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Summary 
Essential or primary hypertension is a complex polygenic disease with genetic 

heritability averaging approximately 30% and with strong influence of 

environmental factors and gene-environment interaction. Heterogeneity in the 

general population and the polygenic complexities of the disease has meant that 

identification and functional validation of candidate genes has proved extremely 

difficult in humans. Several strategies have been developed to dissect genetic 

determinants of hypertension, one of which is the use of rodent models (1;2). 

Animal models of heritable hypertension offer more favourable investigative 

opportunities because of reduced genetic heterogeneity, the capacity for 

controlled breeding and environmental conditions, and the ability to produce 

genetic crosses and analyse large numbers of progeny. The stroke-prone 

spontaneously hypertensive rat (SHRSP) is a commonly used model of human 

essential hypertension. Previous studies conducted in our laboratory utilizing a 

combination of congenic strain construction and genome-wide microarray 

expression profiling in the SHRSP have allowed us to identify the positional 

candidate gene, glutathione S-transferase µ-type 1 (Gstm1), which is involved in 

the defence against oxidative stress and is significantly down-regulated in the 

SHRSP (3;4). Genomic DNA sequencing of Gstm1 in SHRSP and WKY identified 13 

single nucleotide polymorphisms (SNPs), an insertion and a deletion (5). 

Luciferase reporter gene assays implicated five SNPs to be responsible for 

significant reduction in luciferase activity measurements (6). In consideration of 

these previous studies, it is hypothesized that Gstm1 deficiency in the SHRSP 

plays a causative role in the development of oxidative stress and hypertension. 

To establish definitive proof that reduced Gstm1 expression affects blood 

pressure regulation and oxidative stress, two independent transgenic lines 

(referred to as Trans1 and Trans2) of SHRSP were created with the aim of 

rescuing Gstm1 deficiency by incorporation of a normal Gstm1 gene into the 

SHRSP genome. Generation of these transgenic SHRSP rats involved 

microinjection with a 2.7 kb linear construct encoding wild type (WKY) Gstm1 

under the control of the universal EF-1α promoter. They were generated using 

the same expression platform and microinjection fragment purification protocol 

employed in the successful production of the CD-36 transgenic, rat as previously 

described (7). The transgenic protocol was carried out in collaboration with Dr 
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Michal Pravenec (Prague), who is an expert in transgenic rat production, using 

male and female SHRSP rats from the University of Glasgow colony.  

Oxidative stress is an important pathogenic factor in the development of 

cardiovascular disease. Glutathione S-transferases protect against oxidative 

stress-induced injury through the detoxification of reactive oxygen species. It is 

hypothesised that Gstm1 deficiency in the SHRSP plays a causative role in the 

development of oxidative stress and hypertension. Thus the aims of this study 

were to establish definitive proof that reduced Gstm1 expression in the SHRSP 

plays a causative role in the development of hypertension and oxidative stress 

through utilizing a combinational approach of in vivo and ex vivo studies 

alongside molecular analysis to fully characterize the Gstm1 transgenic SHRSP 

rat. Additionally, information and insights gained from this investigation from the 

Gstm1 transgenic SHRSP will be applied to a translation aspect for the 

investigation of GSTM family in humans.  

Functional validation through hemodynamic and cardiac analysis included 

measurement of systolic, diastolic and mean arterial blood pressures, pulse 

pressure and heart rate using the Dataquest IV telemetry system (Data Sciences 

International) and transthoracic echocardiography was used to assess cardiac 

geometry and contractility. Telemetry data show that there is a significant 

reduction in systolic blood pressure, diastolic blood pressures, and pulse pressure 

in both of the transgenic lines when compared to the SHRSP suggesting that 

incorporation of a WKY type Gstm1 gene into the SHRSP genome does indeed 

reduce the hypertensive phenotype. Moreover, the observed reduction in systolic 

blood pressure is remarkably similar in magnitude to that demonstrated in the 

Chromosome 2 congenic strain, SP.WKYGla2c*, in which Gstm1 was identified as 

a candidate gene for hypertension. In order to investigate the potential role of 

Gstm1 deficiency in the salt-sensitivity phenotype in SHRSP rats, parental strain 

rats and Trans1 animals underwent 1% salt loading starting at 18 weeks of age. 

This resulted in Trans1 displaying a trend towards salt-sensitivity (i.e. 

exaggerated night-time daytime blood pressure variation) similar to that of the 

SHRSP, however, the Trans1 line still maintained a significant decrease in systolic 

and diastolic blood pressure compared to the SHRSP during salt loading.  
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In parallel with the significantly lower SBP, DBP and PP we also observe 

significantly improved cardiac function and reduced cardiac hypertrophy in the 

two independently generated transgenic lines. While there was no significant 

changes in both fractional shortening (FS) and ejection fraction (EF), between 

the four strains, relative wall thickness was significantly reduced in WKY, Trans1, 

and Trans2 rats when compared to the SHRSP with Trans1 and Trans2 rats 

showing an intermediate phenotype between the parental strains. 

Analysis of genetic and molecular changes resulting from the random insertion of 

Gstm1 into the SHRSP genome included assessment of transgene (WKY form) and 

total Gstm1 gene expression, protein quantification, immunohistochemistry 

(IHC), transgene insertion and copy number. Both transgenic lines demonstrated 

an increase in total and transgene specific expression of Gstm1 in kidneys at 5 

weeks of age as well as increased transgene expression in several other 

cardiovascular tissues. Protein expression was also similarly increased in the 

kidney at 5 weeks of age and showed a similar expression pattern to that of the 

WKY. Additionally, we saw increased total Gstm1 expression in a range of 

cardiovascular tissues at 21 weeks of age without changes of other Gstm family 

members (Gstm2 and Gstm3). Although it was not possible to identify the exact 

location of the transgene insertion site in both transgenic lines, data presented 

indicate that they are not identically inserted. Furthermore, sequencing data 

shows that each transgenic line contains multiple copies of the transgene across 

a number of generations. 

To assess renal function in the Gstm1 transgenic lines, rats from each line that 

were implanted with telemetry probes were assessed by 24-hr metabolic cage 

measurements which allowed for analysis of indirect glomerular filtration rate 

along with proteinuria and urinary electrolyte measurements. Histological 

analysis was used to assess renal morphology by examining haematoxylin and 

eosin (H&E) stained sections. Fibrosis was examined by staining with picrosirius 

red. At 21 weeks, we saw evidence of reduced renal pathology as indicated by 

the absence of renal vessel hyperplasia and reduced proteinuria in the WKY, 

Trans1, and Trans2 rats. H&E staining showed a more similar morphology to the 

WKY in the transgenic lines with no signs of accelerated hypertension. These 

improvements in renal pathology were also apparent in salt-loaded Trans1 rats.  
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Oxidative stress and myography measurements were also carried out in order to 

ascertain the impact of increased Gstm1 expression on the SHRSP genetic 

background. The data presented in this study clearly shows a reduction in renal 

oxidative stress in both transgenic lines. Furthermore, these improvements in 

oxidative stress were also apparent in salt-loaded Trans1 rats. Aortic and 

mesenteric artery wire myography data showed that there was no significant 

difference between SHRSP and transgenic lines for vascular function. Pressure 

myography in the mesenteric arteries, demonstrated that the transgenic lines 

were only significantly different from the SHRSP in terms of increased vessel 

cross sectional area (CSA), but did show trends of improved structure and 

mechanical alterations of these vessels.      

Additionally, we investigated the rodent GSTM family and applied them to a 

human cohort in order to assess translational aspects and expanded the study 

previously conducted by Delles et al. (8). The investigation included a larger 

number of subjects than that studied previously by Delles et al. and allowed for 

the elucidation of the relationship between other members of the GSTM family 

and human essential hypertension. While there was no significant difference in 

renal expression in GSTM5, GSTM3, GPx-1 and GPx-3 between normotensive and 

hypertensive patient, we found that GSTM2 expression was significantly 

increased in hypertensive patients when compared to normotensive patients. 

Moreover, we found there to be a borderline significance (p=0.054) between the 

rs11802 SNP genotype and GSTM5 expression. Further investigation between gene 

expression correlations showed there was a significant linear correlation 

between GSTM5 and GPx-1.  

In summary, multiple phenotypic and molecular techniques were applied in the 

analysis of the GSTM1 transgenic SHRSP. Transgenic SHRSP rats expressing the 

WKY form of the GSTM1 gene demonstrate significantly reduced blood pressure, 

oxidative stress and improved levels of renal GSTM1 expression. This data 

supports the hypothesis that significantly reduced renal GSTM1 plays a causative 

role in the development of hypertension in the SHRSP rat. 



 

 

 

 

 

 

 

 

 
 

1 Introduction 

  



 

1.1 Cardiovascular Disease 

Approximately one third of adults in westernized countries have at least one 

form of cardiovascular disease (CVD) (9) and a substantial proportion (60%) of 

these adults are under 60 years old (9;10). This shift in demographics from the 

traditional 65+ years of age to that of 44+ years of age is a significant increase in 

premature CVD diagnosis. The early onset of CVD has been estimated to kill an 

average of 17.3 million people each year which represents 30% of all global 

deaths (11). Of these deaths an estimate 7.3 million were due to coronary heart 

disease and 6.2 million were due to stroke (10). By 2030 it is expected that 23.6 

million deaths will be caused by CVD (10). Consequentially, these statistics result 

in CVD being considered as the single largest risk for mortality in industrialized 

and more specifically in developing countries (12). The percentage of premature 

deaths from CVDs ranges from 4% in high-income countries to 42% in low-income 

countries (10). A major factor that contributes to this mortality rate is high blood 

pressure, or hypertension, which accounts for nearly two-thirds of all strokes and 

a half of all ischemic heart disease (13). The most recent estimate indicates that 

globally 7.6 million premature deaths (13.5% of total global mortality) and 92 

million disability-adjusted life years (6.0% of the global total) were attributable 

to high blood pressure (1). In addition to this, high blood pressure is a major risk 

for dementia, chronic kidney disease and heart failure (2;14). These statistics 

are similar in the UK where over 150,000 people died from cardiovascular disease 

in 2008, 300,000 people are living with moderate to severe disability as a result 

of stroke, and 10% of the population have significant kidney impairment. In 2006, 

the resulting health care cost of these diseases added up to approximately 14 

billion, of which 80.4% was spent on patient care and 19.6% spent on medication 

(15). Moreover, total economic costs for of CVD reached 30.6 billion in 2006 (15). 

For these reasons, the pressing need for increased awareness and for a 

comprehensive, more focused international research basis is needed to fully 

understand the complications and genetic aspects related to CVD.   

Cardiovascular disease is an umbrella classification of disease that includes all 

heart and circulation disorders. These classifications encompass ailments that 

directly affect the heart (i.e. arrhythmias, cardiomyopathies and congenital 

heart disease), from conditions that arise as a consequence of vascular disease 

(i.e. coronary heart disease, stroke, transient ischemic attack), as well as 



 

conditions that can lead to, or result from, vascular disease including diabetes 

and chronic kidney disease (15), There are nine main risk factors for CVD, many 

of which are linked to each other. The major modifiable risk factors are; 

smoking, poor diet, high blood cholesterol, high blood pressure, lack of exercise, 

obesity, and diabetes (9). Other minor risk factors include medication, excess 

alcohol consumption, and psychosomatic stress.  Additionally, there are non-

modifiable risk factors that include ageing, family history, gender and ethnicity 

(9). Unfortunately, all or most of these risk factors affect health in Scotland, 

with hypertension being most prevalent, which illustrates a need for further 

research in CVD (16).    

1.2 Blood Pressure  

Blood pressure is considered one of the principal vital signs and is measured as 

the arterial pressure exerted by the systemic circulation of blood upon the walls 

of vessels. It is determined primarily by three factors: renal sodium excretion 

and resultant blood volume, cardiac performance, and vascular tone (17). With 

each beat of the heart blood pressure varies between maximum (systolic) and 

minimum (diastolic) pressure. Systolic blood pressure is the pressure that is 

exerted when the ventricles of the heart are contracting (beating); while 

diastolic blood pressure is the relaxed blood pressure where the heart refills with 

blood. Classification of blood pressure as adopted by the American Heart 

Association is generally, Hypotension, Desired, Pre-hypertensive, Stage 1 

Hypertension, Stage 2 Hypertension and Hypertensive Crisis (Table 1.1). In the 

UK blood pressure is usually categorized in to three groups; low, high and 

normal. While there are varying categories of blood pressure classifications, most 

authorities have defined elevated blood pressure (hypertension) as either a 

systolic blood pressure ≥ 140 mmHg or a diastolic blood pressure ≥ 90 mmHg. The 

hypertension cut off of 140/90 mmHg was selected in the early 20th century 

based on the fact that only 5−10% of the US population had blood pressures in 

that range (18).  

 
 
 
 



 

Table 1-1: Classification of Hypertension     

Blood Pressure (BP) Category  
  
Systolic BP (mmHg) 

  
Diastolic BP (mmHg) 

Normal <120  <80 
High Normal  135-139  85-59 
Mild Hypertension (Grade 1)  140-159  90-99 
Moderate Hypertension (Grade 
2)  160-179  100-109 
Severe Hypertension (Grade 3)   ≥180   ≥110 

Values taken from (19) 

Both systolic and diastolic blood pressures increases progressively with age. 

While diastolic blood pressure is understood to continue increasing until 

approximately 50 years of age, systolic blood pressure has been known to 

increase with age until approximately 80 years old. Mean systolic blood pressure 

increases with age in both men and women, rising from 127 mmHg in men aged 

16-24 to 145 mmHg in men aged 75 and over, and from 119 mmHg to 149 mmHg 

in women (10). Adolescent blood pressure (15-19 yrs old) generally averages 

117/77 mmHg. According to the Scottish Health Survey, 33% of Scottish men and 

33% of Scottish women are hypertensive or are treated for hypertension (20).  

Epidemiological studies have documented multiple contributing factors, such as 

age, gender, body mass index, to the onset of essential hypertension (21). 

However, the specific underlying mechanisms involved in the development of 

hypertension are still not completely understood. A wide variety of physiological 

systems that have pleiotropic effects and interact in a complex manner have 

been found to influence BP (Figure 1.1). Sodium and fluid balance, and 

vasomotor tone are important in BP regulation. Both of these mechanisms are 

affected by numerous genetic and environmental factors, controlled by 

hormonal, non-sympathetic, paracrine and intracellular feedback loops.  

1.2.1 Blood Pressure Control and Regulation 

Blood pressure homeostasis is one of the most important and finely regulated 

systems of the body. Through this system, the body relies on the delivery of 

oxygen, nutrients and hormones at specific times and precise concentrations and 

to ensure the removal of metabolic waste products such as carbon dioxide. Many 

physiological mechanisms exist to ensure that both acute and long-term local and 

global blood flow is maintained at an appropriate level to supply individual 

organs in response to metabolic demands. Blood pressure, or mean arterial 



 

pressure, is regulated through a complex physiological system involving the 

endocrine and nervous systems, in addition to the kidney heart and blood 

vessels. The definition of blood pressure is the rate of blood flow produced by 

the heart (cardiac output) multiplied by the resistance of the blood vessels to 

blood flow (vascular resistance). The resistance is produced mainly in the 

arterioles and is known as systemic (or peripheral) vascular resistance.  

There are various homeostatic mechanisms involved in blood pressure control 

that interact with one another in order to maintain appropriate feedback 

responses to environmental factors such as diet, exercise and stress that impact 

on blood pressure level. Both the nervous system and the renin angiotensin-

aldosterone system (RAAS) are intimately involved in regulating these parameters 

(22). The main organ involved in long-term regulation of blood pressure is the 

kidney, as it regulates blood volume by controlling salt and water levels within 

the body. Studies conducted by Guyton et al. showed that whenever blood 

pressure increases above an equilibrium level, the kidneys will excrete more 

sodium and water and thus decreases blood volume and cardiac output which 

then restores arterial pressure to normal (17). Bianchi et al. in 1974 then 

confirmed the importance of the role that the kidney plays in blood pressure 

regulation during his experiments where renal transplants between hypertensive 

and normotensive rats demonstrated a reduction of BP in hypertensive rats 

receiving normotensive kidneys and an increase in BP with normotensive rats 

receiving hypertensive kidneys, concluding that hypertension travels with the 

kidney (23).  

1.2.1.1 Renin Angiotensin System  

 Arterial pressure is regulated by a variety of endogenous factors, in particular 

the Renin-Angiotensin System (RAS) system (24). The renin-angiotensin system, is 

known as a physiological regulator and has been the subject of study for over a 

century (new insights RAS). The RAS is a hormonal cascade where the protein 

substrate angiotensinogen is successively metabolized by renin and angiotensin 

converting enzyme (ACE) to form  



 

 

 Figure 1-1: The complexity of BP regulation and th e role of the kidneys and RAAS 
Angiotensinogen is released from the liver and cleaved by renin (released from 

the glanular cells of the juxtaglomerular complex) forming AngI. AngI is cleaved 

by ACE expressed on endothelial cells in the lung and is transformed into AngII. 

AngII is the main active peptide of the RAS and acts through binding to the AT1R 

or the AT2R. AngiotensinII stimulates the hypertrophy of renal tubule cells, 

leading to further sodium reabsorption. In the adrenal cortex, it acts to cause 

the release of aldosteron. Aldosterone acts on the tubules (e.g., the distal 

convoluted tubules and the cortical collecting ducts) in the kidneys, causing them 

to reabsorb more sodium and water from the urine. This increases blood volume 

and, therefore, increases blood pressure. In exchange for the reabsorbing of 

sodium to blood, potassium is secreted into the tubules, becomes part of urine 

and is excreted. Figure adapted from Schrier RW, ed. Renal and Electrolyte 

Disorders 5th ed. 1997. 

 

 

 



 

 

 

angiotensin (Ang) II, its major biologically-active peptide (24). Ang II interacts 

with multiple different vascular beds and organ systems that ultimately lead to 

elevated extra-cellular fluid (EFC) volume and thus resulting in raised arterial 

blood pressure (17). Ang II also causes vasoconstriction of the renal and systemic 

arterioles, which then increases total peripheral resistance and blood pressure. 

Furthermore, activation of Ang II receptors in the brain elevates blood pressure 

by increasing sympathetic output to the heart and vasculature, which increases 

cardiac output and total peripheral resistance. Ang II causes increase release of 

arginine vasopressin from the posterior pituitary gland which increases fluid 

retention in the renal collection duct in the kidneys (25). Additionally, Ang II 

stimulates thirst and the increased fluid ingestion expands blood volume thus 

elevating blood pressure through aldosterone secretion. Plasma Ang II increases 

aldosterone release from the adrenal gland and acts directily on the tubular 

receptors, which increases sodium chloride and fluid re-absorption in the distal 

nephron to increase ECF volume (26). Moreover, it stimulates sympathetic 

nervous activity which causes increased heart rate and blood vessel constriction 

(27).  

The classical actions of RAS, particularly its cardiovascular effects, are induced 

by activation of the angiotensin II type 1 (AT1) receptor. The efficacy of specific 

AT1 blockers (ARBs) in treating hypertension and reducing cardiovascular risk 

reflects the important role of this receptor in a variety of disorders (28). 

Similarly, targeted deletion of the major murine AT1 (AT1A) receptor cause a 

marked reduction of blood pressure and salt sensitivity in mice, confirming its 

importance in cardiovascular control (28). 

1.2.1.2 Other Mechanisms of Blood Pressure Regulati on 

1.2.1.2.1 Autonomic Nervous Control 

In addition to the RAAS system, there are many other factors involved in blood 

pressure control. The most rapid in responding to the fall or rise in blood 

pressure is the autonomic nervous system as it receives information from the 

baroreceptors which relays to the vasomotor centre. The activation of the 



 

baroreceptors in turn activates the sympathetic and parasympathetic nervous 

systems (29).  

The role of the arterial baroreflex is to maintain blood pressure homeostasis. 

This reflex mechanism counteracts deviations of blood pressure from a reference 

set point by modulating heart rate, peripheral vascular tone and other 

cardiovascular variables through autonomic paths. Blood pressure information is 

sensed by stretch receptors (baro receptors) located on the wall of the carotid 

arteries and aorta. When a change in blood pressure occurs, a modification in the 

dilation of arterial walls is sensed by these receptors and information is sent to 

control centers located in the brain stem through afferent neural fibres.  These 

centres process the baroreceptor inputs and modulate autonomic outflow so as 

to produce changes in the cardiovascular variables, i.e. heart rate, and 

vasoconstriction. Since the primary role of the baro-receptor is blood pressure 

regulation, an impairment of the baro-reflex will likely result in a significant 

deregulation of blood pressure. This is inclusive of sudden pressure drops on 

shifting positions as well as aberrant pressure rises with major risks of fatal 

events such as myocardial infarction and stroke. 

The sympathetic arm of the autonomic nervous system acts to stimulate the 

heart, constrict blood vessels, and stimulate the adrenal gland. Stimulation of 

the adrenal glands from increased impulses of the sympathetic system results in 

a release of norepeniphrine and epinephrine that increases heart rate and 

contractility. The parasympathetic system acts to depress cardiac function and 

dilatation of selected vascular beds.  

1.2.1.2.2 Endothelin  

ET has been shown to affect almost every blood pressure regulating system 

associated with sodium homeostasis (ET). The two primary receptors responsible 

for this are ETA and ETB. In general, activation of ETB reduces blood pressure and 

promotes urinary Na secretion through multiple cascades such as endothelial cell 

NO production with resultant vasodilation, inhibition of NA transport to the 

proximal tubule, reduced water re-absorption, and inhibition of renin release. 



 

1.2.1.3 Hypertension  

Raised blood pressure or hypertension is estimated to cause approximately 7.5 

million deaths, ~12.8% of all annual deaths (30). According to the Global Health 

Risks Report by the World Health Organization, arterial hypertension remains the 

leading cause of morbidity and mortality world-wide (30). Hypertension is a 

considered a major risk factor for coronary heart disease and cerebrovascular 

disease (31). Blood pressure levels have been shown to be positively and 

progressively related to the risk of stroke and coronary heart disease. In some 

age groups, the risk of CVD doubles for each incremental increase of 20/10 

mmHg of blood pressure. In addition to coronary heart disease and 

cerebrovascular disease, uncontrolled blood pressure causes heart failure, renal 

impairment, peripheral vascular disease and damage to retinal blood vessels and 

visual impairment (31). Moreover, studies have shown that by achieving the 

target blood pressure of 140 mmHg there would be a 28-44% reduction in 

ischaemic heart disease, depending on the age (32).   

Hypertension is a multifactorial disorder that is most likely a result from the 

combination of various environmental determinants and genetic inheritance, and 

can be classified as either essential (primary) or secondary (33;34). Essential 

hypertension is described as a rise in blood pressure where there is no evident 

medical cause, and is the most prevalent type of hypertension that affects 90-

95% of hypertensive patients(33;34). Although no direct cause has been 

identified, there are many factors such as sedentary lifestyle (35), stress, 

hypokalemia (36), salt sensitivity (37), and obesity (38) with more than 85% of 

cases occur in those with a body mass index greater than 25 (39) that increase 

the risk of hypertension. Additionally, the risk of high blood pressure can also 

increase with age (40), by inherited genetic mutation, and/or family history (41). 

Existing evidence suggests that the genetic contribution for blood pressure 

variation in essential hypertension is about 30–50% (42). Secondary hypertension 

indicates that the increase in blood pressure is a result of (i.e. secondary to) 

another condition, such as renovascular hypertension caused by renal arterial 

stenosis as a result of hormonal changes, chronic renal failure, hyperthyroidism, 

neorogenic disorders that cause increased expression of adrenaline, or tumours 

(33;34).  



 

1.2.1.4 Environmental Influences 

Hypertension is a disease of modern civilization and is greatly influenced by 

environmental factors and lifestyle choices. Blood pressure studies carried out on 

a population wide basis have shown that hypertension rates can differ greatly 

among population groups of similar genetic background due to environmental 

differences. For instance, the prevalence of hypertension differs between non 

westernized and westernized populations such as African and African-Americans 

(43;44). Furthermore, these rates can quickly increase within the same ethnic 

groups and when populations migrate from low to high-risk environment (I.e. 

dietary or exercise changes) (43;44). To contextualize environmental influences, 

mean placebo-subtracted SBP reduction for drug monotherapy is in the range of 

6.9–9.3 mmHg for four of the most common BP drug classes (45). Estimated SBP 

reductions for some of the major lifestyle modifications are in or near this range 

(46).  Major components such as smoking/tobacco use, obesity, poor diet, 

physical inactivity, and heavy alcohol consumption, as well as many of the minor 

components such as pollutants, have been extensively investigated in order to 

determine the cardiovascular risk level they present in today society (46).  

Risk factors such as alcohol and smoking are some of the more easily managed 

risk factors. Alcohol is considered a threshold risk factor where low to moderate 

alcohol consumptions results in only a low cardiovascular risk level, but high 

alcohol consumption, like that which is culturally present in the west of 

Scotland, results in a high CVD risk level (47). Consequently, reduction to 

moderate or complete alcoholic abstinence significantly reduces hypertension 

(15). Smoking, on the other hand, is considered one of the main avoidable risk 

factors contributing to hypertension and CVD. The immediate noxious effects of 

smoking are related to over-activity of the sympathetic nervous system, which 

increases myocardial oxygen consumption through a rise in blood pressure, heart 

rate and myocardial contractility (48). Chronic cigarette smoking induces arterial 

stiffness, a well know contributor to CVD, which can persist for up to a decade 

after smoking cessation. Additionally, the incidence of hypertension is increased 

with those who smoke more the 15 cigarettes per day (48).  

Another medical complication that is associated with hypertension that is heavily 

prevalent in today’s society is obesity. It is well known that there is an increase 



 

of 3 mmHg (for systolic) and 2 mmHg (for diastolic) in blood pressure 

respectively, with every 10 kg increase in body weight (49). Studies have also 

shown that cerebrovascular disease, ischemic heart disease and congestive heart 

disease are also cardiovascular complications of obesity (49).   

Abundance or lack of vitamins and minerals, such sodium, and potassium, due to 

diet choices has also been shown to play a role in blood pressure regulation. 

Increased sodium consumption through processed foods has been shown to 

increase water retention. Conversely, too little potassium intake effects cell 

sodium levels which effects systemic sodium levels resulting in water retention 

and elevated blood pressure (50).    

Traditionally, studies investigating the correlation between hypertension and the 

environment have been based upon lifestyle choices such as diet, smoking and/or 

exercise. However, recent studies have elucidated that environmental exposure 

to pollutants and other harmful chemical also contribute to CVD risk (51;52).  

1.2.1.5 Genetic Influences 

Cardiovascular disease is a result of a complex interaction between genes and 

environment. In the past half century, impressive progress has been made in 

understanding its varied causes and manifestations (53); however, complete 

understanding of the initiating factors of essential hypertension are still elusive. 

Essential hypertension has been shown to run in families and evidence for 

genetic influence comes from multiple sources. Twin studies document a greater 

concordance of blood pressures in both maternal and fraternal twins (54), and 

population studies show a greater similarity of blood pressures within families 

than between families (55). Adoption studies confirm the latter observation 

because they demonstrate greater concordance of blood pressure among 

biological siblings than adoptive siblings living in the same household (56). 

Moreover, Lifton et al. demonstrates that single genes can impart large variance 

of blood pressure is demonstrated by rare the rare Mendelian forms of of hyper-

and hypo-tension (57).  

The investigation of rare forms of Mendelian forms of blood pressure variation 

where mutations in single genes produce large effects of blood pressure has 



 

resulted in several genes being identified and characterized (58). The 

pathological variants in Mendelian or monogenic hypertension are known to 

follow the classic rules of Mendelian genetics and are often distinguishable 

specific genotype features (i.e. electrolyte and hormonal abnormalities) (59). 

Monogenic investigations have lead to the identification of mutations in 12 genes 

that lead to 8 different distinguishable Mendelian syndromes of hypertension and 

9 genes associated with Mendelian forms of hypotension. Furthermore, 8 of these 

genes in are associated with the alteration of salt re-absorption in the kidney 

(58;60). However the overall contribution of these conditions to blood pressure 

regulation in the general population is small.  

What is known as the candidate gene approach typically compares the 

prevalence of hypertension or the level of blood pressure among individuals of 

contrasting genotypes at candidate gene/loci in pathways known to be involved 

in blood pressure regulation. An example of this relates to genes of the renin–

angiotensin–aldosterone system, such as the M235T variant in the 

angiotensinogen gene (61). The M235T gene has been associated with increased 

circulating angiotensinogen levels and blood pressure in many distinct 

populations (61-63). A second example involves a common variant in the 

angiotensin-converting enzyme (ACE) gene that has been associated in some 

studies with blood pressure variation in men (64;65). However, most 

monogenetic variants only modestly affect blood pressure, and other candidate 

genes have not shown consistent and reproducible associations with blood 

pressure or hypertension in larger populations (58;66). Generally, monogenetic 

variants mutations account for only a small percentage of hypertension. A 

primary reason for this lies in the fact that numerous interacting genetic loci can 

influence the same phenotype, and studies have shown that multiple loci are 

involved in overall blood pressure variation (33).  

Large-scale meta-analyses of genome-wide association studies (GWAS) from the 

Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging 

Research in Genome Epidemiology (CHARGE) consortia identified a total of 43 

independent loci significantly associated with systolic blood pressure, diastolic 

blood pressure and hypertension (59;67;68). These genetic variations include 

single nucleotide polymorphisms (SNPs), variable number tandem repeats 

(VNTR), insertions, deletions and duplications. Many of these variants were found 



 

to alter various systems, such as the renin-angiotensin system, renal sodium 

handling system, cholesterol metabolism pathways, inflammation, and oxidative 

stress (33). 

While identifying and understanding monogenic and polygenic forms of 

hypertension improve our comprehension of the genetic architecture of blood 

pressure and provide new biological insights in to blood pressure control, 

common genetic causes of hypertension in the general population remains 

elusive (63;69;70).  

 
1.2.1.6 Current prevention strategies 

Prevention of hypertension, although relatively unfashionable when compared to 

new drug and surgery related technologies, is the cheapest and simplest way to 

reduce the prevalence of hypertension.  Primordial prevention, which refers to a 

lifestyle that does not permit risk factor to appear, is used by the American 

Heart Association (AHA) to promote “ideal cardiovascular health” by 

incorporating Life’s simple 7 (www.mylifecheck.org). This ideal cardiovascular 

health incorporates sufficient exercise, a superior diet score, absence of 

smoking, a BMI less than 25 kg/m2, and ideal health factors, i.e. normal blood 

pressure, cholesterol, and fasting glucose. In addition to healthy life style 

choice, clinical prevention using drugs such as aspirin and statins are well known 

protectors of cardiovascular health. In general, primary prevention of both 

hypertension and cardiovascular events denotes delaying or limiting a first event 

in individuals who have not yet been formally diagnosed. This also includes 

individuals with risk factors where the risks themselves are often regarded as 

diseases and are targets for therapy.  

 
1.2.1.7 Current treatment strategies 

Considering that hypertension is a major public health concern and a primary 

cardiovascular risk that contributes significantly to cardiovascular mortality 

(71;72), its treatment is therefore important as a primary and secondary 

prevention strategy. Initial management of hypertension uses a multipronged 

approach, with emphasis lifestyle measures (non-pharmacological) and add-on 



 

drug management (73). With recent studies providing increasing evidence that 

non-pharmacological therapies play important roles in both the prevention and 

reduction of hypertension, lifestyle medication can serve as an initial treatment 

to hypertension before the start of drug therapies (74). Furthermore, with 

hypertensive patients these therapies can facilitate a reduction of medication 

reliance for the hypertensive individual, provided that sustain in lifestyle 

change. Major lifestyle environmental factors which influence hypertension are 

dietary excess of sodium and fat Harp (75), a deficiency of fibre and potassium 

(76), lack of physical activity, psychosocial stress, and alcohol intake (77) 

Numerous short-term trials have documented that individuals can make these 

lifestyle changes which lower blood pressure (73). For example, the American 

Heart Association has originated the dietary approaches to stop hypertension 

program (DASH) as a crucial step to hypertension management. The DASH study 

showed that a diet full of fruits, vegetables and calcium while being low in 

sodium was beneficial to treating hypertension (77). The study also concludes 

that exercise is a critically important component, especially in children and 

young adults with hypertension from heightened sympathetic nervous system 

activity (77). 

When lifestyle changes need to be supplemented in order to obtain more ideal 

blood pressure levels, drug therapies are often prescribed. The main classes of 

blood-pressure-lowering drugs can be grouped into two categories. The first 

category consists of drugs that inhibit or block the renin-angiotensin-aldosterone 

system, namely angiotensin-converting enzyme (ACE) inhibitors and angiotensin 

receptor blockers, beta-blockers and aldosterone antagonists. The second 

category consists of drugs that lower blood pressure independently of the renin–

angiotensin system, and cause reflex activation of this system such as calcium 

antagonists and diuretics. Because of the variety of choice for drug mediated 

blood pressure reduction, deciding upon an initial drug management approach is 

a contentious issue. The JNC-1 report emphasized beta-blockers and thiazide 

diuretics as suitable drugs for first line management (74). On the other hand, 

recent studies that have evaluated newer drugs such as ACE inhibitors and CCB 

molecules report better outcomes as compared to the beta-blockers and 

thiazides. The British National Institute of Clinical Excellence (NICE) guidelines 

utilize ABCD algorithm for initial pharmacological management of hypertension 



 

but has modified these to ACD algorithm in view of changing evidence (16). 

Current thinking is to start with an ACE inhibitor in young individuals and CCB in 

older individuals and step-up the drug therapy until blood pressure targets are 

reached (74). 

   
 

1.3 Animal Studies 

Given that hypertension is under polygenic control, and is due to a culmination 

of multiple gene-gene and gene-environment interactions, genetic studies 

involving genetic modification or dissection are not feasible in humans due to 

ethical implications. For this reason, an array of experimental models have been 

developed as a reductionist paradigm in order to study the determinants of 

essential hypertension (78). The most widely used experimental models are 

rodents models, specifically rats. Since rats have long been a favoured species 

for the study of hypertension, a variety of genetically hypertensive strains and 

non-genetic models have been developed and well characterized over the past 

35 years (79-82). The range of available models addresses both essential and 

secondary hypertension. Examples of non-genetic models include surgically 

induced hypertension (2 kidney 1 clip) where hypertension is induced by 

unilateral restriction of the renal artery, the deoxycorticosterone acetate 

(DOCA) –salt rat where hypertension is induced through the use of a 

mineralocoricoid, (DOCA), and diet-induced hypertension through increased salt 

intake (81). 

Genotype-driven genetic models, typically transgenic or knock-in/knock-out, 

have been extremely important in the study of Mendelian hypertension. 

Phenotypic-driven genetic models such as the spontaneously hypertensive rat 

(SHR) are used to identify underlying genes or mechanisms contributing to 

development of hypertension. Among these strains is the stroke-prone 

spontaneously hypertensive rat (SHRSP) (83;84) which is a model for essential 

hypertension, endothelial dysfunction and oxidative stress (79;80). The SHRSP 

develops a number of vascular complications, such as cardiac hypertrophy, 

cardiac failure and stroke (80;85;86). These animal models provide favourable 

investigative opportunities because of reduced genetic heterogeneity, controlled 

breeding, the ability to produce genetic crosses and analyse large numbers of 



 

progeny (87). Although no species or model can consistently fulfil all the needs 

each study requires, it is important to work with the most appropriate model 

which most fully addresses the research question under investigation.   

1.3.1 SHRSP 

Spontaneously-hypertensive, stroke-prone rats are a unique genetic model of 

severe hypertension and cerebral stroke. They are of particular interest because 

their pathophysiology is very similar to that of stroke patients in the clinical 

setting (88). They were first developed in 1974 by Yamori et al. (89) as a 

substrain of the spontaneously hypertensive rat and were used as a genetic 

model for severe hypertension with alterations in their endocrine signaling 

systems (90). According to the National BioResource Project for the Rat 

database, the SHRSP is the strain showing the highest blood pressure among 179 

stains (91), indicating that the SHRSP has a distinct set of hypertension genes 

that make the SHRSP unique among the various rat strains. While there is likely 

to be significant overlap of disease related genes between the SHRSP and other 

hypertensive strains, the gene-gene interaction within the SHSRP is necessary for 

a full-blown effect on blood pressure. When compared with the SHR, the SHRSP 

has a high incidence of stroke (80 vs 10%) and severe hypertension (220-240 

mmHg vs 180-220 mmHg) (92). Furthermore, the incidence of stroke reaches 

100% in SHRSP rats with a high salt diet (89). The cerebral stroke observed in 

SHRSP rats is reported to be similar to brain oedema due to malignant 

hypertension or hyalinosis of small arteries due to severe hypertension rather 

than atherosclerosis based (91).   

1.3.1.1 Identifying QTL’s 

A major challenge in hypertension research is to identify the underlying 

causative factors responsible for the disease phenotype. One approach that has 

been used extensively is the genome wide scan and quantitative trait loci (QTL) 

mapping. QTL mapping is a phenotype driven approach that does not require a 

prior knowledge of either causative genes or their function, and can lead to the 

identification of novel genes involved in disease. QTL analysis involves at least 

two strains (generally rats or mice) that differ genetically with regard to the 

trait of interest and a genetic marker that distinguish between these parental 



 

lines. Molecular markers, such as SNPs, simple sequence repeats (SSRs or 

microsatilites), restriction fragment lengths polymorphism (RFLPs) and 

transposable element positions are preferred because these markers are unlikely 

to affect the trait of interest (93).The parental strains are then crossed, 

resulting in heterozygous (F1) individuals. The F1 individuals are then crossed 

again using giving rise to F2 individuals where the phenotypes and genotypes are 

scored. Markers that are genetically linked to a QTL influencing the trait of 

interest will segregate more frequently with trait values whereas unlinked 

markers will not show a significant correlation.  

The principal goal of QTL analysis has been to answer the question of whether 

phenotypic differences are primarily due to a few loci with fairly large effects, 

or too many loci, each with small effects. It appears that a substantial 

proportion of the phenotypic variation in many quantitative traits can be 

explained with few loci of large effect, with the remainder due to numerous loci 

of small effect (94;95). Once QTL have been identified, molecular techniques 

can be employed to narrow the QTL down and to identify candidate genes. 

Indeed, the Rat Genome Database (http://rgd.mcw.edu/) has compiled more 

than 300 QTLs influencing rat blood pressure (91) with a considerable number of 

these QTLs being identified through experimental SHR/ SHRSP crosses with 

normotensive rat strains. Unfortunately, few causative genes have been 

identified thus far despite the large numbers of QTLs identified. This is primarily 

due to the fact that function analysis of candidate genes to confirm causality is 

extremely complex and requires a series of multiple investigations.   

1.3.1.1.1 QTL interaction in Complex diseases 

Genome-wide linkage studies performed on several rat crosses have been 

successful in identifying large chromosomal regions containing quantitative trait 

loci (QTLs) which are involved in blood pressure regulation (42;96). 



 

 

Figure 1-2:Geneological background of the Stroke Pr one Spontaneously Hypertensive Rat 
(SHRSP) 
The SHRSP strain, maintained at Glasgow University (Gla), was obtained after filial 
generation 35-36. Personal communication & Ref. (89) 

 

  



 

  There have been numerous studies where the production of novel designer 

strains such as recombinant inbred strains or congenic strains, has allowed 

confirmation and genetic dissection of blood pressure QTLs (79;96-98).  

1.3.1.2 Recombinant inbred strains 

Recombinant inbred strains are derived from F2 individuals obtained by crossing 

of two highly inbred stains. Randomly chosen F2 pairs are brother-sister mated 

for more than 20 generations to become genetically fixed. Individual 

recombinant strains have unique combinations of loci derived by segregation and 

recombination of alleles present in the progenitor strains. An important feature 

of these strains is that because they are inbred, repeated assay can be carried 

out in order to precisely classify the phenotype of each strain from the average 

results obtained from the measurement of multiple rats from each strain.  This 

precise estimation of phenotype-genotype relationship is extremely important 

when studying highly variable traits such as blood pressure. Moreover, since data 

are cumulative across studies, accumulated data can be analyzed and trait 

relationships studied in a manner not possible with conventional, genetically 

segregated populations. This is a major advantage for the analysis of complex 

patho-physiological traits.    

1.3.1.3 Congenic Strains 

Congenic strains have been produced in order to confirm the existence of a QTL 

and to begin narrowing down the chromosomal region of interest for gene 

identification. A congenic strain is one in which the chromosomal region of 

interest has been selectively replaced by the homologous region from another 

stain. These strains are generated by mating two inbred strains and backcrossing 

the descendent to the original strains (known as the recipient strains) for at least 

5-10 generations. 

 Typically selection for the desired phenotype or genotype drives the strain’s 

generation. Through this either a desired phenotype, or a desired chromosomal 

region (assayed by genotype) is passed from the donor stain to the recipient 

strain. The congenic stain is then compared to a pure recipient strains to 

determine whether they are phenotypically different. If the quantitative trait of 

the congenic strain is significantly different from the former strain, it can be 



 

concluded that a QTL that contributes to a phenotypic difference resides within 

this chromosome region. Upon completion of the congenic stain, brother-sister 

mating is ensures homozygosity for the congenic chromosome. Furthermore, 

construction of congenic sub-strains help to enable genetic dissection  

Since the early 1990’s, congenic stains have been an integral part in blood 

pressure and QTL–QTL interaction studies. However there are several limitations 

or difficulties that are involved when using congenic strains. Namely, that a 

single congenic strains does not necessarily resolve closely linked QTLs that act 

in the same direction, especially in the case of polygenic traits (99;100). 

Furthermore, there is also the chance that there is a lack of polymorphisms 

between the inbred strains used thus making it difficult to identify causative 

genes between the two strains (101;102). However, advances in technology mean 

that traditional genetic mapping techniques can now be complemented by high-

throughput methods, such as high-density arrays of synthetic oligonucleotides 

(103-105), cDNAs (106) for studying gene function and regulation, or identifying 

the genetic basis from an observed phenotype and deciphering the gene 

networks that contributed to increased susceptibility to metabolic disease 

processes in humans (68;107). Moreover these methods allow gene expression 

monitoring on a genome-wide scale and offer an opportunity to establish 

functional links between genotype and phenotype for complex diseases (68;108). 

Methods, such as microarray expression analysis have consistently been used as 

complimentary methods in order to generate genome-wide expression profiles in 

rodents (102) Flint (109) and has been routinely used in combination with 

traditional quantitative trait locus (QTL) mapping techniques (109).  

1.3.1.3.1 Microarray analysis 

Microarray profiling involves the hybridization of nucleic acid samples (or 

targets) to oligonucleotide probes that allow for the determination of a sequence 

or to detect variation in gene sequence or expression. Microarray has led to gene 

profiling that has played a key role in understanding drug side effects at the 

molecular level, and especially, novel molecular profiles for endocrine linked 

diseases such as hypertension (110). Since the premise of microarray profiling is 

that steady-state mRNA levels are altered in diseased samples, examining the 



 

changes in mRNAs expressed in tissues and/or cells can elucidate unique 

expression patterns identifiable to a specific disease (110).  

1.3.1.4 Transgenic Strategies 

The first transgenic animals were generated around thirty years ago by injection 

of naked DNA into the pronuclei of mouse zygotes. This method of transgenic 

generation only allowed for random insertion into the genome (111). Even until 

recently, gene targeting involving homologous recombination (HR) in embryonic 

stem (ES) cells or cloning through nuclear transfer was limited to species where 

in which appropriate cells were available. While these techniques have been 

used for the generation of useful mutants in many different species (i.e. mouse, 

cow, pig), they are cumbersome and expensive and do not allow targeted 

modification of specific genes. Furthermore, while several of these strategies 

have been readily available for a number of years in the mouse, the same cannot 

be said of the rat because of the lack of appropriate technologies. Rat ES cells 

and induced pluripotent stems cells (iPS) have been available but the culture 

conditions for these cells and methodology for inducing HR were imperfect (112-

114). Furthermore, in vitro cultivation of rat spermatogonial stem cells and their 

ability to undergo HR has proven to be unsatisfactory (115;116). However, other 

methods based on the in vitro genetic engineering of pluripotent stem cells, 

transposon-mediated mutagenesis (117) and Nethyl- N-nitrosourea (ENU) 

mutagenesis (118;119) have been used with some success for producing 

mutations in the rat genome. 

Traditionally, the rat has been an important biomedical research model whose 

utility has led to significant advancements in modern medicine for humans. 

However, due to the difficulties mentioned above, the rat has been significantly 

hampered by a lack of technologies for targeted genome modification (120). An 

early example of successful transgenic rat production, which allowed 

confirmation of the importance of a gene for fatty acid metabolism and insulin 

resistance in the SHR model, is the transgenic rescue of Cd36 (121). Cd36 was 

first identified as a candidate gene by QTL analysis and confirmed by congenic 

strain production. The SHR rat was found to lack a functional Cd36 gene 

therefore; this gene was transgenically rescued by random insertion of the wild-

type version of the gene into the SHR genome. Two independent transgenic lines 



 

were generated, and these lines were investigated in terms of insulin action in 

isolated muscle and glucose intolerance in order to measure insulin sensitivity. In 

both lines expression of wild-type Cd36 on the SHR genetic background induced 

improvements in glucose tolerance, insulin-stimulated glucose incorporation into 

muscle glycogen, and serum fatty-acid levels. Other factors, such as body 

weight, were not significantly different in the transgenic lines compared with the 

SHR progenitor strain (121). Further research into each of the independent lines 

identified differential expression patterns of Cd36 when the transgenic lines 

were compared showing unique characteristics for each line. However, in both 

lines, the Cd36 transgene substantially corrected (>70%) the SHR muscle defect 

in insulin action compared with normotensive control rats which supports their 

concept that primary genetic defects in fatty-acid metabolism contributes to the 

pathogenesis of insulin resistance (121).  

Despite over 195 transgenic or mutant rats that have been produced using either 

chemicals (118), transposons (117), nuclear transfer (122), rat ES cells (112;113), 

induced pluripotent stem cells (iPS) (114), or spermatogonial stem cells (SSC) 

(116), none,  of these methods until very recently were amenable to any form of 

targeted gene modification. 

However, several new approaches have enabled precise genome engineering in 

order to generate modifications, such as point mutations, accurate insertions and 

deletions, and conditional knockouts and knock-ins.  

1.3.1.4.1 Embryonic Stem cells 

Embryonic stem cells are pluripotent cells derived from the inner cells mass in 

very early stage embryos which can differentiate to any cell type in the embryo. 

When foreign DNA is introduced directly into ES cells, it may integrate randomly 

within the genome. However, if the introduced DNA is similar in sequence to part 

of the host genome, it may undergo “homologous recombination” and integrate 

as a single copy at a specific (123). Additionally, ES cells colonize the host 

embryo and often contribute to the germ line, resulting in the production of 

transgenic offspring are with the same newly introduced DNA. Thus providing a 

powerful developmental tool to generate experimental animals. Since stem cells 



 

are easily accessible for genetic modification, they can be used to test transgene 

expression in both in vivo and in vitro environments (123).  

The strong activity in most cell lines and permissibility in most tissues make the 

cytomegalovirus (CMV) promoter, human polypeptide chain elongation factor 1α 

promoter (the EF-1α promoter) and mouse class I promoter (H-2K) some of the 

more popular choices for promoters (124;125). Unfortunately, in vivo the CMV 

promoter has shown to be silenced at the mRNA level in liver (126) and within 

several weeks in multiple organ systems as well (127;128). Other choices, like 

the EF-1α promoter have shown to be consistent in their gene expression in vivo 

(124).  

 
1.3.1.4.2 Zinc fingers nucleases 

Another method for creating knock-in and knock-out models is the use of zinc 

finger nucleases (ZNFs). ZFN allows for a directly targeted mutagenesis at the 1-

cell-stage embryo and thus making ES obsolete in this process. Without ES 

generation to consider, the ZFN process makes model generation much faster 

and avoids background strain limitations and is directly applicable to the rat. 

ZFNs have been used in recent years to successfully create numerous transgenic 

rat models on a variety of genetic backgrounds (129). 

 Zinc fingers were first discovered and used in 1985. They originated from 

biochemical studies arising from the interpretation of the interaction of the 

Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA (130). Subsequent 

studies investigating the structure revealed that zinc-fingers consisted of a 

three-dimensional structure that readily interacted with DNA (130), where each 

finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to 

a pair of cysteines and a pair of histidines and also by an inner structural 

hydrophobic core (130). Because of this three dimensional structure, zinc fingers 

can be linked linearly in tandem to recognize nucleic acid sequences of varying 

lengths. This modular design offers a large number of combinatorial possibilities 

for the specific recognition of DNA (or RNA).  

Application of this specific recognition lead to the use of zinc fingers being used 

to construct DNA-binding proteins for specific intervention in gene expression.  



 

By fusing zinc fingers to nucleases to create hybrid molecules composed of 

tandem zinc finger-binding motifs to a non-specific cleavage domain of the 

restriction endonuclease, such as FokI, genes can be selectively altered by 

targeting the peptide to the desired gene target. One of the first examples of 

the power of the method was published in 1994 when a three-finger protein was 

constructed to block the expression of a human oncogene transformed into a 

mouse cell line (131). More specifically, zinc finger nucleases (ZFNs) have the 

ability to create site-specific double-stranded breaks which are repaired via non-

homologous end joining (NHEJ) which then results in the arbitrary addition or 

deletion of base pairs. The first successful example of ZFN technology in rats was 

by Geurts et al. (2009), where a single injection of DNA or messenger RNA that 

encodes specific ZFNs into one-cell transgenic rat embryos that express GFP lead 

to a high frequency of animals that do not express the transgenic marker as a 

consequence of homologous recombination at the GFP site (129). Specifically, 

ZFN reagents targeted a single-copy Green Fluorescent Protein (GFP) transgene 

inserted in a rat chromosome. Full knockout of the GFP transgene was achieved, 

as mutant animals lacked both GFPexpression and wild-type GFP sequence. 

Animals where then bred to wild-type animals with 1 out of 1 GFP offspring.  

There are two major platforms for generating polymeric zinc fingers with defined 

specificities. The first is a proprietary platform developed by Sangamo 

Biosciences and has partnered with Sigma to sell pre-assembled ZFN’s via the 

Compozr program (http://www.compozrzfn.com/). The second platform, an 

OPEN platform, was developed by the Zinc Finger Consortium 

(http://www.addgene.org/zfc; www.zincfingers. org/software-tools.htm) makes 

their modular assembly zinc finger pools and reagents freely available. Both 

platforms are available for transgenic animal research purposes.  

1.3.1.4.3 TALENs 

A more recent advancement in the production of knock-in or knock-out rats is 

the development of Transcription activator-like (TAL) effectors. TALs are a newly 

described class of specific DNA binding protein, so far unique in the simplicity 

and manipulability of their targeting mechanism. Produced by plant pathogenic 

bacteria in the genus Xanthomonas, the native function of these proteins is to 

directly modulate host gene expression (132). Upon delivery into host cells via 



 

the bacterial type III secretion system, TAL effectors enter the nucleus, bind to 

effector-specific sequences in host gene promoters and activate transcription 

(132). Their targeting specificity is determined by a central domain of tandem, 

33–35 amino acid repeats, followed by a single truncated repeat of 20 amino 

acids. Of the naturally occurring TAL effectors that have been investigated, most 

have between 12 and 27 full repeats (133). Within the DNA binding domain, 

positions 12 and 13 of each repeat species the target nucleotide sequence and is 

referred to as the ‘repeat-variable di-residue’ (RVD). Furthermore, for TAL-

effector activity, all naturally occurring recognition sites are preceded by a T 

(134;135). Because of the straight forward sequence relationships and ease of 

designations through simple ‘protein=DNA code’ that relates modular DNA 

binding, Transcription activator-like effector nucleases (TALENs) have rapidly 

emerged as an alternative to ZFNs for genome editing.  

TALENs are similar to ZFNs and comprise a non-specific FokI nuclease domain 

fused to a customizable DNA-binding domain. Early investigations using TALENs 

were based on natural TALE scaffolds where FokI cleavage domain replaced the 

natural C-terminal activation domain, and resulted in modest targeted cleaveage 

properties (136). Research done by Mussolino et al. showed that TALENS with 

higher activity can be made by truncating the natural TALE scaffold on either 

side of the repeat units, retaining a minimum of 150 residues at the N-terminus 

and 20 amino acids at the C-terminus (136-138). These investigations resulted in 

tailored TALENs improving genome modification of up to 20% of target al.leles in 

transfected cells and having a comparable success rate of that of ZFNs (136-138). 

Additionally, the new optimized TALEN architecture has shown to be successful 

in the modification of human induced pluripotent stem cells (iPSCs) as well as in 

zebrafish and rat zygotes with similar knockout efficiencies as ZFNs (137-140).  

Furthermore, recent studies by SO and SO et al. using the CCR5 and the IL2RD 

loci in cultured human cells have shown that TALENs have significantly less 

cytotoxicity when compared to ZFNs (137). Furthermore, in vivo studies in the 

rat have not only showed less toxicity, but TALEN generated knockout animals 

resulted in an higher percentage of newborn animals compared to data obtained 

previously with ZFNs (129;141). A second advantage to using TALENs, is the 

increased specificity. Mussolino et al. showed that unlike the ZFN, the CCR5- 



 

specific TALEN was able to discriminate between the CCR5 target locus and a 

highly similar site in CCR2(137).  

1.3.2 Oxidative Stress in Cardiovascular studies 

Oxidative stress is thought to result from an imbalance between the generation 

of reactive oxygen and nitrogen /species and the antioxidants that scavenge 

them. Under physiological conditions, several tightly controlled oxidative stress 

pathways contribute towards the production of reactive oxygen species (ROS), 

while several intra- and extra-cellular antioxidant enzymatic systems account for 

the reduction of ROS. In the past two decades, our concept of how oxidative 

stress contributes to chronic diseases has undergone considerable evolution. 

Traditionally, reactive oxygen species and their resultant oxidative stress have 

been examined in the context of damage to biologically important targets such 

as proteins, lipids, and DNA. Recently, these studies have led to clinical 

investigations implicating oxidative stress in human disease, including 

atherosclerosis and cardiovascular disease. For instance, oxidative stress in 

atherosclerotic cardiovascular disease is highlighted by the increase of 

biomarkers indicative of risk factors for coronary artery disease which have 

shown to have predicative values for cardiovascular risk in both primary and 

secondary prevention (142). End products such as serum lipid hydroperoxides 

(LOOH) which is generated from polyunsaturated fatty acids, Malondialdehyde 

(MDA) an end product of lipid peroxidation can be easily measured and have 

been shown to be elevated in association with cardiovascular risk factors 

(143;144).  

Although the mechanisms underlying cardiovascular disease are complex and 

multifactorial, there is growing evidence to suggest that an increased production 

of ROS, or oxidative stress, plays a critical role in the development of CVD (145).  

1.3.2.1 Reactive oxygen species and nitric oxide 

Reactive oxygen species (ROS) play a crucial role in human physiological and 

pathophysiological processes. They are ubiquitous reactive derivatives of O2 

metabolism found in the environment and in all biological systems. Reactive 

oxygen species (ROS) include free radicals, such as superoxide anion (O2-), 



 

hydroxyl radical (OH-), nitric oxide (NO)and lipid radicals (LOO-), which possess 

unpaired electrons, or include molecules that possess oxidizing actions, such as 

hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO-)  

(146).  

Physiologically, ROS are produced in a controlled manner at low concentrations 

intracellularly that can act as intracellular second messengers that modulate the 

function of biochemical pathways and regulation (147-149). An example of this 

cell signalling function is the role that ROS play in maintaining vascular integrity 

through regulating endothelial function and vascular contraction and relaxation 

(148;150). Under pathological conditions, increased ROS bioactivity leads to 

endothelial dysfunction, increase contractility, vascular smooth muscle cell 

growth, lipid peroxidation (increase MDA), and inflammation which are all 

important factors of vascular damage (148;150).  

Clinical studies have indicated that the inhibition of the RAAS is beneficial for 

hypertensive patients (151). Research by Matsuno et al. have shown that 

inhibition of the RAAS reduces up regulation of several NADPH oxidase isoforms 

which results in a reduction of oxidative stress. For instance, animals without the 

Nox1 protein develop less hypertension with angiotensin II infusion (or an 

increase in the RAAS) than animals with the Nox1 protein (152). Other ROS 

sources have been investigated in animal models with salt-induced hypertension 

where the up regulation of mitochondrial SOD2 demonstrated an 

antihypertensive effect (153). Furthermore, antioxidants either targeted to the 

mitochondria (eg, mitoTEMPO and MitoQ) or endogenously expressed in the 

mitochondria (SOD2 and thioredoxin 2) have all been shown to attenuate 

angiotensin II-induced hypertension (154;155).    

 Reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO-), 

are biologically important O2 derivatives that are recognized to be important in 

vascular biology through their oxidation/ reduction (redox) potential (147). Nitric 

oxide, also known as endothelium-derived relaxing factor (EDRF), is biosynthized 

endogenously from L-arginine, oxygen and NAPDH by various nitric oxide 

synthases (NOS) enzymes and is responsible for vasorelaxation by its effect on 

the vascular smooth muscle cells (VSMCs)  (156;157). Vascular NO relaxes blood 

vessels, prevents platelet aggregation and adhesion, limits oxidation of low 



 

density lipoprotein (LDL) cholesterol, inhibits proliferation of vascular smooth 

muscle cells, and decreases the expression of pro-inflammatory genes that 

advance atherogenesis (157-159). An increased production and/or impaired 

inactivation of ROS (i.e. oxidative stress) leads to reduced bioactivity of NO. A 

dominant mechanism reducing bioavailability of vascular NO is rapid oxidative 

inactivation by the ROS superoxide (O2−). 

1.3.2.2 Oxidative stress 

Under normal physiological conditions, reactive oxygen species (ROS) produced in 

the course of normal metabolism are fully inactivated by an elaborate defensive 

cascade of cellular and extracellular antioxidants (160). However, certain 

pathological conditions increase the generation of ROS and/or the depletion of 

antioxidant capacity which leads to enhanced ROS activity and oxidative stress. 

Oxidative stress is often defined as an abnormal level of reactive oxygen species 

(ROS), such as free radical (e.g. nitric acid, hydroxyl group, superoxide) or non-

free radicals (e.g. hydrogen peroxide, lipid peroxide) that lead to oxidative 

damage and a biological system’s inability to readily detoxify the reactive 

intermediates (Figure 1-3). This imbalance often leads to consequential injury to 

cells or tissue.  

Compelling evidence has shown the oxidative stress to be associated with diverse 

physiological events, including cancer, the development of vasculopathies 

(hypertension, arthrosclerosis), renal disease and neuro-degeneration (148). 

Furthermore, increased production of ROS generally occurs as a result of 

inflammation, ageing, UV radiation, excessive alcohol consumption, cigarette 

smoking, and many other factors (161).  

1.3.2.3 The antioxidant system  

In order to protect against increased ROS levels, several different oxidases exist 

within vascular tissue, including superoxide dismutase (SOD), catalase, 

thioredoxin peroxidase, peroxiredoxin and glutathione peroxidase (GPx), which 

convert ROS into less noxious compounds. Superoxide dismutase (SOD) 

dismutates O2- at a rate of 2.4 x 109 mol.L-1.s-1 to the more stable hydrogen 

peroxide (H2O2), which is then converted to water by catalase or glutathione 



 

peroxidase (GPx) (149;162;163). Collectively, these enzymes provide a first line 

of defence against superoxide and H202. Whilst such enzymes are of enormous 

importance in limiting ROS-mediated damage to intracellular macromolecules, 

there are additional anti-oxidants such as ascorbate which scavenges superoxide 

in order help maintain a normal homeostatic balance of ROS.  

However, in the case of the diseased states many of these antioxidant molecules 

may not be present at sufficient levels (164). Moreover, the expression of ROS-

producing enzymes have been shown to be altered by hormones such as 

angiotensin II (Ang II) or cytokines such as tumour necrosis factor (TNF) -α and 

interleukin (IL) -1β (149). 

1.3.2.3.1 Glutathione 

Glutathione (GSH) is found in the cytosol of cells where concentration ranges 

from 1–10 mM, with the majority of cells ranging between 1-2 mM and around 10 

mM in hepatocytes (165). GSH plays major roles in the different cellular 

compartments.In the mitochondria GSH regulates the balance between apoptosis 

versus necrosis (166), and in the nucleus, is found to be a key modulator of 

cellular division (167). GHS is considered a unique γ-glutamyl-lcysteinylglycine. 

This is largely due to the fact that it contains an unusual peptide linkage 

between the γ-carboxyl group of the Glu side-chain and the amino group of the 

cysteine (1,2). GSH synthesis involves the combination of cysteine with 

glutamate to produce c-glutamylcysteine. This reaction is catalyzed by the 

enzyme glutamate cysteine ligase (GCL), which is also called γ -glutamylcysteine 

synthetase. This enzyme requires coupled ATP hydrolysis to form an amide bond 

between the c-carboxyl group of glutamate and the amino group of cysteine 

(168). A secondary step involves the enzyme glutathione synthetase, responsible 

for adding glycine to the dipeptide to produce GSH (γ -glutamylcysteinylglycine) 

and also requires coupled ATP hydrolysis (169). GSH when reduced and results in 

the formation of glutathione disulfide (GSSG).  

  



 

 

Figure 1-3: Oxidative stress enzymes and their role s in maintaining the balance between O 2-  

and NO. 
BH4 = tetrahydrobiopterin; eNOS = endothelial nitric oxide synthase; H2O = water; 

H2O2 = hydrogen peroxide; GPx = glutathione peroxidase; GSH = glutathione; 

GSSG = oxidized glutathione; GSTs = glutathione s-transferases; LO- or LOO- = lipid 

radicals; NAD(P)H = nicotinamide adenine dinucleotide (phosphate); NO = nitric 

oxide; O2 = molecular oxygen; O2 - = superoxide anion; ONOO- = peroxynitrite; ROS 

= reactive oxygen species; SOD = superoxide dismutase; VSMC = vascular smooth 

muscle cell. Adapted from Ref (146). 

 

  



 

 

The GSH–glutathione disulfide system is considered the most abundant redox 

system in eukaryotic cells (170). Qualitative and quantitative alterations of the 

GSH–GSSG redox system induced by reactive oxygen and nitrogen species has 

been implicated in the pathogenesis of certain chronic illnesses (such as sickle 

cell disease, asthma, and preeclampsia) are comprehensively reviewed by Dalle-

Donne et al. (171). 

The biologically active site of GSH is represented by the thiol group of the Cys 

residue. The high nucleophilicity of the thiol functionality facilitates the role of 

GSH as a free radical scavenger both under physiological conditions and in 

xenobiotic toxicity (172-174). GSH also helps in the regeneration of other 

antioxidants, e.g. vitamin E and ascorbic acid (ASC) (175-177). GSH is a cofactor 

for glutathione peroxidase in the decomposition of hydrogen peroxide or organic 

peroxides; for glyoxalase 1 in the detoxification of methylglyoxal and other _-

oxo-aldehydes; and for maleylacetoacetate isomerase in the conversion of 

maleylacetoacetate and maleylpyruvate to the corresponding fumaryl 

derivatives. GSH can also react with a number of endogenous moieties, resulting 

in the generation of bioactive endogenous GSH adducts. Although some adducts 

can be formed directly, glutathione- S-transferase (GST)-mediated reactions 

generally predominate (175). 

 
1.3.2.3.2 Glutathione peroxidises 

Glutathione peroxidises were the first selenoproteins to be identified in higher 

organisms (178). First discovered in 1973, over the past four decades they have 

been found in all higher organisms. The GPx family have been shown to play a 

role in the first line of defence for oxidative stress, by reducing H2O2 to water 

and second line of defence, by reducing organic peroxides such as lipid 

hydroperoxide to water and lipid alcohol, via conjugation of glutathione, forming 

GSSG (179;180). Moreover, the term “glutathione peroxidise” has been used to 

describe enzymes that may similarly catalyze the reduction of hydroperoxides by 

GSH, but are neither structurally nor phylogentically related to the family, such 

as GSH-S-transferases (24), selenoprotein P (181) or human peroxiredoxin VI  



 

(182). The GPx, now known as GPx-1, that gave its name to the entire 

glutathione peroxidise family catalyzes the reduction of H2O2 and soluble organic 

hydroperoxides at the expense of GSH (183). GPx-1 is the most abundant GPx in 

mammals. It appears to be predominantly localized in the cytosol and the matrix 

space of mitochondria (184), and also protects the organism against oxidative 

damage (185). Its affinity for GSH comes from its structure of a lysine and four 

arginine residues which surrounds the active site selenium and serve to direct 

the two GSH molecules into an orientation that allows for the GSH sulphur to 

react with the selenium.  

Out of the 8 GPxs which are found in mammals, only half of them are known to 

contain selenocysteine, where selenocysteine (Sec) is at the catalytic centre and 

is a key component to the of the catalytic activity(180;186). GPx-1 and GPx-2 are 

homotetrameric proteins, GPx-3 is a homotetrameric glycoprotein while GPx-4 is 

a monomeric enzyme (180). GPx-1, also known as cytosolic GPx, can metabolize 

H2O2 and a variety of organic peroxides, including cholesterol and long-chain 

fatty acid peroxides with the aid of phospolipase A2 activity. GPx-2 found mainly 

in the epithelium of gastrointestinal tract (GSHPx-GI), displays a substrate 

specificity that appears largely identical to that of GPx-1 (187). GPx-3, a typical 

extracellular glycolated protein with a largely unknown function, and was first 

purified from plasma (188). GPx-3 mRNA is found to be expressed predominantly 

in kidney with the primary biosynthesis site in the proximal tubles (189). GPx-3 is 

also expressed in adipose tissure and lung epithelial cells (190;191). Its 

hydroperoxide specificity resembles that of GPx-1 (192), and can also reduce 

complex lipid hydroperoxides at a low rate (193). GPx-4 can react with 

phospholipid hydroperoxide (PHGPx). 

A GPx-1-/- knockout mouse shows increased susceptibility to ROS-induced 

oxidative stress (194). Studies focusing on the induction of GPx-1 have shown the 

GPx-1 to protect endothelial cells against oxidative stress, and transgenic studies 

with GPx-1 expression improved endothelial dysfunction (195). The cellular and 

tissue location of each of the GPxs have been shown to be critical for their 

biological functions (186). As mentioned earlier, GPx-3 has activity against 

phospholipid hydroperoxides (190). While GPx-4 is responsible for protection of 

membranes against oxidative damage and also control of cell function. While 



 

GPxs are important, there are also other enzymes that have peroxidase activity, 

most notably the GSTs. 

1.3.2.3.3 Glutathione S-Transferases 

The glutathione S-transferases (GST) are a supergene family of soluble dimeric 

enzymes that catalyse the conjugation of glutathione (GSH) to a variety of 

electrophiles including arene oxides, unsaturated carbonyls, organic halides and 

other substrates (196). They play a key role in phase II of enzyme digestion 

(197), have a primary function of metabolizing a broad range of reactive oxygen 

species (ROS), and have been implicated in a number of diseases, including 

childhood asthma (198) and lung cancer (199). They also detoxify noxious 

electrophilic metabolites of xenobiotics which are produced intracellularly 

following exposure to air-borne products of combustion, from consumption of 

either over-cooked or mycotoxin-contaminated food, or from drinking polluted 

water (200). GSTs play a particular role in the protection against oxidative stress 

through their ability to catalyse the conjugation of GS with 4-hydroxynonenal 

(201;202), a major genotoxic and cytotoxic α,β-unsaturated aldehyde formed 

from n-6 polyunsaturated fatty acids during lipid peroxidation (203). 

Furthermore, GSTs can also conjugate GSH with adenine and thymine propenals, 

reactive purine and pyrimidine bases formed during DNA damage from oxidative 

stress (204). GST expression has been shown to be under the control of 

glucocorticoid response element (GRE), xenobiotics response element (XRE) or 

antioxidant response element (ARE) (197;200).  

There are two distinct, evolutionary separate multigene families with GST 

activities. The first superfamily consists of cytosolic proteins and the second 

consists of membrane-bound proteins (205;206). The cytosolic protein family is 

highly complex and in mammals at least 7 classes of transferase, designated 

Alpha, Mu, Pi, Sigma, Theta, Zeta and Kappa, have been characterized. While 

these enzymes are referred to as cytosolic GST, the Kappa class is located in the 

mitochondrion and are best referred to collectively as soluble GST (207). The 

cytosolic proteins are also considered the genuine GSTs, having both STs_N and 

GSTs_C domains (208). The second family, or the microsomal transferases family 

– recently called the MAPEG, Membrane Associated Proteins involved in 

Eicosanoid and Glutathione metabolism (206) has not been as thoroughly studied 



 

as the soluble GST family. However, recent advances in molecular cloning have 

revealed that it contains significantly more members than was thought even just 

a couple of years ago (209;210). In addition to the structural differences 

between the two superfamilies, each family is functionally unique. The soluble 

transferases act primarily as detoxication enzymes to prevent cytotoxic and 

genotoxic damage cause by electrophiles generated as breakdown products of 

macromolecules. The MAPEG family serve to inhibit lipid peroxidation during 

oxidative stress (211). 

The soluble GSTs are dimeric proteins where each subunit is about 26 kDa and 

formed only from subunits within the same class (212). These GSTs are known as 

2-domain structures with the first structure made of structurally conserved 

nucleophilic glutathione binding sites (g-sties), and the second domain the 

diverse hydrophobic binding sites (H-sites) that determines the substrate 

specificities (213), with substrates being electrophillic compounds that react 

with the thiol moiety of glutathione (197). The G–sites mainly consist of 

interaction with N-terminal residues while the H–sites involve C-terminal residues 

and other parts of the protein. Through catalysis, GSTs bind a variety of 

electrophiles to the sulphydryl group of glutathione which results in more water-

soluble molecules (196). While GSTs are not unique in their function of 

protecting against phospholipid hydroperoxides and have been shown to have 

reduced activity towards phospholipid hydroperoxides than GPx-4, it should be 

recognized that their increased abundance in many tissues makes them 

physiologically important in reducing peroxidized lipids. Other roles that makes 

GST physioloigically important are their ability to remove ROS, regenerate S-

thiolated proteins, catalyze conjugations of endogenous ligands and catalysis of 

reactions in metabolic pathways not associated with detoxification (205). 

Furthermore, these biochemical data indicate the GSTs are not a first line of 

defence against free radicals. Generally, enzymes that are considered the first 

line of defence against oxidative stress are SOD, catalase and GPx. The GST 

family represents a second line of defence providers against oxidative stress that 

due to their broad range of substrate specificity are able to successfully reduce 

oxidative stress. While many studies on GSTs have focused mainly on the role of 

GST in cancer, new research has shown Gstm1 to play a role in genetic models of 

hypertension (78;214;215) 



 

1.3.2.3.3.1 Mu Family of S-transferases 
 
As previously described, there are two distinct families of GST, the cytosolic 

proteins and the membrane-bound proteins (200;206). This thesis will focus only 

on the cytosolic (or soluble) enzymes. In mammals GSTs have eight cytosolic 

classes that have been identified—Alpha (A) located on chromosome 6, Mu (M) 

located on chromosome 1, Pi (P) located on chromosome 11, Theta (T) located 

on chromosome 22, Sigma (S) located on chromosome 4, Zeta (Z) located on 

chromosome 14, kappa (K) (chromosome location not know), and chi (O) (also 

called omega) on chromosome 10. Their classification was determined on the 

basis of a combination of criteria such as substrate inhibitor specificity, primary 

and tertiary structure similarities and immunological identity (216;216). Within 

these major classes, there are subclasses with different gene codes. For 

example, five different genes code for Mu class GSTs (GSTM1–M5) (198). The Mu 

class genes are situated in tandem (5-GSTM4-GSTM2-GSTM1-GSTM5-GSTM3-3`) in 

a 20 kb cluster on chromosome 1p13.3 (217). Each GSTM gene consists of 8 exons 

and 7 introns. The sequences of these genes and their encoded amino acid 

sequences are highly homologous, suggesting gene duplication in the evolution of 

the GSTM genes. Early investigative work with the GSTMs reported 

polymorphisms in the GSTM1 gene where single base changes   gave rise to the 

functionally identical GSTM1*A and the GSTM1*B alleles (204), a duplication of 

the GSTM1 gene (218), and the deletion of GSTM1 gene resulting in the null 

allele GSTM1*0 (219;220). The significance of the null GSTM1 genetic variation in 

human was first recognized in cancer studies demonstrating that patients 

carrying the GSTM*0 allele were at increased risks for colon and lung cancers 

(199). Allelism has also been identified in the GSTM3 with GSTM3*A and GSTM3*B 

where GSTM3*B differs from GSTM3*A by a 3bp deletion on intron 6. 

Furthermore, this difference creates a recognition motif for the YY1 

transcription factor in GSTM3*B and thus the possibility of differently regulated 

expression between alleles. Recent studies have shown many more 

polymorphisms in the GSTM family (221) however, the human polymorphism of 

GSTM and their pathological connections are not the main focus of this thesis.  

In the rat, a 155kb GSTM cluster locus is located on chromosome 2q34 in the in 

the order of M7-M1-M2-M4-M6b-M3-M6a, followed by M5 in an inverted 

orientation (Figure 1-4). In regards to the GST family in rodents, there is 



 

extensive research on the biochemistry of GSTs as well as their roles as phase II 

detoxification enzymes during the early literature of rodent GSTs. However, new 

and recent studies have shown the GSTs, specifically GSTM1, to be correlated 

with the development of hypertension. Our group has indentified GSTM1 to be a 

positional and functional candidate gene for hypertension (96). There is also data 

on differential expression of this gene in other hypertensive rat strains as 

compared to normotensive reference strains (214;215). Further studies have 

shown that the difference in mRNA expression was reflected at the protein level 

in the kidney and was inversely correlated with renal ROS levels, suggesting that 

the pathophysiological roles of GSTM1 in hypertension involve the defence 

against oxidative stress (96). 

1.3.3 Identification of Gstm1  as a candidate gene for oxidative 
stress and its role in the development of hypertens ion in the 
SHRSP 

A genome-wide scan previously performed in the Glasgow laboratory by cross-

breeding the SHRSP and WKY inbred strains identified a QTL on rat chromosome 

2 encoding genes involved in blood pressure regulation (78). This QTL was 

confirmed and further refined by congenic breeding where genomic regions from 

the WKY were introgressed onto the background of the SHRSP. This strategy   

generated rats with significantly reduced blood pressure compared to the SHRSP 

(SP.WKYGla2c* congenic strain) (Figure 1-6) (78). Microarray expression profiling 

in the kidney at 16 weeks of age in the SHRSP, WKY and the SP.WKYGla2c*strain 

identified Gstm1 as a functional candidate gene. Additional studies were carried 

out in order to examine Gstm1 expression differences between SHRSP and WKY 

rats prior to the onset of hypertension. Microarray analysis assessed renal gene 

expression at 5 wks of age in the WKY, SHRSP, and the SP.WKYGla2c* rats. 

Results showed a significant reduction in the expression of Gstm1 in the SHRSP at 

this early time point (96).   



 

 

Figure 1-4: Organisation of the glutathione s-trans ferase mu genes in human and 

rat 
(A) Synteny between rat Gstm gene cluster on chromosome 2 and human GSTM 

gene cluster on chromosome 1. The names in brackets are the alternate names 

for the respective genes in earlier literature. AMPD2, adenosine monophosphate 

deaminase 2; EPS8L3, epidermal growth factor receptor pathway substrate 8-like 

protein 3; GSTs, glutathione S-transferase; (B) Organisation GSTM genes in 

individuals missing GSTM1 gene. Figure taken from (222) 

 
   



 

In addition, it was shown that antihypertensive treatment was unable to impact 

on expression levels of Gstm1 in SHRSP rats (i.e. was unable to improve 

expression levels) indicating that this deficiency in Gstm1 expression appears to 

be a primary cause, rather than secondary to increase in blood pressure levels 

(87).  

Further investigation of this differential Gstm1 expression showed that the SHR 

and SHRSP genome contains 13 single-nucleotide polymorphisms (SNPs) within 

the promoter, a missense mutation and a 3’ untranslated region (UTR) 

polymorphism that was not found in the WKY or BN strains. Luciferase reporter 

constructs compared the transcriptional activities of Gstm1 between the SHRSP 

and WKY in addition to subcloning experiments were able to identify and isolate 

two SNP clusters that were responsible for the reduced expression in the SHRSP. 

Additional luciferase experiments suggested that an interaction between one or 

more SNP in each cluster contributed to reduced transcription. Other novel 

constructs were generated by site-directed mutagenesis in order to more fully 

investigate this interaction, however no consistent effects on expression were 

observed. The Transfac database was used to identify several potential 

transcription factor binding sites affected by the SHRSP mutations, the strongest 

candidate being peroxisome proliferator-activated receptor gamma (PPARγ), 

with binding sites affected in both implicated clusters.  

In order to investigate the physiological effects of reduced renal Gstm1 

expression in the SHRSP, renal GSH levels were measured at 5 and 16 weeks. 

Results showed lower expression levels in the SHRSP at both time points when 

compared to the WKY. Interestingly, GSH expression in the SP.WKY2GlaC* 

congenic strain was similar to that of the SHRSP at 5 weeks of age and similar to 

the WKY at 16 weeks of age. This data, when combined with the significant 

reduction of SBP in the SP.WKYGla2c* congenic strain leads to the hypothesis 

that renal oxidative stress caused by impaired GSH metabolism (reduced Gstm1 

expression) may contribute to the hypertensive profile of the SHRSP. 



 

  

Figure 1-5: Chromosome 2 congenic strain SP.WKY Gla2c* 
A: The congenic strain contains a 22-cM segment, encompassing a quantitative 

trait locus (QTL), transferred from WKY (donor strain; blue) to the genetic 

background of SHRSP (recipient strain; orange) between the markers D2Wox9 and 

D2Mgh12. The congenic strain described is the SP.WKYGla2 (D2Wox9 – D2Mgh12) 

and is abbreviated to SP.WKYGla2c* and 2c* in figures. The Gstm family gene 

locus is encompassed within the congenic region, under the quantitative trait 

locus (QTL). Adapted from (78). 

 

 

 

 



 

 

 

Figure 1-6: Day-time and night-time average systoli c and diastolic blood pressure 
Systolic (A) and Diastolic (B) blood pressure, measured by radio-telemetry over a 

three-week period for SHRSP, WKY and congenic strain SP.WKYGla2c*. n = 8-11 

per group. Adapted from (78). 

 

 

 

 

  



 

Following on from these in vivo and ex vivo investigations, more specific in vitro 

and in vivo studies were conducted to examine the role of Gstm1 in the kidney. 

In order to elucidate the role of Gstm1 in rat kidney tubule epithelial cells (NRK-

52E), RNA interference (RNAi) was used to knockdown Gstm1 expression. Three 

different short interfering RNA (siRNA) sequences, targeted to Gstm1, were used 

and each significantly reduced expression of Gstm1 in both protein and mRNA 

levels. Off target effects were prevented through reduction of siRNA 

concentration. To assess the effect of Gstm1 knockdown in an in vivo setting, 

local delivery to the kidney via the renal artery was attempted. However, the 

delivery was shown to cause significantly renal damage. As an alternative route, 

plasmid vectors were generated that expressed Gstm1 specific short-hairpin RNA 

(shRNA) molecules based on the sequences that successfully knocked down 

Gstm1 expression in vitro. Unfortunately, transfection into the NRK-52E cells was 

poor and knock-down was not confirmed. 

The role of Gstm1 in the protection against cellular oxidative stress was 

evaluated in NRK-52E cells through Gstm1 knockdown and subsequent 

measurements of oxidative stress markers. Total GST activity was not reduced in 

cells transfected with Gstm1 specific siRNA, however, activity was increased 

following over expression of Gstm1. Additionally, knock down of Gstm1 did not 

show any change in glutathione levels. Oxidative stress was determined by 

measuring 8-isoprostane (a marker of lipid peroxidation), 8-hydroxy-2-

deoxyguanosine (8-OH-dG) (a marker of oxidative DNA damage) and by the comet 

assay (DNA damage). No significant difference in the levels of 8-isoprostane or 8-

OH-dG was observed in cells treated with Gstm1 specific siRNA compared to 

control siRNA, however significant DNA damage was demonstrated by comet 

assay.  

While the functional studies discussed above evaluated the effects of modulating 

Gstm1 expression in-vitro, the specific role for Gstm1 in protection against 

oxidative stress and hypertension remained to be fully determined and thus 

provided the strong imptetus to generate a transgenic model. In order to 

functionally validate Gstm1 and provide definitive evidence of the direct role 

played by the Gstm1 gene in hypertension, the transgenic strategy needed to be 

utilised. This is considered to be a gold standard method for functional validation 

of candidate genes. Therefore production of transgenic SHRSP rats in which the 



 

Gstm1 had been ‘rescued’ was attempted. This involved the random insertion of 

wild-type Gstm1 into the SHRSP genome. More advanced methods of genetic 

modification such as ZFN or TALEN technology were not available in the rat at 

this time, since the SHRSP rat transgenic production procedure was started prior 

to 2009. After several unsuccessful attempts in-house, SHRSP rats were 

transferred to the laboratory of our collaborator Dr Michal Pravenec (University 

of Prague) who successfully generated two novel transgenic lines incorporating 

the wild-type Gsmt1 gene from the WKY into the SHRSP genome. The phenotypic 

and molecular analysis of these novel transgenic lines formed the basis of my 

PhD project. 

 

  



 

1.4 Hypothesis 

Oxidative stress is an important pathogenic factor in the development of 

cardiovascular disease. Glutathione S-transferases protect against oxidative 

stress-induced injury through the detoxification of reactive oxygen species. It is 

hypothesised that Gstm1 deficiency in the SHRSP plays a causative role in the 

development of oxidative stress and hypertension.  

 
1.4.1.1 Aims 

 A combination of congenic breeding and microarray analysis has identified 

Gstm1 as a positional and functional candidate gene for hypertension in the 

strokeprone spontaneously hypertensive rat (SHRSP).  

This aims of this study were to establish definitive proof that reduced Gstm1 

expression in the SHRSP plays a causative role in the development of 

hypertension and oxidative stress. 

Specific aims: 

1. To functionally validate Gstm1 in an in vivo environment through 

assessment of hemodynamic and cardiac function 

2. To assess genetic and molecular changes from the incorporation of Gstm1 

into the SHRSP genome 

3. To assess renal function and oxidative stress parameters in the Gstm1 

transgenic lines.  

4. To investigate translational aspects of the GSTM family from rodent and 

apply them to a human cohort  

  



 

 
 
 
 
 
 
 
 
 
 
 

2 Materials and Methods 

  



 

2.1 In vivo  experimental procedures 

2.1.1 Experimental Animals  

2.1.1.1 Animal Strains 

The animal strains used in this thesis were SHRSPGla, WKYGla and Gstm1 

transgenic SHRSPGla.  Animal housing conditions consisted of controlled 

environmental conditions, where temperature was maintained at 21°C with 12 

hour light/dark cycles starting 7am to 7pm. Rats where fed a standard rat chow 

(rat and mouse No. 1 maintenance diet, Special Diet Services) and water 

provided ad libidum. Weaning of offspring took placed at 3 weeks of age when 

they were sexed, ear-tagged (National Band and Tag. Co.) and caged, with a 

maximum of 3 animals per cage, according to sibling group and sex.    

All work with experimental animals was in accordance to the Animals Scientific 

Procedures Act 1986 under the project license of Dr. Delyth Graham (60/4286) 

and Prof Anna F Dominiczak (60/3618). Inbred colonies of SHRSP and WKY have 

been maintained at the University of Glasgow since 1991 by brother-sister 

breeding. The colony started in 1991 when Dr. D.F. Bohr, from the Department 

of Physiology at the University of Michigan (USA), gifted 6 males and 7 females of 

each strain to the University of Glasgow. These colonies originated from the 

National Institute of Health, Bethesda, Maryland, USA, and were subsequently 

maintained at the University of Michigan as inbred colonies for 15 years. Integrity 

of the colonies was maintained, as well as the distinction between normotensive 

and hypertensive phenotypes, by selection of SHRSP adult breeders with blood 

pressures 170-190mmHg (males) and 140-170mmHg (females), and WKY adult 

breeders of 120-140mmHg (males) and 100-130mmHg (females). In order to 

confirm homozygosity of all loci, animals were selected at random and screened 

by microsatellite markers.    

2.1.1.2  Transgenic Animals 

Two independent transgenic lines of Gstm1 SHRSP rats were created through 

incorporation, by microinjection, of a normal Gstm1 gene into the SHRSP 

genome. The transgenic strains used in this study were derived by the same 

expression platform and microinjection fragment purification protocol as was 

employed in CD-36 rat transgenesis previously described by Pravenec et al. 2001 



 

(7). In brief, the Gstm1 cDNA sequence was cloned into pEF1/Myc-HisA 

(invitrogen), an expression construct including the constitutive human elongation 

factor 1 α subunit (EF1 α) promoter and bovine growth hormone (BGH) 

polyadenylation signal separated by a multiple cloning site (223). The cloned 

cDNA ligation insertion was verified by direct sequencing with pEF1 T7F and BGH 

PolyAR primers. The resulting expression plasmid, named pEF1 WKY Gstm1 was 

amplified and purified using the Qiagen Maxi kit (Qiagen, Hilden, Germany). The 

construct was linearized by digesting the pEF1 WKY Gtsm1 plasmid with the 

enzymes PvuII and AatII in order to have a final isolated fragment for transgene 

injection of 2.725kb fragment that encompassed the EF-1a promorter, Gstm1 

cDNA and BGH polyedenlyation sequences. Gstm1 protein expression from pEF1 

WKY Gstm1 was confirmed by tranfection into HeLa cells and Western blotting as 

previously described (223). Generation of the transgenic rats was carried out in 

Prague (in collaboration with Dr Michal Pravenec) using male and female SHRSP 

from the University of Glasgow. The transgenic production process involved 

superovulation of female SHRSP which were then timed mated with SHRSP stud 

males to generate embryos. On day one embryos were harvested and 

microinjected with the DNA linear construct into the pronuclei. The embryos 

were then transferred into the oviducts of psuedopregnant female recipient rats, 

followed by natural pregnancy and pup rearing. This process was repeated a 

several times in order to generate an additional independent transgenic line in 

order to confirm assessment of phenotypic and genotypic changes.  

To assess transgene expression, genomic DNA was isolated from 4-mm tail tips, 

and screened for transgene sequences by polymerase chain reaction (PCR) with 

primers amplifying across the EF1α promoter sequences (primers pEF1F + pEF1R), 

and with two primer pairs that spanned EF1α promoter and Gstm1 cDNA 

sequence (pEF2F + pEF2R and pEF3F + pEF3R). Transgene positive pups from each 

of the independent transgenic lines were weaned and transported to the 

University of Glasgow for full phenotypic and molecular analysis. Additional PCR 

primers were created to confirm transgene insertion (pEF5F + pEF5R). 

Additionally, throughout the course of the study, genomic DNA was again isolated 

from the ear notch or tail tips of the transgenic animals to confirm the genetic 

background and to assure that the transgene was not lost in subsequent 

generations. Screening of polymorphic microsatellite markers located on 



 

chromosome 2, 3, and 14, verified the SHRSP lineage of each of the transgenic 

animals. These markers are used for routine screening of SHRSP, WKY and 

congenic strains at the BHF GCRC (See appendix). 

 

Due to mandatory quarantine period and health status issues (mycoplasma 

infection), transgenic founders were held within a Category III suite at the 

University of Glasgow and mated with SHRSP females from the Glasgow colony. 

All offspring were screened and transgenic positive males and females were 

mated to ‘fix’ the two independent transgenic lines (Trans1 and Trans2). 

Transgenic lines underwent caesarean re-derivation to ‘clean’ the health status 

(i.e. remove all mycoplasma infection) by fostering caesarean derived transgenic 

pups onto clean Sprague Dawley foster mothers who had just littered down. 

These ‘clean’ transgenic pups subsequently were interbred within each line for 

the establishment of the transgenic lines.  

 

Trans2 animals, while showing a strong positive screening for the transgene, 

showed reduced fertility. This infertility led to difficulties with acquiring enough 

Trans2 animals to sustain the line, and generating enough stock animals to 

incorporate into the study. Because of this, it was not possible to include Trans2 

animals into every experiment carried out within the project.    

 

2.1.2 Hemodynamic Profile 

2.1.2.1 Blood Pressure measurements by Tail Cuff Pl ethsymography 

Measurement of systolic blood pressure was carried out using the well 

established method of tail cuff plethysmography as described previously (224). 

Rats were preheated at 30°C for 20 minutes in an insulated box to insure 

vasodilatation of the tail artery. Rats were then manually restrained by being 

wrapped in a soft cloth and an inflatable cuff placed on their tail along with a 

piezoceramic transducer (Hartmann &Braun type 2) for pulse detection. The 

pressure in the cuff is controlled in 1mmHg steps over a 300 mmHg range by 

pressure control unit (designed and built “in house” by DCBP Electronics, 

(Southern General Hospital, Glasgow). Multiple cuff inflation and deflation steps 

were carried out through the duration of each tail cuff session and the resulting 

pulsatile signal detected by the transducer was visualized as a function of 



 

pressure and displayed on computer using Microsoft Windows compatible 

software. At least 8 of 10 readings were recorded, with the highest and lowest 

readings being discarded, and the remaining readings averaged for a single 

session value.  

2.1.2.2 Blood Pressure measurements Telemetry  

 At 12 weeks of age, radiotelemetry probes were surgically implanted under 

sterile conditions into the abdominal aorta as previously described in (225;226) 7 

days after implantation before baseline blood pressure measurements were 

recorded. Systolic blood pressure (SBP), Diastolic blood pressure (DPB), Mean 

arterial blood pressure (MAP), pulse pressure (PP), heart rate (HR) and motor 

activity were measured using The Dataquest IV telemetry system (Data Sciences 

International) as previously described in (227). Briefly, Heart rate, blood 

pressures, pulse pressure, and activity were recorded for 10 seconds every 5 min 

throughout the day and night. The results from each rat were averaged to weekly 

day and night averages using an excel spreadsheet macro. The telemetry 

recording equipment includes a transmitter (radio frequency transducer model 

TA11PA), receiver panel, consolidation matrix 4650, and a dedicated computer 

with accompanying software. All radio transmitter devices (probes) were 

calibrated and confirmed to be accurate within ±3 mm Hg before being 

implanted.  

Implantation of radio-telemetry probes was carried out while rats were 

anesthetized with 2.5% Isofluorane in 1.5 L/min 02 for the duration of the 

surgical implantation process. After anesthetization, but before the start of the 

surgery, Carprofen (5 mg/kg) a non-steroidal anti-inflammatory analgesic was 

administered for pain control. The radio-telemetry probe was then inserted into 

the descending abdominal aorta pointing towards the proximal end of the animal 

(i.e. towards the heart), against the flow of blood, and was sutured to the 

abdominal wall in order to reduce movement of the probe while implanted. 

Following surgery, rats where housed in individual cages that were placed upon 

the receiver panel and monitored daily. The rats were free to roam about the 

cages and to feed and drink ad libitum.        

 



 

2.1.3 Echocardiography  

Transthoracic echocardiography was used to assess cardiac geometry and 

contractility, as previously described (228;229). Echocardiography was performed 

prior to sacrifice at 21 weeks of age. Animals were sedated and short axis 2-

dimensional B-mode and M-mode images were taken through the left parasternal 

window at the papillary muscle levels using ACUSON Sequoia C512 

Echocardiograph, which is capable of both 2-D and 3-D multiple frequency 

imaging. Averaged data from six consecutive cardiac cycles from each M-mode 

tracing were used in the following equation for the calculation of left ventricular 

mass (ASE-cube formula with Devereux correction factor) (LV mass =0.8 

[1.04[(EDD + PWT + AWT)3 – EDD3]]+0.6). Where PWT = Posterior wall thickness 

(mm), AWT = Anterior wall thickness (mm), EDD = End diastolic dimension (mm). 

LV end-systolic volume (ESV) and LV end-diastolic volume (EDV) can be 

calculated from two-dimensional images according to a modified Simpson’s rule. 

LV ejection fraction (LVEF) is then determined from EDV and ESV. Cardiac index 

is estimated as cardiac output adjusted for tibia length 

 

2.1.4 Metabolic Cages 

Metabolic cages were used for housing individual rats for the collection of urine 

and the monitoring of water in-take for baseline and salt-loading studies. 

Telemetered rats were housed in metabolic cages at 16 (baseline) and 21 weeks 

for a 24 hour time period. For acclimation purposes, 15 week old rats were 

housed in metabolic cages for a 4 hour period prior to baseline measurements. 

Metabolic cages differ from standard cages by an upper chamber with a support 

grid that allows to rat to stand while allowing urine and feces to pass through the 

grid and into a funnel which separates and collects the feces and urine. A small 

feeder and marked water bottle on the outside of the cage allows access to 

standard rat chow and regular or salt-loaded water. Urine that was collected was 

kept on ice and stored at -80° C, until required for biochemical analysis.  

 



 

2.2 Ex vivo  Experimental Procedure      

2.2.1 Tissue Preparation        

At sacrifice animals were terminally anesthetized by isoflurane. The thoracic 

cavity was opened to expose the heart and blood samples were collected by 

cardiac puncture with a 23 gauge needle. Tissues, such as: kidneys, spleen, liver, 

aorta, heart, carotid arteries, fat, brain, adrenals and skeletal muscle,  were 

harvested and snap-frozen in liquid nitrogen and stored at -70°C for RNA, DNA or 

protein extraction. 

For histological assessment, tissues were blotted on tissue paper to remove 

excess blood and any additional surrounding connective tissues were separated 

from the vascular tissue immediately after harvest. Tissues were then fixed in a 

10% formalin solution overnight at room temperature and subsequently 

transferred into PBS. The fixed samples were later embedded in paraffin blocks 

by trained technical staff in the laboratory. Paraffin section of 3-6 µm thickness 

were cut and baked onto silanized slides at 60°C for 3 hours followed by 40°C 

overnight. Both the paraffin blocks and sections were kept at room temperature 

and stored in appropriate boxes. Transverse cross sections of kidney and aorta 

were used. 

Thoracic aortas and mesenteric resistance arteries were harvested and taken to 

determine endothelial function by wire and vessel morphology by pressure 

myography (see section 5.2.4-5.2.5). Blood samples collected in heparin and/or 

EDTA lined tubes during sacrifice were kept on ice until centrifugation at 2400 

RPM for 20 mins at 4°C. Plasma was then extracted and stored at 80° C for renal 

function experiments.  

 

2.2.2 Organ Mass index     

Organ mass indices for whole heart, left ventricle plus septum, and kidneys were 

measured at time of tissue collection. At sacrifice organs were removed, blotted 

to remove excess blood and weighed. Organ weights were corrected for body 

weight or tibia length. After sacrifice a scalpel was used to expose the knee and 

ankle joint on an extended hind limb, the tibia length was determined using a 



 

double-pointed drawing compass and was subsequently measured with a ruler. 

Both body weight and tibia length were used to assess organ mass indices, and 

both methods of measurements showed similar trends and significance for 

results.  

 

2.2.3 Histology  

2.2.3.1 Histological Assessment of Gross Pathologic al Changes  

Histological analysis was used to assess cardiac and renal pathological changes by 

examining haematoxylin and eosin (H&E) stained sections. Fibrosis was examined 

by staining with picrosirius red where microscopic analysis and a colour threshold 

application were used to measure the average intensity of picrosirius red stain of 

fibrotic tissue. 

2.2.3.2 Immunohistochemistry       

Sections cut to 6 µm thickness were de-parafinised and hydrated by 2x7 minute 

washes in Histoclear before going down an ethanol gradient of 100%, 95% and 75% 

for 7 minutes at each stage. Sections were then washed in water for 7 minutes. 

Endogenous peroxide was then quenched by incubating slides for 30 minutes in 

0.3% H2O2 (10ml 30% to 1L) in methanol at room temperature. Sections were then 

rinsed in 2 x 10 minute water washes. Sections were blocked for 60 minutes with 

2% normal serum in PBS (2 drops of ABC kit blocking serum in 5ml PBS or 100µl 

appropriate serum in 5ml PBS). Slides where placed in humidified trays in order 

to prevent slides from drying out. Excess blocking reagent was removed and 

replaced with 1°Ab/antiserum or negative control diluted in blocking serum for 

overnight at room temperature. The following day, sections underwent 3x5 

minutes washes in PBS. A  biotinylated 2°Ab antibody, diluted in blocking 

reagent (ABC universal kit, 2 drops blocking serum + 2 drops supplied vectastain 

biotinylated antibody + 5ml PBS) was added for a 30 minute room temperature 

incubation. This was followed by 3x5 minute PBS washes. If the ABC 2°Ab 

antibody was used, and ABC complex was added to the sections and incubated 

for 30 minutes at room temperature. This was followed by 3x5 minute PBS 

washes. DAB chromogen (DAB substrate kit) for universal and peroxiase 2°Ab 

antibody was prepared following manufacturer’s instructions. Sections were 



 

incubated for 5 minutes at room temperature in a humidified chamber and then 

washed for 5 minutes in water. Sections were counterstained with Haematoxylin 

for 90-120 seconds and placed under a running tap for 5 minutes. Sections were 

then dehydrated through a reverse ethanol gradient of 70%, 95% and 100% for 7 

minutes at each stage. Immediately following, sections then washed 2x’s in 

Histoclear for 7 minutes and mounted using Histomount (National Diagnostics, 

GA, USA). 

   
2.2.3.3 Heamatoxylin and Eosin Staining – cardiac a nd renal remodelling 

Kidney sections from WKY, SHRSP, Trans1 and Trans2 were stained with Harris 

haematoxylin for 2 minutes, washed under a running tap for 5 minutes and 

transferred to eosin for 1 minute before final 5 minute water wash. Sections 

were then dehydrated through a reverse ethanol gradient of 70%, 95% and 100% 

for 7 minutes at each stage. Immediately following, sections then washed 2x’s in 

Histoclear for 7 minutes and mounted using Histomount (National Diagnostics, 

GA, USA). Examination and analysis was performed under a microscope where 

nuclei appeared purple and cytoplasm pink.   

2.2.3.4 Fibrosis staining and measurement 

Fibrosis was assessed in renal sections from WKY, SHRSP, Trans1 and Trans2 rats 

using picrosirius red (Sigma-Aldrich, UK) which stains collagen type I and type III 

fibres bright red. After the removal of paraffin, sections were incubated under 

dark conditions in 0.1% picrosirius red solution for 90 minutes at room 

temperature, followed by 2 x 5 minutes washes in 0.01 N HCl and 1 x 5 minute 

wash under a running tap. Sections were then dehydrated through a reverse 

ethanol gradient of 70%, 95% and 100% for 7 minutes at each stage. Immediately 

following, sections then washed 2x’s in Histoclear for 7 minutes and mounted 

using Histomount (National Diagnostics, GA, USA) and cured overnight on the 

bench top. Collagen was stained various shades of red, with the cytoplasm 

yellow. 

 

 



 

2.2.4 GFR 

 Indirect glomerular filtration rates (GFR) were determined by measurement of 

urine and plasma ceatinine concentrations. The equation (urinary creatinine 

concentration   X urine flow rate) / plasma creatinine concentration was used to 

calculated GFR. All measurements were determined by a clinically validated 

automated analyzer (c311, Roche Diagnostics, Burgess Hill UK), using the 

manufacturers calibrators and quality control material for Isotope dilution-mass 

spectrometry (IDMS). All calculations were normalized to kidney weight.  

 
2.2.5 Oxidative Stress Measurements    

2.2.5.1 Lipid Peroxidation (Malondialdehyde) Assay   

Samples were homgenized by polytron in 1ml of freshly prepared homogenisation 

buffer (10µl 0.5M BHT/acetonitrile per ml PBS) for every 100mg of tissue. 

Samples were immediately placed on ice until they were transferred into a 2ml 

Eppendorf tube and centrifuged at 3000g at 4°C for 10 minutes. If the samples 

were still turbid, supernatant was placed in a new eppendorf tube and 

centrifuged again. Standards and samples were transferred into a deep 96 well 

plate where 325µL of MDA cocktail was added to standards & samples. Plate was 

then sealed and placed in an oven for 1 hour at 45°C. Samples were then 

centrifuged at 2450g in 15 minutes at 4°C. 200µl of supernatant was transferred 

to a flat-bottom 96-well plate and absorbance was read at 586nm using a 

SpectraMax. 

 
2.2.5.2 Glutathione Assay  

 Glutathione levels were measured according to Cayman Glutathione Assay Kit 

(#703002) manufacturer’s instructions. Briefly, liver, heart, brain, kidney, and 

aorta tissue was homogenized in 1x MES buffer provided in kit in a bijou contain 

using a polytron (1ml for every 0.2g tissue). Homogenates were transferred to 

2ml Eppendorf tubes and centrifuge at 10,000g for 15min at 4°C. Supernatant 

was transferred to a new 2ml Eppendorf and kept on ice. A 25 µL aliquot was 

reserved for protein measurement by BCA assay (see section 2.6.2). Fresh MPA 

reagent (5g MPA in 50ml H2O) was prepared and used within 4hrs at 25°C. Equal 



 

volumes of MPA were added to each sample. Samples were immediately vortexed, 

allowed to rest for 5 minutes at room temperature and then centrifuged 

at >2000g for 3 minutes. Supernatants were then transferred to a 2ml Eppendorf. 

300 mls of each sample was transferred to a new 1.5 Eppindorf and 15 µL of 4M 

TEAM reagent (531µl triethanolamine + 469µl H2O) was added to each sample 

and vortexed. Standards for measurements were set up according to 

manufacturer’s instructions.  

For measuring GSSG, a 100µL aliquot of standards and samples was removed to 

new tubes. 1µl of 1M 2-vinylpyridine solution (108µl 2-vinylpyridine + 892µl EtOH) 

was added to each of the 100µl aliquots. Samples were then vortexed and 

incubated at room temperature for 60 minutes.  

Once GSSG samples were ready, 50µl of all samples (Total GSH and GSSG) were 

added to a clear 96-welled plate. Fresh Assay Cocktail was prepared (MES buffer, 

Cofactor Mixture, reconstituted Enzyme mixture, water, and reconstituted DTNB) 

according to protocol. The cocktail was added to the entire plate within 2 

minutes using a multi-channel pipette. The plate was then covered and 

incubated in the dark on an orbital shaker for 25 minutes. Absorbance was read 

at 405nm on a SpectraMax. 

 
2.2.5.3 Hydrogen Peroxide Assay  

 Hydrogen Peroxide levels were measured using Invitrogen’s Amplex® Red 

Hydrogen Peroxide/Peroxidase Assay Kit Amplex Red (Invitrogen) according to 

manufactures instructions for tissues. The Amplex Red Assay uses 10-acetyl-3,7-

dihydroxyphenoxazine (Amplex® Red Reagent) to detect hydrogen peroxide 

(H2O2) or peroxidase activity. In the presence of peroxidase, the Amplex® Red 

reagent reacts with H2O2 in a 1:1 stoichiometry to produce the red-fluorescent 

oxidation product, resorufin, where absorbance can be measured at 560 nm using 

a microplate reader.  

2.2.5.4 Lucigenin Chemiluminescence   

Protein was extracted from frozen tissue in a ROS protease inhibitor cocktail 

buffer (aprotinin, leupeptin, and pepstatin) using a pellet pestle in 1.5mL 



 

Eppendorf on ice. Protein concentration was measured by BCA (see section 2.6.2) 

assay for analysis purposes. Basal levels of reactive oxygen species were 

measured using a luminometer by adding 175 µl of ROS buffer, 1.25µl of 

lucigenin and 50µl of sample. Immediately following basal activity, 25µl NADPH 

(1mM) was added to each sample and fluorescence was measured again. The 

average of 30 readings for each samples from both the basal and NAPDH 

recordings were used to calculate the change in lucigenin activity using the 

formula (NAPDH-BASAL) RLU/µg protein. RLU stands for relative lights unit in the 

Berthold Detection Systems MPL2 Luminometers. The intensity of the emitting 

light is proportional to the amount of enzyme present and is directly related to 

the amount of HGH antigen in the sample. By reference to a series of HGH 

standards assayed in the same way, the concentration of HGH in the unknown 

sample is quantified 

2.2.5.5 Griess Assay 

Total nitrate and nitrite concentrations were measured using the Cayman 

Biochemical Nitrate/Nitrite Colorimetric Assay Kit. All steps were followed using 

the manufacturer’s instructions and recommendations. In short, the assay kit 

uses a simple two-step method for measuring the nitrite to nitrate ratio. The 

first step consists of converting nitrate to nitrite utilizing a nitrate reductase 

(Sulfanilamide/ Greiss Reagent 1). The second step is the addition of 

ethylenediamine/ Greiss Reagent 2 which turns nitrite into a deep purple azo 

compound. This azo chromophore conversion allows for a photometric 

measurement of the absorbance at 540 nm for an accurate quantification of NO2- 

concentration. In order to measure nitrite alone (to attain the nitrite and nitrate 

ratio), the assay was performed a second time on the tissue samples without the 

addition of Griess reagents. Standards and samples for each assay were 

transferred into a flat bottom 96 well plate and absorbance was read at 540 nm. 

Determination of Nitrite and Nitrate samples was according to manufacturer’s 

instructions.  

 
 



 

2.2.6 Wire Myography   

For examination of functional response and vascular reactivity, small (3rd order) 

mesenteric arteries (MRA) and thoracic aortas were harvested at 21 weeks of 

age. The vessels were dissected from connected tissue and stored in Krebs buffer 

overnight at 4 °C before use. For mesenteric arteries, a 2 mm (approximately) 

length of artery was mounted onto two stainless steel wires on a four channel 

small vessel myograph (Danish Myotechnology, Denmark). Changes in force were 

measured by connecting the force transducer to a myo-interface and were then 

recorded using a data acquisition package (ADI Instruments Powelab systems). 

The vessels were maintained in Krebs buffer (0.25 M NACl; 0.001 M KCL; 2 

mMMgSO4; 50 mMNaHCO3; 2 mMKH2PO4; 2 nM CaCl2) warmed to 37̊ °C and 

bubbled with 95% O2 and 5% CO2 (pH 7.4). Following a 30 minute equilibrium 

period, vessels were set to a normalized internal diameter in order to achieve 

optimal contraction. Internal diameter was calculated using the following 

equation, L1 = 0.0*L100. L100 was determined using the LaPlace equation where 

effective pressure (P) equals wall tension (T) divided by the internal rediau (P = 

T/r). After 1 hour, contractile response of the vessel was tested by a pre-

treatment of KCL (10 uM) to determine the maximum active tension development 

that allowed for standardization of initial experimental conditions. Vessels were 

then washed 4 or more time with Krebs buffer and were allowed to rest for at 

least 30 minutes. A cumulative concentration curve of noradrenalin, 10 mM to 

30mM, was performed. Immediately following the noradrenalin addition, a 

carbachol dose response curve, 10 nM to 10µM, was performed in order to 

ascertain the % relaxation in response to the stimulated contraction. The dose 

response curves were followed by a Krebs buffer wash out to baseline. The 

noradrenalin curve was then repeated in the presence of L-NAME (100µm). The 

resulting increase of tension caused by L-NAME provided a measure for the effect 

of nitric oxide on basal tone. The percentage of maximum contraction was 

calculated in response to the noradrenalin without L-NAME.  

For aortic measurements, a ring of 4 mm (approximately) length was mounted on 

a large wire myograph (Danish Myotechnology, Denmark). Aortic rings were 

stretched to 1.5 newtons over a period of 40 minutes in order to equilibrate. 

Changes in force were measured by connecting the force transducer to a myo-

interface and were then recorded using a data acquisition package 



 

(DanishMyoTech p100 pressure system, Denmark). All procedures steps are as 

explained in the previous paragraph with the exception that noradrenaline was 

replaced with phenylephrine.   

 

2.2.7 Pressure Myography        

In order to assess the pressure-diameter relationship differences between SHRSP, 

WKY and transgenic lines, pressure-diameter relationships were constructed to 

examine the structural and mechanical differences in mesenteric resistance 

arteries (DanishMyoTech p100 pressure system, Denmark) 

Third order mesenteric arteries without side branches were dissected out of the 

surrounding connective tissues, cleaned, and placed in a calcium free Krebs (0.25 

M NACl; 0.001 M KCL; 2 mMMgSO4; 50 mMNaHCO3; 2 mMKH2PO4; 1mM EDTA) 

solution overnight at 4̊ °C. The following morning the MRA was attached to the 

glass canulae within the myograph with nylon threads. During the attachment 

process, MRA were maintained in 10 ml cold Ca2+ free Krebs solution while one 

end was attached and the vessel lumen was gently flushed to remove any 

remaining blood before the second end was attached to the canulae. Krebs 

solution temperature within the canulae was raised to 37°C and was bubbled 

gently with 95% O2 and 5% CO2. To equilibrate the MRA, a prolonged intraluminal 

pressure at 70 mmHg for 60 minutes was maintained. Immediately following, the 

intraluminal pressure was reduced to 10 mmHg and incremental pressure 

increases of 20 mmHg until 120 mmHg over a period of 60 mins. Measurements of 

internal (Di) and external (De) were measured and used to calculate structural 

parameters cross sectional areas (CSA) and wall to lumen ration using the 

following equations: CSA = (π/4) x (De
2-Di

2). Wall/lumen = (De
2-Di

2)/2Di. The 

following mechanical parameters were calculated according to the method of 

(Baumbach and Heistad, 1989). Circumferential wall strain, where D0 is the 

diameter at the lowest intraluminal pressure of 10 mmHg and Di is the observed 

internal diameter for a given pressure, equals (Di-D0)D0. Circumferential wall 

stress = (PxDi)/De-Di where P is the intraluminal pressure.            

    



 

2.3 General Molecular Biology 

Any experiments involving RNA used autoclaved DEPC-treated dH20 or RNase-free 

water (Qiagen). All plastic-ware used for RNA work was pre-treated and RNase-

free (Life Technologies). Filtered RNase-free tips were used in all RNA work. 

Water used in any molecular was distilled water that was been autoclaved and 

referred to as sterile dH20.    

2.4  RNA Extraction 

2.4.1.1 Total RNA Extraction 

Total RNA samples were extracted using Qiagen RNeasy kits (Qiagen, Hilden, 

Germany) according to manufactures recommended instructions for fibrous 

tissues (Appendix C of RNeasy Handbooks). The resulting elute was then 

quantified by measuring 1.5 µL of RNA sample using the NanoDop DN-1000 

spectrophotometer spectrophotometer (NanoDrop Technologies LLC, Wilmington, 

Delaware USA) under the software program ND-1000 v3.2). Integrity of the 

extracted RNA was checked by Agilent. In brief, absorbance at 260 nm was used 

for quantification of nucleic acids with an optical density of 1 corresponding to 

40ng/µL RNA. Ratios of absorbance (260 nm/280 nm) of approximately 2.0 for 

RNA indicated that the nucleic acid preparations were sufficiently free from 

protein contamination which could compromise downstream experiments. In 

order to determine the most accurate quantification, averages of duplicates or 

triplicates readings were taken.   

 

2.4.2 DNase Treatment of Extracted Total RNA 

The RNA samples were extracted on DNase treated columns by electing to take 

the optional DNase-treatment step in the RNeasy handbook. This was done by 

following manufacturer’s recommended instructions where 80µL of DNase 

treatment (10µL DNAse 1 stock +70µL RDD buffer) was added to each sample and 

incubated at room temperature for at least 15 mins.  

 



 

2.4.3 Reverse Transcription (RT)-PCR    

Reverse transcription was performed using the Applied Biosystems High Capacity 

cDNA Archive Kit (Applied Biosystems). All steps were performed according to 

manufacturer’s instructions. 1 µg of DNAse treated RNA samples were reverse 

transcribed into cDNA in a 100 µL reaction containing a final concentration of 1X 

RT buffer, 5mM MgCL2, 1mM dNTP mixture,1u/µL RNAsin (RNase inhibitor), 0.5 µg 

of random heximers, 15 u of AMV reverse transcriptase (Multiscribe) on a 96-well 

plate. For negative controls, additional reactions without reverse transcriptase 

were included.   The reaction was then placed on a thermocycler and underwent 

the following two-step reaction conditions: 25°C for 10 min, 37°C for 120 mins. 

The samples were then stored at -20°C until use.  

2.4.4 Real-Time Polymerase Chain Reaction   

Relative real-time RT-PCR quantitation of the samples was carried out in a two-

step RT-PCR assay using the Taqman Gene Expression Assays from Applied 

Biosystems in a multiplex reaction (if the gene of interest and β-actin reacts with 

the same efficiency). Each reaction consisted of 2.5 µL Taqman Expression PCR 

Master Mix, 1x VIC labelled β-actin or GapDH probe (housekeeper), 1X FAM-

labelled probe for the gene of interest, and 2 µL of cDNA in a final volume of 5 

µL in a 384-well plate. The comparative eeCT method was used for relative 

quantification of expression, normalized to β-actin or Gapdh (for heart tissue) in 

each sample and then expressed relative to SHRSP ABI PRISM 7700 Sequence 

Detection System User Bulletin #2). 

In order to use the eeCT, it was imperative to experimentally confirm that the 

amplification of efficiencies of the target and control gene PCRs were the same 

(i.e. that EX=ER). Therefore the amplification efficiencies of each gene 

expression assay were measured in duplex PCRs with either GapDH or β-actin 

assays using a serial dilution of template. This process was performed for all 

gene expression assays and custom gene expression assays for each cDNA 

template (e.g. for cDNA from heart, kidney, aorta, liver and brain). Each assay 

was assessed according to the Applied Biosystems guidelines. Each gene 

expression assay for mRNA from each tissue that was used in this study amplified 

efficiently        



 

2.4.4.1 Real-Time Polymerasase Chain Reaction using  SYBR Green: 

Real-time RT-PCR quantititation of the samples was carried out in a two-step RT-

PCR assay. The reactions were prepared using Applied Biosystems Power SYBR 

Green Master Mix. All reactions were completed in duplicate, including minus RT 

controls. Each reaction consisted of 2.5µL of cDNA sample (section2.4.3), 3.65µL 

of RNAse-free H2O, 100µM sense primer, 100µM antisense primer, and 6.25 µL of 

master mix in a 12.5 µL reaction.  

The following cycling parameters were used: 50ºC for 10 minutes, then 95ºC for 

10 minutes. This was followed by 40 cycles of 95ºC for 10 seconds and a 

combined annealing/extension temperature of 60ºC for 2 minutes. During each 

cycle of the PCR the fluorescence emitted by the binding of SYBR-Green to the 

dsDNA produced in the reaction was measured. To confirm the specificity of the 

reactions dissociation curves were constructed for each primer pair at 0.1ºC 

intervals between the temperatures of 60 ºC and 95ºC.  

  

2.5 Genomic DNA Preparation  

2.5.1 DNA Extraction 

Genomic DNA from SHRSP, transgenic, and WKY animals was extracted using 

Qiagen DNeasy kits (Qiagen, Hilden Germany) according to manufacturer’s 

instructions.    

2.5.2 Sequencing 

1-3 µg of genomic DNA, that was extracted as stated in 2.5.1, was digested 

separately with either HindIII or PstI restriction enzymes for 1.5 hours at 37° C in 

0.5 µL epindorf tubes. Resulting fragments were then ligated overnight at 16 °C 

with T4 ligase. Primers designed specifically for HindIII (GstmFragA) and PstI 

(GstmFragB) restriction sites were used as primers with the ligated templates for 

the first round of PCR amplification. First round PCR was performed using the 

primer sets GstmFragA (1+2) and GstmFragB (1+2):  



 

GstmFragA 1- ATT GCA TGA AGA ATC TGC TTA GG 

GstmFragA 2- ACA AGC AGG GAG CAG ATA CTG GC 

GstmFragB 1- AAA GGA GTG GGA ATT GGC TCC GG 

GstmFragB 2- CAA CGC GTA TAT CTG GCC CGT AC 

Product from the first round PCR was utilized as a template for a second nested 

PCR reaction using nested Gstm1FragA (3+4) and nested Gstm1FragB (3+4) primer 

sets: 

GstmFragA 3- TGT ACG GGC CAG ATA TAC GCG TTG 

GstmFragA 4- GAG CAG ATT GTA CTG AGA GTG CAC 

GstmFragB 3- GGT AAA CTG GGA AAG TGA TGT CG 

GstmFragB 4- GAG CAG ATT GTA CTG AGA GTG CAC    

For a schematic view of this process pre refer to figure 4-11.  

The PCR reactions were run on the Pelteri Thermal Cycler (PTC-225) under the 

conditions 95 °C for 4 mins, 96 °C for 30s and 58 °C for 30s and 72 °C for 60s for 

35 cycles, then held at 72 °C for 7 min. In order to separated the amplified 

fragments, 15-20 µL of PCR reaction was electrophoresed with 3µL of 6X loading 

dye in a 1% agarose gel at 100V for 1.5 hours, alongside a 1Kb DNA ladder.  

DNA fragments that were considered the correct sizes were then isolated from 

the aragose gels by Qiaquick gel desolving kt (Qiaquick handbook pg 25) 

according to handbook instructions (Qiagen). Extracted DNA eluate was then 

quantified by measuring 1.5 uL of RNA sample using the NanoDop DN-1000 

spectrophotometer spectrophotometer (NanoDrop Technologies LLC, Wilmington, 

Delaware USA) under the software program ND-1000 v3.2, in which absorbance 

ratios of 260 nm/280 nm equalled approximately 1.8 for DNA. This indicated that 

the DNA preparations were sufficiently free from protein contamination. Like 

RNA samples, averages of either duplicate or triplicate measurements were 

taken for samples requiring precise quantification. 

Eluted DNA was then placed into a plasmid cloning kit (Stratoclone) and cloned 

according to manufacturer’s instructions (Stratoclone). Positive colonies were 

then screened and verified by 2% X-gal. Plasmid DNA was then prepped for DNA 



 

sequencing using Qiagen Plasmid mini prep kit (Qiagen) according to 

manufacturer’s instructions. 

Plasmid DNA was sequenced by using Applied Biosystems  BigDye Terminater n3.1 

Cycle Sequencing kits. All reaction were performed on a 96 well plate and 

included included 3.5µl 5X sequencing buffer; 0.5µl Ready Reaction; 8µl 

template (100-200ng of plasmid DNA); ~3.2µl primer (2.0 µM Final); ~4.8µl H2O. 

The temperature program cycle was: 96°C for 45 secs, 50°C for 25 secs, 60°C for 

4 mins. Steps 1-2 repeated 25 times.  

Sequencing was initially analyzed on Applied Biosystems SeqScape software 

version 2.1 to see if fragments aligned to the genome. Fragments that were 

aligned were then analyzed without the use of computer software and each 

nucleic acid was examined in order to verify that the connecting sequences were 

novel and not erroneous transgene fragments. Experimental sequences were then 

aligned with known sequences derived from bioinformatic databases such as 

UCSC genome browser or ENSEMBL.  

2.5.3 Copy Number Variation  

Identification of the Gstm1 transgene across generations was determined in each 

transgenic line through Taq-man analysis. Copy number variation Taqman probes, 

SNP Genotyping Assay (Applied Biostystems) and SNP Gene Expression Assay 

(Applied Biosystems), were custom synthesized to a unique portion of the 

transgene construct.  The SNP Genotyping Assay was analyzed by Taqman 

Genotyper, a specifically designed analysis package developed by Applied 

Biostand for this assay. The SNP Gene Expression Assay was compared to a unique 

single copy gene (RNase P 30) that was custom designed for the genetic 

background of rats. Using the comparative (∆∆CT) method with additional steps 

as calculated by Applied Biosystems Copy Caller Software, copy number variation 

analysis was performed on the Taqman 7900. 



 

2.6 Protein Extraction 

2.6.1 Protein Extraction 

Protein from tissues was extracted using a Hepes lysis buffer (50mM Hepes, 1mM 

DTT, 0.5% Tween, ph 7.4). On the night before extraction, one tablet of Roche 

EDTA-free protease inhibitor cocktail tablet was added for every 10 mls of Hepes 

lysis buffer used. The samples were homogenized in cold Hepes lysis buffer (1ml 

of Hepes buffer for up to 0.3g of tissue). The homagenates were kept on ice until 

centrifuged at 14,000 rmp for 10 mins at 4°C and the supernatant contain the 

protein was transferred to a new tube and kept on ice. 5µL of supernatant was 

removed to determine protein concentration by nanodrop. The rest of the 

protein was stored at -80 °C until needed.   

2.6.2 Protein Quantification 

The protein concentration of each sample was determined using a Peirce BCA 

(bicinchoninic acid) protein assay kit according to the manufacturer’s 

instructions. The bovine serum albumin (BSA) standards were diluted to 

appropriate concentrations for the standard curve while the protein samples 

were diluted accordingly to fit within the standards spectrum. Briefly, a standard 

curve was generated using the following BSA dilutions: 2000 µg/mL, 1500 µg/mL, 

1000 µg/mL, 750 µg/mL, 500 µg/mL, 250 µg/mL, 125 µg/mL and 25 µg/mL. 200 

µL of working reagent was added to 25 µL of sample or standard in duplicate in a 

96 well plate, and incubated for 30 minutes at 37ºC in the dark. The plate was 

then analysed on a Wallac Victor2 plate reader (Wallac, Turku, Finland) with 

absorbance at 570 nm. Results were then calculated according to the linear 

equation based on the standard curve generated. 

For measurement of proteinuria in urine samples, the Peirce 660 Protein Assay 

from Thermo Scientific was used. Pre-diluted samples were used and purchased 

from Thermo Scientific. Urine samples were diluted with water in order to fall 

within the working range of the pre-dilute samples.  10µL of each replicate of 

standard, unknown sample and the appropriate blank sample were added into a 

microplate well. 150µL of the Protein Assay Reagent was added to each well. 

Plate was then covered and placed on a plate shaker at medium speed for 1 



 

minute and then left to incubate for 5 minutes at room temperature. The plate 

was then analysed on a Wallac Victor2 plate reader (Wallac, Turku, Finland) with 

absorbance at 570 nm. A standard curve was calculated by plotting the average 

Blank-corrected 660nm measurement for each BSA standard (see above for 

concentrations) vs. its concentration in µg/mL and then used to determine the 

protein concentration of each unknown sample.  

 

2.6.3 Gel Electrophoresis 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and 

western immunoblotting was used to detect the Gstm1 protein. First, samples 

were prepared at the appropriate concentration with 6x loading buffer 

containing: 10% weight/volume (w/v) SDS, 30% (v/v) glycerol, 10% (v/v) Tris-HCl 

pH 6.8, 0.01% (w/v) bromophenol blue and 2% (v/v) β-mercaptoethanol. Samples 

were heated at 95ºC for 5 minutes to denature the protein, mildly cooled and 

loaded into the well.  

The polyacrylamide (PA) gel consisted of a 4% stacking gel containing 13.3% (v/v) 

N,N’-methylene-bis-acrylamide (polyacrylamide 30%), 25% (v/v) Tris pH 6.8 (3.75 

mM), 0.1% (v/v) SDS, 1% (v/v) ammonium persulphate (APS) and 0.1% (v/v) of 

N,N,N’,N’-Tetramethylethylenediamine (TEMED). Since the molecular mass for 

Gstm1 was 26 kDa, a 12% resolving gel which contained 40% (v/v) of PA (30%), 

25% (v/v) of Tris pH 8.8 (11.25 mM), 0.1% (v/v) SDS, 1% (v/v) APS and 0.1% (v/v) 

TEMED was used.  

Following sample loading, gels were electrophoresed at 100 V through the 

stacking gel, then switched to 200 V for electrophoresis through the resolving gel 

in running buffer (0.025 M Tris-HCl, 0.2 M glycine, 0.001 M SDS) for 

approximately 2 hours. Protein was then transferred to Hybond-P polyvinylidene 

difluoride membrane (Amersham Bioscience UK Limited, Buckingham, UK), to 

enable antibody binding and detection. Protein transfer was performed using an 

electric current which promotes protein migration from the gel to the 

membrane. Protein transfer was performed using the semi-dry method at 75 mV 

for 45 mins. 



 

2.6.4 Western Immunoblotting 

Once proteins were transferred to the membrane, antibody detection was 

performed. The membranes were first blocked in TBS-T [150 mM NaCl, 50 mM 

Tris, 0.1% (v/v) Tween-20] + 10% (w/v) fat-free milk powder (blocking buffer) for 

8 hours at 4ºC. Membranes were incubated with rabbit anti-rat Gstm1 polyclonal 

antibody (gift from Prof. John Hayes, University of Dundee)diluted in blocking 

buffer at the 1:5000 dilution overnight at 4ºC with shaking.  

Following overnight incubation the membrane was washed twice in blocking 

solution for five minutes each at room temperature, followed by incubation with 

an 1:2000 dilution of the appropriate secondary antibody, goat anti-rabbit IgG 

secondary antibody conjugated to horseradish peroxidase (HRP) (Neomarkers, 

Fremont, CA, USA) for 1 hour at room temperature with shaking. The membrane 

was then washed six times for 15 minutes each at room temperature with 

shaking, four times with blocking solution and two times with tris buffered 

saline-tween (TBS-T). Proteins were visualized using Enhanced Chemiluminescent 

(ECL) Detection System (Amersham Biosciences UK Limited, Buckingham, UK) 

following the manufacturer’s instructions. Films were exposed for various lengths 

of time, ranging from 10 seconds to 35 mins. 

 

2.7 Statistical Analysis 

In vivo phenotypic measurements were performed with 6 to 8 rats per group. 

Results are expressed as mean +/- standard error of the mean (SEM) unless 

otherwise stated. Repeated measures ANOVA was used to compare 

radiotelemetry data between groups, as described previously (Davidson et al., 

1995). Briefly this was a general linear model ANOVA using a Tukey pair-wise 

comparison. Statistical significance was considered with p values of < 0.05. Other 

comparisons between groups for the in vivo measurements  were performed by 

one way ANOVA with Tukey’s multiple comparison test, unless stated otherwise, 

and statistical significance was considered with p values of <0.05. Statistical 

analyses were performed using GraphPad Prism 4. *, **, *** represents p<0.05, 

p<0.01 and p<0.001 versus SHRSP, respectively. 



 

Ex vivo experiments were performed with 4 to 8 rats per group as described in 

each figure’s legend. Results are expressed as mean +/- standard error of the 

mean (SEM), unless otherwise stated. Statistical significance was considered with 

p values of < 0.05. Comparisons between groups were performed by one way 

ANOVA with Tukey’s multiple comparison test, unless stated otherwise. Area 

under the curve was calculated from organ bath and myography response curves 

with one way ANOVA and Tukey’s multiple comparison test used to determine 

significance between the 4 strains of animals. Statistical analyses were 

performed using GraphPad Prism 4. *, **, *** represents p<0.05, p<0.01 and 

p<0.001 versus control. 

Molecular experiments were performed with 3 to 8 rats per group as described in 

each figure’s legend. Results are expressed as mean +/- standard error of the 

mean (SEM), unless otherwise stated. Statistical significance was considered with 

p values of < 0.05. Comparisons between groups were performed by one way 

ANOVA with Tukey’s multiple comparison test, unless stated otherwise. Tukey’s 

multiple comparison test used to determine significance between the 4 strains of 

animals. Statistical analyses were performed using GraphPad Prism 4. *, **, *** 

represents p<0.05, p<0.01 and p<0.001 versus control. 

Human translational experiments for gene expression were analyzed using Prism 

graph pad using student’s t-test or 1-way ANOVA as appropriate. Initial SNP 

quality checking included estimation of allele frequencies using the Hardy-

Weinberg equilibrium.  

 

 

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

3 In vivo  Phenotypic Characterization of the 
Gstm1  transgenic SHRSP rat 

 

  



 

 

3.1 Introduction 

Studies in human and experimental medicine have shown that increased 

oxidative stress is associated with increased blood pressure (230;231). In 2000, 

Vaziri et al. reported that oxidative stress and arterial hypertension were 

produced in normal Sprague-Dawley rats through glutathione depletion by oral 

administration of buthione sulfoximine (BSO) (160). These findings are supported 

by other studies where the induction of chronic oxidative stress by glutathione 

depletion has been shown to cause severe hypertension in normotensive rats  

(230-232). Additionally, studies by McBride et al. have implicated that decreased 

renal Gstm1 levels contribute to the development of oxidative stress and 

hypertension in the stroke-prone spontaneously hypertensive rat (SHRSP) rat via 

reduced antioxidant defences (96).  

The SHRSP is a well characterized experimental model for human essential 

hypertension and stroke. Some of the characteristics in common between the 

SHRSP and human essential hypertension are; adult onset of hypertension and 

the continued increase of blood pressure with age, sexually dimorphic blood 

pressure levels, and proneness to stroke (227). The hypertensive phenotype in 

the SHRSP results in an increased cardiac workload and an impaired mechanical 

performance that contributes to cardiac hypertrophy (233). These similarities 

with human essential hypertension make the SHRSP one of the best existing 

models of human cardiovascular disease (36;37;84). The SHRSP model 

demonstrates an imbalance between nitric oxide (NO) and superoxide (O2
-) levels 

leading to oxidative stress (78).This oxidative stress has been implicated in the 

development of vascular endothelial dysfunction and renal pathology (234;235). 

Oxidative stress is an important pathogenic factor in the development of 

cardiovascular diseases and increased production of reactive oxygen species 

(ROS) and/or reduced defences against ROS not only leads to endothelial 

dysfunction, but also causes structural damage to tissue and organs, and is 

considered a major contributor to cardiac pathologies (231;236;237). Studies 

demonstrating that reduced Gstm1 protein expression in the SHRSP is associated 

with increased oxidative stress (96) implicate Gstm1 as an important functional 

candidate for development of endothelial dysfunction and hypertension. In 



 

addition, pharmacological intervention studies and mRNA expression data in the 

SHRSP provide evidence to support a causal role for Gstm1 in the development of 

hypertension (13). For example, significantly reduced renal Gstm1 expression 

levels are already evident in 5-week old SHRSP before the onset of hypertension 

(238). Moreover, reduced expression of Gstm1 in the SHRSP could not be 

improved by antihypertensive treatment (i.e. the angiotensin II type 1 receptor 

blocker, losartan) during either reversal studies (i.e. established hypertension) or 

prevention studies (i.e. development of hypertension). These data suggest that 

altered Gstm1 expression may contribute directly to the pathogenesis of 

hypertension and is not an adaptive response caused by long-term differences in 

blood pressure. 

It is generally accepted that the gold standard for proving causality of a 

functional candidate gene is to perform a transgenic knockdown or rescue 

experiment (Include a REF). Accordingly, in this project we aimed to 'rescue' the 

deficiency of Gstm1 in the SHRSP by incorporation of a normal Gstm1 gene from 

WKY into the SHRSP genome under the control of the universal EF-1α promoter. 

As detailed in the Materials & Methods section (Chapter 2), two novel and 

independent SHRSP transgenic lines have been generated through a joint 

collaboration between Glasgow University and Prague’s Academy of Sciences 

(Drs. Michal Pravenec and Vladimir Landa). SHRSP males and females were sent 

to Prague where the transgenic procedure was performed. This consisted of 

female SHRSP rats being super-ovulated and time-mated with male SHRSP rats. 

On day one of ovulation, embryos were harvested and injected with a linear 

construct that consisted of the EF-1α promoter and Gstm1 WKY gene. The 

embryos were then transferred into recipient females and normal gestation 

allowed to progress. Offspring were screened for insertion of the transgene and 

positive 'founder' animals were transferred to the University of Glasgow. This 

process generated two independent transgenic lines (Trans1 and Trans2). 

The understanding of cardiovascular changes that are related to oxidative stress 

in the SHRSP rat will be important for the elucidation of mechanisms underlying 

human essential hypertension. The aim of this chapter was to phenotypically 

characterize the two independently generated transgenic rat lines, and establish 

definitive proof that defective Gstm1 expression plays a functional role in blood 

pressure elevation and cardiovascular dysfunction. This was carried out though 



 

examination of the effects of transgenic expression of wild type Gstm1 on (1) 

hemodynamic parameters in the SHRSP, (2) examination of the cardiac function 

and mass through echocardiography. 

3.2 Materials and Methods 

3.2.1 Hemodynamic Measurements 

3.2.1.1 Tail cuff Plethysmography 

Measurement of systolic blood pressure was carried as described in the main 

methods section (Section 2.1.2.1). Male rats starting from the age of 5-8 weeks 

old, depending upon size, were tail cuffed every week in order to measure SBP 

until the implantation of telemetry probes at 12 weeks of age. Multiple cuff 

inflation/deflation values were obtained through the duration of each tail-cuff 

session and an average was taken for each animal. For SHRSP, WKY and Trans1, 

n=3 or more for each weekly reading; however, for Trans2 we n numbers were 

generally low (i.e. n=2) due to poor breeding performance. 

3.2.1.2 Telemetry 

3.2.1.2.1 Base line and salt loading 

Baseline blood pressure characteristics were investigated by implantation of 

radio-telemetry probes (TA11PAC40) at 12 weeks of age and data was 

continuously recorded until 21 weeks of age in male WKY, SHRSP, Trans1, and 

Trans2 rats (n=7-8). In salt-loaded rats blood pressure characteristics were 

investigated in male WKY, SHRSP and Trans1 given 1% NaCl in the drinking water 

ad libidum for 3 weeks, starting at the beginning of week 18.  Radiotelemetry 

measured systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, 

mmHg), pulse pressure (PP, mmHg), heart rate (beats per minute, BPM) and 

motor activity (arbitrary units, AU). All hemodynamic measurements were 

carried out as described in section 2.1.2.2.   

 



 

3.2.2 Echocardiography 

Transthoracic echocardiography was performed on lightly anesthetized rats 

(1.25%-1.5 % isoflourane in 1.5 Liters/min O2) placed in the left lateral decubitus 

position. Left ventricular motion mode (M-mode) measurements at the level of 

the papillary muscles were used to delineate wall thicknesses and internal 

diameters at systole (s) and diastole (d). Images were captured using an Acuson 

Sequoia C512 ultrasound system and then used to assess cardiac geometry and 

contractility, as previously described (228;239). Echocardiography was performed 

prior to sacrifice at 21 weeks. Cardiac index was estimated as cardiac output 

adjusted for tibia length. A typical echocardiogram examination lasts for 

approximately 5-10 minutes, from induction of anaesthesia. For further 

information please see section 2.1.3. 

3.2.3 Tissue Collection 

Animals were sacrificed at 21 weeks of aged. Tissues were excised and any 

excess blood removed before weighing kidneys, whole heart and left ventricular 

plus septum after dissection. This was corrected to tibia length. Further detail as 

described in section 2.2.2. 

 

3.2.4 Statistics 

Telemetry data was analyzed using a repeated measures ANOVA followed by a 

Tucky’s post-hoc correction for multiple comparisons. Week one of the 

hemodynamic measurement period is a recovery period and has not been 

included in the statistical analysis. Pulse pressure diurnal variation and 

echocardiography data was analyzed using a one way ANOVA followed by a 

Tukey’s corrections, unless stated otherwise. All data is displayed as mean with 

standard error of the mean. 

  



 

3.3 Results 

3.3.1 Hemodynamic Measurements 

3.3.1.1 Tail Cuff data 

Rats were tail cuffed starting between 5 and 8 weeks of age. The variable start 

date was dependent upon rat size since the tail cuff transducer has a lower size 

limit, and appropriate fit is necessary to ensure accuracy of BP measurement. 

Baseline systolic blood pressure was significantly reduced in both transgenic lines 

and WKY (F = 8.35, p< 0.01) when compared to SHRSP (Table 3-1).  

3.3.1.2 Radio Telemetry Measurements – Baseline 

3.3.1.2.1 Systolic blood pressure 

At 12 weeks of age, rats underwent radio telemetry implantation and systolic 

blood pressure was measured by automated scheduled sampling every 5 mins. 

Raw data files were hourly averaged prior to exportation into an Excel 

spreadsheet where the data underwent analysis by a specifically designed Excel 

macro and were averaged into weekly daytime (7am-7pm) and night-time (7pm-

7am) data sets (Figure 3-1). SBP rises continuously over the full hemodynamic 

measurement period (between 12 – 21 weeks of age) for both SHRSP and WKY 

parental strains and the two transgenic lines. However, the rate of increase is 

greater in the SHRSP strain. Baseline systolic blood pressure was significantly 

reduced in both transgenic lines (F = 52.46, p< 0.001) where SBP averaged 175.6 

±6.22 mmHg for Trans1 rats and 174.2 ±6.36 mmHg for Trans2 rats, when 

compared to SHRSP 198.1 ±1.5 mmHg. While SBP in Trans1 and Trans2 rats was 

significantly higher than WKY (systolic 150 ± 4.7 mmHg, F=56.24, p<0.001), they 

were not significantly different from one another (F = 52.46, p> 0.05). 

3.3.1.2.2 Diastolic Blood Pressure 

DBP also shows a continuous rise over the full measurement period for SHRSP, 

WKY and Trans1 rats. However, this trend was less pronounced in Trans2 rats. 

Baseline diastolic blood pressure for Trans1 and Trans2 rats averaged 124.3 ± 

5.89 mmHg and 131.7 ±1.33 mmHg, respectively, while DPB for the parental 

strains were 137.8 ±9.3 mmHg and 107.1 ± 3.5 mmHg, for SHRSP and WKY 



 

respectively. Repeated measure ANOVA determined that DBP for Trans1 and 

Trans2 lines were significantly different from both SHRSP and WKY (SHRSP: 

F=107.1, p< 0.001; WKY: F=107.1, p<0.001) (Figure 3-2). Additionally, while 

diastolic blood pressure in not significantly different 9 F=107.1, p>0.05), their 

slopes of lines are different.      

3.3.1.2.3 Pulse Pressure 

Pulse pressure between the parental strains, WKY (40.72 ± 0.65 mmHg) and 

SHRSP (59.68±0.308 mmHg) was significantly different (F=364.4, p<0.001). Pulse 

pressure in Trans 1 rats (51.79±0.411 mmHg) was significantly reduced when 

compared to the SHRSP (F=364.4, p<0.001) (Figure 3-3). While there is a large 

margin of error between animals for pulse pressure in Trans2 rats, the strain 

showed a significant reduction in pulse pressure (40.75±0.53 mmHg) when 

compared to the SHRSP and Trans1 rats (F=364.4, p<0.01). Additionally, pulse 

pressure in Trans2 was not significantly different to WKY rats (F = 364.4, p >0.05) 

(Figure 3-3).  

3.3.1.2.4 Heart rate and Locomotor Activity 

Heart rate and activity are illustrated in Figures 3-4 and 3-5. There were no 

significant differences in heart rates across the measurement period between 

the four strains (WKY: 334.4±6.0 BPM; SHRSP: 335.6±4.39 BPM; Trans1: 

324.7±5.29 BPM; Trans2: 323.0±5.59 BPM). Additionally, there was no significant 

difference in motor activity between the four strains (WKY: 2.965±0.33 AU; 

SHRSP: 2.965±0.30 AU; Trans1: 2.99±0.31 AU; Trans2: 3.1±0.27 AU).  

 



 

 

Table 3-1: Systolic blood pressure measured by tail cuff plethsmography measurements from 5-12 weeks   
                                           SHRSP                       WKY                       Trans1                      Trans2 

5 weeks 124 ±5.5 107.5 ± 5.38* ND ND 

6 weeks 113.9 ± 5.18 127.5 ± 4.98* ND ND 

7 weeks 152.8 ± 4.68 127.6 ±7.44* 126.5 ± 0.25* 100.3 ± 1.58* 

8 weeks 164.9 ± 5.76 136.2 ±4.97* 135.5 ± 0.85* 124 ± 0.25* 

9 weeks 188.2 ± 10.27 136.8 ±7.2* 142.3 ± 5.1* ND 

10 weeks 191.6 ± 8.3 139.7 ±8.38* 158.3 ±6.67* 88.93 ± 6.48* 

11 weeks 205.9 ±3.87 134.7 ±8.03* 168.3 ± 0.399* 172.5* 

12 weeks 197.9 ± 11.37 146.7 ± 5.74* 164.8 ± 7.23* 161.7 ± 5.55* 

Systolic blood pressure is significantly reduced in both transgenic lines and WKY rats compared to SHRSP *(p<0.001). Statistical analysis was 

done by repeated measures ANOVA. Values are presented as mean ± SEM. ND = not determined  
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Figure 3-1: Systolic Blood Pressure in Trans1, Tran s2 and Parental Strains.  
Hemodynamic profile for Trans1 and Trans2 rats implanted at 12 weeks of age. 

Weekly average daytime and night-time values for male WKY (n=6), SHRSP (n=6), 

transgenic 1 (n=8), and transgenic 2 (n=6) rats. Systolic blood pressure is 

significantly reduced in both transgenic lines and WKY rats compared to SHRSP 

***(p<0.001). Statistical analysis was done by repeated measures ANOVA. Values 

are presented as mean ± SEM.  
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Figure3-2: Diastolic Blood Pressure in Trans1, Tran s2 and Parental Strains.  
Hemodynamic profile for Trans1 and Trans2 rats implanted at 12 weeks of age. 

Weekly average daytime and night-time values for male WKY (n=6), SHRSP (n=6), 

transgenic 1 (n=8), and transgenic 2 (n=6) rats. Systolic blood pressure is 

significantly reduced in both transgenic lines and WKY rats compared to SHRSP 

***(p<0.001) *(p<0.05). Statistical analysis was done by repeated measures 

ANOVA. Values are presented as mean ± SEM.   
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Figure3-3: Pulse Pressure in Trans1, Trans2 and Par ental Strains.  
Average weekly pulse pressure represented at night-time and day-time averages 

male WKY (n=6), SHRSP (n=6), Tran1 (n=8), and Trans2 (n=6) rats. Pulse pressure 

of transgenic animals was significantly lower than SHRSP. Pulse pressure in 

Trans1 rats was significantly increased from that of WKY; however, pulse 

pressure in Trans2 rats was not significantly different from WKY ***p<0.001 versus 

SHRSP. Statistical analysis was done by repeated measures ANOVA. Values are 

presented as mean ± SEM  
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Figure3-4: Heart Rate in Trans1, Trans2 and Parenta l Strains. 
Heart rate measured by radio telemetry, calculated as night-time and day-time 

averages, in male SHRSP (n=6), WKY (n=6), Trans1 (n=8) and Trans2 (n=6) rats 

from 12 to 21 weeks of age. There was no significant difference in heart rate 

between the different strains. Statistical analysis was done by repeated 

measures ANOVA. Values are presented as mean ± SEM.  
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Figure 3-5: Locomotor Activity in Trans1, Trans2 an d Parental Strains.  
Motor activity measured by radiotelemetry in SHRSP (n=6), WKY (n=6), Trans1 

(n=8), and Trans2 (n=6) males rats from 12-21 weeks of age. Data calculated as 

day-time and night-time averages. There was no significant difference in motor 

activity between the different strains. Statistical analysis was done by repeated 

measures ANOVA. Values are presented as mean ± SEM. 

  



 

 
3.3.1.3 Radio Telemetry Measurements – 1% Salt Load ing 

3.3.1.3.1 Systolic blood pressure 

Salt-loading with 1% NaCl from weeks 18-21 significantly elevated SBP in the 

SHRSP and Trans1 animals (SHRSP: Baseline 214.51 ± 5.12 vs. Salt 234.41 ± 5.79; 

Trans1: Baseline 183.13 ± 2.79 ± 5.12 vs. Salt 205.91 ± 4.56, p<0.05) as analyzed 

by t-test. There was no effect of salt loading on the WKY strain (Table 3-2). 

Salt-loaded systolic blood pressure measured from 18-21 weeks of age (Figure 3-

6) was significantly reduced in Trans1 rats (184.8±4.14 mmHg) when compared to 

SHRSP (205.2±5.58 mmHg) (F = 14.6, p< 0.001). Additionally, SBP in Trans1 rats 

and SHRSP was significantly higher than WKY (systolic 150.4 ± 1.39 mmHg, 

F=4.41, p<0.001). Due to breeding limitations, Trans2 rats were not included in 

the salt-loading protocol. 

3.3.1.3.2 Diastolic Blood Pressure 

Diastolic blood pressure was significantly elevated in the SHRSP and Trans1 

animals (SHRSP: Baseline 147.81 ± 5.66 vs. Salt 170.75 ± 5.21; Trans1: Baseline 

130.85 ± 2.79 ± 1.99 vs. Salt 150.49 ± 6.61, p<0.05) as analyzed by t-test. There 

was no effect of salt loading on the WKY strain (Table 3-2). 

Salt-loaded diastolic blood pressure (Figure 3-7) for Trans1 averaged 124.3 ± 5.89 

mmHg, while DPB for the parental strains SHRSP and WKY were 137.8 ±9.3 mmHg 

and 107.1 ± 3.5 mmHg, respectively. Repeated measures ANOVA determined that 

DBP for Trans1 rats was significantly different from both SHRSP and WKY (F 

=20.21, p< 0.001). 

3.3.1.3.3 Pulse Pressure 

Pulse pressure between salt-loaded WKY (39.45 ± 3.7 mmHg) was significantly 

reduced when compared to the SHRSP (58.41 ±3.1 mmHg) (Figure 3-8). Previous 

studies that investigated pulse pressure differences between salt-loaded SHRSP 

and WKY and congenic rats have identified an exaggerated diurnal variation in 

the SHRSP (240). Pulse Pressure for Trans1 was significantly different from both 

SHRSP and WKY (F = 11.80, p >0.0005). (Figure 3-8). Furthermore, diurnal 



 

variation, the maximum difference between daytime and night-time pulse 

pressure, was significantly greater in the SHRSP (p < 0.0001) (Figure 3-8 Panel B) 

when compared to the WKY. Salt-loaded Trans1 rats displayed an intermediate 

phenotype where diurnal variation not significantly different from either the 

SHRSP or WKY (p>0.05). While there was an exaggerated diurnal difference in 

pulse pressure between the SHRSP and Trans1 strains during salt loading, there 

was no significant difference in pulse pressure between baseline and salt loading 

conditions for any of the strains (Table 3-2).  

3.3.1.3.4  Heart Rate and Locomotor Activity 

Salt loading conditions did not significantly change locomotor activity for any of 

the three strains when compared to baseline conditions. While there was no 

significant change in heart rate for parental strains during salt loading conditions 

when compared to baseline conditions, Trans1 HR was significantly increased 

(Baseline 311.96 ± 1.97 vs. Salt 327.35 ± 3.81, p<0.05) as measured by t-test. 

Heart rate and motor activity measured by radiotelemetry in salt-loaded rats are 

illustrated in Figures 3-9 and 3-10. Similar to baseline measurements, there was 

no significant difference in activity between WKY (3.14±0.33 AU), SHRSP 

(3.21±0.27 AU) and Trans1 rats (2.92±0.29 AU) (p>0.05). However, after the 

addition of 1% NaCl at 18 weeks, a repeated measures ANOVA determined that 

day-time heart rate for SHRSP (340.4±5.6 BPM) was significantly increased 

compared to the WKY (318.3±10.23 BPM) and Trans1 rats (324.2±8.2 BPM) (F = 

15.57. p<0.001) (Figure 3-10).   

 

  



 

  

Table 3-2: Baseline vs. Salt Loading Strain Compari son 

                                                                           SHRSP                          WKY                              Trans1 
SBP Baseline 214.51 ±5.12 154.49 ± 1.72** 183.13 ± 2.79* 

SBP 1% Salt 234.41 ± 5.79* 156.72 ± 3.10** 205.91 ± 4.56* 

DBP Baseline 147.81 ± 5.66* 110.25 ±3.25** 130.85 ±1.99* 

DBP 1% Salt 170.75 ± 5.21 109.72 ± 2.19** 150.49 ± 6.61* 

PP Baseline 61.67 ±1.56 42.96 ±1.89* 52.94 ± 2.15* 

PP 1% Salt 62.89 ± 2.62 38.51 ± 2.33**   52.46 ± 4.51 

Activity Baseline 2.92 ±0.18 2.75 ± 0.23 3.04 ±0.211 

Activity  1% Salt 3.19 ± 0.29 3.02  ± 0.12 2.91 ± 0.14 

Heart Rate Baseline 329.84 ±5.08 334.18 ±4.86 311.96 ±1.97+ 

Heart Rate 1% Salt 340.15 ±  7.36 321.68 ± 3.58 327.35 ±3.81 

Baseline = averages of daytime + nighttime data over a 5 week baseline period. 1% salt = averages of daytime + nighttime data over a 3 

week salt-loading period.  Significantly different when compared to SHRSP *(p<0.05). Significantly different when compared to SHRSP and 

Trans1 **(p<0.05). Significantly different when compared to SHRSP and WKY +(p<0.05). Values are presented as mean ± SEM 
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Figure 3-6: Systolic Blood Pressure for salt-loaded  SHRSP, WKY and Trans1 rats .  
Hemodynamic profile for Trans1 rats implanted at 12 weeks of age and Salt 

loading at 18 weeks of age. Weekly average daytime and night-time values for 

WKY (n=8), SHRSP (n=8) and Trans1 (n=8) rats. Systolic blood pressure is 

significantly reduced in both Trans1 and WKY rats compared to SHRSP *(p<0.001), 

repeated measures ANOVA. Values are presented as mean ± SEM 
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Figure 3-7: Diastolic Blood Pressure for salt-loade d SHRSP, WKY and Trans1 rats .  
Hemodynamic profile for Trans1 rats implanted at 12 weeks of age and Salt 

loading at 18 weeks of age. Weekly average daytime and night-time values for 

WKY (n=8), SHRSP (n=8) and Trans1 (n=8) rats. Diastolic blood pressure is 

significantly reduced in both Trans1 and WKY rats compared to SHRSP *(p<0.001), 

repeated measures ANOVA. Values are presented as mean ± SEM 



 

    

Figure 3-8: Pulse Pressure for salt-loaded SHRSP, W KY and Trans1 rats .  
Hemodynamic profile for Trans1 rats implanted at 12 weeks of age and salt-

loaded at 18 weeks of age. Weekly average daytime and night-time values for 

WKY (n=8), SHRSP (n=8) and Trans1 (n=8) rats. (A)Pulse pressure is significantly 

reduced in both Trans1 and WKY rats compared to SHRSP *(p<0.001), repeated 

measures ANOVA. (B) WKY diurnal variation is significantly different from SHRSP 

(p < 0.05) as determined by one way ANOVA. Values are presented as mean ± 

SEM. 
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Figure 3-9: Locomotor Activity for salt-loaded SHRS P, WKY and Trans1 rats.  
Telemetry measured data from 12 to 21 week olds. There was no significant 

difference in locomotor activity between the different strains as measured by 

telemetry and calculated as night-time and day-time averages. Values are 

presented as mean ± SEM 
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Figure 3-10: Heart Rate for salt-loaded SHRSP, WKY and Trans1 rats 
Telemetry measured data from 12 to 21 week olds. Average heart rate in beats 

per minute (bps) as measured by radiotelemetry and calculated as night-time 

and day-time averages. In WKY and Trans1 rats salt-loaded heart rate was 

significantly lower than SHRSP *(p<0.05), repeated measures ANOVA. Values are 

presented as mean ± SEM 

  



 

3.3.2 Echocardiography - Baseline  

3.3.2.1 LVMI mass assessed by Echocardiography 

Left ventricular mass index (LVMI) were assessed in 21 week old WKY, SHSRP, 

Trans1 and Trans2 rats by echocardiography immediately prior to sacrifice. When 

compared to the normotensive WKY, SHRSP rats had a significantly increased 

LVMI at 21 weeks of age (SHRSP: 3.435±0.29 mg/g; WKY: 2.41±0.06 mg/g, 

p<0.05). LVMI in Trans1 and Trans 2 rats was not significantly different from WKY 

at 21 weeks of age (Trans1: 2.61±0.31 mg/g; Trans2: 2.75±0.14 mg/g. p>0.05). 

Additionally, LVMI in Trans2 rats was significantly reduced compared to that of 

the SHRSP (p<0.05), however, the trend towards reduced LVMI in Trans1 rats did 

not reach statistical significance (Figure 3-12). Statistical analysis was performed 

by a student’s t-test. 

3.3.2.2 Relative Wall Thickness 

Left ventricle wall thickness was measured by echocardiography. When 

compared to WKY rats, SHRSP had a significantly increased relative wall 

thickness (RWT) at 21 weeks of age (SHRSP: 0.8±0.11 mm; WKY: 0.49±0.12 mm, F 

=7.9, p<0.001). RWT in Trans1 and Trans 2 rats were not significantly different 

from WKY at (Trans1: 0.64±0.07 mm; Trans2: 0.62±0.11 mm, p>0.05). 

Additionally, RWT in Trans1 and Trans2 rats was significantly reduced compared 

to that of the SHRSP (F =7.9, p<0.05) (Figure 3-12).    

3.3.2.3 Fractional Shortening 

Fractional shortening was measured by echocardiography in order to help 

ascertain myocardial contractility parameters. There were no significant 

differences in left ventricular ejection fraction between WKY, SHRSP, Trans1 and 

Trans2 rats (SHRSP: 42.15±10.14%; WKY: 36.5±7.53%; Tran1: 46.72±11.85%; 

Trans2: 42.72±6.99%, F=2.25, p>0.05) (Figure 3-13). 

3.3.2.4 Stroke Volume 

In order to determine blood/volume delivery by the heart per beat, stroke 

volume was measured by echocardiography. Stroke volume for SHRSP rats was 

significantly decreased when compared to WKY, Trans1 and Trans2 rats (SHRSP: 



 

0.2282±0.034 mL; WKY: 0.43±0.032 mL; Trans1: 0.32±0.086ml; Trans2: 

0.34±0.045mL, f=8.87, p<0.05, p<0.001) (Figure 3-14). Stroke volume in Trans1 

and Trans2 rats was not significantly different from WKY (Figure 3-14) 

3.3.2.5 Cardiac Output  

Cardiac output was measured to assess the effectiveness of the heart to deliver 

blood to the rest of the body. Normotensive WKY cardiac output was measured 

at 126.2±32.39 mls/min. Cardiac output for Trans1 and Tran2 rats was not 

significantly different from that of the WKY (Trans1: 100.5±14.94 L/min; Trans2: 

106.7±16.28 L/min, F=6.42, p>0.05). However, SHRSP cardiac output was 

significantly decreased when compared to WKY, Trans1 and Trans2 rats (SHRSP: 

72.86±15.23 L/min, F=6.42, p<0.05) (Figure 3-15)  

3.3.2.6 Ejection Fraction 

Ejection fraction was also measured by echocardiography in order to determine 

heart function. There were no significant differences observed in left ventricular 

ejection fraction between WKY, SHRSP, Trans1 and Trans2 rats (SHRSP: 

79.19±10.2%; WKY: 79.36±8.03%; Trans1; 84.95±6.55%; Trans2 80.48±6.39%, F = 

2.25, p>0.05) (Figure 3-16).  
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Figure 3-11: Left Ventricular Mass Index for SHRSP,  WKY Trans1 and Trans2 rats 
LVMI data as measured by echocardiography at 21 weeks of age, SHRSP (n=6), 

WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats. LVMI in WKY and Trans2 rats was 

significantly less than that of the SHRSP *(p<0.05), as compared by T-test. Values 

are presented as mean ± SEM.  
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Figure 3-12: Relative wall thickness in SHRSP, WKY,  Trans1 and Trans2 rats  
Relative wall thickness as measured by echocardiography at 21 weeks of age, 

SHRSP (n=6), WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats. RWT in WKY, Trans1 

and Trans2 rats were significantly less than that of the SHRSP, p<0.05) Values are 

presented as mean ± SEM.  
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Figure 3-13: Fractional Shortening in SHRSP, WKY, T rans1 and Trans2 rats  
Fractional Shortening as measured by echocardiography from 21 weeks of age, 

SHRSP (n=6), WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats. There were no 

significantly differences between the four strains. Values are presented as mean 

± SEM.  
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Figure 3-14: Stroke Volume in SHRSP, WKY, Trans1 an d Trans2 rats 
Stroke Volume as measured by echocardiography at 21 weeks of age, SHRSP 

(n=6), WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats. Stroke volume in WKY, Trans1 

and Trans2 rats was significantly greater compared to that of the SHRSP 

***(p<0.001) *(p<0.05). Values are presented as mean ± SEM.  
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Figure 3-15: Cardiac Output in SHRSP, WKY, Trans1 a nd Trans2 rats 
Cardiac Output as measured by echocardiography from 21 weeks of age, SHRSP 

(n=6), WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats. Cardiac output in WKY, Trans1 

and Trans2 rats was significantly different than that of the SHRSP **(p<0.001) 

*(p<0.05). Values are presented as mean ± SEM.  

 

  



 

SHRSP WKY Trans1 Trans2
0

10
20
30
40
50
60
70
80
90

E
je

ct
io

n 
F

ra
ct

io
n 

(%
)

 

Figure 3-16: Ejection Fraction in SHRSP, WKY, Trans 1 and Trans2 rats  
Ejection Fraction as measured by echocardiography at 21 weeks of age, SHRSP 

(n=6), WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats. There were no significantly 

differences between the four strains. Values are presented as mean ± SEM.  

  



 

 

3.3.3 Cardiac and Left ventricular Hypertrophy assessed a t 
sacrifice. 

Cardiac (whole heart) mass index and left ventricular (left ventricle + septum) 

mass index were measured to determine cardiac and left ventricular hypertrophy 

respectively at sacrifice (21 weeks of age). SHRSP (3.24±0.04 mg/g), Trans1 

(3.04±0.11mg/g) and Trans2 (3.16±0.16mg/g) rats demonstrated left ventricular 

hypertrophy when compared to the WKY (2.47±0.06 mg/g) (F = 32.13; p<0.001) 

(Figure 3-17). There was no significant different between the two transgenic 

strains (p>0.05). For whole heart normalized to body weight, SHRSP (4.24±0.04 

mg/g), Trans1 (4.35±0.36 mg/g) and Trans2 (4.12±0.14 mg/g) rats demonstrated 

cardiac hypertrophy when compared to the WKY (3.34±0.04 mg/g) (F = 30.88; 

p<0.001). There was no significant difference between the two transgenic lines 

(p>0.05) (Figure 3-18).   
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Figure 3-17: LVMI in SHRSP, WKY Trans1 and Trans2 r ats  
Left Ventricular mass index normalized to body weight  at 21 weeks of age, 

SHRSP (n=6), WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats at sacrifice. LVMI in WKY 

was significantly less than that of the SHRSP, Trans1 and Trans2 rats *(p<0.05), 

one-way ANOVA. Values are presented as mean ± SEM.  

  



 

 

 

Figure 3-18: Cardiac mass index in SHRSP, WKY Trans 1 and Trans2 rats  
Whole heart weight normalized to body weight at 21 weeks of age, SHRSP (n=6), 

WKY (n=6), Trans1 (n=8), Trans2 (n=8) rats at sacrifice. Cardiac mass index in 

WKY rats was significantly less than that of the SHRSP, Trans1 and Trans2 rats 

*(p<0.05). Values are presented as mean ± SEM.  

  



 

3.4 Discussion 

In this Chapter significant reduction in hemodynamic parameters measured by 

radiotelemetry in Gstm1 transgenic SHRSP rats provides convincing evidence that 

Gstm1 plays an important role in blood pressure regulation in the SHRSP rat. In 

parallel with the significantly lower SBP, DBP and PP we also observe 

significantly improved cardiac function and reduced cardiac hypertrophy in the 

two independently generated transgenic lines. Moreover, the observed reduction 

in systolic blood pressure is remarkably similar in magnitude to that 

demonstrated in the Chromosome 2 congenic strain, SP.WKYGla2c*, in which 

Gstm1 was identified as a candidate gene for hypertension (78). Importantly, 

these findings demonstrate that significant improvements in hemodynamic and 

cardiac parameters occur in two independently generated transgenic lines. These 

findings support the hypothesis that Gstm1 plays a central role in blood pressure 

regulation, since random insertion of the transgene into two distinct genomic 

locations leads to similar levels of functional cardiovascular improvement.  

Whilst the overall outcome of random Gstm1 transgene insertion in the SHRSP is 

a significant reduction in the hypertensive phenotype, there are some subtle 

differences between the two independently generated transgenic lines. For 

example while diastolic blood pressure for both Trans1 and Trans2 rats is 

significantly lower than that of the SHRSP, the diastolic pressure profiles differ in 

the rate of increase over time between the two transgenic lines (Figure 3-2). 

Diastolic blood pressure in Trans1 rats originates lower than that of the SHRSP 

and remains significantly lower throughout the measurement period. On the 

other hand, diastolic blood pressure in Trans2 rats starts at a similar level to that 

of the SHRSP, but remains constant over time. These diastolic profile differences 

between the two independent transgenic lines could be a result of a number of 

factors. These factors include transgene insertion site effects, line specific mRNA 

or protein level differences, and/or variability due to small numbers in the 

Trans2 line resulting from breeding difficulties. 

When transgenic lines are generated by microinjection of a transgene into a 

fertilized embryo there is the potential for the transgene to insert anywhere 

within the genome. Independently generated lines are highly unlikely to have the 

transgene inserted into the same genomic position, and thus have the same 



 

effect. Furthermore, there is also a possibility that the transgene will insert into 

a region containing a gene that contributes to blood pressure regulation, and 

thereby, blood pressure control may be impacted by the insertion site. One 

example to illustrate the potential diversity in phenotypes between two 

independently generated transgenic rat lines with the same inserted transgene is 

the CD-36 transgenic SHR rat generated by Pravenec et al. (121). In this 

example, while two independent transgenic lines were produced using the same 

EF1-α promoter, there are unique differences between the transgenic lines. 

While incorporation of cd-36 ameliorated insulin resistance in both lines, one line 

had an additional effect of a modest decrease in blood pressure (121). 

Additionally, when developing transgenic lines, it is often difficult to ascertain 

what impact the insertion site will have on a particular phenotype. The 

generation of more than one transgenic line (using the same transgene and 

promoter) is therefore important in order to confirm that the phenotypic 

differences are the result of the transgene itself and not the insertion site. If the 

phenotypic changes are similar between two independently generated lines then 

this provides confidence that the phenotype differences are due to transgene 

functional effects (rather than insertion site effects).  

Other factors that could contribute to line specific differences are mRNA or 

protein expression level differences within each independent line. Since each 

line was derived separately, Trans1 and Trans2 will most likely have a unique 

expression patterns with a distinct copy number profiles. Furthermore, transgene 

insertion by microinjection has the potential to insert multiple copies of the 

gene into the recipient genome (7;121). In other transgenic animals, studies have 

shown that gene expression is associated with copy number which resulted in 

varying effects on each transgenic line (241;242). Differences like copy number 

and expression patterns between Trans1 and Trans2 may be responsible for the 

line specific differences in diastolic BP profile. However without further 

investigation, it is difficult to reconcile the impact of copy number variation 

specifically on the rate of diastolic BP increase over time observed in the two rat 

lines. 

An alternative explanation for the diastolic BP differences between the two 

transgenic lines could simply be due to breeding issues experienced with the 

Trans2 line. Trans2 rats were difficult to breed; showing low fertility throughout 



 

the length of the project. Due to limited numbers of male stock animals, Trans2 

rats underwent the radiotelemetry BP monitoring and echocardiography 

protocols at a later stage compared to Trans1 rats and parental strains. Some 

phenotypic drift is not uncommon in inbred rat colonies and may contribute in 

part to the DBP differences observed here.  

In order to investigate the potential role of Gstm1 deficiency in the salt-

sensitivity phenotype in SHRSP rats, parental strain rats and Trans1animals 

underwent 1% salt loading starting at 18 weeks of age, i.e. after the onset of 

adult hypertension.  While some salt-sensitivity was evident in the Trans1 

animals (i.e. exaggerated night-time daytime blood pressure variation) similar to 

the SHRSP, there was still a significant decrease in systolic and diastolic blood 

pressure compared to the SHRSP. This reduced hemodynamic profile during salt-

loading is in contrast to the profile observed in the chromosome 2 congenic 

strain (SP.WKYGla2c*), which showed no significant difference in blood pressure 

profile compared to the SHRSP during salt-loading(78). However, there are many 

differences between the SP.WKYGla2c* strain and the Gstm1 transgenic rats, such 

as the insertion of a single gene (in the transgenic) in contrast to a relatively 

large introgressed genomic region (in the congenic, approximately 59Mbp with 

boundary markers D2Wox9-D2Mgh12), that that could potentially affect response 

to salt. The Trans1 line demonstrates similar blood pressure reduction during 

both baseline and salt-loading periods; therefore, we can conclude that the 

WKY-form of the Gstm1 gene may play an important role in the preventative 

effects on salt-sensitivity in our transgenic animals.  

Multiple publications suggest that pulse pressure is a better predictor of 

cardiovascular risk than isolated systolic or diastolic blood pressures (243;244). 

Figure 3-3 shows that pulse pressure is significantly reduced in both transgenic 

lines. While pulse pressure levels in Trans2 rats is more similar to that of the 

WKY than Trans1 rats, both lines show a reduction of cardiovascular risk when 

compared to the SHRSP. Elevated pulse pressures are thought to be associated 

with increased artery stiffness (245). Franklin et al. states that a high pulse 

pressure may reflect already diseased arterial walls in addition to several other 

adverse cardiac implications of potential prognostic value (245;246). 

Furthermore, several studies state that there is an association between pulse 



 

pressure and a risk of morbid cardiovascular events which is independent of 

systolic and diastolic blood pressure (243).  

When investigating the effects of salt loading on pressure, our data show that 

diurnal variation is exaggerated in SHRSP compared to WKY and Trans1 rats 

(Figure 3-7) which is in agreement with previously published data in salt-loaded 

parental strains (240). Koh-Tan et al. explains the importance of pulse pressure 

variability and its effects on end organ damage (240). In particular, the lack of 

blood pressure regulation has been shown to be correlated with the development 

and severity of renal damage (240;247;248). This damage is a result of altered 

microcirculation within the glomerular arterioles where a high pulsatile 

glomerular filtration rates may expose the glomerular capillaries to potentially 

damaging effects that lead to vascular damage in the kidneys (247). 

Measurement of vascular function and end organ damage are therefore pertinent 

considerations in this study and will be discussed in further chapters. 

Echocardiography measurements allowed investigation of cardiac function and 

cardiac hypertrophy in the SHRSP, WKY and transgenic rats. Both fractional 

shortening (FS) and ejection fraction (EF), which are the most commonly used 

indexes of global left-ventricular systolic function, showed that there was no 

significant differences between the four strains. This data confirms previous 

findings at 16 weeks of age in the parental strains, and thus allows us to 

conclude that the insertion of the transgene did not have any adverse effects on 

cardiac function (239). Relative wall thickness, another commonly used 

parameter to describe the degree of left ventricular hypertrophy, was 

significantly reduced in WKY, Trans1, and Trans2 rats when compared to the 

SHRSP. While RWT in Trans1 and Trans2 rats was not reduced to WKY levels, they 

were not significantly different and thus showing an intermediate phenotype. 

Previous studies done in our lab have shown that in the SHRSP at 16 weeks of 

age, cardiac fibrosis (interstitial and perivascular) is observed (249;250). While 

cardiac fibrosis was not measured at 21 weeks in this study, we would 

hypothesize that there is a reduction of cardiac fibrosis in Trans1 and Trans2. 

However, while there is an improved cardiac function in the Tran1 and Trans2 

lines, we cannot determine if this change is due to increased Gstm1 expression 

or if this reduction is a secondary effect of the significantly lowered blood 

pressure in the transgenic animals. There is a lack of literature regarding a role 



 

for Gstm1 in cardiac disease. A fairly recent review by Conklin (251) on 

cardiovascular studies in humans states that little is known about how much 

Gstm1 contributes to GST activity in cardiovascular tissues. These conclusions, in 

relationship to our findings, indicate that further investigation is required to 

determine the role that Gstm1 plays in the healthy and diseased heart.  

In conclusion, the production of two independent Gstm1 transgenic lines 

generated on the SHRSP genetic background has provided a unique opportunity 

to investigate causality of Gstm1 deficiency on the development of hypertension 

and cardiac hypertrophy. In this Chapter we have demonstrated a significant 

reduction in blood pressure in both transgenic rat lines, and improved cardiac 

function. This data supports the hypothesis that reduced renal Gstm1 plays a 

causative role in oxidative stress mechanisms underlying the development of 

hypertension in the SHRSP. 
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4 Molecular Characterization of the Effects of 
Gstm1  Over Expression in the Transgenic 
SHRSP 
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4.1 Introduction 

In the previous chapter it was demonstrated that Gstm1 transgenic SHRSP rats 

have a significant decrease in systolic blood pressure and cardiovascular 

hypertrophy when compared to the parental SHRSP strain. The next stage of our 

study was designed to investigate the molecular changes occurring as a result of 

transgenic rescue of Gstm1. As previously mentioned, Gstm1 was identified as a 

positional and functional candidate gene through a series of experiments 

involving the generation of chromosome 2 congenic rat strains and microarray 

expression profiling(78;87). These studies demonstrated that expression of 

Gstm1 in the kidney was significantly reduced at 16 weeks of age in SHRSP 

compared to the chromosome 2 congenic strain (SP.WKYGla2c*) and normotensive 

WKY strains (40;85). Furthermore, additional microarray expression profiling and 

qRT-PCR validation demonstrated that Gstm1 expression in 5 weeks old SHRSP 

rats was significantly reduced when compared to WKY and SP.WKYGla2c* rats 

(252). Taken together with the findings in the 2c* congenic strain, this reduction 

in expression prior to the onset of hypertension in this model is consistent with 

the hypothesis that reduced Gstm1 expression is likely to be a causative factor in 

increased blood pressure and not a secondary event. In line with these early 

expression differences in the SHRSP, evidence in the literature also demonstrates 

that Gstm1 expression in the SHR is reduced at 3 weeks of age when compared to 

the WKY (253).     

In addition to the differences in Gstm1 expression profile, previous DNA 

sequencing of the upstream regulatory region of Gstm1 identified 13 single-

nucleotide polymorphisms (SNPs), a missense mutation and a SNP in the 3’ un-

translated region (UTR) of the SHRSP and SHR that were not identified in the 

WKY or BN (254;255). Additionally, luciferase promoter assays implicated five 

SNPs to be responsible for significant reduction in Gstm1 expression in the SHRSP 

(223). However, establishing definitive proof that a gene affects blood pressure 

requires evidence that changing the expression of the candidate gene in 

isolation, alters blood pressure. Depending on the direction of change of the 

implicated gene, this can be achieved by generating knockout, knock-in 

(targeted) or untargeted over-expression transgenic rat models. However, prior 
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to 2009 the ability to generate transgenic rats was severely limited due to the 

fact that, unlike the mouse, it was not possible to generate and maintain rat 

embryonic stem (ES) cells.  

Despite these previous ES cell restrictions, technology did allow for 'transgenic 

rescue' in the rat, whereby normally functioning genes were microinjected into 

embryos of disease models in order to provide definitive proof of causality. An 

example of this gold standard method is the derivation of the CD-36 transgenic 

rat, whereby the CD-36 candidate gene was originally identified by QTL analysis 

and congenic strain construction and then confirmed by transgenic rescue (CD-36 

overexpression) (121;256). Other examples included generation of transgenic 

animals expressing an antisense sequence to reduce expression of target genes 

(257), dominant negative mutants in order to induce dwarfism (258), or siRNA-

expressing constructs (259). Since these early studies many transgenic rats, 

whether over-expression or knockout, have been produced for the advancement 

of cardiovascular studies (260-262). The generation of transgenic rats are 

fundamentally similar to that of a transgenic mouse where microinjection of the 

construct into the pronucleus of a single-cell embryo is followed by implantation 

into recipient females and resultant pups are screened for positive markers. 

However, these techniques are more successful in mice, typically generating 3%-

5% transgene-positive offspring per injected embryo (263), compared to 0.2%-2% 

in rats (264;264).   

Based on these successful transgenic investigations, and specifically the CD-36 

study (121), the SHRSP Gstm1 transgenic rat was produced using the WKY variant 

of Gstm1 gene under the direction of the EF-1α promoter. The EF-1α promoter is 

a commonly used mammalian ubiquitous or “house-keeping” promoter. This gene 

has a housekeeping function in all cells and is expressed to high levels. 

Importantly, due to its indispensable housekeeping function in all cells, EF-1α 

promoter expression is consistent from a temporal viewpoint, relatively insulated 

from changes in cell physiology and is cell type independent (265;266). There are 

several potential drawbacks associated with the production of transgenic lines 

using untargeted over-expression methods. These include random insertion sites, 

expression incompatibilities that could result in disrupted expression of vital 

genes, possible lethal transgene over-expression, insertion site discordance, and 

copy number variation (267-270).  
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  It is hypothesized that incorporation of wild type Gstm1 into the SHRSP genetic 

background will result in significantly increased Gstm1 mRNA and protein 

expression in the kidney and other organs. Moreover, a better understanding of 

the transgene expression profile within the SHRSP Gstm1 transgenic rat will help 

to elucidate whether the changes in both cardiac mass and cardiac function (as 

demonstrated in the previous Chapter) are simply secondary effects to the lower 

blood pressure or if Gstm1 is having a direct effect on the heart.  

The aims of the chapter were (1) to determine whether incorporation of WKY 

(wild-type) Gstm1 within the SHRSP genome results in increased expression of 

Gstm1 in cardiovascular relevant tissues (i.e. kidney, brain, heart, aorta, liver). 

(2) To determine if changes in mRNA expression leads to significant differences 

in protein expression and determine where expression is localized. (3) To 

identify the transgene insertion site in both transgenic lines and to determine if 

there are multiple copies.  
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4.2 Materials and Methods 

4.2.1 Animal Strains 

Male SHRSP, WKY, Trans1 and Trans2 rats (n=6-8) were sacrificed at 5 weeks of 

age (before onset of hypertension) and at 21 weeks of age (established 

hypertension). Kidney, heart, liver, thoracic aorta, and brain were taken during 

tissue harvest under deep terminal anaesthesia. Tissues were snap frozen in 

liquid nitrogen and stored at -80°C for analysis of DNA, mRNA or protein 

expression or fixed in 10% formalin for IHC.  

4.2.2 mRNA Expression 

4.2.2.1 qRT-PCR  

RNA was extracted, quantified, DNAse treated and reverse transcribed as 

described in section 2.4 in tissues from 5-week-old and 21-week-old male rats. 

Total mRNA expression of Gstm1 and other Gstm family members were assessed 

by Applied Biosystems Gene Expression Assays and Custom Gene Expression 

Assays were used for all qRT-PCRs. The reaction constituents and temperature 

cycling parameters were as follows:  

Table 4-1:Taqman Reagent List  
Reaction Mixture Volume 

Master Mix 2.5 

20x Gene Expression Assay 0.25 

20X GapDH or β-Actin Assay 0.25 

cDNA 2.0 
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Table4-2: Temperature Cycling for Taqman 

Temperature Time 

50°C 2 min 

95°C 10 Min 

95°C 15 sec 

60°C 1 min 

Repeat steps 3 & 4 35x’s 

 

All samples were amplified in triplicate with at least three treatment replicates 

included per experiment. Fluorescence of FAM and VIC dyes was measured for all 

reactions during temperature cycling. For all tissues, except heart, β-Actin was 

used as the housekeeping gene. For heart, GAPdH was used as the housekeeping 

gene. Data was analyzed as detailed in section 2.4.4. 

4.2.2.2 SYBR Green 

For transgene or WKY (wild-type) gene expression, Exiqon custom locked-nucleic 

acid SYBR Green probes were used, see section 2.4.4.1 for further details. The 

exact primer sequence for the LNA-SYBR green probes is copyrighted by Exiqon 

and is unknown outside of the company. However, it was assured that the 

primers overlap the SNPs specific to the WKY and transgene sequence of the 

Gstm1 gene.  

  

4.2.3 Protein Expression and Localization (IHC)  

4.2.3.1 Protein expression 

Protein was extracted from tissues using a Hepes lysis buffer (50mM Hepes, 1mM 

DTT, 0.5% Tween, ph 7.4). On the night before extraction, one tablet of Roche 

EDTA-free protease inhibitor cocktail tablet was added for every 10 mls of Hepes 

lysis buffer used. The samples were homogenized in cold Hepes lysis buffer (1ml 

of Hepes buffer for up to 0.3g of tissue). The homagenates were kept on ice until 

centrifuged at 14,000 rmp for 10 mins at 4°C and the supernatant containing the 

protein was transferred to a new tube and kept on ice. 5µL of supernatant was 
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removed to determine protein concentration by nanodrop method. The rest of 

the protein was stored at -80 °C until required.  

4.2.3.2 Western Blot 

Protein samples were prepared and quantified as described in sections 2.6.1 and 

2.6.2. Gel electrophoresis and blotting were carried out on these samples as 

described in section 2.6.3. Into each lane, 30µg of protein sample prepared in an 

equal volume of 2x sample reducing buffer was loaded and a low range rainbow 

marker was used to determine band size. For immunodetection the membrane 

was incubated at 4°C overnight with a rabbit anti-rat Gstm1 polyclonal antibody 

(gift from Prof. John Hayes, University of Dundee) used at a dilution of 1:5000 

followed by a goat anti-rabbit IgG secondary antibody conjugated to horseradish 

peroxidase (Dako) at 1:2000 for one hour at room temperature. Bands were 

visualised using enhanced chemiluminescence, as described in section 2.6.4   

4.2.3.3 Protein Expression and Quantification 

The antisera used to assess the protein expression and localization of the Gstm1 

by immunohistochemistry were gifts from Prof. John D. Hayes. The protein 

concentration of each sample was determined using a Peirce BCA (bicinchoninic 

acid) protein assay kit according to the manufacturer’s instructions. The bovine 

serum albumin (BSA) standards were diluted to appropriate concentrations for 

the standard curve while the protein samples were diluted accordingly to fit 

within the standards spectrum 

4.2.3.3.1 IHC 

Sections cut to 6 µm thickness were de-parrifinised and hydrated by 2x7 minute 

washes in Histoclear before going down an ethanol gradient of 100%, 95% and 75% 

for 7 minutes at each stage. Sections were then washed in water for 7 minutes. 

Endogenous peroxide was then quenched by incubating slides for 30 minutes in 

0.3% H2O2 (10ml 30% to 1L) in methanol at room temperature. Sections were then 

rinsed in 2 x 10 minute water washes. Sections were blocked for 60 minutes with 

2% normal serum in PBS (2 drops of ABC kit blocking serum in 5ml PBS or 100µl 

appropriate serum in 5ml PBS). Slides where placed in humidified trays in order 

to prevent slides from drying out. Excess blocking reagent was removed and 
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replaced with 1°Ab/antiserum or negative control diluted in blocking serum for 

overnight at room temperature. The following day, sections underwent 3x5 

minutes washes in PBS. A  biotinylated 2°Ab antibody, diluted in blocking 

reagent (ABC universal kit, 2 drops blocking serum + 2 drops supplied vectastain 

biotinylated antibody + 5ml PBS) was added for a 30 minute room temperature 

incubation. This was followed by 3x5 minute PBS washes. If the ABC 2°Ab 

antibody was used, and ABC complex was added to the sections and incubated 

for 30 minutes at room temperature. This was followed by 3x5 minute PBS 

washes. DAB chromogen (DAB substrate kit) for universal and peroxiase 2°Ab 

antibody was prepared following manufacturer’s instructions. Sections were 

incubated for 5 minutes at room temperature in a humidified chamber and then 

washed for 5 minutes in water. Sections were counterstained with Haematoxylin 

for 90-120 seconds and placed under a running tap for 5 minutes. Sections were 

then dehydrated through a reverse ethanol gradient of 70%, 95% and 100% for 7 

minutes at each stage. Immediately following, sections then washed 2x’s in 

Histoclear for 7 minutes and mounted using Histomount (National Diagnostics, 

GA, USA). 

4.2.4 Localization of the Transgene Insertion Site 

1-3 µg of genomic DNA, that was extracted as stated in 2.5.1, was digested 

separately with either HindIII or PstI restriction enzymes for 1.5 hours at 37° C in 

0.5 µL epindorf tubes. Resulting fragments were then ligated overnight at 16 °C 

with T4 ligase. Primers designed specifically for HindIII (GstmFragA) and PstI 

(GstmFragB) restriction sites were used as primers with the ligated templates for 

the first round of PCR amplification. First round PCR was performed using the 

primer sets GstmFragA (1+2) and GstmFragB (1+2):  

GstmFragA 1- ATT GCA TGA AGA ATC TGC TTA GG 

GstmFragA 2- ACA AGC AGG GAG CAG ATA CTG GC 

GstmFragB 1- AAA GGA GTG GGA ATT GGC TCC GG 

GstmFragB 2- CAA CGC GTA TAT CTG GCC CGT AC 

Product from the first round PCR was utilized as a template for a second nested 

PCR reaction using nested Gstm1FragA (3+4) and nested Gstm1FragB (3+4) primer 

sets: 
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GstmFragA 3- TGT ACG GGC CAG ATA TAC GCG TTG 

GstmFragA 4- GAG CAG ATT GTA CTG AGA GTG CAC 

GstmFragB 3- GGT AAA CTG GGA AAG TGA TGT CG 

GstmFragB 4- GAG CAG ATT GTA CTG AGA GTG CAC    

For a schematic view of this process please refer to Figure 4-1.  

The PCR reactions were run on the Pelteri Thermal Cycler (PTC-225) under the 

conditions 95°C for 4 mins, 96 °C for 30s and 58 °C for 30s and 72 °C for 60s for 

35 cycles, then held at 72 °C for 7 min. In order to separate the amplified 

fragments,  

15-20 µL of PCR reaction was electrophoresed with 3µL of 6X loading dye in a 1% 

agarose gel at 100V for 1.5 hours, alongside a 1Kb DNA ladder.  

DNA fragments that were considered the correct sizes were then isolated from 

the aragose gels by Qiaquick gel desolving kt (Qiaquick handbook) according to 

handbook instructions (Qiagen). Extracted DNA eluate was then quantified by 

measuring 1.5 uL of RNA sample using the NanoDop DN-1000 spectrophotometer 

spectrophotometer (NanoDrop Technologies LLC, Wilmington, Delaware USA) 

under the software program ND-1000 v3.2, in which absorbance ratios of 260 

nm/280 nm equalled approximately 1.8 for DNA. This indicated that the DNA 

preparations were sufficiently free from protein contamination. Like RNA 

samples, averages of either duplicate or triplicate measurements were taken for 

samples requiring precise quantification. 

Eluted DNA was then placed into a plasmid cloning kit (Stratoclone) and cloned 

according to manufacturer’s instructions (Stratoclone). Positive colonies were 

then screened and verified by 2% X-gal. Plasmid DNA was then prepped for DNA 

sequencing using Qiagen Plasmid mini prep kit (Qiagen) according to 

manufacturer’s instructions. 

Plasmid DNA was sequenced by using Applied Biosystems  BigDye Terminater n3.1 

Cycle Sequencing kits. All reaction were performed on a 96 well plate and 

included included 3.5µl 5X sequencing buffer; 0.5µl Ready Reaction; 8µl 

template (100-200ng of plasmid DNA); ~3.2µl primer (2.0 µM Final); ~4.8µl H2O.  
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IPCR amplifies the unknown DNA sequences that are immediately 

adjacent to the known sequence of our transgene

Gstm1 restriction sites

Gstm1

unknown

 

Figure 4-1: Schematic of the inverse PCR (IPCR) pro cedure with results  
Genomic DNA were digested with a restriction enzyme and ligated. Templates 

then underwent multiple PCR reactions in order to target specific products. 

Adapted from Bessereau (271).  
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The temperature program cycle was: 96°C for 45 secs, 50°C for 25 secs, 60°C for 

4 mins. Steps 1-2 repeated 25 times.  

Sequencing was initially analyzed on Applied Biosystems SeqScape software 

version 2.1 to see if fragments aligned to the genome. Fragments that were 

aligned were then analyzed by hand and each nucleic acid was looked at in order 

to verify that the connecting sequences were novel and not erroneous transgene 

fragments. Experimental sequences were then aligned with known sequences 

derived from bioinformatic databases such as UCSC or ENSEMBL.  

4.2.5 Copy Number Variation 

Identification of the Gstm1 transgene across generations was determined in both 

transgenic lines through Taq-man analysis. Copy number variation Taqman 

probes, SNP Genotyping Assay (Applied Biosystems) and SNP Gene Expression 

Assay (Applied Biosystems), were custom synthesized to a unique portion of the 

transgene construct.  The SNP Genotyping Assay was analyzed by Taqman 

Genotyper, a specifically designed analysis package developed by Applied 

Biostand for this assay. The SNP Gene Expression Assay was compared to a unique 

single copy gene (RNase P 30) that was custom designed for the genetic 

background of rats. Using the comparative (∆∆CT) method with additional steps 

as calculated by Applied Biosystems Copy Caller Software, copy number variation 

analysis was performed on the Taqman 7900. 

4.2.6 Statistics 

All results are displayed as mean ± SEM and n represents the number of 

independent experiments performed. Data were analyzed using a one-way 

ANOVA followed by Tukey’s post hoc test for all total gene and protein 

expression experiments. For Transgene expression, data were analyzed using a 

one-way ANOVA followed by Newman-Keuls’ post hoc test.  
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4.3 Results 

4.3.1 Gstm1  Expression in Cardiovascular Relevant Tissues 

4.3.1.1.1 Kidney  

In order to fully assess changes in renal Gstm1 expression in both transgenic 

lines, transgene (or WKY form) mRNA specific expression in addition to protein 

and IHC expression profiles were measured. At 5 weeks of age, total renal Gstm1 

expression was assessed by quantitative real time PCR (qRT-PCR) in male WKY, 

SHRSP, Tran1 and Trans2 rats. Total renal Gstm1 mRNA at 5 weeks of age was 

significantly higher in Trans1, Trans2 and WKY rats compared to SHRSP (p<0.05) 

(Figure 4-2). Furthermore, while renal expression of Gstm1 in the Trans1 line was 

significantly less than that of the WKY, expression in the Trans2 line was not 

different from WKY expression. Transgene specific (or the WKY variant of 

Gstm1), renal Gstm1 mRNA was assessed by SYBR quantitative real time PCR 

(qRT-PCR) in male WKY, SHRSP, Trans1 and Trans2 rats.  Expression of transgene 

renal Gstm1 mRNA at 5 weeks of age was significantly higher in Trans1, Trans2 

and WKY rats when compared to with SHRSP (p < 0.05), (Figure 4-2). To further 

investigate the extent of the changes in Gstm1 expression, total protein Gstm1 

levels in the kidney were measure by western blot and Immunohistochemistry 

(IHC). At 5 weeks of age, total Gstm1 protein in Trans2 and WKY rat kidneys 

were significantly increased when compared to SHRSP levels. While protein levels 

in Trans1 rats were similar to that of Trans2, they were not significantly 

different from that of the WKY nor were they significantly different from that of 

the SHRSP (i.e. they were intermediate) (Figure 4-2). These expression levels 

were also confirmed with IHC where expression was found mainly in the distal 

tubules (Figure 4-2). 

At 21 weeks of age, total renal Gstm1 mRNA was significantly higher in Trans1 

and WKY rats when compared to with SHRSP (p < 0.05), (Figure 4-3). Transgene 

renal Gstm1 mRNA was significantly higher in Trans1 and WKY rats when 

compared to with SHRSP (p < 0.05), while Trans2 rats showed very little 

transgene expression (Figure 4-3). At 21 weeks of age, WKY Gstm1 protein levels 

were significantly increased compared to that of the SHRSP (Figure 3-10) 

*(p<0.01). Gstm1 protein levels in Trans1 and Trans2 rats were not significantly 
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different from that of the SHRSP (p>0.05). These expression levels were also 

confirmed with IHC, and similarly to 5 week kidneys, expression was found 

mainly in the distal tubules (Figure 4-3). 

4.3.1.1.2 Total Gstm1 expression in other cardiovascular relevant tissue   

For other cardiovascular relevant tissues, both endogenous and transgene Gstm1 

expression (otherwise referred to as total Gstm1 expression) was measured at 

both an early developmental stage (5 weeks) and after the full onset of 

hypertension (21 weeks). At 5 weeks of age, heart, brain and aorta total Gstm1 

mRNA levels were assessed by quantitative real time PCR (qRT-PCR) in male 

WKY, SHRSP, Trans1 and Trans 2 rats. Cardiac total Gstm1 expression was 

significantly increased in SHRSP compared to WKY, Trans1 and Trans2 animals 

(p<0.05) (Figure 4-4 panel A). Levels of total Gstm1 mRNA in brain showed no 

significant difference between all four strains (Figure 4-4 panel B). Vascular 

(aorta) total Gstm1 expression was slightly increased in Trans1 and WKY rats, and 

significantly increased in Trans2 rats when compared to the SHRSP (p<0.05) 

(Figure 4-4 panel C).  

At 21 weeks of age, brain, heart, aorta and liver total Gstm1 mRNA levels were 

assessed by quantitative real time PCR (qRT-PCR) in male WKY, SHRSP, Trans1 

and Trans2 rats. Cardiac total Gstm1 expression was significantly increased in 

the Trans1 line when compared to WKY and SHRSP (p < 0.05) (Figure 4-5 panel 

A). Cardiac Gstm1 expression in Trans2 rats showed a trend towards increase, 

but was not significantly different from WKY, Trans1 or SHRSP rats (Figure 4-5 

panel A). Levels of total Gstm1 mRNA in brain were significantly increased in 

Trans1 and Trans2 animals compared to SHRSP (p<0.05). There was no significant 

difference in neural Gstm1 expression between SHRSP and WKY rats (Figure 4-5 

panel B). Similar to findings in kidney, Gstm1 expression in aorta was 

significantly increased in Trans1 and WKY rats when compared to and SHRSP 

(p<0.005) (Figure 4-5 panel C), however, aortic Gstm1 expression in Trans2 rats 

showed an increased trend but was not significantly different from WKY, Trans1 

or SHRSP rats (Figure 4-5 panel C). Total Gstm1 expression in the liver was 

significantly increased in Trans1, Trans2 and WKY rats when compared to SHRSP 

(p<0.05) (Figure 4-5 panel D).      
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Figure 4-2: Changes in Renal Gstm1  expression between Trans1, Trans2 and parental 
strains at 5 weeks. 
Gstm1 expression in kidney at 5 wks of age in SHRSP (n=8), WKY (n=8), Trans1 

(n=8), and Trans2 (n=3) rats. (A)Total Gstm1 levels were significantly increased 

in WKY, Tran1 and Trans2 lines when compared to the SHRSP *(p<0.05) 

**(p<0.01). (B) WKY variant Gstm1 levels were significantly increased in the WKY, 

Trans1 and Trans2 rats when compared to the SHRSP *(p<0.05). (C) Total protein 

was extracted from kidney tissue and resolved by gel electrophoresis. Western 

blot indicated an increased Gstm1 expression in WKY, Trans1 and Trans2 rats 

when compared to SHRSP *(p<0.05). Increased Gstm1 expression was confirmed 

by densitometry with each band normalized to β-Actin (n=3 for each strain). (D) 

IHC of Gstm1 protein on whole kidney sections from WKY, SHRSP and Trans1 rats 

at 5 weeks of age. Magnification =10x. Values are presented as mean ± SEM. 
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Figure 4-3: Changes in Renal Gstm1  expression between Trans1, Trans2 and parental 
strains at 21 weeks.  
(A)Total Gstm1 expression in kidney at 21 weeks in SHRSP (n=8), WKY (n=8), 

Trans1 (n=8), and Trans2 (n=6) rats. Total Gstm1 levels were significantly 

increased in WKY, Trans1 and Trans2 rats when compared to the SHRSP *(p<0.05) 

**(p<0.01). (B) WKY form Gstm1 levels were significantly increased in WKY, 

Trans1 and Trans2 rats when compared to the SHRSP *(p<0.05). (C) Western blot 

indicated an increased Gstm1 expression in WKY when compared to SHRSP 

*(p<0.05). Increased Gstm1 expression was confirmed by densitometry with each 

band normalized to β-actin (n=3 for each strain). (D) IHC of Gstm1 protein on 

whole kidney sections from WKY, SHRSP and Trans1 rats at 21 weeks of age. 

Magnification =10x. Values are presented as mean ± SEM  
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Figure 4-4: Expression of Total Gstm1  in Cardiovascular Relevant Tissues for Trans1, 
Trans2 and Parental Strains at 5 wks of Age. 
Total Gstm1 mRNA expression in (A) heart, (B) brain and (C) aorta at 5 wks of 

age in SHRSP (n=8), WKY (n=8), Trans1 (n=8), and Trans2 (n=3) rats. Cardiac 

Gstm1 levels were significantly reduced in the animals when compared to SHRSP 

animals *(p<0.05 vs. SHRSP), +(p<0.05 vs. Trans1 rats). There were no significant 

differences in Gstm1 expression levels in the brain between the four strains. 

Aortic Gstm1 expression levels were significantly increased in Trans2 animals 

when compared to the SHRSP. Values are presented as mean ± SEM 
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Figure 4-5: Total Gstm1  Expression for Trans1, Trans1 and Parental Strains  at 21 wks of Age 
in Cardiovascular Relevant Tissues  
Total Gstm1 mRNA expression in (A) heart, (B) brain, (C) aorta and (D) liver at 21 

wks of age in SHRSP (n=8), WKY (n=8), Trans1 (n=8) and Trans2 (n=6) rats. 

Cardiac Gstm1 levels were significantly increased in Trans1 (n=8) animals when 

compared SHRSP (n=8) animals *(p<0.05). Neural Gstm1 levels were significantly 

increased in Trans1 (n-8) and Trans2 (n=6) rats when compared to SHRSP (n=8). 

Aortic Gstm1 expression levels were significantly increased in WKY (n=8) and 

Trans1 (n=8) animals when compared to the SHRSP (n=8) *(p<0.01). Hepatic 

Gstm1 levels were significantly increased in WKY (n=8), Trans1 (n=8) and Trans2 

rats (n=6) when compared to the SHRSP *(p<0.01). Values are presented as mean 

± SEM.  
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4.3.1.1.3  WKY Variant (Transgene specific) Gstm1 expression in Cardiovascular 
Tissue   

At 5 weeks of age, brain, heart and aortic transgene specific Gstm1 mRNA levels 

were assessed by SYBR quantitative real time PCR (qRT-PCR) in male rats in the 

WKY, SHRSP, Trans1 and Trans 2 rats. Cardiac transgene Gstm1 expression was 

significantly increased in the WKY when compared to the SHRSP (p<0.05) (Figure 

4-6 panel A). Trans1 and Trans2 rats were not significantly difference from the 

SHRSP parental strain. The trend towards increased expression for the Trans2 

line did not reach significance due to large variability probably due to low n 

numbers (Figure 4-6 panel A). Neural transgene Gstm1 mRNA levels in WKY were 

significantly increased when compared to the SHRSP (p<0.05), however, while 

there was a similar increasing trend in transgene Gstm1 expression in Trans1 and 

Trans2 rats, it did not reach significance  (p>0.05) (Figure 4-6 panel B). Vascular 

transgene expression showed an increased trend in Trans1 and WKY rats and was 

significantly increased in Trans2 and (p < 0.05). Additionally, Trans2 vascular 

transgene expression was significantly increased to that of the WKY levels (p < 

0.05) (Figure 4-6 panel C).  

At 21 weeks of age, brain, heart, and liver transgene Gstm1 mRNA levels were 

assessed in male rats in the WKY, SHRSP, Trans1 and Trans 2 rats. Cardiac 

transgene Gstm1 expression was significantly increased in WKY when compared 

to SHRSP (p<0.01) (Figure 4-7 panel A). Cardiac Gstm1 expression in Trans1 and 

Trans2 rats showed increased trends but was not significantly different from 

SHRSP rats (Figure 4-7 panel A). Levels of neural transgene Gstm1 mRNA were 

significantly increased in WKY animals when compared to SHRSP (p<0.01). There 

was no significant difference in neural Gstm1 expression between Trans1 and 

Trans2 and SHRSP animals (p>0.01) (Figure 4-7 panel B). Hepatic transgene 

Gstm1 expression was significantly increased in WKY when compared to SHRSP 

(p<0.01) (Figure 4-7 panel C). Unfortunately, transgene expression in the aorta 

resulted in undefined errors where the experimentation appeared to proceed 

normally through all stages of testing but the instrument did not generate an 

analysis or provide final results at the end of the run. This lack of definite result 

was further investigated by Exiqon which could find no fault with the probe or  



141 
 

 

  

Heart

SHRSP WKY Trans 1 Trans 2
0.00

0.25

0.50

0.75

1.00

1.25 *
A

R
Q

Brain

SHRSP WKY Trans 1 Trans 2
0.000

0.025

0.050

B

0.5
1.0
1.5
2.0
2.5

*
*

R
Q

Aorta

SHRSP WKY Trans 1 Trans 2
0.0

0.5

1.0

1.5

2.0
30

40

50

60
*

C

R
Q

 

Figure 4-6: Transgene (WKY specific) Gstm1  Expression in Trans1, Trans2 and Parental 
Strains at 5 Weeks of Age. 
Transgene (WKY form) Gstm1 expression in (A) heart, (B) brain and (C) aorta at 5 

wks of age. Cardiac transgene Gstm1 levels were significantly increased in the 

WKY (n=8) animals when compared to SHRSP (n=8) animals *(p<0.01). Neural 

transgene Gstm1 levels were significantly increased in the WKY (n=8) when 

compared to the SHRSP (n=8) *(p<0.01). Aortic Gstm1 transgene expression levels 

were significantly increased in Trans2 animals (n=3) when compared to the 

SHRSP (n=8) **(p<0.001). Values are presented as mean ± SEM.  
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Figure 4-7: Transgene (WKY Specific) Gstm1  Expression in Trans1, Trans2 and Parental 
Strains at 21 Weeks of Age. 
Transgene (WKY form) Gstm1 expression in (A) heart, (B) brain, (C) liver at 21 

wks of age. Cardiac transgene Gstm1 levels were significantly increased in WKY 

(n=8) when compared to SHRSP (n=8) *(p<0.01). Cardiac expression in Trans1 

(n=8) and Trans2 (n=6) animals showed increased trends of expression when 

compared SHRSP animals. Neural transgene Gstm1 levels were significantly 

increased in WKY (n=8) when compared to the SHRSP (n=8). Hepatic Gstm1 levels 

were significantly increased in WKY (n=8) when compared to the SHRSP *(p<0.01) 

and Trans1 showed trends of increased expression. Values are presented as mean 

± SEM.  
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cDNA used and thus values for 21 week vascular expression data are not 

included.    

4.3.1.1.4 Expression of Other Gstm Family Members  

The mu family of glutathione tranfersases are highly homologous and in order to 

assess any changes to the mu family expression caused by the integration of the 

transgene, Gstm2 and Gstm3 mRNA expression was measured in a variety of 

tissues at 21 weeks of age. β-actin was used as a housekeeper for all experiments 

except for heart where GapdH was used. While brain Gstm2 expression was 

significantly increased in the WKY compared to the SHRSP *(p<0.05), there was 

no significant change in expression in neural, renal, cardiac, hepatic and vascular 

Gstm2 expression in Trans1 and Trans2 rats was when compare to the SHRSP 

(p>0.05) (Figure 4-8). There was no significant change in Gstm3 expression in the 

transgenic rats when compared to the SHRSP (p>0.05). The only significant 

differences in Gstm2\3 expression occurred between WKY and Trans2 rats in 

renal Gstm2 expression (Figure 4-8), and WKY and Trans1 rats in the liver (Figure 

4-9).  

4.3.1.2 Immunohistochemistry 

To further investigate vascular Gstm1 expression, IHC was performed on the 

aorta at 21 weeks of age. Measuring percent staining in the aorta demonstrated a 

significant increase of Gstm1 in WKY (n=4) when compared to SHRSP (n=4) 

(p<0.05) (Figure 4-10). There was a an increased trend in protein expression for 

aortas in Trans1 (n=4) and Trans2 (n=4) rats which was not significantly different 

from either parental strain, conveying an intermediate expression (Figure 4-10) 

4.3.2 Location of the Transgene Insertion Site 

Inverse PCR was used to amplify regions of DNA adjacent to the transgene in 

order to determine the insertion site of the transgene in each of the transgenic 

lines. Liver genomic DNA from each transgenic line was restricted using the 

HindIII restriction enzyme, and inverse PCR was performed. Using transgene 

specific primers for the HindIII restriction site, we obtained positive PCR 

amplification for both transgenic lines (Figure 4-11). As shown in Figure 4-11, 

multiple unique bands were identified for each of the transgenic animals. These 
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bands were gel extracted, and the fragment was cloned into Strataclone vector. 

The clones were then screen and every band was sequenced. After being aligned 

to the transgene and IPCR sequence, results indicated that there was only one 

band from Trans2 rats to have unknown, or different from the transgene, 

sequence (Figure 4-11). This sequence was then blasted to the Brown Norway, 

including non-assembled trace sequences. This led to the sequence lining up to 

the trace sequence of rt71hp27.x. Recently, a new updated Brown Norway 

sequence has been made available on Ensmbl with increased genome sequencing 

capabilities; however, unfortunately, these increases did not include the 

rt71hp27.x trace sequence. 

After sequencing, none of the sequences for Trans1 rats using the HindIII 

restriction site were unique, and were generally inter-ligated transgene 

sequences, i.e. transgene fragments that were restricted and ligated onto other 

transgene fragments. In order to further investigate this, another restriction site, 

Pst1, was used for identification of the insertion sequencing for Trans1 animals. 

As shown in Figure 3-14, where both HindIII and Pst1 restriction enzymes were 

used for restriction during inverse PCR, there are bands unique to the Trans1 rats 

when compared to the SHRSP. Unfortunately, similar to the HindIII restriction 

site, each of the PstI bands were either internal fragments or inter-ligated 

transgene fragments. 

In order to ascertain that the transgene had not identically inserted itself into 

genome for both transgenic lines (which is highly unlikely), the primers used to 

verify the insertion site of the transgene into the rt71hp27.x trace sequence in 

the Trans2 line were used as sequencing primers for the insertion of the 

transgene into the Trans1 rat genomic DNA. For Trans1 line, there were no 

transgene sequences adjacent to the rt71hp27.x trace sequence. Allowing the 

conclusion, that while the exact insertion site within the genome for Trans1 rats 

is still unknown, it differs from that of the Trans2 line insertion site.         
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Figure 4-8: Gstm2  expression in Trans1, Trans2 and parental strains at 21 weeks of age. 
Total Gstm2 expression in (A) kidney, (B) brain, (C) heart, (D) aorta, (E) liver at 

21 wks of age. Renal Gstm2 levels of WKY, Trans1 and Trans2 animals were not 

significantly different from SHRSP (p>0.05). Renal Gstm2 expression in Trans2 

rats was significantly less than WKY (*p<0.05). Neural Gstm2 levels were 

increased in WKY (n=8) when compared SHRSP (n=8) animals, but not in either 

Trans1 (n=8) or Trans2 (n=6) rats. Cardiac, aortic and hepatic Gstm2 levels were 

not significantly different across all four strains. Values are presented as mean ± 

SEM.
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 Figure 4-9: Gstm3  expression in Trans1, Trans2 and parental strains at 21 weeks of age. 
Total Gstm3 expression in (A) kidney, (B) brain (C) heart, (D) aorta, (E) liver at 

21 wks of age. Renal, neural, cardiac, vascular and hepatic Gstm3 levels in WKY 

(n=8), Trans1 (n=8) and Trans2 (n=6) animals were not significantly different 

from SHRSP (n=8) (p>0.05). The only significant difference in expression was 

hepatic Gstm3 expression between the WKY and Trans1 animals (*p<0.05). Values 

are presented as mean ± SEM. 
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4.3.3 Copy Number Variation 

Data from the custom Taqman Copy Number Assay (Applied Biosystems) conveyed 

that there were multiple copies of the transgene in Trans1 rats across multiple 

generations (Figure 4-13). While this probe was custom designed and 

manufactured to anneal to SNP variations that were specific to the WKY variant 

of Gstm1 there was, however, evidence of PCR amplification suggesting a mis-

aligning of the probe within the SHRSP genome. Further investigation of this 

finding in conjunction with Applied Biosystems determined that mis-expression of 

the WKY Gstm1 variant in the SHRSP genome was within their quality control 

parameters and was therefore an assay artefact. This caused difficulty analyzing 

transgene copy number with this probe. Because of these mis-alignment issues, 

and the delay in Trans2 rat breeding, these experiments were not repeated in 

Trans2 animals.  

In order to further investigate transgene copy number in both transgenic lines, 

internal fragments from the inverse PCR sequencing were analyzed. When 

viewed, both transgenic lines included internal fragments that contained 

segments of the transgene that sequenced from the end of one copy into the 

beginning of the next, in a head-to-tail array.    
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Figure 4-10: Localization of Gstm1  in the Aorta at 21 weeks of age.  
A: IHC of Gstm1 protein in whole kidney sections from WKY, SHRSP, Trans1 and 

Trans2 rats at 21 weeks of age. Magnification =10x. B: quantitative measurement 

of Gstm1 expression expressed as percentage staining (n=4 for all strains). 
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Figure 4-11:   Schematic of the inverse PCR procedure with result s. 
 A: Liver genomic DNA from SHRSP (n = 2), WKY (n=2), Trans1 (n=4) and Trans2 

(n=3) rats using restriction site HindIII. B: Templates underwent multiple PCR 

reactions in order to target specific products. Adapted from Bessereau (271). The 

text box is a representative sequence where the unknown/flanking region of DNA 

assembles to a trace archived sequence identified in the Trace Archives for Brown 

Norway (Trace Archive reference rt71hp27.x.) 
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Figure 4-12: Mapping the transgene insertion site b y inverse PCR for Trans1 rats. 
Liver genomic DNA from SHRSP (n = 2), transgenic (n=2), WKY (n=1) rats was 

digested by HindIII and PstI. Trans1 animals showed unique bands for both 

restriction sites 
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Figure 4-13: Copy number variation between parental  strains and Trans1 rats 
CNV as determined by Taq-man assay and Copy Caller analysis. Data show that 

Trans1 rats display a significant increase in wild type Gstm1 copy number when 

compared to the SHRSP parental strain *(p<0.005) across generations. Gen1 = 1st 

generation, Gen2+ = 2nd and subsequent generations. Values are presented as 

mean ± SEM. 
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4.4 Discussion 

In this chapter the molecular characterization of the Gstm1 transgenic rat has 

been investigated before onset of hypertension (5 weeks) and at maturity (21 

weeks). Both transgenic lines have demonstrated an increase in total and 

transgene specific expression of Gstm1 in kidneys at 5 weeks of age (Figure 4-2) 

as well as increased transgene expression in several other cardiovascular tissues 

(Figure 3-4). Additionally, we saw increased total Gstm1 expression in a range of 

cardiovascular tissues at 21 weeks of age (Figure 4-4) without potential changes 

of two other Gstm family members (Gstm2 and Gstm3) that could be an artefact 

from the addition of the transgene (Figures 4-8 and 4-9). Although it was not 

possible to identify the exact location of the transgene insertion site in both 

transgenic lines, data presented indicate that they are not identically inserted 

and from this it can be inferred that the decrease in blood pressure is not due to 

the insertion site alone. Furthermore, sequencing data shows that each 

transgenic line contains multiple copies of the transgene across a number of 

generations.  

Investigation at 5 wks of age, showed a significant increase in total and 

transgene (WKY) specific renal Gstm1 mRNA expression in Trans1 and Trans2 rats 

(Figure 4-2) with a similar trend in renal Gstm1 protein expression (Figure 4-2). 

While this was confirmed with IHC in whole kidney at 5 weeks of age for Trans1, 

IHC analysis for Trans2 was not feasible due to breeding difficulties which 

resulted in very low numbers of rats for this line. This general increase in renal 

Gstm1 expression (Figures 4- 2) allows us to conclude that the increase in total 

Gstm1 expression in the transgenic lines are a result of increased transgene 

specific Gstm1 expression rather than changes in endogenous Gstm1 (Figure 4-2). 

However, this increase of renal Gstm1 mRNA expression is not sustained at the 

later time point investigated (i.e. 21 weeks of age) in the Trans2 line. This 

unsustained increase of expression, or return to SHRSP levels, at 21 weeks is also 

observed for protein levels in both Trans1 and Trans2 (Figure 4-3). However, an 

age related decline in transgene expression is not unique to these animals. 

Previous reports have shown that transgene expression levels can decline with 

time both in vivo and in vitro (Lit paper and references 6,9 of paper, Uneda et 

al.). For example, EGFP expression, under the control of the ef1-α promoter, 

was found to be progressively limited during the later stages of development 
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(272),  and completely restricted in adult tissue of X. leavis (273), Medaka (274), 

and zebrafish (275). While these studies have reported a decrease in expression 

levels during later stages of life, each of these studies, in line with ours, 

demonstrated phenotypic differences at a later stage as a result of early 

developmental expression (272-275).  

The over expression of Gstm1 in the kidney before the onset of hypertension, 

appears to have a preventative effect on the progression of hypertension in the 

transgenic SHRSP rat (Figure 3-1 and Figure 4-2). While Gstm1 mRNA is 

differentially expressed between the two transgenic lines (Figure 4-3) at 21 

weeks of age, both lines continue to have almost identical reductions in systolic 

blood pressure. Indeed, increased mRNA and protein levels in the kidney at 5 

weeks of age seem to be able to reduce the severity of disease in mature 

animals, at a time point when the SHRSP would have normally developed full 

hypertension. This reduced disease severity will be further examined in the 

subsequent chapter where renal and vascular pathology and function is 

investigated (ex vivo) in mature rats. Other studies have found similar results 

with early over expression of genes during development. Studies conducted by 

Perez et al. have shown the early increased expression of Trx1 not only provided 

an increased resistance to oxidative stress in the mouse but elongated the life 

span of the animal as well (242).  

While there seems to be very few phenotypic differences between the two 

transgenic lines, there are some expression differences that make each line 

unique. One factor that could potentially play a role in this variation of 

expression exhibited by the same transgene is the impact of the transgene 

insertion site (or positional effect). Often differences in expression are due to 

enhancers that regulate neighbouring genes (276). While these enhancers 

regulate their respective gene of interest, they can also affect the expression 

pattern of the transgene that is inserted near them. Identification of the exact 

transgene insertion site in our transgenic lines would have provided important 

information for the determination of these potential regulatory factors. 

However, despite concerted effort and utilization of both previous and new rat 

genome assemblies it was not possible to fully determine the exact location for 

either of the transgenic lines. The inverse PCR method used for the rapid in vitro 

amplification of unknown DNA sequences that flank a region of known sequence 
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proved to be problematic for our transgenic animals. While we did find many 

unique bands in the transgenic columns (Figures 4-11 and 4-12) that 

demonstrated additional fragments of DNA in the transgenic genomes unique to 

Trans1 and Trans2; ligation issues for both lines made it difficult to ascertain the 

insertion site. For Trans1, these ligation issues made it virtually impossible to 

determine the insertion site of the transgene. Each unique band was made up of 

various inter-ligated fragments of the transgene from internal copies. In order to 

accommodate for this, multiple restriction sites and corresponding primers were 

used. Nonetheless, there was no further insight to where the Trans1 integrated 

into the SHRSP genome. 

We were able to establish the Trans2 insertion site to be within a region of the 

genome located in the trace archived sequenced area, rt71hp27.x. The 

rt71hp27.x. genome sequence has yet to be assembled to the rat genome which 

makes it impossible to know which chromosome this trace resides on, however, 

this is an ongoing process and hopefully future advancements by the EURATRANS 

collaborative Rat consortium will make this information available in the near 

future. Since there was additional rt71hp27.x sequence in Ensembl, the 

additional sequence was used to verify Trans2 insertion into this region by 

designing primers to the additional sequence. Because rt71hp27.x sequence has 

not yet been assembled to the Brown Norway genome, it is difficult to determine 

if Trans2 was indeed undergoing expression regulation from DNA-methylation or 

by any other regulating enhancers or genes (269). Further investigations will 

elucidate where this archived sequence is within the full rat genome. 

An additional result arising from sequencing the unique bands from the 

transgenic rats has confirmed transgene integration and the incorporation of 

multiple copies numbers for both transgenic lines in a head to tail fashion. In 

addition to using sequencing as a method to confirm copy number across 

generations, copy number variation was assessed by CNV Taqman probes (Applied 

Biosystems) that were custom synthesized to a unique portion of the WKY form 

(transgene) construct (See Appendix). However, due to technical difficulties of 

unspecific primer annealing, this method was found not to be reliable (i.e. SHRSP 

animals were showing increased copy numbers when sequencing data confirm 

that no copy exists within this genome) (223). Moreover, Trans1 and Trans2 both 

had endogenous expression of Gstm1 in their genome which increased the 
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possibility and occurrence of reduced primer specificity. Because of this, the 

copy number assessment was not reliable through this method. However, since 

genotyping was carried out on every Trans2 animal and on randomly selected 

Trans1 animals, we were assured that the transgene was present through 

multiple generations.   

One of the reasons that the ef1-alpha promoter was chosen for this study was 

that the ef1-α promoter-driven transgenic animals have been widely used 

because of ubiquitous expression of the gene during development (277;278). 

However, as with all methods of genome manipulation there is always potential 

for unexpected effects in which makes each transgenic line produced unique (7). 

There are many factors that can be influenced when incorporating a new or 

different gene into the genome. Because of this, we investigated the effects of 

increased Gstm1 on other members of the Gstm family. There are eight currently 

known members of the Gstm gene family in the rat and the entire family has a 

high sequence homology (211). In this study, we also examined two family 

members; Gstm2 and Gstm3, in order assess any changes in expression of the 

Gstm family and to determine their potential to be altered as a result of 

increased Gstm1 expression in the SHRSP. Gstm2 expression was investigated 

because the sequence is the most similar to Gstm1 and many IHC antibodies bind 

to both Gstm1 and Gstm2 (211). Measuring Gstm2 expression allowed for a more 

in-depth assessment of the actual changes of Gstm1 in the transgenic rats. 

Gstm3 was then investigated in order to insure that other members of the Gstm 

family were not significantly altered with the incorporation of the transgene. 

Since there were no significant changes in Gstm2 and Gstm3 expression in the 

transgenic rats compared to the SHRSP in any of the tissues, we were able to 

conclude that increased Gstm1 expression alone was having a functional affect 

on systolic blood pressure in the transgenic rat and not a combined effort of the 

Gstm family. 

The current chapter has assessed the differences in expression levels of Gstm1 in 

the two transgenic lines and has demonstrated that there is an increase in renal 

Gstm1 prior to the onset of hypertension in both transgenic lines, which is 

maintained at 21 weeks of age in Trans1 rats. In the next chapter we follow up 

these findings by investigating whether the increased levels of Gstm1 in kidney 
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and other cardiovascular tissues, has a functional impact on intermediate 

phenotypes including renal and vascular function and oxidative stress.  
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5   Ex vivo  Effects of Gstm1  Expression       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                             



158 
 

5.1 Introduction 

In the previous chapters, it has been demonstrated that a significant increase in 

Gstm1 expression in the kidney at an early stage of development resulted in a 

significant decrease in blood pressure and cardiac hypertrophy in the transgenic 

rat lines. To fully understand the effects of increased Gstm1 expression in the 

SHRSP background, other functional aspects should be examined in order to 

determine if increased Gstm1 expression results in improved intermediate 

phenotypes and reduced end organ damage (i.e. renal and vascular function and 

pathology).  

It is well established that oxidative stress is an important pathogenic factor in 

the development of cardiovascular disease and increased production of reactive 

oxygen species (ROS) and/or reduced defences against ROS not only leads to 

endothelial dysfunction but also causes structural damage to tissue and organs 

(237;279;280). In particular, previous studies have shown that the oxidative 

stress pathways play important roles in the development of renal and vascular 

pathology (96;199). Considering the role of Gstms in the protection against 

reactive oxygen species it is anticipated that enhanced Gstm1 expression will 

improve antioxidant defences in the tissues and organs where expression has 

been improved.  

5.1.1 Renal Function 

Hypertension is a multifactorial disease which affects many cardiovascular organs 

including the heart, blood vessels and kidneys (33). It is well established that 

hypertension is associated with renal injury and dysfunction which can result in 

poor fluid maintenance and electrolyte homeostasis. The SHRSP has a marked 

susceptibility to develop renal damage while the SHR, from which the SHRSP 

strain originated, is a relatively resistant strain (281). While both strains are 

considered hypertensive, and both have relatively similar genomes, the severity 

of renal injury is marked in the SHRSP, thus allowing us to conclude that SHRSP 

harbours genetic factors that contribute to renal injury susceptibility.      

One of the main indications of renal impairment is the increased levels of 

proteinuria in the urine due to reduced glomerular filtrations or an insufficiency 
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of absorption due to the leakiness of the podocyte layer in the glomerulus (282). 

Furthermore, there is evidence for reduced renal function in SHRSP which is 

characterized by increased proteinuria, reduced glomerular filtration rate (GFR) 

and structural damage, such as glomerulosclerosis and tubulointerstitial damage 

after the onset of full hypertension and in salt-loading conditions (87;283). 

Additionally, there is increasing evidence in the literature that oxidative stress is 

central to this renal dysfunction (96;284-286).  

 

5.1.2 Vascular Function 

Endothelial dysfunction is also associated with hypertension. More specifically, 

increased blood pressure has been shown to decrease endothelium-mediated 

vasodilation and has been reported in both hypertensive patient and various 

animal models of hypertension (287;288). Vascular tone is normally regulated by 

a delicate balance between vasodilators and vasoconstrictors, whereas 

disturbance in the NO/O2
- pathways can lead to hypertension which, if reaching 

malignant levels results in end-organ damage. However, mechanisms to explain 

the observed dysfunction are conflicting and vary depending upon the model 

examined. In the SHRSP, there is a decrease in endothelium-dependent 

relaxation despite increased eNOS activity (234;289;290). Data has shown that 

free radicals such as superoxide react with and inactivate the vasodilator nitric 

oxide, reducing NO bioavailability and impairing vascular function (237;290;291). 

Since Gstm1 plays an important antioxidant role, we investigated the impact of 

increased Gstm1 expression on vascular endothelial function through assessment 

of conduit (aorta) and resistance (mesenteric) artery function. 

Additionally the mechanical properties of mesenteric resistance arteries (MRA) 

were investigated due to their fundamental importance in blood pressure 

regulation. Resistance arteries are the major site of resistance to blood flow and 

therefore play an important role in blood pressure regulation. Elevated 

peripheral resistance is a hallmark of essential hypertension; therefore, 

abnormalities in the morphology/mechanical function of resistance arteries can 

participate in mechanism that elevate blood pressure (292). It has been well 

established that vascular remodelling occurs in response to an increase in blood 

pressure.  While the underlying mechanisms leading to vascular remodelling are 
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not well understood, it has been shown that the adaptive change in the structure 

and elasticity of the vessel is characterized by a change in vessel diameter and 

stress-strain relationship (293-295). Specifically, in the SHRSP, when compared 

to normotensive rates, lumen diameter is smaller and wall thickness to lumen 

ratio is increased (296). 

5.1.3 Aims 

In the previous chapters, we have shown that a significant increase in Gstm1 

expression at an early stage of development results in a significant decrease in 

blood pressure and cardiovascular risk in our transgenic lines. From this data, we 

hypothesized that this reduction in blood pressure and end organ damage are due 

to improved vascular and kidney function through reduced oxidative stress. The 

aim of this chapter was to investigate whether increased Gstm1 gene expression 

plays a functional role in oxidative stress and end-organ damage.  The functional 

properties of Gstm1 in the transgenic SHRSP rats were examined through (1) 

oxidative stress measurements, (2) wire and pressure myography, (3) histological 

analysis and (4) renal function measurements.  
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5.2 Materials and Methods 

5.2.1 Metabolic Cages 

Telemetered animals were placed in metabolic cages for the collection of urine 

and the monitoring of water in-take for baseline and salt-loaded studies. At 16 

weeks old, the rats were housed in the metabolic cages for 24 hours and baseline 

data was collected on water intake and urine volume for WKY, SHRSP, Trans1 

and Trans2 animals. Additionally, at 21 weeks old, rats were housed in metabolic 

cages for 24 hours and additional baseline or salt-loading data (WKY, SHRSP, and 

Trans1 only was collected on water intake and urine volume. Urine was kept on 

ice and stored at -80°C, until required for biochemical analysis for chloride, 

potassium and Sodium concentrations. The analysis was carried out using a 

Beckman CoulterAU640 clinical chemistry analyser (formally known as Olympus 

AU 640) using ion selective electrodes (ISE) utilising potentiometry. The urinary 

creatinine and total protein concentrations were assessed by creatinine 

clearance kit (Section 2.2.4) and Peirce proteinuria kits (Section 2.6.2), 

respectively.    

5.2.2 Estimated Glomerular Filtration Rate 

Kidney function was examined in rats at 21 weeks of age at baseline and after 

salt-loading. Blood samples were collected during sacrifice for WKY, SHRSP, and 

transgenic animals. To extract plasma, whole blood was collected into heparin 

lined tubes and was stored on ice for a maximum of 24 hours until centrifugation 

at 2240 g for 20 mins at 4°C. Plasma was removed without disturbing red and 

white blood cells and was stored at -80°C for future experiments. Urine was 

collected for 21 hours prior to sacrifice with water intake over 24 hours 

recorded. Indirect glomerular filtration rates (GFR) were determined by a 

clinically validated automated analyzer (c311, Roche Diagnostics, Burgess Hill 

UK), using the manufacturers calibrators and quality control material. All 

calculations were normalized to kidney weight. 

5.2.3 Tissue Collection 

Animals were sacrificed after 9 weeks of telemetry monitoring at 21 weeks of 

age. Blood samples were collected and plasma extracted for functional 
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measurements. A quarter of a kidney was fixed in 10% formalin for histological 

analysis (Section 2.2.3). Kidney, brain, heart, aorta, and liver tissues were snap 

frozen for further analysis. Thoracic aorta and mesenteric resistance arteries 

(MRA) were isolated for the investigation of endothelial function by wire 

myography and tested for mechanics by pressure myography. Oxidative stress 

measurements, as previously detailed, were investigated using snap frozen 

tissue. Oxidative stress details are contained in section 2.2.5.  

5.2.4 Wire myography 

For examination of functional response and vascular reactivity, small (3rd order) 

mesenteric arteries (MRA) and thoracic aortas were harvested from animals at 21 

weeks of age. Full details of wire myography experiments are in Section 2.2.6. 

Mesenteric arteries and thoracic aortas were dissected from connected tissue, 

trimmed into sections approximately 2mm in length (4 mm for Aortas), and 

stored in overnight at 4° C before use. Contractile responses were tested by pre-

treatment with KCL (10µM), noradrenalin (phenylephrine for aortas) and 

carbachol. Vessels were left to rest for 30 mins following two Krebs’ buffer 

washes. A cumulative concentration response curve to noradrenalin for MRA and 

phenylephrine for aortas, 10 nM to 30 µM was performed first in the absence and 

again after two Krebs’ washes, in the presence of L-NAME (100 µM ). The 

increase in tension in the presence of L-NAME provided a measure of the effect 

of NO on basal tone and a measure of NO bioavailability. The percentage of 

maximal contraction was calculated compared to response at 30 µM 

noradrenalin/phenylephrine without L-NAME. Similarly for assessment of 

relaxation responses, carbachol curves from 10nM to 10 µM were performed to 

measure the percentage of relaxation from maximal contraction in response to 

stimulated NO release. AUC was calculated from the response curves.  

5.2.5 Pressure Myography 

In order to examine the structural and mechanical differences in mesenteric 

resistance arteries, the pressure-diameter relationship differences between 

SHRSP, WKY and transgenic lines, was assessed by pressure myography. Dissected 

MRA (approximately 2 mm in length) were subjected to increased intramluminal 

pressure from 10-110 mmHg at 10 and 20 mmHg intervals over a period of 
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approximately 30 mins. Measurements of internal (Di) and external (De) were 

measured and used to calculate structural parameters cross sectional areas (CSA) 

and wall to lumen ration using the equations listed in section 2.2.7.  

5.2.6 Oxidative stress 

For examination of the oxidative stress cascade, measurements on various steps 

of the oxidative stress pathway were performed in 5 week, 21 week and 21 week 

salt loaded animals (i.e. superoxide, hydrogen peroxide, nitric oxide, 

glutathione, and lipid peroxidation). Samples were homogenized using snap 

frozen tissues and all manufacturers’ recommendations for each kit were used. 

All methods are fully described in Sections 2.2.5     

5.2.7 Histology – Gross Pathology Analysis 

Full details for the preparation of tissues and histological analysis is fully 

described in Section 2.2.3. To assess renal remodelling, 3 µm renal adjacent 

sections from WKY, SHRSP and transgenic animals were stained with Harris 

haematoxylin and eosin and structures of tissues were examined by microscopic 

analysis; nuclei appeared purple and cytoplasm pink. Fibrosis was examined by 

staining with picrosirius red. Microscopic analysis and a colour threshold 

application were used to measure the average intensity of picrosirius red stain of 

fibrotic tissue (ImageProPlus 4.1, Media Cybernetics, US).  

5.2.8 Statistical Analysis 

Animal work was carried out with 6-8 animals per group. All quantification of 

histological analyses was carried out blind. Statistical analysis was done using 

commercially available packages including Prism Graphpad®. Significance was 

set P<0.05 and calculated using a one way ANOVA. Tukey post-hoc analysis was 

performed if overall ANOVA at least one p<0.05. 
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5.3 Results 

5.3.1 Effects of Gstm1  expression on oxidative stress 

5.3.1.1 Kidney 

In order to assess the changes in oxidative stress as a result of increased Gstm1 

expression after the onset of hypertension, multiple stages of the oxidative 

stress cascade was measured (i.e. superoxide, hydrogen peroxide, glutathione 

and lipid peroxidation). At 21 weeks of age there was no significant difference 

between the strains for kidney levels of  superoxide (O2
-), as measured by 

lucigenin chemiluminesence, and hydrogen peroxide, as measured by Amplex Red 

Assay (Figure 5-1) (p>0.05). Intracellular GSSG: GSH ratio levels were measured 

in kidneys at 21 weeks age. GSSG: GSH ratios, which when elevated are 

indicative of oxidative stress; show a reduced trend in the WKY and both 

transgenic lines when compared to the SHRSP at 21 weeks of age (Figure 5-1). 

Measurement of lipid peroxidation using a malondialdehyde (MDA) assay showed 

a significant reduction in renal MDA production in the WKY (n=8), Trans1 (n=8) 

and Trans2 (n=6) when compared to the SHRSP (n=8) at 21 weeks of age (p<0.05) 

(Fig. 8 Panel A).  

In order to further investigate renal oxidative stress levels during the early 

stages of development, and to determine if they correspond with the increase of 

Gstm1 expression before the onset of hypertension, we measured GSSG: GSH 

ratio levels at 5 weeks of age. There were no significant differences in GSSG: 

GSH ratio levels between the four strains (Figure 5-2). Furthermore when GSSG: 

GSH ratio levels of 5 weeks are compared to that of 21 wks, ratio levels at 5 

weeks of age were considerably reduced.  

Additionally, glutathione measurements on salt-loaded kidneys were also 

performed at 21 weeks of age. GSSG:GSH ratios were significantly reduced in 

WKY and Trans1 animals when compared to the SHRSP (Figure 5-3) (p<0.01). 

Renal MDA production in salt loaded animals was significantly decreased in the 

WKY when compared to the SHRSP (p<0.05).  
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Figure 5-1: Renal Oxidative Stress Measurements in SHRSP, WKY and Transgenic lines at 21 
weeks of age. 
Measurements of various steps in the oxidative stress pathway in kidneys from 

SHRSP (n=8), WKY (n=8), Trans1 (n=8) and Trans2 (n=6) rats. There was no 

significant difference in oxidative stress in superoxide (lucigenin 

chemiluminescence), hydrogen peroxide (Amplex Red), Nitrate and Nitrite 

(Greiss Assay) and glutathione between all for strains (p>0.05). Lipid 

peroxidation (MDA) measurements showed a significant decrease in oxidative 

stress in the WKY, Trans1 and Trans2 rats when compared to the SHRSP (p<0.05). 
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Table 5-1 Renal Oxidative stress Measurements in SHRSP, WKY, and Transgenic lines at 5 wks of 
age 

 
 GSSG:GSH ratio 

(µM) 
 Lipid peroxidation  

(MDA:Protein Ratio) 
 

 5 wks 21 wks  5 wks 21 wks  

SHRSP 0.0396±0.004 0.4291±0.08  0.00736±0.002  0.0476±0.01  

WKY 0.0769±0.013 0.2572±0.04  0.005332±0.001 *0.0241±0.005  

Trans1 0.0475±0.010 0.2666±0.04  0.01258±0.004 *0.0241±0.002  

Trans2 0.0553±0.016 0.3607±0.08  0.00776±0.0003 *0.0214±0.002  

       

The table provides oxidative stress data at 5 and 21 weeks of age for two stages 

in the oxidative stress pathway for comparison between ages. n=6-8 for SHRSP, 

WKY, and Trans1 and n=3-6 for Trans2 at 5 weeks. WKY, Trans1 and Trans2 rats 

are significantly different at 21 weeks of age when compared to the SHRSP 

*(p<0.05).  
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Figure 5-2: Renal Oxidative Stress Measurements in SHRSP, WKY and Transgenic lines at 21 
weeks of age for Salt loaded Animals 
Measurements of oxidative stress pathway parameters in SHRSP (n=8), WKY 

(n=8), and Trans1 (n=8) rats. (A) Glutathione measurements in WKY and Trans1 

rats were significantly reduced when compared to SHRSP (p<0.05). (B) WKY lipid 

peroxidation measurements were significantly reduced when compared to SHRSP 

(p<0.05).  
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5.3.1.2 Vasculature 

Intracellular GSSG: GSH ratio levels were measured in the aorta at 21 weeks age. 

While there was no significant difference in GSSG: GSH ratios between WKY 

(n=8), SHRSP (n=8), Trans1 (n=8) rats (p>0.05), GSH: GSSG ratios levels for 

Trans2 rats (n=8) were significantly increased compared to that of the SHRSP and 

WKY (p<0.001 and p<0.01, respectively) (Figure 5-4). 

Measurement of lipid peroxidation using a malondialdehyde assay showed no 

significant change in aortic MDA production in the WKY (n=8), Trans1 (n=8) and 

Trans2 rats (n=6) when compared to the SHRSP (n=8) at 21 weeks of age (p>0.05) 

(Figure 5-4).  

5.3.1.3 Other Tissues 

Intracellular GSSG: GSH ratio levels were measured in the liver at 21 weeks age. 

GSSG: GSH ratios in the WKY (n=8), SHRSP (n=8), Trans1 (n=8) and Trans2 (n=8) 

rats were not significantly different from each other (Figure 5-5). Measurement 

of lipid peroxidation using a malondialdehyde assay in the heart, brain and liver 

were not significantly different between any of the strains (p> 0.05) and were all 

within a normal range (Figure 5-5). 

5.3.2 Effects of Gstm1  on Renal Function 

5.3.2.1 Estimated GFR 

Creatinine clearance, as measured by estimated (indirect) glomelular filtration 

rate (GFR), was measured at 21 weeks immediately prior to sacrifice. While 

there was a trend towards increased GFR in Trans1 rats, there was no 

significance difference between all four strains (Figure 5-6) (p>0.05) at baseline.  
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Figure 5-3: Vascular Oxidative Stress Measurements in SHRSP, WKY and Transgenic lines 
at 21 weeks of age  
Measurements of oxidative stress parameters in the thoracic aorta for SHRSP 

(n=8), WKY (n=8), Trans1 (n=8) and Trans2 (n=6) rats. (A) While there was no 

significant difference in glutathione measurements between WKY, Trans1 and 

SHRSP (p<0.05), glutathione measurement in Trans2 rats was significantly 

increased when compared to the SHRSP and WKY (p<0.001 and p<0.01, 

respectively). (B) There was no significant difference in lipid peroxidation 

between WKY, Trans1, Trans2 and SHRSP rats.  
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Figure 5-4: Oxidative Stress Measurements in SHRSP,  WKY and Transgenic lines at 21 
weeks of age in Cardiovascular Tissues  
Measurements of various steps in the oxidative stress pathway in SHRSP (n=8), 

WKY (n=8), Trans1 (n=8) and Trans2 (n=6) rats. There was no significant 

difference in hepatic glutathione and lipid peroxidation measurements between 

all four strains (p<0.05). Cardiac and brain lipid peroxidation measurements were 

not significantly different between all four strains (p>0.05).  
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5.3.2.2 Biochemical analysis of Urine 

Sodium, potassium and chloride excretion was measured at 21 wks in WKY (n=8), 

SHRSP (n-8), Trans1 (n=8) and Trans2 (n=8) rats. There was no significant 

difference between all four strains at baseline for sodium, potassium and 

chloride (Figure 5-7) 

5.3.2.3 Renal Hypertrophy 

At 21 weeks of age, kidney mass, normalized to body weight, was significantly 

lower in WKY (n=8) when compared to SHRSP (n=8) during both baseline 

conditions and after salt loading conditions (p<0.0001). Renal mass index for 

Trans1 rats (n=8) was not significantly different when compare to SHRSP at 

baseline or during salt-loading, and Trans2 (n=6) was not significantly different 

from the SHRSP at baseline (Figure 5-7). Due to breeding difficulties, salt-loading 

data could not be assessed for Trans2 rats.     

 
5.3.2.4 Proteinuria 

At 21 weeks of age during baseline measurements, levels of proteinuria in the 

WKY (n=6), Trans1 (n=6) and Trans2 (n=6) rats were significantly less than that of 

the SHRSP (n=12) (p<0.05) (Figure 5-8). During salt-loading, this significant 

difference between the parental strains was exaggerated, with WKY (n=8) salt-

loaded animals having a significantly reduced proteinuria compared to that of 

the SHRSP (n=8) (p<0.05). After salt-loading proteinuria in Trans1 (n=8) animals 

was no longer significantly reduced compared to that of the SHRSP, however, it 

was not significantly different from that of the WKY either (Figure 5-8) (p>0.05). 
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Table 5- 2 Renal Parameters in 21 week old Animals 
 

 

 

 

 

The table illustrates measurements of creatine clearance, sodium, chloride, potassium in order to determine kidney function. n=6-8 per 

group; *(p<0.05) denotes a significant difference between from the corresponding (Salt or Baseline treatment) SHRSP strain.  

 

 

                        SHRSP                 WKY                Trans1              Trans2              SHRSP Salt        WKY Salt         Trans Salt    

GFR        1.565 ± 0.206 1.642 ± 0.137 2.369 ± 0.309 1.605 ± 0.265 3.284 ± 0.56 5.296 ± 0.51 1.862 ± 0.33 

NA2+        83.98 ± 11.13 78.24 ± 8.433 59.29 ± 7.533 76.27 ± 20.70         ND         ND         ND 

K+        116.2 ± 14.02 149.1 ± 14.09 153.0 ± 23.60 115.1 ± 30.08         ND         ND         ND 

Cl-        100.1 ± 10.84 148.7 ± 30.58 99.93 ± 15.76 110.6 ± 30.99         ND         ND         ND 

RMI        4.242 ± 0.044 3.389 ± 0.049* 4.355 ± 0.366 4.115 ± 0.142 4.115 ± 0.11 2.91 ± 0.06*  4.44  ± 0.17 
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Figure 5-5: Proteinuria Measurement in Urine in 21 week old animals.  
(A)  Measurements of urine proteinuria at baseline in WKY (n=8), SHRSP (n=8), 

Trans1 (n=8) and Trans2 (n=6) rats. Proteinuria in WKY, Trans1 and Trans2 rats was 

significantly reduced when compared to the SHRSP (p<0.05). (B)  Measurements of 

urine proteinuria after salt-loading in WKY (n=8), SHRSP (n=8), Trans1 (n=8). WKY 

proteinuria was significantly reduced when compared to the SHRSP (p<0.05).  
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5.3.2.5 Renal  Fibrosis and Morphology  

Histological evaluation of renal fibrosis was carried out in kidney sections from 

SHRSP (n=4), WKY (n=4), Trans1 (n=4) and Trans2 (n=4) rats at 21 weeks of age. 

Quantification of picrosirius red staining by % of integrated optical density (%IOD) 

showed no interstitial fibrosis in any of the four strains (Figure 5-10).  

Renal morphology at 21 weeks of age, using haematoxylin staining, showed normal 

arterioles in the WKY and transgenic animals. Renal arterioles in the SHRSP were 

beginning to show evidence of hyperplasia, which is a sign of accelerated 

hypertension (Figure 5-11).  

5.3.3 Effects of Gstm1  expression on the Vasculature 

5.3.3.1 Aortic Function 

Alpha-adrenergic vasoconstrictor mechanisms were tested in thoracic aortae from 

WKY (n=7), SHRSP (n=8), Trans1 (n=6), and Trans2 (n=4) animals at 21 weeks of age. 

Experiments were conducted using dose-responses to phenylephrine (PE), and were 

normalized to 0.1M KCL. There was no significant difference in maximum PE-

induced contraction in aortas between the WKY (AUC 9.012 ± 2.6), SHRSP (AUC 7.77 

± 0.75), Trans1 (AUC 6.59 ± 1.9), and Trans2 rats (AUC 6.39 ± 1.6) (Figure 5-12). 

Additionally, aortas were incubated with the NOS inhibitor L-NAME for 30 mins prior 

to constriction of phenylephrine dose-response curves (Figure 5-12). Inhibition of 

NO-mediated vasodilator responses in the vessel resulted in a great contractility in 

aortae of WKY (AUC 11.32 ± 2.6), SHRSP (AUC 12.17 ± 1.89), Trans1 (AUC 10.45 ± 

3.39), and Trans2 (AUC 11.10 ± 2.2) lines (Figure 5-12). However, there was a much 

larger response in the WKY animals than the SHRSP, Trans1 or Trans2 rats (Figure 5-

12).      

The difference in forces generated in response to PE stimulation before and after 

NOS inhibition was used to measure the bioavailability of NO in aortae. PE induced 

vasoconstriction was only significantly increased in WKY aortic rings when compared 

to SHRSP (p<0.05) (Figure 5-13). The AUC was calculated for NO bioavailability 



175 
 
curves and illustrated in Figure 5-13 panel B. There was no change in NO 

bioavailability in the transgenic lines when compared to the SHRSP.  

In order to assess stimulated NO release, carbachol response curves were 

constructed and relaxation of vessels reached a maximum of  42% for WKY, 34% for 

SHRSP, 19% for Trans1, and 65% for Trans2 (Figure 5-14). While there were no 

significant differences in relaxation between the parental stains, Trans2 relaxation 

appears more pronounced than the other three strains but variability is so large that 

more n numbers are needed (Figure 5-x). Additionally, Trans1 appears to have very 

little or no relaxation in response to carbachol. The corresponding AUC for each of 

the strains were SHRSP (420 ± 45.56), WKY (551.6 ± 31.21), Trans1 (644.5 ± 19.98) 

and Trans2 (329.5 ±139.4) showed that the only significant difference between the 

four strains was between SHRSP and Trans1 (p<0.05) 

5.3.3.2 Mesenteric resistance artery function 

Alpha-adrenergic vasoconstrictor mechanisms were assessed in mesenteric 

resistance arteries (MRA) from WKY (n=7), SHRSP (n=6), Trans1 (n=7), and Trans2 

(n=5) animals using the agonist noradrenalin. Concentration response curves before 

and after NOS inhibition with L-NAME were assessed (Figure 5-15 Panels A and B). 

Vascular reactivity was similar in all groups with noradrenalin-induced contraction. 

The slight left-ward shift suggests enhanced contractility after blocking NO synthase 

(Figure 5-15 Panel B). AUC calculations indicated that there was no significant 

difference between MRA function at a basal response level to noradrenalin and 

following NOS inhibition when comparing responses within and between relevant 

groups (Figure 5-15, Panel C).  



176 
 

Perivascular Fibrosis

SHRSP WKY Trans1 Trans2
0

1

2

3

4A
%

IO
D

 

WKYSHRSP

Trans1 Trans2

B

 

Figure 5-6: Assessment of Renal Fibrosis by Picrosi rius Red in 21 week old animals  
Kidney sections were stained with picrosirius red and intensities measured by 

ImageProPlus 4.1 (Media Cybernetics, US). Bar =100µM. N=4-6 per group. 
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Figure 5-7: Haematoxylin and Eosin staining in kidn ey sections from transgenic and parental 
strains at 21 weeks of age.  
Kidney sections from rats at were stained with haematoxylin and eosin staining and 

show no evidence of vascular pathology in WKY, Trans1 and Trans2 rats, but 

evidence of vascular hyperplasia in SHRSP. Bar =100µM. N=4-6 per group.  
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Figure 5-8: Concentration Response Curves in the pr esence and absence of the NOS inhibitor L-
NAME in Aorta 
SHRSP (n=7), WKY (n=7), Trans1 (n=6) and Trans2 (n=5) rat aortic rings were 

measured for contractile response from stimulation with increasing concentrations 

of phenylephrine (PE) normalized to contraction with KCL. Responses (A) in the 

presence of PE, and (B) in the presence of PE plus L-NAME where PE-induced 

contractibility was greatest in WKY animals in the presence of L-NAME.  
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Figure 5-9: Nitric oxide bioavailability in 21 week  aorta 
(A) 21 week old SHRSP, WKY, Trans1 and Trans2 rat aortic nitric oxide 

bioavailability measured as the difference in the ability of aortae to respond to PE 

stimulation in the presence and absence of NOS inhibitor L-NAME (normalized to 

contraction with KCL). (B) NO bioavailability calculated as area under the curve. 

Data show a significant increase in NO bioavailability in the WKY when compared to 

the SHRSP *(p<0.05). There was no significance difference in NO availability 

inTrans1 and Trans2 rats when compared to SHRSP (p>0.05)  
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Figure 5-10: Effects on Carbachol-induced Vasorelax ation of Aortae 
Pre-contracted aortas from SHRSP, WKY, Trans1 and Trans2 rats were subjected to 

increasing concentrations of carbachol for stimulated NO release which resulted in a 

reduction of tension in all groups. (B) Calculated area under the curve showed no 

significant difference between the parental strains, however Trans1 AUC was 

significantly increased compared to SHRSP (p<0.05).   
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The function of MRA’s were also assessed by the vasodilatory response to 

carbarchol-stimulated NO release (Figure 5-15 Panel A). Carbachol dose response 

curves in pre-contracted arteries were not modified between any of the four strains 

as the vessels relaxed to similar extents in response to the addition of carbachol. 

AUC was calculated for each group and although the highest vasodilator responses 

were observed with the SHRSP and WKY (AUC SHRSP: 130±19.53; WKY: 135.5±14.19) 

there was no significant differences between the groups (Figure 5-15 Panel B).  

5.3.3.3 Mesenteric resistance artery structure and mechanics 

Structural differences of MRA from SHRSP, WKY, Trans1 and Trans2 rats were 

assessed through pressure myography where internal diameter representing the 

lumen width and external diameter representing total lumen and medial width of 

the MRA’s (Figure 5-16). While internal diameter was not significantly different, 

there were trends suggesting a larger increase in diameter in response to increased 

pressure in the WKY, Trans1 and Trans2 rats (Figure 5-16 panel A). External 

diameter exhibited similar trends for Tran1 and Trans2 animals and was significantly 

increased in the WKY when compared to the SHRSP (p<0.01) (Figure 5-16 panel C). 

Cross sectional area (CSA) was significantly increased in WKY, Trans1 and Trans2 

rats when compared to SHRSP (p<0.01) (Figure 5-16 panel C). There were no 

significant differences in wall to lumen ratio (Figure 5-16 panel D) between strains.  

The pressure-circumferential wall strain curves of MRA’s from SHRSP (n=5), WKY 

(n=7), Trans1 (n=7) and Trans2 (n=5) rats are illustrated in Figure 5-16. Values were 

calculated from internal diameter measures (as intraluminal pressure increases) in 

comparison to the initial lumen diameter measurements at 10 mmHg and, 

therefore, indirectly the artery’s ability to stretch. SHRSP had the smallest 

circumferential wall strain (AUC 1.167±0.31) which was increased in both transgenic 

lines (Trans1: 1.25±0.33 and Trans 2 1.85±0.55) and WKY has the largest 

circumferential wall strain (3.83±1.69), however, this did not reach significance. 

Circumferential wall stress, which takes into account intraluminal pressure, lumen 

diameter and wall thickness, was not significantly different between all four strains 

(Figure 5- 16).  
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Figure 5-11: Mesentaric resistance arteries contrac tile response to noradrenalin 
Vasoconstriction of MRA from SHRSP (n=7), WKY (n=7), Trans1 (n=8) and Trans2 

(n=5) rats using wire myography, (A) measured as a percent of their maximum 

response to 30 µM noradrenalin, and (B) following NOS inhibition with L-NAME.(C) 

AUC calculated from noradrenalin dose response curves shows similar MRA 

contractility in the absence (-) and presence (+) of L-NAME. Elisabeth Beattie 

contributed to wire myography experiments. 
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Figure 5-12: Mesentaric resistance artery function in response to carbachol-stimulated nitric 
oxide release. 
(A) Pre-contracted MRAs from SHRSP, WKY, Trans1 and Trans2 rats were stimulated 

with increasing concentrations of carbachol to cause NO-mediated relaxation. (B) 

Corresponding area under the curve calculations do not show significant differences 

between SHRSP (n=7), WKY (n=7), Trans1 (n=8) and Trans2 (n=5) rats.  
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Figure 5-13: Comparison of structural parameters of  mesenteric resistance arteries over a range 
of intraluminal pressures  
21 week old SHRSP, WKY, Trans1 and Trans2 animals. (A) Internal diameter (B) 

external diameter (C) cross-sectional area (CSA), and (D) wall:lumen ratio in MRAs 

by pressure myography. WKY, Trans1 and Trans2 rats had significantly increased CSA 

when compared to the SHRSP. External diameter intraluminal pressure was also 

significantly increased in WKY when compared to SHRSP *(p<0.01).            
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Figure 5-14: Comparison of mechanical parameters of  mesenteric resistance arteries 
Pressure myography analysis in SHRSP (n=5), WKY (n=6), Trans1 (n=7) and Trans2 

(n=5) rats. (A) circumferential wall strain, (B) stress-pressure relationship, and (C) 

stress-strain relationship curves in mesenteric arteries. SHRSP have the lowest 

circumferential wall strain compared to the WKY with the highest. Similarly with 

the right-ward shift in the stress-strain relationship indicative that WKY has reduced 

vessel stiffness when compared to the SHRSP.  
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Cross sectional-intraluminal pressure was significantly increased in WKY, Trans2 and 

Trans2 rats when compared to SHRSP (p<0.01) (Figure 5-16 Panel C). Assessment of 

arterial stiffness between the four strains revealed a right ward shift for WKY 

animals, but was not statistically significant between the groups (Figure 5-16).  

5.4 Discussion 

The data presented in this chapter clearly shows a reduction in renal oxidative 

stress in both transgenic lines (Figures 5-1). Furthermore, we saw evidence of 

reduced renal pathology as indicated by the absence of renal vessel hyperplasia and 

reduced proteinuria in the WKY, Trans1, and Trans2 rats at 21 weeks of age (Figure 

5-7). These improvements in oxidative stress status and renal pathology were also 

apparent in salt-loaded Trans1 rats (Figure 5-2). In addition to the blood pressure 

reductions identified in the previous chapters and the reduced renal 

pathophysiology of the transgenic lines, H&E staining showed a more similar 

morphology to the WKY in the transgenic lines with no signs of accelerated 

hypertension. Aortic and mesenteric wire myography data showed that there was no 

significant difference between SHRSP and transgenic lines for vascular function 

(Figure 5-8). Mesenteric structure and function in the transgenic lines were only 

significantly different from the SHRSP in terms of increased vessel cross sectional 

area (CSA) (Figure 5-14 Panel c), but did show trends of improved structure and 

function (Figure 5-14).      

 
Since previous studies have shown that the SHRSP is deficient in renal Gstm1 

expression (96), we hypothesised that production of transgenic lines in which Gstm1 

expression has been rescued would improve oxidative status and cardiovascular 

function. Our ex vivo studies have confirmed this, and although the reduction in 

GSH:GSSG ratio levels do not quite reach significance for Trans1 and Trans2 rats; 

there is a trend towards significance in the kidneys at 21 weeks. This reduction is 

further verified by lipid peroxidation measurements which were significantly 

reduced in Trans1, Trans2 and WKY rats when compared to SHRSP (Figure 5-1). This 

improvement of oxidative status at several steps of the oxidative stress pathway 

further validates the role of glutathione in the defence against oxidative stress (96) 
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(Figure 5-1). Given that both glutathione (Gstm1) and lipid peroxidation are 

components that occur later within the oxidative stress cascade, other earlier 

components of the oxidative stress pathway were investigated in order to more fully 

understand the mechanisms underlying the improved oxidative stress profile in 

these transgenic rats. Superoxide (O2
-) and hydrogen peroxide (H2O2) were measured 

at 21 weeks of age and data showed that there were no significant differences 

between the strains (Figure 5-14). In contrast, previous studies in 20 week old 

SHRSP have demonstrated significantly increased O2
- levels in basal and NADH 

stimulated renal cortex compared to WKY. There are several factors that may be 

responsible for this difference. Firstly, it is well recognised that measurement of 

reactive oxygen molecules in biological environments is inherently challenging due 

to their short life span and limited selectivity of detection systems (give references 

here). Secondly, there are differences in the methods of measurement between this 

and the previous study, including the use of whole kidney as opposed to renal 

cortex. However, similar to the current findings, there was no significant difference 

observed in renal H2O2 levels between SHRSP and WKY rats at 20 weeks of age. From 

the point at which glutathione acts in the ROS cascade, we observe differences in 

renal oxidative stress between the SHRSP and WKY, and significant improvements in 

the transgenic lines. Therefore, the current novel data from Trans1 and Trans2 rats, 

together with previous evidence in the literature convey that several components of 

the oxidative stress pathway are reduced in animals expressing the WKY form of 

Gstm1 in the kidney (96). 

To better understand the association between increased Gstm1 expression and 

reduced ROS levels, renal oxidative stress was also measured at an early time point 

(5 weeks of age) where Gstm1 expression is shown to be increased in both 

transgenic lines (Table 1). Data showed that at this early time point oxidative stress 

was low in all four strains when compared to kidneys from 21 week old rats. These 

low values at 5 weeks of age allow us to conclude that while there is an increase in 

Gsmt1 expression in the WKY and transgenic lines compared to the SHRSP, there is 

no elevation of oxidative stress in any of the four strains before the onset of 

hypertension. Oxidative stress measurements in other cardiovascular tissues at 21 

weeks of age, i.e. the brain, show similar results to that described in the literature. 
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For example, Kishi et al. demonstrated that lipid peroxidation, (indicated by TBARS) 

in whole brain was significantly greater in the SHRSP than that of the WKY at 18 

weeks of age (297). Results from the current study showed a trend towards a 

decrease in lipid peroxidation in the WKY, Trans1 and Trans2 rats when compared to 

the SHRSP in the whole brain at 21 weeks of age (Figure 5-4). From this data it can 

be concluded that increased (WKY) Gstm1 expression at an early age not only leads 

to significantly decreased blood pressure levels at maturity but also improves 

oxidative stress levels in several organs. In addition to oxidative stress parameters, 

other predictors of renal pathology were measured at 21 weeks of age in order to 

further investigate the effects of increased Gstm1 expression. While estimated 

glomerular filtration rate was within a normal range for all four strains (normal 

range 1.2-3.0 mls/min (298)) (Table 2), increased proteinuria levels in the SHRSP 

are predictive of  renal damage (299). Moreover, previous studies have shown that 

an increased left-ventricular mass index is correlated with early signs of renal 

failure (300), and the SHRSP strain demonstrates both of these risk factors while our 

transgenic lines do not. H&E staining further supports this reduced renal pathology 

in our transgenic animals by showing normal WKY like arterioles throughout the 

kidney (Figure 5-7),whereas  the SHRSP strain, at 21 weeks of age, shows signs of 

accelerated hypertension with the development of arteriolar hyperplasia (240). 

Renal fibrosis was also investigated, however, the SHRSP and WKY did not display 

renal fibrosis at the 21 week time point (240).  
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Figure 5-19: The roles of glutathione and other enz ymes in the oxidative stress pathway 
BH4 = tetrahydrobiopterin; eNOS = endothelial nitric oxide synthase; H2O = water; 

H2O2 = hydrogen peroxide; GPx = glutathione peroxidase; GSH = glutathione; GSSG = 

oxidized glutathione; GSTs = glutathione s-transferases; LO- or LOO- = lipid radicals; 

NAD(P)H =nicotinamide adenine dinucleotide (phosphate); NO = nitric oxide; O2 = 

molecular oxygen; O2
-
 = superoxide anion; ONOO- = peroxynitrite; ROS = reactive 

oxygen species; SOD = superoxide dismutase; VSMC = vascular smooth muscle cell. 

Adapted from Ref. (146)  
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 Despite significant improvements in oxidative stress status and proteinuria, 

transgenic rats display similar levels of renal mass index (renal hypertrophy) to the 

SHRSP (Figure 5-8). This may reflect that while blood pressure is reduced in the 

transgenic animals, it is not equivalent to WKY levels and still display a degree of 

hypertension. This possibly suggests that blood pressure levels above a certain 

threshold (i.e. hypertensive levels) play a more significant role in renal mass index 

than oxidative stress (279). Furthermore, while studies consistently show a 

correlation between renal function and hypertension (4;284;285;301;302), this data 

suggests some dissociation between renal mass index and other renal pathology 

measurements (i.e. proteinuria and renal vascular hyperplasia), however further 

investigation is needed.  

So far the majority of the investigations in Trans1 and Trans2 rats have focussed on 

the kidney. This is because the original finding of reduced Gstm1 expression in the 

SHRSP was observed in the kidney. However, other organs may be contributing to 

the significant reduction in hypertension in Trans1 and Trans2 rats. In particular, 

altered contractility of the vasculature may be a contributing factor. Previous 

studies conducted by Kerr et al. have shown that the SHRSP has increased oxidative 

stress levels and decreased endothelial function in the aorta (234).Therefore it was 

important to investigate whether the increased vascular Gstm1 expression in the 

transgenic animals plays a role in reducing vascular oxidative stress and improving 

endothelial function. Furthermore, results from a study by Yang et al. (303) using 

mice with differing susceptibility to renal injury, suggested that Gstm1 is a novel 

regulator of VSMC proliferation and migration through its role in handling reactive 

oxygen species (303). In this study by Yang et al., mice that were susceptible to 

vascular injury (C57BL/6) demonstrated reduced endogenous Gstm1 expression 

when compared to injury resistant SV129 mice. Given that both transgenic rat lines 

demonstrated an increased level of expression of aortic Gstm1 compared to the 

SHRSP, it was anticipated that vascular parameters and function would be similarly 

improved in line with the study by Yang et al. However, the current study failed to 
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show a significant change in aortic GSSG: GSH ratios and lipid peroxidation in our 

transgenic lines. Moreover, aortic vascular responses to phenylephrine +/- L-NAME 

were not significantly different between the SHRSP and transgenic animals (Figure 

5-8). While these differences between the two studies can be attributed to species 

and background differences (i.e. mouse vs. rat, endogenous expression verses 

transgene), it would have been interesting to investigate if transgenic expression of 

Gstm1 impacts differently on VSMC proliferation when compared to rats with 

endogenous expression and to further examine other down-stream effects of Gstm1 

in our transgenic lines.  

 Investigation of vascular function was performed through measurement of nitric 

oxide bioavailability in the aorta where an increase in contraction after NOS 

inhibition provides a measurement of basal nitric oxide available for vasodilation. In 

previous studies (96;240), vascular endothelial function in the SHRSP was 

significantly reduced when compared to the WKY (4;87;237). The data generated in 

this study confirms these findings in the aorta where WKY animals had significantly 

increased levels of basal nitric oxide bioavailability (Figure 5-12). Evaluation of 

endothelial function in the Gstm1 transgenic lines however showed that there was 

no significant difference for either Trans1 or Trans2 animals when compared to the 

SHRSP. The lack of change in endothelial response in the transgenic lines, despite 

the increases in vascular Gstm1 expression and reduced blood pressure (Figures 4-

2), supports previous evidence suggesting that there are many factors that 

contribute to vascular  function, especially in the SHRSP (291;304-306). Studies 

published by McBride et al., have shown that increased vascular oxidative stress has 

a negative impact on vascular function (96;307). One possibility for lack of a 

significant endothelial response in the transgenic lines is the low sample size, 

especially in the Trans2 line where breeding difficulties limited the number of males 

available for investigation. Relaxation to carbachol was not significantly between 

the parental SHRSP and WKY strains, which is in direct contrast to previous studies 

by Koh-Tan et al. and  McIntyre et al. where SHRSP rats showed an attenuated 

relaxation to carbachol when compare to WKY rats (240;289).  The lack of 

significant difference in relaxation to carbachol between the parental strains and 

the wide variability observed in the Trans2 response could be due to damage of the 
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endothelial layer during experimental set up. This risk is generally greater with less 

experienced operators, and since sample size was limited for each strain these 

could be important contributing factors. In order to rectify this it would important 

to increase both the sample size and skill at vessel dissection and preparation, 

however, that was not possible within the time frame of this thesis.           

Vascular remodelling in the parental and transgenic strains was assessed in MRA’s. 

With the exception of wall to lumen ratio, basic measurements of lumen size and 

cross sectional areas were either significantly increased in the WKY, Trans1 and 

Trans2 rat MRAs (Figure 5-16) or showed trends towards significance when compared 

to the SHRSP. The proportional increase of diameter and cross-sectional area to 

increased pressure whilst maintaining similar wall to lumen ratio indicates that WKY 

and transgenic rats tend to have larger luminal diameter than SHRSP (despite all 

vessels from each of the strains being 3rd order vessels)(296;308). Mechanical 

properties of MRAs in the normotensive WKY animals have an improved MRA 

circumferential wall stain and stress-strain relationship when compared to the 

SHRSP which is in agreement with previously published data (308;309), Mechanical 

properties were not improved in the transgenic MRAs.   

As mentioned previously, that while we have observed multiple significant 

differences between the SHRSP and the transgenic lines in terms of blood pressure, 

gene expression and oxidative stress, the Gstm1 transgenic rats still remain a model 

of hypertension (Figure 3-1)  since blood pressure is not reduced to levels equivalent 

to the WKY. Therefore, it is not unexpected that many of the vascular parameters 

measured in this study are similar between SHRSP and the transgenic lines. 

However, the significant impact on blood pressure levels, improved renal oxidative 

stress and reduced renal injury do provide strong evidence for an important role of 

Gstm1 in the defence against the development of hypertension and underlying 

pathophysiological changes. Our findings in the rat provide strong evidence to 

examine the role of the GSTM family in a human population.  

 



193 
 
 

 

 

 

 

 

 

 

6 Characterization of the GSTM family in a human 
cohort   



194 
 

6.1 Introduction 

Essential hypertension is a complex multifactorial disease, resulting from the 

combined effects of a large number of genes, each of which explain only a small 

fraction of blood pressure variance (280;310;311). The use of traditional methods to 

discover contributing genes such as genetic linkage and candidate gene approaches 

have proven difficult and generally failed to discover reproducible associations with 

hypertension (8;311). More recently, GWAS studies have had greater success 

identifying 43 loci associated with phenotypic variance for systolic and diastolic 

blood pressure (59;311;312). However, in order to understand the functional roles 

of these genetic loci on blood pressure regulation it is essential to interrogate the 

impact of these loci in suitable rodent models. This translational approach will 

improve our knowledge and understanding of pathways, networks and gene- 

environment interaction underlying essential hypertension. An equally important, 

alternative translational strategy is to examine robust candidate genes originally 

identified in rodent models, within human hypertensive and normotensive cohorts. 

However a major limiting factor of these studies is often poor access to suitable 

human tissues. In previous chapters where the Gstm1 transgenic rat has undergone 

comprehensive phenotypic and molecular characterisation, it has been shown that 

increased renal expression of Gstm1 plays an important role in blood pressure 

regulation, cardiac and renal function the SHRSP. Gstm1 therefore represents an 

excellent candidate to be taken forward in a translational approach of human 

essential hypertension.     

In humans, the glutathione-s transferases with their closely related GST isoforms 

and their overlapping substrate specificities have presented a particular challenge 

for investigators when it comes to investigating each individual enzyme. While there 

are many variants within the GST family, the majority of these studies have been 

focused on the GSTM1 and GSTT1 deletion (null) alleles and the GSTP1 valine allele 

(Val/Val) (313). The significance of GSTM1 polymorphism in human was first 

recognized in cancer studies demonstrating that individuals carrying the GSTM1 

deletion allele were at increased risk for colon and lung cancers (314;315). Other 

consequences of the genetic polymorphisms include potential differences in 
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tolerance to toxic agents. To date, GSTM1 is the most comprehensively studied 

among all human GSTs, and has been shown to play an important role in the 

response to oxidative stress (196). Furthermore, many studies have linked GSTM1 

and GSTT1 deletions to susceptibility to a number of cancers, including colorectal, 

lung, skin, bladder and breast cancers (211;316); in addition to being associated 

with increased cardiovascular risks (301;317).    

Multiple studies have proposed the possible involvement of GST gene variants in 

human essential hypertension (8;318-320). Specifically in the study by Delles et al. 

in 2008, where they showed a significant association of the rs11807 SNP in the 3’ 

region of GSTM5 with hypertension in the MRC BRIGHT TDT cohort, with the T-allele 

being over-transmitted to hypertensive offspring. They also showed that GSTM5 

mRNA expression in renal tissue was significantly reduced in subjects homozygous 

for the T-allele compared with C-allele carriers (8), although they were unable to 

replicate the association of rs11807 SNP and hypertension in the MRC BRIGHT Study 

case-control cohort (involving n=1675 hypertensive and n=1654 normotensive 

subjects) (8).  

To date, there is uncertainty as to which human glutathione S-transferase m (GSTM) 

is the direct orthologue of Gstm1 in the rat. Although there are possibly eight 

members in the rat GSTM gene family, there are only five known members in the 

human GSTM gene family. The potential existence of several human homologues of 

the rat Gstm1 and their functional involvement in cellular antioxidant defences 

warrant further clinical investigation. Taken together, this suggests that the entire 

human GSTM gene family should be investigated as a putative candidate gene family 

for cardiovascular phenotypes. In addition to investigating the GSTM family, in order 

to more fully understand the role of oxidative stress in hypertension, it will be 

important to examine other glutathione enzymes such as the GPx family. GPx-1 and 

GPx-3 considered good candidates for this due the fact that GPx-1 is considered as 

an enzyme that protects the most against oxidative damage (185), while GPx-3 is 

found to be predominately expressed in the kidney (189).  
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Human kidney tissues from a Silesian cohort of normotensive and hypertensive 

subjects were made available through collaboration with Dr Maciej Tomaszewski, at 

the University of Leicester (321). This provided an ideal opportunity to assess the 

human GSTM family and translate our findings from a rodent model of hypertension 

to humans. The aims of this Chapter were to (1) characterize human renal GSTM2, 

GSTM3, GSTM5, GPx-1 and GPx-3 expression profiles in the Silesian Renal Tissue 

Bank samples from both hypertensive and normotensive patients, (2) genotype the 

rs11807 SNP and assess correlation it with human GSTM5 expression. 
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6.2  Materials and Methods 

6.2.1 Ethics and Demographics 

The Silesian Renal Tissue Bank is a collection of tissue from over 150 patients with 

nonmetastatic renal cancer. Each patient received an elective unilateral 

nephrectotmy at the reference centre of Urology (Medical University of Silesia, 

Silesia Poland). Phenotyping was performed in the Department of Internal Medicine, 

Dialectology and Nephrology (Medical University of Silesia, Silesia Poland) which 

included taking a clinical history (Standard coded questionnaires), physical 

examinations, weight, height and blood pressure measurements according to the 

protocol outline in (321). Samples of approximately 1cm3 of tissue were obtained 

from the healthy (unaffected by cancer) pole of the kidney immediately after 

surgery and transferred into containers with RNAlater (Ambion, Austin, Texas, USA) 

and preserved at -70C before mRNA extraction and expression analysis.  

Table 6-1 
Demographics  Hypertensive Normotensive 

Sex (male/female) 
Age (Years) 

 55/37 
63.5 ± 9.34 

25/20 
55.6 ± 11.1 

BMI (Kg/m2)  28.7 ± 4.19 25.7 ± 4.0 
Waist Circumference (cm)  97.95 ± 15.23 86.9 ± 12.9 
SBP (mmHG)  142.98 ± 12.5 125.2 ± 7.6 
DBP (mmHG)  86.4 ± 7.4 78.1 ± 6.6 

DBP, diastolic blood pressure; SBP, systolic blood pressure. Data are given as 

mean±SD.  

6.2.1.1 Ethical Approval  

All subjects provided written informed consent and the study was approved by the 

local Ethical Committee for clinical research of the University of Leicester hospital. 

6.2.2 RNA Extraction 

RNA extraction from kidney tissue was conducted using RNeasy mini kits (Qiagen, 

USA). RNeasy kits isolate RNA based on the selective binding properties of a silica-

based membrane. All steps were followed according to manufacturer’s instructions; 

however, the extraction went as follow. The homogenation apparatus and hood 
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were thoroughly cleaned using RNAase (Ambion, USA) and the experiments were 

completed on ice to prevent RNA degradation. A maximum of 20 µg of starting 

tissue was used providing a yield of ~30 µg of RNA. Tissue was suspended in lysis 

buffer (700 µl of β-mercaptoethanol [Sigma-Aldrich, UK] in 70 ml of RTL buffer) and 

homogenised using a rotor-stator homogeniser. The lysate was then centrifuged for 

3 min at full speed, removed and used in all future steps as illustrated in the 

handbook. The spin column was placed in a 1.5 ml collection tube and 40 µl of RNase-

free water was added to the spin column membrane. After incubation for 1 min (room 

temperature), the column was centrifuged for 1 min at 8,000g room temperature. The 

resultant RNA-containing liquid was stored at -80°C. 

6.2.2.1 Measurement of RNA quality and quantity  

RNA quality and quantity was assessed using NanoDrop (Labtech) spectrophotometer 

in a manner identical to that described in section 2.2.1.2. The 260 nm wavelength is 

absorbed by RNA while the 280 nm wavelength is absorbed by sample contamination 

(in particular proteins). A ratio of around 2.1 (260:280 nm) indicated a pure RNA 

sample. 

6.2.3 Reverse Transcriptase 

Reverse Transcription was performed using the Applied Biostystems Reverse 

transcription Kit (Applied Biosystems). All steps were performed according to 

manufacturer’s instructions. 1 µg of DNAse treated RNA samples were reverse 

transcribed into cDNA in a 20 µL reaction containing a final concentration of 1X RT 

buffer, 5mM MgCL2, 1mM dNTP mixture,1u/µL RNAsin (RNase inhibitor), 0.5 µg of 

random heximers, 15 u of AMV reverse transcriptase (Multiscribe) on a 96-well 

plate. For negative controls, additional reactions without reverse transcriptase were 

included.   The reaction was then placed on a thermocycler and underwent the 

following conditions 25°C for 10 min, 48°C for 30 mins, 95°C for 5 mins. The 

samples were then diluted to 100µL and stored at -20°C until use. 
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6.2.4 Relative real-time PCR 

Relative real-time PCR was used for quantitation of mRNA expression using the 

ViiA™ 7 Real-Time PCR System (Applied Biosystems, USA). Sample expression was 

determined by a two-step RT-PCR assay using the Taqman Gene Expression 

Assays from Applied Biosystems/life technologies in a multiplex reaction (if the gene 

of interest and housekeeper reacts with the same efficiency). Each reaction 

consisted of 2.5 µL Taqman Expression Fast PCR Master Mix, 1x VIC labelled β-

microglobulin (B2M) endogenous housekeeping probe, 1X FAM-labelled probe for the 

gene of interest, and 2 µL of cDNA in a final volume of 5 µL in a 384-well plate. The 

comparative eeCT method was used for relative quantification of expression, 

normalized to B2M in each sample. While there are other common choices of control 

genes (including ribosomal protein, beta actin, peptidylpropyl isomerase and 

glucuronidase β), B2M is widely accepted to have good expression levels in a number 

of tissues, including those used here 

Probes of interest were assessed for correct functioning using a serial dilution of 

cDNA input. 11 µl of TaqMan gene expression master-mix (Applied Biosystems, USA) 

was added to 1 µl probe of interest or control gene and 9 µl of cDNA (one reaction 

at each concentration of the cDNA serial dilution; 80 ng/µl, 40 ng/µl, 20 ng/µl, 10 

ng/µl, 5 ng/µl). This was incubated following the protocol: denaturing at 50°C for 2 

min, further denaturing at 95º C for 10 min, 50 cycles of 95º C for 15 sec each and 

60º C for 1 min. 

6.2.5 DNA Extraction   

 Peripheral blood was obtained from all participants by venipuncture. In all cases, DNA 

was isolated from peripheral blood mononuclear cells. 4.5 ml of red blood cell lysis 

solution (Qiagen, USA) was added to 4.5 ml of whole blood and inverted ten times 

before being incubated at room temperature for 10 min. The lysate was then 

centrifuged at 2000g for 10 min at room temperature. All but 5µl of the supernatant 

was discarded and the same volume of lysis solution (Qiagen, USA) was added and the 

pellet dislodged using a pipette tip. This mixture was incubated at 37oC for 1 hr, during 

which the tube was inverted at 10 min intervals. The solution was allowed to 
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homogenise for between 12 hrs and 72 hrs. 1 ml of protein precipitation solution 

(Qiagen, USA) was added and vortexed for 20 sec, before being centrifuged at 2000g for 

10 min at room temperature. The supernatant was subsequently poured into a tube 

containing 3 ml of isopropranol (Qiagen, USA), inverted ~50 times and centrifuged at 

2000g for 3 min at room temperature. The supernatant was poured away and the tubes 

left to drain for 10 min. Once dry, 3 ml of 70% (v/v) ethanol was added and tubes were 

inverted ten times before centrifugation at 2000g for 1 min at room temperature. 

Again, the supernatant was discarded and the tubes left to drain for 10 min. 250 µl of 

DNA hydration solution (Gentra Systems, USA) was added once dry, and incubated for 1 

hr (65oC) during which the tubes were agitated at 20 min intervals. Finally, the DNA 

solution was left to cool overnight before being centrifuged at 2000g for 1 min at room 

temperature and stored at -20º C. 

6.2.5.1 Measurement of DNA quantity and quality  

DNA quality and quantity was assessed using a Nanodrop 8-sample 

spectrophotometer ND-8000 (Fisher Scientific, UK). This technology measures DNA 

concentration between 5 and 2000 ng/µl using different wavelengths of light 

projected through the sample (depending on the absorbance of DNA compared to 

contaminants). A 260/280 ratio of 1.8 and a 260/230 ratio of 1.8-2.2 indicates a 

pure sample. The Nanodrop was blanked using 2 µl of DNA hydration solution before 

1 µl of each sample was loaded for analysis. The concentration and purity of each 

DNA sample was measured. Those with DNA concentrations <20ng/µl, a 260/280 

ratio <1.6 or >2.0, or a 260/230 ratio outside of the 1.7-2.3 range were discarded. 

The remaining samples were diluted to 15 ng/µl using DNA hydration solution before 

storage at -80ºC. 

6.2.6 Genotyping  

The Taqman genotyping assay is used to differentiate between different allelic 

states of SNPs through the use of coloured fluorophores. Commercially designed 

Taqman probe mixes (such as those used here) contain two probes, with one probe 

designed to anneal to each allelic state of a given SNP (e.g. one probe [VIC labelled] 

may anneal to the A state and one [FAM labelled] to the G state of a bi-allelic SNP). 
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Each probe is initially attached to a quencher in order to prevent its fluorescence. 

Once the probe has annealed to the DNA (SNP state allows the binding of one or 

both probes to DNA; homozygous major allele, heterozygous, homozygous minor 

allele), polymerisation and DNA amplification takes place using forward and reverse 

PCR primers provided with the probes. The process of polymerisation removes the 

quencher from the probe allowing the probes to emit fluorescence that can be 

detected. For this particular experiment, a human GSTM5-specific TaqMan gene 

expression assay (rs11807) was obtained from Applied Biosystems. A master-mix 

containing 1,200 µl of Taqman genotyping master-mix (Quanta Biosciences, USA), 

800 µl of deionised water and 10 µl of specific probe mix (Applied Biosystems, USA) 

was vortexed for 1 min. 5 µl of this master-mix was added to 1 µl of each DNA 

sample placed on a 384-well plate (one DNA sample per well). At least four negative 

controls (containing no DNA) and two positive controls (where the allelic state was 

known) were placed onto each 384-well plate. The plate was then covered with a 

film slip and centrifuged at 2000g for 1 min at room temperature. The assay 

reaction was completed on a GeneAmp PCR System 9700 (Applied Biosystems, USA) 

using the following program: 95°C 10 min then 45 cycles of 92°C for 15 sec each, and 

60°C for 1 min, 72°C for 10 min. Depending on the SNP analysed, optimisation of the 

reaction consisted of either the alteration of the cycle number or annealing 

temperature. Fluorescence was detected using a ViiA™ 7 Real-Time PCR System 

(Applied Biosystems, USA), where genotype calls were automatically called and 

checked by two independent, experienced scientists. Figure 6-1 illustrates an 

example of a cluster plot showing differentiation between SNP states by genotyping. 

6.2.7 Statistical Analysis 

Initial SNP quality checking included estimation of allele frequencies using the 

Hardy-Weinberg equilibrium. Gene expression was analyzed using Prism graph pad 

using student’s t-test or 1-way ANOVA as appropriate.  
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Figure 6-1: Allelic discrimination of SNPs. 
SNP detection is achieved with 5' nuclease chemistry by means of exonuclease 

cleavage of an allele-specific 5' dye label, which generates the permanent assay 

signal. The Applied Biosystems SDS software uses an advanced multicomponent 

algorithm to calculate the distinct signal contribution of each allele of a marker 

from the fluorescence measurements of each sample well during the assay plate. 

Figure is modified from Applied Biosystems website (www.lifetechnologies.com).  
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6.3 Results 

6.3.1.1 Genotyping 

We investigated SNP rs11807, in the full Silesian Renal Tissue Bank (~200 samples). 

When genotyped for rs11807 ~3% (7 of 131) of the sample was homozygous for TT, 

28% (54 of 131) was heterozygote for CT, and 53% (70 of 131) was homozygote for 

CC (Figure 6-2) (8). In the subgroup of hypertensive patients (n=56), the rs11807 SNP 

showed a borderline significance with increased blood pressure (p=0.054).        

6.3.1.2 Gene Expression 

Renal expression levels of GSTM2, GSTM3, and GSTM5 were measured in renal tissue 

samples from both hypertensive and normotensive subjects. GSTM5 and GSTM3 

expression was not significantly different between renal tissues from normotensive 

and hypertensive subjects. Renal GSTM2 expression was significantly increased in 

hypertensive subjects when compared to normotensive samples (p<0.05) (Figure 6-3 

Panel A). In addition to the glutathione s-transferases, renal glutathione peroxidises 

(GPx) were measured. There were no significant differences in GPx-1 and GPx-3 

expression between normotensive and hypertensive patients (Figure 6-3 Panel B).   

6.3.1.3 Genotype-Phenotype Association 

In order to assess a genotype phenotype association, we examined how the rs11807 

genotype affects GSTM5 expression in the kidney. Renal GSTM5 expression showed 

borderline significance, with lower expression in subjects homozygous for the T 

allele compared to subjects carrying the C allele (CC, n=47; CT n=63; TT, n=5) 

(p=0.054) (Figure 6-4).   

6.3.1.4 Gene expression correlations  

To determine whether gene expression patterns exists that describe or predict the 

differences between blood pressure, the expression patterns of the GSTM and GPx 

families were analyzed. Correlation between gene expression patterns were 
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significant between GSTM5 and GPx-1 (p>0.001) and GSTM5 and GPx-3 (p>0.01) 

(Figure 6-5).  
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Figure 6-2: Cluster Plot of the rs11807 gene  
An allelic discrimination plot showing the amplification of Allele 1 (T) on the X axis 

and the amplification of Allele 2 (C) on the Y axis. Samples homozygous for the T 

allele are identified by the red circle, and samples homozygous for the C nucleotide 

are identified by the blue circle. Heterozygous samples are identified by the green 

circles. The no template controls are indicated by the cross    
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Figure 6-3: Human Glutathione s-transferase and Glu tathione peroxidise expression  
GSTM family renal mRNA expression was assessed in 105 subjects. Data are 

displayed as delta CT values. Expression of (A) GSTM family members, and (B) GPx 

family members. GSTM2 expression was significantly different between 

normotensive (NT) and hypertensive (HT) subjects *(p<0.05). There was no 

significant difference in expression of GSTM3, GSTM5, GPx-1 or GPx-3 (p>0.05) 

between hypertensive and normotensive subjects. Data represented as mean ± SEM.  
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Figure 6-4: Genotype-phenotype association between GSTM5 and rs11807. 
GSTM5 renal mRNA expression was assessed in 105 subjects. Subjects were 

genotyped for the rs11807 polymorphism in the 3’ region of GSTM5. Data are 

displayed as Delta CT values. Reduced expression in subjects homozygous for the T 

allele demonstrated borderline significance. Data represented as mean ± SEM.  
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Figure 6-5: Gene expression correlation as depicted  by scatter plots  
The relative change of gene expression (RQ) from qRT-PCR of (A) GSTM5 and GPx-3 

and (B) GSTM5 and GPx-1 were correlated. The correlations between GSTM5/GPx-3 

and GSTM5/GPx-1 were significant at p<0.01 and p<0.001, respectively.   
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6.4 Discussion 

The aim of this chapter was to translate findings from a rodent model of 

hypertension into humans and expand on the study carried out previously by Delles 

et al. (8). Expanding this investigation to include a larger number of subjects and 

assessment of several other members of the GSTM gene family has provided 

additional evidence to confirm a relationship between the GSTM family and 

hypertension. While there was no significant difference in renal expression in 

GSTM5, GSTM3, GPx-1 and GPx-3 between normotensive and hypertensive patients 

(Figure 6-3), GSTM2 expression was significantly increased in hypertensive subjects 

when compared to normotensive subjects (Figure 6-3). Moreover, we identified a 

borderline significance (p=0.054) between the rs11802 SNP genotype and GSTM5 

expression. Further investigation between gene expression correlations showed 

there was a significant linear correlation between GSTM5 and GPx-1 expression 

levels (Figure 6-5).  

The previous study carried out by Delles et al. used a small cohort of 45 subjects, 

and only examined GSTM5 expression, as a potential ortholog of rat Gstm1. In this 

previous study it was concluded that although Gstm1 was a robust candidate gene 

for hypertension in the SHRSP, it did not successfully translate to human 

hypertension (8). However, since a direct human ortholog of rat Gstm1 is not 

apparent, in the present study the decision was made to broaden the investigation 

to incorporate multiple members of the GSTM family and also to include GPxs. 

Significant correlation between GPx-1 and GSTM5 was not unexpected because 

GSTM5 and GPx-1 both play a role against oxidative stress. In plants, synchronized 

increases in expression have been shown to routinely appear between GSTMs and 

GPxs (183;186). The GPxs have been shown to have correlated expression patterns 

to the GSTM family, and more specifically, GPx-1 is known for its reduction of 

oxidative stress and GPx-3 is found predominately in the kidney (186). 

Determination of unique expression profiles of the GSTM and GPx families in 

hypertensive patients would help to elucidate their potential role in blood pressure 

control and hypertension.  
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 In humans, it is known that the GSTMs share a high sequence homology, because of 

this we hypothesized that since there is no individual ortholog, the GSTM family 

may possibly function as a combined homologue to the rat Gstm1 gene. 

Unfortunately, the expression analysis carried out in this study does not support this 

hypothesis so far. However, there are additional GSTM family members (GSMT1 and 

GSTM4) in the human genome that need to be examined, but this was not possible 

in the timeframe of the visit to the University of Leicester. In contrast, another 

possible reason why there were no firm expression profile conclusions is that, as a 

family, the GST enzymes are highly redundant and to some degree other members 

of this family are able to compensate for the absence and or polymorphism of one 

isoenzyme. This has been evidenced by the recent meta-analysis of Benhamou et al. 

showed the GSTM1 deletion carries only a small risk of lung cancer (322). 

Furthermore, a recent study done by Bhattacharjee et al. have shown that in the 

absence of GSTM1, GSTM2 is shown to be over expressed as a compensatory 

mechanism in humans (323).While our study did not have the means to incorporate 

GSTM1 expression patterns and compare them to GSTM2 expression patterns within 

our cohort, it is interesting to know that there are compensatory mechanism in 

place within the GSTM family. This explains part of the difficulty of trying to 

correlate expression patterns of the GSTMs within a diseased state.  

We were able to show a borderline significant association of rs11807 with GSTM5 

(p=0.054) in the Silesian cohort; GSTM5 mRNA expression in renal tissue was 

reduced in subjects homozygous for the T-allele compared with C-allele carriers, 

which is in concordance to the findings of Delles et al. (8) . Nevertheless, this does 

not provide strong evidence to indicate that rs11807 is the functional SNP 

associated with hypertension. There are a number of promotor variants that have 

been shown to affect GSTM5 transcription (324). Given the strong linkage 

disequilibrium between markers within GSTM5, Delles et al. states that it is possible 

that rs11807 is in linkage disequilibrium with a functional variant upstream of this 

SNP regulating GSTM5 transcription (8).  

Delles et al. has shown through detailed synthany, that human GSTM2 and GSTM5 

are genetically related to rat GSTM1 (8), and thus possibly play similar roles in the 
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reduction of oxidative stress and blood pressure. Data from the current study 

supports a role for both GSTM2 and GSTM5, however despite these significant 

relationships the results should be viewed with a certain degree of caution. Firstly, 

while the subjects within the Silesian cohort are considered hypertensive, each 

patient has been undergoing hypertension management through drug and lifestyle 

therapy so it is difficult to ascertain if any potential effects of GSTM are being 

confounded or masked by this treatment. Secondly, due to time and sample 

limitations we were unable to fully investigate oxidative stress parameters within 

the human cohort.  

In conclusion, the translation of rat Gstm1 findings into a human cohort 

demonstrated limited success. While Gstm1 is known as a functional candidate gene 

for hypertension in the SHRSP, it is difficult to directly translate this into humans. 

This study re-confirmed the relationship between GSTM5 mRNA expression and the T 

allele, and showed a correlation between GSTM2 and hypertension. These findings 

should be taken forward in future studies to better identify the role GSTM2 plays in 

hypertension in humans.  
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7 General Discussion 
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The aims of this study were to establish definitive proof through a transgenic rat 

model that reduced Gstm1 expression in the SHRSP plays a causative role in the 

development of hypertension and oxidative stress. Here we provide evidence to 

confirm that reduced Gstm1 expression affects blood pressure regulation and 

oxidative stress utilizing two independent transgenic rat lines. Gstm1 deficiency was 

rescued in the SHRSP by incorporation of a normal (or WKY type) Gstm1 gene into 

the SHRSP genome and this led to a significant reduction in SBP, DPB, and pulse 

pressure. Furthermore, oxidative stress as indicated by MDA:protein ratio and 

GSH:GSSG levels were significantly reduced in both transgenic lines when compared 

to SHRSP. Renal pathology was also reduced in both transgenic lines.  

While genetic modification by random transgene insertion has proved to be a 

reliable and effective method to examine gene causality (7;121) recently much 

effort has been invested into improving techniques for gene knock out or 

incorporation of new genes into the rat genome. These novel advanced technologies 

include zinc-finger nucleases and transcription activator-like effector nucleases 

(TALENs) that allow for gene knockout or knock in by targeted genome editing 

(130;141;325). At the time of the production of our Trans1 and Trans2 rat lines, ZFN 

and TALEN technologies were still at a very early stage of development and were 

considerably more expensive e.g. around $35,000 (£18,000) per transgenic rat in 

2009, and were therefore not viable options for our transgenic rescue study. 

Although now considerably cheaper (approximately £5,000 per transgenic rat) it is 

still not possible to knockout or knock in certain genes on particular genetic 

backgrounds with ZFN or TALEN technology. Another recently developed genome 

engineering technology based on the CRISPR-Cas system (Clustered Regularly 

Interspaced Short Palindromic Repeats) developed from Streptococcus pyogenes is a 

relatively easy, and inexpensive alternative method for genome modification. The 

system consists of two components, namely a Cas9 endonuclease and gRNAs. The 

target specificity of the system relies on a 20-nucleotide  variable region at the 5 

prime end of  the gRNAs and thus rapid, multiplexed construction of gRNA 

expression  vectors targeting various genomic sites is possible (326). In a study by 

Mashimo et al., CRISPR technology has been applied to the rat genome in embryos 

where the CRISPR method, in tandem with single strand DNA oligonucleotides as 
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donor templates, efficiently generated knock in mutation in rats (327). There are 

many advantages to this new method of transgenic production, such as a generation 

time of 4-6 months with a >20% efficiency and gene targeting nucleases are not 

strain dependent and can be used on any rodent strain (328). Furthermore, artificial 

nuclease can be used to induce a variety of allelic change, which was previously 

only available in mouse due to ES cell lines restrictions. Also, through these 

methods it may be possible to adapt this to other mammalian species, which would 

aid in the translational aspects from rodent models to humans. 

When using random transgene insertion to generate transgenic rodent models, 

researchers can face several theoretical and technical challenges 

(130;141;194;329;330) some of which were faced with the Gstm1 transgenic SHRSP 

rat lines. For example although both Trans1 and Trans2 lines demonstrated overall 

reductions in oxidative stress, BP and end organ damage, each line showed some 

unique molecular and phenotypic expression patterns. However, phenotypic 

variability within independently generated lines (despite the use of the same 

transgene construct and promoter) is not unique to our study. Variability has been 

observed by Pravenec et al. in the development of CD-36 transgenic rat lines in an 

analogous ‘transgenic rescue’ study using the ef1-α promoter (7;121). In  2001, two 

transgenic lines were generated, SHR-TG10, which carried 6-8 transgenic copies of 

CD-36 but did not show kidney transgene expression, and SHR-TG19, which carried a 

single transgene which was expressed at low levels in the kidney and a blood 

pressure reduction (121). In 2003, more transgenic lines were produced (SHR-TG93 

and SHR-TG106) which showed variability regarding glucose tolerance and insulin 

sensitivity (7). Other limitations of gene knock-in or knockdown studies in rodent 

models include the intrinsic complexity of living organisms and/or the redundancy 

of some metabolic pathways, which prevents definitive conclusions to be made 

regarding the direct impact of gene modification (121;130). While transgenic 

animals have proven to be a powerful tool when assessing the complex mechanisms 

of gene-gene interaction (327), it is clear that transgenes often do not behave as 

independent units, but rather are significantly and variably influenced by factors 

such as the site of integration, the number of transgene copies in an array, 

expression during development and many other factors (242;260). These influences 
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sometimes lead to marked variations in expression patterns between different 

transgenic lines carrying the same construct, which appears to be the case with the 

Gstm1 transgenic SHRSP. However, despite the unique characteristics of each of the 

transgenic lines, when investigating the role of Gstm1 in the transgenic rat as a 

whole, we can conclude that increased Gstm1 expression during developmental 

periods plays a role in blood pressure regulation in the SHRSP at later stages of the 

animal’s life. 

If additional time had been available, it would have been important to more fully 

analyze the molecular aspects of the differences in gene expression and the 

subsequent changes that occurred after maturation by generating additional animals 

from the second transgenic line (Trans2). There are many potential factors that 

could impact on the level of transgene expression. One of these factors could be 

age-related increases in DNA-methylation (275). For example two early studies in 

rodents, one in mouse tissues and another in rat germline competent ES and liver 

cells, revealed consistent age-related increases in DNA-methylation of ribosomal 

genes that correlated with inhibition of gene expression (241;331). A second factor 

that could potentially lead to variation in expression levels exhibited by insertion of 

identical transgenes is position effect. Often differences in expression are due to 

enhancers that regulate neighbouring genes (332). Future studies would be 

important to investigate if any of these factors play a role in the unique expression 

profiles between the two transgenic lines.  

Furthermore, the creation of a third transgenic line would prove invaluable in 

clarifying the role of the WKY Gstm1 plays in the defence against oxidative stress 

and the prevention of hypertension. The use of Zinc Finger Nuclease, TALEN or 

CRISPR technology would provide distinct benefits such as being less susceptible to 

transcriptional effects from the genome, an increased likelihood of physiologically 

faithful gene expression patterns in the transgenic lines, and a >20% efficiency 

(333). The production of a WKY transgenic rat in which Gstm1 expression is knocked 

out or reduced could provide important confirmatory evidence for a role of Gstm1 

in the defence against the development of hypertension, if it was to show elevated 

blood pressure, oxidative stress and end-organ damage. Alternatively, the use of 

cre-lox technology (334) to produce a conditional knock-in in the SHRSP strain would 
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provide opportunity for more in-depth investigation. The ability to switch a gene on 

or off at defined times during development and maturity would allow a much 

clearer assessment of the roles of Gstm1 in the development of oxidative stress in 

this model. Moreover, cre-lox technology could be used to generate a tissue (e.g. 

kidney) specific model that would further elucidate how renal oxidative stress 

affects blood pressure regulation. Broadening the research scope by the generation 

of various types of transgenic lines, would provide further evidence of the role 

oxidative stress plays in the development of hypertension and cardiovascular 

disease.  

The kidney is highly vulnerable to the damage caused by ROS, and as such it is of 

interest to researchers due to the role it plays in blood pressure regulation (335). In 

this study, we have shown that in addition to the beneficial reduction of blood 

pressure, increased renal Gstm1 expression during early stages of development also 

plays an important role in the reduction of oxidative stress and retention of optimal 

renal function throughout the life of the animal. Specifically, Gstm1 transgenic rats 

show reduced renal pathology as indicated by the absence of renal vessel 

hyperplasia and reduced proteinuria when compared to the SHRSP. Furthermore, we 

have seen a reduction of renal oxidative stress in the transgenic lines. In certain 

pathological conditions, the increased generation of oxidative stress and/or the 

decrease in the antioxidant system leads to tissue damage (335). Moreover, lipid 

peroxidation is one of the many mechanisms in the oxidative stress pathway that 

can cause tissue damage, including within the kidney (335). These processes have 

been implicated in the pathogenesis of several systemic diseases such as 

hypertension, diabetes mellitus and hypercholesterolemia. In line with these 

previous findings, our study of the Gstm1 transgenic rat has shown a significantly 

reduced renal lipid peroxidation and reduced blood pressure. Thus providing 

evidence that increasing Gstm1 expression in SHRSP rats plays a role in the 

prevention of hypertension and renal pathology.         

In terms of translation of our Gstm1 findings in the rat, we were fortunate to gain 

access to the Silesian Renal Tissue bank, which has more than quadrupled in size 

since previously studied by Delles et al. (2008), which allowed for a more 

comprehensive investigation of human kidney samples from normotensive and 
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hypertensive subjects (8). Detailed syntenic analysis has shown that both GSTM5 

and GSTM2 are functionally and genetically related to rat Gstm1 and therefore 

worthy of further investigation. We found a borderline significant (p=0.054) 

association between the rs11802 SNP genotype and GSTM5 expression and 

significantly increased GSTM2 expression in hypertensive patients when compared to 

normotensive patients. Although the importance of GSTMs in human hypertension is 

still speculative, our results do indicate a potential link which requires further 

investigation.   

While time and budget limitations in the present study prevented a more in-depth 

investigation of protein expression within the Silesian Renal tissue bank, our group 

as part of the Glasgow Biobank, has started collecting kidney biopsy tissue from 

normotensive and hypertensive subjects in Glasgow. These renal tissue samples are 

taken from the healthy pole of kidneys removed during nephrectomy due to non-

metastatic renal tumor. The collection of these human samples would allow us to 

assess GSTM protein levels in the kidney along with analysis of renal oxidative stress 

levels in order to investigate the correlation between oxidative stress, kidney 

pathology and GSTM genotypes. It is anticipated that these studies will provide a 

better understanding of the role that the GSTM gene family plays in the defence 

against oxidative stress in the kidneys.  

Numerous studies have shown that antioxidant and reactive oxygen species 

scavengers are effective in animal models for protecting against cardiovascular 

disease but it has been difficult to translate these findings to humans (335;336). 

Chronic treatment of individuals at a high risk for cardiovascular disease with 

varying doses of antioxidants such as vitamin C, E and β-carotene either alone or in 

combination have failed to reduce blood pressure, improve cardiovascular risk or 

reduce mortality rates(337;337-339). One example of this was shown in a study by 

Shao et al. where dietary supplementation of nitrate, in amounts resembling a rich 

intake of vegetables in humans, prevented the development of hypertension in 

young SHR rats (340). However, it is known that prolonged exposure to organic 

nitrates induces tolerance and endothelial dysfunction in patients with 

cardiovascular disease (341). It is suggested that these difficulties in translation 

could be due to a multiplicity of reasons, such as short duration of animal studies 
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(compared to a lifetime of exposure to risk factors in humans), therapeutic dose 

differences between animals and humans, and different pathophysiologic processes 

between animals and humans (335). Other reasons for antioxidant therapy failure in 

humans include cellular compartmentalization of antioxidants, such that potential 

therapeutics, do not reach appropriate targets (e.g. mitochondria). In addition, 

recruited patients may have advanced cardiovascular disease which is not amenable 

to intervention (342). Therefore, despite studies showing that patients with 

hypertension and oxidative damaged have an excess of ROS biomarkers, indicating 

the importance of oxidative stress molecular mechanisms and cardiovascular disease 

(336), large scale antioxidant trials have had limited success. It is possible that a 

stratified medicine approach, whereby the individual genetic basis of disease is 

taken into consideration in order to deliver personalized therapy (343), may be a 

more appropriate strategy for combating disease resulting from oxidative stress 

injury. The use of resources such as Generation Scotland (344), which is an ethically 

sound family- and population based biobank set up to identify the genetic basis of 

common complex diseases, could prove to be extremely useful in the investigation 

of novel prevention or therapeutic strategies, including stratified medicine 

approaches. Generation Scotland provides a unique opportunity to carry out health 

research with a highly stratified patient population could significantly improve 

therapeutic effectiveness or allow preventative measures before the full onset of 

oxidative stress injury and disease. Importantly these studies will improve our 

understanding of how sources of ROS and NOS are regulated, how they specifically 

interact with their targets, and how they modulate cardiovascular pathophysiology. 

 

Finally, in order to more fully understand the molecular mechanisms and pathways 

underlying altered Gstm1 activity and oxidative stress within the SHRSP, renal 

tubular epithelial cells derived from transgenic and parental rat strains could be 

investigated. Assessment of Gstm1 catalytic activity could be carried out by using 

total GST activity assays and the proposed GSTM1-specific substrate 1,2-dichloro-4-

nitrobenzene (DCNB) (345). This could be further investigated by analysis of the 

changes in renal cell oxidative stress levels and various intracellular interactions 

(such as cell proliferation and migration) as shown in Yang et al. (303). It would also 
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be interesting to investigate the effects of increased or decreased Gstm1 expression 

in SHRSP and WKY specific vascular smooth muscle cells and the subsequent effects 

on oxidative stress levels within these cells in order to better understand the role of 

Gstm1 on the vasculature.  

In summary, multiple in vivo, ex vivo and molecular techniques have been applied 

in the characterisation of the Gstm1 transgenic SHRSP rat. This model demonstrates 

significantly reduced blood pressure, reduced oxidative stress and improved levels 

of renal Gstm1 expression. This data supports the hypothesis that reduced renal 

Gstm1 plays a causative role in the development of hypertension in the SHRSP rat. 

Furthermore, because of these novel findings, we can apply this knowledge of the 

oxidative stress pathway, specifically the GSTs, to a better understanding of the 

cardiovascular system.  
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Transgene Sequence 

>pEF1/Myc-His A 
AATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTT
AGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCGACG
GATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATA
GTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAAT
TTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCG
TTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGGCT
TTTGCAAAAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATG
GACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCAC
ATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAG
GTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGG
GGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGC
CAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCC
TTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGT
TGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGT
TGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCT
CGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTT
CTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGC
CGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGC
GCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCT
CGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTG
AGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTC
GGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGC
TTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTG
GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTG
GGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTT
TGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATT
TCAGGTGTCGTGAGGAATTAGCTTGGTACTAATACGACTCACTATAGGGAGACCCAAGCTGGC
TAGGTAAGCTTGGTACCGTTTAAACTCGAGGTCGACGGTATCGATAAGCTTCAAATTGAGAAG
ACCACAGCGCCAGAACCATGCCTATGATACTGGGATACTGGAACGTCCGCGGGCTGACACACC
CGATCCGCCTGCTCCTGGAATACACAGACTCAAGCTATGAGGAGAAGAGATACGCCATGGGCG
ACGCTCCCGACTATGACAGAAGCCAGTGGCTGAATGAGAAGTTCAAACTGGGCCTGGACTTCC
CCAATCTGCCCTACTTAATTGATGGATCGCGCAAGATTACCCAGAGCAATGCCATAATGCGCT
ACCTTGCCCGCAAGCACCACCTGTGTGGAGAGACAGAGGAGGAGCGGATTCGTGCAGACATTG
TGGAGAACCAGGTCATGGACAACCGCATGCAGCTCATCATGCTTTGTTACAACCCCGACTTTG
AGAAGCAGAAGCCAGAGTTCTTGAAGACCATCCCTGAGAAGATGAAGCTCTACTCTGAGTTCC
TGGGCAAGCGACCATGGTTTGCAGGGGACAAGGTCACCTATGTGGATTTCCTTGCTTATGACA
TTCTTGACCAGTACCACATTTTTGAGCCCAAGTGCCTGGACGCCTTCCCAAACCTGAAGGACT
TCCTGGCCCGCTTCGAGGGCCTGAAGAAGATCTCTGCCTACATGAAGAGCAGCCACTACCTCT
CAACACCTATATTTTCGAAGTTGGCCCAATGGAGTAACAAGTAGGCCCTTGCTACACTGGCAC
TCACAGGGAGGACCTATCCACATTGGATCCTGCAGGTCTAGAGGGCCCTTCGAACAAAAACTC
ATCTCAGAAGAGGATCTGAATATGCATACCGGTCATCATCACCATCACCATTGAGTTTAAACC
CGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTG
CCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCA
TCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGG
GAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCG
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GAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTAAGCGCG
GCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCT
TTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG
GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAG
GGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAG
TCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTC
TATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATT
TAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCC
CAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTG
GAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAA
CCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTC
CGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGC
TATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAG
CTTGTATATCCATTTTCGGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAAC
AAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGG
CACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGG
TTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGC
TATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGG
GAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTC
CTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTA
CCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCG
GTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCG
CCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCT
TGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTG
TGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCG
AATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCT
TCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGCGAAATGACCGACCAA
GCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGC
TTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAG
TTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATC
ACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATC
AATGTATCTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCA
TAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGC
ATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCA
CTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCG
GGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCG
GTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAA
TCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTT
GCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCA
GAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGT
GCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAG
CGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA
GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG
TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGAT
TAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTA
CACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGT
TGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA
GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA
CGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTT
CACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAAC
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TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCG
TTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATC
TGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAAT
AAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA
GTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGT
TGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTC
CGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTC
CTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGC
AGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTA
CTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAAT
ACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTC
GGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGC
ACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG
GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT
TTTTC 
 
GREEN = EF1 promoter 
UNDERLINED = polyA HisA 
YELLOW = polyA Myc-His 
BOLD ITALIC = pvuII site 
BOLD = Start of f1 Ori 
GREY = Sequence quoted in Goodwin EC, Rottman FM. The 3'-flanking 
sequence of the bovine growth hormone gene contains novel elements required for 
efficient and accurate polyadenylation. J Biol Chem. 1992 Aug 15;267(23):16330-4. 
PMID: 1644817 
 
BGH RVS PRIMER: TAGAAGGCACAGTCGAGG 
Binding sequence: CCTCGACTGTGCCTTCTA 
 
T7 Primer: TAATACGACTCACTATAGGG 
 
AatII: GACGTC - One Cut Site: 6872bp 
PvuII: CAGCTG – 3 sites. Fragments: 1096bp;1071bp;4 705bp 
 
AatII/PvuII fragment: 2725bp 
 
Cut with PvuII 1 st , extract 4705bp fragment. Cut with AatII, 
extract 2725bp fragment (leaving 1980bp fragment). 
 
KpnI: GGTAC/C 
Xho1: T/CTAGA  
 
SLUDGE = GSTM1+GSTM4a primers 
 
BOLD UNDERLINED = MCS of pAD5 K-NpA 
 
UNDERLINED = 5’ and 3’ UTR (NB – not entire UTR seq uences, only 
those bound by GSTM1 and GSTM4 primers. 
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RED = SNPs found between SP and WKY sequences 
 
BLUE = Confirmed BGH polyA reference sequence from Invi trogen  
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