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Abstract 

Pulmonary arterial hypertension (PAH) is a complex disease characterised by 

narrowing and remodelling of the small pulmonary arteries. This process involves 

all cell types within the vessel wall and results in an increase in pulmonary 

artery pressure, right heart failure and can eventually lead to premature death. 

Diagnosis of PAH occurs late in disease progression with patients already 

displaying severe hemodynamic compromise and mortality rates remain 

unacceptably high despite current treatment. Therefore the development of 

new therapies is required to manage the symptoms and treat the underlying 

causes of this multifaceted disease. Recent studies have highlighted a role for 

microRNAs (miRNAs) in the initiation, development and progression of PAH. 

MiRNAs are small non-coding RNA molecules ~22 nucleotides long that negatively 

regulate gene expression. Previous work from our laboratory has shown that 

miRNAs are dysregulated within the lung during the development of 

experimental pulmonary hypertension (PH). Consequently, the aim of this study 

was to assess the involvement of specific miRNAs in the development of PAH 

using cell culture and experimental models of PH.  

The first miRNA focused on was miR-451 which is up-regulated in the lungs from 

animal models of PH. In human pulmonary artery smooth muscle cells 

(hPASMCs), miR-451 over-expression promoted migration in the absence of serum 

but had no effect on cellular proliferation. Silencing of miR-451 was performed 

in vivo using antimiR-451 and miR-451 knockout mice. Indices of PAH were 

assessed after exposure to hypoxia via measurement of right ventricular pressure 

(RVP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. 

There was a reduction in systolic RVP in hypoxic rats pre-treated with antimiR-

451 compared to control antimiR (47.7 ± 1.36 mmHg and 56.0 ± 2.03 mmHg 

respectively, p<0.01). MiR-451 knockout mice exposed to chronic hypoxia 

displayed no significant differences for PAH indices compared to wild type 

hypoxic mice. Thus illustrating that transient inhibition of miR-451 attenuates 

the development of PH in hypoxic rats however, genetic deletion of miR-451 has 

no beneficial effect on the development of PH. This may be due to 

compensatory mechanisms present in the miR-451 knockout mice. 
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Previous work has also shown that miR-145 is up-regulated in the lungs and 

pulmonary arteries from animal models of PH as well as PAH patients. Therefore 

miR-145 expression was modulated in rats using antimiR-145 both prior to and 

post exposure to hypoxia and SU5416 administration. Prophylactic silencing of 

miR-145 in the hypoxia/SU5416 model of PH showed no beneficial effect on the 

development of PH compared to control antimiR treated rats exposed to 

hypoxia. Therapeutic modulation of miR-145 also demonstrated no protective 

effect on RVP, RVH or muscularisation of pulmonary arteries in the rat 

hypoxia/SU5416 model. There was however a significant reduction in the 

number of occluded vessels in rats with established PH treated with antimiR-

145. This reduction in occluded vessel count is interesting as it was not observed 

in the prevention study. Further work is required to pinpoint the exact 

mechanisms through which antimiR-145 is producing this positive effect on 

pulmonary vessels with therapeutic silencing of miR-145.  

The role of miR-145 on PAH development was further investigated with the use 

of miR-145 knockout mice. Recent studies show that genetic ablation of miR-145 

protects female mice from developing hypoxia-induced PH. We therefore sought 

to establish whether this beneficial response was also observed in male miR-145 

knockout mice. Hypoxic male miR-145 knockout mice showed similar indices of 

PAH as hypoxic miR-145 wild type mice, with increased RVP and RVH compared 

with normoxic mice. Pulmonary vascular remodelling analysis indicates that miR-

145 knockout mice exposed to hypoxia may have a reduction in remodelling 

compared to wild type hypoxic mice however this does not reach significance. 

Thus it appears from this study that male miR-145 knockout mice are not 

protected against developing PAH as the female knockout mice are. The results 

from this study on male miR-145 knockout mice demonstrate that the effects of 

silencing miR-145 in vivo are indeed gender specific.   

As well as affecting the pulmonary arteries, PAH also induces changes within the 

right ventricle culminating in right ventricular dysfunction and failure. Therefore 

a miRNA profile was established for the PAH diseased right ventricle. MiR-27a 

and miR-27b were up-regulated within the right ventricle of hypoxia/SU5416 

mice and rats, respectively. This response appears to be cardiac specific and 

may help to establish therapies to maintain and stabilise RV function. 
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In summary of these findings, we have confirmed that miRNAs are dysregulated 

within the lung and right ventricle during PH development. Results suggest that 

there are complex mechanisms regulating miRNA processing within the lung 

during the development of PAH and that these pathways may be gender specific. 

Further work is required to understand the genes targeted, and therefore the 

pathways modulated, by miRNAs during PAH development to enhance our 

understanding of the intricate systems involved in disease progression. MiRNAs 

represent a potential therapeutic target for the treatment of PAH with further 

work required to pinpoint the exact mechanistic pathways through which they 

exert their effects. 
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1 Introduction 
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1.1 Pulmonary vasculature 

Under normal physiological conditions, the pulmonary circulation is a low 

pressure, high flow system where gaseous exchange takes place between the 

pulmonary capillaries and the air filled alveolar sacs. Deoxygenated blood enters 

the right atrium of the heart via the superior and inferior vena cava. From here, 

blood enters the right ventricle through the tricuspid valve. Upon contraction, 

blood is forced out of the right ventricle, through the pulmonary semilunar valve 

and into the pulmonary artery (PA). The PA splits to form the right and left 

pulmonary arteries, each one entering the corresponding lung hilum. The right 

PA enters the right lung which is divided into three lung lobes (superior, middle 

and inferior), separated by the oblique and horizontal fissures. In a similar 

manner, the left PA enters the left lung which is divided into only two lobes 

(superior and inferior) (Ding et al., 2009). All five lobes of the lung are further 

divided into lobules, which contain bronchi and further division and branching 

results in a large network of small air filled alveoli. The pulmonary artery 

follows and indeed lies adjacent to the airways, with subsequent branching of 

the pulmonary artery until pulmonary capillaries surround the alveoli allowing 

gaseous exchange to occur. From here, the oxygenated blood is carried back to 

the heart via the venules and pulmonary vein into the left atria. Blood then 

passes through the bicuspid valve into the left ventricle. Contraction of the 

heart forces the blood through the aortic semilunar valve into the aorta where 

oxygenated blood is delivered throughout the body via the systemic circulation 

(Figure 1.1).    
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Figure 1.1 – Schematic of the pulmonary circulation. 

Deoxygenated blood enters the right atrium, flows through the tricuspid valve and into the right 

ventricle. During contraction, blood is forced into the pulmonary artery which bifurcates into the 

right and left lung where gaseous exchange takes place. Oxygenated blood is then returned to the 

heart via the pulmonary vein and enters the left atrium. Blood enters the left ventricle through the 

bicuspid valve and upon contraction, oxygenated blood is pushed into the aorta and distributed 

throughout the body. 
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1.1.1 Structure of the pulmonary vessels 

The pulmonary artery and vein branch into the lung in a tree-like structure and 

the pulmonary vessels can be categorized according to their size and 

composition.  There are 15 orders of pulmonary arteries between the main 

pulmonary artery and the capillaries and a total of 15 orders of veins between 

the capillaries and the main pulmonary vein (Huang et al., 1996). The large 

proximal pulmonary vessel is defined as of order 15, with the smallest distal 

non-capillary blood vessel of order 1. The large pulmonary arteries of order 15-

13 are generally >1000 μm in diameter and the media consists primarily of a 

thick elastic lamina. Branching of the pulmonary artery (order 12-4) causes a 

reduction in the diameter of the arteries (100 – 1000 μm) and a progressive 

increase in smooth muscle within the media, with few elastic fibrils present. The 

most distal PAs (order 3-1) are <100 μm in diameter and surrounded by a thin 

layer of endothelium with absence of smooth muscle (Brenner, 1935, Hislop and 

Reid, 1973, Yen and Sobin, 1988). Pulmonary arteries of order 1 connect to the 

pulmonary capillaries which form capillary plexuses at the alveolar ducts to aid 

blood-gas exchange. Pulmonary capillaries are <10 μm in diameter and are 

composed of a very thin layer of endothelium (approximately 0.15 μm thick). 

The alveolar epithelial layer (also approximately 0.15 μm thick) is in contact 

with the capillary and this forms an extremely thin blood-gas barrier to facilitate 

the diffusion of gases (Low, 1953). At rest, the pulmonary capillary bed can 

accommodate the stroke volume.  

1.1.2 Function of the pulmonary circulation 

The main function of the pulmonary circulation is to enable the oxygenation of 

deoxygenated blood. The pulmonary circulation needs to accommodate the 

entire stroke volume of blood at each heart beat and is a low resistance and 

pressure system which is normally fully dilated. Blood arriving at the alveoli has 

a high carbon dioxide (CO2) content produced from cellular respiration within 

the body. This produces a concentration gradient with the air in the alveoli 

causing diffusion of CO2 out of the blood. In the same way, oxygen (O2) 

concentrations are significantly higher in the alveoli compared to the blood 

resulting in diffusion of O2 into the blood. In the blood, O2 binds to a protein 

present in red blood cells called haemoglobin. Haemoglobin is composed of four 
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subunits each containing a heme group with a ferrous iron atom which can 

reversibly bind to O2 (Pittman, 2011). This CO2/O2 exchange within the lung 

allows the re-oxygenation of blood and is vital for the functioning of many 

processes throughout the body.    

As mentioned above, the pulmonary circulation is a high flow, low resistance and 

low pressure system due to the lungs receiving 100% of the cardiac output. This 

is in contrast to the systemic circulation which is a high pressure circuit. In a 

healthy individual, the mean pulmonary artery pressure (PAP) is approximately 

10-20 mmHg while the mean systemic arterial pressure (SAP) is approximately 

70-105 mmHg (Kuhr et al., 2012). The pulmonary vascular resistance (PVR) is 

calculated as a function of cardiac output and PAP. PVR is the resistance in the 

pulmonary arteries against which the right ventricle must eject blood and 

according to Poiseuille’s Law, PVR is inversely related to the fourth power of 

pulmonary arterial radius (Chemla et al., 2002). All orders of pulmonary arteries 

are involved in defining PVR however, the small and medium arteries contribute 

significantly more than the large vessels. Therefore even small changes in lumen 

diameter, as a result of vasoconstriction or vessel wall hypertrophy, can result in 

large changes in PVR.   

1.2 Pulmonary arterial hypertension 

1.2.1 Classification 

In 1951, Dresdale coined the term primary pulmonary hypertension (PPH) to 

describe a condition which displays an elevated pulmonary pressure without 

demonstrable cause (Dresdale et al., 1951). The term primary pulmonary 

hypertension has now been replaced with the term idiopathic pulmonary arterial 

hypertension (IPAH). Clinical classification of pulmonary hypertension (PH) is 

based on guidelines established by the fifth World Symposium on Pulmonary 

Hypertension held in Nice, France in 2013 and modified previous guidelines 

based on the current knowledge of the disease (Simonneau et al., 2013). There 

are five categories of pulmonary hypertension (Table 1.1) with each separate 

group sharing pathological and clinical features.  



Chapter 1  6 
 
This study will focus on group 1 pulmonary arterial hypertension, which includes 

idiopathic PAH (IPAH), heritable PAH (HPAH) and PAH associated with other 

diseases (APAH). IPAH describes the development of the disease without any 

known cause or risk factors. In contrast, HPAH characterises the condition when 

there is a genetic aspect involved and heterozygous mutations within the gene 

encoding for bone morphogenetic protein receptor II (BMPR2) are present in 50-

90% of patients diagnosed with HPAH (McLaughlin and McGoon, 2006). APAH can 

manifest as a result or alongside other conditions, such as HIV infection, collagen 

vascular diseases, congenital heart disease and drug related PAH (e.g. 

anorexigenic drugs) (Simonneau et al., 2009). 

Pulmonary arterial hypertension is an increasingly prevalent disease with an 

adult prevalence of 48.7 – 51.8 cases/million of the population in Scotland, 

England and Wales (NAPH, 2013). PAH is established by elevation of pulmonary 

vascular resistance and pulmonary arterial pressure, leading to right ventricular 

failure and eventual death. Clinically, PAH is defined as a mean pulmonary 

artery pressure of >25 mmHg. Group 1 PAH is distinguished from other groups of 

pulmonary hypertension with a pulmonary capillary wedge pressure of ≤15 mmHg 

and pulmonary vascular resistance of >240 dynes/sec/cm5 (Rich et al., 1987, 

Rubin, 2004). Diagnosis of PAH is confirmed by right heart catheterisation (Barst 

et al., 2004). Clinical symptoms of PAH include dyspnea, chest pain, syncope and 

fatigue however, symptoms are not specific for PAH and do not usually arise 

until later stages of disease development. In addition to this, studies have 

reported a delay of approximately 2 years from onset of symptoms to diagnosis 

(Humbert et al., 2006, Badesch et al., 2009, Rich et al., 1987) and so detection 

of PAH occurs late in the progression of the disease with the majority of patients 

displaying severe hemodynamic compromise (Humbert et al., 2006). As a result, 

PAH has a poor prognosis with patient survival 1 and 3 years after diagnosis at 

88% and 68%, respectively, with current therapies (Hurdman et al., 2012).  

Based on the severity of the symptoms and the ability to perform daily tasks, 

PAH patients are further classified into groups using the New York Heart 

Association/World Health Organisation (NYHA/WHO) functional classification 

(Table 1.2). Functional classification describes the physical limitations which are 

placed on the patient, with early stage PAH patients in class I and late stage 
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patients with right heart failure in class IV. The NYHA/WHO classification system 

is also a strong predictor of patient mortality. NYHA/WHO class I and II patients 

have a median survival time of almost 6 years, class III survival time is 2.5 years 

while survival time for class IV patients drops dramatically to 6 months (D'Alonzo 

et al., 1991).  
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Table 1-1 – WHO classification of pulmonary hypertension. 

Reproduced from (Simonneau et al., 2013).  

1 Pulmonary arterial hypertension (PAH) 

1.1 Idiopathic PAH 

1.2 Heritable PAH 

1.2.1 BMPR2 

1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3  

1.2.3 Unknown 

1.3 Drug and toxin induced 

1.4 PAH associated with: 

1.4.1 Connective tissue disease 

1.4.2 HIV infection 

1.4.3 Portal hypertension 

1.4.4 Congenital heart diseases 

1.4.5 Schistosomiasis 

1’   Pulmonary veno-occlusive disease and/or pulmonary capillary     

hemangiomatosis 

1’’  Persistent pulmonary hypertension of the new born (PPHN) 

2 Pulmonary hypertension due to left heart disease 

2.1 Left ventricular systolic dysfunction 

2.2 Left ventricular diastolic dysfunction 

2.3 Valvular disease 

2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital 
cardiomyopathies 

3 Pulmonary hypertension due to lung diseases and/or hypoxia 

3.1 Chronic obstructive pulmonary disease 

3.2 Interstitial lung disease 

3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 

3.4 Sleep-disordered breathing 

3.5 Alveolar hypoventilation disorders 

3.6 Chronic exposure to high altitude 

3.7 Developmental lung diseases 

4 Chronic thromboembolic pulmonary hypertension (CTEPH) 

5 Pulmonary hypertension with unclear multifactorial mechanisms 

5.1 Hematological disorders: chronic haemolytic anemia, myeloproliferative 

disorders, splenectomy  

5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, 

lymphangioleiomyomatosis 

5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid 

disorders 

5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure, 

segmental PH 
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The first registry of primary pulmonary hypertension was carried out in the early 

1980s by the National Institutes of Health (NIH) (Rich et al., 1987, D'Alonzo et 

al., 1991) and further registries have been conducted to provide more up to date 

information on the patient population. The incidence of PAH varies from 1.1, 2.3 

and 2.4 cases per million of adult population per year in the UK and Ireland, USA 

and France, respectively (Ling et al., 2012, Frost et al., 2011, Humbert et al., 

2006).The median age of PAH diagnosis is 56 years of age (Ling et al., 2012, 

Badesch et al., 2010). Females are more susceptible to developing PAH with a 

female to male ratio of 4.3:1 in PAH (Walker et al., 2006) and 4.1:1 in IPAH 

(Badesch et al., 2010). However although females have a higher preponderance 

of PAH, severity and survival rates are worse in males who have developed the 

disease (Humbert et al., 2010). 

Table 1-2 – New York Heart Association/ World Health Organisation (NYHA/WHO) functional 

classification of pulmonary hypertension. 

 

Class Description 

I Patients with PH in whom there is no limitation of usual physical 
activity. Ordinary physical activity does not cause increased dyspnea, 
fatigue, chest pain or presyncope.  

II Patients with PH who have mild limitation of physical activity. There is 
no discomfort at rest, but normal physical activity causes increased 
dyspnea, fatigue, chest pain or presyncope. 

III Patients with PH who have a marked limitation of physical activity. 
There is no discomfort at rest but less than ordinary activity causes 
dyspnea, fatigue, chest pain or presyncope. 

IV Patients with PH who are unable to perform any physical activity at rest 
and who may have signs of right ventricular failure. Dyspnea and/or 
fatigue may be present at rest and symptoms are increased by almost 
any physical activity.  
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1.2.2 Cellular components of PAH 

Within the pulmonary vessels, interaction occurs between all cell types present 

in the three distinct layers of the pulmonary vessel in response to various stimuli 

and can often result in pathobiological changes to the pulmonary wall (Abe et 

al., 2010, Pietra et al., 2004). Vascular stress, such as injury, inflammation or 

hypoxic exposure, can result in remodelling of the pulmonary vessels and 

primarily within the small pulmonary arteries (Stenmark et al., 2006b) (Figure 

1.2). 

Stress to pulmonary vessel

• EC dysfunction and 
proliferation

• SMC hyperproliferation
and resistance to 

apoptosis

• Fibroblast activation

Endothelial cell (EC)

Smooth muscle cell (SMC)

Fibroblast

 

Figure 1.2 – Pathogenesis of PAH. 

Vascular stress to the distal pulmonary arteries results in adventitial fibroblast activation along with 

smooth muscle and endothelial cell proliferation and resistance to apoptosis resulting in 

hypertrophy of the medial and intimal layers of the vessel wall. Vasoconstriction and pulmonary 

vascular remodelling ensues together with endothelial dysfunction to form plexiform lesions in 

human PAH. Reproduced from (Grant et al., 2013).   
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1.2.2.1 Fibroblasts 

The outermost layer of the vessel wall is the adventitia and is predominantly 

comprised of fibroblasts. Adventitial remodelling appears to precede intima and 

medial remodelling, with early fibroblast hyperplasia in response to vascular 

stress (Meyrick and Reid, 1979). Within the lung, the fibroblast population is 

heterogeneous and subpopulations differ in shape, proliferation rate and protein 

synthesis rate (Jelaska et al., 1999). In conditions of vascular stress fibroblasts 

release reactive oxygen species (ROS), in particular the superoxide radical O2
.-, 

through the NADPH oxidase pathway (Meier et al., 1989). Increased ROS 

production within the adventitia results in a release of growth factors such as 

endothelin-1 (ET-1), serotonin and platelet derived growth factor (PDGF) (Liao 

et al., 2000) causing migration, proliferation and contraction of fibroblasts and 

smooth muscle cells (SMC) (Stenmark et al., 2006a). From the activated 

adventitial fibroblasts, a subset population differentiates into myofibroblasts 

(Stenmark et al., 2002). Myofibroblasts are specialised mesenchymal cells which 

are characterised by the expression of α-SMA and several studies have reported a 

possible source for myofibroblasts. Transdifferentiation of fibroblasts or 

fibrocytes into myofibroblasts via induction with TGF-β1, thrombin or ET-1 

contributes to muscularisation of previously non-muscular distal pulmonary 

arteries (Jiang et al., 2006, Bogatkevich et al., 2003, Shi-Wen et al., 2004). 

Reports have also shown the presence of vascular progenitor cells within the 

adventitia which can differentiate into SM-expressing myofibroblasts in response 

to vascular injury (Hu et al., 2004). In addition, circulating fibrocytes can enter 

the adventitia via the vasa vasorum where they can then go on to form 

myofibroblasts and contribute to neovascular growth (Frid et al., 2006). 

Myofibroblasts produce extracellular matrix proteins, such as collagen, 

fibronectin, tenascin-C and elastin which can induce SMC proliferation and 

migration within the media (Stenmark et al., 2006a, Chiang et al., 2009, 

Rabinovitch, 2007). In addition to this, myofibroblasts produce matrix 

metalloproteinases (MMPs) and excessive MMP expression enhances the migration 

of myofibroblasts from the adventitia into the medial or intimal regions (Shi et 

al., 1999), increasing the thickness of the vessel wall and contributing to lesion 

formation. 
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1.2.2.2 Smooth muscle cells 

The medial layer within the vessel wall contains SMCs which are regulated under 

the control of many growth factors and cytokines, such as the transforming 

growth factor beta (TGF-β) superfamily, tumour necrosis factor alpha (TNF-α) 

and interleukin-6 (IL-6). Medial thickening, as well as neo-intimal formation, as 

is observed in PAH is thought to be due to a combination of factors including SMC 

hypertrophy, SMC hyperplasia and accumulation of extracellular matrix proteins 

such as collagen and elastin (Stenmark et al., 2006b). SMCs produce MMPs (in 

particular MMP-2) which degrade the extracellular matrix and release matrix 

bound growth factors, such as basic fibroblast growth factor (FGF) to induce SMC 

proliferation (Thompson and Rabinovitch, 1996). As well as this, MMP-2 induces 

the expression of tenascin-C, a large glycoprotein which promotes SMC 

proliferation and survival and thus further elevates SMC hyperplasia (Cowan et 

al., 2000). Another aspect involving pulmonary artery SMCs (PASMCs) in PAH 

development is the down-regulation of voltage-sensitive potassium channels 

(Kv). Decreased activity of Kv in PASMCs results in an increase in K+ ions in the 

cell and therefore depolarisation of the cell membrane. Membrane 

depolarisation activates voltage-dependent L-type calcium (Ca2+) channels to 

cause an influx of Ca2+ into the cell. Ca2+ levels may be further increased via 

Ca2+-dependent Ca2+-release from intracellular stores (Platoshyn et al., 2000, 

Firth et al., 2009). When Ca2+ concentrations are high, binding of Ca2+ to 

calmodulin occurs to activate myosin light chain kinase resulting in 

phosphorylation of myosin light chain and subsequent activation of myosin 

ATPase. This leads to cross-bridge cycling between actin and myosin filaments 

and PASMC contraction (Somlyo and Somlyo, 1994, Wang et al., 2007). 

Furthermore, elevated cytosolic Ca2+ activates Ca2+ dependent kinases and other 

transcription factors (e.g. NFAT) to promote PASMC proliferation (Kuhr et al., 

2012, Bonnet et al., 2007). PASMCs from IPAH patients display reduced levels of 

Kv1.5 (Yuan et al., 1998) and this down-regulation of Kv channels is also well 

reported in response to hypoxia (Post et al., 1992, Platoshyn et al., 2001) 

resulting in hypoxic pulmonary vasoconstriction (HPV).     
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1.2.2.3 Endothelial cells 

Endothelial cells (EC) are the predominant cell type within the intimal layer of 

pulmonary arteries and regulate the levels of vasodilators (e.g. nitric oxide (NO) 

and prostacyclin) and vasoconstrictors (ET-1 and thromboxane) (Archer and Rich, 

2000). Imbalance between these vasoactive peptides results in dysregulation of 

vascular tone. Vascular stress also results in excessive production of growth 

factors by pulmonary artery endothelial cells (PAECs) which can act in both an 

autocrine and paracrine manner to contribute to pulmonary remodelling. 

Increased production of FGF2, serotonin and ET-1 from pulmonary ECs stimulates 

SMC proliferation (Izikki et al., 2009). Endothelial release of FGF2 also promotes 

EC proliferation via activation of ERK1/2 and inhibits apoptosis by increasing 

anti-apoptotic molecules BCL2 and BCL-xL (Tu et al., 2011). This increase in EC 

hyperplasia is typical of late stage PAH however, the early stage of disease is 

characterised by initial EC apoptosis. Loss of BMPR2 (as is observed in many PAH 

patients) results in vascular leakage (Burton et al., 2011) and increased rate of 

apoptosis in PAECs (Teichert-Kuliszewska et al., 2006). 

ECs are activated via numerous stimuli, including shear stress, inflammation, 

TNF-α and ROS, resulting in the release of endothelial microparticles from the 

plasma membrane. These microparticles carry proteins such as intercellular cell 

adhesion molecule (ICAM-1) and vascular endothelial cadherin (Dignat-George 

and Boulanger, 2011). Endothelial microparticles contain DNA, RNA and 

microRNA (miRNA) which can be transferred to target cells to control cell 

phenotype. An example of this is the regulation of SMC phenotype by endothelial 

microparticles containing elevated levels of miR-143/miR-145 (Hergenreider et 

al., 2012). 

1.2.2.4 Inflammatory Cells 

In addition to the cell types mentioned above, it is clear that inflammatory 

processes also play an important role in the pathogenesis of pulmonary arterial 

hypertension. Patients with severe IPAH display elevated levels of inflammatory 

cells within the adventitial layer of the pulmonary vasculature and in vascular 

lesions, in particular macrophages, T cells, B cells and mast cells (Savai et al., 

2012).  Circulating levels of pro-inflammatory cytokines, such as IL-1β and IL-6, 
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are also increased in IPAH patients compared to control subjects (Humbert et 

al., 1995). Macrophages and mast cells secrete MMPs, thus allowing a subset of 

circulating mesenchymal precursors from a monocyte/macrophage lineage 

(fibrocytes) to enter the adventitia where they can transdifferentiate into 

myofibroblasts (Frid et al., 2006). Activated macrophages also release cytokines 

such as IL-6 (Martin and Dorf, 1991). IL-6 is a pro-inflammatory cytokine which 

activates pro-angiogenic vascular endothelial growth factor (VEGF), pro-

proliferative transcription factors c-MYC and MAX and anti-apoptotic proteins 

survivin and Bcl-2 (Steiner et al., 2009). IL-6 also stimulates PASMC migration 

(Savale et al., 2009), therefore further contributing to pulmonary vascular 

remodelling. Macrophage migration inhibitory factor (MIF) is another pro-

inflammatory cytokine secreted from numerous cell types, including T cells and 

monocytes/macrophages. MIF can induce PASMC proliferation through activation 

of the ERK1/2 and JNK pathway (Zhang et al., 2012), thus enhancing the 

vascular remodelling process.  

1.2.2.5 Plexiform lesion formation 

As mentioned above, the development of PAH involves all cell types in the 

multiple layers of the vessel wall. Pulmonary artery remodelling and 

vasoconstriction result from increased proliferation and resistance to apoptosis 

of ECs and SMCs as well as distal extension of smooth muscle into previously non-

muscular pulmonary arteries. The increase in medial hypertrophy can lead to 

occlusion and eventual loss of the small pulmonary arteries; an effect known as 

vascular pruning and results in reduced perfusion of the lung (Figure 1.3A) (Ryan 

et al., 2012b, Moledina et al., 2011). Hyperproliferation of ECs produces a thick 

neointima and can result in plexiform lesion formation (Figure 1.3B). The 

plexiform lesion is a disorganised proliferative lesion of endothelial channels 

lined with myofibroblasts, SMCs and connective tissue matrix (Pietra et al., 

2004). High expression of VEGF and VEGF receptors, key regulators of EC 

angiogenesis, are observed in the endothelial cells from plexiform lesions (Cool 

et al., 1999) along with increased CD44 expression, a cell adhesion molecule 

reported to play a role in EC proliferation, migration and angiogenesis (Ohta-Ogo 

et al., 2012). Inflammatory cells are also present in these plexiform lesions with 

increased macrophage and T-cell infiltration thought to further promote the 

development of vascular lesions (Tuder et al., 1994). Furthermore, it has been 
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reported that lungs from IPAH patients contain perivascular tertiary lymphoid 

tissue connected to remodelled vessels. They are composed of T-lymphocytes 

and B-lymphocytes which express lymphocyte survival factors such as IL-17 and 

PDGF-A (Perros et al., 2012). Plexiform lesions are most commonly located 

downstream of the obliterated distal arteries (Archer et al., 2010) and at, or 

distal to, branch points of the small pulmonary arteries (Cool et al., 1999). As 

well as affecting the distal pulmonary arteries, PAH also affects the large 

pulmonary artery. Medial and adventitial hypertrophy occurs in the large 

proximal pulmonary arteries causing vessel stiffness, a decrease in vessel 

compliance and increase in pulmonary artery impedance (Huez et al., 2004). 

Together, this elevates the right ventricular afterload and contributes to the 

development of right ventricular hypertrophy (RVH). RVH is characterised by 

increased RV wall thickness, cardiomyocyte proliferation and results in a 

decrease in cardiac contraction. A shift to glycolytic metabolism is observed in 

RVH where the RV cannot support increased energy demands and can lead to RV 

failure (Voelkel et al., 2012).   

Although PAH is a relatively well-studied condition, the exact cellular and 

molecular processes that lead to initiation and progression of the disease are 

still under investigation. It is most likely due to complex interactions between 

transcriptional and signalling pathways within the layers of the vessel leading to 

the severe phenotype observed in patients with PAH, characterised by the 

formation of plexiform lesions.   
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Figure 1.3 – Vascular pruning and remodelling observed in PAH. 

A) Pulmonary angiogram from patients with mild, moderate and severe PAH shows evident 

vascular pruning as the disease progresses. This is characterised by loss of distal pulmonary 

arteries and the sparse arterial tree. Adapted from (Moledina et al., 2011). B) Histological analysis 

of pulmonary arteries shows obliteration of the lumen by hypertrophy of the medial and intimal 

layers in diseased vessels. Scale bar = 100 μm.  
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1.2.3 BMPR2 mutations in PAH 

There is a large cohort of data implicating the BMP pathway in the etiology of 

PAH as heterozygous mutations within the gene encoding bone morphogenetic 

protein type 2 receptor (BMPR2) have been reported in ~70% of HPAH (Lane et 

al., 2000, Machado et al., 2006) and ~26% of IPAH cases (Thomson et al., 2000). 

BMPR2 is a serine/threonine receptor kinase which binds the TGF-β superfamily 

of ligands. The BMPR2 gene is located on chromosome 2q33 with exons 1-3 

encoding an extracellular domain, exon 4 encoding the transmembrane domain, 

exons 5-11 encoding the serine/threonine kinase domain and exons 12-13 

encoding a large intracellular C-terminus (Newman et al., 2004). Within the 

pulmonary circulation, BMPR2 expression is primarily localised in endothelial 

cells with lower expression detected in vascular smooth muscle cells (Atkinson 

et al., 2002). BMPR2 activates intracellular signalling in a ligand-specific manner 

and the resulting outcome is cell and site specific.  

Under normal conditions, BMP4 signals via a Smad-dependent pathway to inhibit 

proliferation of PASMCs (Yang et al., 2005). Binding of the BMP4 ligand causes 

heterodimerization of BMP type 1 and type 2 receptors, inducing phosphorylation 

of the intracellular section of the type 1 receptor (Wrana et al., 1994). 

Activated BMPR type 1 phosphorylates BMP-specific receptor regulated Smad (R-

Smad) proteins (Smad1/5/8) at serine residues at the carboxy terminal ends. 

This promotes the formation of a heteromeric complex between the R-Smad and 

the common mediator Smad, Smad4, to allow nuclear translocation (Kretzschmar 

et al., 1997). Once in the nucleus, the Smad complex associates with DNA-

binding cofactors (either co-activators or co-repressors) to control the 

transcription of target genes (Figure 1.4) (Massague and Chen, 2000). TGF-β 

signalling is similar to that of BMP however, TGF-β signals via Smad2/3 (Morrell, 

2006). Evidence also suggests that BMPs can signal in a Smad-independent 

manner. When Smad signalling is repressed, as in the case with BMPR2 

mutations, BMP and TFG-β signal through mitogen-activated protein kinase 

(MAPK) pathways via activation of TGF-β-activated kinase 1 (TAK1), a member of 

the MAPKKK family (Yang et al., 2005). Under basal conditions TAK1 is bound to 

BMPR2 however, this interaction is reduced with BMPR2 mutations therefore 

making TAK1 accessible for TGF-β signalling. In addition to this, TAK1 reduces 

Smad-dependent BMP signalling by inhibiting the phosphorylation of Smad1 
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(Nasim et al., 2012). The Smad and MAPK signalling pathways appear to exert 

opposing effects in PASMCs and conditions favouring the Smad-independent 

pathway result in a pro-proliferative and anti-apoptotic response (Nasim et al., 

2012, Yang et al., 2005). 

The BMP signalling pathway is tightly controlled by regulatory molecules. Smad6 

and Smad7 are inhibitory Smads which have been shown to block TGF-β and BMP 

signalling in two ways. Inhibitory Smads can either bind to the activated type I 

receptor therefore preventing the association, phosphorylation and activation of 

R-Smads (Hayashi et al., 1997, Imamura et al., 1997) or by binding to the 

activated R-Smad thereby preventing heteromerization of R-Smad with Smad4 

and inhibiting subsequent nuclear translocation (Hata et al., 1998). It has also 

been reported that Smad6 and Smad7 are induced in response to BMP or TGF-β 

signalling suggesting that these inhibitory Smads provide negative feedback to 

control the signalling response to these ligands (Afrakhte et al., 1998, Nakao et 

al., 1997). Another factor involved in negatively regulating BMP signalling is 

Smad-ubiquitin regulatory factor 1 (Smurf1). Smurf1 is an E3 ubiquitin ligase 

which binds specifically to the BMP specific Smads, resulting in degradation of 

Smad1 and Smad5 (Figure 1.4) (Zhu et al., 1999, Shi et al., 2004). It has been 

reported that specific proteins interact with the tail domain of BMPR2, in 

particular Tribbles like protein 3 (Trb3). Upon BMP4 stimulation, Trb3 dissociates 

from the tail domain of BMPR2 and binds to Smurf1 inducing degradation of 

Smurf1. This increases signalling through the BMP-specific Smad pathway and 

promotes the contractile phenotype in vascular SMCs (Chan et al., 2007).  

Many different mutations have been discovered within the BMPR2 gene encoding 

region from patients diagnosed with PAH (Machado et al., 2006). However, 

kindred studies have shown that only ~20% of people with these mutations go on 

to develop PAH (Newman et al., 2001), thus indicating that there may be 

environmental or additional genetic risk factors involved. It is proposed that 

mutations in the BMPR2 gene predispose individuals to develop PAH and multiple 

‘hits’ are required for disease development (Yuan and Rubin, 2005). PAH 

patients harbouring a heterozygous mutation in the gene encoding BMPR2 display 

reduced levels of BMPR2 protein (Atkinson et al., 2002). PASMCs from these 

patients are deficient in Smad signalling (Yuan and Rubin, 2005), initiate an 
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altered response to BMP growth factors (Morrell et al., 2001) and BMP-induced 

apoptosis is inhibited (Zhang et al., 2003). Similarly, animal models of PH show a 

reduction in BMPR2 protein levels in the lungs (Takahashi et al., 2006).  
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Figure 1.4 – Smad-dependent BMP signalling under normal physiological conditions. 

Binding of ligand BMP4 causes heterodimerisation of BMP receptor type 1 (BMPR-I) and BMP 

receptor type 2 (BMPR-II) inducing phosphorylation of BMPR-I by BMPR-II. Activated BMPR-I 

stimulates the phosphorylation of Smad1/5/8 promoting the formation of a complex with Smad4. 

The resulting Smad complex is translocated into the nucleus and binds to DNA-binding co-factors 

to control the transcriptional regulation of target genes.  
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1.2.4 Current treatment for PAH 

As mentioned above there are many diverse systems and cell types involved in 

the pathobiology of PAH and as a result, finding an effective treatment for the 

condition is challenging. The fundamental aim in the treatment of PAH is to 

reduce pulmonary arterial pressure and decrease the pressure in the right 

ventricle therefore preventing right ventricular failure. Under normal 

circumstances the endothelium produces a balance between vasodilators such as 

nitric oxide (NO) and prostacyclin, and vasoconstrictors such as ET-1. Endothelial 

dysfunction however results in a decrease in the production of NO as a result of 

reduced expression of nitric oxide synthase and prostacyclin and elevated levels 

of ET-1 culminating in constriction of the pulmonary arteries (Humbert et al., 

2004b, Badesch et al., 2004). Current therapies aim to restore endothelial 

function by inhibiting the actions of ET-1 or increasing NO and prostacyclin levels 

(Archer et al., 2010) (Figure 1.5). Current treatments relieve the symptoms of 

PAH and provide a survival benefit, with increased survival rates of 83%, 67% and 

58% at 1, 2 and 3 years, respectively (Humbert et al., 2010). Treatment also 

causes a reduction in mortality of 38% compared to placebo treated groups 

(Galie et al., 2009) however, mortality rates remain high and treatment does not 

prevent the aggressive progression of the disease (Macchia et al., 2007).  
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Figure 1.5 – Current therapies for PAH patients.  

Therapies for PAH patients target three distinct signalling pathways; endothelin pathway 

(endothelin receptor antagonists), nitric oxide pathway (phosphodiesterase type 5 inhibitors) and 

the prostacyclin pathway (prostacyclin analogues) to induce vasodilation and reduce smooth 

muscle cell proliferation. ECE = endothelin converting enzyme, ETA = endothelin receptor type A, 

ETB = endothelin receptor type B, PDE5 = phosphodiesterase type 5. Adapted from (Humbert et 

al., 2004b). 
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1.2.4.1 Endothelin receptor antagonists   

Endothelins are produced primarily by endothelial cells. Endothelin-1 (ET-1) is 

the predominant isoform found within the pulmonary vasculature (Matsumoto et 

al., 1989). ET-1 is formed through cleavage of big endothelin-1 by endothelin 

converting enzyme 1 (ECE-1) to form a 21 amino acid vasoactive peptide 

(Shimada et al., 1994) which is a potent vasoconstrictor and induces SMC 

proliferation (Yanagisawa et al., 1988, McCulloch et al., 1996). Lung tissue and 

plasma from patients diagnosed with PAH have increased levels of ET-1 and this 

expression level is correlated with disease severity (Stewart et al., 1991, Giaid 

et al., 1993, Galie et al., 1996). Two endothelin receptors have been identified; 

the ETA receptor is localised on SMCs while the ETB receptor is present on both 

SMCs and ECs (Seo et al., 1994). Both receptors are G-protein coupled receptors 

(Arai et al., 1990, Sakurai et al., 1990) and activation of smooth muscle ETA or 

ETB receptors by ET-1 activates the phospholipase C signal transduction pathway 

leading to increased inositol triphosphate and diacylglycerol production. These 

second messengers are then able to trigger release of calcium from intracellular 

stores, resulting in prolonged vasoconstriction (Pollock et al., 1995). Conversely, 

binding of ET-1 to endothelial ETB receptor promotes the release of NO and 

prostacyclin to induce endothelial dependent vasodilation (Hirata et al., 1993, 

Liu et al., 2003). Due to the actions of ET-1 on smooth muscle cells within the 

pulmonary vessels, endothelin receptor antagonists are currently used as 

treatment for PAH patients. 

Bosentan, an orally active dual endothelin receptor antagonist, is FDA approved 

for the treatment of class III and IV PAH patients (Galie et al., 2004). The first 

clinical trial to assess the efficacy of bosentan in PAH patients assessed 32 

patients for 12 weeks (Channick et al., 2001) and was followed up by a larger 

multicentre study assessing 213 PAH patients for 16 weeks (BREATHE-1 trial; 

(Rubin et al., 2002)). In both studies, bosentan treatment improved exercise 

capacity (as measured by the 6 minute walk distance), pulmonary hemodynamics 

and increased time to clinical worsening compared to placebo treated PAH 

patients. One of the drawbacks of bosentan therapy is hepatic toxicity and liver 

function tests are performed prior to commencing bosentan treatment and on a 

monthly basis during treatment (McLaughlin and McGoon, 2006).  
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Another orally active dual endothelin receptor antagonist is Macitentan, which 

was developed via modification of bosentan to enhance oral efficacy and safety 

(Bolli et al., 2012). In a Phase 3 clinical trial, long term treatment with 

Macitentan reduced morbidity and mortality in patients with PAH (SERAPHIN; 

(Pulido et al., 2013)). This was the first PAH clinical trial where clinical events 

were used as a primary end point.   

In order to preserve the vasodilatory effect of ET-1 acting on endothelial ETB 

receptors, the specific ETA receptor antagonist Ambrisentan was developed for 

treatment of PAH. Clinical trials (ARIES-1 and ARIES-2; (Galie et al., 2008)) 

revealed that oral once daily treatment with Ambrisentan improved exercise 

capacity, time to clinical worsening and WHO functional class in PAH patients 

following treatment. To date, there are no clinical trials which compare the 

efficacy of selective ETA receptor antagonists with dual endothelin receptor 

antagonists. However there have been reports suggesting cross talk between the 

endothelin receptors to provide compensation when only one receptor is 

antagonised (Clozel and Gray, 1995).        

1.2.4.2 Prostacyclin analogues 

Prostacyclin (PGI2) is produced by pulmonary artery endothelial cells. 

Arachidonic acid is metabolised by cyclooxygenase (COX) into prostaglandin H2 

which is converted into prostacyclin by prostacyclin synthase. Prostacyclin 

production activates cyclic adenosine monophosphate (cAMP) to cause 

vasodilation, decrease platelet aggregation and inhibit smooth muscle cell 

proliferation (Moncada and Vane, 1981, Owen, 1985). Thromboxane A2 is another 

metabolite of arachidonic acid produced by thromboxane synthase and is 

antagonistic in action to prostacyclin. Thromboxane A2 is a potent 

vasoconstrictor and stimulates platelet aggregation. Imbalance between these 

two vasoactive prostanoids results in endothelial dysfunction. There is a 

reduction in prostacyclin synthase and its metabolites in PAH patients while 

thromboxane A2 production is increased (Tuder et al., 1999, Christman et al., 

1992). In addition to this, PGI2 receptor knockout (KO) mice exposed to hypoxic 

conditions develop an exaggerated PH phenotype (Hoshikawa et al., 2001) while 

mice over-expressing prostacyclin synthase selectively in the pulmonary 

vasculature are protected against hypoxia-induced PH (Geraci et al., 1999). 
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Thus, synthetic analogues of prostacyclins are used as treatment for PAH due to 

the vasodilatory effects and inhibition of platelet aggregation by prostacyclin.  

Epoprostenol is a prostacyclin analogue which must be administered continuously 

via intravenous (IV) infusion due to its short half-life (<5 mins) (Badesch et al., 

2004). Clinical trials on functional class III and IV PAH patients found that 

continuous IV infusion of epoprostenol improved exercise capacity, 

hemodynamic measurements and survival rates (Barst et al., 2006, Sitbon et al., 

2002, McLaughlin et al., 2002). Although prostacyclin analogues are generally 

well tolerated, common side effects can result from systemic vasodilation, 

including headaches, flushing, diarrhoea and jaw pain (Badesch et al., 

2004).There are however problems with epoprostenol treatment, the main 

complication being the need for continuous intravenous infusion. Because of the 

problems and inconvenience of IV infusion, epoprostenol is often used only for 

very severe cases of PAH. As a result, other prostacyclin analogues have been 

investigated which are chemically more stable and can be administered by more 

appropriate methods. 

Trepostinil is a stable prostacyclin analogue with a longer half-life (up to 3 

hours) (Badesch et al., 2004) than epoprostenol. Trepostinil can be administered 

subcutaneously via a microinfusion pump (Seferian and Simonneau, 2013) and 

increases exercise capacity, symptoms of PH and hemodynamics to a similar 

extent to that observed with epoprostenol treatment (Simonneau et al., 2002, 

McLaughlin et al., 2003). An oral formulation of trepostinil has been developed 

with preliminary data from clinical trials showing increased exercise tolerance 

with oral trepostinil treatment (FREEDOM-M study; (Jing et al., 2013)). 

Functional class and time to clinical worsening however were not improved. 

Further longitudinal studies are required to assess the long term effects of oral 

trepostinil treatment.  

1.2.4.3 Phosphodiesterase type 5 inhibitors 

Within the pulmonary endothelium, NO is released and activates soluble 

guanylate cyclase to increase cyclic guanosine monophosphate (cGMP) levels 

leading to relaxation of the smooth muscle (Lucas et al., 2000). One of the key 

enzymes involved in depleting cGMP levels is phosphodiesterase type 5 (PDE5), 
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which hydrolyses cGMP in smooth muscle cells and primarily works in the lung 

(Corbin et al., 2005). This reduction in cGMP augments intracellular Ca2+ and K+ 

levels resulting in proliferation of pulmonary SMCs, reduction in SMC apoptosis 

and vasoconstriction (Chiche et al., 1998, Archer and Michelakis, 2009). 

Expression and activity of PDE5 is significantly higher in neonate lungs compared 

to adult lungs (Sanchez et al., 1998). However, it has been reported that PDE5 

levels are increased in PASMCs from IPAH patients with high expression located 

within the remodelled vessels (Wharton et al., 2005). In addition to this, PDE5 

gene and protein expression is increased in human hypertrophied RV compared 

to healthy RV tissue (Nagendran et al., 2007). 

Sildenafil is a highly potent and selective PDE5 inhibitor which prevents the 

hydrolysis of cGMP therefore allowing accumulation of NO-mediated cGMP and 

subsequent vasodilation (Michelakis et al., 2002a). Sildenafil has been shown to 

reduce PASMC proliferation (Wharton et al., 2005) while oral sildenafil 

treatment attenuates hypoxia-induced PH in mice (Zhao et al., 2001) and 

monocrotaline (MCT) induced PH in rats (Schermuly et al., 2004). Sildenafil was 

FDA approved for treatment of PAH in patients in NYAH/WHO functional class II 

or III with mild to moderate disease in 2005. Improvements in exercise capacity, 

mean pulmonary arterial pressure and functional class have been observed in 

PAH patients treated with oral sildenafil with common side effects including 

headaches, flushing and dyspepsia (SUPER trial; (Galie et al., 2005)). As well as 

having beneficial effects on the pulmonary artery, PDE5 inhibition has a positive 

response within the myocardium.  Sildenafil significantly increased contractility 

within cardiomyocytes isolated from MCT rats with significant RVH but had no 

effect on healthy RV tissue (Nagendran et al., 2007), thus increasing RV function 

selectively within diseased myocardium. The improvements observed in PAH 

patients treated with sildenafil are most likely due to a combination of both the 

pulmonary and cardiac effects. 

1.2.4.4 Combination therapy 

In many cases, monotherapy is inadequate to control PAH and therefore 

combination therapy is an attractive option to target multiple pathways 

simultaneously. Combination therapy has been shown to be safe and well 

tolerated in PAH patients (Buckley et al., 2013). Several studies have shown 
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combination therapy to be efficacious with an increase in exercise capacity and 

reduction in mean pulmonary artery pressure (McLaughlin et al., 2006). Further 

studies are required to determine the most effective drug combinations and 

optimise the timings for when additional therapies should be administered.  

1.2.5 Future treatment for PAH 

1.2.5.1 Guanylate cyclase activators 

In addition to PDE5 inhibitors, cGMP levels can be increased through activation 

of soluble guanylate cyclase, the enzyme responsible for cGMP synthesis. 

Riociguat has a dual action by synergistically acting with nitric oxide to stimulate 

soluble guanylate cyclase as well as activating guanylate cyclase directly in the 

absence of nitric oxide (Grimminger et al., 2009). Phase III clinical trials show 

promise for use of riociguat in the treatment of PAH, with improvements 

observed in exercise capacity, functional class, pulmonary vascular resistance 

and time to clinical worsening (PATENT-1 trial; (Ghofrani et al., 2013)). Results 

from a long-term extension study (PATENT-2) led to approval of Riociguat for 

patients with PAH in the USA and the EU and is the first drug to be approved for 

patients with chronic thromboembolic pulmonary hypertension (CTEPH).   

1.2.5.2 Tyrosine kinase inhibitors 

PDGF has recently been implicated in the development of PAH. There are four 

isoforms of PDGF (A-D) and isoform A and B combine to form homodimers or 

heterodimers which bind to the two PDGF receptors, α and β (Fredriksson et al., 

2004). Expression of PDGF-A and PDGF-B and the phosphorylated cell surface 

receptors are increased in small pulmonary arteries from patients with IPAH 

(Perros et al., 2008). PDGF is a potent mitogen and activation of PDGF receptors 

within the pulmonary vasculature induces SMC proliferation and migration (Yu et 

al., 2003). Imatinib mesylate (imatinib) is a tyrosine kinase inhibitor which 

targets, for example, BCR/ABL kinase, c-kit and PDGF receptor α and β 

(Buchdunger et al., 2000) and due to the inhibition of BCR/ABL, imatinib is 

currently in use for the treatment of chronic myelogenous leukaemia (CML) 

(Cohen et al., 2002, Gambacorti-Passerini et al., 2011). Imatinib inhibits PDGF-

induced proliferation and migration of PASMCs (Perros et al., 2008), induces 

apoptosis in PDGF-induced PASMCs taken from IPAH patients (Nakamura et al., 
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2012) and causes pulmonary vasodilation (Abe et al., 2011). In vivo, imatinib 

treatment reduced experimental PH in various models of the disease (Abe et al., 

2011, Schermuly et al., 2005, Ciuclan et al., 2013). A phase III clinical trial, 

involving 202 PAH patients in NYAH/WHO functional class II-IV, recently 

evaluated the efficacy and safety of imatinib as an add-on therapy for PAH 

(IMPRES study; (Hoeper et al., 2013)). Results from this 24 week randomised 

study showed an increase in exercise capacity and improved hemodynamics 

compared to placebo treated patients. However, severe adverse effects 

(subdural hematoma) were observed in this trial and the marketing application 

for the use of imatinib in the treatment of PAH was withdrawn in 2013. Recent 

reports have shown the tyrosine kinase inhibitor dasatinib to induce PAH in 

patients taking the drug as treatment for CML (Montani et al., 2012). Although 

PDGF inhibition modulates many pathways involved in PAH development, the 

broad actions of these tyrosine kinase inhibitors suggests that it will be hard to 

design effective therapeutic agents with minimal adverse effects in this patient 

population. 

1.2.6 Traditional animal models of PH 

In order to fully understand the molecular mechanisms underlying PAH, 

appropriate animal models are required which mimic the pathophysiology of 

human PAH. The use of these animal models will allow more effective 

therapeutic treatments to be designed which target the underlying mechanisms 

of PAH, rather than just treating the symptoms of the disease. The classic 

rodent models most commonly used to study PAH are exposure to chronic 

hypoxia and monocrotaline insult.  

1.2.6.1 Chronic hypoxia 

Initially it was noted that both humans and cattle living at high altitudes had 

increased PAP and RVH indicating mild PH (Peñaloza et al., 1963, Arias-Stella 

and Saldana, 1963). Further to this, placing subjects at high altitude or 

simulated high altitude resulted in a similar phenotype (Stenmark et al., 1987) 

and this is thought to be due to the effects of hypoxia. Chronic exposure of 

rodents to hypoxia can be achieved in a laboratory setting using a normobaric or 

hypobaric hypoxic chamber, where animals are exposed to 10% O2 for 2-4 weeks. 
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Rats exposed to hypoxia for 14 days display increased mean pulmonary arterial 

pressure, right ventricular hypertrophy, muscularisation of peripheral distal 

arteries, medial hypertrophy and a loss of peripheral arteries (Rabinovitch et al., 

1979).  

Acute hypoxia induces HPV in SMCs through hypoxia-induced down-regulation of 

Kv channels in PASMCs and the subsequent increases in cytosolic Ca2+ (Firth et 

al., 2009). This hypoxic vasoconstriction attributes to the increase in PAP 

observed in hypoxic animals. In addition to this, increases in cytosolic Ca2+ in 

PASMCs results in proliferation and medial hypertrophy contributing to 

pulmonary vascular remodelling (Platoshyn et al., 2001). Under hypoxic 

conditions, proliferation of medial SMCs and adventitial fibroblasts is increased 

(Voelkel and Tuder, 2000). Endothelial cells show very little proliferation in 

response to hypoxia and the hypoxic model of PH displays minimal changes in 

morphology in the intimal layer (Meyrick and Reid, 1980).   

The effects of hypoxic exposure are more severe in younger subjects as the lungs 

are still developing (Stenmark et al., 2006b). Also, the effects of hypoxia differ 

between strains of animal and indeed species. The hypoxic mouse model of PH 

displays a similar response to the rat hypoxic model however, vascular 

remodelling within the mouse lung is minimal (Dempsey et al., 2009, Frank et 

al., 2008). Microarray analysis of lung tissue illustrates a difference in gene 

expression induced by hypoxia in mice and rats (Hoshikawa et al., 2003).  

One of the benefits of the chronic hypoxic model of PH is that it does not involve 

administration of any compounds which may have pleiotropic effects. However 

there is minimal vascular remodelling, particularly within the mouse model, and 

plexogenic lesions, which are characteristic of the human disease, are not 

observed even when hypoxic exposure is extended (Herget et al., 1978). Right 

ventricular hypertrophy occurs in the hypoxic model but there is little evidence 

of right ventricular failure (Stenmark et al., 2009). Thus, hypoxic exposure is an 

acute model for PH and studies have shown the effects of chronic hypoxia are 

slowly reversed with return to normoxia (Herget et al., 1978, Peñaloza et al., 

1963).  
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1.2.6.2 Monocrotaline injury 

Monocrotaline is a pyrrolizidine alkaloid extracted from the seeds of the 

Crotalaria spectabilis plant (Lalich and Ehrhart, 1962). The active and 

pneumotoxic metabolite monocrotaline pyrrole (MCTP) is formed by 

dehydrogenation of MCT by cytochrome P-450 CYP3A in the liver (Reid et al., 

1998). Administration of MCT results in a pulmonary hypertensive phenotype 

characterised by right ventricular hypertrophy and pulmonary remodelling due to 

medial hypertrophy in the small pulmonary vessels (Kay et al., 1967, Roth et al., 

1981). The development of PH in the rat MCT model is not observed until 7-14 

days after the initial MCT dose, after which mean pulmonary arterial pressure 

and RVH progressively worsen over time (Meyrick et al., 1980). MCT induces an 

early inflammatory response with a significant increase in mononuclear 

inflammatory cells within the adventitia of small pulmonary arteries 8-16 hours 

after MCT injection (Wilson et al., 1989). Moreover, neutrophil activation and 

infiltration is increased in the right ventricle during early RVH development and 

levels remain high throughout disease progression (Campian et al., 2010). The 

pulmonary inflammatory response induced by MCT disrupts the endothelial cell 

membrane with the extensive loss of membrane proteins such as caveolin-1, 

leading to the release of proliferative and anti-apoptotic signals and 

dysregulation of the nitric oxide signalling pathway (Huang et al., 2010). Thus 

culminating in medial hypertrophy, vascular remodelling and experimental PH 

(Todorovich-Hunter et al., 1988).  

The use of MCT as a model to study PH is appealing as the procedure is relatively 

simple involving one sub-cutaneous injection of MCT. However, the resulting PH 

phenotype is an acute inflammatory response in which no complex lesions are 

formed. In addition to this, in house observations have shown that mortality 

rates are ~10% in rats treated with 40 mg/kg MCT. This may be due to the fact 

that MCT treatment can cause liver toxicity by inducing hepatic parenchymal 

cell injury (Copple et al., 2003) which can lead to hepatic veno-occlusive 

disease. Another drawback with the MCT model is the lack of efficacy in mice. 

This is due to the differences in hepatic metabolism by cytochrome P-450 

between the species. To get around this problem, Dumitrascu and colleagues 

administered the active compound MCTP to mice. Although an early 

inflammatory stage similar to that observed in the rat was displayed in the mice, 
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MCTP injection resulted in lung fibrosis with no PH observed (Dumitrascu et al., 

2008). 

1.2.7 Other animal models of PH 

Traditional models of PAH have provided a vast amount of knowledge regarding 

the development of PAH. However, both the monocrotaline and hypoxic models 

of PAH lack the plexogenic arteriopathy which characterises the human disease. 

As a result, newer models have been developed which modify the classic models 

to include a second “hit” to produce more severe PH and occlusive lesions like 

those observed in human PAH. In addition to this, genetically modified mice 

have been used to investigate PH and give an indication as to the role of specific 

molecules and pathways in the pathobiology of this complex disease. 

1.2.7.1 Hypoxia/SU5416 model 

The hypoxia/SU5416 model of PH was developed by Taraseviciene-Stewart and 

colleagues in an attempt to better model the human disease. The model involves 

exposure to chronic hypoxia along with administration of the VEGF receptor 

inhibitor Sugen-5416 (SU5416) (Taraseviciene-Stewart et al., 2001). VEGF is a 

key regulatory factor involved in the maintenance and survival of endothelial 

cells (Lee et al., 2007). The hypoxia/SU5416 model of PH displays a more severe 

PH phenotype than hypoxia alone and produces lesions in the rat which are 

indistinguishable from the plexiform lesions observed in human PAH (Abe et al., 

2010). See section 4.1 for a more comprehensive overview of the 

hypoxia/SU5416 model of PAH. 

1.2.7.2 S100A4/Mts1 over-expression in mice  

The S100A4/Mts1 gene is a calcium binding protein which confers a metastatic 

phenotype (Grigorian et al., 1993). Ambartsumian and colleagues produced 

transgenic mice over-expressing S100A4/Mts1 in all tissues and found that a 

small proportion of the mice (~5% of the transgenic mice) developed plexiform 

like lesions in the pulmonary arteries (Ambartsumian et al., 1998), similar to the 

lesions observed in human PAH. Histologically, the lesions formed in 

S100A4/Mts1 transgenic mice displayed intimal hypertrophy, occlusion of the 

lumen and considerable inflammation surrounding the damaged vessels 
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(Greenway et al., 2004). It was also reported that the development of these 

lesions in S100A4/Mts1 transgenic mice was absolute; the mice were either 

completely lesion free or developed these severe plexogenic lesions. In a similar 

manner, analysis of human pulmonary arteries found S100A4/Mts1 expression 

was absent in lungs from healthy individuals and patients with early stage PAH, 

while there was a significant increase of S100A4/Mts1 in lungs from patients with 

late stage PAH (Greenway et al., 2004). Thus suggesting that S100A4/Mts1 

expression may not be involved in the initiation of PH but the gene may have an 

important role in the development of severe pulmonary lesions. Under hypoxic 

conditions, S100A4/Mts1 transgenic mice displayed significantly increased RVP, 

RVH and decreased cardiac output compared to wild type (WT) mice. 

Interestingly, these parameters persisted in the transgenic mice, even after 3 

months recovery in normoxic conditions. Both wild type and S100A4/Mts1 

transgenic mice developed similar degrees of pulmonary vascular disease 

however, arterial changes displayed in the transgenic mice did not regress on 

exposure to normoxia and the authors suggest that Fibulin-5, a matrix 

component required for elastin fibre assembly, may play a role (Merklinger et 

al., 2005). 

1.2.7.3 Interleukin-6 over-expression in mice 

Interleukin 6 (IL-6) is an inflammatory cytokine (Scheller et al., 2011). Patients 

with severe PAH have increased levels of IL-6 in the serum and lung expression 

of IL-6 is increased in the hypoxic rat model of PH (Humbert et al., 1995). In 

order to assess the role of IL-6 in the development of PH, Steiner and colleagues 

used transgenic mice specifically over-expressing IL-6 in the lung. The IL-6 

transgenic mice displayed elevated RVP, RVH and muscularisation of distal 

pulmonary vessels, which were further increased by chronic hypoxia. Increased 

intimal thickness was observed in the transgenic IL-6 mice comprising of 

pulmonary artery endothelial cells and inflammatory T-cells, leading to a higher 

number of occluded vessels. This is thought to be due to IL-6 activating pro-

angiogenic, pro-proliferative and anti-apoptotic pathways (Steiner et al., 2009). 

Supporting this data, IL-6 knockout mice exposed to chronic hypoxia displayed 

reduced RVP, RVH and a decrease in distal pulmonary vessel muscularisation 

compared to hypoxic wild type mice. Inflammation was also significantly 

reduced in lungs from IL-6 knockout mice (Savale et al., 2009).   



Chapter 1  32 
 

1.2.7.4 BMPR2 mutant mice 

As mentioned in Section 1.2.3, mutations within the gene encoding BMPR2 are 

present in numerous patients with HPAH and IPAH. Many different BMPR2 

mutations have been reported from patients with PAH (Nishihara et al., 2002), 

with the majority predicted to result in a premature termination codon of the 

BMPR2 transcript (Machado et al., 2001). Due to the human data available, 

studies have been looking into the effect of BMPR2 deficiency in mice.  

Genetic ablation of BMPR2 proves lethal due to epiblast undifferentiation and 

lack of mesoderm (Beppu et al., 2000). Therefore mice heterozygous for BMPR2 

(BMPR2 +/-) were studied and one study reported that a 50% reduction in BMPR2 

gene expression in the lung caused a mild increase in pulmonary arterial 

pressure and pulmonary vascular resistance (Beppu et al., 2004). On the 

contrary, other studies have shown that heterozygous BMPR2 mutant mice do not 

develop spontaneous PH (Frank et al., 2008, Song et al., 2005). However, it was 

reported that exposure of BMPR2+/- mice to a secondary insult (e.g. serotonin or 

inflammation), increased pulmonary artery pressure and pulmonary vascular 

remodelling (Song et al., 2005, Long et al., 2006). Research then focused on 

investigating the effect of reducing BMPR2 levels in specific cell types on the 

development of PH. Mice harbouring a smooth muscle-specific loss of function 

BMPR2 mutation were found to develop PH with elevated pulmonary artery 

pressure, RVH and muscularisation of pulmonary arteries at 8 weeks of age 

compared to wild type mice. There were however no indication of lesions in 

these mice (West et al., 2004). West and colleagues then went on to generate 

transgenic mice expressing the inducible BMPR2 mutation R899X (arginine to 

termination mutation at amino acid 899 in the tail domain) specifically in 

smooth muscle cells. The R899X nonsense mutation is derived from a human 

patient family and has been identified in both idiopathic and heritable PAH 

(Thomson et al., 2000). After 9 weeks of induction, all transgenic mice displayed 

vascular pruning within the lung. A proportion of the transgenic mice had 

increased right ventricular pressures along with occlusive lesions comprised of 

endothelial cells, smooth muscle cells and surrounded by large numbers of 

macrophages and T-cells (West et al., 2008). High expression of BMPR2 was 

found in pulmonary endothelial cells and this expression was significantly 

reduced in plexiform lesions from HPAH patients with a BMPR2 mutation 
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(Atkinson et al., 2002). As a result, conditional knockout mice were created 

where the BMPR2 gene was deleted in pulmonary endothelial cells. A subset of 

the mice with endothelial BMPR2 deficiency developed spontaneous PH with 

increased RVP, RVH and muscularisation of distal pulmonary arteries (Hong et 

al., 2008).  

These data show that a reduction in functional BMPR2 in either SMCs or ECs is 

sufficient to induce PH within a subsection of mice. The evidence shown here 

strengthens the idea that BMPR2 mutations predispose patients to develop PAH 

and that other factors are involved in developing PAH. Models of PH using BMPR2 

mutations provide us with a tool for extending our knowledge for studying the 

genetic aspect of the disease and understanding how these genetic mutations 

contribute to the pathogenesis of PAH. 

Taken together, a great deal of knowledge has been gained from the various 

animal models of PH, including both the traditional and newly developed 

models, to provide insight into the complex pathology of PAH. Researchers are 

slowly moving away from the classic models of PH onto the newer models which 

incorporate multiple stimuli in order to produce a PH pathology similar to that 

observed in the human disease. There are of course drawbacks to each 

experimental model and careful consideration must be given when planning 

future studies. At present, there is no perfect experimental model of PH which 

recapitulates all aspects of the human disease. However, use of the current 

models allows discovery of signalling pathways involved in disease development 

as well as preclinical evaluation of new therapeutic agents. 

1.3 MicroRNAs 

1.3.1 Biogenesis of microRNAs 

MicroRNAs are small non-coding RNA molecules ~22 nucleotides long that 

regulate gene expression post-transcriptionally by binding to complementary 

target messenger RNA (mRNA) (Figure 1.6) (Bartel, 2004, van Rooij and Olson, 

2007). MicroRNA biogenesis begins with the transcription of the primary miRNA 

(pri-miRNA) in the nucleus by RNA polymerase II. The primary transcripts can be 

over 1kb in length and often contain the sequences for multiple mature miRNAs. 
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The pri-miRNA is then cleaved by Drosha, a nuclear RNase III enzyme, in a 

complex along with DiGeorge syndrome critical region gene 8 (DGCR8).DGCR8 is 

a double stranded RNA-binding domain protein thought to be involved in binding 

the pri-miRNA to Drosha, allowing cleavage to occur and the formation of an ~70 

nucleotide stem loop molecule; the precursor miRNA (pre-miRNA) (Gregory et 

al., 2004, Han et al., 2004). The pre-miRNA is characterised by a two nucleotide 

single stranded overhang on the 3’ end which is recognised by Exportin 5 and 

Dicer for further processing (Du and Zamore, 2005). Exportin 5 is a 

nucleocytoplasmic transport factor which binds pre-miRNA in the presence of 

RanGTP and exports the precursor molecule into the cytoplasm. Once in the 

cytoplasm, hydrolysis occurs converting RanGTP into RanGDP and therefore 

releasing the pre-miRNA from the Exportin 5/RanGTP complex (Yi et al., 2003). 

From here, the stem loop pre-miRNA can be processed by the cytoplasmic RNase 

III endonuclease Dicer. Along with the cofactor trans-activating response RNA 

binding protein (TRBP), Dicer cleaves the pre-miRNA into an ~22 nucleotide 

miRNA duplex. Subsequently, TRBP mediates binding of this duplex to the 

argonaute (Ago) protein (Chendrimada et al., 2005) where the mature miRNA is 

formed by stabilisation of the guide strand (identified by the suffix 5p) while the 

passenger strand (identified by the suffix 3p) is either degraded or incorporated 

into the RNA-induced silencing complex (RISC).  

The argonaute protein is the principle component of the RISC. The 3’-end of the 

mature miRNA binds to the PAZ domain of argonaute and directs the silencing 

complex to target mRNA where one of two fates can be adopted: if 

complementarity between the miRNA ‘seed’ sequence and mRNA is complete, 

mRNA degradation occurs, however, incomplete complementarity results in 

translational repression. The miRNA ‘seed’ sequence is defined as nucleotides 2-

8 on the 5’ end of the miRNA and complementarity and binding of this region to 

the mRNA target via Watson-Crick base pairing can result in effective regulation 

of mRNA. In plants, perfect or near-perfect complementarity is usually achieved 

between miRNA and mRNA targets resulting in mRNA degradation (Rhoades et 

al., 2002). However in animals the majority of miRNA binding with target mRNA 

is imperfect with G:U base pair interruptions and single nucleotide bulges 

commonly observed (Brennecke et al., 2005). As a result of non-complimentary 

binding, other factors (in addition to seed sequence binding) are thought to play 
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a role in determining miRNA target recognition, including proximity to sites for 

co-expressed miRNAs and positioning at least 15 nucleotides from the stop codon 

in the 3’-untranslated region (3’-UTR) of mRNA (Grimson et al., 2007). One of 

these key factors is complementary interaction between the miRNA 3’ end with 

target mRNA. This is thought to modulate miRNA binding and is particularly 

important in distinguishing target genes for miRNA family members (Brennecke 

et al., 2005). This would explain how miRNAs with identical seed sequences can 

target independent mRNAs.     

1.3.2 Regulation of miRNA function 

The ‘slicer’ activity of the RISC, responsible for cleavage of mRNA when 

complementarity between miRNA and mRNA is complete, is due to the carboxy 

terminal PIWI domain of the argonaute protein. This is an RNase H enzyme 

domain which is involved in cleaving the target RNA providing RISC with nuclease 

function (Song et al., 2004). Of the four argonaute proteins expressed in 

humans, only Ago2 appears to have nuclease activity and can directly cleave 

mRNA as part of the RISC (Meister et al., 2004, Liu et al., 2004). Studies have 

shown that protein expression can be inhibited in vitro in a miRNA-independent 

manner by tethering argonaute proteins to the 3’-UTR of mRNA. Thus illustrating 

the importance of the Ago protein in mediating gene silencing and highlighting 

the principal role of miRNAs within the RISC is directing the silencing complex to 

the mRNA (Pillai et al., 2004). Another protein, GW182, has been found to bind 

to the argonaute protein within the RISC and the interaction between Ago and 

GW182 is essential for miRNA mediated repression and gene silencing (Eulalio et 

al., 2008). In addition to the pathway described above, specific miRNAs are 

processed independent of Dicer activity. In particular, miR-451 has a short 

hairpin precursor molecule of ~42 nucleotides and is directly loaded into Ago2, 

bypassing the step involving cleavage by Dicer. Pre-miR-451 specifically binds to 

Ago2 where it is cleaved into the mature miRNA via the endonuclease activity of 

Ago2 (Cifuentes et al., 2010, Yang et al., 2010). 
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Figure 1.6 – MicroRNA biogenesis pathway. 

The primary miRNA (pri-miRNA) is transcribed in the nucleus by RNA polymerase II (RNA pol II). 

This is cleaved by Drosha and cofactor DGCR8 to form the stem loop precursor structure (pre-

miRNA), which is exported out of the nucleus by Exportin 5 in the presence of RanGTP. 

Processing by Dicer and TRBP gives rise to a miRNA duplex of approximately 22 nucleotides in 

length. The mature miRNA is incorporated into the argonaute protein to form the RNA-induced 

silencing complex (RISC) which targets mRNA to induce mRNA degradation or translational 

repression. Adapted from (Grant et al., 2013).  
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Originally it was thought that only the mature guide strand was incorporated 

into the RISC to exert an effect however, new evidence suggests that there is 

also a role for the passenger strand (Eulalio et al., 2012, Kos et al., 2012). In 

vitro over-expression of miR-590-3p or miR-199a-3p induced post-natal 

cardiomyocyte proliferation and re-entry in to the cell cycle therefore elevating 

the number of cardiomyocytes. Ectopic expression of these miRNA in vivo post 

myocardial infarction caused cardiac regeneration and improved cardiac 

function (Eulalio et al., 2012). Thus, although a great deal of knowledge is 

known about the role of the guide miRNA strand, it would appear that both 

strands of the miRNA duplex have biologically functional roles via regulation of 

signalling pathways.  

The majority of miRNAs regulate gene expression through binding to the 3’-UTR 

of target mRNA. However, some miRNAs have recently been shown to modulate 

mRNA targets through binding sites in the 5’-untranslated region (5’-UTR) or 

coding sequences of the mRNA. In vitro studies have shown that introduction of 

a miRNA binding site at any position along the length of the mRNA (3’-UTR, 

coding sequences or 5’-UTR) can result in translational repression at a stage 

downstream of initiation (Lytle et al., 2007, Kloosterman et al., 2004). Within 

the 5’-UTR of mRNA, there are endogenous sequences complementary to the 3’-

end of miRNA and it has been proposed that certain miRNAs are able to target 

both the 5’-UTR and 3’-UTR binding sites simultaneously (Lee et al., 2009). With 

regards to the modulation of miRNA in a disease setting, Jin and colleagues 

reported that miR-138 directly targeted proto-oncogene Fos-like antigen 1 

(FOSL1) mRNA in squamous cell carcinoma cell lines through 6 targeting sites; 

one present in the 5’-UTR, three overlapping in the coding regions and two 

overlapping sites in the 3’-UTR (Jin et al., 2011). In addition to causing 

translational repression, some reports indicate that binding of miRNA to 5’-UTR 

mRNA may in fact cause translational activation. MiR-10a binds to the 5’-UTR of 

ribosomal protein mRNA and promotes translation. As a result, this miRNA:mRNA 

interaction may increase global protein synthesis (Orom et al., 2008). Although 

targeting sites have been found to exist within all areas of the mRNA molecule, 

the exact mechanism of regulation of miRNA binding to the 5’-UTR or coding 

sequences of target mRNA is still relatively unknown and requires further 

investigation.  
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In addition to the molecules mentioned previously, there are many regulatory 

proteins which aid or impede the formation of the mature miRNA. The ratio 

between pre-miRNA and mature miRNA differs between miRNA type and 

tissue/cell type, therefore indicating that there are different rates of processing 

and this may be due to the presence or absence of accessory molecules. The 

Drosha/DGCR8 complex is associated with other proteins, including members of 

the heterogeneous nuclear ribonucleoproteins (hnRNP). Two of these proteins, 

hnRNPH1 and hnRNPR, bind directly to the pri-miRNA and elicit opposing effects. 

Knockdown and over-expression studies in HeLa cells suggest that hnRNPH1 

promotes miRNA processing while hnRNPR inhibits miRNA maturation (Volk and 

Shomron, 2011). Another protein involved in the regulation of miRNA biogenesis 

is KH-type splicing regulatory protein (KHSRP). KHSRP is a component of both 

Drosha and Dicer and binds to the terminal stem loop of specific pre-miRNAs 

with high affinity to facilitate maturation (Trabucchi et al., 2009). On the 

contrary, the heterodimerisation of nuclear factor 90 (NF90) and NF45 binds 

directly to the pri-miRNA and prevents Drosha/DGCR8 to access the pri-miRNA, 

thereby inhibiting the conversion into pre-miRNA and resulting in a reduction in 

mature miRNA (Sakamoto et al., 2009).   

1.3.3 MiRNAs involved in PAH 

MiRNAs are essential in the normal development of the lung and maintenance of 

lung homeostasis. Evidence for this comes from Dicer knockout mice. Global loss 

of Dicer is embryonically lethal (Bernstein et al., 2003) while conditional 

knockout of Dicer in lung epithelial cells results in a lack of normal branching 

(Harris et al., 2006). Thus illustrating that Dicer is critical for lung epithelial 

morphogenesis. MiRNA expression is regulated differentially in the fetal and 

adult lung, with a fetal miRNA profile which assists in development of the lung. 

A subset of miRNAs (miR-134, miR-154, miR-214, miR-296, miR-299, miR-323, 

miR-337 and miR-370) are of higher abundance in the fetal human lung 

compared with the adult lung. In a similar manner, the adult lung shows up-

regulation of miR-26b, miR-29a, miR-29b, miR-146-3p and miR-187. This miRNA 

profile is comparable between mice and humans demonstrating that miRNA 

expression is conserved during lung development (Williams et al., 2007). 
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MiRNAs are known for their pleiotropic effects and many PAH-relevant stimuli, 

such as hypoxia and inflammation, can modulate miRNA expression in vascular 

cells. In response to vascular injury, low oxygen concentrations can result at 

site-specific regions of the pulmonary vasculature, leading to activation of the 

transcription factor hypoxia-inducible factor 1α (HIF-1α). HIF-1α promotes the 

transcription of genes responsible for mediating the adaptive response to 

hypoxia and a number of miRNAs are induced in this manner (Kulshreshtha et al., 

2007). Inflammation is another factor responsible for miRNA dysregulation, with 

miRNAs being activated as well as targeting inflammatory cytokines and 

chemokines. One such miRNA is miR-146a, which is transcribed through NF-κB 

binding to the promoter region. Mature miR-146a targets TNF receptor-

associated factor 6 (TRAF6) and IL-1 associated kinase 1 (IRAK1) which then 

trigger downstream signalling to activate transcription factors essential to the 

inflammatory response, including NF-κB. Thus, miR-146a provides a negative 

feedback system to tightly regulate the immune response (Taganov et al., 2006). 

MiRNA regulation is involved in many cellular processes, including migration, 

proliferation, cell fate and metabolism. The pathology of PAH is extremely 

complex and through the use of bioinformatics and knockout/over-expression 

studies, the role and regulation of miRNAs in this disease is slowly being 

revealed. 

MiRNA screening is an effective way in which to study miRNA expression within a 

tissue under various conditions and allows a miRNA profile to be established for 

a particular disease. Caruso and colleagues studied the miRNA profile in lung 

tissue during the development of PH using two rat models of PH. From the 

microarray, miR-222, miR-30 and let-7f were down-regulated while miR-322 and 

miR-451 were up-regulated in both the hypoxic and monocrotaline rat models of 

PH. A similar pattern of miRNA expression was reproduced in vitro when 

pulmonary artery fibroblasts and SMCs were stimulated with PAH-related growth 

factors or hypoxia (Caruso et al., 2010). Another group reported that miR-450a, 

miR-145, miR-302b, miR-27b, miR-367 and miR-138 were up-regulated while 

miR-204 was down-regulated in PASMCs from patients with PAH compared to 

healthy PASMCs (Courboulin et al., 2011). In contrast, others have used a 

candidate approach where a specific miRNA is focused on and bioinformatics is 

used to identify all possible target genes and pathway interactions (Parikh et al., 
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2012). These critical studies demonstrate that miRNAs are dysregulated during 

PAH development and highlight molecules which can be targeted to increase our 

understanding of the disease and as possible therapeutic targets.  

1.3.3.1 MiR-204 

One of the first studies to establish a mechanistic link between miRNA 

expression and signalling pathways involved in PH was performed by Courboulin 

and colleagues and focused on miR-204. The coding sequence for miR-204 is 

intronic and located within the human transient receptor potential melastatin 3 

(TRPM3) cation channel (Deo et al., 2006). MiR-204 has been shown to act in a 

pro-apoptotic manner in many types of cancer with down-regulation of miR-204 

reported in gastric cancer (Sacconi et al., 2012). In the setting of cancer, miR-

204 directly targets the 3’-UTR of anti-apoptotic gene Bcl2 and oncogene Ntrk2. 

MiR-204 expression also increases the responsiveness of cancer cells to 

treatment by promoting apoptosis in response to anticancer drugs such as 

cisplatin and oxaliplatin (Ryan et al., 2012a, Sacconi et al., 2012). 

In the pulmonary circulation miR-204 is localised primarily within the smooth 

muscle layer (Courboulin et al., 2011). Experimental models of PH have shown 

that miR-204 expression is repressed in the hypoxic and MCT rat models of PH 

(Caruso et al., 2010) as well as the hypoxic mouse model of PH. Lung tissue and 

PASMCs from PAH patients show similar down-regulation of miR-204 along with 

increased PASMC proliferation and resistance to apoptosis. In vivo therapeutic 

modulation of miR-204 was investigated specifically within the lung via 

intratracheal nebulisation of synthetic miR-204. Elevation of pulmonary miR-204 

expression in established PH lowered pulmonary artery pressure, right 

ventricular wall thickness and reduced medial hypertrophy of pulmonary arteries 

(Courboulin et al., 2011).  

The beneficial effect miR-204 exerts on PASMC proliferation and apoptosis is 

thought to be via the Src-STAT3-NFAT activation pathway. Within the layers of 

the pulmonary vessels, release of PAH-induced growth factors such as 

angiotensin II, ET-1 and PDGF stimulate activation of the transcription factor 

signal transducer and activator of transcription 3 (STAT3). STAT3 is responsible 

for the down-regulation of miR-204 observed during PAH. MiR-204 has been 
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shown to directly bind to the Src activator, SHP2. Without miR-204 repression, 

Src kinase activation via SHP2 leads to STAT3 activation (Courboulin et al., 

2011). This positive feedback of STAT3 on miR-204 expression may explain why 

the development and progression of PAH is so severe and results in a sustained 

phenotype. Once STAT3 activation reaches a maximal level, increased 

expression of nuclear factor of activated T-cells (NFATc2) and oncogene Pim1 

are observed, both of which stimulate activation and nuclear translocation of 

NFATc2 (Paulin et al., 2011a). Activated NFATc2 can contribute to the PH 

phenotype via two separate and well-described pathways. Bonnet and colleagues 

discovered that activation of NFATc2 down-regulates the expression of voltage-

sensitive potassium channel Kv1.5, leading to membrane depolarisation, an 

increase in intracellular calcium (Bonnet et al., 2007) and subsequent PASMC 

proliferation (Platoshyn et al., 2000). In addition to increased cellular 

proliferation, PAH is also characterised with decreased PASMC apoptosis. 

Apoptosis is most commonly instigated by a decrease in mitochondrial membrane 

potential and increase in pro-apoptotic mediators. NFATc2 activation increases 

levels of anti-apoptotic Bcl2 causing hyperpolarisation of PASMC mitochondrial 

membrane potential to confer resistance to apoptosis and contributing to the PH 

phenotype (Bonnet et al., 2007). Activation of the miR-204-Src-STAT3-NFAT 

pathway in PH development has been confirmed in experimental models of MCT-

induced PH with inhibition of STAT3 activity (using DHEA), Pim1 or NFAT activity 

(using the indirect NFAT inhibitor, cyclosporine A) reducing indices of PH (Paulin 

et al., 2011a, Paulin et al., 2011b, Bonnet et al., 2007). These critical studies 

show a clear role for miR-204 in regulating PASMC proliferation and apoptosis 

through activation of the STAT3/NFAT pathway. The complex nature of this 

signalling pathway provides a plethora of molecules which could be targeted as 

future therapy for pulmonary arterial hypertension.   

1.3.3.2 MiR-17/92 

Another miRNA which mediates its effects in a STAT3 dependent manner is miR-

17/92. MiR-17/92 is a polycistronic miRNA cluster located on human chromosome 

13 with the primary transcript yielding six mature miRNAs; miR-17, miR-18a, 

miR-19a, miR-20a, miR-19b-1 and miR-92-1 (Tanzer and Stadler, 2004). With 

regards to PAH, the inflammatory cytokine IL-6 activates STAT3 in human PAECs, 

which can bind directly to a highly conserved STAT3 binding site in the promoter 
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region of miR-17/92. Two specific members of the cluster, miR-17-5p and miR-

20a target the 3’-UTR of BMPR2 leading to down-regulation of BMPR2 protein and 

pulmonary vascular remodelling (Brock et al., 2009). This illustrates a possible 

mechanism to explain the loss of BMPR2 during PAH development. In addition to 

this, miR-204 has been reported to regulate IL-6 secretion and therefore may in 

turn regulate BMPR2 expression (Courboulin et al., 2011). Both miR-17/92 and 

miR-204 are activated via distinct mechanisms however, both pathways involve 

common mediators and this highlights the importance of interconnectivity 

between miRNA systems to affect cellular processes.  

Activation of the miR-17/92 cluster is through the oncogene c-Myc which 

controls cellular proliferation and apoptosis. Members of the miR-17/92 cluster 

(specifically miR-17-5p and miR-20a) directly target transcription factor E2F1, 

which is involved in G1 to S cell cycle progression. The E2F transcription family 

have also been shown to induce c-Myc and activate transcription of the miR-

17/92 promoter region, therefore providing a feedback mechanism for strict 

regulation of proliferation (Brock et al., 2009, Woods et al., 2007). Increased 

expression of the miR-17/92 cluster has been reported in numerous cancers, 

including human B-cell lymphoma (He et al., 2005) and this up-regulation of 

miR-17/92 is thought to contribute to the pro-proliferative and anti-apoptotic 

phenotype observed in tumour cells. Other targets of miR-17-5p include the cell 

cycle regulator cyclin dependent kinase inhibitor (p21) and pro-apoptotic protein 

BIM (Bcl2-interacting mediator of cell death). Over-expression of miR-17 in 

PASMCs resulted in down-regulation of target gene p21 accompanied with 

increased proliferation (Pullamsetti et al., 2012) while conversely, knockdown of 

miR-17 in neuroblastoma cells increased BIM expression at both the mRNA and 

protein level (Fontana et al., 2008). Knockdown of miR-17 in vivo using 

antagomiR-17 reduced right ventricular pressure, pulmonary artery remodelling 

and expression of p21 in both the mouse hypoxic and rat MCT model of PH 

(Pullamsetti et al., 2012).  

The exact mechanism of action of miRNA clusters is still relatively unknown as 

although they are transcribed together, each miRNA has the capability to target 

many different genes and indeed be regulated individually by post-

transcriptional mechanisms. The modulation of specific miRNAs within the miR-



Chapter 1  43 
 
17/92 cluster requires further investigation before we can fully elucidate the 

role of these miRNAs within the pulmonary vasculature.   

1.3.3.3 MiR-21 

MiR-21 is an intronic miRNA with the primary transcript located within the 

transmembrane protein 49 (TMEM49) gene on human chromosome 17 with its 

own promoter region and termination sequence (Kumarswamy et al., 2011). Up-

regulation of miR-21 has been observed in many pathological conditions, 

including heart failure (Thum et al., 2008), cardiac remodelling (Patrick et al., 

2010a) and breast cancer (Yan et al., 2008). Considerable research has been 

carried out regarding the role of miR-21 in pulmonary arterial hypertension using 

both cell culture and in vivo models. MiR-21 expression is elevated in hypoxia 

exposed hPAECs (Parikh et al., 2012), hPASMCs (Sarkar et al., 2010) and lung 

tissue from experimental models of PH (Yang et al., 2012). In situ hybridisation 

also shows increased miR-21 staining in small pulmonary arteries (<200 μm) from 

human PAH patients (Parikh et al., 2012).  

MiR-21 has been shown to modulate PASMC proliferation, migration and 

contractility and it is through these mechanisms that miR-21 is thought to 

contribute to the PH phenotype. Over-expression of miR-21 in PASMCs (as 

observed in hypoxic hPASMCs and diseased PASMCs) caused a reduction in target 

genes SPRY2, PDCD4 and PPARα to stimulate proliferation, migration and 

prevent apoptosis (Sarkar et al., 2010, Cheng et al., 2010). MiR-21 is also 

modulated by BMP signalling pathways in a post-transcriptional and ligand 

dependent manner. TGF-β and BMP signalling activates R-Smads (Smad2/3 in 

response to TGF-β, Smad1/5 in response to BMP) initiating binding of R-Smads to 

pri-miR-21 via RNA helicase p68, a component of Drosha. This stabilises the pri-

miR-21/Drosha complex and promotes the processing of pri-miR-21 into pre-miR-

21, therefore increasing expression of pre-miR-21 and mature miR-21 without 

altering pri-miR-21 levels (Davis et al., 2008). Within hPASMCs, miR-21 then 

directly targets members of the dedicator of cytokinesis (DOCK) 180-related 

protein superfamily, in particular DOCK4, DOCK5 and DOCK7, to modulate cell 

migration and contractility (Kang et al., 2012). As well as being modulated by 

BMP signalling, BMPR2 is also targeted by miR-21 thereby adding another 
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regulatory mechanism into this complex pathway (Yang et al., 2012, Parikh et 

al., 2012). 

Due to the increase in miR-21 expression during PH development, the effect of 

silencing miR-21 on PH progression and development was investigated. However, 

results from these studies produced conflicting results. Yang and colleagues 

silenced miR-21 in vivo using an LNA-modified antimiR both prior to and post 

hypoxic exposure and reported a decrease in hypoxia-induced PH. A reduction in 

muscularisation of small pulmonary arteries was accompanied by a decrease in 

ET-1, α-SMA and SM22α (Yang et al., 2012). Use of antagomiR-21 in hypoxia-

induced PH showed similar results with a reduction in pulmonary artery pressure 

and vascular remodelling (Pullamsetti et al., 2012). Contrary to this, Parikh and 

colleagues exposed miR-21 null mice to hypoxia/SU5416 insult and reported an 

exaggerated PH phenotype, with increased RVP, RVH and pulmonary remodelling 

evident. One explanation for this augmented phenotype is due to RhoB kinase 

activation. MiR-21 directly targets RhoB, a small GTPase which is critical in 

actin-dependent processes. Inhibition of miR-21 in hPAECs results in an increase 

in RhoB protein, therefore increased Rho kinase activation and phosphorylation 

of myosin phosphatase culminating in vasoconstriction. Furthermore, Rho kinase 

activation down-regulates endothelial nitric oxide synthase leading to pulmonary 

vasoconstriction (Parikh et al., 2012). Use of RhoB knockout mice support this 

theory with mice genetically void of RhoB displaying a diminished PH phenotype 

in response to chronic hypoxia (Wojciak-Stothard et al., 2012).   

From the studies mentioned here, there is a lot of controversy surrounding the 

role of miR-21 in the pulmonary vasculature and how best to therapeutically 

target this miRNA. The variation between study conditions may provide a 

possible explanation as to the opposing results obtained. For example, strain and 

species differences as well as gender are important factors which can influence 

biological outcomes. Different methods were also used to modulate miR-21 

levels in vivo and therefore must be considered. Nevertheless, it is clear that 

miR-21 does indeed play an integral part in both PAEC and PASMC proliferation, 

migration and contractility and is an essential miRNA involved in PH 

development. 



Chapter 1  45 
 

1.3.3.4 MiRNAs as biomarkers 

MiRNA expression is altered within tissues during disease pathology and it has 

recently been reported that circulating miRNAs can be detected in the plasma, 

making them ideal candidates for use as biomarkers. Circulating miRNAs are 

highly stable and resistant to harsh experimental conditions, including extremes 

of pH and boiling. In addition to this, plasma miRNAs are resistant to nuclease 

activity (Chen et al., 2008), suggesting that miRNAs are transported in the 

plasma in a form to prevent degradation. Originally it was thought that plasma 

miRNAs were encapsulated in vesicles derived from the plasma membrane, such 

as exosomes, microparticles and apoptotic bodies. These vesicles protect the 

miRNA from RNase degradation and have been found to have biologically 

functional roles in intercellular communication (Skog et al., 2008, Valadi et al., 

2007, Zernecke et al., 2009). Vesicular transfer of miRNAs is important to 

regulate paracrine signalling of neighbouring cells. Reports have shown that 

tumour cells release exosomes during disease and miRNA expression within these 

vesicles correlates with the tumour profile (Skog et al., 2008). More recently, 

circulating miRNAs have been separated into two classes; vesicle associated 

miRNAs and non-vesicle associated miRNAs. Arroyo and colleagues found that 

almost 90% of circulating miRNAs exist in protein complexes, rather than within 

vesicles. Using differential ultracentrifugation and size-exclusion 

chromatography, it was found that the majority of plasma miRNAs form a 

complex with the RNA binding protein Ago2 (an essential component of the 

miRNA maturation pathway) (Arroyo et al., 2011). Circulating miRNAs have also 

been shown to form complexes with high density lipoprotein (HDL) for transport 

in the circulation (Vickers et al., 2011). The exact mechanisms which release 

Ago2-miRNA complexes from the cell or allow HDL to load miRNAs are currently 

unknown however, it is clear that association of circulating miRNAs with these 

proteins provides protection against degradation and may confer a biological 

role.  

A reliable biomarker is defined as a characteristic that is objectively measured 

and evaluated as an indicator of normal biological processes, pathogenic 

processes or pharmacological responses to a therapeutic intervention (FDA, 

2008). Biomarkers must be easily accessible and circulating miRNAs are stable 

and can be readily detected in plasma therefore a blood sample is all that is 
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required. This also has the advantage that plasma miRNA expression can be 

tested periodically. Measurement of the candidate biomarker must also be highly 

sensitive and specific and miRNA levels are quantified easily by quantitative real 

time polymerase chain reaction (qRT-PCR) and microarray analysis. Another key 

aspect required for biomarkers is that the molecule must be detected early on in 

disease pathology and changes in circulating miRNA levels have been reported 

early after tissue injury (Wang et al., 2010). There are of course difficulties 

which arise when analysing miRNAs from serum or plasma samples. One of the 

major challenges is the lack of a standard reference molecule, as expression of 

the normal standard molecules often changes in plasma samples under diseased 

conditions (Zampetaki and Mayr, 2012). Without a standard to compare all 

samples to, precision and accuracy of results can be reduced. In order to 

overcome this problem, synthetic miRNAs are often used in a spike-in 

normalisation method, using miRNAs from C.elegans. However, these exogenous 

miRNAs are not protected from the nuclease activity present in the plasma and 

therefore may not be as stable as endogenous miRNAs.  

Circulating miRNAs have already been proposed as biomarkers for a number of 

diseases. Expression of miR-423-5p is significantly up-regulated in the plasma of 

patients with heart failure and levels are correlated to the NYHA classification 

(Tijsen et al., 2010) while miR-208a is undetected in healthy volunteer plasma 

but is elevated following an acute myocardial infarction (Wang et al., 2010). A 

plasma miRNA signature has also been determined for patients suffering from 

type 2 diabetes mellitus, characterised by loss of endothelial miR-126 

(Zampetaki et al., 2010). Wang and colleagues studied the potential for using 

circulating miRNAs as biomarkers for toxin-induced liver injury. Plasma 

expression of miR-122 and miR-192 (levels of which are elevated in the liver) 

correlated to the stage of liver degeneration and showed a dose and time 

dependent change which was detected earlier than currently used biomarkers 

(Wang et al., 2009). With regards to PAH, miR-150 expression is significantly 

reduced in total plasma as well as in circulating microvesicles from PAH 

patients. Furthermore, miR-150 plasma expression is correlated with 2 year 

survival and is a significant predictor of survival in patients with PAH (Rhodes et 

al., 2013). 
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Once the plasma miRNA profile is determined for specific diseases, this may 

improve the diagnostic procedure and help detect changes earlier than the 

current methods in use. It may also allow clinicians to follow disease progression 

more closely due to the ease of sampling and sensitivity of detection of plasma 

miRNA and monitor the effects of the treatment administered. Of course, 

questions still need to be answered on the exact role of these circulating 

miRNAs, whether they play a role in disease or are simply novel diagnostic 

markers. Further work is also required to establish how early the plasma miRNA 

profiles arise. 

1.3.4 MiRNAs as therapeutic targets 

From the studies described above, miRNAs play an important role in tissue 

homeostasis and miRNA expression is often dysregulated during disease 

pathogenesis. Therefore, research has focused on potential therapeutic 

approaches which could be adopted to target the miRNA pathway.  MiRNAs are 

small molecules of known sequence and well conserved making them ideal 

targets for drug development.  

One method used to therapeutically modulated miRNA expression is through 

miRNA mimics, which enhance endogenous miRNA function and are used to re-

express miRNAs which are down-regulated during disease (Figure 1.7). Mature 

miRNA mimics are synthetic molecules where the passenger strand is chemically 

modified to promote uptake into the cell (e.g. conjugating the miRNA duplex to 

cholesterol) while the guide strand is left unmodified (van Rooij and Olson, 

2012). Of course, modification must be limited so that the synthetic miRNA is 

still biologically functional in the cell. Precursor miRNA mimics can also be used 

to stimulate miRNA biogenesis and increase mature miRNA expression by binding 

to the miRNA processing complexes within the cell. One of the most effective 

methods for increasing miRNA expression is using adeno-associated virus (AAV). 

AAVs are appealing viral vectors to use as there are numerous AAV serotypes 

which display varying tropism for different organs (Zincarelli et al., 2008) 

allowing targeting of the therapeutic effect to specific tissues. AAV vectors can 

be modified with tissue-specific promoters to limit exposure to particular cell 

types and AAVs also provide continuous transgene expression. Systemic 

administration of AAVs to over-express miR-26a, a miRNA which is down-
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regulated in hepatocellular carcinoma cells, reduced cancer cell proliferation, 

promoted tumour cell apoptosis and prevented further liver cancer progression 

(Kota et al., 2009). 

Another key approach used to therapeutically modulate miRNA expression in 

vivo is by using antimiRs to reduce endogenous miRNA levels. AntimiRs are 

single-stranded, chemically modified oligonucleotides which are complementary 

to miRNA. AntimiRs bind to mature miRNA to form a duplex and prevent the 

miRNA binding to target mRNAs (Figure 1.7). There are different chemistries 

used to design antimiRs, with the majority including modifications to enhance 

RNA binding, increase stability and facilitate cellular uptake. Phosphorothioate 

backbone linkages are included to increase stability of the antimiR. High affinity 

2’ sugar modifications, such as 2’-O-methylation, promote nuclease resistance 

and increase antimiR:miRNA duplex melting temperature, therefore preventing 

dissociation of the duplex at lower temperatures and ensuring miRNA inhibition. 

Locked nucleic acid (LNA) is another 2’ sugar modification which contains an 

extra bridge between the 2’ oxygen and 4’ carbon which “locks” the ribose in 

the 3’-endo conformation. This conformation change increases the binding for 

complementary RNA and significantly increases duplex melting temperature (van 

Rooij and Olson, 2012). AntimiRs which are cholesterol conjugated and contain 

2’-O-methylation with phosphorothioate backbone linkages are called 

antagomiRs. These antagomiRs are efficient, long lasting and specific in silencing 

miRNAs in vivo (Krutzfeldt et al., 2007). The first miRNA targeted treatment to 

enter clinical trials is miravirsen, a LNA-modified antimiR which targets miR-122, 

a miRNA which is highly expressed in the liver and involved in the replication of 

hepatitis C viral RNA (Jopling et al., 2005). The phase 2a clinical study, funded 

by Santaris Pharma, showed that miravirsen was both safe and efficacious in 

patients with hepatitis C virus and provided prolonged antiviral activity (Janssen 

et al., 2013). 
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Figure 1.7 – MiRNA targeted treatment. 

MiRNA function can be modulated in vivo to re-express or inhibit miRNAs which are dysregulated 

during disease development. MiRNA biogenesis can be enhanced with the use of AAV viral vectors 

or pre-miRNA or mature miRNA mimics which are recognised in the same manner as endogenous 

miRNAs. MiRNA function is inhibited by the use of antimiRs, which are antisense oligonucleotides 

complementary in sequence to the mature miRNA and prevent binding of miRNA to target mRNA. 

AntagomiRs are cholesterol conjugated antimiRs and work in a similar manner to antimiRs. 

Adapted from (Grant et al., 2013).  
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The most significant advantage of therapeutically targeting miRNAs is their 

broad spectrum of action. MiRNAs can target hundreds of genes (Doench and 

Sharp, 2004) and this would allow modulation of a multitude of different 

pathways involved in disease initiation and progression. However, this can also 

be a drawback with targeting miRNAs directly and may result in off-target 

effects. For use in PAH, direct targeting of the miRNA therapy via local delivery 

to the lung is essential to minimise off target effects. One way this can be 

achieved is through intratracheal delivery which will deliver the miRNA therapy 

directly into the pulmonary system. Another way to target treatment to the lung 

is through complexing the miRNA therapy with a lipopolyamine (such as 

Staramine) which can then be administered intravenously. MiRNA delivery via 

Staramine is distributed across all organs however, the clearance rate from the 

lung is much slower than in other tissues leading to an accumulation of drug 

within the lung (Polach et al., 2012).  

MiRNA modulation in a cell type or tissue distinct from the target cell can result 

in deleterious off-target effects via regulation of biological pathways not 

involved in the disease process. This effect can be limited through use of tissue-

specific promoters to reduce unwanted effects. Alternatively, targeting of 

specific miRNA genes may overcome this problem and result in a more selective 

response and reduce disease severity. The potential to target miRNAs 

therapeutically is great and further research will hopefully generate novel 

therapeutic agents selective and specific in action.  
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1.4 Aims 

Previously, studies within this laboratory have shown that miRNAs are 

dysregulated within the lung during the development of PH using the hypoxic 

and monocrotaline rodent models of PH (Caruso et al., 2010). Therefore the 

principle research aim of this study was to determine the role of specific miRNAs 

within the pulmonary vasculature using cell culture and rodent models of PH. 

The specific aims of this project were: 

 To establish a role for miR-451 in the development of PH using both in 

vitro and in vivo techniques.  

 To evaluate the miRNA profile within pulmonary and cardiac tissue during 

the development of PH using the mouse and rat hypoxia/SU5416 model of 

PH. 

 To determine the role of miR-145 in the development of PH in the rat 

hypoxia/SU5416 model of PH. 
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2 Materials & Methods 
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All experimental procedures conform with the United Kingdom Animal 

Procedures Act (1986) and to the ‘Guide for the Care and Use of Laboratory 

Animals’ published by the US National Institutes of Health (NIH publication No. 

85-23, revised 1996). All transgenic mice were bred under the project licence 

60/3752 held by Professor A.H. Baker (University of Glasgow, UK). In vivo 

procedures using the hypoxic model of PH were conducted under project licence 

60/3773 held by Professor M.R. MacLean (University of Glasgow, UK) while all in 

vivo procedures using the hypoxia/SU5416 model of PH were performed under 

project licence 70/7182 held by Dr Matthew Thomas (Novartis Pharmaceuticals 

Ltd, Horsham, UK). Experimental procedures using human pulmonary artery 

smooth muscle cells conform to the principles outlined in the declaration of 

Helsinki.  

2.1 Chemicals 

All chemicals unless otherwise indicated were obtained from Sigma-Aldrich 

(Dorset, UK). All tissue culture reagents were obtained from Gibco (Paisley, UK) 

unless otherwise stated. All transfection reagents were purchased from Life 

Technologies (Paisley, UK) unless stated otherwise. 

2.2 Generation of Ad-miR-451 

Recombinant adenoviruses targeting human or rat miR-451 were created and 

used to over-express miR-451 in vitro. The stem loop precursor sequence of 

human miR-451 or rat miR-451 was cloned into the pAdEasy-1 vector using the 

pAdEasyTM Adenoviral Vector System (Agilent Technologies, Berkshire, UK). 

2.2.1 Generation of Ad5 vector containing miRNA insert 

The first step in the cloning procedure was to ligate the pre-miR-451 sequence 

into the pcDNA3.1(+) vector using In-Fusion technology (Clontech, Mountain 

View, USA) (Figure 2.1). The stem loop miRNA precursor sequence (GeneArt, 

Paisley, UK) had a start/kozak and stop sequence added as well as restriction 

sites and 15 nucleotides homologous to pcDNA3.1(+) using In-Fusion primers 

(Table 2.1) and amplified by polymerase chain reaction (PCR). The PCR product 

was run on a 1% agarose gel and purified by gel extraction (Wizard® SV Gel and 
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PCR Clean-Up System; Promega, Madison, USA). The pcDNA3.1(+) vector was 

linearized by double restriction digest with EcoRV and HindIII and purified by gel 

extraction. Ligation of miRNA insert with vector followed by transformation into 

Top10 competent cells (Invitrogen, Paisley, UK) was performed as detailed in the 

In-Fusion protocol. The transformation process propagates the vector (containing 

the insert) in bacterial cells and the transformation product was grown on 

Ampicillin agar plates. Colonies were chosen and small scale preparation of 

plasmid DNA was performed using QIAprep Spin Miniprep Kit (Qiagen, Crawley, 

UK) followed by large scale preparation of plasmid DNA using QIAGEN Plasmid 

Maxi Kit. 

The miRNA insert was then cloned into a shuttle plasmid, pShuttleCMV (Agilent 

Technologies) (Figure 2.1). This plasmid was linearized by restriction digest with 

EcoRV and HindIII, followed by gel extraction purification. In the same way, the 

miRNA insert was prepared by digesting the DNA product from the ligated 

pcDNA3.1(+) and insert with EcoRV and HindIII. The digestion product was 

separated on a 2% agarose gel and small miRNA insert was purified by gel 

extraction. Ligation of pShuttleCMV vector and the miRNA insert was performed 

using Rapid Ligation Kit (Roche Applied Science, West Sussex, UK) according to 

manufacturer’s instructions and transformed into Top10 competent cells. 

Transformation products were streaked on Kanamycin agar plates. Colonies were 

picked and miniprep DNA was prepared, followed by maxiprep DNA.  

The next step in the cloning procedure was to insert the miRNA sequence into 

the large pAdEasy-1 vector (Figure 2.1). The pAdEasy-1 vector contains the Ad5 

genome and has the E1 and E3 regions deleted. These are the regions required 

for viral replication and escaping host immunity, respectively. The pShuttleCMV 

vector (containing miRNA insert) was linearized by restriction digest with EcoRI 

and electroporated into BJ5183-Ad1 electrocompetent cells (Stratagene, La 

Jolla, USA). These bacterial cells express active recombination genes and are 

pre-transformed with the pAdEasy-1 viral plasmid, therefore allowing 

homologous recombination to occur between the pShuttleCMV and pAdEasy-1 

plasmid. Recombinant products were grown on kanamycin agar plates and small 

colonies were picked. Positive recombinants were retransformed into Top10 
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competent cells to increase the yield of DNA. DNA was isolated by miniprep and 

then maxiprep extractions.  

Table 2-1 - In-Fusion primers used to add the start/kozak, stop and restriction site 

sequences to the precursor miRNA and for amplification of miR-451 stem loop in human 

and rat. 

 

Primer Sequence 

Human miR-451 

Forward 

5’CTAGCGTTTAAACTTAAGCTTGGATCCACGCGTACCATG

GCTTGGGAATGGCAAGGAAAC 3’ 

Human miR-451 

Reverse 

5’GCCGCCACTGTGCTGGATATCCTCGAGATCGATAAAAAA

CTATATGGGTATAGCAAGAGAACC 3’ 

Rat miR-451 Forward 5’CTAGCGTTTAAACTTAAGCTTGGATCCACGCGTACCATG

GTTTGGGAATGGCGAGGAAAC 3’ 

Rat miR-451 Reverse 5’GCCGCCACTGTGCTGGATATCCTCGAGATCGATAAAAAA

CTATGTGGGAGCAGCAAGAGAAC 3’ 

 



Chapter 2  56 
 

Digest with PacI

Transfect into HEK 293 cells

Linearise with EcoRI

Co-transform BJ5183-Ad1 cells

Digest with EcoRV and HindIII

Transform into Top10 cells

Transform into Top10 cells

 

Figure 2.1 – Schematic diagram illustrating the production of recombinant adenovirus 

containing precursor miR-451. 
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2.2.2 Generation of crude adenovirus stock 

Recombinant adenoviral plasmid DNA was then digested with Pac1 to linearize 

the plasmid and expose the inverted terminal repeats, which is necessary before 

transfection into cells. Human embryonic kidney (HEK) 293 cells produce the 

adenoviral E1 viral assembly gene in trans, therefore allowing production of 

infectious virus particles. Transfection of PacI digested plasmid DNA into 80% 

confluent HEK293 cells was performed in 6-well plates using Lipofectamine® 

2000 Transfection Reagent following manufacturer’s instructions. Transfected 

cells were monitored for cytopathic effects and the formation of viral plaques. 

Once plaques had formed, cells were harvested and exposed to three 

freeze/thaw cycles (-80ºC and 37ºC, respectively) in order to release the 

adenovirus from the cells. Centrifugation was performed at 4,500 x g for 5 min 

to pellet cellular debris and the supernatant was added to two T150 flasks of 

HEK293 cells to expand the viral population. Once the majority of the cells were 

infected, cells were harvested, exposed to three freeze/thaw cycles and 

centrifuged as before. The supernatant was then added to twenty-five T150 

flasks in order to further expand the virus. Once cells were infected, cells were 

collected, centrifuged at 800 x g for 10 min and the pellet was resuspended in 

phosphate buffered saline (PBS). Equal volume of Arklone P was added and the 

cells were inverted 10 times. Cells were centrifuged for 10 min at 1,500 x g and 

then the top adenoviral layer was isolated. 

2.2.3 Adenovirus purification  

This crude adenovirus stock was then further concentrated and purified by 

centrifugation on caesium chloride (CsCl) density gradients. The adenoviral stock 

was placed above layered caesium chloride densities (1.40 g/ml and 1.25 g/ml) 

and spun by ultracentrifugation at 100,000 x g for 1.5 h at 18ºC (Beckman 

Coulter Optima L-80 XP Ultracentrifuge). The adenovirus purifies in a white band 

between the two CsCl layers and was removed carefully. The adenovirus was 

then purified in a second CsCl gradient, where the adenovirus was placed on top 

of 1.34 g/ml CsCl and spun by ultracentrifugation at 100,000 x g at 18ºC for 18 h. 

The adenovirus band was once again removed and dialysed in a Slide-A-Lyzer 

(ThermoScientific, Pittsburgh, USA) cassette for 2 h in 1 x TE. Further dialysis 

was then performed overnight in 1 X TE with 10% glycerol to remove any CsCl 
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contamination. The virus was then removed from the Slide-A-Lyzer cassette and 

stored at -80ºC. 

Sequencing and restriction digests were performed throughout the cloning 

procedure and virus production to confirm that the adenovirus contained the 

correct precursor sequence.  

2.2.4 Calculation of total viral particle titre 

Viral particle titre (vp/ml) was assessed using a microBCA assay (MicroBCATM 

Protein Assay Kit, ThermoScientific) following manufacturer’s instructions. 

Protein standards of bovine serum albumin (BSA) were prepared at 

concentrations ranging from 0.5 μg/ml to 200 μg/ml. These reference samples 

were used to generate a standard curve. A working reagent was prepared by 

mixing reagent A, reagent B and reagent C at a ratio of 25:24:1, respectively. 

Protein standards (150 μl) or dilutions of the adenovirus stock (1 μl, 3 μl or 5 μl 

made up to 150 μl with PBS) were then added to the working reagent (150 μl) in 

a 96-well plate, mixed thoroughly, protected from light and incubated at 37ºC 

for 2 h. Absorbance was measured at 570 nm using the Wallac 1420 Victor2TM 

plate reader (Perkin Elmer, Waltham, USA). Samples and standards were 

measured in duplicate with average values taken. Protein concentration of the 

virus was determined using the standard curve generated by the BSA protein 

standards. Protein concentration was converted to viral particle/ml (vp/ml) 

using the formula: 1 μg protein = 1 x 109 vp (Von Seggern et al., 1998). 

2.2.5 Titration of adenovirus by end-point dilution 

The number of infective particles was determined by titration of adenovirus 

using end-point dilution in HEK293 cells and expressed as plaque forming units 

(pfu/ml). Serial dilutions of adenovirus were made in full media, ranging from 1 

x 10-2 to 1 x 10-11 dilution. These adenoviral dilutions were added to 50-60% 

confluent HEK293 cells in a 96 well plate (100 μl per well) and incubated at 37ºC 

for 18 h. After this incubation, adenovirus containing media was removed and 

replaced with fresh media every 2-3 days. Cells were checked daily for the 

appearance of plaques. Once cytopathic effects were observed within a well, 

the media was no longer replaced with fresh media. After 8 days incubation the 
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number of wells containing plaques was determined and the titre of the 

adenovirus stock was calculated using the equations below. 

Proportionate distance =   (% positive above 50% - 50%) 

    (% positive above 50% - % positive below 50%) 

LogID50 = log dilution above 50% + (dilution factor X proportionate distance) 

Hence, ID50 = 10x 

TCID50 per 100 μl = 1/10x 

TCID50 per 1 ml = (1/10x) X 10 

Note: 1 TCID50 is ~ 0.7 pfu 

Therefore, pfu/ml = (TCID50 per 1 ml) X 0.7  

2.3 Cell culture 

All cells were handled under sterile conditions using class II biological safety 

cabinets (Holten Safe 2010). Cabinets were cleaned before and after use with 

dH2O and 70% ethanol. All cells were cultured in a humidified incubator with a 

constant supply of 5% CO2 at 37ºC.   

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% (v/v) fetal calf serum (FCS), 100 U/ml penicillin, 100 

µg/ml streptomycin, 2 mM L-glutamine and 1 mM sodium pyruvate. Proximal 

human pulmonary artery smooth muscle cells (hPASMCs; Lonza, Slough, UK) from 

control patients were cultured in smooth muscle cell medium 2 (Promocell, 

Heidelberg, Germany) containing 15% FCS, 0.5 ng/ml epidermal growth factor, 2 

ng/ml basic fibroblast growth factor, 5 μg/ml insulin, 100 U/ml penicillin, 100 

µg/ml streptomycin, 2 mM L-glutamine and 1 mM sodium pyruvate. 

Cell cultures were grown in 75 cm2 flasks and routinely passaged using trypsin-

EDTA (0.05% trypsin, 0.02% EDTA) when cells reached 80-90% confluency. Cells 

were washed twice with sterile Dulbecco’s calcium and magnesium free 
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phosphate buffered saline (PBS) and incubated at 37ºC with trypsin-EDTA until 

cells had detached from the flask. Trypsinisation was stopped with the addition 

of growth medium containing 10-15% (v/v) FCS as this neutralises the trypsin. 

Cells were pelleted by centrifugation at 1,500 x g for 5 min, resuspended in 

fresh growth medium and counted using a haemocytometer before being plated.  

2.3.1 Transduction of Ad-miR-451 

HeLa cells were seeded at 4 x 104 cells/well in a 24 well plate. Once cells were 

~80% confluent, cells were transduced with human Ad-miR-451, rat Ad-miR-451 

or Ad5-lacZ control virus at a concentration of 10, 50 or 100 plaque forming units 

(pfu)/cell. Twenty four hours later, media was replaced with fresh media for a 

further 24 h, after which cells were lysed for RNA extraction.  

Human PASMCs were seeded at 4 x 104 cells/well in a 24 well plate. Once cells 

were ~80% confluent, cells were transduced with human Ad-miR-451, rat Ad-

miR-451 or Ad5-lacZ control virus at a concentration of 5,000, 10,000 or 20,000 

viral particles (vp)/cell. Twenty four hours later, media was removed and 

replaced with 0.1% (v/v) serum containing media for a further 48 h. Cells were 

then lysed for RNA extraction. 

2.3.1.1 Visualisation of control Ad5-lacZ virus 

Transduction efficacy of the adenovirus was visualised using the Ad5-lacZ control 

virus. Ad5-lacZ is an adenovirus which contains the lacZ gene that results in 

over-expression of β-galactosidase. In the presence of x-gal stain (containing an 

analog of lactose), cells successfully transduced with the Ad5-lacZ virus produce 

β-galactosidase which hydrolyses lactose to form 5-bromo-4-chloro-3-

hydroxyinadole. This is then oxidised to form 5,5’-dibromo-4,4’-dichloro-indigo 

which is blue in colour. Human PASMCs seeded at 4 x 104
 cells/well in a 24 well 

format were transduced with Ad5-lacZ control virus at 5,000, 10,000 or 20,000 

vp/cell. Twenty four hours later, media was replaced with 0.1% or 15% (v/v) 

serum containing media for a further 48 h. Cells were then washed in PBS and 

fixed in 2% paraformaldehyde (PFA) for 10 min. X-gal stain (77 mM Na2HPO4, 23 

mM NaH2PO4, 1.3 mM MgCl2, 3 mM K3Fe(CN6), 3 mM K4Fe(CN6), 1 mg/ml x-gal 

stain dissolved in dimethyl formamide) was added to each well and wells were 
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incubated at 37ºC. The following day, cells were imaged using the QImaging 

QICAM Fast 1394 camera.  

2.3.2 miR mimics 

Synthetic miR-451 mimic or negative control cy3 labelled mimic was transfected 

into hPASMCs using the siPORTTM neoFXTM transfection protocol. To assess miRNA 

and gene expression, hPASMCs were transfected with miR mimics at a 

concentration of 10 nM, 25 nM or 50 nM using the reverse transfection protocol 

where cells are simultaneously transfected and plated. Briefly, 3 μl siPORTTM 

neoFXTM transfection agent was diluted in 50 μl opti-MEM® I media for each well 

and incubated at room temperature for 10 min. MiR mimics were then diluted in 

opti-MEM® I media to the desired concentration, mixed with the diluted siPORTTM 

neoFXTM transfection agent and incubated at room temperature for 10 min. The 

RNA/siPORTTM neoFXTM transfection agent complexes were then dispensed into a 

24 well plate and cell suspension was added to give 4 x 104 cells/well. Twenty-

four hours after transfection, cells were quiesced in 0.1% (v/v) serum containing 

media for 48 h and then lysed for RNA isolation. A mock transfection control was 

included in each independent experiment where cells were treated with 

siPORTTM neoFXTM transfection agent but not exposed to miR mimic.  

2.3.2.1 Visualisation of cy3 labelled miR mimic 

Human PASMCs were reverse transfected with negative control cy3 labelled 

mimic at concentrations of 10 nM, 25 nM or 50 nM and plated at 4 x 104 

cells/well on chamber slides using the protocol detailed in section 2.3.2. Cells 

were then incubated in 0.1% (v/v) serum containing medium for 48 h followed by 

fixation. Briefly, cells were washed twice with PBS, fixed with 4% (v/v) PFA for 

10 min, washed with PBS and ProLong® Gold reagent (containing DAPI nuclear 

stain; Invitrogen) was added before mounting the chamber slide. Slides were left 

to cure for 24 h and then visualised using an Olympus IX70 fluorescent 

microscope (Olympus, Southend-on-Sea, UK).  

2.3.3 Migration of hPASMCs 

Migration of hPASMCs was analysed using the scratch wound assay. Human 

PASMCs were reverse transfected with 10 nM miR-451 mimic, control mimic or 
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mock transfected using the protocol detailed in section 2.3.2 but using the 6 

well plate format with 4 x 105 cells/well.  Following 48 h serum starvation, 

vertical scratches were drawn through the confluent monolayer of cells using a 

P200 pipette tip. Cells were washed with PBS to remove any cell debris caused 

by induction of the wound and fresh 0.1% (v/v) or 15% (v/v) serum containing 

media was added. Scratches were imaged at 0, 6, 12 and 24 h post scratch using 

the Nikon Eclipse TS100 microscope and imaged on QICAM Fast 1394 camera 

(QImaging, Burnaby, Canada). Image analysis was performed using ImageJ 

software where a grid composed of 10 horizontal lines was placed over the 

image. The distance between the edges of the wound were measured along the 

grid lines and distance migrated was expressed as a percentage of the 0 h time 

point. Independent experiments were performed three times, with two wells per 

condition and four scratches per well.  

2.3.4 Proliferation of hPASMCs 

2.3.4.1 Thymidine incorporation assay 

DNA synthesis of hPASMCs was assessed using a thymidine incorporation assay. 

This technique utilises the radioactive nucleoside 3H-thymidine, which is 

incorporated into new strands of chromosomal DNA during DNA synthesis. The 

traditional siPORTTM neoFXTM transfection protocol was used where cells are 

plated prior to transfection. Cells were plated in a 24 well plate at a density of 2 

x 104 cells/well and grown to ~50% confluency. Cells were quiesced in 0.1% (v/v) 

serum containing media for 48 h and then transfected with 10 nM miR-451 

mimic, control mimic or mock transfected. Four hours post transfection, media 

was removed and fresh media was added to the cells containing differing serum 

concentrations (0.1%, 2.5% or 10% (v/v) serum). Cells were incubated for 72 h 

and 1 µCi 3H-thymidine (Perkin Elmer) added for the last 24 h. The experiment 

was stopped by aspirating the media from each well and rinsing wells twice with 

cold PBS. DNA was precipitated by washing three times with 5% (w/v) 

trichloroacetic acid (TCA) followed by a 30 min incubation with 500 μl of 0.3 M 

NaOH at room temperature. The contents of each well were transferred to 

individual tubes and 1ml Ecosint XR scintillation fluid (National Diagnostics, 

Atlanta, USA) was added. Samples were then stored overnight, protected from 

light and radioactivity levels were measured using a liquid scintillation counter 
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(Tri-Carb 2800 TR Liquid Scintillation Analyser; Perkin Elmer) and results 

expressed as counts per minute (cpm). 

2.3.4.2 MTS assay 

The CellTiter96® AQueous Non-Radioactive Cell Proliferation Assay (also known as 

the MTS assay; Promega) was also used to measure hPASMC proliferation. The 

MTS assay is a colorimetric technique use to determine the number of viable 

cells in a proliferation assay. Cells were transfected with 10 nM mimic in 96 well 

plates and exposed to fresh media with differing concentration of serum (0.1%, 

2.5% or 10% (v/v) serum) for 72 h as described in section 2.3.4.1. A working 

solution containing MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) and 

phenazine methosulfate (PMS, an electron coupling reagent) was prepared at a 

ratio of 20:1, respectively. Media was removed from the hPASMCs and 100 μl 

fresh media (of the same serum concentration as before) was added along with 

20 μl of the MTS working solution. Cells were incubated at 37º for 3 h, after 

which absorbance was read at 490 nm using the Wallac 1420 Victor2TM plate 

reader.  

2.3.5 MicroRNA pull-down assay 

Human PASMCs were plated in 10 cm plates at 7 x 105 cells/plate. Once cells 

were 70-80% confluent, cells were transfected with 3’-biotinylated miR-145 

mimic (Dharmacon, Pittsburgh, USA) or a control miR mimic (directed against 

C.elegans miR-67) with twelve plates per condition. Transfection was performed 

using Lipofectamine® RNAiMax transfection reagent. Briefly, 30 μl 

Lipofectamine® RNAiMax transfection reagent was diluted in 470 μl opti-MEM® I 

media per plate. The biotinylated mimics were also diluted in opti-MEM® I media 

to a final concentration of 30 nM in 500 μl per plate. Diluted lipofectamine and 

mimics were added together and incubated at room temperature for 5 min. 

Media was removed from the hPASMCs and 1 ml of the lipofectamine/mimic 

complex was added to the cells along with fresh media. Twenty four hours later, 

cells were trypsinised using trypsin-EDTA and pelleted at 200 x g for 5 min. The 

cell pellet was washed twice in PBS, resuspended in 250 μl lysis buffer (20 mM 

Tris pH 7.5, 100 mM KCl, 5 mM MgCl2, 0.3% NP-40, 50 U of RNase OUT, 1x 
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protease inhibitor cocktail (Roche Applied Sciences)) and incubated at 4ºC for 20 

min with shaking. Samples were centrifuged at 9,000 x g for 10 min and the 

cytoplasmic lysate was removed to a clean tube. At this point, 10% of the lysate 

was taken and stored at -80ºC as the ‘input’ sample. Streptavidin coated 

magnetic beads (1.25 mg/ml, Dynabeads® M-280 Streptavidin; Invitrogen) were 

blocked for 2 h at 4ºC in lysis buffer containing 1 mg/ml yeast tRNA and 1 mg/ml 

BSA. Tubes containing the beads were then placed in a magnetic holder (Dynal 

bead separator) for 2 min, supernatant removed and washed in this way twice 

with 1 ml lysis buffer. Lysates were then added to the beads and incubated at 

4ºC for 4 h. Following this, the beads were washed five times in 1 ml lysis buffer 

and RNA was extracted using TRIzol® LS reagent (described in section 2.6.3). 

2.4 Hypoxic model of PH 

Hypoxia-induced PH was achieved using a hypobaric hypoxic chamber. The 

hypoxic chamber was depressurised over the course of two days to 550 mbar 

(equivalent to 10% O2) to allow acclimatisation. Chamber temperature was 

maintained at 21-22ºC and the chamber was ventilated with air at 45 lmin-1. 

Normoxic mice were exposed to atmospheric pressure of ~1000 mbar (equivalent 

to 21% O2). Cages were changed and cleaned every five days and food and water 

were accessible ad libitum.  

2.4.1 Knockout mice 

MiR-145 knockout mice and miR-451 KO mice were kindly supplied by Eric Olson 

(University of Texas Southwestern).  

KO mice were generated at University of Texas, Southwestern using Cre-

recombinase technology. Briefly, targeting vectors were created which 

contained fragments upstream and downstream of the pre-miRNA of interest 

along with a neomycin resistant gene flanked by loxP sites. The target vector 

was then linearised and electroporated into embryonic stem cells where 

homologous recombination took place, knocking out the miRNA of interest and 

replacing it with the neomycin cassette. Positive clones were then selected and 

injected into blastocysts and crossed with C57Bl/6 mice to achieve germline 

transmission of the targeted allele and form chimeric mice. These chimeric mice 
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were then bred with mice ubiquitously expressing the CAG-Cre transgene. 

Breeding of these heterozygous mice produced global knockout of the miRNA of 

interest. All genetic mice were generated at the University of Texas, 

Southwestern and kindly gifted to the University of Glasgow where colonies of 

knockout and wild-type mice were established. Genotyping was performed to 

ensure knockout mice did not contain the miRNA of interest. Mice were housed 

with littermates and subjected to a continuous 12 h light/dark cycle. Food and 

water were accessible ad libitum.  

2.4.1.1 MiR-145 knockout mice 

Targeting vectors used to knock out miR-145 removed the 70 bp sequence of 

pre-miR-145 as described in section 2.4.1 above and in more detail by Xin and 

colleagues (Xin et al., 2009).  

Eight week old male miR-145 KO mice or age matched wild type controls were 

exposed to chronic hypoxia for 14 days or maintained in normoxic conditions and 

assessment of PH indices was performed at 10 weeks of age. Previously our lab 

has reported that female miR-145 KO mice were protected from the 

development of hypoxia-induced PH (Caruso et al., 2012). Hence, male mice 

were used in this study to assess whether the same protective effect was 

observed in male mice.  

2.4.1.2 MiR-451 knockout mice 

Targeting vectors used to knock out miR-451 removed the 76 bp sequence of 

pre-miR-451 as described in section 2.4.1 above and in more detail by Patrick 

and colleagues (Patrick et al., 2010b). 

Eight week old female miR-451 KO mice or age matched wild type controls were 

exposed to chronic hypoxia for 14 days or maintained in normoxic conditions and 

assessment of PH indices was performed at 10 weeks of age. Female mice were 

used for this study as previous work from our laboratory has shown that PH is 

more prominent in female transgenic mice compared to male mice (White et al., 

2011a, White et al., 2011b, Dempsie et al., 2011). 
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2.4.2 AntimiR-451 administration in rat hypoxic model 

An antimiR targeting mature miR-451 (antimiR-451) was used to silence miR-451 

in vivo. AntimiR-451 (miRagen Therapeutics Ltd, Boulder, Colorado) consisted of 

LNA and DNA bases of the complementary reverse sequence bases 2-17 of miR-

451 and was suspended in PBS. Male Wistar rats (aged 8 weeks) were 

administered antimiR-451 or control antimiR (similar composition to the antimiR 

but directed against a miRNA in C.elegans) intravenously via the femoral vein at 

a dose of 10 mg/kg. Anaesthesia was induced at 3% (v/v) isoflurane and then 

maintained at 2.5% (v/v) isoflurane via a face mask throughout the procedure. 

Rats were housed individually in heated cages until they came around and were 

closely observed to ensure full recovery after the surgery. After three days 

recovery, rats were placed in normoxic or hypoxic conditions for 7 days. 

Hemodynamic pressures were taken on day 10 and tissues harvested (Figure 2.2).  

Normoxia

Hypoxia

0 3 10

10 mg/kg 
antimiR-451

PH 
assessed

Day:

 

Figure 2.2 – AntimiR-451 in vivo study design.  

Male 8 week old Wistar rats were administered 10 mg/kg antimiR-451 or control antimiR 

intravenously. After three days recovery, animals were placed in normoxic or hypoxic conditions for 

7 days, after which hemodynamic measurements were taken along with right ventricular 

hypertrophy assessment and tissues harvested. 
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2.4.3 Assessment of PH 

2.4.3.1 Hypoxic mouse hemodynamic measurements 

Anaesthesia was induced using 3% (v/v) isoflurane supplemented with O2. Mice 

were then maintained on 1.5-2% (v/v) isoflurane via a face mask. Hind limb and 

tail reflexes were checked before and throughout surgery to confirm mice were 

fully anaesthetised.  

Systemic arterial blood pressure (SAP) was measured via cannulation of the left 

carotid artery. The micro-cannula (Harvard Apparatus, Massachusetts, USA) was 

attached to a Biopac pressure transducer connected to MP35 data acquisition 

system (Biopac, Goleta, USA) allowing SAP to be recorded. Systolic right 

ventricular pressure (RVP) was measured via cardiac puncture. A calibrated 25 

gauge needle connected to a Biopac pressure transducer was advanced directly 

into the right ventricle trans-diaphragmatically to record RVP. The transducer 

was connected to the MP35 data acquisition system. Both SAP and RVP were 

analysed using the MP35 data analysis software and pressure traces were used to 

derive heart rate.  

2.4.3.2 Hypoxic rat hemodynamic measurements  

Anaesthesia was induced using 3% (v/v) isoflurane supplemented with O2. Rats 

were maintained on 2.5% (v/v) isoflurane via a face mask and placed on a 

thermostatically controlled pad and fitted with a rectal thermometer to monitor 

body temperature. Hind limb and tail reflexes were checked before and 

throughout surgery to confirm rats were fully anaesthetised.  

SAP was measured in rats as described for mice in section 2.4.3.1. RVP was 

measured in rats via cannulation of the right jugular vein. The cannula was 

inserted into the jugular vein, advanced forward through the right atrium and 

into the right ventricle. The catheter was curved at the end to easily manoeuver 

the catheter into the right ventricle. The catheter was attached to the Biopac 

pressure transducer and recorded using the MP35 data acquisition system. Both 

SAP and RVP were analysed using the MP35 data analysis software and pressure 

traces were used to derive heart rate.  
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2.4.3.3 Right ventricular hypertrophy 

Right ventricular hypertrophy (RVH) was assessed by dissection of the heart. The 

atria and fat surrounding the heart was discarded and the right ventricle (RV) 

was separated from the left ventricle plus septum (LV+S). The ratio of right 

ventricular weight to left ventricular weight plus septum (RV/LV+S) was used as 

an index of PH.  

2.4.3.4 Pulmonary remodelling 

Muscularisation of the pulmonary arteries was assessed by staining lung sections 

with Miller’s Elastic Stain and counterstained with Elastic van Gieson. The left 

lung lobe was fixed in 10% formalin overnight and then paraffin embedded. 

Single tissue sections of 5 μm were mounted onto silane coated slides and 

incubated at 60ºC overnight.  Sections were deparaffinised by incubation for 1 h 

in histoclear and rehydrated by passing the slides through decreasing strengths 

of alcohol for 5 min each. Sections were incubated for 5 min in 0.5% (w/v) 

potassium permanganate to increase the contrast of the final staining, rinsed in 

running water for a few minutes then decolourised in 1% (v/v) oxalic acid for 2 

min. Sections were then rinsed in 95% (v/v) ethanol and incubated with Miller’s 

Elastic Stain (VWR chemicals, Leicestershire, UK) for 2 h at room temperature. 

Following this, sections were placed in 95% ethanol to remove excess stain, 

rinsed in running water and then counter stained with Van Gieson Solution. 

Sections were briefly placed in running water to remove excess stain and 

dehydrated rapidly through increasing strengths of alcohol finishing in histoclear. 

Slides were then mounted and analysed the following day.  

As a result of the staining, elastic fibres were stained black, collagen was 

stained deep red and cytoplasm, muscle, red blood cells and fibrin were stained 

yellow. Sections were microscopically assessed in a blinded fashion for 

muscularisation of the pulmonary arteries. Pulmonary arteries (≤100 microns 

external diameter) were considered remodelled if they possessed a distinct 

double elastic lamina for at least half of the diameter of the vessel cross 

section. The percentage of remodelled vessels was calculated as number of 

muscularised vessels/total number of vessels x 100. All samples were analysed in 

a blinded fashion. 
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2.5 Hypoxia/SU5416 model of PH 

2.5.1 Mouse 3 week model 

Adult male C57Bl/6Jax mice (20-25 g body weight) were maintained in normoxic 

conditions (room air at ~21% O2) or in a normobaric hypoxic chamber (10% O2) for 

21 days. Sugen-5416 (SU5416; Tocris Bioscience, Bristol, UK) suspended in CMC 

(0.5% (w/v) carboxyl methylcellulose sodium, 0.9% (w/v) NaCl, 0.4% (v/v) 

polysorbate, 0.9% (v/v) benzyl alcohol in deionised water) or vehicle was 

administered subcutaneously at a dose of 20 mg/kg on days 0, 7 and 14. On day 

21, hemodynamic pressures were taken and tissues harvested (Figure 2.3).  
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Figure 2.3 – Mouse 3 week hypoxia/SU5416 in vivo study design. 

Male C57Bl/6Jax mice were maintained in normoxic or hypoxic conditions for 21 days. Sugen-5416 

(SU5416) or vehicle was administered subcutaneously at 20 mg/kg on day 0, 7 and 14. On day 21, 

hemodynamic measurements were taken along with right ventricular hypertrophy assessment and 

tissues harvested.  
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2.5.2 Rat 14 week model 

Adult male Wistar Kyoto rats (150-200 g body weight) were maintained in 

normoxic conditions (~21% O2) or in a normobaric hypoxic chamber (10% O2) for 

14 days with subcutaneous administration of SU5416 or vehicle at a dose of 20 

mg/kg on day 0. This was then immediately followed by varying lengths of time 

in normoxia (Figure 2.4). At each time point, a group of animals (n = 5) were 

tested for hemodynamic pressures and tissues were harvested.  
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Figure 2.4 – Rat 14 week hypoxia/SU5416 in vivo study design. 

Male Wistar Kyoto rats were maintained in normoxic or hypoxic conditions for 14 days with SU5416 

or vehicle administered subcutaneously at 20 mg/kg on day 0. This was then followed by varying 

lengths of time in normoxic conditions. At each time point, hemodynamic measurements were 

taken along with right ventricular hypertrophy assessment and tissues harvested. 
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2.5.3 AntimiR-145 administration 

2.5.3.1 Prophylactic study 

Adult male wistar kyoto rats (150-200 g body weight) were administered either 

antimiR-145 (supplied by miRagen Therapeutics Ltd) suspended in PBS and 

sterile filtered, control antimiR or PBS subcutaneously at a dose of 10 mg/kg 

every 14 days in a blinded study. Dosing with treatment drug began 14 days prior 

to SU5416 (20 mg/kg, subcutaneous injection) and normoxic (21% O2) or 

normobaric hypoxic (10% O2) exposure (Figure 2.5). Rats were then maintained in 

normoxic conditions for a further 21 days, after which echocardiographic indices 

were measured, hemodynamic pressures taken and tissues harvested.  

Gleevec (imatinib mesylate) was used as a positive control for this experiment. 

Gleevec is a PDGF receptor inhibitor and it has previously been shown to cause 

reversal of the pulmonary hypertensive phenotype in rodent models of PH 

(Schermuly et al., 2005, Abe et al., 2011). Gleevec was administered daily at a 

dose of 100 mg/kg via oral gavage from day -14 to day 35.  
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Figure 2.5 – Prophylactic antimiR-145 in vivo study design. 

Male wistar kyoto rats were administered antimiR-145, control antimiR or PBS subcutaneously at 

10 mg/kg every 14 days. 14 days after the first administration of treatment drug, rats were dosed 

subcutaneously with 20 mg/kg SU5416 and exposed to hypoxic or normoxic conditions for 14 days. 

Following this, all rats were placed in normoxic conditions for a further 21 days. On day 35, 

echocardiography was performed, hemodynamic measurements were taken and tissues 

harvested. 
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2.5.3.2 Therapeutic study 

Adult male wistar kyoto rats (150-200 g body weight) were maintained in 

normoxic conditions (21% O2) or in a normobaric hypoxic chamber (10% O2) for 14 

days with subcutaneous administration of SU5416 at a dose of 20 mg/kg on day 0 

to establish experimental PH. Rats were then returned to normoxic conditions 

for 21 days, during which time antimiR-145, control antimiR or PBS was 

administered subcutaneously at a dose of 10 mg/kg every 14 days in a blinded 

study (Figure 2.6). On day 35, echocardiography was performed, hemodynamic 

pressures taken and tissue harvested.  

Gleevec was used as a positive control and was administered daily at a dose of 

100 mg/kg via oral gavage from day 14 to day 35.  
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Figure 2.6 – Therapeutic antimiR-145 in vivo study design. 

Male wistar kyoto rats were administered SU5416 subcutaneously at 20 mg/kg and exposed to 

normoxic or hypoxic conditions for 14 days to establish experimental PH. All rats were then 

returned to normoxic conditions for a further 21 days, during which time antimiR-145, control 

antimiR or PBS was administered subcutaneously at a dose of 10 mg/kg. On day 35, 

echocardiography was performed, hemodynamic pressures taken and tissues harvested.  
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2.5.4 Assessment of PH 

Mice and rats were anaesthetised by ketamine (66 mg/kg) and medetomidine 

(3.3 mg/kg) via intraperitoneal injection. Animals were placed in a warming box 

for ~5 min and then SAP was measured non-invasively using the CODA tail cuff 

plethysmography method (Kent Scientific Corporation, Torrington, Connecticut).  

RVP was determined in mice by catheterisation of the right ventricle via 

cannulation of the jugular vein using a mouse pressure-volume catheter (SPR-

839; Millar, Houston, Texas). RVP was measured in rats using a rat pressure- 

volume catheter (SPR-869; Millar) inserted into the right ventricle via 

cannulation of the jugular vein. Both rat and mouse RVP were recorded using the 

MPVS-300 System (Millar).  

2.5.4.1 RVH 

RVH was calculated as described in section 2.4.3.3. 

2.5.4.2 Pulmonary remodelling 

Lungs were inflated, fixed in 10% formalin overnight and paraffin embedded. 

Sections were cut at 3 µm and staining was performed for von Willebrand Factor 

(vWF) and alpha-smooth muscle actin (α-SMA) by BenchMark XT (Ventana Medical 

Systems, Inc, Tucson, USA). Slides were examined using the DMLB microscope, 

digital camera and IM50 imaging software (Leica Microsystems, Milton Keynes, 

UK). Pulmonary arteries (10 – 100 μm diameter) were assessed for 

muscularisation using Image-Pro (Media Cybernetics, Rockville, Maryland), where 

the percentage of α-SMA staining was quantified. All samples were analysed in a 

blinded fashion. 

2.5.4.3 Occluded vessel quantitative analysis 

The percentage of occluded vessels was calculated on the same slides used for 

remodelling analysis (described in section 2.5.4.2) which had been stained for 

vWF and α-SMA. Vessels were considered occluded when the smooth muscle and 

endothelial cells had obliterated the lumen. For each animal, 100 vessels were 
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counted and each vessel was scored as occluded or non-occluded. All samples 

were analysed in a blinded fashion.  

2.5.4.4 Echocardiography 

Echocardiography was performed on rats by ultrasound using the Vivid7 

Dimension (GE Healthcare, Buckinghamshire, UK) ultrasound system equipped 

with a 13 MHz pediatric probe. Anaesthesia was induced at 4% (v/v) sevoflurane 

supplemented with O2 and then maintained at 2-3% (v/v) sevoflurane via face 

mask. The animal’s chest was shaved and KendallTM ultrasound transmission gel 

(Covidien, Mansfield, USA) was applied to the chest to aid ultrasonic imaging. 

Animals were placed in the left lateral decubitus position on a heated mat. The 

probe was placed in a parasternal long axis position to visualise the pulmonary 

artery outflow tract. Pulsed Doppler imaging was performed to monitor blood 

flow through the pulmonary artery valve. From this image, heart rate, maximal 

flow velocity (Vmax) and time to peak flow (acceleration time, AccT) were 

calculated. Mid-systolic notch was also quantified by applying a score to each 

wave profile, as subjects with severe PH will have a mid-systolic notch in the 

deceleration slope of the pulmonary artery Doppler flow profile. A score of 

between 0 and 3 was used with 0 having no indentation and 3 having a 

pronounced notch on the deceleration slope. Aortic outflow was also imaged in 

order to calculate systemic velocity time integral (VTI). Motion mode analysis 

was then used in short axis to measure aortic diameter and right ventricular wall 

thickness during systole and diastole. Cardiac output (CO) was derived from the 

values taken using the equation below: 

 CO = 0.7854 x (aortic diameter)2 x VTI x heart rate 

Analysis of echocardiographic indices was performed using Echo-PAC dimension 

software (GE Healthcare).  

2.6 RNA extraction, purification and quantification 

2.6.1 Cells 

Total RNA was extracted using the QIAGEN miRNeasy mini kit including on-

column DNase treatment following manufacturer’s instructions. After removal of 
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media, cells were lysed directly by adding 700 μl QIAzol lysis reagent and 

homogenised by repeated pipetting. Addition of 140 μl chloroform to 

homogenised samples was followed by centrifugation at 12,000 x g for 15 min at 

4ºC to separate the sample into aqueous and organic phases. Protein remains in 

the lower organic phase and DNA partitions to the interphase while the RNA 

partitions to the upper aqueous phase. The RNA containing aqueous phase was 

extracted and added to 1.5 volumes of 100% ethanol. Samples were then applied 

to the RNeasy mini spin columns where the total RNA binds to the silica 

membrane while contaminants, such as phenol, are washed away in the 

subsequent wash steps. Columns were washed with 350 μl buffer RWT for 15 sec 

at 8,000 x g with flow through discarded. DNA contamination can often occur 

during RNA extraction and this can interfere with downstream applications. 

Hence, digestion of DNA was performed by incubating spin columns with DNase 

for 15 min at room temperature. Further washing with 350 μl buffer RWT was 

performed followed by two washes with 500 μl buffer RPE to remove any traces 

of salts from the RNA samples. Centrifugation at full speed for 1 min was 

performed to dry the spin column. RNeasy spin columns were then transferred to 

new collection tubes and RNA was eluted using 40 μl RNase-free water and 

centrifugation for 1 min at 8,000 x g. This elution step was repeated re-using the 

original volume of RNase-free water in order to increase RNA yield.  

Total RNA was quantified using the NanoDrop 1000 Spectrophotometer 

(ThermoScientific). RNA quality was assessed using the A260/A280 ratio, with a 

ratio of ~2.0 accepted as “pure” RNA. All RNA samples were stored at -80ºC. 

2.6.2 Tissue 

Total RNA was extracted using the QIAGEN miRNeasy mini kit including on-

column DNase treatment following manufacturer’s instructions. Snap frozen 

tissues (~50 mg) were lysed using 700 μl QIAzol lysis reagent and disrupted and 

homogenised using 5 mm stainless steel beads in the TissueLyser. Following 

homogenisation, 140 μl chloroform was added to each sample and protocol 

followed is described in section 2.6.1.   
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2.6.3 Streptavidin bead samples 

TRIzol® LS reagent was used to isolate RNA bound to streptavidin beads (pull 

down RNA) or RNA from the 10% input samples (input RNA) from the miRNA pull 

down experiment detailed in section 2.3.5. TRIzol® LS reagent (750 μl) was 

added to each sample, mixed for 1 min and then 250 μl RNase-free water was 

added. Chloroform (250 μl) was added, samples vortexed for 2 min and 

centrifuged at 12,000 x g at 4ºC for 15 min. The upper aqueous phase containing 

the RNA was collected, 500 μl isopropanol was added along with 2 μl glycogen 

and samples were incubated at room temperature for 10 min. Samples were 

then centrifuged at 12,000 x g at 4ºC for 15 min and supernatant discarded. The 

pellet was washed with 1 ml cold ethanol and centrifuged at 7,500 x g at 4ºC for 

1 min. Supernatant was decanted, samples centrifuged for a further 5 min and 

all ethanol removed. Pellet was left to air dry at room temperature for 5 min 

and then RNA was dissolved in 20 μl RNase-free water.  

Total RNA was quantified using the NanoDrop 1000 Spectrophotometer. RNA 

quality was assessed using the A260/A280 ratio, with a ratio of ~2.0 accepted as 

“pure” RNA. All RNA samples were stored at -80ºC. 

2.6.4 Paraffin embedded tissues 

RNA was extracted from formalin fixed paraffin embedded (FFPE) blocks using 

RecoverAllTM Total Nucleic Acid Isolation Kit (Ambion, Paisley, UK).Sections were 

cut to 20-30 μm and incubated with 100% xylene at 50ºC for 3 min to melt the 

paraffin. Samples were centrifuged at maximal speed for 2 min and the tissue 

pellet was then washed twice with 100% ethanol to remove any excess xylene 

from the sample. The pellet was then air dried for 30 min at room temperature.  

Protease digestion was performed by incubating the samples with 4 μl protease 

in 100 μl digestion buffer for 15 min at 50ºC and then 15 min at 80ºC. For RNA 

isolation, 120 μl isolation additive and 275 μl 100% ethanol was added to each 

sample and centrifuged in a glass-fibre filter cartridge at 9,000 x g for 30 sec, 

where the RNA binds to the filter. The filter cartridge was washed using two 

wash solutions. DNase digestion for 30 min at room temperature was then 

performed to remove any DNA contamination. Filter cartridges were then 

washed thoroughly using wash solutions. Filter cartridges were then transferred 
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to new collection tubes and RNA was eluted in 40 μl RNase-free water by 

centrifugation for 1 min at full speed. This elution step was repeated re-using 

the original volume of RNase-free water in order to increase RNA yield. 

Total RNA was quantified using the NanoDrop 1000 Spectrophotometer. RNA 

quality was assessed using the A260/A280 ratio, with a ratio of ~2.0 accepted as 

“pure” RNA. All RNA samples were stored at -80ºC. 

2.6.5 Agilent testing RNA quality 

The quality of RNA extracted from FFPE blocks is often of lower quality than that 

extracted from frozen samples due to cross-linking occurring between nucleic 

acids and proteins during the fixation process. As a result, RNA extracted from 

FFPE blocks using the protocol detailed in section 2.6.4 was Agilent tested to 

test for degradation. Total isolated RNA was analysed on a Small RNA Assay 

(Agilent Technologies) performed on the Agilent Bioanalyzer 2100 at the Sir 

Henry Wellcome Functional Genomics Facility, Microarray Unit at the University 

of Glasgow. The negatively charged RNA molecules are electrophoretically 

separated by size to produce gel images and electropherograms, allowing 

assessment of RNA quality. The percentage of miRNA (relative to small RNA) in 

the sample is also calculated using the Agilent 2100 software.  

2.7 RNA expression by qRT-PCR 

2.7.1 cDNA synthesis 

Synthesis of cDNA from total RNA by reverse transcription is the first step in the 

two-step process of qRT-PCR. 

2.7.1.1 miRNA expression 

For the detection of miRNA expression, cDNA was synthesised using stem-loop 

reverse transcription primers as per the Taqman microRNA assay protocol 

(Applied Biosystems, Paisley, UK). Each reaction contained 250 μM of each 

deoxyribonucleotide triphosphate (dNTP), 3.3 U/μl multiscribe reverse 

transcriptase, 0.25 U/μl RNase inhibitor, 1x RT buffer, 1x RT primer and 0.67 

ng/μl RNA. Samples were incubated at 16ºC for 30 min, 42ºC for 30 min, 85ºC for 
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5 min to inactivate the reverse transcriptase and then held at 4ºC. Samples were 

stored at -20ºC when not being used immediately.  

2.7.1.2 mRNA expression 

For gene expression analysis, cDNA was synthesised using the Taqman gene 

expression assay protocol (Applied Biosystems). Each reaction contained 5.5 mM 

MgCl2, 500 μM of each dNPT, 2.5 μM random hexamers, 0.4 U/μl RNase inhibitor, 

1.25 U/μl multiscribe reverse transcriptase, 1 x RT buffer and 200-1000ng RNA 

(same concentration of RNA used per experiment). Negative control reactions 

were run which did not contain multiscribe reverse transcriptase. Samples were 

incubated at 25ºC for 10 min to maximise primer-RNA template binding followed 

by a 30 min incubation at 48ºC to allow reverse transcription to take place. 

Reverse transcriptase was then inactivated at 95ºC for 5 min and samples were 

then held at 4ºC. Samples were stored at -20ºC when not being used 

immediately.  

2.7.2 Quantitative real-time polymerase chain reaction 

Quantitative PCR is the second step in the two-step process of qRT-PCR. Each 

reaction contained 250 nM taqman probe, 1 x Taqman Universal PCR MasterMix II 

(containing AmpliTaq Gold® DNA polymerase,dNTP mixture and optimal salt 

conditions, no UNG; Invitrogen) and cDNA. For quantification of miRNA 

expression, 0.67 μl of cDNA was added to a 10 μl reaction, while for mRNA 

expression 1.5 μl cDNA was added to a 10 μl reaction. Technical triplicates were 

performed. For each probe tested, the negative reverse transcription control 

was run alongside a nuclease-free water control and RNA control. All qPCR 

experiments were performed in simplex using the 7900HT sequence detection 

system (Applied Biosystems). Thermal cycling conditions began with a 10 min 

incubation at 95ºC to activate the enzyme. This was followed by 40 cycles of 15 

sec at 95ºC (to denature the cDNA) and then 60 sec at 60ºC (to allow primer and 

probe to anneal to cDNA and extension of primer).  

Results are shown relative to the control sample using the -2ΔΔCt method and 

expressed as relative fold change. For miRNA expression, results were 

normalised to U6, U87 and RNU48 for mouse, rat and human samples, 
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respectively. For mRNA expression, results were normalised to beta-2-

microglobulin (B2M) for experiments which involved hypoxia as this gene remains 

unchanged in hypoxic conditions. Experiments performed in normoxic conditions 

were normalised to GAPDH.  

2.8 Target prediction 

A list of targets for each specific miRNA analysed was obtained by searching the 

miRNA databases miRWalk and TargetScan (http://www.umm.uni-

heidelberg.de/apps/zmf/mirwalk and http://www.targetscan.org, 

respectively). In addition to this, literature searches were performed for each 

miRNA and target genes were chosen based on previous knowledge of the gene 

and the involvement of that gene in pathways thought to be integral in the 

development of PAH.  

2.9 Northern blotting 

Total RNA was denatured at 95ºC for 5 min and 3-5 μg RNA was separated on a 

15% TBE-Urea gel (Invitrogen). The RNA was then transferred onto Hybond-NX 

nylon membrane (GE Healthcare) using the Trans-Blot semi dry station (Bio-Rad, 

Hercules, USA) and immobilised onto the membrane using EDC-cross linking at 

60ºC for 1 h. Prehybridisation was carried out in hybridisation buffer (50% 

formamide, 5 x SSPE, 5 x Denhardts solution, 0.5% SDS, 0.02 mg/ml heat 

denatured herring sperm DNA) at hybridisation temperature for 1 h followed by 

overnight incubation with 25 pmol of 5’-Digoxigenin (DIG)-labelled mercury 

LNATM detection probe (Exiqon, Vedbaek, Denmark). Hybridisation temperatures 

used were as follows: 40ºC for miR-21, 55ºC for miR-143, 45ºC for miR-145, 50ºC 

for miR-451 and 60ºC for U6. The membranes were then washed at 50ºC with a 

low stringency buffer containing 2 x SSC to remove unhybridised probe, followed 

by a high stringency wash with 0.1 x SSC to remove partially hybridised 

molecules. Membranes were blocked for 30 min (1% blocking reagent in maleic 

acid buffer) then incubated with anti-DIG antibody conjugated to alkaline 

phosphatase (1:5000, Roche Applied Sciences) at room temperature. Detection 

buffer composed of 0.1 M Tris-HCl (pH 7.5) was then added to the membranes 

for 3 min followed by a 5 min incubation with CDP-Star chemiluminescent 

substrate. CDP-Star is a chemiluminescent substrate for alkaline phosphatase 
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therefore allowing x-ray detection of the miRNAs which have been probed for. 

For normalisation purposes, membranes were stripped in boiling 1% SDS to 

remove hybridised probe and re-probed with the U6 control probe. Films were 

scanned using the Molecular Imager Chemidoc XRS+ System (Bio-Rad). Band 

intensities were quantified using densitometry (Quantity One software, Bio-Rad) 

and normalised to U6 signal for mouse and rat samples.  

2.10 Protein extraction and quantification 

Protein was isolated from samples by adding 25 mg snap frozen tissue to 200 μl 

of ice-cold lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1 mM ethylene diamine 

tetraacetic acid (EDTA),1 mM ethylene glycol tetraacetic acid (EGTA), 2.5 mM 

Na Pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin, 

1 mM phenylmethanesulfonyl fluoride (PMSF), 2 mM NaF, 1 x protease inhibitor 

cocktail (Roche Applied Sciences), 1:100 phosphatase inhibitor cocktail 2, 0.5% 

deoxycholate). Stainless steel beads were added and samples were homogenised 

using the TissueLyser (Qiagen). After homogenisation, samples were incubated 

at 4ºC for 1 h with shaking, followed by centrifugation at 14,000 x g at 4ºC for 40 

min. Protein lysate was aspirated and stored at -80ºC. 

Quantification of total protein was performed using the Pierce Bicinchonic Acid 

(BCA) Protein Assay Kit (ThermoScientific) according to manufacturer’s 

instructions. Protein standards of bovine serum albumin were prepared at 

concentrations ranging from 25 μg/ml to 2000 μg/ml. These reference samples 

were used to generate a standard curve. A working reagent was prepared by 

mixing reagent A and reagent B at a ratio of 50:1, respectively. Protein 

samples/standards (25 μl) were then added to the working reagent (200 μl) in a 

96-well plate, mixed thoroughly, protected from light and incubated at 37ºC for 

30 min. Absorbance was measured at 560 nm using the Wallac 1420 Victor2TM 

plate reader. Samples and standards were measured in duplicate with average 

values taken. Protein concentration was determined using the standard curve 

generated by the BSA protein standards.   
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2.11 Western blotting 

Protein samples were mixed with equal volumes of reducing loading dye (4% 

(v/v) SDS, 20% (v/v) glycerol, 10% (v/v) 2-mercaptoethanol, 0.004% (v/v) 

bromophenol blue, 125 mM Tris pH 6.8) and denatured at 95ºC for 10 min. 

Protein (20 μg) was resolved using sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). A 10% polyacrylamide gel (30% (v/v) polyacrylamide 

(30%), 375 mM Tris pH 8.8, 0.1% (v/v) SDS, 300 μl ammonium persulphate, 30 μl 

TEMED) was prepared with a 4% stacking gel (13.3% (v/v) polyacrylamide (30%), 

125 mM Tris pH 6.8, 0.1% (v/v) SDS, 300 μl ammonium persulphate, 30 μl 

TEMED). A rainbow marker (Amersham) was included on each gel as a marker of 

protein size. Samples were electrophoresed at 200 V in running buffer (25 mM 

Tris, 0.2 M glycine, 0.1% (v/v) SDS) to achieve separation of the protein.  

Proteins were transferred onto Hybond P+ nitrocellulose membranes (GE 

Healthcare) overnight at 4ºC at 90 mA in transfer buffer (25 mM Tris, 0.2 M 

glycine, 0.1% (v/v) SDS, 20% (v/v) methanol). Membranes were blocked in 

blocking buffer containing 5% (w/v) fat-free milk powder in TBS-T (140 mM NaCl, 

3 mM KCl, 25 mM Tris, pH 7.4, 0.1% (v/v) Tween-20) for 2 h at room temperature 

with shaking. Membranes were then incubated overnight with shaking at 4ºC 

with rabbit polyclonal Klf4 or rabbit polyclonal Klf5 antibody (Abcam, 

Cambridge, USA). Primary antibodies were diluted 1:500 in 1% milk in TBS-T. 

Membranes were then washed three times with blocking buffer at room 

temperature before the addition of the secondary antibody. Swine anti-rabbit 

horse radish peroxidase (HRP) secondary antibody was used at 1:1000 diluted in 

1% milk in TBS-T and incubated with membranes for 1 h at room temperature, 

with shaking. Following this, membranes were washed four times in blocking 

buffer then four times in TBS-T, each wash lasting 15 min at room temperature 

with shaking. Proteins were visualised using Amersham Enhanced 

Chemiluminescence (ECL) Prime Western Blotting System (GE Healthcare) as per 

the manufacturer’s instructions. Briefly, equal volumes of reagent A (containing 

luminol) and reagent B (containing peroxide) were mixed together and incubated 

with membranes for 5 min. Excess ECL-Prime was drained off the membranes 

and x-ray films were exposed for varying lengths of time.  
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For normalisation purposes, membranes were incubated at 50ºC for 45 min in 

stripping buffer (62.5 mM Tris pH 6.8, 2% (v/v) SDS, 100 mM 2-mercaptoethanol) 

followed by three 10 min washes with TBS-T. Membranes were then blocked in 

blocking buffer for 2 h at room temperature and re-probed for alpha-tubulin (α-

tubulin). Films were scanned using Molecular Imager Chemidoc XRS+ System. 

Band intensities were quantified using densitometry (Quantity One software) and 

normalised to α-tubulin signal.  

2.12 Alpha-smooth muscle actin staining 

Lung tissue was fixed in 10% formalin overnight and paraffin embedded. Sections 

were cut at 5 μm and baked onto silane coated slides at 60ºC overnight. Sections 

were deparaffinised by incubation in histoclear followed by rehydration by 

passing the sections through decreasing strengths of alcohol. Endogenous 

peroxidase activity was quenched by incubating slides in 20% hydrogen 

peroxidase for 30 min at room temperature. Blocking was carried out on the 

slides with 20% normal horse serum for 30 min at room temperature to reduce 

non-specific background staining. The sections were then incubated with rabbit 

polyclonal antibody against alpha-smooth muscle actin (Abcam) at a 

concentration of 2.67 μg/ml in phosphate buffered saline (PBS) containing 20% 

horse serum for 1 h at room temperature. Serial sections were incubated with 

isotype matched rabbit IgG non-immune control (Invitrogen). A biotinylated anti-

rat secondary antibody (Vectastain kit; Vector Laboratories, Peterborough, UK) 

was then added to all sections for 30 min followed by a 30 min incubation with 

avidin/biotinylated enzyme complex (ABC complex). Sections were then washed 

in PBS and staining was visualised using 3,3’-diaminobenzidine (DAB) chromogen, 

which produces a brown precipitate in the presence of peroxidase enzyme. 

Nuclei were counterstained with Harris Haemotoxylin and sections were 

dehydrated by immersion in increasing concentrations of alcohol.  

2.13 Statistical analysis 

All qRT-PCR results are expressed as fold-change ± standard error of the mean 

(SEM) with all other results expressed as the mean ± SEM. Unpaired student’s t-

test was used when comparing two experimental groups. When more than two 

groups were compared, a one-way ANOVA was performed followed by a Tukey’s 
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post hoc test or a two-way ANOVA was performed followed by a Bonferroni post 

hoc test, where appropriate. Statistical significance accepted at p<0.05.  
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3 The role of miRNA-451 in PAH 
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3.1 Introduction 

MicroRNAs have been shown to be dysregulated within various tissues during 

disease development (Sayed and Abdellatif, 2011, Soifer et al., 2007, Small et 

al., 2010). A study by Caruso and colleagues found that miR-451 was up-

regulated in lung tissue from the monocrotaline and hypoxic rat models of PH 

(Caruso et al., 2010). MiR-451 is highly conserved across species and is located 

on human chromosome 17 at position 17q11.2. This miRNA exists in a cluster 

with miR-144, which is located approximately 100 bp upstream of miR-451 

(Altuvia et al., 2005). MiR-451 differs from other miRNAs (canonical miRNA 

maturation pathway shown in Figure 1.6) as it is processed independent of Dicer. 

Processing of pri-miR-451 by Drosha forms a short hairpin pre-miR-451 of 

approximately 42 nt (compared to the canonical ~70 nt precursor miRNA) which 

is unable to be cleaved by Dicer and is therefore cleaved directed by the 

catalytically active Ago2 (Cifuentes et al., 2010, Yang et al., 2010). From here, 

mature miR-451 can be incorporated into the RISC complex allowing miR-451 to 

bind to target mRNA sequences resulting in target gene repression. 

MiR-451 expression is high in erythrocytes and miR-451 plays a fundamental part 

in erythropoiesis. Microarray analysis of MEL cells found that miR-451 was the 

most up-regulated miRNA during erythroid maturation (Zhan et al., 2007). 

Studies suggest that binding of GATA-1, a transcription factor essential for 

erythroid development, in erythroid cells stimulates the action of RNase II to 

initiate transcription of the common pri-miR-144/451 cluster (Dore et al., 2008). 

In vivo studies using knockout mice have found that mice lacking miR-451 are 

unable to develop mature circulating red blood cells in response to stress 

(Patrick et al., 2010b) resulting in impaired erythroid differentiation and 

erythroid hyperplasia (Rasmussen et al., 2010). 

As well as playing a pivotal role in erythroid differentiation and maturation, miR-

451 has also been linked to many different cancer-related pathways. Microarray 

analysis revealed that miR-451 is the most down-regulated miRNA in non-small 

cell lung carcinoma (NSCLC) and ectopic expression of miR-451 in these cells 

suppressed cellular proliferation and colony formation via down-regulation of 

target gene RAB14 (Wang et al., 2011). Li and colleagues (Li et al., 2011) also 

reported down-regulation of miR-451 in a mouse model of notch induced T-cell 
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lymphoblastic leukaemia (T-ALL). Reduced miR-451 levels induced by Notch-1 

resulted in derepression of the proto-oncogene Myc leading to accelerated 

tumour formation while over-expression of miR-451 suppressed Myc and reduced 

T-ALL cell growth. Similar results have been obtained in glioblastoma cells 

where reduced miR-451 expression was observed in the diseased state and 

increased expression of miR-451 reduced cell proliferation and induced apoptosis 

(Nan et al., 2010, Gal et al., 2008). Consistent down-regulation of miR-451 

expression has been observed in various cancers and has been associated with 

worse prognosis in gastric cancer patients (Bandres et al., 2009). Thus providing 

further evidence that miR-451 is acting as a tumour suppressor. MiR-451 levels 

have also been found to play an important role in the development of drug 

resistance during cancer treatment. Tamoxifen, a selective oestrogen receptor 

modulator used to treat many types of oestrogen receptor positive breast 

cancers, down-regulates miR-451 leading to subsequent up-regulation of 14-3-3ζ 

(Ywhaz), a regulator of cellular proliferation and apoptosis. Although initial 

treatment with tamoxifen is successful, resistance to the drug can often develop 

and it has been proposed that increasing miR-451 levels in addition to tamoxifen 

treatment may be able to prevent this drug resistance (Bergamaschi and 

Katzenellenbogen, 2012). In addition, over-expression of miR-451 in NSCLC cells 

resulted in the cells being more receptive to cisplatin treatment, the 

chemotherapeutic agent used to treat the majority of NSCLC cases (Bian et al., 

2011). Taken together, this data suggests that miR-451 plays an important part 

in cancer biology, however the exact mechanisms through which this miRNA acts 

remain unknown.  

The role of miR-451 has recently been shown in cardiac disease development. 

MiR-451 is down-regulated in heart tissue from heart failure patients and over-

expression of the miR-144/451 cluster was protective in cardiomyocytes exposed 

to hypoxic stress (Zhang et al., 2010). In a similar manner, expression of the 

miR-451 cluster was significantly increased in preconditioned hearts compared to 

sham hearts and genetic knock down of miR-144/451 prevented the 

cardioprotective effects instigated by ischemic preconditioning. This loss of 

cardioprotection in mice lacking the miR-451 cluster is thought to be due to up-

regulation of Rac1 in cardiomyocytes leading to increased reactive oxygen 

species during ischeamic preconditioning (Wang et al., 2012b).   



Chapter 3  87 
 
Although much scientific research has focussed on the role of miR-451 in 

different biological systems, the role of miR-451 in the lung during the 

development of pulmonary arterial hypertension is largely unknown. 

3.1.1 Aim 

The aims investigated in this chapter were: 

 To assess the effect of over-expressing miR-451 on hPASMC proliferation 

and migration in vitro. 

 To determine the effect of transiently knocking down miR-451 in vivo on 

the development of PH. 

 To determine the effect of genetic ablation of miR-451 in vivo on the 

development of PH. 
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3.2 Results 

3.2.1 In vitro modulation of miR-451 using Ad-miR-451 

Our first aim was to modulate miR-451 in vitro to mimic the increased miR-451 

expression observed in vivo in rodent models of PH (Caruso et al., 2012). 

Therefore an adenovirus was used to induce over-expression of miR-451 in a cell 

culture model. An adenovirus containing the precursor sequence for human miR-

451 (human Ad-miR-451) or rat miR-451 (rat Ad-miR-451) was created to assess 

the effect of over-expressing miR-451 in vitro. For a control, Ad5 lacZ control 

virus was used as this contains the same backbone as that of the Ad-miR-451 

viruses. These viruses were first transduced into HeLa cells for 24 hours to 

establish if over-expression of miR-451 was achieved in human cells. The control 

virus did not cause any modulation in miR-451 expression compared to control 

cells (Figure 3.1). Human Ad-miR-451 caused an increase of ~4 fold in mature 

miR-451 expression (Figure 3.1A) at the highest concentration of virus compared 

to control. Rat Ad-miR-451 caused ~30 fold increase in mature miR-451 levels at 

all concentrations tested (Figure 3.1B). 

Although miR-451 expression is increased in HeLa cells, it is important to 

establish whether this over-expression can be reproduced in the cell type of 

interest. Human pulmonary artery smooth muscle cells (hPASMCs) are one of the 

predominant cell types within the lung vessel wall which are dysregulated during 

PAH, particularly within the proximal medial layer (Archer et al., 2010). 

Dysregulation of SMCs induces SMC migration and proliferation, distal extension 

of smooth muscle and leads to pulmonary vascular remodelling, increasing the 

severity of the disease. To assess whether the transduction protocol was 

effective, hPASMCs were transduced with control Ad5 lacZ virus and then 

exposed to 0.1% or 15% serum for 48 hours (as would be performed in a 

migration/proliferation assay) after which x-gal staining was performed. There 

was a concentration dependent increase in positive x-gal staining observed in 

hPASMCs transduced with Ad5 lacZ virus with more staining detected in cells 

exposed to 15% serum (Figure 3.2). This indicated that transduction with the Ad5 

lacZ control virus was successful. 
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Next, we wanted to assess the effect of over-expressing miR-451 in the cell type 

of interest – hPASMCs. Hence, the Ad-miR-451 viruses were transduced into 

hPASMCs and expression levels of mature miR-451 were measured (Figure 3.3). 

However, both the human Ad-miR-451 and rat Ad-miR-451 virus failed to produce 

any over-expression of miR-451 in hPASMCs compared to control cells.  
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Figure 3.1 – miR-451 expression in HeLa cells transduced with adenovirus to over-express 

human or rat pre-miR-451.  

Mature miR-451 expression in HeLa cells transduced with 10, 50 or 100 pfu of (A) human Ad-miR-

451 or (B) rat Ad-miR-451 or Ad5 lacZ control virus 24h after transduction, as detected by qRT-

PCR. Arbitrary value of 1 assigned to control non-transduced cells. Data expressed as fold change 

± SEM and analysed using a one-way ANOVA followed by Tukey’s post hoc test. Representative 

graphs of two independent experiments with three technical repeats per condition. *p<0.05, 

***p<0.001. 
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Figure 3.2 – β-galactosidase expression in hPASMCs transduced with Ad5 lacZ control 

virus. 

hPASMCs were transduced with 5,000, 10,000 or 20,000 vp of Ad5 lacZ control virus and exposed 

to 0.1% or 15% serum containing media for 48 h. Cells were then fixed and stained for β-

galactosidase activity. Scale bar = 100 μm. 
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Figure 3.3 – MiR-451 expression in hPASMCs transduced with adenovirus to over-express 

human or rat pre-miR-451. 

Mature miR-451 expression in hPASMCs transduced with 5,000, 10,000 or 20,000 vp of human 

Ad-miR-451, rat Ad-miR-451 or Ad5 lacZ control virus, quiesced for 48h and then cells lysed for 

RNA extraction, as detected by qRT-PCR. Arbitrary value of 1 assigned to control non-transduced 

cells. Data expressed as fold change ± SEM and analysed using a one-way ANOVA followed by 

Tukey’s post hoc test. Representative graph of two independent experiments with three technical 

repeats per condition.  
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3.2.2 Modulation of miR-451 in hPASMCs by miR-451 mimic 

The adenovirus used to over-express miR-451 resulted in efficient over-

expression when used in a cell line, however no over-expression of miR-451 was 

observed when Ad-miR-451 was transduced into primary hPASMCs. Therefore, 

miR-451 mimics were used to transfect hPASMCs to induce miR-451 over-

expression. These miRNA mimics are double stranded chemically modified 

molecules which mimic endogenous miRNAs. A cy3 labelled mimic was used as a 

negative control and was used to visualise the transfection efficiency using three 

concentrations of mimic; 10 nM, 25 nM and 50 nM and quiesced in 0.1% serum 

containing media for 48 h. Fluorescent microscopy of cy3 labelled mimic 

transfected into hPASMCs shows increased dye with increasing mimic 

concentration and the mimic appears to be localised around the nucleus (Figure 

3.4). 

MiR-451 mimics were then transfected into hPASMCs at the same concentrations 

used for the negative control and serum starved for 48 h before lysing cells for 

RNA extraction. Transfection with miR-451 mimic significantly increased miR-451 

expression at all concentrations compared to the control mimic and mock 

transfected cells (Figure 3.5A). High expression of miR-451 was observed using 

10 nM of miR-451 mimic and this concentration was further examined by 

northern blot (Figure 3.5B, C). Northern blot analysis illustrated low miR-451 

levels in control treated cells and confirmed the increase in miR-451 expression 

using 10 nM of miR-451 mimic. As a result, this concentration of miR mimic was 

used in all subsequent experiments to assess the effect of over-expressing miR-

451 on hPASMCs phenotype. 
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Figure 3.4 – Visualisation of cy3 labelled miR mimics in hPASMCs. 

A negative control cy3 miR mimic was transfected into hPASMCs at a concentration of 10, 25 or 50 

nM and quiesced for 48h. Cells were then fixed and cy3 mimic was visualised using fluorescent 

microscopy. Magnification X40, scale bar = 20 μm. 
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Figure 3.5 – miR-451 expression in hPASMCs over-expressing miR-451. 

(A) MiR-451 expression in hPASMCs after transfection with miR mimic and quiesced for 48h, as 

detected by qRT-PCR. Arbitrary value of 1 assigned to control mimic. Representative graph of two 

independent experiments with technical triplicates, ***p<0.001 vs control mimic of that 

concentration. Data expressed as fold change ± SEM. (B,C) Northern blot analysis of hPASMCs 

using a concentration of 10 nM miR mimic, quantified by normalising the band intensity of mature 

miR-451 to the relative U6 signal, **p<0.01, n = 2 wells per condition. Data expressed as mean ± 

SEM. All data analysed using a one-way ANOVA followed by Tukey’s post hoc test. 
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3.2.3 Over-expression of miR-451 has no effect on hPASMC 
proliferation  

The effect of over-expressing miR-451 on the proliferation of hPASMCs was 

assessed. Two methods were used to quantify proliferation; an MTS assay and a 

thymidine incorporation assay. Increasing concentrations of serum induced a 

steady increase in cellular proliferation in control and mock transfected cells as 

measured by thymidine incorporation (Figure 3.6A). The same pattern was 

observed in hPASMCs transfected with 10 nM miR-451 mimic as serum did not 

alter proliferation rates. This was supported by the MTS assay (Figure 3.6B) 

where there was no significant difference between control cells and cells 

transfected with miR-451 mimic. Thus illustrating that miR-451 does not affect 

hPASMC proliferation in this setting. 

3.2.4 Over-expression of miR-451 promotes hPASMC migration in 
the absence of serum 

As well as assessing hPASMC proliferation, cell migration was also assessed in 

cells over-expressing miR-451 as migration of SMCs into distal non-muscular 

vessels plays a critical role in PAH development (Humbert et al., 2004a). Cells 

transfected with control mimic stimulated with 15% serum had migrated fully to 

close the wound after 24 h (Figure 3.7A, C). Similarly, cells transfected with 

miR-451 mimic and in the presence of 15% serum were no different to control 

mimic cells with complete closure of the wound after 24 h. Thus indicating that 

over-expressing miR-451 does not inhibit serum induced migration of hPASMCs 

under the experimental conditions tested. In the presence of 0.1% serum, cells 

over-expressing miR-451 showed enhanced wound closure compared to control 

mimic cells (Figure 3.7A, B). Therefore suggesting that miR-451 promotes 

hPASMC migration in the absence of serum. This enhanced migratory effect by 

miR-451 over-expression was more obvious when analysed by microscopy then 

the effect observed in Figure 3.7B. 
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Figure 3.6 – Effect of over-expressing miR-451 on hPASMC proliferation. 

Human PASMCs were transfected with 10 nM miR-451 mimic or control mimic and proliferation 

rates were measured 72 h later using (A) a thymidine incorporation assay and (B) MTS assay. 

Representative graphs of two independent experiments with four technical repeats per condition, 

cpm = counts per minute, ns = non-significant.  
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Figure 3.7 – Effect of over-expressing miR-451 on hPASMC migration. 

(A) hPASMCs were transfected with 10 nM miR-451 mimic or control mimic, quiesced for 48 h and 

subjected to the scratch wound assay. Representative images of hPASMC scratch wound at 0 h 

and 24 h. Magnification X10, scale bar = 100 µm. (B) Quantification of hPASMC migration in 0.1% 

serum and (C) 15% serum. Data expressed as mean ± SEM and analysed by a one-way ANOVA 

followed by Tukey’s post hoc test. ***p<0.001 vs control mimic in 0.1% serum. Pictures and graphs 

are representative of three independent experiments, two wells per condition with four scratches 

per well. 
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3.2.5 Target gene analysis on hPASMCs over-expressing miR-451 

To determine the pathways that may explain the increase in migration in 

response to miR-451 over-expression, target genes for miR-451 were analysed in 

cells transfected with mimic and quiesced for 48 hours. Target prediction 

algorithms were used along with searching the literature for putative mRNA 

targets for mature miR-451. Using various tissues in different disease states, 

previous studies have shown that miR-451 target genes include Akt1 (Wang et 

al., 2011, Bian et al., 2011), Rac1 (Wang et al., 2012b) and Ywhaz (Patrick et 

al., 2010b, Yu et al., 2010). If any of these genes were bona fide targets of miR-

451, mRNA expression of the target genes would decrease significantly in cells 

transfected with miR-451 mimic as miR-451 levels are so high. Quantification of 

these genes was performed by qRT-PCR (Figure 3.8) however, none of the 

chosen genes were repressed in the miR-451 mimic cells compared to control 

mimic under these experimental conditions. 
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Figure 3.8 – Target gene mRNA expression in hPASMCs over-expressing miR-451. 

(A) Akt1, (B) Rac1 and (C) Ywhaz mRNA expression in hPASMCs transfected with 10, 25 or 50 nM 

miR-451 or control mimic, quiesced for 48 h and then lysed for RNA extraction, as detected by 

qRT-PCR. Arbitrary value of 1 assigned to mock treated hPASMCs. Data expressed as fold 

change ±SEM and analysed by a one-way ANOVA followed by a Tukey’s post hoc test, n = 3 wells 

per condition.  
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3.2.6 Transient knockdown of miR-451 in vivo attenuates the 
development of PH in the rat hypoxic model 

We also assessed the role of miR-451 in vivo. Since previous work in our 

laboratory showed that miR-451 levels were increased in PH diseased animals 

(Caruso et al., 2010), we knocked down miR-451 in vivo to assess the impact of 

this on the development of PH. Pharmacological inhibition was achieved using an 

antimiR targeted to the mature miR-451. This was administered to male rats 

followed by 7 days hypoxic exposure. To verify the degree of knock down 

obtained using antimiR-451, tissues were harvested and miR-451 expression was 

analysed. In normoxic rats treated with control antimiR, miR-451 expression is 

particularly high in red blood cells (RBC). Compared to expression within the 

lung, the pulmonary artery, right ventricle and left ventricle plus septum have 

increased miR-451 expression while the testes have lower miR-451 expression 

(Figure 3.9A). MiR-451 expression was extremely low in all tissues treated with 

antimiR-451 compared to control treated tissue (Figure 3.9B) indicating that 

antimiR-451 reduced miR-451 levels globally. Furthermore, northern blot 

analysis was carried out on lung tissue from animals treated with antimiR-451. 

Significantly reduced levels of miR-451 compared to control were observed 

(Figure 3.10A, B). The knock down of miR-451 in RBCs was a concern as this 

miRNA plays an essential role in normal erythroid differentiation (Dore et al., 

2008) and silencing miR-451 may have an impact on the outcome and 

interpretation of results. However, there is no known uptake mechanism in RBCs 

for antimiRs and from the qRT-PCR data, animals treated with antimiR-451 still 

have very low threshold cycle (Ct) values (and therefore high expression) for 

miR-451 in the RBC compartment.    

As mentioned previously, miR-451 exists in a cluster with miR-144. Therefore 

expression levels of miR-144 were also analysed by qRT-PCR (Figure 3.11). Under 

basal conditions, miR-144 expression is similar to miR-451 with highest levels in 

RBCs (Figure 3.11A). MiR-144 expression increased in the testes and RBCs when 

exposed to hypoxia however, there were no differences between control and 

antimiR-451 treated animals in either normoxic or hypoxic conditions in any of 

the tissues analysed indicating that antimiR-451 is selectively down-regulating 

miR-451 in vivo (Figure 3.11B). 
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Figure 3.9 – MiR-451 expression in antimiR-451 treated rats as detected by qRT-PCR. 

(A) MiR-451 expression in tissue from male normoxic rats dosed with control antimiR, as detected 

by qRT-PCR. Arbitrary value of 1 assigned to lung tissue, n = 9 animals per group. Data expressed 

as fold change ± SEM. Data analysed by a one-way ANOVA followed by Tukey’s post hoc test. (B) 

MiR-451 expression in tissue from male rats pre-dosed with 10 mg/kg antimiR-451 or control 

antimiR followed by 7 days exposure to normoxic or hypoxic conditions, as detected by qRT-PCR. 

Arbitrary value of 1 assigned to normoxic control for each tissue, n = 9 animals per group. Data 

expressed as fold change ± SEM. Data analysed by a two-way ANOVA followed by Bonferroni post 

hoc test. *p<0.05, **p<0.01 and ***p<0.001. LV+S = left ventricle plus septum, PA = pulmonary 

artery, RBC = red blood cells, RV = right ventricle.  
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Figure 3.10 – MiR-451 expression in antimiR-451 treated animals, as detected by northern 

blot. 

(A) Northern blot was performed on whole lung from male rats pre-dosed with 10 mg/kg antimiR-

451 or control antimiR followed by 7 days exposure to normoxic or hypoxic conditions. (B) 

Quantification was carried out by normalising the band intensity of mature miR-451 to the relative 

U6 signal, n = 4 animals per group. Data expressed as mean ± SEM. Data analysed by a two-way 

ANOVA followed by Bonferroni post hoc test, **p<0.01.  
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Figure 3.11 – MiR-144 expression in antimiR-451 treated animals. 

(A) MiR-144 expression in tissue from male normoxic rats dosed with control antimiR, as detected 

by qRT-PCR. Arbitrary value of 1 assigned to lung tissue, n = 9 animals per group. Data expressed 

as fold change ± SEM. Data analysed by one-way ANOVA followed by Tukey’s post hoc test. (B) 

MiR-144 expression in tissue from male rats pre-dosed with 10 mg/kg antimiR-451 or control 

antimiR followed by 7 days exposure to normoxic or hypoxic conditions, as detected by qRT-PCR. 

Arbitrary value of 1 assigned to normoxic control for each tissue. Data expressed as fold change ± 

SEM and analysed by a two-way ANOVA followed by a Bonferroni post hoc test. *p<0.05, **p<0.01 

and ***p<0.001, n = 9 animals per group. LV+S = left ventricle plus septum, PA = pulmonary artery, 

RBC = red blood cells, RV = right ventricle.   
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The effect of silencing miR-451 on the development of PH was then analysed. 

Systemic arterial pressure was increased in the hypoxic rats but unchanged 

between control and antimiR-451 treated animals (Figure 3.12A). This increase 

in SAP in hypoxic conditions may be due to differences in anaesthetic levels. 

Heart rate was unchanged between groups (Figure 3.12B). Three of the main 

indices of PH were then measured to determine PH development; RVP, RVH and 

pulmonary remodelling. Rats exposed to hypoxic conditions along with control 

antimiR had a significant increase in RVP compared to normoxic control animals 

(56.02 ± 2.03, 34.44 ± 2.18 mmHg, respectively) (Figure 3.13A, B). Pre-

treatment with antimiR-451 prior to hypoxic exposure lowered the RVP 

compared to control antimiR treated animals (47.07 ± 1.36, 56.02 ± 2.03 mmHg, 

respectively). Quantification of RVH illustrated no significant changes between 

groups (Figure 3.14A). An increase in pulmonary vascular remodelling was 

observed in all hypoxic groups (Figure 3.14B, C) compared to normoxic controls. 

Administration of antimiR-451 did not significantly reduce pulmonary 

remodelling. Hence pre-treatment of antimiR-451 did not alter vessel 

remodelling.  
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Figure 3.12 – Effect of antimiR-451 treatment on systemic arterial pressure and heart rate. 

Quantification of (A) systemic arterial pressure and (B) heart rate in male rats pre-dosed with 10 

mg/kg antimiR-451 or control antimiR followed by 7 days exposure to normoxic or hypoxic 

conditions. Data are expressed as mean ± SEM and analysed by a two-way ANOVA followed by 

Bonferroni post hoc test. ***p<0.001, n = 7-8 animals per group. 
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Figure 3.13 – Effect of antimiR-451 treatment on systolic right ventricular pressure.  

(A) Representative recording of right ventricular pressure and (B) quantification of systolic RVP in 

male rats pre-dosed with 10 mg/kg antimiR-451 or control antimiR followed by 7 days exposure to 

normoxic or hypoxic conditions. Data represented as mean ± SEM and analysed by a two-way 

ANOVA followed by Bonferroni post hoc test. **p<0.01 and ***p<0.001, n = 7-8 animals per group.  
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Figure 3.14 – Effect of antimiR-451 treatment on right ventricular hypertrophy and 

pulmonary vascular remodelling. 

Quantification of (A) right ventricular hypertrophy and (B) pulmonary vascular remodelling in male 

rats pre-dosed with 10 mg/kg antimiR-451 or control antimiR followed by 7 days exposure to 

normoxic or hypoxic conditions. (C) Representative images of pulmonary vessels stained with 

elastic van gieson, magnification X40, scale bar = 25 µm. Data represented as mean ± SEM and 

analysed by a two-way ANOVA followed by Bonferroni post hoc test. ***p<0.001, n = 7 animals per 

group for RVH and n = 4-6 animals per group for pulmonary vascular remodelling analysis. 
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3.2.7 Target gene analysis in antimiR-451 treated rats 

We observed that reduced expression of miR-451 was protective in preventing 

the increase in RVP characteristic in hypoxic conditions. Target genes were 

analysed in the lungs from these animals to establish what pathways may be 

responsible for this effect. Similar to the target genes predicted in human 

tissue, Akt1 and Bcl2 (Wang et al., 2011, Bian et al., 2011), Rac1 (Wang et al., 

2012b), Tbx1 (Lewis et al., 2003) and Ywhaz (Patrick et al., 2010b, Yu et al., 

2010) were all predicted targets for miR-451 in rat by either target prediction 

algorithms or previous publications. Analysis of mRNA expression (Figure 3.15) 

highlighted that Akt1, Rac1 and Ywhaz were down-regulated in antimiR-451 

treated animals compared to control antimiR animals. However, none of the 

chosen genes showed derepression in mRNA levels when miR-451 was knocked 

down.  
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Figure 3.15 – Target gene mRNA expression in lung from antimiR-451 treated animals.  

(A) Akt1, (B) Bcl2, (C) Rac1, (D) Tbx1 and (E) Ywhaz mRNA expression in whole lung from male 

rats pre-dosed with 10 mg/kg antimiR-451 or control antimiR followed by 7 days exposure to 

normoxic or hypoxic conditions, as detected by qRT-PCR. Arbitrary value of 1 assigned to 

normoxic control group for each gene. Data represented as fold change ± SEM and analysed by a 

two-way ANOVA followed by a Bonferroni post hoc test. *p<0.05 and **p<0.01, n = 9 animals per 

group. 
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3.2.8 Genetic ablation of miR-451 in mice has no protective effect 
in hypoxia 

From in vitro data, miR-451 induces PASMC migration while transient knock 

down of miR-451 diminishes aspects of the hypoxic response, therefore 

illustrating that a reduction in miR-451 levels in vivo attenuates the initial 

response to hypoxia. Hence we then sought to assess the effect of chronic knock 

down of miR-451 using knockout mice. MiR-451 is globally knocked out in null 

mice. MiR-451 knockout mice (and age matched wild type control mice) were 

exposed to hypoxic conditions for 14 days, after which hemodynamic 

measurements were taken to assess the development of PH.  

Absence of miR-451 in the knockout mice was confirmed by northern blot 

analysis (Figure 3.16A, B) and qRT-PCR (Figure 3.16C) in lung tissue. Expression 

of miR-144 was also measured in the lung by qRT-PCR with levels of miR-144 

unchanged between wild type and knockout mice (Figure 3.16D). Interestingly, 

this miRNA was significantly reduced in the lung after mice were exposed to 

hypoxic conditions.  

Assessment of hypoxia-induced PH was then carried out. The systemic arterial 

pressure was variable between groups, however no consistent pattern was 

observed between the WT and KO mice in normoxia or hypoxia (Figure 3.17A). 

No difference in heart rate was observed between groups (Figure 3.17B). RVP, 

RVH and pulmonary remodelling all showed the expected increase in wild type 

mice exposed to hypoxia (Figure 3.17C - F). Knockout mice exposed to hypoxia 

showed the same trend in all parameters to that of wild type hypoxic mice, with 

no significant reduction observed in hypoxic miR-451 knockout mice.  
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Figure 3.16 – MiR-451 and miR-144 expression in female miR-451 knockout mice. 

(A, B) Northern blot was performed on RNA extracted from whole lung from female miR-451 wild 

type and knockout mice and quantified by normalising the band intensity of mature miR-451 to the 

relative U6 signal. Data expressed as mean ± SEM, n = 4 animals per group. (C) MiR-451 

expression and (D) miR-144 expression detected within the same samples by qRT-PCR. Arbitrary 

value of 1 assigned to normoxic miR-451 wild type. Data expressed as fold change ± SEM, n = 6 

animals per group. All data analysed by a two-way ANOVA followed by Bonferroni post hoc test. 

*p<0.05 and ***p<0.001.  
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Figure 3.17 – Quantification of PH indices in female miR-451 knockout mice.  

Quantification of (A) systemic arterial pressure, (B) heart rate, (C) systolic right ventricular 

pressure, (D) right ventricular hypertrophy and (E, F) pulmonary vascular remodelling in female 

miR-451 wild type and knockout mice after 14 days exposure to normoxic or hypoxic conditions. 

(E) Representative images of pulmonary vessels stained with elastic van gieson, magnification 

X40, scale bar = 25µm. Data represented as mean ± SEM and analysed by a two-way ANOVA 

followed by Bonferroni post hoc test. *p<0.05, **p<0.01 and ***p<0.001, n = 7-14 animals per group 

for SAP, heart rate, systolic RVP and RVH, n = 4-6 animals per group for pulmonary vascular 

remodelling. 
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3.2.9 Target gene analysis in miR-451 knockout mice 

Although no protective effect was detected in mice null for miR-451 and exposed 

to hypoxia, lung tissue was analysed for miR-451 target gene expression to 

determine if there were changes in any of the regulatory pathways involved in 

PH development and thought to be targets of miR-451 (Figure 3.18). Although a 

number of the target genes appear to be modulated by hypoxia, none of the 

chosen genes were up-regulated at the mRNA level in the absence of miR-451. 

Ywhaz was shown to be up-regulated in miR-451 knockout mice compared to 

wild type hypoxic mice however, this effect was only detected in hypoxic 

samples (Figure 3.18F).  
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Figure 3.18 – Target gene mRNA expression in lung from female miR-451 knockout mice. 

(A) Akt1, (B) Bcl2, (C) Rac1, (D) Rab14, (E) Tbx1 and (F) Ywhaz mRNA expression in whole lung 

from female miR-451 wild type and knockout mice after 14 days exposure to normoxic or hypoxic 

conditions, as detected by qRT-PCR. Arbitrary value of 1 assigned to normoxic control group for 

each gene. Data represented as fold change ± SEM and analysed by a two-way ANOVA followed 

by a Bonferroni post hoc test. *p<0.05, **p<0.01 and ***p<0.001, n = 5-7 animals per group. 
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3.3 Discussion 

In this chapter, both in vitro and in vivo techniques have been used to 

determine the role of miR-451 in the development of PH. In a cell culture 

model, over-expression of miR-451 promotes the migration of hPASMCs in the 

absence of serum but has no effect on cellular proliferation. In vivo data 

indicates that transient knockdown of miR-451 in male rats attenuates the 

development of PH while genetic knockout of miR-451 has no beneficial effect.  

Initially, an adenovirus containing the precursor miR-451 sequence was 

generated as a tool to over-express miR-451 in vitro. Although efficient over-

expression of miR-451 was achieved in a cell line, up-regulation of miR-451 was 

not observed in primary hPASMCs. There are many reasons which may explain 

why transduction of human Ad-miR-451 into hPASMCs failed to increase miR-451 

expression. One possible explanation is inefficient transduction of Ad-miR-451. 

The virus used within this study was a serotype 5 adenovirus (species C) and the 

main receptor for this species of adenovirus is the coxsackie and adenovirus 

receptor (CAR) (Bergelson et al., 1997). It has recently been found that SMCs 

express very low levels of CAR, thus transduction into SMCs using Ad5 adenovirus 

generally requires very high titres and can result in poor transduction (Parker et 

al., 2013). Studies by Parker and colleagues found that SMCs have high 

expression levels of the species B adenovirus receptor CD46 and modification of 

the Ad5 adenovirus to incorporate the penton and fibre from Ad35 (a species B 

adenovirus) resulted in increased transduction in SMCs compared to unmodified 

Ad5 adenovirus (Parker et al., 2013). Utilisation of an improved adenovirus 

which incorporates aspects of both species B and C adenovirus may lead to 

increased transduction in SMCs and result in up-regulation of miR-451.  

Another aspect which has to be considered when analysing these results is the 

fact that the recombinant adenovirus generated contained the precursor miRNA 

sequence. After transduction into SMCs, the precursor sequence of miR-451 

would have to be processed to form the mature miR-451. As mentioned 

previously, pre-miR-451 is shorter than other precursor miRNAs and is processed 

in a dicer-independent manner via direct cleavage by Ago2 (Cifuentes et al., 

2010, Yang et al., 2010). It may be possible that processing of these synthetic 

precursor molecules is impaired within SMCs and thus mature miRNA molecules 
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are not formed. This is in contrast to the miRNA mimic in which the mature form 

of miR-451 is transfected into the cell. As a result, the mature miRNA can be 

incorporated directly into RISC and illicit effects by binding to target mRNAs. 

This may provide a reason as to why miR-451 over-expression was observed when 

using the miR-451 mimic but not when transduction of Ad-miR-451 was 

performed.  

Muscularisation of previously non-muscular arteries is one of the major 

characteristics which contributes to remodelling of the pulmonary vessels and 

can result in total occlusion of the vessel (Stenmark et al., 2009). This process is 

largely mediated by smooth muscle cells via dysregulation of PASMC proliferation 

and migration. In this study, over-expression of miR-451 using a miRNA mimic 

promoted the migration of hPASMCs in the absence of serum and this may play a 

role in the increased muscularisation during the early development of PAH. 

However, no effect was observed in hPASMC proliferation with over-expression 

of miR-451. Within the vessel layers there are various cell types and signals 

known to dysregulate PASMC proliferation (Morrell et al., 2001, Jalali et al., 

2012). Altogether, it is most likely due to an interaction between different cell 

types and signalling pathways that culminate in the extensive remodelling 

process detected during the development of PAH. Endogenous expression of miR-

451 is extremely low in hPASMCs and therefore only miR-451 mimics were used 

in this study. In order to further this, it would be interesting to assess the effect 

of knocking out miR-451 in hPASMCs by using an antimiR and assessing whether 

results opposite to those observed using the miR-451 mimic were obtained. 

However, due to the low basal miR-451 expression in hPASMCs, inhibition of miR-

451 in an in vitro setting may not produce an effect.    

Two different methods were used in this study to selectively knock down miR-

451; an acute antimiR-451 approach and the use of miR-451 knockout mice. With 

transient loss of miR-451 in male rats exposed to 7 days hypoxia, we observed a 

reduction in systolic RVP compared to hypoxic controls however, this result was 

not observed in the RVH or remodelling data. One reason which may explain this 

disparity is the relatively short period of hypoxic exposure. There were no neo-

intimal lesions present in lung sections from hypoxic rats after 7 days exposure 

to hypoxia. Formation of these lesions is dependent on PASMC migration and this 
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therefore may explain why knockdown of miR-451 did not have a beneficial 

effect on pulmonary remodelling in this experiment. A 7 day hypoxic exposure 

was chosen as previous work from our laboratory (Caruso et al., 2010) found that 

miR-451 levels were elevated significantly at 7 days in both the rat hypoxic and 

monocrotaline models of PAH. However, further studies should be performed 

using a more chronic hypoxic exposure model or an alternative rodent model, 

such as the hypoxia/SU5416 model (Taraseviciene-Stewart et al., 2001). In 

addition to this, it would be interesting to observe the effect of knocking down 

miR-451 in a non-hypoxic model of PH, such as the monocrotaline model of PH. 

Hypoxic exposure is known to increase haematocrit level and miR-451 also has 

an impact on haematocrit via regulation of erythropoiesis. Therefore the 

monocrotaline model of PH would allow us to investigate the role miR-451 plays 

in PH development without the additional complication of haematocrit 

modulation by hypoxic exposure.  

Chronic knockout of miR-451 was studied in miR-451 knockout mice and it was 

found that when exposed to 14 days hypoxia, knockout mice displayed high RVP, 

RVH and remodelling data, similar to that of wild type hypoxic mice. One reason 

which may explain why minimal or no positive effect is observed as a result of 

knocking down miR-451 is due to blood contamination. The initial miRNA 

microarray by Caruso and colleagues (Caruso et al., 2010) was performed on 

unperfused lung tissue. Therefore blood would still be present in the samples 

used for analysis. As previously stated, miR-451 expression is extremely high in 

red blood cells and thus, the up-regulation of miR-451 observed in the hypoxic 

and MCT treated samples may have been detected from the blood rather than in 

the lung tissue itself.  

The fact that transient knockdown of miR-451 reduces RVP in the acute hypoxic 

model of PH suggests that miR-451 may be involved in early hypoxic pulmonary 

vascoconstriction. The 7 day hypoxic model of PH is primarily modelling the 

initiation of pulmonary hypertension with prolonged vasoconstriction leading to 

increased pulmonary pressures. Although there will be changes within the heart, 

these adaptations have not had the time to develop into right ventricular 

hypertrophy within this acute hypoxic disease model. On the other hand, the 14 

day hypoxic mouse model displays increased RVP, RVH and pulmonary 
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remodelling and silencing of miR-451 has no beneficial effect. Thus suggesting 

that miR-451 appears to play a role in initiating pulmonary vasoconstriction in 

response to acute hypoxic exposure.  

The differences observed between the models used in this study may be due to 

multiple factors. Other pathways or indeed miRNAs may be compensating for the 

genetic loss of miR-451 in the knockout mice.  MiRNAs can target hundreds of 

genes (Brennecke et al., 2005) and in turn, each specific gene can be modulated 

by many different miRNAs (Doench and Sharp, 2004). MiR-451 however has very 

few validated and predicted targets (Dweep et al., 2011) and thus is limited to 

the pathways which it can potentially modulate. As a result, other miRNAs may 

be activated within the lung to modulate the original miR-451 target genes and 

pathways under conditions of prolonged absence of miR-451. This would be 

consistent with the protective effect observed only with transient loss of miR-

451 as the compensatory mechanisms may not have had time to fully activate 

and hence a reduction in systolic RVP was observed. Other studies have also 

found differences in results between genetic knockout and antimiR knock down 

of a miRNA (reviewed in (van Rooij and Olson, 2012)) as seen in this study.  

The rat and mouse experiments conducted here also differ substantially in the 

cellular compartment in which loss of miR-451 is observed. Within the knockout 

mice, miR-451 is knocked out globally due to genetic deletion while in the 

antimiR study, miR-451 levels still remain high in the RBC compartment. This 

difference in miR-451 expression may also indicate a possible explanation for the 

results obtained. MiR-451 plays an important role in erythropoiesis and high miR-

451 expression in RBCs may trigger certain pathways which are not active in the 

knockout mice. Therefore we cannot rule out the possibility that different 

modulatory systems are activated in the two knock down models. Further studies 

are warranted to fully understand these important issues.  

In vitro data obtained from this study illustrates that miR-451 promotes hPASMC 

migration, thus suggesting that knocking down miR-451 could indeed reduce 

hPASMC migration in vivo. This could explain the beneficial effect observed in 

the antimiR-451 treated hypoxic rats. In SMCs, miR-451 has recently been 

suggested to target molecules involved in the AMPK signalling pathway, including 

MO25α (Turczynska et al., 2013), and therefore may regulate vascular tone by 
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modulating actin polymerisation which is essential for both cellular migration 

and vasoconstriction. It would be interesting to investigate whether miR-451 

targets the AMPK system in PASMCs and what effect this has on the development 

of PH. The protective effect may not have been observed in the hypoxic 

knockout mouse model due to differences in the degree of hypoxic pulmonary 

vasoconstriction obtained in each species. In rats, hypoxic exposure has been 

shown to cause sustained rho-kinase dependent vasoconstriction (Hyvelin et al., 

2005). In mice, vasoconstriction is an important mechanism involved in hypoxic 

PH development however narrowing of the lumen also plays a critical role (Cahill 

et al., 2012). These studies illustrate that physiologically, rats and mice respond 

differently to hypoxic insult. In addition, pulmonary remodelling is more 

pronounced in the hypoxic rat model of PH (Stenmark et al., 2009).Thus the 

mouse model may not be producing sufficient stimuli to cause PASMC migration 

and therefore knocking out miR-451 has no beneficial effect on PH development. 

This highlights the importance in choice of animal model for each study. 

Knockout mice are of course a fundamental genetic tool which can be utilised to 

identify the significance of particular genes. However, the mild PH phenotype 

which develops in the hypoxic mouse (compared to the hypoxic rat) must be 

taken into consideration when designing studies and analysing results.   

Another reason which may account for the differences between the two in vivo 

models is gender. PAH has a strong gender bias at the clinical level, with 

females being more susceptible to developing the disease (Badesch et al., 2010), 

however mortality is higher in males who develop the disease (Humbert et al., 

2010). On the contrary, in vitro studies indicate oestrogens to have a protective 

effect in the development of PH and taken together with the clinical data gives 

rise to the oestrogen paradox in PH (Tofovic, 2010). Recent studies have found 

that there is an increase in expression of CYP1B1, the key enzyme involved in 

breaking down oestrogen into its metabolites, within the lung during the 

development of PH (White et al., 2012). An imbalance of oestrogen metabolites 

within the lung is thought to be detrimental and augment the PH phenotype 

(Tofovic, 2010, Austin et al., 2009). In addition to this, activated hormone 

receptors have been shown to control the maturation of miRNAs in a post-

transcriptional manner. Yamagata and colleagues illustrated that oestrogen 

bound oestrogen receptor alpha (ERα) was able to bind to Drosha within the 
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nucleus and prevent the conversion of pri-miRNAs to pre-miRNAs for several 

miRNAs (Yamagata et al., 2009). Taken together, this data suggests that 

oestrogen and its metabolites are able to control the maturation of a subset of 

miRNAs and play an important role in PH. In the context of this project, the 

initial microarray performed in our laboratory (Caruso et al., 2010) studied male 

rats and it was found that miR-451 levels were increased in both the 

monocrotaline and hypoxic models of PH. Using the hypoxic model in this study, 

we have observed attenuated effects of knocking down miR-451 in male rats. 

However no effect was found in female miR-451 knockout mice. This may be due 

to differential miR-451 expression and modulation during disease development 

between the genders and further investigation is required to understand if 

gender is indeed a factor. This apparently gender specific effect must also be 

taken into consideration when planning future studies.  

Target gene analysis in both the in vivo studies and from in vitro experiments 

did not show dysregulation of any of the selected genes when miR-451 levels 

were modulated. As stated above, miR-451 has relatively few predicted or 

validated targets and identifying bona fide targets presents a challenge. Wang 

and colleagues (Wang et al., 2012b) investigated the role of miR-451 in the heart 

and found that the miR-451 cluster targeted Rac1 in the heart. During ischaemic 

preconditioning, miR-451 expression was increased in the heart, therefore 

reducing target gene Rac1 expression. Rac1 is a critical factor involved in NADPH 

oxidase and during ischaemic preconditioning, repression of Rac1 reduced 

reactive oxygen species production. Therefore the miR-451 cluster is essential 

for ischaemic preconditioning mediated cardioprotection via targeting of Rac1. 

In a similar manner, miR-451 has been shown to decrease reactive oxygen 

species production during erythroid differentiation by targeting Ywhaz in 

erythroblasts (Patrick et al., 2010b, Yu et al., 2010). Repression of Ywhaz by 

miR-451 releases the inhibitory effect of Ywhaz on FoxO3, a transcription factor 

which regulates anti-oxidant genes. Both of these miR-451 target genes have 

been linked to reactive oxygen species production which is known to be 

upregulated in the lung during hypoxia and PAH (Frazziano et al., 2012). 

However, all of the studies focusing on miR-451 have been performed in 

different tissues and in various disease states, therefore these identified targets 

may not represent genuine targets for miR-451 in the lung during the 
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development of PH. In order to further assess target genes for miR-451, a 

microarray would provide a more in depth analysis of mRNA targets. Further in 

vitro techniques could be utilised in order to determine direct targets for miR-

451 by pull down techniques involving immunoprecipitation with Argonaute 

protein (Jannot et al., 2011) or RNA-Chip (Keene et al., 2006). Similarly, a 

proteomics-based approach would determine the exact proteins which are being 

targeted when miR-451 is modulated.  

Taken together, this data demonstrates that transient knock down of miR-451 

reduces the increased RVP induced by acute hypoxic exposure in male rats. 

However, genetic ablation of miR-451 does not appear to have any beneficial 

effect on the development of PAH in female mice.  
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4 MicroRNA analysis in hypoxia/SU5416 model of 
PH 
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4.1 Introduction 

Traditionally there are two main rodent models used to study PH development; 

exposure to chronic hypoxia and administration of the pyrrolizidine alkaloid 

monocrotaline. A great deal of knowledge has been gained regarding PH 

development using these models however, there are limitations with both. The 

hypoxic model only develops modest vascular remodelling while neither of the 

models develop the complex plexiform lesions which are characteristic of the 

human disease (Stenmark et al., 2009, Abe et al., 2010). As a result, a model has 

recently been developed which involves exposing rodents to hypoxia coupled 

with administration of a vascular endothelial growth factor receptor inhibitor.  

Vascular endothelial growth factor is an important regulator involved in the 

maintenance, differentiation and function of vascular endothelial cells (Lee et 

al., 2007). Taraseviciene-Stewart and colleagues developed a novel rodent 

model of PH which blocks VEGFR2 using the inhibitor Sugen-5416 (SU5416) in 

combination with chronic exposure to hypoxia (Taraseviciene-Stewart et al., 

2001). VEGFR2 (also known as KDR or Flk-1 receptor) is a tyrosine kinase 

receptor which is mainly expressed on endothelial cells and is essential for 

vessel development during embryogenesis (Cross and Claesson-Welsh, 2001). It 

was found that inhibition of VEGFR2 along with exposure to hypoxic conditions 

resulted in a more severe PH phenotype than that observed in hypoxia alone 

with increased right ventricular pressures and extensive pulmonary arterial 

remodelling. Blockade of VEGFR2 caused pulmonary arterial endothelial cell 

death and when combined with hypoxic conditions, an apoptosis-resistant 

population of endothelial cells were formed. These endothelial cells enter a 

hyperproliferative state and result in pulmonary arterial occlusion 

(Taraseviciene-Stewart et al., 2001, Sakao et al., 2005).  

As a result of the dysfunctional endothelial cells within the hypoxia/SU5416 

rodent model of PH, complex plexiform-like lesions develop in the rat, similar to 

those observed in human PAH disease (Abe et al., 2010). These lesions generally 

occur in small pulmonary arteries of <300 µm in diameter (Stenmark et al., 2009) 

and immunohistochemistry demonstrates that the lesions contain a high 

proportion of endothelial cells and display many features similar to the human 

plexiform lesion (Abe et al., 2010). 
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The hypoxia/SU5416 rodent model of PH consists of a single injection of the 

VEGFR2 inhibitor followed by 2-3 weeks in hypoxic conditions. It has been 

observed that returning the rodents to normoxic conditions for a period of time 

following hypoxia/SU5416 exposure causes persistence and indeed worsening of 

the PH phenotype and pulmonary arteriopathy (Taraseviciene-Stewart et al., 

2001). This differs significantly from the mouse model of PH. The development 

of the hypoxia/SU5416 model in the mouse was particularly difficult due to the 

subtle phenotype displayed (Stenmark et al., 2009). Ciuclan and colleagues 

(Ciuclan et al., 2011) have developed a hypoxia/SU5416 murine model of PH 

involving weekly injections of SU5416 coupled with chronic exposure to hypoxia 

for 3 weeks. In contrast to the rat model, re-exposure to normoxic conditions 

following the hypoxia/SU5416 insult reduced the indices of PH. This suggests 

that the mouse hypoxia/SU5416 model of PH is less severe than the rat model.    

Both the rat and mouse hypoxia/SU5416 model of PH resemble human PAH more 

closely than the previous models which involve a single insult. This is in 

accordance with the human PAH data as it is thought that the disease results 

from a combination of multiple ‘hits’ including genetic and environmental insults 

(Yuan and Rubin, 2005, Morrell, 2006). This may explain why the double insult of 

VEGF receptor blockade and chronic hypoxia results in a PH phenotype similar to 

that observed in human PAH patients. As a result, it is hoped that this new 

model will allow better translation of treatments to the clinic.  

Use of the hypoxia/SU5416 model could provide essential information regarding 

the complex pathways involved in the advancement of PAH, in particular the 

development of the late stage lesions which result in vessel occlusion and 

vascular pruning. It is important to fully understand the molecules involved in 

the disease and miRNAs have been shown to be dysregulated in previous models 

of PH. There is a lack of data currently available on miRNA expression within 

pulmonary and cardiac tissue from the hypoxia/SU5416 model of PH. Hence, 

research into this may give an insight into the mechanistic pathways involved in 

the progression of PH.    
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4.1.1 Aim 

The aims investigated in this chapter were: 

 To determine lung expression of miR-21, miR-143, miR-145 and miR-451 in 

the hypoxia/SU5416 model of PH. 

 To establish a miRNA cardiac signature in the hypoxia/SU5416 model of 

PH. 
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4.2 Results 

4.2.1 Development of PH in hypoxia/SU5416 mouse model of PH 

The three week hypoxia/SU5416 model of PH (Ciuclan et al., 2011) was used to 

establish PH within the mouse (study design shown in Figure 2.3). Hemodynamic 

analysis confirmed that exposure to hypoxia coupled with administration of 

SU5416 led to the development of PH in the mouse. Systolic RVP increased 

significantly in both hypoxic groups compared to normoxia however, there was 

no further increase in pressure with the addition of SU5416 in hypoxia (Figure 

4.1A). There was an increase in RVH in hypoxic mice compared to normoxic 

controls.  RVH for the hypoxia/SU5416 group was significantly higher than 

hypoxia/vehicle (0.3 ± 0.011 and 0.25 ± 0.017, respectively) (Figure 4.1B), 

indicating that the disease developed in the hypoxia/SU5416 treated mice was 

more severe than hypoxia alone. There was no difference in SAP between any 

groups (Figure 4.1C). 
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Figure 4.1 – Quantification of PH indices in hypoxia/SU5416 mouse model of PH. 

Quantification of (A) systolic RVP, (B) RVH and (C) systemic arterial pressure in male C57Bl/6Jax 

mice after 3 weeks exposure to normoxic or hypoxic conditions, with subcutaneous administration 

of 20 mg/kg SU5416 or vehicle every 7 days. Data expressed as mean ± SEM and analysed by 

two-way ANOVA followed by a Bonferroni post hoc test, *p<0.05 and ***p<0.001, n = 6 animals per 

group.  

  



Chapter 4  129 
 

4.2.2 Lung miRNA expression profile in hypoxia/SU5416 mouse 
model of PH    

We were interested to ascertain whether the expression of certain miRNAs was 

similar between the hypoxia alone and the hypoxia/SU5416 model of PH.  Four 

miRNAs were focused on as they had previously been shown to be dysregulated 

within the lung during the development of PH; miR-21, miR-143, miR-145 and 

miR-451 (Caruso et al., 2010, Caruso et al., 2012, Sarkar et al., 2010). 

MiR-21 was down regulated in normoxic conditions by SU5416 treatment (as 

detected by qRT-PCR – Figure 4.2A), however there was no difference in miR-21 

levels between hypoxia treated mice (Figure 4.2A). Northern blot analysis for 

mature miR-21 did not follow this pattern as there was no difference between 

the groups (Figure 4.2B, C). Exposure to hypoxia caused a subtle increase in pre-

miR-21 (Figure 4.2B, C) in the vehicle treated mice though this effect was not 

observed in the hypoxic mice treated with SU5416. There was no difference in 

the expression levels of miR-143 between normoxic and hypoxic animals, 

irrespective of SU5416 administration (Figure 4.3). MiR-145, however, displayed 

a modest up-regulation in hypoxia as displayed by northern blot analysis (Figure 

4.4B, C) and although not significant, it trended towards an increase in hypoxia 

by qRT-PCR data (Figure 4.4A). Mature miR-451 expression was unchanged 

between groups by qRT-PCR (Figure 4.5A) however, northern blot analysis 

showed a decrease in miR-451 expression with SU5416 treatment which returned 

to normoxia/vehicle levels with exposure to hypoxia (Figure 4.5B, C). Pre-miR-

451 expression was similar between all groups (Figure 4.5B, C)  
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Figure 4.2 – MiR-21 expression in lung from hypoxia/SU5416 mouse model of PH. 

(A) Mature miR-21 expression was detected by qRT-PCR and (B, C) mature and pre-miR-21 was 

detected by northern blot in whole lung from male C57Bl/6Jax mice after 3 weeks exposure to 

normoxic or hypoxic conditions, with subcutaneous administration of 20 mg/kg SU5416 or vehicle 

every 7 days. Arbitrary value of 1 assigned to normoxic vehicle for the qRT-PCR data and data 

expressed as fold change ± SEM, n = 6 animals per group. Northern blot was quantified by 

normalising band intensity to the relative U6 signal and expressed as mean ± SEM, n = 4 animals 

per group. All data analysed by two-way ANOVA followed by Bonferroni post hoc test, *p<0.05 and 

***p<0.001.  
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Figure 4.3 – MiR-143 expression in lung from hypoxia/SU5416 mouse model of PH. 

Mature miR-143 expression was detected by (A) qRT-PCR and (B, C) northern blot in whole lung 

from male C57Bl/6Jax mice after 3 weeks exposure to normoxic or hypoxic conditions, with 

subcutaneous administration of 20 mg/kg SU5416 or vehicle every 7 days. Arbitrary value of 1 

assigned to normoxic vehicle for the qRT-PCR data and data expressed as fold change ± SEM, n = 

6 animals per group. Northern blot was quantified by normalising band intensity of miR-143 to the 

relative U6 signal and expressed as mean ± SEM, n = 4 animals per group. All data analysed by 

two-way ANOVA followed by Bonferroni post hoc test.  
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Figure 4.4 – MiR-145 expression in lung from hypoxia/SU5416 mouse model of PH. 

Mature miR-145 expression was detected by (A) qRT-PCR and (B, C) northern blot in whole lung 

from male C57Bl/6Jax mice after 3 weeks exposure to normoxic or hypoxic conditions, with 

subcutaneous administration of 20 mg/kg SU5416 or vehicle every 7 days. Arbitrary value of 1 

assigned to normoxic vehicle for the qRT-PCR data and data expressed as fold change ± SEM, n = 

6 animals per group. Northern blot was quantified by normalising band intensity of miR-145 to the 

relative U6 signal and expressed as mean ± SEM, n = 4 animals per group. All data analysed by 

two-way ANOVA followed by Bonferroni post hoc test, **p<0.01.  
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Figure 4.5 – MiR-451 expression in lung from hypoxia/SU5416 mouse mode of PH. 

(A) Mature miR-451 expression was detected by qRT-PCR and (B, C) mature and pre-miR-451 

was detected by northern blot in whole lung from male C57Bl/6Jax mice after 3 weeks exposure to 

normoxic or hypoxic conditions, with subcutaneous administration of 20 mg/kg SU5416 or vehicle 

every 7 days. Arbitrary value of 1 assigned to normoxic vehicle for the qRT-PCR data and data 

expressed as fold change ± SEM, n = 6 animals per group. Northern blot was quantified by 

normalising band intensity to the relative U6 signal and expressed as mean ± SEM, n = 4 animals 

per group. All data analysed by two-way ANOVA followed by Bonferroni post hoc test, ***p<0.001.   
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4.2.3 Lung miRNA expression profile in hypoxia/SU5416 rat model 
of PH 

The hypoxia/SU5416 model was also performed in the rat to assess miRNA 

expression between species of the same model of PH (study design shown in 

Figure 2.4). Firstly, we investigated whether the rat hypoxia/SU5416 model 

produced exaggerated PH as would be expected. Pulmonary pressures were 

taken from rats which had been administered SU5416 with 2 weeks hypoxic 

exposure followed by 12 weeks in normoxia. This animal model was used as it 

had previously been shown to induce severe PH along with complex lesion 

structures (Abe et al., 2010). Systolic RVP was significantly increased in rats 

exposed to hypoxia/SU5416 compared to normoxia/SU5416 rats (117.2 ± 8.88 

and 26.5 ± 1.29 mmHg, respectively) (Figure 4.6).  

Severe lesions in the lung, very similar to the plexiform lesion observed in 

human PAH, have previously been reported in the rat hypoxia/SU5416 model of 

PH when exposure to normoxic conditions follows the initial hypoxia and SU5416 

insult (Taraseviciene-Stewart et al., 2001, Abe et al., 2010). Alpha-smooth 

muscle actin staining was performed in the lung from rats exposed to normoxia 

or hypoxia with SU5416 followed by varying lengths of time in normoxia (Figure 

4.7). At all time points normoxia/SU5416 animals had a thin layer of smooth 

muscle and there was a visual increase in the smooth muscle staining observed in 

the hypoxia/SU5416 group compared to the normoxia/SU5416 group. In the 

animals exposed to hypoxia/SU5416 for 2 weeks, there was a thin layer of 

smooth muscle surrounding the vessel which gradually increased when rats were 

returned to normoxia for 1 week (3 week study animals). The 8 week 

hypoxia/SU5416 study animals visually had a thick layer of smooth muscle 

encompassing the vessel while at 14 weeks, the smooth muscle had extended far 

into the lumen leading to complete occlusion of the vessel (Figure 4.7). These 

late stage lesions are comparable to the human lesions and this is in accordance 

with previous reports (Abe et al., 2010). Thus we were confident that the rat 

hypoxia/SU5416 model was indeed producing severe PH with end stage lesions. 

The four specific miRNAs focused on in section 4.2.2 were chosen to analyse in 

the lung of this model of PH to assess the regulation of these miRNAs throughout 

the development of PH in the rat hypoxia/SU5416 model. Mature miRNA 
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expression was quantified by qRT-PCR. MiR-21 was significantly up-regulated in 

the lung of hypoxia/SU5416 rats at all time points compared to normoxia/vehicle 

14 week group (Figure 4.8A). However, this increase in miR-21 expression only 

reached significance compared to time matched normoxia/SU5416 group at 14 

weeks. Although miR-143 and miR-145 are transcribed together from the same 

primary transcript (Xin et al., 2009), qRT-PCR analysis revealed that they do not 

follow the same expression pattern during the development of PH. MiR-143 

expression was very similar to that of miR-21 throughout the progression of 

disease with a significant increase in miR-143 expression in the hypoxia/SU5416 

group only at 14 weeks compared to normoxia/SU5416 group (Figure 4.8B). On 

the other hand, miR-145 was increased in the early phase of PH development. 

MiR-145 was up-regulated at 2 and 3 weeks hypoxia/SU5416 compared to 14 

week normoxia/vehicle, however this was only significantly increased at 3 weeks 

compared to normoxia/SU5416 (Figure 4.8C). MiR-451 showed a significant 

down-regulation at the 3 week time point in the hypoxia/SU5416 group 

compared to normoxia/SU5416 (Figure 4.8D).    
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Figure 4.6 – Systolic RVP in hypoxia/SU5416 rat model of PH. 

Quantification of systolic RVP in male rats exposed to normoxic or hypoxic conditions for 2 wks 

coupled with subcutaneous administration of 20 mg/kg SU5416 on day 0, followed by 12 weeks in 

normoxic conditions. Data represented as mean ± SEM. Data analysed by unpaired t-test, 

***p<0.001, n = 10 animals per group. 
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Figure 4.7 – Localisation of α-SMA in rat lung from hypoxia/SU5416 model of PH. 

Representative alpha smooth muscle actin (α-SMA) staining in lung from male rats exposed to 

normoxic or hypoxic conditions for 2 weeks coupled with subcutaneous administration of 20 mg/kg 

SU5416 on day 0, followed by varying lengths of time in normoxic conditions. Total study time 

indicated in weeks on left hand side. Magnification X10, scale bar = 100 µm. IgG = isotype control.  
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Figure 4.8 – Time course analysis of miRNA expression in lung from hypoxia/SU5416 model 

of PH. 

Expression of mature (A) miR-21, (B) miR-143, (C) miR-145 and (D) miR-451 detected by qRT-

PCR in lung from male rats exposed to normoxic or hypoxic conditions for 2 wks coupled with 

subcutaneous administration of 20 mg/kg SU5416 on day 0, followed by varying lengths of time in 

normoxic conditions. Total study time indicated on x-axis. Arbitrary value of 1 assigned to 14 wk 

normoxia + vehicle. Data represented as fold change ± SEM and analysed by a one-way ANOVA 

followed by Tukey’s post hoc test, n = 5 animals per group. *p<0.05, **p<0.01, ***p<0.001 vs 14 wk 

normoxia + vehicle, #p.0.05, ##p<0.01, ###p<0.001 vs time matched normoxia + SU5416.  
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4.2.4 Cardiac signature in hypoxia/SU5416 model of PH 

In response to injury and physiological overload, the heart activates signalling 

pathways to induce the expression of fetal cardiac genes and promote myocyte 

hypertrophy (Thum et al., 2007). Persistent activation of these pathways 

culminates in heart disease and can lead to heart failure. Recent work 

illustrated that specific miRNAs are dysregulated within the heart during disease 

development and the miRNA profile in cardiac tissue is well established for 

certain diseases (Liu and Olson, 2010, van Rooij et al., 2008). Within the heart, 

up-regulation of miR-21, miR-23a, miR-27a, miR-27b, miR-125, miR-195 and miR-

199 was observed in mouse models of cardiac hypertrophy while miR-1, miR-29, 

miR-133 and miR-150 were found to be down-regulated (Care et al., 2007, van 

Rooij et al., 2006, Wang et al., 2012a). Cardiac contractility is primarily 

regulated by the expression of the myosin heavy chain (MHC) contractile 

proteins, αMHC and βMHC. Physiological and pathological stress alters the ratio 

of these proteins resulting in cardiac hypertrophy due to down-regulation of 

αMHC and up-regulation of βMHC. MiR-208a (known as a myomiR) is encoded 

within an intron of αMHC and is required for the cardiac hypertrophic response 

as well as expression of βMHC along with two further myomiRs, miR-208b and 

miR-499 (Callis et al., 2009, van Rooij et al., 2007, van Rooij et al., 2009). 

Furthermore, cardiac over-expression of miR-208a induces cardiac remodelling 

and hypertrophic growth (Callis et al., 2009). From these critical studies, 

miRNAs appear to play a pivotal role in cardiac disease development.   

However, little is known about the regulation of miRNAs in the heart during the 

development of PAH. PAH is a disease which affects predominantly the right 

ventricle resulting in right ventricular hypertrophy and right ventricular failure. 

Research has shown that there is a molecular signature of both mRNA and miRNA 

which differs between the RV and the LV during normal physiological conditions 

(Drake et al., 2011). Further to this, during the development of RVH and right 

ventricular failure, distinct gene and miRNA expression patterns are expressed 

within the RV but not observed in the LV (Drake et al., 2011). It was therefore 

speculated that specific miRNAs would be dysregulated within the right ventricle 

but remain unchanged in the left ventricle during the development of PAH. 

Hence, the right and left ventricle were analysed separately for miRNA 

expression patterns. Interestingly, recent studies investigated the relationship 
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between the two ventricles during right heart failure. Although left ventricular 

size was unchanged in PAH patients, left ventricular ejection time was reduced 

and this was a predictor of early mortality (Hardegree et al., 2013, Sztrymf et 

al., 2013). Thus illustrating that the LV may undergo detrimental changes as a 

result of the failing RV in PAH patients. 

The miRNAs chosen for analysis in the mouse heart had all been reported to be 

dysregulated within the heart during cardiac hypertrophy (Care et al., 2007, van 

Rooij et al., 2006, van Rooij et al., 2007, van Rooij et al., 2009, Wang et al., 

2012a, Callis et al., 2009). Of the fourteen miRNAs analysed by qRT-PCR in the 

mouse 3 week hypoxia/SU5416 model, only one miRNA displayed an increase in 

expression during hypoxia/vehicle and hypoxia/SU5416 in the right ventricle 

while remaining unaffected in the left ventricle: miR-27a (Figure 4.9). 

Furthermore, miR-27a is increased in the right ventricle during hypoxic exposure 

to levels similar to those observed in the left ventricle. MiR-27b and miR-451 

also showed a significant increase in the hypoxia/vehicle group selectively in the 

RV and although there was an increase in miR-27b expression in hypoxia/SU5416 

group, this did not reach significance compared to normoxia/vehicle (Figure 

4.9). 

In the rat hypoxia/SU5416 model of PH, expression levels of miR-27a and miR-

27b were also analysed in the heart at the 14 week time point (Figure 4.10). 

MiR-27a expression was unchanged between treatment groups in both the right 

ventricle and the left ventricle (Figure 4.10A). However, miR-27b expression was 

significantly up-regulated within the right ventricle and unaffected within the 

left ventricle (Figure 4.10B).  

Since members of the miR-27 family were up-regulated in the right ventricle 

from both the mouse and rat hypoxia/SU5416 model of PH, expression levels 

were analysed in the lung from both species to determine whether this effect 

was cardiac specific. Both the mouse and rat model showed no dysregulation of 

miR-27a or miR-27b within the lung of the hypoxia/SU5416 model of PH (Figure 

4.11). 
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Figure 4.9 – Cardiac miRNA signature from hypoxia/SU5416 mouse model of PH. 

MiRNA expression from cardiac tissue from male C57Bl/6Jax mice after 3 weeks exposure to 

normoxic or hypoxic conditions, with subcutaneous administration of 20 mg/kg SU5416 or vehicle 

every 7 days, as detected by qRT-PCR. Arbitrary value of 1 assigned to RV normoxia + vehicle for 

each miRNA. Data expressed as fold change ± SEM and analysed by two-way ANOVA followed by 

Bonferroni post hoc test. *p<0.05 and **p<0.01 vs normoxia + vehicle for that tissue and miRNA, n 

= 6 animals per group. RV = right ventricle, LV = left ventricle + septum.  



Chapter 4  142 
 

A

B

RV LV
0

1

2

3

4
normoxia + SU5416

hypoxia + SU5416

m
iR

-2
7
a
/U

8
7
 l

e
v
e
ls

(f
o

ld
 c

h
a
n

g
e
)

RV LV
0

1

2

3

4
normoxia + SU5416

hypoxia + SU5416
**

m
iR

-2
7
b

/U
8
7
 l

e
v
e
ls

(f
o

ld
 c

h
a
n

g
e
)

 

Figure 4.10 – MiR-27a and miR-27b expression in cardiac tissue from hypoxia/SU5416 rat 

model of PH. 

(A) MiR-27a and (B) miR-27b expression in cardiac tissue from male rats exposed to normoxic or 

hypoxic conditions for 2 wks coupled with subcutaneous administration of 20 mg/kg SU5416 on 

day 0, followed by 12 weeks in normoxic conditions. Arbitrary value of 1 assigned to RV normoxia 

+ SU5416 for each miRNA. Data expressed as fold change ± SEM and analysed by unpaired t-

test. **p<0.01 and n = 6 animals per group. RV = right ventricle, LV = left ventricle + septum. 
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Figure 4.11 – MiR-27a and miR-27b expression in lung tissue from hypoxia/SU5416 model of 

PH. 

(A) MiR-27a and miR-27b expression in lung tissue from male C57Bl/6Jax mice after 3 weeks 

exposure to normoxic or hypoxic conditions, with subcutaneous administration of 20 mg/kg SU5416 

or vehicle every 7 days, as detected by qRT-PCR. Arbitrary value of 1 assigned to normoxia + 

vehicle for each tissue and miRNA. Data analysed by a two-way ANOVA followed by Bonferroni 

post hoc test. (B) MiR-27a and miR-27b expression in lung tissue from male rats exposed to 

normoxic or hypoxic conditions for 2 wks coupled with subcutaneous administration of 20 mg/kg 

SU5416 on day 0, followed by 12 weeks in normoxic conditions. Arbitrary value of 1 assigned to 

normoxia + SU5416 for each tissue and miRNA. Data analysed by unpaired t-test. All data 

expressed as fold change ± SEM, n = 6 animals per group.  
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4.3 Discussion 

Results from both the mouse and rat study conform to previous studies 

(Taraseviciene-Stewart et al., 2001, Ciuclan et al., 2011) and demonstrate that 

inhibition of VEGF combined with chronic hypoxia provides a robust model for 

studying PH pathology. Mice dosed with SU5416 and exposed to hypoxic 

conditions displayed increased RVP compared to normoxic mice and RVH which 

was greater than both normoxic mice and mice exposed to hypoxia alone. The 

rat hypoxia/SU5416 model exhibits a more severe PH phenotype with increased 

RVP and complex vascular lesions observed during the later stages of disease.   

MiRNA expression analysis within the lung of the mouse hypoxia/SU5416 model 

showed modest variations in levels of miR-21, miR-145 and miR-451 but none of 

these changes were found to be consistent across qRT-PCR and northern blot 

analysis.  Previous work has found these specific miRNAs to be dysregulated in 

the lung of rodents exposed to hypoxia alone or MCT insult (Caruso et al., 2010, 

Caruso et al., 2012, Sarkar et al., 2010), however the severity of disease differs 

significantly between each of the chosen models. As a result, a time course 

study was performed using the rat hypoxia/SU5416 model of PH to assess miRNA 

expression throughout the development of experimental PH within this model. 

MiR-21 and miR-143 expression was significantly up-regulated in hypoxia/SU5416 

rats compared to normoxia/SU5416 animals at 14 weeks, indicating that these 

two miRNAs may play a role in the end stage of disease when lesion development 

occurs. In contrast, miR-145 was significantly up-regulated in the 

hypoxia/SU5416 rats at the early time point of 3 weeks, thus indicating that 

miR-145 may be involved in the detrimental pathways associated with the early 

progression of PH. Another reason why these miRNAs are up-regulated at 

different time points throughout disease development may be as a protective 

mechanism in an attempt to limit the excessive damage to the vessel as the 

disease progresses. Thus, further work into each specific miRNA is necessary 

within this model to understand whether these small RNAs are acting in a 

protective or detrimental manner in the development of PH.  

PAH is a disease primarily involving the pulmonary vessels however, the impact 

of this disease on the heart is extensive. The increased RVP combined with RVH 

and vascular pruning observed in severe PH can result in right heart failure and 
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death (Haddad et al., 2011). The initial adaptive hypertrophy observed within 

the RV is primarily due to increased afterload. However, the RV cannot 

withstand constant pressure over-load, therefore the adaptive RVH gives rise to 

contractile dysfunction and eventual RV failure via various molecular pathways. 

Under normal conditions the heart utilises a number of substrates for 

metabolism, mainly fatty acids or glucose. However, metabolism during RVH is 

dependent on glycolysis (Sharma et al., 2004) and this metabolic shift is thought 

to be mediated via pyruvate dehydrogenase kinase (PDK) (Piao et al., 2010). 

Inhibition of PDK by dichloroacetate increased glucose oxidation and improved 

RV function (Piao et al., 2010) by restoration of expression and function of 

voltage-gated K+
 channels (Michelakis et al., 2002b). Neurohormonal pathways 

are also activated during right ventricular hypertrophy due to reduced tissue 

perfusion. This can lead to activation of the renin-angiotensin-system (RAS) with 

increased angiotensin II levels (Bogaard et al., 2009). Angiotensin II exerts the 

majority of its effects on the heart through the angiotensin II receptor type 1 

(AT1R) by up-regulation of NAD(P)H oxidases to increase ROS production (Seshiah 

et al., 2002). Excessive ROS production leads to cardiac hypertrophy and 

contractile dysfunction (Nakamura et al., 1998, Elnakish et al., 2013). Is it 

fundamentally important to understand the pathways and complex interactions 

which occur in the heart to culminate in RV failure. One way to do that is to look 

at the miRNA profile of the heart and investigate which miRNAs are dysregulated 

within the RV during the development of PH.  

Analysis of cardiac tissue from the mouse hypoxic model showed an increase in 

miR-451 expression selectively within the RV of the hypoxic group however this 

effect was not observed in the hypoxia/SU5416 group. This links back to the 

results obtained in chapter 3 where transient knockdown of miR-451 resulted in 

a reduction in RVP. As previously stated results suggest that miR-451 may be 

involved in acute hypoxic pulmonary vasoconstriction and therefore contribute 

to the increased afterload in the RV. Thus as well as playing a role in hypoxic 

pulmonary vasoconstriction, miR-451 may also affect RV contractility.  

Cardiac miRNA analysis of the mouse and rat hypoxia/SU5416 model of PH found 

increased levels of miR-27a and miR-27b, respectively, selectively in the right 

ventricle. As well as observing no dysregulation of these miRNAs within the left 
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ventricle, this increase in expression was not observed in lung tissue from study 

animals indicating that up-regulation of miR-27 is selective to the right 

ventricle.  

The two isoforms of the miR-27 family belong to different clusters; intergenic 

miR-23a/27a/24-2 cluster located on human chromosome 19 at position 

19q13.13 and intronic miR-23b/27b/24-1 cluster located on human chromosome 

9 at position 9q22.32. Interestingly, pri-miR-23b, pri-miR-27b and pri-miR-24-1 

are transcribed independently from the same promoter however, the pre-miR-

23b, pre-miR-24b and pre-miR-24-1 sequences may be transcribed together. In 

addition to this, members of each cluster can respond differently to various 

stimuli (Sun et al., 2009). MiR-27a and miR-27b are conserved across species and 

differ in only one nucleotide at the 3’-end. They share the same seed sequence 

and therefore also share most predicted targets genes (Zhou et al., 2011). Both 

miR-27a and miR-27b are highly expressed in vascularised tissue such as the 

lung, heart and endothelial cells (Zhou et al., 2011). In vitro studies found that 

inhibition of miR-27 in human umbilical vein endothelial cells (HUVECs) reduced 

sprout formation (Kuehbacher et al., 2007) and repressed HUVEC proliferation 

and migration in response to angiogenic factors (Zhou et al., 2011). In a similar 

manner, over-expression of miR-27a or miR-27b in HUVECs via transfection with 

precursor molecules resulted in a significant increase in endothelial cell 

sprouting and induced migration and proliferation (Urbich et al., 2012). In vivo 

data supports the cell culture experiments as silencing of miR-27 in mice using 

an antagomiR reduced vascularisation of implanted Matrigel (Urbich et al., 

2012). In addition to this, miR-27a and miR-27b expression were found to be up-

regulated in the retinal/choroidal region after laser induced injury in the 

choroidal neovascularisation (CNV) mouse model, a process characterised by 

abnormal growth of blood vessels at the back of the eye. Knock down of miR-27 

using an LNA-modified antimiR immediately following the laser injury reduced 

CNV area significantly (Zhou et al., 2011).  

Both in vitro and in vivo data indicate that miR-27 can enhance endothelial cell 

migration and proliferation and stimulates angiogenesis. The pro-angiogenic 

effects exerted by miR-27 are thought to be due in part to repression of target 

genes Sprouty2 and Sema6A (Zhou et al., 2011, Urbich et al., 2012). Sprouty2 is 



Chapter 4  147 
 
an inhibitor of the Ras/Raf/ERK pathway as shown by repression of ERK1/2 

phosphorylation (Zhou et al., 2011) and this signalling pathway is known to 

highly regulate the angiogenic response (Cross and Claesson-Welsh, 2001). 

Similarly, Sema6A is an inhibitor of angiogenesis in endothelial cells via negative 

regulation of the MAPK and VEGFR2 signalling pathways (Zhou et al., 2011, 

Dhanabal et al., 2005). Hence, repression of Sprouty2 and Sema6a by miR-27 

allows the phosphorylation of key regulators of the MAPK and VEGFR2 signalling 

cascades and promotes angiogenesis.  

Another direct target of miR-27b is myocyte-enhancer factor 2c (Mef2c) 

(Chinchilla et al., 2011). Mef2c is a muscle specific transcription factor which is 

required during embryogenesis for development of the right ventricle (Lin et al., 

1997). Transgenic mice over-expressing Mef2c specifically in the heart develop 

hypertrophic cardiomyopathy (Xu et al., 2006) and this is thought to be due to 

Mef2c activating genes which can induce cardiac hypertrophy (Munoz et al., 

2009). However in our study looking into the development of PH, miR-27 

expression was up-regulated within the right ventricle suggesting that target 

gene Mef2c would be repressed. This indicates that the hypertrophic response 

regulated by Mef2c would also be repressed and thus targeting of Mef2c by miR-

27 may not be the pathway involved in PH development within the models 

tested in this study.   

As mentioned above, Zhou and colleagues found that miR-27 was involved in 

regulating VEGFR2 signalling in response to angiogenic factors through repression 

of target genes (Zhou et al., 2011). The rodent models of PH used within this 

chapter involve administration of SU5416, a VEGFR2 inhibitor. Thus, miR-27 

expression may be dysregulated by blockade of VEGFR2. Therefore this 

experiment should be tested in other models of PH development to attain 

whether the results observed here are accurate or if SU5416 is having an effect 

on the miRNA expression.    

Over time, prolonged induction of cardiac hypertrophy can eventually result in 

right heart dysfunction and failure. However, initial hypertrophy is an important 

adaptive cardiac response to stresses and requires neovascularisation to support 

this hypertrophic growth.  Therefore angiogenesis is a key process involved in 

maintaining the heart in a functional state. The hypoxia/SU5416 model of PH 
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used in this study displays very high right ventricular pressures with very little 

evidence of RV failure  and increased miR-27 expression in the heart (as 

observed within this study) may promote angiogenesis via target gene 

modulation to trigger this adaptive cardiac hypertrophy. Therefore focusing on 

whether targeting treatment towards the right heart may in fact be of benefit to 

PH patients would be relevant. Hence, the results shown here where miR-27 

looks to be important in selectively the right ventricle shows promise and should 

be further investigated. It would be interesting to establish whether over-

expression of miR-27a/b in the right ventricle prevents RV failure and improves 

RV function over a longer study period in experimental models of PH. The 

principle benefit of maintaining a functional RV would be to work in concert 

with other PH therapies (e.g. anti-remodelling treatment) to provide a better 

chance of survival for PAH patients.  

In order to advance our knowledge regarding the role of miR-27 in the heart, in 

situ hybridisation should be performed on heart sections from rodents exposed 

to PH stimuli alongside healthy rodent controls. This would allow the specific 

localisation of miR-27 over-expression within the right ventricle. The results in 

this chapter highlight the expression pattern of miR-27a and miR-27b in both the 

rat and mouse model of PAH. Modulation of miR-27 in a cell culture model of 

RVH would show whether the observations displayed in vivo could be 

recapitulated in an in vitro setting. In order to achieve this, transfection of 

primary cardiomyocytes isolated from the rat right ventricle with synthetic miR-

27 mimic should be carried out. Myocyte cell size and induction of fetal gene 

pattern (e.g. increased expression of atrial natriuretic peptide, b-type 

natriuretic peptide and βMHC) should be quantified to allow cardiomyocyte 

hypertrophy assessment. If up-regulation of miR-27 is a key molecule involved in 

the hypertrophic response initiated within the right ventricle, it would be 

expected that over-expression of miR-27 would induce myocyte enlargement and 

re-expression of the fetal gene program. Similarly, knockdown of miR-27 should 

be tested in combination with stimuli to induce hypertrophy (e.g. angiotensin II) 

to assess whether inhibition of miR-27 prevents the hypertrophic response. The 

miRNA expression data displayed within this chapter was obtained from RNA 

extracted from paraffin blocks for the rat samples. For future work, fresh tissue 

should be generated and analysed for gene and protein expression in order to 
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clarify the pathways regulated by increased miR-27 expression within the RV. 

This will give us a greater understanding of the molecular mechanisms involved 

in cardiac tissue during the development of PH.  
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5 The role of miR-145 in PAH 
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5.1 Introduction 

Smooth muscle cells (SMCs) are one of the cell types involved in pulmonary 

vascular remodelling associated with PAH. Under normal physiological 

conditions, SMCs exist in a quiescent ‘contractile’ phenotype, characterised by 

high expression of SM-specific genes, such as SMA, calponin and SM22-α. Changes 

within the local environment cause these SMCs to phenotypically switch to a 

migratory and proliferative ‘synthetic’ phenotype in response to vascular injury. 

This phenotypic switch is essential to induce repair to the vessels (Lagna et al., 

2007, Rangrez et al., 2011), after which growth factors stimulate the SMCs to 

return to their normal contractile phenotype. Persistent activation of the highly 

proliferative state can however be detrimental to the surrounding tissue and 

lead to disease progression (Owens et al., 2004). Many different growth factors 

and transcription factors are involved in this SMC phenotypic modulation and two 

of the key miRNAs involved in this process are thought to be miR-143 and miR-

145. 

MiR-145 is transcribed bicistronically along with miR-143 from human 

chromosome 5 at position 5q32 (Xin et al., 2009). Expression of the miR-

143/miR-145 cluster is high in cardiomyocytes during the early stages of heart 

development but this expression is lost during the later stages of cardiogenesis. 

Expression of the miRNA cluster is then exclusively localized to SMCs (Xin et al., 

2009, Boettger et al., 2009, Cordes et al., 2009). Activation of the miR-143/miR-

145 cluster is through the conserved regulatory DNA element called a CArG box 

([CC(AT)6GG]) contained within the promoter region of the pri-miRNA cluster. 

Binding of serum response factor (SRF) and its cofactors myocardin (Myocd) and 

myocardin related transcription factors (MRTF) to the CArG box activates 

transcription of the miR-143/miR-145 gene cluster (Cordes et al., 2009, Lagna et 

al., 2007, Davis-Dusenbery et al., 2011). Members of the TGF-β super family of 

growth factors are known to induce SMC contractile phenotype and it has been 

shown that TGF-β and BMP4 achieve this through activation of miR-143/miR-145 

via distinct mechanisms. TGF-β induces Myocd expression while BMP4 stimulation 

leads to nuclear translocation of MRTF-A (Davis-Dusenbery et al., 2011). 

Cofactors from both pathways can independently bind to SRF after being 

recruited to the CArG box and activate miR-143/miR-145 transcription (Xin et 

al., 2009, Lagna et al., 2007, Davis-Dusenbery et al., 2011).  
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Although miR-143 and miR-145 exist as a cluster, there is a lack of homology 

between the seed sequences of the mature miRNAs. Nevertheless, it has been 

found that both miRNAs potentially target many of the same genes, leading to 

co-operativity of this cluster in translational regulation.  Activation of miR-

143/miR-145 by TGF-β and BMP4 leads to down-regulation of target genes Klf4 

and Klf5 resulting in increased expression of smooth muscle specific genes. Thus 

miR-143 and miR-145 activation induces the contractile phenotype via down-

regulation of Klf4 and Klf5 and represses proliferation in SMCs (Cordes et al., 

2009, Davis-Dusenbery et al., 2011, Liu et al., 2005, Cheng et al., 2009). In 

addition, studies have shown that Klf4 prevents expression of contractile genes 

by inhibiting the expression of myocardin and by decreasing SRF binding to the 

CArG box, both of which are critical steps in promoting the SMC contractile 

phenotype via miR-143/miR-145 activation (Liu et al., 2005, Davis-Dusenbery et 

al., 2011). Klf2 is another transcription factor which has been shown to bind to 

the promoter region of the miR-143/miR-145 cluster resulting in up-regulation of 

this miRNA cluster and stimulating cell-cell communication between endothelial 

cells and smooth muscle cells (Hergenreider et al., 2012). A recent study 

revealed that over-expression of Klf2 in HUVECs led to an up-regulation of miR-

143 and miR-145 within the HUVECs but also within the extracellular vesicles 

released by these cells. These vesicles were then able to control the phenotype 

of co-cultured SMCs by down-regulating miR-143/miR-145 target genes, 

therefore promoting the contractile phenotype (Hergenreider et al., 2012).  

Recent studies have also demonstrated activation of the miR-143/miR-145 gene 

cluster in an SRF-independent manner. Jagged-1 (Jag-1) induces canonical CBF1 

mediated Notch signalling to form complexes which bind to the promoter region 

of miR-143/miR-145 independent of the CArG box and result in up-regulation of 

SMC contractile gene expression (Boucher et al., 2011).  

Modulation of the SMC phenotype is fundamental to the development of vascular 

disease and many studies have reported the role of miR-143/miR-145 in this 

setting. Expression of this miRNA cluster is down-regulated in models of vascular 

stress including carotid artery ligation (Cordes et al., 2009), carotid artery 

balloon injury (Cheng et al., 2009), transverse aortic constriction and ApoE 

knockout mice (Elia et al., 2009). In addition, miR-143 and miR-145 expression is 
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significantly reduced in human aortic aneurysms compared to control aortas (Elia 

et al., 2009). Over-expression studies have used adenoviruses to modulate miR-

143 or miR-145 expression in vivo and found reduced neo-intimal formation and 

increased expression of smooth muscle specific genes in the carotid artery 

balloon injury model (Cheng et al., 2009, Elia et al., 2009). Use of miR-143/miR-

145 knockout mice support this data with increased neo-intimal formation 

compared to wild type mice (Boettger et al., 2009). Conversely, Xin and 

colleagues (Xin et al., 2009) found that miR-143, miR-145 and double knockout 

mice displayed reduced neo-intimal formation in response to carotid artery 

ligation.  The divergent effects of silencing miR-143/miR-145 obtained by use of 

different systems and models are interesting. These contradictory results may in 

part be explained due to the reduced vascular tone exhibited specifically in the 

knockout mice, along with activation of complex mechanisms in vivo which are 

absent from the in vitro setting (Xin et al., 2009). These studies highlight the 

importance of the miR-143/miR-145 gene cluster in controlling SMC phenotype 

and illustrate how dysregulation of these pathways can result in cardiovascular 

disease. 

In the setting of PAH, it has been observed that miR-145 expression was 

increased in the lungs and the right ventricle from the hypoxic mouse model of 

PH (Caruso et al., 2012). In addition, recent work established that miR-145 was 

up-regulated in pulmonary arteries from IPAH patients (Courboulin et al., 2011), 

PAH-PASMCs containing a known BMPR2 mutation and in lung tissue from IPAH 

and HPAH patients (Caruso et al., 2012). Expression of miR-145 was noted within 

the muscular regions of the lesions from IPAH and HPAH patients (Caruso et al., 

2012) with greater expression of miR-145 in the concentric lesions compared to 

plexiform lesions (Bockmeyer et al., 2012). Furthermore, knockout of miR-145 in 

female mice by both genetic ablation and treatment of mice with antimiR-145 

caused a significant reduction in systolic right ventricular pressure and the 

number of remodelled vessels compared to control hypoxic animals. In addition, 

RVH was significantly reduced in female miR-145 knockout mice compared to 

hypoxic control mice however, RVH was unaffected by antimiR-145 treatment 

(Caruso et al., 2012).Target gene analysis indicated that the Wnt signalling 

pathway may contain various target genes for miR-145 as increased levels of 

WIF1, FRZB and DAB2 (key members of the Wnt signalling pathway) were 
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observed in hypoxic miR-145 knockout mice (Caruso et al., 2012). In addition to 

this, other members of the Wnt signalling pathway have previously been shown 

to regulate PASMC proliferation (Sklepkiewicz et al., 2011), thus illustrating that 

the protective effect observed in mice void of miR-145 may potentially be due to 

inhibition of the Wnt/β-Catenin canonical signalling pathway. Loss of miR-143 

via antimiR-143 treatment did not illustrate the same protective effect as miR-

145 (Caruso et al., 2012).  

In general terms, in vitro studies have demonstrated the essential role for miR-

143/miR-145 in controlling SMC phenotype, while in vivo studies illustrate that 

specific knock down of miR-145 expression protects against the development of 

PH in mice. Investigation into the exact pathways modulated within the 

pulmonary vasculature by miR-145 would increase our depth of understanding of 

this complex disease.   

5.1.1 Aim 

The aims investigated in this chapter were: 

 To determine the effect of silencing miR-145 both in a prevention and 

reversal study on the development of PH in the hypoxia/SU5416 rodent 

model.  

 To examine the effect of genetic ablation of miR-145 in vivo on the 

development of PH and assess the role of gender in this setting. 

 To identify miR-145 target genes using a miRNA pull down technique in 

hPASMCs in vitro.  
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5.2 Results 

5.2.1 Prophylactic modulation of miR-145 in hypoxia/SU5416 
model of PH 

Previous work in our laboratory showed that miR-145 was up-regulated during 

the development of PH and silencing of this miRNA proved to be beneficial in the 

hypoxic mouse model of PH (Caruso et al., 2012). Thus, silencing miR-145 was 

investigated in vivo in the rat hypoxia/SU5416 model of PH using an antimiR 

targeting mature miR-145. Administration of antimiR-145 was performed two 

weeks prior to hypoxia/SU5416 insult and for three weeks post hypoxic exposure 

(Figure 5.1) to investigate the effect of prophylactic silencing of miR-145. To 

verify knockdown obtained using antimiR-145, lung tissue was harvested and 

miR-145 expression was analysed via qRT-PCR (Figure 5.2A) and northern blot 

(Figure 5.2B, C). MiR-145 levels were significantly reduced in all groups treated 

with antimiR-145 compared to both control antimiR and PBS treatment groups. 

In order to determine the specificity of antimiR-145, expression levels of miR-

143 were also analysed as both miR-145 and miR-143 are transcribed together 

from a common pri-miRNA. MiR-143 levels remained unaffected by antimiR-145 

treatment in both normoxic and hypoxic conditions as detected by qRT-PCR 

(Figure 5.3). Although analysis into miR-143 expression was limited, antimiR-145 

appears to be specific in its action in targeting miR-145.   
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Figure 5.1 – Prophylactic antimiR-145 in vivo study design. 

Male wistar kyoto rats were administered antimiR-145, control antimiR or PBS subcutaneously at 

10 mg/kg every 14 days. 14 days after the initial administration of treatment drug, rats were dosed 

subcutaneously with 20 mg/kg SU5416 and exposed to hypoxic or normoxic conditions for 14 days. 

Following this, all rats were placed in normoxic conditions for a further 21 days. On day 35, 

echocardiography was performed, hemodynamic measurements were taken and tissues 

harvested.   
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Figure 5.2 – MiR-145 expression in lung from prophylactic antimiR-145 study. 

(A) Expression of miR-145 in rat whole lung tissue from prophylactic study at day 35, as detected 

by qRT-PCR. Arbitrary value of 1 assigned to normoxia/SU PBS group. Data expressed as fold 

change ± SEM, n = 8 animals per group. (B) Quantification of northern blot was performed by 

normalising band intensity of miR-145 to the relative U6 signal (C) and expressed as mean ± SEM, 

n = 3 animals per group. All data analysed by one-way ANOVA followed by Tukey’s post hoc test, 

***p<0.001. SU = SU5416, 145 = antimiR-145, ctl = control antimiR.  
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Figure 5.3 – MiR-143 expression in lung from prophylactic antimiR-145 study. 

Expression levels of miR-143 in rat whole lung tissue from prophylactic study at day 35, as 

detected by qRT-PCR. Arbitrary value of 1 assigned to normoxia/SU PBS group. Data expressed 

as fold change ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc test. 

**p<0.01, n = 8 animals per group. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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5.2.2 Effect of prophylactic silencing of miR-145 on the 
development of PH in the hypoxia/SU5416 model 

The effect of silencing miR-145 on the development of PH in male rats was 

quantified by analysis of key indicators of disease; RVP, RVH, vessel remodelling 

and vessel occlusion. There was no change in systemic arterial pressure between 

the groups (Figure 5.4A). Rats dosed with vehicle and exposed to 

hypoxia/SU5416 followed by three weeks normoxic exposure displayed a 

significant increase in RVP compared to normoxia/SU5416 rats (140.3 ± 5.96 and 

34.61 ± 1.84 mmHg, respectively) (Figure 5.4B). Gleevec, a tyrosine kinase 

inhibitor, was used as a positive control for this study as it had previously been 

reported to have anti-proliferative effects in PASMCs (Nakamura et al., 2012, 

Schermuly et al., 2005) and cause reversal of the pulmonary hypertensive 

phenotype in rodent models of PH (Abe et al., 2011, Schermuly et al., 2005). 

Administration of gleevec with hypoxia/SU5416 exposure prevented the dramatic 

increase in RVP and produced RVPs similar to that observed in normoxia/SU5416 

animals. This supported previous data and indicates that the experimental 

conditions and reagents were working correctly. Pre-treatment with antimiR-145 

and exposure to hypoxia/SU5416 however did not reduce RVP compared to 

control antimiR and vehicle treated hypoxia/SU5416 rats (Figure 5.4B). Similar 

results were obtained for RVH (Figure 5.4C), pulmonary vessel remodelling 

(Figure 5.5) and percentage vessel occlusion (Figure 5.6). Thus antimiR-145 

treatment did not provide a protective effect in the development of PH under 

these experimental conditions. 

Cardiac function was measured using echocardiography on day 35 of the 

prophylactic study. Heart rate (Figure 5.7A), pulmonary artery acceleration time 

(Figure 5.7B) and cardiac output (Figure 5.7D) were unchanged between 

normoxia/SU5416 and hypoxia/SU5416 groups. Interestingly, administration of 

antimiR-145 prior to hypoxia/SU5416 insult reduced the mid systolic notch 

observed in hypoxia/SU5416 control antimiR and vehicle treated rats in a similar 

manner to gleevec treatment (Figure 5.7C).   
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Figure 5.4 – Quantification of PH indices in prophylactic antimiR-145 study. 

Quantification of (A) SAP, (B) systolic RVP and (C) RVH in male rats from prophlyactic study at day 

35. Data represented as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s post 

hoc test. *p<0.05, **p<0.01 and ***p<0.001 vs normoxia/SU PBS, ###p<0.001 vs hypoxia/SU PBS, 

n = 8-10 animals per group for SAP and RVP (n = 5 animals for hypoxia/SU gleevec group), n = 4-

5 animals per group for RVH. SU = SU5416, 145 = antimiR-145, ctl = control antimiR.   
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Figure 5.5 – Pulmonary remodelling in prophylactic antimiR-145 study. 

(A) Quantification of pulmonary vascular remodelling in male rats from prophylactic study at day 35. 

Data expressed as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc 

test. ***p<0.001 vs normoxia/SU PBS and ###p<0.001 vs hypoxia/SU PBS, n = 8-10 animals per 

group (n = 5 animals for hypoxia/SU gleevec group). (B) Representative images of lung sections 

stained with α-SMA (red) and von Willebrand Factor (brown), magnification X8, scale bar = 200 

µm. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.6 – Pulmonary occluded vessel analysis in prophylactic antimiR-145 study. 

(A) Quantification of occluded vessels in male rats from prophylactic study at day 35. Data 

expressed as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc test. 

***p<0.001 vs normoxia/SU PBS and ###p<0.001 vs hypoxia/SU PBS, n = 8-10 animals per group 

(n = 5 animals for hypoxia/SU gleevec group). (B) Representative images of pulmonary vessels 

stained with α-SMA (red) and von Willebrand Factor (brown), magnification X8, scale bar = 50 µm. 

SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.7 – Cardiac function parameters from prophylactic antimiR-145 study. 

Quantification of (A) heart rate, (B) pulmonary artery acceleration time (AccT), (C) mid systolic 

notch and (D) cardiac output calculated from echocardiography in male rats from prophylactic study 

at day 35. Data expressed as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s 

post hoc test. ***p<0.001 vs normoxia/SU PBS, #p<0.05 and ###p<0.001 vs hypoxia/SU PBS, n = 

4-5 animals per group. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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5.2.3 Target gene analysis in prophylactic antimiR-145 study 

MiRNA analysis (Figure 5.2) clearly shows significant knockdown of miR-145 in 

antimiR-145 treated rats, however, it is important to assess whether this 

reduction in miRNA expression results in up-regulation of target genes. A list of 

miR-145 targets was generated by searching the literature and from previous 

studies performed in our laboratory. All genes were probed for by qRT-PCR 

(Figure 5.8) however, none of the chosen targets were up-regulated at the mRNA 

level in antimiR treated animals.  

Previous studies have shown that mRNA levels do not always reflect protein 

expression (Greenbaum et al., 2003). Therefore protein expression was analysed 

for Klf4 (Figure 5.9) as this is a validated target for miR-145 (Davis-Dusenbery et 

al., 2011, Xin et al., 2009, Cordes et al., 2009). Both at the mRNA and protein 

level, Klf4 expression remained unaltered by knocking down miR-145. This result 

demonstrates that although miR-145 expression was successfully knocked down 

by qRT-PCR and northern blot analysis, target gene de-repression was clearly not 

observed. This may explain why no effect was observed in the PH phenotype of 

the antimiR-145 treated hypoxia/SU5416 animals.  
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Figure 5.8 – Target gene mRNA expression from prophylactic antimiR-145 study. 

Target gene mRNA expression for (A) Aph1a, (B) Camk2d, (C) Ctgf, (D) Dab2, (E) Fmod, (F) Klf4, 

(G) Klf5, (H) Megf6, (I) Myocd, (J) Sema3a, (K) Smad4, (L) Smad5, (M) Sned1 and (N) Tmod1. 

Analysis performed in whole lung from male rats from prophylactic study at day 35, as detected by 

qRT-PCR. Arbitrary value of 1 assigned to normoxia/SU PBS group. Data expressed as fold 

change ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc test. *p<0.05 and 

**p<0.01, n = 8-10 per group.  
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Figure 5.8 continued – Target gene mRNA expression from prophylactic antimiR-145 study. 
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Figure 5.9 – Klf4 protein expression in lung from prophylactic antimiR-145 study.  

(A) Western blot was performed on protein extracted from whole lung from male rats from 

prophylactic study at day 35. (B) Quantification was performed by normalising Klf4 band intensity to 

the relative α-tubulin signal and expressed as mean ± SEM, n = 3 animals per group. Data 

analysed by one-way ANOVA followed by Tukey’s post hoc test. SU = SU5416, 145 = antimiR-145, 

ctl = control antimiR.  
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5.2.4 Therapeutic modulation of miR-145 in hypoxia/SU5416 
model of PH 

As well as investigating the effect of silencing miR-145 prior to hypoxia/SU5416 

insult, a reversal study was also performed to determine the effect of knocking 

down miR-145 in male rats with established PH. This was carried out in parallel 

with the prophylactic study. In this therapeutic study, miR-145 levels were 

reduced by administration of antimiR-145 on day 14 after two weeks 

hypoxia/SU5416 exposure and dosing was continued for three weeks in normoxic 

conditions (Figure 5.10). As in the prophylactic study, miR-145 knock down in 

the lung was analysed using qRT-PCR (Figure 5.11A) and northern blot analysis 

(Figure 5.11B, C). Expression of miR-145 was significantly down-regulated in 

groups treated with antimiR-145 compared to control antimiR and vehicle 

treated groups. MiR-143 expression was also quantified (Figure 5.12) in the lung. 

Although miR-143 expression appeared to be up-regulated in hypoxia/SU5416 

antimiR-145 group when compared to normoxia/SU5416 antimiR-145 group, 

there was no significant difference between control antimiR or vehicle treated 

animals and antimiR-145 treated animals in either normoxia/SU5416 or 

hypoxia/SU5416. Therefore this suggests that antimiR-145 is specifically 

targeting miR-145 and is not modulating miR-143 expression levels.  
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Figure 5.10 – Therapeutic antimiR-145 in vivo study design. 

Male wistar kyoto rats were administered SU5416 subcutaneously at 20 mg/kg and exposed to 

normoxic or hypoxic conditions for 14 days to establish experimental PH. All rats were then 

returned to normoxic conditions for a further 21 days, during which time antimiR-145, control 

antimiR or PBS was administered subcutaneously at a dose of 10 mg/kg. On day 35, 

echocardiography was performed, hemodynamic pressures taken and tissues harvested.  
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Figure 5.11 – MiR-145 expression in lung from therapeutic antimiR-145 study. 

(A) Expression of miR-145 in rat whole lung tissue from therapeutic study at day 35, as detected by 

qRT-PCR. Arbitrary value of 1 assigned to normoxia/SU PBS group. Data expressed as fold 

change ± SEM, n = 10 animals per group. (B) Quantification of northern blot was performed by 

normalising band intensity of miR-145 to the relative U6 signal (C) and expressed as mean ± SEM, 

n = 3 animals per group. All data analysed by one-way ANOVA followed by Tukey’s post hoc test, 

***p<0.001. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.12 – MiR-143 expression in lung from therapeutic antimiR-145 study. 

Expression of miR-143 in rat whole lung tissue from therapeutic study at day 35, as detected by 

qRT-PCR. Arbitrary value of 1 assigned to normoxia/SU PBS group. Data expressed as fold 

change ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc test. *p<0.05, n = 

10 animals per group. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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5.2.5 Effect of therapeutic silencing of miR-145 in established PH 

The effect of knocking down miR-145 levels was quantified by measuring the key 

indices of PH. Systemic arterial pressure was comparable between all groups 

(Figure 5.13A). Similar to the prophylactic study, exposure to hypoxia/SU5416 

followed by administration of control antimiR or vehicle resulted in a significant 

increase in RVP compared to normoxia/SU5416 exposed animals (Figure 5.13B). 

Treatment with antimiR-145 after hypoxia/SU5416 exposure produced 

comparable RVP to animals dosed with control antimiR and vehicle. Gleevec was 

again used as a positive control for this study. Daily treatment with gleevec in 

rats with established PH reduced RVP significantly compared to all other 

treatment groups exposed to hypoxia/SU5416, suggesting that gleevec is 

reversing the PH phenotype. RVH (Figure 5.13C) and pulmonary vascular 

remodelling (Figure 5.14) followed a similar pattern to RVP results for all 

treatment groups. Interestingly, there was however a significant reduction in the 

percentage of occluded vessels in the antimiR-145 treated animals compared to 

vehicle and control antimiR treated hypoxia/SU5416 rats (Figure 5.15).  

Cardiac function was measured by echocardiography and heart rate (Figure 

5.16A) and pulmonary artery acceleration time (Figure 5.16B) were unchanged 

between groups. All groups exposed to hypoxia/SU5416 had an increased mid 

systolic notch, irrespective of treatment group (Figure 5.16C). Cardiac output 

was decreased in vehicle, antimiR-145 and control antimiR treated rats exposed 

to hypoxia/SU5416 compared to normoxia/SU5416 vehicle treated animals and 

this was reversed in gleevec treated rats (Figure 5.16D). 

5.2.6 Target gene analysis in therapeutic antimiR-145 study 

Target genes for miR-145 (same genes investigated in section 5.2.3) were 

analysed in the lung from all groups at day 35 by qRT-PCR. None of the chosen 

target genes were up-regulated at the mRNA level in antimiR-145 treated 

animals (Figure 5.17). Protein expression of Klf4, a previously validated target 

for miR-145, showed decreased expression in all hypoxia/SU4516 exposed 

animals. However, no dysregulation of Klf4 expression was observed between 

treatment groups (Figure 5.18). 
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Figure 5.13 – Quantification of PH indices in therapeutic antimiR-145 study. 

Quantification of (A) SAP, (B) systolic RVP and (C) RVH in male rats from therapeutic study at day 

35. Data represented as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s post 

hoc test. ***p<0.001 vs normoxia/SU PBS, #p<0.05 and ##p<0.01 vs hypoxia/SU PBS, n = 8-10 

animals per group for SAP and RVP (n = 5 animals for hypoxia/SU gleevec group), n = 4-5 animals 

per group for RVH. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.14 – Pulmonary remodelling in therapeutic antimiR-145 study. 

(A) Quantification of pulmonary vascular remodelling in male rats from therapeutic study at day 35. 

Data expressed as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc 

test. *p<0.05, ***p<0.001 vs normoxia/SU PBS and #p<0.05 vs hypoxia/SU PBS, n = 10 animals 

per group (n = 5 animals for hypoxia/SU gleevec group). (B) Representative images of lung 

sections stained with α-SMA (red) and von Willebrand Factor (brown), magnification X8, scale bar 

= 200 µm. SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.15 – Pulmonary occluded vessel analysis in therapeutic antimiR-145 study. 

(A) Quantification of occluded vessels in male rats from therapeutic study at day 35. Data 

expressed as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc test. 

***p<0.001 vs normoxia/SU PBS and ###p<0.001 vs hypoxia/SU PBS, n = 10 animals per group (n 

= 5 animals for hypoxia/SU gleevec group). (B) Representative images of pulmonary vessels 

stained with α-SMA (red) and von Willebrand Factor (brown), magnification X8, scale bar = 50 µm. 

SU = SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.16 – Cardiac function parameters from therapeutic antimiR-145 study. 

Quantification of (A) heart rate, (B) pulmonary artery acceleration time (AccT), (C) mid systolic 

notch and (D) cardiac output calculated from echocardiography in male rats from therapeutic study 

at day 35. Data expressed as mean ± SEM and analysed by one-way ANOVA followed by Tukey’s 

post hoc test. *p<0.05, **p<0.01 and ***p<0.001 vs normoxia/SU PBS, n = 5 animals per group. SU 

= SU5416, 145 = antimiR-145, ctl = control antimiR. 
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Figure 5.17 – Target gene mRNA expression from therapeutic antimiR-145 study. 

Target gene mRNA expression for (A) Aph1a, (B) Angptl4, (C) Camk2d, (D) Ctgf, (E) Dab2, (F) 

Fmod, (G) Klf4, (H) Klf5, (I) Megf6, (J) Myocd, (K) Sema3a, (L) Smad4, (M) Smad5, (N) Sned1 and 

(O) Tmod1. Analysis performed in whole lung from male rats from prophylactic study at day 35, as 

detected by qRT-PCR. Arbitrary value of 1 assigned to normoxia/SU PBS group. Data expressed 

as fold change ± SEM and analysed by one-way ANOVA followed by Tukey’s post hoc test. 

*p<0.05, **p<0.01 and ***p<0.001, n = 8-10 per group. 
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Figure 5.17 continued – Target gene mRNA expression from therapeutic antimiR-145 study.  
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Figure 5.18 – Klf4 protein expression in lung from therapeutic antimiR-145 study. 

(A) Western blot on protein extracted from whole lung from male rats from prophylactic study at day 

35. (B) Quantification was performed by normalising Klf4 band intensity to the relative α-tubulin 

signal and expressed as mean ± SEM, n = 3 animals per group. Data analysed by one-way 

ANOVA followed by Tukey’s post hoc test, *p<0.05 vs normoxia/SU PBS. SU = SU5416, 145 = 

antimiR-145, ctl = control antimiR.  
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5.2.7 Genetic ablation of miR-145 has no beneficial effect on the 
development of PH in male hypoxic mice 

Previous work from our laboratory illustrated that genetic knockdown of miR-145 

in female hypoxic mice was protective in the development of PH (Caruso et al., 

2012). However, current work displayed within this chapter has shown that 

silencing miR-145 using an antimiR-145 in male rats in the hypoxia/SU5416 

model of pH has no beneficial effect, although this could be due to a number of 

reasons (see Discussion). To determine whether this difference could be due to 

gender differences, male miR-145 knockout mice were exposed to hypoxia for 14 

days and assessed for PH parameters.  

First, mice were analysed to ensure miR-145 expression was indeed silenced 

within the KO mice. Both northern blot analysis (Figure 5.19A, B) and qRT-PCR 

(Figure 5.19C) show complete loss of miR-145 expression within the lung. As 

stated previously, miR-145 is transcribed along with miR-143 and as a result, 

miR-143 expression was also quantified in the miR-145 KO mice (Figure 5.19D). 

MiR-143 expression was up-regulated in wild type mice exposed to hypoxia 

however, there was no difference in miR-143 expression between genotypes in 

normoxic or hypoxic conditions.  

After 14 days hypoxic exposure, systemic arterial pressure was consistent across 

all groups (Figure 5.20A). MiR-145 WT mice showed the expected increase in RVP 

(Figure 5.20B), RVH (Figure 5.20C) and pulmonary remodelling (Figure 5.20D, E). 

This same pattern was observed in miR-145 KO mice, with significantly increased 

indices in hypoxic KO mice for RVP (Figure 5.20B) and RVH (Figure 5.20C) 

compared to normoxic KO mice. Remodelling analysis followed a similar pattern 

however, percentage remodelling in hypoxic miR-145 KO mice was not 

significantly different to that of hypoxic WT mice or normoxic miR-145 KO mice 

(Figure 5.20D, E).  

Target gene analysis was performed on the lungs from miR-145 WT and KO mice 

after exposure to normoxic or hypoxic conditions for 14 days (Figure 5.21). 

Genes were chosen to study by searching the literature for validated targets of 

miR-145 in the mouse, along with using data generated from within our 

laboratory from previous mouse studies. Although several of the genes tested 
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were down-regulated in hypoxic conditions at the mRNA level (Klf4 – Figure 

5.21C, Klf5 – Figure 5.21D), none of the target genes displayed the expected up-

regulation in KO mice.  
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Figure 5.19 – MiR-145 and miR-143 expression in male miR-145 knockout mice. 

(A) Northern blot was performed on RNA extracted from whole lung from male miR-145 wild type 

and knockout mice after 14 days exposure to normoxic or hypoxic conditions and quantified (B) by 

normalising the band intensity of miR-145 to the relative U6 signal. Data expressed as mean ± 

SEM, n = 4 animals per group. (C) MiR-145 expression and (D) miR-143 expression detected 

within the same samples by qRT-PCR. Arbitrary value of 1 assigned to normoxic miR-145 wild type 

group. Data expressed as fold change ± SEM, n = 6 animals per group. All data analysed by two-

way ANOVA followed by Bonferroni post hoc test, *p<0.05 and ***p<0.001. WT = wild type, KO = 

knockout.  
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Figure 5.20 – Quantification of PH indices in male miR-145 knockout mice.  

Quantification of (A) SAP, (B) systolic RVP, (C) RVH and (D) pulmonary vascular remodelling in 

male miR-145 wild type and knockout mice after 14 days exposure to normoxic or hypoxic 

conditions. (E) Representative images of pulmonary vessels stained with elastic van gieson, 

magnification X40, scale bar = 25 µm. Data represented as mean ± SEM and analysed by a two-

way ANOVA followed by Bonferroni post hoc test. *p<0.05, **p<0.01, ***p<0.001 and ns = non-

significant. For SAP, RVP and RVH, n = 7-10 animals per group, for pulmonary remodelling, n = 7-

8 animals per group. WT = wild type, KO = knockout. 
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Figure 5.21 – Target gene mRNA expression in lung from male miR-145 knockout mice. 

(A) ACE, (B) DAB2, (C) Klf4, (D) Klf5 and (E) Smad4 mRNA expression in whole lung from male 

miR-145 wild type and knockout mice after 14 days exposure to normoxic or hypoxic conditions, as 

detected by qRT-PCR. Arbitrary value of 1 assigned to normoxic miR-145 wild type group. Data 

represented as fold change ± SEM and analysed by a two-way ANOVA followed by Bonferroni post 

hoc test. *p<0.05 and **p<0.01, n = 6 animals per group. WT = wild type, KO = knockout.  
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5.2.8 In vitro analysis of miR-145 targets in hPASMCs 

Identification of genuine miRNA targets is a challenging task. Within this 

chapter, a list of candidate target genes for miR-145 was generated using target 

prediction algorithms TargetScan and miRWalk. These databases use specific 

criteria in order to determine whether mRNA sequences contain binding sites for 

miRNA. In order to predict miRNA targets, most computational algorithms 

require Watson-Crick base pairing of the miRNA seed sequence with a 

complementary sequence in the 3’-UTR of the mRNA, conservation of the 

binding site across species and also take into account the minimum free energy 

of the miRNA/mRNA duplex (Barbato et al., 2009, Yue et al., 2009). Original 

data proposed that binding of miRNA occurred selectively at the 3’UTR of target 

mRNA (Rajewsky, 2006) however, recent evidence has suggested that miRNAs 

can target sites in the 5’-UTR and in coding regions of mRNA (Lytle et al., 2007, 

Lee et al., 2009). As a result, target algorithms focusing exclusively on the 3’-

UTR will exclude target genes where binding occurs in other regions. In addition, 

target prediction databases vary in criteria and small differences in criteria can 

produce diverse results, thus increasing the number of putative targets when 

several algorithms are used (Liu et al., 2012).  

Consequently, an in vitro approach was adopted in an attempt to highlight novel 

miR-145 targets in biological samples. The miRNA pull down technique was used 

where hPASMCs were transfected with biotinylated miR-145 or negative control 

miRNA mimic (Orom and Lund, 2007, Kang et al., 2012). RNA associated with the 

biotinylated miRNA mimic was isolated using streptavidin beads along with total 

‘input’ RNA from total cell lysates (Figure 5.22). This experiment was performed 

twice with results kept separate in order to establish whether the same pattern 

of target gene expression was observed in both experiments. In order to 

ascertain whether the miR-145 mimic led to over-expression of miR-145, qRT-

PCR was first performed on the input RNA samples (Figure 5.23A). Significant 

over-expression of miR-145 was produced in hPASMCs transfected with 30 nM 

miR-145 mimic compared to cells transfected with control mimic in both 

experiments.   

The next step was to assess target gene expression. It was expected that 

genuine target genes of miR-145 would be down-regulated in the input RNA 
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samples (due to repression by high miR-145 expression) and up-regulated in the 

bead extracted RNA samples (due to mimic being incorporated into the RISC, 

binding to the mRNA of target genes and therefore only target gene mRNA would 

be included in these samples). However, bead bound RNA samples were very low 

in concentration. Hence, qRT-PCR was performed in the first instance on the 

input RNA samples to assess whether the miRNA pull down technique was 

working effectively. Validated and predicted targets of miR-145 were chosen and 

quantified in input samples by qRT-PCR (Figure 5.23B-F). However, none of the 

chosen genes were down-regulated consistently across both experiments.  
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Figure 5.22 – Schematic diagram of miRNA pull down experimental set up.  

hPASMCs were transfected with 30 nM 3’-biotinylated miR-145 mimic or control mimic. Twenty four 

hours later, cells were lysed and 10% of cell lysates were removed and total ‘input’ RNA extracted. 

The remaining cell lysate was incubated with streptavidin coated magnetic beads to isolate mRNA 

associated with the biotinylated miRNA mimic, followed by RNA extraction.  
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Figure 5.23 – MiR-145 and target gene mRNA expression in hPASMCs transfected with miR-

145 mimic in miRNA pull-down assay. 

(A) MiR-145 expression in input samples from hPASMCs transfected with 30 nM biotinylated miR-

145 mimic or control mimic in miRNA pull-down assay, as detected by qRT-PCR. Target gene (B) 

ACE, (C) DAB2, (D) Klf4, (E) Klf5 and (F) Smad4 mRNA expression in the same input samples, as 

detected by qRT-PCR. Arbitrary value of 1 assigned to control mimic for each gene or miRNA in 

each experiment. Data expressed as fold change ± SEM and analysed by unpaired t-test. 

Experiment performed twice with differing passages of hPAMSCs, results for separate experiments 

shown.   
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5.3 Discussion 

In this chapter we have assessed the effect of silencing miR-145 prior to the 

development of PH and in animals with established PH. In both the prophylactic 

and therapeutic study, knocking down miR-145 using an antimiR had no 

beneficial effect on RVP, RVH or muscularisation of pulmonary vessels in male 

rats exposed to hypoxia/SU5416. There was however a significant reduction in 

the percentage of occluded vessels in hypoxia/SU5416 animals therapeutically 

treated with antimiR-145. In addition, pre-treatment with antimiR-145 had 

beneficial cardiac effects by reducing the mid systolic notch to a similar extent 

as the positive control gleevec. Although antimiR-145 treatment resulted in 

knock down of miR-145 levels in the lung, target analysis by both qRT-PCR and 

western blot showed no de-repression of potential miR-145 target genes.  

The reduction in occluded vessels observed in the antimiR-145 treated 

hypoxia/SU5416 rats in the therapeutic study is potentially very interesting as 

this result was not observed in the prophylactic study. MiRNAs are expressed at 

varying levels throughout disease development and targeting miR-145 after the 

disease is established appears to have more of a protective effect than silencing 

it prior to disease onset. The results displayed in section 4.2.3 show that miR-

145 is significantly up-regulated in male rats exposed to hypoxia/SU5416 only at 

3 weeks (2 weeks hypoxia/SU5416 followed by one week in normoxia) compared 

to normoxia/SU5416 treated rats. It may be the case that administration of 

antimiR-145 after hypoxia/SU5416 insult has a greater effect due to the 

increased expression of miR-145 shortly following hypoxia/SU5416 exposure, 

while silencing miR-145 in a preventative manner may allow other mechanisms 

to take over and thus the disease develops as normal. Further work is required 

to pinpoint what is happening during the reversal study and the exact 

mechanisms through which antimiR-145 is producing this positive effect on the 

pulmonary vessels.  

Many different molecules and pathways are involved in the progression from 

pulmonary remodelling to vessel occlusion (Cool et al., 1999). Analysis of the 

expression of some of these molecules (e.g. nitric oxide, thromboxane A2, 

serotonin, ET-1) via immunohistochemistry on lung sections from the therapeutic 

study may provide an indication as to which pathways are involved in the 
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reduced vessel occlusion in antimiR-145 treated animals. The role of miR-145 

should also be investigated in PAECs, as these cells represent the difference 

between the pulmonary vessels with increased SMC proliferation and 

hypertrophy and the obstructed vessels with endothelial cell dysfunction. In 

vitro studies in PAECs investigating the role of miR-145 on apoptosis, migration 

and proliferation would further our understanding of this miRNA and how it can 

contribute to vessel occlusion. 

Cardiac parameters analysed by echocardiography were largely unchanged with 

antimiR-145 treatment compared to PBS and control antimiR treatment. 

However, the mid systolic notch was significantly reduced in hypoxia/SU5416 

rats pre-treated with antimiR-145 compared to hypoxia/SU5416 PBS treated 

rats. The reduction in mid systolic notch follows the same pattern as that 

observed in hypoxia/SU5416 rats dosed with gleevec. Similarly, in the 

therapeutic study, hypoxia/SU5416 antimiR-145 rats had a similar mid systolic 

notch score as that of hypoxia/SU5416 gleevec animals, although both 

treatments failed to illicit any effect compared to PBS control animals. The mid 

systolic notch measures the degree of indent through deceleration pulmonary 

flow and is specific for pulmonary hypertension (Ginghina et al., 2009, Roberts 

and Forfia, 2011). It is interesting that treatment with antimiR-145 appears to 

be following the same trend as gleevec treatment, the positive control used due 

to previous data showing gleevec to reduce experimental pulmonary 

hypertension (Schermuly et al., 2005, Abe et al., 2011). It may be the case that 

antimiR-145 and gleevec share a common target which is involved in the cardiac 

response. In particular, a beneficial effect was only observed in both treatment 

groups in the prophylactic study. The difference in results between the 

prophylactic and therapeutic study may once again be due to activation of 

different pathways depending on the stage at which miR-145 was silenced.  

There are several reasons which may explain why we did not observe a 

beneficial effect on the pulmonary pressures and vessels in the antimiR-145 

treated hypoxia/SU5416 rats in the prophylactic study and in the majority of 

parameters in the therapeutic study. There is significant knockdown of miR-145 

expression however no modulation of miR-145 target genes was observed. Thus 

suggesting that the antimiR is not working functionally within the lung 
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compartment and may be targeting a different area. Another reason may be due 

to the localisation of miR-145 within the lung and pulmonary vasculature. 

VEGFR2 is mainly expressed in endothelial cells and signalling through this 

receptor plays an important role in regulating endothelial cell maintenance and 

function (Lee et al., 2007). As a result, the hypoxia/SU5416 model of PH is 

largely characterised by endothelial dysfunction. MiR-145 on the other hand is 

predominantly expressed within the smooth muscle cell (Xin et al., 2009, 

Boettger et al., 2009, Cordes et al., 2009). Therefore silencing of a miRNA 

outside of the endothelial compartment may not be enough to prevent or 

reverse the disease in this model of PH. Recent work by Hergenreider and 

colleagues (Hergenreider et al., 2012) found that HUVECs stimulated by shear 

stress released extracellular vesicles with increased miR-143/miR-145 levels 

which could control the expression of target genes in co-cultured SMCs. This 

innovative study highlights the interaction between cell types however, it is 

unclear whether silencing miRNAs expressed primarily within one compartment 

as in the context of this study can result in the effects being observed in 

neighbouring cell types.   

A third reason for lack of effect of antimiR-145 treatment may be due to the 

fact that we are not detecting an increase in miR-145 expression as had 

previously been reported in the development of experimental PH and in lungs 

from PAH patients (Caruso et al., 2012, Courboulin et al., 2011). The fact that 

there is no increase in miR-145 levels between normoxia/SU5416 and 

hypoxia/SU5416 control animals may give an indication as to why inhibiting miR-

145 had no beneficial effect on PH development. Nevertheless, the fact that 

miR-145 does not change between experimental conditions does not imply that 

the pathways involved with this miRNA are not good targets to focus on. In 

addition, two further issues which may contribute to the results obtained are 

gender and species specific. The original study performed in our laboratory 

which showed that knockdown of miR-145 was protective against the 

development of PH was performed in female mice (Caruso et al., 2012). 

However, the current study was carried out in male rats. Thus species or gender 

may explain why we are not observing a protective effect in this study with 

antimiR-145 treatment.  
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In order to assess whether gender differences accounted for variation in results, 

male miR-145 WT and KO mice were exposed to normoxic or hypoxic conditions 

and indices of PH were assessed. Hypoxic miR-145 KO mice showed the same 

pattern as hypoxic WT mice with increased RVP and RVH compared to normoxic 

mice. Pulmonary remodelling analysis indicates that miR-145 KO mice exposed to 

hypoxia show a reduction in remodelling compared to WT hypoxic mice however 

this does not reach significance. From these results, it appears that male miR-

145 KO mice are not protected against developing PH as the female miR-145 KO 

mice are. Thus demonstrating that the effects of silencing miR-145 in vivo are 

potentially gender specific and warrant further investigation. As in the 

hypoxia/SU5416 study, we did not observe an up-regulation of miR-145 in the 

lung of male WT mice exposed to hypoxia. Caruso and colleagues found that 

female hypoxic WT mice had significantly higher expression levels of miR-145 in 

the lung compared to normoxic WT mice (Caruso et al., 2012). This illustrates 

that within the lung, miR-145 expression is regulated differently between the 

sexes in response to hypoxic stimuli.  

There has been much controversy surrounding the role of miRNAs in PAH and 

conflicting results have been obtained from in vivo experiments regarding the 

function of miR-145 in PH. A recent study (McLendon et al., 2013) observed a 

reduction in RVP in a reversal study of PH using the hypoxia/SU5416 model.  

Inhibition of miR-145 was achieved using intravenous injection with the 

oligonucleotide complexed with staramine, a lipopolyamine designed to enhance 

retention within the lung. However, inhalation of the miR-145 

inhibitor/staramine complex did not improve PH in the same model (McLendon 

et al., 2013). From the same research group, studies have also found 

administration of antimiR-145 reversed hypoxia/SU5416 induced vascular 

remodelling including occlusive lesions and medial hypertrophy (Joshi et al., 

2013). Taken together with the data presented in this chapter, the method used 

to knockdown miR-145 and administration route appears to be very important in 

exerting a protective effect in the development of PH.  

The model used to investigate experimental PH is also an important factor which 

must be taken into consideration. The hypoxia/SU5416 model produces a 

plexogenic arteriopathy which is similar to the lesions formed in human PAH. 
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However, caution must be taken when using the hypoxia/SU5416 model as VEGF 

and VEGFR2 expression are known to be increased in PAH (Taraseviciene-Stewart 

et al., 2001). Therefore blockade of VEGFR2 via SU5416 may interfere with 

specific miRNA pathways and influence the result, irrespective of PH 

development. Numerous miRNAs have been reported to regulate the VEGF 

signalling pathway. MiR-93 and miR-200b directly target VEGF to reduce VEGF 

expression (Long et al., 2010, McArthur et al., 2011). Also, VEGF stimulation 

promotes the expression of miR-16 and miR-424 which then go on to target VEGF 

in a negative feedback loop thereby providing a high level of regulation 

(Chamorro-Jorganes et al., 2011). MiRNAs also target downstream effectors of 

VEGF, including phosphoinositide-3-kinase (PI3K) and MAPK/ERK (Dang et al., 

2013). Inhibition of VEGF signalling via SU5416 may alter downstream signalling 

pathways, thus making it hard to identify target genes which are modulated by 

disease development or miRNA treatment as opposed to VEGF inhibition.   

Target gene analysis of the miR-145 WT and KO mice using predicted and 

previously validated target genes did not show any dysregulation of genes in KO 

mice. Although Klf4 and Klf5 are down-regulated in response to hypoxia, none of 

the chosen genes showed the expected increase in expression in miR-145 KO 

mice. Compensatory mechanisms may in part explain this result. As stated 

previously, each gene can be regulated by many different miRNAs (Doench and 

Sharp, 2004). Genetic deletion of miR-145 may therefore cause other miRNAs or 

molecules to take over the role of miR-145. As a result, the expression of target 

genes is similar between the miR-145 WT and KO mice. This is in contrast to the 

results obtained in female miR-145 KO mice exposed to hypoxia. Caruso and 

colleagues (Caruso et al., 2012) found that Ctgf, Dab2, Angptl4 and Klf5 mRNA 

expression were up-regulated in the lung of female hypoxic KO mice and Smad4 

and Smad5 were found to be up-regulated in female normoxic KO mice. In 

addition, Klf4 was up-regulated in female miR-145 KO mice at both the mRNA 

and protein level (Caruso et al., 2012). These results illustrate that there are 

clear differences in target gene expression between male and female mice in 

response to hypoxic exposure. Within this chapter, mRNA expression analysis has 

been used to determine gene expression. However, target gene analysis at the 

protein level is highly relevant as it is the protein molecules which can directly 

affect the PH phenotype. Furthermore, there is often a mismatch between 
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mRNA and protein levels (Selbach et al., 2008, Baek et al., 2008, Guo et al., 

2010) and therefore analysing the protein level would allow any functional 

changes to be detected.   

In vitro investigations into target genes of miR-145 were undertaken in hPASMCs 

to establish novel targets. MiRNA pull down experiments were performed (Orom 

and Lund, 2007, Kang et al., 2012) and transfection with biotinylated miR-145 

mimics resulted in significant over-expression of miR-145. The ultimate goal of 

this experiment was to perform a microarray with the RNA samples bound to the 

beads to identify genes which were up-regulated in the miR-145 mimic group 

compared to the negative control transfection group. However, RNA 

concentrations for the bead samples were extremely low and therefore input 

samples were analysed as a control to examine whether validated targets for 

miR-145 were down-regulated and hence show that the experimental set up was 

working correctly. Unfortunately none of the genes from the input samples were 

dysregulated by miR-145 mimic treatment across both repeats of the 

experiment. As a result, the microarray was not performed on the bead samples 

as it was unclear whether the transfection and experimental procedure had been 

successful.  

There could be a number of possibilities to explain why miR-145 validated genes 

were not modulated in the hPASMCs transfected with miR-145 mimic. Firstly, the 

synthetic mimic was modified with the addition of a biotin group at the 3’-end 

of the miRNA and although significant over-expression of miR-145 was obtained, 

the modification of the mimic may prevent full incorporation within RISC. 

Therefore when binding of the biotin labelled mimic was performed with 

streptavidin beads, it could simply be the mimic that is being extracted as 

opposed to the miRNA mimic bound to target genes via the RISC.    

Another reason to explain the results obtained here could be due to the fact that 

basal expression of miR-145 is very high in hPASMC. In this situation, RISC may be 

saturated with endogenous miR-145 and therefore biotinylated miR mimic is not 

incorporated into the complex. Consequently the miR mimic is free in the cell 

and when extracted with streptavidin beads, the miR mimic is not bound to 

anything within the cell. One way to overcome this problem would be to perform 

a double miRNA pull down. This involves transfecting cells with biotinylated miR-
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145 mimic as in this study and then performing immunoprecipitation using an 

antibody against the Argonaute protein, the catalytically active component of 

RISC. Following this, streptavidin pull down binds specifically the miRNA mimic 

and then RNA extraction is carried out (Nonne et al., 2010). This two-step 

procedure would provide confidence that the RNA extracted was physically 

bound to the biotinylated miR-145 mimic/RISC complex and thus would contain 

direct targets for miR-145. Once again however, there are problems with this 

technique. Results may differ depending on the antibody used to 

immunoprecipitate the argonaute protein as it has been reported that AGO1 and 

AGO2 form RISC complexes with different miRNAs (Thomas et al., 2010). 

Moreover, the RNA extracted from the single pull down experiment is 

exceedingly low in concentration and thus with the additional AGO purification 

step in the two-step method, yields will be even lower. Thus the experiment 

would have to be extensively scaled up in order to obtain a high enough yield of 

pull down RNA in order to perform a screen for gene targets (e.g. a microarray) 

and validate the results using qRT-PCR. This would make the experiment very 

expensive to execute in primary cells and therefore may be more suited to cell 

line studies.     

In summary, silencing of miR-145 using an antimiR in vivo both pre- and post-PH 

development does not provide a beneficial effect in the male rat 

hypoxia/SU5416 model, in the experimental settings described here. In addition, 

male miR-145 KO mice are not protected against the development of PH as the 

female miR-145 KO mice are. The results from these experiments suggest that 

there are complex mechanisms regulating miRNA processing within the lung 

during PH development and these pathways may be gender specific. Further in 

vitro investigations are required to identify novel genuine miR-145 target genes 

in the setting of PH and enhance our understanding of the many pathways 

involving miRNAs in PH development.    
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6 General Discussion 
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This thesis has concentrated on identifying the role of miRNAs during the 

development of PAH. MiRNAs are expressed at varying levels throughout the 

body in a tissue and cell specific manner, with dysregulation of miRNA 

expression observed during disease. Previous work within our laboratory 

identified several miRNAs which were modulated during the development of 

PAH, identifying possible therapeutic targets. This study has particularly focused 

on two of these miRNAs, miR-451 and miR-145, to establish the role of these 

miRNAs during disease progression as well as investigating the miRNA profile in 

pulmonary and cardiac tissue from the hypoxia/SU5416 model of PH.  

MiR-451 expression has previously been reported to be up-regulated in 

experimental models of PH and in this study, miR-451 over-expression promoted 

the migration of hPASMCs in the absence of serum. Transient knockdown of miR-

451 attenuated the development of PH in hypoxic rats while genetic deletion of 

miR-451 had no beneficial effect on the development of PH. Focussing on miR-

145, another miRNA which is up-regulated during PH, prophylactic and 

therapeutic silencing of miR-145 in the rat hypoxia/SU5416 model demonstrated 

no protective effect on RVP, RVH or muscularisation of pulmonary arteries. 

There was however a significant reduction in the number of occluded vessels in 

rats with established PH treated with antimiR-145. In addition, male miR-145 

knockout mice are not protected against the development of PH as female miR-

145 knockout mice are. Cardiac analysis from the hypoxia/SU5416 model of PH 

displayed up-regulation of miR-27a and miR-27b selectively in the right ventricle 

of mice and rats, respectively.   

In vitro modulation of miR-451 showed that miR-451 promotes migration of 

hPASMCs in the absence of serum but has no effect on cellular proliferation. In 

this cell culture model, the focus has been on hPASMCs due to their highly 

proliferative and migratory response to PH stimuli (Rabinovitch, 2012, 

Gerthoffer, 2007). There is also a significant increase in muscularisation of small 

pulmonary arteries leading to remodelling of the vessels in PH patients and 

animals (Stenmark et al., 2009), highlighting the importance of PASMCs in the 

remodelling process. In addition to this, it would be of interest to assess the 

function of miR-451 in hPAECs as ECs also play a critical part in the cellular 

response to PH. Moreover, ECs are the principle cell type involved in the 
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formation of plexiform lesions. Investigation into the molecular basis of these 

lesions and the interactions between the ECs and SMCs will give us a better 

understanding of the processes which contribute to vessel remodelling and 

occlusion. Another aspect which should be explored is the effect of modulating 

miR-451 on apoptosis in both hPAECs and hPASMCs.  Recent studies have shown 

that miR-451 regulates apoptosis in different systems. In NSCLC cells, miR-451 

induces apoptosis by targeting RAB14 which inhibits Akt phosphorylation, 

increasing Bax or Bad protein levels and activating caspase 3 (Wang et al., 

2011). Similarly, miR-451 promotes apoptosis in human glioblastoma cells by 

down-regulating the anti-apoptotic Bcl2 (Nan et al., 2010) and over-expression 

of miR-451 in breast cancer cells down-regulates survival factor 14-3-3ζ to 

trigger apoptosis (Bergamaschi and Katzenellenbogen, 2012). This therefore 

suggests that miR-451 is highly involved in regulating apoptosis in numerous cell 

types and it would be interesting to determine if miR-451 also controls apoptosis 

in pulmonary cells by analysing apoptotic markers and apoptotic staining (e.g. 

TUNEL or caspase staining). It is unclear where miR-451 is expressed in the 

pulmonary vasculature other than in the red blood cells. Therefore in situ 

hybridisation would allow localisation of miR-451 within the lung and indicate a 

specific cell type to focus on.    

The effects of knocking down miR-451 levels in vivo were investigated using both 

an antimiR and a genetic knockout approach. AntimiR-451 administration to 

male rats three days prior to hypoxic exposure attenuates the development of 

experimental PH, with a reduction in systolic RVP. The observed effect may be 

more pronounced if hypoxic exposure is extended to 14 or 21 days. Similarly, 

this result should be validated in another model of PH, for example 

monocrotaline-induced PH or the hypoxia/SU5416 model. If comparable results 

are obtained in a second model, this would validate that miR-451 inhibition 

conveys a protective role in the development of experimental PH. This was in 

contrast to miR-451 global knockout mice, where knockout mice displayed the 

same phenotype as wild type mice in response to hypoxic exposure. This may be 

due to a number of variables, such as gender, species, method used for silencing 

miR-451 and compensatory mechanisms which may have been active in the miR-

451 knockout mice. Further investigations are required to determine which 

factors are responsible for the differences obtained between the two studies.  
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Results from this thesis, along with previous studies carried out in our laboratory 

demonstrate that miRNA modulation acts in a gender-specific manner. Male miR-

145 knockout mice developed the same hypoxia-induced PH phenotype as wild 

type mice with comparable RVP and RVH values. This is in contrast to female 

miR-145 knockout mice which are protected against developing hypoxia-induced 

PH (Caruso et al., 2012). At the clinical level, PAH is a disease with gender bias 

with more females developing the disease (Walker et al., 2006). In contrast, 

experimental models of PH have shown that females develop less severe disease. 

This is thought to be due to the protective effect of the sex hormone oestrogen 

as following ovariectomy, female mice develop exacerbated RVH in response to 

MCT insult and this can be reversed with estradiol administration (Ahn et al., 

2003). This contradiction between clinical and animal studies is known as the 

oestrogen paradox of PAH. The results reported here illustrate that miRNAs are 

regulated in distinct ways between the sexes in response to hypoxia and studies 

have shown that oestrogen can directly regulate miRNAs (Ferraro et al., 2012). 

Understanding the differences between the genders (and indeed the differences 

between clinical and animal studies) and the role of sex hormones on miRNA 

expression within the pulmonary circulation is essential if miRNAs are to be used 

as therapeutic targets. Gender must therefore be carefully considered when 

future studies are planned.  

Another miRNA which had previously been shown to be up-regulated in PAH 

patients and experimental models of PH was miR-145 (Caruso et al., 2012, 

Courboulin et al., 2011), with antimiR-145 administration providing protection 

against hypoxia-induced PH in mice (Caruso et al., 2012). Silencing of miR-145 

prior to and post hypoxia/SU5416 exposure followed by three weeks in normoxic 

conditions produced no beneficial effect on RVP, RVH or muscularisation of small 

pulmonary arteries. The percentage of occluded vessels was however reduced in 

the reversal study suggesting a role for miR-145 in the progression of occlusive 

lesions. The exact mechanisms through which miR-145 exerts an effect could be 

further investigated through in vitro studies focusing on hPASMCs and hPAECs 

with over-expression or inhibition of miR-145. The lesions formed in the 

hypoxia/SU5416 model of PH are characterised by endothelial dysfunction with 

initial EC apoptosis, followed by proliferation of an apoptosis-resistant 

population of endothelial cells (Taraseviciene-Stewart et al., 2001). However, 
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miR-145 is predominantly expressed within smooth muscle cells therefore 

investigating the cross talk between these two cells types will be critical in 

understanding the role of miR-145 in the development of PH. The 

hypoxia/SU5416 model of PH can be modelled in vitro using an artificial 

capillary system where VEGF blockade is accompanied by high shear stress 

(Sakao et al., 2005). Analysis of apoptosis and proliferation rates in this cell 

culture model in the presence of miR-145 modulation would indicate in what 

way miR-145 is having a positive effect on the occluded vessels in the 

therapeutic study. 

From a clinical point of view, miRNAs have the potential to be used as 

biomarkers for disease as well as a candidate treatment for PAH. Biomarkers are 

measured as an indicator of normal or pathogenic processes and recent studies 

have identified miR-150 as a possible biomarker for PAH. Rhodes and colleagues 

observed that miR-150 expression is down-regulated in plasma and circulating 

microvesicles from PAH patients and miR-150 plasma expression is a significant 

predictor of survival in patients with PAH (Rhodes et al., 2013). MiRNAs can also 

be used as a therapeutic agent, however the route of administration of these 

small RNA molecules must be carefully considered. Ideally, administration would 

be directly to the pulmonary circulation to minimise off target effects and 

maximise therapeutic effects. Local delivery to the lung can be achieved via 

intranasal or intratracheal delivery. Delivery of miRNA treatment to the 

pulmonary system via inhalation would be the most convenient route of 

administration clinically however, formulating inhalable miRNAs and maintaining 

stability during the delivery process can prove challenging. 

Both miRNA therapy and gene therapy are potential treatments for PAH. 

However, most miRNAs target many mRNAs and direct modulation of miRNAs in 

the long term may produce severe off target effects in vivo due to the 

pleiotropic effect of these small RNA molecules. Therefore directing treatment 

at miRNA targets may reduce these adverse effects and as a result, miRNA target 

validation is of upmost importance. Identification of genuine miRNA target genes 

is therefore essential in elucidating the mechanisms through which miRNAs exert 

their effects in different cells and tissues. However, target identification 

remains a challenge. In this thesis, target analysis was negative for both miRNAs 
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analysed (miR-145 and miR-451). Although target genes were indeed investigated 

at both the mRNA and protein level, none of the chosen genes were modulated 

as expected after silencing of a specific miRNA. Further work needs to be done 

to pinpoint the exact cellular and molecular mechanisms through which this 

miRNA dysregulation is taking place and if it is contributing to the pathogenesis 

of PH through target mRNA.  

One of the most problematic tasks when studying PH is the limited availability of 

human lung samples from PAH patients. Therefore it is critical that animal 

models are in place which can recapitulate the human disease. The classical 

models of PH (chronic hypoxia and MCT exposure) have provided us with a great 

deal of knowledge on the development of PH. However, neither of these models 

develop the severe plexogenic lesions which are characteristic of human PAH. 

Consequently, newer models have been established to further our understanding 

of these complex lesions. From the results presented, both the mouse and rat 

hypoxia/SU5416 model of PH produce severe PH with elevated RVP and 

pulmonary lesions and vessel occlusion evident in the rat model. Therefore 

illustrating that the hypoxia/SU5416 model of PH (rat model more so than the 

mouse model) develops a more severe PH phenotype than the classic models of 

PH and can be used in future experiments to understand the complex 

mechanisms involved in the development of these plexogenic lesions. 

Consideration must be taken when using the hypoxia/SU5416 model as VEGF and 

VEGFR2 expression are known to be increased in PAH (Taraseviciene-Stewart et 

al., 2001). Therefore although an exaggerated PH phenotype is observed in this 

model, it is not the best model to use if the molecules being studied interact 

with the VEGF signalling pathway.  

Death of PAH patients is predominantly due to right ventricular hypertrophy and 

subsequent right ventricular failure. Therefore, a miRNA profile was established 

for the PAH diseased right ventricle. MiR-27a and miR-27b were up-regulated 

within the RV of hypoxia/SU5416 mice and rats, respectively. This response 

appears to be cardiac specific and may help to establish therapies to maintain 

and stabilise RV function. Both miR-27 family members are pro-angiogenic and a 

possible explanation for their up-regulation in the RV during PAH is due to an 

adaptive response to the increase in right ventricular pressure. Therefore the 
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increase in miR-27 expression may contribute to the adaptive hypertrophy 

observed in the RV which requires neovascularisation in order to prevent RV 

failure.  

In conclusion, the findings presented in this thesis confirm that miRNAs are 

dysregulated within the lung and right ventricle during PH development. This 

miRNA dysregulation appears to be dependent on numerous experimental factors 

and therefore makes targeting specific miRNAs challenging. Investigations into 

these factors will provide a better understanding of miRNA modulation within 

the diseased model of PH. The development of newer models of PH, such as the 

hypoxia/SU5416 model, has given us an insight into the biological basis of the 

plexiform lesions characteristic of human PAH and future work using this model 

will further our understanding of signalling pathways involved in this complex 

disease.  
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6.1 Future Perspective  

Identification of miRNA target genes allows therapeutic targeting of signalling 

pathways integral to the development of PAH. Microarray analysis may provide a 

more comprehensive overview of the target genes that are dysregulated when a 

miRNA is silenced (as in the case of miR-145 or miR-451). This would allow 

expression levels for an abundant number of genes to be analysed and candidate 

genes could be validated through luciferase reporter assay, western blot and 

qRT-PCR. As well as transcriptome analysis, proteomics is another method which 

could be utilised to identify novel miRNA targets. Stable-isotope labelling by 

amino acids in cell culture (SILAC) is a mass-spectrometry based quantitative 

proteomics technique used to quantify protein expression levels. SILAC is a high-

throughput system allowing identification of proteins differentially expressed in 

diverse conditions (Thomson et al., 2011). It has been demonstrated that mRNA 

levels do not always correlate with protein expression (Greenbaum et al., 2003) 

and therefore proteomic analysis has the advantage of directly measuring the 

functional output of the miRNA. Performing both mRNA and protein screening 

will provide specific miRNA targets which can then be further validated to 

confirm if they are direct targets for the miRNA thus enhancing our 

understanding of how miRNAs modulate cellular functions. 

Therapeutic targeting of the right ventricle appears a promising candidate in PH. 

From the results presented in this thesis, members of the miR-27 family are 

dysregulated selectively within the RV during disease development. Further work 

is required to establish whether miR-27 over-expression in PH is an adaptive 

response or detrimental to cardiac tissue. To test this, the effect of over-

expressing miR-27a/b within the RV should be analysed in experimental models 

of PH and RV function and survival rates assessed. This may be of benefit as 

increasing RV function would decrease the severity of the disease in order for 

other treatments targeting, for example, the pulmonary vascular remodelling to 

exert a beneficial effect.  

In summary, miRNAs represent a potential therapeutic target for the treatment 

of PAH with further work required to pinpoint the exact mechanistic pathways 

through which they exert their effects.  
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