
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Tennent, Paul R (2014) Augmented analyses: supporting the study of
ubiquitous computing systems. PhD thesis.

http://theses.gla.ac.uk/5307/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Augmented Analyses

Supporting the Study of Ubiquitous Computing Systems

Paul Tennent

Department of Computing Science
University of Glasgow

Thesis submitted for the Degree of Doctor of Philosophy
in Computing Science

· June 2014 ·

Abstract

Ubiquitous computing is becoming an increasingly prevalent part of our everyday lives.
The reliance of society upon such devices as mobile phones, coupled with the increasing
complexity of those devices is an example of how our everyday human-human interaction is
affected by this phenomenon. Social scientists studying human-human interaction must now
take into account the effects of these technologies not just on the interaction itself, but also
on the approach required to study it. User evaluation is a challenging topic in ubiquitous
computing. It is generally considered to be difficult, certainly more so than in previous
computational settings. Heterogeneity in design, distributed and mobile users, invisible
sensing systems and so on, all add up to render traditional methods of observation and
evaluation insufficient to construct a complete view of interactional activity. These challenges
necessitate the development of new observational technologies. This thesis explores some of
those challenges and demonstrates that system logs, with suitable methods of synchronising,
filtering and visualising them for use in conjunction with more traditional observational
approaches such as video, can be used to overcome many of these issues.

Through a review of both the literature of the field, and the state of the art of computer
aided qualitative data analysis software (CAQDAS), a series of guidelines are constructed
showing what would be required of a software toolkit to meet the challenges of study-
ing ubiquitous computing systems. It outlines the design and implementation of two such
software packages, Replayer and Digital Replay System, which approach the problem from
different angles, the former being focussed on visualising and exploring the data in system
logs and the latter focussing on supporting the methods used by social scientists to perform
qualitative analyses.

The thesis shows through case studies how this technique can be applied to add significant
value to the qualitative analysis of ubiquitous computing systems: how the coordination of
system logs and other media can help us find information in the data that would otherwise
be inaccessible; an ability to perform studies in locations/settings that would otherwise be
impossible, or at least very difficult; and how creating accessible qualitative data analysis
tools allows people to study particular settings or technologies who could not have studied
them before. This software aims to demonstrate the direction in which other CAQDAS
packages may have to move in order to support the study of the characteristics of human-
computer and human-human interaction in a world increasingly reliant upon ubiquitous
computing technology.

Declaration

The work reported in this thesis has not been submitted in support of an application for
another degree at this or any another university.

University of Glasgow, June 2014, Paul Tennent

i

Acknowledgments

Bringing this thesis to fruition has been a long and torturous process for many people. Those
people deserve extensive thanks, and that is exactly what they will receive here.

First and foremost I would like to thank Matthew Chalmers. Supervisor, occasional ther-
apist, supporter, and all-round good guy. His undergraduate lectures on HCI sparked my
interest in the subject and by the time I had completed his course I had decided that this
academia lark was the thing for me. A certain amount of pestering later and I began the
process of sauntering slowly towards this PhD.

Many other colleagues old and new require thanking here. The other PhD students with
whom I shared my formative academic years, Marek Bell, Malcolm Hall and Scott Sherwood
are singled out for particular thanks, with many other colleagues at Glasgow (particularly
Barry Brown and Louise Barkhuus) providing me with much support, both academically
and personally. Equally singled out for specific acknowledgement is Alistair Morrison who
helped kick Replayer into life.

Moving away from Glasgow to Nottingham has the unfortunate effect of requiring me to
thank lots of newer colleagues: Andy Crabtree, Tom Rodden, Chris Greenhalgh and Steve
Benford as bosses of various levels - each of whom deserves specific thanks in their own right,
Pat Brundell and Dawn Knight as fellow researchers in the dark days of DRS, and more
recently Michel Valstar for being everything from academic mentor to best friend over the
last year. Special thanks also go to Nadia Pantidi, Stuart Moran, Khaled Bachour, Richard
Wetzel, Daniela Dybalova and Martin Flintham for distracting me with board games and
generally making this take longer than it should have, and last but certainly not least of
my colleagues: Brendan Walker - a man who has variously believed in me, befriended me,
supported me, employed me, and entertained me over several years of thrill-oriented research.

And so we come to family. I am delighted to note that I have a family that understands
when to offer support and (usually) when to shut up. My loving Parents, Robert and Dinah
Tennent have stood by me throughout this process, casually looking over my shoulder and
occasionally questioning my grammar, but mostly telling me everything was going to be okay.

Finally, Jennifer Bradbury. The most important person in my life.

This work was generously funded by the Equator IRC and through them by the EPSRC.

ii

Dedication

For my parents, Robert and Dinah Tennent. I wouldn’t be here without them.

”I love deadlines. I like the whooshing sound they make as they fly by.” . . .

Douglas Adams (1952-2001)

iii

Contents

Declaration i

Acknowledgments ii

Dedication iii

1 Introduction 1
1.1 Introduction . 1
1.2 Approach Taken . 3
1.3 Contributions . 4
1.4 Thesis Statement . 5

2 Related Work 6
2.1 Introduction . 6
2.2 Ubiquitous Computing . 6

2.2.1 The Origins of Ubiquitous Computing 6
2.2.2 What do we really mean by a Ubicomp System? 8

2.3 Evaluation . 11
2.3.1 Specific Challenges of Evaluating Ubiquitous Computing Systems . . . 15

2.4 State of the art in CAQDAS . 17
2.4.1 Replay . 18
2.4.2 Commercial Tools . 18
2.4.3 Academically Developed Tools . 20
2.4.4 Project Specific Replay Tools . 22
2.4.5 Capture and Replay of System Log Data 22

2.5 Example real uses of CAQDAS . 23
2.6 Analysing Log files by hand . 25
2.7 Design guidelines for ubiquitous computing analysis tools 26

3 Replay Systems 29
3.1 Introduction . 29
3.2 Replayer . 30

3.2.1 Requirements and Design Approach 30
3.2.2 The Server . 33
3.2.3 Clients . 33
3.2.4 Log Data Viewers . 36
3.2.5 Statistical Analysis Tools . 42
3.2.6 Google Earth Bridge . 44
3.2.7 Multimedia Components . 45
3.2.8 Summary . 46

3.3 Digital Replay System (DRS) . 47
3.3.1 Requirements and Design Approach 48
3.3.2 Corpus Management . 49
3.3.3 Time and Synchronisation . 50

iv

CONTENTS CONTENTS

3.3.4 Media Files . 50
3.3.5 Media Viewers . 51
3.3.6 The Track Viewer . 55
3.3.7 Transcriptions . 56
3.3.8 Coding . 58
3.3.9 The DRS Document Viewer . 61
3.3.10 Gesture Tracker . 61
3.3.11 The Concordance Viewer . 65
3.3.12 Log File Workbench . 67
3.3.13 Summary . 67

3.4 Conclusions . 68

4 Key Implementation Factors 69
4.1 Introduction . 69
4.2 Log Files . 69

4.2.1 Introduction . 69
4.2.2 State and Event Logging . 70
4.2.3 Replayer’s Log File Handling . 71
4.2.4 Log Files and Parsers . 71
4.2.5 Instrumentation . 72
4.2.6 Log File Parsers . 74
4.2.7 Log File Handling in DRS . 76
4.2.8 Comparing the two approaches . 78

4.3 Distributed software architecture . 79
4.3.1 Introduction . 79
4.3.2 Replayer’s Client-Server architecture 80
4.3.3 The Server . 81
4.3.4 Communications Protocol . 82
4.3.5 The Database . 83
4.3.6 Queries . 85
4.3.7 Clients . 86
4.3.8 Bridge Components . 89
4.3.9 Extensibility . 93
4.3.10 Digital Replay System’s Client-server system 93
4.3.11 Server Overview . 94
4.3.12 Security and access control . 94
4.3.13 Client Access control . 96
4.3.14 Project Synchronization . 97
4.3.15 Synchronising client and server . 98
4.3.16 Comparing the two approaches . 102

4.4 Synchronization . 103
4.4.1 Introduction . 103
4.4.2 Synchronization in Replayer . 103
4.4.3 Synchronization in DRS . 107
4.4.4 Comparing the two approaches . 111

4.5 Conclusion . 112

5 Case Studies 113
5.1 Introduction . 113
5.2 Treasure . 113

5.2.1 Inaccurate Interface Displays . 116
5.2.2 Pick Pockets . 118
5.2.3 Environment Awareness . 122
5.2.4 Summary . 125

5.3 Day of the Figurines . 126

v

CONTENTS CONTENTS

5.3.1 Summary . 134
5.4 Other examples of the use of Replayer and DRS 134
5.5 Conclusions . 135

6 Reflections and Conclusions 137
6.1 Replayer vs DRS . 137
6.2 Revisiting the challenges . 142

6.2.1 Mobility . 142
6.2.2 Small Displays . 144
6.2.3 Headphones . 144
6.2.4 Non-Collocation . 145
6.2.5 Invisible Interaction . 146
6.2.6 Distribution of Interaction . 146
6.2.7 Interaction Time . 148
6.2.8 Technological Breakdowns . 149
6.2.9 Meeting the Challenges . 149

6.3 Revisiting the design guidelines . 150
6.4 Specific Academic Contributions . 151
6.5 Conclusion . 154

A Author’s contribution to described software 182
A.1 Replayer . 182
A.2 Digital Replay System . 183

B Addendum 184
B.1 Introduction . 184
B.2 New Types of Data . 186

B.2.1 Social networking data . 186
B.2.2 Expression Recognition . 188
B.2.3 Physiological data . 191

B.3 Data processing . 193
B.4 New Systems . 195
B.5 Success stories . 197
B.6 Counter Examples . 200
B.7 Eliciting stories with data . 202
B.8 Reflection . 204

B.8.1 Revisiting the challenges again . 205
B.8.2 Conclusions . 207

vi

List of Figures

2.1 The Record and Reuse Process . 27

3.1 An early version of Replayer . 31
3.2 Five Replayer tools operating in coordination 34
3.3 Replayer’s Meta Tool, Used for component management. 34
3.4 A visual interface for selecting data . 35
3.5 Replayer’s Time Series Component . 37
3.6 A remotely selected Time Series . 38
3.7 Replayer’s event series component . 39
3.8 Replayer’s histogram component . 40
3.9 Replayer’s Graph Drawing Module . 41
3.10 Replayer’s Correlation Component . 43
3.11 Replayer’s Google Earth Bridge Component 44
3.12 Replayer’s Time slider component and quicktime videos 46
3.13 Screenshot from DRS . 47
3.14 Positioning media on the master timeline. 51
3.15 DRS’s Video Viewer . 52
3.16 DRS’s Audio Viewer plays MP3 and WAV files. 53
3.17 DRS’s Track Viewer Component . 54
3.18 DRS’s Image Viewer . 54
3.19 DRS’s Transcript Editor. 57
3.20 DRS’s Annotation Table Viewer. 57
3.21 An example of a very simple coding scheme. 58
3.22 Illustration of different coding types. 59
3.23 DRS’s Document Viewer. 62
3.24 DRS’s Head and Hand Trackers. 63
3.25 DRS’s concordance viewer. 66

4.1 Replayer’s instrumentor running in visual studio 73
4.2 DRS’s LogFile WorkBench . 77
4.3 Multiple networked instances of Replayer . 82
4.4 Replayer’s System Architecture . 86
4.5 A partially selected event series. 88
4.6 A partially selected histogram. 88
4.7 Creating a new server project from a standalone project. 98
4.8 Client update process to merge server changes. 99
4.9 Merging client changes with the server. 101
4.10 The QCCI synchronised digital clapperboard 104
4.11 Interrelation of state and event selections . 108
4.12 File/analysis Synchronization using absolute times 109
4.13 File/analysis Synchronization using absolute times 110

5.1 The PDA interface to Treasure. 114

vii

LIST OF FIGURES LIST OF FIGURES

5.2 Using Replayer to show the context of a pickpocket 119
5.3 Performing a mutual information analysis in Replayer. 124
5.4 An XML based log from Day of the figurines 127
5.5 Seeing what players did at locations. 129

B.1 Ekmans 6 basic emotions . 189
B.2 Detecting facial expressions on a rollercoaster 190

viii

Chapter 1

Introduction

1.1 Introduction

Ubiquitous computing is increasingly a part of everyday life. The miniaturization of tech-

nology and the continuing fall in prices has allowed computing power to be embedded and

leveraged in a wider range of situations than ever before. People performing everyday tasks

are making use of ubiquitous computing technology often without even realising it. When

they vote in the latest reality television phenomenon; when they call friends on their mobile

phones to find each other in a crowd and when they change which route to take when trav-

elling because their satellite navigation tells them that there is traffic ahead are just three

simple examples. There are so many applications of ubiquitous computing pervading our

everyday lives, that it becomes important to consider how such technology might affect the

process of qualitative data research.

At one level there is a need to explore how technology can be leveraged to support in situ

studies of the technology in use, but there is also a more general case. The pervasiveness

of this technology is such that it has simply become part of most peoples’ lives. A person

in the UK without a mobile phone is rare and more recent smart phones such Apple’s

iPhone and phones running Google’s Android operating system are starting to use global

positioning systems (GPS) to deliver location aware services. Large numbers of cars are

now shipped with satellite navigation; shops equip their stock with RFID tags that tell the

shop’s computers what is in and out of stock and display. Increasingly our everyday lives

are affected by ubiquitous computing and thus any study of our everyday interactions must

also be aware of how we interact around these technologies, how we fit them into our lives,

1

1.1 Introduction Chapter 1: Introduction

and how they affect the character of our interactions with other people and settings.

The notion of technomethodology was originally coined by Graham Button and Paul

Dourish to refer to the making of the invisible characteristics of computer systems visible

and accountable, i.e., available to inspection and analysis [38]. In its original context, tech-

nomethodology was intended to be a notion that would serve to elaborate the computer to

end-users. It is appropriated here as a device for reasoning about user evaluation in ubiqui-

tous computing. Specifically, it is exploited to promote the recommendation that we develop

technologies of observation which make interaction in ubiquitous computing environments

visible and accountable. What do we mean by technologies of observation? We mean things

like microscopes, telescopes, particle accelerators, etc. We mean a technology that helps you

see something. We take it that observation is the basic problem in user evaluation of ubiqui-

tous computing environments, which move computing away from the desktop and distribute

interaction across heterogeneous devices that exploit invisible sensing systems. Users are

online and on the streets [25] they interact via different interaction mechanisms [30], and

interaction is mediated by invisible sensing systems [24]. The asymmetrical and fragmented

nature of ubiquitous computing [32], makes interaction difficult to observe let alone evaluate

from the outset. Right now effort is largely focused on observational methods. Many of

these methods are derived from the social sciences. They include quantitative [37], qual-

itative [30], experimental [52], and in the wild approaches [43], and they involve a range

of elicitation techniques or procedures - e.g., interviews, experience sampling, diary stud-

ies, and ethnographic observation. These efforts are complemented by the development of

frameworks for analysing the data gathered, which seek to provide a stable foundation for

user evaluation in ubiquitous computing [189]. The problem with the current concern with

method is that it does not address the basic problem of observation: if you cannot see inter-

action or see it adequately in the fist place, then you cannot evaluate it or do so adequately

either. Thus, the concern with method needs to be complemented by the development of

observational technologies. Our premise is a straightforward one: in natural science a great

many phenomena need to be made observable and this is done through the development

of new technologies. The history of scientific development is the history of technological

development whereby the objects of scientific inquiry are made visible and accountable [99].

The suggestion is that we must do likewise to support the study of ubiquitous computing

systems.

This thesis will focus on methods of supporting qualitative researchers who are studying

2

1.2 Approach Taken Chapter 1: Introduction

peoples’ interactions with ubiquitous technologies and with the understanding that the same

techniques could be applied to studying peoples’ interactions around the same technology,

by constructing new qualitative data analysis software and demonstrating that the use of

such software can add value to a study.

1.2 Approach Taken

We will begin by defining exactly what is meant by the term ubiquitous computing, and

including some few examples of the types of technologies it applies to. We will look at

how qualitative research methods (and in particular ethnography) are currently used in

the study of ubiquitous computing. We will then clearly lay out the inherent challenges

associated with applying qualitative research methods to study interaction with this type of

technology. Following that we will describe the current state of the art in computer assisted

qualitative data analysis software (CAQDAS) including some examples of how CAQDAS

software is being used by qualitative social scientists ’in the wild.’ We will describe the

process by which qualitative methods can be applied to system log files in their most basic

state. All this will lead to a set of design guidelines for a new generation of CAQDAS

software capable of supporting social scientists in the study of peoples’ interaction with and

around ubiquitous computing systems.

Next we will describe two new software packages: Replayer and Digital Replay System

(DRS) which approach those challenges from different directions. We will see that Replayer

is largely concerned with capture, replay and more crucially representation, synchronization

and filtration of system log data and its use in combination with other media types such

as video and audio, and that DRS is aimed squarely at evolving more traditional CAQDAS

software techniques (as described in the related work section) to better integrate with these

new types of data. We will start by giving a comprehensive overview of the functionality of

each system. Next we will drill down and focus on the design and implementation of three

key features of both systems, namely:

• Distributed software architectures

• Log file handling

• Synchronization (both technical and methodological)

Next we will describe two case studies, one of the use of Replayer and one of the use of

3

1.3 Contributions Chapter 1: Introduction

DRS. We will show in these case studies how the coordinated use of system log data and

other recorded data types such as video can help to build up a description of the character of

an interaction, and thus support the process of qualitative description of those interactions.

Proceeding that we will compare the approaches of the two systems highlighting the

specific strengths and weaknesses of each and describing how future work can solve the

inherent weaknesses in each system by combining the two approaches into a unified whole.

We will then revisit the original challenges laid out in the related work section associated

with performing studies of people interacting with and around ubiquitous computing systems

and see how the software has addressed those challenges, with specific reference to the case

studies. We will also revisit the key design challenges defined in the related work section

and show how both Replayer and DRS conform to those ideals. Finally we will sum up the

academic contribution on this work and show in the conclusion that using heterogeneous

media including system log data as qualitative resources really can support the process of

qualitative data analysis.

1.3 Contributions

There follows a summary of the key academic contributions of this work. These contributions

will be described in more detail in the final chapter of the thesis.

• Demonstrate the value that can be added to a qualitative analysis by combining log

data with other media.

• Show how the coordination of system logs and other media can help us discover infor-

mation in the data that would otherwise have been inaccessible.

• Show an ability to perform studies in locations/settings that would otherwise have

been impossible, or at least very difficult

• Demonstrate how computer aided qualitative data analysis software has to evolve

to support understanding interaction in a world increasingly affected by ubiquitous

computing technology

• Demonstrate how creating accessible qualitative data analysis tools allows people to

study particular settings or technologies who could not have studied them before.

4

1.4 Thesis Statement Chapter 1: Introduction

• Show how we have defined, implemented and demonstrated an effective framework for

storing and synchronizing log files.

• Show how this framework can be exploited to achieve coordinated views and selections

of recorded data using techniques of brushing and linking.

• Show that with the use of a distributed software architecture some of the basic prob-

lems associated with viewing high dimensional data can be addressed.

• Show that we have developed two pieces of proof of concept software, Replayer and

Digital Replay System with radically different approaches to supporting the use of

heterogeneous media types as a resource for qualitative analysis of interaction with

and around ubiquitous computing systems, and show how those disparate approaches

can be combined to create the next generation of CAQDAS tools.

1.4 Thesis Statement

The current observational technologies available to social scientists are insuffi-

cient to support the qualitative analysis of peoples’ use of ubiquitous computing

systems. New software needs to be created that can help to reveal the character

of this interaction by use of coordinated, synchronized views of heterogeneous

media, including system logs. This can then be used as an accountable resource

to add significant value to an evaluation by helping researchers find information

in the data that would otherwise be inaccessible; giving researchers the ability to

perform studies in locations and settings that would otherwise be impossible, or

at least very difficult; and by creating accessible qualitative data analysis tools

allows people to study particular settings or technologies who could not have

studied them before. The development of these tools must be directed by work-

ing closely with social scientists studying people using ubiquitous computing

systems.

5

Chapter 2

Related Work

2.1 Introduction

This chapter will begin with an exploration of the evolution of ubiquitous and mobile com-

puting as an important area of computing science research. Following that we will describe

the specific challenges associated with applying qualitative data analysis methods to ubiqui-

tous computing systems. We will examine the state of the art for current computer assisted

qualitative data analysis software, both commercially and academically produced and cite

some examples of social scientists using such software ’in the wild.’ We will then look at how

qualitative social scientists may currently use system log data as a resource and produce

some guidelines for the creation of new tools to support the exploitation of such data.

2.2 Ubiquitous Computing

2.2.1 The Origins of Ubiquitous Computing

In 1991 Mark Weiser published a landmark article in Scientific American called The Com-

puter for the 21st Century, containing a mission statement that became the foundation of

ubiquitous computing research world wide. [225] The article is summed up most concisely

with the following quote:

The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.

6

2.2 Ubiquitous Computing Chapter 2: Related Work

This is a direct evolution of an idea defined by Martin Heidegger in his seminal work:

Being and Time [104]. Heidegger proposed the idea of tools being either ready-to-hand or

present-at-hand. The premise is often described with the analogy of a hammer: when one

uses a hammer, one focuses on the task of hammering in a nail, rather than the hammer

itself, that is, the task should be the focus of one’s attention rather than the tool. Weiser

postulated a world of invisible computing, predicated on two core ideas:

• Technology should not require the user’s active attention.

• Technology should be available for use at a glance.

Weiser’s vision came on the back of proposals at Xerox Palo Alto Research Center

(PARC) in 1987 by Bob Sprague and Richard Bruce to create wall-sized, flat panel dis-

plays from large-area amorphous silicon sheets. At the same time PARC’s work practices

and technology department, lead by Lucy Suchman was looking at the way computers were

embedded into the complex social framework of everyday life [204]. By the time PARC

started to produce examples of this new ubiquitous computing, such as LiveBoard [74],

ParcTab [217] and Active Badges [218], PARC had started to focus less on the practice of

human-computer interaction and more on human-human interaction, relegating technology

to the place in the background that Weiser’s vision said was where they should be.

Sadly, with his early death in 1999, Weiser never lived to see just how influential his

research would become. In 2000 The European Commission published an IST call for re-

search proposals in the area of future and emerging technologies named the disappearing

computer [226]. With the proliferation of mobile phone technology the public began to be-

come aware of the impacts of ubiquitous computing, even if the term may remain unfamiliar

outside of the field. The CIA World Factbook [1] reported in 2008 that there were 69.657

million mobile phones in the UK alone, which with a population of 60.776 million reveals the

staggering fact that for the first time there were more handsets in the country than people.

With such a large percentage of the population carrying potentially significant computing

power with them at all times, and the demystification of the technology, the importance of

research into ubiquitous computing has never been higher.

In 1998 Don Norman published a book called The Invisible Computer [164] in which

he approaches the idea from a background of design and psychology. He describes the

traditional personal computer as complex, difficult to use and expensive to maintain. He

directly reflects Wieser’s adaptation of Heidegger’s ideas when he asserts the need to:

7

2.2 Ubiquitous Computing Chapter 2: Related Work

Design the tool to fit the task so well that the tool becomes part of the task, feeling

like a natural extension of the work, a natural extension of the person. [164]

This same idea is discussed extensively in Paul Dourish’s 2001 book Where the Action

is [67] which describes the principle as ’embodied interaction’, aiming to show how an un-

derstanding of this principle can affect the design process of modern software and hardware.

With the emergence of ubiquitous and mobile computing as an important and accepted

area of computing science research the number of conferences and journals has steadily

increased. Conferences such as Ubiquitous Computing and MobileHCI, focus specifically on

this area, though the research tends to stay under the wider banner of Human-Computer

Interaction, with conferences like CHI and CSCW still being major goals for the publication

of ubiquitous computing research.

2.2.2 What do we really mean by a Ubicomp System?

Just a few years ago, when discussing ubiquitous computing systems authors were typically

referring to academically developed proof of concept systems, such as those developed by the

Equator Interdisciplinary Research Council. These systems frequently exploited the most

up to date available technologies for mobility (portable digital assistants, mobile phones)

connectivity (802.11 Wifi, general packet radio service (GPRS)), Positioning (Global Posi-

tioning System (GPS), Ultrasonic Positioning), And all manner of additional sensors such

as accelerometers, heart rate monitors and galvanic skin response monitors. Many systems

were developed exploring many different facets of human computer interaction from many

different angles: artistic, playful, educational etc. Some notable examples include:

Tourism

The City project began by performing an ethnography on city visitors [31], then began to

focus on designing systems to support collaborative interaction as part of the process of

tourism, beginning with the mack room, set in the lighthouse museum [30] wherein users

took part in a shared museum visiting experience with only one of the three users physically

present, the other two being in a virtual reality environment and a web page environment

respectively. City continued by scaling the experiment up to the idea of general tourism,

culminating in the George Square project [20]. Other examples from outside of equator

include the application of robotic avatars to museum visiting [183], systems to make guides

more context aware [16] and much focus on education and young person engagement, e.g.

8

2.2 Ubiquitous Computing Chapter 2: Related Work

[110, 213]. Indeed, so many interactive tourism systems have been developed recently as to

prompt the introduction of a new conference on the subject (HCITOCH: Human-computer

interaction, tourism and cultural heritage), and a comprehensive review of the state of the

art in digital tourism [124]

Mobile Gaming

Examples include Can You See Me Now? [25] and Uncle Roy All Around You [78] both of

which were nominated for BAFTA awards. Can you see me now? Was a chase game based

on the idea of internet players chasing real players through the streets, that is, the internet

players were chasing a digital representation of the street players through a digital represen-

tation of the city, but the street players were actually running in the real world, being chased

by digital ghosts. The system explored some of the challenges of location based technology,

demonstrating the strategies employed by players to use and exploit the uncertainties in

GPS and WiFi. It also contributed towards the development of the Equip platform [98]

designed to support the creation of experiences using many different physical technologies.

Uncle Roy All Around You was another game which featured players in the street, this time

trying to track down the elusive and eponymous Uncle Roy. The game explored the use

of self reported positioning as a technique for location awareness, demonstrating by means

of both implicit and explicit positioning that humans interpret position in subtle ways be-

yond just absolute location [23]. Outside of equator, ubiquitous computing-based games

have flourished as a research topic, or at least as a means to explore other research topics.

Some examples include: Pirates! [28] which combined physical, location-based gameplay

with virtual, screen-based gameplay - in demonstrations of the game, players explored the

same physical environment while simultaneously navigating a fantasy archipelago depicted

on their PDA screens; The Drop [200], a theoretical game, never actually produced, but

proposed by Smith and La Marca at Intel Research as an example use of its Place Lab [139]

multi-platform indoor location technology; and The Invisible Train [215] which uses aug-

mented reality to place a digital toy train on the same track as a physical one. Of course

these examples can only begin to scratch the surface of ubiquitous computing gaming appli-

cations. Several labs, for example the Exertion Games Lab at RMIT University, Melbourne

1 or the PLAY research studio at the Swedish Interactive Institute 2 focus exclusively in

this area, indeed the conference Advances in Computing Entertainment (ACE) and its sister

1http://exertiongameslab.org
2http://www.tii.se/

9

2.2 Ubiquitous Computing Chapter 2: Related Work

journal Computers in Entertainment (CIE) frequently publish articles discussing ubicomp

games and the range is ever expanding.

Education

The Hunting of the Snark [101] was a project designed to help children explore the ideas

of cause and effect. It took the form of an adventure game using a variety of tangible

interfaces. The Ambient Wood [220] and its indoor component Classroom Ecology were

designed to help children explore the world of ecologies. Set in a local wood, the system

used location awareness technology to deliver information about nearby living organisms to

a mobile device carried by the children giving them access to information about the invisible

aspects of the wood around them. The children used a probe tool to measure information like

moisture and light leading up to a classroom discussion about the local ecology. Again the

range of applications of ubiquitous computing technology is extensive. Some examples from

outside equator include Virtual Classrooms [143] which looks to replace traditional video

based e-learning systems with the eponymous virtual classroom (essentially a collaborative

virtual reality environment) in which each participant has an avatar; Mobile Stories [76]

which looks at the collaborative construction of stories on childrens’ mobile devices; and

much work has focussed on using ubicomp to specifically support children with autism,

e.g. [84, 111,208]. Poole et. al elaborate in [173] exactly how one might go about deploying

ubicomp technologies in schools - with a particular focus on health interventions.

To create an exhaustive list of examples of ubiquitous computing systems is beyond the

scope of this work. The field is sufficiently large to merit several annual international confer-

ences including Ubiquitous Computing, Pervasive Computing and Mobile Human Computer

Interaction amongst others. An important point to note however is that ubiquitous com-

puting is no longer just something done by researchers. Ubiquitous computing hardware

is fast becoming considered commodity hardware. A person without a mobile phone now

seems like an aberration. Those phones often include location aware services supported by

cell positioning and even GPS. They also often contain Bluetooth or WiFi allowing users to

wirelessly link together multiple devices to, for example, use a hands free kit or share files

between two peoples’ phones. As the technology continues to drop in price, and the services

become more widely known, this is a trend that is likely to continue.

10

2.3 Evaluation Chapter 2: Related Work

2.3 Evaluation

Several articles have remarked on the difficulties and challenges facing ubiquitous computing

evaluation [5, 58, 109]. Despite this, the number of systems that have gone through truly

iterative design cycles is quite small (e.g. [2,121,157,161]) as compared with more traditional

desktop based systems which frequently undergo more familiar types of lab based usability

evaluation. This may well be a consequence of how difficult ubiquitous computing systems

can be to evaluate. We begin by discussing examples of iterative design, followed by a dis-

cussion of some places that existing formative and summative techniques have been applied

to greater or lesser success.

One of the first ubiquitous computing systems to receive extensive study from a user

perspective was eClass (formerly Classroom 2000) [2, 4]. EClass was a sensor-embedded

environment in which, at various times, lecture slides, written comments, video and audio,

and other classroom activities were captured and organised and students could later access

this information on the internet. EClass was used and evolved over the course of more than

three years and during this period, various qualitative and quantitative evaluations were

completed, leading to the system as deployed evolving and changing. As a result of this

work, and other related projects, Abowd et al. developed the concept of a living laboratory,

an environment occupied by real users in which a research system is deployed, evaluated,

and updated as it is used over time [3].

This was one of the first successful long-term deployments of a ubiquitous computing

application, and certainly one of the first to include regular study of and feedback from end

users. While eClass was an excellent proof of the potential of Ubicomp applications, and a

fine example of iterative design, neither the evaluation techniques nor the prototyping tools

used in the project particularly lent themselves to rapid iteration. Another early system,

Tivoli [157], was developed to support meeting activities. Moran et al.’s experiences with

Tivoli led them to develop tailorable tools so that they could better adapt the application to

varying user needs. The applications just described provide solid examples of iterative design

in ubiquitous computing, and involved mainly summative evaluations. In contrast, Jiang et

al. and Mynatt et al. went through multiple iterations in the design of prototypes of new

ubiquitous computing applications. Jiang et al. developed and compared two prototypes of

large-screen displays to support fire fighters’ incident command centres, and then developed a

third, improved display based on the results of evaluation [121]. That evaluation principally

11

2.3 Evaluation Chapter 2: Related Work

involved showing the prototypes to fire fighters and asking for feedback. Mynatt et al.

developed multiple designs of a digital family portrait, all before a working prototype was

completed [161]. Their iterations involved a combination of techniques such as surveys,

interviews, and Wizard-of-Oz evaluation [161]. In addition to these examples of iterative

design, numerous developers have successfully used either existing formative evaluation or

existing summative evaluation in the design of Ubicomp applications.

Formative techniques, used for requirements gathering and understanding problem spaces,

at the stage before actual systems are built, are probably among the most common found

in Ubicomp application development at present. Areas of study include the home [54, 197],

information management [22], hospitals [13], and various other settings. One early piece of

work in early-stage evaluation of a non-working prototype was Oviatt’s use of Wizard-of-Oz

evaluation to test a multi-modal map application which combined speech and pen input in

different ways [169] (though Dahlback was first to highlight the uses of Wizard-of-Oz sys-

tems in this domain [63].) Wizard-of-Oz evaluation has subsequently been applied to other

Ubicomp systems, e.g. [161]. Finally, Jianget al. used a form of expert user evaluation to

study non-working prototype systems [121].

Summative evaluation as an often used alternative for studying ubiquitous computing

systems. Oviatt, for example, made use of a wearable computer to test the robustness

of speech in unconstrained settings [170]. When combined with pen input, the system was

shown to be remarkably effective in recognizing speech. A related study conducted by McGee

et al. compared maps and post-it notes with a tangible multi-modal system [151] using a

controlled, lab-based study. Consolvo et al. used Lag Sequential Analysis in a summative

evaluation to gather quantitative data about how their system was used [51]. Although an

interesting and informative technique, Lag Sequential Analysis requires hours of video to be

coded by hand into different categories. Researchers investigating alerting displays provide

one example group where extensive evaluations have been conducted (e.g. [49, 211]). The

alerting display community has put significant effort into developing a deep understanding

of interruptibility [113]; parallel and pre-attentive processing [68, 108] and the attentional

impact of different types of animations or other alerts [15,60,116,147]. However, these studies

normally involve extensive lab-based testing rather than discount, real-world evaluations of

actual systems.

When evaluating the user interfaces of ubiquitous computing applications, laboratory

studies can help to discover some interface and navigation problems [26, 123], especially

12

2.3 Evaluation Chapter 2: Related Work

when the study is designed to reflect some aspects of the setting in which the real use will

take place [131]. Even simple heuristic evaluation [172, 198] can be useful, as can paper

prototyping, as Carter and Mankoff assert [43]. However, as Zhang et al. and Monrad et al.

point out, situated experimentation is vitally important for understanding the unexpected

behaviour. [162, 234]. Tools do exist to support the evaluation of ubiquitous computing

systems, one such technique is experience sampling [115, 141]. Intille et al.’s [117] aimed

to make the experience sampling device context aware, asking questions of the user only

when particular conditions are met by its sensors. Momento, developed by Carter et al.

aims to support the logistics of fieldwork by supporting the capture of various qualitative

materials including system logs and experience samples [44]. MyExperience, by Froehlich et

al. also supports this process by capturing system logs from mobile phone use. [86]. In [168],

Oulasvirta et al. focus on hardware configurations for deploying effective mobile usability

labs so called “highly instrumented interaction”. These build on work on previous wearable

camera systems such as [145, 179, 191]. Indeed Oulasvirta goes on, along with Raento and

Eagle, in [176] to argue that smartphones are becoming an increasingly powerful tool for

social science - citing their programmability, ubiquity and cost effectiveness as a method of

capturing information about users’ behaviour.

The tools and methods described in this thesis will focus on supporting qualitative ap-

proaches to the evaluation of ubiquitous computing. In the environment in which the tools

discussed later in the work were developed, the local social science expertise was largely

focussed on the practice of ethnography, so it is this method of qualitative analysis that

has largely shaped the development process; in particular because a participatory design

approach was used (more deliberately in the development of the Digital Replay System)

to explore the requirements for tools to support the analysis within and around these new

interaction media.

With its focus on the situated nature of interaction and the social character this re-

veals [196] ethnography, or more properly, ethnomethodologically-informed ethnography, is

especially relevant to understanding the purchase of ubiquitous computing in the wide array

of social settings that are intrinsically part of the definition of ubicomp. It is appropriate

now to briefly examine what is meant by the term ethnography in the context of this thesis.

The term ethnography is really a collective term for heterogeneous practices and ways of

thinking. To say that ethnography is concerned with understanding situated action is not

strictly true, rather that is the concern of ethnographers working in the ethnomethodological

13

2.3 Evaluation Chapter 2: Related Work

tradition [89]. Ethnomethodolgy does not consider ethnography to be a specialised way of

examining action, but rather something we all do as part of our everyday lives [88]. When

we ask someone to describe some action that took place, such as a child’s day at school or

describing a night out to our friends we are performing an ethnography. So if ethnographies

are such a mundane part of our lives how can it be considered to be an effective approach to

social science research, and in particular a tool for interaction evaluation, to affect systems

design and understanding in computing science? The distinction is clearly in the way the

ethnography is analysed. In a professional ethnography the ethnography is described in

terms of a formal analytic schema for intense analysis, and packaged in a report, while the

lay ethnography is simply casually understood. [88].

There are two distinct methods by which ethnographies can be reported, first through

formal analysis which is concerned with describing the materials in the form of coding

schemes, taxonomies, narratives, models and other situationally absent descriptions [90].

Second we have the ethnomethodological approach which describes the material in thick

description [184] of the practical action and practical reasoning exhibited by subjects as

their shared activity progresses [196]. Both these techniques share an understanding that

the process of description is reflexively connected to an analysis [185], but each approach is

concerned with this reflexivity in different ways.

Much of the process of formal analysis is concerned with analytic reflexivity, in which crit-

ical self-reflection is used to understand the ways in which the act of ethnography shapes our

understanding of a setting and the actions within, and seeking solutions to the professional

belief that that cultural and subjective biases are intrinsically built in to any analysis [146].

Ethnomethodology however, despite accepting that some awareness of this subjective bias

is relevant, tends to reject analytic reflexivity [27], concerning itself with the reflexivity of

accounts [88].

When considering the reflexivity of accounts, instead of focusing on the effect of the anal-

ysis on the study, and formal representations, an ethnomethodologically-informed ethnogra-

phy focuses on the everyday settings that people inhabit specifically that which is observable

and reportable, the so-called work practices that shape those settings and the interaction

that occurs within them [62,89]. Such studies have played a vital role in computing science

research since Lucy Suchman’s 1987 seminal work in the field of human-computer commu-

nication, Plans and Situated Action. [204]. So called ethnographies have become a staple

feature of computing science research and systems design, to the extent that a corpus of

14

2.3 Evaluation Chapter 2: Related Work

such studies populates much HCI, CSCW and DIS literature, elaborating the character of

interaction and collaboration, of organisation and of technology and its use in the home

and workplace. This thesis will demonstrate ways of supporting such studies into the more

difficult to capture field of ubiquitous computing, and specifically in situ.. Some early ex-

periences of using ethnography to explore the use of ubiquitous computing systems include

Brown et al. [30] [32] and Woodruff et al. [231]

2.3.1 Specific Challenges of Evaluating Ubiquitous Computing Sys-

tems

The study of ubiquitous and mobile computing systems presents a series of new challenges

previously unseen in the interaction analysis of more traditional desktop based systems.

Ubiquitous computing systems are intrinsically linked to the setting in which interaction

occurs, and how this setting may be explored to shape a user experience. Features like

context-awareness allow the technologies to dynamically adapt to different places, users,

activities and situations. As these kinds of technology mature and become increasingly

pervasive it is important to complement their design with a thorough understanding of

their impact on situated action in order to ensure that the technology fits with the social

circumstances of their use.

The study of such technologies in situ necessitates a shift from the traditional paradigms

of analysis. Observation (at least in the traditional sense) alone may not be sufficient to

discover the whole story. The traditional methods used to capture information about a

system such as video and audio recordings, photographs and field notes are simply unable

to adequately describe the context in which an interaction occurs. The reason for this is

intrinsically tied up with the definitions of mobile and ubiquitous computing. Analysts have

to cope with such rarely previously encountered challenges as the following:

• Mobility. Users of ubiquitous systems are often mobile. They move across extended

physical areas, quickly at times, sometimes even running, which can make the docu-

mentation of action and capturing of video material difficult at best.

• Small Displays. Interaction frequently involves the use of small displays such as hand-

held computers and mobile phones. This makes it difficult to see users’ interactions

with the system.

• Headphones. Users often have audio information provided through headphones which

15

2.3 Evaluation Chapter 2: Related Work

becomes unavailable with traditional capture techniques like video recording. This

means that the analyst may miss much key information.

• Occlusion. Closely related to the previous two issues, the situation of an interaction

means that the environment, or even the users themselves will frequently occlude

information that might otherwise be captured by video cameras or simple observation.

The same is true of audio cues, environmental noise can easily occlude key audio

information.

• Non-collocation. When interacting with collaborative ubiquitous systems users are

frequently interacting with other users who are not collocated with the user. Again

this affects the analysts’ ability to capture all the required information about the

context of the interaction, unless multiple analysts and capture devices are involved,

and even then this presents the challenge of the synchronisation of captured data.

• Invisible interaction. Users often interact with invisible sensor systems such as Global

Positioning Systems or video tracking, which can make it challenging to understand

why users are acting in a given way and how the sensing systems are actually behaving.

• Distribution of Interaction. Interaction may be distributed across different applications

and devices. Interaction is thus not only located in different physical locations but may

also be mediated through different applications and devices, which makes it difficult

to develop a coherent description of interaction.

• Interaction Time. Certain communication channels such as mobile phone text mes-

sages (SMS) or email are not continuous, that is, a message may come in at one time,

but a user may examine it much later then wait till a convenient time to respond. This

complicates the process of conversational analysis as the context of the times when a

user receives a message and when they act on it may be very different.

• Technological breakdowns. Because ubiquitous computing systems frequently rely on

the use of diverse technologies all being used together, we often assume that these

technologies will smoothly interconnect and interact. In reality however, these tech-

nologies do not always work perfectly together, potentially creating confusion for both

the user and the analyst in the interaction process.

As can be seen from these examples, describing the interactional character of a ubiquitous

computing system is different to describing that of more traditional kinds of computing

16

2.4 State of the art in CAQDAS Chapter 2: Related Work

environment. The problem becomes one of reconciling many fragments of recorded inter-

action into one cohesive description framework. Additional data has to be recorded and

supplied to the analyst as part of their resources. The best source for this data is system

logs. There is of course nothing new in exploiting system logs to support the understanding

of interaction. HCI researchers have been doing this for decades and techniques for doing so

are documented in most good HCI textbooks. However, ubiquitous computing goes beyond

logging machine states and events to record elements of social interaction and collaboration

conducted and achieved through the use of ubiquitous applications as well. For example,

audio, location information and textual interaction may be logged alongside machine states

and simple UI events. System recordings make a range of digital media used in and affecting

interaction available as resources for an analyst to exploit allowing an understanding of the

distinctive elements of ubiquitous computing and their impact on interaction. The challenge

then is one of combining a burgeoning array of internal resources with the more traditional

external resources gathered by an analyst to support a thick description of the character of

interaction in complex digital ubiquitous computing environments. Qualitative researchers,

and in particular, ethnographers will already be familiar with the process of bricolage [64]

in which multiple disparate resources are combined to understand social behaviour. It will

be in part the work of this thesis to demonstrate how one may support the bricolage process

in including these more unfamiliar resources - and in making them into accountable objects.

2.4 State of the art in CAQDAS

Here we will first explore the current state of the art for the analysis of ubiquitous computing

systems. we will look at some currently available examples of computer aided qualitative

data analysis software (CAQDAS) in both commercially and academically developed toolk-

its, and provide some concrete examples of qualitative social scientists actually using them

to support their research. We will then describe an example of researchers attempting to

exploit system log data by hand, that is, without additional tools to turn the logs into un-

derstandable and accountable objects, in order to demonstrate to complexity of that task.

This will lead us to a set of key design guidelines for the next generation of CAQDAS tools

which the proceeding chapters will then discuss.

17

2.4 State of the art in CAQDAS Chapter 2: Related Work

2.4.1 Replay

There are a large number of tools available which provide some form of replay, either to

support transcription and coding of video and audio data, or to support the wider analysis

process. In this section we will examine many of them, starting with commercial packages,

then looking at academic work surrounding replay.

2.4.2 Commercial Tools

Transana

Initially developed at the University of Wisconsin, Transana 3 is perhaps the most widely

used CAQDAS tool across the social sciences. It is a transcription program allowing users

to transcribe both video and audio and mark areas as interesting. It uses audio waveforms

to support the transcription process. In 2007 Transana made a paradigm shift from freely

downloadable tool to paid software, somewhat reducing its breadth of uptake. Transana

is still so popular however, that as part of the design process for Digital Replay System a

decision was taken to use the same keyboard commands to control the system, and indeed

to support importing and exporting to Transana’s output format.

Atlas.ti

Atlas.ti 4 is probably the most versatile commercial tool on the market at this time. Its

primary focus is coding, but unlike the other coding tools discussed below, It supports the

coding of text-based data as well as video and audio. It provides a basic automation of coding

based on regular expression searching within text, as well as providing integration with

Microsoft Office 5 and SPSS 6. It supports a project-based approach to corpus management,

allowing a user to keep all files organised into projects. Each item (referred to within Atlas.ti

as a unit) such as a code, or a segment of text is annotatable. It also provides support for

techniques such as mind mapping.

3http://www.transana.org
4http://www.atlasti.com
5http://office.microsoft.com
6(http://www.spss.com

18

2.4 State of the art in CAQDAS Chapter 2: Related Work

The Observer

Developed by Noldus, The Observer 7 was designed originally for studying animal behaviour

patterns and has been adopted as a more general coding solution within the social sciences,

particularly in behavioural psychology, but boasts case studies of its use in neuroscience,

psychology and zoology. A module based system, users can buy modules to perform different

parts of their analysis, including the base module which supports coding of video data and

visualisation of those codes for analysis. Additional modules offer support for multiple

videos, code comparisons, confusion matrices, screen capture and a mobile module designed

to run on handheld computers. Like Atlas.ti, the observer is Microsoft Windows based, and

extremely expensive.

INTERACT

Mangold International’s INTERACT 8 is another windows based observational analysis

solution that supports the process of coding videos, then provides some simple visualisation

tools to support analysis of the coded data. It is unique amongst the commercial tools in

that it provides support for extensibility in the form of the Interact Extension Language: an,

albeit limited, scripting language which allows the user to perform transforms on the data,

as well as supporting import and export to specific formats. Basic export for tools like SPSS

and Excel is provided. INTERACT’s marketing department makes the rather bold claim

of being able to analyse your data automatically, though on closer inspection this actually

refers to its support for basic statistics and visualisations. A key factor here, which will be

discussed later, is that these programs cannot and should not be expected to ‘analyse your

data automatically’. That is the task of the social scientists. The programs should be there

simply to support that task.

StudioCode

Unlike all the other software described here (with the exception of Transana which is cross-

platform) StudioCode 9 is designed to run on Apple’s OSX platform. It provides a solution

for capturing data straight from firewire (IEEE1394) video cameras and a suite of tools for

coding and transcribing those videos. StudioCode has a deceptively clean interface hiding

as it does a very versatile coding system supporting multiple coding schemes (templates),

7http://www.noldus.com/site/doc200401012
8http://www.mangold-international.com
9http://www.studiocodegroup.com

19

2.4 State of the art in CAQDAS Chapter 2: Related Work

live coding, lead and lag times and multiple coders. It is probably the most polished of the

software described here.

2.4.3 Academically Developed Tools

As can be seen from the selection above, there is no shortage of commercial video analysis

tools available on the market, however there are also a number of academically developed

tools performing similar functions. This section will examine each of these, as a contrast to

what is available commercially.

I-Observe

An early system synchronising video with log data was developed by Badre et al. [11] which

used a video tape based system and made use of captured event streams to synchronise

time-stamped events with the time-code on a video. This was designed for static, lab

based usability testing and was somewhat limited by the technology available at the time,

however this system could be considered to be well ahead of its time in the way it combined

heterogeneous data types for analysis, and is perhaps the most closely equivalent to the

core themes of this thesis, though its intended use may have been very different from those

discussed here.

ANVIL

Developed in 2001 by Michael Kipp at the University of the Saarland, ANVIL was designed

as a video annotation tool specifically for the purpose of analysing multimodal corpora [130].

It is a java based tool supporting the annotation of a single video stream and based on an

underlying XML schema, with a simple GUI. It supports multiple tracks of annotation of

video and the export of those annotations to common formats for further analysis in tools

like Excel and SPSS.

Diver

The Diver Project, developed at Stanford University is another tool to support video an-

notation [171]. Designed to work with a single video, it nevertheless has a unique feature,

that of the eponymous dives where users can manipulate the viewpoint of a video using

a virtual camera viewfinder, allowing zooming, panning and rotation of the original video

data. These dives can then be individually annotated and shared on the WebDive site for

20

2.4 State of the art in CAQDAS Chapter 2: Related Work

collaboration with other analysts. Dive offers an interesting approach to repurposing the

basic video data into a number of different perspectives depending on the purpose of a given

analysis.

VACA

Also developed at Stanford University VACA provides a toolkit for annotating or coding

several simultaneous videos on a timeline representation [36]. A study was carried out

comparing the use of VACA against a combination of Windows Media Player and Excel,

showing that VACA allowed its users to perform a coding task nearly twice as fast.

ELAN

Now in its third version ELAN was developed at the Max Planck Institute for Psycholin-

guistics [33]. It is a fairly comprehensive tool for the annotation of video data, primarily in

the field of linguistic research. It supports annotation in tiers, what other projects might

call tracks, so several simultaneous annotations can be applied to a single piece of media.

It also offers a waveform panel similar to that of Transana to support the process of syn-

chronised transcription. ELAN offers the facility to search within one’s annotations, across

multiple tiers, and allowing the user to jump to the location in the video of search results.

Additionally ELAN supports the practice of collaboration by providing a network interface

allowing two users of ELAN to collaborate on the annotation of a single piece of media.

NITE XML Toolkit

The NITE XML Toolkit, developed at the university of Edinburgh [41] is primarily a set of

open source libraries to support the analysis of heavily annotated corpora. It provides a GUI

for the annotation of multimodal corpora supporting the annotation of textual, audio and

video data. It includes a comprehensive querying language and some command line-based

textual analysis tools. One of its goals is to allow better sharing of qualitative analysis data,

though the Qualitative data exchange project [53] may prove to be a more comprehensive

approach aiming to achieve the same goal.

Mixed Media Grid

Developed at the University of Bristol, based on the same underlying code as Digital Replay

System’s immediate predecessor: ReplayTool [85], from which it was a development branch,

21

2.4 State of the art in CAQDAS Chapter 2: Related Work

the Mixed Media Grid or MiMeG project is designed to support multi-site simultaneous

collaborative video analysis. [82] It features video streaming and cross-site synchronisation,

as well as some basic security precautions and allows its users to annotate video by drawing

directly on top of a given frame.

Tatiana

Post dating both Replayer and DRS, Tatiana is nevertheless one of only two other current

video analysis tools that support the viewing of system log data, in this case referred to

as trace data. [69] Tatiana allows synchronous playback of system logs in a given format

with videos, supporting annotation. Initial tests performing a socio-cognitive analysis of a

collaborative writing task have supported the assertion of this thesis, that including trace

data can help to provide a more holistic view of an activity being analysed.

Chronoviz

The newest software described here (from 2011), Chronoviz [80], developed at the University

of California, is in practice perhaps the closest to the proof of concept software described in

this thesis. Chronoviz allows a user to combine multiple streams of video with some types of

logs (notably location traces and time series). Chronoviz also explores the use of interactive

paper to take notes and control playback of the data streams.

2.4.4 Project Specific Replay Tools

A large number of projects employ replay tools created specifically for analysing the logged

data recorded during the execution of one program. Indeed, Replayer started its life as one

such tool. It is of course the general applicability of tools like Replayer and Digital Replay

System that differentiate them. However some examples of these include tools developed

for analysing the following systems: Savannah [40] ABSTRACT [94], CatchBob! [165] and

The Mack Room [30]. There are of course many more of these, but comprehensively listing

them here does not really serve to further the themes of this thesis, rather it is enough to

be aware that the practice of creating such tools does exist.

2.4.5 Capture and Replay of System Log Data

In this section we will cover some tools created for the capture and display of system log

data, of course the goal of this thesis is to cover the benefits of tools which use a synthesis

22

2.5 Example real uses of CAQDAS Chapter 2: Related Work

of both system log data and more familiar qualitative data types such as audio and video,

but the practice of recoding and visualising log data has a long tradition within computing

science and should be acknowledged here.

GRUMPS, developed at the University of Glasgow is a tool designed to capture java

program usage data, by instrumenting Java Bytecode. [152] GRUMPS allows a user to

dynamically choose the granularity of recording, then runs transparently while a program

is executed recording for later analysis data about the execution of the program. Hilbert

and Redmiles [106] developed an agent based system for capturing user interface events in

java programs. Like GRUMPS, it performs its capture behind the scenes and was designed

primarily for analysing web interfaces, to allow analysts to compare the actual results of an

interaction with the expected results. KALDI [8] is designed to similarly capture Java usage

data, though it also captures screenshots, allowing synchronised playback of the log data

with the screenshots. GUITESTER by Okada and Ashi [166] uses a similar approach to

that of KALDI. The event recorder ObSys [92] goes slightly further, working at an operating

system level to capture every message from input devices that Windows puts in its event

queues. Ivory and Hearst [118] provide a comprehensive view of the state of the art of usage

data capture, making a comparative analysis of many of the systems that were available

at the time: something which is beyond the scope of this section, thus reference to that

paper is worthwhile for more information in this area. All the tools so far discussed have

been designed to focus on usability testing of desktop (primarily web) applications. A more

recent system, discussed above called MyExperience by Froehlich et al focuses on capturing

trace data from mobile phones. [86]. It is the data from generalised capture systems such

as this which will allow systems like Replayer and Digital Replay System to thrive as tools

for the qualitative analysis of mobile and ubiquitous computing systems.

2.5 Example real uses of CAQDAS

Kuckartz [138], presents an exploration of the use of the MAXQDA 10 in particular high-

lighting the difference between case-oriented and cross-case visualisations of coded text.

Kuckartz demonstrates the benefits of having the visualisations of codes directly related

back to the source text - something that Replayer and Digital Replay System are deigned

to do on a more multi-modal scale.

10www.maxqda.com

23

2.5 Example real uses of CAQDAS Chapter 2: Related Work

Le-Roux et al. [142] discuss the use of CAQDAS software in an industrial context, citing it

as an effective technique for analysis of target markets - in particular focussing on the effects

of political and cultural transformation of those markets. They describe a process by which

introductory courses to CAQDAS software have been proposed to company sociologists

suggesting that such software is being used to support analysis outside of academia.

Murray [160] Describes a case study where NVivo 11 was used in a secondary analysis

to try and prevent some of the pitfalls of the primary analysis - in particular a practice she

refers to as code-fetishism, whereby the primary analyst used a coding scheme so diverse

as to be virtually useless. By limiting the number of potential nodes in the secondary

analysis, and making use of a hierarchical tree structure, available within NVivo instead of

a completely flat free system, the data became more easily analysable, and more suitable to

be interrogated in future analyses.

Di Gregorio and Davidson [65] Use case studies of the use of Atlas.ti and NVivo, to

discuss the process of research design, based on an understanding of CAQDAS software.

They highlight the key fact that a research project has to be designed with a knowledge of

the way the software works in advance, in order to allow the user to achieve the goals they

hope for by using said software. They discuss a need for explicit clarification of the design

of a project beyond the typically implicit design that qualitative studies more traditionally

use.

Varela eta al. [212] discuss their use of Transana in a project studying a classroom

workshop with their families. They demonstrate how they were able to make use of Transana

to support the ethnographic process from project organisation through transcription and

right through to analysis. The project focussed specifically on the way parents support their

children in narratives using information related to their everyday lives.

Hesse-Biber and Crofts [105] meanwhile take a wider approach, exploring from a social

scientist’s perspective the availability of some of the different CAQDAS software discussed

above, and examining how they fit in with different research styles, what benefits they offer

and more practical considerations like system requirements and cost. They also consider the

case of users’ preconceptions of the capabilities of these programs - specifically whether the

marketing hyperbole around particular programs is baffling its users into expecting more

than the program may be able to give. In the commercial tools section (above) we see an

example of this where INTERACT claims to be able to automatically analyse your data.

11http://www.qsrinternational.com

24

2.6 Analysing Log files by hand Chapter 2: Related Work

There are of course many examples of social scientists writing abut their experiences of

CAQDAS software, this has been simply a small sample, however it suggests that there is

an uptake of this kind of software within at least some of the social science community, and

further, that community is willing to try out new tools and provide feedback about the way

those tools are affecting their work practices and potentially benefiting their research.

2.6 Analysing Log files by hand

In [55] The authors discuss the practice (from an ethnographer’s point of view) of unpacking

the data found in system logs to make use of that as a resource in an analysis of the mobile

game Uncle Roy all Around You [78]. The authors assert that ethnographers frequently draw

on a multiple resources to support the task of observing and analysing social life from within

exploiting biographical resources [229], visual resources [175], technological resources [103],

and a wide variety of others. They point out that ethnography is done not only through

the immersion of a researcher in a setting but through the use of material resources as well.

System logs, or text logs as they are described in [55] represent just another exploitable

resource. However, the complexity of retrieving the value of that resource is a factor in the

usability of these logs in their raw state.

To be usable, the log must first be cleaned, that is, reduced to contain just salient infor-

mation. However, the definition of salient information is necessarily subjective. The authors

freely admit that in this case the log cleaning is directed towards extracting conversational

threads that are relevant to particular aspects of the study. In effect this means that for

the resource to be applicable to more than one study, or more than one specific area of a

study, it may have to be cleaned additional times, each time with a significant man-hour cost

associated with the task. The next thing they note is that the log by itself is not terribly

useful. It is only when combined and synchronized with the recorded media files, in this

case with the transcriptions of audio clips where the synchronization is done at a textual

level, that it becomes a useful resource for description. We can thus already see that it is

the combination and coordination of system log data with other heterogeneous media types

that creates an exploitable resource for qualitative analysis.

One very important point to be drawn from this can be best summed up by this quotation

from [55]:

Whatever the added extras it is hopefully clear that text logs do not, in and

25

2.7 Design guidelines for ubiquitous computing analysis tools Chapter 2: Related Work

as of themselves, contain data. Rather, the data must be produced through the

analytically oriented working of resources internal to situated action and their

combination with resources external to the setting of action. Data is constructed

then and produced through the work-practices of the analyst.

2.7 Design guidelines for ubiquitous computing analysis

tools

Ethnomethodology, or ethonomethodologically-informed ethography, can certainly be con-

sidered to be an effective tool for the analysis of interaction. However, predicated as it

is on observation, there are, as we have seen, certain areas in which practitioners require

some support. Specifically they require the development of new technologies of observation

that make the invisible parts of these new interaction phenomena visible. It is the work of

this thesis to demonstrate how such tools might be developed and used to support ethno-

graphic, and wider qualitative approaches to analysing peoples’ interaction, communication,

and collaboration with, around and through ubiquitous computing systems.

In order for a CAQDAS tool to succeed as an effective tool for analysing ubiquitous

computing systems, at least assuming we accept the challenges highlighted above, we must

design systems that support the following key processes:

• Tools that allow viewing of system log data synchronized with other types of media

• Tools that enable researchers to extract multiple sources of information from recorded

logs, and which allow them to edit extracted information and combine it with media

from external sources to produce unique datasets.

• A replay system that exploits time stamps to coordinate the use of the multiple media

in a dataset, which enables cross referencing and indexing to support the splicing

together of multiple media, and which enables multiple media to played side-by-side.

• Tools that support the production of representations from datasets and which preserve

the relationship between representations and the media from which they are derived,

and which enable source media to be recovered and viewed.

Figure 2.1 shows a flow-type diagram of how the record and reuse process could fit into

both the fieldwork practices and the post-hoc analytical practices of a qualitative researcher

26

2.7 Design guidelines for ubiquitous computing analysis tools Chapter 2: Related Work

Figure 2.1: The Record and Reuse Process

27

2.7 Design guidelines for ubiquitous computing analysis tools Chapter 2: Related Work

dealing with people who are making use of ubiquitous computing technology. In particular

it describes the capture, representation and potential re-representation of data from a digital

environment and the resources both within and outside that environment.

In the next chapter we will look at two systems, Replayer and Digital Replay System

which purport to conform to these guidelines and provide the tools necessary to allow

ethomethodologists and other qualitative social scientists to successfully observe, and un-

pack interaction, communication, and collaboration with, around and through ubiquitous

computing systems. The use of these systems will then be explored in two case studies,

before they are compared and contrasted and conclusions are drawn.

28

Chapter 3

Replay Systems

3.1 Introduction

In the previous chapter we outlined some core requirements for systems to support qualita-

tive analysis of ubiquitous computing systems. Namely:

• Tools that allow viewing of system log data synchronized with other types of media

• Tools that enable researchers to extract multiple sources of information from recorded

logs, and which allow them to edit extracted information and combine it with media

from external sources to produce unique datasets.

• A replay system that exploits time stamps to coordinate the use of the multiple media

in a dataset, which enables cross referencing and indexing to support the splicing

together of multiple media, and which enables multiple media to played side-by-side.

• Tools that support the production of representations from datasets and which preserve

the relationship between representations and the media from which they are derived,

and which enable source media to be recovered and viewed.

In this chapter we will explore two systems which approach the task of replaying hetero-

geneous data from two distinct directions, but both of which aim to fulfil those requirements.

The chapter aims to give a broad overview of the functionality of each system, with more

specific technical discussion of key features in the proceeding chapter. The first of these sys-

tems, Replayer approaches the challenges focusing firmly on the system log data and various

ways to represent that data and combine it in a synchronized manner with other media such

29

3.2 Replayer Chapter 3: Replay Systems

as video and audio. In particular Replayer provides a set of tools by which once a log has

been imported to its internal framework, virtually any log data can be explored through

a variety of visualizations, and different views can be used together in synchrony, allowing

synchronization to be applied across many different dimensions. The second tool described:

Digital Replay System (DRS), Approaches the challenge in a different manner. Because

DRS was developed with a participatory design approach [12], working directly with several

qualitative social scientists from different fields, it provides support for more methodological

synchronization, such as transcription, coding, annotation etc. Log files in DRS have an

equivalent precedence to any other media type reflecting their relative importance in the

eyes of the intended user group.

3.2 Replayer

Developed at the University of Glasgow, Replayer first appeared as a project specific tool for

the study of the mobile game Treasure [14] combining a detailed animated visualization of the

state of the system with several synchronized video streams of the action taken from different

viewpoints. The success of this representation as a resource for the qualitative analysis of

Treasure led to the rewriting and expansion of the system into a more generalized toolkit

that would allow system logs to be visualized simultaneously with synchronized video and

audio playback.

3.2.1 Requirements and Design Approach

The initial development of Replayer was purely to study the single case of the game treasure,

in which the mobility of the subject made observation difficult. Developed simultaneously

with the game it presented an overview of the state of the system from a set of system

logs. Figure 3.1 shows this early system. The in-house development team also included

an ethnographer, who would be tasked with evaluating treasure, so it was tailored more or

less specifically to his needs. In practice this meant an iterative design process with several

versions of the software being produced in quick succession.

As the ethnographer in question used video analysis as a primary resource for his work,

and videos were captured of the trials, it quickly became apparent that there was a need

to synchronise the video and log data streams. This then was the first real iteration of

the Replayer idea. Further discussions lead to a number of requests for specific features

30

3.2 Replayer Chapter 3: Replay Systems

Figure 3.1: An early version of Replayer, specifically designed to analyse data from Treasure.
On the left we have two videos and an audio stream, right-top we have a live map showing
positions of players, connectivity, and some state information, right-middle we have a set of
filters for the above map, and right-bottom we have some VCR-like playback controls.

31

3.2 Replayer Chapter 3: Replay Systems

such as counts of events given a particular circumstance, and it soon became clear that a

more general-purpose approach was needed. Scaling this up it further became clear that

there was a need to generalise the whole system to allow for its use in the study of other

in-house ubiquitous computing systems. This lead to a general redesign following the one

basic principle that visualised log data should be synchronisable with other media such as

video. Before beginning to build the system a number of interviews were conducted with

HCI evaluation specialists from different backgrounds including ethnography, psychology and

more traditional HCI. From these interviews a number of key requirements were constructed:

• Visualise system logs in different ways: graphically, tabular etc.

• Perform some simple statistics on the log data: counts of events given certain circum-

stances etc.

• Synchronise those visualisations with each other and with other media resources.

• Allow for collaborative exploration of the data: an equivalent of video data sessions

conducted by one of the interviewees.

These rather general requirements served as a basis to create a first generalised version of

Replayer, which was then refined iteratively through its use in the evaluation of several sys-

tems including treasure [14], Feeding Yoshi [21] and Shakra [9]. With each system evaluated

helping to highlight both usability issues and additional requirements for the software. It is

worth noting that the number of social scientists involved was quite small (four interviews

and only two of those went on to actually use the system for studies). We will see later the

more extensive participatory design approach taken in the development of Digital Replay

System. That refined version is the system described here.

Replayer is designed to examine two main types of data:

• Multimedia Data

• System Logs

The first of these, multimedia data, would consist mainly of video and audio files. Re-

player would need to be able to play these synchronously with the system logs in the same

way that its initial incarnation had. It was a design decision to make direct use of a video

playback program for this area of the system rather than building a custom one, as it was

32

3.2 Replayer Chapter 3: Replay Systems

an intention of Replayer to feel like middleware, allowing the user to make use of software

packages they were already familiar with, for reasons outlined by Paul Dourish in [67]. This

was one area where, despite being a cross platform system, a difference between the Win-

dows and OSX versions of the system would have to appear. For windows users, it seemed

most suitable to use Windows Media Player, while for OSX users QuickTime would be the

familiar playback tool.

The second type of data Replayer would need to focus on was system logs. When

discussing system logs in this context we refer to anything recorded by a computing system

during its execution. The number of possible data types here are too numerous to completely

categorise; indeed that would be an axiomatically impossible task as any new system might

record something that has never been recorded before, but examples from past experience

included such things as location data, network traffic, signal strengths, system state data,

interface events, memory usage and many others. An internal database structure was thus

required which could handle any type of recorded data and make it easily accessible and

visualisable. A set of viewers designed for displaying data in different ways would be created

for visualising that data.

We will see in detail in the next chapter why it was a design goal to create Replayer

using a distributed system architecture, but it is enough for now to know that Replayer was

designed to be an analysis toolkit capable of handling system logs and multiple multimedia

streams that was both cross platform and networkable. Furthermore it needed to include the

concept of brushing and linking [19] in order to maintain selection integrity, and therefore

data integrity between different viewers - this means that any selection made in one area of

the system should affect the selection (where relevant) in all the other areas.

3.2.2 The Server

At the heart of the system is a server which must be running for any of the viewers to work.

The server has very little in the way of user interaction, beyond some simple output of the

state of the database, and self-logging. It is responsible for management of all connected

viewers and handles all database transactions.

3.2.3 Clients

Users do not as a matter of course interact directly with the database server. Instead

that interaction takes place through a management interface called, for legacy reasons,

33

3.2 Replayer Chapter 3: Replay Systems

Figure 3.2: Five Replayer tools in coordination. Clockwise from top left, the figure shows the
video component handling two synchronised simultaneous videos, the event series charting
signal strength for each user over time, a histogram and time series showing summary
information on a system property and the map showing the recorded positions of users
based on GPS. Data are taken from the treasure game.

the Meta Tool (figure 3.3). The meta tool serves a number of purposes and unlike the

server is replicable within a session - this means that different computers sharing the same

Replayer session are able to have a meta tool each. It is for this reason that the meta

tools are separated from the server. First, the meta tools display a list of the current

active components on the session, along with the name of the computer on which they are

running. Behaving a bit like an operating system task manager it is possible to open and

close components from here.

Figure 3.3: Replayer’s Meta Tool, Used for component management.

34

3.2 Replayer Chapter 3: Replay Systems

The list of usable components is dynamic allowing new components to be added at run-

time. To qualify to be a component the program must be packaged up as a java archive

resource (JAR) and added to the folder containing Replayer’s executable files. It is pos-

sible for these components to be written in any language as long as the executables are

subsequently packaged up into jars.

The meta tool is also more importantly, the user’s gateway to the database. It is here that

we see an example of Replayer’s versatility, but also its necessary complexity. Components

themselves do not directly query the database, as they have no preconception (unless hard

coded in application specific components) of exactly what data they require to display.

Instead the user must query the database and send that data to an open component. And

thus comes the dilemma. The most effective and powerful way to query a database is using

the Standard Query Language (SQL) this is a long developed and powerful approach to data

extraction, however it is a scripting language which requires some understanding of database

theory, or at the very least some practice. We knew it would be difficult to convince non-

technical users to write SQL, but it provided an effective means for us to try out ideas until

we developed a visual programming approach to writing that SQL. Some understanding

of the way it works remains necessary for making advanced queries of the database in the

current version of Replayer. The visual programming approach offers the user slightly more

to work with. A menu is displayed showing a list of available tables. When a table is

selected a conditional panel is displayed. Depending on the type of the column this will

take one of two forms. If the data are numerical, a double ended slider is displayed with a

histogram directly above it (figure 3.4)., this is based on a similar visualisation component

from HiVE [180].

Figure 3.4: A visual interface for selecting data from the database, featuring a double ended
slider, with an attached histogram showing the distribution of the data.

This gives the user an overview of the data and allows upper and lower limits to be set.

35

3.2 Replayer Chapter 3: Replay Systems

Alternatively, if the data contains strings, a list of check boxes is displayed, allowing the

user to select those nominals she wishes to include in the returned data.

The visual programming tools offer nowhere near the versatility of pure SQL, while SQL

alone is simply too complex to be acceptable to non-computer scientists as more than an

expert option within the toolset. This is a dilemma that persists throughout the development

of both Replayer and DRS. Increasing functionality necessarily increases complexity, which

decreases the understanding and subsequently the uptake rate amongst new users. It is

important to maintain an awareness that the intended user group are qualitative social

scientists and not computer scientists though their willingness to experiment with CAQDAS

software has been demonstrated in the literature review chapter. A discussion with Greater

Manchester Police over potential uses of DRS within their forces yielded an interesting

revelation called the five click rule - if a user cannot get to where they want to be within five

clicks, the system is too complicated. This is probably a good rule of thumb for user interface

designers to keep in mind, predicated as it is on the seven plus or minus two rule of working

memory [195], especially when developing for communities outside computer science. As

such, a system requiring the user to understand and write SQL (misuse of which can lead

to the compromising of data integrity) is almost certainly over complicated.

3.2.4 Log Data Viewers

Replayer provides a number of visualization components for analysing logged data. Each of

these receives a table of data from the server, following a request made via the meta tool

and displays it in some coherent manner. The intention was to create a set of generically

applicable viewers, mostly taking the form of charts of various types. This was never intended

to be a complete set covering every possible technique for graphical data analysis, but

rather a collection of basic tools which could be extended as required. The coordination

of multiple views is supported to allow greater insight to be made into the captured data.

This is achieved through a technique called brushing and linking [19], whereby a user’s

selection in one view will highlight the corresponding subset of objects in the others. For

example, a particular group of data might have been clustered together when processed by

one component, and being able to select this region and immediately see how the same group

has been handled by complementary viewers can greatly increase an analyst’s understanding

of the inherent structure of the data.

36

3.2 Replayer Chapter 3: Replay Systems

Time Series Viewer

The first tool incorporated into Replayer is a time series, designed to plot various types

of temporal data. Each numerical data variable provided as input is drawn as a line on

the plot, with colours related to variable names by a key on the right. Axes are labelled

automatically, and re-labelled if the time series module window is resized.

Figure 3.5: The Time Series component plots logged data over time. The tool can compare
attributes between users or view a summary of a single users’ performance

A double-ended slider is provided at the top of the module, with which a specific section of

the series can be selected. If the data are also being viewed in another connected component,

the system will highlight the corresponding time measurements. Similarly, marking time

periods in other views will alter the time series display to reflect the selection. In Figure 3.6,

the time series is reflecting selections made in another component. The time series variables

are greyed out at the deselected periods, with the background also darkened.

Event Series

The time series module shows system state over time. While this is a useful tool, it is

unsuitable for much of the data that is likely to be recorded during a system evaluation.

State data are continuous and represents properties that will have a specific value at any

instant of a system trial. It would also be of benefit to study event data, which describes

37

3.2 Replayer Chapter 3: Replay Systems

Figure 3.6: The time series has received a remote selection and has shaded the de-selected
periods.

discrete events that happen occasionally throughout system use. Examples would be user

interactions such as button clicks, or server messages.

The event series has the same time-based x-axis as the time series, but visualises these

discrete events as icons. Figure 3.7 shows an example, displaying data recorded over a

week-long system trial of the mobile game: Feeding Yoshi [21]. In this case, each event

is the discovery by a participant’s PDA of a new wireless access point. Certain pieces

of information are logged each time this occurs, which the user can explore with controls

provided on the event series, as described below.

The tool is useful in providing an immediate overview of set of events, while allowing

users to zoom to particular periods of interest. A context window in the top right of the tool

shows all of the data currently loaded into the tool, with a green window illustrating where

the current focus fits into the overall context. The view in the figure is zoomed to show

events taking place over two days, but there is a degree of overlap that could be resolved by

zooming in to an hour or a few minutes of recorded data.

A drop-down list is provided at the bottom-left of the tool to allow users to select

the input dimension with which to plot the data in the y-axis. If a numerical dimension

is selected, the y-axis will be scaled appropriately and each event will be drawn at the

38

3.2 Replayer Chapter 3: Replay Systems

Figure 3.7: The event series tool plots discrete events by time. In this example, the y-axis
has been set to display owner-assigned names of wireless network access points, and each
event is coloured by user name.

appropriate height in the frame. On the other hand, if a nominal dimension is selected, the

number of unique nominal values on that dimension is calculated, these are spaced out evenly

on the y-axis and objects are placed accordingly. Figure 3.7 shows a selection of SSIDs: (the

owner-assigned name of the wireless network). Moving the cursor over any object in the

event series generates a tool tip showing the exact value on the x and y dimensions.

At the bottom-right of the tool is another drop-down list, to determine the input dimen-

sion with which to colour objects. In the figure, the user has selected NAME, corresponding

to the ID of the participant whose PDA generated each event. A key is provided, as in the

time series, which can be used to filter data in the same manner. Selections can be made

in the event series by dragging a box around the objects of choice. Non-selected items are

then greyed out.

The Event series viewer also has some additional advanced tools, including support for

single link clustering of events, and multiple selection comparison (via the histogram).

Histogram

The previously described components afforded temporal-based distributions, and judged

events and states on properties at a given time. Replayer also contains a histogram tool,

39

3.2 Replayer Chapter 3: Replay Systems

which provides a means of assessing data by distribution. Rather than showing individual

events, a summary is given of the aggregated measurements. Figure 3.8 illustrates.

Figure 3.8: The histogram component shows a distribution over time. This example shows
the occurrence of each of a number of events. Bars are filled in proportion with the number
of each such event that exists in the selection.

Like the event series, the histogram tool has a drop-down list from which an input di-

mension can be selected. The histogram will then display the distribution of values recorded

on that dimension. Should the selected attribute be based on nominal data, a separate

bar in the histogram is created for each unique value. This is the case in the figure, which

illustrates the frequency of each distinct event. If the selected dimension contains numerical

data, the data will be bucketed by value. Tool tips are used to present the x-axis labels,

with the appropriate nominal being displayed when the cursor is moved over a bar. This

action also shades the bar red and highlights its height in red on the y-axis, for easy value

comparisons.

As with the other components, support is provided for brushing between views. Selec-

tions can be made by clicking on individual bars. The histogram visualises received selections

by shading certain amounts of each bar. Colour is filled in proportion to the amount of ob-

jects represented in the bar that are selected. In the figure, every object represented by

right-most bars is included in the selection, whereas less than half the values in the bars to

the left are selected.

40

3.2 Replayer Chapter 3: Replay Systems

Graph Drawing

Replayer includes a graph drawing component. In this case we mean a graph in the math-

ematical sense, as an abstract model used to represent data consisting of inter-connected

objects. Through an iterative force-modeling process [87], a drawing can be constructed to

convey weighted pair-wise relationships between a large set of objects.

Figure 3.9: Replayer’s Graph Drawing Module showing a selection of events that happened
in a short space of time, with clustering based on the amount of time between events.

This is one of the more abstract of Replayer’s components, designed to cluster sets of data

in meaningful ways. One example of its potential use is to recover spatial information where

geographical log data are not available - as in figure 3.9 where a quasi-spatial positioning

for a given user over a short period of time is being reconstructed from logs containing

no location data. Clustering between the vertices (i.e. the length of the edges) is based

on the average amount of time between repeated events - in this case repeated accesses of

certain wireless hotspots by users. So the result is a topographical map, that while it may

bear no resemblance to the physical layout of the hotspots, may still provide some useful

information. We need only look at the famous London underground map by Harry Beck

(1933) to see a fine precedent for the use of topographical mapping.

41

3.2 Replayer Chapter 3: Replay Systems

3.2.5 Statistical Analysis Tools

Replayer provides a small set of tools for doing certain kinds of statistical analysis. It was

decided early in the development process that complex statistics were outwith the design

goals of the system, it would have been pointless to replicate all the facilities provided by

packages such as the Statistics Package For Social Science (SPSS), especially as this is a

package that most social scientists are already familiar with. Therefore Replayer simply

allows exporting to a format readable by that package. However, some basic numerical

analysis tools are provided including a simple SQL based tool for counts, summations and

averages, a correlation graph tool, and a tool specifically created for examining mutual

information relationships.

Basic Stats Tool

Another in a long line of Replayer misnomers, the stats tool is actually a visual implemen-

tation of SQL’s math functions. It generates the SQL statements required to achieve simple

functions such as SUM, COUNT, AVERAGE and many of the other options provided within

the SQL language. The output is displayed on a table, and can be routed to the other com-

ponents where appropriate. As with the meta tool, the stats tool leaves the SQL visible,

allowing the user to edit it offering greater versatility for those familiar with that language,

but is structured enough to be at least possible to use without prior SQL knowledge.

Correlation Graphing

One common practice in qualitative analysis is performing correlations between two types

of data. The tool takes two streams of data, generated by two SQL statements, or routed

from other components and displays the results on a simple x,y graph.

Like the other Replayer components it supports brushing and linking, but unlike the

others, the data displayed is not actually directly from the database, instead being the

product of two values. However, making a selection in the correlation tool results in the

values used to create that value being selected in the other components. This presents an

interesting idea. Much of the practice of statistics involves creating levels of abstraction.

Once that abstraction has been applied, it is difficult to get back to the earlier levels. With

Replayer’s brushing techniques, it is simple to see the reasons behind outlying data - imagine

a case where we have an apparently good linear correlation between two data streams,

however we have one value lying seriously outside the line, and drastically throwing off the

42

3.2 Replayer Chapter 3: Replay Systems

Figure 3.10: Replayer’s Correlation Component

result. In Replayer we can select that value then examine the original data leading to that

value and discover the reason for that outlier - it may be valid, or perhaps it is the result of

some system error. Whatever the reason might be we are able to reverse our abstraction to

examine the underlying data with a single click, along with related contextual data, even if

those contextual data are found in something more traditionally qualitative such as a video.

Mutual Information Tool

It is possible to use Replayer to do more complex numerical analysis. A special component

was created primarily as an example of the kind of sophisticated analysis that could be pos-

sible within Replayer were more of such components created. This component is designed

to examine mutual information between two data streams. Information theory is a math-

ematical study of the encoding and communication of information, which provides several

measures for the calculation of dependencies and relationships between data sources [194].

One such measure that is of use in this work is mutual information (MI); a property used in

considering the independence or interdependence of two variables. It measures the amount

of information that can be gained about a variable X by knowing about another, Y. A Re-

player component has been constructed to perform mutual information calculations between

streams of recorded data. This can be applied to any timestamped numerical measurements,

43

3.2 Replayer Chapter 3: Replay Systems

allowing an analyst to assess the relationships between the various recorded streams.

3.2.6 Google Earth Bridge

As has already been noted, one common feature of ubiquitous computing systems is location

data. It is thus important to provide some form of graphical display of recorded geographical

data. Google Earth 1 is able to display custom data in the form of Keyhole Markup Language

(KML) files, which can be retrieved from a network server on the basis of regular updates,

which combined with its comprehensive mapping facilities and widespread use made it an

excellent resource for Replayer to exploit. Figure 3.11 shows Replayer’s Google Earth Bridge

component.

Figure 3.11: Replayer using Google earth to create a spatial distribution of events for each
user. Top: the normal Google earth application. Bottom: Replayer’s bridge to Google earth
allowing control over which events are displayed and how.

This component serves as a translator between Replayer and Google earth, generating

1earth.google.com

44

3.2 Replayer Chapter 3: Replay Systems

KML files and serving them to Google earth via an http connection. The HTTP GET

command from Google earth includes the coordinates of the four corners of the rectangle of

map currently being displayed. This means that selection can be achieved by zooming the

rectangle to cover a subset of the data.

3.2.7 Multimedia Components

The Replayer multimedia components make use of different playback software for each plat-

form (Windows Media Player for Windows and QuickTime for OSX). Both of these players

are controlled in a similar fashion to the Google earth component described above, using

special bridging components. The interfaces to these components are identical, with only

the internal implementation and ultimate result changing. These are duplicate components

so as to have specific versions for specific platforms. The user interface to the bridges are

written in Java, while the QuickTime component uses AppleScript to control QuickTime

player on OSX based systems, and the Windows Media Player component uses C# and

the common object model(COM)interface to achieve the same results on Windows-based

computers. The initial visualisation presented to the user is that of a Timeline component

(figure 3.12). In the example shown in the figure Replayer’s time slider component is shown,

along with two videos associated with a particular dataset. The area of the slider’s track

coloured red shows that area where media clips are available. The green blocks are those

areas of time highlighted by making a selection in another tool. The thumb of the slider

points to the current point in time being displayed on the videos. In these particular clips,

the left stream shows a clip recorded from a camera in a building overviewing this trial.

Just in shot is one of the field evaluators, holding a video camera. It is the view from this

camera that we see in the video on the right.

The start time and duration of media clips are stored in the server’s database. On start-

up, the component colours on its timeline all the places where media is available. This alone

can be important - a system log may potentially last many days or even weeks, and video

clips may be sparse, so being able to locate them on a timeline is a useful initial visualisation.

Using this component, new clips can easily be added to the database, with synchronisa-

tion being achieved with the QCCI technique described in the next chapter. The timeline

shows the current selection by highlighting the relevant slices of time in green. When a

selection is made from here, or from another component, the media clips will automatically

jump to the first selected frame. As the thumb is moved in the timeline, the clips move, with

45

3.2 Replayer Chapter 3: Replay Systems

Figure 3.12: Replayer’s Time slider component and quicktime videos

only those that are related to that time being displayed. A ‘scrubbing’ mode is provided

which allows the user to drag the thumb, thus changing the frame of the movies and affect-

ing the selection in all peer components in real time. A ‘play-all’ button is included, which

plays all the video clips synchronously and sends relevant selections to peer visualisation

components. If no video is available - the play function can be set to jump between times

where some data are available, skipping any gaps in the logs, Additionally when using this

mode the time delay between frames can be changed, allowing components to be animated

faster than real-time.

3.2.8 Summary

We have seen some of the functionality of Replayer, as well as some of the motivation for

why it was designed in this manner. Replayer provides tools to store and access data on a

local database server, and run a managed set of visualisation components, including time

series, event series, histograms, maps, video etc. Each of these components allows a different

way to explore the data, and they can be used in coordination either simply by synchronised

playback, or by the shared selection system (brushing and linking).

46

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

3.3 Digital Replay System (DRS)

The Digital Relay System (DRS) is an application developed by The Digital Records for e-

Social Science (DReSS) Node at Nottingham University. DRS is a cross platform, Java based

analysis toolkit that supports the collection, collation, storage, markup and representation

of digital records. Unlike Replayer, DRS has all its tools integrated into a single program.

The layout is designed in a similar manner to the Integrated Development Environments

(IDEs) used for programming, with some areas resembling those of video editing suites.

Figure 3.13: Screenshot from DRS

Like Replayer, DRS is prone to use a lot of screen real estate, but unlike Replayer this

cannot be solved by opening up additional viewers on networked computers, so instead

familiar window organization menus are provided. Generally DRS must be used in multi

monitor setups, or at least on high resolution monitors, to allow for the necessary space

to lay out several coordinated viewers. However, as a consequence of having a containing

application, the whole of DRS can easily be minimised - something that was not feasible

with Replayer. While that sounds like a minor issue, in terms of usability it is actually quite

a serious one.

47

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

3.3.1 Requirements and Design Approach

The design and development process of DRS differs significantly from that of Replayer.

Developed as part of the work of The Digital Records for e-Social Science research node at the

University of Nottingham, the approach taken was somewhat different. The research node is

an interdisciplinary collaboration between computer scientists, ethnographers, psychologists

and corpus linguists providing a wide range of social science professionals with whom to

conduct a strong participatory design approach. The design has been forwarded by a series

of driver projects, one from each discipline, each with its own specific requirements. The

first, based in the Department of Computing Science is concerned with supporting the

process of ethnography and thus relates to the development of tools to directly support

observation and description, including the exposition and visualisation of system logs. At

the time of the driver projects this was largely concerned with studying the use of several

mobile games developed by the Mixed Reality Laboratory at the university of Nottingham.

The second project, based in the Department of Psychology focuses on studying the use

of a system called VIRILE [34] designed to teach chemical engineering students about the

practicalities of working in a plant. The study is concerned largely with the markup of

recorded data and has requirements relating to the synchronisation, coding and application

of meta data to recorded data, but also makes use of the system logs to describe the state of

the system at any given time. The final project, Based in the Department of English Studies,

is concerned with the construction of multimodal corpora, extending the more traditional

textual corpora to also handle video allowing for the study of the rich context and back-

channelling associated with the use of language in situ. It makes use of logs generated by a

gesture recognition system to automatically generate codes defining particular gestures and

collocates them with particular language utterances. A number of corpus and computational

linguistics approaches are then applied to the created corpus [133]. In a series of focussed

design meetings a number of key use cases were explored leading a set of core requirements

for the system. These core requirements were as follows:

• Must be cross-platform

• View and synchronise media of various types (video, audio, images, documents, tran-

scriptions etc.)

• Organise a corpus of heterogeneous media.

48

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

• Mark up media (transcription, coding, annotation).

• Import and visualise system logs in various formats, synchronised with other media.

• Perform concordance and other text-search techniques over annotations transcriptions

and codes.

• Share corpora with other users

An initial prototype was then developed. This was presented to each of the driver projects

who then applied it to their own project data and returned with reports about usability,

feature requests and additional use cases. This process was repeated several times until

a general public release was made available. Next a collaboration was formed with the

CAQDAS group at the University of Surrey whereby they promoted the tool to a wider

community of social scientists. Working closely with CAQDAS as well as the original driver

projects enabled the further refinement of the system, and a second public release was made.

As of December 2009 the webstart version of DRS has been launched by 1542 unique IP

addresses, and the source code has been downloaded by 638 unique IP addresses.

The direct collaboration in development with exactly the target user group has allowed

DRS to develop into a practically usable toolkit supporting a wide variety of qualitative

social science practices. This method of participatory design, along with iterative prototype

development has been exploited to develop a tool more directly suited to the needs of the

community than Replayer, while still providing the innovative key features for observation.

However, because of the nature of its driver projects, it is mostly focussed on the study of

ubiquitous computing systems, and its features have been designed with that task in mind.

3.3.2 Corpus Management

DRS provides the concept of projects and analyses as a method for the collation of one’s

data. Unlike Replayer which could store only one dataset at a given time, DRS allows its

users to store all of their data permanently within the system. The data are then split up

into a series of projects, with each project split into a series of analyses. This is somewhat

more in line with existing tools outlined in the related work section, and marks DRS as more

of a plausible tool than proof of concept - though it is still very much a prototype.

A project in DRS refers to the repository into which all the media and derived media

for a particular study are stored. It is possible to have as many projects in the main DRS

49

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

database as one wishes, with each one related to one specific collection of data. This allows

completely distinct experiments to be stored concurrently. Within a project is stored all

the associated media as well as derived media such as coding schemes transcripts etc. Also

stored in a project is associated metadata such as information about people and devices

related to the project. Data are never actually deleted from a project, but simply marked as

deleted, and displayed in a recycle bin. In actuality, the media is not itself stored within the

project but rather a dynamic link is stored within an internal resource description framework

(RDF) [201] based representation.

An Analysis represents a single study over a subset of media from a project. It contains all

the media and derived media associated with it. It also contains all the time synchronisation

data for those files - this means that media files can be synchronised differently for different

analyses. An analysis depends on a parent project. Once media has been added to an

analysis it is available to be synchronised and viewed with one or more of DRS’s viewers.

Depending on the type of media, a number of context sensitive options become available,

including options such as import/export, transcoding and application to other areas of DRS

such as the Track Viewer. Unlike a project, which serves simply as a repository, and analysis

has a concept of time and synchronisation. It is therefore possible once in an analysis to

simultaneously view several synchronised media. Media playback is controlled within the

DRS environment only at analysis level.

3.3.3 Time and Synchronisation

Each analysis has a master timeline across which all other time-based media should be

synchronised. Each item of time-based media or derived media can be considered to have

a duration which must be placed somewhere on the master timeline. Figure 3.14 shows

the way in which several media files can be positioned on the master timeline. Note that

Video II and its associated transcript are locked together, so that moving one will affect

the other. Synchronization information is defined either by directly inputting the numerical

offset information to the dedicated synchronization editor tool or by visual manipulation of

tracks in the Track Viewer (see below).

3.3.4 Media Files

DRS deals with two particular types of media: time-based media, and discrete media. Time-

based refers to anything which has a duration such as audio, video etc. Discrete media refers

50

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Figure 3.14: Positioning media on the master timeline.

to those media-types in which time is not a meaningful thing, such as images. Additionally,

DRS generates special media types called derived media. These are not physical files stored

on the disk, but rather descriptions such as annotations, coding tracks and transcripts which

depend on another file in order to make sense. These derived media files exist only within

the DRS environment, though each can be exported into a physical file if required.

When importing media files into DRS, some information has to be provided to inform

DRS how to store them - this allows DRS to apply its ontology to the media. This infor-

mation typically includes the filename and path, a title, by which the file will be referred to

within DRS, the mime type and finally the media type.

3.3.5 Media Viewers

The different types of media supported by DRS necessitate a variety of ways to view them.

Opening a media file from within the application offers a filtered choice of viewers which

can be used to examine that particular media type.

The Video Viewer

The video viewer (figure 3.15), as the name implies is used to display video files. It is

possible to have any number of video viewers open simultaneously, however playback quality

will reduce as the number of viewers increases. The number of viewers that can be displayed

is highly dependent on how powerful the computer is. The viewers are based on QuickTime

51

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

for java,

Figure 3.15: DRS’s Video Viewer

The viewer as shown in figure 3.15, is based on QuickTime, so can playback any Quick-

Time supported video codec. This which means that playback is only limited by which

codecs are supported by the installed version of QuickTime.

There is no provision in DRS to play a single video without playing the main timeline,

playback is exclusively controlled using the VCR controls at the base of the application.

Individual movies have independent volume controls however. Also displayed is the current

time within a given movie (note that this is different to the current time within the Analysis

displayed at the bottom of the screen beside the play controls, because individual moves can

be positioned across the main timeline (as shown in figure 3.14). The Duration of the video

clip is also displayed.

The video viewer supports the ability to capture specific frames and store them as images

by means of a frame-Capture button, which allows individual frames to be quickly exported

as jpegs, which are then automatically imported into the analysis. This feature exists

primarily to support the representation process, so that as one creates a story, one can use

specific fames as evidence, that can be included in a description.

The Audio Viewer

The peculiarly titled audio viewer (figure 3.16) provides a method for playing back audio

files within the DRS environment. It takes the form of a window with a volume control and

a basic graphic equaliser. The audio viewer supports only two codecs, WAV and MP3. Like

52

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

the video viewer above, individual playback controls are not available - playback is always

project -wide, and controlled with the VCR Controls.

Figure 3.16: DRS’s Audio Viewer plays MP3 and WAV files.

This viewer serves as a playback device, with a simple volume and graphic equaliser

provided to support better audio analysis, but the audio file is perhaps more usefully viewed

as a track in the track viewer (figure 3.17), in which the wave form is displayed. This feature

is primarily provided to support transcription (in a similar method to Transana - discussed

in the related work section 2.4.2) and annotation, as it can help with the correct temporal

placement of these annotation objects.

The Image Viewer

Te image viewer (figure 3.18) is a simple tool for examining images in one of the common

forms: JPEG, PNG or GIF. It provides support for zooming and panning and is capable of

displaying very high resolution images such as those taken by high quality DSLR cameras.

The image viewer also provides a context view, which shows the whole image and a small

white rectangle showing how much of the image is displayed in the main viewer.

It is possible for several images to be viewed in a sequence, with each image having

an associated timestamp. This means that images can be ‘played back’ along with other

media, with the displayed image changed as the playback progresses. A filmstrip-style

view is provided at the base of the viewer allowing users to jump to specific images, and

subsequently jump the position in the main timeline. This is in line with DRS’s nod to the

53

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Figure 3.17: The Track Viewer showing three ‘tracks’ - one video (top), one audio(bottom)
and one coding track(middle).

Figure 3.18: DRS’s Image Viewer

54

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

interfaces of video editing software such as Adobe’s Premiere 2 and Apple’s Final Cut Pro

3.

The HTML Viewer

A very simple HTML viewer is provided to allow users to view documents in HTML or plain

text. It is non editable, but provides support for examining off-line web pages, which can

form a resource for analysis like any other media type.

3.3.6 The Track Viewer

The track viewer (figure 3.17 is a versatile tool which provides a visualisation of any item or

collection of items of time based media in an analysis. Each media item is associated with

a track which is displayed on the viewer. A red line shows the current time, and clicking on

a track will jump the analysis time to the position clicked. The time is also reflected in a

text box at the top left.

Track Types

Each of the time based media can be displayed on the track viewer. The supported media

types are:

• Video - displayed as a solid purple bar.

• Audio - displayed as a waveform to support synchronized transcription and annotation.

• Transcriptions/Free Annotations - Appear as boxes on the track. Most of the text is

hidden unless the current analysis time coincides with the annotation. The process of

transcription will be covered in greater detail presently.

• Coding Tracks - Appear as boxes coloured with the code’s colour. Coding and coding

schemes will be covered in greater detail in a later section.

Other functionality

The track viewer can be horizontally zoomed indefinitely allowing the granularity of the

tracks to be changed. It is also possible to zoom tracks vertically simply to make better

2www.adobe.com/PremierePro
3www.apple.com/finalcutpro

55

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

use of available space. This allows for very fine grained manual synchronisation of tracks as

they can be dragged around on the timeline from here.

It is also possible to limit DRS’s playback to a specific slice of time. Something that is

frequently required for transcription. the user can by using context menus for the tracks,

set the start and end times limiting the playback range. The user will see the slice of time

selected highlighted and the playback will loop or loop back and forth as selected.

3.3.7 Transcriptions

A transcript is a form of derived media. It refers to a list of all the unique utterances, along

with the time they occurred, from a time-based-media file such as a video or audio recording.

Each transcript is usually associated with a time-based-media file, meaning that they begin

at the same time when playing in viewers. Transcriptions are usually either created in DRS

using the transcription editor, or imported from Transana.

Transcriptions, and free annotations generally, form an important part of many qualita-

tive analyses. The actual uses of them will differ based on the specific project, but the need

is almost universal. While many transcription packages have the option of time synchroni-

sation, Only DRS allows the user to share that synchronisation with other related media,

and this facility supports the process of indexing, in much the same way that Replayer’s

brushing and linking does.

There are three methods by which transcriptions can be examined or created. These are

the transcription editor, the annotation table viewer and the track viewer. Transcriptions

are not stored by DRS as external files, as with other media but rather a collection of

annotations within a greater DRS project file. Because they are stored as part of the RDF,

but appear to be distinct files in the project and analysis browser, this can create a certain

amount of confusion - especially when dealing with transcriptions imported from Transana.

There were, during testing, a number of cases of users editing the original file then failing

to realise that the edit would not carry through to the version stored in the RDF model,

which suggests that our users’ mental model may not in fact match the reality of how their

data is being stored.

The Transcript Editor

The transcript editor (figure 3.19) is one of two tools created to handle transcriptions, the

other being the annotation table viewer. The transcription editor provides two primary

56

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

functions creating/editing and viewing transcripts of time based media. When viewing, the

transcription element reflecting the episode time will be highlighted in green. This highlight

will move during playback to reflect the progress of the conversation.

Figure 3.19: DRS’s Transcript Editor.

Creating a transcript with the transcript editor is simply a matter of plying back the

media that one is transcribing then inserting transcription elements at the appropriate times

either by clicking the insert button, or by using the associated keyboard accelerator.

The Annotation Table Viewer

The annotation table viewer (figure 3.20) allows a user to get a tabular overview of any

type of annotation track including transcriptions and codes. The annotation table viewer

displays the start and end time for each annotation element along with the content of the

annotation, all in tabular form.

Figure 3.20: DRS’s Annotation Table Viewer.

57

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Hovering the mouse over one of the content cells will result in a tooltip showing the

complete text of that element. When the system is playing, the correct element for any given

time will be selected, and clicking on any element will jump the analysis (and consequently

all the other viewers) to that time. It is also possible to use the annotation table viewer to

edit or add new annotations at any given time.

The transcription viewer and annotation viewer provide very similar functionality. The

reasoning behind making both of them is that the table viewer makes for a good overview

- and was specifically requested by one of the driver projects, while the transcript editor

supports more ‘free’ text, which allows users to employ conversational analysis markup [228]

- something we hope to directly support in DRS in the future perhaps supporting some form

of multi-modal markup as well such as MURML [135], though this latter is probably more

relevant to the following section on coding.

3.3.8 Coding

The practice of coding is widespread among social scientists, particularly those concerned

with formal analytic methods, as discussed in the related work section. It is a technique by

which a media file can be annotated with a finite set of codes or annotations which serve

to define the subject’s behaviour in some way. Codes are generally described by means of a

coding scheme, though the scheme is often subject to change as the task of coding progresses.

Coding Schemes

A coding scheme is arguably a form of ontology. It may have many levels of hierarchy. to

reflect this structure, in DRS, a coding scheme is defined using the Coding Tree (see figure

3.21 in which a simple coding scheme to define some basic gestures has been created).

Figure 3.21: An example of a very simple coding scheme.

58

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Any given coding scheme has:

• A name.

• A maximum depth, i.e. how many levels of sub-codes are allowed.

• A timing type, which defines how the codes will be used when coding - see below.

• A nominal duration/period of each code, for certain timing types only (event with

nominal duration and state with periodic changes) - see below.

DRS supports five distinct timing types for coding schemes:

• Event with variable duration

• Event with nominal duration

• State with explicit switching

• State with periodic changes

• ‘untimed’, which means that the codes cannot be used to do time-based coding.

In this case events refer to things which happen at particular times, e.g. a gesture or

action while states are things which are always present or observable in some form but which

may change from one form or value to another at particular times, e.g. whether and how

someone is moving (stationary, walking, running, etc.). These cases are illustrated in figure

3.22.

Figure 3.22: Illustration of different coding types.

59

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Further to the general information about a whole coding scheme, each individual code

also has certain information associated with it:

• A name (effectively the code keyword).

• A colour.

• Optionally, a key binding, i.e. a key on the keyboard associated with the code for real

time coding.

• Optionally, a set of ‘modifiers’, i.e. additional parameters or assignable values associ-

ated with the code (e.g. the object of a reference)

Coding in DRS

Once a suitable coding scheme has been created, the process of actually coding can begin.

Coding of time based media is performed using the track viewer (figure 3.17).

Coding is organized into coding tracks (which are a particular kind of annotation set).

A coding track can only have one state or event at any given time, so concurrent states

or actions must be coded on separate coding tracks. Each coding track has the following

properties:

• A coding scheme

• A name

• Optionally, a piece of media which it is specifically associated with (e.g. if the codes

are specifically references to things observed in that piece of media)

For most coding scheme types (events with nominal duration and periodic and explicitly

switching state) each code needs only one time, as so is simple to insert with one key press

(or mouse action). For events with variable duration, however, the end of each event must

be explicitly specified, typically by tapping the same key again, or releasing a held key.

Additional (non real time) coding can be performed using the mouse by first selecting a

region of the coding track by clicking and dragging on coding tracks.

A coding track - like any annotation set - can also be viewed using the annotation table

viewer. This gives a tabular view of event/state start and end times and code (text).

60

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Automated Coding

The process of coding is time consuming and intensive. In most cases this process is simply

necessary, and is a skilled part of performing an analysis, but there are some instances when

it might be feasible to automate this process to some extent. System logs in and of themselves

can often form ‘codes’ which may be treated in the same analytical way as hand-coded data,

however it is even possible to go beyond that. In section 3.3.10 we will explore a part of

the system which uses computer vision techniques to auto-generate codes representing head

nods and gestures, which can then be used in multimodal linguistic analysis in line with

the work from that driver project. This was developed as a proof of concept to show what

might be feasible in terms of automated coding.

3.3.9 The DRS Document Viewer

A DRS Document (figure 3.23) is a special form of document which supports internal annota-

tions. The purpose is to allow the user to construct a multi modal document containing not

just text, but links to video clips and images. Further, the user is able to insert timestamps

which when clicked jump directly to the related point in the analysis. Another feature is the

ability to code a document, that is use DRS’s coding scheme to define set annotations about

certain areas of the text. The DRS document viewer serves as a tool for the qualitative

assembly of an interaction description document, one of the core tasks of an ethnographer.

Once a document has been coded, the user can use these codes as a special index. Down

the right hand side is a list of the codewords, which when clicked, will open a new text file

containing just the elements of the document which have been coded with that keyword.

This serves as a quick way to get an overview of all the document’s contents related to a

particular subject.

The document is actually an RTF file with some special data included at the end, so it

can be viewed in other programs, however if edited this may break the coding structure.

3.3.10 Gesture Tracker

As part of one of the driver projects - specifically focussing on the development of multi

modal corpora, and in an attempt to mark-up the visual ‘mode’ of video data within DRS, we

have used a computer vision technique to analyse videos from which gestures are recognised

and annotated by the system in order to automate the creation of these coded annotation

61

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

Figure 3.23: DRS’s Document Viewer.

62

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

tracks (this can later be encoded following rigorous analysis of the patterns between certain

movement sequences). This is achieved by way of a tracking algorithm which can be applied

to a video of a speaker and reports in each frame the position of, for example, the speaker?s

hands in relation to their torso, within a pre-defined granularity. Examples of the tracker

in different modes are seen in figure 3.24.

Figure 3.24: DRS’s Head and Hand Trackers(left and right respectively).

The tracking algorithm reports the position of, for example, the speaker?s mouth in

relation to their eyes, in each frame (for more information see [75]). The circular nodes

seen in figure 3.24 (left) are the tracking targets (with a pre-defined granularity), which

have the flexibility to allow the user to adjust the size of the tracked locations in relation

to the specific size of, for example, the eyes and mouth of the participant (this has proved

particularly useful when using close-up images in which participants have larger eyes and

mouths). These targets are manually positioned at the start of the video and subsequently,

as the tracking is initiated, a horizontal line is automatically drawn in the centre of these

three nodes, marking an initial y-axis location (with position 0). Consequently, subsequent

vertical head movements are denoted as causing a marked change in the y-axis in a + or ?

direction (+ being a head up movement and ? being a head down movement).

The horizontal line also rotates to the left and right depending upon the position of the

eyes, monitoring the angle of motion around the y-axis (when tracking head movements).

The observation of the head angle from one tracked frame to the next proves invaluable to

the analyst as such can help to reveal the characteristics of specific types of head movement

(a feature that was integrated into the tracker as a result of various consultations with

linguists), so for example such information can help to identify head shakes or head rotations

as being distinct from a basic up-down head nod, should marked changes in the head angle

be observed simultaneously with a marked change in the y-axis.

63

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

When tracking hand and body movement 3.24 (right), instead of the single horizontal

line used as the point of movement reference in the head tracker, we are presented with three

vertically positioned lines marking four zones on the image, R1 to R4 (R2 and R3 mark the

area within shoulder width of the participant, acting as a perceived natural resting point

for the arms, hence R1 and R4 mark regions beyond shoulder width). In consequence, the

algorithm tracks the video denoting in which region the left hand (labelled as R by the

tracker, since it is located to the right of the video image) and right hand (labelled as R by

the tracker, since it is located to the right of the video image) are located in each frame.

This provides an output of state for each frame. These states can then be applied to a video

as a state periodic coding scheme.

The movement of each hand can therefore be denoted as a change in region location of

the hand, so for example for Rhand (the left hand), we see a sequence of outputted zone 3

for frames 1 to 7, which changes to a sequence of zone 4 for frames 8 to 16. Ergo this notifies

the analyst that the RHand has moved across one zone boundary to the right during these

frames.

In theory, in order to track larger hand movements, the analyst can pre-determine a spe-

cific sequence of movements which can be searched and coded in the output data. So if, for

example, the analyst had an interest in exploring a specific pattern of movement, considered

to be of an iconic nature, i.e. a specific combination of the spontaneous hand movements

which complement or somehow enhance the semantic information conveyed within a conver-

sation, it would be possible to use the hand tracker to facilitate the definition of such gestures

across the corpus (for in depth discussions on iconics and other forms of gesticulation, also

see studies by Ekman and Friesen [70], Kendon [125–128], Argyle [97], McNeill [153, 154],

Chalwa and Krauss [48], and Beattie and Shovelton [18]). Obviously the analyst would be

required to train the tracking system be means of pre-defining the combination of move-

ments to be coded as ‘iconic gesture 1’, for example (so perhaps a sequence of RHand or

LHand movements into from R1 to R4 and back to R1 across x amounts of frames), in order

to convert the raw output into data which is both more meaningful and usable.

Further to this, it is viable to note that in order to further enhance the efficacy of the

hand tracker, the current prototype not only outputs the hand locations across individual

frames, but also provides an ‘average’ location of each hand across the span of one second.

Whereas the head tracker was designed to deal with the most subtle of head movements,

some of which may last for less than one second, the hand tracker is designed to deal with

64

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

more emphatic, ‘large’ hand signals which may last 3,4 or 5 seconds, in addition to more

subtle movements, as required.

Each potential gesture sequence (signified by the tracking output) is then labelled with

a suitable code, and these codes are presented as a track of annotations anchored to the

original video. These annotations may then be used in conjunction with the concordance

tool (see section 3.3.11).

This automated approach to tracking hand gestures has two significant benefits over

manual analysis. Firstly, there is the potential to save a great deal of time through au-

tomation. The tracker can be run much faster than many other image tracking approaches,

working at close to real time. It is also possible for the tracker to produce a variety of

different outputs at the same time. Secondly, tracking techniques should be able to more

accurately recognise the intensity of gestural movement than a human observer can.

Mark-up specific gesture sequences without the tracker necessitates a more labour inten-

sive approach, as we have seen in the previous section, similar to that taken by systems such

as anvil and studiocode (as described in the related work section). A hierarchical ’coding

scheme must be defined in advance with necessary codes bound to particular keys ? then

as a media file (typically, but not necessarily, a video) is played back, these keys can be

depressed to signify an instance of a particular gesture code. These codes are then stored in

a ‘coding track’ which can be exported to packages such as SPSS for statistical analysis, or

used in conjunction with the text in the concordance viewer within DRS, allowing analysis

of instances of co-occurrence between codes and utterances.

3.3.11 The Concordance Viewer

The concordance viewer (figure 3.25) is a special kind of search tool, developed as a result

of the participation in the design process of members of Nottingham University’s English

Linguistics department. It provides the analyst with the capacity for interrogating data con-

structed from textual transcriptions anchored to video or audio, and from coded annotations.

The concordance viewer can utilise specific words, phrases, or other lexical tags in addition

to any other codes, as a ‘search term’ (though this may also be a regular expression). Once

presented with a list of occurrences, and their surrounding context (within the concordance

viewer window - see figure 3.25), the analyst may jump directly to the temporal location

of each occurrence within the video or audio clip. Further to this, the concordance viewer

provides the commonplace frequency utility, giving raw counts of the frequency-of-use of

65

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

each search term, again providing an invaluable impetus for the quantitative exploration of

data.

However, for many interaction researchers, it is the complex interactions between di-

alogue, non-verbal behaviour and system activity that are of most interest. There has

been an increasing interest in the relationship between certain nonverbal behaviours and

the linguistic context in which they occur as researchers recognise that they can be tightly

synchronised in natural language (e.g. to convey shared meanings, [17]) The study of these

relationships will lead to a greater understanding of the characteristics of verbal and non-

verbal behaviour in natural conversation and the specific context of learning, and will allow

social scientists to explore in more detail the relationships between linguistic form and func-

tion in discourse, and how different, complex facets of meaning in discourse are constructed

through the interplay of text, gesture and prosody (building on the work of McNeill [153]

and Kendon [126,127]).

Since the concordance tool treats textual and coded annotations in the same way in-

ternally, the search functionality extends to all media within an analysis. This allows an

investigation of all types of annotation in the same manner, applying the same skills and

techniques used in the analysis of traditional corpora (for an example see [192]). This mul-

timodal concordance viewer has led to the need for developing new approaches for coding

and tagging language data in order to align textual, video and audio data streams [6, 132].

Figure 3.25: DRS’s concordance viewer.

In figure 3.25, the concordance viewer shows instances of a search term (‘Oh’) occurring

66

3.3 Digital Replay System (DRS) Chapter 3: Replay Systems

within all annotations associated with the project (transcriptions, codes and free annota-

tions). The context in which that term occurred is shown to the left and right. Selecting

an instance will jump DRS to that analysis and location, automatically opening the media

that the annotation pertains to at the correct time.

Clicking on any one of the cells offers the ability to jump to the time in the analysis in

which that instance occurs. Unlike other viewers the concordance viewer searches all the

data in a given project, rather than just within an analysis. In this case the data may be

taken from many non temporally related media, therefore keeping them in a single analysis

my not be appropriate, however the need exists to search across each of them. In the cases

where a token is not in the current analysis, DRS will switch to the correct analysis in order

to display the appropriate data.

3.3.12 Log File Workbench

One of the core features of DRS is of course the ability to deal with so-called system log data.

DRS provides a tool called the Log File Workbench examined in more depth in chapter 4)

with which to import and create views over that data. The design and functionality of the

log file workbench will be discussed in the next chapter. For now it is mentioned only to

make the reader aware that DRS does support synchronized playback of system log data,

indeed DRS provides some basic charts similar to those developed for Replayer (time series,

event series, histogram etc).

3.3.13 Summary

DRS provides a series of tools for viewing and marking up data in a number of different

ways. Much attention is paid to creating usable tools for annotation and coding (automated

coding in the case of the computer vision system) - in particular working with the social

scientists who are using the system in anger, to iteratively prototype those tools and provide

exactly the necessary facilities to conduct interesting research, for example the concordance

tool directly supports a regular practice from corpus linguistics in a way that a basic search

tool simply could not. While DRS focusses on the markup and description of qualitative

data, it should not be forgotten that turning system logs into qualitative data is a necessary

step, which once achieved gives it the same significance as other marked up data - and thus

it can be approached in the same way and with the same tools.

67

3.4 Conclusions Chapter 3: Replay Systems

3.4 Conclusions

We have now seen much of the functionality of both systems, and the very different focusses

should be clear. As we will see in the next chapter however the systems are really not in any

kind of conflict. In fact in general the weak points of one tend to be the strong points of the

other. The stronger influence of social scientists in the design of DRS lead it to feel more like

a ‘familiar’ CAQDAS tool, and it provides support for many of the kinds of methods used

in qualitative data analysis. Its weaker support for generalized analysis of log data reflects

the priorities of those social scientists, as well as their lack of experience in handling log

data. Replayer on the other hand, coming as it does from a more directly computer science

oriented background has strong support for handling the logs rooted firmly in the field of

information visualization, but lacks the crucial support for methodological synchronization

that would make it a tool more generally usable in qualitative social science.

68

Chapter 4

Key Implementation Factors

4.1 Introduction

This chapter will focus on three specific areas of the two systems described in the previous

chapter (Replayer and Digital Replay System). Those three areas are:

• Log file handling

• Distributed software architecture

• Synchronization

In each case we will explore how the systems handle this area, how they differ, and what

the benefits and drawbacks of each approach are. It is the handling of these three areas

in particular which make Replayer and DRS distinct from many of the computer aided

qualitative data analysis tools discussed in the related work chapter.

4.2 Log Files

4.2.1 Introduction

The feature that really sets Replayer and DRS apart from previous systems is the fact

that they are designed to handle system log files - and do it in a way that allows them to

be effectively combined with other heterogeneous media. Both systems have components

designed to read in log files and store them in an internal database. Again, the systems

differ somewhat in approach.

69

4.2 Log Files Chapter 4: Key Implementation Factors

4.2.2 State and Event Logging

Replayer in particular relies on an idea whereby system logs can be separated into two

distinct types:

• State Type

• Event Type

State type logs are characterised by being representable within a single consistent database

table. They essentially come in two forms regular and irregular. We can consider state data

as data that is sampled, either at regular intervals, or irregular. The key point however,

is that it is the type of data that can be used to reconstruct the state of a system at any

given time. State data is well suited for display on certain types of graphs such as time

series. The fact that state data can be stored in a single table, makes handling it relatively

simple for viewers. Conversely we have the event type data. Event data typically describes

irregular discrete occurrences. While in some cases it may be suitable to describe this data

as irregular state data, the size of the table necessarily increases with the number and

complexity of events. This method is more suitable for recording things like user interface

interactions. So as a simple example, Imagine a thermometer application. It runs constantly,

but the user must press a button to check the temperature. The temperature is regularly

sampled and stored as state data, however we might store the user’s checking of the values

as event data. Assuming we sample every 30 seconds, we have a regular state value, that can

be plotted easily on a time series. We can also plot the user’s interactions with the system

on an event series. Selecting a user interaction event in the event series we will be able to

look up the last sampled ‘state’ at that particular time. To achieve this with a single table

would require the insertion of a potentially irregular row in the state table and necessitate an

extra column(s) to describe the user’s interaction. This simple separation of logging types

leads to an extensible generalised architecture for storing logged data in a database. With

that standardised system we can significantly reduce the complexity required for viewer

components to be able to handle the data. It is sufficiently flexible to handle virtually any

type of system log.

70

4.2 Log Files Chapter 4: Key Implementation Factors

4.2.3 Replayer’s Log File Handling

4.2.4 Log Files and Parsers

When considering the types of log file Replayer would have to handle it became immedi-

ately clear that this was no small task. Around this time there was a seminar within the

Equator Interdisciplinary Research Council where an attempt was made, driven primarily

by researchers from the University of Southampton who had been working on developing

semantic web applications, to create an extensible format for system logs that would be

applicable to any system. This was an XML (Extensible Markup Language) and RDF (Re-

source Description Framework) ontology based approach [201]. While having a standardised

logging format certainly offered plenty of advantages for builders of replay tools, this also

presented two major disadvantages. First the framework was extremely complicated - ne-

cessitating serious work for anyone wishing to write to that standard, and secondly that

sticking exclusively to this format would preclude any system from examining legacy data

without first changing the logs into this new format, or building legacy-parsers - something

that would have to be approached by a programmer familiar with both the new standard

and whatever the present standard of any given log might be. Instead it was decided to

put that standard aside temporarily, given it had not been fully agreed at the time - and

indeed was never fully agreed upon or implemented in the lifetime of the Equator project,

and create a simpler standard which could easily be used locally, while providing facility to

parse legacy or alternative logging standards, including that one when it was complete.

To get the data from a system log into the database, and thus make it queryable and

subsequently visualisable, each log type would require to be parsed, that is, examined pro-

grammatically. A decision was taken to make two parsers - one based on a simplified version

of the above standard, called, for want of a more imaginative name, Replayer Markup Lan-

guage (RML), and another to analyse simple text logs, which would serve as a template for

the development of legacy parsers. Local developers would be encouraged to record their

logs in RML which provided facility for recording both the state type and event type logging

discussed above.

Here we can see a sample of and RML log:

<record type="event">

<timestamp>632597507190000000</timestamp>

<HRTime>Tue Aug 16 01:58:39 BST 2005</HRTime>

71

4.2 Log Files Chapter 4: Key Implementation Factors

<apspotted><mac>00032F178046</mac>

<ssid>MalcNet</ssid>

<type>0</type>

<crops>0</crops>

<fruit>apple</fruit>

<picked>0</picked>

<version>0</version>

<reseed>False</reseed>

<wants>apple;apple;apple;apple;apple</wants>

</apspotted>

</record>

<record type="event">

<timestamp>632597507220000000</timestamp>

<HRTime>Tue Aug 16 01:58:42 BST 2005</HRTime>

<peerfound>

<id>350C1C011B0604F11800-0050BF1977E0</id>

<two>null</two>

<three>null</three>

<zero>null</zero>

<one>null</one>

<four>null</four>

<user>Alex</user>

<scanstop>null</scanstop>

</peerfound>

</record>

So to get the data from a log file into the database, the appropriate parser component is

opened and pointed at the appropriate file and the parsing process is started. It then auto-

matically connects to a running server as all clients do (of which more in the next section).

This parser generates a set of database creation instructions which are then executed by the

server. As an interesting by-product of using this technique, it became possible, though this

technique was never actually applied, for a connected device to write its logs directly into

Replayer’s database, thus completely bypassing the need for parsers and making such logs

accessible for analysis in pseudo-real-time.

4.2.5 Instrumentation

With the RML specification in place, it became apparent that Replayer would have to pro-

vide a way to encourage developers to record their logs using this standard. The chosen

approach was to develop an instrumentation tool which would automatically add logging

code into a program from within the IDE in which it was being developed. Systems like

GRUMPS [152] adopt a dynamic proxying approach to insert logging code directly into java

72

4.2 Log Files Chapter 4: Key Implementation Factors

bytecode making the logging entirely transparent. However, Replayer’s Instrumentor com-

ponent takes a different approach. Logging code is instead inserted visually into the source

code (figure 4.1). While dynamic proxying aims to make the instrumentation transparent

to the programmer, direct code insertion takes the opposite approach and allows the pro-

grammer to see, and indeed modify the code inserted by the instrumenting system. Indeed,

the Instrumentor actively encourages, and even requires the programmer to interact with

the logging code. The reasoning behind this opacity is the intended use. While GRUMPS

appears to be intended for use by a third party, Replayer’s Instrumentor is designed to be

used by the designer/coder of a project, thus a user will have intimate knowledge of the

code.

Figure 4.1: Replayer’s instrumentor running in visual studio (highlighted in red). Ticked
classes/methods have been marked for logging.

By allowing designers to adapt the instrumentation, they should be able to control, to an

extent, the performance hit caused by that instrumentation. This is taken a step further in

the case of variable logging: The user has to actively decide the best time to call a variable

dump method, ensuring that it is called at the most suitable time. Another advantage of this

transparent method of instrumentation is that the designer can create meaningful output

strings, that is, the additional text messages output by the logger system for a particular

73

4.2 Log Files Chapter 4: Key Implementation Factors

method. This means that when visualising the data in Replayer, the user will have a clear

schema of what individual log atoms refer to. Indeed it could thus be tailored in such a way

that the logs could be effectively explored by a user with less knowledge of the code. One

side effect of using the instrumentor is the additional workload generated, and the effects

of code bloat [209], however if a system is to be logged for later analysis, then Replayer’s

instrumentor provides a simple approach to including logging code in a project, and the

visibility of the logging code mean steps can be taken to manage code bloat. Replayer’s

Instrumentor is an add-in for Microsoft’s Visual Studio 2005, designed to simplify the logging

process (figure 4.1). A tree view shows all the classes, methods and variables in a solution

with icons showing whether or not they are currently being instrumented. A user can apply

or remove instrumentation at any level of the tree allowing the granularity (and subsequent

performance hit) of the instrumentation to be tailored to the user’s requirements. Visually

the tree structure and icons recall CVS and other code management systems, with checked

classes being logged and crossed ones ignored. This version of the instrumentor is of course

only applicable to programs written in C#, however the same principle could easily be

applied in for example a plugin to Eclipse, or any other IDE which supports third party

plugins.

4.2.6 Log File Parsers

In order to begin the process of analysing log files, it is first necessary to include the contents

of those files in the Replayer database. To this end, some special clients are required to parse

those logs and generate the Standard Query Language (SQL) commands needed to build

the database. Replayer makes no initial assumptions about what will be contained in these

logs, but works on the premise that some data can be considered as state-type, and some as

event-type. Such logs may not be separated in the way that those of treasure were, indeed

many logs consist only of event data and as such state data is only implied and must be

inferred from the events.

Replayer provides two parsers by default - one to parse logs in the RML format, and

another template parser, which contains a set of methods designed to simplify the process of

creating a custom parser. Because the server makes so few assumptions about the content

of the logs, it is the job of a log file parser to create and populate the database based on that

content. The actual implementation is up to the user, but the template includes methods for

reading in files, generating SQL CREATE and INSERT commands, and for sending those

74

4.2 Log Files Chapter 4: Key Implementation Factors

commands to the server.

RML Log File Parser

The RML Based logfile parser is able to parse any system log created using the RML

standard. This is an XML based standard and as such the parser uses Java’s SAX parser to

examine them. As the logs are parsed in a serial fashion this is the most appropriate. An

Entry in an RML log looks like this:

<record type="<type>">

<timestamp>value</timestamp>

<eventname>

<variablename 1>value</variablename 1>

...

<variablename n>value</variablename n>

</eventname>

</record>

where attribute ‘type’ is either ‘state’ or ‘event’. Note that in the case of state logs, the

‘eventname’ tags are excluded.

The state table is generated based on the format of the first log entry to contain the

state attribute. To do this, an SQL CREATE TABLE command is sent to the server, which

automatically modifies it to include RID as a field. This, and every subsequent entry with

the state attribute then generates an SQL INSERT INTO statement, again sent to the server

to populate the state table. Similarly events are handled in much the same way. Each event

generates an INSERT INTO for the event master table (in place by default with a new

Replayer database) and a CREATE TABLE command to create a suitable table to contain

the variables for this event. The server then ignores the duplicate create table events. Using

this approach, while somewhat wasteful of traffic means that new events can be added at any

time, as and when they are encountered in the log files. Also different parsers can be used

for different log formats within a single session, and because the server ignores requests to

create tables that already exist, there is no error thrown when a second parser tries to create

a table that already exists. Once the appropriate tables have been created, it is simply a

matter of generating more INSERT INTO commands to fully populate the database.

75

4.2 Log Files Chapter 4: Key Implementation Factors

CSV Parser

One common format of system logs is that of comma separated values. Thus we created

a special log file parser for Replayer that handled these files, allowing sample data from

HiVE [180] to be examined with Replayer. It works in a similar fashion to the RML parser,

though the CSV format is perhaps less versatile than that of RML, as it is only really suitable

for state based data, with the table headers being defined in the first line, their types in the

second, and values in all the proceeding lines. Indeed, Replayer itself uses this particular

CSV format to pass its internal data around between clients.

Custom Parsers

It is of course simply not the case that all future log files will be written in RML or CSV.

Indeed, even within a local research group that knew of and expected to use Replayer, this

was frequently not the case, and of course there remained the question of legacy data. As

such it was clear that additional parsers would be required. After writing a number of these,

the logical solution seemed to be to crate a template and library which would allow users

to easily create their own. The template sets up the necessary communications with the

server, and reads in a user-selected file. It then offers a library of methods for generating

SQL statements, one for table creation and another for data insertion. With a little work

going into the control statements to actually read the contents of the file, something it is not

easy to offer help with, without knowing what format that data will take, it is thus possible

to create a parser which will create and populate the server’s database with appropriate

data.

4.2.7 Log File Handling in DRS

DRS handles log files somewhat differently. Unlike Replayer it doesn’t specify its own format

instead relying on an extensible system of text file processors to handle logs in a variety of

common formats. It also doesn’t specify a way in which its databases should be organised.

While in theory this is more flexible, in practice it means that the task of constructing

generic data viewers for system log data becomes somewhat more complex.

76

4.2 Log Files Chapter 4: Key Implementation Factors

The Log File Workbench

In DRS log files are imported, turned into databases and viewers are configured for those

databases using a system called the log file workbench. This system allows any number of

databases to be created, which are then treated as ‘media’ objects by the rest of the DRS

system. Figure 4.2 The log file workbench uses a series of processors to handle the importing

Figure 4.2: DRS’s LogFile WorkBench

of logs. There is one configurable processor designed to handle generic file types such as

comma Separated value files (CSV) or tab separated value files (TSV). The processor takes

the form of a wizard (shown on the middle right in figure 4.2) in which the user specifies

information about the data contained in the file, including encoding, separators, headers,

footers and meta data about the type of data contained in the columns. This processor is

significantly more flexible then Replayer’s CSV importer. Once configured, the processor is

run over a text file producing a single table database which the appears in the list of project

media (shown on the left in figure 4.2). For state-type data this is an extremely effective

system. However, when handling data in more complex forms than simple tabular data the

task becomes more challenging. The log file workbench provides an API for creating new

processors which can be used to create any style of tables necessary. This means that in

theory any logged data can be imported to the system, but like Replayer it will require a

77

4.2 Log Files Chapter 4: Key Implementation Factors

specific processor to be written for any complex type of log. Unlike Replayer, DRS is able

to support multiple databases, which in theory means that several different datasets can be

viewed simultaneously.

Log File Meta Data

Unlike Replayer which uses a rigorously defined database table structure, DRS allows tables

to be in any form. To make it possible for viewing components to work on those tables in a

generic way, DRS allows the user to apply meta data to particular columns, defining them for

example as timestamps, strings, integers, or filenames. This more flexible approach allows

timestamps for example to be in virtually any format. As long as that format is defined in

the meta data then DRS’s internal time management tools are able to turn it into a usable

form. While this increases the difficulty of actually inputting logged data to the system, it

does allow the potential for meta data based searches across the databases, and because the

metadata ontology is extensible, the volume of meta data is limited only by the particular

processor, and the amount of time the user is willing to spend including it.

Creating Views

Once the log file has been imported a secondary processor can be applied to the created

database to construct views on the data (created views shown on the lower left of figure

4.2). Again there is a generic processor available, which is simply a Synchronized table

viewer, selecting the cells associated with the time currently selected in one’s DRS analysis

(assuming there is a timestamp column in the database). Additional views can be created

by anyone with some java programming experience by implementing the viewer interface.

4.2.8 Comparing the two approaches

Once again we have two systems doing a similar thing in somewhat different manners. If

a program is instrumented to output its data in RML form, then importing log file data is

significantly easier with Replayer, however DRS provides far more flexibility for importing

data in a series of standard forms. DRS also benefits from being able to maintain several

databases. In general, when it comes to importing data, DRS is the more sophisticated of

the two systems, however once the data is in there, DRS offers very little in the way of

things to do with your data, without writing custom viewers, such as the one we will see

in the case study in the next chapter. Replayer, on the other hand has a strong selection

78

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

of viewers of various types, detailed in the previous chapter. These generic viewers, while

not providing the specific functionality of a bespoke tool, provide a variety of methods for

visually querying and exploring your data. DRS as a single tool, has a greater sense of

internal cohesion, with the same metadata applicable to database tables and columns as it

is to transcripts, media files or code atoms, however, because it lacks Replayer’s state/event

separation, at least by default, as well as missing out on Replayer’s RIDs it is limited to

synchronising data by time alone. From an extensibility point of view DRS requires its

processors to be written in java and requires a specific interface to be implemented for its

log file processors and viewers. It does however, provide all the necessary methods and tools

necessary to quickly create processors. Conversely, Replayer, while it provides a template

parser which does contain the necessary tools, has no such restrictions. Parsers, like other

viewers, are essentially separate programs and can thus be written in any language as long as

they can send messages via TCP to the network server using the Replayer communications

protocol. Despite this flexibility it would appear DRS has the superior engineering for

reading in log files. The configurable handling of so many potential file types is far superior

to that of Replayer, but Replayer’s rigorous database structure and comprehensive set of

synchronized generic data viewers make it significantly more useful once the data has been

input. It is perhaps unsurprising that DRS is having its database system rewritten into a

structure resembling Replayer’s. However, it will maintain its superior support for input,

and metadata, as well as the support for multiple databases crucially missing from Replayer.

DRS is also having a set of generic graph type viewers similar to those of Replayer written

to allow the same kind of coordinated data exploration that Replayer currently offers. This

is an example of the convergence of the two approaches.

4.3 Distributed software architecture

4.3.1 Introduction

Replayer and DRS both have a client server architecture, to allow multiple users to work on

an analysis, but they are approached in very different ways. Replayer is created as a set of

networked viewer components which all communicate with a workgroup database and thus

allow users to work concurrently on the same data, or a single user to utilize two or more

computers to circumvent physical limitations of screen real-estate and processing capacity.

DRS on the other hand, uses an approach more like concurrent versioning system (CVS),

79

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

with each client self contained and a networked server allowing non-simultaneous shared

access to projects and files stored elsewhere. In practice we see that while the potential

collaborative use of Replayer was not fully exploited in our pilot studies, the architecture

did nevertheless allow for a more customised setup. DRS, while somewhat simpler with

respect to collaboration, is the more heavyweight of the two programs with many users

noting that it had a very difficult learning curve.

4.3.2 Replayer’s Client-Server architecture

One of the design goals Replayer has been to allow for networked interaction, with several

computers sharing a single Replayer session and subsequently support both collaborative

analysis, and distributed task sharing. The design would therefore require a central session

controller and clients to that controller, thus necessitating the classical client-server architec-

ture. It was short logical step to assume that that session controller would serve to control

access to the database. Each client is an independent program which communicates directly

with the server using simple network protocols, thus allowing clients to be run on any com-

puter sharing a network link with the server. This allows differing configurations based on

the particular requirements for any given session. The server broadcasts its existence across

the network on a known port, and each client, when started, listens on that port, locates the

server and sets up a connection. By using a simple communications API, it is possible to

allow clients to be written in any language, by anybody with some programming experience,

and no one client need depend on the existence of any other. Additional components can

be added to the set at any time, including runtime.

This architecture has two distinct advantages. First, two or more analysts are able to

simultaneously collaborate on the same piece of work simply by connecting their computers

to the same network server, and second it is possible to use distribution to share out the

workload between multiple computers. Let us take an example in which we have a number

of videos which must be played simultaneously. Now add to this the requirement that they

must all be high resolution and encoded with high visual and audio detail. Add to that

the need to process some very complex log files, and possibly visualise them with a CPU

intensive dynamic graphing technique.

One way of encoding these videos might be MPEG2 (the DVD standard). Playback of

MPEG2 is quite processor intensive - an examination of playback of an MPEG2 movie at

television resolution (720x576 pixels) using a computer with a reasonable processor (2.4Ghz

80

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

Pentium 4) and plenty of Memory (1Gb) using Cyberlink’s PowerDVD 1 software showed

the playback process consistently using 75% of the CPU. Trying to play two of these

movies simultaneously becomes problematical. Add to that the system log data analysis

and it quickly becomes impractical. Instead consider the situation where we have several

computers available. We can dedicate one each to the two movies and a separate one to

the graphing and have everything run smoothly. Of course this necessitates having several

computers, and is therefore not an option for every user, however it does make this kind of

operation possible. One other side benefit comes from using multiple computers. It quickly

became apparent with use that Replayer is extremely hungry for screen space (sometimes

called screen real estate). At the time of development - A good high resolution monitor

screen was typically 1600x1200 pixels, with 1280x1024 being more common. Even with two

monitors it wouldn’t take many videos and visualisations to completely fill those screens.

Figure 4.3 is a photograph of Replayer running simultaneously on two computers and four

screens) There are in fact only five different coordinated viewers showing. The views are

(clockwise from the top left) a pair of videos, an event series, a time series, a histogram, a

Google earth bridge (and associated Google earth view). Note also that the laptop on the

left is running Apple’s OSX, while the laptop on the right runs Microsoft’s Windows XP.

The screens shown here can be seen in closer detail in figure 3.2.

Figure 4.3: Multiple networked instances of Replayer

1www.cyberlink.com

81

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

4.3.3 The Server

Replayer’s server, called the Control Unit, holds the database and manages connections to a

number of data viewers as clients. The database itself could have been implemented as one

central webservice based database (a grid-style [79] approach), that all clients of Replayer

connect to allowing for global sharing of data, or each client could have maintained its own

database, synchronising with other connected clients when necessary. For a proof of concept

system, a one server per session approach was used based on a hypersonic SQL database

2 and the QuickServer java networking API 3. One computer would maintain the database

only for the duration of a given Replayer session. Other clients could connect during that

session but they would interact with that dataset rather than whatever replayer databases

they may have stored on their own machines. To further simplify the cross system design,

it was decided that each viewer would actually be a separate program, and communicate

through network protocols with the server.

The server broadcasts on a user defined port a simple message containing the IP address

of the computer on which it is running and on which port connection requests should be

made. Once a client connects, the server sets up a bi-directional TCP link over which all

communications with that client will occur. Only the server uses the Quickserver pack-

age, with clients using a simpler stream writing technique. This allows, the cross-language

support mentioned earlier, as dependency on quickserver would limit the clients to those

programmed in Java.

4.3.4 Communications Protocol

Replayer uses TCP for all its internal communications based around a very simple structure.

Messages are transferred in uncompressed ASCII, over the QuickServer defined system using

keywords, which the client and server recognise and use to trigger the appropriate responses.

Keywords are denoted by the ‘$’ character and listed in the API. An example might be a

message sent to the server requiring a response containing data in the database to be sent

to a particular client. This would take the following form:

$SQL<sql query> $CLIENT <client ID>

The $SQL tells the server that this is going to be a selection query, it then sends that

query to the database. The response from the database is the routed to the appropriate

2http://hsqldb.org
3http://www.quickserver.org

82

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

client, denoted by the number following the $CLIENT keyword. Note that this client may

not be the same one that sent the request - indeed requests are typically sent from the Meta

Tool, with their responses being sent to one of the visualisation clients. The server maintains

a list of active clients, each with a unique ID so the server is able to use this list to decide

how best to route the response. There are also cases, primarily those of selection, where the

server will multicast a response to all its clients, which it does simply by iterating through

that list. A kill protocol is used when individual clients are closed to ensure that the client

list is accurate, and regular ping-type communications are made to ensure that each client

is alive - this means that should an individual component fail, the server will be aware of

this and remove it from its list.

This protocol, while very simple, allows the development of additional clients with rela-

tive ease, not requiring complex communications systems, though it is not appropriate for

sensitive data as the communications are unencrypted. However, were stronger security

a requirement, Quickserver offers the facility to include encryption on all messages. This

would of course add an extra layer of complexity to constructing new client visualizations.

4.3.5 The Database

The back end database, is created with the hypersonic SQL package, and designed to run

in main memory, until such time as the size of the database exceeds the available memory -

defined when the virtual machine is started, at which point it switches to a more traditional

format. The database is written to XML on shutdown, and recreated from that file on

startup. This allows for several databases to be maintained simultaneously with the user

switching between them as required. As such, datasets are typically stored in separate

databases, with only one being active at any given time. Importing and exporting is then

simply a matter of sharing the XML files, though they are packaged up into jar files to

achieve this as one database may generate more than one file. The server uses JDBC to

communicate with the database system allowing for the execution of SQL commands. As

with many database systems, there is no direct visual interface to the database, though it

is possible to interrogate it using freely available database viewer tools included with the

hypersonic SQL package.

83

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

Database Architecture

As we have seen in the Log file handling section, Replayer’s database makes a differentiation

between the idea of state and event type entries to the database. The defining factor of

these paradigms is that state will be a set of values (not necessarily continuous), but that

these values will be all of the same types, and thus easily represented with a single table.

The structure of that table is defined by the log file parser, but the first two fields must

be included. First, Replayer Identifier (RID): this is a unique ID for that row, used as the

primary key of the table and also used by the selection process to achieve brushing and

linking. Because the RID must be unique it is not possible to expect a log file parser to be

able to assign this; several different independent log file parsers may be used to create one

database, or just one used several times. Because this could happen concurrently it made

more sense to allow the server to assign this crucial attribute. Thus, it is assigned by the

server, which modifies incoming SQL Create or INSERT commands to include this field,

and assigns them based on its own internal list. The second value is always TIMESTAMP.

This is self explanatory, but Replayer expects it in the form of Milliseconds since January

the first 1970 - which is the standard that Java uses for creating time values. There are

of course many different ways in which time can be represented, but Replayer makes it

the responsibility of the log-file parser to correctly translate these into a Replayer-friendly

format. All the other fields in the table will be defined, again, by the log file parser. The

first command it is expected to execute is an SQL CREATE TABLE for the state table. A

simple example of a very simple state table might include:

RID, TIMESTAMP, XPOSITION, YPOSITION

This particular table thus includes the RID and timestamp as required, but also the x and

y positions of a user. The exact form of these coordinates, be they British Ordinance Survey,

Lattitude/Londitude, or some form of relative positioning is not known by the database, and

it is up to the clients to correctly interpret them. The state table is thus the simplest of

database tables, and easily represented. Slightly more complex is the case of events. An

event may have a number of values associated with it, but those values may differ from an

event of another type, therefore a single table is inappropriate. Instead Replayer creates

an event master table, containing just three values for each event - RID, TIMESTAMP,

EVENT TYPE. Each event type refers to a second table, specific to that event, using the

RID as a foreign key and is created with whatever fields are appropriate for that event. It

84

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

is thus possible to modify the database’s set of tables at runtime to include more tables

for different event types as they appear in the process of parsing the logs. Let us consider

the case of an event that records a button press on the UI of a recoded system. The event

master table would include a row containing an RID, timestamp, and the event type, in this

case BUTTONPRESS. The server, on receiving this update will examine the list of tables

to see if BUTTONPRESS is a valid event type. If it is, then the vales are simply written

into that table, if not a new table is created, with fields based on the content of the event.

That table might look something like the following example:

RID, BUTTONNAME

It is of course likely that an event may have far more variables associated with it, but

let us just consider this very simple example for now. If we imagine that we have the three

tables described above, giving us the State table, The event master table and the button

press table, we can work out for any given event - when it happened and where the user

was at that time. This allows us to create, for example, spatial or temporal distributions

of button press events. One more table is required to complete this set. Replayer supports

not just logged data but also the use of multimedia data types. The most common of these

are video and audio, and in order to accommodate their Synchronization within the system,

they too must be included in the database. One common feature of such files is a tendency

to be temporal - that is they have a duration. Note that this is not the case with still

images but these are defined as having an instantaneous duration so can be represented

in the same way as other media types, and at the time of writing Replayer does not have

an image viewer component. The media table thus contains RID, START TIME, END

TIME, FILEPATH, TYPE values, with type typically containing the codec with which it

is compressed - which also defines what type of media file it is. With media files, Replayer

does not support streaming, instead requiring the file to be stored on the local computer.

4.3.6 Queries

When Replayer receives a query from a client it executes the appropriate SQL command

to the database, and the result comes back as a java result object. One option would be

to serialise this object and then route it to the appropriate client, however because of the

cross-language philosophy underlying Replayer’s component architecture, it instead converts

that result into a comma separated value table. The first line of this table contains the field

85

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

names, the second, the field types, then each subsequent line contains the values. An example

response may look something like this:

RID,TIMESTAMP,XPOSITION,YPOSITION

INT,LONG,DOUBLE,DOUBLE

1,1000001,12.643878,65.87459847

using newline characters to separate the lines. It is entirely up to the client component

how that data should be represented, indeed it is by appropriate choice of visualization

components that researchers are able to extract accountable data from the system logs

stored in the database.

4.3.7 Clients

In the Replayer architecture (figure 4.4), everything except the control unit, is considered

a client. This can include, but is not limited to, log file parsers, visualisation components,

multimedia players and bridges to third party programs. It is also possible for a networked

system that is being captured to be itself a Replayer client and thus write its logs directly

into the Replayer database. Each client conforms to the Replayer communications API and

fulfils the necessary requirements to be loaded by the meta tool as outlined in the section on

extensibility (section 4.3.9). In the proceeding subsections we will examine these different

types of component and consider how they work and integrate with Replayer as a whole.

Figure 4.4: Replayer’s System Architecture

86

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

Visualisation Components

While the set of visualisation components are quite diverse in style, they do all follow a

consistent formula.

• Start up empty and register with the server

• Wait for some data from the server (sent via a request from the meta tool by the user)

• Filter the data in some way

• Display the data

• Allow the user to make selections

• Reflect the selections made in other components.

Communication with the server is achieved over a TCP connection mediated by the server

(figure 4.4). A simple API of available message types offers the client various options for this

communication. Assuming it is written in java, a client must implement the iReplayerClient

interface which requires the client to include connect(), recievedata(), sendselection(), and

recieveselection() methods. This, when combined with the ReplayerClientNetworking.jar

library provides everything the client needs to communicate with the server. The Replayer-

ClientNetworking Library is fairly simple, and replicable in any language that supports raw

SOCKETS, so the dependency on java is not complete, but it is certainly simplest to create

one’s clients in java.

Data are received from the client in the form of a comma separated value string using

newline characters as line separators. It is entirely up to the client the way in which these

data are displayed to the user. Descriptions of each of the default set of components is

included in the previous chapter.

When a user makes a selection within a visualisation component, the component must

send to the server a list of all the selected RIDs. In the cases where the user is selecting

a slice of time, the component must find all the RIDs within its stored data, that occur

within that timeslice, and send them to the server. The server will then respond with a list

of selected RIDs, multicast to all the connected clients.

When a client receives a list of selected RIDs from the server it must update its selection

to include only that set of objects. In some cases, such as that of the event series, this is

87

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

Figure 4.5: A partially selected event series.

trivial - simply graying out those glyphs that are not in that new set of objects (as shown

in figure 4.5).

In a more complicated viewer such as the histogram, the selection must be displayed

differently - in this case with the bars of the histogram partially filled with colour based on

counts of the events in the selection set (as shown in figure 4.6).

Figure 4.6: A partially selected histogram.

Each visualisation component is free to handle the data in whatever way its programmer

sees fit. Replayer’s architecture does not require the visualisation components to depend

on any one model, simply that they send and receive data in the CSV format specified

in the iVisualisationComponent interface. This allows for a diverse range of components

88

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

and techniques, with each using whatever storage model and visualisation technique is most

appropriate.

4.3.8 Bridge Components

It is the case with some components that third party software already exists that does

the required job effectively. In the current version of Replayer, these include Google earth

for map based displays, and either QuickTime or Windows Media Player for displaying

media content. It is however a requirement that Replayer’s server be given some way to

communicate with these programs. As such Replayer includes three ‘bridge components’,

two media bridges, one each for QuickTime and Windows Media Player and a third for

Google earth. As the bridge components are, like the visualisation components based on the

iReplayerComponent interface they operate in much the same way.

Media Bridges

Replayer’s two media bridges coexist on a one-per-platform basis. Those tools consist Quick-

Time on OSX and Windows Media Player on Microsoft Windows. The user interface and

much of the functionality is identical between these two components, with only the layer that

communicates with the program in question being replaced. Those layers will be examined

presently, but first let us focus on the Time Slider component, which is replicated in both

versions.

The time slider is a simple looking component. It comprises a Slider with a thumb,

a user interface component that most computer users will be familiar with, Three buttons

labeled ‘Play’, ‘Stop’ and ‘Fix in DB’ respectively. A start time label at the top left, and end

time label at the top right, a current time text field in the top centre, and a master volume

control on the bottom right. On startup, the time slider queries the server for the contents

of the ‘Media’ database table. It also retrieves the state and event master tables. Next it

finds the first and last timestamp from all of those tables. This gives the entire duration of

the dataset, and defines the start and end points for the slider. It is possible to send the

TimeSlider a reduced set of data by using the meta tool to send a smaller set of tables by

making a constrained SQL query. Once it has the start and end points of the data set, the

timeslider paints the slider’s bar red in all the locations where there is media data available,

based on the values in the media field. Additionally it stores a list of all the RIDs in the

master tables, along with their timestamps in a list sorted by timestamp. As the thumb is

89

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

moved on the slider, when it enters one of the red areas, the corresponding media is opened

in the appropriate program see the next section for details on how this works. Moving the

slider will scrub these movies along, jumping to the correct time in the movie as the thumb

progresses or reverses along the path bar. At times where a given movie is not supposed to

be viewable, that is, when the thumb is at a time that that movie was not being recorded

(according to the contents of the media table), the movies are hidden from view.

The time slider, like every other visualisation component, supports the selection process.

Because it maintains a list of all the RIDs along with their timestamps, it is possible to select

a slice of time in the interface, by dragging with the mouse, yielding a green colouration.

The start and end times of this selection are then used by the timeslider to locate all the

RID values within that slice of time. These values are then sent to the server as a selection

and subsequently sent to all the other components. Received selections reverse the process,

drawing single pixel green lines along the interface in all the places where events have been

selected. The thumb, and subsequently the movies are then jumped automatically to the

first of these lines, ready for the user to review the videos for that time.

Pressing the play button causes all the multimedia files to play simultaneously (single

video playing is available trough the normal media controls of the program in question).

While playing those videos, the time slider also sends out selection information, once per

second based on the location of the thumb. In this manner it is possible to ‘animate’ the

selections in other visualisation components, yielding for example on a map the apparent

motion of the users as a trial progresses, or the occurrences of events in an event series.

Pressing the stop button, as one might imagine, causes this process to desist. The master

volume slider simply sets the volumes of all the movies to the value defined.

Having considered the operation of the TimeSlider part of the media bridges we must now

consider the area in which the two differ. First let us examine the QuickTime Controller.

Apple’s OSX includes a scripting language called Applescript, which can be used to remotely

control all of Apple’s own applications. As one of these applications, QuickTime is control-

lable in this manner. Contained within the Aapple distribution of java, is a library allowing

java to execute applescript programs, and thus it is relatively straightforward to instruct

QuickTime to do exactly what one wishes. As such, when a user, for example, presses the

play button, an applescript is executed which tells QuickTime to Play All Movies. The same

technique allows data about the movie to be retrieved, so for the synchronization a script

requests data from QuickTime about the current position of a movie. The same technique

90

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

is used to hide and show movies, and to jump to specific frames.

Windows media player does not share apple’s scriptable approach. Fortunately there is

an available solution. A small C# program, that runs in the windows system tray has been

created. When a movie needs to be opened, it creates a window, and adds a windows media

player COM component to that window, giving the user an interface, which if lacking the

full features of windows media player, is certainly a familiar interface. This program com-

municates with the TimeSlider component over a TCP connection and achieves effectively

the same result as the QuickTime alternative. Movies are shown, hidden, played, stopped

and jumped as required by the user’s interaction with the time slider.

Google Earth Bridge

Google earth is a powerful tool that allows locations to be plotted on a globe. The 3D model

of the earth is textured with satellite photographs of nearly everywhere on the planet, and

can be zoomed in to a quality dependant on the highest resolution of photographs so far

taken for that area. In some cases, particularly the larger western cities, those photographs

are incredibly detailed. This then seemed like an idea companion to Replayer.

Locations can be plotted in one of two ways, either directly - requiring the user to click

the location and tag it with some data or, alternatively, locations can be plotted using a

Keyhole Markup Language (KML) file. It is the latter of these which is of interest to the

design of Replayer. Google earth can be configured to get this file in one of two ways, either

by opening it from the file menu, or indeed the operating system, or by retrieving it from an

HTTP server on a predefined port and schedule. The highest resolution of these retrievals is

1Hz. This means that the fastest that Replayer can update Google earth is once per second,

as there is unfortunately, as yet, no way to directly push data at the Google earth client.

The Google earth bridge component starts up exactly like a normal Replayer component,

and has a simple user interface that allows the user to make selections about how the resulting

KML file should be structured. A set of drop down menus allow the user to define, from the

columns made available by the SQL statement generated in the meta tool, a main variable -

which is the text that will appear in Google earth as the title of that object, an x position, a

y position (the bridge component is able to automatically and transparently convert between

British OS and latitude/longitude values, and finally a variable by which the values will be

coloured - this allows an extra dimension of data to be represented at a glance. An example

of this setup from the treasure game described in the next chapter, might be the Player’s

91

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

name as the main variable, the x and y coordinates, and then the glyphs coloured based on

the player’s team. Note that it is acceptable for the colour variable and the main variable

to be the same. Additional variables can be added by selecting them from a list box on the

left side of the UI. These are added to the KML and represented in a pop up box when the

user selects one of the objects in Google earth.

Once the setup process is complete, it generates that KML file and makes it available

to Google earth by running its own private HTTP server on a user defined port. Each

time a selection update is received from the server, the KML file is re-generated, either

excluding the non-selected objects completely, or colouring them grey, depending on the

user’s preference.

When the user starts the Google earth application, they must select the options from

within the Google earth user interface to get the KML file from Replayer’s server. This

requires them to input the IP address of the computer running the bridge component -

typically the same machine, so the loopback address 127.0.0.1 is the most common and the

port, typically 8081. Once this is done, they must select a refresh rate.

One of the biggest problems with the choice of Google earth as a visualisation tool, is

that there is no obvious way to retrieve the selections a user makes from the program and

send them back to Replayer. The only option available, comes from a quirk of Google earth’s

HTTP GET request. When it asks for the KML file, it sends the enclosing coordinates of

the image currently shown on the screen. This means that it is possible to use this box as a

crude form of selection. When the GET request is processed by the HTTP server, it passes

that data into the bridge component, which can the use a simple algorithm based on Java’s

2DRectangle object to establish which RIDs are within that enclosing rectangle. This is

considered to be a selection and passed to the server, which then passes it on to the other

components.

The Google earth bridge is at best an imperfect solution to the problem of plotting

positional data for Replayer. The selection process is clunky and the updates are potentially

too slow at 1 per second. One option for updating this component to solve these issues might

be to use the Google Maps API instead and display data using HTML and either a default

browser or a custom viewer component.

92

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

4.3.9 Extensibility

Each Replayer client is a separate program in its own right. It need only adhere to the

communications API to be able to communicate with the server. As such, there are no

restrictions on the way it is implemented. To make it accessible to the user however, it must

be packaged up into a format that the meta tool is able to examine, and thus display in the

‘start new component’ screen - though if this is not done, one can still use such components

by opening them from outside the Replayer environment. This packaging requires them to

be stored in a java archive (jar) along with the path for the main class, and a screenshot

which the meta tool uses in its menu. This means that a simple java wrapper which executes

a Runtime.exec() command will be required for non-java based clients.

Additional clients can be added at runtime as the ‘open new component’ menu in the

meta tool scans the folder where clients are stored every time it is opened. The intention

here was to create an architecture which would support third party components, encouraging

a system whereby if a particular component is required, it can be added by someone with a

little programming experience, then shared with a larger community. In theory, a community

of Replayer users could generate a pool of available open source components and one would

be able to search this for suitable components before having to create a whole new one.

4.3.10 Digital Replay System’s Client-server system

The DRS desktop application can be used either in a standalone mode or a client mode,

associated with a particular DRS workgroup server. DRS’s support for collaboration and

distribution are only available when used in client-server mode.

When running in standalone mode all projects are stored exclusively on the local com-

puter. However, when running in client-server mode each project can be either standalone

(local only to that DRS client) or server-based (and potentially accessible to other clients,

depending on permissions). A standalone project can be converted to a server-based project

at any time (but not vice versa). In a server-based project it is up to the user to decide

which files should be uploaded to the server, and which maintained locally only (and/or

distributed by other means than the DRS server).

93

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

4.3.11 Server Overview

The DRS server, like the client, is written in Java. It runs as a J2EE (Java 2 Enterprise

Edition) web application, in a servlet hosting container such as Apache Tomcat. It has two

interfaces:

• An XML Web Services interface, which clients use to communicate with the server

(based on Apache Axis), and

• An HTML browser interface, for DRS users and administrators (based on the Spring

Framework and Java Server Pages).

Like a DRS client, the server uses persistent JENA RDF models (backed by a Hypersonic

SQL database) to hold an index model and the metadata for each project. The server also

has a local file storage area for project-related files, and can upload files from and download

them to individual clients for local use. Project-specific databases do not exist on the server;

it is assumed that they can be regenerated by clients using the log files and data processor

definitions which are stored on the server.

4.3.12 Security and access control

The DRS server is presumed to be secure - it is up to the local system administrator(s)

to take the usual precautions to protect the machine and access to it. The full RDF of all

(server-based) projects and any project files that have been uploaded are all accessible to the

server. However DRS clients need not be assumed to be secure, and different DRS users may

have access to only a subset of server projects (and, in principle, only a subset of the RDF

and files within any one project). The main point at which this is policed is in the interaction

between the client and the server. The DRS server website is the starting point for security

and access control. When first deployed there is a single pre-configured administrator for the

server. This bootstrap user can then add other users (as server administrators or regular

users). The web site is also used by administrators and project owners to control which

other users have access (read and/or write) to which projects.

Client Identification and Authentication

A new DRS client must be added to the server by an administrator - an administrator user

name and password are required by the client during the initial client registration process

94

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

when the client is first run on a new machine. The registration process establishes a shared

secret (a random string) between the client and the server which is used to authenticate that

client in subsequent interactions (excepting un-trusted clients). DRS supports a number of

different strategies for authenticating users, according to the nature of the machine that the

client is running on; this is configured by the administrator when the client is first registered

with the server. The options are:

• Client machine is un-trusted - this requires an explicit user log-on every time the client

application is used, and should typically avoid retaining local project metadata or files

after the session is over. Note: this is probably unsupported at the present time.

• Client machine is trusted and single-user - this does not require a log-on or authenti-

cation from the user each time the client application is used, as it assumes that the

normal (physical and OS) security of the client machine are sufficient to reasonable

identify and authenticate the user.

• Client machine is trusted and shared (typically part of a multi-user domain) - this does

not require a log-on to the application itself, but the user identity is mapped from the

current operating system identity, i.e. it is again assumed that a successful access and

authentication with the OS of the client machine is sufficient to authenticate the user

(and that the OS user accurately identifies the user).

There is no fundamental reason for a DRS user to actually be a single person - if a group of

people normally shares use of a single OS user account then they will normally also appear

as a single user to DRS.

Server Access Control

Almost all client requests to the server are subject to authentication - of the client and

user - before handling (the only exceptions are checking the server version and initial au-

thentication). Consequently, when each request is actually processed the identity of the

requesting user in known. DRS currently has a relatively simple access control model: each

user can have no access, read access or read-write access to any one server project. The

server index model is used to persist access permissions, and this can be changed via the

server web pages (which require the user to log into the web pages independent of their use

of a DRS client). The server will only provide new project data or files to a user if they have

read permission at the time of asking. Similarly, the server will only access project updates

95

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

or new file uploads if the user has write permission at that time. If a user’s permissions

are reduced then they will normally still have access to the copies of project data and files

which had previously downloaded from the server, and any data which they had previously

contributed will still be present in the project. By default, a new project is readable and

writeable only by the user who created it. They can then grant read or write access to other

users registered with the workgroup server. In addition to read and write access, the server

also keeps track of granted access, i.e. the right to change other users’ access to a project. A

DRS server administrator has grant access on all server projects (e.g. in case a user leaves

the organisation). Otherwise, as with read and write access, the user creating a project is

the only one with initial grant access, although they can grant this same facility to other

users.

4.3.13 Client Access control

The DRS client maintains a separate RDF model for each project. More precisely the client

maintains a separate RDF model for each user’s own view of each project. So if the same

client machine (and DRS client application) is used by two different users, then each one will

be using a disjoint set of RDF models, even if they are working on the same server-based

projects. This provides a basic level of access control on the client, since the client will only

give the user access to their own copies of the project data. So if a particular user is denied

access to a server project by the server they will never be able get their own copy on the

client. However, at least in the current implementation, these models are actually part of

the same database, to which the client application has full access. So a sophisticated user

(programmer) could gain access to the project views of other users on the same machine.

We assume that local policies and working practices (including trust) will be sufficient to

address this issue trusted multi-user machines (but if follows that highly sensitive data should

never be accessed at all from a machine that is not itself sufficiently secure). Depending on

the configuration of the client machine and its operating system it may not be possible to

prevent other users accessing local video and log files stored on the machine (e.g. through

the normal operating system tools and applications). However, users are able to make use of

any operating system facilities which are available to guard the files that they are working

with from other users of the same machine (e.g. OS file and directory permissions), since

they will normally run the DRS client from their own user account (with their own OS

identity and rights for file access). At present, files downloaded from the server are cached

96

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

in a common client directory, and so would be accessible to other users of the same machine.

A more secure option would be to rely on personal removable storage (e.g. external hard

disk, flash memory or DVD) which is only plugged in to the client machine when those files

are actually required and can otherwise be independently physically secured.

4.3.14 Project Synchronization

The data for each project is a single RDF graph (plus associated files and databases on

disk). For a server-based project, the server is considered to hold the complete and up-to-

date version of this project data. Each project has a server version number (an integer),

which is incremented each time the project is updated on the server. When a new project is

created it is initially a standalone project, known only to the creating client and user. The

user can then work on that project locally if they wish. At this point or at some later time

the standalone project can be converted to a server project. At this point:

• the client uploads its complete RDF model to the server,

• the server:

– creates its own new persistent RDF model for the project and loads the client’s

data into it,

– checks and updates the project information (e.g. creation date, version),

– copies essential information about the project to its own index model,

– grants initial project access rights to the creating user,

– creates a new RDF graph to the client reflecting the state of the server project as

that user is allowed to see it (often but not always this would be the full model),

– stores a copy of this on the server, so that it has a persistent record of what the

client was given of the project metadata,

– and returns the data to the requesting client.

• The client then

– replaces its old (uploaded) project data with the new data,

– stores a copy of this locally, so that it also has a record of what information the

server gave it, and

– updates its own index information (e.g. with project server version number).

97

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

Note that the server also caches a copy of the RDF data that it returns to the client, so

that it has a persistent record of what the client was given of the project metadata. This is

illustrated in figure 4.7

Figure 4.7: Creating a new server project from a standalone project.

4.3.15 Synchronising client and server

Each user on each client machine has a separate copy of a server project’s RDF metadata

(filtered according to any read access constraints for that user). Each client also has a

copy of the project metadata as originally received from the server and without any local

changes. Whether a user has write access to a project or not they can make changes to their

own copy of the project on their own client machine like any other (server or standalone)

project - no communication with the server is required for normal DRS operations. This

is an important design goal of DRS client-server approach, and allows the analyst to work

effectively when away from their home network (or, indeed, any network, for example while

travelling). When a user has done some local work on a project and wishes to update the

server they choose explicitly to synchronize that project with the server. If successful, this

will make those local changes to the metadata available to other project users and/or from

other client machines. Synchronization has two phases.

98

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

Client Update

First, the client must get itself up to date with respect to any changes (by other users or

from other client machines) made since this client/user version of the project was downloaded

from the server. It does this by requesting an update from the server. The server:

• Checks that the user still has read access to this project;

• Makes a new snap-shot of the server’s version of the project metadata, filtered accord-

ing to any access restrictions that this user has,

• Retrieves its copy of the version of the project which it previously gave to this user

and client,

• Calculates the difference, i.e. which RDF statements have been added and which

removed since the last update,

• And sends these differences to the client.

The client can then apply these differences to its own local model. If the changes that have

occurred on the server do not overlap with those just made on the client then these changes

will all be simple to make - just adding and removing statements. The client also uses the

changes to update the copy that it has of the project data as originally received from the

server. This is illustrated in figure 4.8. However, if the user has changed some of the same

Figure 4.8: Client update process to merge server changes.

things then the changes from the server may no longer make sense. For example, two users

99

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

might change the title of the same analysis concurrently. The first might then upload their

changes to the server. Then when the second user tries to update they find a request to (a)

remove a statement that is no longer present (the old title) and (b) add a new statement

which conflicts with one already present (a second value for a functional property - the new

title value). There is no general automated solution to reconciling these kinds of concurrent

changes. The current implementation has some simple heuristics, e.g. checking for functional

properties (or property restrictions with cardinality 1) and retaining the locally changed

value in preference to remotely changed value. However this is not a complete solution, and

more needs to be done in this area (for example, automatically merging changes in textual

content, and/or referring conflicts to the user for manual reconciliation). Most problems of

this kind can be avoided by appropriately designed working practices. For example, if each

users creates and edits their own analyses then they are unlikely to make changes which

conflict with others. If a client merges its updates successfully then its local model will now

be up to date with respect to the server, but still contain the additional changes that had

been made locally.

Server Merge

Once the client merge is complete, the client can then perform the second phase of Synchro-

nization, which is to pass those local changes back to the server, to be merged by the server

into its reference version of the project. This is essentially the same as the client update

process but with client and server roles partially reversed:

• The client

– Retrieves its local copy of the model as received originally from the server (incor-

porating any updates received from the server, above),

– Calculates the difference between its current (edited) model and this, i.e. which

RDF statements have been added and which removed locally,

– Sends this to the server.

• The server

– Checks that the user has write access to this project, rejecting the request if they

do not, otherwise

– Applies the client’s changes to the reference version of the project,

100

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

– Increases the server project version number (changes have been made),

– Makes a new snap-shot of the server’s version of the project metadata, filtered

according to any access restrictions that this user has,

– Retrieves its copy of the version of the project which it previously gave to this

user and client,

– Calculates the difference, i.e. which RDF statements have now been added and

which removed (at the client’s request) since the last update,

– And sends these differences to the client.

The client can then apply these (approved and visible) differences to its local copy of the

model as previously received from the server. This is now copied into its current view of

the project. This is illustrated in Figure 4.9. Note that there should be no conflicts during

Figure 4.9: Merging client changes with the server.

this process, either on the server or on the client, since the updates from the client are now

based on an up to date version of the server’s information, and the updates from the server

are based on a known model in the client.

101

4.3 Distributed software architecture Chapter 4: Key Implementation Factors

4.3.16 Comparing the two approaches

While Replayer and DRS both demonstrably use client-server approaches, the goals, and

thus design and implementation of these approaches differs drastically. DRS, the more

heavily engineered of the two projects takes a monolithic approach to clients. That is, the

client is a single application per computer with a number of viewers and editors for the

data. This limits collaboration to some extent, making it a solo application, but the server

extensions allow small teams to work on the same data. Ultimately, this approach is the

more scalable of the two, as it is possible for a single client to have several servers with

different data stored on them. It is also significantly easier to set up, as it has a single-user

version which entirely bypasses the need for a server and is sufficient for most applications. A

spinoff project of DRS called Mixed Media Grid (MiMEG) created a cross-site collaborative

version of the system however [82].

By keeping each viewer as a separate process, in effect a whole separate program, Re-

player allows users to more effectively tailor the tool to their needs. Setup is more complex

as a server is required to run any session, even on a single machine, however once set up

Replayer benefits in a number of ways from its approach. First, Replayer does not require

the kind of window organisation tools that DRS does, as these are embedded in most mod-

ern operating systems. Second, a Replayer analysis can be spread across several machines

on a network which allows two key benefits: collaborative analysis and additional process-

ing power/screen-real-estate. While DRS is limited to the maximum processing power of a

single computer to run all its viewers, and thus has a hard limit on the number of those

viewers that can run simultaneously (especially in the case of video playback), Replayer

is able to share its processes between two or more computers, circumventing those limits

(though Replayer Synchronization between two computers is compromised by network lag).

In discussions with users it has been shown that it is really the last of these benefits that

appeals from Replayer. We with our pilot users, we saw few examples of collaborative anal-

ysis, though MiMEG has demonstrated that there is a recognisable demand for it. The final

point to consider is that of extensibility. Both programs offer facility for this, but of the two,

Replayer offers a significantly more versatile model. DRS requires extensions to be written

in Java, implementing the (fairly complex) viewer interface and for them to be registered

with the main program. Replayer on the other hand has no set requirements other than

that the module is able to read and write to the correct TCP ports and uses the Replayer

communication protocol to send and receive selection data. This increases the number of

102

4.4 Synchronization Chapter 4: Key Implementation Factors

people able to create extensions to Replayer, simply by removing the requirement that code

be written in Java. Of the two tools DRS is the most immediately familiar to its core user-

group (social scientists) since the suite of tools it delivers are more recognisable to users

of existing CAQDAS software, however several of those users find the program excessively

complex because of the sheer number of facilities it provides. While Replayer can seem like

a simpler alternative, it lacks the more traditional CAQDAS tools, such as transcription and

a coding system. It is worth noting that in a proposed rebuild of DRS the architecture will

be brought closer in line to the Replayer model. One area in which the DRS model stands

far superior to Replayer is that of multiple project support. Replayer can handle exactly one

database at a time. While that database can easily be saved, exported and passed around,

it has nothing like the kind of corpus support enjoyed by DRS. Indeed, as will be seen in

the proceeding section, DRS is even able to handle multiple log file databases to provide

comparative views of different studies within a single analysis - something Replayer is simply

unable to do. Likewise DRS’s server system allows users to have data stored securely on

several servers. Replayer is simply not capable of that kind of sharing. Despite the fact

that of the two, Replayer is billed as the collaborative analysis tool, usage has shown that

it is the type of collaborative work supported by DRS, i.e. users working independently but

sharing a corpus of data, that is more practically useful than the kind of simultaneous data

analysis that Replayer supports.

4.4 Synchronization

4.4.1 Introduction

It is important to note here that when discussing synchronization we mean more than just

the technical task of keeping data temporally synchronized, though that does form part of

the discussion. There is also the idea of methodological synchronization. How heterogeneous

media can be ‘used’ together.

4.4.2 Synchronization in Replayer

Synchronization is a fundamental feature of a system such as Replayer. Without accurate

synchronization, one cannot easily relate one data set to another. There are two different

types of synchronization used in Replayer which we must consider. One is the synchroniza-

tion of multimedia clips with each other and with the system logs. The other is the internal

103

4.4 Synchronization Chapter 4: Key Implementation Factors

synchronization required to implement the brushing and linking described in the section on

viewers.

First let us consider the case of multimedia synchronization. It is necessary for each

device creating a log to be synchronized in advance of a trial. This gives internal synchro-

nization within the logged data, however, synchronising video and audio tracks with the

system logs is more complex. We use a lo-fi technique based around a tool called QCCI

(Quickie). This is an application designed to be run on a PDA given to each evaluator of

a system in use, i.e. each observer who goes out into the field. It displays a clapperboard

image on the PDA screen, and the time on the PDA is synchronized to the other devices

through wireless network connections.

Figure 4.10: The QCCI synchronised digital clapperboard

From a user’s point of view synchronization points are set in the timeline slider. A button

is used to synchronize new movies with the logged data. To achieve this synchronization, it is

necessary to open the desired movie and find a time where there is some obvious connection

between a the system time and a given frame in the movie. The easiest way to achieve this

is if the recorder of the movie has used a system such as QCCI, wherein the observer’s video

camera is pointed at the screen of the QCCI device, which displays an accurate system clock,

that has been synchronized with the devices being logged. This gives a user the system time

displayed on a frame of the movie. The user can then enter that time in the current time

field, resulting in the thumb jumping to that time, thus coordinating the frame of the movie

with the correct system time. The timeline slider sends a message to the server to write a

104

4.4 Synchronization Chapter 4: Key Implementation Factors

new time into the media table, along with the file path and details of the currently selected

(topmost) movie. That movie is then permanently synchronized with the data and can be

used as described above. If QCCI or a similar technique has not been observed, the user

must find some event, usually using the event series that is obviously observable in the movie

and base the synchronization on that.

One slight problem with this technique is that the best possible synchronization is based

on the framerate of the movie, so a movie recorded at fifteen frames per second can at

best be synchronized accurately to one fifteenth of a second. General use showed that

synchronization tended to be out by anything up to a second. Additionally, some forms of

compression - notably MP3 played back with QuickTime, slightly stretch or compress the

file, meaning that the synchronization will drift the further one is from the synchronization

point.

This is a problem about which little can be done, though if the compression amount were

known and constant it would be possible to repair it. Imperfect synchronization is spotted

most readily in audio. Playing back two media files that are imperfectly synchronized results

in a slight echo. It has been observed that the best way to handle this is simply to mute

all but one of the movies. Interviews with users have also suggested that it is difficult to

seriously attend to more than one movie at any given time. This does not in itself mean

that it is not desirable to have multiple simultaneous video streams. Indeed, many of the

points laid down in the challenges in the introduction call for multiple views on one’s data.

Just because a user attends to only one at a time does not mean that the others are not

part of the analysis. A user may examine an area of video, then immediately want to review

what happened at that time in the system logs, or in a video of a non-collocated user.

Realistically such examinations happen one at a time however, so for most applications

imperfect synchronization is not considered a major issue. In one interview, the analyst

said that she liked to watch the whole lot together first, just to get a general ‘feel’ for the

data, then began to focus on the detail of each part of the data individually, and examine

the relationships between those different data streams with a view to describing a particular

accountable event.

Audio synchronization is handled similarly, using a distinctive noise that is recorded on

the audio track and simultaneously logged. This technique does not actually require the use

of QCCI, indeed any suitably accurate display of the time is acceptable, as long as that time

is synchronized with the system clocks of the recording devices, or at least one is aware of

105

4.4 Synchronization Chapter 4: Key Implementation Factors

the offsets involved.

Beyond synchronising logs, videos, audio, the second requirement is to keep the data

selections synchronized. With many different visualisations of heterogeneous data types,

the challenge of keeping everything synchronized is considerable. There are two specific

areas of the system where data synchronization must be maintained. The meta tools must

remain synchronized showing both the current list of open components, and the queries

currently associated with them. Secondly, the current selection of data between components

must remain accurate, including when new components are opened.

Replayer is a distributed network system, so all inter-component communication must

take place over TCP network connections. Additionally, because components are non-

language-specific any communication must also be based on a simple grammar. synchro-

nization of the meta tools is maintained with messages from the control unit. Whenever a

new component, including a new meta tool, is opened or a query is sent to the database,

the control unit multicasts a list of currently active components. Included in this list is a

unique identifier for each component; the type of each; the location of each, that is, what

computer it is running on; and the last query made by each. The meta tools retrieve this

list, and update their displays appropriately.

The server is responsible for facilitating brushing and linking process between visualisa-

tion clients. Thus, when a user makes a selection in one of those clients it must notify the

server, which must in turn notify the other clients. Here we see the true purpose of the RID

value in each row of the database. A row of the database can be considered to be an object,

in that it refers to either a discrete event, or a slice of time where some state value is the

case.

A selection in Replayer consists of a collection of RIDs with each RID referring to the

object represented by that row of the database. Some clients, such as the time series and

the media bridges may appear to be selecting a slice of time, but in fact they are selecting

a collection of objects and it is this that is sent to the server. The server maintains a list

of currently selected objects which is then multicast to the current collection of clients.

A selection message uses the keyword $SELECTION then a coma separated list of RIDs.

When the server revives one of these lists, it is straightforward to simply reflect this list

back out to the clients. However, this is not sufficient to achieve the intended task.

Let us use an example to illustrate the problem. Using our earlier example from the

database architecture section, we have event data pertaining to button presses and state

106

4.4 Synchronization Chapter 4: Key Implementation Factors

data pertaining to the locations of the users. Now consider two views on this data. We have

the all the location traces plotted on a map using the Google earth bridge component, and

the button presses plotted on an event series. We want to plot just the positions of those

button presses on the map. If we select all the button presses on the event series, we see the

disappearance of all the plots on the map. This is an effect of the RID method of object

selection - we have selected all the button press events, by their RIDs and broadcast that

list out as the currently selected list of objects. However, because the map is displaying

the state objects, which have a completely different set of RIDs we see nothing selected on

the map. The same thing would happen if the situation were reversed. If we wanted to see

all the button press events that occur within a constrained area of the map and made that

selection using the map tool, none of the button press events would be highlighted.

The server, on receiving a list of RIDs examines each one individually. If it is an event,

it uses the timestamp to find the closest preceding recorded value in the state data and

includes this RID in its broadcast response. Note that it must be the preceding value, even

if the proceeding value is closer as otherwise the data are certainly untrue, while this is not

perfect, it does return the best possible known state data for the time that event occurred.

If the selected RID is a state value, then the server will look for pairs of values - that is two

values in the selection set which immediately proceed each other in the state table. If it finds

a pair, it uses the timestamps of that pair to select all the event objects that occur in that

slice of time. Filtering of these events must then be actuated on the client side. In figure

4.11 we see state entries and event entries shown over time (y-axis). The red box shows

how when selecting a slice of time including two or more state entries, all events within that

timeframe regardless of type will be selected. The figure also shows the last known state for

each event. When an event is selected the last known time is also selected (not the closest

time).

In this manner it is possible to make and maintain selections which cross the boundaries

of the underlying state/event model.

Effectively then we have a system of data synchronization that can be applied through

any dimension of the data, rather than exclusively temporal.

4.4.3 Synchronization in DRS

From a technical point of view, the current incarnation of DRS handles all its synchronization

by time. DRS supports a simple synchronization model: each file in the (analysis) file-set has

107

4.4 Synchronization Chapter 4: Key Implementation Factors

Figure 4.11: Interrelation of state and event selections

its own start time relative to the file-set as a whole. So playing from time zero (for example)

in the file-set would actually mean playing from the individual start time of each file within

the set. This start-time could be set by finding a distinctive visible or audible event (a

‘clapperboard’ event) in one file and temporarily freezing its playback, playing the other

file(s) to get to the same event, and unfreezing the first file. DRS supports this functionality

through the analysis Synchronization Manager - but with scope to significantly extend and

refine it, by the definition of time classes within its ontology. File time offsets can also be

adjusted by graphically dragging media tracks in the Track Viewer. Time is modelled in

the digital record ontology by the ontology class dr:Time. This is specialised into the two

subclasses:

• dr:AbsoluteTime, which specifies a complete date and time (e.g. 6th June 2006,

12:03:02pm GMT) as determined by some kind of timing device such as a computer

or camera with a real-time clock, or a wrist-watch or wall clock, and

• dr:TimelineTime, which specifies a time by an offset along some abstract or concrete

‘Time line’ (modelled by ontology class dr:Timeline).

The ontology models several different ways which might be used to specify time-line times:

• The unified time within a single analysis or replay (ontology class dr:EpisodeTimeline),

• Time within a single media file, i.e. time from the start of a video or audio file (ontology

108

4.4 Synchronization Chapter 4: Key Implementation Factors

class dr:MediaTimeline),

• Time as measured by some timing divice starting from some (absolute) start time

(ontology class dr:TimingDeviceTimeline), e.g. ‘UNIX’ times, which are typically

seconds since midnight on the 1st January 1970, or

• Time based on some offset from some other time-line (ontology class dr:RelativeTimeline).

Every analysis has exactly one timeline - its dr:EpisodeTimeline - and all replay is based

on this. Every time-based media file (such as a video) has its own dr:MediaTimeline. The

relationship between replay time in the analysis and time in each file viewer is determined

by the mapping from the current time in the episode timeline to each viewer’s file’s media

timeline. If the analysis and the media both have known absolute start times then these can

be used to synchronize playback (see Figure 4.12).

Figure 4.12: File/analysis Synchronization using absolute times

Otherwise (or in addition) one or more dr:TimeRelations can be used to specify points of

correspondence between times on the different time-lines, such as the ‘clapperboard’ events

already mentioned (see Figure 4.13).

It is theoretically possible with the current model, though not implemented, to specify

multiple time relations at different point in the respective time-lines, e.g. to compensate for

differences in relative clock speed, or the pausing of one of the time-lines (e.g. a video which

has been paused and resuming part way through recording). While there are good reasons

for modelling these details of time and synchronization, it does raise significant additional

challenges for user understanding and for creating a reasonably simple and usable application

109

4.4 Synchronization Chapter 4: Key Implementation Factors

Figure 4.13: File/analysis Synchronization using absolute times

interface.

Methodological Synchronization within DRS

Of course the technical challenge of synchronising media along a timeline is only part of the

idea of synchronization within a piece of CAQDAS software. Once the data is temporally

synchronized we must consider what can actually be done with it. One area to examine

is corpus management. This may be seen as a form of synchronization. DRS provides

a method by which all different types of media may stored as a single multimedia and

multimodal corpus. The project and analysis system allows these data to be not just stored

but organised into sensible subsets can be synchronized via the client server system with

other users.

Second we should look at the familiar CAQDAS tools provided by DRS. First we have

transcription, coding and annotation of time based media, all of which may be considered

a form of methodological synchronization. In each case we are essentially creating meta

data which can be effectively searched via the concordance tool, thus though we rely on

time to take us to the correct point in a related media item, searching our meta data allows

analysts to look for connections in the data, and indeed exporting that meta data allows

more sophisticated statistical methods to be applied using tools such as Microsoft Excel and

the Statistics Package for Social Scientists (SPSS).

The other area of interest here concerns the DRS document tool. With this tool we are

able to create active documents allowing data that has no inherent temporal information

to enjoy an asynchronous link with the temporal media. As an example we might have the

transcript of an interview conducted as part of a study. The interviewee may reference events

110

4.4 Synchronization Chapter 4: Key Implementation Factors

recorded elsewhere on the timeline. The system of coding within the DRS document allows

a user to link that reference back to the actual referenced event, so it can be examined with

a single click. Indeed the system is such that several events happening at different times

may be referenced simultaneously within the text and each reference can easily be mapped.

What is essentially being done here is the addition of extra contextual data to a docu-

ment. In practical situations, an analysis is the process by which a descriptive document is

built. Taking ethnography as an example of the kind of qualitative analysis DRS and Re-

player are designed to support, a professional ethnography is described in terms of a formal

analytic schema for intense analysis, and packaged in a report [88]. DRS’s document viewer

provides a means by which that report can be augmented during its design phrase with what

amounts to quick reference bookmarks to the data drawn on by the ethnographer.

4.4.4 Comparing the two approaches

From a technical point of view, both Replayer and DRS’ temporal synchronization at play-

back time is simplistic at best. All that is made is a ‘best try’ to start viewers playing at the

same time. MiMEG demonstrated that when using networked simultaneous playback this is

simply insufficient, and demonstrated technology by which an improved playback synchro-

nization may be achieved. No provision is made in either system to cope with the idea of

‘drift’ wherein two items drift further and further out of sync as playback time increases.

This seems to be particularly problematical in DRS when playing back audio files encoded

as MP3s.

Likewise the media synchronization is essentially very simplistic. While log data synchro-

nization is limited only by the maximum accuracy of the least accurate clock used (assuming

those clocks have been synchronized in the first place) or by any delay between starting logs

recording separately, video synchronization is limited first by the framerate of the video(s)

in question, second, by the accuracy of a recorded clock (if a system such as QCCI is used),

and further by human accuracy, if using a more traditional clapperboard (audio based)

system. One solution to this problem, currently being explored in forthcoming updates to

DRS is the augmentation of cameras to include accurate timing data about when recordings

were started. The only major problem with this approach is it requires specific hardware,

while both systems are otherwise usable with exclusively commodity hardware. Replayer

actually takes this idea in a slightly different direction as described in this paper [158]. In

this proof of concept work, the cameras were augmented with location and bearing recording

111

4.5 Conclusion Chapter 4: Key Implementation Factors

systems. The subsequent generated logs could be used to determine where a given camera

was pointing at a given time, and thus determine ‘usable’ footage. In the example in the

paper ‘usable’ footage was defined as footage where the camera was sufficiently steady to

be viewable and more crucially, particularly for ‘static’ cameras, when one of the study

participants was actually in shot (determined by a GPS log of the participants location and

the effective viewport of the camera).

4.5 Conclusion

In this chapter we have reviewed the differing approaches taken by Replayer and DRS in three

key areas of system design: distributed architecture, log file handling and synchronization.

In each case there are some general similarities, but the direction taken by the two systems

demonstrates the differencing approaches used in their development. Replayer, which was

developed centred far more on the system log data, generally revolves around support for

that, with additional media taking a less central role, while DRS is aimed more squarely

as a familiar CAQDAS tool, providing the sort of functionality (transcription, coding etc)

more normally associated with those tools (as can be seen in the related work section).

As yet DRS has not focussed on ‘doing’ much with system log data in any generic way at

least, though as we will see in the next chapter, when a bespoke log file viewer is created,

DRS demonstrates how that data can add significant value when performing a qualitative

analysis.

112

Chapter 5

Case Studies

5.1 Introduction

This chapter will present two separate case studies. One of the use of Replayer to study

the mobile game treasure and the second on the use of Digital Replay System, also studying

a mobile game: Day of the figurines In the first case the study is performed in house by

the Treasure development team, while the study of Day of the figurines is performed by a

professional ethnographer from outside the project. In each case we will see how the use of

coordinated views of system log data is used as a resource to describe in detail interaction

details which could not otherwise have been captured, thus demonstrating the value that

such resources can add to a qualitative analysis. It is important to note at this point that

while these case studies provide good anecdotal evidence of the benefits of using the tools

described in this thesis, this should not be considered a formal evaluation of those tools.

Rather they will serve as examples to drive discussion.

5.2 Treasure

The first case study is based on data collected during trials Treasure, a mobile game devel-

oped at the University of Glasgow to explore issues of seamful deign [47]. The main aim of a

Treasure player is to collect coins placed in areas of poor or non-existent network coverage,

and then bring these coins back into an area of good network coverage, and upload them

to gain points. By moving in and out of areas of network coverage, players also survey the

wireless network they are playing in, building up a dynamic map of network coverage that

113

5.2 Treasure Chapter 5: Case Studies

they all share.

Figure 5.1: The PDA interface to Treasure.

At the beginning of the game, each player is given a Personal digital assistant (PDA) with

GPS and 802.11 wireless capabilities. To pick up a coin, a player must walk or run to the

physical location of the coin as indicated on the map, so that his or her GPS-tracked location

is close to the coin’s location, and then press the ‘pickup’ button. For the player to gain

points for this coin he or she must then walk or run to an area of sufficiently high network

signal strength and click ‘upload’ so as to send the coins he or she has collected to the game

server. The chances of a successful coin upload increase the deeper a player is inside wireless

network coverage. To be successful in the game, players must therefore learn which areas

are covered by wireless network and which are not. In other words, they have to learn and

use the seams of the game infrastructure. A key competitive game feature is pickpocketing.

When players are close to each other they can use the ‘pickpocket’ button to steal coins

that are being carried by other players. However, for a pickpocket to work, both players

need to be within network range i.e. one can gain safety by staying out of the network.

Players can also protect themselves from such attacks by deploying a ‘shield’, preventing

other players from stealing coins that they have collected. Those players bringing coins

into network coverage have to be aware of where their opponents are, keeping a distance or

shielding themselves so as upload coins before they are stolen. In addition to coins, ‘mines’

are occasionally placed in random locations on the map. When a player walks over a mine,

114

5.2 Treasure Chapter 5: Case Studies

their PDA vibrates and is disabled for twenty seconds. This also causes the player to drop all

the coins he or she was carrying, and prevents the player from participating in or observing

what is going on in the game via the game interface.

Figure 5.1 shows the interface to the game. At the top of the screen, information is

displayed showing personal and team scores; coins currently being carried; signal Strength

for both WiFi and GPS and the remaining time in the game. The map (in this case an aerial

photograph of the play area) is displayed with notation for the location of each coin and

mine; the location of the player (and any other players within range); the range for pick-

pocketing (ring around the player); and an aggregate map of the wireless network strength

(shown as alpha blended blocks). At the base of the map are the interface buttons allowing

the player to upload coins, pick up coins, pick-pocket opponents and shield themselves from

mines and pickpockets. Finally there are buttons allowing the player to switch between

zooming and panning the map, and to centre the map on their location.

The game was played in teams of two versus two. If team-mates upload their coins

to the same access point within two seconds of each other, they gain double the normal

point allocation. A wireless coverage map was constructed dynamically by the server, from

coverage data sampled in real time by the players, and was regularly broadcast as part of the

game state for display as a semi-transparent map layer on users’ PDAs (see figure 5.1). Green

squares show areas of high sampled signal strength, and yellow squares show areas of weak

coverage. These collaboratively constructed maps provide players with additional awareness

of the network strength in the game environment, and also reveal where players have been

and can be used to select suitable places to upload coins and areas where pickpocketing is

likely to work.

In [14], Barkhuus et al. examine the evolution of tactics in Treasure as teams played

the game several times. Recording of data in Treasure was threefold: log data was collected

from each PDA, and separately from the server; videos were recorded of the game from two

locations, one roaming camera in the field, and another from a vantage point in a window

overlooking the game area. Finally, after each trial, participants were interviewed about

their experience. The data was loaded into Replayer, and then the results of the interviews

were collated with the recorded data.

115

5.2 Treasure Chapter 5: Case Studies

5.2.1 Inaccurate Interface Displays

One Issue, inherent to the seamful nature of the game was the fact that a player’s PDA

display of the other participants’ positions seemed to be wrong. With the versatility of

Replayer’s log file handling, we can use the general tools to describe the problem. By using

the Google Earth component to display each player’s position as recorded on his or her

PDA, as well as each player’s position as recorded by the server, we are able to see that

the discrepancy between these two apparent positions is often very large, and that these

discrepancies occur when the players pass out of network coverage. By combining this with

an event series showing the times a player uploaded their position to the server, we can

see when and why these discrepancies appear: the server maintains the last known position

for the player, so when they move out of network range and are no longer updating their

position - this becomes increasingly inaccurate, assuming they are still moving, while the

local copy stored in the PDAs logs shows the actual position (at least according to their

GPS log). Alternatively an event series showing a player’s signal strength, linked to the

original Google earth view can be selected to demonstrate that when a player is connected,

the server’s accuracy tends to be much higher. Conversely, when a player moves out of

network range, the server is no longer updating their view of the others’ positions so, again,

as time passes, these positions become increasingly inaccurate.

Relatedly, one example case is that of a trial in which the participants claimed in their

interview that they had been uploading simultaneously to score extra points. The interviews

provide a good starting point for constructing questions that can be answered by the data,

especially when viewed in conjunction with the system logs. These players’ abnormally

low final score brought this into question and, when the data was examined, there were no

instances of simultaneous uploads for this team. Further examination of the data showed

that one player’s PDA was regularly significantly less successful in connecting to the wireless

network - thus she was unable to upload simultaneously with her team-mate despite making

a valid effort. The visualisation showed she was in an area of good coverage, because the

visualisation is an aggregate made up of all the users’ connectivity sample data.

What is being highlighted in this particular example is a mismatch between the user’s

mental model of the system and the reality of the actual state of the system. Mental model

theory [163] assumes that humans create internal representations of objects and situations

they encounter in everyday life in order to explain how they work. One important aspect

of this is that these representations are ‘runnable’ in the head, that is, they can be used

116

5.2 Treasure Chapter 5: Case Studies

to predict the result of a particular interaction with the world. They are not always accu-

rate, which is why humans can have misconceptions about the effects of their interaction.

Rehman in particular explores how users may have their mental models of ubiquitous com-

puting systems enhanced by visualisations [178], however in the example described above

the visualisations are actually responsible for the breakdown of that model, i.e. the system

is showing them something (in this case the apparent signal strength on the map) that may

not be accurate. Indeed the network discontinuity on which the game is predicated effec-

tively perturbs the benefits of these visualisations. Kieras [129] explains the learning process

for device operation as requiring a good mental model of a system - but here is a system

designed to explore what happens when technologies break down - or rather to exploit those

breakdowns for some positive purpose. In practice then, it seems that treasure is a game

with a difficult learning curve, not because the game or the interface is difficult to learn,

but rather because what a player sees does not necessarily map well to reality. Generalis-

ing from this finding we can imagine that in a world of ever more pervading location and

context aware systems, the discontinuity between what a system might assume (its state)

as compared to our actual situation may lead to confusion and the apparent misfiring of

systems.

Where systems like Replayer come in here is in helping to highlight the specific break-

downs between users’ perceptions of a systems and the systems’ perception of users. In

this example, if we take either of the data types alone we get an incomplete model. The

interviews have the user telling us exactly what they were doing (pressing the upload button

when the map showed they were in an area of good coverage). They did indeed receive their

points, but fewer than would be expected from a team deliberately making simultaneous

uploads. If the system works as expected we can only assume some kind of human error

(perhaps they were not pressing the buttons in good enough synchrony). Otherwise we must

assume that the system is broken. If we look at the logs alone (without the interview) we

see that the users did not appear to upload their data at the same time. If however we use

the interview as a cue to investigate this discrepancy and look at the video of the users’

behaviour, we see that they were indeed pressing the button at the same time. Because the

video is synchronised with the logs we can then see that while one user was able to upload,

the other was not (because of differing connectivity on the two devices). The small screen on

the PDA makes it impossible on the videos to see what is actually happening - but the logs

show us exactly what is happening in system terms. The user is indeed, as they postulated

117

5.2 Treasure Chapter 5: Case Studies

in the interview, doing exactly what they should, however because the model of the system

they have built up by looking at the visualisations does not match with the reality of the

system (the device was not in fact connected) their attempt to ‘do the right thing’ failed.

This stands as an excellent example of how Replayer (or systems like it) might help us to

understand breakdowns in interfaces, and users’ mental models of, ubiquitous computing

systems.

5.2.2 Pick Pockets

In a related example, interviewees often noted a discrepancy between the number of times

they attempted to pickpocket an opponent and the number of times they actually succeeded

(and were rewarded with coins). Again, the event series is used to show the occurrences of

these events as a starting-point to investigation. Three reasons for this discrepancy present

themselves.

The first reason is that the displayed position discrepancy issue described above. It is

the server’s view of relative player positions that is used to determine whether an opponent

is in pick-pocket range, yet players were making visual determinations based on the physical

proximity of their intended victim rather than working directly with the information dis-

played on their PDA. This is an entirely understandable practice. Even without knowledge

of the game architecture, the pattern of message events triggered by a pickpocket attempt,

as visualised by the event series, can indicate that the success is determined by server po-

sitions. The second reason is also clear from the event series: players tended to press the

button many times in quick succession when trying to pickpocket, yet because only one

attempt could succeed this leads to a very high number of failed attempts reported in the

logs, though in this case the interviews suggested that player would only consider this to be

a single attempt.

Another possibility, and one that was a deliberate design point of the game, to stop users

from just continuously pickpocketing is the shield. When switched on this would protect

them from opponents’ attempts to pickpocket. There was however no feedback telling the

user that their attempts had been repulsed by a shield, rather the instigator simply didn’t

get any coins. The fact that his lack of suitable feedback served to confuse players is a

demonstrable flaw in the design of the game.

The final reason is that the intended victim may not have actually been carrying coins

at the attempted time of the pickpocket. Figure 5.2 illustrates how Replayer may be used

118

5.2 Treasure Chapter 5: Case Studies

Figure 5.2: Using Replayer to show the context of a pickpocket

119

5.2 Treasure Chapter 5: Case Studies

to show the context of an individual pickpocket event. The map (marked A) shows the

locations of three players involved. The two videos (top) show views of this incident from

different locations. The event series (marked B) shows all the pickpocket attempts made

in this game, with the current events highlighted. The time series (marked C) shows the

number of coins carried by the victim suddenly dropping to zero. Finally the time slider

(marked D) shows the position of the incident in the overall timeline.

A pickpocket event is selected in the event series, loading the map with every player’s

position at this time. A slice of time on the time series is also automatically highlighted by

the analyst’s selection. From this selected area, the number of coins being carried by the

intended victim at the time of the pickpocket can be determined. If at this stage a Media

component is open, a selection will highlight the point in the video where the pickpocket

attempt was made. In this manner we have selected the area of the videos relevant to

the specific area of the data we are trying to understand, supporting the process of thick

description.

Locating a pickpocket event simply by examining the video would be impossible, as it

is displayed only on the screen of the PDA, and is not an event players would choose to

make obvious. Playing the media component when a selection has been made automatically

skips between selected periods. By selecting all the pickpokcket attempt events in the

event series we can see how many of them have been captured on film, and use these films

to understand why the player was attempting to make a pick-pocket at this time. Using

various components in conjunction we are therefore able to establish through observation

for each attempted action, the participant’s motivation, whether the action succeeded and,

if not, provide a reason for the failure.

In this example we are using Replayer as a tool to support the ethnographic practice of

unpacking the character of an event [56]. We are presented with an event which is difficult

to understand because of a series of challenges outlined in section 2.3.1. Specifically:

• Mobility: our users are out running around literally ‘in the field.’

• Small Displays: The users are interacting through PDAs and hance the videos are

unable to effectively capture the screens

• Occlusion: The users occlude each other and each other’s screens - and the environment

often occludes the users from the view of the videos - particularly in this case where

the pick-pocketing user is attempting to hide the fact he is making the attempt from

120

5.2 Treasure Chapter 5: Case Studies

his proposed victim. This often includes hiding behind trees, or sneaking up on the

target etc.

• Invisible Interaction: The success or failure of the pickpocket depends on the accuracy

of two technologies: GPS and Wifi, quite apart from the games context (i.e. whether

the opponent has coins or is using a shield).

• Distribution of interaction: The event is taking place between two separate devices

using a number of services.

• Technological breakdowns: The game is predicated on the discontinuity of network

connections as an exercise in seamful design [46, 47] it is therefore axiomatic that the

system will not function in perfect harmony.

In order to unpack this event, we must combine a number of available resources, using

the method known as bricolage [64]. We have the interviews in which the users describe

exactly what they did in their own terms; we have the system logs which show locations (as

understood by the system), signal strength, interface events etc.; and we have the videos

which show the real locations of the players, and the environmental context in which the

event occurred. In order to unpack and describe this complex event we need to make use

of all of these resources, and we need them to be synchronised. As example, in the data

there are often hundreds of pickpocket button presses - a result what gamers call ‘button

mashing’ but few successful events. How do decide which of these is a single event as

understood by a player? We can use the event series to show these ‘bursts’ of activity and

separate them out into events. Finding the successful ones is easy - but it is generally more

interesting to explore the unsuccessful attempts, because these can tell us more about the

users’ understanding of the system. In some cases it may be because (as discussed in section

5.2.1) the users’ mental model does not match the state of the system, that is for example,

that the system’s stored location for a user may not match their actual physical location -

something that only becomes apparent when we look at the ‘real’ location in conjunction

with the ‘server’ location. Bearing in mind that the server mediates the event so it is that

location which is relevant to the success of the event. Similarly, both parties must be in good

network coverage for the event to take place - again as mentioned in section 5.2.1 seeing

somebody in a good location on the aggregated map does not guarantee they have a good

connection.

121

5.2 Treasure Chapter 5: Case Studies

It should be plain to see here that there are a very large number of contextual or sit-

uational circumstances that effect the success of the event. Unpacking these in detail by

making use of the tools provided by Replayer helps us to understand how and why the

system succeeds or fails, and how the players are interacting with it and with one another.

Once again, we can generalise somewhat from our results and consider that ubiquitous com-

puting is making digital and even physical interaction an increasingly complex proposition

to unpack (though it should be noted that this is not a trivial task at the best of times,

hence the whole practice of ethnography and ethnomethodology) and we require observa-

tional technology to support that unpacking process by making available different views on

situations and contexts necessary to understand these new types of interaction.

5.2.3 Environment Awareness

Because the games of Treasure took place in the city streets, and it is a fairly intense game,

the question arose as to whether users were able to safely operate the system. In one of

the interviews a participant stated: “I nearly got run over at one point!” This brought

up the question of road safety, as there were several roads intersecting the game area. By

selecting the roads in the map component, it is possible to highlight all the points in the

videos where participants were crossing the roads. Each event could then be played (if the

camera had been focussed on that participant at the time). In fact on examining the videos

we were able to establish that players did not, in practice, lose the ability to cross the road

or walk around safely. Although they did spend considerable time concentrating on the

information provided on the PDA, they also spent much time looking around, for other

players, cars and landmarks to help them use the map. This is an interesting observation

and worthy of further examination in future work, as it appears to contradict the results

of studies like [137]. Is this apparent additional awareness related to the characteristics of

this application? - playing with representations of location as it does. Much of the work

of playing the game was mentally overlaying the objects presented on the PDA with the

physical environment - bringing together the features of the game with the environment

they were in. Landmarks on the map had to be read and used to find where coins were

and players had to be found for pickpockets. In effect, the players were building a mental

model, not, this time, of the system state and interactions, but rather of how the physical

and digital aspects of the ‘game world’ were combined.

If we wish to understand these models - at least in relation to the locations of things the

122

5.2 Treasure Chapter 5: Case Studies

game knows about (players, coins etc.), it is possible to turn to mathematics. Information

theory is a mathematical study of the encoding and communication of information, which

provides several measures for the calculation of dependencies and relationships between

data sources [194]. One such measure that is of use in the analysis of treasure is mutual

information; a property used in considering the independence or interdependence of two

variables. It measures the amount of information that can be gained about a variable X

by knowing about another variable Y. This is applicable to an analysis of treasure as we

shall see. As each game takes place in a confined setting, over a relatively short period, it

is a reasonable assumption that a player’s actions at any time will be affected by the ‘state’

of the game in terms of other participants’ positions and artefacts on the map. Mutual

information was measured between the GPS positions of a pair of participants, to assess

the degree to which they could be said to operate collaboratively. While this may seem

like a radical departure from what has so far been a largely qualitative analysis, we are in

fact taking a mixed-methods approach, that is, we will take some quantitative measure (like

mutual information) then turn it into an accountable object that can be used to support

our qualitative analysis. The nature of system logs generally make quantitative techniques

applicable, and it is one of the challenges for Replayer to make the results of those analyses

applicable and accessible within a qualitative study.

Such a measure as mutual information(MI) is a more powerful analysis than a simple

correlation of positions, as it does not merely detect players moving around in pairs, but

more generally attests to the extent to which one participant’s location is predictable from a

team-mate’s. For example, a player might move to one corner of the game space in response

to a team-mate heading in the opposite direction, in order to cover more of the playing

area, or players might meet regularly in the centre of the map to perform collaborative

uploads, before swapping the sides they cover. Such behaviour would be detected by the

mutual information metric and would yield high MI scores. Players would only receive low

MI ratings if they played completely independently; that is, they acted with no thought to

their team-mate’s ongoing activity.

Figure 5.3 shows the results from the analysis. The tool on the left is the MI component,

which makes a series of MI calculations between pairs of participants. These are passed

to the tool on the right, where they are correlated with score showing that teams playing

collaboratively perform better. If required, SQL statements to retrieve each of the two

streams under analysis are entered in the text fields. A visualisation in the centre of the MI

123

5.2 Treasure Chapter 5: Case Studies

Figure 5.3: Performing a mutual information analysis in Replayer.

frame shows the joint probability density from the current calculation: a plot that may be

of interest to analysts, but is unimportant for the current example. The MI result is stored

for each calculation - multiple calculations over a series of input streams build up an array

of results. The export control at the bottom of the MI tool can then be used to send this

MI array to a correlation module, where it can be correlated with other variables.

In this example, data covering six trials of Treasure were analysed, each involving two

competing teams of two participants. Therefore twelve mutual information values were gen-

erated and passed to the correlation module. The correlation with team score was calculated

as 0.527. From the plot, it could be seen that one point was clearly set apart from the oth-

ers. Highlighting this point in the correlation tool allowed us to drill down to the data from

which the point was abstracted, highlighting the associated data in other visualization com-

ponents. We were able to establish that a system error had caused the logs for this player to

be incomplete, thus invalidating both the individual data and the wider MI correlation. This

value subsequently removed from the analysis. As shown on the right hand side of Figure

5.3, the correlation of MI and score was then 0.73, a strong positive correlation between

MI between team-mates’ positions and their final scores. It can therefore be concluded that

players acting in a collaborative manner were more successful at the game.

How then is this information useful in context? Beyond being interesting in and of itself,

there are a few factors here which require consideration. MI makes no distinction between

‘conscious’ or ‘deliberate’ collaboration, and ‘subconscious’ collaboration. It tells us that

teams that seemed to collaborate appear to do better, but if we wish to understand how

players interacted with the game and indeed how they collaborated then this information

124

5.2 Treasure Chapter 5: Case Studies

merely serves as a support. It can tell us for example a ranking of the amount of collaboration

between teams. We can then use this as a cue to interviewing to try to get a sense of exactly

how that collaboration happened. For example, did they actually decide to split up and

cover more ground as proposed above? or did they actively walk about together? the MI

doesn’t tell us this, but there are plenty of resources which can (videos, interviews, maps

etc.). Once again we see that to really unpack what happened, in line with qualitative

description practices we can take the results of the MI as a resource to support that process.

What is interesting about MI is that it will also highlight those ‘subconscious’ collaborations

or interactions (a phenomenon explored in [230]). Without it we would have no good way to

explore these in qualitative terms - because we would lack the evidence of their occurrence,

but by using this technique of mathematical logfile analysis to create a useful resource, we

can explore in depth how this behaviour might affect the experience.

5.2.4 Summary

We have seen in three examples some of the ways in which Replayer was used to unpack

interactions. In some cases the data is used essentially as a method of filtration for the

videos, as in section 5.2.3 where the video is filtered to find only sections of the video

where players are interacting with the system around roads - and the videos could then be

subsequently analysed to explore whether players were paying suitable attention to their

environment to be safe. Indeed filtration of video is something Replayer provides specific

tools for as described in [159] where Replayer is used to automatically find sections in videos

containing specific users, and to filter out parts of the video that are of very poor quality.

We have also seen, in sections 5.2.1 and 5.2.2 how a combination of resources can be used to

understand users’ mental models of a system, and indeed how those models may differ from

the system’s view of a situation. We looked (in section 5.2.2) at how Replayer can be used

to tease out the details of an event, allowing a deep understanding and thick description

of that event. Finally we looked (in section 5.2.3) at how Replayer might be used to apply

mathematical or quantitative techniques to system log data, then make the results of those

techniques accessible to inform a qualitative study. We have highlighted how the challenges

(as outlined in section 2.3.1) relate to these particular situations and how Replayer can help

to overcome them. In each case we have seen how Replayer serves to help a qualitative

researcher perform analysis on a complex mobile system,

125

5.3 Day of the Figurines Chapter 5: Case Studies

5.3 Day of the Figurines

This case study will describe some experiences with using DRS as a resource to support an

ethnographic analysis of a mobile ubiquitous computer game called Day of the Figurines [57].

This analysis was done as part of an experience report for the DReSS node. The log files

in this case are explored using a bespoke viewer component, added though the log file

workbench API and designed specifically for exploring system log data from day of the

figurines. Unlike the previous example, this study represents a real world case of the use

of DRS. DReSS has the advantage of a strong user base for testing within its own staff,

due to its participatory design predicated driver project process, with examples of users

including ethnographers, psychologists, and English linguists. This has given DRS a strong

development cycle opportunity with testing taking place in the field by users other than its

core developers, and rapid prototyping of new tools and processes.

The development of DRS supports the process of ethnographic description and has added

value to the core business of ethnography, i.e., the writing of culture in details of the practical

action and practical reasoning of its members. We start from the beginning with system

logs to articulate systems’ support for ethnographic studies of ubiquitous computing. Below

(Figure 5.4) is a representation generated from a system log of a cultural experience created

by Blast Theory 1 and the Mixed Reality Lab from Nottingham University. Day Of The

Figurines is a mobile SMS based game set in an imaginary city played by hundreds of

geographically dispersed people over four weeks.

The representation parses the system log and thus transforms the raw log into a human-

readable and accountable object; that is an object that may be discussed and reasoned

about and which can be drawn upon to formulate accounts of game play. Regardless of

whatever technical characteristics ‘parsing’ might have, the term refers to the co-design

of representations that address specific ethnographic interests. Co-design means that the

representation is the product of collaboration between the designer and the ethnographer.

The purpose of the collaboration is to specify features of the log that are relevance to

ethnographic research.

Practically, there is a reason here why a generalised component like Replayer’s mapping

tool is not feasible for such a project. The game is predicated on the existance of a ’virtual

world’ Though in practice there is a physical representation of this world in the form of a

model at a museum on which players place their figurines at the beginning of the game. The

1www.blasttheory.co.uk

126

5.3 Day of the Figurines Chapter 5: Case Studies

Figure 5.4: An XML based log from Day of the figurines

127

5.3 Day of the Figurines Chapter 5: Case Studies

state of the game is maintained by game organisers physically moving the figurines around

the map as information comes in. Representing this board might be considered in a number

of ways - not least by simply filming, or taking regular pictures of the board. However, we

must consider the meaning of location in this context. There are two locations of interest:

• The real location of the player - which is not tracked by the system, and which, though

it may be relevant to how the player interacts with the game, is not strictly speaking

part of the game’s ‘state.’

• The location on the board of the player’s avatar. It is also important to realise here

that this is not a cartesian coordinate relative to the board - and thus easily overlaid

on a photograph of the board, but rather an abstract location related to landmarks

like ‘school,’ ‘hospital,’ ‘fire station’ etc.

As such the snesible approach appeared to be to create a project specific mapping component

- essentially a representation of the board which could be used with the relational database

generated from the log files to determine who was where, and when.

Figure 5.5: Seeing what players did at locations.

128

5.3 Day of the Figurines Chapter 5: Case Studies

Thus we have a virtual model of a physical model of the imaginary city that all the

players saw when they registered to play the game at Wolverhampton Art Gallery. The

virtual model shows all the locations in the imaginary city that players could visit. More

than that it allows the researcher to query the log by specific ‘player ID’ (top right Figure

5.5). The player ID menu shows all players in the game and the number of messages they

sent (e.g., Miss Scarlet sent 96 messages in Figure 5.5). We can then highlight destinations

or locations that a player visited. We can do so by number of messages sent in a location,

number of messages received in a location, number of visits to a location, number of things

used in a location, and number of times recipient of thing used or gifts received from others

in a location (see bottom of Figure 5.5). Effectively the interrelatedness of the database

combined with the visual components creates a visually queryable resource, that is, one

that can easily answer questions about who was doing what, where and when from log data

stored in a database, and the data is returned in a usable fashion.

For example, when number of messages sent is selected, each location a message was sent

from is highlighted. Blue indicates where the player is on the current timeline, in this case

the Rec (as in Figure 5.5); red indicates where most messages were sent from; the tone of red

decreases across the remaining locations according to messages sent. The same principles

apply across the other methods of highlighting locations visited by a player. The slider

(on the left of player ID in Figure 5.5) allows us to trace the player’s route from location

to location over the four weeks of the experience according to the method of highlighting

selected. Thus we can scroll through the player’s virtual journey to see at-a-glance the

locations they sent messages from, received messages, what places they visited and how

often, what things they used in those locations and received from others. We can also see

at-a-glance the people they talked with at any location. To see just what was said and went

on between players any highlighted location we can click on the location to reveal specific

interactions.

Drilling down into a location gives us a view of interaction involving the selected player

(e.g. Miss Scarlet) over immediately previous, current, and following days in details of time,

who the message was sent by (including game events from the server), who the message

was heard by (or at least received by), what type of message was sent (e.g., a conversation,

a message describing the thing a player has requested to use, a local game event, and so

on), the content of the message, and the thing requested by a player. Message location or

player who sent the message are also available according to type, specifically when a player

129

5.3 Day of the Figurines Chapter 5: Case Studies

arrives or requests to leave a location. Drilling down into a location provides us not only

with a view of current player interactions at, for example the Rec, as in Figure 5.5, but with

a detailed retrospective-prospective view further articulating the context of interaction in

that location. Furthermore, we can click on entries in the ‘player’ list and see the locations

they arrived from and departed to from the current location and see the details of their

interactions in those places.

What we are looking at is a reconstruction of events. Beacsue of the casual and slow

nature of the game (which is played over four weeks) and the large number of players, a more

traditional approach to capturing this data for qualitative analysis, such as video is frankly

infeasible. While video can be (and was) captured for short periods for a subset of the users,

getting an overview of ’what happened in the game’ can only be reasonably actioned by use

of system logs, and given the complexity of the events a custom viewer was necessary. This

incidentally serves to show why extensibility is crucial in systems like Replayer and DRS.

No matter how many general purpose tools we provide, there will always be situations and

experiences that those tools are unable to adequately explore. By making it fairly trivial

to add those tools - at least to a programmer who need not have n depth knowledge of the

system he is building a tool to analyse, but rather just the requirements of the tool, we

support a much wider potential user community. So the board representation behaves as

a queryable qualitative resource, unlike any of the more familiar tools (video, audio, field

notes etc.) but powerful and reasonably easy to use in its own right. It also maintains its

state when interacting with the document viewer (3.3.9) so states can be saved and revisited

as notes in the wider context of a description.

At the click of a button, rather than after a prolonged manual effort, DRS enables us to

extract relevant sequences of interaction from system logs; or rather, at the click of a button

after the co-design of appropriate representations that transform the log into an accountable

object. The production of representations from system logs is very much bespoke at the

moment and requires close cooperation between designers and social scientists.

While there will always be a bespoke element insofar as the study of novel computing

domains and applications is concerned, one of the key challenges for the future development

of DRS is the production of standard representations or viewers, such as those offered by

Replayer, that enable social scientists to interrogate the contents of system logs. Neverthe-

less, Day Of The Figurines provides a view on system logs that makes the temporal and

spatially distributed character of social interaction and communication visible, it enables

130

5.3 Day of the Figurines Chapter 5: Case Studies

the analyst to trace players’ routes and journeys through space (in this case the virtual

space of the game), and it allows us to inspect collaboration between players in detail. Had

the players’ phones been equipped with locational technology their real physical locations

could also have been modelled allowing an exploration of the relationships between physical

location and interaction with the game. While we could imagine refining and extending the

interrogative functions of the viewer, providing better graphics or viewing multiple players’

pathways and their intersections for example, the need to develop viewers that provide spa-

tial and temporal views is key to the application of DRS to interaction, communication, and

collaboration in the digital society at large.

Of course this is only one view on the system, used to get an understanding of exactly

what happened in the game. However, if we wish to understand the experiences and in-

teractions with the game from the perspective of a user, rather than simply the system,

we must capture one person’s experience more thoroughly. This is done, using the more

familiar approach of video ethnography, as described in [102]. Analysing the data from the

perspective of this video alone is again subject to the challenges described in section 2.3.1.

In this case:

• Mobility : Discussion with players suggested that much of the interaction with the

game happened in ‘off moments’ such as travelling or standing in queues. While they

are not exactly running around in the way that players did in treasure or other Blast

Theory games like can you see me now? and uncle roy all around you, the fact remains

that the game takes place (at least from the perspective of the player) on a mobile

phone.

• Small displays As above, the game takes place mobile phone via SMS. This is not a

format that lends itself well to video - indeed much effort is expended in dramatic

storytelling to figure out how to embed this particular quiet, but extremely popular

communication channel in broadcast media - i.e. a character gets a text, how to show

the contents without them reading it out loud, which would be unusual and potentially

story breaking, or creating jarring graphics.

• Non-collocation: The player is geographically separated from the game board, and

usually from all or most of the other players.

• Distribution of interaction: There are many players interacting through mobile phones,

but on the other end of that there are organisers with computers and a physical board

131

5.3 Day of the Figurines Chapter 5: Case Studies

to manage.

• Interaction Time: SMS is not a synchronous medium. The time it was sent and even

received does not necessarily map to the time it was read or the time it was acted on.

In purely system terms what matters is when and what the actual messages sent are,

but if we want to understand the ‘game’ and how the players interact with it we need

to understand this.

• Technological breakdowns: The game depends on mobile phones. These are not always

on, and not always in range. How might this affect peoples’ interaction with the game?

If a player turns their phone off while at work - as was discovered to be the case in one

example, and misses a crucial game event, what happens? how does this affect their

experience?

In practice however we can address much of these by simply combining our videos with

the representation discussed above (as per figure 5.5. We do not need to see the specific

messages on the video because we have them right in front of us and synchronised on the

viewer. We also have to had the game context in which that event took place - who sent it?

from where (on the game board)?, why? etc. We can address these questions generally with

the system log data, and of course it would be feasible to do this just with a list of paper

logs, using the process discussed in section 2.6, but the time and effort involved would be

extremely significant. DRS really does add value to the whole process by giving us context,

and allowing us to ask questions of the data in a usable manner. It creates an accountable

resource through representation that can be used with other resources to understand and

describe interaction.

Analysis of interaction, communication, and collaboration is not restricted to what can

be seen via the viewer. While it obviously provides a resource that may be used to analyse

the inner life of the game, or of digital interaction, communication, and collaboration more

generally, it also supports exploration of the game’s intersection with the everyday life of

participants as explored in [21]. Digital interactions, communications and collaborations are

embedded in physically situated interactions, communications and collaborations. Thus,

we may be in the physical presence of people and also be interacting with others at a

digital remove. Understanding not only what people do in digital environments but how we

weave digital technologies into our physical relationships - where we use the digital, when

we use it, how we use it and so on - are all key issues to understanding the impact of

132

5.3 Day of the Figurines Chapter 5: Case Studies

ubiquitous computing on everyday life and arguably to broader social science research into

the digital society as well. The kinds of tools described here give qualitative social scientists

the resources and opportunities to study those relationships. Spatial and temporal views

on digital interaction, communication and collaboration provide a resource to explore such

themes, providing a concrete and detailed starting point for conducting rich interviews to

complement our understanding of what goes on within digital environments with external

dependencies that shape digital use.

Just by attending to ordinary problems of extraction occasioned by the use of system

logs in DRS we can see that DRS does not just make extraction easier, it transforms the

extraction process from one that is concerned to make log contents intelligible into one

that adds value by enabling interrogation and inspection. Instead of labouring through logs

seeking out relevant sequences of interaction, extracting them and cleaning them up, the

work is replaced by the co-design of log viewers to represent salient features of interaction,

communication and collaboration. With the development of standard views much that work

may be dispensed with too and the analyst may concentrate on what system logs have to

say as it were, rather than on making them into accountable objects.

5.3.1 Summary

We have seen how DRS enables the analyst to examine not only the contents of system logs

but other resources too in coordination with those logs. This particular case study is of

interest because the primary feature discussed is a bespoke viewer created for analysing the

Day of the Figurines project from within the DRS environment. A new representation was

created within the system, developed in close collaboration with the users to support exactly

the necessary forms of data and data interrogation. We have shown how a representation

of the data can be used to understand state over long periods of time - as was the case

with day of the figurines, and how that can be used to provide context to shorter in-depth

studies of specific parts of the process through video ethnography or other means. We have

seen specifically how DRS can be used to overcome the challenges outlined in 2.3.1 and

presented by day of the figurines, and how it has been used in a real study by a professional

ethnographer.

133

5.4 Other examples of the use of Replayer and DRS Chapter 5: Case Studies

5.4 Other examples of the use of Replayer and DRS

Aside from Treasure, Replayer has also been used in the studies of Feeding Yoshi [21], where

system log data was used to psuedo-spatial maps of player locations, andShakra [9] where

it was used during the iterative design cycle to demonstrate the success rate of the machine

learning algorithm behind that system.

DRS, having been a significantly longer running program has a wider array of users.

It has been used in the construction and coordination and coding of of the Nottingham

Multi Modal Corpus [42], It has been used in the study of VIRILE [35] where it was used

as a tool to code and synchronize several simultaneous videos, system logs and a screen

capture, It has been used by the Real Life Methods group to synchronize several different

video streams capturing a group session, and to link the data returned in questionnaires to

related parts of the discussion. It has been used by the thrill laboratory [188] to support

public playback of biological monitor data (heart rate, galvanic skin response etc.) It is

also in use at Nottingham University’s psychology department and in particular the visual

perception and driving in autism group, where it has been used as both a video playback

and interaction data capture device as well as a coordinated playback device for eye-tracker

data along with the original videos being watched at the time. DRS is currently in us in

a number of other studies involving several different universities and departments. As of

January 2009, DRS had been downloaded by 538 distinct IP addresses 423 of which were

external to the University of Nottingham. All users of the system register their usage online,

and later this year a survey will be conducted to learn how it is being used and on what

type of data.

5.5 Conclusions

We have explored through these case studies some specific evidence of how Replayer and

DRS can add significant value to an analysis. With reference to the challenges laid out in

section 2.3.1, we have seen how each of the case studies presents a subset of those challenges

and how Replayer and DRS have been used to overcome them. We looked at ways in which

we can use multiple resources in bricolage to unpack interactions, particularly in cases where

parts of that interaction are invisible, or uncapturable (5.2 and 5.3). We looked at how we

can inform our analysis in terms of what to look for and questions to ask in interviews by

applying quantitative techniques like mutual information to our system log data (5.2.3),

134

5.5 Conclusions Chapter 5: Case Studies

and how we can use system logs, in coordination with other resources to better understand

users’ mental models of systems (5.2.1 and 5.2) and how inconsistencies between those mental

models and the system’s internal model may cause interaction to break down.

We have also seen that in some cases, general tools are going to be insufficient, and that

these systems need to be sufficiently extensible to allow the addition of new representations

of the data. Here we see, as has been discussed, the intrinsic need for a person with skills

and knowledge of both computing and social science practices to provide much needed

communication between the social and computing science communities. We also see the

benefit available to a willing social scientist using the tools provided by computing science,

and it is this collaboration which will serve to continue to drive forward the use of social

science as an analysis tool for ubiquitous computing in general.

It is important to take away from these studies that they are very much anecdotal. They

can never be true formal experimental evaluations of the tools for the very fact that doing

such an evaluation is infeasible. Because of the inherently reflexive nature of ethnography,

it would be impossible to design an experimental scenario where the same system could be

analysed with and without the tools and compare the results. Instead we must rely on the

evidence of examples, feedback and the fact that the tools (in particular DRS) have been

designed iteratively and in close collaboration with a number of professional social scientists.

Certain functionality, for example, the document viewer (3.3.9), very specifically supports

ethnographic process as laboriously determined in interviews, discussions and testing. Ul-

timately these case studies can only scratch the surface of the functionality, or analytic

possibilities to be found in either system. Much of DRS, for example, is concerned with

corpus linguistics, as discussed in depth in sections (3.3.10 and 3.3.11) as a result of one of

the driver projects, and these tools have not been included in the case studies. So while

these systems have not undergone a formal evaluation, they have been extensively “tested”

through their use. DRS in particular has been prototyped, tried out, modified, tried again

and generally gone through an iterative design process with often several prototypes of

each tool (at least for the more complex ones) each building on feedback from its use in

one of the driver projects. A good example of this might be the coding tools, used and

tested extensively in several projects including the Nottingham Multi Modal Corpus [42],

and VIRILE [35] both of which were undertaken by members of the driver projects. It was

the feedback from those users which has helped DRS’s coding tools to be effectively usable.

It has been the intention in this chapter to show that there is a genuine practical use

135

5.5 Conclusions Chapter 5: Case Studies

and value to be had when doing qualitative analysis from these types of tools and this kind

of coordination of data.

136

Chapter 6

Reflections and Conclusions

6.1 Replayer vs DRS

In the above chapters we have explored two very different pieces of software, Replayer and

Digital Replay System (DRS). This section will examine the different approaches taken,

including the reasoning behind those different approaches, and explore the strengths and

weaknesses of each.

The goal of each system is ultimately the same: to combine heterogeneous media, includ-

ing system log files onto a synchronised, coordinated view in order to support the practice

of qualitative data analysis in a world where the miniaturisation and pervasiveness of tech-

nology makes system logs that an increasingly important and useful resource.

Replayer approaches that goal very much from the side of the system logs, providing a

variety of generic ‘chart’ type viewers that can be used singly or in a coordinated fashion

to explore that data. It takes an approach familiar in the world of information visualisa-

tion, using brushing and linking between different views to allow filtration, selection and

exploration of that data. Replayer’s rigorous organisation of those logs allow this system to

function effectively, while the distributed nature of its architecture allows it to circumvent

some of the major issues generated by a multi-view system such as screen real-estate, lack

of processing power etc. That same architecture could also allow multiple analysts to work

together concurrently, or analysts to word directly with a system’s designers to further a

better understanding of the data contained in the system logs. To provide playback of other

types of time based media, such as video or audio, Replayer makes use of tools familiar to

most users: QuickTime on OSX and windows media player on Windows.

137

6.1 Replayer vs DRS Chapter 6: Reflections and Conclusions

Key strengths:

• Cross Platform support

• Well defined internal database structure for storing logs, based on a sound framework

• Large range of viewer types for those logs

• Instrumentation system to support the logging process

• Brushing and Linking based synchronisation of data, allowing complex selection and

filtration processes

• Support for collaborative analysis and/or separating complex processing tasks to dif-

ferent computers

• Strong framework for extensibility in every aspect

• Uses familiar tools for playback of familiar media types (QuickTime, Windows Media

Player)

Key Weaknesses:

• Unfamiliar approach for social science

• Lacks the more ‘expected’ CAQDAS tools such as transcription, annotation and coding

• Lack of flexibility in log input

• Weak synchronisation for media files

• Weak playback synchronisation

• No support for corpus management

• Knowledge of SQL required to construct more complex queries

• Not a very intuitive interface

• No support for project meta data

• No real support for project/data sharing

• Lack of ways to ‘search’ the data

• No support for images

138

6.1 Replayer vs DRS Chapter 6: Reflections and Conclusions

It is important to consider that Replayer exists really as a proof of concept. It serves to

demonstrate the kind of things that can be done by combining system logs with other media

data as shown in the case study. However, its complicated interface, dependency on SQL

and lack of support for other CAQDAS methods make it not really suitable as a ‘real world’

tool by social scientists who do not also have a strong background in computing science.

The environment in which it was constructed was largely one of computer science rather

than social science.

Conversely DRS was constructed to actually be a tool usable by social scientists. Taking

a participatory design approach the development of DRS was guided at every stage by three

main driver projects comprising different aspects of qualitative social scientists:

• Ethnographic analysis of ubiquitous computing technologies

• Linguistic analysis of multi-modal features of natural language use

• Psychological analysis of teaching and learning in e-Learning environments

The varied backgrounds in qualitative social science of the three driver projects has

allowed the development of DRS to focus on supporting those varied practices culminating in

a tool more widely applicable than for simply one area. As an example, consider the different

coding systems within DRS. The time-based coding in the track viewer is something required

by both the English linguists and the psychologists though the particular ethnographers who

comprise that driver project have little interest in it. Conversely the coding (technically

‘markup’) provided in the DRS document viewer is designed to directly support the process

of constructing ethnographic reports and was designed in close collaboration with those

ethnographers.

It is perhaps unsurprising then that DRS has the look and feel of a familiar CAQDAS

toolkit such as ANVIL or Transana, though it provides an amalgamation of the facilities of

several different established tools. DRS is much more rigorously engineered than Replayer,

since pert of the project’s mandate was to create a tool that would be freely downloadable

for use within the social science community. Because of the particular focus of the driver

projects, log files actually had a lower priority in the early stages of development, despite

being the feature that truly sets the system apart from those other CAQDAS tools, however

support for them was designed and built in from the earliest stages of the design, and this

is reflected in particular in the way meta data can be applied to log file data in the same

way as other data types, and in the way the log file workbench has been designed to handle

139

6.1 Replayer vs DRS Chapter 6: Reflections and Conclusions

the input of many standardised logging formats. DRS has however been criticised by users

for its inherent complexity. Being a ‘monolithic’ tool, all the functionality is exposed all the

time, giving it a very steep learning curve for a new user.

However, despite some criticism, DRS has been picked up and made use of by a number

of social scientists, working in different fields and doing ‘real’ work. Section 5.4 highlighted

a number of projects making use of the system, as well as a large number of downloads

(423 outside Nottingham University). It is directly supported by the CAQDAS networking

project at the University of Surrey, an independent group who provide training to social

scientists in the use of software tools 1. It is difficult to refute the fact that it is being used

in anger, and has produced real results, such as those reported in [42, 96, 140, 219]. The

general feedback has been that it is not completely starightforward to use, would benefit

from some improvements to its interface and some debugging, but is usable and provides an

effective method for approaching data.

One interesting example of this usage - or more properly of appropriation, was in the

Riders have spoken project, described in [96], wherein DRS was used not so much as an

analysis tool, but as a method of archiving large amounts of experimental data. The project

and analysis system it provides, along with its support for a wide variety of data types

apparently made it very suitable as a data curation system, which just happened to have

some added benefits for marking up that data.

Key strengths:

• Cross platform support

• Familiar tools for qualitative analysis (transcription, coding, annotation etc)

• Support for many different log types, timestamps etc

• Well engineered for a stable, consistent and familiar interface

• Strong support for Meta data

• Strong corpus management tools

• Support for project sharing

• Included tools are designed to the requirements laid down by social scientists

• Support for import/export to and from other tools such as Transana and SPSS

1http://www.surrey.ac.uk/sociology/research/researchcentres/caqdas/

140

6.1 Replayer vs DRS Chapter 6: Reflections and Conclusions

• Cross media searching

• Supports a wide range of data types: logs, video, audio, pictures, transcripts, docu-

ments

• extensible ontology able to handle additional data types as they are included

• API for creating custom viewers

Key Weaknesses:

• Very limited tools for viewing/analysing logged data

• Number of possible concurrent views limited by screen size and processing capability

• No support for the actual process of logging

• No standardised internal database framework for handling logs

• Weak synchronisation for media files

• Weak playback synchronisation

• Difficult learning curve

If we compare the lists of strengths and weaknesses of the two systems it is interesting

to note that in many cases, the strengths of one, are the weaknesses of the other, and vice

versa. The reality is that a combination of the facilities provided by these two tools is needed

to really provide the kind of tool that should be possible. The two weaknesses shared by

both systems (that of maintaining temporal synchronisation during playback, and getting

a sufficiently high-accuracy synchronization to start from) has been heavily addressed in

DRS’s sister project MiMEG [82]. Were that functionality also to be incorporated those

weaknesses could also be addressed. As should be expected, DRS being the larger of the

two projects provides a more usable tool, but Replayer is arguably the more innovative of the

two focussing as it does on what can be done with the system log data. However, visualising

log data on its own is nothing new. Replayer began the process of integration with more

traditional materials by supporting the synchronisation of video and audio files with that

log data, but DRS provides far more support for the use of those types of data.

141

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

Extensibility

Let us now look at a one area in which both systems excel: Both Replayer and DRS are very

extensible in terms of creating new visualisation tools. DRS also allows for the creation of

new types of metadata by the expansion of its ontology. In Replayer’s case, new tools need

only be able to communicate by raw sockets and understand a fairly simple string-based

protocol to be able to become part of the system. For them to appear in the interface they

may need a java wrapper round any other language software (such as an executable file),

but that is a trivial process. There are essentially two areas for expansion in Replayer:

parsers and visualisations and both are quite simple to create. DRS similarly provides

opportunities to create parsers - called processors in DRS but doing basically the same task

of transforming log files into database tables) and visualisations - called viewers in DRS.

Unlike with Replayer, we have a strong example from the case study where a viewer was

made for a specific project, and indeed another example from [96] where a ‘map’ viewer

was created for DRS to show the paths riders had taken. This extensibility makes the two

systems extremely flexible and is one of the key aspects of the software that makes the

practically useful for dealing with ever more complex interactions and experiences. It would

never be possible to create a tool able to handle every situation, but to create a tool able to

handle lots of situations and put infrastructure in place to allow others to add to that tool

is practicable.

6.2 Revisiting the challenges

In the related work section a series of challenges was laid out defining some of the difficulties

associated with trying to perform qualitative analysis on ubiquitous computing systems,

and more generally just in an environment where ubiquitous computing is an increasingly

normal part of everyday life. In this section we will revisit each of those challenges and

describe how the software explored in the previous three chapters attempt to manage them,

with specific reference in each case to the case studies outlined in the previous chapter.

6.2.1 Mobility

This is certainly a key factor in virtually all ubiquitous computing systems. Users of ubiq-

uitous systems are often mobile. They move across extended physical areas, quickly at

times, sometimes even running, which can make the documentation of action and capturing

142

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

of video material difficult at best. However analysts are able to leverage ubiquitous com-

puting technology to support the analysis process. For example if the study participants

were equipped with global positioning systems (GPS) and those GPS devices recorded a

log, then a viewing component such as Replayer’s Google earth bridge Would allow those

location traces to be plotted on a map. Recording additional system log information about

their interaction with the technology around them allows us to replay exactly what they

were doing from a purely systemic point of view. Combining that systemic information with

video, possibly captured from several sources and synchronized with one of the replay tools,

and further combining that with the field notes and knowledge of our analyst it becomes

easier to build up a flexible corpus of useful information that can be used to effectively

describe the character of the user’s behaviour.

Turning to the case studies, we are well served here by the examples from Treasure

(section 5.2), which is a fast paced game played out in the streets with PDA interfaces.

When performing an ethnography using more traditional observation techniques such as

video, we are unable to capture the ‘hidden’ game events and states. It is difficult to attend

to all the players at once, but as they are interacting with one another, sometimes at a

distance through ‘pickpockets’ (5.2), simultaneous uploading (5.2.1) etc. we need to have

a deep understanding of the context of the game, i.e. its state to make sense of these

interactions. A set of recorded positions for each player (both from the server and the client

- the discrepancy of which was shown in sections 5.2.1 and 5.2 to cause players’ mental

models of the system to break down) allows us to reconstruct the movements of each player

after the event, and give each the attention it deserves. We also saw that by applying mutual

information theory to the respective players’ movements (section 5.2.3, the system was able

to inform us about collaboration on both a conscious (as shown by discussion in interviews

and recorded on game videos) and more subconscious level.

Similarly with Day of the Figurines (5.3) the players often play the game in free time

such as while commuting or waiting in queues. The fact it occurs via SMS on mobile phones

makes it almost axiomatically a mobile experience. Capturing data from theseevents is

challenging in this case also because of the time factor. The game is played over four weeks,

with mobile participants, making a more regular observation difficult. By creating a ‘view’

on the game constructed from system logs, we can examine the general behaviour in depth

and when we do gather observational data about short periods of play we can understand

this in the context of the game itself and the surrounding players.

143

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

6.2.2 Small Displays

Interaction frequently involves the use of devices with physically small displays such as

handheld computers and mobile phones. This makes it difficult for an analyst to see a user’s

interactions with a system. Of course there are many ways to capture that information,

through long established human computer interaction research. Having users ‘think aloud’

their interaction springs to mind, but methods like that rather break the ‘real world settings’

exploration favoured by many analysts. Again then we may turn to replay to provide a

solution. One option available for some devices is to use a screen capture approach - i.e.

record a continuous video of the screen using special screen capture software. Again replay

software such as DRS or Replayer can be used to synchronise this video with other videos

capturing a wider view of the context of the interaction. This approach as successfully used

in an evaluation of the VIRILE system [35] and [34]. Alternatively a well instrumented

system such as Treasure may have much of its action reconstructed from the system logs

as demonstrated in the case study. This reconstruction may then be used as a resource in

synchrony with other resources such as video, field notes etc in the production of an analysis.

Turning once more to the case studies, we can look at the practice of reconstruction. In

treasure (section 5.2), the screen gives a lot of information about state, but we are unable to

capture this (screen recording is not technically feasible on PDAs) because of the size of the

screens. For a good exmaple, we might turn to the case of reconstructing a pickpocket event

(section 5.2). In this case capturing the screen is made even harder by the fact that one player

is trying to hide his actions from his target. There are a number of circumstances which

might cause a pickpocket to succeed or fail, and we can reconstruct those circumstances -

both in terms of what information the player had (leading to his attempt) and what the

state of the system was (leading to the result). In Day of the Figurines (section 5.3) The

interaction takes place through text messages. If we are observing natural behaviour, people

do not generally read their text messages out loud. However our synchronised reconstruction

of the game events allows us to see those messages (i.e. what the player sees) in the correct

context and thus better describe and interpret their actions.

6.2.3 Headphones

Users often have audio information provided through headphones which becomes unavailable

with traditional capture techniques like video recording. This means that the analyst may

144

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

miss much key information. By simply recording the audio sent over the headphones and

playing that back in synchrony with other data using the tools provided, we can recapture the

crucial information that might otherwise have been lost to the analyst using more traditional

capture and playback techniques.

In this example, the case studies cannot help us, because neither of the examples we

explored featured audio or headphones. However the same holds true for this as for the

previous example. If we have the audio recorded separately and synchronised, or it can be

reconstructed from system events (as is the case with some forms of audio feedback) We

can overlay that audio track with captured video - or other form of observation to better

understand the context and thus better unpack the behaviour.

6.2.4 Non-Collocation

When interacting with collaborative ubiquitous systems users are frequently interacting

with other users who are not collocated with the user. This characteristic of ubiquitous

computing systems presents a significant challenge for an analyst. One possibility is to

capture both sides of an interaction using either system logs or other recording technology

such as audio or video then reconstruct the action post-hoc using one of the replay tools

described. Additional information my be recovered by interviewing the participants then

using tools provided to annotate the recordings, with information regarding the other side

of the interaction. Again we have a situation where the tools allow us to reconstruct a view

over the data which would have been difficult to achieve without the support provided by

these tools.

The case study that serves us best for this point is Day of the Figurines (section 5.3).

Players are geographically separated from each other, from the game board, and from the

organisers, and communicating with the game through a non synchronous medium (namely

SMS) - which means they may also be temporally separated e.g. receiving events at different

times - something that will be discussed presently. The geographically dispersed nature of

the game makes it challenging to observe interaction between players, but we can observe

one side of that interaction and reconstruct the missing information (the other side of the

interaction) later when we unpack it.

The study of Treasure (section 5.2) does also serve here in the same manner. While

the distances are smaller, since treasure was played over an area of only around one square

kilometre, they are still widely dispersed over that area. As such attending to all of them at

145

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

once is difficult, so the same reconstruction of context serves us. One related and interesting

factor coming from the case study is that of ‘collaboration at a distance,’ something suggested

by the mutual information analysis in section 5.2.3. It showed us that players were able to

divide up the space in a form of collaboration that might be difficult to capture or indeed

even be aware of when they are some distance apart.

6.2.5 Invisible Interaction

Users often interact with invisible sensor systems such as Global Positioning Systems or

video tracking, which can make it challenging to understand why users are acting in a given

way and how the sensing systems are actually behaving. The inclusion of synchronised

log data from these systems allows the analyst to include this missing information in his

analysis, and thus better describe the accountable process of an interaction.

The case study of treasure (section 5.2) serves us well here. In the specific example in

which we wish to understand how players failed to successfully upload coins in a particular

location (section 5.2.1), it is only apparent what is going on if we can reconstruct exactly

what data was available to that player. Looking at their position we can see that they are in

what appears, at least on the aggregate signal map, to be an area of good signal coverage,

and by combining this with information (also shown on the screen) which shows they were

not in fact connected to the network, we are able to understand why the upload was not

succeeding. The players did not notice at the time that this was not working, and there

is no indication on the video, though it is discussed in the interview when talking about

their seemingly low team score and their attempts to collaborate. The interview highlights

a problem that cannot easily be answered through observation - but reconstructing the

context gives us that answer - pointing again to inconsistency in mapping between mental

model and system state.

6.2.6 Distribution of Interaction

Interaction may be distributed across different applications and devices. Interaction is thus

not only located in different physical locations but may also be mediated through different

applications and devices, which makes it difficult to develop a coherent description of inter-

action. Again the support for synchronised system logs helps to support the collection of

interaction fragments into a cohesive whole. Bringing all the logs into one playback creates

a holistic ‘virtual device’ which combines data from all the devices and applications into a

146

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

synchronized corpus for playback and analysis. It is thus easier to consider the system as a

whole rather than what it is in reality: a collection of diverse technologies and applications.

This ‘virtual device’ can then be examined in synchrony with other materials, allowing the

analyst to focus on the character of the interaction, while remaining aware of the diversity

of resources supporting the description.

Both case studies give us examples of this issue to explore. Treasure (section 5.2) is

made up of a series of PDAs and a central server. To get an accurate picture of the ‘state’

of the system, logs are recorded on each of these devices, then combined together to create

what is, to all intents and purposes, a ‘view from nowhere.’ However it is through this

view that we are able to reconstruct the context of and subsequently unpack events, as in

the example of exploring a ‘pickpocket’ event (section 5.2). In that event the user looks

at his PDA interface, which gives him a picture of the known game context - or at least

some of it (recall that he is not informed if his target is using a shield, nor if his target is

out of network coverage). he then makes a decision to try to pickpocket a target. When

he clicks the button, a message is sent to the server, which examines its own view of the

context, measures the distance to the target and accepts the event only if its position for

both the player and target are within range of one another. A message is then sent to the

target’s device telling it to remove coins and if the receipt of that message is acknowledged

(confirmation that the target was indeed in range) a message is then sent to the player’s

device telling it to add the coins (i.e. that the event has succeeded). As we can see here,

even without the shield or other factors, there is a complex process to go through involving

messaging from several systems and a dependency on two technologies (GPS and Wifi).

Only if all this succeeds will the player have made a successful pickpocet and to understand

why one may have worked while others may not have we must build a picture of the system’s

state, and the player’s mental model of that state. If the two do not match then the attempt

will fail and the player will be disappointed. We see then what the benefit of being able

to reconstruct all this information is - and combining this with videos of the event helps

to shape the understanding of the process. Some players for example simply mashed the

pickpocket button whenever they could see another player. Others were more deliberate -

checking their screen to make sure everything was in place, or lying in wait near the upload

areas. These actions are best unpacked through the coordination of video, system log data

(suitably visualised) and interviews. The study of Day of the Figurines (section 5.3) serves

us equally well. That system is made up of consumer mobile phones, an SMS server, a game

147

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

server and of course the physical board. A player-player interaction is not a direct SMS

but one mediated by the servers, which record the event. In fact the case study is a great

example of the representation of a system as a virtual device. We are able to construct a tool

for querying the event data (as seen in the case study and pictured in figure 5.5, regardless

of what types of phones people might be using, what network they might be on etc. and

we can use this representation to unpack players’ interaction with the game in considerable

depth - something that would have been extremely difficult without that representation.

6.2.7 Interaction Time

Certain communication channels such as SMS messages or email are not continuous, that

is a message may come in at one time, but a user may examine it much later then wait till

a convenient time to respond. This complicates the process of conversational analysis as

the context of the times when a user receives a message and when they act on it may be

very different. Synchronised access to all the resources involved allows the analyst to select

exactly the resources he needs to develop his description, filtering out those which are at

the time irrelevant. The facility provided by Replayer and DRS to jump straight to the

relevant areas of a video tied to a specific system log event means that the analyst can easily

focus on one particular interaction, even if the parts of that interaction are not temporally

collocated, and construct a cohesive description of that interaction.

The case study of Day of the Figurines 5.3 provides an excellent example of this phe-

nomenon occurring. The game is played over SMS, which is an asynchronous medium. The

server records when it sends a message, and when it receives one, but cannot know when

that message was received by the player (the phones are not instrumented) nor when it was

read. Because the server runs continuously, we can have some idea of when the message

was acted on - assuming good network coverage ensures the reply is delivered promptly.

This is an example of why dealing with the system logs alone is not sufficient to build up a

picture of how people engage with the game. We know how in game terms they interact,

but not the context under which that interaction took place, or the thought and decision

making processes behind that interaction. For this we must turn to more familiar meth-

ods: observing and recording the player in situ for example, or through post hoc interviews.

We can however inform such interviews by examining the data in the viewer for interesting

game events to explore with the players - and indeed because we have a timestamp for the

message events we can interrogate the player as to why particular delays took place. In the

148

6.2 Revisiting the challenges Chapter 6: Reflections and Conclusions

case study, for example, we have the case of a player who switched the phone off while at

work. We need a combination of the temporal and system context provided by the viewer,

with the observation or interview based understanding of the players actions in that context

to fully unpack what happens in their interaction with and through the game.

6.2.8 Technological Breakdowns

Because ubiquitous computing systems frequently rely on the use of diverse technologies all

being used together, sometimes not everythign runs as smoothly as it should. In reality

these technologies do not always work perfectly together, potentially creating confusion for

both the user and the analyst in the interaction process. The key to understanding system

behaviour is once more to be found in the system logs. An example from the case study

of treasure (section 5.2, which was deliberately created to play with the ‘edges’ or ‘seams’

of interacting technologies [47] is to be found in section 5.2.1 where the GPS system was

reporting one position to a user, but disconnection in the messenger system meant that

the server recorded them at an entirely different position (something invisible to the users)

caused a breakdown in the player’s understanding of the game. One might assume that the

server has a complete picture of the ‘state’ of the game, but in practice this is not the case.

Position reports can only happen when the PDA is within network range of the server, but

the game requires players to leave the network, so its ‘state’ can only ever be a ‘best guess’

based on last known location. However, because the PDA also records its position, when we

combine the logs into an aggregated spatial distribution we can see the discrepancies in these

locations. An interview with the user suggested they were attempting one tactic, while the

system logs suggested otherwise. Each viewpoint (user, PDA, server) tells a different story,

and the facts can only be reconciled by combining those viewpoints. This provides a specific

example of how the complete picture can only be found in the coordinated examination of

both the system log data and the more traditionally recorded interview data - either alone

would not have served to explain this discontinuity.

6.2.9 Meeting the Challenges

We have seen in the examples above how the practice of coordinating system logs with more

traditional data can alleviate many of the problems associated with studying ubiquitous

computing systems. It is notable that the programs do not in themselves solve the prob-

lems, it is by understanding their potential uses through the whole process of designing an

149

6.3 Revisiting the design guidelines Chapter 6: Reflections and Conclusions

experiment, deciding what to record and log, running the experiment then collecting, syn-

chronising and analysing the data, that an analyst can exploit these facilities to overcome

the challenges laid out in the related work chapter. Computer aided qualitative data analysis

tools such as Replayer and DRS are not in themselves a solution to these challenges. Indeed

such tools cannot and should not replace the core skills of a qualitative data researcher,

rather they provide a way of exploring and exploiting new types of data to which tradi-

tional qualitative methods may be applied. Just as word processors provide many valuable

resources to an author, the skill, process, methods and conclusions remain the province of

the individual researchers. Replayer and DRS simply help the researcher to apply his or

her methods across a wider range of data to reflect the wider range of interaction media the

researcher is faced with the challenge of understanding.

6.3 Revisiting the design guidelines

At the end of the related work section we laid out a series of key design guidelines necessary

for any system aiming to support qualitative data analysis of ubiquitous computing systems,

in particular through the use of system log data as a potential resource for qualitative

description. We shall now show how Replayer and DRS have been developed within those

guidelines.

• Tools that allow viewing of system log data synchronized with other types of media.

We have examined in detail in chapters 3 and 4 how both Replayer and DRS provide

support for the viewing of system log data synchronized with additional source media

such as video and audio in the case of Replayer and with additional media such as

transcriptions, photographs and documents in DRS. We have seen in the case studies

how the use of those logs in coordination with other media types can inform an analysis

and support the description of interaction with and around ubiquitous computing

technology.

• Tools that enable researchers to extract multiple sources of information from recorded

logs, and which allow them to edit extracted information and combine it with media

from external sources to produce unique datasets.

The case studies described in chapter 5 and in section 6.2 have examined the use of

different types of logged data and how that data can be used in coordination with other

150

6.4 Specific Academic Contributions Chapter 6: Reflections and Conclusions

data to create uniquely powerful resources for qualitative description. We have further

shown how it is possible to extract certain information only by using the combination

of both media types.

• A replay system that exploits time stamps to coordinate the use of the multiple media in

a dataset, which enables cross referencing and indexing to support the splicing together

of multiple media, and which enables multiple media to played side-by-side. Both

Replayer and DRS provide the ability to synchronize multiple media sources on a

single timeline. DRS in particular demonstrates by use of coding (Track Viewer,

Gesture Recognition) and document markup (DRS Documents) how heterogeneous

media types can be effectively cross referenced. Both systems provide means by which

one media type, or view of a media type can be used as an index to another.

• Tools that support the production of representations from datasets and which preserve

the relationship between representations and the media from which they are derived,

and which enable source media to be recovered and viewed.

In the case of Replayer we see many potential representations of system log data

with the set of graphical viewers provided. In DRS we can see how more familiar

approaches such as transcription and coding can also be used to create synchronized

representations of the data both at an absolute and descriptive level. In all these

cases the coordinated nature of the data handling allows source media to be instantly

accessible even after abstraction, such as in the case of Replayer’s correlation tool.

Both Replayer and DRS have been implemented with these requirements at the core of

their design.

6.4 Specific Academic Contributions

This section will describe the specific academic contributions made by this thesis and the

work described therein.

• Demonstrated the value that can be added by combining log data with other media.We

have shown through case studies that using system log data as a qualitative resource

for can add significant value to an analysis. While the contents of the log file do not by

themselves represent qualitative data, the application of those resources to can help

to determine the character of an interaction that may be otherwise difficult both to

151

6.4 Specific Academic Contributions Chapter 6: Reflections and Conclusions

study and to describe because of the inherent difficulties in working with ubiquitous

computing tools as laid down in the challenges. Specifically we have shown that the

coordination of those accountable logs with other data types such as video and audio

can, when a suitable qualitative research methodology such as ethnomethodologically

informed ethnography is applied, serve as an effective descriptive resource.

• Shown the coordination of system logs and other media can help us ‘see things we could

not otherwise have seen.’ Closely related to the above point, we have demonstrated

in the case studies examples of the type of value added by system log data, in that

in the coordination of that data with other media it becomes possible to understand

interaction in ways that would have been impossible (or at least extremely difficult)

in any other way. As specific example of this can be see in the Treasure case study

during the discussion on inaccurate position displays. The player’s understanding

of the system and the technical implementation of the system did not quite match.

Because the player was unfamiliar with the technical details of the system, all they

see is a problem - which is highlighted in interviews with the player by the evaluator.

Only by interacting with the logs, and using multiple views over those logs can this

problem be effectively described. In particular this example serves to highlight several

of the key challenges discussed above: the players are mobile, the device they use has a

small display, they are interacting with other players who are not collocated, and they

are interacting with an imperfect network (a seamful environment). All of these issues

are overcome by the coordinated use of system logs and other media in a synchronized

playback environment, allowing effective description of the players’ actual interaction

with the system and with each other.

• Ability to perform studies in locations/settings that would otherwise have been impos-

sible The very nature of ubiquitous computing systems can make the settings in which

their use occurs difficult to study with traditional qualitative methods. The use of

recorded log data along with other heterogeneous media can allow researchers to ap-

ply those qualitative methods by adding previously invisible data as a coordinated

description resource. For example in the Day if the Figurines case study (section 5.3),

we are unable to directly observe all the diversely located players over a long period

of time (four weeks), however we are able to reconstruct the events that occurred in

the game by making a representation of the system logs. We can then interrogate

152

6.4 Specific Academic Contributions Chapter 6: Reflections and Conclusions

this representation like any other more traditional type of observation and unpack the

recorded events.

• Demonstrated how computer aided qualitative data analysis software has to evolve to

support understanding interaction in a world increasing populated with ubiquitous com-

puting technology Having explored the current state of the art in CAQDAS tools, we

have then demonstrated by means of the difficulties laid down in the related work sec-

tion, how the current tools are simply not equipped to cope with the new challenges

of studying the use of and the interaction around ubiquitous computing technology.

We have demonstrated through the development of both Replayer and Digital Replay

System, how those tools can be evolved to incorporate additional system log informa-

tion as well as ways by which that data can be viewed, explored and exploited as an

integrated resource for qualitative analysis.

• Demonstrated how creating accessible qualitative data analysis tools allows people to

study particular settings or technologies that could not have studied them before. We

have demonstrated that by creating familiar tools, ubiquitous computing can be stud-

ied by ‘real’ social scientists, and not just computing scientists. The complexity of

system log data can be reduced to manageable and accountable data by means of

coordinated visualization. In effect this means that analysis of ubiquitous computing

systems can be effectively performed by those who are experts in qualitative analysis,

instead of those whose expertise lies in the technical aspects of ubiquitous computing.

• Defined, implemented and demonstrated an effective framework for storing and syn-

chronizing log files. The organizational paradigm of state and event logs as demon-

strated in the implementation of Replayer serves as a powerful framework for storing

and handling high dimensional system log data. The framework is sufficiently flexible

to handle every type of system log yet encountered in the development process, and

many others besides. This framework allows sampled data to interact with recorded

events to so if suitable data are available, a system’s state can be framed at any given

time that an event occurs. The framework is sufficiently generalized to be able to in-

clude not just system log data, but any annotations and by means of that also coding

and transcription data. This means that recorded data, whether it be system logs, or

descriptive data added post-hoc, can be coordinated, searched and explored together.

• Shown how this framework can be exploited to achieve high dimensional synchroniza-

153

6.5 Conclusion Chapter 6: Reflections and Conclusions

tion of recorded data. We have demonstrated how with the use of a series of coordinated

views, it is possible to make complex selections within a given dataset achieving syn-

chronization over several dimensions beyond just time. Within the framework of DRS

we have shown that the use of ‘markup’ of documents to include temporal information,

and links to additional media allows us to ‘synchronize’ a document that in itself has

no inherent temporal structure.

• Shown that with the use of a distributed software architecture some of the basic problems

associated with viewing high dimensional data can be addressed Replayer’s distributed

architecture serves to provide a flexible platform for playing back data across multiple

computer systems, helping to circumvent problems such as screen real estate or limited

processing power. as well as supporting language independent extensibility. DRS’s

distributed architecture further supports the task of corpus management, allowing

individuals to interact with different corpora with appropriate security measures.

• Co-developed two proof of concept pieces of software, Replayer and Digital Replay

System with radically different approaches to supporting the use of heterogeneous media

types as a resource for qualitative analysis if interaction with and around ubiquitous

computing systems, and shown how those disparate approaches can be combined to

create the next generation of computer aided qualitative data analysis software.

6.5 Conclusion

The study of ubiquitous computing systems presents significant challenges that have not

previously been encountered in interaction analysis of desktop systems and virtual environ-

ments. Ubiquitous computing situates users in a heterogeneous array of physical and digital

environments; users interact via different interaction mechanisms; and interaction itself is

mediated by invisible sensing systems. The asymmetrical, fragmented, and invisible nature of

ubiquitous computing [32], makes interaction difficult to observe from the outset. The chal-

lenge is often treated as a methodological one: a matter of developing analytic frameworks

and methods that are capable of handling the problem of understanding interaction that

ubiquitous computing brings with it (e.g. [86, 93, 99]. Efforts to address the problem adapt

existing techniques, quantitative, qualitative, experimental and naturalistic. The ubiqui-

tous computing and HCI literature is replete with examples that together form a consensus

that the problem of understanding interaction in ubiquitous computing environments is a

154

6.5 Conclusion Chapter 6: Reflections and Conclusions

methodological problem through and through. There is more to the matter than method,

however. Before we can devise and employ a methodical way of observing interaction, we

need to be able to see it. Yet interaction in ubiquitous computing environments is mobile,

massively distributed, located on small devices, mediated through invisible sensing systems

etc. In other words, the problem is not so much that we do not have suitable methods

but that we cannot see what is going on, at least to a sufficient degree in the fist instance.

The problem is not a methodological one per se, but an observational one or, to put it

another way, before we address issues of method, we first need to address the visibility of

the phenomenon.

The need to make the phenomenon visible is an old and constant preoccupation of sci-

entific endeavour [44]. Our understanding of phenomena great and small depends on the

development of technologies that make the phenomenon visible: microscopes, telescopes,

particle accelerators, etc. The sciences are replete with technologies of observation. The ad-

vent of ubiquitous computing places the same demand on computer science if we are develop

an adequate understanding of human interaction within increasingly complex technological

environments: as the computer disappears, our interactions become increasingly opaque.

It has been the work of this thesis to demonstrate through in depth literature review; the

development of core requirements for new observational tools; the subsequent development

of two example software packages (Replayer and Digital Replay System); two in depth case

studies of their use in practice and reflection on what value they have shown to add to an

analysis, that such technologies of observation for ubiquitous computing systems are not only

feasible but practicable and necessary. A large part of this work has been the exploitation

of system logs - in particular creating accountable representations of those logs which can

become a significant qualitative resource.

For all the added extras that they bring however, system logs do not, in and as of them-

selves, contain data. Rather, the data must be produced through the analytically oriented

working of resources internal to situated action and their combination with resources ex-

ternal to the setting of action. Data is constructed then and produced through the work

practices of the analyst. The identification and extraction of salient features enables the

analyst to start to make sense of the system logs, and through the understanding, filter-

ing and visualization of those logs to construct and characterize interaction in and around

ubiquitous computing systems.

Just as the process of capturing data changed as photographs and video became an ac-

155

6.5 Conclusion Chapter 6: Reflections and Conclusions

cessible resource, so too it must change to accommodate this ‘born digital’ data. Ubiquitous

computing is only going to increase in volume and pervasion over time and it is important

that social scientists adopt the necessary resources and processes to understand it and ex-

ploit both the technology itself, and the data captured from such technology as one more

facet in an ever expanding collection of resource types.

156

Bibliography

[1] CIA: The World Factbook. https://www.cia.gov/cia/publications/factbook/index.html,

2007.

[2] G D Abowd. Classroom 2000: An experiment with the instrumentation of a living

educational environment. IBM Systems Journal, 38(4):508–530, 1999.

[3] G D Abowd, C G Atkeson, A F Bobick, I A Essa, B MacIntyre, E D Mynatt, and

T E Starner. Living laboratories: the future computing environments group at the

Georgia Institute of Technology. In CHI’00 extended abstracts on Human factors in

computing systems, pages 215–216. ACM, 2000.

[4] G D Abowd, L D Harvel, and J A Brotherton. Building a digital library of captured

educational experiences. In Digital Libraries: Research and Practice, 2000 Kyoto,

International Conference on., pages 467–474. IEEE, 2000.

[5] G D Abowd, E D Mynatt, and T Rodden. The human experience [of ubiquitous

computing]. Pervasive Computing, IEEE, 1(1):48–57, 2002.

[6] S Adolphs and R Carter. Beyond the word: new challenges in analysing corpora of

spoken English. European Journal of English Studies, 11(2):114–128, 2007.

[7] Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan Srikant, and Yirong Xu. Mining

newsgroups using networks arising from social behavior. In Proceedings of the 12th

international conference on World Wide Web, pages 529–535. ACM, 2003.

[8] Ghassan Al-Qaimari and Darren McRostie. KALDI: A Computer-Aided Usability En-

gineering Tool for Supporting Testing and Analysis of Human-Computer Interaction.

In CADUI, pages 337–355, 1999.

157

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Ian Anderson, Julie Maitland, Scott Sherwood, Louise Barkhuus, Matthew Chalmers,

Malcolm Hall, Barry Brown, and Henk Muller. Shakra: tracking and sharing daily

activity levels with unaugmented mobile phones. Mob. Netw. Appl., 12(2-3):185–199,

2007.

[10] Chee Siang Ang, Ania Bobrowicz, Panote Siriaraya, Joshua Trickey, and Kate Win-

spear. Effects of gesture-based avatar-mediated communication on brainstorming and

negotiation tasks among younger users. Computers in Human Behavior, null(null),

November 2012.

[11] Albert N Badre, Mark Guzdial, Scott E Hudson, and Paulo J Santos. A user interface

evaluation environment using synchronized video, visualizations and event trace data.

Software Quality Journal, 4(2):101–113, 1995.

[12] Liam J Bannon. From Human Factors to Human Actors: The Role of Psychology

and Human-Computer Interaction Studies in System Design, chapter 2, pages 25–45.

Lawrence Erlbaum Associates, Inc, New Jersey, USA, 1991.

[13] J E Bardram. Hospitals of the future–ubiquitous computing support for medical work

in hospitals. In UbiHealth, 2003.

[14] Louise Barkhuus, Matthew Chalmers, Paul Tennent, Malcolm Hall, Marek Bell, Scott

Sherwood, and Barry Brown. Picking Pockets on the Lawn: The Development of

Tactics and Strategies in a Mobile Game. In Michael Beigl, Stephen S Intille, Jun

Rekimoto, and Hideyuki Tokuda, editors, Ubicomp, volume 3660 of Lecture Notes in

Computer Science, pages 358–374. Springer, 2005.

[15] L Bartram, C Ware, and T Calvert. Moving icons: Detection and distraction. In Proc.

IFIP TC, volume 13, pages 157–165, 2001.

[16] Duncan Bates, Nigel Linge, David Parsons, Robin Holgate, Pauline Webb, David Hay,

Sian Wynn-Jones, Alex Newson, and David Ward. Building context into a museum

information guide. pages 235–241, October 2007.

[17] J B Bavelas and N Chovil. Nonverbal and Verbal Communication: Hand Gestures

and Facial Displays as Part of Language Use in Face-to-face Dialogue. 2006.

158

BIBLIOGRAPHY BIBLIOGRAPHY

[18] Geoffrey Beattie and Heather Shovelton. What properties of talk are associated with

the generation of spontaneous iconic hand gestures? British Journal of Social Psy-

chology, 41(3):403–417, September 2002.

[19] Richard A Becker and William S Cleveland. Brushing scatterplots. Technometrics,

29(2):127–142, 1987.

[20] M Bell, M Chalmers, B Brown, I MacColl, M Hall, and P Rudman. Sharing photos

and recommendations in the city streets. In Pervasive 2005 Workshop on Exploting

Context Histories in Smart Environments (ECHISE). N/A, 2005.

[21] Marek Bell, Matthew Chalmers, Louise Barkhuus, Malcolm Hall, Scott Sherwood,

Paul Tennent, Barry Brown, Duncan Rowland, and Steve Benford. Interweaving

mobile games with everyday life. In CHI ’06: Proceedings of the SIGCHI conference

on Human Factors in computing systems, pages 417–426, New York, NY, USA, 2006.

ACM.

[22] V Bellotti and I Smith. Informing the design of an information management system

with iterative fieldwork. In Proceedings of the 3rd conference on Designing interactive

systems: processes, practices, methods, and techniques, pages 227–237. ACM, 2000.

[23] S Benford, W Seagar, M Flintham, R Anastasi, D Rowland, J Humble, D Stanton,

J Bowers, N Tandavanitj, M Adams, Row J Farr, A Oldroyd, and J Sutton. The Error

of our Ways: The experience of Self-Reported Position in a Location-Based Game. In

Proceedings of the the 6th International Conference on Ubiquitous Computing. (Ubi-

Comp 2004), pages 70–87, Nottingham, September 2004.

[24] Steve Benford, Rob Anastasi, Martin Flintham, Adam Drozd, Andy Crabtree, Chris

Greenhalgh, Nick Tandavanitj, Matt Adams, and Ju Row-Farr. Coping with Uncer-

tainty in a Location-Based Game. IEEE Pervasive Computing, 02(3):34–41, 2003.

[25] Steve Benford, Andy Crabtree, Martin Flintham, Adam Drozd, Rob Anastasi, Mark

Paxton, Nick Tandavanitj, Matt Adams, and Ju Row-Farr. Can you see me now?

ACM Trans. Comput.-Hum. Interact., 13(1):100–133, 2006.

[26] Adriana Holtz Betiol and Walter de Abreu Cybis. Usability Testing of Mobile Devices:

A Comparison of Three Approaches. Human-Computer Interaction - INTERACT

2005, pages 470–481, 2005.

159

BIBLIOGRAPHY BIBLIOGRAPHY

[27] E Bittner. Objectivity and realism in sociology. In G Psathas, editor, Phenomenolog-

ical Sociology, pages 109–125. John Wiley, 1973.

[28] S Björk, J Falk, R Hansson, and l. Ljungstrand. Pirates! - Using the Physical World

as a Game Board. In IFIP TC.13 Conference on Human-Computer Interaction (IN-

TERACT 2001), 2001.

[29] Jesse Blum, Martin Flintham, Rachel Jacobs, Victoria Shipp, Genovefa Kefalidou,

Michael Brown, and Derek McAuley. The timestreams platform: Artist mediated

participatory sensing for environmental discourse. In Proceedings of the 2013 ACM

International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp

’13, pages 285–294, New York, NY, USA, 2013. ACM.

[30] B Brown and I MacColl. Lessons from the lighthouse: Collaboration in a shared mixed

reality system, 2003.

[31] Barry Brown and Matthew Chalmers. Tourism and mobile technology. In ECSCW’03:

Proceedings of the eighth conference on European Conference on Computer Supported

Cooperative Work, pages 335–354, Norwell, MA, USA, 2003. Kluwer Academic Pub-

lishers.

[32] Barry Brown, Matthew Chalmers, Marek Bell, Malcolm Hall, Ian MacColl, and Paul

Rudman. Sharing the square: collaborative leisure in the city streets. In ECSCW’05:

Proceedings of the ninth conference on European Conference on Computer Supported

Cooperative Work, pages 427–447, New York, NY, USA, 2005. Springer-Verlag New

York, Inc.

[33] H Brugman and A Russel. Annotating multi-media / multi-modal resources with

ELAN. In LREC2004, pages 2065–2068, 2004.

[34] Patrick Brundell, Dawn Knight, Paul Tennent, A Naeem, Svenja Adolphs, Shaaron

Ainsworth, Ronald Carter, David Clarke, Andrew Crabtree, Chris Greenhalgh, Claire

O’Malley, T Pridmore, and Tom Rodden. The experience of using the Digital Replay

System for social science research. In 4th International e-Social Science Conference,

Manchester, UK, June 2008.

[35] Patrick Brundell, Paul Tennent, Chris Greenhalgh, Dawn Knight, Andrew Crab-

tree, Claire O’Malley, Shaaron Ainsworth, David Clarke, Ronald Carter, and Svenja

160

BIBLIOGRAPHY BIBLIOGRAPHY

Adolphs. Digital Replay System (DRS): A Tool for Interaction Analysis. In Interna-

tional Conference on Learning Sciences (Workshop on Interaction Analysis), Utrecht,

June 2008.

[36] Brandon Burr. VACA: a tool for qualitative video analysis. In CHI ’06: CHI ’06

extended abstracts on Human factors in computing systems, pages 622–627, New York,

NY, USA, 2006. ACM.

[37] G Burrel, J and Gay. E-Graffiti. Interacting with Computers, 14:301–312, 2002.

[38] Graham Button and Paul Dourish. Technomethodology. In Proceedings of the SIGCHI

conference on Human factors in computing systems common ground - CHI ’96, pages

19–26, New York, New York, USA, April 1996. ACM Press.

[39] John T. Cacioppo, Louis G. Tassinary, and Gary Berntson, editors. Handbook of

Psychophysiology. Cambridge University Press, 2007.

[40] Mauricio Capra, Milena Radenkovic, Steve Benford, Leif Oppermann, Adam Drozd,

and Martin Flintham. The multimedia challenges raised by pervasive games. In

MULTIMEDIA ’05: Proceedings of the 13th annual ACM international conference on

Multimedia, pages 89–95, New York, NY, USA, 2005. ACM.

[41] J Carletta, S Evert, U Heid, J Kilgour, J Robertson, and H Voormann. The NITE

XML Toolkit: flexible annotation for multi-modal language data. Behavior Research

Methods, Instruments, and Computers, 35(3), 2003.

[42] R Carter and S Adolphs. Linking the verbal and the visual: new directions for corpus

linguistics. Language and Computers, 64:275–291, 2008.

[43] Scott Carter and Jennifer Mankoff. Prototypes in the Wild: Lessons from Three

Ubicomp Systems. IEEE Pervasive Computing, 4(4):51–57, 2005.

[44] Scott Carter, Jennifer Mankoff, and Jeffrey Heer. Momento: support for situated

ubicomp experimentation. In CHI ’07: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 125–134, New York, NY, USA, 2007.

ACM.

[45] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I

tube, you tube, everybody tubes: analyzing the world’s largest user generated content

161

BIBLIOGRAPHY BIBLIOGRAPHY

video system. In Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement, pages 1–14. ACM, 2007.

[46] Matthew Chalmers, Marek Bell, Malcolm Hall, Scott Sherwood, and Paul Tennent.

Seamful Games. Adjunct Proceedings of 6th Int. Conf. on Ubiquitous Computing, pages

7–10, 2004.

[47] Matthew Chalmers and Areti Galani. Seamful interweaving: heterogeneity in the

theory and design of interactive systems. In DIS ’04: Proceedings of the 5th conference

on Designing interactive systems, pages 243–252, New York, NY, USA, 2004. ACM.

[48] Purnima Chawla and Robert M. Krauss. Gesture and Speech in Spontaneous and Re-

hearsed Narratives. Journal of Experimental Social Psychology, 30(6):580–601, Novem-

ber 1994.

[49] C Chewar and D S McCrickard. Adapting UEMS for notification systems. In Ubicomp

2002 Workshop, volume 9, 2002.

[50] Michael G. Christel, Scott M. Stevens, Bryan S. Maher, and Julieanna Richardson.

Enhanced exploration of oral history archives through processed video and synchro-

nized text transcripts. In Proceedings of the International Conference on Multimedia,

MM ’10, pages 1333–1342, New York, NY, USA, 2010. ACM.

[51] S Consolvo, L Arnstein, and B Franza. User study techniques in the design and

evaluation of a ubicomp environment. UbiComp 2002: Ubiquitous Computing, pages

281–290, 2002.

[52] S. Consolvo and M. Walker. Using the experience sampling method to evaluate ubi-

comp applications. IEEE Pervasive Computing, 2(2):24–31, April 2003.

[53] Louise Corti. Qualitative Data Exchange: Methods and Tools. In Association for

Survey Computing: The Challenges of a Changing World (ASC2007), 2007.

[54] A Crabtree, T Rodden, T Hemmings, and S Benford. Finding a Place for UbiComp in

the Home. In UbiComp 2003: Ubiquitous Computing, pages 208–226. Springer, 2003.

[55] A Crabtree and M Rouncefield. Working with text logs: some early experiences of

record and replay. In 1st International e-Social Science Conference, Manchester, UK,

2005.

162

BIBLIOGRAPHY BIBLIOGRAPHY

[56] Andy Crabtree. Designing Collaborative Systems: A Practical Guide to Ethnography

(Google eBook). Springer, 2003.

[57] Andy Crabtree, Steve Benford, Mauricio Capra, Martin Flintham, Adam Drozd, Nick

Tandavanitj, Matt Adams, and Ju Row Farr. The Cooperative Work of Gaming:

Orchestrating a Mobile SMS Game. Comput. Supported Coop. Work, 16(1-2):167–

198, 2007.

[58] Andy Crabtree, Steve Benford, Chris Greenhalgh, Paul Tennent, Matthew Chalmers,

and Barry Brown. Supporting ethnographic studies of ubiquitous computing in the

wild. In Proceedings of the 6th ACM conference on Designing Interactive systems -

DIS ’06, page 60, New York, New York, USA, June 2006. ACM Press.

[59] H. D. Critchley. Book Review: Electrodermal Responses: What Happens in the Brain.

The Neuroscientist, 8(2):132–142, April 2002.

[60] Edward Cutrell, Mary Czerwinski, and Eric Horvitz. Notification, Disruption, and

Memory: Effects of Messaging Interruptions on Memory and Performance. In Human-

computer Interaction: INTERACT’01: IFIP TC. 13 International Conference on

Human-Comupter Interaction, 9th-13th July 2001, Tokyo, Japan, pages 263–269. IOS

Press, 2001.

[61] David Cwir, Priyanka B. Carr, Gregory M. Walton, and Steven J. Spencer. Your Heart

Makes My Heart Move: Cues of Social Connectedness Cause Shared Emotions and

Physiological States Among Strangers. Journal of Experimental Social Psychology,

47(3):664–661, January 2011.

[62] M Czyzewski. Reflexivity of actors versus the reflexivity of accounts. Theory, Culture

and Society, 11:161–168, 1994.

[63] N Dahlbäck, A Jönsson, and L Ahrenberg. Wizard of Oz studies: why and how.

Knowledge-based systems, 6(4):258–266, 1993.

[64] Norman K. Denzin and Yvonna S. Lincoln. Introduction: The discipline and practice

of qualitative research. In Norman K. Denzin and Yvonna S. Lincoln, editors, The Sage

Handbook of Qualitative Research, pages 1–33. Sage, Thousand Oaks, CA, 3 edition,

2005.

163

BIBLIOGRAPHY BIBLIOGRAPHY

[65] Silvana di Gregorio and Judith Davidson. Research Design, Units of Analysis and

Software supporting Qualitative Analysis. In CAQDAS 07 Conference: Advances in

Qualitative Computing, 2007.

[66] Tanja Döring, Alireza Sahami Shirazi, and Albrecht Schmidt. Exploring gesture-

based interaction techniques in multi-display environments with mobile phones and a

multi-touch table. In Proceedings of the International Conference on Advanced Visual

Interfaces, AVI ’10, pages 419–419, New York, NY, USA, 2010. ACM.

[67] Paul Dourish. Where the Action Is : The Foundations of Embodied Interaction (Brad-

ford Books). The MIT Press, September 2004.

[68] S Dumais and M Czerwinski. Building bridges from theory to practice. In HCI

International 2001, 9th Conference on Human-Computer Interaction, 2001.

[69] G Dyke, J Girardot, K Lund, and A Corbel. Analysing face to face computer-mediated

interactions. In EARLI (European Association for Research, Learning and Instruc-

tion), 12th Biennial International Conference, 2007.

[70] P Ekman and W V Friesen. The repertoire of nonverbal behavior: Categories, origins,

usage, and coding. Nonverbal communication, interaction, and gesture, pages 57–106,

1981.

[71] Paul Ekman and Wallace V Friesen. Nonverbal leakage and clues to deception. Tech-

nical report, DTIC Document, 1969.

[72] Paul Ekman and Maureen OSullivan. Facial expression: Methods, means, and moues.

Fundamentals of nonverbal behavior, 1:163–199, 1991.

[73] Paul Ekman and Erika L Rosenberg. What the face reveals: Basic and applied studies

of spontaneous expression using the Facial Action Coding System (FACS). Oxford

University Press, 1997.

[74] Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz, William

Janssen, David Lee, Kim Mccall, Elin Pedersen, Ken Pier, John Tang, and Brent

Welch. Liveboard: a large interactive display supporting group meetings, presenta-

tions, and remote collaboration. In CHI ’92: Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 599–607, New York, NY, USA, 1992.

ACM Press.

164

BIBLIOGRAPHY BIBLIOGRAPHY

[75] D Evans and A Naeem. Using visual tracking to link text and gesture in studies of

natural discourse. In Online Proceedings of the Cross Disciplinary Research Group

Conference Exploring Avenues to Cross-Disciplinary Research, November, volume 7,

2007.

[76] Jerry Alan Fails, Allison Druin, and Mona Leigh Guha. Mobile collaboration. In

Proceedings of the 9th International Conference on Interaction Design and Children -

IDC ’10, page 20, New York, New York, USA, June 2010. ACM Press.

[77] Xiaoli Fern, Chaitanya Komireddy, Valentina Grigoreanu, and Margaret Burnett. Min-

ing problem-solving strategies from hci data. ACM Trans. Comput.-Hum. Interact.,

17(1):3:1–3:22, April 2010.

[78] Martin Flintham, Rob Anastasi, Steve Benford, Adam Drozd, James Mathrick, Dun-

can Rowland, Amanda Oldroyd, Jon Sutton, Nick Tandavanitj, Matt Adams, and

Ju Row-Farr. Uncle Roy all around you: mixing games and theatre on the city streets.

In DIGRA Conf., 2003.

[79] Ian Foster and Carl Kesselman. The grid: blueprint for a new computing infrastructure.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, November 1998.

[80] Adam Fouse, Nadir Weibel, Edwin Hutchins, and James D. Hollan. ChronoViz: a

system for supporting navigation of time-coded data. pages 299–299–304–304, May

2011.

[81] Adam S Fouse and James D Hollan. Visualization of exploratory video analysis.

[82] Mike Fraser, Jon Hindmarsh, Katie Best, Christian Heath, Greg Biegel, Chris Green-

halgh, and Stuart Reeves. Remote Collaboration Over Video Data: Towards Real-

Time e-Social Science. Comput. Supported Coop. Work, 15(4):257–279, 2006.

[83] Mike Fraser, Jon Hindmarsh, Katie Best, Christian Heath, Greg Biegel, Chris Green-

halgh, and Stuart Reeves. Remote Collaboration Over Video Data: Towards Real-

Time e-Social Science. Computer Supported Cooperative Work (CSCW), 15(4):257–

279, September 2006.

[84] Christopher Frauenberger, Judith Good, Alyssa Alcorn, and Helen Pain. Supporting

the design contributions of children with autism spectrum conditions. In Proceedings

165

BIBLIOGRAPHY BIBLIOGRAPHY

of the 11th International Conference on Interaction Design and Children - IDC ’12,

page 134, New York, New York, USA, June 2012. ACM Press.

[85] A French, C Greenhalgh, A Crabtree, M Wright, P Brundell, A Hampshire, and

T Rodden. Software replay tools for time-based social science data. In (ICESS2006)

2nd International Conference on e-Social Science, 2006.

[86] Jon Froehlich, Mike Y Chen, Sunny Consolvo, Beverly Harrison, and James A Landay.

MyExperience: a system for in situ tracing and capturing of user feedback on mobile

phones. In MobiSys ’07: Proceedings of the 5th international conference on Mobile

systems, applications and services, pages 57–70, New York, NY, USA, 2007. ACM.

[87] Thomas M J Fruchterman and Edward M Reingold. Graph Drawing by Force-directed

Placement. Software - Practice and Experience, 21(11):1129–1164, 1991.

[88] H Garfinkel. Studies in Ethnomethodology. Prentice-Hall, Englewood Cliffs, NJ, 1967.

[89] H Garfinkel. Hybrid Studies. In A Rawls, editor, Ethnomethodology’s Program: Work-

ing Out Durkheim’s Aphorism, pages 100–103. Rowman and Littlefield, 2001.

[90] Harold Garfinkel and Harvey Sacks. On Formal Structures of Practical Action. In

J McKinney and E Tiryakian, editors, Theoretical Sociology, pages 337–366. New

York: Appleton-Century-Crofts, 1970.

[91] R Stuart Geiger and David Ribes. The work of sustaining order in wikipedia: the ban-

ning of a vandal. In Proceedings of the 2010 ACM conference on Computer supported

cooperative work, pages 117–126. ACM, 2010.

[92] M Gellner and F Forbrig. No Title. In HCI International, Adjunct Workshop, 2003.

[93] M Gellner and P Forbrig. ObSys–A tool for visualizing usability evaluation patterns

with mousemaps. In Proc. of the Tenth Int. Conf. on Human-Computer Interaction,

pages 469–473, 2003.

[94] Olivier Georgeon, Matthias J Henning, Thierry Bellet, and Alain Mille. Creating

Cognitive Models from Activity Analysis: A Knowledge Engineering Approach to Car

Driver Modeling. In International Conference on Cognitive Modeling, pages 43–48.

Taylor & Francis, July 2007.

166

BIBLIOGRAPHY BIBLIOGRAPHY

[95] Gabriella Giannachi, Henry Lowood, Glen Worthey, Dominic Price, Duncan Rowland,

and Steve Benford. Documenting mixed reality performance: the case of cloudpad.

Digital Creativity, 23(3-4):159–175, 2012.

[96] Gabriella Giannachi, Duncan Rowland, Steve Benford, Jonathan Foster, Matt Adams,

and Alan Chamberlain. Blast Theory’s Rider Spoke , its Documentation and the

Making of its Replay Archive. Contemporary Theatre Review, 20(3):353–367, August

2010.

[97] Jean Ann Graham and Michael Argyle. A Cross-Cultural Study of the Communication

of Extra-Verbal Meaning by Gesture. International Journal of Psychology, 10(1):57–

67, January 1975.

[98] C Greenhalgh. EQUIP: a Software Platform for Distributed Interactive Systems, 2002.

[99] Ian Hacking. Representing and Intervening. Cambridge University Press, Cambridge,

1983.

[100] William A. Hamilton, Zachary O. Toups, and Andruid Kerne. Synchronized communi-

cation and coordinated views: Qualitative data discovery for team game user studies.

In CHI ’09 Extended Abstracts on Human Factors in Computing Systems, CHI EA

’09, pages 4573–4578, New York, NY, USA, 2009. ACM.

[101] Eric Harris, Geraldine Fitzpatrick, Yvonne Rogers, Sara Price, Ted Phelps, and Cliff

Randell. From snark to park: lessons learnt moving pervasive experiences from indoors

to outdoors. In AUIC ’04: Proceedings of the fifth conference on Australasian user

interface, pages 39–48, Darlinghurst, Australia, Australia, 2004. Australian Computer

Society, Inc.

[102] C Heath and J Hindmarsh. Analysing Interaction. Video Ethnography, 2002.

[103] C Heath and J Hindmarsh. Analyzing interaction: video, ethnography and situated

conduct, volume 99-121. Sage, 2002.

[104] Martin Heidegger. Being and Time (Translation). Blackwell Publishers, May 1996.

[105] Sharlene Hesse-Biber and Christine Crofts. Computer-Aided Software for Qualitative

Data Analysis: An Historical Overview and Contemporary Perspectives. In CAQDAS

07 Conference: Advances in Qualitative Computing, 2007.

167

BIBLIOGRAPHY BIBLIOGRAPHY

[106] David M Hilbert and David F Redmiles. Extracting usability information from user

interface events. ACM Computing Surveys, 32(4):384–421, 2000.

[107] James D. Hollan. Activity-enriched computing: Capturing and mining activity histo-

ries. Computer, 45(10):84–87, October 2012.

[108] J G Hollands and C D Wickens. Engineering psychology and human performance.

Prentice Hall New Jersey, 1999.

[109] L E Holmquist, K Höök, O Juhlin, and P Persson. Challenges and opportunities for

the design and evaluation of mobile applications. In workshop Main issues in designing

interactive mobile services, Mobile HCI, volume 2002, 2002.

[110] Michael Horn, Zeina Atrash Leong, Florian Block, Judy Diamond, E. Margaret Evans,

Brenda Phillips, and Chia Shen. Of BATs and APEs. In Proceedings of the 2012 ACM

annual conference on Human Factors in Computing Systems - CHI ’12, page 2059,

New York, New York, USA, May 2012. ACM Press.

[111] Juan Pablo Hourcade, Natasha E. Bullock-Rest, and Thomas E. Hansen. Multitouch

tablet applications and activities to enhance the social skills of children with autism

spectrum disorders. Personal and Ubiquitous Computing, 16(2):157–168, April 2011.

[112] Philip N Howard. Network ethnography and the hypermedia organization: New media,

new organizations, new methods. New Media & Society, 4(4):550–574, 2002.

[113] S Hudson, J Fogarty, C Atkeson, D Avrahami, J Forlizzi, S Kiesler, J Lee, and J Yang.

Predicting human interruptibility with sensors: a Wizard of Oz feasibility study. In

Proceedings of the SIGCHI conference on Human factors in computing systems, pages

257–264. ACM, 2003.

[114] Robert L Hulsman, Ellen M A Smets, John M Karemaker, and Hanneke J C J M

de Haes. The psychophysiology of medical communication. Linking two worlds of

research. Patient education and counseling, 84(3):420–7, September 2011.

[115] Giovanni Iachello, Khai N Truong, Gregory D Abowd, Gillian R Hayes, and Molly

Stevens. Prototyping and sampling experience to evaluate ubiquitous computing pri-

vacy in the real world. In CHI ’06: Proceedings of the SIGCHI conference on Human

Factors in computing systems, pages 1009–1018, New York, NY, USA, 2006. ACM.

168

BIBLIOGRAPHY BIBLIOGRAPHY

[116] S Intille. Change blind information display for ubiquitous computing environments.

UbiComp 2002: Ubiquitous Computing, pages 193–222, 2002.

[117] Stephen S Intille, John Rondoni, Charles Kukla, Isabel Ancona, and Ling Bao. A

context-aware experience sampling tool. In CHI ’03: CHI ’03 extended abstracts on

Human factors in computing systems, pages 972–973, New York, NY, USA, 2003.

ACM.

[118] Melody Y Ivory and Marti A Hearst. The state of the art in automating usability

evaluation of user interfaces. ACM Comput. Surv., 33(4):470–516, 2001.

[119] Rachel Jacobs, Steve Benford, Mark Selby, Michael Golembewski, Dominic Price, and

Gabriella Giannachi. A conversation between trees: What data feels like in the forest.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’13, pages 129–138, New York, NY, USA, 2013. ACM.

[120] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: under-

standing microblogging usage and communities. In Proceedings of the 9th WebKDD

and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages

56–65. ACM, 2007.

[121] X Jiang, J I Hong, L A Takayama, and J A Landay. Ubiquitous computing for

firefighters: Field studies and prototypes of large displays for incident command. In

Proceedings of the SIGCHI conference on Human factors in computing systems, pages

679–686. ACM, 2004.

[122] Yasmin Kafai and Deborah Fields. Connecting play: Understanding multimodal par-

ticipation in virtual worlds. In Proceedings of the 14th ACM International Conference

on Multimodal Interaction, ICMI ’12, pages 265–272, New York, NY, USA, 2012.

ACM.

[123] A Kaikkonen, T Kallio, A Keklinen, A Kankainen, and M Cankar. Usability testing

of mobile applications: A comparison between laboratory and field testing. Journal

of Usability Studies, 1:4–16.

[124] Dimitris N. Kanellopoulos. Current and future directions of multimedia technology in

tourism. International Journal of Virtual Technology and Multimedia, 1(2):187, March

2010.

169

BIBLIOGRAPHY BIBLIOGRAPHY

[125] A Kendon. Some Emerging Features of Face-to-Face Interaction Studies. Sign Lan-

guage Studies, 22:7–22, 1979.

[126] A Kendon. Conducting Interaction: Patterns of behavior in focused encounters, vol-

ume 7. Cambridge University Press, 1990.

[127] A Kendon. Do gestures communicate? A review. Research on language and social

interaction, 27(3):175–200, 1994.

[128] A Kendon, R M Harris, and M R Key. Organization of behavior in face-to-face inter-

action. De Gruyter Mouton, 1975.

[129] D Kieras and S Bovair. The role of a mental model in learning to operate a device.

Cognitive Science, 8(3):255–273, September 1984.

[130] Michael Kipp. Anvil - A Generic Annotation Tool for Multimodal Dialogue. In Pro-

ceedings of the 7th European Conference on Speech Communication and Technology

(Eurospeech), pages 1367–1370, Aalborg, September 2001.

[131] Jesper Kjeldskov, Mikael B Skov, Benedikte S Als, and Rune T Huegh. Is It Worth

the Hassle? Exploring the Added Value of Evaluating the Usability of Context-Aware

Mobile Systems in the Field. Mobile Human-Computer Interaction (MobileHCI 2004),

pages 61–73, 2004.

[132] D Knight. Corpora: the next generation. Part of the AHRC funded online Introduc-

tion to Corpus Investigative Techniques, The University of Birmingham. http://www.

humcorp. bham. ac. uk, 2006.

[133] Dawn Knight and Paul Tennent. Introducing Drs: A Tool For The Future Of Corpus

Linguistic Research And Analysis. In The 6th Language Resources And Evaluation

Conference. Elra, 2008.

[134] Jan-Peter Krämer, Thorsten Karrer, Joachim Kurz, Moritz Wittenhagen, and Jan

Borchers. How tools in ides shape developers’ navigation behavior. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages

3073–3082, New York, NY, USA, 2013. ACM.

[135] A Kranstedt, S Kopp, and I Wachsmuth. MURML: A multimodal utterance represen-

tation markup language for conversational agents. In Proc. of the AAMAS Workshop

on Embodied conversational agents–Lets specify and evaluate them, 2002.

170

BIBLIOGRAPHY BIBLIOGRAPHY

[136] Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt. A few chirps about

twitter. In Proceedings of the first workshop on Online social networks, pages 19–24.

ACM, 2008.

[137] Steinar Kristoffersen and Fredrik Ljungberg. ”Making place” to make IT work: em-

pirical explorations of HCI for mobile CSCW. In GROUP ’99: Proceedings of the

international ACM SIGGROUP conference on Supporting group work, pages 276–285,

New York, NY, USA, 1999. ACM.

[138] Udo Kuckartz. Techniques of analysis using MAXQDA 07. In CAQDAS 07 Conference:

Advances in Qualitative Computing, 2007.

[139] Anthony LaMarca, Yatin Chawathe, Sunny Consolvo, Jeffrey Hightower, Ian Smith,

James Scott, Timothy Sohn, James Howard, Jeff Hughes, Fred Potter, Jason Tabert,

Pauline Powledge, Gaetano Borriello, and Bill Schilit. Place lab: device positioning

using radio beacons in the wild. In Proceedings of the Third international conference

on Pervasive Computing, PERVASIVE’05, pages 116–133, Berlin, Heidelberg, 2005.

Springer-Verlag.

[140] Shannon Lane and Emmy Arnold. Qualitative research: a valuable tool for transfusion

medicine. Transfusion, 51(6):1150–3, June 2011.

[141] R Larson and M Csikszentmihalyi. The Experience Sampling Method. In H T Reis,

editor, Naturalistic Approaches to Studying Social Interaction: New Directions for

Methodology of Social and Behavioral Science. Jossey-Bass, 1983.

[142] Dominique Le-Roux, Magda Dargentas, and Mathieu Brugidou. Developing

Computer-Aided Secondary Analysis : consequences of such an Innovation for Sociol-

ogists in an Industrial Context. In CAQDAS 07 Conference: Advances in Qualitative

Computing, 2007.

[143] Xin Li, Minghua Li, and Liren Zeng. Virtual classrooms supporting a two-way syn-

chronized video and audio interaction. pages 446–455, August 2010.

[144] Jimmy Lin, Rion Snow, and William Morgan. Smoothing techniques for adaptive

online language models: topic tracking in tweet streams. In Proceedings of the 17th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 422–429. ACM, 2011.

171

BIBLIOGRAPHY BIBLIOGRAPHY

[145] K. Lyons and T. Starner. Mobile capture for wearable computer usability testing.

In Proceedings Fifth International Symposium on Wearable Computers, pages 69–76.

IEEE Comput. Soc, 2001.

[146] Douglas Macbeth. On reflexivity in qualitative research : Two readings, and a third.

Qualitative inquiry, 7(1):35–68, December 2001.

[147] P P Maglio and C S Campbell. Tradeoffs in displaying peripheral information. In

Proceedings of the SIGCHI conference on Human factors in computing systems, pages

241–248. ACM, 2000.

[148] Joe Marshall, Paul Harter, Jo Longhurst, Brendan Walker, Steve Benford, George

Tomlinson, Stefan Rennick Egglestone, Stuart Reeves, Patrick Brundell, Paul Tennent,

and Jo Cranwell. The gas mask. In Proceedings of the 2011 annual conference extended

abstracts on Human factors in computing systems - CHI EA ’11, page 127, New York,

New York, USA, May 2011. ACM Press.

[149] Ference Marton. Phenomenographydescribing conceptions of the world around us.

Instructional science, 10(2):177–200, 1981.

[150] Gregor McEwan, Carl Gutwin, Regan L. Mandryk, and Lennart Nacke. ”i’m just here

to play games”: Social dynamics and sociality in an online game site. In Proceedings

of the ACM 2012 Conference on Computer Supported Cooperative Work, CSCW ’12,

pages 549–558, New York, NY, USA, 2012. ACM.

[151] D R McGee, P R Cohen, R M Wesson, and S Horman. Comparing paper and tangible,

multimodal tools. In Proceedings of the SIGCHI conference on Human factors in

computing systems: Changing our world, changing ourselves, pages 407–414. ACM,

2002.

[152] Iain McLeod, Huw Evans, Philip D Gray, and Rebecca Mancy. Instrumenting Bytecode

for the Production of Usage Data. In Robert J K Jacob, Quentin Limbourg, and Jean

Vanderdonckt, editors, CADUI, pages 183–194. Kluwer, 2004.

[153] D McNeill. Hand and mind: What gestures reveal about thought. University of Chicago

Press, 1992.

[154] David McNeill. So you think gestures are nonverbal? Psychological Review, 92(3):350–

371, 1985.

172

BIBLIOGRAPHY BIBLIOGRAPHY

[155] Florian Michahelles, Ramon Wicki, and Bernt Schiele. Less contact: Heart-rate de-

tection without even touching the user. In Wearable Computers, 2004. ISWC 2004.

Eighth International Symposium on, volume 1, pages 4–7. IEEE, 2004.

[156] Pejman Mirza-Babaei, Lennart E. Nacke, John Gregory, Nick Collins, and Geraldine

Fitzpatrick. How does it play better?: Exploring user testing and biometric story-

boards in games user research. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, pages 1499–1508, New York, NY, USA, 2013.

ACM.

[157] T P Moran, W Van Melle, and P Chiu. Tailorable domain objects as meeting tools for

an electronic whiteboard. In Proceedings of the 1998 ACM conference on Computer

supported cooperative work, pages 295–304. ACM, 1998.

[158] Alistair Morrison, Paul Tennent, John Williamson, and Matthew Chalmers. Using

Location, Bearing and Motion Data to Filter Video and System Logs. Pervasive

Computing, pages 109–126, 2007.

[159] Alistair Morrison, Paul Tennent, John Williamson, and Matthew Chalmers. Using

location, bearing and motion data to filter video and system logs. pages 109–126, May

2007.

[160] Cathy Murray. Secondary analysis of qualitative interviews: using NVivo to avoid

the pitfalls of primary analysis. In CAQDAS 07 Conference: Advances in Qualitative

Computing, 2007.

[161] E D Mynatt, J Rowan, S Craighill, and A Jacobs. Digital family portraits: supporting

peace of mind for extended family members. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 333–340. ACM, 2001.

[162] Christian Monrad Nielsen, Michael Overgaard, Michael Bach Pedersen, Jan Stage,

and Sigge Stenild. It’s worth the hassle!: the added value of evaluating the usability of

mobile systems in the field. In NordiCHI ’06: Proceedings of the 4th Nordic conference

on Human-computer interaction, pages 272–280, New York, NY, USA, 2006. ACM.

[163] D Norman. Some observations on mentai modeis. Mental models, 7, 1983.

173

BIBLIOGRAPHY BIBLIOGRAPHY

[164] Donald A Norman. The Invisible Computer: Why Good Products Can Fail, the Per-

sonal Computer Is So Complex and Information Appliances Are the Solution. MIT

Press, 1998.

[165] N Nova, F Girardin, G Molinari, and P Dillenbourg. The Underwhelming Effects of

Automatic Location-Awareness on Collaboration in a Pervasive Game. In Interna-

tional Confernce on Cooperative Systems Design (COOP 2006), pages 224–238, 2006.

[166] Hidehiko Okado and Toshiyuki Asahi. GUITESTER : A Log-Based Usability Testing

Tool for Graphical User Interfaces. IEICE transactions on information and systems,

82(6):1030–1041, 19990625.

[167] Eva Oliveira, Mitchel Benovoy, Nuno Ribeiro, and Teresa Chambe. Towards emo-

tional interaction: Using movies to automatically learn users’ emotional states. In

Proceedings of the 13th IFIP TC 13 International Conference on Human-computer

Interaction - Volume Part I, INTERACT’11, pages 152–161, Berlin, Heidelberg, 2011.

Springer-Verlag.

[168] A Oulasvirta and T Nyyssönen. Flexible hardware configurations for studying mobile

usability. Journal of Usability Studies, 4(2):93–105, 2009.

[169] S Oviatt. Multimodal interfaces for dynamic interactive maps. In Proceedings of the

SIGCHI conference on Human factors in computing systems: common ground, pages

95–102. ACM, 1996.

[170] S Oviatt. Multimodal system processing in mobile environments. In Proceedings of the

13th annual ACM symposium on User interface software and technology, pages 21–30.

ACM, 2000.

[171] Roy Pea, Michael Mills, Joseph Rosen, Kenneth Dauber, Wolfgang Effelsberg, and Eric

Hoffert. The Diver Project: Interactive Digital Video Repurposing. IEEE MultiMedia,

11(1):54–61, 2004.

[172] Shirlina Po, Steve Howard, Frank Vetere, and Mikael B Skov. Heuristic Evaluation and

Mobile Usability: Bridging the Realism Gap. Mobile Human-Computer Interaction

{â}??MobileHCI 2004, pages 49–60, 2004.

[173] Erika Shehan Poole, Andrew D. Miller, Yan Xu, Elsa Eiriksdottir, Richard Catram-

bone, and Elizabeth D. Mynatt. The place for ubiquitous computing in schools. In

174

BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of the 13th international conference on Ubiquitous computing - UbiComp

’11, page 395, New York, New York, USA, September 2011. ACM Press.

[174] Reid Priedhorsky, Jilin Chen, Shyong Tony K Lam, Katherine Panciera, Loren Ter-

veen, and John Riedl. Creating, destroying, and restoring value in wikipedia. In Pro-

ceedings of the 2007 international ACM conference on Supporting group work, pages

259–268. ACM, 2007.

[175] J Prosser, editor. Image Based Research: A Sourcebook for Qualitative Researchers.

Falmer Press, 1998.

[176] M. Raento, A. Oulasvirta, and N. Eagle. Smartphones: An Emerging Tool for Social

Scientists. Sociological Methods & Research, 37(3):426–454, February 2009.

[177] B Rebsamen, E Burdet, C Guan, Haihong Zhang, Chee Leong Teo, Qiang Zeng,

M Ang, and C Laugier. A Brain-Controlled Wheelchair Based on P300 and Path

Guidance. In Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The

First IEEE/RAS-EMBS International Conference on, pages 1101–1106, 2006.

[178] Kasim Rehman, Frank Stajano, and George Coulouris. Visually Interactive Location-

Aware Computing. In Michael Beigl, Stephen Intille, Jun Rekimoto, and Hideyuki

Tokuda, editors, UbiComp 2005: Ubiquitous Computing, volume 3660 of Lecture Notes

in Computer Science, pages 177–194. Springer Berlin Heidelberg, 2005.

[179] Peter Reichl, Peter Froehlich, Lynne Baillie, Raimung Schatz, and Antitza Dantcheva.

The LiLiPUT prototype: A wearable environment for user tests of mobile telecommu-

nication applications. In CHI ’07 extended abstracts on Human factors in computing

systems - CHI ’07, page 1833, New York, New York, USA, April 2007. ACM Press.

[180] Greg Ross, Alistair Morrison, and Matthew Chalmers. Visualisation Techniques for

Users and Designers of Layout Algorithms. In IV ’05: Proceedings of the Ninth Interna-

tional Conference on Information Visualisation (IV’05), pages 579–586, Washington,

DC, USA, 2005. IEEE Computer Society.

[181] Dana Rotman, Jennifer Golbeck, and Jennifer Preece. The community is where the

rapport is–on sense and structure in the youtube community. In Proceedings of the

fourth international conference on Communities and technologies, pages 41–50. ACM,

2009.

175

BIBLIOGRAPHY BIBLIOGRAPHY

[182] Dana Rotman, Jennifer Preece, Yurong He, and Allison Druin. Extreme ethnography:

Challenges for research in large scale online environments. In Proceedings of the 2012

iConference, iConference ’12, pages 207–214, New York, NY, USA, 2012. ACM.

[183] Maria Roussou, Armin Cremers, Dirk Schulz, Mark Moors, Elias Spirtounias, Mika

Marianthi, Vassilis Savvaides, Alexandra Reitelman, Dimitrios Konstantios, Andro-

machi Katselaki, Panos Trahanias, George Giannoulis, George Kamarinos, Antonis

Argyros, Dimitris Tsakiris, Pantelis Georgiadis, Wolfram Burgard, and Dirk Haehnel.

Experiences from the use of a robotic avatar in a museum setting. In Proceedings of

the 2001 conference on Virtual reality, archeology, and cultural heritage - VAST ’01,

page 153, New York, New York, USA, November 2001. ACM Press.

[184] Gilbert Ryle. The Thinking Of Thoughts: What Is ’Le Penseur’ Doing? University

of Saskatchewan University Lectures, no.18, 1968.

[185] Harvey Sacks. The baby cried. The mommy picked it up. In G Jefferson, editor,

Lectures on Conversation, pages 236–242. Appleton-Century-Crofts, 1992.

[186] Stefan Scherer, Nadir Weibel, Louis-Philippe Morency, and Sharon Oviatt. Multi-

modal prediction of expertise and leadership in learning groups. In Proceedings of

the 1st International Workshop on Multimodal Learning Analytics, MLA ’12, pages

1:1–1:8, New York, NY, USA, 2012. ACM.

[187] Dominik Schmidt, Corina Sas, and Hans Gellersen. Personal clipboards for individual

copy-and-paste on shared multi-user surfaces. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, CHI ’13, pages 3335–3344, New York,

NY, USA, 2013. ACM.

[188] Holger Schnadelbach, Stefan Rennick Egglestone, Stuart Reeves, Steve Benford, and

Brendan Walker. Performing thrill: Designing telemetry systems and spectator inter-

faces for amusement rides. In SIGCHI Conference on Human Factors in Computing

Systems (CHI2008). ACM, 2008.

[189] J. Scholtz and S. Consolvo. Toward a framework for evaluating ubiquitous computing

applications. IEEE Pervasive Computing, 3(2):82–88, April 2004.

[190] Marc Schroder, Elisabetta Bevacqua, Roddy Cowie, Florian Eyben, Hatice Gunes,

Dirk Heylen, Mark ter Maat, Gary McKeown, Sathish Pammi, Maja Pantic, et al.

176

BIBLIOGRAPHY BIBLIOGRAPHY

Building autonomous sensitive artificial listeners. Affective Computing, IEEE Trans-

actions on, 3(2):165–183, 2012.

[191] Rudy Schusteritsch, Carolyn Y. Wei, and Mark LaRosa. Towards the perfect infras-

tructure for usability testing on mobile devices. In CHI ’07 extended abstracts on

Human factors in computing systems - CHI ’07, page 1839, New York, New York,

USA, April 2007. ACM Press.

[192] M Scott. Comparing corpora and identifying key words, collocations, and fre-

quency distributions through the WordSmith Tools suite of computer programs. In

M Ghadessy, A Henry, and R L Roseberry, editors, Small corpus studies and ELT:

theory and practice, pages 47–67. Benjamins, 2001.

[193] Julian Seifert, Adalberto Simeone, Dominik Schmidt, Paul Holleis, Christian Reinartz,

Matthias Wagner, Hans Gellersen, and Enrico Rukzio. Mobisurf: Improving co-located

collaboration through integrating mobile devices and interactive surfaces. In Proceed-

ings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces,

ITS ’12, pages 51–60, New York, NY, USA, 2012. ACM.

[194] Claude Shannon. A Mathematical Theory of Communication. Bell Sys. Tech. J.,

27:379–423,623–656, 1948.

[195] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Beyond Human

Computer Interaction. Wiley, March 2007.

[196] W Sharrock and R Anderson. Epistemology. In G Button, editor, Ethnomethodology

and the Human Sciences, pages 51–76. Cambridge University Press, 1991.

[197] E Shih. The home of the future: An ethnographic study of new information technolo-

gies in the home. Advances in consumer research, 28:88–97, 2001.

[198] Ben Shneiderman and Catherine Plaisant. Designing the User Interface: Strategies for

Effective Human-Computer Interaction (4th Edition). Pearson Addison Wesley, 2004.

[199] Petr Slovák, Joris Janssen, and Geraldine Fitzpatrick. Understanding heart rate shar-

ing: towards unpacking physiosocial space. In Proceedings of the 2012 ACM annual

conference on Human Factors in Computing Systems - CHI ’12, page 859, New York,

New York, USA, 2012. ACM Press.

177

BIBLIOGRAPHY BIBLIOGRAPHY

[200] Ian Smith, Sunny Consolvo, and Anthony LaMarca. The Drop. Computers in Enter-

tainment, 3(3):4, July 2005.

[201] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2009.

[202] Tadeusz Stach, T. C. Nicholas Graham, Jeffrey Yim, and Ryan E. Rhodes. Heart rate

control of exercise video games. pages 125–132, May 2009.

[203] Susan Leigh Star and James R Griesemer. Institutional ecology,translations’ and

boundary objects: Amateurs and professionals in berkeley’s museum of vertebrate

zoology, 1907-39. Social studies of science, 19(3):387–420, 1989.

[204] Lucy A Suchman. Plans and situated actions: the problem of human-machine com-

munication. Cambridge University Press, 1987.

[205] Michael Sühling, Christian Jansen, Muthuvel Arigovindan, Peter Buser, Stephan

Marsch, Michael Unser, and Patrick Hunziker. Multiscale motion mapping a novel

computer vision technique for quantitative, objective echocardiographic motion mea-

surement independent of doppler: First clinical description and validation. Circulation,

110(19):3093–3099, 2004.

[206] Paul Tennent, Stuart Reeves, Steve Benford, Brendan Walker, Joe Marshall, Patrick

Brundell, Rupert Meese, and Paul Harter. The machine in the ghost: Augmenting

broadcasting with biodata. In CHI ’12 Extended Abstracts on Human Factors in

Computing Systems, CHI EA ’12, pages 91–100, New York, NY, USA, 2012. ACM.

[207] Paul Tennent, Duncan Rowland, Joe Marshall, Stefan Rennick-Egglestone, A Harri-

son, Z Jaime, B Walker, and Steve Benford. Breathalising games: understanding the

potential of breath control in game interfaces. In Proceedings of the 8th International

Conference on Advances in Computer Entertainment Technology, page 58. ACM, 2011.

[208] Monica Tentori and Gillian R. Hayes. Designing for interaction immediacy to enhance

social skills of children with autism. In Proceedings of the 12th ACM international

conference on Ubiquitous computing - Ubicomp ’10, page 51, New York, New York,

USA, September 2010. ACM Press.

[209] Richard Uhlig, David Nagle, Trevor Mudge, Stuart Sechrest, and Joel Emer. Instruc-

tion fetching: coping with code bloat. In ISCA ’95: Proceedings of the 22nd annual

178

BIBLIOGRAPHY BIBLIOGRAPHY

international symposium on Computer architecture, pages 345–356, New York, NY,

USA, 1995. ACM.

[210] Michel François Valstar. Timing is everything: A spatio-temporal approach to the

analysis of facial actions. PhD thesis, Imperial College London, 2008.

[211] M Van Dantzich, D Robbins, E Horvitz, and M Czerwinski. Scope: Providing aware-

ness of multiple notifications at a glance. In Proceedings of the Working Conference

on Advanced Visual Interfaces, pages 267–281. ACM, 2002.

[212] Ana Belen Garca Varela, Hector del Castillo, Pilar Lacasa, and Sara Cortes. Analysing

an educational project in the classroom using Transana: Children and parents learning

together. In CAQDAS 07 Conference: Advances in Qualitative Computing, 2007.

[213] Giasemi Vavoula, Mike Sharples, Paul Rudman, Julia Meek, and Peter Lonsdale.

Myartspace: Design and evaluation of support for learning with multimedia phones

between classrooms and museums. Computers & Education, 53(2):286–299, September

2009.

[214] Sudha Verma, Sarah Vieweg, William J Corvey, Leysia Palen, James H Martin, Martha

Palmer, Aaron Schram, and Kenneth Mark Anderson. Natural language processing

to the rescue? extracting” situational awareness” tweets during mass emergency. In

ICWSM, 2011.

[215] Daniel Wagner, Thomas Pintaric, and Dieter Schmalstieg. The invisible train. In

ACM SIGGRAPH 2004 Emerging technologies on - SIGGRAPH ’04, page 12, New

York, New York, USA, August 2004. ACM Press.

[216] Josh Wall. Demo i microsoft surface and the single view platform. In Collaborative

Technologies and Systems, 2009. CTS ’09. International Symposium on, pages xxxi–

xxxii, 2009.

[217] R Want, B N Schilit, N I Adams, R Gold, K Petersen, D Goldberg, J R Ellis, and

M Weiser. An overview of the {PARCTAB} ubiquitous computing experiment. IEEE

Personal Communications, 2(6):28–33, December 1995.

[218] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The Active Badge

Location System. Technical Report 92.1, Olivetti Research Ltd. ({ORL}), 24a Trump-

ington Street, Cambridge CB2 1QA, 1992.

179

BIBLIOGRAPHY BIBLIOGRAPHY

[219] Mark J. Weal, Danius T. Michaelides, Kevin R. Page, David C. De Roure, Mary

Gobbi, Eloise Monger, and Fernando Martinez. Tracking and annotation in skills-

based learning environments. In 2009 IEEE International Conference on Pervasive

Computing and Communications, pages 1–6. IEEE, March 2009.

[220] Mark J Weal, Danius T Michaelides, Mark K Thompson, and David C DeRoure. The

ambient wood journals: replaying the experience. In HYPERTEXT ’03: Proceedings

of the fourteenth ACM conference on Hypertext and hypermedia, pages 20–27, New

York, NY, USA, 2003. ACM.

[221] Nadir Weibel, Shazia Ashfaq, Alan Calvitti, James D. Hollan, and Zia Agha. Multi-

modal data analysis and visualization to study the usage of electronic health records. In

Proceedings of the 7th International Conference on Pervasive Computing Technologies

for Healthcare, PervasiveHealth ’13, pages 282–283, ICST, Brussels, Belgium, Belgium,

2013. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering).

[222] Nadir Weibel, Colleen Emmenegger, Jennifer Lyons, Ram Dixit, Linda L. Hill, and

James D. Hollan. Interpreter-mediated physician-patient communication: Opportu-

nities for multimodal healthcare interfaces. In Proceedings of the 7th International

Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth ’13,

pages 113–120, ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering).

[223] Nadir Weibel, Adam Fouse, Colleen Emmenegger, Whitney Friedman, Edwin

Hutchins, and James Hollan. Digital pen and paper practices in observational re-

search. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’12, pages 1331–1340, New York, NY, USA, 2012. ACM.

[224] Nadir Weibel, Adam Fouse, Colleen Emmenegger, Sara Kimmich, and Edwin

Hutchins. Let’s look at the cockpit: Exploring mobile eye-tracking for observational

research on the flight deck. In Proceedings of the Symposium on Eye Tracking Research

and Applications, ETRA ’12, pages 107–114, New York, NY, USA, 2012. ACM.

[225] Mark Weiser. The computer for the 21st century. pages 933–940, 1995.

[226] J Wejchert. The Disappearing Computer, 2000.

180

BIBLIOGRAPHY BIBLIOGRAPHY

[227] Carol Wellington and Rebecca Ward. Using video to explore programming thinking

among undergraduate students. J. Comput. Sci. Coll., 25(3):149–155, January 2010.

[228] M. Wetherell. Positioning and Interpretative Repertoires: Conversation Analysis and

Post-Structuralism in Dialogue. Discourse & Society, 9(3):387–412, July 1998.

[229] D Wieder and D Zimmerman. The diary: diary interview methods. Urban Life,

5(4):479–498, 1977.

[230] R. Wolff, D.J. Roberts, and O. Otto. Collaboration around Shared Objects in Immer-

sive Virtual Environments. In Eighth IEEE International Symposium on Distributed

Simulation and Real-Time Applications, pages 206–209. IEEE, 2004.

[231] Allison Woodruff, Margaret H Szymanski, Rebecca E Grinter, and Paul M Aoki.

Practical strategies for integrating a conversation analyst in an iterative design process.

In DIS ’02: Proceedings of the 4th conference on Designing interactive systems, pages

255–264, New York, NY, USA, 2002. ACM.

[232] Yan Xu, Xiang Cao, Abigail Sellen, Ralf Herbrich, and Thore Graepel. Sociable

killers: Understanding social relationships in an online first-person shooter game. In

Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work,

CSCW ’11, pages 197–206, New York, NY, USA, 2011. ACM.

[233] Motoji Yamamoto. Real-time analog input device using breath pressure for the oper-

ation of powered wheelchair. In ICRA’08, pages 3914–3919. IEEE, 2008.

[234] Dongsong Zhang and Boonlit Adipat. Challenges, Methodologies, and Issues in the

Usability Testing of Mobile Applications. International Journal of Human-Computer

Interaction, 18(3):293–308, 2005.

181

Appendix A

Author’s contribution to

described software

A.1 Replayer

• complete initial development of phase one - a dedicated playback tool for the Treasure

game, featuring a complex animated locational visualization of system log data played

with synchronized multiple video streams.

• Complete design and development of the distributed extensible architecture.

• Complete design and development of the server database system and internal selection

management system.

• Compete design and development of all bridges to third party software: media bridges

of OSX and Windows and the Google Earth Bridge

• Complete Design and development of RML and the Instrumentor system, as well as

the RML parser component and generic parser API

• Complete design and development of the QCCI lo-fi synchronization tool

• Complete design and development of the simple stats tool

• Collaborative design and development of the Meta Tool visual query system.

• Worked in the team that developed the treasure game outlined in the Replayer case

study.

182

A.2 Digital Replay System Chapter A: Author’s contribution to described software

All Graphical visualization components (Time Series, Event Series, Histogram, Corre-

lation Tool, Mutual Information Tool) were developed by Dr Alistair Morrison at the Uni-

versity of Glasgow. He also collaborated with the author on the development of the visual

query system for the Meta Tool

A.2 Digital Replay System

• Adaptation of the system tool to enable cross platform functionality

• Complete overhaul of the user interface of virtually every aspect of the system

• Complete redesign and redevelopment of the Video viewer

• Complete design and implementation of the DRS Document viewer

• Complete design and development of the Image Viewer

• Partial redesign and redevelopment of the concordance tool

• Amalgamation of transcription editor and annotation table viewer tools

• Several log file processors and viewers made for specific projects not described in this

thesis

• Integration of DRS with the SIDGRID qualitative research sharing framework at the

University of Chicago

All other design and development of DRS has been by members of the DReSS develop-

ment team, past and present: Chris Greenhalgh, Andrew French, Jan Humble, Mike Fraser

and Stuart Reeves

183

Appendix B

Addendum

B.1 Introduction

Since the initial submission of this thesis there has been significant change in the field of

HCI evaluation. This chapter will demonstrate that while there may have been significant

changes in the available data sources, in practice the central argument of the thesis remains

unchanged: that is, that the challenge of supporting qualitative data analysis is not a

methodological one, but rather one of exposing and representing new types of data in a way

that turns them into accountable objects and makes them practically useful for qualitative

research - indeed the appearance of more and more streams of interesting and usable data

simply serves to strengthen the argument that there is a need for this ‘technomethodolgical’

[38] approach to enabling its use.

In order to address this point the chapter will examine several key areas: First we will

explore some examples of the new types of data streams that have become increasingly

accessible over the last few years - in most cases these were data that were already available

one way or another, but are becoming increasingly popular within HCI either because of

the changing availability of sensors, or because of the subsuming by HCI of fields such as

affective computing and social signal processing.

Of these new types of data we will initially examine social networking data - something

touched lightly on in case study 3, but something which has become an increasing staple

of qualitative research for various reasons including accessiblity, uptake, public-awareness

and the plethora of ‘new’ social networks which deal with specific media, such as vine1,

1http://www.vine.com

184

B.1 Introduction Chapter B: Addendum

instagram2 and foursquare3, which deal with video, photographs and location respectively.

Next, we will look at the field of expression recognition. This is not in and of itself a new

field - indeed it has a long and proud history, but the requirements for everyday use have up

till recently been verging on the unfeasible. The difficulty of actually using it in real world

situations is steadily reducing - there are more commercial tools, equipment is becoming

cheaper or even consumer grade, and the computational hardware requirements are less

(or rather consumer grade hardware is catching up with the requirements - for example

CUDA is now a standard on most mid to high end consumer graphics cards), making it

more accessible for use outside the pure challenge of simply achieving it and making it into

a more realistic data type for use in qualitative analysis.

Finally for new types of data, we will explore so called ‘biodata’ by which we mean

physiological data recorded from a participant’s body using sensors (or more accurately

‘biosensors’). Again this is an area that was touched on earlier in the thesis, in case study 1,

but in a short period of time there has been an explosion of the popularity and subsequent use

of such sensors in HCI. This can at least partially be attributed to the increasing popularity

of the field of affective computing (and to a lesser extent social signal processing) which has

all but merged into more traditional HCI. The representation requirements for handling and

making biodata accountable are significantly higher than some other data types previously

addressed such as location, since they invariably require some level of processing before they

become practically usable - something we shall return to presently.

There are of course vast numbers of new types of data. The three examples above (social

networks, expression recognition and biodata) have been chosen as representative examples

of the kinds of new data suddenly and widely available to researchers, each of which presents

specific challenges in representation before they can reasonably be applied when doing the

business of analysis.

Having thus determined that there are many new data streams for the qualitative re-

searcher to explore, we will next explore the treatment some of that data requires to make it

practically usable for analysis - and look at data processing. This is an area that the original

thesis left largely unexplored, beyond simple representation, but is something fundamentally

required by many of these new data types.

Moving away from new types of data, and the requirements these create for use, the

chapter will become more reflective, looking at how the main argument of this thesis stands

2http://www.instagram.com
3https://foursquare.com/

185

B.2 New Types of Data Chapter B: Addendum

with respect to recently published work. First we will briefly look at a range of new tools

which address the evaluation challenges in a similar way to Replayer and DRS - that is by

combining and synchronising streams of different types of data. Then we will look at a num-

ber of representative examples of the successful use of this approach. We will the conversely

look at several representative examples of studies which would have greatly benefited from

following this technique - often contrasting them with studies which approached a similar

subject, but used a synchronised data approach to better effect.

Next we will look at the practice of eliciting stories with data, including several examples

and demonstrating that working through a data stream with a participant can be an excellent

way to get participants to describe their experience, often in a level of detail that is not

otherwise immediately accessible by interview.

At this point we will reflect on the continued validity of this approach and how it has

been borne out in the evidence presented above. We will then revisit the challenges to

evaluation of ubiquitous computing systems systems laid down in the related work chapter

in the light of the contents of this supplement - focussing on the effect of these new types of

data, and how our approach to evaluating ubicomp (or rather supporting the evaluation of

ubicomp) can accommodate them.

Lastly we will discuss how all these threads cohere together to support the central argu-

ment of the thesis, demonstrating its continued relevance in the face of a changing field.

B.2 New Types of Data

There has been a seismic shift in this field over the last couple of years. Not in the approaches

taken to handling data per se, but rather in the accessibility of new (or actually often

old) types of data streams. We will take as example three specific sources of data: social

networking, expression analysis and physiological data, to demonstrate the new types of

challenges associated with a growing cornucopia of data sources opening for designers, and

subsequently evaluators, to understand and explore.

B.2.1 Social networking data

Originally the thesis (particularly in case study 3) argued that social networking was a viable

source for gathering ethnographic (and other qualitative research) data. This particular

data source has proven to be methodologically challenging as outlined by [182], though

186

B.2 New Types of Data Chapter B: Addendum

the conclusions of that paper imply that a process of selective application of established

methods are necessary to perform ethnography in what the authors refer to as ‘large scale

online environments’.

This data gives us an extraordinary picture of users’ behaviour in these online environ-

ments. However, perhaps due to the nature of the data source, in particular the size of

the datasets, most of the analyses tend towards the quantitative. For example, [182] points

out that we can study: “Individually distinctive data” identities, demographics, personal

preferences, and contributed content, which can answer questions about who is online and

who does what online; “Structural data” - showing ties and relationships, shared interests,

zeitgeists, patterns of interaction and information dissemination, which describes who is

connected to whom and how; and “Activity logs” detailing action and behaviour, such as

search queries, navigation, reviews and favouring, which describes who does what, when and

where.

Practically, these kinds of data are relatively easy to capture and seem to be a rich

source for analysis, so they draw many researchers to focus on quantitative assessments

of the structure of the networks and log analysis of activities. Several examples of well

known studies follow this structural analysis approach e.g. [45, 136, 174]. But this type of

data does not by itself not present the complete picture of what is happening in these large

environments. One of the elements missing from such quantitative analyses is why people

are doing what they are doing online in the first place.

It is here that ethnography and similar qualitative approaches can offer a great deal.

There is much to be said for hybridising traditional forms of ethnographic analysis with

a more computation oriented approach to analysis. Some approaches apply the method

of social-network analysis e.g. [112, 181] while others make use of a method called “trace

ethnography” [91] which requires collecting and assembling automatically generated traces

of activity. This latter approach is akin to the system-log analysis discussed earlier in this

thesis. Natural language processing has also been used to programatically track behaviour

in online social networks e.g. [7,120,144,214] which while not method in and of themselves,

provide one possible computational route to accessing the data to be found within these

online communities - perhaps necessary given the sheer volume of information. And that

volume is extensive: According to [182] “Current statistics estimate the number of weekly

tweets at 1 billion, Facebook has more than 750 million active users, and 48 hours of videos

are uploaded to YouTube every minute”. And the methods we have discussed thus far

187

B.2 New Types of Data Chapter B: Addendum

largely apply only to text-based online interaction - or in some cases to capturing content

dissemination, while not addressing the content itself.

The increasing proliferation of ‘new’ social networks (Vine, Instagram, Foursquare etc.)

which are based on a wider selection of data types (video, images and location respectively)

as well as an increase in both uptake and accessibility in the more established social networks

(Facebook, and particularly Twitter and YouTube) have provided a wealth of material that

demands its own approach to understand and evaluate. This multimedia landscape demands

support for tools and method able to support viewing the networks at a macro-level to un-

derstand the structure as well as a micro-level to understand the details of online behaviour.

So the challenge becomes one, not necessarily of developing new methods, but of developing

ways to explore these rich new datasets, which can be examined at various different granu-

larities to tell us much about what is happening online, who is making it happen and how

it is happening.

B.2.2 Expression Recognition

One area within the wider field of social signal processing is that of facial expression analysis.

This is a mature field in its own right and is capable of computationally telling us much

about a person’s (presented) emotional state. One might question at this point what the

benefit to qualitative analysis of such an approach might be? We posit here that it is two-

fold. One is the process of automatic code generation (for example we wish to count how

many times a user smiles in a video). Of course we could do this by hand, but such work is

time consuming and requires little skill. Arguably automating such a process would allow

for better use of a researcher’s time. Second is the idea of emotional leakage - that is micro

expressions almost too small for a human to pick up. Computerised analysis of individual

facial muscles can pick up on these cues and potentially provide valuable insight about the

emotional undercurrents of a given interaction [73,210].

During interpersonal communication we implicitly transmit cues that are indicative of our

internal affective state. These cues may be spontaneous (beyond self-control) responses to

encountered stimuli e.g. being startled, receiving a gift or receiving affection, etc. However,

these cues can be posed, that is, deliberately invoked to mask a true inner feeling. Here we

will define the terms for these posed and spontaneous facial expressions as Macro and Micro

expressions.

• Macro Expressions - Archetypal facial expressions synonymous with prototypic emo-

188

B.2 New Types of Data Chapter B: Addendum

tions. These include Ekmans 6 basic emotions [70]: disgust, happiness, sadness, anger,

fear and surprise (see figure B.1).

• Micro Expressions - Facial muscle activity that is of a much finer granularity over

that of prototypic facial expressions. These are thought to leak [71] feelings of affect

through unconscious facial muscle activity

Figure B.1: Ekmans 6 basic emotions

There have been many attempts at rationalising about the activation of facial muscles,

their relationship to a person’s feelings, what information the various polymorphic forms

of the face offer to other people and how these actions accompany our roles within society.

Work in this area can have its origins traced back as far as Darwin and Aristotle. The most

enduring of these attempts is Ekmans Facial Action Coding System (FACS) [73,210]. FACS

is a sign and judgement based system that enables the encoding of almost all anatomically

possible permutations of human facial neuromuscular activity. The system comprises of a

set of Action Units (AUs) (There are 9 action units prescribed to the upper face, 18 to the

lower face, and a remaining 5 actions that cannot be attributed exclusively to the upper or

lower regions of the face) that describes a total of thirty two atomic 4 actions attributable

to facial muscle activity.

FACS is formed on the basis that the face has a finite number of muscles, and each muscle

has a finite number of actions it may perform. These muscle activities are of a naturally tem-

poral nature so can only ever be in a single state at any given time. This implies the human

face is, on some level, an encodable construct and that facial expressions can be modelled,

categorised and stored computationally. This requires actions being conducted by a given

muscle within the face to be accurately detected and compared against a robust database of

existing learned expressions for an accurate determination of what that expression may rep-

4These actions are not divisible, that is they happen entirely independently but may contribute to more
than one single facial expression

189

B.2 New Types of Data Chapter B: Addendum

resent. Such databases include SEMAINE5, MMI Facial Expression6 and GEMEP-FERA7.

Built on top of FACS itself is emFACS [72] which connects given collections of facial action

units to specific emotions. The emFACS framework can be used to detect particular expres-

sion activity as for example in figure B.2. It is important to realise here that what is being

detected is “expressed emotion” rather than necessarily “true emotion”. While [72] makes

some claims about the connection of the activation of particular action units to emotions

(including those described as emotional leakage. Emfacs databases (and thus the training

sets used to train most systems) are largely built on acted emotions. This work area should

be carefully understood as expression recognition rather than emotion recognition - that is

we may detect that a person is expressing fear or happiness, but not necessarily that they

are experiencing it.

Figure B.2: Detecting facial expressions on a rollercoaster

This recognition method may offer an insight into the psychological, affective and cogni-

tive states of other people and be subsequently applicable as a relevant data stream for deep

analysis, either by automated coding or as an approach to (potentially) detecting emotional

leakage.

5http://semaine-db.eu/
6http://www.mmifacedb.com/
7http://gemep-db.sspnet.eu/

190

B.2 New Types of Data Chapter B: Addendum

B.2.3 Physiological data

The thesis, in case study 1, alludes to the use of recorded physiological data - sometimes

called ‘biodata’ as one practically useful channel of information. As HCI has subsumed the

respective fields of affective computing and social signal processing, biodata is becoming a

far more prevalent data stream for a number of reasons. First, let us look at the accessibility

of sensors. There are essentially three grades of physiological monitoring equipment:

• Medical Grade - Very expensive, designed primarily for use in labs, though some

mobile equipment is available such as CamNtech’s actiwave and actiwave cardio8 or

compumedic’s ambulatory EEG9. Somewhere between lab-oriented and mobile are

equipment such as Sten’s nexus10 range - a medically rated multi sensor platform.

• Consumer grade - Cheap, easily available and becoming increasingly popular. There

are plenty of examples to choose from but to pick a couple for representative purposes:

Polar’s various heart rate monitors11 and Fitbit12 Both of which connect to a users’

smartphone or PC and give them data about their exercise behaviour - generally in

coordination with some proprietary application.

• Intermediate Grade - These are generally significantly more expensive than consumer

grade equipment, but are not medically rated and thus more affordable than the med-

ical grade equipment. They tend to be more lightweight and mobile and are popular

for academic use. Examples include the Affectiva Q Sensor13, the Empatica14 and the

Basis 15. These intermediate sensors are trending towards focussing on ‘wellness’ but

typically provide good mobile access to electro dermal activity and heart rate sensing

amongst other streams. There are also intermediate grade “sensor platforms” such as

the vilistus16 though thus far in practice these perform inconsistently when compared

to their more expensive medical grade equivalents.

Another reason for the increasing uptake relates to the accessibility of method - that is,

the fields of psychophysiology, social psychology and social neuroscience are all becoming in-

creasingly visible within the HCI community. Measuring participants’ responses to interfaces

8http://www.camntech.com
9http://www.compumedics.com

10http://stens-biofeedback.com
11http://www.polar.com
12http://www.fitbit.com
13http://www.affectiva.com
14http://www.empatica.com
15http://www.mybasis.com
16http://www.vilistus.com

191

B.2 New Types of Data Chapter B: Addendum

- indeed controlling those interfaces with participants’ physiological responses is becoming

a common practice in HCI research - as example a search of the ACM digital library with

the keywords “physiological data” returns some 1500 papers, and “psychophysiology” alone

returns more than 50. For some specific examples see e.g. [61, 148,177,199,202,207]

It seems appropriate at this point to look at the types of biodata that can be measured.

What follows is by no means an exhaustive list, but goes some way to show the range of

biodata that might be accessible (sometimes with very small unobtrusive sensors - or in

some cases simply by the application of appropriately positioned cameras).

• Electrocardiograms (ECG), Blood Volume Pulse (BVP), Heart Rate Variance (HRV).

These are all measures of the heart. In the case of ECG and BVP these are often

processed into a heart rate - used primarily as a measure of physical arousal, while

HRV (typically computed from ECG) is often used to measure emotional arousal. It

is also technically feasible to measure heart activity using only a camera as outlined

in [205] or by micro impulse radar as shown in [155].

• Electrodermal Activity (EDA) sometimes called Galvanic Skin Response (GSR), psy-

chogalvanic reflex (PGR) or Skin Conductance (SC) is a measure of elecrical con-

ductivity on the skin, typically related to the sympathetic nervous system and used

to measure emotional arousal. It consists of two parts tonic and phasic which show

different characteristics.

• Electromyography (EMG) is used to measure muscle movement - measuring the the

electrical potential generated by muscle cells. It can be used to detect minute fluctu-

ations in muscles for detecting (for example) micro fluctuations in expression.

• Electrooculography (EOG) and electroretinography (ERG) are used to measure, re-

spectively, eye movement and retinal response to stimuli. These are often implemented

as part of the eye-tracker systems which are familiar to lab based HCI experimentalists.

• Respiration (RSP) measured typically either by a chest-worn expansion sensor or a

flow meter, though occasionally by a microphone is a measure of breathing and can

be used to detect certain affective states such as fright, surprise, shock etc. based on

the pattern of the breathing.

• Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)

are used to study brain activity. EEG does this by measuring changes in electrical

potential across the skull (correlated with activity in a particular area of the brain),

while fMRI works on the principle of detecting changes in blood flow in the brain -

192

B.3 Data processing Chapter B: Addendum

predicated on the fact that when an area of the brain activates, blood flow to that

area similarly increases.

It should, from the above list, be clear that physiological data is a rich source of in-

formation, some of which (such as eye tracking) is already very familiar in lab-based HCI

research and others which are becoming more practically viable for research ‘in the wild’.

For a more in depth list of the types and relevance of different biodata, see [39]. While

some forms of biodata such as fMRI might be impractical for mobile HCI/ubicomp there

are plenty of examples where it is used to explore or control interfaces. When looking at

these signals, which might seem dependent on extensive medical knowledge, it is possible to

extract meaning from them by a process of abstraction and representation - using tools to

turn a raw signal into something both meaningful and understandable. Handling biodata

typically requires some work to transform it into usable data. This is of course no different

from any other data type (for example consider the process of ‘cleaning’ data described in

chapter 2) - however the methods in this case are more computational. This necessary data

processing is the topic of the next section.

B.3 Data processing

We can see from the preceding section on new types of data that many of these data types are

not inherently information carrying in their raw form. That is, of course they contain data

but they require some work to transform them into accountable information. This fits with

one of the core arguments of the thesis - that data (for example transcriptions or system log

data) need to be treated to be turned into accountable objects - that is, that the information

contained in them needs to be teased out by manipulation, abstraction, representation etc.

This is similarly true of the data described here. While some of that data, for example

gathered tweets, text messages or written status updates, might be treatable using the same

approach as described for transcriptions - albeit potentially on a somewhat grander scale,

other forms of data require a more computational approach to be made useful. Handling

biodata, for example, requires a specific technical approach in order to transform it into

usable data. consider a captured ECG wave. It might be impractical to work with in its raw

representation - assuming we consider the time series representation of blood flow through

the heart to be a raw representation, but when processed and turned into a heart rate it may

be considered usable. A time series of heart rate is a readable and relatively familiar model of

193

B.3 Data processing Chapter B: Addendum

arousal. Of course if we wish to make comparisons between subjects we then have to address

the issue of baselining and scaling, but strategies for approaching this are well defined and

appear in publications such as the Handbook of Psychophysiology [39]. Similarly EDA in its

raw form might be considered a useful measure of emotional arousal [39, 59, 114] however

direct comparison between subjects (and even within subjects under different environmental

conditions) is difficult. One strategy is baselining, as with heart rate, but EDA tends to

drift [39] so modelling it as a rate of change (∆EDA) which still requires some scaling is

desirable. This trend of necessary transformation is endemic in the use of biodata, but

not necessarily problematical in itself since a number of tools such as EDF Browser17,

Vicarious [206], Biotrace18 and even more general tools like Matlab19, can help to support

this process with accessible and descriptive interfaces.

Much biodata information is restricted to descriptions of arousal (whether physical or

emotional) which may not tell us that much out of context. When combined with video (or

some other form of social context carrying information) we can infer much. For example in

case study 1 we looked at a participant riding a rollercoaster. The heart rate information

there gives us an effective measure of arousal, while the context tells us what kind of arousal

it might be - for that example excitement, fear, thrill etc. There may of course be other

causes, but reviewing the video and looking for contextual clues either in facial expression

or in some other information can help us put that arousal in context and explicate the

participant’s feelings. The data provides a practically useful way to find interesting areas

of the video to unpack in greater detail - and knowing what that data tells us can be very

useful. Sometimes this is familiar, as in the case of heart rate, and sometimes it requires

some additional knowledge as in the case of EDA in social coordination - but if the unfamiliar

data streams are turned into a familiar form (for example “arousal”) - they become useful

information carrying data streams in their own right.

Facial expression analysis similarly requires a computational approach to be useful.

While there are various different approaches to capturing expression - the currently popular

approach, based on facial muscle activation - and its counterpart schema FACS [73, 210]

provides a set of activating ‘facial action units’. These may be processed using FACS into

a set of expressions, or by emFACS into a set of emotions (generally in each case what is

actually created is a confidence value for each of several expressions or emotions, and is

17http://www.teuniz.net/edfbrowser/
18http://www.humankarigar.com/biotrace.htm
19http://www.mathworks.co.uk/products/matlab/

194

B.4 New Systems Chapter B: Addendum

achieved by a variety of machine-learning approaches). Once this processing is done, we

have transformed the raw data stream (activating action units) into practically usable and

understandable data - which can be used, for example, to automatically code video for par-

ticular expressions or emotions, or as suggested for an arousal stream - to locate key points

of interest when working through a longer dataset - (e.g. a look of disgust when testing an

interface might indicate a particularly poorly designed area which needs addressing).

Generalising then, it is practically feasible to collect so called invisible (or at least intan-

gible) data such as biodata, or leakage in facial muscle activation, and transform that data

into something understandable and usable in a deep qualitative analysis.

B.4 New Systems

The purpose of the previous sections has been to demonstrate the range of data types becom-

ing increasingly available, and to highlight the specific challenges that each of them present

when attempting to use them for deep qualitative analysis. Here we look at how the method

proposed by this thesis - of combining ‘born digital’ data with more traditional forms, has

played out over the last couple of years. In particular we will examine a some newer systems

developed in the interim, then in the proceeding sections we will look at a number of success

stories, showing the application of this technique, then look at a representative sample of

work that does not use this approach, to show how log files alone (or video/notes etc. alone)

remain insufficient to meet this challenge - demonstrating that the central argument of this

thesis remains intact.

Chronoviz

Chronoviz [80], first developed in 2011 at the university of California, San Diego, provides

a suite of tools similar in nature to digital replay system, in that it is designed to create

synchronised representations of multi-modal data, including some support for time-based

log files, and a ‘digital paper’ approach to capturing and synchronising field notes - indeed

this is considered the main contribution of the work. In particular, chronoviz provides solid

support for GPS data and numerical time series data.

195

B.4 New Systems Chapter B: Addendum

Cloudpad

Cloudpad [95], developed at the University of Nottingham (independently from the author),

Is a cloud-based documentation and archiving tool, that also serves as a multimedia anno-

tation toolkit. It is built on the premise of collaborative analysis (in some ways similar to

Mixed media grid [83]), and is hence delivered via a web interface. It allows for the synchro-

nisation and annotation of multiple streams of video, audio and text, but also some light

support for GPS tracking data.

Vicarious

Vicarious [206], also developed at the university of Nottingham (in part by the author),

is designed primarily as a live visualisation tool, aimed at synchronising visualisations of

biodata and video data. Unlike most other similar tools, it provides functions for actively

processing and transforming biodata to create understandable visualisations. While its use

is principally performance-oriented, it can be used to create synchronised playbacks for

analysis.

CLAPS

The combined log and audio playback system (CLAPS) [100], developed at Texas A & M

University, is designed specifically around audio analysis - in conjunction with log files.

It focusses on following participant trajectories through experiences by means of either

system log data, or recorded audio - allowing users to focus on extracting only relevant

audio from longer term experiences. This focus on audio rather than video is unusual, but

arguably appropriate for mobile ubicomp experiences when video is either difficult to film

(i.e. participants are fast moving etc.) or overly invasive.

Timestreams

Timestreams [29], while not dealing with video per se, is platform developed to support

the complex temporal access required when dealing with long-term data collection, such as

environmental data. It is a plugin to wordpress, designed to allow for non-sequential, time

specific, or looped playback of specific areas of recorded log data, and has been used by

a number of artists (e.g. [119]) in the production of visualisation and (some) analysis of

environmental data. While one might argue that this is not combining log data with video,

as might appear to be the argument of this thesis, it is a tool that allows the transformation

196

B.5 Success stories Chapter B: Addendum

of log data into (in the artistic example abstract) visualisations thereby making that log

data into accountable and practically usable objects.

Biotrace

Biotrace20, being the only commercial offering on this list, has recently significantly im-

proved its “multimedia” support making it practically usable for combining recorded videos

with biodata. It provides an extensive suite of tools for processing and visualising synchro-

nised biodata and is heavily in use in experimental psychology/psychophysiology, though

the principal purpose of the video component is to provide the stimulus for experiments.

Nevertheless, recorded biodata is played back in synchrony with the stimulus (or external

recording) which means it can be used to understand the context of the biosignals.

B.5 Success stories

In this section we will review examples of recently published work which makes use of

the combined-analysis approach outlined in this thesis, demonstrating the validity of this

technique, and thus confirming the continued validity of the central argument of the thesis.

Weibel et al. in [224] demonstrate effective use of the combination of recorded logs of

eye tracking and external videos in a deep analysis of cockpit behaviour. In particular they

use their system to explore attentional behaviour when engaging in everyday task on the

flightdeck - with the eye tracking providing a powerful resource for understanding exactly

what each participant is attending to when combined with the context provided by the

external videos. They demonstrate here that it is necessary for, non-interfering observational

analysis (absolutely necessary in this safety-critical context) to be able to capture both the

general context and the specific behaviour of the individuals.

Hollan, in [107] focusses specifically on the analysis of so called activity trails, that

is recorded histories of interaction with a computer - using background-running software

to capture extensive information about open programs, documents etc, with snippets of

video. He demonstrates that this multimedia data-capture approach is a powerful tool for

reconstructing interactional behaviour - particularly over extended periods of use, where the

activity trail can allow the selection of relevant time frames from the data.

Fouse and Hollan [81] provide an interesting view of this approach, by focussing not

20http://www.humankarigar.com/biotrace.htm

197

B.5 Success stories Chapter B: Addendum

on the later stages of analysis, but on the initial pass-through stage. This is a somewhat

reflexive approach that captures and visualises researchers’ activity as they work though

video data, essentially serving to show researchers which areas of a video were attention-

grabbing, and supporting the process of multi-stage viewing. This may arguably be at odds

with expectation, in that it encourages analysis based on a first look, rather than deeper

analysis of a whole dataset, but in an age of increasing volume of video data to be examined,

approaches like this may effectively help to cut down the datasets into more manageable

chunks.

Weibel et al. in [223], focus specifically on the capture and synchronisation of pen and

paper-based observational research, noting the importance of this in everyday observational

practice, noting its use both in quantitative (i.e. tallys etc.) and quantitative (i.e. specific

quotes or sentences) note taking approaches, performing a study with some 28 participants -

all observational researchers, over an eighteen month period, and receiving generally positive

feedback on the facility to combine synchronised notes with video etc - indeed demonstrating

a behavioural evolution of note taking practice in light of the digital nature.

Scherer et al., in [186] use multimodal analysis of audio, video and writing, to ex-

plore leadership and expertise in learning groups. They make use of visualisation software

(chronoviz) to synchronise, the various components of the data, and in particular make use

of waveform analysis of the audio to explore vocal behaviour. This holistic approach to data

collection and analysis is only made possible by the existence of such tools, and provides

deep insight into methods to disambiguate leaders, experts and other students in group

learning sessions, through detectable indicators.

In [222], Weibel et al. focus on exploring patient-physician communication when medi-

ated by an interpreter from a multi-modal analysis point of view, in which an xbox kinect

is used to capture gesture data, along with multiple angles of video. The paper explores the

breakdown of communication patterns, particularly when dealing with complex technical

(medical in this case) information. It also examines the use of artifacts (primarily paper in

this case), allowing the synchronisation of the content of those artifacts to allow a deeper

understanding of context during the analysis. The paper is aimed to show the opportunities

for HCI to support the interaction - and is made possible by using HCI to perform a deep

analysis of the interaction itself. A similar approach is used in [221], where the authors

explore the usage of electronic health records, by automated gesture tracking with a kinect

to generate codes for gesture, and audio analysis for speech to create interaction patterns

198

B.5 Success stories Chapter B: Addendum

for analysis.

In [134] Kramer et al. set out to explore challenges associated with source code main-

tenance, and the usage of call graphs in this practice. The authors collected navigation

events (essentially clicks in an IDE) as well as video of the user performing the task, then

synchronised the log files of those events with the video data. The events were then man-

ually coded for modifications of source code as well as text-searches, scrolling and other

UI events. Crucially - the videos provided the context of specific events (not least whether

they were successful) in a way that was practically much simpler to achieve than any au-

tomated method, then the output of the coding was used to drive an automated analysis

model attempting to determine understanding (and ultimately maintenance task success) of

the source code from IDE interactions. The use of external video in this process was crucial

to understand the specific events and their meaning in a way which would simply not have

been possible from the log-files alone.

Schmidt and Gellerson, in [187] explore the use of personal clipboards in shared multi-user

surfaces, an interaction paradigm that is becoming increasingly common with the availability

of hardware such as Microsoft’s Surface Table [216] etc. In this work the authors consider

the impact on interaction of different forms of clipboard to support personalised copy-paste

behaviour in these multi-user situations. They consider three approaches: context menus,

subareas and external handheld devices (smartphones). In each case user studies are carried

out capturing both video and detailed system logs, and the interaction videos are coded using

a combination of information from the system logs and field notes. These codes were then

used in a detailed quantitative analysis of task-speed, and combined with more qualitative

feedback from the users to construct a detailed discussion of the three different approaches.

Using a similar approach, Seifert et al., in [193] explore the integrated use of mobile

devices and interactive, multi-user surfaces for collaborative tasks. In this case the authors

outline the development of MobiSurf a system to allow collaborative tasks to be performed

using a mix of mobile devices and shared surfaces, in which private information (such as

passwords etc.) remain on the local device and public information is published to the shared

device. This builds on similar work such as Doring et al.’s distributed poker game [66]. The

researchers use a combination of video and system logs to effectively unpack the system in

use.

In [100], Hamilton et al. discuss the use of a system that combines and synchronises audio

with logged game events, and demonstrate that the combination of game events and audio is

199

B.6 Counter Examples Chapter B: Addendum

an effective way of exploring users’ interaction with a game environment. In particular, they

allow a researcher to follow particular users through the experience by muting the additional

audio tracks to focus on a specific individual’s trajectory, bringing it live again when that

user interacts with another. This is a particularly nice example because it eschews video,

instead focussing exclusively on audio - which is less subject to occlusion, shakiness etc.

being issues that plague mobile video capture - particularly in fast paced game experiences.

In [122] Kafai and Fields provide a very detailed analysis of player behaviour in the

virtual world Whyville. They capture video, field notes and very detailed logs. The logs

capture behaviour data from some 681 participants, while the video was recorded over two

days at an after-school club and observed 21 participants. In the analysis, both the log data

and the video provide deep understanding of the interaction behaviour, and in each case are

used to support the conclusions of the other - in general the log data was used to establish

the “who, what and where” of an interaction (bearing in mind that there are many more

participants than just those being filmed), while the video was used to flesh out the context.

Christel et al. in [50] focus more on the end-users’ use of synchronised video and textual

data - demonstrating through a deep system log analysis of users’ interactions with a library

of over 900 hours of oral history videos, that there is a strong benefit for accessibility to

be found in presenting fully synchronised and searchable text transcripts along with video

in large databases - particularly in this field, in which the spoken content is crucial, but

nuanced by the video - thus text alone is insufficient to deliver a complete experience.

B.6 Counter Examples

In this section we will take a look at some representative examples of recent papers which

may have benefited from the application of the research discussed in this thesis. While it is

simply not feasible to produce an exhaustive taxonomy of such systems, the following cases

serve to demonstrate the kinds of areas where this analysis approach could prove useful.

In [167], the authors aim to develop an emotional recognition system based on biofeed-

back. The stimuli in this case are movies. In each case, the movies were marked up by

experts for their particular emotional expectation. Biodata was then captured from the

eight participants, and used to train a state vector machine (SVM) based classification sys-

tem. Output of the system was then compared to the expert-classifications of the movie.

Where this system breaks down however, is in a failure to examine the specific participants’

200

B.6 Counter Examples Chapter B: Addendum

behaviour. Emotion is highly subjective, and while it may be that the stimulus was designed

to elicit a specific emotion, having video of the participants to explore in detail those cases

where the classifier fails to match the expected emotion would have potentially led to a

stronger analysis.

In another example, Xu et al. [232] use a mixed methods approach to analysing so-

cial interaction in first person shooters. They make use of the extensive server logs from

Microsoft’s Halo 3, then use these to inform semi-structured interviews with a number of

participating gamers. What seems to be almost glaringly absent from the study is any anal-

ysis of games (and gamers) in play - and the actual interaction between the players. The

interviews are about specific games, informed by general behaviour patterns, but data from

the specific game discussed is not directly explored. Given the approach this would appear

to be a logical step made possible by analysis of synchronised system log, screen recording

and contextual video recording of the players’ immediate behaviour - something exploited

to great effect in [156].

In [77], Fern et al. discuss a process of mining ‘old’ HCI data to extract complex be-

haviour patterns about users. What is interesting is that they take very rich data (data that

they mention often contains rich contextual information) and immediately abstract from

that to a very high level. What they do not allow for is the reversal of that abstraction,

which means that all that contextual richness is discarded. By maintaining the links between

high and low levels of data analysis, it would be possible to drill down into the specifics of

those complex behaviours in a way that simply is not possible with the approach taken.

Interestingly, the purpose of the work is to determine high level strategies, but to do this

they resort to abstraction from low-level data logs. The process is certainly powerful for

getting an overall picture of user behaviour, but is severely limiting in terms of the detail -

even though that detail is available in their data set.

In McEwan et al.’s work on board and card gaming websites [150] a particularly com-

pelling aspect of this argument is revealed. The paper aims to explore the social dynamics

of players in these online games, in particular looking at shared activity and verbal com-

munication through extensive analysis of three months woth of server logs, however the

authors seem oblivious to the social context of the actual player. It seems unreasonable to

examine the online interaction in this context without also considering the situation of the

user themselves. The authors refer to the need to accept game play as a “legitimate form of

human interaction” as if to suggest that the participants have no other kind of interaction

201

B.7 Eliciting stories with data Chapter B: Addendum

engagement. This work would very much have benefited from examination of the social con-

text of at least some of the players, as beautifully outlined in [122] above - since context and

situation may significantly affect online behaviour - e.g. multiple people playing the same

game in the same room (poker lan parties etc.), people playing while engaging in some other

task (e.g. watching television), people playing alone and solely focussed on the game, or

one of a host of other contexts. This qualitative aspect is necessary to put the quantitative

analysis into perspective.

At the opposite end of the scale, studies such as [227] depend exclusively on video. In

this example Wellington and Ward are examining how students learn to program. While

the phenomenography-based [149] approach taken, may have been effective, it generated

a tremendous amount of work, with each video requiring painstaking hand coding for the

students’ coding behaviour - specifically the mechanics of that behaviour. If we consider

the work of Kramer et al. [134] discussed in the previous section, as comparison, we can

see how unnecessary this work is - the application of system logs would have provided a

rich “ready made” set of codes for much of this information, though of course a coding pass

for indirect interaction (such as reading and re-reading) would still be required. Even this

too could be achieved, by applying eye tracking (as in [224]) however there are extensive

complexity overheads to this addition. The point remains however, that by exploiting simple

logging processes, the authors could have achieved more for less expended effort. At a most

basic level, the authors could have pulled the camera back to focus on several subjects at

once, since log information could have been used to reconstruct the contents of the screens,

while still maintaining sufficient resolution to capture the contextual and gesture behaviour

(reading etc.). This would have allowed them to increase their subject count, since the

experiment was conducted at a specific time in a class, and potentially further validate their

results.

B.7 Eliciting stories with data

One practical benefit to analysis provided by additional data streams such as those described

above, is as a tool to elicit stories from experimental participants. Getting users to provide

explicit and deep detail about their experience is a fundamentally challenging task in post-

hoc interviews (and indeed in live ‘think aloud’ type scenarios). Providing them with data

on a time-line around which to talk can support the participant by giving them a framework

202

B.7 Eliciting stories with data Chapter B: Addendum

to talk about. Interestingly, anecdotal evidence from a number of ‘in the wild’ experiences

would suggest that more abstract concepts such as arousal or emotional trajectory actually

prove more useful than more easily understandable data such as location. This is because

showing a participant a peak in excitement (for example) will result in them describing the

exciting parts of their experience (regardless of whether the peak actually indicates that

particular part of the experience). As example, when chatting to roller coaster riders at

an event at the Alton Towers theme park in the UK (recorded for the BBC’s Blue Peter

in 2013 - see figure B.2), riders were shown an expression trajectory and asked to explain

their feelings and actions on the ride. The responses were quite detailed; compare this to

initial questioning without the data stream, where the responses tended to be much more

general (e.g. “It was brilliant - I was terrified the whole time”). This particular example is

one of several such which showed a trend of the data being a useful method of extracting

stories. A similar approach was used in a recent advertising campaign for Nissan’s Juke

car, wherein participants had their biodata recorded in a number of thrilling experiences (a

skydiving simulator21, a track day drive22 and an adventure trip to Morocco featuring quad

bikes, dune buggies and a helicopter ride23). In each case the participant was ‘taken through

their data’ and this was used to elicit detailed information about their experience - this was

particularly relevant in the case of the Morocco event where four full days of data were

captured and only some small parts of the experience were filmed. Of course in this case,

the extraction of information was for broadcast interview rather than deep analysis, but the

principle of the argument remains intact: Data is an attractive, and relatively lightweight

way to get people to talk about their experiences.

This view has been recently borne out in the field of games user research in a paper

from Mirza-Babaei et al. [156] in which players are taken through their experience using

their physiological data in a biometric storyboard. This storyboard tracks their experience

in the game, showing the physiological highs and lows (primarily arousal based). The user

then describes their experience to a game designer (or evaluator) using the storyboard as

a boundary object [203]. This approach supports users in reflecting on their emotional

trajectory through the game experience, rather than the purely physical aspects of the

experience, which are the more normal subject of such discussions.

21http://youtu.be/4dyHNsbvZtk
22http://youtu.be/M9IT2sdlT4I
23http://youtu.be/FAPiiu6S600

203

B.8 Reflection Chapter B: Addendum

B.8 Reflection

We have seen over the sections of this addendum, that the work of evaluating ubicomp

systems, and the work of using ubicomp systems to evaluate wider interaction are changing.

New technologies like biosensors and expression recognition are becoming widely available,

and we have explored some of the specific challenges involved in transforming these forms

of data into accountable objects through linear transformations, machine learning, action

coding etc. Even transformed into qualitatively valuable objects, they still present challenges

to understanding, and often require the addition of contextual data to make them practically

valuable in a qualitative analysis.

Alongside the explosion of new types of data, we have also seen the emergence of new

types of environments, like massively complex social networks, which create never before

seen challenges to evaluation, yet we have also seen the HCI community embracing this

([182]). These new forms and sources of data are being actively explored. New ways of

looking at these data are being developed ([122,134]) , new tools to handle combining them

are being released ([80, 100]) and older, established tools are being updated to handle the

necessary combinations of data stream sources (biotrace). We have seen how looking at

additional channels of data has supported evaluation through direct analysis ([107, 224]),

and as a boundary object for eliciting deep description of experience from users ([156]). We

have also seen how the provision of additional streams of data can be of practical value to

users themselves ([50]).

Conversely we have seen that failing to exploit these possibilities can weaken research

outcomes ([77, 167]) , or at least make the process significantly more time consuming and

difficult ([227]).

Ultimately this goes some way to validate the argument, that in the changing and in-

creasingly complex space that is ubiquitous computing, it is necessary to embrace new types

of data, new sources of data, and to find new ways to make use of that data in analysis.

While ultimately the methods remain relatively consistent, the process of teasing out detail

from the data must change - that is the tools change but the task remains essentially the

same. This is axiomatic of tool development - the hammer and the nailgun may behave

very differently, but they ultimately perform the same task, and both require skill to use

correctly. Qualitative social science is well equipped to exploit useful accountable objects -

the challenge to HCI is to be able to create, or at least allow for the extraction of those

204

B.8 Reflection Chapter B: Addendum

useful accountable objects from the complex tangle of data created all around us every day.

B.8.1 Revisiting the challenges again

In the related work and conclusion sections of this thesis a set of challenges associated with

handling and evaluating mobile and ubiquitous data were presented. It is appropriate at

this point to revisit these challenges taking into account what has been covered in this

supplementary chapter.

Small Displays

The issue of small displays remains prevalent - indeed it is an issue which has only increased

with the continued proliferation of smartphones, tablets etc. Further to this are a number

of new types of data capture devices which have no display at all (for example fitbits, or

empatica devices), but can be an integral part of an interaction process. The method of

addressing this is largely the same as proposed in the body of the thesis. It is reasonable to

expect to be able to reconstruct from system logs, the behaviour of a given system during

an interaction. Tools like Replayer and DRS directly support this process.

Headphones

As above, the situation of audio-interaction has not changed significantly. Synchronised

reconstruction of experiences from recordings and logs, as well as distribution of recording

may be sufficient to support handling this particular interactional analysis challenge. How-

ever, there are now tools such as CLAPS [100], which focus specifically on audio to better

support the process of extracting this demonstrably useful data stream.

Non-Collocation

Here we see a significant increase in the use of mobile social networking use. Facebook

revealed in August 2013 that some 78 percent of its users make use of its various mobile

device applications. Quite apart from the non-collocated interaction with social networks in

the first place, this mobility puts an extra strain on methods of understanding interactional

behaviour with and through social networks. We have explored here how a hybrid approach

of network analysis, coupled with more traditional ethnographic analysis can help to under-

stand behaviour in these online communities ([122]). The tools to support the observational

205

B.8 Reflection Chapter B: Addendum

side of that depend on the same principles expounded by this thesis - distributed capture

and reconstruction of interaction behaviour.

Invisible Interaction

This supplementary chapter has highlighted many additional ways in which users may inter-

act with (or be monitored by) invisible systems - data channels like biodata and expression

analysis create unfamiliar streams of data that require treatment to be of practical value, in

the same way as any other captured data - the difference being the more computationally,

or signal-processing-oriented manner in which they must first be treated in order to become

first class data to be used in deep analysis.

Distribution of Interaction

We have seen here a variety of different examples of new channels through which users’

may interact with systems - from new types of inter-connected social networking systems,

through physiological capture (which may even serve to drive interaction in systems such

as [148,207,233]), to expression or gesture based interaction with, for example, avatars such

as those described in [10, 190]. These new channels of interaction demand ways to capture

and synchronise them with other forms of behaviour capture, and the tools described in

this thesis provide exactly that facility - from data logging and visualisation to systematic

reconstruction of context.

Interaction Time

The issue of interaction time is something of crucial importance when understanding the na-

ture of interaction with and through social networks. The non-immediate and asynchronous

nature of the communication media used make it very difficult to understand exactly how

people temporally interact with them - and this is something where the more quantitative

approach to understanding social network interaction is useful, since it can often tell us

when users interact with the network, both in terms of reading and in response. This can

be used as part of a hybrid (or mixed methods) approach to categorise and characterise this

interaction.

206

B.8 Reflection Chapter B: Addendum

Technological Breakdowns

This is not an area that has been particularly addressed by this supplement, but the in-

creasing complexity of interaction media leads to this being an increasing issue. To briefly

consider an example, in [206] we describe a system where participants were monitored with

bluetooth based biodata capture devices (nexuses). The event was a one night performance

displayed live to a cinema. On the night of the event, despite numerous successful tests

throughout the day and preceding days, the bluetooth radio connection completely failed.

It was later determined that this was due working within a busy nightclub environment -

with lots of active bluetooth interference. It was necessary for us to simulate the biodata

of the participants for the benefit of the live cinema audience. Because of the robust and

flexible and dynamically reconfigurable nature of the software used (vicarious) we were able

to seamlessly swap in the simulated biodata to replace the missing ‘real’ data, then later

capture the ‘real’ data from the local recordings on the devices and reconstruct the event

as it should have happened - or rather as it ‘did’ happen for the participants, but not for

the audience. This is of course rather an extreme example, but it serves to demonstrate the

need for redundancy and strategies to handle the seams of complex interactive systems.

B.8.2 Conclusions

Over the course of this supplementary chapter we have considered the appearance of new

sources of data available to qualitative researchers - discussing examples including social

networking data, facial expression analysis data and physiological data. We have looked

at the ways in which this data needs to be treated, processed and abstracted in order to

be turned into accountable objects, in a similar, but often more computational manner to

the ways in which system log data and transcription data has to be addressed as described

elsewhere in the thesis.

We have examined how the work presented in this thesis fits in with current research

practices, giving concrete examples of the practical benefits of applying the methods de-

scribed, and contrasting that with examples where the application of this approach would

have significantly improved work done using either log-files alone, or video analysis alone.

We have also discussed some of the new tools developed since the initial version of this

work which follow a similar approach. We have looked at one of the more obvious practical

benefits for working with streams of data - eliciting stories from participants using data as

207

B.8 Reflection Chapter B: Addendum

a cue. Finally, we have revisited the challenges laid out in the related work section (and

originally revisited in the conclusion) to see how the new factors explored in this chapter

relate to those challenges.

Throughout this chapter it has been made clear that the central argument of the thesis

remains intact despite the extensive changes in availability of data. That is, that the chal-

lenges presented by the addition of new ‘born digital’ forms of data are not methodological

per se, but rather of inclusion and representation. Qualitative research, and in particular

ethnography, has always been effective at cherry picking interesting data, and turning it into

information (or vice versa depending on choice of definitions of the terms) - take for example

the adoption of photo and video ethnography and more recently an inclusion of sources like

location as important. These new types of data require a higher degree of processing to

turn them into accountable objects - that is, to create meaningful and practically usable

representations and, as such, collaboration between computer science and social science is

necessary to make the exploitation of these modes of data viable. HCI has a long interdisci-

plinary history, showing itself, as a field, quite capable of bridging the apparent gaps between

social science, computer science and other relevant fields like psychology, social psychology,

psychophysiology etc. However, for all this new data, the core work of doing ethnography,

indeed of doing qualitative data analysis, has changed little. While the tools may be an ever

shifting landscape, and to some extent the onus to approve, make use of, and understand

these tools adds to the day to day work of a qualitative social researcher, ultimately they

are just that: tools. If making the invisible visible is considered a worthwhile goal, and this

thesis has argued that it absolutely is, then tools to address these new forms of data are

necessary to support the way in which social researchers go about their daily work.

208

