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Summary 

Introduction 

Randomised controlled trials administering probiotic supplements to preterm infants to 

prevent sepsis and necrotising enterocolitis are already underway, despite the lack of a 

robust evidence base of normative values for gut microbiota, bacterial metabolites, and 

markers of inflammation and immunity. There are increasing calls for observational studies 

to establish baseline data in these infants. Most of these studies to date have involved the 

measurement of these analytes individually. In the studies presented in this thesis, we 

measured a range of stool markers collectively in a cohort of preterm infants in health and 

disease.   

 

Design 

56 infants at <32 week gestation and less than 1500g birth weight were sequentially 

recruited from all three Glasgow Neonatal Units within week one of life after 

commencement of enteral feeds. Anthropometric, dietary and treatment data were 

collected. Stool samples were taken once weekly for the first four weeks, testing: short 

chain fatty acids; calprotectin, secretory immunoglobulin A; and microbial diversity by 

temporal temperature gel electrophoresis.  

 

Results  

Out of 61 live births meeting the study criteria, 56 infants were enrolled in the study, 

62.5% of whom were female. 19.6% were between 24-26 weeks gestation, 28% were 26-

28 weeks, 30% were 28-30 weeks, and 21% were 30-32 weeks. 5.3% were between 490-

600g in birth weight, 17.8% were 600-800g, 21.4% were 801-1000g, 39.2% 1001-1250g,  

and 16% were between 1251-1500g. Feed regimen was heterogeneous, comprising 5 

combinations of maternal, donor and formula milks. The highest social deprivation level as 

measured by the Carlisle ‘Depcat’ scoring system of level 7 was significantly higher in the 

study group than Glasgow or Scotland-wide averages. Sepsis rates were low, with a group 

median of only 1 per infant. Overall mortality: 7%. 32 with any NEC (56%), 20 with Bells’ 

≥2a NEC. 8 (14%) with surgically treated NEC, 5 (8%) underwent ileostomy. SCFAs: 

(n=56) there were no correlations between gestation, weekly totals, feed type, or NEC and 

SCFA concentration. Acetate and lactate dominated each sample. Few significant changes 

were noted with respect to NEC, and these were in the less dominant SCFAs: stage 2a 

NEC showed higher concentrations of propionate in week 4 than week 3, and lower 

valerate in week 4 than 2. Stage 3b levels of isobutyrate and heptanoate were significantly 
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lower in week 4 than 3. FC: (n=56) there were no significant differences in FC levels 

between each week in infants with or without NEC, although the former illustrated a trend 

to lower levels by week 4. There were no significant differences in NEC before and after 

clinical signs were apparent, or in those before NEC and after stoma formation for stage 3b 

NEC. However, significantly lower FC levels were noted in stage 3b NEC requiring 

ileostomy compared to the immediate pre-operative sample. SIgA: (n=34) Levels rose 

significantly week on week, and were considerably higher in weeks three and four than 

week one. There were no significant differences in stool SIgA concentration between 

infants with and without NEC. A significant increase in mean stool SIgA concentration 

appeared from week 2 to week 3 in NEC infants, and from week 1 to week 2 for those 

without. For all breastfed preterm neonates (n=6), the level of milk SIgA was significant 

higher on week 1 (colostrum) than week 2 and week 3. TTGE: (n=22) There was large 

variability between number (1-17) and species diversity (25-36 different species). Bacterial 

composition varied largely between the 2 sample points. No difference in species richness 

or similarity within the 2 feeding groups was observed. 4 bands were identified in >50% of 

infants. Intra-individual similarity varied greatly and ranged from a similarity index (Cs) of 

0% to 66.8%. There was no statistical difference between the similarity indices of the 

feeding groups or between those with and without NEC. There were no significant 

correlations between any of the analytes.   

 

Conclusions 

Only extreme prematurity and extremely low birth weight were associated with NEC, 

which was at a strikingly high incidence. A limitation was therefore the unexpected onset 

of severe NEC resulting in prolonged paralytic ileus with low stool production. No 

correlations were found between analytes, indicating that each set of stool investigations 

may signify independent physiological, biochemical and immunological gut processes. 

Despite the severity of NEC, the levels of each analyte were remarkably consistent. High 

levels of deprivation within the study population may provide the constellation for an as of 

yet undefined genetic and epigenetic predisposition to NEC in this cohort, similar to that of 

other illnesses endemic to different geographical areas – notably Multiple Sclerosis in the 

North East of Scotland – and both follow up of these infants into childhood as well as 

further analysis of future inborn infants with NEC is planned. 
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fed infants, weeks 1-4 

 

Figure 106: Median FC levels by feed type, weeks 1-4  

Figure 107: a) FC levels in infants with ≥stage 2a NEC, weeks 1-4; b) FC 

levels in infants without NEC over weeks 1 – 4 

 

Figure 108: FC levels in infants ≥stage 2a NEC versus those without NEC, 

weeks 1-4 
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concentration of SIgA in week 4 
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Analysis of Variance  

Apgar Score 

Branched Chain Fatty Acids  

British Intestinal Failure Study 

Body mass index 

Acetonitrile 

Cytomegalovirus 

Continuous Positive Airway Pressure 

Clinical Risk Index in Babies score 

C-reactive protein 

Caesarean Section 

Similarity index 

Donor milk  

Donor Expressed Breast Milk 

Donor, Expressed maternal and Formula feeding 

DepCat 

DNA 

DPO 

ECA  

EF  

EFM  

EL 

ELBW  

ELLUSCS  

ELISA  

EMLUSCS 

FA 

Deprivation category 

Deoxyribonucleic acid 

Diphosphoric acid 

Enzyme conjugate antibody  

Exclusive Formula  

Expressed breast milk and Formula Mixed  

Evidence level  

Extreme low birth weight  

Elective Lower Uterine Segment Caesarean Section  

Enzyme Linked Immunosorbant Assay  

Emergency Lower Uterine Segment Caesarean Section  

Fatty acid 

FC  

FID 

 

 

Faecal Calprotectin  

Flame ionisation detector 
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Lipoprotein lipase  
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Med 
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MOD  
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Not specified 

PCR  
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UK  
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Secretory Immunoglobulin A  
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species 

Spontaneous vaginal delivery 

Tris-acetate-EDTA (ethylenediaminetetraacetic acid) 
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Thermal conduction detector 
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Toll-like receptor 4 

Temperature Temporal Gradient Electrophoresis  

Urinary intestinal fatty acid binding protein  
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United Nations Children’s Fund 

Umbilical venous catheter/umbilical arterial catheter 

United States of America 

Very Low Birth Weight  

Very low density lipoprotein 

Vancomycin Resistant Enterococcus 

Versus 

2-ethyl butyric acid/3methyl-valeric acid 

Micromoles per kilogram 

Micrograms per gram 

Microlitre 

More than 

Less than 

Equals 

Equal to or more than 

Equal to or less than 
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Chapter 1 

Background 

1.1) Introduction 

In preterm infants, the gut microbiota (also known as the dominant gut bacterial consortia) 

in the first few months of life number far fewer bacterial species than infants born at term. 

Observational studies also suggest that the type and concentration of metabolites produced 

by these bacteria are significantly different in preterm than term infants, which could in 

turn indicate differences in gut immunology and inflammation, and may act as diagnostic 

and/or prognostic markers of gut dysfunction. However, whether these differences are 

physiological or pathological is yet to be defined, and there are no normative data for these 

values in ‘healthy’ preterm infants, without infection, gut necrosis, or poor weight gain.  

 

With the establishment of trials of enterally administered ‘probiotic’ supplements (bacteria 

with benefits to the host) to term infants aiming to treat and/or prevent allergy, eczema and 

colitis, trial supplementation is now focussed upon preterm infants in order to prevent 

NEC, the most devastating disease of the gut of early life, affecting 6-10% of preterm, 

VLBW infants, but with mortality rates of up to and beyond 50%. In the last 5 years, 

repeated meta-analyses of these RCTs suggest that the supplementation of milk with 

probiotics significantly reduces their risk of NEC. However, with no defined normative 

microbiological, metabolic, immunological and inflammatory data, it is difficult to ascribe 

this benefit solely to probiotic supplementation, given the well-established effect of 

exclusive maternal breast milk feeding in preventing NEC and sepsis in preterm infants. 

Notably, none of the meta-analyses to date can extrapolate data according to feed type. As 

such, this effect requires ascertainment with comparative analyses in ‘healthy’ preterm 

infants without probiotic supplementation. The stool analyses of: metabolites (short and 

branched chain fatty acids), bacteria (transient temperature gradient electrophoresis), an 

immunological marker (secretory immunoglobulin A), and an inflammatory marker 

(calprotectin) are seen individually in observational studies to vary in preterm infants with 

and without NEC and sepsis. As a panel however, they had not, at the inception of this 

project, been tested concurrently in a cohort of preterm infants over the first month of life, 

assessing correlations with nutrition and environment. This study aims to do just that. 
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1.2) Definition and Evolution of Gut Microbiota 

1.2.1) Definition  

The term gut ‘microbiota’ is a collective noun describing the all-inclusive commensal gut 

bacterial consortia. The gut microbiota is a powerful and complex collection of micro-

organisms. Numbering ten times that of the cells in the entire adult human body, the gut 

microbiota could be considered an organ in its own right, given a metabolic capacity 

equivalent to the liver (Edwards and Parrett 2002). Within each individual adult there are 

more than 1000 known species, with around 2 million genes (the so-called ‘microbiome’ – 

the human microbial genome) (Xu and Gordon 2003). Once established in infancy, more 

than 99 % of the gut microbiota comprises anaerobic bacteria. Once stabilised and 

established in healthy humans, usually by the age of 2 years, the components of the gut 

microbiota remain relatively consistent throughout life, although high interindividual 

variation exists (Rambaud and Buts 2006). Fungi, protozoa and viruses are also gut 

commensals, but little is known about their function. The most heavily colonised area of 

the human body by surface area is the digestive tract (Hill 1985). An estimated 60% of dry 

faecal mass is composed purely of bacteria. The gut microbiota has been implicated in 

protection against cardiovascular, inflammatory, allergic and malignant conditions in later 

life (Isolauri 2012). Conversely, adverse alterations in the microbiota may be linked to a 

range of chronic, non-infectious conditions including malignancy, obesity, cardiovascular 

events and autoimmune disease (Ley, Backhed et al. 2005, Bezirtzoglou and Stavropoulou 

2011, Shanahan 2012, Wong, Esfahani et al. 2012). Homeostasis of the gut microflora is 

generally adversely affected by GI pathologies (such as inflammatory bowel disease, 

colonic malignancies, gastroenteritis and dysentery), yet, conversely, evidence exists 

linking abnormal gut microbiota to the development of these very illnesses. Additionally, 

changes in nutrition (for example according to cultural or religious need, or in other 

physiological states such as pregnancy) and enterally administered medications, 

particularly antibiotics are also noted to have profound effects upon the gut microflora. The 

symbiotic relationship between microbiota and host is currently undergoing extensive 

further scrutiny owing to developments in molecular and metabolic techniques allowing 

higher resolution analyses and new information on species type and abilities (Satokari, 

Vaughan et al. 2003, Vanhoutte, De Preter et al. 2006). The dominant microbiota in adult 

humans is illustrated in the following so-called ‘phylogenetic tree’ – linking taxa from 

bacteria with similar phenotypical and genotypical features as illustrated in Figure 1: 
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Figure 1, Phylogram: Major unrooted phylogenetic tree illustrating gut microbiota components in healthy 

adults; size of triangle indicates relative abundance, and orientation of limbs denotes similar morphology. 

 

1.2.2) Functions 

The human microbiota has a wide variety of potential influences including immunological, 

metabolic, trophic, anticarcinogenic, as well as, paradoxically pro-carcinogenic and pro-

inflammatory. Most of these require interaction between the microbiota and immune 

system – so-called ‘cross-talk’. Identification of species and function are now considered 

as ‘metatranscriptomics’ – the study of the relationship between the gut microbiome and its 

bacterial metabolites. A glossary of definitions of bacterial ‘cross-talk’ is seen in table 1. 

There is potential for manipulation of the microbiota to establish permanent effects on the 

host – particularly in early life (Ouwehand, Isolauri et al. 2002, Gueimonde, Kalliomaki et 

al. 2006). Mode of delivery at birth has been shown in observational studies to be 

associated with significant differences in microbiota even in adulthood (Huurre, 

Kalliomaki et al. 2008, Biasucci, Rubini et al. 2010, Dominguez-Bello, Costello et al. 

2010, Fallani, Young et al. 2010). Observational studies indicate that the microbiota 

composition can be influenced by consistent, long term administration of microbes 

(probiotics), antibiotics, or diet (for example fibre, or prebiotics) (Rambaud and Buts 

2006). This raises the intriguing possibility that manipulation of microbiota in the neonatal 

period can influence adult illnesses – even more so than lifestyle changes implemented 
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later on in life (Barker 2001).  However, many of the benefits of probiotic administration 

are seen to regress once stopped (Walker and Lawley 2013)  

 

Parameter Definition 

Microbiota Dominant bacterial consortia 

Genome  

Transcriptome 

Entire gene sequence 

Set of all RNA molecules 

Microbiome Microbial genetic elements 

Metabolome 

Metabolomics 

Metabonomics 

Metabolites within an organism 

Study of metabolic processes 

Qualitative analysis of all measurable metabolites 

Proteome Set of proteins expressed by a genome 

 

Table 1: Table adapted from The Core Microbiome, by Turnbaugh et al, Nature, 2009 

(Turnbaugh, Hamady et al. 2009) 

 

Gut bacterial metabolism serves not simply as a consequence of bacterial energy 

consumption, but describes the processes employed by bacteria in order to produce energy 

and nutrients from which to survive. This can involve a host of strategies according to both 

species and strain type, and production, accordingly, enables bacterial identification. Such 

metabolites, as illustrated in figure 2, may be as diverse as ethanol, lactate and hydrogen, 

depending on the sources of energy and pathways utilised, according to environmental 

conditions (Resta 2009).  
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Figure 2: Gut bacterial metabolism, depicting fermentation of carbohydrate and protein. 

(Abbreviations: SCFAs = short chain fatty acids; BCFAs = branched chain fatty acids; CH4 = methane; H2 = 

hydrogen; CO2 = carbon dioxide; NH3 = ammonia; H2S = hydrogen sulphide) 

 

i) Fermentation, energy absorption and micronutrient production  
 

a) Carbohydrates 

 

• Animal Models and Adults 

 

The fermentation of unabsorbed carbohydrate is achieved by enzymatic pathways absent 

from the human genome, and specific to the gut microbiota. Higher non-digestible 

carbohydrate and fibre intake results in a lower colonic pH, with resultant alteration in 

bacterial metabolism and growth, promoting species including Lactobacillus and 

Bifidobacteria. The gut microbiota ferments non-digestible carbohydrates into short chain 

fatty acids (SCFAs), as a means of electron disposal in the absence of oxygen and as an 

electron acceptor. Indeed, germ-free rat models (i.e. those lacking microbiota) have shown 

a 30% higher calorific requirement than conventional animals in order to maintain body 

weight which suggests the importance of the bacteria in energy assimilation (Sears 2005). 

Trials of intestinal microbiota transfer in humans from lean to obese donors reveal 

significant changes in body mass index, glucose tolerance, and associated gut butyrate 
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levels, and obesity-specific SCFA trends have been observed, notably lower levels of 

propionate, acetate, and butyrate (Achour, Flourie et al. 1994, Arora, Sharma et al. 2011, 

Vrieze, Van Nood et al. 2012). Similarly, dietary differences in SCFA profiles have been 

recognised in those using carbohydrate restriction in order to lose weight, notably lower 

total SCFAs and butyrate concentrations. In other studies, high levels of SCFAs and 

butyrate are associated with adverse gastrointestinal disorders, such as necrotising 

enterocolitis (Lin 2004) (Brinkworth, Noakes et al. 2009). 

 

‘Prebiotics’ are a collection of non-digestible substances, mainly dietary carbohydrates, 

that stimulate the growth of selective bacteria, often the same types as those used in 

‘probiotics’ – bacteria that display benefits to the host (Araya 2001). In vitro studies of 

selective fermentation of ‘prebiotic’ oligosaccharides by gut microbiota reveal higher 

concentrations of lactate, presumed secondary to their bifidogenic and lactobacillogenic 

effects (Grimoud, Durand et al. 2010, Russo, de la Luz Mohedano et al. 2012, Garrido, 

Ruiz-Moyano et al. 2013). Many studies, however, are still in animal models, although 

increasingly, paired data matching qualitative and quantitative molecular analyses with 

metabolites confirms the ability of prebiotics to promote growth of selective strains, and, in 

adults, producing beneficial butyrate and reducing parameters linked with protein 

fermentation (Vitali, Ndagijimana et al. 2012, Walton, Lu et al. 2012). Other studies of the 

fermentation of other food substrates (for example soy-based products, complex 

carbohydrates including type 3 resistant starch (Topping and Clifton 2001, Scheiwiller, 

Arrigoni et al. 2006) illustrate the production of a host of other trophic products for uptake 

by the colonic mucosa. Such is the ubiquity of prebiotic supplementation that their addition 

is becoming commonplace in the commercial setting, and oligosaccharides are now added 

to sweeteners, baking products, yoghurts, and milkshakes (Sangwan, Tomar et al. 2011). 

 

• Infants: Term and Preterm 

Infants delivered at term have higher concentrations of short chain fatty acids earlier in 

infancy than those born prematurely, owing to a faster rate of colonisation. Marked 

differences are noted according to feed type – particularly between infants exclusively 

breast or formula fed. (Heavey, Savage et al. 2003, Donovan, Wang et al. 2012). Spectrum 

of stool SCFAs in infants exclusively breast milk fed illustrate higher levels of propionic 

and n-butyric acids, and lower levels of lactic acid than infants who are exclusively 

formula fed. These differences continue for the first month of life. From the establishment 

of weaning, however, these differences are lost, and a new, consistent microbiota is 

established (Edwards, Parrett et al. 1994).  
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Preterm infants are known to have few species at low abundance in the first months of life, 

and, unsurprisingly, lower levels of energy-yielding products of bacterial fermentation, 

which may in turn contribute to their lower weight gain until term equivalent. Infants who 

develop NEC and/or who require antibiotics in the neonatal period are seen in 

observational studies to be colonised with even fewer gut commensals, although certain 

products of bacterial fermentation such as butyrate may be raised, indicative of 

enteropathogenic activity such as Clostridium butyricum, while others may be lower 

secondary to a paucity of commensal and indeed beneficial strains of Bifidobacteria, which 

predominate in breast fed infants (Wang, Shoji et al. 2007, Underwood, Salzman et al. 

2009). 

 

b) Protein 

Fermentation of protein by gut microflora yields a host of potentially toxic metabolites, the 

effects of which have been analysed mainly in animal models and adult studies (Phua, 

Rogers et al. 1984, Hughes, Magee et al. 2000, Huang, Shu et al. 2012). Such metabolites 

include phenol, cresol, para-cresol, ammonia, hydrogen sulphide, and branched and short 

chain fatty acids (Meyer and Hostetter 2012, Windey, De Preter et al. 2012). Animal 

models have noted abnormal neurology in rats administered intrathecal propionate, and 

other studies of protein-derived SCFAs have revealed hepatotoxicity at physiological 

levels (Jolly, Ciurlionis et al. 2004). Fermentation of protein by the gut microbiota yields 

approximately 15g nitrogenous faecal material daily in a healthy adult. Adults also both 

ferment and recycle the products of protein metabolism, including hydrolysis of urea, 

deamination of amino acids, and recycling of ammonia. Nitrosation reactions of secondary 

amines from amino acid fermentation are associated with an increased risk of colo-rectal 

cancer (Hughes, Magee et al. 2000, Kuhnle and Bingham 2007, Kuhnle, Story et al. 2007, 

Lunn, Kuhnle et al. 2007, Joosen, Kuhnle et al. 2009). Given the multiple mechanisms of 

absorption and excretion of these compounds, it is possible to measure a variety of colonic 

protein metabolites in blood, stool and urine. Toxic products of protein fermentation are 

now recognised in observational studies of adults with chronic kidney disease, and are 

associated with heightened cardiovascular morbidity and mortality (Huang, Shu et al. 

2012, Meyer and Hostetter 2012). Hydrogen sulphide in the gut is implicated in the 

development of ulcerative colitis and colonic carcinomas, yet, paradoxically, recent 

research in adults and animals notes multiple beneficial effects of hydrogen sulphide 

including neuroprotective, cardioprotective, and anti-inflammatory (Windey, De Preter et 

al. 2012). So far most observational studies of protein fermentation products have been 

performed in animal models and adults, with few focussing upon infancy. As such, it is 
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theoretically possible that neonates may accumulate potentially toxic metabolites including 

phenols, cresols, indoles, branched chain amino acids, SCFAs (especially propionate) and 

hydrogen sulphide, which can be absorbed into plasma with resultant systemic effects. 

However, this has not yet been explored in neonatal studies. Localised effects upon the gut 

mucosa are uncertain, although animal studies forming models of NEC suggest that 

protein-derived SCFAs may cause or at least contribute to localised inflammation (Hughes, 

Magee et al. 2000).  

 

c) Lipids 

The gut microflora may affect body fat composition via a variety of endocrine, metabolic, 

and fermentation mechanisms, including suppression of LPL inhibitors by certain 

commensal species; metabolism of oligosaccharides by microbiota producing SCFA 

profiles inhibiting liver triglyceride and VLDL synthesis, thus lowering circulating 

triglyceride and cholesterol levels; and the hydroxylation and hydrogenation of lipids 

(Kaddurah-Daouk, Baillie et al. 2011, Fava, Gitau et al. 2012, Wong, Esfahani et al. 2012). 

Most dietary cholesterol is esterified and therefore not absorbed from the gut (Trapani, 

Segatto et al. 2012, Tanaka, Yasuda et al. 2013). Of the cholesterol that is absorbed by the 

gut, 50% of that oxidised by the liver into bile acids is reabsorbed by the small intestine 

into the blood stream. A diet rich in fibre is recognised to enlarge the bile acid pool, 

binding and excreting more cholesterol at a higher rate (Kumar, Nagpal et al. 2012). Gut 

microbiota are also pivotal in recycling of bile acids thus metabolising cholesterol (Ley, 

Backhed et al. 2005, Turnbaugh, Backhed et al. 2008). Conversely, reduced microbiotal 

metabolism of cholesterol is associated with severe colonic disorders: colitis, bacterial 

overgrowth, and malabsorption (Schippa, Iebba et al. 2010, Scaldaferri, Pizzoferrato et al. 

2012, Shanahan 2012). Observational studies have shown an association with increased fat 

accumulation in adults and an ‘abnormal’ gut microbiota comprising a reduction in 

Bacterioidetes, and increase in Firmicutes (Ley, Backhed et al. 2005, Turnbaugh, Backhed 

et al. 2008). Lean individuals are observed to have higher levels of Bacteroidetes, with 

clinically obese patients exhibiting higher abundance of clostridia (Tilg 2010). One theory 

is that the by-product of this loss of major Bacteroidetes strains appears to be an increased 

fermentation of polysaccharides to SCFAs, thus providing additional energy and so weight 

gain in obese subjects. In addition, metabolism of phosphatidylcholine to lecithin has been 

shown to promote the deposition of atherosclerotic plaques – with a resultant increase in 

cardiovascular morbidity and mortality (Wang, Klipfell et al. 2011). 
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d) Micronutrients 

• Vitamins  

By separate pathways, the gut microbiota also produces vitamins (particularly biotin and 

Vitamin K) and facilitate absorption by the host through the absorption and storage of 

lipids, necessary for the solubility of certain vitamins (A, D, E, and K) (Strozzi and Mogna 

2008, Resta 2009). Bacteria usually produce vitamins through the 2-methyl-D-erythritol-4-

phosphate pathway. Human stores of vitamins K and B12 are also produced by the gut 

microbiota, particularly lactobacillus species (Vaughan, Heilig et al. 2005, Leblanc, Milani 

et al. 2012). Various gut commensal bacteria produce vitamins by acting through the 

coenzymes NAD and NADPH to facilitate the production of niacin, pantothenic acid, and 

folic acid. Certain probiotic bacteria can promote vitamin D production by stimulating 

vitamin D receptors in the gut both with and without SCFAs. SCFAs can induce 

expression of the vitamin D receptor, which acts as a key regulator of calcium absorption 

and intracellular storage. A positive feedback cycle can thus be proffered: bacteria thrive in 

a SCFA-rich environment of low pH, and as such commensal bacteria produce more 

SCFAs, with a resultant increase in cellular energy and more intracellular calcium binding 

proteins. This theoretically results in extra calcium storage in the body, particularly teeth 

and bones. Thus treatment with probiotic bacteria in adult trials is associated with 

reduction in chronic joint inflammation and higher bone density as measured by bone 

density index (Scholz-Ahrens, Ade et al. 2007, Mandel, Eichas et al. 2010). 

  

 

ii) Trophic factors 

‘Trophic factor’ is a generic term used to describe an array of endogenous substances that 

can stimulate intestinal growth and function. Although mainly peptides, this blanket term 

includes an array of phytochemicals utilising unique pathways. Bifidobacteria sp. facilitate 

the production of specific trophic factors, and so are associated with improved growth and 

reduced time to intestinal adaptation when administered to infants recovering from 

intestinal failure and short bowel syndrome (Barclay, Beattie et al. 2011). Lectins and 

equol, a non-steroidal oestrogen produced from the bacterial metabolism of isoflavones 

found commonly in soyabean products, act as hormonal intestinal trophic factors. 

Similarly, phytoestrogen production as a consequence of microbiota metabolism of 

isoflavones, are seen to regulate cell differentiation and growth of the gut lumen. This is of 

particular consequence given the presence of isoflavones in soy-based infant formula milks 

– the greatest dietary source at any stage of life (Setchell, Zimmer-Nechemias et al. 1997).  
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Much of the ability of gut microflora to promote gastrointestinal growth may be via 

SCFAs. Through various mechanisms, the gut microbiota are seen to effect development of 

the villus microvasculature, promoting gut perfusion (Sakata 1987). This may in part be 

due to the transition from use of glucose and glutamine to butyrate as an energy substrate. 

In 1987, Sakata et al produced experimental translocated colon and small intestine 

samples, and measured the resultant SCFA production. A significantly thicker mucosa and 

muscularis layer, with a three to four-fold increased crypt cell production rate, was closely 

associated with higher levels of SCFAs. Their subsequent research in this field further 

delineated butyric acid as a main stimulant of epithelial cell proliferation (Inagaki and 

Sakata 2005), which has, in the intervening years, been consolidated by other research 

groups (Scheppach, Bartram et al. 1992, Ichikawa, Shineha et al. 2002). In observational 

studies, germ-free animals are also seen to have thinner villi with deeper crypts 

(Stappenbeck, Hooper et al. 2002). Other studies have investigated differences in adults 

post-disease (for example, those in recovery from IBD and gastro-intestinal malignancy, 

versus controls) histological colonic specimens with and without probiotic 

supplementation. It appears that certain strains have the ability to effect villus growth and 

even inhibit colonic tumour growth (Bindels, Porporato et al. 2012, Ou, DeLany et al. 

2012, Thirabunyanon and Hongwittayakorn 2013). For infants’ post-SBS or with NEC 

with prolonged recovery, or intestinal failure, the potential for probiotics to elongate villus 

length is an exciting prospect.  

 

iii) Immunological, antibiotic and anti-inflammatory  

The gut microbiota have important anti-enteropathogenic effects, achieved mainly by a 

competitive ‘barrier effect’ whereby harmful microorganisms are unable to thrive due to 

the competitive binding actions of beneficial bacteria binding to the gut mucosa (Chow, 

Lee et al. 2010, Fukuda, Toh et al. 2012). Dominant microbiota species’ in infancy, such as 

Bifidobacteria and Lactobacillus sp. stimulate key immunological effects, both local and 

systemic, possibly preventing clinical eczema, but to a lesser extent for other allergy and 

inflammatory disorders, later in life (Osborn and Sinn 2007). The gut microbiota is also 

responsible for cell signalling in immunity, promoting maturation of immune cells, which 

affect macrophage function on the intestinal mucosa, and even traverse the blood brain 

barrier (Diamond, Huerta et al. 2011). Germ-free mice exhibit immature lymphatic 

systems, less Peyer’s patches and fewer isolated lymphoid follicles (Cebra, Periwal et al. 

1998, Ouwehand, Isolauri et al. 2002, Bouskra, Brezillon et al. 2008). Several communities 

of commensal bacteria are also seen to strengthen the colonic defence barrier by 

reinforcing the tight junctions at a cellular level, by clustering between the lamina propria 
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and the lumen (Prakash, Rodes et al. 2011). Infective viral gastroenteritis is less commonly 

observed in infants who are exclusively breast fed rather than formula, thought to be 

mainly from the properties of Bifidobacteria and Lactobacillus species to lower colonic pH 

and so produce an acidic environment hostile to enteric viruses (Plenge-Bonig, Soto-

Ramirez et al. 2010). Other properties also include the bacterial production of bacteriocins.  

 

Bacteriocins are anti-enteropathogenic proteins produced by commensal bacteria in the gut 

– chiefly lactic acid producing bacteria (Hammami, Fernandez et al. 2012). However, 

bacteriocins produced by bacteria can also inhibit members of the same strain. Most 

bacteriocins appear to be directed against gram positive enteropathogens (although gram 

positive bacteria can also produce bacteriocins), and activity profiles suggest many are 

more effective than conventional antibiotics (Borrero, Brede et al. 2011). Class 1 

lantibiotics comprise post-translationally modified amino acids; Class II non-lantibiotics 

refer to nonmodified amino acids; and Class III are large, heat-labile proteins. Commercial 

efforts are now focussed upon large-scale production of bacteriocins for medical purposes 

(Velazquez 2012).  

 

Additionally, the enteropathogenic role of pH, mediated chiefly by acetate production from 

an abundance of Bifidobacteria species in the gut microbiota of infants exclusively breast 

fed, is seen to play a pivotal role in the inhibition of major known enteropathogens such as 

E.Coli 0157 (Fukuda, Toh et al. 2011), Clostridia jejuni (Baffoni, Gaggia et al. 2012), and 

rotavirus (Balamurugan, Magne et al. 2010). Paradoxically, prophylactic probiotic 

administration to infants has not yet been seen to reduce their incidence of gastrointestinal 

infection, and probiotics administered to infants with short gut syndrome were at increased 

risk of translocating those strains to the bloodstream – accounting for several case series’ 

of clinically septic infants with the sole identification of probiotic strains in blood samples; 

so-called probiotic-related ‘sepsis’ (Thompson, McCarter et al. 2001, Sherman 2010, Lee 

and Siao-Ping Ong 2011).  

 

iv) Anti-carcinogenic effects 

Strains of Lactobacilli are known to produce a host of factors that inhibit the proliferation 

of tumour cells, degrade carcinogens, and successfully compete for mucosal binding sites 

with microorganisms that produce pro-carcinogens. Various strains of Lactobacillus and 

Bifidobacteria sp. which predominate in the gut microbiota of infants are also known to 

release antioxidants, such as glutathione and superoxide dismutase, which also exert anti-

carcinogenic effects (Kullisaar, Zilmer et al. 2002, Achuthan, Duary et al. 2012). SCFAs 
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such as butyrate have also been observed in in vivo studies to be associated with 

suppression of cancer cells (Tang, Chen et al. 2011, Leonel and Alvarez-Leite 2012, 

Matthews, Howarth et al. 2012). Studies investigating the in vitro administration of 

probiotics note a reduction in the proliferation of tumour cells, particularly colonic, 

although the remainder of the evidence base is mainly evidence level 2: controlled data in 

case series or reports. Observational studies of adults with colorectal cancers reveal 

diminished populations of gut commensals such as F. prausnitzii (a butyrate producer) and 

E. rectale, and higher abundance of known carcinogen associated enteropathogens, such as 

Bacteroides-Prevotella populations – although whether this is cause or effect has yet to be 

ascertained (Balamurugan, Rajendiran et al. 2008, Sobhani, Tap et al. 2011). Many animal 

studies are investigating these associations (Topping and Clifton 2001). Studies of 

propionate show similar anticarcinogenic properties in adult subjects and in vitro work, but 

to a lesser extent (Cousin, Jouan-Lanhouet et al. 2012, Matthews, Howarth et al. 2012). 

SCFAs generically lower colonic pH, and this acidity is noted to have an important 

anticarcinogenic effect. Recently, colonic pH has subsequently been shown to alter 

efficacy of oral chemotherapeutic agents (Ashwanikumar, Kumar et al. 2012, 

Madhusudana Rao, Mallikarjuna et al. 2013), particularly for drugs such as 5 fluorouracil. 

This also enables controlled release of these drugs, targeted at certain areas of small and 

large bowel according to the rate of activation dependent on luminal acidity (Deepa, 

Thulasidasan et al. 2012). Preterm infants are at higher risk of malignancies in adult life 

than infants born at term, although this may be secondary to their higher incidence of 

Syndrome X, also known as Metabolic Syndrome, and higher waist-to-hip ratio, both of 

which are in turn associated with higher levels of colonic and other malignancies in general 

(Griffin and Cooke 2012).  

 

v) Reduction of serum cholesterol and morbid obesity 

Elements of the gut microbiota, especially an abundance of Firmicutes and diminished 

growth of Bacteroides species’, have been associated with lower serum cholesterol and 

leanness in adulthood, theoretically in turn leading to less cardiac risk and lowering 

malignancy (Cani and Delzenne 2009, Parnell, Raman et al. 2012). Most studies analysing 

the effects of altered gut microbiota on cholesterol synthesis have been animal studies (De 

Smet, Van Hoorde et al. 1995, Kumar, Nagpal et al. 2012, Pavlovic, Stankov et al. 2012). 

Identifying the species implicated in these cholesterol-reducing effects allows commercial 

production as dietary probiotic supplements. Subsequently, observational and in vitro 

studies have identified Lactobacillus gasseri, acidophilus, and Bifidobacterium bifidum as 

exhibiting the most pronounced effect on lowering serum cholesterol and promoting a 
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healthy BMI in adults (Klaver and van der Meer 1993, Usman and Hosono 1999). In 

addition, the ability of Bifidobacteria and Lactobacillus species to create an acidic colonic 

environment aids the excretion and impairs the absorption of dietary cholesterol. 

Mechanisms utilised by Lactobacillus acidophilus for this purpose include the inhibition of 

a rate-limiting enzyme of endogenous cholesterol biosynthesis, and promotion of excretion 

of dietary cholesterol via precipitation in bile acid, hepatic lipolysis, or (theoretically) even 

absorption by the organism itself (Gilliland, Nelson et al. 1985, De Rodas, Gilliland et al. 

1996). Other mechanisms include increased faecal bile acid loss, with resultant greater 

utilisation of liver cholesterol to replace lost bile acids, in doing so reducing cholesterol 

deposition; promotion of bile salt hydrolase, resulting in deconjugation of bile and 

resultant co-precipitation with cholesterol; and reduced reabsorption of cholesterol in the 

small intestine, both associated with increased colonic propionate production (Jones, 

Martoni et al. 2012, Kumar, Nagpal et al. 2012). In observational studies, the dominance of 

Bifidobacteria in the adult gut microbiota is associated with a higher incidence of leanness. 

Two mechanisms for this are proposed: gut colonisation suppresses expression of a fasting-

induced adipose factor released from the epithelium, in turn increasing the activity of 

lipoprotein lipase with a resultant increase in triglyceride storage. Secondly, gut bacteria 

may increase hepatic lipogenesis as a byproduct of dietary polysaccharide degradation, 

thus promoting obesity. Disordered gut microflora are implicated in the development of 

metabolic disease, particularly in the western world, where obesity is epidemic (Tremaroli 

and Backhed 2012). Dominance of known enteropathogens in the gut microflora is 

conversely associated with increased plasma cholesterol levels and obesity (Santacruz, 

Collado et al. 2010), and may even be aetiological, when observed in obese and lean twins 

(Turnbaugh, Hamady et al. 2009). Several animal studies have also noted an increase in 

acetate production yet concurrent decrease in propionate production in obese subjects 

(mainly mice), although whether this is as a result of or implicating in causing obesity, is 

unclear. Certain studies postulate a future therapeutic role for propionate as a hypophagic 

agent (Hong, Nishimura et al. 2005, Arora, Sharma et al. 2011, Darzi, Frost et al. 2011, 

Lin, Frassetto et al. 2012).  

 

vi) Hormonal interactions 

The gut is intimately associated with the endocrine system, and produces hormones by 

specialist enteroendocrine cells from stomach to distal colon. Despite these numbering less 

than 1% of the cells of the entire GIT, their production is prolific, accounting for around 

70% of postprandial insulin secretion alone (Vilsboll and Holst 2004). GI hormones 

include gastric inhibitory peptide, glucagon-like peptide-1, peptide YY and oxytomodulin 
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(CCK). Multiple neuroenteroendocrine loops have been postulated and investigated in 

human and animal studies, and impairment of these has been implicated in the 

pathogenesis of type 1 insulin-dependent diabetes mellitus (Boerner and Sarvetnick 2011, 

Holzer, Reichmann et al. 2012, Vaarala 2012). Many are intimately related to glycaemic 

control, lipid metabolism, appetite control, and so are also associated with disease states 

such as Metabolic Syndrome, NIDDM and morbid obesity (Manco, Putignani et al. 2010, 

Tilg 2010, Vijay-Kumar, Aitken et al. 2010, Tremaroli and Backhed 2012). Bacteria can 

influence the release of hormones and hormone-like molecules, including gut microbiota-

derived signalling molecules, and biologically active peptides, particularly in the regulation 

of appetite, and gastric perfusion (Holzer, Reichmann et al. 2012). Transfer of intestinal 

microflora has also been observed to correlate with a transfer of insulin resistance between 

individuals with metabolic syndrome (Vrieze, Van Nood et al. 2012, Aroniadis and Brandt 

2013) Faecal transplantation of microbiota from obese mice has been shown to result in a 

greater increase in body fat than microflora from lean mice (Vrieze, Holleman et al. 2010). 

 

Various species within the microbiota are also thought to maintain homeostasis between 

thyroid and oestrogen-based hormones and the host, through promotion of enzymes 

metabolising these – although these are very new observations, mostly in animal studies 

(Van de Wiele, Vanhaecke et al. 2005, Mori, Nakagawa et al. 2012, Awaisheh, Khalifeh et 

al. 2013). Multiple observational studies and randomised controlled trials have attempted 

to identify differences in composition and function of gut microbiota communities in 

populations of pre and post-menopausal women, without significant results (Bonorden, 

Greany et al. 2004, Vrieze, Holleman et al. 2010). Such studies aim to identify associations 

with breast and gynaecological cancers that could potentially be ameliorated or prevented 

by alteration of the gut microbiota by probiotic supplementation. Studies in pregnant 

women have so far examined mother-infant stool pairs, placental samples, and cord blood 

immunological markers. Few have examined maternal or fetal endocrine effects on gut 

microflora profiling or supplementation with probiotics during pregnancy (Lindsay, 

Gibney et al. 2012, Stojanovic, Plecas et al. 2012). Any differences may also be gestation 

dependent, and this important confounder is yet to be investigated in observational or 

randomised controlled trials. Notably, the incremental effects of antenatally produced 

progesterone frequently result in relaxation of maternal smooth muscle, resulting in 

physiological ileus and constipation, the effects of which upon the gut microflora have not 

been investigated.  
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vii) Modulation of neurological development 

The gut microbiota is interlinked with immunology and thus neurology (Diamond, Huerta 

et al. 2011, Diaz Heijtz, Wang et al. 2011). Germ-free and gnotobiotic mice have been 

reported to be immunosuppressed yet resistant to autoimmune diseases in several studies 

(Walton, Galanko et al. 2006, Tlaskalova-Hogenova, Stepankova et al. 2011). Gut 

microbiota have also been theoretically implicated in alteration of immune signalling from 

the gut, including cytokine release, production of immune cells such as helper T cells and 

macrophages which in turn stimulate the brain to produce cholinergic anti-inflammatory 

agents via the vagus nerve – which also innervates the gut (Tracey 2010). In utero there 

may be a fixed ‘window’ during which the gut microbiota can influence the growing fetal 

brain (Diaz Heijtz, Wang et al. 2011). Observational studies reveal that the gut microbiota 

can induce systemic immune responses that may in turn influence development of glial and 

neuronal pathways, as well as the cerebral vasculature (Greenwood, Heasman et al. 2011). 

Fledgling investigations using mouse models of the relapsing-remitting inflammatory 

disease multiple sclerosis implicate changes in the commensal gut flora in this regard 

(Berer, Mues et al. 2011, Berer and Krishnamoorthy 2012, Rook 2012). 

 

By definition a commensal benefits one partner, yet simultaneously neither benefits nor 

negatively impacts upon the other. In humans only eight bacterial divisions exist within the 

microbiota, (Backhed, Ley et al. 2005), which can be affected by both horizontal genetic 

changes (in microbes) and vertical changes (in environment: for example mutations and 

deletions). In mammals, Firmicutes and Bacteroidetes predominate, as identified by the 

16S rRNA sequence work in major studies (Leser, Amenuvor et al. 2002, Eckburg, Bik et 

al. 2005). Bacterial phenotypes are furthermore affected by the host and transmitted to new 

bacterial cells – progeny. ‘Functional redundancy’ occurs when bacteria have overlapping 

roles such that if one strain is absent then others can assume similar functions. This is 

particularly important for humans with fewer species, in whom colonisation is delayed – in 

particular, preterm infants.  
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Figure 3: Anatomical quantification of the gut microbiota in healthy adults (Abbreviations: g
-1

 = grams to the 

power of -1) 

 

Differences are emerging between numbers of faecal commensal bacteria in the elderly, 

young adulthood (see figure 3 above), and infancy with reduced quantities at the extremes 

of lifespan (Tiihonen, Ouwehand et al. 2010, Biagi, Candela et al. 2012, Brussow 2013). 

The long-term relevance of this prognostically to preterm infants is as of yet unknown. 
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1.3) Microbiota, Metabolites and Markers of Gut Inflammation 

 

 

Figure 3: Interaction between gut microbiota, metabolites, inflammation and immunity at the gut mucosa. 

(Abbreviations: SCFA = short chain fatty acids; BCFA = branched chain fatty acids; SIgA = 

secretory immunoglobulin A) 

 

1.3.1) Short Chain Fatty Acids: Definition and Relevance 

 

Although first identified more than 100 years ago (Brieger 1878), the relevance of SCFAs 

to health and disease has been discussed since the 1980’s. As far back as the beginning of 

last century, high SCFA values have been identified in infant stool (Bahrdt 1914, Goiffon 

1921). Fatty acids (FAs) are organic compounds comprising a hydrocarbon chain and a 

terminal carboxyl group, varying from a single hydrogen molecule to nearly 30 carbons. 

They are the constituents of a range of dietary lipids. Their properties are determined by 

chain length, degree of saturation (the presence of one or more double bonds), and the 

branching of chains.  

 

Short chain fatty acids (SCFAs) are fatty acids with less than six carbon atoms, and include 

formic, acetic, propionic, butyric, valeric and caproic acids. Isomeric forms (isovaleric, 

isobutyric and isocaproic) are also known as Branched Chain Fatty Acids (BCFAs) 
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produced from the fermentation of amino acids. SCFAs are produced mainly in the colon 

by the fermentation of dietary carbohydrate, particularly dietary fibre, starch and 

oligosaccharides, allowing the recovery of carbon and thus provision of energy for 

colonocytes and body systems (Rambaud and Buts 2006). Conversely, high levels of 

certain SCFAs have been associated with colonic injury in animal models, giving rise to 

the potential for disease markers in inflammatory conditions such as IBD and NEC (see 

figure 3) (Waligora-Dupriet, Dugay et al. 2005, Peng, He et al. 2007), although research in 

adults with IBD strongly points to the therapeutic commodity of butyrate (Wong, de Souza 

et al. 2006, Hamer, Jonkers et al. 2008, Vieira, Leonel et al. 2012). Colonic anaerobes also 

ferment amino acids to BCFAs by a series of reduction/oxidation and transamination 

reactions. In the intestine, SCFAs are present mainly as negatively charged anions and not 

free acids, given the pH of the colonic environment (between 5.5 – 7.0) (Duncan, Louis et 

al. 2009). They are also miscible with water and so readily transported directly to the portal 

vein via MCT-1 and sodium dependent transporters during fermentation as an energy 

source for liver and muscle tissue. As such, a cascade can be postulated: different 

carbohydrates are fermented by selective bacteria to specific SCFAs – thus acting as 

markers of nutrition and infection. Acetate is oxidised by muscle, and propionate is 

sequestered almost entirely by the liver. Butyrate, however, is absorbed and oxidised by 

colonocytes to the liver, and BCFAs are partially excreted in faeces. Although concerns 

have been raised regarding the possibility of gut lactate being absorbed into the blood 

stream, these are in patients with short bowel syndrome, who are already at increased risk 

of D-lactic acidosis (Uribarri, Oh et al. 1998, Munakata, Arakawa et al. 2010). Lactate is 

chiral, with two optical isomeric forms: L (+)-lactate, physiologically produced from 

pyruvate in response to anaerobic metabolism, and D (-)-lactate. D-lactate is also produced 

by colonic fermentation of carbohydrates, and can be absorbed into the systemic 

circulation. In situations of small bowel bacterial overgrowth, which are commonly due to 

short gut syndrome and a resultant overgrowth of lactic acid producing bacteria (such as 

Lactobacilli), D-lactic acidosis is at significant risk of developing, leading primarily to 

encephalopathy (Petersen 2005). Other more recent probiotic trials in infants have so far 

noted no raised levels of urinary D- or L-lactate in those fed lactic acid producing strains, 

such as Lactobacillus Johnsonii, but this is obviously an important potential risk requiring 

further investigation  (Mack 2004, Haschke-Becher, Brunser et al. 2008). 

 

1.3.2 Branched Chain Fatty Acids and Products of Protein Degradation 

Branched chain fatty acids (BCFAs) are a subset of saturated SCFAs with at least one 

methyl branch on the carbon chain, but can also be produced from the degradation of 
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protein, and are found in substances directly relevant to the newborn such as vernix and 

human milk (Ran-Ressler, Devapatla et al. 2008). These are isomeric forms of SCFAs, and 

those of note in preterm infants appear to be isobutyric, isovaleric and isocaproic acids. 

BCFAs account for approximately 20% of total SCFA production from protein. This 

represents a small component of SCFA in the large bowel (see figure 3 for schematic). 

However no other studies have addressed the fate of branched chain fatty acids in VLBW 

preterm infants, nor any correlation to types of milk fed, or possible links to NEC. 

Recently, animal models have noted a reduction in NEC associated with the enteral 

administration of 20% BCFA feed. Given the presence of BCFAs in the gut lumen at birth 

in term infants secondary to the  development and deglutition of vernix, which occurs 

exclusively in the last trimester, the hypothesis that BCFAs may protect the gut from NEC 

is under development by this research group (Ran-Ressler, Khailova et al. 2011). Phenol, 

cresol and ammonia are toxic bacterial metabolites of protein fermentation, and their role 

in the premature gut is unknown. Preterm infants display high levels of proteolysis, 

contributing to lower growth rates (Denne 2007, Hay and Thureen 2010). Only one paper 

was identified which assessed such stool products in term infants, revealing significantly 

higher levels of ammonia and beta-glucuronidase (a faecal bacterial enzyme) activity in 

those breast fed in comparison with formula fed (Heavey, Savage et al. 2003). Para-cresol 

is a product of proteolysis and aromatic amino acid fermentation by Clostridium sp. that 

has been identified in the stool of preterm infants with NEC (Phua, Rogers et al. 1984).  

 

The SCFA type and concentration also vary within the host according to anatomical 

location. The oral cavity, oesophagus, stomach and small intestine host mainly facultative 

anaerobic or aerobic eubacteria (Hobson and Stewart 1997), and as such SCFA production 

is low. However the highest microbial production of SCFAs takes place in the proximal 

colon (Hintz, Schryver et al. 1978). In the large intestine most anaerobes ferment 

carbohydrates to SCFAs by the Embden Meyerhof pathway. Animal and human studies 

models have illustrated that SCFAs can expedite gut transit time, most likely by 

stimulating release of polypeptide YY (Richardson, Delbridge et al. 1991, Cuche, Cuber et 

al. 2000, Cherbut 2003). 
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1.3.3 General functions of short chain fatty acids: 

SCFA function in two general respects: 1) they form energy substrates for the gut mucosa; 

2) they act as signalling molecules. They therefore have the potential to be diagnostic and 

prognostic markers of disease. With these three elements in mind, a systematic review of 

the evidence base for the role of and associations with SCFAs in term and preterm infants 

was undertaken. The following table highlights the paucity of this evidence. 

 

Main Identities and Properties of FAs C1-C11, With Isomeric Forms, in Infancy 
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Individual Stool 

SCFAcid 

Bacteria implicated in fermentation of 

individual SCFA 

Effects in Term Infant Studies Effects in Preterm Infant Studies 

Acetic (C2) 

 

Acetobacteraceae e.g. acetobacter  in prebiotic sup studies (Knol, Scholtens et 

al. 2005, Holscher, Czerkies et al. 2012); 

 probiotics (Underwood, Salzman et al. 

2009) 

Age-dependent  (Midtvedt and Midtvedt 

1992) 

 in probiotic trials (Mohan, Koebnick et al. 2006, Wang, 

Shoji et al. 2007); 

 with feed type (Favre, Szylit et al. 2002) 

Propionic (C3) 

 

Propionibacterium e.g. 

Propionibacterium propionicus 

 in prebiotic sup studies (Holscher, Faust et 

al. 2012) 

 in well formula-fed infants (Edwards, 

Parrett et al. 1994) 

 in mixed-fed term infants (Ogawa, Ben et 

al. 1992) 

 in prebiotic RCT (Knol, Scholtens et al. 

2005)  

Age-dependent  (Midtvedt and Midtvedt 

1992) 

 with probiotic administration (Wang, Shoji et al. 2007); 

 with feed type (Favre, Szylit et al. 2002) 

Butyric (C4) 

 

Obligate anaerobic bacteria e.g. 

Clostridium butyricum, Fusobacterium 

nucleatum 

 in prebiotic sup studies (Holscher, Faust et 

al. 2012) 

 in well formula fed infants (Edwards, 

Parrett et al. 1994).  

Age-dependent  (Midtvedt and Midtvedt 

1992) 

 in probiotic trial (Wang, Shoji et al. 2007) 

 in EBM fed (Favre, Szylit et al. 2002) 

 in PR bleeds;  in healthy prems 2
nd

 – 3
rd

 week of life 

(Szylit, Maurage et al. 1998) 

Caproic (C5) 

 

Clostridium e.g. klyveri; Fibrobacter e.g. 

succinogenes 

Marker for clostridia levels (Madan and 

Slifkin 1988) 

Nil significant 

Valeric (C6) 

 

Clostridia, Eubacterium pyruvativerans No studies found No studies found 

Heptanoic (C7) 

 

Clostridium e.g. sporospheroides No studies found No studies found 

Octanoic (C8) 

 

Nil significant No studies found No studies found 
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Table 2: The evidence base for the bacteria-specific production of stool Short Chain Fatty Acids and their associations in term and preterm infant studies (↑=higher SCFA; ↓=lower SCFA; 

=no difference in SCFA) 

Lactic (C12) 

 

Lactobacillus, Lactococcus  in well formula-fed infants (Ogawa, Ben et 

al. 1992, Edwards, Parrett et al. 1994). 

 probiotic trial (Wang, Shoji et al. 2007).  

 in probiotic trial (Mohan, Koebnick et al. 2006) 

Isobutyric (iC4) 

 

Lactobacillus No studies found No studies found 

Isocaproic (iC6) 

 

Clostridium difficile  in allergic infants (Bottcher, Nordin et al. 

2000) 

Nil significant 

Isovaleric (iC5) 

 

Bacteroides, Prevotella No studies found No studies found 
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1.4)  Evolution and Identification of the Gut Microflora 

1.4.1) Introduction 

Given the high level of obligate and strict anaerobes in the gut microbiota, it has until 

relatively recently been difficult to identify many bacterial species and strains owing to 

limitations of culture techniques. In the 1960’s the majority of strains resident in the gut 

were thought to have been identified, yet it is now evident that methods of anaerobic 

culture used at this time were of low yield (Dubos and Schaedle 1964, Dubos, Savage et al. 

1967, Rambaud and Buts 2006). However, as molecular techniques have flourished, the 

proportion of unidentified species has, paradoxically, expanded, with new species and 

strains being identified on a daily basis (see figure 4 for schematic) (Rodrigues da Cunha, 

Fortes Ferreira et al. 2012, Turroni, Peano et al. 2012). This heightened level of 

identification allows demographical links to be explored amongst cohorts with specific 

illnesses, as well as family studies – for example, trends in abnormal gut microbiota have 

been noted between individuals with Crohn’s Disease and their unaffected first degree 

relatives (Hedin, Stagg et al. 2012). Since 2008, large studies such as the European 

Metagenomics of the Human Intestinal Tract (MetaHIT) has been investigating links 

between the gut microbiota and both IBD and obesity using culture-independent 

techniques (2010). Given that individual bacterial cells are at least ten-fold smaller than 

human skin cells, the estimated weight of the entire human gut microbiome is only around 

200 grams (Hooper, Midtvedt et al. 2002). Given the lack of interindividual similarity, and 

the increasingly remote likelihood of there being a ‘core’ human microbiome (given a 

mere 0.9% shared species abundance within the gut of any two individuals), charting the 

microbiome may be a lengthy process dependent upon stratifying for ethnicity, diseases, 

and cohabitation states (Hamady and Knight 2009). Nonetheless, a core metagenome may 

still hold, with core functions at gene level, yet diversity at 16s rRNA stage. 

 

The Human Microbiome Project 

These techniques are also leading to large observational studies in healthy individuals. The 

Human Microbiome Project is a 5 year feasibility study funded by the USA National 

Institutes of Health. It aims to characterise the microbial community from five different 

anatomical sites (oral, skin, vaginal, gut, nasal/lung), exploring broad as well as deep 

sequencing of the microbiome. Similarly, this is also the focus of several research groups 

with interests in familial links. Tandem research on the gut microbiome of identical twins 

is flourishing, and expertly placed to attempt to identify environmental versus hereditary 

microbiome associations. Turnbaugh et al have produced much work on this topic, 

identifying shared core microbiomes in monozygotic twins through deep sequencing, and 
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further mining the gut microbiota in lean and obese twins (Turnbaugh and Gordon 2009, 

Turnbaugh, Hamady et al. 2009). Other projects examining monozygotic versus dizygotic 

twins have also indicated significant similarity in the former, albeit within the constraints 

of TTGE analysis, comparing only bands yielded and not strains identified (Stewart, 

Chadwick et al. 2005). Turnbaugh et al also in 2010 published their findings of marked 

differences in the microbiome of adult identical twins, strongly suggesting that some 

external environmental factor alters the microbiota very early on in life – and alters it 

permanently (Turnbaugh, Quince et al. 2010). When combined with the spectrum of 

bacterial metabolic and immunological functions, correlations between microbiota 

composition, species, genome, and intensity seem limitless. 

 

1.4.2) Methods of Identification:  

Figure 4: Culture and culture-independent methods of gut microbiota identification and quantification, 

illustrating the continued relevance of culture as both independent identification, as well as substrate for 

further molecular data. (Abbreviations: DNA = deoxynucleic acid; RNA = ribonucleic acid; PCR = 

polymerase chain reaction; TTGE = transient temperature gel electrophoresis; DGGE = denaturing gradient 

gel electrophoresis)  
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i) Culture 

A major limitation in the study of gut microbiota has been difficulty in culturing these 

organisms, requiring the development of molecular techniques. In 1974 an estimated 93% 

of all faecal microbiota were considered 'culturable' according to published data. By 1999, 

however, it was evident through the use of molecular methods of identification that an 

estimated 60-80% of gut microbiota are ‘unculturable’ in conventional anaerobic 

laboratory conditions (Rambaud and Buts 2006). Despite the prolific number and variation 

in molecular methods, culture methods are not obsolete, and still form a significant 

proportion of published work on gut microbiota (Bjorkstrom, Hall et al. 2009). Continuing 

culture-based methods becomes of particular importance given its ubiquity in clinical 

practice, since hospital microbiology departments within the NHS are still hugely reliant 

on culture as a first line investigation.  

 

ii) Culture-independent identification 

Molecular Methods of Analysis: Identification of Species Diversity and Prevalence 

The evolution of molecular biology is becoming the key to evolution of our understanding 

of the gut microbiota, its acquisition, and development in the early stages of life. While 

great interindividual variation makes the identification of a full microbiota ‘genome’ a 

slow process (Turnbaugh, Hamady et al. 2009), new bacterial strains are being identified 

on a regular basis in premature infants (Jacquot, Neveu et al. 2011, Arboleya, Ang et al. 

2012). Molecular methods based on the 16S ribosomal RNA gene (rDNA) are particularly 

sensitive, given its greater hybridisation potential for primers on conserved regions. Such 

conserved regions act to anchor gene targets closely to hypervariable regions, as such 

making them good targets for phylogenetic profiling. Once extracted, DNA can be 

amplified by PCR to make multiple copies in order to be defined by fingerprinting 

techniques. These include Denaturing or Temperature Gradient Gel Electrophoresis 

(DGGE/TGGE), which separates the dominant bacterial consortia into ‘bands’ within a 

strip of gel, known together as a ‘community profile’. These bands are then cross-

referenced to control bands of known species catalogued within clone libraries. However, 

gel electrophoresis does not directly identify microbes, and while intensity of each band 

correlates with abundance of the strain or species, hybridisation techniques (including 

Fluorescent In-Situ Hybridisation [FISH] and qPCR) allow precise quantification of each 

known species. A newer comprehensive method has managed to combine both qualitative 

and quantitative analysis of the community profile. Whole genome pyrosequencing can run 

vast numbers of genetic sequences, becoming quantitative once enough sequences have 

been revealed in order to limit sampling error (Sundquist, Ronaghi et al. 2007). High 
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throughput sequencing techniques are expanding rapidly, from multiple sources, to whole 

genome reads. However, the vast amount of data generated requiring specialist 

bioinformatics support is a limitation of this approach. A major benefit of molecular work, 

conversely, is the wealth of statistical analyses available concerning species type, 

acquisition and growth, which is becoming increasingly accessible with ever-diminishing 

costs. 

 

1.5) Acquisition of Gut Microbiota: 

1.5.1) Influencing the Infant Microbiota Perinatally 

 

Management of the neonatal gut and nutrition begins in utero, with even small changes at 

this time potentially following the individual into adulthood (Barker 2001). The 

progression of establishment of the gut microbiota will be discussed in fetal, infantile 

(preterm and term) and adult life. By the age of 2 years, both qualitatively and 

quantitatively the gut microflora has reached maturity, changing very little during the 

remainder of childhood and adulthood in healthy individuals (Agans, Rigsbee et al. 2011, 

Guarino, Wudy et al. 2012, Isolauri 2012). However, as molecular methods of 

identification expand, it is likely that differences will eventually become apparent. 

 

i) In utero effects: maternal dietary pre- and probiotic supplementation 

The diet of mothers during pregnancy should take into account not just her nutritional 

needs but also those of her fetus (Ota, Tobe-Gai et al. 2012). For instance, periconceptual 

folate has been shown to prevent neural tube defects (Lane 2011). Energy supplementation 

can reduce the prevalence of low birth weight (Ota, Tobe-Gai et al. 2012). Iron 

supplementation will reduce the risks of anaemia (Pena-Rosas, De-Regil et al. 2012). The 

effect of antenatal pre- and probiotics is only beginning to be investigated. New evidence 

is challenging the widely held belief that the gut of the fetus remains sterile until 

colonisation once the maternal membranes have ruptured. In 2008, Isolauri et al identified 

strains of Bifidobacteria and Lactobacillus species in frozen sections of placentae, from 

both ‘cold’ caesarean sections (without rupture of membranes), and vaginal deliveries 

(Satokari, Gronroos et al. 2009). Although this has not been replicated in other studies, 

Keski-Nisula et al in 1997 identified strains of Lactobacillus sp. in amniotic fluid 

specimens taken in theatre under aseptic technique (Keski-Nisula, Kirkinen et al. 1997).  
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One observational study qualitatively and quantitatively analysing the gut microbiota in a 

cohort of 50 pregnant women identified differences in gut microflora composition, plasma 

cholesterol levels, ferritin and folic acid levels in obese versus normal BMI women at 24 

weeks gestation (Santacruz, Collado et al. 2010). So far, U.K. national Royal College of 

Obstetrics and Gynaecology guidelines neither recommend nor discourage pre- or 

probiotics during pregnancy. One study has investigated the effect of antenatal prebiotic 

supplementation. Shadid et al performed a randomised controlled trial administering the 

prebiotics galactooligosaccharide (GOS) and long chain fructooligosaccharide (lcFOS) to 

pregnant women (n = 48) from 25 weeks of gestation until delivery. None of the infants 

were of low birth weight, although one was preterm (Shadid, Haarman et al. 2007). With 

the use of qualitative FISH analysis and quantitative PCR, they concluded that although 

supplementation increased the maternal faecal bifidobacterial counts, it had no effect on 

neonatal carriage of Bifidobacteria, although individual strains were not assessed. A few 

studies have assessed the effect of maternal probiotic supplementation during pregnancy 

on subsequent neonatal colonisation in term infants (Thum, Cookson et al. 2012). One 

study illustrated temporary infant colonisation (n=6) with Lactobacillus GG in samples 

taken at one, six, twelve and twenty-four months of age, despite stopping supplementation 

at delivery, and despite the disappearance of maternal faecal Lactobacillus GG by one 

month postpartum (Schultz, Gottl et al. 2004).  

 

Other studies have, however, demonstrated potential immunological benefits of antenatal 

probiotic supplementation to the term neonate (Kopp, Goldstein et al. 2008, Prescott, 

Wickens et al. 2008). One illustrated a rise in immune factors such as IFN-gamma at term, 

although the clinical relevance of this is unknown (Prescott, Wickens et al. 2008). Similar 

work relative to immune factors implicated in childhood atopic eczema have not illustrated 

in utero benefits of antenatal probiotic supplementation (Boyle, Ismail et al. 2011). The 

hypothesis that antenatal probiotic administration lowers infant blood pressure at six 

months of life was not supported by the evidence (Aaltonen, Ojala et al. 2008). A recent 

Cochrane review concluded that no reduction in the incidence of preterm labour with 

antenatal probiotic supplementation could be shown, despite the theoretical reduction in 

bacterial vaginosis, a relatively common cause of premature labour (Othman, Neilson et al. 

2007). Several studies have investigated the possibility of desensitisation of term infants of 

atopic mothers given probiotic therapy during pregnancy and lactation, but because of the 

postpartum continuation of therapy, this effect cannot be assumed to originate in utero 

(Abrahamsson, Jakobsson et al. 2007, Huurre, Laitinen et al. 2008, Kopp, Goldstein et al. 

2008). To date, no studies have explored antenatal diet and pre- or probiotic consumption 
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with subsequent gut colonisation in preterm infants, and data concerning only one preterm 

infant of normal birth weight (36.4 weeks and >2.5Kg) could be extrapolated from existing 

work (Gronlund, Grzeskowiak et al. 2011). 

 

ii) Establishment of the Microbiota at Birth: Beneficial Bacteria Versus 

Enteropathogenic Micro-organisms 

 

The main wave of perinatal gut colonisation is thought to occur once the maternal 

membranes have ruptured (Magne, Suau et al. 2005). Primarily, bacteria from the maternal 

birth canal, skin, and colon transfer to the infant after delivery, and are acquired by the gut 

in a cranio-caudal fashion owing in part to the wave patterns of peristalsis (Blakey, Lubitz 

et al. 1982). Initially aerobic species thrive, particularly E. coli and Streptococci, and create 

an environment conducive to subsequent colonisation by anaerobic species by consuming 

oxygen, mainly Bifidobacterium, Clostridium and Bacteroides (Edwards and Parrett 2002). 

Unsurprisingly, the proportion of gut anaerobes increases with distal anatomical location, 

given that the oxygen partial pressure in the colonic mucosa is less than a quarter of room 

air oxygen concentration. The resultant anaerobic microbial activity reduces redox 

potential in the distal gut of between -200 mV to -300 mV (Schroeder, Wu et al. 2011). 

Species and quantities of bacteria vary both according to anatomical gut location, and 

situation either within the lumen or on the mucosa.  

 

iii) Ex Utero Influences: Nutrition and Environment  

 

As discussed later, various perinatal factors are known to alter establishment of the 

microbiota, including gestation, method of delivery, intra- and postpartum antibiotics, and, 

theoretically, incubator care (Edwards and Parrett 2002, Schumann, Nutten et al. 2005, 

Penders, Thijs et al. 2006, Fallani, Young et al. 2010). However, the greatest and most 

studied effect is that of diet. 

 

a) Nutrition 

It is well documented that exclusively breast-fed term infants have a predominance of 

lactic acid-producing bacteria (mainly Bifidobacterium and Lactobacilli sp.), becoming 

established by day seven in healthy term infants delivered by spontaneous vaginal delivery 

(Rambaud and Buts 2006, Bezirtzoglou, Tsiotsias et al. 2011, Isolauri 2012, Turroni, 

Peano et al. 2012). Lactobacilli are gram positive rods, and have several functions 

including bacterial adherence, and the regulation of intraluminal acidosis and mucus 
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binding proteins (Rambaud and Buts 2006). Bifidobacteria, also a gram positive rod but 

with a characteristic V or Y-shape, has been seen to account for up to 91% of the bacterial 

consortia in breast fed (and up to 75% in formula fed) term infants (Harmsen, Wildeboer-

Veloo et al. 2000). Members of this genus are thought to activate dendritic cells to produce 

interleukin 10, and also augment the function of immunoglobulin E (Ewaschuk, Diaz et al. 

2008). Maternal milk confers many benefits to the microbiota that have proven difficult to 

reproduce in commercially available formulae. The bifidogenic effects of human milk are 

well recognised, including lowering colonic pH (which also functions as a hostile 

environment for enteropathogens), and providing natural ‘prebiotics’ in the form of human 

milk oligosaccharides, which provide an alternate energy source. Although the iron content 

of human milk is lower than in formulae, its bioavailability is much higher, thus 

maintaining infant stores but depriving Bacteroides and Enterobacteria species of utilising 

it for their growth. This effect is augmented by the presence in maternal milk of lactoferrin, 

which binds any unabsorbed iron thus rendering it unavailable to such bacteria in the colon 

(Butler 1979). Additionally, secretory immunoglobulin A (SIgA) and lysozyme found 

exclusively in breast milk also inhibit the growth of various enteropathogens (Brandtzaeg 

2003, Groer, Davis et al. 2004).  

 

Exclusive breast feeding rates by 3 months of age vary hugely within Europe, from over 

90% in Hungary, to barely 10% in the UK (OECD 2009). The UK continues to have one of 

the lowest breast feeding rates in Europe, as reported by the 2010 UK Infant Feeding 

Survey from the Office of National Statistics, and by the age of 6 months only 1% of 

infants were exclusively fed, despite the UK Department of Health recommendation to 

exclusively breast feed until 6 months of age (McAndrew 2012). The complex 

constellation of reasons for the elective discontinuation of exclusive breast feeding by 

mothers include the need to return to work before 6 months, reliance on cultural and 

religious observances, and social acceptability (Li, Fein et al. 2008). Paradoxically, it 

remains the case that mothers of lower social class in developed countries are less likely to 

breast feed – despite the obvious financial savings associated with breast feeding 

(McDonald, Pullenayegum et al. 2012). As such, multiple interventional trials aimed at 

encouraging the establishment and continuation of breast feeding have now merited meta-

analysis (Jolly, Ingram et al. 2012). According to the United Nations International 

Children’s Emergency Fund (UNICEF), early breast feeding is associated with lower 

neonatal mortality in developed and developing countries (Oddy, Kendall et al. 2003, 

Oddy, Sly et al. 2003).  
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However, within the last 15 years an important discovery of a particular additional 

commodity within breast milk has come to light with the advent of molecular methods of 

anaerobic bacterial identification. The identification of naturally occurring known 

Bifidobacteria and Lactobacillus strains within breast milk raise the distinct possibility that 

it can also function as a probiotic supplement (Fernandez, Langa et al. 2012). This is a 

curious finding considering that these strains are strict anaerobes, and thus unable to 

survive passage to the aerobic environment of the areola. However, the biofilm theory 

serves as an explanation for the ability of these anaerobes to thrive. Previous studies have 

illustrated the bacterial production of a surrounding ‘biofilm’ an aggregate of bacteria upon 

a surface (e.g. the mammary ductules, or gut mucosa) from which a matrix of extracellular 

polymeric substances (EPS) are produced. Such EPS are designed to promote the 

properties of the bacteria within as they are shielded from external threats and thus able to 

cooperate in different manners in order to thrive (Kleessen and Blaut 2005, Macfarlane, 

Bahrami et al. 2011). For enteropathogens, biofilm formation is therefore of great 

advantage since they are resistant to many antibacterial agents (Smith, Perez et al. 2009, 

Ramage, Culshaw et al. 2010). Biofilm formation is ubiquitous throughout the eukaryotic 

world, and recent research indicates that biofilms produced by Lactobacillus strains go on 

to express anti-inflammatory and anti-enteropathogenic factors (Spinler, Taweechotipatr et 

al. 2008, Jones and Versalovic 2009). However, biofilm formation within the mammary 

ductules may also be associated with pathogens implicated in mastitis (Delgado, Arroyo et 

al. 2009, Gutierrez, Martinez et al. 2012). The source of these bacteria are the subject of 

paired fecal/breast milk studies in lactating women, indicating that the enteromammary 

circulation may facilitate the transport of these bacteria from gut to gland (Albesharat, 

Ehrmann et al. 2011, Urbaniak, Burton et al. 2012). This is already the subject of several 

studies noting that Bifidobacteria and Lactobacillus species from the gut microbiota are 

seen to translocate to other mucosal surfaces, as well as into the bloodstream (Kochan, 

Chmielarczyk et al. 2011, Strus, Chmielarczyk et al. 2012). Similarly, animal models 

illustrate the ability of Lactobacillus species to effect extra-intestinal immunological 

processes (Marranzino, Villena et al. 2012). In 2012, these studies and implications therein 

were discussed in our leading article ‘Mothers, Babies and Friendly Bacteria’, published in 

Archives of Disease in Childhood from which the ‘Beattie and Weaver Postulates’ were 

defined, encapsulating the consequences of this discovery. As further strains have been 

identified, satellite studies are testing the properties of these strains for their commercial 

probiotic potential (Olivares, Diaz-Ropero et al. 2006, Diaz-Ropero, Martin et al. 2007, 

Beattie and Weaver 2011).    
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The perfect ‘synbiotic’: breast milk  

Human milk is ‘synbiotic’, containing both prebiotics (oligosaccharides) that promote the 

growth of probiotics as well as protect against infection, and probiotics (live 

microorganisms of benefit to the host) (Araya 2001). Human milk oligosaccharides 

(HMOs) in human milk have been reported at levels of up to 15g/L (Rambaud and Buts 

2006). There are a growing number of studies identifying natural ‘probiotic’ bacteria 

resident in human milk (Martin, Jimenez et al. 2006, Gueimonde, Laitinen et al. 2007, 

Martin, Heilig et al. 2007), assessing mother-infant pairs at term, as well as the placenta, 

reinforcing a ‘horizontal’ method of transmission (Gueimonde, Sakata et al. 2006, Martin, 

Jimenez et al. 2006, Satokari, Gronroos et al. 2009). It is postulated that these strict 

anaerobes are allowed to thrive in the breast owing to mammary changes that occur with 

increasing gestation, such as increased blood flow and hypertrophy that are conducive to 

the creation and maintenance of a ‘biofilm’ enabling bacterial adherence. The importance 

of maternal milk is further highlighted by the ingenuity of the enteromammary circulation, 

a cycle that integrates the maternal immune response to enteropathogens with resultant 

protection of her nursing infant against those bacteria specifically. When the mother 

ingests an enteropathogenic bacteria, Peyer’s patches in the small intestine secrete 

activated B lymphocytes that are transported in the blood to the mammary glands, where, 

as plasma cells, they secrete pathogen-specific neutralising antibodies into milk (Butler 

1979, Van de Perre 2003). The method of transmission of non-enteropathogenic 

endogenous ‘probiotic’ bacteria between mother and nursing infant is debatable, but recent 

work suggests that there is a cycle of transmission, from mother’s milk to baby and back 

again, and that skin lactic-acid bacteria do not contribute to the neonatal flora (Martin, 

Heilig et al. 2007).  

 

Conversely, those fed exclusively formula milks have greater numbers of potential 

enteropathogens, including Bacteroides, Clostridia sp., and Enterobacteriaceae. On the 

contrary, very little is known about the gut flora of those who are fed both maternal and 

formula milks (i.e. ‘mixed-fed’), and these comprise most infants in the UK (Fallani, 

Young et al. 2010). Weaning triggers the beginning of further change, and, once this is 

complete, microbiota patterns between formerly breast-fed and formula-fed term infants 

are less distinct. However, breast feeding is associated with less respiratory disease, 

gastrointestinal infections, allergy, obesity and cardiovascular disease in later life, all 

potentially related to microbial facilitation (Armstrong, Reilly et al. 2002, Rudnicka, Owen 

et al. 2007, Parikh, Hwang et al. 2009, Plenge-Bonig, Soto-Ramirez et al. 2010, Risch 

2012, Sonnenschein-van der Voort and Duijts 2012). The minimal exclusive breast feeding 
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rates in parts of the developed world make mixed feeding the pre-weaning reality for the 

majority of infants in the UK.  

 

Maternal post-partum and lactational probiotic supplementation  

Other randomised controlled trials have assessed the use of antenatal and postnatal 

probiotics on term neonates. Several promising trials have reported an increase in secretory 

IgA titres in early lactation, and an increase in neonatal protective immune factors at term 

such as IFN-gamma, in response to maternal probiotic supplementation (Prescott, Wickens 

et al. 2008). Some of these studies are confounded by breastfeeding, and the concurrent 

administration of neonatal probiotics, but nonetheless they show benefits to neonatal 

immunity and reduction in childhood atopy (Huurre, Laitinen et al. 2008). Several recent 

studies have correlated identical strains of lactic-acid producing bacteria in mother-infant 

pairs, analysing both milk and stool. 

 

b) Antibiotics 

Antibiotic administration, both oral and intravenous, is known to affect the gut microbiota 

adversely, albeit temporarily (Dethlefsen, Huse et al. 2008, Looft and Allen 2012). 

Evidence suggests that even a month long course of oral ciprofloxacin can make certain 

taxa extinct for up to 6 months (Dethlefsen, Huse et al. 2008). There is no evidence to 

support a greater effect on the microbiota from either oral or intravenous administration. In 

vivo work suggests that Bifidobacteria remain sensitive to broad spectrum antibiotics, 

including penicillins, macrolides, and vancomycin, but that around 70% of isolates are 

resistant to fusidic acid, and metronidazole (Moubareck, Gavini et al. 2005, Zhou, Pillidge 

et al. 2005). Lactobacillus sp. is known to be resistant to vancomycin, an antibiotic 

commonly used in the treatment of coagulase negative Staphylococcus sepsis. So far, this 

natural resistance would appear to occur via a route unrelated to that of Vancomycin 

Resistant Enterococci (VRE) (Patel 2000). Controversy exists as to whether probiotics 

require antibiotic resistance in order to survive in the gut, and, notably, future issues may 

concern transferable resistance to other enteropathogenic bacterial strains (Salminen, von 

Wright et al. 1998, Borriello, Hammes et al. 2003). Many conditions in which disturbance 

of gut microbiota are implicated in aetiology and pathogenesis, and thus for which pre 

and/or probiotic supplementation would be potentially advantageous also require regular 

courses of antibiotics, both orally and intravenously administered. These in turn further 

disturb the natural gut ecosystem, and are of particular importance in conditions for which 

antibiotic administration paradoxically can make some symptoms worse (for example 
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aggravation of diarrhoea in Crohn’s Disease, urticarial rashes in atopy) (Choi, Han et al. 

2010, De Vroey, De Cassan et al. 2010, Khan, Ullman et al. 2011).  

 

Although antibiotic transmission in breast milk is well established, there is no evidence for 

the effects of antibiotic administration on the infant gut microbiota. For the newborn 

infant, antibiotics may be administered orally or intravenously for the prophylaxis of 

infection in high-risk infants, or the treatment of perinatal infection in infants for whom 

there are clinical signs. Evidence for the subsequent alteration in infant gut microbiota 

shows reduced numbers of Bifidobacteria species and generally lower microbiota species 

variety and intensity (Favier, de Vos et al. 2003, Fallani, Young et al. 2010, Hussey, Wall 

et al. 2011, Fouhy, Guinane et al. 2012). Notably, there is no evidence to suggest a link 

between mastitis and altered infant microbiota.  

 

c) Environment: 

The constant exposure of neonates to bacteria through environmental contact is an 

important building block for future immunity. Skin commensal transfer from mother to 

infant is well-recognised, as are the marked differences in the gut microbiota of neonates 

delivered by caesarean section, as opposed to those delivered vaginally. Those delivered 

surgically have a well-recognised delay in the establishment of gut colonisation for several 

months thereafter (Huurre, Kalliomaki et al. 2008, Biasucci, Rubini et al. 2010, 

Dominguez-Bello, Costello et al. 2010, Lif Holgerson, Harnevik et al. 2011, Pandey, 

Verma et al. 2012). This factor may have a more dominant effect on repression of the gut 

microbiota than other interventions around the time of delivery, including antibiotic 

administration to the neonate and even feed type within the first crucial week of life 

(Biasucci, Rubini et al. 2010). 

 

According to the UK national statistics for birth, preterm infants were commonly delivered 

by caesarean section, which, as described, significantly delays the development of gut 

colonisation in term infants. However the effect of method of delivery is not seen to be as 

dominant a cause of the delay and reduction in species variety and intensity seen in the gut 

microbiota of infants born prematurely in comparison with those at term (Cilieborg, Boye 

et al. 2012). Additionally, the majority of preterm infants weighing less than 1.5Kg at birth 

also require incubation to maintain core body temperature. Sick term infants are also 

generally nursed in incubators to facilitate monitoring, nursing and medical care. This 

naturally reduces the ‘skin-to-skin’ contact and thus cross-colonisation of commensal 

bacteria from mother to infant. The effects of incubation upon the gut microbiota are only 
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beginning to be investigated, although several animal models show significant differences 

in young nursed with and without their parents (Benson, Kelly et al. 2010). In 2007, Butel 

et al emphasised the importance of environmental cross-colonisation in their observational 

study of Bifidobacteria strains found in a cohort of preterm infants. They found no 

significant differences in type or growth of strains according to method of delivery or 

gestation, but did identify B. animalis subspecies lactis in four infants from the same 

neonatal unit. This strain had never before been identified in human gut microbiota, but is 

a common commercially available probiotic strain. They postulated that environmental 

cross-contamination from staff, parents, and/or visitors who had consumed these products 

were the primary source (Butel, Suau et al. 2007). Pilot work for the UK’s first probiotic 

RCT in preterm infants showed that at the end of the 6 week administration period, 79% of 

intervention infants were colonised, as well as 35% of the control group. Similarly, this 

level of control group colonisation was attributed to cross-contamination in the milk 

kitchen and through other environmental sources (Costeloe).  

 

This finding is surprising given the strictly anaerobic nature of most such bacteria, but can 

be explained by two methods: firstly, that anaerobes can survive in normal air for several 

minutes before dying; and secondly, the fact that mere fragments of probiotic bacterial 

DNA can affect host gut mucosal responses (Zhang, Li et al. 2005, Adams 2010, Ou, Lin 

et al. 2011, Orlando, Refolo et al. 2012, Tareb, Bernardeau et al. 2013). This has further 

implications for other environmental aspects of neonatal unit care, including kangaroo care 

(skin-to-skin contact with parents), and duration of ventilation (see figure 5). Critics would 

however note a major confounder of this is that the meticulous ability to detect such small 

remains of bacterial DNA may not indicate those that affect a mucosal response – rather 

simply identifying a previous microbial transferred within the environment.  
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Figure 5: Colonisation patterns between mother, infant and environment  
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1.6) GUT MICROBIOTA AND PRETERM INFANTS 

1.6.1) Demographics and Definitions 

Approximately 12.27 infants are born per 1000 head of population annually in the United 

Kingdom, of which 92% are term (delivered at more than 37 weeks gestation), and 8% are 

preterm . Of those extremely preterm, 89% are less than 1.5kg in birth weight.  

 

Parameter Term infants Preterm infants 

Gestational age >37 weeks <37 weeks 

Birth weight Normal: >2500g 

Low: 1500 – 2499g 

Very Low: 1000 – 1499g 

Extremely low: <1000g  

Relative to 

gestation 

Small for Gestational age: <10
th

 centile 

Large for Gestational Age: >90
th

 centile 

Relative to in 

utero growth 

In Utero Growth Restriction: <10
th

 centile for 

Estimated Fetal Weight 

 

A breakdown of these figures for Scotland between 1998 and 2009 is shown in the table 

below (Information Services Division 2011). 

 

Table 3: a) (top) Table adapted from ISD Scotland, Birth Statistics 2009, showing the proportions of preterm 

and very low birth weight infants delivered in Scotland through a ten year period. 

 

International statistics show that although mortality in VLBW preterm infants has reduced 

significantly over the last 10 years, morbidity has maintained a plateau, mainly due to 

increasing numbers of surviving ex-preterm infants who are malnourished, mostly 

secondary to necrotising enterocolitis – one of the most devastating diseases of the gut in 

early life. This cohort of infants often requires tertiary paediatric gastroenterology and 

hepatology care (Costeloe, Hennessy et al. 2000, Fanaroff, Hack et al. 2003, Berrington, 

Hearn et al. 2012).  

  Absolute # delivered Percentage Absolute # Percentage 

 
  Total  All Prem < 1500g 1500- 2499g 2500g +  All Full Term  < 1500g 1500 – 2499g 2500g + 

2009  58243 4586 16.0 46.7 36.7  53657  0.0 2.5 97.4 

2008 57844 4437 17.5 45.6 36.1  53407  0.0 2.6 97.3 

2007 55016 4199 16.0 45.9 37.7  50817  0.0 2.6 97.3 

2006 53056 4332 16.7 47.8 35.2  48724  0.0 2.9 97.0 

2005 53395 4183 16.4 46.0 37.4  49212  0.0 2.7 97.3 

2004 52716 4344 16.7 48.2 34.8  48372  0.0 2.9 97.0 

2003 51004 3976 17.0 48.2 34.3  47028  0.0 2.8 97.2 

2002 50846 3867 16.3 47.5 36.1  46979  0.0 2.9 97.1 

2001 52571 4061 17.9 45.8 36.2  48510  0.0 2.8 97.2 

2000 54112 4082 16.3 47.7 35.7  50030  0.0 2.8 97.2 

1999 56588 4232 16.8 46.5 36.4  52356  0.0 2.8 97.2 

1998 58388 4263 16.3 48.0 35.6  54125  0.0 2.7 97.3 
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1.6.2) Effects of Prematurity on the Development and Composition of the Gut 

Microbiota 

i) Gestation 

Prematurity and being of very low birth weight are factors associated with delayed 

establishment of gut bacteria, as well as the presence of fewer species present at lower 

abundance (Edwards and Parrett 2002, Jacquot, Neveu et al. 2011, Arboleya, Binetti et al. 

2012). The reason for this is unclear, but several hypotheses exist. Firstly, until 34 weeks 

gestation, premature infants lack co-ordinated, effective peristalsis, due to incomplete 

migration of vital gut neuromotor innervation (Sanderson 1999, Pena, Parks et al. 2010). 

Hence this limits the ‘mixing’ abilities within the gut, with less opportunity for milk to be 

digested and presented to the epithelium, where mucus layers require agitation in order to 

permit the diffusion of vital nutrients. Secondly, the protective barrier functions of these 

mucus layers are lacking in premature infants, resulting in higher absorption of hydrogen 

ions (leading to systemic acidosis), and increasing the likelihood of bacterial translocation 

(resulting in sepsis), the effects of which are compounded by the immaturity of the 

premature host’s systemic immune function (Vieten, Corfield et al. 2006, Sherman 2010, 

McElroy and Weitkamp 2011). Immature hepatic, biliary and pancreatic functions further 

limit both digestion and absorption, particularly of lipids (Nishiura, Kimura et al. 2010). 

Preterm infants, particularly those delivered before 30 weeks gestation, require small 

volumes of ‘trophic’ feeds initially: volumes that do not suffice as a sole source of 

hydration and nutrition, but are given to stimulate GI motility, increase feed tolerance, as 

well as to protect the premature gut, both by enhancing gut maturation and reducing the 

incidence of NEC (Bombell and McGuire 2009). This, consequentially, elongates the 

period of parental nutrition, and the resultant lack of breast milk delays the instillation of 

breast milk-related Bifidobacteria and Lactobacillus, as well as the prebiotic effect of 

breast milk oligosaccharides. Given the intricacies and specialised nature of bacterial 

analyses, published work has mainly focussed upon observational case series’ with small 

patient numbers. Despite the advances in methods of molecular identification and 

quantification, relatively little is known about how these bacteria develop and function in 

preterm infants (see figure 6 for postulated factors affecting colonisation of the preterm 

newborn gut).  

 

ii) Prematurity Versus Small for Gestational Age 

Term infants of low birth weight (LBW: <2.5Kg), very low birth weight (VLBW: <1.5Kg) 

or extreme low birth weight (ELBW: <1Kg) are at increased risk of morbidity and 

mortality when compared with their normal birth weight counterparts (Fanaroff, Stoll et al. 
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2007). VLBW infants comprise 65% of all neonatal unit admissions (Lucas 1997). Such 

term infants are at greater risk of gastrointestinal diseases, such as the inflammatory and 

infective condition necrotising enterocolitis (NEC) and doubt has recently been cast on the 

benefits of ‘catch-up’ growth (Simmer 2007). The role and development of gut microbiota 

in this cohort is poorly defined. One study has attempted to make comparisons between 

VLBW yet mainly premature infants with term infants of normal birth weight, noting 

similar initial colonisation patterns with Streptococci and Enterobacteria sp., but delayed 

appearance of Bifidobacteria in VLBW infants (Schwiertz, Gruhl et al. 2003). It cannot 

simply be assumed that these infants have a microflora comparable to that of ‘healthy’, 

non-growth restricted premature infants. The terms LBW, VLBW and ELBW are often 

synonymous with prematurity, but it is important to note that differences in species type 

and timing in term growth-restricted infants may subsequently become apparent in the 

future.  

 

iii) Effect of Method of Delivery and Incubation on the Gut Microbiota of Preterm 

Infants 

Although in healthy term infants gut colonisation is strongly affected by method of 

delivery (Huurre, Kalliomaki et al. 2008), this effect is muted in premature infants, 

according to observational studies. Premature infants are immunologically immature, and 

environmental colonisation relative to the need for incubation, particularly of species such 

as staphylococci and yeasts, often acts as the foci of systemic infection. However, to date 

no studies have considered the effect of duration of incubation on the gut microflora 

although one has noted an association between the higher incidence of gram-negative 

bacterial colonisation and longer inpatient stay (Hoy, Wood et al. 2000). The importance of 

the environmental impact on the microflora of these infants cannot be underestimated. 

Little data exists correlating other clinical factors, such as duration of ventilation, with 

patterns of colonisation, although associations between type and duration of antibiotic 

courses are the subject of several observational studies (Sakata, Yoshioka et al. 1985, 

Sakata, Fujita et al. 1986, Penders, Thijs et al. 2006, Arboleya, Binetti et al. 2012).  

 

iv) Maternal environment 

Various perinatal factors are known to influence the establishment of the microbiota in 

preterm infants, including method of delivery, intra- and post-partum antibiotics, and the 

relatively sterile incubator environment in which they are cared (Edwards and Parrett 2002, 

Magne, Suau et al. 2005). Method of delivery seems to be less significant in premature 

infants, perhaps because of their higher rate of LUSCS and theoretically quicker 
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spontaneous vaginal delivery (Sakata, Yoshioka et al. 1985, Hall, Cole et al. 1990, 

Gewolb, Schwalbe et al. 1999, Edwards and Parrett 2002, RCOG 2004). However, few 

data exist correlating other environmental factors such as length of cot incubation and skin-

to-skin maternal contact with patterns of colonisation. A recent study noted the presence of 

Bifidobacteria longum subspecies lactis in the faecal flora of four premature infants from 

the same neonatal unit. This strain has not previously been identified in premature neonates 

or probiotic therapy in randomised controlled trials, but is routinely used in commercially 

available probiotic foodstuffs, raising the intriguing possibility that consumption of these 

products by neonatal unit staff may actually affect the microbiota of these infants (Butel, 

Suau et al. 2007). This is relevant considering the importance and popularity of ‘kangaroo 

care’, whereby stable preterm infants have regular skin-to-skin contact with their mothers 

(Conde-Agudelo, Belizan et al. 2011, Karlsson, Heinemann et al. 2012). It is also a curious 

finding, given the necessity of the strictly anaerobic environment required for this strain to 

thrive (Rambaud and Buts 2006). However, given the theoretical possibility that probiotics 

may not need to be ‘live’ microorganisms in order to exert a beneficial effect on the host, 

and that ‘killed’ bacteria or even bacterial DNA may suffice and indeed, be safer – this 

finding may have particular consequences to neonatal care (Adams 2010). 

 

v) Antibiotics 

The majority of infants born at very or extreme low birth weight, and/or who are less than 

35 weeks gestation are administered intravenous antibiotics, at least for the first forty-eight 

hours of life, although this is mainly a prophylactic process (Craft, Finer et al. 2000, Clark, 

Bloom et al. 2006, Tagare, Kadam et al. 2010). Inhibition of protective flora naturally 

leads to the proliferation of adverse bacteria, including Clostridium and Staphylococci, 

with associated morbidity. Unsurprisingly, several studies illustrate that the duration of 

antibiotic therapy after delivery is closely correlated with reduced bacterial diversity and 

intensity by the end of the first month of life in term infants (Sakata, Yoshioka et al. 1985, 

Vlkova, Nevoral et al. 2005, Mullie, Romond et al. 2006). One theory for the marked delay 

in Bifidobacteria colonisation is antibiotic sensitivity, with several studies correlating type 

and length of antibiotic courses with this delay (Penders, Thijs et al. 2006). Another study 

has illustrated the delay in detection of Lactobacillus in infants receiving simple penicillin 

during the first four days of life (Sakata, Yoshioka et al. 1985). Disturbingly, antibiotic 

therapy may promote the development of antibiotic resistant opportunistic enteropathogens 

(Morelli, Cesena et al. 1998, Salminen, von Wright et al. 1998, Saarela, Mogensen et al. 

2000, Bonnemaison, Lanotte et al. 2003).  
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vi) Nutrition 

As with those at term, it is postulated that colonisation of premature infants is heavily 

influenced by the type of milk fed: maternal, donor, or formula. Exclusively breast-fed 

term infants have a predominance of beneficial lactic acid-producing bacteria (mainly the 

facultative anaerobes Lactobacilli and Bifidobacterium sp.). Conversely, term infants fed 

exclusively formula milks have greater numbers of potential enteropathogens, including 

Bacteroides, Clostridia and Enterobacteriaceae (Edwards and Parrett 2002, Magne, Suau 

et al. 2005). However, this difference is less marked in preterm infants, and no studies have 

sought to document the microbiota of those mixed-fed, despite this being a reality for most 

preterm infants in the first weeks of life (Schanler, Lau et al. 2005, Maayan-Metzger, Avivi 

et al. 2012).  

 

Of the seven studies identified that examined the microflora of premature infants, only two 

considered comparisons between those exclusively breast or formula milk fed. In both 

instances patient numbers were too small to identify significant differences. No studies 

have analysed the microbiota in solely mixed fed premature infants. Although Schwiertz et 

al compared the gut flora of premature neonates with exclusively breast fed term infants, 

no mention was made of the premature infants’ feed regimen (Schwiertz, Gruhl et al. 

2003). Given the reality of considerable difficulties in maintaining breast milk supplies for 

premature infants, most are therefore fed a mix of breast and formula milks. Breast milk 

from mothers of preterm infants is known to be of more dilute, less calorific and with a 

lower fat content. However, whether there are differences in the nature and quantity of 

probiotic bacteria in preterm breast milk are yet to be ascertained. However, it is likely that 

the acquisition of probiotic bacteria in breast milk is gestation-dependent.  

 

a) Donor Expressed Breast Milk 

The development of an alternate microbiota is an increasing possibility with the advent of 

breast milk donation. Donor Expressed Breast Milk (DEBM) banks are increasing, both in 

number and supply. Seventeen such milk banks exist throughout the United Kingdom, 

providing premature infants from the country’s 250 Neonatal Units with around 5000 litres 

of Donor Expressed Breast Milk annually (UKIAMB 2013). The effect of this type of milk 

on gut colonisation has not yet been studied, but is likely to be highly variable, since 

donors tend to be a mix of term and preterm mothers, at different time points after delivery. 

All DEBM in the UK undergoes pasteurisation and frequent microbial testing to ensure 

sterility from bacterial and viral enteropathogens. Studies examining the safety aspects of 

treatment and handling of DEBM have focussed mainly upon viruses, such as HIV, 
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hepatitis B, and cytomegalovirus. However, no studies that focus upon the effect of 

pasteurisation of milk, including ultrasound and flash heating, on its ‘probiotic’ bacterial 

content can be identified in extensive literature searching. Holder Pasteurisation (heating at 

a minimum of 62.5
0
C for 30 minutes) affects the bioavailability of nutritional and 

immunological components, and is a controversial practice that is by no means universal 

(Stein, Cohen et al. 1986, Modi 2006, Andersson, Savman et al. 2007). The omission of 

bacteriological analysis of human milk ‘probiotics’ before and after pasteurisation is 

important, given the propensity for DEBM to lower the incidence of necrotising 

enterocolitis and neonatal sepsis in several systematic reviews and meta-analyses (Quigley, 

Henderson et al. 2007, Schanler 2007, Sullivan, Schanler et al. 2010). The correlation 

between the pasteurisation of DEBM and lower incidence of NEC in preterm infants 

consuming donor milk requires further analysis of the gut microflora to explain. However, 

probiotic bacteria need not be ‘live’ in order to exert an effect on the host (Adams 2010). 

Toll-like receptor 4 (TLR4) is a protein cell receptor found in leucocytes and the placenta 

that plays a key role in pathogen sensing and subsequent immune activation. Evidence 

suggests that TLR4 receptors can be stimulated by fragments of bacterial DNA – one of 

the key effects of vaccination (Villena, Suzuki et al. 2012). TLR4 failure is also associated 

with NEC (Hackam, Good et al. 2013). In vivo studies of heat-killed lactic acid producing 

bacteria note their immunomodulatory properties, particularly in the production of 

interferon alpha and a host of interleukins. Recent research also suggests an 

antiproliferative and proapoptosis effect, of significance in cancer research (Ou, Lin et al. 

2011, Orlando, Refolo et al. 2012), but so far these are only evident from animal models 

and in vivo work. In addition, routine pasteurisation of DEBM for preterm infants may not 

be required for virological purposes, given that all donors are screened for HIV and 

hepatitis viruses. However long-term follow-up studies of ex-preterm infants who have 

suffered neonatal CMV infection show poorer long term adverse motor effects into 

childhood than ex preterm infants without CMV infection, although still in the normal 

range (Bevot, Hamprecht et al. 2012, Resch 2012). Indeed, in term infants CMV exposure 

is often referred to as a ‘natural immunisation’ (personal communication, A Williams). 

Alternatively, with the combination of donor milk screening and questionnaires, it may be 

prudent to test donor milk for bacterial enteropathogens and CMV only, and pasteurise if 

significant growth. It is ironic that the United Kingdom Association of Milk Banks 

guidelines for handling human milk apply only to donated and not maternal human milk. 

In addition, there is no consensus on sterilisation of equipment used to express milk for 

women lactating at any gestation. 
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b) Maternal Postnatal Probiotic Supplementation  

Although, as described earlier, a number of RCTs have explored the effect of 

administration of probiotics to postpartum lactating mothers, none of these trials include 

preterm infants, although one study, currently recruiting in Israel, is assessing the effect of 

lactational probiotics on preterm infants (Dollberg 2010). 

 

1.6.3) Evidence for gut microbiota species diversity and abundance in preterm 

infants 

 

In extensive systematic literature searching, utilising the SIGN methodology (Network 

2013), only seven studies exclusively considering gut microbiota in VLBW preterm infants 

were identified (see Table 4). These studies also suggested that pathogenic bacteria (such 

as Clostridia, Staphylococcus, Pseudomonas and Klebsiella) appear sooner than beneficial 

‘probiotic’ strains in premature infants. Given difficulties in sampling, few studies have 

compared microflora at different levels of the gastrointestinal tract in premature infants 

without NEC, although one study found low levels of bacteria in the stomach similar to 

that of the faecal microbiota, and one further study examined microflora solely from the 

duodenum of premature infants via nasoduodenal tube placement (Kraeft, Roos et al. 1985, 

Hoy, Wood et al. 2000).  
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Figure 6: In utero and ex utero factors affecting gut colonisation in preterm infants (Abbreviations: NEC = 

necrotising enterocolitis; CPAP = continuous positive airway pressure; PROM = prolonged rupture of 

membranes). 

 

In order to explore the evidence base for these in utero and ex utero influences on the gut 

microbiota of preterm infants, I undertook a systematic literature review at the beginning 

of my research period (2009). This was updated before thesis submission (2013). Pubmed 

and Medline were searched for all titles concerning the identification of stool bacteria in 

preterm infants (< 37 weeks gestation), regardless of culture or culture independent 

method. MeSH keywords and combinations therein were: preterm; gut bacteria; 

microflora; microbiota; stool. All abstracts were reviewed, and those without associated 

full publication, those of evidence level four (expert opinion) and those that were not 

translated into English were excluded. This left ten articles which were assessed in 

conjunction with the Scottish Inter-Collegiate Guideline Network methodology (Network 

2013). 

 

 

 

 

 

Table 4: Evidence Base for Components of and Factors Influencing the Gut Microbiota of Preterm Infants 

Without NEC (Blakey, Lubitz et al. 1982, Stark and Lee 1982, Rotimi, Olowe et al. 1985, 

Sakata, Yoshioka et al. 1985, Hall, Cole et al. 1990, Gewolb, Schwalbe et al. 1999, 

Schwiertz, Gruhl et al. 2003, Magne, Abely et al. 2006, Chang, Shin et al. 2011, Barrett, 

Guinane et al. 2013) 
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Study, Journal + 

Evidence Level 

Year  n = Gestation in weeks 

(median, range) 

Birth 

weight (g) 

Feed Type SVD Antibiotics 

given 

Incubation 

period 

Postnatal 

age of 

sample(s) 

Methods + samples Stool bacteria 

identified 

Main results 

(p<0.05) 

Stark PL 

J Hygiene (Lond) 

EL 3 

1982 11 33 (30-35) 1920 

(1440-

2300) 

All DEBM NS None NS 3-6 

specimens 

during week 
1; thereafter 

weekly for 

inpatient stay 

Culture 

Stool samples 

Bifido; 

bacteroides; 

Clostridia; G+ 
anaerobes 

High counts 

anaerobes; 

delayed Bifids 
in prems 

Blackey JL 

J Med Microbiol 

EL 3 

1982 28 30 (25-36) 1125 

(560-

1500) 

17 EBM/D 

2 F 

1 TPN 

NS 23 NS Twice 

weekly for 3 

weeks 

Culture 

Throat, gastric 

aspirate, stool, blood 

Bacteroides, 

E.Coli, 

clostridia, 
lactobacillus, 

staph aureus, 

klebsiella 

 colonisation 

if antibiotics or 

PN. No 
Lactobacillus if 

antibiotics 

Rotimi VO 
J Hygiene (Lond) 

EL 3 

1985 23 29.01 (24-36) 1728 
(750-

2400) 

9 E/F 
2 F 

12 NS 

12 15 NS Days 1, 2, 3, 
+ 6 

Culture 
Swabs of mouth, 

umbilicus + rectum 

E.Coli, strep 
faecalis, staph 

epi, candida, 

klebsiella, 
bifido, 

bacteroides, 

clostridia 

 colonisation 
with LUSCS;  

High G- 

bacteria, esp. 
Clostridia 

Sakata H  

Eur J Ped 

EL 2 

1985 7 29.5 (25.4-34.7) 810-1350 All E/D 3 2 NS Days 1-7 Culture 

Stool samples 

Enterococci, 

strep, staph, 

bifido, 
lactobacillus, 

bacteroides, 

clostridium 

Longer period 

enterococci + 

strep than term; 

Delayed bifids + 

higher staph in 

prems  

Hall MA  

ADC 

EL 2 

1990 46 32 (25-33) 1440 

(620-

2510) 

23 EBM/D 

5 E/F 

14 F 

18 30 (71) 36 days (86) 10 days +  30 

days 

Culture + gas liquid 

chromatography 

Stool only 

Coliforms> 

Lactobacilli> 

Bifidobacteria 

 Lactobacilli 

if incubated 

+/or antibiotics 

Gewolb IH 
ADC 

EL 2 

1999 29 E 26.4 (2.2) 
F 26.0 (1.8) 

E 814 
(117) 

F 747 

(136) 

E 15 
F 14 

E 9 
F 9 

E 18.5 (5.5) d 
F 21.4 (6.6) d 

NS Days 10, 20 
+ 30 

Culture 
Stool samples 

Enterococcus 
faecalis, E.coli, 

Staph 

epidermidis, 
Enterbacter 

cloacae, 

Klebsiella + 
Staph 

haemolyticus 

E: 
colonisation 

with time 

Lacto and 
Bifido in only 1 

infant 

Colonisation 
delayed in all 

with  

antibiotic 
duration 

Schwiertz A 

Pediatr Res 
El 2 

2003 29 24-37 830-2635 All E/D 11 29 ‘At least 4/52’ Days 1-14, 

17, 21, 24,  
28 

PCR-DGGE (16s 

rRNA) 

E.Coli, 

enterococcus, 
klebsiella 

High 

interindividual 
similarity prems 
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Abbreviations: E = Expressed Breast Milk; D = Donor Expressed Breast Milk; F = Formula;   

 

Table 4: Evidence Base for Components of and Factors Influencing the Gut Microbiota of Preterm Infants without NEC; 5 were of EL 2, and 5 of EL 3. Six comprised culture and 4 culture 

independent methods. All considered samples within the first month of life. As publications progressed chronologically, so the interindividual variation widened.

over time, due 

to 

environmental 

cross 
contamination  

Magne F 

FEMS Microbiol 
Ecol 

EL 3 

2006 16 28.5 (27-36) 1265 

(640-
2300) 

E 3 

F 6 
E/F 7 

6 10 ‘At least 4/52’ NS – 1 

sample per 
infant 

PCR-TTGE + 16s 

rRNA 

Enterobacter: 

enterococcus, 
strep, staph. 

Bifids 

High 

interindividual 
variation; 3.25 

species (mean) 

per infant; low 
bifids. 

Chang JY 

JPGN 
EL 3 

2011 10 29+3 – 34+3 970-1495 E: 5 

M: 5 

0 All 

Range: 2-7 
days 

NS 72 hours, 2 

weeks, and 1 
month 

16s rRNA 

pyrosequencing 

Gammaproteob

acteria, bacilli, 
clostridia, 

bacteroides, 

Escherichia, 
enterobacter, 

enterococcus, 

veillonella, 
serratia, staph, 

roseburia 

21.9% species 

unclassified; 
Clostridia and 

Bacteroides 

ubiquitous 72 
hours after 

birth; 

Pathogenic 
bacilli present at 

all stages 

Barrett E 

ADC 
EL 3 

2013 10 27-31 NS E 7 

E/F 2 
E/D 1 

2 10 NS Days 10-14, 

then day 24-
28 

16s rRNA 

pyrosequencing stool 
samples 

Phylum/family/

genus of: 
proteobacteria’ 

Firmicutes, 

Bacteroides, 
acinobacter; 

bacteroides, 

clostridia, 
staph, 

enterococcus, 

bifids, lacto. 

Lack of Bifids 

and Lacto; large 
interindividual 

variation in 

prems – more 
so than 

previously 

reported.  Huge 

variation in 

proportion 

phyla/families/ 
genera.  
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This heterogeneous group of studies include four case-control series, six case series’, but 

no randomised controlled trials, published over a period of 21 years. Notably, as molecular 

methods have expanded, so have the number and type of phyla, families, and genera 

identified in preterm infants. Although the range of gestations and birth weights is wide, all 

sampling has occurred within the first month of life. There is congruence in the consistent 

finding of a delay in the appearance of Bifidobacteria, and dominance of anaerobes and 

gram negative bacteria. As the molecular methods used advance, however, the 

interindividual variation appears to increase in each cohort.    
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1.6.4) Evidence for Normative Data in Stool Metabolites, Inflammatory and 

Immunological Markers of Gut Health in Preterm Infants 

 

i) Variation in Stool Bacterial Metabolites in Healthy Preterm Infants 

The role of Short Chain Fatty Acids (SCFAs) as the products of bacterial fermentation of 

undigested carbohydrate in the colon in preterm infants in health and disease is under much 

dispute, given the ‘butyrate paradox’ (Kien 1996), whereby butyrate has been observed to 

have both detrimental and therapeutic effects. SCFAs are present at birth from the primary 

metabolism of lipids, and are generally seen to rise after feeding is commenced, but the 

effect of other environmental and specific nutritional differences has not yet been 

investigated. Preterm infants illustrate ineffective and uncoordinated peristalsis, leading to 

a surfeit of undigested milk, which theoretically acts as a substrate for bacterial 

fermentation of complex carbohydrates and protein to short and branched chain fatty acids. 

Trends may therefore emerge in future studies to signify the effect of probiotics and 

differences in feed regimen in preterm infants on their SCFA profiles.  

 

In order to investigate the relevance of stool SCFA analysis to neonatology, I undertook a 

literature search (using combinations of the MeSh key words: short chain fatty acid; 

branched chain fatty acids; neonate/infant; preterm; stool; faecal; necrotising enterocolitis; 

butyrate) into Pubmed and Medline. Major reviews in the area were also cross-referenced. 

Levels of evidence were appraised using the SIGN guideline methodology 

(www.sign.co.uk), excluding EL four (expert opinion), abstracts without publication, and 

papers not translated into English. This was performed at both the beginning of my 

research period (October 2009) and then updated before thesis submission (Anyon and 

Clarkson 1971, Kien, Liechty et al. 1990, Stansbridge, Walker et al. 1993, Favre, Szylit et 

al. 2002, Wang, Shoji et al. 2007, Mohan, Koebnick et al. 2008, Underwood, Salzman et 

al. 2009). 

 

 

http://www.sign.co.uk/
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Table 5: Evidence base for the relevance of stool SCFA analysis in preterm infants without NEC; five studies were of EL 1, and one each of ELs 2 and 3. There was a wide variation in 

reported SCFA trends with probiotic administration, ranging from no differences to higher butyric, lactic and propionic acids. The two feed trials showed conflicting results, with alternately 

increased or decreased total SCFA concentrations with feed type. 

  

Study, Journal + 

Evidence Level 

Year n = Gestation 

(weeks) 

Birth weight (g) SVD Incubation Antibiotics Feed type Postnatal age 

of samples 

Samples Methods of 

analysis 

Results 

Anyon CP 

Aust Paediatric J 
EL 3  

1971 10 <37 2.5Kg NS NS NS Cow’s milk/water, 

then ↑ratios 
sucrose 

Days 5-7, 10-

15, and 20-22 
 

Stool GC, clinitest + 

lactate method 

Age related ↓ acetate 

and butyrate 

Kien CL 

Gastroenterology 
EL 1 

1990 15 28-32 ‘Weight and length 

>10th centile’ 

NS NS NS 7: LAC 

8: GP 

2-4 weeks – 

‘4 day excreta 
period’ 

Stool 

samples 

GLC LAC = acetate + 

total SCFA 
90% fecal 

carbohydrate energy 

from bacterial 
fermentation 

Stansbridge EM 

ADC 

EL 1 

1993 20 Gp A: 30.5 (26-

33) 

Gp B: 30 (24-33)  

Gp A: 1445 (800-

2560) 

Gp B: 1500 (830-
2150) 

12 NS 15 17: EF 

3: F 

Days 7, 14, 

21, 28, 35 ‘or 

adjacent 
days’ 

Stool and 

urine 

GC ‘No detrimental 

effects’ upon SCFAs 

in probiotic group: no 
significant differences 

Favre A 

JPEN 
EL 2 

2002 28 Gp I: 34 (1.12) 

Gp II: 34 (0.89) 
Gp III: 31 (0.7) 

I: 1953 (381) 

II: 2038 (257) 
III: 1453 (229) 

NS NS NS 33-37: E 

33-37: 
Nutramigen 

<33: E 

Days 8-21 Stool GC butyric with 

nutramigen beyond 
day 17.  total SCFA 

concentration if <33 

weeks 

Wang C 
JPGN 

EL 1 

2007 66 23-36 414-2124 6 NS Some All mixed E/F 0, 2 + 4 
weeks 

Stool HPLC butyric in probiotic 
group 

Mohan R 
Ped Res  

EL 1 

2008 69 Gp I: 31.05(2.31) 
Gp II: 31.27(2.56) 

I: 1449(343) 
II: 1398(331) 

8 NS 18 E: 58 
F: 11 

Daily for 21 
days 

Stool HPGC + ELISA 
for lactate 

Probiotic group:total 
SCFA wks 2+3, 

propionic, lactic and 

butyric;  

Underwood MA 

JPGN 

EL 1 

2009 90 Gp I: 29.3(2.6) 

Gp II: 29.5 (2.6) 

Gp III: 30.2 (2.4) 

I: 1393 (363) 

II: 1394 (356) 

III: 1461 (372) 

27 NS Total days: 

I: 5 (2,10) 

II: 4 (2,8) 
III: 3 (2,7) 

I: E 11 F 

II: E 9 F 4 

III: E 10 F 5 

Week 4  Stool HPLC No differences in 

probiotics vs placebo 

Abbreviations: LAC = lactose formula; GP = Glucose polymer formula 
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Given that SCFA analysis is well established by gas chromatography, there are few 

methodological differences within the systematic review of these studies. Most involved 

GC analysis, and used a variety of internal standards (including 2-ethylbutyric, and 3-

methyl valeric acids). Of the seven studies, five were randomised controlled trials (four 

concerning probiotics, one using formula feeds), one was a controlled case series’, and one 

was a case series. Dominant SCFAs throughout the studies were acetate and lactate, and 

higher levels were associated with lactose formula feeding, and probiotic administration in 

one study. Four studies found age- and gestation-dependent increase in total SCFA 

concentrations. Butyrate levels were generally low in samples from the infants in this 

cohort generating the theory that butyrate is not employed as an anti-inflammatory agent in 

preterm infants as it is for adults. None of the infants involved in these studies incurred gut 

pathologies therefore the 288 infants included in these studies represent normative data. 

Four of the studies used molecular methods to concurrently correlate bacteria with 

metabolites. 

 

The evidence for the relevance and measurement of stool BCFA in preterm infants, is, 

however lacking. BCFAs are found in abundance in vernix caseosa, the waxy, white 

substance found coating the skin of newborn infants at term. Vernix is an exclusively 

human finding, and commensurate with the shedding of skin epithelium and lanugo during 

the third trimester. Preterm infants who have missed out on much of the last trimester 

characteristically retain lanugo, lack a robust dermis, and have less dermal fat deposition, 

associated with the lower production of vernix, which generally starts from 20 weeks 

gestation onwards. Approximately 25-30% of the wet weight of vernix is composed of 

BCFA (Pickens, Warner et al. 2000), and the composition of vernix in preterm versus term 

infants varies, with higher levels of squalene (a naturally occurring hydrocarbon/triterpene 

combination) and a higher wax to sterol ester ratio in term infants (Schachner 1999). One 

additional theory of relevance of vernix, rather than an incidental finding or by-product, is 

that it is entero-protective. Ran-Ressler et al in 2008 propagated their theory that the 

absence of vernix in preterm infants predisposes them to NEC. Their published study 

suggested that skin sloughing in late trimester, leaving epithelial cells suspended in 

amniotic fluid, begins the deposition of vernix. Amniotic fluid also contains lipids, of 

which 17/154 mg/L are BCFA according to observational studies (Biezenski, Pomerance et 

al. 1968, Ran-Ressler, Devapatla et al. 2008) Since swallowing mainly starts at >34 weeks 

(around 200-500 mls/day) (Pritchard 1966), the combination of skin sloughing and 

amniotic fluid ingestion then results in the deposition of BCFA-laden vernix, and the 

subsequent presence of BCFAs in the fetal colon. However GCMS studies comparing 
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BCFAs in amniotic fluid and in meconium show less metabolism within meconium, 

strongly suggesting that the BCFAs are utilised by the fetus, possibly for energy (as are 

other SCFAs for enterocytes). BCFAs have also been identified in human milk, but are not 

added to most formulae; their presence in maternal milk has been postulated to be 

protective, although the evidence for this is lacking (Ran-Ressler, Devapatla et al. 2008). 

Ran-Ressler et al (2011) examined the BCFA-enriched colons of preterm rats with NEC 

induced by hypothermic stress, and reported that ileal biopsies showed less NEC than those 

without BCFAs. In association with this finding, BCFA-producing bacteria were fivefold 

greater in those supplemented than those without (Ran-Ressler, Khailova et al. 2011). 

 

 

  



 

 79 

ii) Inflammation and Immunoprotection: Calprotectin and Secretory 

Immunoglobulin A 

a) Calprotectin  

 

Calprotectin is a calcium and zinc-binding protein released during neutrophil activation or 

death. It is found in higher levels in the gut lumen at times of intestinal inflammation, 

given the preference for dying neutrophils to migrate across the gut wall (see figure 3) 

(Fliedner, Cronkite et al. 1964, Fagerhol 2000, Josefsson, Bunn et al. 2007), and has 

bacteriostatic and fungistatic properties (Steinbakk, Naess-Andresen et al. 1990). It is a 

well-established marker of disease activity in children with Inflammatory Bowel Disease 

(IBD), but its role in the health and disease in infants is yet to be defined. Calprotectin can 

be detected in an array of body fluids, including urine, cerebrospinal fluid, synovial fluid, 

faeces and blood. In one study, calprotectin was detected in breast milk, albeit in low levels 

(Olafsdottir, Aksnes et al. 2002). Faecal calprotectin can also be raised during malignant 

conditions in adulthood, such as colon cancer, thus assuming the potential to be a 

diagnostic tool and marker of disease activity in all age groups.  Since its identification in 

1980, (Desai, Faubion et al. 2007) a host of the protective functions of calprotectin have 

also been ascertained, including regulation of immunity, antimicrobial actions, and even 

anti-tumour activities (Bando, Hiroshima et al. 2010, Brophy, Hayden et al. 2012, 

Srikrishna 2012). This ubiquitous collection of properties implies that calprotectin also 

confers benefits to the host, rather than simply acting as a by-product of inflammation.  

 

Paradoxically, high faecal calprotectin levels similar to adults with acute exacerbations of 

IBD have been recorded in healthy term neonates. Instead of reflecting an underlying 

neonatal gut inflammation, this is thought to occur due to the lag period after birth before 

gut bacterial colonisation and formation of a robust gut barrier becomes established in the 

neonatal period (Nissen, van Gils et al. 2004). Beneficial probiotic gut bacteria play an 

important role in reinforcing the barriers of the gut wall, warding off potentially 

pathological organisms. This process can take several weeks even in healthy breast fed 

term infants, especially if delivered by caesarean section. It is possible that during this time 

calprotectin also exerts a protective role, rejecting harmful bacteria and other toxins, 

although proof of active calprotectin expression without neutrophil death has yet to be 

observed. 
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Calprotectin in Prematurity 

In order to fully investigate the evidence base for the measurement of FC in preterm 

infants, I performed a systematic review, in line with the SIGN methodology assessment 

(Network 2013). Pubmed and Medline were searched for articles concerning preterm 

infants (<37 weeks) with FC measured beginning within the first month of life. Abstracts 

that did not lead to a publication, were not in English, or were of EL 4 (expert opinion) 

were excluded (Mohan, Koebnick et al. 2008, Bjorkstrom, Hall et al. 2009, Rouge, 

Piloquet et al. 2009, Rouge, Butel et al. 2010, Campeotto, Suau et al. 2011, Shulman, Ou et 

al. 2011, Terrin, Passariello et al. 2011, Bukulmez, Dogru et al. 2012). 
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Study, Journal 

+ Evidence 

Level 

Year n = Gestation 

(weeks) 

Birth weight (g) SVD Incubation Antibiotics Feed type Postnatal age of 

samples 

Methods of 

analysis 

Results 

(Levels in µg/g) 

Mohan 

Ped Res 

EL 1 

2008 69 Gp I: 31.05(2.31) 

Gp II: 31.27(2.56) 

I: 1449(343) 

II: 1398(331) 

8 NS 18 E: 58 

F: 11 

Daily for 21 days ELISA, PhiCal Levels ↓in probiotic group, 

especially in combination with 

antibiotics (specific numbers NS) 

Rouge 

Am J Clin Nutr 

EL 1 

2009 93 Probiotics: 28.1  

1.9 

Control: 28.1 1.8 

1115  251 

1057  260 

17 

14 

NS Antibiotic 

days:  

P:11.7  14.4 
C:10.2 9.7 

NS 2 weekly until 

discharge 

ELISA, 

Calprest 

In >1000g infants: 

P: 154 (84) 

C: 103 (90) 
No diff at any point 

Bjorkstrom 

Acta Paediatrica 

EL 3 

2009 48 27 (2.3) 910 (250) 8 NS NS NS Days 0, 7, 14, 21 ELISA, 

Calprest 

Levels not associated with any 

bacterial species 

Rouge 

PloS One 

EL 3 

 2010 47 29 (27-29) 110 (880-1320) 31 NS 39 due to 

maternofeta

l infection; 

25 for 

nosocomial 
infection 

17 E 

1 F 

29 Mixed 

2 week intervals 

until discharge 

ELISA, 

Calprest 

138 (15-811) 

↓with ↑ feed tolerance 

↓with antibiotics 

↑ with clostridia and staph stool 

colonisation 
 

Shulman RJ 

Neonatology 

EL 3 
 

 

2011 50 28.6 (2.2) 1200 (330) NS NS NS 8: E + 

fortifier 

27 E + F + 
fortifier 

10 F 

5 E + F 

Weekly until 

discharge 

ELISA, Genova No correlation in levels and feeding 

types, regimens, gastric residuals, 

gut permeability, gastric emptying 
or abdo distension 

Terrin  

Clin Dev 

Immunol 
EL 2 

 

2011 201: 

Septic:62 

Not:29 
Controls:

110  

S:29.2 (28.7–29.9) 

N:30.1 (29.1–

31.1) 
C:29.2 (28.7–

29.6) 

S:1082 (1029–

1135) 

N: 
1178 (1080–

1275) 

 
C:1088 (1045–

1131) 

S: 10 

N: 3 

C: 13 

NS NS NS 1 serum sample 

after diagnosis of 

sepsis or possible 
sepsis  

ELISA, 

Calprest 

S: 3.1 (1) mcg/mcl 

N:1.1 (0.3) 

C:0.91 (0.58) 
Septic>non + controls 

Sens: 89% Spec: 96% for sepsis 

 

Campeotto 
Br J Nutr 

EL 1  

2011 58: 
24 

Probiotic 

formula 
34 

preterm 

formula 

30-35: 
33.5 (1.3) 

 

 
33.4 (1.1) 

 
1912 (354) 

 

 
1926 (386) 

 
13 

 

 
15 

NS  
4.5 days 

(3.6) 

 
 

5.6 days 

(2.5) 

 
E: 6 

 

 
E: 10 

Weekly ELISA, 
Calprest 

257 (16-1240) 
↓levels in Probiotic formula + 

without antibiotics 

Bukulmez* 
Am J Perinatol 

EL 2 

 

2012 44: 
Photother

apy: 29 

Non: 19 

42: term 
44: preterm 

NS* NS* NS* NS* NS* 1 sample 24 hours 
after 

commencement of 

phototherapy 

ELISA Phototherapy had no effect on 
levels 
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Table 6: Evidence base for the measurement of stool calprotectin in preterm infants; *only available in abstract form; NS = not specified  
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Preterm infants who are of Very Low Birth Weight are born with several deficits in gut 

function in comparison with those born at term, and this may account for their higher 

levels of calprotectin during the neonatal period. Firstly, a lack of peristalsis, the normal 

wave patterns of muscular contraction within the gut wall designed to propel content 

throughout the digestive tract, impairs their ability to deliver nutrients to the inner bowel 

wall for absorption of nutrients (Patole 2007). Secondly, preterm infants have a deficiency 

of protective layers of mucin on the inner lining of the bowel, normally present as a filter 

to bacterial and viral enteropathogens while permitting the passage of vital nutrients and 

other essential factors (Siggers, Siggers et al. 2011). The defective nature of this barrier is 

referred to as ‘increased permeability’ of the gut wall, and may facilitate neutrophil 

passage, thus accounting for higher faecal calprotectin levels found in ‘healthy’ preterm 

infants. Thirdly, preterm neonates experience a delay in the establishment of normal gut 

bacteria. This postpones the favourable effects of ‘probiotic’ bacteria which are known to 

reinforce this barrier by adhering to gut wall cells and excluding pathogens and toxins 

(Corridoni, Pastorelli et al. 2012).  

 

Given this increased gut permeability, it is theoretically possible that neutrophil migration 

from the bloodstream into the gut at times of blood infection may also result in higher 

levels of faecal calprotectin, as postulated in a population of ‘sick’ neonates without NEC 

(Terrin, Passariello et al. 2011). Conversely, increased neutrophil migration across the gut 

wall has been seen to heighten gut permeability in patients with IBD (Chin, Lee et al. 

2008), although this ‘reverse’ effect has not been investigated in preterm infants. 

Paradoxically, prematurity is also associated with defective neutrophil migration, possibly 

contributing to their lower immunity in comparison with those at term (Turkmen, Satar et 

al. 2000). This dampened immune system is associated with a higher incidence of blood 

infections. 

 

Other seemingly innocuous factors may increase calprotectin levels in the delicate preterm 

gut, and these require further analysis in observational studies. Birth asphyxia is associated 

with an increase in faecal calprotectin in term infants, due to a temporary loss of blood 

flow to the gut followed by reperfusion – restitution of blood flow often associated with 

injury. Theoretically, other factors associated with loss of blood flow to the preterm gut 

(thereby increasing the risk of NEC) may increase calprotectin, including congenital gut 

abnormalities, low blood pressure (as can occur during blood infections), and a cardiac 

condition commonly associated with prematurity known as Patent Ductus Arteriosus.  
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Premature neonates exclusively fed breast milk have lower rates of NEC and other 

gastrointestinal infections, in the neonatal period, but there is as of yet no evidence for the 

continuation of this into childhood. This may be due to the resultant dominance of lactic 

acid producing bacteria secondary to breast milk. Preterm infants exclusively fed formula 

milk have lower levels of ‘probiotic’ gut bacteria, and theoretically higher levels of 

calprotectin. However, another paradox may exist. Two studies investigated changes in 

faecal calprotectin with milk type in term neonates (Dorosko, Mackenzie et al. 2008, Rosti, 

Braga et al. 2011). The first found no significant difference between infants who were 

breast fed with those given standard or prebiotic infant formulae, although the highest 

values (860 µg/g) were found in breast fed infants (Rosti, Braga et al. 2011). The second 

article, however, found significantly higher faecal calprotectin levels in term infants 

exclusively fed breast milk (p=0.01) (Dorosko, Mackenzie et al. 2008). They proposed that 

in a cohort of 41 samples from 32 healthy neonates, calprotectin had a protective role 

aiding gut adaptation. However, a major confounding feature of these results was the use 

of oral medications within the breast fed group, including the gut motility agent 

simethicone and the H2 antagonist ranitidine. In 2002, Olafsdottir et al detected 

calprotectin in breast milk, albeit at low levels (1.0±1.6mg 1
-1

) (Olafsdottir, Aksnes et al. 

2002). 

 

The evidence for normal reference ranges of fecal calprotectin in preterm infants consists 

mainly of small case series. Twenty studies have considered faecal calprotectin levels in 

preterm neonates, both with and without gastroenterological illnesses (Carroll, Corfield et 

al. 2003, Mohan, Koebnick et al. 2006, Campeotto, Kalach et al. 2007, Josefsson, Bunn et 

al. 2007, Yang, Smith et al. 2008, Bjorkstrom, Hall et al. 2009, Campeotto, Baldassarre et 

al. 2009, Rouge, Piloquet et al. 2009, Thuijls, Derikx et al. 2010, Campeotto, Suau et al. 

2011, Shulman, Ou et al. 2011, Terrin, Passariello et al. 2011, Westerbeek, Morch et al. 

2011, Aydemir, Cekmez et al. 2012, Bukulmez, Dogru et al. 2012, Dabritz, Jenke et al. 

2012, Reisinger, Van der Zee et al. 2012, Selimoglu, Temel et al. 2012, Zoppelli, Guttel et 

al. 2012). Of these, 10 discuss levels in preterm infants without gastrointestinal disease; 1 

defines levels in preterm infants with and without gastrointestinal illnesses; 8 compare 

levels in infants with necrotising enterocolitis; and 5 compare levels in preterm infants 

enterally administered probiotics or prebiotics with controls. In comparison with the 

normal adult range (<50 µg/g) the studies examining well preterm infants conclude the 

following: 1) high levels in meconium (first infant stool), tailoring to adult levels by the 

end of infancy; 2) higher levels in preterm infants and in infants with birth asphyxia, 

regardless of gestation; 3) lower levels in infants administered probiotics in randomised 
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controlled trials. Undeniably, more observational trials are required for meta-analyses in 

order to establish ‘normal’ ranges in the healthy neonatal population. In term infants, a 

temporal relationship has been observed, with higher levels within the first month of life, 

and no differences with regard to type of milk fed (Campeotto, Kalach et al. 2007). During 

heightened intestinal permeability within the first month of life, the rise in faecal 

calprotectin may be secondary to granulocyte migration, or from cross-reactivity by other 

potent metabolites produced by the establishment of the microbiota, such as formyl-

methionyl-leucyl-phenylalanine (FMLP), causing false positive tests (Olafsdottir, Aksnes 

et al. 2002). One article illustrated higher levels in the meconium of term infants with 

perinatal asphyxia, presumably secondary to reperfusion-induced inflammation (Cui and Li 

2012). Espinoza et al in 2003 observed higher calprotectin levels in amniotic fluid of 

mothers of preterm infants delivered after chorioamnionitis, suggesting an antenatal 

influence (Espinoza, Chaiworapongsa et al. 2003).  
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b) Secretory Immunoglobulin A 

 

• Structure and Purpose of SIgA 

Immunoglobulin A (Ig A) is the most prolific immunoglobulin found throughout the 

human gastrointestinal tract, where it plays a critical role in mucosal immunity (see figure 

3). It holds key viro- and bacteriostatic properties (Fagarasan and Honjo 2003, Fagarasan 

and Honjo 2004, Fagarasan 2006). Accounting for 75% of the total body immunoglobulin, 

its highest concentrations are found in colostrum, saliva, and tears (Forchielli and Walker 

2005). The term ‘secretory’ IgA (SIgA) is given to its dimeric form that protects the 

molecule from degradation by the proteolytic environment of the gut. It incorporates more 

than four binding sites, allowing determination of SIgA adherence. Studies have indicated 

that the faecal SIgA level is representative of the colonic SIgA content (Grewal, Karlsen et 

al. 2000). Notably, it is not absorbed, but adheres to the gut mucosa, promoting the effects 

of beneficial commensals, and impairing the abilities of enteropathogens to exert adverse 

effects (Macpherson and Uhr 2004, Macpherson, Geuking et al. 2011). Latterly a number 

of strategies have been employed within randomised controlled trials aiming to increase 

stool SIgA in healthy term infants through the administration of enteral supplements 

(particularly prebiotics and probiotics), but there remains a paucity of information 

regarding normative data in healthy preterm infants according to feed type (Bakker-

Zierikzee, Tol et al. 2006).   

 

• SIgA in Human Milk 

The enteromammary circulation refers to the circular process by which maternal 

immunoglobulins are produced from B cells within Peyer’s patches of the gut lymphatics 

in response to ingested maternal gut enteropathogens. The pathogen-specific type A 

immunoglobulins are then passed on to the infant through breast milk. After ingestion, this 

IgA is neither absorbed nor destroyed but remains in the neonatal gut lumen to deter an 

identical infection (Nathavitharana, Catty et al. 1994). As such, the effect of maternal 

breast milk in preterm infants, who by definition are immunocompromised, cannot be 

underestimated. The effects of donor expressed breast milk in this regard are unknown, but 

likely to be diminished considering that most donors are producing mature non-colostrum 

milk, many at term, and these factors are known to reduce the SIgA content. However, 

although numerous studies have recognised higher SIgA titres in milk of mothers of 

preterm infants (Araujo, Goncalves et al. 2005, Thibeau and D'Apolito 2012), recent 

studies have suggested that the SIgA content of the milk of mothers of preterm infants 
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delivered less than 30 weeks gestation may be even lower than mothers of infants at term 

(Castellote, Casillas et al. 2011). No trials could be found assessing the effects of maternal 

administration of pre- or probiotics upon subsequent titres of breast milk, although there 

are several observational studies noting similarities in the maternal and neonatal gut 

microbiota in breast-feeding mother-infant pairs (Sanz 2011, Thum, Cookson et al. 2012) 

and several others noting the efficacy of strategies to increase breast milk supply in 

mothers of preterm infants do not include methods of increasing nutrient or immunological 

quotients (Donovan and Buchanan 2012). No evidence for corresponding alteration in 

antenatal variations in fecal SIgA, or correlation with antenatal gut microbiota and 

enteropathogens could be identified. 

 

• Variation in Stool Secretory Ig A levels in Preterm Infants 

The level of maternal serum SIgA increases at the beginning of pregnancy, but falls at the 

end of the second trimester, prior to rising again until delivery. As a result, preterm infants 

who have missed this final trimester wave of SIgA have lower serum and faecal SIgA 

levels than infants delivered at term (Goldman, Garza et al. 1982). So far, no studies have 

examined paired analyses of maternal milk SIgA with neonatal stool SIgA in term or 

preterm infants. Given that preterm infants are often fed trophically, maternal milk supply 

often far exceeds demand in the first month of life. No guidelines exist as to whether 

colostrum should be used preferentially, given the higher concentrations of SIgA in 

colostrum. In addition, storage and sterilisation procedures are known to alter the SIgA 

level by as much as 30% (Lawrence 1999, Akinbi, Meinzen-Derr et al. 2010). No studies 

have yet shown the spectrum of SIgA in DEBM, which is likely to be broad given the 

heterogeneous selection of donors at different gestations, and mandatory pasteurisation in 

all UK centres.  

 

Only two studies could be identified examining the SIgA levels in stool samples from 

preterm infants. In 2008, Mohan et al published their analyses of the SIgA levels of 69 

preterm infants as part of a randomised control trial of the effectiveness of probiotic 

supplementation with Bifidobacterium lactis Bb12 upon body weight, fecal pH, acetate, 

lactate, calprotectin and IgA in preterm infants. Samples were taken directly from the 

nappy weekly for the first 3 weeks of life. Thirty-seven of these infants were enterally 

administered probiotics, and most were exclusively breast milk fed. There was no 

significant difference in proportions of breast and formula feeding between the two groups. 

Standard ELISA kits from Immunodiagnostik AG, Bensheim, Germany, were used. SIgA 

levels in those fed probiotics were 44% higher than controls, and this group also showed a 
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significant increase in stool SIgA levels between weeks 1 and 2, but only in the subgroup 

of infants who did not require antibiotic administration (Mohan, Koebnick et al. 2008). 

 

Secondly, Campeotto et al in 2011, published their randomised control trial comparing 

SIgA, calprotectin and colonisation changes in preterm infants fed a fermented formula 

(containing Bifidobacterium breve C50 and Streptococcus) versus an unnamed preterm 

formula (manufactured by the company ‘Bledina’, France). The groups did not differ in 

clinical or demographical aspects, and necrotising enterocolitis was not mentioned in any 

patient. SIgA titres showed high interindividual variation, and there were no significant 

differences between the two groups (fermented formula fed infants: median 27 (range: 1-

474 µg/g); preterm formula fed infants: median 12 (range: 1-350 µg/g)). They did, 

however, note that infants who were partially breast fed showed higher SIgA levels from 

week 2 in those who were also fed the fermented formula instead of the standard preterm 

milk (3038 (range 1225-6040) Versus 1473 (range 30-2655)) (Campeotto, Suau et al. 

2011).  
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1.6.5) Necrotising Enterocolitis 

 

i) NEC: Definition and incidence  

NEC occurs in approximately 10% of all very and extremely low birth weight infants (Lin 

and Stoll 2006, Kovacs 2007), and has a high mortality, quoted in some studies to be as 

high as 80% (Hintz, Kendrick et al. 2005, Holman, Stoll et al. 2006). In survivors, this has 

several well-established long-term effects to the gut and growth in general. Breast milk fed 

infants have a significantly reduced incidence of NEC, likely owing to a combination of 

natural beneficial bacteria, immunological factors, and so the cultivation of an anti-

enteropathogenic colonic environment. There is evidence to suggest that ‘trophic’ enteral 

nutrition (slow feeding with diminutive volumes increased at small increments) prevents 

NEC (Bombell and McGuire 2009). However, the rate at which trophic feeding should 

start and proceed is an unknown quantity subject to a variety of trials listed currently. 

Prolonged parenteral nutrition also adversely affects the premature gut by: 1) prolonging 

the need for intravenous access, with associated increased risk of line-related sepsis and 

resultant septic ileus, and 2) TPN cholestasis and intestinal failure-related liver disease.  

 

ii) Associations with Morbidity and Mortality 

Over the last ten years mortality rates for VLBW premature infants have fallen 

substantially, although this has not been mirrored by a similar decline in morbidity. This is 

despite a drop in the incidence of severe chronic lung disease and intra-ventricular 

haemorrhage (Fanaroff, Stoll et al. 2007). This morbidity plateau has instead been 

attributed to the increasing numbers of surviving ex-premature infants who are simply 

malnourished, many secondary to NEC and its sequelae, including Short Bowel Syndrome, 

and the need for sustained parental nutrition leading to repeated central venous line 

infections, liver disease, and consequent failure to thrive. As such, with greater numbers of 

those surviving extreme prematurity, it is anticipated that nutrition and care of the neonatal 

gut will become increasingly important in the future. Tertiary Paediatric Gastroenterology, 

Hepatology and Nutrition Units are expanding, increasing in number from 3 general and 

specialist consultants in Scotland in the mid 80’s, to 11 tertiary subspecialists at the current 

time, plus general paediatricians with an interest in PGHN who regularly see patients in 

this regard for shared care. Concurrently, the British Intestinal Failure Study, established in 

2003, aims to identify all children in the UK with intestinal failure, which will start to give 

an impression of a conservative estimate of the long term effects of survival after NEC in 

ex-preterm infants (AR Barclay, personal communication).  
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iii) Aetiology 

Various theories abound as to the most likely combination of pathophysiologies instigating 

NEC. The Santulli hypothesis marries three major theories of NEC pathogenesis: intestinal 

ischaemia, gut microbiota, and luminal substrate (Santulli, Schullinger et al. 1975). The 

Lawrence theory highlights the contribution of bacterial toxins to NEC (Lawrence, Bates et 

al. 1982), a theory extrapolated by Lin et al, in 2004 (Lin 2004). A variation on both, by 

Claud and Walker, offers a more generalised triad of prematurity, enteral feeding, and 

bacterial colonisation (Claud and Walker 2001). It is likely that these are the lynch pins 

from which all other associations, such as reduced gut perfusion (e.g. from patent ducts 

arteriosus, or systemic hypotension during the first 24-48 hours of life, or during episodes 

of sepsis) contribute to a vicious cycle of intestinal ischaemia, both contributing to and 

coinciding with gut dysmotility, compounded by abnormal colonisation (i.e. reduced 

species variety and intensity), leading to inflammation, potentiating a pathological ileus, 

and therefore further gut dysmotility, limited gut colonisation, and so on. A representation 

of these interactions is illustrated in figure 7 below. 

 

Figure 7: Summary of the possible pathogeneses of necrotizing enterocolitis (Abbreviations: NEC = 

necrotizing enterocolitis; SCFA = short chain fatty acids; BCFA = branched chain fatty acids). 

 

Whatever the aetiological spectrum, the clinical outcome is both an inflammatory and 

infective bowel condition that can lead to ischaemia and necrosis. Notably, the 
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histopathology of NEC has not changed since first observations at the turn of the 20
th

 

century, although immunohistochemical methods of identifying immunological factors 

associated with NEC have led to an increase in the understanding type and sequence of 

inflammatory processes – with the potential to influence them (Vieten, Corfield et al. 2005, 

Vieten, Corfield et al. 2006). 

  

iv) Diagnosis and Management of NEC 

In the absence of biomarkers of NEC, diagnosis and thus management rests upon a 

constellation of clinical, biochemical, haematological and radiological features. The 

Modified Bell’s Criteria (see Table 7) categorises NEC according to established clinical 

and radiological features, and is used internationally as the foremost NEC classification 

system, but has more recently fallen out of favour due to its use of Faecal Occult Blood 

testing, which is now virtually obsolete in neonatal units due to high numbers of positive 

results found in well infants, and also its low specificity for NEC (Pinheiro 2003). It is 

important to note that NEC can be an elusive diagnosis, with treatment of mild cases often 

comprising drip-suck, antibiotic administration, and then a ‘wait and see’ approach. 

Seemingly minor episodes of NEC can lead to significant and long term impairment in gut 

function, including ischaemic stricture formation and malabsorption. Other potential blood 

markers of NEC include the general inflammatory marker C-reactive protein (CRP), a 

protein created by the liver and released into the blood stream during inflammation or 

infection, and a raised white cell count. However the rise in both is often seen to lag after 

the clinical onset of NEC, and is not NEC-specific. Similarly, radiological evidence of 

NEC is part of the Modified Bell’s Criteria, but recent research suggests that x-ray features 

commonly held as pathognomonic of NEC are highly specific but of low sensitivity 

(Coursey, Hollingsworth et al. 2008). Some observational studies of NEC are beginning to 

re-define the illness with terms such as ‘enteropathy’, although this then makes comparison 

of studies designed to assess NEC prevention or management strategies difficult, 

particularly when trying to perform meta-analyses to glean sensitivity/specificity values on 

potential diagnostic and prognostic markers (Campeotto, Baldassarre et al. 2009). 
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Table 7: Modified Bell’s Criteria, as reported by Bell et al in 1978 (Bell, Ternberg et al. 

1978, Walsh and Kliegman 1986) 

 

It may well be that there is no one unifying diagnostic marker, and that instead a panel of 

investigations together hold the highest sensitivity and specificity in anticipating and 

diagnosing this unpredictable illness. Several studies have started to explore such panels – 

including immunological markers in both stool and serum samples (Cetinkaya, Ozkan et al. 

2011, Eras, Oguz et al. 2011). Naturally, the benefit of using serum samples is the 

immediacy with which they can be taken and analysed, in comparison with stool samples.  

 

1.6.6) Trends in Microbiological Stool Studies of Preterm Infants with NEC 

Several studies have highlighted trends in pathogenic bacteria in NEC – chiefly Clostridia 

sp. (de la Cochetiere, Piloquet et al. 2004). Similarly, animal models designed to replicate 

the premature intestine have noted NEC-like lesions with the addition of both 

enteropathogens (Clostridium, E. coli and Klebsiella sp.) and short chain fatty acids (Lin, 

Peng et al. 2005, Waligora-Dupriet, Dugay et al. 2005). However, as well as identifying 

specific enteropathogens associated with NEC, the sequence of gut colonisation and 

acquisition of beneficial species and strains of Bifidobacteria and Lactobacillus may be as 
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important to understand in order to establish preventative practices and identify best 

evidence-based treatments. 

 

In total, ten studies have examined the gut microbiota in preterm infants with NEC, as 

identified by systematic review as described earlier. These are summarised and critiqued in 

the table 8 (Westra-Meijer, Degener et al. 1983, Millar, Linton et al. 1996, Hoy, Wood et 

al. 2000, de la Cochetiere, Piloquet et al. 2004, Wang, Hoenig et al. 2009, Mshvildadze, 

Neu et al. 2010, Mai, Young et al. 2011, Smith, Bode et al. 2011, Stewart, Marrs et al. 

2012, Normann, Fahlen et al. 2013). 
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Study, Journal + 

Evidence Level 

Year n = Gestation 

(weeks) 

Birth weight 

(g) 

SVD Incubation Antibiotics Feed type Postnatal age of samples Samples Methods of 

analysis 

Results 

Westra-Meijer 

ADC 

EL 2 

1983 77 

NEC: 24 

?NEC: 

Non: 

NEC: 

29.44±2.8 

?NEC: 

31.4±2.7 

Non: 

30.3±2.0 

1262±382 

13864±345 

1329±288 

NS NS 20 (83)  

7 (58) 

36 (88) 

NS 12.3±69 10.8±6.8 11.2±2-6 Stool Culture ↑Klebsiella  in NEC; 

 

Hoy C 

ADC 

EL 2 

1990 90 

NEC: 7 

?NEC: 7 

 

NEC: 28 (27-

30) 

?NEC: 27 

(26-30) 

 

NEC: 995 

(660-1160) 

Non: 725 

(620-1440) 

NS NS 3 infants 

week 

before 3 of 

8 episodes 

possible 

NEC; 1 of 

actual NEC 

NS 752 stool samples Stool Culture ↓species up to 72 hrs 

before onset of NEC; 

thereafter 

enterobacteriaceae found 

in samples 48 hrs before 

definite NEC, 2 episodes 

with new isolates 

Millar MR  

J Clin Microbiol 

EL 2 

1996 32 

NEC: 10 

24-34 NS NS NS NS NS Weekly samples for mean 

5.3 weeks  

Stool Culture, PCR-

DGGE 

+ 16s rRNA 

>90% sequences were 

Strep. Salivarius; 

PCR identified no extra 

species than culture 

de la Cochetiere 

Pediatric Res 

EL 2 

2004 12 

NEC: 3 

Non: 9 

NEC: 28.5 

(2.1) 

Non: 27.7 

(2.0) 

NEC: 880 

(170) 

Non: 940 

(320) 

NS NS 9: initial 

antibiotics 

NS Weekly from first stool Stool PCR-TTGE Close match to Clostridia 

perfringens in NEC cases 

(95% similarity) 

Wang Y 

ISME J 

EL 2 

2009 20 

NEC: 10 

 

25-32 NS 3 NS NS E: 10 

F: 10 

4 – 49 days Stool PCR-RFLP ↓diversity in NEC; 

↑gammaproteobacteria; 

↑mean antibiotic days  

Mshvildadze M 

J Pediatr 

EL 2 

2010 23 

NEC: 6 

29.9 (2.5) 1394 (420) 10 NS 19 EBM: 15 

F: 8 

5.2 (3.3) per infant Stool DGGE -16s 

rRNA 

pyrosequencing 

Microbial DNA detected 

in meconium; citrobacter 

+ enterococcus in NEC 

only; ↑klebsiella in 
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controls 

Smith B 

BMC Microbiol 

EL 3 

2011 24 29 (25-40) 1030 (600- 

3660) 

10 NS NS 

postnatally 

NS NS Intestinal 

specimens 

Laser capture 

microdissection 

+ FISH 

Large variability, but no 

differences in NEC; 

↑Clostridium butyricum + 

paraputrificum with 

pneumatosis intestinalis 

Mai V 

PloS 1 

EL 2 

2011 19 

NEC: 10 

Non: 9 

26.7 (23-30) 960 (570-

1269) 

9 NS 15 E: 13 From first stool and 

weekly; All post-NEC 

within 72 hrs 

Stool High 

throughput 

rRNA 

sequencing 

34% ↑ Proteobacteria + 

32% ↓ Firmicutes in 

NEC; unique bacterial 

signature found: ɣ-

proteobacteria 

Stewart CJ 

Acta Paediatrica 

EL 2 

2012 38 

NEC: 8 

Non: 30 

27 (23-31+6) 895 (520-

1850) 

18 NS All 48 hrs 

antibiotics 

29 

antifungals 

35 

‘received 

breast milk’ 

Varied – some before and 

some after NEC; no 

‘protocol’. First stool and 

weekly. 

Stool Culture + 16s 

rRNA 

Meconium not sterile. 

NEC: ↑enterococcus, 

staph and CoNS 

Normann E 

Acta Paediatrica 

EL 2 

 

2013 20 

NEC: 10 

NEC: 23+5 

(22+0-25+5) 

Non: 23+5 

(22+5-25+6) 

NEC: 582 

(487-965) 

Non: 570 

(440-892) 

NEC: 6 

NEC: 6 

NS NEC: 6 (m) 

Non: 7 (m) 

All mixed 

E/D/F 

Weekly for 1st 7 weeks 

Plus 1 maternal sample 

Stool Bar-coded 

pyrosequencing 

No significant differences 

between NEC and 

controls; Enterococcus, 

Bacillales and 

Enterobacter 

predominated 

 

Table 8: Evidence base for the identification of and associations with gut microbiota in preterm infants with NEC; all were controlled data bar one case 

series. Results were extremely heterogeneous and varied with specificity of molecular analysis. Higher levels of known enteropathogens were found in those 

with NEC in 9 studies. Clostridia species were however only identified in one publication. (Abbreviations: NEC = necrotising enterocolitis; E = expressed breast milk; D = donor 

breast milk; M = mixed breast and formula milk; CoNS = coagulase negative staphylococcus; EL = evidence level; FISH = fluorescent in situ hybridisation; PCR = polymerase chain reaction; TGGE = 

temperature gradient gel electrophoresis; DGGE = denaturing gradient gel electrophoresis; RFLP = restriction fragment length polymorphism; NS = not specified; rRNA = ribosomal ribonucleic acid). 



 

 96 

Given the 25 year range of these studies, and the rapid advancement of molecular methods 

of identification, it is not surprising that more bacterial phyla, families and genera were 

identified in later studies. In total, none of the studies included were evidence level one 

RCTs, nine were evidence level two controlled studies, and one was an evidence level 

three case series’, representing 355 preterm infants, including 88 with NEC. 

Demographically, there was a wide range of gestational ages, birth weights, and ages at 

production of samples, and all studies encountered issues in low stool production relative 

to physiological and pathological ileus. None of the articles specifically discussed changes 

in ileostomy fluid, although one noted that several infants had undergone stoma formation. 

One study considered the bacteria in peritoneal fluid cultured intraoperatively in infants 

with surgically managed NEC (Coates, Karlowicz et al. 2005). An ideal forum through 

which to examine the gut microbiota in preterm infants with NEC are the growing number 

of clinical trials assessing preventative and management strategies – particularly in the 

administration of probiotics, which, by definition, should be seen to colonise the stool flora 

in order to ascertain whether any of these effects are because of such supplements.  

 

1.6.7) Potential Biomarkers of NEC 

i) Bacterial Metabolites: Toxic Products or Innocent Bystanders of Inflammation? 

The seemingly endless search for serum diagnostic and prognostic biomarkers of NEC 

(including amyloid A, procalcitonin, interleukins six and 10, and CRP) has been heavily 

confounded by their high levels seen with sepsis and/or pneumonia (Romagnoli, Frezza et 

al. 2001, Pourcyrous, Korones et al. 2005, Eras, Oguz et al. 2011) with some studies 

showing highest levels only at later stages once NEC has been well-established clinically 

(Cetinkaya, Ozkan et al. 2011). Tests of breath hydrogen, a by-product of bacterial 

fermentation, were trialled in the 1980’s as possible markers for NEC, but without success 

(Garstin and Boston 1987, Cheu, Brown et al. 1989). Simple analyses such as stool pH 

may in the future reveal significant trends for premature and low birth weight neonates 

once significant numbers have been recruited to observational studies in order to identify a 

correlation with NEC. A wide variety of alternate prospective markers within stool 

samples are currently under investigation in preterm infants: metabolites of commensal and 

pathogenic bacteria. Recent work by Andrew Ewer et al investigating trends in volatile 

organic compounds identified a significant reduction in their number in the days before 

and after the diagnosis of NEC in 6 infants. In addition they found that 4 specific esters 

were absent in their stool samples in the 4 days prior to the onset of NEC (Garner 2009). 

Generally, such bacterial metabolites are important in three regards. Firstly, they may exert 

local effects, both beneficial and detrimental; secondly, they may be absorbed 
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systemically, with generalised effects; and lastly, they may act as markers of illness – in 

particular, of NEC. Only those products most commonly represented in extensive literature 

searching will be discussed. 
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ii) Short Chain Fatty Acids: Friend or Foe?  

It is widely recognised that in different populations, these metabolites have a dual identity, 

being recognised as both beneficial (lactate indicates the presence of lactate-producing 

bacteria such as Lactobacilli and Bifidobacteria) and detrimental (butyrate has been seen to 

rise in animal models of NEC (Waligora-Dupriet, Dugay et al. 2009) to host health. It is 

unclear, however, whether some SCFAs themselves are causative agents in neonatal 

gastrointestinal disease, or merely reflective of the metabolically active bacteria which 

cause disease. The only trend to be noted in regard to dietary differences is the 

predominance of acetic acid in breast fed term infants (Edwards, Parrett et al. 1994). This 

has yet to be explored in premature neonates. However, butyrate is known to increase 

intercellular junctional integrity in adults (thus preserving intestinal permeability), yet has 

been seen to rise in animals with NEC (Mariadason, Kilias et al. 1999). It may therefore be 

an ‘innocent bystander’, detected in tandem with another pathological inflammatory 

process, or could be an indicator of butyrate-producing bacteria which increases the risk of 

NEC. Similarly, neonatal studies have detected an increase in stool interleukin 8 at times of 

intestinal inflammation (Butel, Roland et al. 1998, Fusunyan, Quinn et al. 1999, Pender, 

Quinn et al. 2000). Animal models have, however, illustrated damage locally to the 

intestinal mucosa, and even systemically, with the intrathecal administration of butyrate 

causing autistic behaviour in rats (Butel 2001, MacFabe, Cain et al. 2007, Hamer, Jonkers 

et al. 2008). Only one published study could be identified assessing stool SCFA levels as 

markers of NEC in preterm infants (Szylit, Maurage et al. 1998). In 1998, Szylit et al 

published their observational study of 46 preterm infants, of whom 31 had ‘digestive 

disorders’. Although NEC was not defined using the Modified Bell’s Criteria, the digestive 

disorders reported included ‘abdominal distension’, or ‘rectal bleeding’. Nonetheless, the 

term ’NEC’ was referred to within the text. In total 46 preterm infants who had 

commenced enteral feeds were studied. 31 of these incurred ‘digestive disorders’, and their 

SCFA stool profiles were compared, making this an evidence level two study. Mean 

gestational age of all infants included was 32.8 weeks (range 30-36 weeks), and a mean 

birth weight of 1920g (range 1170-2570g). Their feed regimen comprised donor breast 

milk as soon as possible after delivery, until 35 weeks corrected gestational age, in VLBW 

infants (who were stipulated as <1800g, rather than the now conventional <1500g). Some 

infants were supplemented with a protein hydrolyzate fortifier after a week of life. Those 

who incurred digestive disorders persisting for more than 24 hours were recommenced on 

feeds using a lactose-free formula containing a glucose polymer, alongside the protein 

hydrolysate fortifier. Antibiotic courses were noted. As such, for the purposes of analysis, 

there were two distinct groups: group I comprised 2 subgroups of infants, one as healthy 
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controls, the other as healthy controls who required phototherapy. None of these infants 

were administered antibiotics. Conversely, group II was divided by clinical abdominal 

signs: one group with rectal bleeding, and the other with abdominal distension. All had 

immediate postnatal period antibiotics for treatment of materno-fetal infection, but none 

were treated for confirmed or suspected NEC. Samples were taken daily over the first 20 

days of life, inclusive of meconium, and analysed using gas chromatography, using 2-ethyl 

butyric acid as the internal standard.  

 

The mean total SCFA concentrations ranged between 0 to 80 µmoles/kg wet weight of 

sample, and wide interindividual variation was noted. Higher levels were associated with 

lower birth weight (mean 3 µmoles/kg vs 0.9 µmoles/kg). Significant differences in 

profiles occurred in those receiving phototherapy, with higher total concentrations during 

11-20 days of life, alongside lower concentrations of butyrate and minor SCFAs. 

Antibiotic therapy was further seen to reduce SCFA concentrations within 1 – 2 days of 

commencement. 31 infants in total had digestive disorders. Of those who developed 

intestinal pathology beyond 10 days of life, an altered SCFA profile was observed to 

precede that, comprising a dominance of acetate and butyrate. Furthermore, in infants with 

colonic bleeding, butyric and caproic acids increased significantly more than controls. 

Once again, preceding differences were noted in SCFA profiles prior to gastrointestinal 

bleeding, mainly a butyric acid concentration 38% higher than that observed in controls, 

peaking 24 to 48 hours prior to the onset of abdominal distension or GI bleeding: 25.3 (± 

16.2) µmoles per kg, versus 42.6 (± 12.3) µmoles per kg respectively. Confounding factors 

not accounted for in this study were the dominance of more mature and larger infants than 

other studies; indeed some were of normal birth weight despite slight prematurity, and 

certain infants would not be considered at risk of NEC at all in some UK Neonatal Units. 

All infants with potentially early onset NEC were excluded given the exclusion of any 

infants undergoing abdominal surgery with the first week of life. Nonetheless the high 

frequency of stool samples and thus analytes, with close proximity to the clinical onset of 

digestive disorders makes this observation of spike in butyrate extremely interesting. 

Unfortunately, no other studies have considered this in preterm infants with and without 

NEC in the subsequent 14 years.  
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iii) Calprotectin in NEC 

 

Calprotectin is remarkably stable at room temperature over periods of up to a week, such 

that patients with IBD can send stool ‘spots’ in the post on Guthrie-style cards directly to 

laboratories from home, making surveillance of this extremely sensitive and specific 

marker of IBD in children relatively easy and accessible. In recent years, the development 

of rapid-acting test kits makes the possibility of cotside testing a reality in the neonatal 

unit, but currently cost and lack of evidence to pre-clinical diagnosis of NEC precludes 

routine use. No studies could be found using rapid acting kits in the neonatal unit setting. 

Alternately, with newer ELISA kits requiring increasingly small stool samples (some as 

small at 30 mg wet weight), the possibility of using rectal swabs in neonates for whom 

stool production is low or absent, may in future make the calprotectin analysis more 

accessible. It is important to note that rectal swabs are a routine standard of neonatal care, 

and, as such would not be an additional invasive test. Ultimately, the current vogue for 

randomised controlled trials gives a huge opportunity to assess the properties of 

calprotectin to diagnose NEC pre-clinically, to prognosticate definite NEC, and to assist 

feed regimen and antibiotic duration in recovery. A large randomised controlled trial is 

currently underway in the United Kingdom piloting oral probiotics to preterm VLBW 

infants to reduce the incidence of NEC. The study aims to recruit 1294 patients, at 90% 

power; such a number would likely be necessary to investigate the positive and negative 

predictive values as well as the sensitivity and specificity of faecal calprotectin in NEC 

(Costeloe). Eleven studies considering this as a diagnostic marker of NEC are presented in 

the following table, and thereafter critiqued in the text. They were identified using the 

systematic review technique outlined previously (Carroll, Corfield et al. 2003, Campeotto, 

Kalach et al. 2007, Josefsson, Bunn et al. 2007, Yang, Smith et al. 2008, Campeotto, 

Baldassarre et al. 2009, Thuijls, Derikx et al. 2010, Westerbeek, Morch et al. 2011, 

Aydemir, Aydemir et al. 2012, Reisinger, Van der Zee et al. 2012, Selimoglu, Temel et al. 

2012, Zoppelli, Guttel et al. 2012). 
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Study, Journal 

+ Evidence 

Level 

Year n = Gestation 

(weeks) 

Birth weight 

(g) 

SVD Incubation Antibiotics Feed type Postnatal age of 

samples 

Methods 

of 

analysis 

Results 

(Levels in µg/g) 

Carroll D 

Lancet 
EL 2 

2003 14  

NEC 7  

30 +4 NS NS NS 7; 7 NS NS Day 12 ELISA 

Calprest 

NEC: 288.4 (49.1)  

Non: 98 (60.6) 

Josefsson 

JPGN 

EL 2 

2007 59 

NEC 7 

27.2(2.6) 939 

(273) 

10 NS Daily 96% EBM 

88% DEBM 

12% Preterm 
formula 

2% formula 

Every stool for 

first 4 weeks; 

thereafter 24 hrly 

ELISA, 

Calprest 

Meconium: 332(12-9386) 

NEC: >2000 in 3 cases 

  

Campeotto 

Acta Paediatrica 

EL 2 

2007 34 30 (27-34) 1480  

(780-2900) 

NS NS NS 2 E 

18 F 

14 Mixed 

1 sample weekly 

for 4 weeks 

ELISA, 

Calprest 

Group: 196 (15-928) 

Healthy: 160 (<15-650) 

GI bleed: 417 (177-604) 

Diarrhoea: 645 (334-928) 
Abdo dis: 342 (116-729) 

Yang 

Neonatology 
EL 2 

2008 14 26.6 (2.1) 982.1 (289.4) 5 NS 

 

NS NS At least twice 

weekly for 4 
weeks 

ELISA, 

PhiCal 

>350 with GI injury 

Not sick: 122.8 ± 98.9  
Sick: 380.4 ± 246.3  

Campeotto 

JPGN 

EL 2 

2009 126 33 (25.7-35) 1760 (730-

2750) 

NS NS NS NS Weekly for 1st 4 

weeks 

ELISA, 

Calprest 

226 (16-4775) 

↓if birth wt <1800g 

ROC Cutoff for ‘intestinal 
distress’: 363 (Sens: 0.65; 

Spec: 0.82) 

Thuijls 
Ann Surg 

EL 2 

 

2010 35: 
14 NEC 

21 Other 

N: 30+5 (27+2-
38+2) 

O:30+5 (25-41+2) 

N:1465 (860–
1960) 

O: 1198 

(585–3570) 

NS NS NS NS Daily ELISA, 
Hycult 

NEC cut off point: 286.2 (Sens: 
0.86/Spec: 0.93). 

Only 21 infants produced pre-

NEC samples 

Westerbeek  

Ped Res 

EL 1 

2011 113 <32 <1500 NS NS NS NS Days 7, 14, 30 ELISA, 

Buhlmann 

Levels correlated with stool IL 

8. No difference with 

prebiotics. ↑ levels in NEC. 

Aydemir 
J Mat Fetal Neo 

Medicine 

EL 2 
 

2012 50 
NEC: 25 

Non: 25 

NEC: 28.3 +2.5 
Non: 28.9 (2.0) 

NEC: 1048 
(323) 

Non: 1044 

(232) 

NEC: 12 
Non: 5 

NS NEC: all 
Non: NS 

E, or preterm 
formula 

Numbers NS 

At diagnosis of 
NEC and 3-5 

days later 

 

ELISA, 
Buhlmann 

NEC: 1282 (241-3337) 
Non: 365 (58-1006) 

A level of 792 was 76% 

sensitive, 92% specific for 
NEC 

Selimoglu 

Paediatric 
critical care  med 

EL 2 

2012 37: 

NEC: 14 
Non: 23 

NS 

 

NS NS NS NS, but any 

septic infants 
excluded 

24: E 

15: F 
1: TPN 

At first clinical 

signs NEC + 
same age 

matched controls 

ELISA, 

PhiCal 

Not predictive or diagnostic of 

NEC: 167.56 (143.43) Vs 172.2 
(171.25) 

No differences in feed type 

Zoppelli 2012 206 28.5 1057 NS NS  NS Alt days for first ELISA, Levels depend upon gestation + 
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Table 9: The evidence base for calprotectin as a marker of NEC; given the heterogeneity in NEC definitions, sensitivity and specificity analyses were 

deemed inappropriate. (Abbreviations: NEC = necrotising enterocolitis; ELISA = enzyme linked immunosorbant assay; NS = not specified; UIFABP = 

urinary intestinal fatty acid binding protein; EBM = expressed breast milk; DEBM = donor expressed breast milk; GI = gastrointestinal; EL = evidence 

level).

Neonatology 

EL 2 

NEC: 14 

F-NEC: 5 

GID: 47 

Non: 140 

26.6 (23.7-33.1) 

25.4 (24.3-27.0) 

27.1 (23.3-32.4) 

29.2 (24.4-35.7) 

859 (295) 

672 (187) 

888 (296) 

1145 (253) 

5.8 days (1.6) 

7 days (0) 

4.8 days (2.8) 

4.5 days (2.7) 

28 days of life Bensheim, 

Germany 

postnatal age; Cut offs: 180 for 

intestinal distress, 210 for 

NEC. Fulminant NEC 

however: <24 

Reisinger 

J Pediatr Surg 

EL 2 
 

 

2012 62 

NEC: 29 

Non: 33 

215 days (175-

289) 

NEC: 215 (184-
268) 

Non: 213 (175-

289) 

1328 (585-

3570) 

1400 (860-
1960) 

1270 (585-

3570) 

NS NS NS NS At time of NEC 

diagnosis – but 

only in 35/62 
infants 

ELISA, 

Hycult 

Promising as diagnostic of 

NEC in combination with 

urinary IFABP; NEC: 402.2 
(107.6-847.6) versus 79.6 (1-

625.1); Cut off for NEC: 286.3 

(sens 81%, spec 79%). With 
UIFABP: sens 63%, spec 

100%) 
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In total, this systematic review included one article describing a randomised controlled trial 

(evidence level 1), and ten with controlled data (evidence level 2). Although cumulatively 

these studies compare calprotectin levels in 1485 infants, the heterogeneity of NEC 

definitions makes direct comparison in metaanalysis inappropriate. In two studies by the 

same research group, different definitions of NEC are used in each publication, including 

terms such as ‘intestinal distress’ and ‘enteropathy’ (Campeotto, Kalach et al. 2007, 

Campeotto, Baldassarre et al. 2009). Similarly, the significance of potential confounders of 

high calprotectin levels is not accounted for in some studies (for example postnatal age, 

antibiotic usage, and episodes of concurrent sepsis). Each published study uses ELISA 

testing, and most use the same commercially available kit by Calprest (Eurospital, Trieste, 

Italy). One article was identified that considered serum calprotectin levels rather than stool 

concentrations, and identified a significant peak during episodes of sepsis (Terrin, 

Passariello et al. 2011). Eight of the 20 studies found that stool levels rose in tandem with 

definite NEC – but only after that diagnosis had been made clinically. The median 

calprotectin concentrations for infants with confirmed NEC varied widely between 210 

µg/g, to over 2000 µg/g. Some studies quoted a cut-off level for definite NEC, which was 

far lower than other studies. Although some of the studies stratified levels by severity of 

NEC, comparing stage 2 and stage 3, only one considered the effect of perforation – 

perforation accounted for in only stage 3b NEC and not 3a. Curiously, the paper by 

Zoppelli et al in 2012, noted high levels with definite NEC, but a sharp decrease in 

calprotectin concentration with fulminant perforated NEC. The reasons for this are unclear 

from the subsequent discussion within the article, but could be: 1) fluid stool samples – e.g. 

diluted with frank blood; 2) total ileus resulting in decreased production of any stool or 

effluent; 3) perforation leading to peritoneal contamination with stool and thus 

calprotectin; 4) loss of permeability of necrotic bowel, thus neutrophilic apoptosis 

redirected back into the circulation (Zoppelli, Guttel et al. 2012). Further studies, in 

particular those powered to NEC, are ideally placed to investigate the predictive and 

prognostic potential for calprotectin.  

 

iv) SIgA and necrotizing enterocolitis 

The high mortality and morbidity associated with NEC have given rise to a host of 

potential immunotherapies, but no studies could be identified assessing changes in SIgA 

according to infants with and without NEC. However, within the last ten years, a vogue for 

the oral administration of pooled immunoglobulin and combinations therein of Ig G and Ig 

A has dwindled, with repeated updated Cochrane Reviews showing no benefits in the 
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treatment or prevention of necrotising enterocolitis, despite eligible trials involving a total 

of 2095 preterm infants (Foster and Cole 2004). In the mammalian intestine, colonisation 

with commensal microbes is considered to enable the development of both humoral and 

cellular mucosal immune systems during neonatal life (Cebra 1999, Stagg, Hart et al. 

2003) – hence the potential for therapeutic probiotic administration to increase colonic 

SIgA levels, as seen by Mohan et al (Mohan, Koebnick et al. 2008), and Retnaningtyas 

(Retnaningtyas 2008).  

 

1.6.8) Management of NEC 

Treatment of NEC is therefore multifactorial, involving manipulations of diet, antibiotics, 

and surgery. Given the unpredictability of NEC, wherein relatively ‘mild’ cases of NEC 

can evolve into fulminant necrosis and death within hours, the importance of prevention 

cannot be overemphasised. However, despite advances in management, the incidence of 

NEC has remained relatively constant throughout the last two decades (Fanaroff, Hack et 

al. 2003). The economic impact of NEC-related morbidity cannot be underestimated, nor 

the dietary impact therein. Projected cost analysis in one study reported there to be an 

estimated 3440 more infants per year with NEC in the United States if fed exclusively 

formula instead of breast milk, to the tune of $3.5 million dollars extra in the cost of care 

(Arias 2002, Meinzen-Derr, Poindexter et al. 2009). Furthermore, the estimated cost of 

treating an infant with short bowel syndrome secondary to NEC is 1.5 million dollars over 

five years. As such, preventative strategies are in development, focussing on 

immunoglobulin administration, oral aminoglycosides, glutamine, feed regimes, and 

manipulation of the gut microbiota. 
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1.6.9) Animal models: relevance to the research of necrotising enterocolitis 

 

In the absence of ethically approved observational and interventional human studies 

regarding the aetiology and evolution of NEC, there are increasing numbers of published 

animal models, inducing NEC lesions biochemically and microbiologically, in order to 

assess the diagnostic and therapeutic potentials. The gnotobiotic and monobiotic quail 

model of NEC has been used repeatedly in studies by Waligoria-Dupriet et al, with the 

advantage of being able to precisely control feed type and frequency, in a consistently 

temperate environment, and to closely correlate stool and serum biomarkers with the 

emergence of NEC lesions. In one study, Waligoria-Dupriet et al were able to chart the 

histological sequence of events in the evolution of NEC after inoculation with Clostridium 

butyricum, observing mononuclear cell infiltrates, followed by the emergence of 

heterophilic cells, promptly followed by gaseous necrosis and cystic change (Waligora-

Dupriet, Dugay et al. 2005). This study followed from their work published in 2005, 

identifying the gross histopathological intestinal effects of lesions produced by the actions 

of 6 different bacterial strains implicated in NEC in human observational studies 

(Klebsiella pneumonia, Clostridium perfringens, difficile, paraputrificum and butyricum). 

Once again, Clostridium butyricum was linked to direct visual evidence of pneumatosis, as 

seen in other trials in both animal models and preterm humans (Waligora-Dupriet, Dugay 

et al. 2005, Azcarate-Peril, Foster et al. 2011, Smith, Bode et al. 2011) Similar induction of 

NEC intestinal lesions in preterm pigs have begat a cohort of trials in this regard. Several 

studies have validated the use of piglet models according to their similar oesophageal 

motility and feed performance to human neonates (Di Lorenzo, Bass et al. 1995, Vicente, 

Da Rocha et al. 2001, Sangild, Siggers et al. 2006, Sangild, Tappenden et al. 2006, Rasch, 

Sangild et al. 2010). Moreover, the close histological similarity of NEC-lesions in preterm 

piglets closely mirrors those of preterm infants. Methods of inducing these lesions are now 

being tested, and include formula milks, hypoxic-ischaemic insults, hypothermic stress, 

and administration of bacterial toxins – for example clostridium perfringens beta-toxin 

(Miclard, Jaggi et al. 2009). 

 

Animal models of NEC are therefore also developing therapeutic options of management. 

So far, therapies trialled in animal models of NEC include: L-arginine (Akisu, Ozmen et al. 

2002, Cekmez, Purtuloglu et al. 2012); nitric oxide (Cekmez, Purtuloglu et al. 2012); n-

acetyl cysteine (Koivusalo, Kauppinen et al. 2002, Ozdemir, Yurttutan et al. 2012, 

Tayman, Tonbul et al. 2012); and cyclosporine (Gill, Lee et al. 2012, Gill, Manouchehri et 

al. 2012). In turn, these have led to fledgling human trials in preterm infants, mainly in L-
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arginine administration in preterm infants, which so far shows no clear benefit in 

preventing or ameliorating NEC (Shah and Shah 2007). However, the anticipated 

translation of animal trials to human trials does not appear to progress when assessing the 

international clinical trials databases. Registered trials at the clinicaltrials.gov website 

citing interventions with the primary outcome of prevention and/or treatment of NEC, 

include: the administration of docosahexanoic acid in the prevention of NEC (Garcia et al, 

National Council of Science and Technology, Mexico); vitamin A in the treatment of NEC 

(Johns Hopkins University, Maryland); and pentoxifylline as a treatment of NEC (Shaare 

Zedek Medical Center, Israel) (Health 2013).    

 

However, one contentious potential therapeutic option preventing NEC in preterm infants 

is currently undergoing extensive trials in both animal models and humans: the 

administration of pre- and probiotics. Prebiotic animal trials have utilised gnotobiotic 

quail, rats, and piglets, with increased growth of beneficial species of Bifidobacteria, and 

reduced numbers of clostridia associated with lower butyric acid concentrations (Butel 

2001). Catala et al in 1999 inoculated gnotobiotic quails with microflora from preterm 

twins, and assessed the subsequent effect of oligofructose on the resultant microbiota, 

which showed a significant increase in the growth of Bifidobacteria species and, 

conversely, a reduction in E.coli and Clostridia perfringens (Catala, Butel et al. 1999). 

Probiotic animal models to date have used strains including Bifidobacterium bifidum and 

lactobacillus reuteri with positive results. Rat models have shown similarities in the 

production of antimicrobial colonic peptides produced in humans with NEC, and 

administration of Bifidobacteria strains have observed the induction of higher levels of 

lysozyme and secretory phospholipase A2 (Underwood, Kananurak et al. 2012). The 

advantage of such trials is the ability to directly assess the histopathological and 

immunological effects of these bacteria, including downregulation of inflammatory 

markers IL-6, and TNF , and enhanced expression of the anti-inflammatory cytokine IL-

10 (Khailova, Dvorak et al. 2009, Khailova, Mount Patrick et al. 2010, Liu, Fatheree et al. 

2012). However, the method of inducing NEC in animal models may be a significant 

confounder of these studies. Most are induced using asphyxia or hypothermia, but this may 

not replicate typical NEC as found histologically in preterm infants. This was 

acknowledged by Zhou et al in 2011, when they compared three different methods of 

inducing NEC in rats, including hypothermic stress, varying proportions of feeds and 

nitrogen gas, intraperitoneal saline, and intraperitoneal lipopolysaccharide. They found that 

the combination of artificial feeding with hypoxia and hypothermia most closely replicated 
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intestinal injury correlating with NEC in humans (Zhou, Zheng et al. 2011). These studies 

have naturally led to trials of pre- and probiotics to term and then preterm infants.  
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1.6.10) Therapeutics: 

i) Prebiotics 

Prebiotics, as defined by Roberfroid et al, are a ‘selectively fermented ingredient that 

allows specific changes, both in the composition and/or activity in the gastrointestinal 

microflora that confers benefits upon host well-being and health’ (Roberfroid 2007). These 

are typically, but not exclusively, carbohydrates found naturally in a wide variety of food 

stuffs, especially vegetables. Various carbohydrate-based substances are now incorporated 

into commercial prebiotic preparations. Inulins, a group of polysaccharides found 

commonly in vegetables such as chicory, onion and garlic, are a popular commercial 

choice. Lactulose, an osmotic laxative, has been seen in adults to exert a prebiotic effect, 

stimulating the growth of Bifidobacteria and lactobacillus (Saarela, Mogensen et al. 2000, 

Vanhoutte, De Preter et al. 2006). This also raises the possibility of changing the SCFA 

profile, as seen in adults (Hamer, Jonkers et al. 2009). In both the UK and the USA, 

prebiotic preparations are neither classed as foodstuffs or drugs. A variety of trials in 

animals claim to reduce the incidence of malignancies and IBD, and to boost immunity and 

cardiovascular health, although the specific mechanisms by which these occur remain 

unknown in most cases (Liong 2008, Ellis, Rutledge et al. 2010, Lam, Moulder et al. 2012, 

Hemarajata and Versalovic 2013, Whelan and Quigley 2013). It is generally theorised that 

these benefits occur secondary to increased SCFA production by the proliferation of 

bacteria such as clostridia and bacteroides. 

 

Breast milk contains natural prebiotics in the form of human milk oligosaccharides 

(HMOs). Although many are excreted in the urine intact, some remain undigested in the 

small intestine, and enter the colon to undergo bacterial fermentation to short chain fatty 

acids. The resultant environment promotes the growth of beneficial bacteria which 

preferentially ferment these carbohydrates for energy, but this effect is not seen to be 

strain-specific. The resultant bacterial strains from breast milk are then repeatedly isolated 

for further testing of their properties in order to achieve probiotic status (Beattie and 

Weaver 2011, Fernandez, Langa et al. 2012). However, the ability of breast milk probiotic 

bacteria to be transferred to the gut microbiota of the nursing infant is difficult to replicate 

in exogenous administration, given the propensity for commercially produced, enterally 

administered probiotic bacteria to be destroyed by stomach acid and bile salts. This has led 

to the development of ‘microcapsulation’ techniques to preserve the integrity of the 

probiotic until it reaches the small bowel, and various studies have used different coatings 

in this regard (Cook, Tzortzis et al. 2012, Piano, Carmagnola et al. 2012).  
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Figure 8: Phylogenetic tree of common gut commensals found in preterm infants. The size of each leaf 

corresponds to abundance in the stool of preterm infants according to literature; bacteria are linked by boughs 

according to similarity in morphology. 

 

ii) Probiotics 

Probiotics are defined by the World Health Organisation as being ‘live microorganisms 

which, when administered in adequate amounts confer a health benefit on the host’ (Araya 

2001). It is possible that this definition will be refined as further properties and functions of 

such bacteria are established. Currently, probiotic preparations, as for prebiotics, are 

classified neither as foodstuff or drugs, although recently the portmanteau ‘nutraceuticals’ 

has been coined to appreciate its value as both. In vitro studies have illustrated that the 

effects of probiotic bacteria are similar regardless as to whether they are live, heat-killed, 

or even in DNA form (Orlando, Refolo et al. 2012, Tareb, Bernardeau et al. 2013). Certain 

forms of heat-treated Lactobacillus strains have even been observed to have enhanced 

stability and immunological effects after heat-treatment (Fujiki, Hirose et al. 2012). In 

particular certain Bifidobacterium strains stimulate the production of interleukin 10 and 

immunoglobulin E (Young, Simon et al. 2004). Lactobacillus is seen to reduce pathogen 

adherence, as well as effecting a protective immunoglobulin A layer effect over other 

surfaces such as respiratory, nasal, oral and vaginal mucosae (Perdigon, Alvarez et al. 

1999, Kotani, Shinkai et al. 2010, Strus, Chmielarczyk et al. 2012). Figure 8 illustrates the 
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relationship between ‘probiotic’ species and other commonly identified gut microbiota in 

preterm infants. In order to qualify as probiotic, a bacterial strain must have several 

properties as defined by Teitelbaum et al in table 10:  

A probiotic should: 

 Be of human origin 

 Be in nature 

 Be resistant to destruction by technical processing 

 Be resistant to destruction by gastric acid and bile 

 Adhere to intestinal epithelial tissue 

 Be able to colonize the gastrointestinal tract, if even a short time 

 Produce antimicrobial substances 

 Modulate immune responses 

 Influence human metabolic activities (i.e., cholesterol, assimilation, vitamin production, etc.) 

  

Table 10: Defining Criteria of Microorganisms That Can Be Considered Probiotics 

(Teitelbaum and Walker 2002) 

 

Given newer culture techniques, different functions of Lactobacillus and Bifidobacteria 

strains have been identified, including their ability to inhibit growth of several urogenital 

pathogens, and their adherence to Caco-2 cells, reflecting their innate ability to adhere to 

the intestinal mucosa (Martin, Jimenez et al. 2006, Cadieux, Burton et al. 2009). Probiotic 

bacteria may have different properties in vivo and in vitro, as evidenced by laboratory and 

animal studies (Ibnou-Zekri, Blum et al. 2003). Identical probiotic bacterial strains have 

also been seen to exhibit different functions depending on the host – such that the same 

strain in a preterm infant can display different properties in an elderly adult (Romeo, Nova 

et al. 2010). Of further interest still is the finding that enterally administered probiotics can 

colonise remote mucosal surfaces after absorption through Peyer’s patches, and 

vehiculation in the lymphatic circulation to the respiratory and urogenital surfaces 

(Rescigno, Rotta et al. 2001, Macpherson and Uhr 2004, Perez, Dore et al. 2007, Pennisi 

2008).  
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Recent studies have suggested that not only could these strains not have to be alive in order 

to exert beneficial effects on the host, but that fragments of bacterial DNA have the 

capacity to bind to and activate mucosal receptors – that is, in live and ‘killed’ forms. This 

emphasises the importance of the surrounding environment, and cross-contamination 

(Lammers, Brigidi et al. 2003, Zhang, Li et al. 2005, Broekaert, Nanthakumar et al. 2007). 

The T-Cell receptor (TCR) response may be important in this regard, given the 

increasingly convincing evidence of host-specific and strain-specific probiotics and their 

ability to stimulate an immune cascade, which includes cytokines (such as interleukin-4) 

acting as directors of a host of other innate and systemic immune factors (Kalliomaki, 

Kirjavainen et al. 2001). 

 

It is important to note that certain strains of so-called enteropathogens are also considered 

‘probiotic’, including E. coli M17, E. coli Nissle 1917, and Clostridium butyricum (Araki, 

Andoh et al. 2004, Fitzpatrick, Small et al. 2008). Similarly, strains of exogenously 

administered probiotic bacteria have been implicated in case reports of sepsis, and also one 

randomised controlled trial of probiotics in adults (Gooszen, Simmermacher et al. 2004, 

Lee and Siao-Ping Ong 2011, Mehta, Rangarajan et al. 2012). 

  

iii) Synbiotics 

Synbiotics are simply a combination of pre and probiotics, both endogenous and 

exogenous, breast milk being the most obvious naturally occurring in nature. As the roles 

of newfound metabolites are defined, ‘synbiotic’ may be used as a collective term for all 

metabolites of microbial fermentation processes of benefit to the gut. It is postulated that 

the benefit of combining prebiotics with probiotics is not so that prebiotics can stimulate 

the growth of probiotics within these preparations, but that they work on different areas of 

the gut – prebiotics mainly on the colon, and probiotics on the small intestine (Roberfroid 

2007). 

 

1.6.11) Therapeutic alteration in the gut microbiota of the preterm infant 

i) Prebiotics 

In premature infants the establishment of enteral nutrition is often slow, and as such they 

are known to be deficient in micronutrients such as glutamine, vitamins E and A despite 

supplementation within parenteral nutrition (Powers 1993, Kositamongkol, Suthutvoravut 

et al. 2011). However, evidence for benefits of supplements designed to alter the gut 

microflora in preterm VLBW infants is unclear (Tubman, Thompson et al. 2005, van den 

Berg, van Elburg et al. 2007, Li, Bauer et al. 2012). It is possible that these effects are 
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simply overwhelmed by other stronger factors, such as the influence of antibiotics, and 

type of milk fed. One study concerning term formula fed neonates revealed higher levels 

secretory immunoglobulin A in those supplemented with prebiotics (Bakker-Zierikzee, Tol 

et al. 2006). Most preterm infant formulae now include prebiotics in the form of galacto-

oligosaccharides and fructo-oligosaccharides (GOS and FOS). Outcomes are awaited from 

an Israeli RCT assessing the effect of prophylactic lactulose administration on microbiota 

and NEC in premature infants (Dollberg 2010). 

  

ii) Probiotics 

It is postulated that manipulation of dietary factors with the addition of probiotics (live 

bacterial colonies of favourable species) may reduce the incidence of short and long-term 

illness in these infants, particularly NEC (Deshpande, Rao et al. 2007). However, the types 

of favourable species and strains have yet to be defined in healthy preterm infants (figure 

8). Several studies have illustrated inhibition of NEC-like lesions in animal models by 

Bifidobacterium supplementation (Butel, Roland et al. 1998, Caplan, Miller-Catchpole et 

al. 1999), as well as a reduction in faecal butyrate (Wang, Shoji et al. 2007).  The 

probiotics used in preterm neonatal RCTs to date have employed combinations of different 

strains of Lactobacillus and Bifidobacterium sp., owing to their immunogenic, adhesive, 

and antienteropathogenic properties. Undeniably, they are also used because of their wide 

commercial availability. The results of these trials indicate that probiotics could reduce 

NEC in VLBW infants. However, there are two very different interpretations of these 

trials. On one hand, the latest metaanalysis (including 11 trials) concludes that the evidence 

for their efficacy is so great that no further RCTs are required before routine 

implementation. However, a previous systematic review of probiotic therapy to prevent 

NEC in premature infants found only six inclusive randomised control trials, but noted that 

although a trend towards reduction of NEC in the treatment groups was observed, the 

heterogeneity of probiotic types, doses, and frequency and duration of administration made 

comparisons impossible (Barclay, Stenson et al. 2007). Fundamentally, the diversity of 

these trial designs, using different species, strains, doses, frequencies and durations, makes 

comparison inappropriate. As Guarner et al noted in 2007: ‘the effect of a bacterium is 

strain-specific and cannot be extrapolated even to other strains of the same species’ 

(Guarner 2007). These trials are also confounded by feeding practices and the widespread 

use of prebiotic formula milks, and it is impossible to separate data on extremely preterm 

infants (Beattie, Hansen et al. 2010).  Moreover, several of these studies are confounded by 

environmental and maternal nutritional factors that also affect the composition and rate of 
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acquisition of the gut microflora. Most of these have been developed from the 

methodology of previous RCTs, and are limited by commercial availability of strains. 

 

The United Kingdom’s first randomised control trial of probiotics in preterm infants is 

currently underway, aiming to recruit 650 infants to each wing (Costeloe). Previous 

reviews of probiotic therapy for NEC have postulated that between 750 and 2000 infants 

would require to be exposed in order for a significant reduction in NEC to be evaluated 

(Barclay, Stenson et al. 2007, Neu and Shuster 2010).   

 

One recent study has attempted to assess metabolic and inflammatory effects of probiotic 

supplementation in preterm infants, although was not powered to NEC, nor does it mention 

cases of this illness within the cohorts. In 2008, Mohan et al enrolled 69 low birth weight 

infants into a randomised control trial using Bifidobacterium lactis B12 and a placebo. 

They found significantly higher faecal lactate and acetate, and faecal IgA, as well as lower 

faecal pH and calprotectin in the treatment group. Interestingly, higher body weight was 

only seen in infants who had received antibiotics as well as probiotic therapy (Mohan, 

Koebnick et al. 2008). Following from this, it is possible that the manipulation of other 

nutritional, clinical and environmental factors, and establishment of associations between 

bacteria, their products, and inflammatory markers may further research in this important 

area.  As highlighted by Rouge et al in 2010 (Rouge, Goldenberg et al. 2010), given the 

high interindividual variability in gut microbiota, the combination of these techniques 

gives rise to the exciting possibility of personalised therapy.  

 

a) Probiotic Safety 

None of the preterm RCTs have documented probiotic-related sepsis. Other milder adverse 

reactions, such as diarrhoea and flatulence, are difficult to interpret. Several neonatal case 

reports documenting sepsis with ‘probiotic’ bacteria have not been related to probiotic 

administration (Brook, Frazier et al. 1991, Thompson, McCarter et al. 2001), but were 

considered gut translocation through natural acquisition. However, two further case reports 

have declared Bifidobacterium sepsis secondary to probiotic administration (Ohishi 2010, 

Jenke 2012) - the latter concerning a preterm infant. Given the difficulty in culturing these 

organisms, cases of probiotic bacteraemia merit further analyses to establish the 

‘pathogenicity’ of these strains.  
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Most importantly, the advent of probiotic therapy must be tempered with the recognition of 

potential short and long-term adverse effects. Future implications of supplementing the diet 

of the preterm infant with probiotics have lifelong potential. Organisms first colonising the 

gut after delivery may achieve permanence, as has been shown in studies of children years 

after probiotic supplementation in term neonates (Kalliomaki, Kirjavainen et al. 2001, 

Kalliomaki and Isolauri 2003). This has yet to be proven in preterm infants. Conversely, 

studies in adults and infants have shown certain probiotic strains to have a short half-life – 

sometimes days (Alander, Satokari et al. 1999, Schultz, Gottl et al. 2004, Saxelin, Lassig et 

al. 2010).  

 

The possibility of probiotic-related sepsis is a theoretical yet very realistic possibility in 

immunologically immature preterm infants. Only one case report could be found 

describing Lactobacillus acidophilus sepsis in a premature infant (Thompson, McCarter et 

al. 2001). Other cases have been limited to adults in whom Bifidobacterial strains have 

caused wound abscesses after obstetric and gynaecological procedures (Brook, Frazier et 

al. 1991), and a large randomised control trial of prophylactic probiotics for acute 

pancreatitis in adults, in which the treatment group had a significantly higher mortality.  

 

Previous rashly implemented therapeutic interventions for premature infants include high-

dose dexamethasone therapy, subsequently shown to cause cerebral palsy (Halliday, 

Ehrenkranz et al. 2009). In short, no probiotic studies for preterm infants have justified: 1) 

the best type or combinations of bacteria and strains to be used; 2) the most appropriate 

doses; or 3) when to use them, and how long to use them for. The safest and most 

appropriate method prior to testing probiotics on premature infants is through the use of in 

vivo and animal models. These are essential points of information required for any 

pharmaceutical intervention, and we believe that manipulation of gut microbiota in any 

administered form should undergo rigorous examination in this regard.  

 

b) Current Randomised Controlled Trials Registered on International Clinical Trials 

Database (www.clinicaltrials.gov):  

http://www.clinicaltrials/
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Table 11: Current Registered Randomised Controlled Trials of probiotic and prebiotic preparations for preterm infants (Health 2013). (Abbreviations: USA = 

United States of America; g = grams; NEC = necrotising enterocolitis; < = less than). 

Type of Nutraceutical 

 
Country Status Number for 

recruitment 

Gestation + 

Birth weight 

Age at enrolment Protocol Primary Outcomes Stool analytes 

Bifidobacterium breve C50 + 
streptococcus   

Paris, France Completed 58 30-35 weeks >3 days Not specified Stool colonisation Microbial, immune, 
inflammatory 

 

ProBioPlus: Lactobacillus 

acidophilus, Bifidobacterium 
longum, Bifidobacterium infantis, 

and Bifidobacterium bifidum plus 

inulin 
Lactobacillus rhamnosus GG plus 

fructo-oligosaccharide, ConAgra 

California, USA Completed 90 <35 weeks 

750-2000g 

<8 days Twice daily for 

28 days 

Weight gain Microbial + butyric 

acid 

ProLactPlus: human milk-derived 
oligosaccharides 

Galacto-oligosaccharide 

Bifidobacterium infantis 
Bifidobacterium animalis 

USA Recruiting 36 <33 weeks + < 
1500g 

<15 days Each increases 
weekly 

Stool colonisation PCR for 
Bifidobacteria + total 

bacteria 

Galacto-oligosaccharide Israel Recruiting 260 ‘Preterm’ + 

<1750g 

<8 days 1.3g/kg/d from 

start of enteral 
feeds until 35 

weeks CGA 

NEC Bifidobacteria; 

calprotectin; urinary 
IFABP 

Bifidobacterium Bb12 London Recruiting 1300 <31 weeks <48 hours Daily from 

recruitment until 
36 weeks CGA 

NEC, death, infection Stool flora 
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This collection of international registered clinical trials not only illustrates the 

heterogeneity of ‘nutraceuticals’ targeted to preterm infants, but also the variety of primary 

outcomes. This indicates the wide ranging effects of prebiotics, probiotics, and therefore 

synbiotics in this important patient group. However, given that the effects of single 

probiotic strains on NEC, allergy, feed tolerance, weight again and sepsis in preterm 

infants is as of yet unascertained, the increasing popularity of RCTs of multiple probiotic 

and symbiotic combinations makes comparison in meta-analyses inappropriate. What is 

encouraging is that all of these trials are concurrently measuring stool markers, not only to 

ensure colonisation of these infants, but also to assess the immunological and 

inflammatory effects. Whether there are enough preterm infants of extreme prematurity 

and with extreme low birth weight to assess their response to these supplements, and their 

resultant stool microbiota and analytes in healthy controls to glean ranges of normative 

gestation and/or birth weight dependent data in order to establish these as diagnostic and 

prognostic markers of disease.  
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1.7) Introduction to Study Purpose  

With the escalation in number and type of randomised controlled trials designed to assess 

the clinical effects of prebiotics, probiotics, and synbiotics on the health of preterm infants, 

there are still many confounders of establishment and maintenance of the gut microbiota 

that may easily skew the results of these trials. The emphasis of feed type, administration 

of antibiotics, duration of ventilation and incubation are all important and necessary factors 

of neonatal care. Feed type is most commonly influenced by maternal choice, despite the 

establishment of donor milk banks, with increasing accessibility and supply. The synbiotic 

effect of breast milk, and the recognised risks of cross-contamination of probiotic bacteria 

between Neonatal Intensive Care Unit patients make the investigation of these effects upon 

the gut microflora and metabolites of infants without symbiotic administration imperative 

if we are to separate what can already be controlled and augmented with nutritional and 

environmental trials, and what is added by the use of nutrapharmaceuticals. As stipulated 

earlier, details such as precise feed ratios and types, duration of incubation, types and 

durations of antibiotic courses are often absent from comparison between case and control 

groups, despite being important associations with NEC and sepsis. 

 

Additionally, the significance of changes in the gut microbiota, metabolites and 

inflammatory markers in preterm infants – in particular NEC, sepsis, poor weight gain, and 

mortality therein – highlight their potential as biomarkers of these diseases. Observational 

studies, such as the NAPI Study described in this thesis, are therefore required to illustrate 

the relevance of including stool SCFA, calprotectin, SIgA and TTGE analyses for 

inclusion in the many evolving randomised controlled trials aiming to alter the gut 

microbiota by enteral supplementation.    
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Chapter 2 

Methodology 

THE NAPI STUDY: Neonatal microflorA in Preterm Infants 

 

2.1) Introduction 

Despite the increasing popularity of RCTs aiming to alter the gut microbiota in preterm 

infants, there is a paucity of normative data concerning gut bacteria, bacterial metabolites, 

immunological and inflammatory markers in preterm infants in health and disease. As 

such, the NAPI Study was designed as an observational cohort study of inborn infants 

throughout Glasgow’s three neonatal units. The following chapter describes the study 

hypotheses, design, methodology, and statistics.  

 

2.1.1) Hypotheses: 

a) Primary: 

Levels of stool metabolites, markers of intestinal inflammation, and diversity of gut flora 

of infants born before 32 weeks of gestation vary over the first month of life according to 

the type of nutrition and environment. 

 

 b) Secondary: 

Stool parameters:  

1.  All analytes will vary with gestation, age, feed type, NEC and sepsis, and will co-

correlate  

2.  BCFAs will be detected in stool samples, indicating protein fermentation 

3.  SIgA levels in milk will correlate with those in infant stool 

4.  Each of the analytes will vary with severity of NEC. It should be noted that this 

hypothesis was added only after recruitment ended and the high incidence of NEC 

was noted. 
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2.2) Study Design and Methodology: 

2.2.1) Study Design 

The Neonatal MicroflorA in Preterm Infants (NAPI) Study was designed as an 

observational cohort study of sequentially recruited VLBW, preterm infants delivered at 

less than 32 weeks gestation. It was approved by the Glasgow Royal Infirmary Research 

and Ethics Committee on April 14
th

 2009 (REC reference number: 09/S0904/15), and was 

also approved by the Greater Glasgow and Clyde NHS Research and Development Board 

on April 20
th

, 2009 (R+D reference number: GN09NN090). Recruitment commenced on 

April 24
th

, 2009, and finished on February 20
th

 2010. Furthermore, after one study patient 

transferred to Crosshouse Hospital in Kilmarnock, local R+D approval was sought and 

gained from the NHS Ayrshire and Arran Research and Development department on June 

11
th

 2009 (Reference Number: 2009AA028). 

 

Glasgow city’s population is currently around 600,000, and the birth rate between all 3 

maternity hospitals within the city was over 7000 in 2011. Infants were sequentially 

recruited from the three main Glasgow Neonatal Units: Queen Mother’s Hospital, Princess 

Royal Maternity Hospital, and the Southern General Hospital. Given that the observational 

nature of the project, along with a lack of similar studies, did not lend itself to reliable 

power calculations, we decided to recruit at least 60 infants annually based upon a) the 

relative numbers of inborn infants within the inclusion criteria per year according to local 

audit data; b) timing and cost of the sample analysis; c) comparable studies in preterm 

infants, the highest number in which included 69 neonates (Mohan, Koebnick et al. 2006). 

i) Recruitment 

Inclusion criteria comprised:  

 <32 weeks gestation  

 <1500g birth weight  

 CRIB score < 15  

 Fed within the first 7 days of life  

Exclusion criteria comprised:  

 32 weeks gestation  

 >1500g at birth  

 Nil by mouth within the first week of life  

 CRIB score > 15 

 Any major congenital abnormality  
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Major congenital abnormalities were considered on a case-by-case basis. The Clinical Risk 

Index in Babies Score was considered as a marker of illness severity and was applied 

within the 12 hours preceding consideration for recruitment. A CRIB Score of more than 

15, equivalent to projected mortality risk of more than 50%, excluded infants from 

recruitment at that point (Patrick, Schumacher et al. 2013).  

 

Recruitment Process 

Infants were recruited within the first week of life. Infants fitting the inclusion criteria were 

identified by me, and parents were initially approached by a leaflet describing the project. 

Once inclusion criteria were confirmed, parents were asked in person for their consent for 

their baby to take part. The mothers also completed a short questionnaire with me, 

assessing their consumption of probiotic foodstuffs. The parents of any infants who scored 

>15 on the Clinical Risk Index for Babies illness severity scoring system (CRIB), were not 

approached for consent. All infants were delivered as clinically appropriate, and no 

additional monitoring occurred for the sake of this trial either intra- or post-partum. 

Implicit in obtaining consent, I discussed each baby’s current severity of illness with 

Nursing Staff caring directly for the infant, as well as the emotional status of the parents. In 

the event that it would clearly be insensitive or an imposition to discuss the project with the 

parents of a critically unwell infant (or, indeed, a critically unwell mother), or one who was 

not expected to survive, I did not approach for consent, and these infants were excluded 

until stabilisation. The greatest care was taken not to approach fragile parents, and it should 

be noted that all members of staff involved had extensive daily experience in counselling 

and discussing issues of care with parents of ill preterm infants.  

 

ii) Sample collection: 

Samples of normally voided stool, and expressed breast milk were taken non-invasively: 

stool was retrieved from the nappy during routine nursing care, and immediately stored in 

freezers at -20
0
C; milk was retrieved from the milk freezers by me. Samples were then 

transported in thermal bags. 

Stool: samples for four weeks, aiming to analyse one per week, from recruitment.  

Milk: Maternal breast milk was sampled at least once weekly for four weeks. 

 

Sample analysis and interpretation were split into four epochs as follows: 

Days:  
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 1 – 7;  

 8 – 14;  

 15 – 21;  

 22 – 28. 

 

2.2.2) Analyses 

The following analyses were performed: 

Stool:  

 Stool short chain fatty acids and branched chain fatty acids by gas 

chromatography/mass spectrometry; 

 Calprotectin and secretory IgA analysis by Enzyme Linked Immunosorbant Assay 

(ELISA);  

 Bacterial diversity by Temporal Temperature Gel Electrophoresis.  

 

Milk:  

 SIgA and calprotectin by ELISA kits.  

 Milk samples were also stored for future molecular analysis. 

 

Data: demographical, clinical, nutritional and environmental factors. 

 

2.2.3) Necrotising Enterocolitis: 

Recruited infants who incurred the gut inflammation and infective disorder known as 

necrotising enterocolitis (estimated 10% - a projected maximum of 6) had this diagnosis 

made by two independent physicians using the internationally renowned Modified Bell 

Criteria (table 7). In the event of discrepancies in diagnosis, a consultant acted as arbiter. 

Part of the Modified Bell Criteria involved the interpretation of an abdominal x-ray, and 

the opinion of a consultant paediatric radiologist was taken for this purpose. One aspect of 

the Bell’s Criteria involves testing the stool for blood using the Faecal Occult Blood test 

(FOB), which can identify microscopic amounts of blood not visible to the naked eye. In 

Glasgow this test is now obsolete given the over-sensitivity in preterm infants, in whom 

blood associated mild gastritis or even nasogastric tube passage resulted in positive tests in 

the absence of NEC (Pinheiro 2003). As such, the presence of any visible, fresh 

gastrointestinal tract bleeding was taken in lieu of this sign. 
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2.2.4) Demographical and Clinical Data 

Demographical and clinical data was retrieved from medical and nursing records. 

Demographics were sub-classified into: basic data (such as gender, birth weight, 

gestation); social data (including the Depcat score, a Scottish deprivation scale (McLoone 

2004). It is based upon demographical information including four census variables 

depicting employment status, overcrowding, social class, and material hardship, and is 

stratified according to postcode. A higher score equates to higher deprivation); and 

antenatal data (including PPROM, intrapartum antibiotics, multiparous pregnancy). 

Clinical data was further stratified into: management data (for example Apgar score - 

interpretation of scores is more difficult in prematurity, but still performed. Ten minute 

Apgar scores of less than 3 are associated with a poor outcome - duration of ventilation and 

incubation, PDA ligation); nutritional data (including feed type and volume, time to full 

feeds, addition of fortifier); sepsis data (including number of episodes; type of bacteria 

cultured; highest CRP during study period; number of antibiotic days); and NEC data 

(stage by Modified Bell’s criteria; day of first onset; type of surgery).   

 

Of note, antibiotic regimen varied according to Neonatal Unit preference, age at use, and 

clinical features. Since preterm delivery is a risk factor for sepsis in itself, all infants in the 

study were given antibiotics for at least 48 hours after birth. In the PRMH and QMH units, 

these were benzylpenicillin and gentamicin, whereas SGH preferred to use cefotaxime. For 

infants requiring antibiotics after this initial 48 hour period, vancomycin and gentamicin 

were used. For infants requiring antibiotics for suspected NEC, the combination of 

vancomycin, gentamicin and metronidazole were used in all cases in all units. Infants were 

also occasionally given antibiotics different to these in cases of treatment-resistant 

coagulase negative staphylococcus sepsis (including for example rifampicin), or according 

to colonisation patterns and specific antibiotic sensitivities or resistance. Fluconazole was 

used as prophylaxis against yeast infection in SGH and RHSC units but not PRMH. Given 

the difficulties in comparing multiple antibiotics in a small cohort, I elected to examine 

simply number of antibiotic days as a parameter for comparison. 
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2.3) Methodology 

2.3.1) Stool Samples 

Each stool sample was collected by nursing staff from the nappy in universal containers 

and immediately frozen in a -20
0
C freezer. An estimated weight of one gram was needed 

for each sample in order for all analyses to be performed. No sample lay for more than 48 

hrs at -20
0
C. All samples were anonymised and labelled by study number and date of 

sample alone. If a date was not specified (e.g. not recorded by nursing staff) then date 

range was specified, and assigned to one of the four weeks of recruitment. This happened 

on approximately 20% of occasions. 

 

Prior to testing, all samples were thawed at room temperature, vortexed by Fisher Whirl 

Mixer, Heidolph REAX top (Fisher Scientific, Loughborough, UK), weighed and divided 

into four samples within a flow cabinet which was cleaned and sterilised beforehand with 

detergent and UV light, and decanted into separate eppendorfer and/or five ml bijou tubes 

with autoclaved wooden or bamboo picks. 

 

Not every sample was large enough to merit all analyses, so they were prioritised as 

follows in figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 9, Quorum Chart: Standard sample operating procedure. (Abbreviations: TTGE = 

transient temperature gel electrophoresis; SCFA = short chain fatty acids; Calpro = 

calprotectin; SIgA = Secretory immunoglobulin A). 

 

 

TTGE – 300mg 

Calpro – 60-100mg 

SCFA – 300-800mg 

SIgA – 60-100mg 
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2.3.2) Breast Milk Samples 

These samples were taken with specific maternal consent; no more than 10% of the 

existing supply was taken at any point. Each sample was expressed by the mothers either 

within the NICU or at home. It was subject to the normal handling regimen as per each 

unit. It was immediately frozen at -20
0
C before transfer in sterile universal containers and 

contained within freezer bags to RHSC, whereupon it was stored in a -80
0
C freezer. After 

thawing at room temperature in a sterile flow cabinet with UV light, each sample was 

divided into 3 and one millilitre each was decanted with sterile pipette tips into sterile 

eppendorfer containers for the purposes of molecular, SIgA and calprotectin analyses. All 

were refrozen at -80
0
C until testing was complete. 
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2.3.3) Short Chain Fatty Acid Analysis: Gas Chromatography/Mass Spectrometry 

 

i) Measurement of SCFAs 

 

At the end of the 19
th

 century, volatile FAs were initially eluted by steam distillation of 

intestinal contents. However, over the last 60 years the mainstay of SCFA analysis has 

been gas chromatography: the separation of different components of a mixture with the use 

of a heated carrier gas flowing through a metal column coated with a liquid or polymer 

known to react with the mixture and ‘elute’ different components at different times (the 

‘retention’ times). Components can then be identified according to the sequence in which 

they appear. A detector, such as a flame ionisation (FID) or thermal conductivity detector 

(TCD), uses combustion or heats a filament in order to detect ions and so identify 

components. Importantly, the FID burns and so destroys the sample; a TCD does not, thus 

allowing sample to continue to another detector if needs be. Alongside Mass Spectrometers 

(GC-MS) as detectors, the immediate identification of components can occur by 

determining their mass-to-charge ratio of charged particles (Kotani, Miyaguchi et al. 2009, 

Garcia-Villalba, Gimenez-Bastida et al. 2012). This has greater specificity than GC alone, 

although both methods provide quantitative analysis. Newer methods are in the process of 

development involving high throughput, rapid analysis chromatography methods (Tan, Ju 

et al. 2006, Olivero and Trujillo 2011). 

 

The short and medium chain fatty acids C1 to C12 (see Appendix 2) are generally found in 

neonatal stool samples in both term and preterm infants. However, lactate is also an 

important acid in neonatal stool. High levels of lactose are present in both breast and 

formula milks, and, in addition, preterm infants are generally deficient in intestinal lactase 

before the age of 32 weeks gestation. However, whereas C1 to C12 can be measured 

readily in their native form by GC, lactate requires derivatisation to volatilise it for GC 

analysis. Thus we aimed to alter our established SCFA GC protocol to analyse lactate in 

addition to C1 – C12 by GC alone, thus increasing through-put, cutting duration and cost 

of analyses. Lactate also requires a higher temperature to elute thus requires a different 

column within the GC, as it is usually last to appear among SCFAs C1 – C12 (Garcia-

Villalba, Gimenez-Bastida et al. 2012). 
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Initial pre-extraction sample handling protocol for all samples: 

Samples were thawed at room temperature and vortexed. Between 300 and 800mg wet 

weight faeces was weighed into 5ml bijou containers and vortexed again for 30 seconds. 

The wet weight was recorded and 1M sodium hydroxide (NaOH) was added at a 1:1 ratio 

to bring the pH above nine to prevent loss of SCFA by evaporation. The container was 

vortexed again for one minute and then stored in -80C freezer. Within a week the samples 

were freeze dried, and homogenised with bamboo sticks before being stored in vacuum 

packed containers at room temperature.   

Some general issues were noted during handling of the samples. 

 After freeze drying, most samples were noted to be markedly ‘stickier’ than those 

of adults or indeed older children. Samples of meconium in particular required 

prolonged vortexing (4 – 5 minutes) in order for mixing to occur after the addition 

of 1M NaOH. In addition, after addition of ether during the SCFA assay, most 

samples expanded, illustrating a large floating volume of fatty material consuming 

much ether in its density. This meant that, on occasion, only small volumes of ether 

could be extracted, requiring several repeats for the same sample.  

 The use of crimp top caps rather than eppendorfer caps proved important as 

evaporation of such small volumes of ether was rife. Notably, at 200 ul of ether the 

samples evaporated over a matter of minutes, leaving inadequate volumes for 

injection. 

 

ii) Lactate analysis by GC: Trial Protocols  

In order to incorporate lactate analysis by gas chromatography, the column on the GC was 

changed to a Dimethylpolysiloxane column (ZB-5, Phenomenex, Cheshire, England): 30 

m, 0.25mm ID, 0.25 um Film Thickness. A number of different elution protocols were 

trialled to attain separation of reagent and SCFA peaks over an appropriate run-time. In 

order to produce distinct peaks, we adapted the original GC protocol as follows:  

 

1) 2M sodium hydroxide (NaOH) rather than 1M NaOH was used to counteract the 

acidity of the external standards in order to match the pH of the sample  

2) We substituted hydrochloric (HCl) acid for orthophosphoric acid (PO) as we 

discovered that PO contaminates ether and produces an augmented peak with 

tBDMS.  
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3) Acetonitrile (CH3CN) was added to improve the mixing of reagents and polarity of 

the solvent mix in order to optimise the tert-Butyldimethylsilyl derivative group. 

 

As such, the successful reagent was methyltertiarybutylsilyl trifluoroacetamide 

(MTBSTFA). The protocol was as follows (see Appendix 2 for preceding trial protocols 

and external standards): 

 

iii) tBDMS: Final Protocol 

25mg dry weight stool sample was diluted with 100 ul distilled H2O. A further 100 ul HCl 

and 20 ul internal standard were added, and vortexed. 1000 ul ether was then added, and 

800 ul immediately extracted. 100 ul of this was seconded into a separate glass tube with 

200 mcl of 20% acetonitrile/tBDMS (160 ul acetonitrile, 40 ul tBDMS), resulting in 300 ul 

in total. The bottles were then placed on a hotplate for 60 mins at 60
0
C, prior to being 

loaded onto the GCMS. Chromatography was performed on a Trace GC 2000 Flame 

ionisation detector Gas Chromatograph with an Autosampler AS2000 by ThermoQuest CE 

Instruments, 1998. Chrom-Card for TRACE software was employed (Thermoquest CE 

instruments, 1998, Milan for Windows 1995, Version 1.00). Two different columns were 

used in the development of these protocols. These were: Zebron Capillary Column 

Nitroterephthalic acid modified polyethylene glycol by Phenomenex, Cheshire, England. 

15m x 0.53mm Internal Diameter x 1.00 um Film Thickness; and a Dimethylpolysiloxane 

column (ZB-1, Phenomenex, Cheshire, England): 30 m, 0.25mm ID, 0.25 um Film 

Thickness. Each employed fitted needles with 10ul syringes, with methanol used as needle 

cleaner. The following carrier gases and their flow rates were used (from the right carrier 

only): Nitrogen (30ml/min), Air (350ml/min), and Hydrogen (35ml/min).  

 

Peak identification was the most difficult aspect of the method development, requiring 

meticulous and numerous repeated analyses (see Appendix 2). During several GC trial 

protocols, the internal standard peak was too small to integrate, and then once an 

appropriate peak was established through manipulation of reagent/sample ratios, the peaks 

of caproic acid and the internal standard could not be baseline separated to ensure accurate 

quantification of both. Despite several attempts at many different run and ramp 

time/temperature combinations (see Appendix 2), the peaks corresponding with C5 (valeric 

acid, commonly found in formula milks) and our internal standard (2EB) could not be 

adequately separated, leaving quantification of these SCFAs impossible.  At a GC Ramp 2 
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run of 5.0, 3.5, 3.0, 2.5 and 10.
0
C/min, the best separation that could be achieved was 2 

peaks, around 10 seconds apart, but with no clear baseline separation between. Since it was 

considered that C5, as a SCFA found in formula milks, was likely to be seen in significant 

quantities in the stool samples from our population, delineation of this peak without 

interference from other SCFAs or reagents was imperative to ensure accurate 

measurements.  

 

As such, the same dry weight samples were extracted and re-run using the GCMS. 3-

methylvaleric acid (3MV) was added as the internal standard as per the tBDMS protocol 

after several trials ensuring that its peak could be separated from 2-ethylbutyric acid (given 

they are isomeric) according to manipulation of run and ramp times.  

 

iv) Method development: derivatisation by tetra-Butyldimethylsilyl (tBDMS) to 

identify lactate by GCMS 

 

The GCMS extraction protocol for the GCMS was identical to that of the GC. As such, the 

following run and ramp times were used for both protocols: Run time: 10.67 mins; initial 

hold time: 1 min at 80
0
C; Ramp 1: increasing by 15C/min to 210

0
C; Hold time: 1 min; 

Equilibration time: 0.25 mins; Max Temp: 260
0
C. Given the use of both GC and GCMS 

methods, we further assessed the intra-assay variability of these methods, once 

standardisation of protocols and concentrations was applied to all samples, thus evaluating 

the potential for all future samples to be performed using GCMS, and render the GC-FID 

redundant. The GCMS settings are detailed in Appendix 2. 
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2.3.4) Calprotectin Analysis by Enzyme Linked Immunosorbant Assay 

After initial decanting of thawed samples, their wet weights were recorded and were frozen 

at -80
0
C until analysis. Within a washed extractor hood, they were thawed again at room 

temperature and analysed per patient recruited. The PhiCal Calprotectin ELISA kits were 

used for precision assay (PhiCal, from Calpro, Norway, distributed via Firefly Scientific, 

Manchester, UK), and their protocols were used with minor in-house adaptations. 

 

Protocol 

Samples were thawed at room temperature within the extractor hood, weighed and 

transferred by loop into conical tubes. A faecal extraction buffer was prepared as such: 90 

mls FEB added to 135 mls distilled H2O into a sterile bottle and immediately refrigerated. 

A washing solution was then prepared adding 50 mls of pack solution to 950mls distilled 

water, and refrigerated. A sample diluent was made up using 20mls of pack diluent added 

to 180 mls of distilled water, covered with aluminium foil to prevent light degradation. 

Other solutions pre-made in the pack and ready to use comprised: an enzyme antibody; and 

p-nitrophenyl phosphate.  

  

The centrifuge (Thermo Heraeus Fresco 21) was switched on to allow its temperature to 

fall to -5
0
C for combined refrigeration of samples during centrifuging. The appropriate 

adjusted FEB volume per wet weight of faecal sample was pipetted into each blue conical 

tube (between 2- 6 mls – see Appendix 3) All stool dilutions were adjusted for a factor of 

0.049 in order to allow precision to the milligram per wet weight sample. Each tube was 

hand shaken and then vortexed for 30 seconds. All tubes were then mounted on a shaker @ 

1200 rpm for 30 mins. Three sets of clip cap eppendorfers were placed into 3 racks, and 1 

to 1.5 mls of homogenate was extracted per tube. These tubes were placed in the centrifuge 

after balancing @ 10,000 xg for 20 mins @ 2 – 8
0
C. One ml of supernatant was then 

seconded into a second eppendorfer tube. These were again placed in a refrigerated 

centrifuge at 5 mins @ 10,000 xg @ 2-8
0
C. A further 500 µl was decanted into a third 

eppendorfer. These were then centrifuged once more in a mini-centrifuge at room 

temperature for 5 mins. 

 

Samples were stored as required at this point in a -20
0
C freezer. Thereafter, 980 µl of 

sample diluent was pipetted into new tubes. 20 ul of supernatant was added to each 980 µl 

sample diluent tube, rinsing the tip in the 980 µl tube. All the other tubes at this point from 
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sets 1 + 2 were discarded in incinerator bins. Taking the plate and sealing foils from the 

PhiCal kit, the plate was labelled horizontally from 1 to 12 as per the guidance sheet. 

Precision assay yellow 100 µl Finntips were used for pipetting from this point onwards. 

Each small bottle of standards were removed from the kit and shaken by hand. 100 µl of 

was pipetted into the appropriate wells according to the labels, including 2 blanks. 100 µl 

of Sample Diluent only was added to the blank wells. Each sample of stool supernatant 

was again vortexed and 100 µl was pipetted into each well. A seal was placed on top of the 

plate, which was then placed on an incubator/agitator for 45 minutes. A large filter needle 

was used to filter 1M NaOH into a 10 ml universal container, and the wells were aspirated 

with a purpose built multichannel pipette, and then washed with 250 µl washing solution 

on five occasions. The plate was inverted after each wash-out onto green towels and tapped 

on all well openings to remove any washing solution. The Enzyme Conjugate Antibody 

(ECA) bottle was inverted and 100 µl ECA was added to each well with Eppendorfer 

multichannel pipette and finntips. The reverse pipetting technique was employed in order 

to ensure precision measurement of a high viscosity liquid – the pipette was fully 

discharged and sample taken up, before being pressed to the half point mark to accurately 

decant into the well, before taking up the next sample in releasing the pipette plunger fully 

to its original position. The plate was then re-sealed again and placed on the horizontal 

plate shaker for 45 mins. All washing steps were repeated as before. 100 µl pNPP was then 

added to each well. The plate was covered with foil and left at room temperature in 

darkness for 20 – 30 minutes, with 5 minute checks for reaction. At point of reaction, the 

plate was retrieved and 100 µl of 1M NaOH was added to each well as a stopping solution. 

The plate was then read by a microtiter plate reader (Multiskan, Thermo) plate reader, 

under Skanit software. Each plate was read at a cubic spline calibration curve and those 

with an intra-assay variability of >10 % were rechecked on a second plate. The mean of the 

two duplicates was taken as the final reading.  

 

Calprotectin has been detected in breast milk in previous studies (albeit at extremely low 

levels (Bjorkstrom, Hall et al. 2009)) and, as such, this assay was also performed upon 

human breast milk from mothers of infants at varying gestations up to 32 weeks, as per the 

inclusion criteria. For this, the 100 µl sample was decanted after thawing at room 

temperature in a sterile extractor hood, and treated as per the faecal samples in terms of 

additions and supernatant extractions.  
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2.3.5) Secretory IgA Analysis by ELISA 

This part of the study was performed by Miss Mandy Wenwen, Dr Emilie Combet-Aspray, 

and myself, and was also presented as Miss Wenwen’s Master’s project, 2010. Given that 

samples for SIgA were taken last on the study protocol, 34 infants were included in this 

part of the project. 

 

Total SIgA titres were determined by a quantitative enzyme linked immune assay (ELISA) 

by Immunodiagnostik AG, Bensheim, Germany. Stool samples were collected over the 

first 4 weeks of life from 34 of the 56 recruited infants, and stored at -20°C. 

Approximately 100 mg of stool sample were weighed with loops and transferred into 

plastic tubes, before resuspension in 5ml wash buffer from the ELISA kits, mixing and 

vortexing (Fisher Whirli-mix) for at least 30 seconds. Accurate weights were recorded for 

dilution purposes. After centrifugation of 1 ml stool suspension for five minutes at 13000 

rpm, the supernatant was diluted 1:250 in wash buffer for analysis. The final dilution factor 

was approximately 1:12500 (for a 100 mg sample), and the samples analysed in this study 

also included one milk sample per week for four weeks from six mothers who expressed 

breast milk for their infants, of whom five who were exclusively breast milk fed until the 

end of the recruitment period. 100 µl of breast milk from each sample was diluted to 

1:20000 for analysis.      

 

The assay procedure was performed according the manufacturer’s instructions. Controls, 

standards (100 µL) and diluted samples (stool or milk) were added to the ELISA plates in 

duplicate. After incubation on a horizontal shaking mixer for 1 hour at room temperature, 

samples were washed with 250 µL wash buffer, prior addition of 100 µL conjugate 

(peroxidase-labelled mouse anti–SIgA). The plate was incubated for one hour, and washed 

as described previously. The substrate (100 µL of tetramethylbenzidine) was added and 

incubated at room temperature for 10 minutes before addition of 50 µL of ‘stop’ solution: 

sulphuric acid. The absorbance was determined with a microtiter plate reader (Multiskan, 

Thermo) at 450 nm against 620 nm as reference.   

 

In order to obtain the concentration of SIgA in different samples, a calibration curve was 

conducted according to the concentrations of standardised samples and their corresponding 

absorbencies. The sample concentration was calculated using the standard curve and 
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multiplying the results by the dilution factor. Samples with high coefficient variation (5%) 

were reanalyzed if sample volume was sufficient.  
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2.3.6) Molecular techniques: Temporal Temperature Gel Electrophoresis 

The following protocol was developed and performed by internal collaborators Dr Kostas 

Gerasimidis, Clinical Lecturer in Clinical Nutrition, and postgraduate student Miss Katja 

Brunner, in conjunction with myself. This collaboration led to Miss Brunner’s Master’s 

project in 2010. Due to time and cost constraints, 4 gels were run, containing samples from 

22 infants. Meconium samples were excluded. Bands were compared before and after NEC 

in two groups of infants: those mixed versus exclusively maternal milk fed. 

 

i) DNA extraction from faeces 

DNA was extracted from 200 mg of faeces per sample. A probiotic powder (VSL3 

containing 8 strains: Streptococcus thermophiles, Bifidobacterium breve, longum, and 

infantis, Lactobacillus acidophilus, plantarum, paracasei, and delbrueckii (subspecies 

bulgaris; Ferring Pharmaceuticals, West Drayton, UK)  served as a standard for TTGE 

analysis. Faeces were suspended in 250μL of 4 M Guanidine Thiocyanate 4 M/Tris-Cl 0.1 

M (pH 7.5) and 40 μL 10% N-Lauroylsarcosine, vortexed (Fisher Whirl Mixer, Heidolph 

REAX top), shortly centrifuged, and incubated for 10 mins at room temperature. 500 μL of 

5% N-Lauroylsacrosine/Phosphate buffer 0.1 M (pH 8.0) was then added, and the resultant 

slurry homogenised and incubated on a dry bath (Techne Dri-Block) at 70°C for one hour. 

750 mg 0.1mm sterile zirconia/silica beads were added and bacterial cells were ruptured 

twice with the Bead-Beater (MP FastPrep-24) for 3 mins at 4.5 m/s with intermittent 

incubation on ice. 15 mg polyvinylpyrrolidone (PVPP) was added, shaken (IKA Vibrax 

VXR Basic; ~1300 motions/min) and centrifuged for 3 minutes at 15 000 x g and 4ºC. The 

supernatant was recovered in a new sterile 2 mL tube and the pellet was washed three 

times with 450μL TEN-P buffer. The recovered liquid was then centrifuged for 10min at 

20 000 x g and 4ºC and the supernatant split in two 2mL and one 1.5mL tubes (2 x 

750μL/1 500 μL). DNA was precipitated by incubating for 10 minutes in isopropanol (2  x 

1000μL/ 1 x 750μL). The solution was then centrifuged for 5 minutes at 15.000 xg, the 

supernatant was discarded, and the pellet was resuspended in 225 μL phosphate buffer 0.1 

M (pH 8) and 25 μL potassium acetate 5 M, and left in the fridge overnight. The next day, 

the three tubes were reunited into one new 2 mL tube. Five μL RNAse (10 mg/mL) was 

added and incubated at 35ºC in a dry bath for 45 minutes. DNA was precipitated with 50 

μL 3 M sodium acetate and 1 mL ice cold 100% ethanol and incubated in the freezer for 1 

hour. The sample was centrifuged for 10 minutes at 15000 x g, the supernatant was 

discarded and the pellet washed 3 times with 800 μL 70% ethanol. DNA yield was left to 
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dry under the sterile bench for 1 hr and was then resuspended in 100 μL sterile water and 

stored at -20ºC. 

 

The DNA extract was measured by spectrometry at 260nm to estimate DNA quantity, and 

the ratio of 260 nm/280 nm and 260 nm/230 nm was taken to estimate impurity, with 

protein and phenol respectively. Results were compared with those received by agarose gel 

electrophoresis (1 % agarose gel, stained with ethidium bromide). For seven subjects the 

agarose gel could not detect DNA. 

 

ii) PCR amplification and optimisation of the protocol 

A hot star PCR was performed to amplify the V6-V8 regions of bacterial 16S rDNA gene. 

Primer sequence and thermocycler conditions are shown in Table 1. For the initial protocol 

each PCR reaction tube contained 15 μL Hot star Taq Mastermix (Qiagen, France), 0.6 μL 

primer L, 0.6 μL primer U, 12.8 μL water and 1 μL DNA template (1:100 dilution) and run 

in the thermocycler (MJ research, USA) with 30 cycles. PCR yield was tested on a 1.5% 

agarose gel stained with ethidium bromide. 

 

Primer 
Forward primer (5’-3’) 

Reverse primer (3’-5’) 

U968-5’ Gcclamp GAA CGC GAA GAAa CCT TAC 

L1401-GCG TGT GTA CAA GAC CC 

Thermocycles 

Activation 

Denaturation 

Annealing 

Elongation 

 95ºC for 15min  

 97ºC for 1 min  

 58ºC for 1min 

 72ºC for 1 min 30sec  

 72ºC for 15 min 

 4ºC until end 

Table 12: Primer sequence and conditions of the PCR thermocycler 

 

The initial conditions for PCR reaction failed to obtain PCR products for most of the 

samples, due possibly to the presence of PCR inhibitors found in the stool samples, such as 

phenolic compounds, EDTA, fats, and/or bile acids (Kreader 1996, Al-Soud 2005, 

Oikarinen 2009). In the SCFA analysis, it was noted that prior to ether extraction, diluted 

stool samples were markedly ‘fatty’, and it is considered that this is the cause of the lack of 

DNA yield in seven members of our cohort. In order to optimise this protocol a series of 

alterations were performed and tried on a subset of samples.  

The optimisation process included the following steps (Appendix 4): 

30/35 

cycle

s 
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1. Changes in the dilution of the DNA template to either increase the amount of DNA 

or reduce the amount of potential PCR inhibitors.  

2. Changes of reagents and increased volume of Mastermix and primer.  

3. Addition of bovine serum albumin (BSA) in a concentration of 0.04 % w/v to bind 

PCR inhibitors (Al-Soud 2005). 

4. A second extraction of the DNA with Phenol/Chloroform method:  

DNA was emulsified three times with equal volume 

phenol:chloroform:isoamylalcohol (25:24:1) and separated by centrifuging at 

20,000 xg for 5 mins. The aqueous phase was recovered and washed twice with 

equal volume of chloroform. DNA was precipitated on ice with 0.1 volumes of 3M 

sodium acetate and 2 volumes of 100 % ethanol. 

5. Incubation in SDS and Proteinase K: 

20 μL DNA extract was diluted in 280 μL water. 36 μL 10% w/v SDS and 16 μL 

10 mg/mL Proteinase K solution were added and incubated at 45°C for 2 hours. 

DNA was precipitated on ice with 0.1 volumes of 3M sodium acetate and 2 

volumes of 100 % ethanol.  

6. Increase in number of PCR cycles from 30 to 35 cycles.  

 

iii) Optimised PCR protocol 

DNA extracts were incubated in SDS and Proteinase K. PCR reaction tubes contained 15 

μL Mastermix, 0.6 μL of each primer, 11.6 μL milliQ water, 1.2 μL BSA 50 % w/v 

solution and 1 μL DNA template (Dilution 1:50). PCR reaction was run for 35 cycles. For 

those samples that did not show PCR products on the agarose gel, the PCR reaction was 

repeated with a DNA template dilution of 1:20 and the best result was then used for TTGE 

analysis (Table 13). 
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 Infants DNA Dilution 

  Sample 1 Sample 2 

EBM A 1:50 1:20 

 B 1:50$ 1:20 

 C  1:20 1:50 

 D  1:50 1:20 

 E 1:50 1:50 

 F 1:20 1:50 

 G 1:50 1:50 

 H 1:50 1:50 

MF I 1:50$ 1:20 

 J 1:50$ 1:20 

 K 1:50 1:50 

 L 1:50$ 1:50 

 M  1:50$ 1:50 

 N  1:50~ 1:20 

 O 1:50$ 1:50 

 P 1:50 1:50 

 Q 1:50 1:50 

 R 1:50$ 1:50 

 S 1:20 1:50 

 T 1:50 1:20 

 U 1:50 1:50 

 V 1:50 1:50 

$ no DNA yield on agarose plate, ~ no PCR band 

 

Table 13: DNA dilutions for PCR, noting those with and without DNA yield (Abbreviations: DNA = 

deoxyribonucleic acid; PCR – polymerase chain reaction; EBM = expressed breast milk; MF = mixed fed)
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iv) Temporal temperature gradient gel electrophoresis (TTGE) 

For the TTGE polyacrylamide gel 19.6 g of urea was diluted in 22.6 mL of MilliQ water 

and 1.17 mL 50x TAE buffer was added once the urea was dissolved. 9.7 mL 

acrylamide:bisacrylamide was added and the mixture was filtered under vacuum. On ice, 

402 μL 10% ammonium persulfate (APS) and 40.2 μL tetramethylethylenediamine 

(TEMED) were quickly added to the solution above and filled in a glass plate sandwich 

assembly (1mm) with the help of a syringe and then left to polymerise. After 

polymerisation the gel was repeatedly washed with 1.25 % TAE buffer. The TTGE tank 

with 1.25 % TAE buffer was preheated to 66°C and the washed gel was loaded with a 

mixture of PCR product (20 μL for samples, 10 μL for VSL3 standard) and the same 

amount of loading dye (0.05 % bromophenol blue/ 0.05 % xylene cyanol).  

 

For alignment of the samples, a pre-run was performed at 66°C on constant 20V for 20 

mins. After that the TTGE was run at constant 64V and 0.3°C ramp rage for 16 hours until 

the temperature reached 70.5°C. The gel was stained with 200 mL 1.25 % TAE and 20 μL 

SYBR Green (Roche Diagnostics, Germany) for 20 mins under constant shaking and then 

destained in 1.25 % TAE buffer for 5 mins. Images were captured under UV light (Sygene 

InGenius LHR Gel Documentation System) with GeneSnap (see figure 95 e) for a 

simplified schematic of the process). 

 

v) Analysis 

Gels were analysed by using Quantity One software (Version 4.5.0, BioRad). Bands were 

detected by comparing several pictures taken at different exposure values and manual 

changes of contrast, light and gamma values. Results were interpreted as followed: 

 

 Species richness was defined as the number of species present in a community 

(Begon M 2006) and was therefore calculated by summing up the number of bands 

detected per lane.  

 

 Species turnover was calculated by the band profile of one individual at two 

different time points. Bands were divided in resistant species (present in Sample 1 

and 2), extinct species (present in Sample 1 but not 2) and immigrant species 

(present in Sample 2 but not 1) to estimate fluctuations of the bacterial community 

over time (Begon M 2006). 
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 Similarity index was calculated by Quantity one using the Cs-similarity equation: 

 

 Cs 
  

     
  x 100 

 

- where ‘a’ and ‘b’ represent the number of bands for the first sample and second 

sample respectively and ‘j’ the number of common bands between the two samples 

(Schwiertz, Gruhl et al. 2003). The similarity index was calculated for intra-

individual comparison to estimate changes during the two time points within the 

same infant and for inter-individual comparison of the two groups for the second 

sample only. Cs can only be calculated for samples run on the same gel. TTGE gel 

1 and gels 2+3 were run with a sample set of each individual of the EBM and MF 

group, respectively and TTGE gel 4 contained the second sample of all MF infants. 

 

 Relative abundance of species within the population was defined as the number of 

samples presenting a species divided by the total number of samples on the gel.  
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2.3.7) General Statistical Analyses and Data Interpretation 

Microsoft Excel 2010, SPSS 16.0.2, and Minitab 16 were employed to interpret and 

display results. All were both encrypted and anonymised. The following group sets were 

considered: data from the entire cohort by week; gestational groupings; feed regimen 

(exclusively maternal expressed breast milk versus mixed breast milk and formula); 

presence or absence of necrotising enterocolitis, by all-stages of NEC, and stages ≥ 2a. 

Each group was also considered by weekly analysis. All data sets were subject to normality 

tests using the Anderson-Darling method. For normally distributed data, paired or unpaired 

T-tests were performed, and means with standard deviations reported. Kruskal Wallis tests 

were used for non-normally distributed multiple group analyses, followed by Mann-

Whitney U testing if significant p values were identified. Medians and interquartile ranges 

were therefore reported. For the SIgA analyses, non-normal data were log transformed 

prior to using T-tests, yielding mostly normalised data. This was secondary to the personal 

preference of the collaborators involved in these analyses. Proportionate analyses were 

performed using either chi-squared or Fisher’s exact T-test. Where applicable, the Yates’ 

correction was applied to the chi-squared test, and the resultant p value recorded. 

Correlations were performed using Pearson’s test. For all boxplot graphs, the midline 

represents the median, the upper and lower borders of each box denote the interquartile 

range, and the whiskers signify the reaches of the fourth quartile. Outliers are signified by 

asterisks (*). For bar charts, the upper limit of each bar represents the mean or median, and 

the whiskers denote either the standard deviation, or interquartile range, respectively. 

These are clarified on each legend.  It should be recognised that within each graph, 

significant p values of note are represented by the symbol ‘’. Within each table of 

results, the asterisk symbol ‘*’ is used to denoted significant p values. In all cases, p values 

of <0.05 were considered significant. In conjunction with Dr David Young, statistician at 

NHS Greater Glasgow and Clyde, and the University of Strathclyde, further multivariate 

analysis was attempted, but considered inappropriate given the wide variation in non-

normal histograms.  

 

Group and National Weight Z Scores 

Two different types of weight Z scores were calculated for the cohort over 5 separate time 

points (birth, and the ends of week 1, 2, 3 and 4). Where the phrase ‘z score’ is used, this in 

all cases refers to the ‘weight z score’. The first of these were labelled as either ‘group’ or 

‘cohort’ z scores and was calculated by subtracting the mean from the raw score and then 
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dividing by the standard deviation (using the ‘standardize’ function in Excel). The second 

Z score was derived from national data, used with kind permission by H Pan and TJ Cole 

(Cole 1998, Pan 2012). For this, the ‘LMS Growth’ add-in programme was downloaded 

(Pan 2012), and each infant’s gestational age at birth, and weight at each of the five time 

points was inserted into the calculator in order to generate the corresponding z score. For 

the purposes of this thesis, these z scores were then referred to as ‘National’ z scores.   

 

Post-hoc analyses 

 

Since no prior audits could be ascertained, the ‘resting’ incidence of NEC and severity was 

unknown in these neonatal units. As such, once the spike in NEC was observed in this 

cohort, it was clear that we needed to explore correlations between clinical and 

demographical data, as well as all analytes; the former was performed to attempt to elicit a 

common cause of such a high incidence of NEC, and the latter to investigate the potential 

for these to act as diagnostic and/or prognostic ‘biomarkers’, whilst accepting that this 

study was not powered to NEC.  

 

Specifically, the following statistical tests were performed post-hoc:  

1)  Bell’s Stage NEC: clinical and demographical comparisons by severity (P163-165) 

2)  All SCFA ratiometric analyses. After multi- and univariate analyses revealed 

significant differences in (albeit low) BCFA concentrations, we sought to 

determine ratiometric changes according to demographics, feed type, and NEC. In 

so far as can be ascertained, ratiometric analyses have not been published in this 

patient group to date, but are often used in studies on adults (Walker 2005) (P189-

204). 

3)     Calprotectin analyses by Bell’s Stage severity of NEC, in particular levels before 

and after stoma formation (P239-242). 

4) SIgA analyses: correlations between stool and milk titres illustrating a significant 

difference between later stool and earlier milk levels (P255).    
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Chapter 3 

Clinical and Demographical Results 

Introduction 

The results are presented in three separate chapters: clinical and demographical results; 

bacteria and bacterial metabolites; and inflammation and immunological markers. Each 

includes a detailed discussion thereafter, including comparison with the evidence base (as 

discussed in chapter 1), and in reference to the methodologies (as described in chapter 2). 

 

3.1) Study population 

Numbers recruited, excluded and included are illustrated in figure 10 below. Data gathered 

included clinical attributes (ventilation, antibiotics, feeds, for example), demographical 

information (for example: gestation, gender, birth weight, and maternal deprivation level), 

and markers of illness (including sepsis, IVH and NEC). Correlations were then sought 

between clinical and demographical factors of interest, after which stool analytes were 

correlated with particular clinical and demographical features of note. All data was 

compared between the individual recruiting NICUs.  

 

Figure 10: Quorum chart of recruitment sequence 

All eligible infants between 

24/4/09 – 20/02/10 

= 67 

Minus: 

1 inadvertently recruited 

(>1.5Kg) 

2 Did not consent 

3 Died before recruitment 

Recruited = 61 

Withdrawn as: 

3 Transferred out 

2 Father withdrew consent 

Final analysis = 56 
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Table 14: Included Infants – Whole Study Population Demographics (n=56) 

Parameter Raw data CI/p value 

Male/female: n (%) 20/36 (37.5/ 62.5) ♀>♂ 0.031 

CRIB 12 hours before recruitment (M,sd)  2.5, 2.4 1.856, 3.144 

DepCat Score (M,sd) 4.7, 1.98 4.182, 5.247 

AEDF (n,%) 8, 14 NS 

IUGR (n,%) 7, 12 NS 

MOD: SVD Vs LUSCS (n,%) EMLUSCS: 37, 66 

ELLUSCS: 5, 8.9 

SVD: 14, 25 

<0.00001 

PPROM (n,%) 11, 19.6 NS 

Intrapartum antibiotics given (n,%) 13, 23.2 NS 

Gestation, weeks (M,sd) 28.0, 2.2 27+3.36 days, 28+4.6 days 

Birth weight, g (M,sd)  1029.3, 258.2 960.2, 1098.5 

Apgar at 10 (M,sd) 8.7,1.79 8.46, 9.059 

Umbilical lines? (n=UVC only/None/Both) 9,18,29 Both>None+UVC: <0.05 

Days Ventilated (M,sd) 9,12.7 5.51, 11.38 

Days CPAP (M,sd) 9.4, 10.5 5.88, 10.62 

PDA surgical ligation? (n,%) 8, 14 NS 

ROP laser surgery? (n,%) 5, 9 NS 

IVH? (n,%) Total: 12, 21.4 

Grade I: 5; Grade II: 5; 

Grade III: 0; Grade IV: 2 

NS 

Mortality (n,%) 4, 7.1 0.0018, 0.14 

There were significantly more girls than boys within the cohort (p = 0.032), and most infants were delivered by LUSCS (p<0.00001). 

Note all infants had antenatal Doppler studies as per GG+C policy pre-2010 RCPCH Guidelines. (Abbreviations: CRIB = Clinical Risk 

Index in Babies score; Depcat = deprivation category; AEDF = absent end diastolic flow; IUGR = intrauterine growth restriction; PDA = 

patent ductus arteriosus; ROP = retinopathy of prematurity; MOD = method of delivery; SVD = spontaneous vaginal delivery; LUSCS = 

low uterine segment caesarean section; IVH = intraventricular haemorrhage; CPAP = continuous positive airway pressure; UVC = 

umbilical venous catheter; PPROM = premature prolonged rupture of membranes).  
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Significant Study Population Demographical and Clinical Parameters:  

3.1.1) Gender by gestation and birth weight:  

 

          

Figure 11: a) (left) Gender by gestation; there were significantly more girls than boys in the cohort 

(p=0.032); b) (right) Gender by birth weight; the 1001-1250g category had the most infants (: p=0.004).  

denotes a significant p value.  

 

There were significantly more girls than boys in the study group and throughout all 

gestations (see figure 11; study group: 36 Vs 20, p = 0.032; all gestation categories 

p<0.05). No gestational group differed significantly in male/female ratio. There were 

significantly more infants within the 1001-1250g weight category than any other group (p 

= 0.004). The sub-600g birth weight group were notably exclusively female.  

 

 

Figure 12: Gestation versus birth weight, showing a significant correlation with p<0.0001.  

 

The study group was normally distributed with respect to birth weight and gestation (see 

figure 12). There was a positive correlation between increasing gestation and higher birth 

weight. IUGR and SGA levels were low.  
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3.1.2) CRIB in the preceding 12 hours prior to recruitment:  

 

 

Figure 13: CRIB scores by gestation; those at lower gestations showed significantly higher scores: 26-28 

week group were significantly higher than those of the 28-30 week group (p=0.0001), and of the 30-32 week 

group (p<0.00001).  denotes a significant p value. 

 

The Clinical Risk Index in Babies Score was developed by The International Neonatal 

Network as a prognostic tool for illness severity within the first 12 hours of life (Parry 

2003). It was adapted for the purposes of this study using parameters in the 12 hours 

preceding recruitment as a marker of illness requested by the Ethics Committee to ensure 

that the parents of the sickest infants were not approached. Infants with a CRIB of more 

than 15 (therefore >50% predicted mortality) were not recruited. This occurred on one 

occasion. This infant also had a Congenital Diaphragmatic Hernia and as such would have 

been excluded anyway on the basis of major congenital anomaly. Sadly, this infant died. 

As expected CRIB score was significantly lower for those born at higher gestations (see 

figure 13: 24-26 Vs 26-28: NS; 24-26 Vs 28-30: p = 0.0001; 24-26 Vs 30-32: p < 

0.00001). 

 

3.1.3) Method of Delivery:  
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Figure 14: Method of delivery, by gestation; significantly more infants were delivered by LUSCS 

(p<0.00001) than SVD. Most LUSCS were performed as emergencies (p<0.00001). 

 

Most infants were delivered by caesarean section (Figure 14: 75% Vs 25%, p < 0.00001). 

Of these, 88% were performed as emergencies (n=37, Vs n=5; p < 0.00001). This is 

significantly higher than Scottish statistics for live singleton births at all gestations, 

whereby 61% of all deliveries in 2010 were SVD (p < 0.00001). The incidence of elective 

LUSCS is higher in multiple births at all gestations (35% elective and 30% emergency 

LUSCS) in the UK (RCOG 2004). Note one SVD occurred precipitously at home.  

 

3.1.4) Multiparity and Chorionicity:  

 

 

Figure 15: a) (left) Singletons by Gestation; there were significantly more singletons than multips 

(p=0.0013), and twins were more likely to be of lower gestational age (significantly more twins at 24-26 

weeks than 30-32 weeks: p=0.031); b) (right) Chorionicity of twins within the cohort; most were dichorionic 

and diamniotic. MCMA = monochorionic monoamniotic; MCDA = monochorionic diamniotic; DCDA = 

dichorionic diamniotic. 

 

Multiparous pregnancies are at high risk of complications. Those sharing a placenta have a 

15% risk of twin to twin transfusion, and in pregnancies in which one twin has died in 

utero, the resultant morbidity and mortality risk for the surviving twin escalates. As figure 

15 shows, in this cohort there were significantly more singleton infants (p = 0.0013), and 

twins were most likely to be of lower gestation (24-26 weeks versus 30–32 weeks: p 0.031; 

24-26 versus 28-30 weeks, p = 0.041). Notably two infants were delivered as the surviving 

twin after the in utero demise of their sibling.  
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3.1.5) Depcat Scores:  

   

Figure 16: a) (left) Group Depcat scores by Gestation; scores were significantly lower at lower gestations 

when comparing those at 24-26 weeks with all other gestations (p<0.0172).  denotes a significant p value. 

b) (right) Glasgow versus Scotland Depcat Scores from the Carlisle Report, illustrating high levels of 

deprivation in Glasgow (McLoone 2004)  

 

The Depcat scoring system was designed as Scotland-specific measure of social 

deprivation. It is based upon demographical information including four census variables 

depicting employment status, overcrowding, social class, and material hardship, and is 

stratified according to postcode (see figure 16 b)). A higher score equates to higher 

deprivation. The mean score was 4.2 (sd 1.98). Those between 24-26 weeks had 

significantly lower Depcat scores than at other gestations (Figure 16 a): 24-26 Vs 26-28: p 

= 0.0172; 24-26 Vs 28-30: p = 0.0034; 24-26 Vs 30-32: p = 0.0391). This was contrary to 

our hypothesis that poor maternal health and social standing would result in higher rate of 

birth at lower gestations. This is believed to be due to the number of affluent couples 

conceiving by IVF, which carries with it a higher risk of complications and of multiparous 

pregnancy. Given this is a Scotland-specific score, there are no methods of comparison 

nationally, but it is clear from the updated 2004 report that Glasgow and Greater Glasgow, 

as defined by postcode sectors from the Greater Glasgow NHS Board areas, dominate the 

most deprived areas, with 30 % of the GGNHSB population contained within the highest 

deprivation score of 7 for Scotland. The study cohort very closely fit the Glasgow 

statistics, as illustrated below, but have a higher proportion of infants within the highest 

category of deprivation, as illustrated in figure 17: 
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Figure 17: Assimilated from study data, and the Carstairs Report, 2001, with raw data taken from Table 8, p 

13: Depcat Scores by percentage of health board populations within each category, comparing the study 

cohort, Glasgow and Scotland; the study cohort follows the Glasgow proportions closely, yet the study cohort 

at depcat 7 are significantly higher than the scottish figures (p=0.000001). 

 

Figure 17 shows that in category 7, that of the highest deprivation, there was no significant 

difference beteween proportion of study group and proportion of Glasgow health board 

population (p = 0.45). However the proportion of study group infants in category 7 is 

significantly higher than that nationally (p < 0.0000011).  

 

3.1.6) Apgars:  

   

Figures 18: a) (left) Mean Apgar scores at minutes 1, 5 and 10 of life; the score at minute 1 was significantly 

lower than minutes 5 or 10 throughout the cohort (p=0.00001);  denotes a significant p value. b) (right) 

Apgar score at 10 minutes by gestation, showing no significant differences. 

 

The Apgar score originated in 1953 as a method of newborn assessment, and is still 

recorded locally (Apgar 1953). Interpretation of scores is more difficult in prematurity, but 

still performed. Ten minute Apgar scores of less than 3 are associated with a poor 

outcome.  As figure 18 shows, there were no differences between Apgars in gestational 
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groupings, and all gestations showed a significant rise in Apgar between 1 and 5 minute 

scores (p = 0.00001). 

 

3.1.7) PPROM: 

 

Figure 19: PPROM and intrapartum antibiotics by gestation. No significant gestational differences were 

noted. 

 

Prolonged preterm rupture of membranes (PPROM) was defined as the prolonged, 

premature rupture of membranes before 37 weeks gestation for more than 72 hours, as per 

the regional guideline. As shown in figure 19, the incidence of PPROM was not significant 

in our cohort (p > 0.05), and there were no significant differences in frequency of PPROM 

according to gestational comparisons using chi squared analyses. There were no significant 

differences in administration of intrapartum antibiotics when stratifying according to 

gestation. All 11 mothers with PPROM were given intrapartum antibiotics, and an 

additional 4 mothers with urinary tract infections were also administered antibiotics 

starting in the immediate antepartum period, continuing before and after delivery. 

 

3.1.8) Pregnancy Induced Hypertension Contributing to Preterm Delivery:  

 

 

Figure 20: Mothers with PIH contributing to preterm delivery. There were no significant gestational 

differences. 
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Sixteen infants were delivered prematurely secondary to maternal pregnancy induced 

hypertension (28 %). This was not a significant proportion of the group. There were no 

significant differences between gestations (Figure 20: p > 0.05).  

 

3.1.9) Presence of Umbilical Lines, by gestation:  

 

 

Figure 21: UAC and UVC insertion by gestation; those of lower gestations were significantly more likely to 

have umbilical lines inserted (24-26 weeks versus all other groups: p<0.003).  denotes a significant p value. 

 

Although there are no national guidelines for UAC and/or UVC placement in preterm 

infants, there is a regional guideline recommending attempted insertion for all preterm 

infants requiring respiratory support, and line insertion was significantly more common at 

lower gestations. In this study 100 % of extremely preterm infants had both UAC and UVC 

sited (Figure 21: 24-26 weeks vs 28-30 weeks, p = 0.0001; 24-26 weeks vs 28-30 weeks, p 

= 0.004, 24-26 vs 30-32 weeks, p = 0.003). Fewer more mature infants (30-32 week group) 

had both umbilical lines sited (1 of 12, 8 %). Only 5 infants had cord gases immediately 

after delivery, although routine cord sampling for this purpose is not part of a 

recommendation by the RCOG.  

 

3.1.10) IUGR and AEDF:  

IUGR was defined as being <10
th

 centile for weight, as stated by the NICE Guidelines for 

Routine Care for the Healthy Pregnant Woman (Health 2008). Additional definitions of 

asymmetrical or symmetrical growth restriction were not considered. 
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Figures 22: a) (left) IUGR by gestation was not a significant phenomenon within the cohort; b) (right) AEDF 

by gestation also showed no significant differences 

 

The term intrauterine growth restriction rather than ‘small for gestational age’ was used to 

denote infants in whom a pathological cause of IUGR, rather than a constitutional SGA 

was evident owing to their prematurity. None of the infants with IUGR were delivered 

because of their poor IU growth. The absence of end diastolic flow was defined by 

consultant obstetricians and senior sonographers in each unit. As figure 22 illustrates, very 

few infants were growth restricted or had AEDF in utero, and there were no significant 

gestational differences. IUGR was not significant within the study cohort (p > 0.05), at 

12.5 %. AEDF did not correspond closely with IUGR. Eight infants were noted antenatally 

to have AEDF (14 %, p > 0.05). It is possible that more would have been identified had 

these pregnancies progressed with more scans able to identify these factors.   

 

3.1.11) Duration of Incubation: 

 

Figure 23: Duration of incubation, by gestation; infants at 30-32 weeks gestation showed an earlier transition 

to cot care than those at 24-26 weeks (p=0.0014).  denotes a significant p value. No other gestational 

differences were noted. 

Most infants remained incubated for the duration of the study period, but as expected there 

was a trend to earlier transfer to cot care in more mature infants (Figure 23: 24-26 versus 

30-32 weeks medians 27.8 vs 22.1 days, p = 0.0014). 
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3.1.12) Duration of Invasive and Non-invasive Ventilation:  

 

Figure 24: Duration of invasive and non-invasive ventilation, by gestation; those between 24-26 weeks were 

ventilated for longer than all other groups (p<0.0015). Conversely, they had a significantly lower duration of 

non-invasive (CPAP) ventilation over the study period (p<0.01), bar those at 30-32 weeks (p=0.10).  

 

As expected, the 24-26 week gestation infants were ventilated for significantly longer than 

those in any other gestational grouping (Figure 24: 24-26 versus all other gestational 

groupings: p < 0.0015). There were no significant differences between those at 26-28 

weeks and those at 28-30 weeks, or 28-30 versus 30-32 weeks (p = 0.06 and 0.36). The 

duration of CPAP non-invasive ventilation was significantly shorter in the 24-26 week 

gestation group as more infants remained invasively ventilated for longer (24-26<26-28 p 

= 0.014; 24-26<28-30 p = 0.016; 26-28<30-32 p = 0.01; 28-30<30-32 p = 0.02) and similar 

to the 30-32 week gestation group (p = 0.10). The highest median in the 26-28 week group 

reflects their shorter period of invasive ventilation but considerable levels of RDS 

requiring respiratory support. The incidence of RDS and thus any types of ventilation 

lessened for the later gestations.  

  

3.1.13) Intraventricular Haemorrhage: 

    

Figures 25: a) (left) IVH, by gestation; there was a low incidence of IVH within the cohort, and no significant 

gestational differences were noted. b) (right) Grades of IVH; note no infant incurred Grade 3 IVH. 

 

IVH diagnoses were taken from radiologist scans. Where these reports were not available, 

the opinion of the most senior doctor performing the scans was taken. The 24-26 week 

group had fewer but more severe IVHs, although this did not reach statistical significance 

0

10

20

30

40

50

24-26 26-28 28-30 30-32

D
ay

s 
o

f 
lif

e
 Vent

CPAP

0

5

10

15

24-26 26-28 28-30 30-32N
u

m
b

e
r 

o
f 

In
fa

n
ts

 

Gestation (weeks) 

No

Yes

5, 41% 

5, 42% 

0, 0% 2, 17% 
Grade
1

Grade
2

Grade
3

Grade
4

P>0.05 

 

 



 

 

152 

 

(Figure 25: p > 0.05 in all gestation comparisons). Both infants with Grade IV IVH also 

incurred periventricular leukomalacia. 

  

3.1.14) PDA ligation and Laser Surgery for Retinopathy of Prematurity 

The end points of PDA ligation and ROP surgery were taken as absolutes, as it was 

accepted that the decision to treat the duct pharmacologically or to perform surgical duct 

ligation is not consistent throughout units in the UK. Since the majority of preterm infants 

have a persistent ductus arteriosus in the neonatal period, many inconsequential, simply the 

presence of the duct was not recorded. ROP laser surgery however, has specific indications 

and as such is considered consistent throughout the UK.  

 

      

Figures 26: a) Surgical PDA ligation, by gestation; significantly more infants at 24-26 weeks received 

ligation than those at 30-32 (p=0.027);  denotes a significant p value. b) Laser surgery for ROP was 

significantly more common at 24-26 weeks than at any other gestation (p<0.03).  denotes a significant p 

value. 

 

There were significantly more infants at 24-26 weeks than 30-32 weeks gestation who 

underwent PDA ligation (Figure 26 a): p = 0.027), but other gestational comparisons were 

not significant. This may have been skewed by the higher morbidity and mortality rates in 

those of 24-26 weeks, affecting their ability to undergo surgery. All infants requiring laser 

surgery for ROP were less than 25 weeks gestation, as such far less than the surveillance 

parameters (<30 weeks and <1.5Kg), indicating excellent vigilance to national guidelines 

(Health 2008). This was significantly greater than at any gestation (Figure 26 b): p < 0.03), 

although there were no other significant gestational differences.  

 

Demographical and Clinical Data Omissions 

Few data was missing from demographical collection given the meticulousness of the 

nursing and medical records. Two missing drug prescription charts for two mothers meant 

that administration of intrapartum antibiotics could not be confirmed.  
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3.1.15) Mortality 

Four infants in the study died. The first two were twin girls (MCDA) delivered at 25 weeks 

gestation. One died from E.coli sepsis on day 26, and her sister with respiratory failure on 

day 62. Both incurred but did not succumb to NEC. The third infant was delivered at 23 

weeks and required surgical resection of NEC with ileostomy formation, and died suddenly 

on day 105 of life after a likely embolic event causing gut necrosis. Her parents declined 

the option of post-mortem examination. The fourth baby died on day 69 of life after 

reorientation of care secondary to respiratory failure. She had previously recovered from 

stage 2b NEC. All four infants weighed 1000 g or less at birth. Given that one of these 

infants died from late-onset, post-ileostomy NEC, thus the mortality from all-stage NEC 

throughout this observational study was 1.7 % (1 of n = 56 included infants). Mortality 

wherein the deceased infant had incurred NEC at any point was 5.3 %. All-cause infant 

mortality was 7 %, far lower than the national averages as reported by the EpiCure Study 

albeit these figures apply only to infants up to 26 weeks gestation (Costeloe, Hennessy et 

al. 2000). The rates quoted by the Office for National Statistics (England and Wales) are 

lower than the study mortality, which is attributed to their inclusion of infants between 32 

and 36 weeks gestation (Modi 2008). Records for Scotland, as published in the Scottish 

Perinatal and Infant Mortality and Morbidity Report of 2010, showed that 10.8 % of all 

infants delivered between 24 and 32 weeks gestation died in the neonatal period, and these 

deaths accounted for 41 % of all neonatal deaths regardless of gestation for the year 2010.   
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3.1.16) Study Population: Feed Types 

 

Figure 27: Venn diagram illustrating types of feed administered to study patients, showing the heterogeneity 

of milks used. The numbers indicate total number of infants fed using each type of milk over the study 

period. Most infants were fed a mixture of breast and formula milks. (Abbreviations: D/E/F = donor 

EBM/maternal EBM/formula; D/F = donor EBM/formula; DE = donor EBM/maternal EBM; EEBM = 

exclusive maternal EBM; E/F = expressed maternal EBM/formula; F = formula. Note none of the cohort 

were exclusively fed donor EBM for the duration of the study).  

 

The Venn diagram in figure 27 illustrates the heterogeneity of feeds for the study group, 

contrary to prior local audit data. 21 % were fed solely maternal EBM. 49 mothers 

expressed milk for their infants (87.5 %), of which 12 were exclusively fed maternal EBM 

during the study period (21 % of infants, vs 33 % in audit data). Note no infants were 

exclusively fed DEBM for the duration of the study period (vs 33 % in local audit). The 

total volume of DEBM used by all patients during the study period was just over 18 litres. 

Formula milk used was Nutriprem 1 (Cow and Gate) bar one infant who received less than 

100 ml of Aptamil (Milupa) – versus 33 % in local audit data.  

 

In a questionnaire, only four mothers reported being aware of ‘probiotic’ products and only 

two consumed these regularly with the purpose of replenishing their gut microbiota – one 

drank Actimel yoghurt drinks and the other took over-the-counter probiotic tablets from 

the high street retailers Holland and Barrett. The latter did so as she had previously 

delivered a daughter at 26 weeks who incurred NEC and although made a full recovery 

was seriously unwell for some months. However, given that all natural yoghurt contains 
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some probiotic bacteria, it is likely that they consumed probiotics without knowing or 

intending to do so.  
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i) Feed Regimen: By Volume 

Further data analysis revealed the following breakdown of feeds during the study period: 

 

Type of feed(s) 

given 

Infants 

(n,%) 

Total feed over 

study period (L) 

Total Feed Volume (L)  

Week 1 Week 2 Week 3 Week 4 

EEBM 12 21.813 2.352 

Med: 0.078 

 

4.925 

Med: 0.341 

6.075 

Med: 0.506 

 

8.460 

Med: 1.718 

EFM 1 6.685 .798 

 

1.893 

 

1.817 

 

2.177 

 

Mixed E/F 26 135.064 

% EBM: 53% 

14.402 
Med: 517.1 

 

34.035 
Med: 1.303 

41.247 
Med: 1.618 

45.378 
Med: 1.823 

DEBM 0 0 0 0 0 0 

Mixed D/E 5 6.965 

% EBM: 50% 

0.360 
Med: 0.038 

0.474 
Med: 0.098 

2.761 
Med: 0.615 

3.369 
Med: 1.004 

Mixed D/E/F 11 33.491 

% EBM: 10% 

D: 41% 

2.787 
Med: 0.163 

6.995 
Med: 0.786 

10.669 
Med: 1.101 

13.038 
Med: 1.272 

D/F 1 5.895 

%D: 11% 

0.466 

NA 

1.561 

NA 

1.723 

NA 

2.145 

NA 

TOTAL 56 209.914 

E: 101.36 

D: 18.308 

21.167 49.884 

 

64.293 74.568 

 

 

Table 15: Feed regimen by volume; except for the single infant fed a mix of donor EBM and formula, the 

other infants who were mixed fed received at least 50% of their feed as breast milk during the study period. 

(Abbreviations: EEBM=exclusive expressed breast milk; EFM=exclusive formula milk; E/F expressed 

EBM/formula; DEBM=donor expressed breast milk; D/E=donor/expressed breast milk; 

D/E/F=donor/expressed/formula; D/F=donor/formula). 

 

During this time period, the West of Scotland Donor EBM bank reported issuing 132 litres 

of donor breast milk to all 3 recruiting neonatal units, of which the DEBM usage by study 

patients accounts for only 13 % of this total. The remaining 77 % was devoted to use by 

the infants with Short Gut Syndrome and/or Intestinal Failure in RHSC NICU (personal 

communication, Debbie Barnett, 2012). It is therefore worth noting that in total, the 90 litre 

shortfall in EBM that was replaced by formula milk could have been covered by existing 

supplies from the Donor Bank. During this study there were no unit or regional feed 

guidelines, and as such feed increments were made on a case-by-case basis by individual 

staff members. A regional trust-wide feed policy is currently under review. 
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ii) Demographics According to Feed Regimen 

 

Feed regimen 

n = 
EEBM 

12 

EF 

27 

F 

1 

DE 

5 

DEF 

10 

DF 

1 

P values 

EEBM Vs 

Mixed 

Gestation (m,sd) 27.2, 2.1 28.7, 2 31.1 26.7, 
0.7 

26.7, 1.8 31.5 NS 

Birth weight (m,sd) 895, 241 1151.7, 

211.1 

1240 821.6, 

145.3 

896.1, 254.4 1200 NS 

Female (n,%) 9, 75 14, 51 0 4, 80 7, 70 1, 100 NS 

AEDF (n,%) 3, 25 2, 7.4 0 1, 20 2, 20 0 NS 

IUGR (n,%) 3, 25 1, 3.7 0 2, 40 2, 20 0 NS 

DEPCAT Score (m,sd) 4.67, 2.38 5.04, 1.67 4, 0 4.6, 
2.5 

3.8, 2.09 7 NS 

Mat PROM (n,%) 2, 16.6 4, 14.8 0 2, 40 2, 20 0 NS 

Intrapartum antibiotics (n,%) 3, 25 7, 25.9 0 2, 40 2, 20 0 NS 

CRIB Score (m,sd) 3.33, 2.46 1.4, 1.5 1, 0 5.4, 

2.07 

3.4, 2.83 1, 0 NS 

Apgars at 10 mins (m,sd) 8.72, 0.6 8.5, 2.9 7, 0 8.4, 
1.94 

8.9, 1.44 9, 0 NS 

Singletons (n,%) 8, 66.6 22, 81.4 1, 

100 

4, 80 5, 50 1, 100 NS 

Days incubated (m,sd) 25.5, 7.7 24.7, 6.3 25, 0 28, 0 27.8, 0.6 18, 0 NS 

Days ventilated (m,sd) 15.6, 12 4.3, 7.6 2, 0 12.2, 

14.4 

10.8, 12.19 1, 0 NS 

Days CPAP (m,sd) 13.08, 12.9 6.23, 7.9 4, 0 15.6, 
14.2 

10.9, 9.9 2, 0 NS 

IVH (%,n) 3, 25 4, 14.8 0 2, 40 2, 20 1, 100 NS 

PDA requiring ligation (m,sd) 4, 33.3 3, 11.1 0 1, 20 0 0 0.05* 

ROP requiring laser surgery (m,sd) 1, 8.33 2. 7.41 0 0 2, 20 0 NS 

No. episodes sepsis (m,sd) 1.42, 1.62 0.42, 1.02 0 1.6, 

0.54 

0.7, 1.05 0 NS 

Types of sepsis CNS, 

E.Coli 

CNS, E.Coli, 

Strep 

faecalis 

NA CNS CNS, E.Coli, 

Staph. Aureus 

NA NA 

Days Abx (m,sd) 18.17, 9.76 7.52, 7.41 5, 0 16, 

6.74 

12.7, 10.29 5, 0 0.01* 

Highest CRP (m,sd) 76.5, 69.76 30.6, 54.3 15, 0 24.3, 

16.76 

48.07, 56.4 19, 0 NS 

% MEBM Given (%,mls) 100, 

21813.45 

56.5, 

77451.4 

0 50.5, 

3520 

10.4, 3541.6 0 NA 

Day 1st feed (m,sd) 7, 9.8 2, 1.03 6, 0 2.8, 
0.83 

3.5, 1.26 3, 0 NS 

Day to full (m,sd) 19.6, 8.9 8.37, 6.22 3, 0 21, 

4.69 

13.5, 5.4 6, 0 0.002* 

Fortifier supplementation (n,%) 

  

2, 16.6 10, 37 0 0 3, 30 0 NS 

Meds 1 (m,sd) 0.08, 0.28 0.44, 0.57 2, 0 0 1.0, 1.05 0 0.035* 

Meds 2 (m,sd) 1.08, 1.37 2.37, 1.04 3, 0 0.6, 

1.3 

2.2, 1.75 2, 0 0.0246* 

Meds 3 (m,sd) 1.5, 1.73 2.74, 1.12 2, 0 2.6, 
2.6 

3.6, 1.89 3, 0 0.012* 

Meds 4 (m,sd) 1.75, 2.05 3.15, 1.58 2, 0 3.4, 

3.13 

3.9, 1.52 3, 0 0.02* 

NEC (n,%)  8, 66.6 11, 40 0 5, 100 7, 70 0 NS 

Mortality (n,%) 2, 16.6 1, 3.7 0 1, 20 0 0 NS 

Table 16: Demographics by feed regimen; those mixed fed had shorter durations of antibiotics despite no 

significant reduction in sepsis. They also reached full feeds quicker, and tolerated more oral medications than 

those EEBM fed. These findings may be skewed by smaller numbers within the EEBM group. 

Mixed fed 
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(Abbreviations: EEBM = exclusive maternal expressed breast milk; EF = expressed breast milk and formula; 

F = formula; DE = donor expressed breast milk and maternal expressed breast milk; DEF = donor, maternal 

and formula milks; DF = donor and formula milks; CRP = c-reactive protein; PROM = prolonged rupture of 

membranes; NEC = necrotising enterocolitis; AEDF = absent end diastolic flow; IUGR = intrauterine growth 

restriction; PDA = patent ductus arteriosus; ROP = retinopathy of prematurity; DepCat = deprivation 

category; CRIB = clinical risk index in babies score; IVH = intraventricular haemorrhage; MEBM = maternal 

expressed breast milk; Abx = antibiotics; NS = not specified.) 
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3.1.17) Birth Weight and Weight Gain During the Study Period 

 

Birth weights, weekly weights and all z scores were normally distributed. As a cohort, 

weight fell significantly between birth and the end of week 1, rising significantly week-on-

week thereafter. By week 2, the mean weight was then significantly higher than at birth (p 

< 0.01). Group Z score means varied between 0.18 to -0.06 throughout the study period, 

with no significant differences between any time points. However, in comparison with 

national data (WHO 1990 reference data, reanalysed 2009), z scores were consistently 

negative, and varied between -0.622 at birth, falling significantly to -1.34 at the end of 

week 1 (p < 0.0001). However, all other weeks showed no significant differences.  

 

Parameter Weight (g)  

(m, sd) 

Z score Study 

Group (m, sd) 

Z score for UK  

(m, sd) 

Birth  1029.357,  

258.1978 

0.07, 0.993  -0.622, 0.97  

End of wk 1 1008.25 

235.4517 

0.18, 1.055 -1.34, 0.93 

End of wk 2 1155.824 

239.5414 

-0.02, 1.0 -1.33, 1.05 

End of wk 3 1287.291 

339.3607 

-0.06, 1.0 -1.32, 1.03 

End of wk 4 1452.415 

404.1188 

-0.03, 1.0 -1.27, 1.10 

P Values Birth<1, 2<3, 

3<4, birth< 

2/3/4: <0.01 

NS Birth>Wk 1: <0.0001* 

All others: >0.05 

Table 17: Weights and weight Z scores throughout the study period; as expected, mean weight of the study 

group fell between birth and week 1, rising again consistently throughout the remainder of the study period. 

However, this was not reflected in group z scores, but did occur with national z scores between birth and 

week 1. (Annotations: * significant p value; Abbreviations: g = grams; m = mean; sd = standard deviation; 

wk = week; NS = not specified.) 
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Figure 28: Graph of group weight z scores and national weight z scores; no significant differences were noted 

between the group’s own z scores at each time point. Significant differences were revealed upon comparison 

with national data. By national z score, the cohort fell significantly between birth and week 1 of life 

(p<0.0001). The error bars represent the SEM.  denotes a significant p value. 

 

i) By gestation and feed type 

In the 24-26 week gestation there were no significant differences in Z scores at each time 

point. For the other gestational groupings over each time point, significant differences were 

not seen between birth and all 4 other weeks. When comparing Z scores across the 

gestations by week, the 24-26 week group unsurprisingly were significantly lower than any 

other group in week 1 (p < 0.0002). The differences over the study period were most 

marked between the gestations on weeks 1, 3 and 4 scores and weights (table 17 and 

figures 28 and 29). Data by gestational groupings was normally distributed, and, 

unsurprisingly, significantly lower at lower gestations, in all time points except week 2 in 

the 26-28 versus 28-30 week groups (Figure 29 a): p = 0.08). When stratified for feed 

regimen, there were no differences over the study period for those either EEBM or mixed 

fed, but when comparing the 2 groups by week, those fed EEBM were significantly lighter 

at the end of weeks 1 and 4 (Figure 29 b): p < 0.03). 
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Figures 29: a) (top) Group’s own Z scores by gestation, weeks 1-4; those of 24-26 weeks had a significantly 

lower score than any other group at birth and week 1 (p<0.0002). All other time points were closely 

correlated with gestation, except week 2 when those at 26-28 and 28-30 weeks showed no difference. The 

error bars represent the SEM.  denotes a significant p value. b) (bottom) Z scores by feed type, weeks 1-4; 

those EEBM fed were significantly lower than mixed fed at all time points (p<0.03). The error bars represent 

the SEM.  denotes a significant p value. (Abbreviations: EEBM = exclusive expressed maternal breast 

milk; Mixed = mixed maternal breast milk and formula). 
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Figures 30: a) (left) Weights by feed type; those EEBM fed were significantly lighter at all time points. The 

error bars represent the SEM.  denotes a significant p value. b) (right) Weights by gestation; those at 24-26 

weeks gestation were significantly lighter than any other group except during week 2 (p<0.015). The error 

bars represent the SEM.  denotes a significant p value. (Abbreviations: SEM = standard error of the mean; 

EEBM = exclusive expressed maternal breast milk; Mixed = mixed maternal breast milk and formula). 

 

ii) Comparison with National Z Scores 

By gestation and feed type 

A significant trend was seen (figure 31) with higher scores at lower gestations. This is 

considered to represent the well-grown 24-26 week gestation infants, who were of lower 

deprivation score. The reason for the peak at 2 weeks in those of 24-26 weeks gestation is 

unclear, and may be explained by soft tissue oedema secondary to increased illness (for 

example NEC and sepsis) in this group. When considering each group over the study 

period, no significant differences between each data point were noted for the 24-26 week 

and 28-30 week gestation groups. In the 26 week gestation group, z scores were 

significantly higher at birth than any other week (p < 0.02). Similarly those in the 30-32 

week group scores at birth were higher than in weeks 1, 2 and 3. With respect to feed type, 

those exclusively fed MEBM had significantly lower scores than those mixed fed at weeks 

1 and 4 (p < 0.03). 
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Figures 31: a) (left) Cohort national z scores by gestation; these were clearly stratified, with the 24-26 weeks 

group illustrating higher scores than any other gestation. By the fourth week, no differences were seen 

between those at 26 weeks onwards. The error bars represent the SEM.  b) (right) Study national z scores by 

feed type; significantly lower scores were seen in those EEBM fed at weeks 1 and 4 (p<0.03). The error bars 

represent the SEM.  denotes a significant p value. (Abbreviations: EEBM = exclusive expressed maternal 

breast milk; Mixed = mixed maternal breast milk and formula). 

 

3.1.18) Sepsis 

i) By gestation and feed type 

Early and late onset sepsis rates were generally low throughout the study period. Sepsis 

was defined as positive pure growth of bacteria from blood culture (at more than 10 x 10
6
 

per ml). Most episodes cultured coagulase negative staphylococci (76.9 %). Those born at 

24-26 weeks gestation had significantly more episodes than infants of greater than 28 

weeks gestation (Figure 32: p < 0.0007). Sepsis was less likely as the gestation lengthened, 

and there was a direct correlation between gestation and highest CRP reached during the 

study period. Correspondingly, infants at lowest gestations experienced longer total 

antibiotic courses than those at higher gestations.  

 

 

Figure 32: Number of episodes of sepsis by gestation; the 24-26 week group had significantly more episodes 

than those of 28 weeks and above (p<0.0007).  denotes a significant p value. 
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Figures 33: a) (left) Highest CRP by gestation; this was higher in those of 24-26 weeks than any other group 

(p<0.002). The error bars represent the SEM.   denotes a significant p value. b) (right) Number of antibiotic 

days by gestation; this was also higher in the 24-26 week group than any other (p<0.018). The error bars 

represent the SEM.  denotes a significant p value. (Abbreviations: CRP = c-reactive protein; mg/L = 

milligrams per litre; SEM = standard error of the mean). 

 

With regard to feed regimen, there were no significant differences in rates of sepsis or 

highest CRP during the study between those exclusively MEBM fed, and those mixed fed. 

Infants exclusively EBM fed incurred longer durations of antibiotic courses (p < 0.01), 

presumed secondary to the high rate of NEC in this group (66 % had any stage of NEC), as 

per figure 33. 
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3.1.19) Demographics per Unit: SGH, QMH/RHSC, PRMH 

Parameter QMH/RHSC (n=7) SGH (n=16) PRMH (n=33) P values 

Gestation (days)[m,sd,CI] 204.2, 16.2,189.28/219.29 193.6, 16.4,185.13/202.62 196.2, 14.7,191.03/201.52 NS 

Birth weight (g)[m,sd,CI] 1099, 309,812/1385 1015.8, 222.6,897.2/1134.4 1021.2, 268.7,925.9/1116.5 NS 

IUGR (n, %) 2, 28.5 2, 12.5 4, 12 NS 

AEDF (n, %) 2, 28.5 0, 0 6, 18 P>S, 0.023 

PPROM (n, %) 1, 14.2 2, 12.5 8, 24 NS 

IP Abx (n, %) 2, 28.5 3, 18.7 10, 30.3 NS 

PET (n, %) 4, 57 4, 25 7, 21 NS 

LUSCS (n, %) 4, 57.1 14, 87.5  24, 72 NS 

Apgars @10m (m, sd,CI) 8.28, 1.49,6.902/9.669 8.86, 0.74,8.455/9.278 8.81, 1.14,8.399/9.266 NS 

CRIB (m, sd,CI) 1.85, 1.86,0.133/3.581 2.68, 2.21,1.508/3.867 2.54, 2.62,1.615/3.476 NS 

Depcat (m, sd,CI) 5.28, 1.97,3.458/7.113 4.5, 2.33,3.254/5.746 4.69, 1.84,4.043/5.351 NS 

Umbilical line insertion 

(n, %) 

6, 85.7 13, 81.2 18, 54 NS 

Days incubated  

(m, sd,CI) 

26.2, 3.73,22.84/29.73 26.56, 3.79,24.541/28.584 25.9, 5.4,23.96/27.85 NS 

Days ventilated  

(med, IQR,CI) 

2, 23,-2.97/19.55 5.5, 24,5.13/17.62  2, 7 ,3.38/10.74 NS 

Days CPAP 

(med,IQR,CI) 

3, 7,-2.49/15.63 4, 14,2.86/12.02 5, 15.5,6.36/14.55 NS 

Number episodes sepsis 

(med,IQR,CI) 

0, 1,-0.689/2.689 0.5, 2,0.436/2.064 0, 1,0.264/0.827  NS 

Number antibiotic days 

(med,IQR,CI) 

15, 19,6.25/24.04 20.5, 23,10.5/21.75 5, 10,5.54/10.89 S>P, 0.01; 

Q>P, 0.05 

Highest CRP 

(mg/L)[med,IQR,CI] 

19, 95,2.1/103.0 49.5, 87.5,24.6/99.9 15, 37.86,13.57/48.32 NS 

EEBM (n, %) 3, 42.8 6, 37.5 3, 9 S>P, 0.01; 

Q>P, 0.04 

Fortifier (n, %) 0, 0 0, 0 17, 51 P>Q/S, 

0.001 

PDA ligation (n, %) 2, 28.5 4, 25 2, 6 NS 

ROP laser surgery (n, %) 1, 14.2 2, 12.5 2, 6 NS 

NEC (n, %) 4, 57 10, 62.5 16, 48 NS 

Week 1 weight (g) 

[med, IQR,CI] 

Week 2 weight (g) 

[med, IQR,CI] 

1057.3,243.5 

801.8, 1312.9 

1237.5 (234.6) 

991.3, 1483.7 

1007.6 (216.4) 

892.3,1123 

1167.5 (198.7) 

447,3138 

998.7 (249.8) 

905.5,1092.1 

1132.4 (263.4) 

1032.3,1232.7 

NS 

 

NS 
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Week 3 weight (g) 

[med, IQR,CI] 

Week 4 weight (g) 

[med, IQR,CI] 

1424.7 (330.8) 

1119, 1731 

1335.7 (675.9) 

1273, 1999 

1321.8 (295.4) 

1164.4, 1479.3 

1464.5 (371.4) 

1250.1, 1679.0 

1239.9 (360.5) 

1109.9,1369.9 

1406.9 (420.1) 

1255.4,1558.4 

NS 

 

NS 

Week 1 Z score  

(med, IQR,CI) 

-1.65, 1.65, 

-3.389,0.079 

-1.1, 0.76, 

-1.51,-0.695 

-1.41, 0.83, 

-1.725,-1.103 

NS 

Week 2 Z score  

(med, IQR,CI) 

-1.43, 1.82 

-3.346,0.486 

-0.87, 1.06 

-1.438,-0.306 

-1.56, 0.76 

-1.857,-1.272 

S>P, 0.03 

Week 3 Z score  

(med, IQR,CI) 

-1.27, 1.92 

-3.049,0.503 

-0.93, 0.85 

-1.391,-0.477 

-1.52, 0.81 

-1.823,-1.236 

S>P, 0.03 

Week 4 Z score  

(med, IQR,CI) 

-0.92, 2.06 

-3.407,1.24 

-1.14, 0.78 

-1.597,-0.696 

-1.35, 0.99 

-1.718,-1.001 

NS 

Mortality (n, %) 0, 0 3, 18.7 1, 3 NS 

Table 18: Unit Demographics. All CIs are 95%. Significantly more infants at PRMH had AEDF (p=0.023); 

antibiotic administration was shorter in PRMH than the other units (p<0.05); z scores were significantly 

higher in SGH than PRMH during weeks 2 and 3 (p=0.03); EEBM usage was lower in PRMH (p<0.04), and 

PRMH also had a fortifier policy, which was not shared by the other units. (Abbreviations: EEBM = 

exclusive expressed maternal breast milk; Mixed = mixed maternal breast milk and formula; IP Abx: 

intrapartum antibiotics; in the ‘p values’ column: p = Princess Royal Maternity Hospital; S = Southern 

General Hospital; Q = Queen Mother’s Hospital). 
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3.1.20) Necrotising Enterocolitis: Demographical and Clinical Associations 

Significant clinical and demographical findings with respect to all stage NEC 

32 infants displayed any signs of necrotising enterocolitis by the Modified Bell’s criteria 

(56%). Of these 6 had stage 1a, 6 stage 1b, 5 stage 2a, 5 stage 2b, 4 stage 3a, and 6 stage 

3b. The features of infants with all stage NEC versus those without are presented below. 

 

Parameter All stage NEC (32) Non-NEC (24) P value 

Gestation (weeks+days)[m, sd, CI] 27+2.9, 14 d,26.4/28 29+1.9, 12 d,28.2/29.9  0.001 

Birth weight (g)[m, sd, CI] 912.5, 205,861.7/1010.2 1150, 271.8,1039.1/1268.7 0.001 

Female (n, %) 19, 59 17, 70 NS 

Apgar at 10 mins (med, IQR, CI) 9, 0,8.9/9.1  9, 0,8.6/9.2  NS 

CRIB Score (med, IQR, CI) 3, 4,2.3/4.0 1, 0,0.72/2.44 0.01 

PPROM (n, %) 5, 15.6 6, 25 NS 

IP Antibiotics (n, %) 6, 18.75 9, 37.5  NS 

SVD (n, %) 9, 28 5, 20 NS 

Singleton (n, %) 21, 65 20, 62.5 NS 

Deprivation Score (med, IQR, CI) 5, 4.25,3.8/5.4 4, 3,4/5.5 NS 

In-Utero Growth Restriction (n, %) 6, 18.75 2, 8.3 NS 

AEDF (n, %) 4, 12.5 4, 16.6 NS 

Umbilical lines (n, %) 6, 18.75 11, 45.8 0.02 

Exclusively EBM fed (n, %) 8, 25 4, 16.6  NS 

No. infants with any DEBM (n, %) 12, 37.5 3, 12.5  NS 

Day feeds started (med, IQR, CI)   2, 1.25,2.4/3.4 2, 2,1.7/2.5 0.02 

Day full feeds achieved (med, IQR, CI) 14, 14.25,13.5/19.5 6, 3.5,5.8/8.5 0.00001 

Days ventilated (med, IQR, CI) 6, 25.5,7.7/16.2 1, 1,0.52/6.9 0.02 

Feed Vol Wk 1 (med, IQR, CI) 122.3, 305,114.7/266.1 626.6, 577.25,469.6/786.7 0.00001 

Feed Vol WK 2 (med, IQR, CI) 519.5, 944,405.4/757.3 1386, 641.3,1135.5/1512.7 0.00001 

Feed Vol Wk 3 (med, IQR, CI) 868, 1174,598/1034 1673, 479.3,1399.7/1735.6  0.00001 

Feed Vol Wk 4 (med, IQR, CI) 1097.3, 942,762/1225 1875.3, 571,1548/1962  0.00001 

Days incubated (med, IQR, CI) 28, 0,26.9/28 28, 3.5,21.4/27.1 0.01 

PDA ligated (n, %) 7, 21 1, 4 0.048 

ROP surgery (n, %0 8, 25 0, 0 0.03 

Fortifier given (n, %) 4, 12.5 10, 41.6 0.02 

IVH (n, %) 5, 15.6 5, 20.8  NS 

Length of first antibiotic course in days 

(m, sd, CI) 

Episodes sepsis (med, IQR, CI) 

3.3, 2.9 

2.2, 4.4 

1, 2,0.78/1.78 

2.6, 1.2 

2.1, 3.1 

0, 0,0.005/0.32 

NS 

 

0.0002 
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Highest CRP during study [mg/L] 

(med, IQR, CI) 

25.5, 66.5,29.5/76.4 3.5, 2.5,4.82/23.9 0.0014 

Antibiotic days (med, IQR, CI) 19.5, 16,13.25/19.8 3.4, 16,3.35/5.64 0.00001 

Weight Wk 1 (med, IQR, CI) 880, 340,874.6/1036.2 1090, 204,966/1182 0.04 

Weight Wk 2 (med, IQR, CI) 1040, 366,719/2160 1247.5, 248.75,1129/1355 0.03 

Weight Wk 3 (med, IQR, CI) 1160, 545,1083.5/1300.7 1415, 326.25,1260/1563 0.01 

Weight Wk 4 (med, IQR, CI) 1290, 463,1194.7/1451.2 1623, 400,1450/1809 0.002 

Z score: Birth (med, IQR, CI) -0.46, 1.02,-0.93/-0.19 -0.65, 0.95,-1.08/-0.31 NS 

Z score: Week 1 (med, IQR, CI) -1.08, 1.01,-1.48/-0.71 -1.54, 0.98,-1.96/-1.34 NS 

Z score: Week 2 (med, IQR, CI) -1.23, 1.09,-1.53/-0.62 -1.45, 0.90,-1.98/-1.33 NS 

Z score: Week 3 (med, IQR, CI) -1.25, 1.15,-1.62/-0.77 -1.43, 0.93,-1.84/-1.12 NS 

Z score: Week 4 (med, IQR, CI) -1.08, 1.20,-1.64/-0.72 -1.28, 1.11,-1.79/-0.95 NS 

Mortality (n, %) 4, 12.5 0, 0  NS 

Table 19: Demographic and clinical features of those with all-stage NEC versus those without; significant p 

values are quoted and discussed within the text. 

 

i) All Stage NEC Associations 

 

  

Figure 34: a) (left) All stage NEC, gestation versus days ventilated; there was a clear correlation (p=0.001); b) (right) All stage NEC, 

gestation versus Depcat scores approached significance at p=0.074. 

 

  

Figure 35: a) (left) All stage NEC, gestation versus episodes of sepsis did not show a significant correlation (p=0.131); b) (right) All 

stage NEC, gestation versus antibiotic days showed a clear correlation, with longer courses at lower gestations (p=0.001). 

P=0.001 P=0.074 

P=0.131

 
 P=0.001 

P=0.001 
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Figure 36: a) (left) All stage NEC, gestation versus CRP level; there were closely correlated (p=0.016). b) (right) All stage NEC, 

gestation by Bell’s Criteria; this did not show a significant correlation (p=0.725). 

 

 

 

Figure 37: Stages of NEC by birth weight; more severe NEC occurred at lower birth weights (p=0.046) 

All-stage NEC demographics and clinical correlations are illustrated in figures 34 – 37. 

 

As such, 20 were confirmed radiologically as ≥ Stage 2a (i.e. ‘definite’ NEC). 8 out of 20 

underwent laparotomy: 2 with bowel resection and primary anastomosis, 5 with resection 

and ileostomy formation; 1 with biopsies and ileostomy formation. The clinical features of 

infants with ≥ stage 2a NEC are displayed in table 20.  

  

P=0.016 P=0.725 

P=0.046 
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Patient Bell’s 

Stage 

Gestation 

(weeks + 

days) 

Birth weight 

(grams) 

Day of 

1
st
 

NEC 

Type of feed  Day 

of 1
st
 

feed 

Day to 

full 

feeds 

Management 

1 2a 28+0 836 8 EEBM 2 13 Medical 

2 2a 25+2 750 8 EEBM 2 never Medical 

3 2a 30+1 1240 3 MIXED 2 10 Medical 

4 2a 27+1 960 14 MIXED 3 10 Medical 

5 2a 25+4 900 10 MIXED/D 3 18 Medical 

6 2b 27+3 1140 3 EEBM 2 18 Medical 

7 2b 27+6 1140 7 MIXED 3 36 Medical 

8 2b 27+6 835 3 MIXED/D 2 11 Medical 

9 2b 24+2 760 35 MIXED/D 4 11 Medical 

10 3a 25+1 530 16 EEBM/D 4 28 STOMA 

11 3a 31+4 1238 9 EEBM 3 28 STOMA 

12 3a 23+4 740 18 MIXED 6 15 STOMA 

13 3a 27+0 1000 5 EEBM/D 4 23 Medical* 

14 3a 24+2 795 12 EEBM/D 3 10 1 ANAST 

15 3a 26+2 660 44 EEBM/D 2 16 1 ANAST 

16 3b 24+3 830 22 EEBM 7 28 Medical* 

17 3b 25+2 810 34 EEBM 2 never Medical* 

18 3b 29+2 766 5 EEBM 4 28 STOMA 

19 3b 24+6 756 4 MIXED 1 10 STOMA 

20 3b 28+1 1125 9 MIXED 4 28 STOMA 

Med/IQR  26.6±2.82 832.5±272.25 9±11.5 35% EEBM 3±2 17±18 60% Medical 

Annotation: *too sick to transfer to surgical unit 

Table 20: Comparison of demographical and clinical features in infants with stage 2a, 2b, 3a and 3b NEC. 

(Abbreviations: EEBM = exclusive expressed maternal breast milk; Mixed = mixed maternal breast milk and 

formula; D = donor expressed breast milk). 

 

ii) Surgical management 

All histological diagnoses of NEC were confirmed on biopsy. None of these infants had an 

alternate or contributing surgical diagnosis as an adjuvant or alternate diagnosis to NEC. 

All stomas formed were ileostomies, and all ileocaecal valves remained intact. Primary 

resections involved jejunum and part of the ileum in one infant, and ileum in the other. One 
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infant had an ileostomy formed but no gut resected. Accordingly seven infants 

subsequently developed Short Gut Syndrome.  

 

The following figures 38 a and b are anonymised x-rays of study patients with confirmed 

stage 3a NEC or more. 

 

 

Figure 38: a) X-ray of NEC stage 3a (patient number 48) 
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Figure 38: b) X-ray of NEC stage 3b (patient number 39). 
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iii) Significant clinical and demographical features in those with ≥Stage 2a NEC versus 

those without NEC 

Parameter ≥Stage 2a NEC (20) Non-NEC (24) P value 

Gestation (weeks+days)[m, sd,CI] 26.6, 19.75 d,25.5/27.5 29+1.9, 12 d,28.2/29.8  0.0005 

Birth weight (g)[m, sd,CI] 832.5, 272.2,798.1/983 1150, 271.8,1039/1268 0.0001 

Female (n, %) 13, 65, 17, 70 NS 

Apgar at 10 mins (med, IQR,CI) 9, 1.25,6.68/8,91 9, 0,8.6/9.2  0.05 

CRIB Score (med, IQR,CI) 4, 4,2.55.4,74 1, 0,0.72/2.44 0.0023 

PPROM (n, %) 4, 20 6, 25 NS 

IP Antibiotics (n, %) 5, 25 9, 37.5  NS 

SVD (n, %) 6, 30 5, 20 NS 

Singleton (n, %) 13, 65 20, 62.5 NS 

Deprivation Score (med, IQR,CI) 4, 4.25,3/5.2 4, 3,4.03/5.54 NS 

In-Utero Growth Restriction (n, %) 5, 25 2, 8.3 NS 

AEDF (n, %) 3, 15 4, 16.6 NS 

Umbilical lines (n, %) 18, 90  11, 45.8 0.005 

Exclusively EBM fed (n, %) 11, 55 4, 16.6  0.01 

No. infants with any DEBM (n, %) 7, 35 3, 12.5  NS 

Day feeds started (med, IQR,CI)   3, 2,2.3/3.7 2, 2,1.7/2.5 0.02 

Day full feeds achieved (med, IQR,CI) 17, 18,13.1/21.2 6, 3.5,5.8/8.5 0.0001 

Days ventilated (med, IQR,CI) 23, 22.5,11.8/22.6 1, 1,0.52/6.9 0.0003 

Feed Vol Wk 1 (med, IQR,CI) 58, 146.7,53.9/264.9 626.6, 577.25,469.9/786.7 0.00001 

Feed Vol Wk 2 (med, IQR,CI) 209.8, 799.6,237/671 1386, 641.3,1135.5/1512.7 0.00001 

Feed Vol Wk 3 (med, IQR,CI) 611.4, 940.3,384/911 1673, 479.3,1399.7/1735.6 0.00001 

Feed Vol Wk 4 (med, IQR,CI) 796.5, 938.8,502/1093 1875.3, 571,1548/1962 0.00001 

Days incubated (med, IQR,CI) 28, 0,26.6/28.2 28, 3.5,21.4/27.1 NS 

PDA ligated (n, %) 6, 30 1, 4 0.05 

ROP surgery (n, %) 7, 35 0, 0 0.006 

Fortifier given (n, %) 1, 5 10, 41.6 0.01 

IVH (n, %) 5, 25 5, 20.8  NS 

Episodes sepsis (med, IQR,CI) 1, 2,0.71/2.1 0, 0,0.005/0.32 0.0004 

Highest CRP during study [mg/L] 

(med, IQR,CI) 

Duration of first antibiotic course in days 

(m, sd, CI) 

54.5, 95.25,41.7/108.8 

 

2.85, 2.0, 

1.89, 3.8 

3.5, 2.5,4.8/23.9 

 

2.6, 1.2 

2.1, 4.4 

0.001 

 

NS 

Antibiotic days (med, IQR,CI) 21, 12.5,16.2/23.5 3.4, 16,3.35/5.64 0.00001 

Weight Wk 1 (med, IQR,CI) 840, 329.5,812.9/1019.1 1090, 204, 966.8/1182.5 0.03 

Weight Wk 2 (med, IQR,CI) 1000, 450,406/2947 1247.5, 248.75, 1129.1/1355.1 NS 
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Weight Wk 3 (med, IQR,CI) 1000, 589,1008/1316.7 1415, 326.25,1260.5/1563.3 0.02 

Weight Wk 4 (med, IQR,CI) 1132, 469.51129.9/1477.8 1623, 400,1450.7/1809.9 0.008 

Z score: Birth (med, IQR,CI) 0.23, 1.61,-0.919/0.07 -0.65, 0.95,-1.08/-0.31 NS 

Z score: Week 1 (med, IQR,CI) -0.80, 1.54,-1.52/-0.46 -1.54, 0.98,-1.96/-1.34 0.04 

Z score: Week 2 (med, IQR,CI) -0.65, 1.5,-1.43/-0.06 -1.45, 0.90,-1.98/-1.33 0.04 

Z score: Week 3 (med, IQR,CI) -1.21, 1.77,-1.59/-0.33 -1.43, 0.93,-1.84/-1.12 NS 

Z score: Week 4 (med, IQR,CI) -1.02, 1.46,-1.68/-0.35 -1.28, 1.11,-1.79/-0.95 NS 

Mortality (n, %) 4, 20 0, 0  NS 

Table 21: Clinical and demographical features of those with ≥stage 2a NEC versus those without NEC. CIs 

are at 95%. (Abbreviations: EBM = expressed breast milk; CRIB = Clinical Risk Index in Babies; PPROM  = 

prolonged premature rupture of membranes; IP = intra-partum; SVD = spontaneous vaginal delivery; AEDF 

= absent end diastolic flow; DEBM = donor EBM; PDA = patent ductus arteriosus; ROP = retinopathy of 

prematurity; IVH = intraventricular haemorrhage; NS = not specified)  

 

iv) NEC Infants: Significant Demographical and Clinical Correlations 

   

Figures 39: a) (left) All-stage NEC, by gestation; b) (right) Percentage of cohort with all stage NEC, by 

gestation 

 

    

Figures 40: a) (left) Gestation versus NEC stages 1, 2 and 3 showed significant correlation with lower 

gestation (p=0.03); b) (right) Number of infants with each stage of NEC, according to gestation. 
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NEC was closely correlated with gestational age (Figure 40); infants of lower gestational 

age incurred a higher incidence of NEC, and was more likely to be severe (figure 40 b). A 

less significant correlation was seen between birth weight and stage of NEC (figures 37 

and 41).  

 

Figure 41: NEC stages by birth weight showed a positive correlation with birth weight (p=0.046) 

 

A significant correlation was seen between NEC stage and the day of life on which the 

infants first became unwell with any stage of NEC (Figure 42: p=0.034). 

 

 

Figure 42: Day of first NEC, by highest NEC stage; early onset clinical suspicion was associated with milder 

NEC (p=0.034). 

 

 

NEC that developed later on in the study period was more severe, whereas early-onset 

NEC tended to be milder. There was no significant difference in day of first onset of NEC 

between those who were medically or surgically managed. Given the significant 

heterogeneity of feed types, no correlations were seen with regard to severity of NEC. 

Several other gestation-related correlations were observed in infants with all-stage NEC, 

illustrating the bias to this group from extreme prematurity. Extreme prematurity showed 

strong correlations with duration of ventilation (p=0.001), depcat score (p=0.0074), sepsis 

(p=0.0131), duration of antibiotics (p=0.001), and CRP (p=0.016) (data not illustrated).  
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Relevant associations were further stratified according to stage of NEC. Given the 

ambiguous nature of stages 1a and 1b, and the further clinical difficulties in separating 2a 

from 2b, and 3a from 3b, 1a and 1b were excluded from further analysis, and stages 2a and 

2b were paired together, as were stages 3a and 3b. 

 

Stage 2a and b 

  

Figure 43: a) (left) Stage 2a+b infants’ gestation versus birth weight strongly correlated (p=0.024); b) (right) 

Stage 2a+b infants’ gestation versus day of life of first emergence of NEC also showed a significant 

correlation (p=0.035). 

 

Stage 3a and b 

    

Figure 44: a) (left) Stage 3a+b infants’ gestation did not correlate with birth weight (p=0.081); b) (right) 

Stage 3a+b infants’ gestation versus day of life of first emergence of NEC also did not correlate (p=0.172) 

 

66 % of infants with stage 3a NEC were fed exclusively maternal EBM for the study 

duration. Figure 47 illustrates correlations between gestation, birth weight, and day of first 

signs of NEC. 50 % of these infants with stage 3b NEC were fed solely maternal EBM. 

Figure 48 shows attempts to correlate gestation, birth weight and day of first signs of NEC 

in those with stage 3b. There was no significant difference in date of onset of NEC 

between medically and surgically managed patients (Day 2 vs Day 3 (med), p=0.754). 

Most NEC occurred within the first 2 weeks of life (median 14 days). 
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v) Demographical Associations in Infants with ≥Stage 2a NEC 

In combination, all infants with ≥stage 2a NEC showed a strong correlation between 

gestation and birth weight, as well as gestation versus day of first clinical emergence of 

NEC, as illustrated in figure 45 below: 

   

Figure 45: a) (left) Gestation versus birth weight in ≥stage 2a NEC correlated closely (p=0.001); b) (right) Gestation versus day of first 

signs of NEC, ≥stage 2a NEC also correlated strongly (p=0.013). 

 

No other notable demographical associations were found in infants with ≥stage 2a NEC, as 

shown in figures 50 – 52, including: gestation versus Depcat score; (p = 0.068); gestation 

versus number of days ventilated (p = 0.257); gestation versus number of episodes of 

sepsis (p = 0.763); gestation versus antibiotic days (p = 0.18), gestation versus highest CRP 

(p = 0.189). 

   

Figure 46: a) (left) Gestation versus Depcat score, infants with ≥stage 2a NEC was close to significance (p=0.068); b) (left) Gestation 

versus days ventilated, infants with ≥stage 2a NEC did not correlate (p=0.257). 

 

   

Figure 47: a) (left) Gestation versus episodes sepsis, infants with ≥stage 2a NEC; b) (right) Gestation versus number of antibiotic days, 

infants with ≥stage 2a NEC. Neither showed significant correlations. 
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Figure 48: Gestation versus highest CRP, infants with ≥stage 2a NEC did not show a significant correlation (p=0.189). 

 

Further multivariate analyses: 

Upon discussion with a statistician, it was agreed that given the heterogeneity of feed 

types, and wide range of non-normally distributed data, further multivariate analysis would 

be inappropriate.  

 

P=0.189 
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3.1.21) Discussion 

i) Demographical Factors 

The high rate of recruitment (83%) reflected the observational nature of this study. We 

excluded out-born infants, and, as such, this realistically represents the local population, 

bar one infant, who was transferred in utero from Inverness at the onset of preterm labour 

given the lack of a local tertiary neonatal unit. The low study rates of IUGR and AEDF 

were surprising given Glasgow’s status of extreme deprivation – the so-called ‘Glasgow 

Effect’ – with deprivation levels amongst the highest in Europe (Gray L 2009). Depcat 

scores were significantly lower at lower gestational ages, which likely reflected the higher 

rate of these infants conceived through assisted conception, which in turn is associated 

with higher social class and lower deprivation scores. This was unexpected considering the 

strong regional and national association between social class and prematurity. Birth weight 

was closely correlated with gestation, and, as such, the cohort was not significantly small 

for their gestational age. Not all infants with IUGR had AEDF, and vice versa, which, 

again was surprising for this cohort anecdotally. 

 

Most of the cohort was delivered by caesarean section, mainly for reasons of maternal 

health, and as such were not perinatally compromised. PPROM complicates 2% of 

pregnancies, but accounts for 40% of preterm births. As such, the incidence of PPROM 

was higher in comparison (19%), but the use of antenatal and intrapartum antibiotics was 

also high (100% of mothers with PPROM, plus 4 mothers with antenatal urinary tract 

infections before, during and after delivery), in accordance with regional and national 

guidelines to prevent the establishment of chorioamnionitis (Gynaecologists 2006). 

Curiously, pregnancy induced hypertension was more common as a cause of preterm 

delivery at later gestations, although this did not reach statistical significance.  

 

In total 15 twins were recruited. One infant was the second and smaller twin, of whom the 

elder brother was too heavy to be recruited. Two other infants were surviving twins who 

had respective siblings who sadly died in utero. It is a recognised phenomenon that studies 

of preterm infants commonly include multips, which may, if unaccounted for, skew 

resultant demographical and clinical data. However, recent evidence suggests that if twins 

number less than 10-20% of the study population, that no further statistical alterations are 

required in addition to standard univariate and multivariate methodologies (Marston 2009, 
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Shaffer M 2009). Notably, 54% of the twins were monochorionic, diamniotic: naturally 

conceived identical twin pregnancies.    

 

ii) Clinical features 

Theoretically, preterm infants commonly require stabilisation at delivery, in contrast with 

resuscitation (Vento 2010). Our cohort, however, showed a significantly lower Apgar score 

at 1 minute of life than 5 or 10, indicating a need for intervention at the resuscitaire. This 

did not appear to be gestation-dependent. The Apgar score at 5 minutes has recently been 

adopted as a diagnostic marker in the definition of hypoxic ischaemic encephalopathy, and 

are now considered to be prognostic of neurological outcome in term infants (Apgar 1953). 

Although there is often intraobserver disparity in scoring preterm infants, the Apgar score 

at 10 minutes is now utilised by the National Neonatal Database system ‘Badger’ as part of 

its Clinical Risk Index Score in Babies.  

 

When the duration of invasive and non-invasive ventilation was considered, the lengths of 

each dovetailed according to gestation: infants of extreme prematurity had significantly 

higher durations of invasive ventilation, while those at 30-32 weeks gestation had longer 

duration of non-invasive ventilation. As expected, the duration of incubation was longer at 

lower gestations. 28 % of the study cohort was noted to have intraventricular haemorrhage, 

slightly above the current considered incidence of 20 % (Fanaroff, Stoll et al. 2007). 

Intraventricular haemorrhage was not gestation-dependent, but the more severe 

haemorrhages were incurred by infants of extreme prematurity. The incidence of duct 

ligation was similarly gestation dependent, with significantly more extremely preterm 

infants undergoing surgery than those between 30-32 weeks gestation. At 12.5 % of the 

whole cohort, this is a lower incidence that reported nationally or internationally (Fanaroff, 

Hack et al. 2003). Surgery for retinopathy of prematurity occurred in only five infants (8 

%), lower than the national average (Health 2008). All infants were less than 26 weeks 

gestational age.  

 

iii) Unit differences in demographics 

There were reassuringly few clinical and demographical differences in study populations 

between each NICU involved in the study (table 18). The PRMH NICU catchment area for 

deliveries includes the most deprived areas in Glasgow, and thus was expected to have a 

significantly higher deprivation score than the other NICUs. However, there was no 
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significant difference between the scores of any unit, although this was partly confounded 

by the QMH/RHSC and SGH units merging during the recruitment period. The unexpected 

similarity in Depcat score is considered secondary to the number of affluent parents 

conceiving after assistance from the GRI fertility unit, thereafter booking and receiving 

antenatal care in PRMH. The study infants born in PRMH did, however, have significantly 

higher levels of AEDF than those at SGH, which, although associated with NEC, did not 

correlate with a higher rate of NEC in the PRMH population. Both SGH and QMH units 

had significantly higher rates of exclusive maternal breast milk feeding than PRMH, 

although there is no specific unit policy that would appear to be the cause of this. Fortifier, 

on the other hand, is only used in PRMH, and was not associated with a higher incidence 

of NEC.  

 

There were some unexpected unit differences, including a considerably shorter duration of 

antibiotic usage for PRMH infants, and higher weight Z scores in SGH infants during 

weeks 2 and 3, despite the higher formula usage in PRMH, which may be considered likely 

to increase weight gain at a faster rate.   

 

iv) Feeds 

Although local audit suggested that there would be three distinct feed groups – exclusively 

MEBM fed; DEBM fed; and formula fed – the actual groups were far more heterogeneous. 

Given there are no regional or national feed guidelines, this was not surprising, although 

the volume of DEBM used accounted for less than 14 % of the total generated for the 

DEBM bank over the same time period, leaving ample supply to cover the equivalent 

volume of formula fed to the cohort. The remaining supply was distributed to ELBW, 

extremely preterm infants throughout other units throughout Scotland, and local surgical 

infants at all gestations. Some of these infants would still have received formula feeds as 

calorific supplements, although this can also be achieved through use of fortifiers. 

Supplementation for ‘catch-up growth’ is a controversial topic, and divisive amongst 

neonatologists. Recent studies have supported the use of an exclusive breast milk diet to 

maintain adequate growth in surviving VLBW infants, either donor or maternal (Schanler, 

Shulman et al. 1999, Sullivan, Schanler et al. 2010, Underwood 2013).  Catch up growth 

may not be advantageous to preterm infants in the long term, with studies revealing an 

increased incidence of metabolic syndrome and its sequelae, particularly adverse 

cardiovascular events (Simmer 2007, Griffin and Cooke 2012). 
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However, other issues regarding the use of DEBM are pertinent to discuss. Although there 

are no requirements for parents within the UK to consent to blood or blood product 

transfusions, consent is taken in our neonatal units for the use of DEBM, despite strict 

screening of all donors for the same virological infections as per blood donors. However, 

during the study further advertising was undertaken by the DEBM bank to increase 

visibility through each of the neonatal units – with one of the study babies who was almost 

exclusively fed DEBM featured on promotional leaflets and fact sheets. Ironically, despite 

strict handling and processing of all DEBM, there are no aseptic guidelines for MEBM, 

which is not pasteurised in the same way that all national supplies of DEBM are. There are 

still no clear guidelines on appropriateness for use, but there is increasing interest in the 

use of DEBM and human-derived milk fortifiers, creating an ever-complex array of 

feeding blends and options. Only 1 human milk derived fortifier exists, but is only licensed 

for use within the USA. During the duration of this study, further changes in milk 

expression guidelines occurred within NHS GG+C, including a change of breast pump 

washing policy, which no longer needed to be sterilised and autoclaved, but simply 

washed. In the absence of a definitive RCT or metaanalysis, clinician preference on the use 

of donor milk may have added to the feed type heterogeneity. 

 

The sampling process for this study raised other unexpected issues regarding feeds. It was 

noted that many of the mothers of preterm infants produced far more milk than required by 

their infants, many of whom required prolonged trophic feeds. As a result, most of their 

colostrum was sequestered at the back of each milk freezer. As such, the most mature milk 

was often used first. The differences between mature and first milk are well-established, as 

are differences between milk produced by mothers of preterm infants (Castellote, Casillas 

et al. 2011). This observation in the discrepancy of use was highlighted to nurses in each 

NICU with the aim of preferentially using colostrum first in this regard.  

 

As expected, there was a higher rate of MEBM feeding from the SGH and RHSC units, 

which was not surprising considering their locations in parts of the city with lower Depcat 

scores. However, there was statistically no difference in Depcat scores between these 

families, which may be because of these units merging half way through the recruitment 

period. The newer unit at the SGH then observed a surge in their delivery rate, as mothers 

chose antenatally to transfer their care from other units outside the city. The mixture of 

feeds in the majority of infants is important to emphasise as often trials utilise strict feed 
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groups, when the need for parental consent dictates feed type in the majority of infants, for 

at least part of their inpatient admission.  

 

v) Growth 

Birth weight was closely aligned to gestational age, indicating the appropriate growth of 

these infants. Group z scores were calculated to assess changes in the group over time. At 

all gestations, z scores fell between birth and first week of life, but those between 24-26 

weeks remained the closest to 0, and were the only gestational grouping to show a rise in z 

score during week 2. This likely reflects fluid gain as these were the sickest infants within 

the cohort. As anticipated, when stratified by feed type, those mixed fed had higher z 

scores than EBM, although again during week 2, their z scores dovetailed, likely reflecting 

increased fluid gain by those at 24-26 weeks, most of whom were EEBM fed. The nearest 

comparator that could be found on reviewing the evidence base for UK z scores in preterm 

infants is described by Wood et al in 2003 (Wood, Costeloe et al. 2003), as part of the 

EPICure Study. They describe weight in terms of number of standard deviations above the 

mean for their population of 283 infants between 23 and 25 weeks gestation, in comparison 

with national data as published by The Child Growth Foundation, using 1990 growth 

reference ranges from NPEU (Foundation 1996). Each gestational group (when stratified 

for gender and plurality) showed standard deviations above, rather than below, the mean 

for the UK. Analysis of variance revealed this to be significantly higher than the national 

average. The figures in our study, however, were compared with more recent data as 

described by Pan et al in 2009 (Pan 2012), using the LMS Growth Programme (Pan 2012), 

and included infants up to 32 weeks gestation. Nonetheless, it is significant that in 

comparison to national scores, our cohort were consistently negative at birth, reflecting 

poor in utero gain, and throughout the study period - the sharpest drop being between birth 

and the end of week 1.    

 

vi) Sepsis 

Proven bacterial sepsis rates were extremely low within the study cohort, regardless of 

neonatal unit, and correlated closely with gestational age. Over three quarters of episodes 

were from coagulase negative staphylococci. The precautionary use of antibiotics was 

noted to be higher in the SGH and RHSC units than in PRM, but with no difference in 

sepsis rates. Since preterm delivery is in itself a risk factor for early onset sepsis, very few 

infants escaped antibiotics in the immediate post-partum period. When sepsis was 
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considered in regard to feed type, surprisingly there was no correlation with EEBM, 

despite the fact that EEBM feeding was strongly associated with extreme prematurity. This 

may simply be due to extremely low rates of sepsis. However, those between 24-26 weeks 

gestation received longer courses of antibiotics, which is expected given their significantly 

higher CRP levels. Again CRP levels were not significantly different between feed types, 

likely reflecting the higher rates of NEC in those mixed fed, in combination with low 

numbers of infants exclusively fed EBM. Sepsis, higher CRP levels, and length of 

antibiotic treatment were also significantly more likely to occur in infants with confirmed 

NEC. 

 

vii) NEC: Demographical and Clinical Factors 

The strikingly high rate of NEC was a surprise to all involved in this project. Although 

naturally observed bias could have accounted for some of the considerations of stage 1 

NEC, it is unanimous that the ten infants who incurred stage 3 NEC were all appropriately 

diagnosed – of whom 8 were confirmed histologically. Even excluding all infants with 

NEC who did not have this histologically confirmed, the incidence would still be over 14 

%, far more than the 6-10 % range quoted in large trials from developed countries 

(Kawase, Ishii et al. 2006, Lin and Stoll 2006, Kovacs 2007, Rennie 2012). Two 

immediate theories for this high incidence were dispelled after statistical analysis: 1) that 

early onset, pre-feeding NEC within the first week of life reflected high rates of 

intrapartum and antenatal distress; 2) that the extreme deprivation of the study population 

was more likely within those who incurred NEC. Firstly, the median age at first onset of 

NEC was older with increasing NEC severity – such that milder episodes of NEC early on 

in life were far less likely to lead to definite NEC. There was also no association between 

IUGR or AEDF and NEC, although the incidence of both was so low as to make this 

analysis unreliable. There was no difference in Depcat Scores, and this may be confounded 

by the opening of the new SGH unit, with associated migration of deliveries according to 

maternal request. Notably, the Depcat scoring system is Scotland-specific, so there is no 

way to compare scores for similarly deprived cities in the rest of England, Wales and 

Northern Ireland.  

 

One possibility is that NEC is underreported in other centres (Lin and Stoll 2006, Kovacs 

2007). It is well recognised that other neonatal and infantile illnesses have a similarly 

variable range of incidence and prevalence data – particularly intestinal failure, which has 
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been reported at between 70-77 and 1300 new cases per year (Barclay, Paxton et al. 2009). 

In future, diagnoses of both illnesses will become clearer with the UK-wide NICU data 

system ‘Badger’, which encompasses a daily record of meticulous feed, PN and NEC data, 

although it should be noted that the options for recording NEC are at the moment limited to 

a somewhat binary ‘yes’ or ‘no’. According to UK Badger data from 2011, there were 809 

infants dependent upon PN for more than 28 days – which by definition means 809 infants 

with intestinal failure. Concurrent BIFS data however do not support this from a tertiary 

referral perspective – which either means these infants are not being referred, or are not 

being identified at NICU level (Modi, Barclay, personal communication). 

 

Part of the discrepancy in NEC diagnosis is the laxity in the Modified Bell’s Criteria, 

which although extensive, has with progression of neonatology since its inception in 1976, 

been subject to no further alterations. The presence of apnoea and bradycardia is high in 

preterm infants without NEC, thus many infants who do not progress to stage 2 or 3 NEC 

can be categorised with stage 1a with mild abdominal distension or bilious vomits, both of 

which can be common physiological features in preterm infants. A positive Faecal Occult 

Blood test (FOB) delineates stage 1b NEC from stage 1a, although many NICUs have 

stopped using the FOB tests as they have extremely high sensitivity but low specificity, 

with many false positives secondary to mild gastric trauma from NG tube placement, or 

rectal bleeding from fissures. In the infants in our study, it was anecdotally observed that 

the appearance of gross PR blood was actually a late sign – whereas the Modified Bell’s 

Criteria places the FOB positive test in stage 1. As a result, our compromise was to replace 

the FOB test with any visible PR or NG blood in conjunction with the other criterion. 

Similarly, perforation is considered the end-stage of the Bell’s Criteria, and differentiates 

between stages 3a and 3b. However, this confuses the diagnosis in a small portion of 

infants who develop focal intestinal perforation, who remain clinically stable but have 

confirmed pneumoperitoneum on x-ray, most secondary to gastric perforation in 

association with CPAP (Novack, Waffarn et al. 1994, Kawase, Ishii et al. 2006). Within 

our cohort, those for whom FIP was suspected were then re-classified after histopathology 

confirmed NEC. Equally, the potential for laparotomy depends upon proximity to a 

neonatal surgical unit, as well as their preference for surgical management. A recent 

Cochrane Review of Laparotomy and resection/enterostomy versus peritoneal drain for 

treatment of surgical NEC showed no advantage of laparotomy (Rao, Basani et al. 2011). 

In our study two infants with perforated NEC were too sick to move to a neonatal surgical 
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unit, and although peritoneal drain insertion was considered in both, combined surgical and 

medical opinion decided on conservative management. 

 

New NEC definitions? 

Although the Bell’s Criteria is the most commonly known and used NEC scoring system in 

research and radiology, its use in clinical practice is waning. Newer studies highlighting 

discrepancies between radiologists reporting NEC may eventually make the Modified 

Bell’s Criteria obsolete (Coursey, Hollingsworth et al. 2008). As such, other scoring 

systems have been postulated, but none so far have taken precedent. Some studies simply 

split infants with NEC according to whether they have been medically or surgically 

managed. Some observational studies searching for diagnostic and prognostic markers of 

NEC have begun to categorise NEC using the terms ‘intestinal distress’, and 

‘mild/moderate or severe enteropathy’. However, these terms are at best vague, and 

potentially confuse the metaanalyses of studies. Upon literature searching, other NEC 

scoring systems appear to be related to mortality (Bell, Ternberg et al. 1978, Kessler 2006) 

The article by Kessler et al, from 2006 emphasises the likelihood that there is no one 

specific parameter, or biological marker that is prognostic of the outcome of surgical NEC, 

but several, encompassing Bell’s Criteria, stool markers, CRP, arterial lactate and platelet 

count. 

 

If we view the study population assuming observer bias on NEC diagnosis and staging 

therein, then we would expect clinical data to show few differences between the way that 

the groups were managed by clinical staff, particularly: feed volume and attrition; growth; 

day to full feeds; episodes of sepsis, CRP levels and duration of antibiotics. When clinical 

and demographical details for infants with all-stage NEC were compared to those without 

NEC, it was clear that there were still differences in management and clinical response 

consistent with their recorded diagnosis of NEC. These infants were significantly older 

when feeds were started, and took longer to establish full enteral nutrition. They were more 

likely to have septic episodes, alongside higher CRP levels and, accordingly, longer 

duration of antibiotics. When all infants with stage 1a and 1b NEC were excluded from 

these analyses, the associations were even stronger, and new differences became apparent.  

 

In comparison with all-stage NEC, infants with ‘definite’ NEC (i.e. ≥stage 2a Bell’s) had 

significantly lower 10 minute Apgar scores, were more likely to be EBM fed, and to have a 
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significantly lower z score at the end of weeks 1 and 2. Whereas those with all stage NEC 

were significantly lighter at the end of week two than infants without NEC, those with 

stage ≥2a NEC were not, which, again, is attributed to their higher fluid gain – partly 

pathological and associated with NEC, and partly iatrogenic. 

 

However, hypervigilance to signs of NEC in ELBW and extremely preterm infants could 

explain the differences in these populations (whether all-stage or ≥stage 2a NEC), given 

that in each case, those with NEC were significantly smaller and more preterm than those 

without. If the clinical and demographical results are looked at from this perspective, most 

of the observations may be tributaries from extreme prematurity, bar the Apgar score at 10 

minutes (just significantly lower in ≥2a NEC, at p=0.05), and CRIB score within 12 hours 

before recruitment (significantly higher in ≥stage 2a), both of which indicate that these 

infants were sicker at delivery. Although numbers were small, when demographical data 

was compared between those with Stage 3a and b NEC and infants without NEC, many of 

these associations were lost, given this was a heterogeneous group comprising a wide 

range of gestations and birth weights.  

 

Feeds 

NEC in preterm infants commonly occurs after feeding, yet feeding is vital in order for the 

gut to adapt to postnatal life. Multiple studies on restriction of enteral feeds, prolongation 

of PN and clear fluids have shown no benefit in delaying the commencement of enteral 

feeds beyond the classical first 28 days of the neonatal period, when most preterm infants 

are likely to incur NEC (Lin and Stoll 2006). Repeated Cochrane Reviews of feeding 

regimens illustrate that there is no consensus on how quickly to escalate feeds – but that 

trophic feeding with maternal EBM is associated with a lower incidence of NEC (Bombell 

and McGuire 2009). In reality, as our study cohort shows, mixed feeding is the norm for 

preterm infants. Similarly, there is no consensus on whether fortifier is protective or 

associated with NEC, but the infants in our study who received fortifier were all from the 

same unit, and did so because they were tolerating enough enteral feed to merit starting – 

therefore, by definition were already less likely to get NEC before starting fortifier. 

Nonetheless, its addition was not noted to be associated with an increased risk of NEC 

thereafter. Within the regional NICU guidelines there is no unified feed volume policy, 

although it is currently under review. Similarly, the proceeds from the National Neonatal 
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Network and ESPGHAN Committees were examined, and they too reflect a spectrum of 

practices nationally and internationally.  

 

Antibiotic administration 

As expected, there were longer and more numerous antibiotics courses in those with NEC. 

There is, as of yet, no unified antibiotic policy within the Glasgow neonatal units. The 

main differences are in administration during the immediate postnatal period. Until its 

union with RHSC, the SGH NICU commonly used cefotaxime. However, the numbers of 

infants administered cefotaxime were too small to merit analysis. Such was the wide 

variety of antibiotics used according to blood culture and skin colonisation pathogens that 

it became impossible to stratify. The phenomenon of antibiotic resistance is more likely in 

preterm infants, in whom there are fewer microbiota species growing at lower intensity that 

in healthy term breast fed infants. One study by Kuppala et al in 2011 confirmed their 

hypothesis that preterm infants administered antibiotics without culture positive sepsis 

were at higher risk of subsequent NEC. They postulated this was due to the suppression of 

protective commensals, and this was most likely due to continuation of existing antibiotic 

administration rather than new, shorter courses (Kuppala 2011). One of the recruiting 

NICUs for our study showed statistically shorter durations of antibiotic usage than the 

others, but with no significant difference in NEC rate, or CRP.  

 

Mortality 

Four infants in our whole study population (n=56) died (7.1 %). All four had incurred NEC 

(12.5 % of all-stage NEC, 20 % of ≥stage 2a), and this was the cause of death in one 

infant, at more than 100 days of life post-ileostomy. In all, 1 infant died as a direct result of 

NEC (1.7 % of study cohort; 5 % of ≥stage 2a NEC). When this is considered in light of 

recent preterm neonatal mortality figures as quoted by Embleton et al in 2012 (21 %), the 

all-cause mortality rate in our study is considerably lower, and mortality secondary to NEC 

was much lower (Berrington, Hearn et al. 2012).  
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Chapter 4 

Bacteria and Bacterial Metabolites 

 

4.1) Metabolites: SCFAs and BCFAs 

Introduction 

The first half of this chapter describes the results from SCFA analysis by GCMS (using 

methodology as discussed in Chapter 2) for all 56 infants included within the cohort. 

Results are described first according to total SCFA concentrations, followed by individual 

acids, each considered temporally. They are then stratified according to temporal 

differences in gestation, feed type, and finally NEC. Ratiometric analyses are mentioned at 

the end of each part. Finally, a discussion section considers these results both in isolation 

and in light of the evidence base, as gleaned during the systematic reviews included in 

chapter 1.  

 

4.1.1) SCFA Concentrations: Totals 

Total SCFA concentrations were measured in mmoles/L wet weight sample. Formic acid 

(C1) was excluded from the totals given its ubiquity and thus potential for contamination. 

As such, the following SCFAs/BCFAs were included in these totals: acetic, propionic, 

butyric, isobutyric, valeric, isovaleric, caproic, isocaproic, heptanoic, octanoic, and lactic 

acids. Furthermore, ratiometric analysis was also undertaken, namely: ‘lactic:all branched 

chain fatty acids’ (isobutyric, isocaproic, and isovaleric acids); ‘acetic:all BCFAs’; and 

both lactic and acetic acids versus each BCFA individually.  
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Figures 49: a) (top) Median group total weekly SCFA concentrations (with IQRs) showed no significant differences; b) 

(bottom) Median group individual SCFA concentrations (with IQRs) showed acetate and lactate to be significantly higher 

than all other SCFAs (p<0.05), although were not significantly different from one another throughout the study period.  

denotes a significant p value. 

 

Figure 49 above shows that the total SCFA concentrations fell from week to week 

throughout the study period, but not significantly so (p > 0.05). Lactic and acetic acids 

were higher than any other SCFAs throughout the study period (p < 0.05), although were 

not significantly different from each other throughout. Acetic acid fell between weeks 1 

and 2, but not significantly so (p = 0.5). Comparison of individual acid totals per week 

showed this also to remain consistent, without significant changes. There were very low 

concentrations of each BCFA, which did not vary significantly in the cohort from week to 

week (p > 0.05). Therefore ratiometric analyses of lactic and acetic acids versus BCFA 

individually and in combination, were assessed. These analyses for the study cohort each 

week showed no significant differences for either lactic or acetic acids, either by total or 

individual BCFAs over time. 
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4.1.2) By Gestation 

SCFA production was then stratified according to gestation, week by week.  

 

 

Figures 50: a) (top) Median SCFA concentrations by gestation week 1 (with IQR); lactic acid was 

significantly higher in 24-26 week group than 26-28 weeks (p=0.042), or those at 30-32 weeks (0.017).  

denotes a significant p value. b) (bottom) Median SCFA concentrations week 2 (with IQR); no gestational 

differences were seen in acetic or lactic acids, but isocaproic acid was higher in the 26-28 week group than 

those at 30-32 weeks (p=0.006).  
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Figures 51: a) (top) Median SCFA concentrations by gestation week 3 (with IQR); b) (bottom) Median 

SCFA concentrations week 4 (with IQR). In both weeks lactic and acetic acids were significantly higher than 

all other SCFAs, but no gestational differences were detected. Significant differences were detected in minor 

SCFAs (see later). 

 

i) Week by week analysis 

Week 1 

In week 1 (figure 52 a), significant differences were observed in lactic acid concentrations 

between different gestational ages. Lactic acid was higher in the 24-26 week infants than 

those between 26-28 or 30-32 weeks (p = 0.042 and 0.017 respectively). This accounted 

for the significantly higher total SCFA concentration in those at lower gestations (24-

26>26-28 weeks, p = 0.03; see figure 54).  
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Figures 52: a) (top) Median lactic acid concentrations by gestation, weeks 1-4 (with IQR); infants at 24-26 

and 28-30 weeks showed higher concentrations than other groups during week 1 (p<0.04).  denotes the 

significant p value. b) (bottom) Median acetic acid concentrations by gestation, weeks 1-4 (with IQR). No 

significant differences were noted 
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However, further gestational differences in lactate disappeared through the remaining 

weeks (figure 52 a). No significant differences were seen in acetic acid concentrations 

between gestations at any time point (figure 52 b). 

 

Significant gestation-dependent differences were nonetheless seen in one of the ratiometric 

analyses. Ratiometric analysis revealed higher lactic to total BCFA ratio in the 28-30 week 

group than those at 26-28 weeks (figure 53 a: p = 0.0067). This was due to their higher 

lactate:isobutyric acid ratio (figure 53 b: p = 0.01).  
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Figure 53: a) (left) Week 1 ratiometric analysis of lactate:BCFA in 26-28 versus 28-30 week gestation groupings, showing a 

significantly higher ratio in the 28-30 week group (p=0.0067); b) (right) Week 1 lactate:isobutyrate was higher at 28-30 weeks than 

those at 30-32 weeks (p=0.01). 
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Figure 54: Week 1 total SCFA concentrations, by gestation; those between 24-26 weeks gestation had a significantly higher total than 

those at 26-28 weeks (p=0.03, as denoted by ‘↓’). 

 

Week 2  

No differences were seen in the major acids acetic, lactic or propionic between any 

gestational group during week 2, nor in their total concentrations. However, a significant 

difference was observed in the branched chain fatty acid isocaproic, which was higher in 

those at 26-28 weeks than the 30-32 week group (p = 0.006). No ratiometric differences 

 



 

 

195 

 

were noted when considering total BCFAs, but individual changes were seen with regard 

to isocaproic acid. As shown in figure 59 a), the lactate:isocaproic acid ratio was higher in 

those at 24-26 weeks than 26-28 weeks (p = 0.0035), and higher in those at 28-30 than 26-

28 weeks (p = 0.0015). Similar gestation-dependent trend was seen in figure 59 b) for the 

acetate:isocaproic acid ratios in this week, with higher levels in those at 24-26 weeks 

gestation than those at 26-28 weeks (p = 0.0093).  
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Figure 55: a) (left) Week 2 lactate:isocaproic ratio illustrating higher levels in those at 24-26 weeks than 26-

28 weeks (p=0.0035), and the 28-30 group than those at 26-28 weeks (p=0.0015). b) (right) Week 2 

acetate:isocaproic acid ratios were higher in those at 24-26 weeks than 26-28 weeks gestation (p=0.0093). 

 

30-32 weeks28-30 weeks26-28 weeks24-26 weeks

100

80

60

40

20

0

[S
C

FA
] 

m
m

o
le

s
/

L

 

Figure 55: c) Week 2 total SCFA concentrations, by gestation; there were no significant gestational differences 

 

Week 3 

No significant differences were seen in acetic, propionic, butyric, heptanoic, octanoic or 

lactic acids between gestations, or in their total concentrations. Similarly no significant 

ratiometric changes were noted (see figure 56). 
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Figure 56: Week 3 total SCFA concentrations, by gestation; no gestational differences were noted 

 

Week 4 

Again, no significant gestational differences were seen in acetic, propionic, butyric, 

isobutyric, heptanoic, octanoic, or lactic acids (see figure 58). Total concentrations also 

showed no gestational differences. During week four (see figure 57 a)), ratiometric 

analysis revealed higher lactate versus total BCFA in those of 24–26 weeks gestation than 

those of 28-30 weeks (p = 0.015), those at 24 versus 26 weeks (p = 0.012), and those at 26 

versus 28 week groups (p = 0.037). On further analysis (figure 57 b)) the ratios of lactate to 

isobutyrate showed gestational trends (higher in 24-26 weeks than 28-30 weeks: p = 0.012; 

24-26 > 30-32 weeks, p = 0.011; 26-28 weeks > 30-32 weeks, p = 0.03; 26-28 weeks > 28-

30 weeks, p = 0.037), as did lactate:isovalerate ratios (Figure 57 c): 24-26 > 30-32 weeks, 

p = 0.016; 26-28 weeks > 30-32 weeks, p = 0.02). 
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Figure 57: a) (left) Week 4 ratiometric analysis of lactate:BCFA by gestation revealed higher ratios at 24-26 weeks than 28-30 weeks 

(p=0.012), and 26-28 weeks (p=0.012). The ratio was also higher in 26-28 week group versus 28-30 group (p=0.037). b) (right) Lactate: 

isobutyrate ratios were higher at lower gestations (24-26 weeks than 28-30 weeks: p = 0.012; 24-26 > 30-32 weeks, p = 0.011; 26-28 

weeks > 30-32 weeks, p = 0.03; 26-28 weeks > 28-30 weeks, p = 0.037). 

 

 



 

 

197 

 

30-32 weeks26-28 weeks24-26 weeks

800

700

600

500

400

300

200

100

0

W
e

e
k
 4

 l
a

c
ta

te
:i

s
o

v
a

le
ra

te
 r

a
ti

o

 

Figure 57 c) (top) During week 4, lactate:isovalerate ratios were higher at lower gestations (24-26 > 30-32 weeks, p = 0.016; 26-28 

weeks > 30-32 weeks, p = 0.02). 
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Figure 58: No significant differences were noted between total SCFA concentrations at each gestation during week 4. 

 

ii) Week-on-week comparisons by gestation 

SCFA concentrations for each gestational grouping were also compared week by week, 

and followed similar patterns, as seen in figures 59 and 60:  
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Figures 59: a) (top) Median SCFA levels in infants 24-26 weeks (with IQR); there was a significantly higher 

total SCFA concentration in week 1 than either weeks 2 or 4 (p=0.019 and p=0.04 respectively);  denotes a 

significant p value. b) (bottom) Median SCFA levels in infants 26-28 weeks (with IQR). Acetic and lactic 

acids were significantly higher throughout all time points (p<0.05). 
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Figures 60: a) (top) Median SCFA levels in infants 28-30 weeks (with IQR); b) (bottom) Median SCFA 

levels in infants 30-32 weeks (with IQR). Both gestational groups showed higher levels of acetic and lactic 

acids, but there were no week-to-week differences.  

 

For each gestational grouping, acetic and lactic acids were consistently higher than other 

acids throughout the study period. Total SCFA concentrations remained consistent 

throughout the study period at each gestation. Only the 24-26 week gestation grouping 

showed higher total concentrations in week 1 than weeks 2 or 4 (figure 60 a): p = 0.019 

and p = 0.04). Their week 1 total SCFA concentration was significantly higher than infants 

in the 26-28 week group at the same time point (p = 0.03; see figure 54 a)). 

 

iii) Ratiometric data  

Ratiometric analysis of each gestation week-by-week showed significant differences in 

infants at 24-26 weeks and 28-30 weeks gestation. As shown in figure 61, those at 24 

weeks gestation had significantly higher acetic:isocaproic levels in week 1 than week 3 (p 

= 0.02), and also acetic:isovaleric levels in week 1 than week 2 (p = 0.05). In the 28-30 
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week group,  lactic:total BCFA ratios were higher in weeks 1 and 2 than week 4 (Figure 

62: p = 0.01 and 0.02 respectively). When the ratio of lactic:isobutyric acid was made at 

those of 28 weeks, this was considerably higher in week 1 than week 4 (Figure 63 a): p = 

0.0075), as was the same ratiometric analysis when substituting acetic acid for lactic 

(Figure 63 b): p = 0.01).  

  

Figure 61: a) (left) Acetate:isocaproate ratio 24-26 weeks gestation; levels at weeks 1 and 2 were higher than 4 (p<0.02). b) (right) 

Acetate:isovalerate ratio 24-26 weeks gestation; week 1 levels were significantly higher than week 2 (p=0.05). 

 

 

Figure 62: 28-30 weeks: lactate:BCFA ratio weeks 1-4; levels were significantly lower in both weeks 1 and 2 than week 4 (p<0.02). 

 

    

Figure 63: a) (left) 28-30 weeks: lactate:isobutyrate; week 1 levels were higher than week 4 (p=0.0075).b) (right) 28-30 weeks gestation 

acetate:isobutyrate; levels were significantly higher in week 1 than week 4 (p=0.01)  

 

4.1.3) By Feed Type   

i) EEBM by week 

Total SCFA concentration for infants exclusively EBM fed in week 1 was significantly 

higher than during week 4 (Figures 64 and 65 a): p = 0.02). No ratiometric differences 

were noted. 
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Figure 64: Comparison between week 1 and week 4 total SCFA concentrations in infants exclusively fed 

EBM showed significantly higher concentrations in week 1 (p=0.02);  

 

ii) EEBM and Mixed SCFAs, by Week 

 

 

 

Figures 65: a) (top) Median weekly SCFA concentrations in those fed EEBM was significant only between 

weeks 1 and 4 (p=0.02); b) (bottom) Median weekly SCFA concentrations in those mixed fed. No significant 

differences were observed.  
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iii) Ratiometric Data 

No significant differences were seen in total SCFA concentrations for infants mixed fed, 

but when ratiometric analysis was considered, acetic:total BCFA level was significantly 

higher in week 2 than week 4 (Figure 66 a): p = 0.05). Week by week and ratiometric 

comparisons between those EEBM and mixed fed showed no significant differences, 

although comparison of levels at week 1 approached significance, at p = 0.065. Analysis of 

individual SCFAs revealed acetic acid concentrations to be significantly higher in mixed 

fed infants in week 4 than those fed EEBM (Figure 66 b): p = 0.03).  

 

    

Figure 66: a) (left) Mixed fed infants acetate:BCFA ratio; week 2 levels were significantly higher than week 

4 (p=0.05) b) (right) EEBM levels of acetic acid were higher than mixed fed infant acetic acid levels in week 

4 (p=0.03) 

Although lactate levels during week 4 were higher in those EEBM than mixed fed, this did 

not reach statistical significance (p = 0.07).  

 

4.1.4) By NEC: Stage ≥2a 

i) Total SCFA: NEC ≥2a versus those without NEC 

When comparing total SCFA concentrations in those infants with ≥stage 2a NEC and those 

without NEC, there were no significant differences. However, as noted by the interquartile 

ranges, there were hugely variable levels, making the likelihood of significant differences 

remote (see figure 67). 
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Figure 67: Median SCFA totals Stage 2a vs Non-NEC, weeks 1-4 (with IQR). No significant differences 

were noted. 

 

There were also no significant differences observed between those with ≥stage 2a NEC 

and non-NEC with regard to individual SCFAs throughout the study period. Wide 

interquartile ranges were noted throughout both groups (figures 68 and 69).  

 

ii) Weekly comparisons of those with ≥Stage 2A NEC and those without NEC 

 

   

 

 

Figures 68: a) (top) Median Individual SCFAs ≥Stage 2a NEC Vs Non-NEC, week 1 (with IQRs); b) 

(bottom) Median Individual SCFAs ≥Stage 2a NEC Vs Non-NEC, week 2 (with IQRs). In each case, no 

significant differences were noted. 
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Figures 69: a) (top) Median individual SCFAs ≥Stage 2a NEC Vs Non-NEC, week 3 (with IQRs); b) 

(bottom) Median individual SCFAs ≥Stage 2a NEC Vs Non-NEC, week 4 (with IQRs). In each case, no 

significant differences were noted. 

 

iii) Ratiometric Data 

However, when ratiometric concentrations were compared between those with ≥ stage 2a 

NEC and those without NEC several differences were observed – mainly in acetic acid 

ratios. During week 1, the acetic:total BCFA ratio was significantly higher in those with ≥ 

2a NEC versus those without (Figure 70 a): p = 0.0059), as was the acetic:isovaleric acid 

ratio (Figure 70 b): p = 0.0079). A significant difference was also seen in the 

lactic:isocaproic acid ratio during week 2, with a higher level in ≥2a NEC (Figure 71 a): p 

= 0.05). No other differences were noted until week 4, when the lactic:isobutyric acid ratio 

was significantly higher than those without NEC (Figure 71 b): p = 0.05).  
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Figure 70 a) (left) NEC ≥2a versus Non, acetate:BCFA ratio, week 1; NEC was significantly higher than non (p=0.0059) b) (right) NEC 

≥ 2a versus Non, acetate:isovalerate ratio, week 1; NEC was significantly higher than non (p=0.0079) 

 

   

Figure 71: a) (left) NEC ≥2a versus Non, lactate:isocaproate week 2; NEC levels were significantly higher than non (p=0.05) b) (right) 

≥2a NEC versus Non, lactate:isobutyrate ratio, week 4; NEC levels were significantly higher than non (p=0.05)  

 

 

When weekly ratiometric levels of acetic:total BCFA were considered in those with ≥ 

stage 2a NEC (Figure 72 a)), levels at week 1 were significantly higher than week 2 (p = 

0.04), and week 3 (p = 0.03). Acetic ratios with isovaleric acid were higher in week 1 than 

weeks 2 and 4 (Figure 72 b): p = 0.04, and p = 0.01). Ratios were also considered in infants 

without NEC. Again, most of the significant differences were observed in acetic ratios. 

Acetic:total BCFA level was significantly lower during week 1 than 2 (Figure 73 a): p = 

0.0003). Acetic:isocaproic ratio at week 1 was significantly lower than in weeks 3 or 4 

(Figure 73 b): p = 0.0091, and p = 0.0083 respectively). Differences in lactic ratios were 

temporally analogous, showing significantly lower lactic:isocaproic ratios in week 1 than 

weeks 2 and 4 (Figure 74: p = 0.0001, and p = 0.0008).     
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Figure 72: a) (left) ≥2a NEC acetate:BCFA ratios weeks 1-3; levels in week 1 were higher than weeks 2 and 3 (p=0.04 and 0.03 

respectively) b) (right) ≥2a NEC acetate:isovalerate ratio weeks 1-4; levels at week 1 were higher than weeks 2 and 4 respectively 

(p=0.04 and 0.01 respectively) 

 

 

Figure 73: a) (left) Acetate:BCFA ratios, week 1 were significantly higher than 2 in those without NEC (p=0.003); b) (right) 

Acetate:isocaproate ratios, week 1 was significantly lower than week 3 (p=0.0091) and week 4 in those without NEC (p=0.0083) 

 

 

Figure 74: Non lactate:isocaproate ratios, week 1 was significantly lower than weeks 2, 3 and 4 (p<0.0008) 

 

iv) Stage-by-stage comparisons: 2a, 2b, 3a and 3b NEC 

SCFA concentrations were further compared between the four ‘definite’ stages of NEC: 

2a, 2b, 3a and 3b (Figure 75 and 76). Once again, the same trends were noted as for other 

comparisons: acetic and lactic acids predominate through all stages of NEC. 
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Figures 75: a) (top) Median individual SCFAs by NEC Stage, week 1 (with IQRs); no significant differences 

were noted b) (bottom) Median individual SCFAs by NEC stage, week 2 (with IQRs); valeric acid levels 

were significantly higher in those with 2A than 3B NEC (p=0.02). 
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Figures 76: a) (top) Median individual SCFAs by NEC Stage, week 3 (with IQRs); b) (bottom)  Median 

individual SCFAs by NEC stage, week 4 (with IQRs); all acids apart from lactate and acetate were higher in 

those with 2A than other stages of NEC.  

 

 

 

Univariate analyses were then performed to assess whether there were any significant week 

by week changes in individual SCFAs by NEC stage, considering only those with definite 

NEC. Again, stages 2a and b, and 3a and b were combined. 
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Stage 2a and b 

   

Figure 77: a) (left) Stage 2a+b NEC: Total SCFA concentrations over the study period; b) (right) Individual 

SCFAs, week 1, stage 2a+b NEC. In both cases, other than acetic and lactic being higher, no significant 

differences were noted.  

 

There were no significant differences in SCFA totals over the study period (see figure 77 

a).  

 

       

Figure 78: a) Stage 2a+b NEC: individual SCFA concentrations week 2; b) Stage 2a+b NEC: individual 

SCFA concentrations week 3. None were found to be significant, other than acetic and lactic higher than all 

other SCFAs.  

 

Figure 79: Stage 2a+b Individual SCFA Concentrations, week 4; acetic and lactic were significantly higher 

than others, but no other changes were noted. 

 

Although acetic and lactic acid were higher than the other SCFAs each week, no other 

significant differences were noted.  
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Stages 3a + b  

 

Figure 80: Total SCFA levels in weeks 1 – 4 in infants with stage 3a+b NEC; no significant differences could 

be identified. 

 

 

Figures 81: a) Individual SCFA concentrations in infants with 3a+b NEC, week 1; b) Individual SCFA 

concentrations in infants with 3a+b NEC, week 2; in both cases acetic and lactic dominated. 

 

 

Figure 82: a) Individual SCFA concentrations in infants with 3a+b NEC, week 3; b) Individual SCFA 

concentrations in infants with 3a+b NEC, week 4; in both cases acetic and lactic dominated. 

 

For those with stage 3a+b NEC, acetic and lactic acids were not significantly different 

from one another throughout the study period. However, a number of significant 

differences were noted concerning acetic and lactic acids in these infants:  
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Figure 83 a): Concentrations of acetic acid were significantly higher in week 1 than week 4 in those with 3a 

+ b NEC (p=0.005); Figure 83 b): Concentrations of acetic acid were also significantly higher in week 2 than 

week 4 in those with 3a + b NEC (p=0.05). 

 

Comparisons of SCFA concentrations in stage 2a+2b NEC with stages 3a+3b NEC 

 

Trends were observed when considering individual SCFAs within each weekly epoch. In 

each case, those with 2a+2b NEC showed significantly higher levels than those with 3a+3b 

NEC, and all during week 4 – by which point those with 3a+b were post-laparotomy 

(figures 84 and 85). 

 

 
 

Figure 84 a): Butyric acid levels in those with 2a+b NEC were significantly higher than in those with stage 

3a+b NEC (p=0.0047); b): Similarly, levels of isovaleric acid were also significantly higher in those with 

stage 2a+b than 3a+b during week 4 (p=0.0273). 

 

 



 

 

212 

 

 
Figure 85 a): Concentrations of isobutyric acid were significantly higher in those with stages 2a+b NEC than 

those with stages 3a+b during week 4 (p=0.05); b): Similarly, total SCFA concentrations were significantly 

higher in those with stage 2a+b NEC versus 3a+b NEC (p=0.0247). 

 

 

 

v) Before and After the Clinical Diagnosis of NEC 

 

Samples from those with ≥stage 2a NEC were also analysed before and after their 

diagnosis was made. No differences were seen in either total weekly or individual SCFAs. 

In samples taken post-diagnosis, only valeric acid was significantly higher in those with 

stage 1a NEC versus those with stage 3b (Figure 86: p = 0.02).  

 

 

Figure 86: Valeric acid levels in infants with stage 1a NEC were higher than those with stage 3b NEC, post-

diagnosis (p=0.02) 

 

Before and After Ileostomy Formation 

SCFA levels were measured in separate samples taken before and after ileostomy 

formation. No significant changes were noted in either total or individual SCFA 

concentrations.   
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4.1.5) Correlations between SCFAs and demographical data 

A number of associations between total SCFA data, individual SCFAs and demographical 

data were investigated, although none showed a significant correlation. A number of 

examples are shown below (Figures 87 and 88): 
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Figures 87: a) (left) Infant weights versus acetate, weeks 1-4; no significant correlation was noted (p=0.16); 

b) (right) Infant weights versus lactate, weeks 1-4; no significant differences were noted (p=0.47) 
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Figures 88: Acetate levels versus lactate levels; no significant correlation was noted (p=0.28). 
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4.1.6) Discussion 

Despite the severity of NEC, and wide range of gestations, birth weights, and 

antibiotics, total SCFA concentrations were remarkably consistent through each week, 

especially considering the heterogeneity of feed types. These concentrations were 

similar to those published elsewhere in regard to preterm infants, although the trends 

and correlations noted were very different. Given there is no evidence in literature for 

the effect of mixed feeding on these SCFA profiles, this strongly suggests that this 

factor may explain the consistency in results. It is possible that any ‘contamination’ 

with formula affects establishment of the microbiota, and therefore SCFA production. 

Unfortunately since no infants were exclusively DEBM, and only a single infant was 

formula fed, thus these comparisons could not be made. The levels and associations 

found in our study will be discussed first, followed by an analysis of this data with 

regard to the evidence base.  

 

i) Individual and Total SCFA Analyses: Gestational and Feeding Differences 

Acetate and lactate dominated most stool samples. In week one, a higher lactate level 

resulted in a higher total SCFA concentration in infants aged between 24-26 weeks 

gestation, but this association was lost for the remaining weeks. This could be 

explained by the higher rate of exclusive breast milk feeding in these infants, in 

combination with a lower rate of peristalsis. Gestation-specific trends were noted 

within the other minor, isomeric and branched chain fatty acids throughout the weeks. 

Although the higher levels of caproic acid in those at 24-26 weeks gestation can be 

explained by their higher content in breast milk, the reason for the consistently higher 

levels of isovaleric acid in these infants is unclear, but may be due to higher levels of 

protein fermentation. Isovaleric acidaemia is a known inherited metabolic disorder, but 

none of these infants were diagnosed as such. Upon examining the evidence base for 

identification of isovaleric acid in preterm stool, no articles could be found. However, 

given that breast feeding is permitted for infants with isovaleric acidaemia, levels 

generated by the leucine content of breast milk are assumed to be low or absent (Huner, 

Baykal et al. 2005). This leaves us with the possibility that raised levels are due to 

microbiological differences in gut microflora, particularly strains of Clostridia. 

However, other significant SCFAs produced by such enteropathogens (namely valeric, 

isocaproic and butyric acids) were lower at earlier gestations throughout the study 

period, possibly suggesting an association with a specific strain, such as that of 
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Clostridia sp. The consistency of the SCFA profiles in light of high intraindividual 

variability in feeds, antibiotics, and natural changes with age strongly suggests that 

their primary aetiology is from the gut microflora. Particularly given our initial 

hypothesis that the SCFA profile would change according to feed type, we would have 

expected changes in the second half of the study period, when the transition between 

EBM and formula feeding occurred in most mixed-fed infants. This was partly 

observed when considering the total SCFA concentrations in those EEBM fed, which 

were significantly higher in week 1 than week 4. Similarly, the acetic acid levels were 

higher in mixed-fed infants than those EEBM fed in week 4, commensurate with the 

higher acetate content of formula milks. Whether this is also compounded by a lower 

acetate level in mature milk from mothers of preterm infants, or simply high variability 

within our cohort, is yet to be assessed on extensive literature searching.  

 

ii) Comparisons between infants with and without NEC  

When considering the SCFA levels in regard to NEC, again, these were remarkably 

consistent, with the dominance of acetate and lactate. No significant differences were 

noted in totals, which may well simply be from missing relevant ‘spikes’ given the 

weekly sampling period. When individual acids were considered, those with stage 2a 

NEC were noted to have an rise in propionic acid between weeks 3 and 4, and a fall in 

valeric acid between weeks 2 and 4. These correspond with the onset of NEC, and 

require further studies to assess their potential as biomarkers. However, this effect may 

have been underestimated due to a number of missing data given the high incidence of 

paralytic ileus. For those with the most severe stage of NEC, stage 3b, there were more 

complete data sets given their consistent production of stoma fluid. Isobutyric and 

heptanoic acids were noted to fall between weeks 3 and 4, corresponding to stoma 

formation in most of these infants. That these acids were detected at all suggests that 

they are not just produced by the large bowel. The only difference seen in any 

individual acid between stages of NEC was in valeric acid, which was higher in those 

with stage 1a than 3b – perhaps simply reflecting the absence of the colon through 

ileostomy formation; or impending small bowel bacterial overgrowth, for which these 

infants are at risk. On post-hoc analysis this had no other obvious clinical or 

demographical correlation. 
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iii) Ratiometric Analyses 

Ratiometric analyses revealed some interesting trends, and may be of more relevance 

than individual SCFAs. Unfortunately there are no published data in preterm infants 

with which to compare. All ratios were generally higher during week one analyses, and 

when considering gestational groups, both lactate and acetate:BCFA ratios were higher 

at lower gestations, and considerably higher during week one than at any other time 

points. The 24-26 week group showed higher acetate:isocaproate and 

acetate:isovalerate ratios during week one than other weeks, whereas the 28-30 week 

group showed higher lactate:BCFA, acetate:BCFA and lactate:isobutyrate levels. A 

simple explanation could be the difference in feed type, since the 24-26 week group 

were mainly EEBM fed, in contrast with the 28 week gestation group who were mainly 

mixed fed. This is supported by the higher acetate concentration during week 4 in those 

mixed fed – although there were no ratiometric differences between either the EEBM 

or mixed fed groups. The mixed fed group appeared to have higher acetate:BCFA 

levels in week 2 than week 4, which reflects higher BCFA levels in week 4 – possibly 

due to the establishment of potential enteropathogens. This is supported by similar 

ratiometric trends when comparing all infants with ≥ stage 2a NEC than those without 

NEC, particularly their higher acetate:BCFA ratio in week 1.  

 

Changes in a variety of lactate and acetate ratios were notably higher in those with ≥ 

stage 2a NEC than those without, throughout the study period. Commensurate with this 

observation, acetate ratios in those with ≥2a NEC were consistently highest at week 

one; conversely, all acetate and some lactate ratios were higher in week 4 in those 

without NEC. During week 2 the acetate:isovalerate ratio was also higher in those with 

≥stage 2a NEC than those without. Also during week 2, the lactate ratios began to 

change, with higher lactate:isocaproate ratios, followed by higher lactate:isobutyrate 

ratios in week 4. This shift is unlikely to be due to the differences in feed type, since 

those with NEC were fed more EEBM, and considerably lower volumes during these 

time points, and similar gestational trends were not noted. This leaves an aberrant gut 

microbiota either instigating or secondary to NEC, as the most likely cause. During the 

earlier weeks, this effect could be explained by their longer antibiotic courses. In 

addition, when those with and without ≥stage 2a NEC and were compared week-on-

week, they showed opposite trends. Infants with ≥stage 2a NEC had higher 

acetate:BCFA in week 1, falling through the other time points. This was the direct 
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opposite for infants without NEC, in whom acetate:isocaproate and lactate:isocaproate 

ratios were also noted to rise through the later weeks.  

 

Ratiometric analyses showed stronger relationships than considering the individual or 

total analytes in univariate analyses – and may well point to ratiometric analysis as the 

principle consideration in future studies of preterm infants. This disagrees with one of 

our original hypotheses – that those with NEC would have greater levels of protein 

fermenting bacteria, with higher BCFA and lower SCFA concentrations as a result. 

Instead, proportionately lower BCFA levels were observed in those with NEC, 

insinuating that in these patients, less proteolytic and more saccrolytic bacteria are 

present. Given the absolute values are so small, ratiometric changes are better placed to 

identify these. 

  

iv) Comparison with the evidence base 

This work has identified similar levels to those found in other studies concerning 

SCFAs in preterm infants that have also found samples to be dominated by acetate and 

lactate, also been found in infants randomised to enteral probiotic administration. Our 

figures were similar, medians measuring: total SCFA concentrations of 20 µmoles/g; 

lactate levels of 8 µmoles/g; acetate levels of 6 µmoles/g; and all other SCFAs were 

<1.0 µmoles/g. In particular, butyrate levels were significantly lower than in other 

studies, and mostly less than 1 µmoles/g. Total SCFA concentrations in those EEBM 

fed showed a median of 35 µmoles/g, decreasing to a median of 10 µmoles/g in week 

4. No significant differences were seen between levels in infants with and without ≥ 

stage 2A NEC (median: 20 µmoles/g in ≥ stage 2A NEC vs 18 µmoles/g in those 

without). Changes were observed in minor SCFAs when comparing different stages of 

NEC, but these concentrations were extremely low – with valeric, butyric, isovaleric, 

isobutyric and heptanoic acids all measuring less than 1 µmoles/g. No normative BCFA 

data in preterm infants could be ascertain on extensive systematic literature searching. 

As such, our data would appear to be the first.  

 

Comparison of other studies with ours is immediately confounded by the use of 

multiple other units of measurement, including: mEq/100g; Kcal/Kg/day; mumoles/g 

dry weight; µmoles/g wet weight; and µmoles/mg. Only three studies shared the same 

unit of measurement (µmoles/g): Favre in 2002, Wang in 2007, and Mohan in 2008 



 

 

218 

 

(Favre, Szylit et al. 2002, Mohan, Koebnick et al. 2006, Wang, Shoji et al. 2007). 

These will be discussed specifically, and all other trends from the literature will be 

noted generally.  

 

Favre et al in 2002 randomised 28 preterm infants to either breast milk or nutramigen. 

Three groups were considered: preterm infants with breast milk (group 1); preterm 

infants with nutramigen (group 2); and extremely preterm infants breast milk fed 

(group 3). Levels were quoted in µmoles/g. Total concentrations were similar to ours, 

with all those breast milk fed: 24 (1.3-118.8), vs all nutramigen fed: 23 (3-73.3) 

showing no significant difference. The total SCFA concentration was significantly 

lower in group 1 than any other: 7.4 (0.3-37.4). Increased levels of butyric acid were 

observed in those fed nutramigen, by 30%. None of our population were fed 

nutramigen formula milk. 

 

Wang et al in 2007 randomised 66 preterm infants to the probiotic Bifidobacterium 

BB12 or a placebo, and used HPLC to analyse samples at 0, 2 and 4 weeks of life, using 

µmoles/g units. They found similar total SCFA levels to ours, with significantly higher 

totals in controls at 4 weeks. These were further stratified by birth weight (ELBW; 

VLBW; and LBW). ELBW infants had: 20.4 (0-88.5); VLBW infants: 33.4 (11.4-

54.7); L: 43.2 (25.8-79.4) – all p<0.05. Higher total SCFA levels in controls were also 

seen at 2 weeks in VLBW and LBW infants: 2.1 (0-11.4) and 6.9 (0-55.7). Decreased 

levels of butyrate were seen in those administered the probiotic in BB12 in both ELBW 

and VLBW infants: ELBW: 2.4 (0-17.9) vs control 0.1 (0-0.3), p < 0.05; VLBW: 2 (0-

6.6) vs control 0.1 (0-0.4), p <0.05. Our butyrate levels were very similar to their 

control groups, at <1.0. Wang et al also performed some ratiometric analyses, although 

they did not consider BCFA but the total SCFAs. They showed that the ratios of 

acetic:SCFAs at week 4 were higher in those given the probiotic at all weight ranges: 

LBW: 96.8 +- 3.4% vs control 81.7 +- 7.6; VLBW: 97.8+-3.5% vs control 5.8 +- 6.9; 

ELBW: 99.3 +- 0.7% versus 88.6 +- 6.3% (all p < 0.05). They concluded that 

Bifidobacterium BB12 lowered butyrate thus protecting against NEC. However, this 

trial was not powered to NEC, and no NEC data were displayed.   

 

Mohan et al in 2008 randomised 69 preterm infants to either placebo or 

Bifidobacterium BB12. They performed GC analyses twice weekly, declaring weeks 1, 
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2 and 3 data. Lactate was measured by ELISA. All SCFAs were reported as µmoles/g, 

but whether wet or dry weight was not specified. As with our analyses, acetic acid was 

the dominant SCFA comprising 90% of the total. Data for propionic and butyric acids 

were not mentioned specifically, but was far less than acetic acid (p < 0.05). 

Ratiometric analysis was used, but compared acetic, propionic, butyric, and valeric 

acids, and was quoted at 90:4:3.2:2 for the total cohort. Values were displayed in graph 

form only, therefore the following are estimates. The levels of lactate were 38% higher 

in those administered probiotics than those given the placebo. The median level of total 

SCFAs was 11 for the probiotic group and 7 for the controls – considerably lower than 

our own figures. Differences were seen in infants with and without antibiotic 

administration. Infants without antibiotic administration had considerably higher lactate 

levels. Given that most of our study cohort was administered antibiotics during the 

study period, we were unable to perform a similar comparison. Those given probiotics 

in Mohan’s study showed higher total SCFA levels during wk 2, with ~32 µmoles/g vs 

~ 25 µmoles/g of placebo infants. In week 3, this difference was more pronounced, and 

similar to our own figures: probiotics ~47 µmoles/g vs  placebo ~27 µmoles/g. Higher 

acetic acid levels were noted in week 2 in those given probiotics: ~ 30 µmoles/g vs 20 

µmoles/g in placebo. Again, by week 3 this differences was more pronounced, with 

probiotic group ~ 41 µmoles/g vs the placebo group median of ~ 22 µmoles/g. These 

concentrations of acetic acid were, on the contrary, 5 to 6 fold higher than those found 

in our study. All infants within the Mohan study were mixed fed. Although Mohan et al 

found a significant correlation between levels of lactate and acetate (p = 0.0001), as 

well as Bifidobacterial numbers and both lactate and acetate (p = 0.05 and p = 0.01). 

We were not able to replicate these correlations.  

 

Trends found by other studies were highly variable. These studies comprised one 

observational study, and two RCTs – one of feed type, and one of probiotic 

supplementation. There were few gestational and age differences in SCFA individual 

and total concentrations within our cohort. Most other studies did not find or express 

such differences either. Anyon et al in 1971 (Anyon and Clarkson 1971) observed 10 

preterm infants of less than 37 weeks and 2.5kg birth weight, over three epochs within 

the first month of life. They measured GC output using mEq/100g, and recorded little 

variation in totals: 1
st
 epoch: 84.7±124.7; 2

nd
 epoch: 69.2±11.7, 3

rd
 epoch: 80.7±16.4. 

There was a significant decline in acetic acid levels: 1
st
 epoch: 62.2±/0.8 2

nd
 epoch: 
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48.2±7.6; 3
rd

 epoch: 48.7±2.7. Levels of propionic acid unexpectedly rose through the 

epochs: 1
st
 epoch: 6.3±4.8; 2: 8.9±3.1; 3: 14.6±2.7. but: 13.2±3.1 2: 12.1±2.8; 3: 

11.2±0.8. Lactic acid was in far lower levels than our study, and sharply declined to the 

3
rd

 epoch: 1
st
 epoch: 1.3±1.2; 2

nd
 epoch: 0.45±0.1; 3

rd
 epoch: 0.23±0.8. They concluded 

that fermentation of carbohydrate was normal in preterm infants but disappears during 

weeks 2 – 3, presumably secondary to better absorption of sugars by the gut. NEC was 

not noted in the cohort. 

 

Kien et al in 1996 (Kien 1996) measured SCFAs by GC, quoting kcal/kg/day - values 

which are not comparable with our study. They performed a trial administering a 

lactose formula to 15 preterm infants between 28-32 weeks gestation, measuring stool 

samples between 2 – 4 weeks of age. In those given the lactose formula, they saw an 

increased acetate level by 77% (p = 0.03), and higher total SCFA concentrations by 

54% (p = 0.04). They concluded that 90% of fecal carbohydrate energy is large 

molecular weight compounds from bacterial fermentation.  

 

Stansbridge et al in 1993 (Stansbridge, Walker et al. 1993) underwent a RCT of a 

Lactobacillus probiotic, recruiting 20 preterm infants, and observing stool samples over 

the 1
st
 28 days of life. They quoted their results in µmoles/g dry wet sample. Their 

results showed no differences in (probiotic group vs control group): acetic acid 173 

(trace – 799) vs 166 (trace – 700); propionic acid: 44 (trace – 169) vs 37 (11-229); 

butyric acid: 31 (5-107) vs 37 (2-118).  

 

More recently, Underwood et al in 2009 (Underwood, Salzman et al. 2009) performed 

a RCT of prebiotic/probiotic combinations in preterm infants, and recruited 90 in all. 

These were stratified into three groups: controls (group 1); those given Lactobacillus 

sp. and FOS (group 2); and those given Lactobacillus, Bifidobacterium, and FOS 

(group 3). Samples were measured using HPLC, and values were reported as 

nmoles/mg of sample. Comparisons showed no significant differences in acetic, 

propionic or butyric acids. Medians were quoted as follows: acetic: Group 1 - 2.5; 

Group 2 – 2; Group 3 - 3; propionic: Groups 1, 2 and 3 all had a median of 1; butyric: 

Group 1 – 6; Group 2 – 6; Group 3 - 4. Although seven infants were noted to develop 

any stage of NEC, these were not considered within the analysis.  
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v) SCFAs in NEC: the evidence base 

As discussed within the background chapter, only one published study has considered 

SCFA analysis with respect to NEC in preterm infants (Szylit, Maurage et al. 1998). In 

their observational study, Szylit et al considered differences in 46 enterally fed preterm 

infants with and without ‘digestive disorders’ using GC and quoting mmoles/Kg wet 

weight of sample. However, they did not consider the Modified Bell’s Criteria as their 

staging system for NEC, and instead used more numerous and different descriptions of 

‘digestive disorders’. Their cohort included infants who were also more mature and 

heavier at delivery than in our own study (mean 32.8 weeks gestation and mean birth 

weight 1920 g). All infants who could not be fully fed maternal EBM were 

supplemented only with DEBM – unlike in our study, where formula was also used. In 

addition, few infants within the study by Szylit et al were administered antibiotics, in 

stark contrast with our own cohort. Their mean total SCFA levels were however lower 

than ours, with a range of 0 – 80 mmoles/kg, and were normally distributed. They used 

2-ethylbutyric acid as their internal standard. They too noticed a wide inter-individual 

variation in total and individual levels. The total SCFA levels from the infants in their 

cohort fell significantly with increasing birth weight (LBW 3 mmoles/Kg vs NBW 0.9 

mmoles/kg). It also increased with phototherapy, and declined with antibiotic usage, 

neither of which we considered in regard to our SCFA data since both were ubiquitous 

throughout our cohort. Infants without digestive disorders showed an increasing butyric 

acid ratio from 7 % to 24 % throughout their study period.  

 

Szylit et al noted a significant ‘spike’ in butyric acid prior to GI bleeding (42.6 ± 12.3 

mmoles/Kg vs 25.3 ± 16.2 mmoles/Kg). These levels, when converted to our unit of 

µmoles/L are still likely to be significantly higher than the butyric acid levels seen 

within our cohort at any time point. The infants studied by Szylit et al showed a trend 

to higher acetic acid before the onset of GI haemorrhage, and higher butyric and 

caproic acid levels in these infants than those without digestive signs. However a major 

confounder of their study was the exclusion of infants with laparotomy first week. If we 

had excluded these infants then two infants with stage 3B NEC would have been 

omitted from our analyses. 
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4.1.7) Conclusions 

The consistency and lack of significant differences in data with respect to 

demographical information supports the notion that much of the stool SCFA measured 

in our cohort is generated by bacterial fermentation, likely influenced heavily by the 

predominance of mixed EBM and formula milk feeds, and the ubiquity of antibiotic 

administration. Our figures also corroborate similar studies quoting the same units of 

measurement (µmoles/g). It is extremely encouraging that despite the high incidence of 

NEC, the total and individual SCFA levels in our study are comparable to those from 

published studies of infants administered probiotics – studies which conclude these 

levels to be in deference to this supplementation. This may point to the greater value of 

EBM HMOs, endogenous EBM probiotic bacteria, and possibly cross contamination 

from staff consuming probiotic products, given that the majority of mothers of the 

infants recruited to our study did not use probiotic foodstuff or supplements. This is the 

first study to report levels of BCFAs in preterm infants with and without NEC, and also 

the first to combine these in ratiometric form. The significant differences seen with 

regard to NEC give these measurements promise for further development as diagnostic 

and prognostic markers of NEC in the future. 
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4.2) MOLECULAR ANALYSIS OF STOOL SAMPLES VIA TEMPORAL 

TEMPERATURE GEL ELECTROPHORESIS 

4.2.1) Introduction 

 

Given the time-consuming and expensive nature of this method of molecular analysis, 

all 56 infants did not have samples analysed for this satellite study. Instead, patients 

were selected from this cohort so that ‘case’ and ‘control’ groups could be compared. 

The external collaborators were therefore not blinded to the NEC status of any infant. 

In addition, it was decided to exclude meconium samples, given the lack of gut 

colonisation in these samples from other studies – although it is appreciated that certain 

observational studies have yielded bacteria from meconium, despite the absence of 

PPROM in the mother (Jimenez 2008). As such, samples were compared between non-

meconium stool from week 1 and week 4.  

 

4.2.2) Clinical and Demographical Results 

In total 44 stool samples from 22 infants were analysed for the purpose of this study. 

There was no significant difference in demographics, weight and clinical characteristics 

between EBM and MF infants but there was a large inter-individual variability (Table 

22). As expected, there was a strongly positive correlation between gestational age and 

birth weight (p = 0.0001). In the EBM group 62% of the infants had been diagnosed 

with NEC and 50% in the MF group but the difference was not significant (p = 0.6749) 

(Table 22). Infants with NEC had a significantly lower birth weight (p = 0.0027) and 

gestational age (p = 0.0092) compared to those without. These findings were significant 

in the MF group (p = 0.0022 and p = 0.0049, respectively) but not in the EBM group (p 

= 0.7656 versus p = 1.0). Most infants were born by caesarean section, and in each 

group two infants were delivered by SVD (Table 22). Five of the mothers in the MF 

group had received antibiotics during their pregnancy and delivery, while none of the 

mothers of the EBM infants had intrapartum antibiotic treatment (Table 22). All infants 

received TPN for the first few days of life. Enteral feeding was introduced within the 

first three days of life in most infants but was delayed in three infants with NEC to day 

six and seven (two EBM, one MF) (Table 22). There was no significant difference in 

the age at the commencement of enteral feeding between EBM and MF infants (p = 

0.459). The infants’ age at sample collection varied within individuals but the median 

difference between the first and second samples was significant for all individuals (22 
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days; p = 0.003). Notably, this only includes samples with an available collection date 

(Table 22), but it should be noted that due to daily collections, the longest any sample 

rested in a -20
0
C freezer in situ at the birth hospital was 48 hours (i.e. over a weekend). 

All second samples from infants with NEC were collected after diagnosis.



 

 

225 

 

Table 22: Demographical and clinical characteristics of infants  

 Infant Hospital Gender 
Mode of 

delivery 

Gestational 

age 

(weeks) 

Birth weight 

(g) 
Maternal antibiotics 

NEC/  

NON 

Feeding 

start 

(DOL) 

Sample 1 

(DOL) 

Sample 2 

(DOL) 

EBM A QMH M CS 28.0 836 no NEC 2 8 29 

 B SGH F SVD 24.4 830 no NEC 7 13(MEC) 22-28 

 C SGH M CS 27.4 1140 no NEC 2 15 22-28 

 D  SGH M CS 27.4 1080 no NEC 6 16(MEC) 22-28 

 E SGH F CS 30.1 1240 no NEC 2 12 27 

 F PRMH F SVD 26.7 1055 no NON 2 2-7 22-28 

 G PRMH M CS 27.7 1034 no NON 2 2-7 30 

 H PRMH F CS 29.0 1040 no NON 3 3-7 22-28 

 Median 

(range) 
4M/ 4F 2 SVD/ 6 CS 

27.6 (24.4-

30.1)* 

1078 (830-

1240)* 
All no 5 yes/3 no 2 (2-7)* 

 MF I PRMH F CS 27.9 835 no NEC 2 9(MEC) 30 

 J PRMH F CS 30.1 925 no NEC 2 3 28 

 K PRMH F SVD 28.1 935 no NEC 2 2-7 22-28 

 L PRMH F CS 27.4 685 no NEC 2 8(MEC) 31 

 M  PRMH F CS 25.6 715 yes NEC 6 14 31 

 N  PRMH M CS 25.6 900 yes NEC 3 8(MEC) 32 

 O SGH M CS 27.1 960 no NEC 3 8(MEC) 22-28 

 P PRMH M CS 31.9 1370 no NON 2 7 28 

 Q PRMH F CS 31.6 1480 yes NON 2 9 31 

 R SGH F CS 30.9 1480 - NON 2 7(MEC) 30 

 S PRMH F CS 29.6 1185 yes NON 1 5 36 

 T SGH F CS 31.4 1100 no NON 2 9(MEC) 22-28 

 U PRMH M CS 30.7 1280 no NON 2 9(MEC) 22-28 

 V PRMH M SVD 28.9 1135 yes NON 1 8 22-28 

 Median 

(range) 
5 M/ 9 F 

2 SVD/ 12 

CS 

29.3 (25.6-

31.9)* 

1030 (685-

1480)* 
5 yes/ 8 no 7 yes/7 no 2 (1-6)* 

Annotations: - missing value, * values given in median (range); Abbreviations: EBM = expressed maternal breast milk; MF = mixed breast milk and formula fed; CS = caesarean section; SVD = spontaneous vaginal 

delivery; DOL = day of life; MEC = meconium; NEC = necrotising enterocolitis; NON = no necrotising enterocolitis).  
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4.2.3) Outcomes of TTGE analysis 

Band analysis could be conducted for a total of 39 samples. For seven of the samples, 

genomic DNA was not detected with ethidium bromide stain, but four still presented 

results by TTGE. No bands could be detected in the three remaining DNA-negative 

samples, even with the use of TTGE-Sybr Green, a stain 25 times more sensitive.  As such, 

these negative samples were excluded from the analysis. One sample had illustrated 

products on the DNA agarose gel but PCR and TTGE gel could not obtain a result so that 

was also excluded from analysis (Figure 89 a-d). 



 

 

227 

 

 

    
 
 
 
 

     

Figure 89 a-d): TTGE Gels 1-4. ‘VSL3’ was used as standard. Letters stand for each participant and numbers for the time of sample collection.  

Gel 4 illustrates the second samples from all mixed fed infants. VSL-3 refers to the probiotic reference sample. 

Gel 1: Figure 89 a)        Gel 2: Figure 89 b) 

 

 Gel 3: Figure 89 c)           Gel 4: Figure 89 d) 
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Figure 90: Annotated schematic example of TTGE steps. Note one fecal sample was introduced per well. 

Photographs were then taken of each gel, and bands analysed as described within the text.    

 

  



 

 

229 

 

i) Number of species present at both sample points 

Species richness was defined as the number of bands per sample. This varied greatly 

within individuals with a minimum 1 to a maximum value of 17 species (Table 23). No 

significant differences in microbial richness could be detected between Sample 1 (collected 

during week 1) and Sample 2 (collected during week 4; p = 0.453) in the cohort, or in 

those with and without NEC (p = 0.6111). Similarly, no significant differences were noted 

by feeding mode (p = 1.0).  

  

Table 23: Number of species present at the two sample points 

  Species richness 

  Sample 1 Sample 2 

EBM A 9 1 

 B 2 3 

 C  2 7 

 D  7 1 

 E 7 8 

 F 3 7 

 G 10 6 

 H 7 13 

  7 (1-10)*                           6.5 (1-13)* 
             

p=1.000 

MF I - 4 

 J - 3 

 K 11 9 

 L - 6 

 M  - 5 

 N  - 5 

 O 2 10 

 P 8 8 

 Q 1 17 

 R 2 4 

 S 3 10 

 T 10 4 

 U 4 2 

 V 2 4 

  3 (1-11)*                           5 (2-17)* 
 

p=0.294 
Annotations: - missing value, * values given in mean (range). (Abbreviations: EBM = expressed maternal breast milk; MF = 
mixed expressed maternal breast and formula milks). 

 

 

There was no significant increase in numbers of species found at the two sample points in 

either feed groups (Table 23). Within both feeding groups, there was considerable 

interindividual variation, with some individuals developing an increasing microbial 

richness, whereas others became more spartan. This occurred regardless of the presence or 

absence of NEC (Figure 91). 
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Figure 3: Line plot - Changes in number of species present at the two sample points

 

Figure 91: Changes in number of species present between each sample; no differences were noted. 

(Abbreviations: EEBM = exclusive expressed maternal breast milk fed; MF = mixed breast and formula milk 

fed). 

 

ii) Changes within the microbial community over time 

In order to get an idea of species turnover, the detected bands were categorised into: 1) 

those that remained the same between sample 1 and sample 2 (persistent species); 2) those 

that were present in sample 1 but not in sample 2 (extinct species); and 3) those that were 

not present in sample 1 but then appeared in sample 2 (immigrated species) (Figure 92). 

The corresponding values of species turnover (i.e. the numbers of resident, extinct and 

immigrated species) did not correlate with each other and there was no difference between 

the feeding groups regarding the number of resident (p = 0.5637), extinct (p = 0.7003), or 

immigrated species (p = 0.441). 
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Figure 92: Species turnover. Values show number of species present in: 

 Sample 1 and 2 (resident) 

 Sample 1 but not 2 (extinct) 

 Sample 2 but not 1 (immigrated) 

  EBM     MF 

  EBM     MF 
 
 
 
 

Letters A-V represent the subjects. (Abbreviations: EBM = expressed maternal breast milk; MF = 
mixed breast and formula milk). 
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iii) Inter-individual similarity 

Intra-individual similarity varied greatly and ranged from a similarity index (Cs) of 0 % to 

66.8 % (see Appendix 4). There was no statistical difference between the similarity indices 

of the feeding groups (p = 0.885) or between those with and without NEC (p = 0.171) 

(Figure 93). 
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Figure 5: Intra-individual similarity indices of EBM and MF subjects

Figure 93: Interindividual similarity indices of EEBM and MF fed infants showed no difference with respect 

to NEC. (Abbreviations: EEBM = exclusive expressed maternal breast milk; MF = mixed breast and formula 

milk fed). 

 

Inter-individual similarity was calculated only for Sample 2 due to the number of missing 

values in the first sample set. Single Cs had a great variance and ranged from 0 % to 66.8 

%, but the mean inter-individual similarity did not differ between the feeding groups 

(Figure 94). 
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Figure 94: Mean percentage of interindividual similarities of EBM and MF infants (with error bars 

representing SD); no significant differences were noted. (Abbreviations: EEBM = exclusive expressed 

maternal breast milk; MF = mixed breast and formula milk fed). 

 

 

iv) Relative abundance of species in the study population 

 

The TTGE profile of the second samples identified a total number of 26 different species 

within the EBM group and 31 species within the MF group. Most species detected in the 

second sample of EBM and MF infants had a low abundance across the sample population 

but three bands in the EBM group and one band in the MF group were detected in more 

than 50 % of the subjects. The relative abundance of species did not differ between the 

groups (Figure 95), and their numbers were too small to note any significant changes in 

abundance or similarity according to stage of NEC. 

 

Figure 6: Percentage of inter-individual similarities of EBM and MF infants
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Figure 7: Individual value plot - relative abundance of species within EBM and MF infants

 

Figure 95: Individual value plot: relative abundance of species from EBM and MF infants. (Abbreviations: 

EEBM = exclusive expressed maternal breast milk; MF = mixed breast and formula milk fed). 

 

 

v) Correlations between TTGE parameters and other analytes 

No correlations at all were found between the number of bands and any other metabolic or 

inflammatory analytes on univariate analysis (Figure 96 a)). A non-significant correlation 

was observed between number of bands in those without NEC and their corresponding 

calprotectin levels during their week 1 sample (Figure 96 b): p = 0.065, Pearson correlation 

0.604).  

 

  

Figures 96: a) (left) Bands versus lactate in infants with all-stage NEC; b) (right) Bands versus FC in infants 

without NEC; in each case, no significant differences were observed. 

 

p=0.4858 

 

P>0.05 P>0.05 
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When these analyses were compared by Neonatal Unit, there were no significant 

differences, but this may be due to small numbers. None of the NICUs were noted to have 

any unusual bacteria colonising these or other patients.  
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4.2.4) Discussion 

i) Introduction 

This subgroup analysis corroborates earlier similar studies using TTGE, revealing fewer 

species, at lower intensities, and with wide intra and interindividual variety. The aim of 

this study was to gain an insight into the early intestinal bacterial colonisation of VLBW 

preterm neonates and to investigate a potential impact of the feeding mode on gut 

microbiota development and its relationship with the risk of NEC. Although the bands 

obtained by TTGE changed rapidly, this could indicate the tremendous amount of 

microbial flux that occurs during the first month of life – more so than at any other age. In 

general, the evidence base suggests that the gut microbiota of preterm infants shows a 

dominance of anaerobes and gram negative bacteria, the delayed appearance of 

Bifidobacteria sp., and increased interindividual variation in healthy infants. Observational 

studies also note reduced colonisation in infants delivered by LUSCS, those administered 

antibiotics, and those incubated after delivery (all of which occurred commonly for our 

cohort) – particularly diminished populations of Lactobacillus. Our results will be 

considered by data set analysis in tandem with studies of preterm infants both with and 

without NEC, as already documented in pages 65 – 67 and 86 – 88. 

 

ii) DNA yield 

Stool from our cohort in the first week of life from non-meconium samples was analysed 

and a TTGE band pattern could be obtained in 17 of 22 subjects. The number of species 

found in those samples varied greatly within individuals (range 1-11), suggesting that the 

colonisation of the gut starts rapidly after birth but there is also a large inter-individual 

variability. This was in keeping with Magne et al in 2006, who found a mean of 3.25 

species per infant from 16 preterm neonates using two different techniques: TTGE and 

PCR. The samples were collected at the fourth week of life and showed a bacterial richness 

of 1 to 9 species with TTGE analysis and 1 to 8 species with 16S rRNA sequencing 

technique (Magne, Abely et al. 2006). Species identified included Enterococcus, 

Streptococcus, Staphylococcus, and Bifidobacteria sp.  

 

There was no significant difference or increased trend between the two times of sample 

collection in our study. Species richness found in our study did not vary largely from 

findings of other studies. This is supported by Mshvildadze et al from 2010, who obtained 

DGGE results in 21 of 23 first meconium stool samples of very premature neonates of less 

than 30 weeks gestational age (Mshvildadze, Neu et al. 2010). This is to date the only 
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study to identify bacterial DNA in meconium. We chose not to use meconium as there was 

likely to be a higher yield in later, changing stool of enterally fed infants. Mshvildadze et al 

also found that DNA could be extracted in all second samples, and the number of species 

identified by DGGE varied between 1 and 17 species. The main species identified in those 

with NEC were Citrobacter, Enterobacter, whereas those without NEC showed higher 

levels of Klebsiella. Similarly, Schwiertz et al in 2003 identified a range of between 5 to 20 

species using denaturing gradient gel electrophoresis (DGGE) analysis in stool collected 

during the first four weeks of preterm neonates. In contrast to our study, the numbers of 

species were lower at the third day of life and there was an increased trend of bacterial 

richness over time (Schwiertz, Gruhl et al. 2003). Another recent prospective study also 

reported an increased diversity score of 0.45 units/week (p<0.0001) in extremely low birth 

weight infants (Jacquot, Neveu et al. 2011). Our results did not show an increased trend 

with time - perhaps due to variations in the infants’ chronological age at the time of sample 

collection. In agreement with other findings, there was no association in species richness 

and gestational age or birth weight (Schwiertz, Gruhl et al. 2003, Magne, Abely et al. 

2006). 

 

iii) Intra-individual and Inter-individual Similarities 

Most infants within our sub-group analysis showed a low similarity index between first 

and second sample, and illustrated a large degree of species turnover with low numbers of 

resistant and large numbers of extinct and immigrated species. These findings did not 

differ between those exclusively breast milk fed, and mixed-fed infants, indicating that the 

early microbiota community of these preterm neonates was unstable and underwent 

constant changes regardless of the type of milk fed. This is in agreement with early 

findings, albeit in term infants by Harmsen et al, as published in 2000 (Harmsen, 

Wildeboer-Veloo et al. 2000). The bacteria composition during the first days of life of term 

infants was found to be equally heterogeneous between breast and mixed-fed infants and a 

stable gut microbiota community, with a significant pattern between the feeding groups not 

developed before 12-20 days of life. Although it was reported that the profile of intestinal 

microbiota between breast-fed term infants has a low similarity index (mean 11.2 %) at 

day 6 of life (Schwiertz, Gruhl et al. 2003), it is seen to develop a homogeneous 

colonisation pattern that can be distinct to those of formula-fed infants, as reported by 

Harmsen et al in 2000. This increased stability of the microbiota community however was 

not detected in our study on this particularly interesting group of preterm neonates. The 
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mean similarity index at four weeks of age remained low and did not show a distinct 

pattern between the feeding groups.  

 

This low similarity between infants differs greatly from what had been reported by 

Schwiertz et al, in 2003. For that study, serial stool samples were collected for PCR-DGGE 

analysis over the first four weeks of life from 29 preterm neonates. They found a 

significant increase in the subjects’ inter-individual similarities over time (p<0.0+5), with 

the mean similarity index increasing between 18.1% at day three to 57.4 % at day 28. The 

values at week four are therefore far higher than those conducted in our study regardless of 

feed type (EBM: mean 19.2 % SD 17.9 %, versus MF: mean 21.0 % SD 18.5 %). 

Schwiertz et al also suggested that the increased similarity in the band profiles observed in 

their preterm neonates was as a result of hospitalisation and due to bacterial cross-

transmission in the neonatal unit – particularly since the main species identified were E. 

coli and Klebsiella. In contrast to Schwiertz et al, our study was of multi-centre design 

encompassing three NICUs, two with very different antibiotic regimen. This might present 

a possible explanation for the much lower similarity index that have been found in the 

study population, as there are significant differences in management protocols of the three 

centres. Of the 14 subjects in the MF group, 11 were recruited from the same neonatal unit. 

However the mean similarity index of only those subjects was not significantly higher than 

of the total MF group (mean 24.5 % SD 19.0 %; p=0.3083) and did not indicate a large 

impact from care within different neonatal units.  

 

Further differences in the evidence base were reported by Chang et al in 2011. Using 16s 

rRNA pyrosequencing of 10 preterm infant, 5 fed EEBM and 5 formula fed, they quoted 

that 21.9 % of species identified were ‘unclassifiable’, and that Clostridium and 

Bacteroides sp. were ubiquitous throughout the cohort by the age of 72 hours. Given their 

enteropathogenicity, these are concerning results (Chang, Shin et al. 2011). However, as 

methods develop, identification of the unclassifiable species may change these results once 

again. Indeed, work recently published by Smith et al in 2011 noted wide interindividual 

variability in those with NEC, and only the dominance of Clostridia perfringens in those 

with pneumatosis coli (Smith, Bode et al. 2011). This was supported by Barrett et al, in 

2013 (Barrett, Guinane et al. 2013). The most recent publication, by Normann et al, 

published in 2013, used pyrosequencing to analyse bacterial composition in a cohort of ten 

extremely preterm infants with NEC, in comparison with matched controls. A low 
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diversity of microflora was seen throughout all patients, with no significant differences in 

those with NEC (Normann, Fahlen et al. 2013).   

 

iv) Differences in Feed Type 

In accordance with Mshvildadze et al’s published work of 2010, our study does not support 

a different stool microbial development between opposing feeding regimens in preterm 

neonates. In our study, the number of species in sample 1: EEBM fed 7 (1-10) vs mixed 3 

(1-11); in sample 2: EEBM 6.5 (1-13) vs mixed 5 (2-17). In their study, they analysed the 

microbiotal composition of 23 preterm neonates through combined DGGE and 16S 

ribosomal RNA pyrosequencing. Samples taken at 7 days postnatal age showed no 

difference in microbial diversity when using the Simpson diversity index as compared 

between breast milk and formula-fed infants (mean 9.09, SD 2.03 and mean 9.04, SD 2.13, 

respectively; p=0.96) (Mshvildadze, Neu et al. 2010). In contrast to that, in 1999 Gewolb 

et al (Gewolb, Schwalbe et al. 1999) reported significantly lower numbers of gut 

microflora species in 14 formula-fed extremely low birth weight infants, compared with 15 

babies fed exclusively human breast milk (p<0.05). Cultures of stool bacteria on day 10, 20 

and 30 of life showed that breast-fed infants had a significantly increased total number of 

bacteria species at day 30 compared to day 10 or day 20 (mean 4.2, SD 0.45, mean 2.5, SD 

0.34, mean 3.13, SD 0.38, respectively; p<0.001). Formula-fed infants, in comparison, had 

no increase in species richness. However the number of species detected by culture seemed 

to be more consistent than the findings of our study, perhaps due to uncultivatable species. 

The increased sensitivity and qualitative nature of their techniques may be responsible for 

these opposing results. 

 

v) Band Number 

The number of bands detected on our TTGE gels ranged from 22 to 38, but the relative 

abundance of each species in the gel population was generally low, and most bands were 

only present in one or two of the samples. In comparison with other studies, Magne et al in 

2006 distinguished 25 operational taxonomic units (OTUs) with a 16S rRNA technique 

but, in line with our results, the relative abundance in their study population was 

significantly low. Twenty-two OTUs were present in only one to three of the samples (out 

of a possible 16) which suggests that their preterm neonates harboured a distinct bacteria 

community early in life (Magne, Abely et al. 2006). Four bands (three from infants EBM 

fed, and one from infants MF) were identified to have a relative abundance of over 50 % in 
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our sample population. The identification of those species with cloning and sequence 

techniques should be explored in a future study, alongside the corresponding breast milk 

flora in the lactating mothers. It would be of interest to see if there is a difference in those 

species between the two feeding groups, and a correlation to breast milk commensals. A 

quantitative analysis of those bands with real time PCR could give further information of 

their distribution in the microbial community. Those bands with higher abundance in this 

study are located in the first half of the TTGE gel. Bifidobacterium sp. bacterial 16 rDNA 

genes tend to denature at higher temperature and are therefore expected to migrate further 

and are generally found at the bottom of the gel (Roudiere, Jacquot et al. 2009). It can be 

tentatively speculated that these bands might not be Bifidobacterium sp., but it is 

inappropriate to draw firm conclusions without identification with gene sequencing 

method.  

 

vi) Correlation with metabolic analytes 

Although Mohan et al in 2008 showed a significant correlation between Bifidobacteria 

counts and both lactate and acetate concentrations, we could not replicate this same in our 

study.  

 

vii) Study Limitations 

This sub-group study has several limitations: chiefly that the study population was 

extremely diverse in important clinical and demographical factors including gestational 

age, mode of delivery and incidence and severity of NEC. It is possible that these factors 

influence the microbial development and have therefore influenced the outcome of this 

study. Mixed-fed infants received differing proportions of formula, pasteurised donor 

and/or maternal non-pasteurised expressed breast milk, hence present an extremely 

variable group, for whom two groups were assimilated (EBM versus Mixed) in order to 

make significant comparisons. It has been speculated that the pasteurisation process of 

donor milk alters its components, and thus it is accepted that it may change its effect on the 

gut colonisation pattern compared to non-pasteurised EBM (Andersson, Savman et al. 

2007). However this has not yet been established in published work to date, and numbers 

were too small to merit analyses within this study. Notably, within the study group as a 

whole, none of the infants were exclusively fed DEBM. The infants’ chronological age at 

sample collection was not available for some individuals, but was always within a 48 hour 

period. As this generally varied within individuals, it could explain why bacterial richness 



 

 

241 

 

did not increase within the two sample points in contrast to what had been reported in other 

studies (Gewolb, Schwalbe et al. 1999, Jacquot, Neveu et al. 2011). The methodology used 

in this study provides qualitative information about the microbial community in binary 

form: hence the presence and absence of a species is obtained. However, more specific 

quantitative analysis could add a wealth of additional information and further describe the 

ecological community and evaluate the distribution of bacterial counts of each species 

present in this ecological system. With this additional information it would be possible to 

calculate microbial biodiversity of the samples, as defined by Begon et al in 2006 (Begon 

M 2006). It is possible that some species are more prominent than others, and that this 

could lead to an underestimated similarity within the total bacteria community between the 

groups in this study. In our study almost half of the infants were diagnosed with NEC and 

whether their altered microbiotal community was part of their disease process or due to 

their treatments (antibiotics, nil by mouth, prolonged parenteral nutrition) was unable to be 

assessed in this study due to the wide range of treatments administered. Gewolb et al in 

1999 found a significantly inverse correlation between the number of days with antibiotic 

treatment and the bacterial richness (R=0.491, p<0.007) (Gewolb, Schwalbe et al. 1999). It 

is as such very likely that this may also have affected the study outcome. Maternal 

antibiotic treatment was only present in MF infants and could also impair the resultant 

data.  

 

Part of this study was to evaluate the impact of breast milk on intestinal microbiota, due to 

a possible link with the prevention of NEC. Results of this study do not support a link 

between feed type, microbial development and subsequent NEC. Review of the evidence 

base revealed only two articles using similar techniques to our study. De la Cochetiere et al 

in 2004 found high rates of Clostridia sp. with 95% similarity in those with NEC, using 

PCR after TTGE (de la Cochetiere, Piloquet et al. 2004). Mshvildadze’s study using 

DGGE and pyrosequencing, published in 2011, has already extensively been discussed. In 

1996, Miller et al published their comparison of species yield by TTGE and culture, 

finding no extra species by TTGE (Millar, Linton et al. 1996). It is therefore readily 

evident that type of method of bacterial identification and quantification is crucial, no 

matter the clinical or demographical features of the cohorts. As the incidence of SBS 

increases, studies considering the microbiota of those with ileostomy formation may 

develop. As of yet, none of the studies of gut microbiota in NEC have considered this 

important sub-population.  
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4.2.5) Conclusions 

Concurrently, there are increasing numbers of randomised studies trialling arbitrarily 

chosen probiotic bacteria, given in varying doses by different regimen to prevent NEC and 

reduce NEC-related morbidity and mortality by altering the gut microbiota in this unique 

patient group. These probiotic products are chosen mainly on pharmaceutical availability, 

and not evidence base, given that little is known about the normal microbial ecology in 

preterm infants without NEC, and these trials (the majority of which are based on clinical 

outcomes) do not consider either quantitative or qualitative analysis of the developing gut 

microbiota and metabolites. Since more than 90 % of infants who develop NEC have been 

enterally fed, it could be speculated that the limited time frame taken in most cases to 

establish feeds might not be sufficient to form a protective microbiota community 

responsible for the prevention of NEC (Lin and Stoll 2006). It is probable that other 

beneficial factors within breast milk – in particular secretory IgA, lactoferrin, and alpha-

lactalbumin - have a larger implication in the onset of NEC than colonisation of the gut. 

This thesis investigates molecular associations between the microbiota in infants fed EBM 

or mixed feeds, with and without NEC, which has contributed to the growing evidence 

base that will enable these trials to be targeted toward supplementation of the acquisition, 

composition and function of the microbiota in the early stages of life. In only the last two 

years, four studies have already been published reporting the use of high through-put 

pyrosequencing techniques in preterm infants, yielding many thousands of sequences. The 

increasing accessibility of these methods, as their popularity drops the cost, makes the 

evidence-based identification of probiotic bacteria appropriate for use in trials to prevent 

NEC a closer reality. 
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Chapter 5 

Gut Inflammatory and Immunological Markers 

 

5.1) Calprotectin Analyses  

Introduction 

This section describes the FC levels in all 56 study group infants, as performed by ELISA 

(see methodology chapter). Levels are presented temporally, and then stratified according 

to gestation, feed type, and NEC, including: levels before and after NEC; by NEC stage; 

and before and after ileostomy formation. Finally, several regression analyses are 

presented to identify correlations between FC levels and relevant demographical and 

clinical data. 

 

5.1.1) Totals over study period 

 

Figure 97: Total FC levels weeks 1 – 4; no significant differences were noted. 

 

No significant differences were noted in total FC levels over the study period (Figure 97). 

Levels were further stratified according to gestation, feed type, and presence of NEC. 

 

5.1.2) Totals by Gestation 

  

Figures 98: a) (left) FC levels weeks 1-4 in infants between 24-26 weeks gestation; no differences were 

noted. b) (right) FC levels weeks 1-4 in infants between 26-28 weeks gestation. Again, no differences were 

noted. 



 

 

244 

 

 

   

Figures 99: a) (left) FC levels weeks 1-4 in infants between 28-30 weeks gestation; no differences were 

noted. b) (right) FC levels weeks 1-4 in infants between 30-32 weeks gestation; no differences were noted. 

 

No significant differences were observed between weeks 1 – 4 at any gestation (Figures 98 

and 99). 

 

5.1.3) Week on week totals, by gestation 

Comparisons were also made between each gestational group by week (Figures 100 and 

101). 

 

  

Figures 100: a) (left) FC levels by gestation, week 1; no significant differences were observed. b) (right) FC 

levels by gestation, week 2. Again, no significant differences were noted. 

 

   

  



 

 

245 

 

Figures 101: a) (left) FC levels by gestation, week 3; those at 28-30 weeks gestation had significantly higher 

levels than their 30-32 week counterparts (p=0.003). b) (right) FC levels by gestation, week 4; levels were 

higher in the 28-30 week group than those at 26-28 weeks (p=0.04).  

 

Over each week’s analyses, there were no significant differences between the gestational 

groupings during weeks 1 or 2 (Figure 100). Week 3 showed significant differences 

between those at 28-30 and 30-32 weeks gestation, with higher FC levels in 28-30 weeks 

(Figure 100 a): p = 0.003). Similarly higher FC levels were seen in week 4 at infants of 28-

30 weeks in comparison with those at 26-28 weeks gestation (Figure 101 b): p = 0.04).   

 

No correlations were seen between FC levels and birth weight. 
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5.1.4) Totals by feed type: 

 

Figure 102: FC levels by feed type, weeks 1-4; no significant differences were seen at any time point. 

 

There were no significant differences between those exclusively fed EEBM and those fed a 

mix of milks (Figure 102). When changes in each group were compared week by week, no 

differences were observed. Further analyses of mixed feeding subtypes showed the 

following trends, although numbers were too small in the formula and DEBM/formula 

groups to merit significance (Figures 103 and 104):  

 

  

Figures 103: a) (left) FC levels in EF infants, weeks 1-4; no significant differences were seen. b) (right) 

levels in F fed infants, weeks 1-4; numbers were too small for analysis. 

  

Figures 104: a) (left) FC levels in DE fed infants, weeks 1-4; levels rose significantly between weeks 1 and 2 

(p=0.048).  denotes a significant p value. b) (right) FC levels in DEF fed infants, weeks 1-4; no differences 

were detected.  

 

 
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In the DE group week 1 FC levels were lower than week 2 (Figure 104 a): p = 0.048). 

However, no significant differences were seen in other weeks. No other significant 

difference were seen week-on-week in the other mixed feed groups (Figure 105). 

 

 

 

Figure 105: Median FC levels by feed type, weeks 1-4 (with IQRs). (Abbreviations: EEBM = exclusive 

expressed maternal breast milk; F = exclusive formula milk; EF = expressed maternal breast and formula 

milks; DEBM = exclusive donor expressed breast milk; D/E = donor and maternal expressed breast milks; 

DEF = donor, maternal breast and formula milks; DF = donor expressed breast and formula milks.) 
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5.1.5) Totals by ≥ Stage 2a Necrotising Enterocolitis  

 

    

Figures 106: a) (left) FC levels in infants with ≥stage 2a NEC, weeks 1-4; b) (right) FC levels in infants 

without NEC over weeks 1 – 4; in each case, no significant differences were noted.  

 

No significant differences were noted using non-parametric analyses in both groups, or 

when comparing them week by week, although those with stage 2a NEC or more 

illustrated a trend to lower levels by week 4 (Figure 107: p = 0.096).  

 

  

 

Figure 107: FC levels in infants’ ≥stage 2a NEC versus those without NEC, weeks 1-4; no significant 

differences were observed. 
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Figures 108: a) (left) FC levels in those with NEC fell significantly after stoma formation (p=0.0327); b) 

(right) FC levels in infants without NEC (‘NON’), week 2, and those before stoma formation (‘PRESTOMA 

(WK2))’; levels were significantly lower in those without NEC (p=0.05). 

 

Many NEC infants developed concurrent ileus with lower stool production. There were no 

significant differences in calprotectin levels in infants with NEC before and after clinical 

signs were apparent (p = 0.1179), or in those before NEC and after stoma formation for 

stage 3b NEC (p = 0.3026). However, significantly lower calprotectin levels were noted for 

infants who had stage 3b NEC requiring ileostomy formation after surgery compared to the 

immediate sample before (Figure 112 a): p = 0.0327). Also, those with stage 3b NEC prior 

to stoma formation illustrated significantly higher levels than those without NEC at week 2 

(Figure 108 b): p = 0.05). 

 

i) FC levels by stages of NEC 

 

When considering infants at different stages of NEC, those with 2a were combined with 

2b, as were 3a with 3b (Figures 109): 

 

Figures 109: a) (left) FC levels weeks 1-4 in infants with stage 2a+b NEC. No significant differences were 

observed; b) (right) FC levels weeks 1-4 in infants with stage 3a+b NEC; in each case, no significant 

differences were observed. 
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No differences were noted comparing 2a/b with 3a/b, or comparing them to infants without 

NEC over weeks 1 to 4. 

 

Weekly comparison between FC levels at different stages of NEC 

   

Figures 110: a) (left) FC Levels during week 1 by NEC stage; b) (right) FC levels during week 2, by NEC 

stage in each case, no significant differences were noted. 

   

Figures 111: a) (left) FC Levels during week 3 by NEC stage; no significant differences were noted. b) 

(right) FC levels during week 4, by NEC stage; levels were significantly lower in 2B than 2A patients 

(p=0.05)  denotes a significant p value. 

 

The only significant difference in FC levels by NEC stage was noted during week 4, when 

2a FC levels were higher than 2b patients (Figure 111 b): p = 0.05). 

 

5.1.6) Regression Analyses: 

Correlations between FC and other analytes and demographics were sought, namely: 

lactate; acetate; and weight increment. These were illustrated as follows in figures 112 and 

113:  

 
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Figures 112: a) (left) Correlation between FC and acetate levels; no correlation was found. b) (right) 

Correlation between FC and lactate levels; again, no significant correlation was found. 

 

Figure 113: Correlation between calprotectin and infant weights at each time point; no correlation was 

observed. 

 

No correlation was observed between FC and acetate levels (Figure 113 a): p = 0.374), or 

lactate levels (Figure 113 b): p=0.173) in the cohort as a whole. 
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5.1.7) Discussion 

i) Introduction 

The recent articles as described in depth within the aforementioned systematic review of 

FC measurement in preterm infants with NEC showed some promise in this as a diagnostic 

and prognostic marker. However, there are two major confounders of this: 1) the lack of 

normative data, and potential for significant temporal changes within the first months of 

life; 2) the heterogeneity of NEC definitions. In this discussion, the important findings of 

our FC analyses will be considered, along with a comparison of these values in light of the 

evidence base.  

 

ii) Study levels and significant findings 

Despite the dominance and severity of NEC, calprotectin levels remained remarkably 

consistent, with total weekly medians measuring around 250 µg/g. This level is at least 

five-fold higher than the internationally agreed maximum upper limit of normal for adults 

(50 µg/g). Wide interquartile ranges were noted throughout, as found in the SCFA data. 

We noted a small gestational ‘spike’ for the infants at 28 - 30 weeks gestation during 

weeks three and four, but no obvious clinical reason for this could be identified. No 

correlation with birth weight was noted. A minor yet statistically significant increase in FC 

was seen between weeks one and two in the infants who were fed a mix of EEBM and 

DEBM. This may be secondary to the occurrence of NEC at this time period in this cohort, 

but unfortunately numbers were small to merit analysis. Just as for the SCFA analyses, 

since this study was not powered to NEC, a pre-NEC ‘spike’ could easily have been 

missed in performing weekly analyses. We identified no other specific gestation, birth 

weight or feed dependent trends, but this may have been confounded by NEC, in which the 

only significant FC differences could be detected. These were subtle. By week 4, the 

calprotectin levels were higher in those with 2a NEC than 2b, which could be accounted 

for by the later onset of NEC in more severe cases, since it was clear in each group that 

more severe NEC occurred at a later point in the study period. A ‘spike’ was observed in 

infants with severe NEC before stoma formation, also confirming that calprotectin is not 

simply a large bowel protein, and raises the possibility that calprotectin may be detectable 

in other gastrointestinal fluids – for example gastric acid or saliva, as already found in 

studies of children with dental caries (Striz and Trebichavsky 2004, Toomarian, Sattari et 

al. 2011). We could not detect calprotectin in preterm breast milk within this study, but 

other studies have measured calprotectin in milk of mothers of infants at term only, 

indicating that this may be gestation-dependent (Olafsdottir, Aksnes et al. 2002).  
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iii) Comparison with the evidence base 

There is a lack of plentiful normative data of FC levels in healthy children, and as such the 

‘adult’ maximum limit of 50 µg/g is still recognised as a cut-off for further investigation 

for Inflammatory Bowel Disease. However, recently this has been reconsidered in the 

literature, with some units now considering up to 200 µg/g as normal (Henderson, Casey et 

al. 2012). The studies showed consistency in method (ELISA), and unit employed (µg/g). 

In the published evidence to date, (see pages 66, 67, 86 and 87) seven articles have 

considered FC in health and 11 in NEC. Only one showed differences with gestation or age 

(Zoppelli, Guttel et al. 2012), although one found a lower FC level in those less than 1800 

g at birth (Campeotto, Baldassarre et al. 2009). One article showed no differences with 

duration of phototherapy (Bukulmez, Dogru et al. 2012). Two articles found lower FC 

levels in infants enterally administered probiotics (Mohan, Koebnick et al. 2006, 

Campeotto, Suau et al. 2011), but one found no significant difference (Rouge, Piloquet et 

al. 2009). Only Mohan showed significant correlations between FC, total SCFA and SIgA 

levels – but none of these infants incurred NEC. Our FC figures could not replicate these 

correlations.  

 

When considering the articles concerned FC as a marker of NEC, we previously noted that 

our systematic review identified multiple definitions of NEC, so making comparison of 

data inappropriate. The range of medians or means within these articles was highly 

variable. Those with NEC quoted ‘cut-off’ values of: 288.4 mcg/g, > 350 mcg/g, 380.4 

mcg/g in ‘sick’ infants, 363 mcg/g, 286.2 mcg/g, 792 mcg/g, 210 mcg/g, and 286.3 mcg/g. 

One article quoted a significantly lower FC level for infants with fulminant, perforated 

NEC (< 24 mcg/g). The highest quoted mean was 9386 mcg/g in meconium. The medians 

or means for infants without NEC was also diverse: 98 mcg/g, 160 mcg/g, 122.8 mcg/g, 

365 mcg/g, and 172.2 mcg/g. The studies powered to NEC showed similar stool collection 

periods, aiming to collect most or all stool samples within the first 28 days of life, which 

we did not do. Thiujls et al incurred the same issue as we did with low stool production in 

infants with NEC: only 21 out of 35 infants produced pre-NEC samples (Thuijls, Derikx et 

al. 2010).  
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5.1.8) Conclusions 

Our study did not support the use of FC as a diagnostic or prognostic marker of NEC in our 

population, but this may have been confounded by the weekly sample frequency. It’s 

possible that if most or all of the stool samples were collected, ‘spikes’ in FC before NEC 

could have been identified, and so a future study appropriately designed would be well 

placed to investigate this. The fall observed in FC after ileostomy could be considered to 

confirm the necessity of resection. This fall was also significantly lower than that of other 

infants with medically treated NEC at the same median time point. 

 

Given the popularity and increasing use of FC in the diagnosis of IBD, the commercial 

production of ELISA kits is increasing, with more sensitive assays and the ability to 

perform these on smaller samples. Newer rapid acting kits are progressively coming into 

vogue, and further production will hopefully reduce costs and make these more accessible 

to the NHS – possibly replacing the FOB test within Bell’s Criteria.  
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5.2) Secretory IgA 

5.2.1) Introduction 

Given its status as the last of the four analytes to be taken from each sample within our 

standard operating procedure, not all samples were large enough to merit SIgA analysis. 

As such, samples were selected in order to produce a case-control analysis. ELISAs were 

performed by Miss Ma WenWen, MSc student, Dr Emilie Combet, Lecturer in Human 

Nutrition, and I. Statistical analyses were performed using SPSS. All non-normally 

distributed data was log transformed prior to analysis.  

 

5.2.2) Clinical and Demographical Features 

34 preterm neonates were involved in this study, including 20 with NEC and 14 without. 

The numbers of those with NEC were too small to analyse according to their stage of NEC, 

and, as such are considered collectively. Table 24 shows the clinical and demographical 

characteristics of the infants studied. Controls were matched to cases in so far as could be 

ascertained – mainly by gestation and birth weight. Unsurprisingly, low gestation and 

extreme low birth weight were closely correlated, and associated strongly with NEC. When 

stratifying by method of delivery, as per the rest of the study cohort, most infants were 

delivered by caesarean section (SVD 26.5 % versus LUSCS 73.5 %) There was no 

significant relationship between method of delivery and incidence of NEC (p = 0.307). As 

with the cohort as a whole, exclusive breast feeding was the minority, with only six infants 

exclusively breast fed, of whom four incurred NEC. However, when compared in regard to 

presence or absence of NEC, feed type did vary from the cohort as a whole, with no 

significant difference in the type of feeding in infants with or without NEC for the 

purposes of this sub-group study of SIgA. As a self-fulfilling prophesy, the smallest and 

most preterm infants were, appropriately, more likely to be exclusively breast milk fed, yet 

also carry the highest  risk of NEC – rather than a new association between breast milk and 

NEC. 
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Table 24: Clinical and Demographical Features; those with NEC were significantly lighter 

and more premature than those without (p=0.001 and p=0.012 respectively) 

Demographic Total 

(N=34) 

NEC 

(N=20) 

NON – NEC 

(N=14) 

Pearson Chi-

square  

Gender 

    Male 

    Female 

 

14 

20 

 

9 

11 

 

5 

9 

 

0.588 

Birth Weight  

(Mean±SD) 

＜1kg 

1-1.5kg 

1.046±0.258 

 

 

14 

20 

0.941±0.207 

 

 

13 (92.9%) 

7 (35.0%) 

1.195±0.258 

 

 

1 (7.1%) 

13 (65.0%) 

 

 

 

0.001 

Gestation (days) 

(Mean±SD) 

＜196 (28wks) 

196-224 

(28-32wks) 

197.65±16.98 

 

 

16 

 

18 

191.50±16.11 

 

 

13 (81.3%) 

 

7  (38.9%) 

206.43±14.53 

 

 

3  (18.8%) 

 

11(61.1%) 

 

 

 

 

0.012 

MOD 

    Vaginal (%MOD) 

    Caesarean section              

    (%MOD) 

 

9 (26.5%) 

25(73.5%) 

 

 

4 

16 

 

 

5 

9 

 

 

0.307 

Mode of Feeding 

EBF 

MF 

 

6 

28 

 

4 

16 

 

2 

12 

 

0.667 

Abbreviations: NEC = necrotising enterocolitis; NON = no necrotising enterocolitis; MOD = method of 

delivery; EBF = exclusively maternal breast milk fed; MF = mixed breast and formula fed; SD = standard 

deviation. 

By ranking the birth weight as ‘less than1kg’ and ‘between 1kg to 1.5kg’, 92.9 % (13) of 

the infants whose birth weight were less than 1kg suffered from NEC. On the other hand, 

65.0 % (13) of the infants whose birth weight were between 1 - 1.5kg did not have NEC. 

With an increase of birth weight, the preterm infants had a significantly lower risk of NEC 

(P=0.001). A similar phenomenon also happened when considering ranked gestational age 

groups, with a higher gestational age leading to a lower incidence of NEC (p=0.012). As 

expected, there was statistically significant positive correlation (p = 0.001) between 

gestational age, birth weight and NEC (Figure 114).  
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Figure 114: The relationship between gestation (in days) and birth weight (in kg) in the cohort of infants 

from the SIgA study   

 

5.2.3) Results 

i) Stool SIgA titres  

Among all preterm infants (both with and without NEC), stool SIgA concentration were 

significantly higher in week 3 (p = 0.020) and week 4 (p = 0.027) than week 1. No 

significant correlations were found between stool SIgA level and gestational age, or birth 

weight during all four weeks of sampling (p > 0.05). In addition, no significant difference 

was found between stool SIgA level and gender. 

 

Figure 115 shows the mean stool concentration of SIgA in those infants with NEC (n = 20) 

and without NEC (n = 14). In comparison with the difference between the means, data 

were log transferred to normally distributed data sets. As shown in Figure 120, it seems 

that infants who had experienced NEC have a lower SIgA concentration in week 2, but 

higher in week 1 and week 3 than those infants who did not incur NEC. However, in 

comparison of all four weeks, there were no significant differences in stool SIgA 

concentration between infants who developed NEC and those who did not (Table 25: p > 

0.05). In week four in particular, despite all infants having complete data sets, no 

difference was shown between them with regard to NEC (p = 0.902).  
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Figure 115: Repeated stool SIgA means (in log) in infants with and without NEC neonates over a period of 

four weeks after birth. (Data were transferred to normally distributed figures in log for analysis. Week 1: 

NEC: n=14, Normal: n=11; week 2: NEC: n=17, Normal: n=13; week 3: NEC: n=16, Normal: n=13; week 4: 

NEC: n=20, Normal: n=14; NEC is defined as Bell criteria ≥2a; * significant at p<0.05) 

 

When comparing each time point, there was a significant rise in the mean stool SIgA 

concentration from week 2 to week 3 (p = 0.048) in NEC infants, and from week 1 to week 

2 (p = 0.005) for infants without NEC. After this change, no significant differences were 

detected (Figure 115).  

Sample NEC status N Mean 

 

 

Median Standard Deviation 

 

 

P value 

Week 1 NEC 14 7.23 7.57 1.85  

0.45  NON 11 6.62 6.93 2.12 

Week 2 NEC 17 7.32 8.06 1.80  

0.56  NON 13 7.73 8.90 2.05 

Week 3 NEC 16 8.24 8.84 1.38  

0.44  NON 13 7.73 8.99 2.02 

Week 4 NEC 20 7.86 8.85 1.74  

0.90  NON 14 7.93 8.68 1.56 

 

Table 25: T–test for equality of means of four weeks stool SIgA concentration (in log) 

between infants with and without NEC.  
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ii) Mode of feeding and stool SIgA  

Since the concentration of stool SIgA in week 4 (n=34) of this subgroup study cohort was 

normally distributed, a two-factor ANOVA was performed to analyse significant factors 

therein (Figure 119). There was no significant main effect of the presence or absence of 

NEC (p > 0.05) or whether the infants were EBM or mixed fed (p > 0.05), as well as no 

significant interaction between the two factors (p > 0.05). It was also evident that only 4% 

of the variability between the scores can be explained by the independent variables (R 

Squared = 0.040). 

 

 

Figure 116: The effects of feeding methods and NEC status on the stool concentration of SIgA in week 4. 

(Week 4: NEC=20, NON=14; NEC defined by Bell’s criteria >2a; stool SIgA concentration was transformed 

to log values).  

 

Table 26 compared stool SIgA concentration (log transformed) in exclusively breast fed 

and mixed breast milk and formula fed preterm neonates. Significant differences between 

the feeding methods were detected in week 2 (p = 0.036) and week 3 (p = 0.006). 

According to the mean values from the cohort as a whole, infants exclusively breastfed 

tended to have a higher stool SIgA level in week 2 and week 3. 
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Sample Feeding N Mean Standard Deviation P value 

Week 1 EBM 3 6.83 2.12 
0.902   MIX 

22 6.98 1.98 

Week 2 EBM 6 8.48 0.90 
0.036*   MIX 

24 7.25 2.00 

Week 3 EBM 5 8.96 0.26 
0.006*   MIX 

24 7.81 1.79 

Week 4 EBM 6 8.07 1.68 
0.778   MIX  

28 7.85 1.67 

 

Table 26: Stool SIgA concentration (log transformed) in exclusively breast fed and mix 

breast milk and formula fed preterm neonates (total n=34). (Abbreviations: EBM = 

exclusive expressed maternal breast milk fed; MIX = mix maternal breast and formula 

milks). 

 

When testing differences between stool SIgA levels in the infants without NEC, those 

exclusively breastfed illustrated a significantly higher concentration in week 2 (p = 0.046), 

week 3 (p = 0.030) and week 4 (p = 0.021) compared with those fed a mix of breast milk 

and formula (table 27). Conversely, these differences were obsolete in the infants with 

NEC during the same time periods when considering their feed types (p > 0.05).  
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 Feeding N Mean Standard Deviation P value 

Week 1 EBM 1 6.93 No value produced 
No value 

produced 
  MIX 

10 6.59 2.23 

Week 2 EBM 2 9.02 0.27 
0.046*   MIX 

11 7.50 2.16 

Week 3 EBM 2 9.08 0.51 
0.030*   MIX 

11 7.48 2.11 

Week 4 EBM 2 9.08 0.27 
0.021*   MIX 

12 7.74 1.61 

 

Table 27: Differences of stool SIgA concentration (log transformed) in healthy infants 

without NEC, and their related feeding methods. (Total n=14). (Abbreviations: EBM = 

exclusive expressed maternal breast milk fed; MIX = mix maternal breast and formula 

milks). 

 

iii) Breast Milk SIgA and Correlation with Neonatal Stool Titres 

For all breastfed preterm neonates (n=6) in the first four weeks of life, the level of milk 

SIgA was significant higher on week 1 (colostrum) than week 2 (p = 0.021) and week 3 (p 

= 0.034) (Figures 117). However, there were no significant differences of stool SIgA 

between the weeks (p > 0.05). Conversely, the SIgA level found in colostrum was 

significantly higher than the concentration measured in infants’ stool in week 1 (p = 0.035, 

table 28).  
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Figure 117: Comparison of the mean SIgA levels (log transformed) between stool and milk for all breast fed 

preterm infants (n=6) during first four weeks after birth. (Week 1: stool: n=3, milk: n=6; Week 2: stool: n=6, 

milk: n=6; Week 3: stool: n=5, milk: n=6; Week 4: stool: n=6, milk: n=5) No significant differences can be 

drawn for the stool SIgA level among the four weeks, but milk SIgA was significantly higher at week 1 than 

weeks 2 or 3 (p=0.021 and p=0.034 respectively). In addition, milk SIgA in week 1 was significantly higher 

than that found in infant stool samples at the same time point (p=0.035);*: significant p values. 

 

  Sources N Mean Standard Deviation 

 

P value 

week1 Stool 3 6.82 2.11  

0.035   Milk 6 8.92 0.95 

week2 Stool 6 8.48 0.89  

0.226   Milk 6 8.10 0.77 

week3 Stool 5 8.95 0.25  

0.092   Milk 6 8.37 0.91 

week4 Stool 6 8.06 1.67  

0.418   Milk 5 8.24 0.86 

Table 28: SIgA titres (log transformed) measured by quantitative ELISA in stool and milk 

(week 1 = colostrum) samples from six exclusively breastfed preterm neonates. 

 

During each week, no significant differences were observed in milk SIgA levels between 

infants with and without NEC (p > 0.05). However, when comparing stool and milk SIgA 

levels some correlations were noted. Although no correlation was found between samples 

in parallel weeks (i.e. stool week 1 versus milk week 1), on closer observation, there was a 

trend between earlier milk SIgA and later stool samples, with correlations noted between 

milk SIgA in week 2 and stool SIgA in week 3 (p = 0.014), milk SIgA in week 3 and stool 
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SIgA in week 4 (p = 0.041), as well as milk SIgA in week 2 and stool SIgA in week 4 (p = 

0.009, Figures 122 a, b, and c), which replicates expected observations physiologically. 

 

                       a) 

 

 b) 

 

 c) 
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Figure 118: (A, B, C) The correlation relationship between stool and milk SIgA level at individual time 

points in six preterm infants fed with breast milk exclusively. Positive correlations were seen in each case: 

milk SIgA in week 2 with stool SIgA in week 3 (p=0.014); milk SIgA in week 3 with stool SIgA in week 4 

(p=0.041); and milk SIgA in week 2 with stool SIgA in week 4 (p=0.009). 
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5.2.4) Correlations between SIgA and other analytes:  

 

As seen below, no correlations were seen between SIgA and any of the analytes, despite 

extensive comparisons. This was performed using multiple univariate analyses, since 

multivariate test were deemed inappropriate given the wide variation in histograms from 

Anderson-Darling normality tests for the vast majority of the data. Examples included: FC 

vs SIgA (Figure 119 a): p = 0.814); lactate versus SIgA (Figure 119 b): p = 0.237); and 

acetate vs SIgA (Figure 120: p = 0.124). No correlations were noted between number of 

TTGE bands and calprotectin or SIgA. 

 

 

  

Figures 119: a) FC versus SIgA; b) Lactate versus SIgA; no significant correlations were identified 

 

 

Figure 120: Acetate versus SIgA; no significant correlations were identified 

 

  

P=0.814 P=0.23

7>0.05 

P=0.124 
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5.2.5) Discussion 

i) Introduction 

Despite being the most prolific immunoglobulin within the human body, the gut’s first 

defence against pathogens, and a rich component of breast milk, little is published about 

the measurement of SIgA in preterm infants. This subgroup study has illustrated the 

temporal changes in stool and breast milk SIgA within the first month of life. This 

discussion will consider both the values and significant trends revealed in this analysis, and 

its relationship to the current evidence base, as already displayed on pages 79 - 81, 95 – 96. 

 

ii) Stool SIgA and feeding mode 

In this subgroup analysis, nearly half of those studied were of less than 28 weeks 

gestational age, with 81.3% of these infants developing NEC. In this study, we did not find 

any significant differences between stool SIgA level in infants with and without NEC, nor 

correlations with gestation or birth weight. However, this may be because this study was 

not powered to NEC, and that as such NEC-specific alterations in titres were missed, 

which also acted as a significant confounder for the comparison of the stool SIgA level 

before, during and after NEC in those infants affected, as well as stage-specific changes.  

 

To explore the reasons for this similarity between those with and without NEC, these 

groups were stratified according to feed type. We conducted a two-way analysis of 

variance for week 4 according to the feeding methods between those with and without 

NEC, but no significant difference was noted. However, when we consider the missing 

data in week 1, week 2 and week 3, there appears a significant (p < 0.05) result from 

Leven’s test, which illustrates that the variances in the three weeks are significantly 

different. This makes the two-way ANOVA unsuitable for the first three weeks of our data. 

Moreover, the missing data resulted in a small sample size, which was not appropriate to 

conduct a multivariate model utilising feeding methods, NEC status, gestational age, and 

birth weight. Similarly, the numbers of those with NEC were too small to merit sub-group 

analysis. As a consequence, we tested the difference between feeding methods individually 

with independent sample T test. The significant results indicated that exclusive breast milk 

feeding could be more conducive to higher stool SIgA levels in healthy preterm infants 

without NEC. However, since there were only six infants exclusively breast milk fed in 

this sub-group analysis, larger numbers were required to further assess this.  
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iii) SIgA in those without NEC 

Preterm infants not exclusively fed with breast milk also appeared to have a high level of 

stool SIgA, although significantly lower than that of breast milk fed infants in week 2 

(0.036) and week 3 (0.006). As such, it would be important for further analysis of the 

Nutriprem 1 formula (Cow and Gate) that they were fed, which may be due to its blend of 

prebiotic oligosaccharides, which have been suggested the administration to preterm 

infants may result in a higher level of faecal SIgA (Bakker-Zierikzee, Tol et al. 2006). 

Moreover, temporal observations in our study showed that preterm infants diagnosed with 

NEC during the first month after birth may reach their peak stool SIgA concentration later 

than infants without NEC (week 3 versus week 2 respectively) during the first four weeks 

after birth. This may indicate the synergy of the disease process consuming SIgA – or that 

more SIgA is retained on the mucosa itself, and less excreted in stool. Either way, 

conversion of all infants to full exclusive breast feeding would appear to have a favourable 

influence on both processes.  

 

iv) Milk SIgA 

For term neonates, the breast milk SIgA of mothers is seen to peak during the first day 

after birth, and contains around 2–5 mg SIgA/ml in colostrum. Observational studies show 

that the concentration later decreases gradually at around  0.5–1 mg/ml (Goldman, Garza et 

al. 1982). For our analysis of nine mother’s milk samples, since the data set was not 

normally distributed, the median SIgA of colostrum (n=9) was 12.1 mg/ml and 3.6 mg/ml 

in week 4 (n=5) in our study. The difference between term and preterm neonates predicts a 

gestation-dependent immunological adaptation for preterm infants, whom are known to be 

immunodeficient, lacking in the placental transfer of IgG and IgM during the third 

trimester. This supports the results from Araujo et al in 2005 (Araujo, Goncalves et al. 

2005). However, given there were milk samples from only nine mothers of preterm infants, 

more participants would be required to assess this fully. Nonetheless, this is the first study 

to correlate preterm stool IgA and maternal milk IgA with regard to prematurity.  

 

As shown before, the significant differences of milk SIgA level between each week in 

exclusively breastfed infants could reflect the decrease in concentration of milk SIgA from 

colostrum to week 2 and week 3 in preterm infants, in turn exacerbating their 

immunodeficiency and making them more susceptible to both infection and NEC. 

However, as described earlier, within each NICU there was no method of using the breast 



 

 

268 

 

milk according to chronology of expression, and as such, although likely that ‘freshest’ 

milk was used preferentially, thus mirroring the time periods of expression with stool 

production, it is possible that on some occasions infants were given older colostrum – 

particularly if breast milk supplies were running low.  

 

When comparing the stool and milk SIgA level in the six exclusively breast fed preterm 

infants, the significant higher SIgA level colostrum than that found in the corresponding 

infants stools in week 1 suggests that milk SIgA at this time does not contribute to the stool 

SIgA at the same week. In addition with the negative correlation observed, it should be 

considered that the breast milk SIgA may have no positive effect on the stool SIgA level. 

However, the concentration of milk SIgA could be affected by maternal health status and 

habits - even stress and mood have the potential to influence milk SIgA level (Groer, Davis 

et al. 2004). Furthermore, Brandtzaeg et al in 2003 stated that SIgA in breast milk directly 

corresponded with mother’s previous and current immunity and infection status 

(Brandtzaeg 2003). Given the high rates of mastitis among all breast feeding women within 

the first month of life, it is possible that this could be a confounder. Mastitis is known to be 

higher in women manually expressing breast milk, which would account for all of the 

women in our study, given that their infants were too premature to latch on within the first 

month of life (Amir, Forster et al. 2007). In addition, as discussed in the introduction and 

methods chapters earlier, the storage of the samples (which were mainly at -20C within the 

NICUs, but -80C within the university laboratories) may further reduce the SIgA 

concentration measured.  

 

v) Comparison with evidence base  

Despite systematically reviewing the literature at both the beginning and end of this 

research period (2009-2013), scant evidence could be identified investigating SIgA in 

preterm infants within the literature base. Only two articles could be identified, as 

previously discussed. Both concerned healthy preterm infants. As part of their multi-

analyte RCT study, Mohan et al in 2008 measured SIgA in 69 infants with and without 

Bifidobacterium BB12 administration, finding higher levels in week 2 than week 1 in 

infants who weren’t administered antibiotics. As with our study, values were reported in 

mg/kg, but raw data were not reported and instead were illustrated in graph form. As such, 

estimated mean levels were around 5 mg/kg for those randomised to the probiotic group, 

and around 3 mg/kg in those given the placebo. In total, the SIgA titres were around 44% 
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higher in those given probiotics than placebo. Most of these infants were exclusively breast 

milk fed and there was no significant difference in proportions of breast and formula 

feeding between the two groups (Mohan, Koebnick et al. 2008).  

 

Secondly, Campeotto et al in 2011 published their randomised control trial comparing 

SIgA, calprotectin and colonisation changes in preterm infants fed a fermented formula 

(containing Bifidobacterium breve C50 and Streptococcus) versus an unnamed preterm 

formula (manufactured by the company ‘Bledina’). The groups did not differ in clinical or 

demographical aspects, and necrotising enterocolitis was not mentioned in any patient. 

SIgA titres showed high interindividual variation, and there were no significant differences 

between the two groups (fermented formula fed infants: median 27 (range: 1-474 µg/g); 

preterm formula fed infants: median 12 (range: 1-350 µg/g)). They did, however, note that 

infants who were partially breast fed showed higher SIgA levels from week 2 in those who 

were also fed the fermented formula instead of the standard preterm milk (3038 (range 

1225-6040) versus 1473 (range 30-2655)) (Campeotto, Suau et al. 2011).  

 

The high mortality and morbidity associated with NEC have given rise to a host of 

potential immunotherapies, but no studies could be identified assessing changes in SIgA 

according to infants with and without NEC. However, within the last ten years, a vogue for 

the oral administration of pooled immunoglobulin and combinations therein of Ig G and Ig 

A has dwindled, with repeated updated Cochrane Reviews showing no benefits in the 

treatment or prevention of necrotising enterocolitis, despite eligible trials involving a total 

of 2095 preterm infants (Foster and Cole 2004).  

 

5.2.6) Conclusions 

There is still much to be learned about the acquisition of SIgA from mother to preterm 

infant within the crucial first month of life, and this study illustrates the importance of 

feeding colostrum to these fragile infants. Greater numbers in future studies may lead to 

further detail about factors likely to increase the SIgA yield in maternal milk, as well as its 

enhancement in the gut of preterm infant, and its potential abilities to safeguard or indeed 

promote the growth of Lactobacillus and Bifidobacteria species as well as reduce the 

likelihood of NEC.  
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5.3) Unit Comparison of Analytes 

 

There were few statistically significant differences in analytes between the three neonatal 

units. No differences of note were found in the number of TTGE bands, although this was 

heavily confounded by small numbers. In regard to SCFA concentrations, three significant 

differences were noted. During week 1, acetate levels were significantly higher in infants 

born at SGH than those born in PRMH (Figure 121 a): SGH med: 16.2 mmoles/L vs PRM 

med: 4.3 mmoles/L, p = 0.0046). In week 2 samples, SGH lactate concentrations were 

significantly higher than PRM levels (Figure 121 b): SGH med: 12.08 mmoles/L vs PRM 

med: 6.68 mmoles/L, p = 0.03), as was also the case in week 4 (Figure 122 a): SGH med: 

9.57 mmoles/L vs PRM med: 4.88 mmoles/L, p = 0.043). Calprotectin levels were 

significantly lower in samples from infants born at SGH than those from PRM (Figure 122 

b): SGH med: 169.9 mmoles/L vs PRM med: 323 moles/L, p = 0.01).  

 

  

Figures 121: a) (left) SGH and PRM acetate levels, week 1; levels were significantly higher in SGH patients 

(p=0.0046) b) (right) SGH and PRM lactate levels, week 2; levels were significantly higher in SGH infants 

(p=0.03) 

  

Figures 122: a) (left) SGH and PRM lactate levels, week 4; levels were significantly higher in SGH infants 

(p=0.043) b) (right) SGH and PRM calprotectin levels, week 4; levels were significantly lower in SGH 

infants (p=0.01). 

 

 

p=0.0046 p=0.03 

p=0.043 p=0.01 
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Demographically, notable significant differences between the Units were the lower 

duration of antibiotic usage, exclusive breast feeding, and Unit preference of fortifier at 

PRMH. There were no differences in NEC rates, and as such it is likely that the lower 

concentrations of acetate, lactate and SIgA reflect the lower incidence of exclusive breast 

milk feeding in PRMH. Given the lack of differences in NEC rates, reasons for the 

significantly higher calprotectin levels in PRMH during week 4 are more difficult to 

ascertain, and possibly due in part to their use of fortifier. Similarly bacterial diversity 

analysis using TTGE bands showed no specific bacterial differences between the Units to 

account for the higher calprotectin levels, and no correlation between number of bands and 

FC level. This, however, may be due to small numbers within this subgroup analysis.  
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Chapter 6 

General Discussion 

6.1) Introduction 

My initial hypothesis was that the stool microbiota, metabolites and inflammatory analytes 

would vary with nutritional and environmental aspects of neonatal care in our cohort of 

preterm, very low birth weight infants. According to local audit analysis, and in respect of 

national and international data reporting an incidence of up to 10%, we expected a 

maximum of 6 infants with any stage of NEC in our study. Instead, the emergence of 20 

infants with NEC posed many more questions than can be answered by this study alone. 

The high incidence of NEC in this cohort was unexpected, and as such additional 

comparisons were made in these results comparing cases of NEC and those without. 

However, given that this study was not powered to NEC, the weekly sample analysis may 

have missed significant changes in analytes, and that future observational studies in our 

regional neonatal units would be better placed to anticipate this NEC incidence and take 

daily samples – or even, as per other studies, attempt to take all stool samples produced by 

these infants. The following issues will be discussed in turn: NEC, in light of major 

demographical and clinical findings; study analytes; inter-unit differences; study 

limitations and strengths; and future work. 

 

6.1.1) Clinical and demographic associations with the incidence of NEC 

The high incidence of NEC in this study was unexpected, given recent publications 

reporting the incidence to be between 6 and 10 % last 10 years. Although observer bias 

could be considered, these would only account for the infants without histopathological 

confirmation from laparotomy. As such, excluding these infants left eight with confirmed 

NEC – still more than the maximum of five infants expected. When the demographical and 

clinical data for these infants was investigated, several factors lessened the likelihood of 

observer bias, and reinforced confidence in these cases as ‘true positives’. None, however, 

pointed towards a cause for this rise. Rates of IUGR and AEDF were low and there 

appeared to be no significant difference in Depcat scores.  

 

As expected, extreme prematurity was closely associated with NEC, which was typically 

more severe and first onset of clinical signs occurred later in the study period than those 

with milder NEC. Of note, these infants had significantly higher CRIB scores, and lower 

10-minute Apgars, indicating that they had a more traumatic perinatal period. This is all 
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the more important a feature considering that in all other respects, those with NEC were at 

no higher risk than those without, being no quicker to establish full enteral feeds, no earlier 

commenced on feeds than those without NEC, and actually less received formula milk. 

There are currently no national guidelines on the rate of acceleration of trophic feeds. The 

‘SIFT’ trial is currently aiming to recruit infants to just such a study. In addition, the use of 

fortifier was not more likely in those with NEC. Much of the remainder of their clinical 

details, however, can simply be attributed to extreme prematurity, especially longer 

duration of ventilation, more episodes of sepsis, and a longer duration of antibiotic 

administration, and incubation. Along these lines, more infants with NEC underwent PDA 

ligation and laser therapy for ROP.  

 

However their far higher CRP levels would suggest that they suffered a genuine 

inflammatory response, although the clarification of septic ileus versus NEC could not 

entirely be made in those infants without histopathological diagnosis. Pneumatosis coli is 

not pathognomonic of NEC, neither is the absence of pneumatosis is 100% specific.  

 

Given the inappropriateness of multivariate analysis, the influence of gestation on some of 

the important demographical and clinical features was examined only in univariate form. 

We expected the correlations with gestation, depcat score, duration of ventilation, and 

incidence of sepsis to get stronger through the more severe stages of NEC.  This, however 

did not appear to be the case. Instead, with regard to the infants incurring stages 3a and 3b 

NEC in particular, these appeared to be a heterogeneous group, with a wide range of 

gestation and birth weight. The smallest infant in the cohort did not develop any signs of 

NEC at all. Of interest, the Z score comparisons between those with ≥stage 2a NEC and 

those without were contrary to anticipated, with lower scores in weeks 1 and 2, but no 

significant differences in weeks 3 and 4. It is considered that this is due to infants with 

severe NEC who gained weight by oedema.  

 

i) Genetic and Epigenetic Factors? Analogy with Multiple Sclerosis 

The comparison between clinical and demographical information suggests that the most 

important risk factors for the development of NEC are simply ELBW and extreme 

prematurity. However, these associations are similar throughout the UK, yet the high 

incidence of NEC would appear to be specific to Glasgow. Subsequent data collection 

from the neonatal surgical unit at RHSC shows similar levels of NEC in VLBW infants at 
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less than 32 weeks gestation referred from SGH and PRMH units: 10 infants between 

January 1
st
 2012 and January 1

st
 2013 (5 in each unit), and then 4 between January 1

st
 2013 

and January 1
st
 2014. 5 of those in 2012 required surgical intervention; all survived to 

discharge. All 4 of those referred in 2013 required surgery; again, all survived to discharge. 

These numbers exclude referrals from other neonatal units in Scotland, and do not include 

infants with medically treated NEC who remained in the SGH and PRMH units.  

 

Analogies can be drawn between other illnesses and their geographical predominance. The 

north-east of Scotland records the highest international incidence and point-prevalence of 

Multiple Sclerosis (MS). Although MS is known to be higher in patients living further 

away from the equator, the high levels of MS in the north east have merited 

epidemiological studies over the last 40 years (Shepherd 1979, Dean, Goodall et al. 1981, 

Handel, Jarvis et al. 2011). These suggest that not only do those born in this area have a 

higher risk of MS, but that people emigrating out with the north-east carry their higher risk 

with them, and, conversely, people immigrating into this area increase their MS risk. This 

strongly suggests that there is not simply a genetic, but also an ‘epigenetic’ environmental 

factor that synergistically combines to cause this location-specific phenomenon. Genetic 

studies of NEC are yet to identify associations, although it is noted that there are now 

genetic associations in other gut pathologies similar to NEC, such as Inflammatory Bowel 

Disease, which have only been established in the last 10 years (Imielinski, Baldassano et 

al. 2009, Henderson, van Limbergen et al. 2011). Genetic studies of infants with NEC are 

far less well established, but have so far postulated polymorphisms of a variety of genes 

encoding gut enzymes and anti-inflammatory agents, including Mannose-Binding Lectin 2 

(MBL-2), carbamoyl phosphate synthetase 1, and toll-like receptor pathways (Moonen, 

Paulussen et al. 2007, Sampath, Le et al. 2011, Prencipe, Azzari et al. 2012). In Scotland, 

the ‘PINE’ study (Preterm Infants with Necrotising Enterocolitis) attempted to identify 

associations between genes encoding TNF alpha and other cytokines, without positive 

results. It is possible, in conclusion, that the high Glasgow-wide incidence of NEC has a 

similar epidemiology to that of MS in the North-East of Scotland. 

  

6.1.2) Study Analytes 

i) Stool production 

Stool production in preterm infants is often delayed (Arnoldi, Leva et al. 2011). In our 

cohort, a delay of up to one week was not unusual or associated with congenital gut 
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pathology (for example hirschprungs or atresias). Given that many samples were less than 

1 gram (as required to perform all analytes), although splitting days of the week (as with 

Mohan et al in 2008 (Mohan, Koebnick et al. 2008)) for different samples would have 

yielded more complete data sets, correlation of the analytes would not have been as 

reliable. We were prevented from using rectal swabs given the specific instructions from 

the Research and Ethics Committee before the study began, despite the fact that rectal 

swabs are standard practice in neonatal care for infection control management. Most 

infants who incurred paralytic ileus were of extreme prematurity and ELBW. Infants who 

then developed NEC, regardless of gestation or birth weight, developed ileus due to 

iatrogenic gut rest.  

 

ii) SCFA analyses 

SCFAs were detectable in week 1, when the majority of infants were only trophically fed, 

and had not yet established full enteral nutrition. Although this level was not significantly 

higher than in other weeks, there was a noticeable trend to lower levels by week 4. This 

strongly suggests that bacterial fermentation has produced these SCFAs, which in most 

samples were dominated by lactate and acetate.  In addition, consistent gestational trends 

in total and individual SCFAs were noted, with consistent week-on-week trends, 

suggesting differences in the bacterial composition between these groups, changing over 

time, such as the higher caproic and isovaleric acids and lower valeric and isocaproic acids 

in those 24-26 weeks gestation declining and rising respectively over the study period. 

Given the heterogeneity of feed types, few differences were seen when considering EEBM 

fed versus mixed fed, although there was a higher acetic acid level in those EEBM fed than 

mixed in week 4. That these levels were similar to those of infants in probiotic trials is 

extremely encouraging. However, ratiometric analyses in regard to NEC showed the most 

significant trends, particularly higher acetic:BCFA ratio during week 1, higher 

acetic:isovaleric and lactate:isocaproic levels during week 2, and higher lactate:isobutyrate 

levels in week 4. These strongly suggest that the microbiota is afflicted with less 

proteolytic and higher levels of saccrolytic bacteria, in stark contrast with the healthy 

infants who did not incur NEC, who with lower ratios move further towards a less hostile 

and pathogenic gut environment. The ubiquity of antibiotic usage amongst the cohort made 

comparisons obsolete. 
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iii) Calprotectin levels 

FC levels showed little significant changes, despite an abundance of severe NEC and 

extreme prematurity. Although at least five-fold higher than the adult maximum cut-off 

value for colitis, these median levels within the cohort were similar to values seen in other 

similar studies. Although small gestational spikes were observed, no temporal changes 

were noted, and as for the SCFA data, it is possible that very diverse milk types 

administered may be a confounding factor in the lack of significant differences with feeds. 

To date, this is the first study to measure FC in ileostomy fluid in preterm infants, 

suggesting it is not limited to colonic excretion. Although FC was not a diagnostic marker 

in this cohort, given the lack of power to NEC, an appropriately designed future study may 

well change this.  

 

iv) TTGE 

Although limited, TTGE analysis illustrated that the first month of life in our cohort of 

preterm infants was a time of great microbial flux within the gut. This was demonstrated 

by a high variability in immigrated and emigrated species, as well as a low similarity index 

between time points. Influence of antibiotics was however difficult to discern due to 

ubiquitous use throughout the cohort, and as such there was ‘control’ group who had not 

been administered antibiotics. Unlike in Mohan et al’s work from 2008, no correlation was 

noted with metabolites, likely indicating that far greater numbers require to be recruited in 

order to make these associations. The lack of correlation with feeds was surprising 

considering the evidence base, but by volume the ‘mixed’ fed group were given more than 

50 % maternal EBM; so this lack of significance is perhaps not that surprising. It is more 

than likely that deeper mining of the microbiota is the key, and extremely promising that 

even in the short time since our research was conducted, huge leaps in type and 

affordability of pyrosequencing have occurred.  

 

v) SIgA 

Despite a scant evidence base, our study illustrates the importance of acquisition of SIgA 

and its temporal nature. Although subgroup analysis, it is the first of its kind to examine 

paired neonatal stool and maternal SIgA titres in a preterm cohort. The increase in those 

with NEC between weeks 2 and 3 may simply reflect ileus formation secondary to the 

disease, but may also indicate an exudative, protective ‘last-ditch’ attempt by the gut as it 

staves off the initial subclinical throes of the disease process. The expected lag between 



 

 

277 

 

stool and milk SIgA emphasises the importance of using colostrum – much of which 

remains stored as the infants take far longer to establish trophic and then full enteral feeds 

than their mothers take to express mature milk beyond the first 3 days post-partum. The 

higher titres in milk of mothers of preterm infants reflects the body’s ‘natural selection’ to 

protect its preterm young, and in itself stresses the importance of SIgA as a robust first line 

of gut defence. 

 

vi) Unit differences in Analytes 

Although few, there were some unit differences in analytes that have mainly been 

explained by the variation in feed and antibiotic regimen. However, the insignificant 

differences in NEC, sepsis and mortality indicate that our cohort was subject to much the 

same clinical management decisions, and that these did not hugely influence the results. 

 

6.1.3) Confounders of the study  

As noted through each part of this discussion, given the unexpectedly high rate of NEC, 

the associated onset of ileus resulted in a paucity of samples around and after the onset of 

disease. In comparison, sample collection in infants without NEC was extremely high, with 

few missed samples. After the establishment of full enteral feeding, samples from infants 

at any stage were abundant. If the incidence of NEC had been expected, then merit would 

have been held in categorising samples by analyte according to days of the week, or a 

system of alternate samples. Alternatively, the project could have been focussed to marry 

the molecular with SCFA or calprotectin analyses, since these require only small weights 

of stool. However, in order to appropriately investigate these as biomarkers for NEC, 

undoubtedly the most robust standard operating procedure would have been to attempt to 

take every stool sample produced, alongside rectal swabs during times of ileus. This would 

perhaps also have simplified matters for the nursing staff, for whom there would have been 

no confusion over when a sample was due to be taken. Notably, newer molecular 

techniques are advancing ever-quickly, utilising high throughput sequences, and becoming 

cheaper. Unfortunately, this study was restricted both by time and finances, as well as to 

the techniques available on hand within the department. It is also important to note that 

stool microbiota may not reflect mucosal colonisation. Given the status of RHSC’s NICU 

as a tertiary and quaternary neonatal surgical unit, it would be valid and accessible to 

obtain intraoperative biopsy samples in future to compare.  
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6.1.4) Study strengths 

This study is the only work to date (as published in abstract or article form), to recognise 

and correlate each of these analytes in a cohort with and without NEC. This study also 

reports the highest number of infants in a cohort series to analyse SCFA profiles with 

regard to NEC, as well as being the first study to compare secretory Ig A titres in maternal 

milk and infant stool pairs, as well as BCFA analyses.   
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6.2) Conclusions and future research 

The consistent lack of correlation between these analytes in this high NEC-laden cohort 

indicates their independence from one another, and points to increasingly florid gut activity 

within the crucial first four weeks of life in preterm, VLBW infants. Their individual 

consistency, particularly of the SCFA and calprotectin profiles, indicates that no one 

clinical or demographical factor exerts a preferential influence on these analytes. In 

contrast, the high interindividual and intra-individual variation in microbial species, with 

flight of immigration and emigration, suggests that from a molecular perspective, huge 

changes occur within this first month. The next obvious step in this study would be to 

extrapolate this, increasing the power and diversity with a modified standard operating 

procedure to other centres throughout the UK. Although such a task would be costly, if 

combined with an observational study on NEC, or other NEC-prevention strategy studies 

(for example, prospective UK feeding trials) not only could clinical and demographical 

data be shared, but the information gained from these stool tests would greatly enhance our 

understanding of data in well preterm infants, as well as exploring the potential for these as 

diagnostic and prognostic markers for those with NEC. Given that this study identified 

only minor changes with NEC, no corresponding sample size calculations can be made. It 

would be important to anticipate the high incidence of NEC and to plan any further studies 

within Glasgow meticulously to include frequent sample collection in order to capture 

disease onset. Molecular techniques involved in qualitative and quantitative bacterial 

analysis are developing timeously, although the diversity of these methods may influence 

comparison of studies in the future.  

 

Further smaller intra-departmental projects from this work will include species 

identification from TTGE, as well as breast milk bacteria, possibly using NextGen 

sequencing in collaboration with external colleagues; the analysis of the remaining milk 

supplies for other immune factors, particularly IGF-1. Similarly, the stability of the 

existing stool samples give rise to testing for other potential inflammatory markers, for 

example i-Claudin. Analyses of metabolites have the potential for a wealth of applications, 

particularly in the identification of possible biomarkers of NEC. Use of all of these tools at 

other sites, for example on gastric aspirates may yield further important information. Given 

the increasing drive from NICUs to acquire and use various probiotic preparations, it may 

be that these studies have to occur in tandem with their advent – in doing so creating 

perhaps the biggest confounder of studies on the natural evolution of the human gut 
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microflora at the beginning of life. Animal models have proven valuable, and would 

appear to provide a wealth of opportunity to study new techniques and therapies prior to 

use in premature infants.          

 

The REC approval for a database to track the clinical and growth parameters of the infants 

who survived NEC will give us a wealth of information on the long term effects of this 

disease. Furthermore, the CalRap Study, in collaboration with Dr Richard Russell, has 

ethically approval to perform rapid acting cotside calprotectin testing of the existing 

samples. Validation of this test would facilitate its use within each NICU, and make testing 

considerably quicker and more accessible.  

 

There is much still to be learned about the effects of physiology and management of 

prematurity upon the gut microbiota, particularly in those with NEC. Although the routine 

use of probiotics is an exciting and tempting prospect, an important underlying fact in the 

quest to develop new molecular and biochemical tools is the discovery of new bacterial 

strains and metabolites, carrying with them the potential to define new functions and 

interactions. In doing so, we may be able to unlock the doors to a host of disease processes, 

not to mention therapeutic interventions.    
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Appendix 1 

NAPI Consent and Information  

 

 

 
Consent Form 

Patient Identification Number: 
I confirm that I have read and understand the Parent Information Leaflet dated 18/3/9, for 

The NAPI Study, have had the opportunity to ask questions and have had them answered 

satisfactorily.           

 

I consent to (baby’s name):___________________________           _____________ 

taking part in the NAPI Study, giving (delete as appropriate): 

 

samples of his/her stool         

 

samples of his/her stomach fluid        

 

I understand that relevant sections of my and my baby’s medical records may   

looked at by individuals including the Investigator and/or supervisors for this study,  

regulatory authorities, or the NHS Trust, where it is relevant to my taking part in this 

research. I give permission for these individuals to have access to our medical  records.  

       

I understand that you may in the future wish to use these samples for other   

studies. I agree that you can contact me in the future for my consent for this use. 

            

I consent to the testing of my own breast milk      

 

I consent to taking part in your questionnaire       

 

I agree to my GP being informed of our participation in this study.    

    

I understand that my participation is voluntary and that I am free to withdraw at   

any time without giving any reason, without my or my baby’s medical care or  

legal rights being affected.  
Signed (parent/guardian):____________________________________________ 

 

Date:____________________________________________________________ 

 

Signed (recruiter):__________________________________________________ 

 

Date:_____________________________________________________________ 
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Appendix 2 

SCFA: 

 

tBDMS External Standards: successful ES protocol 

 

1) the following was added to 10 mls 2M NaOH: 

      

Systematic name Trivial 
name 

umoles ml 
2M 

NaOH 

mM umoles mg ul 

Methanoic acid Formic 1000 10 100 1000 46.03 38 

Ethanoic acid Acetic 1000 10 183.3 1833 110.0717 105 

Propanoic acid Propionic 1000 10 133.2 1332 98.67456 100 

Butanoic acid Butyric   1000 10 104.2 1042 91.81062 96 

Pentanoic acid Valeric  1000 10 86.3 863 88.13819 95 

Hexanoic acid Caproic  1000 10 74 740 85.9584 93 

Heptanoic acid Enanthic 1000 10 64.7 647 84.23293 93 

Octanoic acid Caprylic  1000 10 57.5 575 82.92075 91 

2-Methylpropanoic acid Isobutyrate 1000 10 102 1020 89.8722 93 

3-Methylbutyric acid Isovalerate 1000 10 86 860 87.8318 95 

4-Methylvaleric acid Isocaproic 1000 10 50 500 58.08 63 

2-Hydroxypropanoic acid Lactate 1000 10 50 500 45.04 38 

 

 

 

2) Then add: 100mcl ES  

3) Add 100mcl HCl 

4) Add 100 mcl 3Methylvaleric 

5) VORTEX 

6) Add 1000 mcl ether 

7) VORTEX 

8) Leave to settle 30 mins 

9) Extract 800 mcl into store glass tube 

10) Extract 100 mcl into glass tube with 160 mcl ACN, 40 mcl tBDMS 

11) Hotplate for 60 mins 

12) GCMS 
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Example Chromatogram from the Initial GC Run 
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GCMS Settings  

 

Sample inlet: GC   

Injection source: GC ALS 

Injection volume: 1ul 

Syringe: 10uls 

Washes: Preinjection solvent A 

              Post injection solvent B 

              Pumps 2 

Inlet B    250C (Injector) 

Oven Equilibration time: 0.5 mins 

Oven Max 300C Ambient 25C 

  

Run temperatures: 

Level                        Rate C/min            Final temp             Final Time              

1                                    15                        100                      0 

2                                    15                        200                      0 

3                                    15                        210                      0  

Initial temp 80C  Initial time 1 min   Next run time 9.67 mins 

Inlet B: constant flow on. Pressure 20.9psi@temp 140C 

Column 30m  Phenomenex ZB-5MX  diameter 0.220mm He gas 

Oven temp 140C Pressure 20.9psi   Flow 1ml/min   Velocity 37.7cm/sec   Split ration 20:1 

  

Sim Parameters 

Group                  Time             Resolution          m/Z               Dwell    Plot 

1                          3.00                Low                   103               100     window 1 

2                          3.60                                         117   

3                          4.20                                         131     

4                          4.90                                         145 

5                          5.70                                         159   

6                          6.55                                         173 

7                          7.80                                         187    

8                          8.71                                         201 and 261 

  

mailto:20.9psi@temp
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Appendix 3 
 
Calprotectin ELISA dilutions 

 

      

Patient No Sample Dilution

02QMH01 1 80 3.92

02QMH01 2 60.6 2.97

02QMH01 3 95 4.66

02QMH01 4 82 4.02

02QMH01 5 80 3.92

02QMH01 6 66 3.23

02QMH01 7 59.6 2.92

03PRMH02 9 79.4 3.89

03PRMH02 10 78.7 3.86

03PRMH02 11 110 5.39

03PRMH02 12 99 4.85

03PRMH02 13 65 3.19

04QMH02 14 93 4.56

04QMH02 15 54.2 2.66

04QMH02 16 93 4.56

04QMH02 17 59.7 2.93

05PRMH03 18 87.9 4.31

05PRMH03 19 64 3.14

05PRMH03 20 98 4.80

05PRMH03 21 89.9 4.41

05PRMH03 22 70 3.43

06PRMH04 23 70 3.43

06PRMH04 24 98 4.80

06PRMH04 25 66 3.23

06PRMH04 26 75 3.68

07PRMH05 28 40 1.96

07PRMH05 29 120 5.88

07PRMH05 30 100 4.90

07PRMH05 31 102 5.00

07PRMH05 32 65 3.19

08SGH01 33 82 4.02

08SGH01 34 70 3.43

08SGH01 35 51.4 2.52

08SGH01 36 66 3.23

09SGH02 37 99 4.85

09SGH02 38 50 2.45

09SGH02 39 76.8 3.76

09SGH02 40 83.7 4.10

10PRMH06 1 89.4 4.38

10PRMH06 2 88 4.31

10PRMH06 3 79.4 3.89

10PRMH06 4 119 5.83

11PRMH07 5 42.2 2.07

11PRMH07 6 69.2 3.39

11PRMH07 7 87.7 4.30

11PRMH07 8 62.7 3.07

11PRMH07 9 74.5 3.65

12SGH03 10 94.1 4.61

12SGH03 11 75 3.68

12SGH03 12 62.7 3.07

12SGH03 13 58 2.84

13PRMH08 14 74.4 3.65

13PRMH08 15 51.1 2.50

13PRMH08 16 108 5.29

13PRMH08 17 114.1 5.59

14PRMH09 18 77.7 3.81

14PRMH09 19 64.6 3.17

14PRMH09 20 90.8 4.45

14PRMH09 21 54 2.65

16QMH03 22 95.8 4.69

16QMH03 23 91.1 4.46

16QMH03 24 110 5.39

16QMH03 25 79.7 3.91

17PRMH11 26 90 4.41

17PRMH11 27 93.6 4.59

17PRMH11 28 80 3.92

17PRMH11 29 90.4 4.43

17PRMH11 30 102 5.00

18QMH04 31 68 3.33

18QMH04 32 79.5 3.90

18QMH04 33 74.3 3.64

18QMH04 34 56.3 2.76

19PRMH12 35 96.3 4.72

19PRMH12 36 73.4 3.60

19PRMH12 37 73 3.58

08SGH01 38 100.9 4.94

19PRMH12 1 100.9 4.94

20PRMH13 2 103.1 5.05

20PRMH13 3 102.8 5.04

20PRMH13 4 95.5 4.68

20PRMH13 5 115.1 5.64

21PRMH14 6 103 5.05

21PRMH14 7 119 5.83

21PRMH14 8 83.5 4.09

21PRMH14 9 119 5.83

22SGH04 10 89.9 4.41

22SGH04 11 101.1 4.95

22SGH04 12 62.8 3.08

22SGH04 13 90.8 4.45

22MILK 14 120 5.88

24SGH06 15 104.8 5.14

24SGH06 16 95.8 4.69

24SGH06 17 102.4 5.02

24SGH06 18 85.5 4.19

24SGH06 19 3.4 0.1666

25QMH05 20 106.7 5.23

25QMH05 21 48.6 2.38

25QMH05 22 93 4.56

25QMH05 23 95.2 4.66

25QMH05 24 63.6 3.12

25QMH05 25 108.6 5.32

26PRMH15 26 80.2 3.93

26PRMH15 27 98.3 4.82

26PRMH15 28 79.3 3.89

26PRMH15 29 103.6 5.08

27PRMH16 30 71.1 3.48

27PRMH16 31 93.5 4.58

27PRMH16 32 77.5 3.80

27PRMH16 33 105.9 5.19

28SGH07 34 109.6 5.37

28SGH07 35 84.2 4.13

28SGH07 36 112.3 5.50

28SGH07 37 73 3.58

45PRMH MILK 38 115.2 5.64

31SGH08 1 80.3 3.93

31SGH08 2 116.4 5.70

31SGH08 3 103.9 5.09

32PRMH19 4 81.9 4.01

32PRMH19 5 96.2 4.71

32PRMH19 6 108.9 5.34

32PRMH19 7 81 3.97

33PRMH20 8 87.1 4.27

33PRMH20 9 75.5 3.70

33PRMH20 10 70.4 3.45

33PRMH20 11 71.2 3.49

36PRMH22 12 90.6 4.44

36PRMH22 13 80.8 3.96

36PRMH22 14 95.1 4.66

36PRMH22 15 91.7 4.49

37PRMH23 16 40.7 1.99

37PRMH23 17 103.6 5.08

37PRMH23 18 108.5 5.32

37PRMH23 19 102.4 5.02

38PRMH24 20 102.3 5.01

38PRMH24 21 84.7 4.15

38PRMH24 22 95.6 4.68

38PRMH24 23 86.3 4.23

38PRMH24 24 88.6 4.34

39QMH06 25 63.7 3.12

39QMH06 26 77.1 3.78

39QMH06 27 86.9 4.26

39QMH06 28 65.5 3.21

39QMH06 29 104.3 5.11

40PRMH25 30 109 5.34

40PRMH25 31 86.2 4.22

40PRMH25 32 86.4 4.23

41PRMH26 33 95.8 4.69

41PRMH26 34 84.7 4.15

41PRMH26 35 75.2 3.68

41PRMH26 36 91.1 4.46

42SGH10 37 94.8 4.65

42SGH10 38 64.5 3.16

42SGH10 1 92.9 4.55

43PRMH27 2 114.6 5.62

43PRMH27 3 86.9 4.26

43PRMH27 4 99.7 4.89

43PRMH27 5 86.4 4.23

43PRMH27 6 82.9 4.06

44SGH11 7 115.6 5.66

44SGH11 8 79.9 3.92

44SGH11 9 93 4.56

45PRMH28 10 77.3 3.79

45PRMH28 11 85.1 4.17

45PRMH28 12 71.5 3.50

45PRMH28 13 117.1 5.74

46PRMH29 14 97.6 4.78

46PRMH29 15 76.1 3.73

46PRMH29 16 95 4.66

46PRMH29 17 79.5 3.90

47SGH12 18 77.6 3.80

47SGH12 19 61.9 3.03

47SGH12 20 84.3 4.13

47SGH12 21 95.7 4.69

48QMH07 22 71.4 3.50

48QMH07 23 101.7 4.98

49PRMH30 24 117.4 5.75

49PRMH30 25 87.7 4.30

49PRMH30 26 90 4.41

50PRMH31 27 107.2 5.25

50PRMH31 28 77.7 3.81

50PRMH31 29 77.1 3.78

50PRMH31 30 83.8 4.11

51PRMH32 31 112.3 5.50

51PRMH32 32 88.7 4.35

51PRMH32 33 73 3.58

52PRMH33 34 110.5 5.41

52PRMH33 35 105.2 5.15

53SGH13 36 50.6 2.48

53SGH13 37 52.2 2.56

53SGH13 38 52.3 2.56

54SGH14 1 81.6 4.00

54SGH14 2 94.3 4.62

54SGH14 3 86.5 4.24

55PRMH34 4 55.4 2.71

55PRMH34 5 96.4 4.72

55PRMH34 6 70.2 3.44

55PRMH34 7 50.7 2.48

56PRMH35 8 60.5 2.96

56PRMH35 9 68.3 3.35

56PRMH35 10 62 3.04

56PRMH35 11 77.9 3.82

56PRMH35 12 112.8 5.53

13PRMH08 13 119.8 5.87

57SGH15 14 93.7 4.59

57SGH15 15 55 2.70

57SGH15 16 24.3 1.19

57SGH15 17 88.8 4.35

58SGH16 18 54.7 2.68

58SGH16 19 84.2 4.13

28SGH07 20 90 4.41

58SGH16 21 85.6 4.19

59PRMH36 22 42.6 2.09

59PRMH36 23 50.6 2.48

59PRMH36 24 98.3 4.82

59PRMH36 25 93.5 4.58

60PRMH37 26 75 3.68

60PRMH37 27 67.3 3.30

60PRMH37 28 69 3.38

60PRMH37 29 81.1 3.97

61PRMH38 30 101.1 4.95

61PRMH38 31 79 3.87

61PRMH38 32 89.6 4.39

61PRMH38 33 85.5 4.19

62SGH17 34 45.5 2.23

62SGH17 35 50 2.45

62SGH17 36 81 3.97

62SGH17 37 60.1 2.94

2QMH01 38 94.2 4.62
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Appendix 4 

TTGE: DNA Extraction Spectrometry Measurements 

Spectrometry measurements 

Infant Sample 
DNA (µg/mL) 260/280nm 260/230 

mean SD mean SD mean SD 

A 1 580 204 2,2 0,2 0,7 0,0 

A 2 545 71 1,6 0,1 0,3 0,0 

B 1 326 14 1,4 0,0 0,2 0,0 

B 2 928 90 2,4 0,1 0,6 0,0 

C 1 208 23 1,5 0,1 0,2 0,0 

C 2 776 414 2,1 0,3 0,5 0,0 

D 1 202 60 1,3 0,0 0,2 0,0 

D 2 397 153 1,8 0,1 0,5 0,0 

E 1 324 65 1,5 0,0 0,4 0,0 

E 2 533 40 1,6 0,0 0,4 0,0 

F 1 1279 212 1,2 0,3 0,3 0,0 

F 2 760 184 1,5 0,2 0,5 0,0 

G 1 1791 134 2,6 0,4 0,6 0,0 

G 2 1984 54 3,2 0,3 0,5 0,0 

H 1 860 120 1,7 0,0 0,5 0,0 

H 2 1757 19 2,2 0,0 0,6 0,0 

I 1 579 113 1,2 0,0 0,2 0,0 

I 2 1800 280 3,3 0,7 0,5 0,0 

J 1 455 71 1,3 0,0 0,2 0,0 

J 2 922 120 1,8 0,3 0,7 0,0 

K 1 900 123 1,8 0,3 0,6 0,0 

K 2 955 73 1,7 0,3 0,6 0,1 

L 1 761 67 1,4 0,3 0,3 0,0 

L 2 546 76 2,0 0,0 0,8 0,1 

M 1 200 56 1,1 0,0 0,2 0,0 

M 2 373 48 1,5 0,0 0,4 0,0 

N 1 1121 44 1,8 0,0 0,3 0,0 

N 2 997 141 2,1 0,0 0,7 0,0 

O 1 742 76 1,1 0,2 0,2 0,0 

O 2 885 150 1,7 0,3 0,6 0,0 

P 1 595 124 1,1 0,0 0,2 0,0 

P 2 665 78 1,4 0,5 0,4 0,0 

Q 1 658 111 1,7 0,1 0,5 0,2 

Q 2 574 20 1,6 0,0 0,4 0,0 

R 1 1096 29 1,8 0,1 0,3 0,1 

R 2 495 6 1,6 0,0 0,3 0,0 

S 1 500 100 1,6 0,3 0,6 0,0 

S 2 920 41 1,7 0,4 0,5 0,1 

T 1 397 62 1,6 0,1 0,4 0,0 

T 2 1003 171 2,2 0,0 0,6 0,1 

U 1 1020 126 1,8 0,3 0,7 0,0 

U 2 608 62 1,4 0,2 0,4 0,0 

V 1 843 164 2,0 0,1 0,8 0,1 

V 2 907 99 2,0 0,1 0,7 0,0 
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Interindividual Similarity Indices: Infants By Feed Regimen  

Inter-individual similarity indices (EBM)  

 A B C D E F G 

B 50       

C 0 20      

D 0 0 0     

E 0 
18
.2 

40 
22
.2 

   

F 0 20 
28
.6 

0 
26
.7 

  

G 0 
22
.2 

30
.8 

0 
28
.6 

61.5  

H 
14
.3 

25 50 0 
38
.1 

20 21.1 

Inter-individual similarity indices (MF) 

 I J K L M N O P Q R S T U 

J 0             

K 
16
.7 

0            

L 25 0 
37
.5 

          

M 0 
57
.1 

26
.7 

54
.5 

         

N 0 
66
.7 

28
.6 

20 
66
.7 

        

O 0 0 
22
.2 

0 0 
16
.7 

       

P 0 0 40 
37
.5 

26
.7 

28
.6 

33.3       

Q 
15
.4 

0 
47
.6 

23
.5 

25 
13
.3 

21.1 28.6      

R 0 0 
28
.6 

20 0 0 0 28.6 
26
.7 

    

S 0 0 
52
.6 

13
.3 

14
.3 

30
.8 

35.3 52.6 40 
15
.4 

   

T 0 40 
30
.8 

22
.2 

50 
57
.1 

0 15.4 
14
.3 

0 
16
.7 

  

U 50 0 
16
.7 

25 
28
.6 

33
.3 

0 16.7 
30
.8 

0 
18
.2 

40  

V 
33
.3 

0 
14
.3 

20 
22
.2 

25 0 14.3 
26
.7 

0 
15
.4 

28
.6 

66.7 
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Glossary 

Microbiota:  (plural noun) the dominant bacterial consortia 

Transcriptome: the set of all RNA molecules in a population of cells 

Metabolome:  the complete set of metabolites within a single organism 

Metagenomics: the study of metagenomes: genetic material recovered from 

environments 

Metabolomics: the study of metabolites and their genetic precursors within an 

environment 

Probiotic:  live microorganisms with benefits to the host 

Prebiotic:  non-digestible foods stimulating the growth of probiotics 
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