large batches to then react with various peptide chains in their native forms. 

The formation of peptide bonds through the reaction with anhydride intermediates and the 

synthesis of an NHS-activated precursor were key steps for the incorporation of the Mn-

Anderson unit into the backbone of peptides.  
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4.2 Incorporation of Mn-Anderson clusters as linking components 

Before being able to incorporate the Mn-Anderson cluster into the backbone of a peptide, it 

was introduced as a linking component between two identical pre-synthesised peptide 

chains, where both of the peptides are attached to the POM cluster through their N-

terminus. This study exploited the aforementioned NHS-activated precursor (11) by 

introducing it in the middle of two oligopeptides, the di-phenylalanine (14) and tri-

phenylalanine (15), and a 15-mer (16). Compound 16 is a hybrid POM cluster of 

unprecedented scale, where the Mn-Anderson building block is introduced between two 

identical 15-mer chains (Figure 111). 

 

Figure 111: A variety of compounds in which the Mn-Anderson building block is introduced as a linking 

component between two peptide chains. 

Compound 14 has demonstrated self-assembly properties induced by the peptide ligand 

introduced, i.e. a self-supporting organogel, stable at room temperature, was obtained by 

cooling an MeCN solution at a concentration of 4.5 w/w%. These observations validate the 

hypothesis that the introduction of specific peptide sequences could help tune the self-

assembly properties of hybrid POM materials.  

CD analysis in MeCN revealed that while the native 15-mer peptide sequence does not 

possess a regular structure, compound 16 adopted an α-helix arrangement. Although this 

analysis does not indicate if the whole molecule or only parts of it participate in the helical 

arrangement, this observation highlights how the incorporation of the POM cluster into 

proteins/peptides can result in significant new structural features. 

In this approach, the POM unit is not part of a peptide sequence but the simplicity and the 

wide applicability of this NHS-activated precursor method makes it a good candidate for 
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the study of POM nanomaterial structured by peptide sequences or for the investigation of 

the effects of the charged metal-oxide cluster on peptide chain folding. 

4.3  Tackling the isolation issue of asymmetric hybrid Mn-Anderson 

clusters 

Until now only symmetric Mn-Anderson clusters have been synthesised, limiting the study 

to the introduction of the POM as a linking component between two peptide chains. To 

fully explore the potential of the bi-functional hybrid Mn-Anderson unit and to integrate it 

as part of a peptide sequence, its isolation as an asymmetric cluster had to be solved. 

Asymmetric clusters had been reported, but the techniques employed for their isolation 

were very specific to the ligand employed and could not be generally applied. To be part of 

a modular approach, the synthesis of asymmetric Mn-Anderson clusters had to be simple, 

reliable and permit the repeatable isolation of the compound in batches.  

 

Figure 112: Schematic representation of the chromatographic method principle: the crude mixture made of 

the asymmetric cluster and the two symmetric by-products are separated according to their hydrophilicities 

on RP C18 silica columns eluted with a gradient of ammonium acetate buffer/MeCN solvent mixture. Colour 

Scheme: hydrophilic ligand, blue elipse; hydrophobic ligand, red elipse. 

A set of methodologies was established to solve this issue. For cases where the asymmetric 

cluster is made of two ligands of different hydrophobicities, a chromatographic method 

relying on the difference of affinities for RP media of the ligands was established (Figure 

112). The diversity of the asymmetric clusters isolated following this approach (17-20) 

proves its reliability and robustness (Figure 113).  
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Figure 113: A variety of asymmetric clusters isolated using the chromatography approach (17-20). Each 

asymmetric system is made up of one hydrophobic and one hydrophilic ligand resulting in an effective 

separation from their symmetric by-products during RP-chromatography. Colour scheme: Mn, orange 

(polyhedra); Mo, blue (polyhedra); O, red. 

In the case of asymmetric clusters bearing ligands of similar hydrophilicity, a post-

functionalisation approach based on the modification of a “universal” asymmetric Mn-

Anderson precursor (20) was established. This approach was demonstrated through the 

synthesis of 21, an asymmetric cluster which could not have been isolated using the 

chromatographic approach (Figure 114). 

 

Figure 114: Asymmetric TRIS-based Mn-Anderson compound synthesised by post-synthetic modification of 

the asymmetric “universal” building block (20). 
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Establishing these methods means the asymmetric clusters can be reliably isolated with 

high purity and used as novel di-functionalised building blocks. An overview of the 

application of such hybrid units is given in Figure 115. 

 

Figure 115: Schematic representation of some of the potential applications of bi-functional asymmetric Mn-

Anderson compounds in material and devices. In all cases, control of reactivity either side of the metal-oxide 

cluster is important to achieve the desired function.  
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4.4 Incorporation of Mn-Anderson clusters into the peptide backbone. 

In this section, the first hybrid POM amino acid was designed and isolated using the 

methodologies previously developed. The amino acid unit was made of the Mn-Anderson 

POM core functionalised on one side by an Fmoc-protected amine and by an NHS ester-

activated carboxylic acid moiety on the other side (compound 22, Figure 116). 

 

Figure 116: Amine-protected acid-activated Mn-Anderson building block (22). 

The possibility of introducing this building block in a peptide sequence during SPPS as 

easily as any other amino acid was then investigated. Many aspects of SPPS protocols had 

to be carefully studied considering the unusual reactivity of the POM amino acid. A series 

of tests was thus conducted to establish each parameter individually. A PEG coated PS 

matrix was selected since its amphiphilic character makes it suitable for a wider range of 

reaction than standard PS supports. The trityl linker was found to be a suitable candidate 

for the SPPS adapted protocol, as TRIS-based Mn-Anderson clusters proved to be stable 

under its cleavage reaction conditions (HFIP 20% in DCM; Test A). A series of tests (Test 

B-G) were then carried out to establish the reaction conditions which would allow the 

hybrid amino acid building block (22) to be grafted on the solid support. Following these 

tests, it was established that the unnatural amino acid could be grafted onto the solid 

support if a double coupling was carried out, one lasting 1 h and a second lasting 16 h. The 

reaction conditions allowing the continuation of the peptide synthesis after the introduction 

of this unusual residue were investigated (Test H-I). It was found that DIC was a suitable 

activating agent permitting the formation of anhydride intermediates which could then 

react with the free amine located on the hybrid POM.  

From these tests, an adapted SPPS protocol was establish (Figure 117) which permitted the 

synthesis of 23 (NH2-Val-Leu-Hyb-Ala-Val-Leu-Ala-OH): the first peptide sequence 

incorporating a hybrid POM amino acid as one of its residues (Hyb residue). 
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Figure 117: Schematic representation of the adapted SPPS protocol established to accommodate the unusual 

reactivity of the TRIS-based Mn-Anderson hybrid amino acid (Hyb residue). 
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4.5 Future work 

The main goal of this thesis has been achieved: a series of methods was established which 

permit the introduction of the Mn-Anderson building block as part of an element of a 

peptide sequence. Nevertheless, many synthetic and analytic aspects of this project still 

require further investigation and method developments. 

In the SPPS protocol, it was established that after the addition of the Mn-Anderson unit the 

number of equivalents of amino acid reagent used for subsequent couplings should be 

increased. In the synthesis of 23 the number of equivalents was thus increased to 30 

equivalents to ensure reactivity, but an in-depth study should be carried out in order to 

optimise this step of the reaction, as this very large excess of reagent might not be needed. 

The compatibility of the POM cluster with side chain protecting groups and especially 

their cleaving conditions should also be the object of investigations as many amino acids 

could not be used during this work because of the reactivity of their side chain. The study 

of the introduction of several POM amino acids in the same sequence would also be of 

significant interest. 

As the peptide chain gets longer, it became more difficult to assess the purity and identity 

of the resulting POM-peptide hybrids. New methods should thus be developed to identify 

and analyse these unprecedented hybrid POMs. Electrophoresis, HPLC or protein 

crystallisation methods could be interesting techniques to assess the purity of the 

synthesised hybrids.  

Robust methodologies now exist to incorporate the Mn-Anderson cluster in to a peptide 

sequence and studies of the resulting properties that could come out of the fusion of POMs 

with peptides can be undertaken. Furthermore, since the POM building block can be 

introduced in peptide chains during their synthesis by SPPS, analogues of a sequence in 

which the POM is introduced at different positions could be synthesised and used to 

determine the effect of the charged metal-oxide cluster on peptide properties.  

In this thesis, a chromatographic methodology is presented permitting the isolation of 

asymmetric TRIS-based Mn-Anderson clusters; it is the first time that RP chromatography 

has been reliably employed to purify hybrid POM compounds. Several hybrid POM 

clusters are di-substituted
[22]

 (examples of which are given in Figure 118) but only the 

TRIS-based Mn-Anderson has been isolated as an asymmetric unit. The adaptation of this 

protocol should be investigated as it could lead to the purification and the isolation of other 

asymmetric hybrid POM systems. It is worth remembering that the asymmetric TRIS-
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based hexavanadate cluster was once observed but never isolated as a pure sample.
[95]

 

Considering the technique’s reliability and the isolated products’ purities, this approach 

might reach beyond the problem of asymmetric cluster isolation and give rise to a new 

purification tool in the field of hybrid POM chemistry. 

 

 

Figure 118: Examples of well-known di-functionalised hybrid POM clusters on which the asymmetric 

synthesis and the isolation using the chromatographic methodology could be investigated. (a) [V6O11-

((OCH2)3CR1)((OCH2)3CR2)]
2-

; (b) [FeMo6O18(((OCH2)3CR1)((OCH2)3CR2)]
3-

; (c) [P2W17O61(Si2OR1R2)]
6-

. 

Colour scheme: Fe, dark red (polyhedra); P, pink (polyhedra); V, purple (polyhedra); Mo, blue (polyhedra); 

W, green (polyhedra); O, red; C, black; Si, light blue; 
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5 Experimental 

5.1 Materials 

Unless mentioned otherwise all reagents and solvents were obtained from commercial 

sources and were used without further purifications. The long peptide “P1” (NH2-Ala-Asn-

Thr-Leu-Ser-Ser-Thr-Ala-Ser-Thr-Leu-Glu-Ser-Tyr-Leu-OH) was purchased from PPR 

Ltd at a 98 % purity (HPLC trace and mass spectrometry). TBA octamolybdate 

((C16H36N)4[α-Mo8O26])
[227]

 and TBA TRIS Mn-Anderson ((C16H36N)3[Mo6O24-

(C4H8N)2])
[50]

 starting materials were synthesised following the published procedures. 

5.2 Instrumentation 

Elemental Analysis 

Carbon, nitrogen and hydrogen content were determined by the microanalysis services 

within the School of Chemistry, University of Glasgow, using an EA 1110 CHNS, CE-440 

Elemental Analyser. 

NMR Spectroscopy 

NMR data was recorded on a Bruker Avance 400 MHz (or when indicated on a Bruker 

Avance 500 MHz) at T = 300 K; deuterated solvents were purchased at Goss Scientific. 

The peaks are denoted s = singlet, d = doublet, m = multiplet, br = broad and all coupling 

constants (J) are given in Hz. 

Electrospray Ionisation Mass Spectroscopic Measurements 

MS data for compounds 1-10 were carried out using a Q-trap, time-of-flight MS (MicrOTOF-

Q MS) instrument equipped with an electrospray (ESI) source supplied by Bruker Daltonics 

Ltd. Analyses were carried out at 180 °C in MeCN and the spectrometer was calibrated with 

the standard tune-mix to give a precision of ca. 1.5 ppm in the region of 500-3000 m/z; The ion 

polarity for the MS scans recorded was negative, with the voltage of the capillary tip set at 

4500 V, end plate offset at -500 V, funnel 1 RF at 400 Vpp and funnel 2 RF at 400 Vpp, 

hexapole RF at 400 Vpp, ion energy 5.0 eV, collision energy at 8 eV, collision cell RF at 

1500 Vpp, transfer time at 100.0 μs, and the pre-pulse storage time at 10.0 μs. Each 

spectrum was collected for 2 min. 

Measurements for compounds 11-23 and Test A-I were carried out at 180 °C in MeCN 

using a Bruker MaXis Impact instrument. The calibration solution used was Agilent ESI-L 
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low concentration tuning mix solution, Part No. G1969-85000, enabling calibration 

between approximately 50 m/z and 2000 m/z. Samples were dissolved in MeCN and 

introduced into the MS at a dry gas temperature of 180 °C. The ion polarity for all MS 

scans recorded was negative, with the voltage of the capillary tip set at 4500 V, end plate 

offset at -500 V, funnel 1 RF at 400 Vpp and funnel 2 RF at 400 Vpp, hexapole RF at 400 

Vpp, ion energy 5.0 eV, collision energy at 15 eV, collision cell RF at 2100 Vpp, transfer 

time at 120.0 μs, and the pre-pulse storage time at 20.0 μs. Each spectrum was collected for 

2 min.  

Analysis of MS spectra was carried out using Data Analysis 4.0 software supplied by 

Bruker Daltonics. 

Single crystal X-ray diffraction  

Two different types of X-ray diffractometers were used for single crystal structure 

determination: 

- Bruker Apex II Quasar charge-coupled device (CCD) detector (λ (MoKα) = 

0.71073Å) at 150(2) K, where the data reduction was performed using the Apex2 

software package and structure solution. 

- Oxford Diffraction Gemini Ultra with an ATLAS CCD detector [(λ (CuKα) = 

1.54184 Å] at 150(2) K, where the data reduction was performed using the 

CrysAlis software package and structure solution.  

Independent of the type of X-ray diffractometer, corrections for incident and diffracted 

beam absorption effects were applied utilising analytical numeric absorption correction 

with a multifaceted crystal model,
[247]

 or using empirical absorption correction.
[248]

 

Refinement was carried out with SHELXS-97 or -2013
[249]

 and SHELXL-97or -2013
[249]

 

using WinGX
[250]

 via a full matrix least-squares on F
2
 method. For crystallographic data 

see Section 6. 

RP-HPLC measurements 

RP-HPLC measurements were performed on an Agilent 1100 Series (Agilent 

Technologies) equipped with a vacuum degasser, a binary pump (G1312A), a thermostated 

column compartment (G1316A), a standard autosampler (G1313A), and a variable 

wavelength detector (VWD) (G1314A). 5 µL of the samples were injected on a 

Phenomenex Luna® 3 µm C18(2) 100 Å, 150 x 2 mm column and eluted at 0.5 mL/min 

with a gradient of 0.05 M ammonium acetate (pH = 6.7 - 6.9) (A)/MeCN (B) (solvent 
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gradient given in Table 5). The oven temperature was set to 25 °C and elution was detected 

by UV (λ = 254 nm). The data recorded were processed using Bruker compass Hystar 3.2 

(Bruker Daltonics) and Hyphenation Star PP software. 

Table 5: Eluent composition for RP-HPLC measurements. Runlength 17.0 min. 

Time (min) A (%) B (%) 

0.0 95 5 

3.0 95 5 

15.0 5 95 

17.0 5 95 

 

Flash Chromatography: 

Flash chromatography separations were performed on a Reveleris® iES Flash 

chromatography system using the Reveleris® Navigator
TM

 software. Before injection, 

columns were equilibrated for 4 min with 65:35 of A/B solvents at 18 mL/min. Samples 

were injected dry on Pre-packed Reveleris® C18 4 g columns (two in series) by adsorption 

on celite (20 wt%, maximum total weight 1.8 g (i.e. 300 mg of compound adsorbed on 1.5 

g of celite® 535 coarse)). Columns were eluted at 18 mL/min with a gradient of solvent A 

and B (see Table 6) and elution was detected by UV (at λUV1 = 254 nm and λUV2 = 350 nm) 

and an ELSD (carrier solvent: isopropanol).  

Table 6: Eluent composition for flash chromatography. Run length 12.9 min. 

Time (min) A (%) B (%) 

0.0 65.0 35.0 

2.2 65.0 35.0 

11.8 5.0 95.0 

12.9 5.0 95.0 
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UV / Vis spectroscopy: 

Solvents and concentrations are given for each compound in the corresponding section.  

JASCO V-670 spectrophotometer 

Serial No. A007061154 

Band width  2 nm 

Response  Medium   

Measurement range  500 - 190 nm 

Data pitch  0.5 nm 

Scanning speed 200 nm/min 

Accumulation  1 

Cell Length   1.0 cm 

Temperature   20 °C 

 

CD measurement:  

JASCO J-810 spectropolarimeter  

Serial No.  B029360750 

Band width   1 nm 

Response   2 sec    

Sensitivity   Standard  

Measurement range  260 - 190 nm 

Data pitch    0.2 nm 

Scanning speed  10 nm/min 

Accumulation   3   

Cell Length   0.5 cm 

Temperature   20 °C   

Thermogravimetric Analysis (TGA): 

Thermogravimetric analysis was performed on a TA Instruments Q 500 

Thermogravimetric Analyser under nitrogen flow at a typical heating rate of 5 °C/min. 
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5.3 Techniques 

Set-up for crystallisation: each crystallisation of TRIS-based Mn-Anderson compound by 

slow Et2O diffusion was set-up as followed: a 50 mL conical flask containing the product 

dissolved in the appropriate solvent (MeCN or DMF) was inserted into a 500 mL tub 

containing Et2O (as in Figure 119).  

 

Figure 119: Representation of the crystallisation set-up: compound solution contained in a 50 mL conical 

flask inserted into a 500 mL tub with Et2O. The mother liquor is shown in orange, whilst the grey area 

represents the Et2O. 
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Manual peptide synthesis: synthesis of compound 23 and Test B-I were realised using 

manual SPPS. The solid support on which the synthesis was realised was contained in a 

plastic syringe equipped with a frit column plate. Some aspects of the technique are 

illustrated in Figure 120. 

 

Figure 120: Representation of some key aspects of the manual peptide synthesis (left) set up for SPPS 

reaction cycles; (middle) set up for filtrations and washes performed using a Buchner flask linked to a 

vacuum pump. (right) The resin colour change: originally the resin was pale yellow, it maintained this colour 

until the addition of the Mn-Anderson hybrid residue. Following addition of the hybrid cluster, the solid 

support was of a bright orange colour.  
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5.4 Synthetic procedures 

5.4.1 The synthesis of TXA octamolybdate salts 

The synthesis of the (TXA)xNa4-x[Mo8O26] were adapted from the literature procedure of 

(TBA)4[Mo8O26].
[227]

 To obtain single crystals of compounds 1-3 for X-ray analysis the 

precipitates were crystallised from DMF.  

5.4.1.1  Compound 1: (TMA)2Na2[Mo8O26]  

Sodium molybdate dihydrate (Na2MoO4·2H20, 5.0 g, 20.7 mmol) was dissolved in H2O 

(12 mL) before being acidified with 6M HCl (5.05 mL). The reaction mixture was stirred 

vigorously for 1-2 min before a solution of TMA bromide (1.6 g, 10.4 mmol) in H2O (10 

mL) was added, resulting in the formation of a white precipitate. The reaction mixture was 

stirred vigorously for 10 min. The white precipitate was then collected and successively 

washed with H2O (20 mL), ethanol (EtOH, 20 mL), acetone (20 mL) and Et2O (20 mL). 

Compound 1, (N(CH3)4)2Na2[Mo8O26], was obtained as a white powder. Yield: 3.18 g, 

2.31 mmol, 88 % based on Mo; Elemental analysis: Calc. for C8H24Mo8N2Na2O26 

(1377.77 g/mol): C, 6.97; H, 1.76; N, 2.03; Found: C, 6.88; H, 1.85; N, 1.87; ESI-MS: 

peak envelopes observed at m/z 614.2 (z = -1) and 665.7 (z = -1) were assigned as 

[Na1[Mo4O13]]
1-

 (predicted: 614.55) and [(N(CH3)4)[Mo4O13]]
1-

 (predicted: 665.65), 

respectively; TGA: The first loss is of 3.94 %, with a second loss at about 250 °C of 13.94 

% (Figure 121). The theoretical value for the loss of the TMA cations is 10.76 %. If the 

weight-dip at about 450 °C is an artefact, then the second loss would be 12.36 %, which 

corresponds well with the theoretical value. 

 

Figure 121: TGA result obtained for compound 1 
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5.4.1.2 Compound 2: (TEA)3Na1[Mo8O26] 

Compound 2 was synthesised in the same manner as compound 1, only TMA bromide was 

substituted with TEA bromide (2.19 g, 10.4 mmol). The compound, 

(N(C2H5)4)3Na1[Mo8O26], was obtained as a white powder. Yield: 3.73 g, 1.93 mmol, 75 % 

based on Mo; Elemental analysis: Calc. for C24H60Mo8N3Na1O26 (1597.25 g/mol): C, 

18.05; H, 3.79; N, 2.63; Found: C, 17.79; H, 3.67; N, 2.64; ESI-MS: peak envelopes 

observed at m/z 614.2 (z = -1), 721.7 (z = -1) and 1574.6 (z = -1) were assigned as 

[Na[Mo4O13]]
1- 

(predicted: 614.55), [(N(C2H5)4)[Mo4O13]]
1-

 (predicted: 721.72) and 

[(N(C2H5)4)3Mo8O26]
1- 

(predicted: 1574.59), respectively; TGA: The observed loss is of 

30.02% (Figure 121). The theoretical value for the loss of the TEA cations is 24.46 %. If 

the weight-dip at about 425 °C is an artefact, then the total loss would be 25.52 %, which 

corresponds well with the theoretical value. 

 

Figure 122: TGA result obtained for compound 2 

5.4.1.3  Compound 3: (TPA)2Na2[Mo8O26] 

Compound 3 was synthesised in the same manner as compound 1, only TMA bromide was 

substituted with TPA bromide (2.77 g, 10.4 mmol). The compound, 

(N(C3H7)4)2Na2[Mo8O26], was obtained as a white powder. Yield: 3.63 g, 2.26 mmol, 87 % 

based on Mo; Elemental analysis: Calc. for C24H56Mo8N2Na2O26 (1602.20 g/mol): C, 

17.99; H, 3.52; N, 1.75, Na 2.87; Found: C, 17.81; H, 3.45; N, 1.78, Na, 2.77; ESI-MS: 

peak envelopes observed at m/z 614.16 (z = -1) and 778.3 (z = -1) were assigned as 

[Na[Mo4O13]]
1-

 (predicted: 614.55) and [(N(C3H7)4)[Mo4O13]]
1-

 (predicted: 777.78), 
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respectively; TGA: The observed loss is of 25.52% (Figure 123). The theoretical value for 

the loss of the TPA cations is 23.26 %. If the weight-dip at about 425 °C is an artefact, 

then the total loss would be 24.17 %, which corresponds well with the theoretical value. 

 

Figure 123: TGA result obtained for compound 3 

5.4.2 The synthesis of Na and TXA TRIS Mn-Anderson compounds 

The compounds 4-7 were synthesised according to an altered literature procedure for TRIS 

Mn-Anderson,
[50]

 where the (TBA)4[α-Mo8O26] was substituted by compound 1, 2 or 3. 

Due to the low solubility of compounds 1-3 in MeCN, the reactions were carried out in 

DMF at 80 °C.  

5.4.2.1 Compound 4 (TMA)3[MnMo6O18((OCH2)3CNH2)2] and Compound 7 

(Na)3[MnMo6O18(OCH2)3CNH2)2]:  

Compound 1 (0.430 g, 0.31 mmol) was dissolved in 60 mL of DMF at room temperature 

(30 min). Manganese acetate dihydrate (Mn(OAc)3·2H2O, 0.127 g, 0.47 mmol) and TRIS 

(0.131 g, 1.08 mmol) were added and the resulting solution was heated up to 80 °C for 20 

h. During the reaction a brown precipitate was formed, the reaction was then cooled to 

room temperature and the precipitate removed. The resulting clear orange solution was set 

up of crystallisation at 4 °C by Et2O diffusion. This crystallisation led to the formation of 

crystals and a precipitate. The crystalline material is compound 7, whilst compound 4 is 

obtained by redissolving the precipitate in DMF and crystallised by Et2O diffusion at 4 °C.  
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Compound 4 (N(CH3)4)3[MnMo6O18((OCH2)3CNH2)2]: Yield: 9 % based on Mo; 

Elemental analysis: Calc. for C20H52Mn1Mo6N5O24 (1377.22 g/mol): C, 17.44; H, 3.81; 

N, 5.09; Found: C, 17.27; H, 2.90; N, 4.57; 
1
H NMR (DMSO-d6, 400 MHz): δ = 64.00-

58.00 (m, br, 12H, CH2), 3.60 (s, br, 4H, NH2), 3.10 ppm (s, 36H, CH3); ESI-MS: The 

peak envelope observed at m/z 1304.6 (z = -1) was assigned as 

[(N(CH3)4)2[MnMo6O18((OCH2)3CNH2)2]]
1-

 (predicted: 1302.58). 

Compound 7 Na3[MnMo6O18(OCH2)3CNH2)2]: Yield: 9 % based on Mo; Elemental 

analysis: Calc. for C8H16Mn1Mo6N2Na3O24·(DMF)3 (1443.04 g/mol): C, 14.15; H, 2.58; 

N, 4.85; Found: C, 13.68.; H, 2.63; N, 4.36; 
1
H NMR (DMSO-d6, 400 MHz): δ = 64.00-

58.00 (m, br, 12H, CH2), 3.60 ppm (s, br, 4H, NH2); ESI-MS: The peak envelope observed 

at m/z 1201.4 (z = -1) was assigned as [Na2[MnMo6O18((OCH2)3CNH2)2]]
1-

 (predicted: 

1200.36). 

5.4.2.2 Compound 5: (TEA)3[MnMo6O18((OCH2)3CNH2)2] 

Compound 2 (0.498 g, 0.31 mmol) was dissolved in 60 mL of DMF at room temperature 

(30 min). Mn(OAc)3·2H2O (0.127 g, 0.47 mmol) and TRIS (0.131 g, 1.08 mmol) were 

added and the resulting solution was heated up to 80 °C for 20 h. The reaction was then 

cooled down to room temperature and the clear orange solution was set up of 

crystallisation at 4°C by Et2O diffusion. This crystallisation led to the formation of crystals 

and a precipitate both made of compound 5. Compound 5 was obtained pure by 

redissolving separately the crystals and the precipitate in DMF and recrystallised by Et2O 

diffusion at 4 °C. Yield: 27 % based on Mo; Elemental analysis: Calc. for 

C32H76Mn1Mo6N5O24 (1545.54 g/mol): C, 24.87; H, 4.96; N, 4.53; Found: C, 24.16; H, 

4.73; N, 4.42; 
1
H NMR (DMSO-d6, 400 MHz): δ = 65.00 - 58.00 (m, br, 12H, CH2), 3.60 

(s, br, 4H, NH2), 3.28 - 3.12 (m, 24H, CH2), 1.26 - 1.00 ppm (m, 36H, CH3); ESI-MS: The 

peak envelope observed at m/z 1414.8 (z = -1) was assigned as [(N(C2H5)4)2 

[MnMo6O18((OCH2)3CNH2)2]]
1-

 (predicted: 1414.70). 

5.4.2.3 Compound 6 (TPA)3[MnMo6O18((OCH2)3CNH2)2] and compound 7 (Na)3[Mn 

Mo6O18((OCH2)3CNH2)2] 

Compound 3 (0.500 g, 0.31 mmol) was dissolved in 60 mL of DMF at room temperature 

(30 min). Mn(OAc)3·2H2O (0.127 g, 0.47 mmol) and TRIS (0.131 g, 1.08 mmol) were 

added and the resulting solution was heated up to 80 °C for 20 h. The reaction was then 

cooled to room temperature and the resulting clear orange solution was set up of 
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crystallisation at 4 °C by Et2O diffusion. This crystallisation led to the formation of 

crystals and a precipitate. The crystalline material is compound 7, whilst compound 6 is 

obtained by redissolving the precipitate in DMF and crystallised by Et2O diffusion at 4 °C. 

Compound 6 TPA2Na1[MnMo6O18((OCH2)3CNH2)2]: Yield: 16 % based on Mo; 

Elemental analysis: Calc. for C32H72Mn1Mo6N4Na1O24 (1550.49 g/mol): C, 24.79; H, 

4.68; N, 3.61; Found: C, 24.87; H, 4.77; N, 3.91; 
1
H NMR (DMSO-d6, 400 MHz): δ = 

63.00 - 59.00 (m, br, 12H, CH2), 3.60 (s, br, 4H, NH2), 3.19 - 3.06 (m, 24H, CH2), 1.70 - 

1.53 (m, 24H, CH2), 0.94 - 0.83 ppm (m, 36H, CH3); ESI-MS: The peak envelope 

observed at m/z 1527.9 (z = -1) was assigned as [(N(C3H7)4)2[MnMo6O18((OCH2)3C- 

NH2)2]]
1-

 (predicted: 1527.83). 

Compound 7 Na3[MnMo6O18((OCH2)3CNH2)2]: Yield: 17 % based on Mo; Elemental 

analysis: Calc. for C8H16Mn1Mo6N2Na3O24 ·(DMF)3 (1443.04 g/mol): C, 14.15; H, 2.58; 

N, 4.85; Found: C, 15.55; H, 2.24; N, 4.37; 
1
H NMR (DMSO-d6, 400 MHz): δ = 64.00 -

58.00 (m, br, 12H, CH2), 3.60 ppm (s, br, 2H, NH2); ESI-MS: The peak envelope observed 

at m/z 1201.4 (z = -1) corresponds to [Na2[MnMo6O18((OCH2)3CNH2)2]]
1-

 (predicted: 

1200.36). 

5.4.3 Procedures for peptide bond formation via the C-terminus 

5.4.3.1 Compound 8: (TBA)3[MnMo6O24(C7H12NO)2] 

 

205 µL of propionic anhydride (208 mg, 1.60 mmol, 10 equiv.) were added to a MeCN 

solution (10 mL) of TBA TRIS Mn-Anderson starting material (300 mg, 0.16 mmol). The 

resulting orange clear solution was stirred for 24 h at 50 °C, then cooled down to room 

temperature. Product was isolated by crystallisation under slow Et2O diffusion as block 

shaped orange crystals (obtained within a week). Yield: 277 mg, 0.14 mmol, 87 %; 

Elemental analysis: Calc. for C62H132MnMo6N5O26 (1994.31 g/mol): C, 37.34; H, 6.67; N, 

3.51; Found: C, 36.76; H, 6.63; N, 3.51; 
1
H NMR (DMSO-d6, 400 MHz): = 67.00 - 

62.00 (s, br, 12H, CH2), 7.38 (br, s, 2H, NH), 3.16 (m, 24H, CH2 from TBA
+
), 2.41 (br, s, 

4H, CH2), 1.56 (m, 24H, CH2 from TBA
+
), 1.31 (m, 24H, CH2 from TBA

+
), 0.93 ppm (m, 
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42H, CH3 + CH3 from TBA
+
);

 13
C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 57.5 (CH2), 

27.0 (CH2), 23.1 (CH2), 19.3 (CH2), 13.6 (CH3), 11.0 ppm (CH3); ESI-MS: the peak 

envelope observed at m/z 1750.99 (z = -1) was assigned as [(C16H36N)2[MnMo6O18-

((OCH2)3CNHCOCH2CH3)2]]
1-

 (predicted: 1752.01). 

 

Figure 124:
 13

C DEPTQ NMR of 8 in DMSO-d6 at 100 MHz. 

5.4.3.2 Compound 9: (TBA)3[MnMo6O24(C11H12NO)2] 

 

360 mg of benzoic anhydride (1.60 mmol, 10 equiv.) were added to a MeCN solution (10 

mL) of TBA TRIS Mn-Anderson starting material (300 mg, 0.16 mmol). The resulting 

orange clear solution was stirred for 24 h at 50 °C, then cooled down to room temperature. 

Product was isolated by crystallisation under slow Et2O diffusion as block shaped orange 

crystals (obtained within a week). Yield: 270 mg, 0.13 mmol, 79 %; Elemental analysis: 

Calc. for C70H132MnMo6N5O26 (2090.39 g/mol): C, 40.22; H, 6.36; N, 3.35; Found: C, 

40.35; H, 6.55; N, 3.40; 
1
H NMR (DMSO-d6, 400 MHz): = 67.00 - 62.00 (s, br, 12H, 

CH2), 8.1-7.1 (m, 12H, CH + NH), 3.16 (m, 24H, CH2 from TBA
+
), 1.56 (m, 24H, CH2 

from TBA
+
), 1.31 (m, 24H, CH2 from TBA

+
), 0.93 ppm (m, 36H, CH3 from TBA

+
); 

13
C 
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DEPTQ NMR (DMSO-d6, 100 MHz): δ = 132.1 (C), 131.3 (CH), 128.1 (CH), 127.6 

(CH), 57.5 (CH2), 23.1 (CH2), 19.3 (CH2), 13.6 ppm (CH3); ESI-MS: the peak envelope 

observed at m/z 1848.07 (z = -1) was assigned as [(C16H36N)2[MnMo6O18((OCH2)3C-

NHCO(C6H5))2]]
1- 

(predicted: 1848.01). 

5.4.3.3 Compound 10: (TBA)3[MnMo6O24(C8H12NO3)2] 

 

320 mg of succinic anhydride (3.20 mmol, 20 equiv.) were added to a DMF solution (10 

mL) of TBA TRIS Mn-Anderson (300 mg, 0.16 mmol). The resulting orange clear solution 

was stirred for 24 h at 50 °C, then cooled down to room temperature. Product was isolated 

by crystallisation under slow Et2O diffusion as block shaped orange crystals (obtained 

within a week). Yield: 291 mg, 0.14 mmol, 88 %; Elemental analysis: Calc. for 

C64H132MnMo6N5O30 (2082.33 g/mol): C, 36.91; H, 6.39; N, 3.36; Found: C, 36.62; H, 

6.53; N, 3.60; 
1
H NMR (DMSO-d6, 400 MHz): = 67.00 - 62.00 (s, br, 12H, CH2), 12.07 

(s, 2H, COOH), 8.0 - 7.1 (s, br, 2H, NH), 3.16 (m, 24H, CH2 from TBA
+
), 2.69 (m, 4H, 

CH2), 2.37 (m, 4H, CH2), 1.57 (m, 24H, CH2 from TBA
+
), 1.31 (m, 24H, CH2 from 

TBA
+
), 0.94 ppm (m, 36H, CH3 from TBA

+
); 

13
C DEPTQ NMR (DMSO-d6, 100 MHz): 

δ = 57.5 (CH2), 29.7 (CH2), 28.4 (CH2), 23.1 (CH2), 19.3 (CH2), 13.6 ppm (CH3); ESI-

MS: peak envelopes observed at m/z 1840.09 (z = -1) and 2081.37 (z = -1) were assigned 

as [(C16H36N)2[MnMo6O18((OCH2)3CNHCO(CH2)2COOH)2]]
1-

 (predicted: 1839.99) and 

[(C16H36N)3[MnMo6O18((OCH2)3CNHCO(CH2)2COOH)((OCH2)3CNHCO(CH2)2COO)]]
1-

 

(predicted: 2081.26), respectively. 



EXPERIMENTAL  143 

 

Figure 125:
 13

C DEPTQ NMR of 10 in DMSO-d6 at 100 MHz. 

5.4.4 Procedures for peptide bond formation via the N-terminus 

5.4.4.1 Compound 11: (TBA)3[MnMo6O24(C12H15N2O5)2] 

 

Compound 10 (2.14 g, 1.03 mmol),
 
NHS (474 mg, 4.12 mmol, 4 equiv.) and DCC (1.27 g, 

6.18 mmol, 6 equiv.) were dissolved in DMF (20 mL). The orange solution was stirred at 

room temperature for 24 h. A white precipitate of N, N’-dicyclohexylurea (DCU) forming 

over the time of the reaction was removed by centrifugation and the resulting bright orange 

solution was set up for crystallisation with Et2O diffusion. Within a week, compound 11 

was isolated pure as orange needle crystals suitable for X-ray diffraction analysis. For 

other analyses the product was recrystallised from MeCN. Yield: 1.77 g, 0.78 mmol, 75 %; 

Elemental analysis: Calc. for C72H138MnMo6N7O34 (2276.47 g/mol): C, 37.99; H, 6.11; 

N, 4.31; Found: C, 37.80; H, 6.20; N, 4.49; 
1
H NMR (DMSO-d6, 400 MHz): = 67.00 - 

62.00 (s, br, 12H, CH2), 7.61 (s, br, 2H, NH), 3.16 (m, 24H, CH2 from TBA
+
), 2.82 (m, 

16H, CH2), 1.57 (m, 24H, CH2 from TBA
+
), 1.31 (m, 24H, CH2 from TBA

+
), 0.94 ppm (m, 
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36H, CH3 from TBA
+
); 

13
C DEPTQ NMR (DMSO-d6, 100 MHz): = 171.0 (CO), 170.1 

(CO), 168.4 (CO), 57.5 (CH2), 27.5 (CH2), 26.2 (CH2), 25.4 (CH2), 23.0 (CH2), 19.2 

(CH2), 13.5 ppm (CH3); ESI-MS: peak envelopes observed at m/z 1275.32 (z = -3) and 

2034.12 (z = -1) were assigned as [(C16H36N)3[MnMo6O18((OCH2)3CNH-

CO(CH2)2COON(COCH2)2)2]2]
3-
 (predicted: 1275.25) and [(C16H36N)2[MnMo6O18-

((OCH2)3CNHCO(CH2)2COON(COCH2)2)2]]
1-
 (predicted: 2034.02), respectively. 

 

Figure 126:
 13

C DEPTQ NMR of 11 in DMSO-d6 at 100 MHz. 

5.4.4.2 Compound 12: (TBA)3[MnMo6O24(C10H15N2O4)2] 

 

Glycine (34 mg, 0.45 mmol, 2 equiv.) and DIPEA (500 µL, 2.8 mmol) were added to a 

solution of compound 11 (500 mg, 0.22 mmol) in DMF (10 mL). The resulting clear 

orange solution was left to stir at room temperature overnight. The product was then 

precipitated into Et2O (500 mL), collected and redissolved in MeCN to then precipitate it 

again in Et2O. The precipitation process was repeated twice to yield to 12 in high purity. 
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Yield: 302 mg, 0.14 mmol, 63 %. Elemental analysis: Calc. for C68H138MnMo6N7O32 

(2196.43 g/mol): C, 37.18; H, 6.33; N, 4.46; Found: C, 36.97; H, 6.32; N, 4.63. 
1
H NMR 

(DMSO-d6, 400 MHz): δ = 67.0 - 62.0 (s, br, 12H, CH2), 8.18 (s, 2H, NH), 7.53 (s, br, 2H, 

NH), 3.73 (m, 4H, CH2), 3.16 (m, 24H, CH2 from TBA
+
), 2.67 (m, br, 4H, CH2), 2.33 (m, 

br, 4H, CH2), 1.56 (m, 24H, CH2 from TBA
+
), 1.30 (m, 24H, CH2 from TBA

+
), 0.93 ppm 

(m, 36H, CH3 from TBA
+
). 

13
C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 57.5 (CH2), 

40.8 (CH2), 31.3 (CH2), 29.1 (CH2), 23.1 (CH2), 19.3 (CH2), 13.5 ppm (CH3); ESI-MS: 

peak envelopes observed at m/z 1221.8 (z = -3), 1953.94 (z = -1) and 2196.19 (z = -1) were 

assigned as [(C16H36N)3[MnMo6O24(C10H15N2O4)2]2]
3- 

(predicted: 1221.93), [(C16H36N)2 

[MnMo6O24(C10H15N2O4)2]]
1- 

(predicted: 1954.03) and [(C16H36N)3[MnMo6O24-

(C10H15N2O4)(C10H14N2O4)2]]
1- 

(predicted: 2196.31), respectively. 

 

Figure 127: 
13

C DEPTQ NMR of 12 in DMSO-d6 at 100 MHz. 
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5.4.4.3 Compound 13: (TBA)3[MnMo6O24(C17H21N2O4)2] 

 

L-phenylalanine (74 mg, 0.45 mmol, 2 equiv.) and DIPEA (500 µL, 2.8 mmol) were added 

to a solution of compound 11 (500 mg, 0.22 mmol) in DMF (10 mL). The resulting clear 

orange solution was left to stir at room temperature overnight. The product was then 

precipitated into a Et2O solution (500 mL), collected and redissolved in MeCN to 

precipitate it again in Et2O. The precipitation process was repeated twice to yield to 13 in 

high purity. Single crystals suitable for X-ray diffraction were obtained by diffusion of 

Et2O into a DMF solution of 13. Yield: 412 mg, 0.17 mmol, 78 %; Elemental analysis: 

Calc. for C82H150MnMo6N7O32 (2376.67 g/mol) C, 41.44; H, 6.36; N, 4.13; Found: C, 

41.44; H, 6.43; N, 4.26; 
1
H NMR (DMSO-d6, 400 MHz): δ = 67.0 - 62.0 (s, br, 12H, 

CH2), 8.16 (s, 2H, NH), 7.85 - 7.00 (m, br, 12H , NH + CH ), 4.38 (s, br, 2H, CH), 3.17 

(m, 24H, CH2 from TBA
+
), 3.08 - 2.53 (m, 8H, CH2), 2.26 (m, 4H, CH2), 1.56 (m, 24H, 

CH2 from TBA
+
), 1.30 (m, 24H, CH2 from TBA

+
), 0.93 ppm (m, 36H, CH3 from TBA

+
); 

13
C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 137.7 (C), 129.1 (CH), 128.1 (CH), 126.3 

(CH), 57.5 (CH2), 53.7 (CH), 36.83 (CH2), 31.5 (CH2), 29.4 (CH2), 23.1 (CH2), 19.2 

(CH2), 13.5 ppm (CH3); ESI-MS: peak envelopes observed at m/z 1342.08 (z = -3), 

2134.26 (z = -1) and 2376.53 (z = -1) were assigned as [(TBA)3[MnMo6O24-

(C17H21N2O4)2]2]
3-

 (predicted: 1341.99), [(TBA)2 [MnMo6O24(C17H21N2O4)2]]
1-

 (predicted: 

2134.12) and [(TBA)3[MnMo6O24(C17H21N2O4)(C17H20N2O4)]]
1-

 (predicted: 2376.40), 

respectively. 
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Figure 128:
 13

C DEPTQ NMR of 13 in DMSO-d6 at 100 MHz. 

5.4.4.4 Compound 14: (TBA)3[MnMo6O24(C26H30N3O5)2] 

 

Di-L-phenylalanine (141 mg, 0.45 mmol, 2 equiv.) and DIPEA (500 µL, 2.8 mmol) were 

added to a solution of compound 11 (500 mg, 0.22 mmol) in DMF (10 mL). The resulting 

clear orange solution was left to stir at room temperature overnight The product was then 

precipitated into a Et2O solution (500 mL), collected and redissolved in MeCN to 

precipitate it again in Et2O. The precipitation process was repeated twice to yield to 14 in 

high purity. Yield: 401 mg, 0.15 mmol, 68 %; Elemental analysis: Calc. for 

C100H168MnMo6N9O34 (2671.02 g/mol): C, 44.97; H, 6.34; N, 4.72; Found: C, 44.37; H, 

6.43; N, 4.86. 
1
H NMR (DMSO-d6, 400 MHz): δ = 67.0 - 62.0 (s, br, 12H, CH2), 8.08 (m, 

4H, NH), 7.85 - 6.85 (m, br, 22H, NH + CH ), 4.48 (s, br, 2H, CH), 4.37 (s, br, 2H, CH), 

3.16 (m, 24H, CH2 from TBA
+
), 3.08 - 2.53 (m, 12H, CH2), 2.22 (m, 4H, CH2), 1.57 (m, 
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24H, CH2 from TBA
+
), 1.31 (m, 24H, CH2 from TBA

+
), 0.94 ppm (m, 36H, CH3 from 

TBA
+
). 

13
C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 137.9 (C), 129.2 (CH), 129.1 

(CH), 128.2 (CH), 128.0 (CH), 126.4 (CH), 57.5 (CH2), 37.4 (CH2), 36.6 (CH2), 31.5 

(CH2), 29.4 (CH2), 23.0 (CH2), 19.2 (CH2), 13.5 ppm (CH3); ESI-MS: peak envelopes 

observed at m/z 1538.45 (z = -3), 1618.54 (z = -4), 2430.31 (z = -1) and 2549.44 (z = -2) 

were assigned as [(C16H36N)3[MnMo6O24(C26H30N3O5)2]2]
3-

 (predicted: 1538.41), 

[(C16H36N)4[MnMo6O24(C26H30N3O5)(C26H29N3O5)]2]
4-

 (predicted: 1618.50), [(C16H36N)2 

[MnMo6O24(C26H30N3O5)2]]
1-

 (predicted: 2429.26) and [(C16H36N)5[MnMo6O24-

(C26H30N3O5)(C26H29N3O5)][MnMo6O24(C26H30N3O5)2]]
2-

 (predicted: 2549.40), 

respectively. 

 

Figure 129: 
13

C DEPTQ NMR of 14 in DMSO-d6 at 100 MHz. 
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5.4.4.5 Compound 15: (TBA)3[MnMo6O24(C35H39N4O6)2] 

 

Tri-L-phenylalanine (207 mg, 0.45 mmol, 2 equiv.) and DIPEA (500 µL, 2.8 mmol) were 

added to a solution of compound 11 (500 mg, 0.22 mmol) in DMF (10 mL). The resulting 

clear orange solution was left to stir at room temperature overnight The product was then 

precipitated into a Et2O solution (500 mL), collected and redissolved in MeCN to then 

precipitate it again in Et2O. The precipitation process was repeated twice to yield to 15 in 

high purity. Yield: 535 mg, 0.18 mmol, 82 %; Elemental analysis: Calc. for 

C118H186MnMo6N11O36 (2965.37 g/mol): C, 47.79; H, 6.32; N, 5.20; Found: C, 47.72; H, 

6.44; N, 5.38; 
1
H NMR (DMSO-d6, 400 MHz): δ = 67.0 - 62.0 (s, br, 12H, CH2), 8.20 - 

8.96 (m, 6H, NH), 7.85 - 6.85 (m, br, 32H , NH + CH ), 4.46 (m, br, 6H, CH), 3.16 (m, 

24H, CH2 from TBA
+
), 3.08 - 2.53 (m, 16H, CH2), 2.21 (m, 4H, CH2), 1.57 (m, 24H, CH2 

from TBA
+
), 1.31 (m, 24H, CH2 from TBA

+
), 0.94 ppm (m, 36H, CH3 from TBA

+
);

 13
C 

DEPTQ NMR (DMSO-d6,100 MHz): δ = 170.9 (CO), 137.9 (C), 137.6 (C), 129.3 (CH), 

129.2 (CH), 128.2 (CH), 128.0 (CH), 126.4 (CH), 126.2 (CH), 57.5 (CH2), 53.7 (CH), 37.3 

(CH2), 31.6 (CH2), 29.4 (CH2), 23.0 (CH2), 19.2 (CH2), 13.5 ppm (CH3); ESI-MS: peak 

envelopes observed at m/z 1734.61 (z = -3), 1815.04 (z = -4), 2602.90 (z = -2) and 2723.55 

(z = -1) were assigned as [(C16H36N)3[MnMo6O24(C35H39N4O6)2]2]
3-

 (predicted: 1734.50), 

[(C16H36N)4[MnMo6O24(C35H39N4O6)(C35H38N4O6)]2]
4-

 (predicted: 1814.59), [(C16H36N)3H 

[MnMo6O24(C35H39N4O6)2]2]
2-

 (predicted: 2602.26) and [(C16H36N)2[MnMo6O24-

(C35H39N4O6)2]]
1-

 (predicted: 2723.40), respectively. 
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Figure 130: 
13

C DEPTQ NMR of 15 in DMSO-d6 at 100 MHz. 

5.4.4.6 Compound 16: Na0.2(TBA)2.8[MnMo6O24(C74H118N17O29)2]·5H2O ·1.5DMF* 

 

NH2-Ala-Asn-Thr-Leu-Ser-Ser-Thr-Ala-Ser-Thr-Leu-Glu-Ser-Tyr-Leu-OH (P1, 140 mg, 

0.090 mmol, 2 equiv.) and DIPEA (120 µL, 0.69 mmol) were added to a solution of 

compound 11 (102 mg, 0.045 mmol) in dry DMF (5 mL). The resulting clear orange 

solution was left to stir at room temperature overnight. The solution was then exposed to 

Et2O vapour and a precipitate formed within a few days. The precipitate (16) was isolated 

by centrifugation, washed several times with Et2O and then dried. Yield: 193 mg, 0.036 

mmol, 80 %; Elemental analysis: Calc. for C197.3H357.3MnMo6N38.3Na0.2O88.5 (5317.43 

g/mol): C, 44.56; H, 6.77; N, 10.09; Found: C, 44.09; H, 6.73; N, 10.17;
1
H NMR (DMSO-

d6, 400 MHz): see Figure 132; ESI-MS: Peak envelopes observed at m/z 1108.33 (z = -4), 

1478.12 (z = -3), 1485.44 (z = -3) and 1558.89 (z = -3) were assigned as 
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[[MnMo6O24(C74H118N17O29)(C74H117N17O29)]]
4-

 (predicted: 1108.23), [[MnMo6O24-

(C74H118N17O29)2]]
3-

 (predicted: 1477.97), [Na[MnMo6O24(C74H118N17O29) 

(C74H117N17O29)]]
3-

 (predicted: 1485.30) and [(C16H36N)[MnMo6O24(C74H118N17O29) 

(C74H117N17O29)]]
3-

 (predicted: 1558.73), respectively; TGA: the loss of 3.79 % 

corresponds to the loss of solvent ((H2O)5(DMF)1.5; calculated loss: 3.8 %). The weight 

loss starting at 100 °C of 81.14 % corresponds to the loss of the organic cations and the 

ligands (theoretically 78.9 %). At about 650 °C the metal oxide starts decomposing 

*Formula established from TGA analysis and elemental analysis results; Na cations were 

observed during ESI-MS analysis. 

 

Figure 131: TGA analysis of compound 16.  
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Figure 132: (top) Annotations used for the 2D NMR analyses of 16 and (bottom) table of resonance 

assignments. 

  



EXPERIMENTAL  153 

5.4.5 Synthesis and isolation of asymmetric hybrid Mn-Anderson clusters 

5.4.5.1 Compound 17: (TBA)3[MnMo6O24(C4H8N)(C19H16NO)] 

 

STEP 1: Synthesis of the Anthracene-TRIS ligand (adapted from a published 

procedure).
[251]

 

To a solution of anthracene-2-carboxylic acid (407 mg, 1.83 mmol) and N-

methylmorpholine (0.22 mL, 2.00 mmol) in tetrahydrofuran (10 mL) at 0 ˚C, 

ethylchloroformate (0.19 mL, 2.00 mmol) was added dropwise, causing a white precipitate 

to form. The reaction mixture was then stirred for 30 min at 0 ˚C, then filtered directly into 

a solution of TRIS (218 mg, 1.83 mmol) and triethylamine (0.28 mL, 2.00 mmol) in DMF 

(10 mL) which had been stirring for 10 min. The reaction mixture was then stirred 

overnight, after which solvents were removed under reduced pressure until only DMF 

remained. The product was crystallised by Et2O diffusion into this DMF solution over 2 

days, giving clear yellow needles. Yield: 428 mg, 1.32 mmol, 36 %; Elemental analysis: 

Calc. for C19H19NO4 (325.36 g/mol): C 70.14 H 5.89 N 4.31; Found C 69.71 H 5.97 N 

4.58; 
1
H NMR (DMSO-d6, 400 MHz): δ = 8.74 (s, 1H, CH), 8.62 (s, 2H, 2CH), 8.15 (m, 

3H, 3CH), 7.86 (m, 1H, CH), 7.57 (m, 3H, 2CH + NH), 4.84 (s, 3H, 3OH), 3.77 ppm (s, 

6H, 3CH2); 
13

C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 167.3 (CO), 132.1 (C), 132.0 

(C), 131.5 (C), 130.0 (C), 128.2 (CH), 128.1 (CH), 128.0 (CH), 128.0 (CH), 127.7 (CH), 

126.3 (CH), 125.9 (CH), 125.9 (CH), 123.8 (CH), 62.8 (C), 60.4 ppm (CH2). 

STEP 2: Synthesis of the Anthracene-TRIS/TRIS Mn-Anderson compound (17) 

The crude mixture was synthesised according to an adapted literature procedure.
[50,113]

 

A mixture of (TBA)4[α-Mo8O26]
 
(765 mg, 0.36 mmol), Mn(OAc)3·2H2O (220 mg, 0.91 

mmol), TRIS (139 mg, 0.94 mmol) and Anthracene-TRIS ligand (304 mg; 0.94 mmol) was 

refluxed in MeCN (15 mL) for 18 h. The resulting brown mixture was cooled down to 

room temperature and the precipitate removed by centrifugation to lead to a bright orange 

solution. The crude mixture was isolated by crystallisation by Et2O diffusion. After three 

days, orange crystals were formed and isolated (crude mixture yield: 557 mg). 100 mg of 
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the crude mixture adsorbed on celite (500 mg) were purified via flash chromatography (see 

instrumentation for operation conditions). The purity of the fractions was established by 

RP-HPLC. The fractions composed exclusively of the asymmetric Anthracene-TRIS/TRIS 

Mn-Anderson cluster (retention time 10.4 min) were combined and a large excess of TBA 

bromide (500 mg; 1.55 mmol) was added to the resulting solution. MeCN was evaporated 

under vacuum leading to the formation of an orange precipitate in the remaining aqueous 

solution. This precipitate was isolated by centrifugation and then dissolved in MeCN. The 

solution was centrifuged to remove any insoluble material and set up for crystallisation 

with Et2O diffusion. Within 3 days crystals of compound 17 were formed, dried and 

analysed. Single crystals suitable for X-ray diffraction were grown from DMF by slow 

Et2O diffusion (needle crystal, 3 days). Yield: 167 mg, 0.08 mmol, 17 % based on Mo 

(estimated from the purification of 100 mg of the crude material); Elemental analysis: 

Calc. for C71H132MnMo6N5O25 (2086.35 g/mol): C, 40.87; H, 6.38; N, 3.36; Found: C, 

40.72; H, 6.30; N, 3.34; 
1
H NMR (DMSO-d6, 400 MHz): δ = 66.0 - 60.0 (s, br, 6CH2), 

8.68 (s, 1H, CH), 8.63 (s, 1H, CH), 8.54 (s, 1H, CH), 8.15 (m, 3H, 3CH), 7.84 (m, 2H, CH 

+ NH), 7.56 (m, 2H, 2CH), 3.17 (m, 24H, CH2 from TBA
+
), 1.58 (m, 24H, CH2 from 

TBA
+
), 1.32 (m, 24H, CH2 from TBA

+
), 0.95 ppm (m, 36H, CH3 from TBA

+
);

 13
C 

DEPTQ NMR (DMSO-d6, 100 MHz): δ = 132.1 (C), 131.8 (C), 131.3 (C), 129.7 (C), 

129.0 (CH), 128.7 (C), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.5 (CH), 

126.2 (CH), 125.7 (CH), 124.5 (CH), 57.5 (CH2), 23.1 (CH2), 19.2 (CH2),13.5 ppm (CH3); 

ESI-MS: peak envelopes observed at m/z 1602.71 (z = -1) and 1843.98 (z = -1) were 

assigned as [(C16H36N)1H[MnMo6O24(C4H8N)(C19H16NO)]]
1-

 (predicted: 1602.73) and 

[(C16H36N)2[MnMo6O24(C4H8N)(C19H16NO)]]
1-

 (predicted: 1844.01), respectively. 
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Figure 133: 
13

C DEPTQ NMR of the Anthracene-TRIS/TRIS Mn-Anderson (17) in DMSO-d6 at 100 MHz. 

5.4.5.2  Compound 18: (TBA)3[MnMo6O24(C20H38NO)(C8H12NO3)]  

 

Succinic anhydride (72 mg, 0.64 mmol, 4 equiv.) and palmitic anhydride (180 mg, 0.32 

mmol, 2 equiv.) were added to a solution of TRIS Mn-Anderson starting material (300 mg, 

0.16 mmol) in DMF (5 mL) and left to react overnight at 50 °C. The bright orange solution 

was then cooled to room temperature and, without any purification, celite (1.5 g) was 

added and the solvent evaporated under vacuum to obtain a powder (‘dry loading’). The 

crude material adsorbed on celite was purified by flash chromatography. The pure fractions 

(purity checked by RP-HPLC, retention time of interest: 12.85 min) were combined and a 

large excess of TBA bromide (0.5 g, 1.55 mmol) was added to the resulting light orange 

solution. The MeCN was evaporated under vacuum leading to the formation of an orange 

precipitate in the remaining aqueous solution. This precipitate was isolated by 
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centrifugation and then dissolved in MeCN. The solution was centrifuged to remove any 

insoluble material and left undisturbed for crystallisation with Et2O diffusion. Within 3 

days, crystals of compound 18 were formed, dried and analysed. Yield: 95 mg, 0.043 

mmol, 27 %;
 
Elemental analysis: Calc. for C76H158MnMo6N5O28 (2220.66 g/mol): C, 

41.11; H, 7.17; N, 3.15; Found: C, 41.09; H, 7.26; N, 3.26; 
1
H NMR (DMSO-d6, 400 

MHz): δ = 66.00 - 62.00 ppm (s, br, 6 CH2), 11.20 (s, br, 1H, OH), 7.90 (s, br, 1H, NH), 

7.32 (s, br, 1H, NH), 3.17 (m, 24H, CH2 from TBA
+
), 2.66 (s, br, 2H, CH2), 2.45 - 2.24 (m, 

4H, 2 CH2), 1.70 - 1.15 (m, 74H, 13 CH2 + 2 x CH2 from TBA
+
),0.94 (m, 36H, CH3 from 

TBA
+
), 0.85 ppm (m, 3H, CH3); 

13
C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 57.5 

(CH2), 33.7 (CH2), 31.2 (CH2), 29.1 (CH2), 29.0 (CH2), 28.9 (CH2), 28.8 (CH2), 28.7 

(CH2), 26.3 (CH2), 23.1 (CH2), 22.0 (CH2), 19.2 (CH2), 13.9 (CH3),13.5 ppm (CH3); ESI-

MS: peak envelopes observed at m/z 1978.19 (z = -1), 2098.83 (z = -2) and 2220.46 (z = -

1) were assigned as [(C16H36N)2[MnMo6O24(C20H38NO)(C8H12NO3)]]
1-

 (predicted: 

1978.20), [(C16H36N)5[MnMo6O24(C20H38NO)(C8H12NO3)][MnMo6O24(C20H38NO) 

(C8H11NO3)]]
2-

 (predicted: 2098.84) and [(C16H36N)2[MnMo6O24(C20H38NO) 

(C8H11NO3)]]
1- 

(predicted: 2220.48), respectively. 

 

Figure 134: 
13

C DEPTQ NMR of the Palmitic-TRIS/Succinic-Acid-TRIS Mn-Anderson (18) in DMSO-d6 at 

100 MHz 
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5.4.5.3 Compound 19: (TBA)3[MnMo6O24(C20H38NO)(C4H8N)] 

 

Synthesis of compound 19 was adapted from a reported synthesis.
[107]

 

Palmitoyl chloride (63 µL, 0.21 mmol, 1.3 equiv.) was slowly added to a solution of TRIS 

Mn-Anderson starting material (300 mg, 0.16 mmol)
 
and triethylamine (90 µL; 0.64 mmol) 

in dry MeCN (5 mL) and the resulting solution refluxed overnight. The bright orange 

solution was then cooled to room temperature and, without any purification, celite (1.5 g) 

was added and the solvent evaporated under vacuum to obtain a powder (‘dry loading’). 

The crude material adsorbed on celite was purified by flash chromatography (see 

instrumentation for further details). The pure fractions (purity checked by RP-HPLC, 

retention time of interest: 12.84 min) were combined and a large excess of TBA bromide 

(0.5 g; 1.55 mmol) was added to the resulting solution. The MeCN was evaporated under 

vacuum leading to the formation of an orange precipitate. This precipitate was isolated 

from the remaining acetate buffer solution by centrifugation and then dissolved in MeCN. 

The resulting orange solution was centrifuged to remove any insoluble material and left for 

crystallisation with Et2O diffusion. Within 3 days crystal of compound 19 were formed, 

dried and analysed. Yield: 100 mg, 0.05 mmol, 32 %;
 
Elemental analysis: Calc. for 

C72H154MnMo6N5O25 (2120.59 g/mol): C, 40.78; H, 7.32; N, 3.30; Found: C, 40.61; H, 

7.40; N, 3.37; 
1
H NMR (DMSO-d6, 400 MHz): δ = 66.0 - 61.0 (s, br, 6CH2), 7.80 - 7.00 

(s, br, 1H, NH), 3.80 - 3.45 (s, br, 2H, NH2), 3.16 (m, 24H, CH2 from TBA
+
), 2.36 (m, 2H, 

CH2), 1.70 - 1.15 (m, 74H, 13 CH2 + 2 x CH2 from TBA
+
), 0.93 (m, 36H, CH3 from 

TBA
+
), 0.85 ppm (m, 3H, CH3);

 13
C DEPTQ NMR (DMSO-d6, 100 MHz): δ = 13.6 

(CH3), 14.0 (CH3), 19.3 (CH2), 22.1 (CH2), 23.1 (CH2), 26.3 (CH2), 28.7 (CH2), 28.9 

(CH2), 29.0 (CH2), 29.1 (CH2), 29.2 (CH2), 31.3 (CH2), 57.5 (CH2); ESI-MS: peak 

envelopes observed at m/z 1635.90 (z = -1) and 1878.18 (z = -1) were assigned as 

[(C16H36N)H[MnMo6O24(C20H38NO)(C4H8N)]]
1-

(predicted: 1636.90) and [(C16H36N)2 

[MnMo6O24(C20H38NO)(C4H8N)]]
1-

 (predicted: 1878.18), respectively. 
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Figure 135:
 13

C DEPTQ NMR of the Palmitic-TRIS/ TRIS Mn-Anderson (19) in DMSO-d6 at 100 MHz 

5.4.5.4 Compound 20: (TBA)3[MnMo6O24(C19H18NO2)(C4H8N)] 

 

A mixture of (TBA)4[α-Mo8O26] (1.53 g, 0.71 mmol), Mn(OAc)3·2H2O (0.44 g, 1.62 

mmol), TRIS (0.28 g, 1.87 mmol) and Fmoc-TRIS
[242]

 ((HOCH2)3CNH-Fmoc, 0.64 g, 

1.87 mmol) was refluxed in MeCN (45 mL) for 18 h. The resulting brown mixture was 

cooled down to room temperature and the precipitate removed by centrifugation to lead to 

a bright orange solution. The crude mixture was isolated by crystallisation by Et2O 

diffusion. After three days, orange crystals were formed and isolated (crude mixture yield: 

1.40 g). 300 mg of the crude mixture adsorbed on celite (1.5 g) were purified via flash 

chromatography. The purity of the fractions was established by RP-HPLC. The fractions 

composed exclusively of the asymmetric Fmoc-TRIS/TRIS Mn-Anderson cluster 

(retention time 10.26 min) were combined and a large excess of TBA bromide (0.5 g, 1.55 

mmol) was added to the resulting solution. MeCN was evaporated under vacuum leading 
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to the formation of an orange precipitate in the remaining aqueous solution. This 

precipitate was isolated by centrifugation and then dissolved in MeCN. The solution was 

centrifuged to remove any insoluble material and set up for crystallisation with Et2O 

diffusion. Within 3 days crystals of compound 20 were formed, dried and analysed. Single 

crystals suitable for X-ray diffraction were grown from DMF by slow Et2O diffusion 

(cubic crystal, 3 days). Yield: 588 mg, 0.28 mmol, 30 % based on Mo (estimated from the 

purification of 300 mg of the crude material; equivalent to a 60 % recovery of the 

asymmetric product); Elemental analysis: Calc. for C71H134MnMo6N5O26 (2104.42 

g/mol): C, 40.52; H, 6.42; N, 3.33; Found: C, 40.52; H, 6.45; N, 3.41; 
1
H NMR (DMSO-

d6, 400 MHz): δ = 65.00 - 60.00 (s, br, 6 CH2), 7.88 (d, 2H, 2 CH, J = 7.4 Hz), 7.75 (m, 

2H, 2 CH), 7.67 - 7.25 (m, 5H, 4 CH + NH), 4.23 (m, 3H, CH2 + CH),
 
3.55 (s, br, 2H, 

NH2), 3.16 (m, 24H, CH2 from TBA
+
), 1.56 (m, 24H, CH2 from TBA

+
), 1.31 (m, 24H, CH2 

from TBA
+
), 0.93 ppm (m, 36H, CH3 from TBA

+
); 

13
C DEPTQ NMR (DMSO-d6, 100 

MHz): δ = 143.8 (C), 140.6 (C), 127.6 (CH), 127.1 (CH), 125.6 (CH), 120.0 (CH), 65.7 

(CH2), 57.5 (CH2), 46.7 (CH), 23.0 (CH2), 19.2 (CH2), 13.5 ppm (CH3); ESI-MS: peak 

envelopes observed at m/z 1620.73 (z = -1) and 1862.02 (z = -1) were assigned to 

[(C16H36N)H [MnMo6O24(C19H18NO2)(C4H8N)]]
1-

 (predicted: 1620.74) and 

[(C16H36N)2[MnMo6O24-(C19H18NO2)(C4H8N)]]
1-

 (predicted: 1862.02), respectively. 

 

Figure 136: 
13

C DEPTQ NMR of the Fmoc-TRIS/TRIS Mn-Anderson (20) in DMSO-d6 at 100 MHz 
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5.4.5.5 Compound 21: (TBA)3[MnMo6O24(C7H12NO)(C4H8N)] 

 

Compound 20 (50 mg, 0.03 mmol) and propionic anhydride (33 mg, 0.25 mmol, 10 equiv.) 

were dissolved in DMF (1 mL) and heated overnight at 50 °C. The intermediate product 

was isolated from the bright orange solution by crystallisation with slow Et2O diffusion. A 

small sample of the product was analysed by ESI-MS to check the presence of the 

intermediate product and the absence of the POM starting material (Fig. S37). The crude 

material was then treated for 5 h at room temperature with a 20% piperidine solution by 

volume in DMF (1 mL). Solvent was evaporated under vacuum and the resulting orange 

powder washed twice with Et2O. The orange product was dissolved in MeCN and diffusion 

of Et2O into the MeCN solution resulted in the formation of crystals of pure compound 21 

within 4 days. 21 was isolated, dried and analysed. Crystals suitable for X-ray diffraction 

were grown from DMF with slow Et2O diffusion. Yield: 43 mg, 0.02 mmol, 88 %; 

Elemental analysis: Calc. for C59H128MnMo6N5O25 (1938.24 g/mol): C, 36.56; H, 6.66; 

N, 3.61; Found: C, 36.41; H, 6.69; N, 3.66; 
1
H NMR (DMSO-d6, 400 MHz): δ = 65.00 - 

60.00 (s, br, 12H, 6 CH2), 7.37 (s, br, 1H, NH), 3.53 (s, br, 2H, NH2), 3.16 (m, 24H, CH2 

from TBA
+
), 2.40 (m, 2H, CH2), 1.57 (m, 24H, CH2 from TBA

+
),1.31 (m, 24H, CH2 from 

TBA
+
), 0.94 ppm (m, 39H, CH3 + CH3 from TBA

+
); 

13
C DEPTQ NMR (DMSO-d6, 100 

MHz): δ = 57.5 (CH2), 27.0 (CH2), 23.1 (CH2), 19.2 (CH2), 13.5 (CH3), 10.9 ppm (CH3); 

ESI-MS: peak envelopes observed at m/z 1453.44 (z = -1), 1586.05 (z = -2) and 1695.68 

(z = -1) were assigned as [(C16H36N)H[MnMo6O24(C7H12NO)(C4H8N)]]
1- 

(predicted: 

1453.70), [(C16H36N)3Na[MnMo6O24(C7H12NO)(C4H8N)]2]
2-

 (predicted: 1586.33) and 

[(C16H36N)2[MnMo6O24(C7H12NO)(C4H8N)]]
1-

 (predicted: 1695.98), respectively. 
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Figure 137:
 13

C DEPTQ NMR of the propylamide-TRIS/TRIS Mn-Anderson (21) in DMSO-d6 at 100 MHz 
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5.4.6 Synthesis and use of the amino acid hybrid Mn-Anderson building block 

5.4.6.1 Compound 22: (TBA)3[MnMo6O24(C12H15N2O5)(C19H18NO2)] 

 

Fmoc-TRIS/TRIS Mn-Anderson compound (20, 545 mg, 0.26 mmol)
 

was reacted 

overnight with 20 equiv. of succinic anhydride (518 mg, 5.18 mmol) in DMF (5 mL) at 50 

°C. The resulting bright orange solution was cooled to room temperature and the 

intermediate product isolated by crystallisation with Et2O at room temperature. The 

resulting orange crystals were isolated, washed with Et2O, dried and subsequently treated 

with NHS (120 mg, 1.04 mmol, 4 equiv.) and DCC (322 mg, 1.56 mmol, 6 equiv.) in DMF 

(5 mL) at room temperature. As the reaction occurs a white precipitate of DCU appears 

and the mixture was stirred overnight. The white precipitate of DCU was then removed by 

centrifugation and the bright orange solution was exposed to Et2O vapour for several days. 

Yield: 520 mg, 0.23 mmol, 88 %; Elemental analysis: Calc. for C79H141MnMo6N6O31 

(2301.56 g/mol): C, 41.23; H, 6.17; N, 3.65; Found: C, 40.70; H, 6.21; N, 3.84; 
1
H NMR 

(DMSO-d6, 400 MHz): δ = 67.0 - 62.0 (s, br, 12H, CH2), 7.88 (m, 2H, 2 CH), 7.75 (m, 

2H, 2 CH), 7.45 - 7.25 (m, 4H, 4 CH),4.23 (s, br, 3H, CH2 + CH), 3.16 (m, 24H, CH2 from 

TBA
+
), 2.90 - 2.70 (m, br, 8H, CH2), 1.57 (m, 24H, CH2 from TBA

+
), 1.30 (m, 24H, CH2 

from TBA
+
), 0.93 ppm (m, 36H, CH3 from TBA

+
); 

13
C DEPTQ NMR (DMSO-d6, 100 

MHz): δ = 170.1 (CO), 143.9 (C), 140.6 (C), 127.6 (CH), 127.2 (CH), 125.7 (CH), 120.0 

(CH), 57.5 (CH2), 46.7 (CH), 25.4 (CH2), 29.1 (CH2), 19.2 (CH2), 13.5 ppm (CH3); ESI-

MS: peak envelopes observed at m/z 1291.61 (z = -3) and 2059.05 (z = -1) were assigned 

as [(C16H36N)3[MnMo6O24(C12H15N2O5)(C19H18NO2)]2]
3-

 (predicted: 1291.94) and 

[(C16H36N)2[MnMo6O24(C12H15N2O5)(C19H18NO2)]]
1- 

(predicted: 2059.05), respectively. 
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Figure 138: 
13

C DEPTQ NMR of 22 in DMSO-d6 (contains 0.03 % (v/v) TMS) at 100 MHz. 

5.4.6.2 Compound 23: (TBA)1.4H1.6[MnMo6O24(C25H42N5O7)(C15H28N3O2)] · 0.7DMF* 

 

*Formula established from TGA analysis and elemental analysis results. 

The synthesis of 23 can be divided into three parts: peptide synthesis before addition of the 

Mn-Anderson amino acid, addition of the Mn-Anderson amino acid and peptide synthesis 

after addition of the Mn-Anderson amino acid. 

Resin preparation: 

1. 150 mg (0.027 mmol, 1 equiv.) of Tentagel® S Trt-Ala-Fmoc resin (0.18 mmol/g) 

was weighed into a plastic syringe with a frit column plate. 
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2. 1.0 mL of DCM were added to the dried resin, the mixture was stirred gently for 1 

min, and left for resin swelling for 15 min. Solvent was then removed by vacuum 

filtration. 

3. 1.0 mL of DMF were added to the swelled resin, the mixture was stirred gently for 

1 min and the solvent removed by vacuum filtration. 

Part 1: peptide synthesis before addition of the Mn-Anderson amino acid (Hyb) 

Deprotection/coupling cycle: 

4. Fmoc removal step: 1.0 mL of 20% piperidine/DMF (vol/vol) was added, the 

mixture was stirred gently for 1 min and the solution was removed by vacuum 

filtration. 1.0 mL of the same solution was added again, the mixture was stirred 

gently for 1 min, left to react for 10 min and the solution was removed by vacuum 

filtration. 

5. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

6. Addition step: a DMF (1 mL) solution of Fmoc-Leu-OH (48 mg, 0.135 mmol, 5 

equiv.) with DIC (25 µL, 0.16 mmol, 6 equiv.) was added (mixture made 15 min 

before addition), the resulting mixture was stirred gently for 1 min and left to react 

for 30 min. The solution was then removed by vacuum filtration and the addition 

step was repeated once. 

7. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, and the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

8. The deprotection/coupling cycle was repeated for each subsequent amino acid (i.e. 

Fmoc-Val-OH (46 mg, 0.135 mmol, 5 equiv.) and Fmoc-Ala-OH (42 mg, 0.135 

mmol, 5 equiv.)) 

Part 2: Addition of the Mn-Anderson amino acid (Hyb) 

1. Fmoc removal step: 1.0 mL of 20% piperidine/DMF (vol/vol) was added, the 

mixture was stirred gently for 1 min and the solution was removed by vacuum 

filtration. 1.0 mL of the same solution was added again, stirred gently for 1 min, 

left to react for 10 min and then removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, and the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

3. Addition step: a DMF (1 mL) solution of 22 (0.081 mmol, 186 mg, 3 equiv.) and 

DIPEA (180 µL, 1.03 mmol) were added, the resulting mixture was stirred gently 



EXPERIMENTAL  165 

for 1 min and left to react for 1 h. The solution was then removed by vacuum 

filtration and the addition step was repeated once but this time the reaction was left 

overnight. 

4. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, and the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Part 3: peptide synthesis after addition of the Mn-Anderson amino acid (Hyb). 

Deprotection/coupling cycle: 

1. Fmoc removal step: 1.0 mL of 20% piperidine/DMF (vol/vol) was added, stirred 

gently for 1 min and removed by vacuum filtration. 1.0 mL of the same solution 

was added again, stirred gently for 1 min, left to react for 10 min and removed by 

vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, and the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

3. Addition step: a DMF (1 mL) solution of Fmoc-Leu-OH (286 mg, 0.81 mmol, 30 

equiv.) with DIC (125 µL, 0.81 mmol, 30 equiv.) (mixture made 15 min before 

addition) was added, the resulting mixture was stirred gently for 1 min and left to 

react for 3h. The solution was then removed by vacuum filtration and the addition 

step was repeated once. 

4. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, and the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

5. The deprotection/coupling cycle was repeated for the subsequent amino acid (i.e. 

Fmoc-Val-OH (275 mg, 0.81 mmol, 30 equiv.)) 

Cleavage/Product isolation: 

1. Washing step: 1.0 mL of DCM was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 3 times. 

2. 2.5 mL of 20% HFIP/DCM (vol/vol) was added, the mixture was stirred for 2 min, 

left to react for 10 min and the solution was collected by vacuum filtration.  

3. 1.0 mL of DCM was added, the mixture was stirred for 30 s, and the solution was 

then collected by vacuum filtration.  

4. IMPORTANT washing step: 1.0 mL of DMF was added, the mixture was stirred 

for 30 s, and the solution was then collected by vacuum filtration. This step was 

repeated once.  
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[This step is particularly important since the peptide product is only partially soluble in 

DCM. For other peptides different solvent might need to be considered depending on 

solubility.]  

5. The solutions collected were combined and the solvent evaporated under reduced 

pressure. 

6. The resulting orange product was cleaned with cold Et2O (about 10 mL) and dried. 

Analyses: 

Yield: 42 mg, 0.019 mmol, 70 %; Elemental analysis: Calc. for for 

C64.5H126.9MnMo6N10.1O33.7 (2213.82 g/mol): C, 34.99; H, 5.78; N, 6.39; Found: C, 34.95; 

H, 5.77; N, 6.39; ESI-MS: peak envelopes observed at m/z 911.33 (z = -2) and 2065.91 (z 

= -1) were assigned as [H[MnMo6O24(C25H42N5O7)(C15H28N3O2)]]
2-

 (predicted: 911.39) 

and [(C16H36N)H[MnMo6O24(C25H42N5O7)(C15H28N3O2)]]
1-

 (predicted: 2066.07), 

respectively; TGA: The loss of 2.51% corresponds to the loss of solvent ((DMF)0.7; 

calculated loss: 2.3%). The weight loss starting at 100°C of 66.38% corresponds to the loss 

of the organic cations and the ligands (theoretically 56.2%). At about 650°C the metal 

oxide cluster starts decomposing. 

 

Figure 139: TGA analysis of compound 23.   
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5.4.7 Control compound for the chromatography methodology: 

(TBA)3[MnMo6O24(C19H16NO)2]: 

 

A mixture of (TBA)4[α-Mo8O26]
 
(400 mg, 0.19 mmol), Mn(OAc)3·2H2O (74 mg, 0.28 

mmol) and Anthracene-TRIS ligand (213 mg; 0.66 mmol) was refluxed in MeCN (20 mL) 

for 16 h. The resulting brown mixture was cooled down to room temperature and the 

precipitate removed by centrifugation to lead to a bright orange solution. The crude 

mixture was isolated by crystallisation by Et2O diffusion. After three days, orange crystals 

were formed, isolated and analysed. Single crystals suitable for X-ray diffraction were 

grown from MeCN by slow Et2O diffusion (square crystal, 3 days). Yield: 200 mg, 0.09 

mmol, 36 % based on Mo; Elemental analysis: Calc. for C86H140MnMo6N5O26·CH3CN 

(2331.68 g/mol): C, 45.33; H, 6.18; N, 3.60; Found: C, 45.22; H, 6.17; N, 3.81; 
1
H NMR 

(DMSO-d6, 400 MHz): δ = 67.0 - 62.0 (s, br, 6CH2), 8.68 (s, 2H, 2CH), 8.63 (s, 2H, 

2CH), 8.55 (s, 2H, 2CH), 8.12 (m, 6H, 6CH), 7.84 (m, 4H, 2CH + 2NH), 7.56 (m, 4H, 

4CH), 3.15 (m, 24H, CH2 from TBA
+
), 1.56 (m, 24H, CH2 from TBA

+
), 1.30 (m, 24H, 

CH2 from TBA
+
), 0.93 ppm (m, 36H, CH3 from TBA

+
); 

13
C DEPTQ NMR (DMSO-d6, 

100 MHz): δ = 167.9 (CO), 132.2 (C), 131.8 (C), 131.3 (C), 129.7 (C), 129.1 (CH), 128.7 

(C), 128.3 (CH), 128.0 (CH), 127.9 (CH), 127.6 (CH), 126.3 (CH), 125.7 (CH), 124.5 

(CH), 57.5 (CH2), 23.1 (CH2), 19.3 (CH2), 13.5 ppm (CH3); ESI-MS: peak envelopes 

observed at m/z 1805.75 (z = -1) and 2048.04 (z = -1) were assigned as [(C16H36N)1H 

[MnMo6O24(C19H16NO)2]]
1-

 (predicted: 1806.79) and [(C16H36N)2[MnMo6O24-

(C19H16NO)2]]
1-

 (predicted: 2048.07), respectively. 
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5.5 Test reactions for the elaboration of the SPPS protocol 

5.5.1 Cleavage conditions - stability to HFIP (Test A) 

A sample of TRIS Mn-Anderson compound was analysed by ESI-MS in MeCN before and 

after treatment with the solution mix.  

For the analysis after treatment 25 mg of compound were stirred for 1 h in 1 mL of a 

solution of 20 % HFIP in DCM (vol/vol). The solvent was then evaporated and the 

resulting orange powder dissolved in MeCN for ESI-MS analysis. ESI-MS: peak 

envelopes observed at m/z 689.91 (z = -1), 706.67 (z = -1), 1397.58 (z = -1) and 1639.85 (z 

= -1) were assigned as [(C16H36N)[Mo3O10]]
1- 

(predicted: 689.95), [(C16H36N)2 

[Mo3O14(C4H8N)]]
1-

 (predicted: 706.71), [(C16H36N)H[MnMo6O24(C4H8N)2]]
1-

 (predicted: 

1397.67) and [(C16H36N)2[MnMo6O24(C4H8N)2]]
1-

 (predicted: 1639.95), respectively. 

5.5.2 Addition of the hybrid POM amino acid to a growing peptide chain 

Tests B-G were realised on a commercial Tentagel® S Trt-Ala-Fmoc resin (0.18 mmol/g). 

The following steps were realised before the actual test reaction: 

Resin preparation: 

1. 25 mg (0.0045 mmol, 1 equiv.) of Tentagel® S Trt-Ala-Fmoc resin was weighed 

into a plastic syringe with a frit column plate. 

2. 1.0 mL of DCM were added to the dried resin, the mixture was stirred gently for 1 

min, and left for resin swelling for 15 min. Solvent was then removed by vacuum 

filtration. 

3. 1.0 mL of DMF were added to the swelled resin, the mixture was stirred gently for 

1 min and the solution removed by vacuum filtration. 

Deprotection: 

1. Fmoc removal step: 1.0 mL of 20% piperidine/DMF (vol/vol) was added, the 

mixture was stirred gently for 1 min and the solution removed by vacuum filtration. 

1.0 mL of the same solution was added again, stirred gently for 1 min, left to react 

for 10 min and removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 
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5.5.2.1 Test B 

Coupling: 

1. Reaction: a DMF (200 µL) solution of 22 (0.0135 mmol, 31 mg, 3 equiv.) and 

DIPEA (30 µL, 0.17 mmol) were added, the resulting mixture was stirred gently for 

1 min and left to react for 1 h. The solvent was then removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Result: a pale yellow solid support was obtained. 

5.5.2.2 Test C 

Coupling: 

1. Reaction: a DMF (200 µL) solution of 22 (0.0135 mmol, 31 mg, 3 equiv.) and 

DIPEA (30 µL, 0.17 mmol) were added, the resulting mixture was stirred gently for 

1 min and left to react for 2 h. The solvent was then removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Result: a pale yellow solid support was obtained. 

5.5.2.3 Test D 

Solid support obtained at the end of Test B was used and a second coupling was carried 

out: 

 Second coupling: 

3. Reaction: a DMF (200 µL) solution of 22 (0.0135 mmol, 31 mg, 3 equiv.) and 

DIPEA (30 µL, 0.17 mmol) were added, the resulting mixture was stirred gently for 

1 min and left to react for 16 h. The solvent was then removed by vacuum filtration. 

4. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Result: a bright orange solid support was obtained. 

 

 



EXPERIMENTAL  170 

Cleavage/Product isolation: 

1. Washing step: 1.0 mL of DCM was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 3 times. 

2. 500 µL of 20% HFIP/DCM (vol/vol) was added, the mixture was stirred for 2 min, 

left to react for 10 min and the solution was collected by vacuum filtration.  

3. 1.0 mL of DCM was added, the mixture was stirred for 30 s, and the solution was 

then collected by vacuum filtration.  

4. The solutions collected were combined and the solvent evaporated under reduced 

pressure. 

ESI-MS analysis: peak envelopes observed at m/z 1551.52 (z = -1), 1791.80 (z = -1) and 

2033.08 (z = -1) were assigned as [H2[MnMo6O24(C19H18NO2)(C11H17N2O4)]]
1- 

(predicted: 

1550.52), [(C16H36N)H[MnMo6O24(C19H18NO2)(C11H17N2O4)]]
1-

 (predicted: 1791.80) and 

[(C16H36N)2[MnMo6O24(C19H18NO2)(C11H17N2O4)]]
1-

 (predicted: 2033.08), respectively.  

5.5.2.4 Test E 

Coupling: 

1. Reaction: a DMF (200 µL) solution of 22 (0.0135 mmol, 31 mg, 3 equiv.) and 

DIPEA (30 µL, 0.17 mmol) were added, the resulting mixture was stirred gently for 

1 min and left to react for 16 h. The solvent was then removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Result: a pale yellow solid support was obtained. 

5.5.2.5 Test F 

Coupling: 

1. Reaction: a DMF (200 µL) solution of 22 (0.0135 mmol, 31 mg, 3 equiv.) and 

DIPEA (30 µL, 0.17 mmol) were added, the resulting mixture was stirred gently for 

1 min and left to react for 1 h. The solvent was then removed by vacuum filtration. 

A double coupling was carried out with an identical reagent mixture and was left to 

react for 7h. The solvent was then removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 
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Result: a pale orange solid support was obtained. 

5.5.2.6  Test G 

Coupling: 

1. Reaction: a DMF (200 µL) solution of the un-activated acid/Fmoc protected TRIS-

based Mn-Anderson cluster ((TBA)3[MnMo6O24(C8H12NO3)(C19H18NO2)]; 0.0135 

mmol, 30 mg, 3 equiv.) with HBTU (0.018 mmol, 6.6 mg, 4 equiv.) and DIPEA 

(30 µL, 0.17 mmol) were added, the resulting mixture was stirred gently for 1 min 

and left to react for 1 h. The solvent was then removed by vacuum filtration. A 

double coupling was carried out with an identical reagent mixture and was left to 

react for 16 h. The solvent was then removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Result: a pale yellow solid support was obtained. 

5.5.3 Addition of amino acids after the introduction of the hybrid POM amino 

acid 

A Tentagel® S Trt-Ala resin coupled to one Mn-Anderson amino acid synthesised under 

the same conditions than the ones exposed in Test D was used for the following tests. Prior 

to reaction the Mn-Anderson amino acid residue immobilised on the solid support had to 

be deprotected: 

1. Fmoc removal step: 1.0 mL of 20% piperidine/DMF (vol/vol) was added, the 

mixture was stirred gently for 1 min and the solution was removed by vacuum 

filtration. 1.0 mL of the same solution was added again, the mixture was stirred 

gently for 1 min, left to react for 10 min and removed by vacuum filtration. 

2. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, and the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

5.5.3.1  Test H 

Coupling: 

3. Reaction: a DMF (200 µL) solution of Fmoc-Phe-OH (0.135 mmol, 52 mg, 30 

equiv.) with HBTU (0.18 mmol, 66 mg, 4 equiv.) and DIPEA (60 µL, 0.34 mmol) 
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were added (mixture made 15 min before addition), the resulting mixture was 

stirred gently for 1 min and left to react for 1 h. The solvent was then removed by 

vacuum filtration. A double coupling was carried out with an identical reagent 

mixture and was left to react for 16 h. The solvent was then removed by vacuum 

filtration. 

5. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 

Cleavage/Product isolation: 

5. Washing step: 1.0 mL of DCM was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 3 times. 

6. 500 µL of 20% HFIP/DCM (vol/vol) was added, the mixture was stirred for 2 min, 

left to react for 10 min and the solution was collected by vacuum filtration.  

7. 1.0 mL of DCM was added, the mixture was stirred for 30 s, and the solution was 

then collected by vacuum filtration.  

8. The solutions collected were combined and the solvent evaporated under reduced 

pressure. 

ESI-MS results: two main peak envelopes at m/z 1327.49 (z = -1) and 1412.56 (z = -1 but 

also involving dimers of z = -2) which could not be assigned to the expected product or the 

starting material were observed, the product of this test still remains unidentified. The 

expected product has the general formula (C16H36N)3[MnMo6O24(C28H27N2O3) 

(C11H17N2O4)]. 

5.5.3.2 Test I 

Coupling: 

4. Reaction: a DMF (200 µL) solution of Fmoc-Phe-OH (0.135 mmol, 52 mg, 30 

equiv.) and DIC (21 µL, 0.135 mmol, 30 equiv.) (mixture made 15 min before 

addition) was added, the resulting mixture was stirred gently for 1 min and left to 

react for 3 h. The solvent was then removed by vacuum filtration and the addition 

step repeated once. 

6. Washing step: 1.0 mL of DMF was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 6 times. 
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Cleavage/Product isolation: 

9. Washing step: 1.0 mL of DCM was added, the mixture was stirred for 30 s, the 

solvent was then removed by vacuum filtration. This step was repeated 3 times. 

10. 500 µL of 20% HFIP/DCM (vol/vol) was added, the mixture was stirred for 2 min, 

left to react for 10 min and the solution was collected by vacuum filtration.  

11. 1.0 mL of DCM was added, the mixture was stirred for 30 s, and the solution was 

then collected by vacuum filtration.  

12. The solutions collected were combined and the solvent evaporated under reduced 

pressure. 

ESI-MS results: 

Two main peak envelopes at m/z 1698.63 (z = -1) and 1938.88 (z = -1) were assigned as 

[H2[MnMo6O24(C28H27N2O3)(C11H17N2O4)]]
1- 

(predicted: 1697.59) and [(C16H36N)1H-

[MnMo6O24(C28H27N2O3)(C11H17N2O4)]]
1-

 (predicted: 1938.87). The expected product has 

the general formula (C16H36N)3[MnMo6O24(C28H27N2O3) (C11H17N2O4)]. 
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6 Crystallographic Section 

Single crystal X-ray diffraction data for compounds 1-11, 13, 17, 20 and 21 are presented 

in this thesis. Structures were solved using Patterson or Direct methods with SHELXS-

97
[249]

 or SIR-92 using WinGX
[250]

 routines. Refinement was accomplished by full matrix 

least-squares on F
2
 via SHELXL-97.

[249]
 All non-hydrogen atoms were refined 

anisotropically unless stated otherwise. Hydrogen atom positions were calculated using 

standard geometric criteria and refined using a riding model. All data manipulation and 

presentation steps were performed using WinGX. Due to the large amount of tabulated 

data this section only presents the refinement details of each structure. Supplementary data 

deposited with this thesis can be obtained from the University of Glasgow. The following 

quantities are given in the information for each structure and were calculated as follows:  

Goodness-of-fit (GooF) =  

Weighting scheme  

With , and p: number of parameters; n: number of data; A, B: 

weighting scheme parameters  

 

 

, where both summation involve reflections for which more 

than one symmetry equivalent is averaged. 
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CRYSTALLOGRAPHIC SECTION  175 

6.1 Crystal data and structure refinement for compound 1a  

Empirical formula     C18H50Mo8N5NaO28 

Formula weight     1575.14 

Temperature     150(2) K 

Wavelength     1.54178 Å 

Crystal system, space group   Monoclinic, P21/c 

Unit cell dimensions    a = 9.4649(4) Å  α = 90 º 

b = 20.3666(8) Å  β = 93.236(3) º 

c = 11.6803(4) Å  γ = 90 º 

Volume      2248.00(15) Å
3
 

Z, Calculated density    2, 2.327 Mg/m
3
 

Absorption coefficient    18.591 mm
-1

 

F(000)      1528 

Crystal size     0.11 x 0.07 x 0.04 mm 

Theta range for data collection   4.37 to 57.50 º 

Limiting indices     -10<=h<=9, -22<=k<=21, -12<=l<=12 

Reflections collected / unique   12277 / 3055 [R(int) = 0.0523] 

Completeness to theta = 57.50  99.3 % 

Absorption correction    Analytical 

Max. and min. transmission   0.5234 and 0.2342 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   3055 / 0 / 249 

Goodness-of-fit on F2    1.102 

Final R indices [I>2sigma(I)]   R1 = 0.0714, wR2 = 0.2541 

R indices (all data)    R1 = 0.0793, wR2 = 0.2598 

Largest diff. peak and hole   3.18 and -1.36 e.Å
-3 
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6.2 Crystal data and structure refinement for compound 1b  

Empirical formula     C28H76Mo8N8O30 

Formula weight     1772.49 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, P21/n 

Unit cell dimensions    a = 10.8532(5) Å  α = 90 º 

b = 25.1978(14) Å  β = 116.657(3) º 

c = 11.7908(6) Å  γ = 90 º 

Volume      2881.8(3) Å
3
 

Z, Calculated density    2, 2.043 Mg/m
3
 

Absorption coefficient    1.770 mm
-1

 

F(000)      1752 

Crystal size     0.20 x 0.10 x 0.05 mm 

Theta range for data collection   2.09 to 26.00 º 

Limiting indices     -13<=h<=13, -28<=k<=31, 14<=l<=14 

Reflections collected / unique   22348 / 5667 [R(int) = 0.0766] 

Completeness to theta = 26.00  99.9 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9167 and 0.7185 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   5667 / 16 / 335 

Goodness-of-fit on F2    1.003 

Final R indices [I>2sigma(I)]   R1 = 0.0423, wR2 = 0.0832 

R indices (all data)    R1 = 0.0795, wR2 = 0.0982 

Largest diff. peak and hole   0.78 and -0.90 e.Å
-3 
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6.3 Crystal data and structure refinement for compound 2a  

Empirical formula     C24H60Mo8N3NaO26 

Formula weight     1597.26 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, P21 

Unit cell dimensions    a = 10.9912(10) Å  α = 90 º 

b = 22.757(2) Å  β = 98.239(4) º 

c = 18.7179(15) Å  γ = 90 º 

Volume      4633.5(7) Å
3
 

Z, Calculated density    4, 2.290 Mg/m
3
 

Absorption coefficient    2.187 mm
-1

 

F(000)      3120 

Crystal size     0.15 x 0.12 x 0.10 mm 

Theta range for data collection   1.42 to 25.00 º 

Limiting indices     -13<=h<=12, 0<=k<=27, 0<=l<=22 

Reflections collected / unique   8838 / 8838 [R(int) = 0.0000] 

Completeness to theta = 25.00  87.5 % 

Absorption correction    Empirical 

Max. and min. transmission   0.8110 and 0.7350 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   8838 / 2 / 611 

Goodness-of-fit on F2    1.080 

Final R indices [I>2sigma(I)]   R1 = 0.0778, wR2 = 0.1685 

R indices (all data)    R1 = 0.1095, wR2 = 0.1941 

Largest diff. peak and hole   1.81 and -1.77 e.Å
-3 
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6.4 Crystal data and structure refinement for compound 2b  

Empirical formula     C38H94Mo8N6O28 

Formula weight     1850.71 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, P21/c 

Unit cell dimensions    a = 12.6794(7) Å  α = 90 º 

b = 11.9967(6) Å  β = 95.176(3) º 

c = 20.8920(11) Å  γ = 90 º 

Volume      3164.9(3) Å
3
 

Z, Calculated density    2, 1.942 Mg/m
3
 

Absorption coefficient    1.613 mm
-1

 

F(000)      1848 

Crystal size     0.10 x 0.10 x 0.06 mm 

Theta range for data collection   1.96 to 26.00 º 

Limiting indices     -15<=h<=12, -14<=k<=14, -25<=l<=25 

Reflections collected / unique   42348 / 6210 [R(int) = 0.0485] 

Completeness to theta = 26.00  99.6 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9094 and 0.8553 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   6210 / 0 / 378 

Goodness-of-fit on F2    1.050 

Final R indices [I>2sigma(I)]   R1 = 0.0286, wR2 = 0.0687 

R indices (all data)    R1 = 0.0393, wR2 = 0.0760 

Largest diff. peak and hole   0.68 and -0.96 e.Å
-3 

  



CRYSTALLOGRAPHIC SECTION  179 

6.5 Crystal data and structure refinement for compound 3a  

Empirical formula     C30H70Mo8N4Na2O28 

Formula weight     1748.40 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Triclinic, Pī 

Unit cell dimensions    a = 13.1358(11) Å  α = 65.365(3) º 

b = 20.1210(15) Å  β = 89.772(4) º 

c = 23.1313(17) Å  γ = 88.935(4) º 

Volume      5556.3(7) Å
3
 

Z, Calculated density    4, 2.090 Mg/m
3
 

Absorption coefficient    1.844 mm
-1

 

F(000)      3440 

Crystal size     0.18 x 0.15 x 0.10 mm 

Theta range for data collection   1.55 to 25.80 º 

Limiting indices     -16<=h<=16, -24<=k<=24, -28<=l<=28 

Reflections collected / unique   75354 / 21097 [R(int) = 0.0305] 

Completeness to theta = 25.80  98.7 % 

Absorption correction    Empirical 

Max. and min. transmission   0.8371 and 0.7326 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   21097 / 67 / 1314 

Goodness-of-fit on F2    1.108 

Final R indices [I>2sigma(I)]   R1 = 0.0340, wR2 = 0.0787 

R indices (all data)    R1 = 0.0407, wR2 = 0.0825 

Largest diff. peak and hole   1.51 and -0.94 e.Å
-3 

  



CRYSTALLOGRAPHIC SECTION  180 

6.6 Crystal data and structure refinement for compound 3b  

Empirical formula     C51H119Mo8N5O27 

Formula weight     2002.03 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Orthorhombic, Pccn 

Unit cell dimensions    a = 21.2892(12) Å  α = 90 º 

b = 22.0626(10) Å  β = 90 º 

c = 16.7364(8) Å  γ = 90 º 

Volume      7861.0(7) Å
3
 

Z, Calculated density    4, 1.692 Mg/m
3
 

Absorption coefficient    1.304 mm
-1

 

F(000)      4048 

Crystal size     0.09 x 0.08 x 0.07 mm 

Theta range for data collection   1.80 to 26.00 º 

Limiting indices     -13<=h<=25, -24<=k<=27, -20<=l<=19 

Reflections collected / unique   32104 / 7648 [R(int) = 0.0360] 

Completeness to theta = 26.00  98.9 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9142 and 0.8916 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   7648 / 2 / 418 

Goodness-of-fit on F2    1.059 

Final R indices [I>2sigma(I)]   R1 = 0.0276, wR2 = 0.0610 

R indices (all data)    R1 = 0.0391, wR2 = 0.0688 

Largest diff. peak and hole   1.04 and -0.55 e.Å
-3 
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6.7 Crystal data and structure refinement for compound 3c  

Empirical formula     C18H42Mo8N6Na4O32 

Formula weight     1714.06 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, P21/n 

Unit cell dimensions    a = 12.236(2) Å  α = 90 º 

b = 13.609(2) Å  β = 99.455(7) º 

c = 14.868(2) Å  γ = 90 º 

Volume      2442.2(7) Å
3
 

Z, Calculated density    2, 2.331 Mg/m
3
 

Absorption coefficient    2.117 mm
-1

 

F(000)      1656 

Crystal size     0.16 x 0.10 x 0.04 mm 

Theta range for data collection   2.00 to 25.80 º 

Limiting indices     -14<=h<=14, -16<=k<=12, -18<=l<=16 

Reflections collected / unique   18549 / 4691 [R(int) = 0.0278] 

Completeness to theta = 25.80  99.9 % 

Max. and min. transmission   0.9201 and 0.7281 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   4691 / 10 / 352 

Goodness-of-fit on F2    1.065 

Final R indices [I>2sigma(I)]   R1 = 0.0182, wR2 = 0.0420 

R indices (all data)    R1 = 0.0218, wR2 = 0.0442 

Largest diff. peak and hole   0.351 and -0.450 e.Å
-3 
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6.8 Crystal data and structure refinement for compound 4  

Empirical formula     C29H73MnMo6N8O27 

Formula weight     1596.53 

Temperature     150(2) K 

Wavelength     1.54184 Å 

Crystal system, space group   Monoclinic, C2/c 

Unit cell dimensions    a = 29.0498(10) Å  α = 90 º 

b = 9.2853(3) Å  β = 102.186(3) º 

c = 24.0873(8) Å  γ = 90 º 

Volume      6350.8(4) Å
3
 

Z, Calculated density    4, 1.670 Mg/m
3
 

Absorption coefficient    11.617 mm
-1

 

F(000)      3184 

Crystal size     0.14 x 0.10 x 0.05 mm 

Theta range for data collection   3.75 to 54.31 º 

Limiting indices     -30<=h<=30, -9<=k<=9, -25<=l<=25 

Reflections collected / unique   15048 / 3874 [R(int) = 0.0720] 

Completeness to theta = 54.31  99.6 % 

Absorption correction    Analytical 

Max. and min. transmission   0.5943 and 0.2931 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   3874 / 0 / 299 

Goodness-of-fit on F2    1.053 

Final R indices [I>2sigma(I)]   R1 = 0.0744, wR2 = 0.2050 

R indices (all data)    R1 = 0.1125, wR2 = 0.2425 

Largest diff. peak and hole   1.60 and -0.97 e.Å
-3 
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6.9 Crystal data and structure refinement for compound 5a  

Empirical formula     C35H83MnMo6N6O25 

Formula weight     1618.65 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, C2/m 

Unit cell dimensions    a = 15.0770(13) Å  α = 90 º 

b = 23.102(2) Å  β = 92.336(5) º 

c = 15.0791(14) Å  γ = 90 º 

Volume      5247.9(8) Å
3
 

Z, Calculated density    4, 2.049 Mg/m
3
 

Absorption coefficient    1.708 mm
-1

 

F(000)      3248 

Crystal size     0.19 x 0.12 x 0.07 mm 

Theta range for data collection   1.61 to 26.00 º 

Limiting indices     -18<=h<=18, -28<=k<=28, -17<=l<=18 

Reflections collected / unique   19081 / 5245 [R(int) = 0.0293] 

Completeness to theta = 26.0  99.1 % 

Absorption correction    Empirical 

Max. and min. transmission   0.8898 and 0.7374 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   5245 / 0 / 333 

Goodness-of-fit on F2    1.032 

Final R indices [I>2sigma(I)]   R1 = 0.0456, wR2 = 0.1279 

R indices (all data)    R1 = 0.0605, wR2 = 0.1447 

Largest diff. peak and hole   1.41 and -1.29 e.Å
-3 
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6.10 Crystal data and structure refinement for compound 5b  

Empirical formula     C38H90MnMo6N7O26 

Formula weight     1691.75 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, C2/c 

Unit cell dimensions    a = 24.6971(16) Å  α = 90 º 

b = 12.6758(8) Å  β = 90.641(5) º 

c = 18.8241(10) Å  γ = 90 º 

Volume      5892.6(6) Å
3
 

Z, Calculated density    4, 1.907 Mg/m
3
 

Absorption coefficient    1.527 mm
-1

 

F(000)      3408 

Crystal size     0.28 x 0.06 x 0.05 mm 

Theta range for data collection   2.81 to 25.73 º 

Limiting indices     -30<=h<=30, -15<=k<=15, -22<=l<=22 

Reflections collected / unique   23531 / 5603 [R(int) = 0.0756] 

Completeness to theta = 25.73  99.6 % 

Absorption correction    Analytical 

Max. and min. transmission   0.9276 and 0.6744 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   5603 / 0 / 358 

Goodness-of-fit on F2    1.054 

Final R indices [I>2sigma(I)]   R1 = 0.0453, wR2 = 0.0885 

R indices (all data)    R1 = 0.0802, wR2 = 0.1075 

Largest diff. peak and hole   0.87 and -0.80 e.Å
-3 
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6.11 Crystal data and structure refinement for compound 6  

Empirical formula     C41H93MnMo6N7NaO27 

Formula weight     1769.79 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Orthorhombic, Pnma 

Unit cell dimensions    a = 52.926(3) Å  α = 90 º 

b = 27.5135(10) Å  β = 90 º 

c = 9.5169(4) Å  γ = 90 º 

Volume      13858.3(10) Å
3
 

Z, Calculated density    8, 1.696 Mg/m
3
 

Absorption coefficient    1.309 mm
-1

 

F(000)      7136 

Crystal size     0.16 x 0.10 x 0.05 mm 

Theta range for data collection   1.07 to 21.97 º 

Limiting indices     -55<=h<=37, -22<=k<=28, -8<=l<=10 

Reflections collected / unique   33040 / 8660 [R(int) = 0.0780] 

Completeness to theta = 21.97  99.9 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9374 and 0.8179 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   8660 / 0 / 586 

Goodness-of-fit on F2    1.024 

Final R indices [I>2sigma(I)]   R1 = 0.0812, wR2 = 0.2093 

R indices (all data)    R1 = 0.1221, wR2 = 0.2301 

Largest diff. peak and hole   1.55 and -0.92 e.Å
-3 
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6.12 Crystal data and structure refinement for compound 7a  

Empirical formula     C17H47MnMo6N5Na3O32 

Formula weight     1533.15 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Triclinic, Pī 

Unit cell dimensions    a = 9.1905(5) Å  α = 102.444(3) º 

b = 12.7684(6) Å  β = 106.754(3) º 

c = 12.8684(6) Å  γ = 110.418(3) º 

Volume      1268.31(11) Å
3
 

Z, Calculated density    1, 2.007 Mg/m
3
 

Absorption coefficient    1.792 mm
-1

 

F(000)      750 

Crystal size     0.12 x 0.10 x 0.04 mm 

Theta range for data collection   1.77 to 25.73 º 

Limiting indices     -10<=h<=11, -15<=k<=15, -15<=l<=15 

Reflections collected / unique   18023 / 4820 [R(int) = 0.0469] 

Completeness to theta = 25.73  99.3 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9318 and 0.8137 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   4820 / 0 / 321 

Goodness-of-fit on F2    1.018 

Final R indices [I>2sigma(I)]   R1 = 0.0570, wR2 = 0.1543 

R indices (all data)    R1 = 0.0775, wR2 = 0.1719 

Largest diff. peak and hole   2.66 and -1.58 e.Å
-3 
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6.13 Crystal data and structure refinement for compound 7b  

Empirical formula     C20H52MnMo6N6Na3O32 

Formula weight     1588.23 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Triclinic, Pī 

Unit cell dimensions    a = 8.6386(4) Å  α = 109.102(2) º 

b = 10.0132(5) Å  β = 92.590(2) º 

c = 14.3392(8) Å  γ = 93.587(2) º 

Volume      1166.91(10) Å
3
 

Z, Calculated density    1, 2.260 Mg/m
3
 

Absorption coefficient    1.953 mm
-1

 

F(000)      780 

Crystal size     0.14 x 0.06 x 0.02 mm 

Theta range for data collection   2.16 to 25.99 º 

Limiting indices     -10<=h<=10, -12<=k<=12, -17<=l<=15 

Reflections collected / unique   16581 / 4556 [R(int) = 0.0270] 

Completeness to theta = 25.99  99.3 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9620 and 0.7716 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   4556 / 14 / 356 

Goodness-of-fit on F2    1.034 

Final R indices [I>2sigma(I)]   R1 = 0.0202, wR2 = 0.0494 

R indices (all data)    R1 = 0.0246, wR2 = 0.0524 

Largest diff. peak and hole   0.48 and -0.69 e.Å
-3 
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6.14 Crystal data and structure refinement for compound 7c  

Empirical formula     C38H86MnMo6N12Na3O34 

Formula weight     1954.74 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Triclinic, Pī 

Unit cell dimensions    a = 9.5374(3) Å  α = 91.169(2) º 

b = 13.5364(5) Å  β = 90.065(2) º 

c = 28.3397(9) Å  γ = 109.346(2) º 

Volume      3451.3(2) Å
3
 

Z, Calculated density    2, 1.881 Mg/m
3
 

Absorption coefficient    1.344 mm
-1

 

F(000)      1960 

Crystal size     0.12 x 0.10 x 0.06 mm 

Theta range for data collection   0.72 to 26.00 º 

Limiting indices     -11<=h<=11, -16<=k<=16, -34<=l<=34 

Reflections collected / unique   50838 / 13543 [R(int) = 0.0254] 

Completeness to theta = 26.00  99.8 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9237 and 0.8553 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   13543 / 0 / 852 

Goodness-of-fit on F2    1.037 

Final R indices [I>2sigma(I)]   R1 = 0.0244, wR2 = 0.0655 

R indices (all data)    R1 = 0.0266, wR2 = 0.0670 

Largest diff. peak and hole   0.69 and -0.60 e.Å
-3 
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6.15 Crystal data and structure refinement for compound 8 

Empirical formula     C72H147MnMo6N10O26 

Formula weight     2199.58 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Triclinic, Pī 

Unit cell dimensions    a = 14.8991(11) Å  α = 73.868(4) º 

b = 16.8272(12) Å  β = 74.700(4) º 

c = 22.2685(17) Å  γ = 66.883(3) º 

Volume      4856.2(6) Å
3
 

Z, Calculated density    2, 1.504 Mg/m
3
 

Absorption coefficient    0.946 mm
-1

 

F(000)      2268 

Crystal size     0.14 x 0.09 x 0.06 mm 

Theta range for data collection   1.61 to 26.00 º 

Limiting indices     -17<=h<=18, -20<=k<=20, -27<=l<=27 

Reflections collected / unique   69193 / 19055 [R(int) = 0.0296] 

Completeness to theta = 26.00  99.7 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9454 and 0.8789 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   19055 / 3 / 1018 

Goodness-of-fit on F2    1.046 

Final R indices [I>2sigma(I)]   R1 = 0.0287, wR2 = 0.0677 

R indices (all data)    R1 = 0.0385, wR2 = 0.0750 

Largest diff. peak and hole   0.76 and -0.84 e.Å
-3 
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6.16 Crystal data and structure refinement for compound 9 

Empirical formula     C79H153MnMo6N8O29 

Formula weight     2309.67 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Orthorhombic, Pca21 

Unit cell dimensions    a = 18.0293(7) Å  α = 90 º 

b = 20.8575(8) Å  β = 90 º 

c = 26.7597(11) Å  γ = 90 º 

Volume      10062.9(7) Å
3
 

Z, Calculated density    4, 1.525 Mg/m
3
 

Absorption coefficient    0.919 mm
-1

 

F(000)      4768 

Crystal size     0.16 x 0.06 x 0.04 mm 

Theta range for data collection   2.13 to 24.82 º 

Limiting indices     -21<=h<=21, -24<=k<=24, -31<=l<=31 

Reflections collected / unique   69503 / 16825 [R(int) = 0.1339] 

Completeness to theta = 24.82  99.0 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9642 and 0.8669 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   16825 / 42 / 827 

Goodness-of-fit on F2    1.056 

Final R indices [I>2sigma(I)]   R1 = 0.0823, wR2 = 0.1817 

R indices (all data)    R1 = 0.1592, wR2 = 0.2247 

Largest diff. peak and hole   0.98 and -1.02 e.Å
-3 
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6.17 Crystal data and structure refinement for compound 10 

Empirical formula     C68H138MnMo6N7O30 

Formula weight     2164.43 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Orthorhombic, Pnma 

Unit cell dimensions    a = 28.3641(5) Å  α = 90 º 

b = 23.7876(5) Å  β = 90 º 

c = 15.0216(3) Å  γ = 90 º 

Volume      10135.3(3) Å
3
 

Z, Calculated density    4, 1.418 Mg/m
3
 

Absorption coefficient    0.908 mm
-1

 

F(000)      4448 

Crystal size     0.27 x 0.18 x 0.17 mm 

Theta range for data collection   2.94 to 25.69 º 

Limiting indices     -31<=h<=34, -28<=k<=28, -18<=l<=18 

Reflections collected / unique   78055 / 9622 [R(int) = 0.0627] 

Completeness to theta = 25.69  99.8 % 

Absorption correction    Analytical 

Max. and min. transmission   0.8610 and 0.7917 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   9622 / 13 / 494 

Goodness-of-fit on F2    1.065 

Final R indices [I>2sigma(I)]   R1 = 0.0482, wR2 = 0.1211 

R indices (all data)    R1 = 0.0673, wR2 = 0.1302 

Largest diff. peak and hole   0.78 and -0.52 e.Å
-3 
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6.18 Crystal data and structure refinement for compound 11 

Empirical formula     C84H166MnMo6N11O38 

Formula weight     2568.86 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, C2/c 

Unit cell dimensions    a = 30.7813(16) Å  α = 90 º 

b = 23.7409(12) Å  β = 121.095(2) º 

c = 18.4631(10) Å  γ = 90 º 

Volume      11553.7(10) Å
3
 

Z, Calculated density    4, 1.477 Mg/m
3
 

Absorption coefficient    0.815 mm
-1

 

F(000)      5312 

Crystal size     0.12 x 0.10 x 0.06 mm 

Theta range for data collection   1.15 to 26.00 º 

Limiting indices     -32<=h<=37, -29<=k<=29, -22<=l<=21 

Reflections collected / unique   80717 / 11341 [R(int) = 0.0394] 

Completeness to theta = 26.00  99.9 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9527 and 0.9085 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   11341 / 5 / 620 

Goodness-of-fit on F2    1.109 

Final R indices [I>2sigma(I)]   R1 = 0.0443, wR2 = 0.1275 

R indices (all data)    R1 = 0.0609, wR2 = 0.1547 

Largest diff. peak and hole   1.45 and -0.64 e.Å
-3 
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6.19 Crystal data and structure refinement for compound 13 

Empirical formula     C82H150MnMo6N7O32 

Formula weight     2376.66 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, C2/c 

Unit cell dimensions    a = 50.1637(14) Å  α = 90 º 

b = 29.4838(12) Å  β = 124.851(3) º 

c = 29.5767(12) Å  γ = 90 º 

Volume      35898(3) Å
3
 

Z, Calculated density    12, 1.319Mg/m
3
 

Absorption coefficient    0.777 mm
-1

 

F(000)      14688 

Crystal size     0.110 x 0.090 x 0.050 mm 

Theta range for data collection   0.849 to 26.000 º 

Limiting indices     -61<=h<=55, -36<=k<=36, -36<=l<=36 

Reflections collected / unique   246843 / 35272 [R(int) = 0.0799] 

Completeness to theta = 25.242  100 % 

Absorption correction    Empirical 

Max. and min. transmission   n/a 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   35272 / 54 / 992 

Goodness-of-fit on F2    1.044 

Final R indices [I>2sigma(I)]   R1 = 0.0839, wR2 = 0.2457 

R indices (all data)    R1 = 0.1395, wR2 = 0.2650 

Largest diff. peak and hole   0.99 and -0.68 e.Å
-3 
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6.20 Crystal data and structure refinement for compound 17  

Empirical formula     C80H153MnMo6N8O28 

Formula weight     2305.68 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Monoclinic, P21/c 

Unit cell dimensions    a = 27.455(3) Å  α = 90 º 

b = 29.007(3) Å  β = 94.450(5) º 

c = 24.974(2) Å  γ = 90 º 

Volume      19829(3) Å
3
 

Z, Calculated density    8, 1.545 Mg/m
3
 

Absorption coefficient    0.932 mm
-1

 

F(000)      9520 

Crystal size     0.13 x 0.06 x 0.03 mm 

Theta range for data collection   1.02 to 26.00 º 

Limiting indices     -33<=h<=33, -35<=k<=35, -30<=l<=30 

Reflections collected / unique   287148 / 38952 [R(int) = 0.0582] 

Completeness to theta = 26.00  100 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9726 and 0.8884 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   38952 / 63 / 1854 

Goodness-of-fit on F2    1.170 

Final R indices [I>2sigma(I)]   R1 = 0.0802, wR2 = 0.1796 

R indices (all data)    R1 = 0.0924, wR2 = 0.1843 

Largest diff. peak and hole   1.72 and -1.08 e.Å
-3 
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6.21 Crystal data and structure refinement for compound 20  

Empirical formula     C80H155MnMo6N8O29 

Formula weight     2323.70 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Orthorhombic, Pnma 

Unit cell dimensions    a = 28.257(2) Å  α = 90 º 

b = 21.8128(16) Å  β = 90 º 

c = 16.5796(14) Å  γ = 90 º 

Volume      10219.1(14) Å
3
 

Z, Calculated density    4, 1.510 Mg/m
3
 

Absorption coefficient    0.906 mm
-1

 

F(000)      4800 

Crystal size     0.12 x 0.06 x 0.03 mm 

Theta range for data collection   1.89 to 26.00 º 

Limiting indices     -34<=h<=30, -26<=k<=23, -20<=l<=19 

Reflections collected / unique   77882 / 10308 [R(int) = 0.0862] 

Completeness to theta = 26.00  99.9 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9733 and 0.8991 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   10308 / 39 / 440 

Goodness-of-fit on F2    1.068 

Final R indices [I>2sigma(I)]   R1 = 0.0823, wR2 = 0.2554 

R indices (all data)    R1 = 0.1193, wR2 = 0.2777 

Largest diff. peak and hole   1.18 and -0.97 e.Å
-3 
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6.22 Crystal data and structure refinement for compound 21  

Empirical formula     C62H135MnMo6N6O26 

Formula weight     2011.34 

Temperature     150(2) K 

Wavelength     0.71073 Å 

Crystal system, space group   Orthorhombic, Pcca 

Unit cell dimensions    a = 23.3192(17) Å  α = 90 º 

b = 28.200(2) Å  β = 90 º 

c = 30.215(2) Å  γ = 90 º 

Volume      19869(3) Å
3
 

Z, Calculated density    8, 1.345 Mg/m
3
 

Absorption coefficient    0.917 mm
-1

 

F(000)      8272 

Crystal size     0.12 x 0.08 x 0.05mm 

Theta range for data collection   0.72 to 25.00 º 

Limiting indices     -27<=h<=27, -33<=k<=31, -35<=l<=35 

Reflections collected / unique   135649 / 17492 [R(int) = 0.0842] 

Completeness to theta = 25.00  99.9 % 

Absorption correction    Empirical 

Max. and min. transmission   0.9556 and 0.8979 

Refinement method    Full-matrix least-squares on F2 

Data / restraints / parameters   17492 / 12 / 795 

Goodness-of-fit on F2    1.076 

Final R indices [I>2sigma(I)]   R1 = 0.0913, wR2 = 0.2965 

R indices (all data)    R1 = 0.1506, wR2 = 0.3334 

Largest diff. peak and hole   1.81 and -0.79 e.Å
-3 
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8 Appendix 

 

 

Figure A1:
 1
H NMR of 14 in DMSO-d6 at 400 MHz. 
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Figure A2:
 1
H NMR of compound 15 in DMSO-d6 at 400 MHz. 
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Figure A3: RP-HPLC of the crude material (mixture of 17 with the two symmetric by-products: TRIS Mn-

Anderson and Anthracene Mn-Anderson clusters). 

 

Figure A4: RP-HPLC of pure compound 17. 
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Figure A5: ESI-MS spectra of compound 17. See Table A1 for peak assignments. 

Table A1: Assignment of the peak envelopes found in the ESI-MS spectrum of compound 17 shown in 

Figure A5. Expected peak envelopes belonging to by-products (not-observed) are indicated; their absence 

demonstrates the purity of the sample. 

Formula assigned z m/z calculated m/z observed 

[MnMo
6
O

24
(C

19
H

16
NO)(C

4
H

8
N)](C

16
H

36
N)

1
H -1 1602.73 1602.71 

[MnMo
6
O

24
(C

19
H

16
NO)(C

4
H

8
N)](C

16
H

36
N)

2
 -1 1844.01 1843.98 

        

Potential by-products (not observed) z m/z calculated   

[MnMo
6
O

24
(C

4
H

8
N)

2
](C

16
H

36
N)

1
H -1 1397.68   

[MnMo
6
O

24
(C

4
H

8
N)

2
](C

16
H

36
N)

2
 -1 1639.95   

[MnMo
6
O

24
(C

19
H

16
NO)

2
](C

16
H

36
N)

1
H -1 1806.79   

[MnMo
6
O

24
(C

19
H

16
NO)

2
](C

16
H

36
N)

2
 -1 2048.07   
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Figure A6: Reproducibility of the separation of 17 by flash chromatography. Colour scheme: region I (blue 

box); region II (green box); region III (orange box); ELSD (green line); UV at λ = 254 nm (blue line); UV at 

λ = 350 nm (pink line). 
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Figure A7: 
1
H NMR of the Palmitic-TRIS/Succinic-Acid-TRIS Mn-Anderson compound (18) in DMSO-d6 at 

400 MHz. 
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Figure A8:
 1
H NMR of the Palmitic-TRIS/ TRIS Mn-Anderson compound (19) in DMSO-d6 at 400 MHz. 
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Figure A9: RP-HPLC of the crude material (mixture of 20 with the two symmetric by-products: TRIS Mn-

Anderson and Fmoc-TRIS Mn-Anderson compounds) 

 

Figure A10: RP-HPLC of pure compound 20. 
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Figure A11:
 1
H NMR of the Fmoc-TRIS/TRIS Mn-Anderson compound (20) in DMSO-d6 at 400 MHz 
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Figure A12: ESI-MS spectra of the intermediate product. See Table A2 for peak assignments. 

Table A2: Assignment of the peak envelopes found in the ESI-MS spectrum of the intermediate product 

shown in Figure A12. Expected peak envelopes belonging to by-products (not-observed) are indicated; their 

absence demonstrates the purity of the sample. 

Formula assigned z m/z calculated m/z observed 

[MnMo
6
O

24
(C

7
H

12
NO)(C

19
H

18
NO

2
)]

2
(C

16
H

36
N)

3
Na -2 1808.40 1808.44 

[MnMo
6
O

24
(C

7
H

12
NO)(C

19
H

18
NO

2
)](C

16
H

36
N)

2
 -1 1918.05  1917.56 

        

Potential by-products (not observed) z m/z calculated   

[MnMo
6
O

24
(C

4
H

8
N)(C

19
H

18
NO

2
)](C

16
H

36
N)

1
H -1 1620.74   

[MnMo
6
O

24
(C

4
H

8
N)(C

19
H

18
NO

2
)](C

16
H

36
N)

2
 -1 1862.02   
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Figure A13:
 1
H NMR of the propylamide-TRIS/TRIS Mn-Anderson (21) in DMSO-d6 at 400 MHz. 

 


