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Summary 

Indigestible carbohydrates are fennented in the human large intestine, producing short 

chain fatty acids (SCF A) and gases. SCF A, in addition to the provision of energy, have 

significant effects on the physiology of the human body. n-Butyrate in particular may 

help prevent colonic disease. The rate of SCF A production and the resultant profile of 

SCF A is characteristic of each carbohydrate. The physical properties of such 

carbohydrates are also very important in regulating the small intestinal nutrient 

absorption and transit time. Indigestible carbohydrates differ considerably in their 

physico-chemical properties, which will have a significant impact on their rate of 

fennentation, the amount and profile of SCF A. A carbohydrate with intennediate 

fennentabi1ity may have the best action because it should produce a high concentration of 

SCF A and contribute to stool output. It would be more beneficial to colonic health by 

facilitating the production and absorption of higher amounts of SCF A at a distal colonic 

site. 

Several indigestible carbohydrates have interesting therapeutic properties but large 

amounts may have undesirable side effects such as bloating, osmotic diarrhoea and low 

organoleptic properties. Considering such idiosyncratic actions, it is unlikely that any 

single carbohydrate would provide ideal therapeutic actions without having some 

undesirable effects. In this study, the approach of fennenting different combinations of 

carbohydrates was adopted. Since, it is not always possible to feed patients meals 

containing such supplements, the characteristics of the constituent carbohydrates, such as 

their solubility and viscosity were considered in relation to developing a supplement 

mixture for tube feeding. 



Aim of this thesis was to evaluate mixtures of indigestible carbohydrates in vitro to 

predict their effects on gut function. In this study, I investigated the effect of combining 

carbohydrates with different fermentative properties and their interactive influences, 

reflected in the end products from in vitro fermentation. The study focused on the rate of 

fermentation and fermentability of such mixtures and the SCF A produced to gain an 

index of the likely site of fermentation in the colon. 

In view of the difficulties and limitations of in vivo methods, an in vitro model was used, 

with human faeces incubated in a basic salts medium. Despite the simplicity of this 

method, it provided useful information about the rate and extent of carbohydrate 

fermentation and production of SCF A. It is obvious that the physiological conditions of 

such in vitro models may change, resulting in altered bacterial metabolic activity. 

Therefore, experiments were designed to explore the limitations of the in vitro model, in 

this way, allowing adaptation and corrections where necessary. 

For validation of the in vitro model, incremental portions 25,50, 75, 100mg of rapidly 

fermenting lactulose and slowly fermenting ispaghula were used. The production of 

SCF A progressively declined with increasing amounts oflactulose, showing a significant 

difference between actual SCF A concentration from fermentation of 100mg and that 

calculated from portions of 25mg lactulose. There was no significant effect with 

ispaghula. This study suggested 50mg substrate per 10ml incubation volume as the best 

amount of a rapidly fermenting carbohydrate to be used in in vitro fermentation models. 
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This study also showed an inhibition of the fermentation oflactulose by ispaghula (44% 

inhibition of SCFA production in presence of 75mg of ispaghula). This study also 

suggested that the best substrate ratio of two carbohydrates in a mixture was 50mg of 

each carbohydrate. Such a mixture produced significantly more of the three principal 

SCF A than other mixtures of lactulose and ispaghula. This combination was confirmed 

with mixtures ofraftilose and guar gum, which in 50:50 mixtures produced similar SCFA 

as cultures of 100mg raftilose. Such mixtures also gave no further change in pH after 8 

hours, suggesting prevention of further deterioration of physiological conditions in 

cultures. Combining two carbohydrates with contrasting fermentation properties, in such 

proportions will be more effective, as both carbohydrates in a mixture would have the 

optimum chance for their role in the mutual interaction. 

In this study, different carbohydrates were tested to determine their potential use in 

mixtures. Raftilose, guar gum, gum arabica, ispaghula and pectin were selected for such 

mixtures. Raftilose and pectin were rapidly fermenting, and guar gum showed an 

intermediate rate of fermentation. Gum arabica was fermented slowly and ispaghula was 

fermented very slowly. Ispaghula was selected for mixtures also because of its specific 

effects on stool output and transit time. Raftilose was a good producer ofn-butyrate, 

whereas, good producers of propionate included raftilose; guar gum and gum arabica. 

These carbohydrates are soluble in water and could be easily incorporated into the liquid 

food supplements for tube feeding if low viscosity products are used. 

The main aim of this thesis was to produce a mixture of carbohydrates which would delay 

but preserve butyrate production from rapidly fermenting carbohydrates such as raftilose. 
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This was achieved in several mixtures but mostly those containing raftilose and 

ispaghula. In general, mixtures of carbohydrates were fermented more slowly than 

raftilose alone. Overall, ispaghula was the most effective in slowing the rate of 

fermentation compared with pectin or gums. Mixing raftilose with ispaghula or guar gum 

gave the best preservation of n-butyrate and propionate production. The rate of n

butyrate production was less rapid in mixed cultures of three carbohydrates (raftilose, 

ispaghula and pectin) than cultures of lOOmg raftilose but production ofn-butyrate was 

preserved. 

In summary, ispaghula and raftilose in two-carbohydrate mixtures and ispaghula, pectin 

and raftilose in three-carbohydrate mixtures delayed the release of butyrate with no loss 

in butyrate production despite using less raftilose. Such an effect in vivo may be helpful 

in prolonging n-butyrate production and may move butyrate further round the colon, at 

the same time reducing the potential adverse effects of raftilose. Moreover, the addition 

of pectin (or guar gum) may add the therapeutic effect of delaying nutrient absorption in 

the small intestine as well. These studies have identified at least two mixtures (raftilose 

& ispaghula; raftilose, ispaghula & pectin) worthy of study in more detail in man. 
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1.1 Introduction 

A wide range of carbohydrates is found in nature. Mostly, dietary carbohydrates 

are products of photosynthesis, almost exclusively derived from plant sources. 

Animal sources contribute insignificantly in dietetic terms, the only major 

exception to this, is lactose from milk. Carbohydrates have served as a 

fundamental source of energy since the first day of life on the earth and they are 

still a main source of energy in the human diet, providing 40 to 85 percent of 

energy in the human diet, depending on the affluence of the particular society 

(Englyst & Kingman, 1993). Over the past few decades in affluent societies of 

the West, a change has occurred from diets rich in carbohydrates to diets poor in 

carbohydrate and rich in fat. This change is related to an increase in chronic 

diseases like cardiovascular disease and cancer. Awareness of the importance of 

dietary fibre and other indigestible carbohydrates in human health emphasises the 

need to return to more traditional diets, but dietary change back to original diet 

patterns, is occurring with unsatisfactory slow momentum. Current 

recommendations for Western society are for a 50 to 100 percent increase over 

the present intake of non starch polysaccharides or dietary fibre and dietary starch 

(Webb 1995). 

Carbohydrates offer a wide range of physicochemical properties which are based 

on their underlying chemical structure, interactions with other carbohydrates and 

with other molecules through hydrogen bonding, ionic effects and the formation 

of complexes with lipids and proteins (Chinachoti, 1995). The actions of 
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carbohydrates in the human gut are related to these properties. There are three 

important strands of nutrition related research regarding carbohydrates; 

l) familiarity with the chemistry of carbohydrates. 

2) an understanding of physiological role of carbohydrates. 

3) validating the relationship between the dietary carbohydrates and chronic 

diseases. 

In this review, I will consider the information available from published literature 

related to these areas of carbohydrate research. 

1.2 Classification of carbohydrates 

Carbohydrates are polyhydroxyaldehydes and ketones, with an empirical formula 

Cn(H20)n, and their derivatives. Carbohydrates differ in their physicochemical 

properties, degree ofpolymerisation, molecular structure, spatial configuration of 

the molecule, water solubility and viscosity. They can be classified in a number 

of ways depending, for example, on the number of their monomers in a molecule, 

on their source, on their physicochemical characteristics, or on a nutritional basis. 

McCance and Lawrence (1929) proposed that carbohydrates should be classified 

in two groups on the basis of their digestibility and absorption as carbohydrate in 

the human small intestine. A carbohydrate should be termed as available 

carbohydrate if it is digested and absorbed in the small intestine. Whereas, 

carbohydrates that are indigestible or unabsorbed in the small intestine, should be 

termed as unavailable carbohydrates. According to these authors the implication 

of "availability or unavailability" pointed to availability or unavailability of the 
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carbohydrate for absorption, not for energy. The principal dietary carbohydrates 

are listed in the table 1.1. 

1.2.1 On basis of number of monomers 

Carbohydrates are classified according to the number of monomers in a single 

molecule (Englyst & Kingman, 1993) as follows; 

Monosaccharides contain a single monomer in a molecule and examples include 

glucose, fructose, and galactose. These three monosaccharides have the same 

number and type of atoms but in different spatial arrangements, resulting in 

different degree of sweetness. Free glucose is not very abundant in nature but it 

is present in small amounts in fruits and vegetables. Fructose is found in fruits, 

vegetables and honey. 

Disaccharides contain two monomers in a molecule. The two monomers may be 

the same, for example, in case of maltose which is the product of starch 

hydrolysis. Each molecule of maltose is constituted by two monomers of 

glucose. The two constituting monomers may be different as in the case of 

sucrose (glucose: fructose), lactose (glucose: galactose), lactulose (galactose: 

fructose). 

Oligo saccharides contain 3-10 monomers in a single molecule. Oligosaccharides 

are mostly produced synthetically or by the processing of higher molecular 

weight carbohydrates, for example, maltodextrins are produced from partial 

hydrolysis of the starch. Common examples of oligosaccharides are raffinose, 

stachyose and verbascose which are found in nature as free sugars, especially in 

! . 
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leguminous plant seeds. The fructo- and galacto-oligosaccharides (present in 

breast milk) and some inulins are also examples of oligosaccharides (Cummings 

& Englyst, 1995). Fructans are composed of 3-50 fructose residues, attached to a 

single glucose molecule. Fructans with 3-10 monomeric residues, the 

oligofructans, predominate in cereal grains (Englyst & Kingman, 1993). 

Polysaccharides contain more than 10 monomers in a molecule e.g. amylose, 

cellulose, amylopectin and fructan with more than 10 residual monomers. A 

polysaccharide can be defined on the basis of three important factors including 

the type of constituent monomers, nature of the inter-residual glycosidic bonding 

and sometimes, sequence of residues. They may be homo-polysaccharides 

containing identical residues or they may be hetero-polysaccharides containing 

different monomeric residues (Bohinsky, 1983). Starch and cellulose both are 

homo-polysaccharides, being polymers of glucose residues. Starch is a mixture 

of amylose and amylopectin. Amylose is a linear chain molecule containing a 

1,4 bond as inter-residual linkage while amylopectin, on the other hand, is a 

branched chain molecule containing, in addition to inter-residual linear a 1,4 

bonds, a small number of inter-residual a 1,6 bonds at the branching sites. The 

glucose residues in cellulose are linked by ~ 1,4 bonds. Human a amylase can 

break a 1,4 bonds found in starch but, cannot break ~ 1,4 bonds found in 

cellulose. Thus, due to the different nature of glycosidic linkages of glucose 

residues, starch, in general, is digestible and cellulose is indigestible in the human 

small intestine. 
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1.2.2 On basis of physical functionality in plants 

Polysaccharides in plants may be classified on the basis of their physical 

functionality (Asp et aI., 1992) into following groups; 

i) Structural carbohydrates are found mostly as components of the cell wall, for 

example, cellulose and hemicellulose, pectic substances. 

ii) Storage polysaccharides are formed and stored in the plant to avoid osmotic 

pressure after synthesis of high amounts of the sugars in plant tissues. They 

include mainly starch and fructans found in seeds, root tubers and other plant 

tissues, and in some plants they are present in the form of non-starch 

polysaccharides, for example, galactomannans (e.g. guar gum) in the cluster bean. 

In seeds, storage polysaccharides act as the stored fuel for metabolic activities of 

the new sapling. 

iii) Protective polysaccharides are found in the form of naturally occurring gums 

and mucilages. These are usually viscous substances found in the cell sap. These 

polysaccharides offer protection from desiccation to the plants. Gum arabic a is 

an example of such carbohydrates. 

1.2.3 On basis of complexity of molecule 

Monosaccharides and disaccharides may be termed simple sugars because of the 

simplicity of their molecular structure, while higher molecular weight 

carbohydrates may be classified as complex carbohydrates (Chinachoti, 1995). 

Whitney et aI., (1998) described the monosaccharides and disaccharides as simple 

carbohydrates (or sugars) and polysaccharides as complex carbohydrates. 

Complex carbohydrates include oligosaccharides, starch, non starch 

polysaccharides and the various types of gums and mucilage. The British 
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Nutrition Foundation Task Force on Carbohydrates (1990) included starch and 

non-starch polysaccharides, but not oligosaccharides, in the category of complex 

carbohydrates. The complexity of the carbohydrate molecule is not used 

frequently as the basis for the carbohydrate classification because the 

Table 1.1 Main carbohydrates in the human diet (adopted and modified from 
Asp, 1995) 
Monosaccharides Disaccharides Oligosaccharides Polysaccharides 

Glucose 
Fructose 
Mannose 
Galactose 
Ribose 
Deoxyribose 

Sucrose 
Lactose 
Lactulose 
Maltose 

a Galactosides 

Raffinose 
Stachyose 
Verbascose 

Fructans (Oligomers) 

Fructooligosaccharide 

Starch 

Amylose 
Amylopectin 
Modified starches in foods e.g 
dextrins, etc. 

Non Starch Polysaccharides 

Cellulose 
Hemicellulose 
Pectin 
P Glucans 
Fructans (Polymers) 
Gums e.g. Guar gum, gum 
arabic etc. 
Mucilages e.g. Ispaghula 

impracticability of its use for nutritional and physiological information. Any 

such use will lead to big confusion about their digestibility. For example, 

lactulose is disaccharide and a simple carbohydrate by the definition of the 

complexity but it is not a digestible carbohydrate in the small intestine. In 

contrast, a digestible part of starch is included in the complex carbohydrates with 

the other indigestible carbohydrates. On basis of such confusion, the complexity 
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of the carbohydrate molecule is not used so much for the classification purpose 

now. 

1.2.4 On nutritional (or physiological) basis 

Carbohydrates may be classified on a nutritional (or physiological) basis as 

digestible or indigestible depending on their possible digestion by the digestive 

enzymes in the small intestine. The extent and site of break down of the 

carbohydrate in the human intestine has very important implications in their 

physiological role in the body. 

1.2.4.1 Digestible carbohydrates 

Digestible carbohydrates are easily broken down into their constituent monomers 

by the digestive enzymes in human small intestine. Most disaccharides, such as 

sucrose and higher molecular weight digestible starch and glycogen are examples 

of digestible carbohydrates. Monosaccharides such as glucose, fructose, etc., do 

not need digestion and they are absorbed directly by the epithelial cells. The 

epithelial cells of the intestinal wall and cells in the liver convert fructose and 

galactose into glucose, thus ultimately yielding the primary fuel, glucose, to the 

body tissues (Whitney et al.,1998). Fructose, sometimes, may not be so easily 

absorbed in the small intestine and may cause diarrhoea after entering the large 

intestine (Caspary, 1986). 

Starch is the main polysaccharide ingredient of the human diet consisting of two 

main macromolecules; amylose and amylopectin (Cummings & Englyst, 1995). 

Normally a starch granule is composed of 14-27 percent amylose and 73-86 

percent of amylopectin (Chinachoti, 1995). Amylose is conformed in a helical 
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structure containing six anhydroglucose residues in each tum with interchain 

hydrogen bonding. The helical structure of the amylose renders it more compact 

and less accessible to the enzymatic action compared with more open, branched 

amylopectin. Dietary starch is classified in three major groups, based on the rate 

of their digestibility in vitro (Englyst et aI., 1992); 

Rapidly Digestible Starch (RDS) 

Slowly Digestible Starch (RDS) 

Resistant Starch (RS) 

RDS is rapidly digested in the human small intestine and it is found mostly in 

freshly cooked starchy foods like breads, potatoes (Englyst & Kingman, 1993). 

SDS is also completely digested in the human small intestine but at much slower 

rate compared with RDS. SDS is not easily accessible to the amylolytic enzymes 

and such starch is present in partially milled seeds or in foods with more compact 

and dense texture such as pasta. Resistant starch is not digestible in the small 

intestine (this category is discussed in later sections in more detail). All these 

three types may be present in the same food but the amount of each type varies 

depending on the source of starch and processing of the food (Englyst et aI., 

1992). 

1.2.4.2 Indigestible carbohydrates 

Indigestible carbohydrates resist the action of the pancreatic enzymes in the 

human small intestine. Consequently, they reach the large intestine where they 

are fermented by the gut bacteria into short chain fatty acids (SCF A), gases and 

some other organic compounds. The extent of the bacterial fermentation of these 

carbohydrates in the colon differ widely from each other. Some of these 
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carbohydrates may not be fermented by bacteria at all, some may be fermented 

partially resulting in the loss of their physical properties, whereas, still others may 

be fermented completely. Indigestible carbohydrates include most of the higher 

molecular weight complex carbohydrate and some lower molecular weight simple 

carbohydrates. Some of these indigestible carbohydrates are also termed as pre

biotics; a concept introduced recently (Gibson & Roberfroid, 1995). According 

to these authors "a prebiotic is nondigestible food ingredient that beneficially 

affects the host by selectively stimulating the growth and/or activity of one or a 

limited number of bacteria in the colon, and thus improves host health." 

1.2.4.2.1 Simple indigestible carbohydrates 

Due to gastrointestinal disorders, or because of lack of genetic expression in some 

subjects, disaccharides like lactose and other simple sugars may escape digestion 

in the small intestine and become available for bacterial fermentation in the 

colon. Lactose requires the brush border enzyme, lactase, for break down into its 

component monosaccharides glucose and galactose, before absorption. In lactose 

intolerant subjects, either lactase production is insufficient or they lack the 

genetic expression of lactase altogether due to some genetic disorder. 

Unabsorbed large amounts of lactose may exceed the fermentation capacity of gut 

bacteria and result in an increase of osmolarity in the gut (Wiggins, 1984). 

Higher osmolarity of lactose may cause an accumulation of large volumes of 

fluid in the gut lumen, consequently leading to osmotic diarrhoea. However, 

most individuals with lactase deficiency can tolerate lactose without causing 

diarrhoea because of an adequate fermentation capacity. 
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Lactulose, a semi synthetic disaccharide that is formed in milk by a heating 

process, is also indigestible in the small bowel but it is metabolised by the gut 

bacteria. It is a water soluble compound of low molecular weight and, therefore, 

its solution has high osmotic pressure (Wiggins, 1984), and is used 

therapeutically to treat constipation (Lactulose is described in detail in later 

chapters). 

1.2.4.2.2 Oligosaccbarides 

Some oligosaccharides including raffinose, stachyose, fructo- and galacto-

oligosaccharides and some inulins, are indigestible. These are readily soluble in 

water. Oligo saccharides range from 2 to 8 g/d in different Western diets and 

mainly originate from legumes, onions, artichokes and root vegetables (Englyst & 

Kingman, 1993). Oligo fructose and inulin are not degraded in the small intestine 

and therefore, reach the colon intact (Bach Knudsen & Hessov, 1995). In vitro 

studies showed that these carbohydrates are fermented by the colonic bacteria 

(Wang &Gibson 1993). The importance of oligo saccharides emerged in late 

1980s as a result of belief that they may affect microbial function in human large 

intestine in a beneficial direction (Hidaka et aI., 1986). Oligosaccharides with 

such beneficial effects have been classified as pre-biotics, (Gibson & Roberfroid, 

1995). Among such oligosaccharides, fructo-oligosaccharides meet all the 

criteria of being ideal candidates for classification as prebiotics. The importance 

of the fructo-oligosaccharides is due to their properties of stimulating the growth 

of "human friendly" bifidobacteria in the colon (Hidaka et aI., 1986; Mitsuoka et 

aI., 1987). These findings were confirmed by a study showing that bacteria 
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beneficial to human health, such as bifidobacteria, grow well on the fructo-

oligo saccharides in comparison with the other substrates (Wang &Gibson 1993). 

The fructo-oligosaccharides including oligo fructose commercially known as 

raftilose [ORAFTI s.a. - Aandorenstraat 1-B-3300 TIENEN, BELGIUM] (Gibson 

& Roberfroid, 1995) is good example of pre biotic. 

1.2.4.2.3 Polysaccharides 

The polysaccharides resistant to digestion in the human small intestine, comprise 

two sub groups; 

Resistant Starch 

Non-starch Polysaccharides. 

1.2.4.2.3.1 Dietary fibre 

Before this clear classification of indigestible polysaccharides into two 

categories, there was a large volume of scientific information in different fields 

related to carbohydrates which led to the hypothesis of dietary fibre. It was 

Hipsley (1953) who used the term "Dietary Fiber" for the components of cell wall 

that resisted the digestion in human small intestine. In 1970s Burkitt, Trowell 

and Southgate independently contributed to the concept of dietary fibre, 

resuscitating and supporting the term coined by Hipsley (1953). Trowell's 

definition of dietary fibre went through an evolution in its botanical aspect from 

"skeletal remains of plant cells" (Trowell, 1972) to "remnants of the plant cell 

wall" (Trowell, 1975), then to "structural polymers of plant cell wall" (Trowell, 

1976) and later to a redefinition by Trowell et aI., (1976) which included all 

indigestible polysaccharides and lignin present in the cell rather that present in 

the cell wall only. By this definition, all other indigestible compounds, including 
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proteins, tannins and cutin in plant cell wall, were excluded from the concept of 

dietary fibre whereas all indigestible polysaccharides were included, regardless of 

their botanical origin within the cell. This definition allowed inclusion of storage 

polysaccharides such as guar gum, etc. The physiological aspect of this 

definition remained the same since Trowell et al., (1976) described dietary fibre 

as resistant to the digestive process in human small intestine. 

The latest definition of dietary fibre, proposed by Trowell et al., (1976) was 

widely accepted but another dispute came forth about this definition. Trowell et al., 

(1978) did not exclude non cell wall polysaccharide such as resistant starch from 

his definition of dietary fibre. By virtue of this definition, resistant starch has to 

be included within the dietary fibre category. On the other hand, digestible 

starch, which does not agree with the physiological concept of dietary fibre, has 

to be excluded from the definition of dietary fibre. This could create a confusion 

about the categorical position of digestible and resistant starch. Overcoming this 

discrepancy, Englyst et al., (1987a) proposed the substitution of 'non starch 

polysaccharides' as an equivalent for the term of 'dietary fibre'. This is a more 

realistic definition of dietary fibre because it is not in conflict with the original 

physiological criterion of dietary fibre concept, i.e. being resistant to the digestive 

enzymes in small intestine. At the same time it excludes resistant starch, protein 

and other non carbohydrate polymers from the original definition of the dietary 

fibre, which was not very clear about the position of these polymers. This new 

definition is more emphatic about the role of plant cell wall polysaccharides, thus 

not deviating much from the original definition of dietary fibre. However, there 
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is still much discussion, especially in USA, of whether resistant starch and fructo

oligo saccharides should be included in the dietary fibre (personal communication 

-ProfD Gordon, Food Science, South Dakota, USA). 

1.2.4.2.3.2 Resistant starch 

In the plant cell, starch is contained within granules of different shapes and sizes 

depending on the source species. For example, in rice and oats these starch 

granules are tiny in size while those in potatoes and banana, are large in size. The 

starch molecules are arranged in partially crystalline structures within granules 

which, in the case of amylopectin, have clusters of interchain branching points 

and regions with short chains. Although the constituent polymers of the starch 

are hydrophilic, the starch granules are not water soluble due to their semi

crystalline form (Eliasson & Gudmundsson, 1996). 

This partially crystalline structure has distinct patterns on x-ray diffraction. 

Three main crystalline forms have been described: Types A, B, and C. 

Type A is thermodynamically the most stable form and found in cereal starches, 

except in high amylose varieties. Type B is characteristic of starches in banana, 

roots and other tubers like potatoes. This is a crystal type also found in high 

amylose varieties of the cereals and retrograded starch. Type C is found in 

legumes such as bean and peas. The size and crystalline nature of starch granules 

influence their susceptibility to pancreatic enzymes. In general, starch granules 

with Band C type of crystallinity, tend to be more resistant to the pancreatic 

amylase. 
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Until the findings in early 1980s, starch was considered completely digestible in 

the small intestine. However, starch is now known not to be completely digested 

in the small gut by a amylase and pullulanase (an enzyme that can hydrolyze a 1-

6 glycosidic bonds). Normally starch is digestible in the small intestine but a 

portion of the dietary starch is resistant to the digestive enzymes for a number of 

reasons and is readily available for the fermentation in the colon. This finding led 

to the development of the concept of the resistant starch (Englyst & Cummings, 

1987a). Resistant starch has been defined by EURESTA (European Food Linked 

Agro-Industrial Research - Concerted Action on Resistant starch) as: "The sum of 

starch and products of starch degradation not absorbed in the small intestine of 

healthy individuals" (Asp, 1992). The incomplete digestion of the starch in the 

small gut has been demonstrated by different methodologies in several studies 

including the measurement of breath hydrogen (Anderson et aI., 1981; Levitt et 

aI., 1987; Christl et aI., 1992), intubation of the ileum (Stephen et aI. 1983), 

studies with ileostomists (Sandberg et aI., 1981; Englyst & Cummings, 1987b). 

Three main types of the resistant starch are so far described (Englyst et aI., 1992); 

RSI refers to starch granules that are physically trapped in the food matrix. In 

this case, intact cell structures such as cell wall, prevent the complete swelling of 

starch granules and as result, may hinder the access of amylase to the starch 

(Wtirsch et aI., 1986). Mostly this category of resistant starch is found in whole 

or partially milled grains, seeds or legumes and also in some very compact 

processed foods like pasta. Starch in this case is inaccessible for the digestive 

enzymes in the gut. This type of the resistant starch can be affected largely by 

food processing and also by lack of chewing (Muir & O'Dea, 1992). 
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RS2 refers to raw starch granules with B-type crystalline structure which affects 

the digestibility of the starch by resisting the swelling and gelatinization of the 

granules during cooking (Wtirsch et aI., 1986), which renders it indigestible. RS2 

is mostly found in raw potatoes, banana and raw high amylose maize. These are 

very large starch granules with low SA/volume ratio, being resistant to digestion 

in small intestine because of the intact structures in food and specific crystalline 

pattern (B-type) of the starch granules. 

RS3 refers to amylose and amylopectin forms of dietary starch which may 

retrograde (re-crystallised) when cooled down after cooking. When the starch is 

boiled in excess of water, it goes through a process of gelatinisation which 

consists of swelling and disruption of the starch granules. On cooling, both 

soluble and partially soluble components of starch in the ge1atinised granules re

crystallise and this process of re-crystallisation is termed as retrogradation of the 

starch. The retrograded starch is highly resistant to the digestion in the small 

intestine. For example, in ileostomy samples from human subjects, 3% of 

undigested starch contents were reported after eating freshly cooked potatoes as 

compared with 12% undigested starch after eating cooked and cooled potatoes 

(Englyst & Cummings, 1987b). In the latter case, retrogradation of the starch 

could be a possible reason for higher amounts of resistant starch. Retrograded 

starch characteristically forms the B-type crystalline pattern. 

The RS 1 & 2, mainly depend on the food industry which by the controlling the 

level of its processing, has a major role in determining the amount of the dietary 

starch available for the fermentation. Fermentation of resistant starch is much 
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slower compared with most dietary fibre (Achour et al ., 1996). A semi-purified 

retrograded amylose (RS3) was less fermentable with the lowest production of 

SCFA compared with raw potato starch (Edwards et aI., 1996). Thus, resistant 

starch may resist, not only amylolytic action in the small intestine, but may resist 

even the degradation by bacteria in the large intestine as well. 

1.2.4.2.3.3 Non starch polysaccharides 

Non starch polysaccharides include main structural components of the plant cell 

wall i.e. Cellulose, hemicellulose and pectin, different plant gums, various 

mucilages. Gums such as guar gum, gum arabica are examples of indigestible 

carbohydrates that are chemically related to non starch polysaccharides (NSP) 

and are included in the definition of the dietary fibre. Intake of non starch 

polysaccharides, ranges from 12.4 /day in the diet of British people (Englyst & 

Kingman, 1993). Non starch polysaccharides can be grouped into two major 

categories on basis of their solubility in water; 

First, water soluble non starch polysaccharides that may form gels or viscous 

solutions, include different gums, pectin. Second, water insoluble non starch 

polysaccharides including cellulose. 

Proportions of both types vary in different foods, the proportion of the soluble 

non starch polysaccharides is higher in fruits and vegetables compared to that in 

wheat fibre and brown rice. The water soluble NSP constitute the major portion 

of non starch polysaccharides in fruits, oats, rye, barley and legumes while water 

insoluble NSP are predominant in vegetables, bran of wheat and other cereal 

grains (Englyst et aI., 1988; Englyst et aI., 1989). Insoluble NSP are more 
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resistant to the bacterial fennentation in the human colon than soluble fibres 

(Spiller et aI., 1980; Edwards, 1990). Classification of indigestible carbohydrates 

on the basis of their water solubility, may, in tum, depend on intennolecular 

bonds, spatial arrangement and packing ofthe monomers in a molecule of higher 

molecular weight complex carbohydrates. The regularity of a linear chemical 

structure increases the strength of the non-covalent bonds, thus, stabilising the 

ordered confonnation. If the backbone has irregularity or the branching occurs, 

such bonds are weak, thus making the dissociation of ordered structure and 

promoting the solubility (Thibault et aI., 1992). Spatial arrangement and packing 

of the monomers in a molecule, is a very important property in detennining the 

physiological role of a particular complex carbohydrate. The stability of ordered 

and regular shapes of the polysaccharide chains after exposure to the excess water 

depends on the interaction of a number of factors, the most important of which is 

charge. Many polysaccharides have charged groups, such as COO-, which repel 

one another, thus favouring expansion and destabilisation of coils in solution 

rather than a compact and ordered molecular structure (Morris, 1992). For 

example, uronic acid (a major constituent of pectin) will tend to repel 

polysaccharides from each other and thus will favour solubilisation of the 

complex molecule (Thibault et aI., 1992). 

1.3 The human colon and its environment 

Carbohydrates resistant to the intestinal digestive enzymes reach the large 

intestine where they are fennented by the gut bacteria to organic metabolites, 

most of which are absorbed through the epithelium of the large intestine. In this 
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way, carbohydrates provide energy to the body tissues in the form of either 

monosaccharides resulting from digestion in the upper gut or through formation 

of different metabolites such as short chain fatty acids by the fermentation in the 

lower gut. The colon is about 100 to 150 cm in length (Christensen, 1989) and 6 

cm in diameter. The human colon is haustrated throughout most of its length and 

can be, regionally, divided into proximal ascending colon, traverse colon, distal 

descending colon and sigmoid colon (Lacy, 1991). The ascending colon is 15cm, 

traverse colon 50 cm, descending colon 25 cm and the S-shaped sigmoid colon is 

40 cm in length. The rectum, the final part of the digestive tube, starts from 

recto-sigmoid junction and ends in the anal canal (Fig. 1.1). The human large 

intestine can be divided arbitrarily in three functional regions; 

1) Caecum and proximal colon as the site for carbohydrates fermentation 

2) Traverse colon as site for absorption and the motility check point 

3) Distal colon, and rectum which acts mainly as the reservoir of the residual 

waste material ready for excretion (Edwards, 1997). 

There are differences in the anatomy, absorptive characteristics, neural and blood 

supply of different regions of the human colon (Edwards, 1993). The mucosa 

covers the luminal surface of the colon. Unlike the small intestine, the colon is 

not convoluted and no villi are present. As a result, the absorptive epithelial 

surface of the colon, despite a greater diameter of colon, is only about 1I30th that 

of the small intestine. However, the longer transit time in the colon gives an 

opportunity for substantial absorption to take place. The total amount of the 

material entering the colon is about 1.5 kg per day while average stool weight, 
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Fig. 1.1 The human gastrointestinal tract 

Ascending colon 

Caecum 

Rectum 

• Caecum & ascending colon - carbohydrate fermentation. 

" Transverse colon - absorption & motility check post. 

Descending colon 

" Dscending colon & rectume - water & SCF A absorption; protein fermentation; 

reservoir of waste material ready for excretion. 
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in the UK, is 120 g/d (Cummings & Macfarlane, 1991). The average wet weight 

of colonic contents is about 220g in the western populations with a range of 58 to 

904 g (Banwell et aI., 1981), consisting mainly of bacteria. The microbial 

community in the human gut, is diverse and complex comprising of 

approximately 400 to 500 species (Finegold et aI., 1983). The majority of this 

microbial population consists of anaerobic bacteria which outnumber the aerobic 

bacteria by 1000 to 1 (Gustafsson, 1982). Substrate, required daily for the 

maintenance of such a huge microbial population, is provided from intrinsic as 

well as extrinsic sources, including dietary carbohydrates, proteins and peptides. 

1.4 Colon and fermentation 

When undigested carbohydrates reach the colon, they may be broken down 

anaerobically by the colonic bacteria. This process of anaerobic bacterial 

degradation of carbohydrates is termed fermentation (MacFarlane, 1991). 

Bacterial fermentation in the human colon facilitates the salvage of the 

unabsorbed energy. The colon has two main functions; 

First, it is the site of fermentation of different substrates reaching the colon in 

partially or fully intact form. Secondly, it is the major site for the absorption of 

water, electrolytes and other end products from bacterial fermentation. The cells 

lining of the human large intestine are unable to transport actively either glucose 

or amino acids. 

The active transport of sodium across the gut mucosa (promoted by SCF A 

absorption) is accompanied by the re-absorption of the water from gut lumen to 

blood. Caecal content is approximately 86% water, falling to 77% water in the 
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sigmoid rectum (Cummings & Macfarlane, 1991). This process of water 

absorption renders the colonic contents more concentrated with the passage 

through the gut. Absorption of water and other metabolites in the colon, prevents 

the osmotic diarrhoea which can cause a severe depletion of total body potassium. 

The nutrient depleted and concentrated colonic contents, reach the rectum and are 

stored there for excretion. In this way, the colon may be regarded as a semi 

continuous fermenter because of its fermentation pattern, receiving a semi

continuous supply of substrate from the upper gut which is fermented by the 

colonic microorganisms. The body tissues clear most of the end products of this 

fermentation process for further metabolism while part of the end products and 

residual material are excreted with the faeces. The bacterial population is also 

replenished continuously by the carbohydrate fermentation, if abundant nitrogen 

is present. 

The right colon is the area of an extensive carbohydrate fermentation producing 

large amounts ofthe short chain fatty acids (Cummings et aI., 1987), creating an 

environment with low pH due to higher concentration of organic acids in colon. 

The subsequent absorption of SCF A from colon and simultaneous secretion of 

HC03, causes an increase in colonic pH, lowest (i.e. pH 5.6) in the caecum and 

gradually rises to about pH 6.6 in the descending colon, towards the distal end 

(Cummings et aI.,1987). As the gut contents move towards left side of the colon, 

they become gradually nutrient-depleted. Nitrogen contents are 6% of dry matter 

in all regions of the gut content whilst total carbohydrates fall from 20% of 

content in the caecum to 11 % in the sigmoid rectum (Cummings & Macfarlane, 
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1991). This gradual depletion of the carbohydrate substrate in gut, affects the 

fermentation reactions in gut lumen resulting in lower production of short chain 

fatty acids at the distal colonic site. Although concentrations of SCF A vary 

throughout the gut, their molar ratios seem to show little change (Cummings et 

aI., 1987). 

1.5 Products of fermentation 

Intestinal micro flora adopt the Embden-Meyerhoffpathway for degradation of 

carbohydrates into their end products. Major end products of carbohydrate 

fermentation are short chain fatty acids and some other organic compounds, 

different colonic gases and replenished bacterial mass. 

1.5.1 Short chain fatty acids 

Acetate, propionate and n-butyrate are the most important short chain fatty acids 

(SCF A), resulting from the fermentation of carbohydrates and these account for 

approximately 85-95% of total SCFA in all regions of human colon (Cummings 

et aI., 1987). The amount of net total SCF A produced per gram substrate 

fermented varies from 34 to 59 percent in stoichiometric terms (Englyst et aI., 

1987b). 

There is evidence, mainly from in vitro studies, that the SCF A profile is 

carbohydrate specific, i.e. some carbohydrates are more butyrate predominant. 

For example, starch fermentation produced more butyrate (Englyst et aI., 1987b; 

Wang & Gibson, 1993), whereas, others are more propionate predominant, such 

as guar gum (Adiotomre et aI., 1990). Concentration of these SCF A is highest in 

the human caecum and proximal colon, declining progressively towards the distal 
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site of the large intestine (Cummings et aI., 1987). This shows carbohydrate 

fermentation is higher in the proximal colon compared with the distal colon. 

Some branched SCF A, including isobutyrate, isova1erate and nva1erate are 

produced as a result of protein fermentation in the gut (Macfarlane & Alison, 

1986), chiefly they arise from de-amination of the branched chain amino acids. 

Protein fermentation is greatest in the left colon as it is clear from the higher ratio 

of the branched chain fatty acids in the left colon (Macfarlane,1991). 

1.5.1.1 SCFA and their metabolic implications 

Low concentration of short chain fatty acids in the peripheral blood circulation 

(Cummings et aI., 1987) indicated that these acids were metabolised either in the 

liver or in the colonic tissues. Although each SCF A is metabolised differently 

and at several sites in the body, and the metabolism of short chain fatty acids 

differs for acetate, propionate and n butyrate, the liver is a major site of the 

expected impact of SCF A. In general, over 50% of short chain fatty acids are 

metabolised in this organ (Demigne & Remesy, 1991). In physiologic conditions, 

propionate and n-butyrate in portal vein are almost quantitatively cleared by 

hepatic tissues. Acetate is cleared only partially by the liver, depending on its 

portal concentration and on the physiological state (i.e. fed, fasting, starvation, 

diabetic state) of the individual (Demigne & Remesy, 1991). During their 

absorption, SCF A are partly metabolised by the colonic mucosa and partly 

transported to the liver for further metabolism. The oxidative breakdown of the 

SCF A after their absorption in the body provides the fuel for different 

physiological reactions in the body tissues. 
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Interest in SCF A production has been spurred by the emerging role of n-butyrate 

in colonic mucosal cell growth and metabolism (Kruh, 1982; Sakata, 1983; 

Smith, 1986), but also by the potential role of propionate in inhibiting hepatic 

cholesterol biosynthesis (Chen et a11984). Short chain fatty acids provide about 

60-70 % of estimated energy requirements of the colonocytes and colonic 

epithelium (Roediger, 1980; Roediger, 1982). The SCFA, once absorbed, have a 

relatively low calorie value per gram (acetate 3.49, propionate 4.96 and n

butyrate 6.16). Acetate is the major SCFA absorbed and reaching the peripheral 

tissues which limits the energy contribution by the SCF A even with large 

amounts of fibre (Remesy et aI., 1992). It is estimated that bacterial fermentation 

in the colon may contribute about 10% of daily energy requirement in the 

Western society (McNeil, 1984). Although SCFA may not be a major source of 

energy in the human, compared with other metabolites such as glucose, other 

fatty acids and amino acids, they may play an important role in the integrity and 

growth of intestinal mucosa and hepatic tissues in the human (Demigne & 

Remesy, 1991). Short chain fatty acids have a number of effects which may be 

relevant to metabolic activities in human body as well as to colonic health and, 

thus influencing the intermediary metabolic reactions in the colonic epithelial, 

hepatic and peripheral tissues. 

1.5.1.1.1 l\cetate 

Acetate is about 60% of the total SCF A produced from bacterial fermentation in 

human colon (Scheppach et aI., 1991) and it has been used as the indicator for the 
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fermentation in the human colon in many studies (Pomare et ai., 1985; Muir et 

ai., 1995; Zavoshy, 1998). A number of metabolic roles have been ascribed to 

acetate in hind gut fermenting species, such as lipogenesis, however, in practice 

probably acetate acts simply as a source of energy for the tissues (Cummings, 

1991). It is rapidly oxidised and acts as an important source of energy in the 

human peripheral tissues (Cummings & MacFarlane, 1991). Acetate has two 

particular features, which make it distinct from the other short chain fatty acids; 

i) Acetate not a major energy source, but is nevertheless an important source of 

energy in the liver and peripheral tissues of body. It is the only SCF A 

reaching the peripheral blood circulation and passing to peripheral tissues for 

further metabolism in muscles. Significantly higher amounts of acetate were 

reported in portal blood compared with that in the peripheral venous blood 

system (Cummings et ai., 1987), which is an indication of an uptake and 

utilisation of acetate by hepatic tissues. Despite, its considerable uptake by the 

hepatic tissues and rapid oxidation, free acetate is usually present in the 

peripheral blood system (Pomare et ai., 1985). 

ii) Acetate stimulates cell turnover in the entire gut and helps in healing the 

damaged intestinal mucosa in rats (Sakata 1987). 

Apart from production by bacterial fermentation in colon, an endogenous 

synthesis of acetate takes place in body tissues. Pomare et ai., (1985) noted 

significantly higher acetate (125.6±13.5 ).tmol/l) in arterial blood system 

compared with that in venous blood system (61.1± 6.9 ).tIDol/l) in the fasting state 

in human SUbjects. Acetate is produced by liver in the fasting state (Scheppach et 
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al., 1991). In the fed state increasing amounts of plasma acetate are mostly 

derived from the bacterial fermentation in the colon (Pomare et al., 1985; 

Scheppach et al., 1991; Muir et al., 1995). Scheppach et al., (1991) also reported 

a significantly lowered fasting plasma acetate in ileostomy subjects (21.3±O.8 

/-tmol/l) compared with normal control subjects (48.0±4.2 /-tmol/l). 

Considering these observations, it is evident that humans mainly derive their 

plasma acetate from the colonic fermentation but in the fasting state a marked 

endogenous synthesis probably compensates for the colonic fermentation. In 

reality endogenous synthesis is a result of fat degradation in the liver. 

All these studies pointed to important facts related to the synthesis and 

metabolism of the acetate in the human body, i.e. 

a) Colonic fermentation contributes significant amounts to plasma acetate 

whereas endogenous system of acetate synthesis becomes more important with 

prolonging starvation. 

b) Metabolism of acetate occurs at both hepatic tissue and peripheral tissue level. 

Acetate can be utilised by most tissues, except probably the brain and other 

nervous tissues and it is a good source of acetyl CoA in adipose tissue, where 

glycolysis is limited. In muscles, acetate may spare fatty acids and glucose, and 

has some vasodilatory effects (Demigne, 1991). Since fatty acids decrease the 

use of glucose in muscle, through an effect on hexokinase, glycolysis and 

pyruvate dehydrogenase, acetate may have a regulatory role in this regard. 

Acetate reduces serum free fatty acids (FF A) levels, which, in tum, may reduce 
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blood glucose levels because FF A compete with glucose for uptake by insulin 

sensitive tissues (Ferrannini et aI., 1983). 

Although the liver has a high capacity of acetate activation, it seems that that long 

chain fatty acids are sources of energy in the liver and acetate utilisation is 

channelled towards lipogenesis (Remesy et aI., 1992). Therefore, acetate is a 

primary substrate for lipid synthesis and when acetyl-CoA provision from 

glucose is limiting, acetate may become an effective precursor for lipogenesis. 

Acetate is activated to generate acetyl CoA in the hepatic tissues, thus acetate acts 

as a precursor for lipid synthesis in the fasting state i.e. when acetate 

concentrations are low in portal blood. Acetyl CoA, being used for citrate 

synthesis in hepatic cell mitochondria, enters the Krebs cycle causing an increase 

in the intracellular citrate (Berggeren, 1996). This increase in the concentration 

of citrate may inhibit pyruvate, in tum, acetyl Co A, formation from glucose, thus 

reducing the flux of glucose via the glycolytic route. In this way, acetyl CoA 

from acetate may spare the glucose for the central nervous systems and some 

other specialised cells such as red blood cells of the body because of their 

obligatory needs, as these tissues must be supplied with glucose as a source of 

energy. 

Propionate and butyrate can completely inhibit the oxidation of acetate in hepatic 

tissues. In this way, the liver removes the propionate for glucose synthesis and n

butyrate for ketone body formation, whereas, acetate is not metabolised and it is 

spared for the utilisation in the extrahepatic tissues (Ballard, 1972). Therefore, it 

seems that acetate and propionate, after reaching the liver, influence the 
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metabolism of carbohydrates and lipid, probably in an opposing way. The ratio 

of acetate to propionate may be very important in the overall physiological role of 

the carbohydrate fermentation in the colon (Wolever, 1991). 

1.5.1.1.2 Propionate 

Propionate is an excellent precursor of gluconeogenesis and can be used to 

produce glucose in the body. It stimulates cell turnover in the gut and may help 

in healing the damaged gut epithelium (Sakata, 1989). Propionate has been 

studied extensively in animals (Thacker & Bowland, 1981; Boilla et aI., 1981; 

Anderson & Bridges, 1982; Chen et aI., 1984; Illman et aI., 1988; Imaizumi et aI., 

1992; Berggren et aI., 1996) but less information is available on its effect in 

humans (Venter et aI., 1990; Todesco et aI., 1991;Wolever et aI., 1991). Some of 

these studies showed an inhibitory effect of propionate on hepatic cholesterol 

synthesis and such studies may be helpful in explaining the lipid lowering effect 

of the soluble dietary fibre (Chen et aI., 1984; Illman et aI., 1988). This 

cholesterol lowering effect is either due to inhibition of the hepatic cholesterol 

synthesis or because of the redistribution of cholesterol from plasma to liver' 

(Illman et aI., 1988). Berggren et aI., (1996) noted significantly lower total 

hepatic cholesterol pools in obese hyper-insulinaemic rats by dietary ingestion or 

rectally infused propionate compared with control group. Chen et aI., (1984) has 

shown an inhibition of cholesterol synthesis in isolated rat hepatocytes, hence this 

may result in plasma cholesterol lowering effect. However, this may not occur at 

physiological concentrations. 
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The liver is a main metabolic site for propionate, which is cleared by the hepatic 

tissues after absorption through the colonic mucosa, especially when large 

amounts are absorbed from gut. Hepatic clearance from the portal system is over 

50%, resulting in very little appearance of propionate in the peripheral blood 

system (Cummings et aI., 1987). Uptake of propionate may influence glucose 

metabolism and cholesterol synthesis in hepatic tissues and these effects are 

believed to be beneficial, reducing the fasting serum glucose and increasing the 

insulin sensitivity i.e. reducing the maximum insulin increments during the 

glucose tolerance (Venter et aI., 1990; Todesco et aI., 1991). Propionate is readily 

taken up and activated in hepatic tissues. This activation of propionate, unlike 

conversion oflactate into oxaloacetate via formation of the pyruvate (Wolver, 

1995), does not depend on the rate controlling step of pyruvate carboxylase 

(Remesy et aI., 1992). Its activation generates propionyl CoA in mitochondria of 

hepatic cells. Propionyl CoA is transformed into methylmalonyl CoA with a 

subsequent conversion to the succinyl CoA which may enter the Krebs cycle and 

is then converted to the oxaloacetate via the formation of succinate. The resulting 

oxaloacetate is metabolised further to yield glucose. 

Propionate is metabolised in an opposing way to the metabolism of acetate after 

reaching the liver and, therefore, influences the metabolism of carbohydrates and 

lipid. Propionate can completely inhibit the oxidation of acetate in hepatic tissues 

by blocking the oxaloacetate availability for the formation of citrate, by using it 

in gluconeogenesis in tissue cells. Propionate generated during colonic 

fermentation is unlikely to raise the plasma glucose but probably contributes 

33 



small amounts of glucose to the system. The rate of delivery of propionate is 

much faster in the experimental amounts (180mmol) used for rectal infusion in 

humans compared with that in the actual colonic fermentation (50-200mmo1l24 

hours) (Wolever, 1991). 

Since most of the studies relating to its metabolic influences on serum lipid and 

glucose levels are carried using dietary supplementation of propionate, there may 

be different effects than if propionate was produced in the colon; 

i) Propionate may act as an enzyme inhibitor of amylolytic activity, hence 

reducing the starch hydrolysis in the small intestine. 

ii) It may cause a delay in gastric emptying (Blum et aI., 1976). 

iii) There may be are-distribution of the cholesterol from plasma to the liver, 

responsible for the hypo-cholesterolaemic effects of dietary propionate. 

iv) An increase in glycolysis and a simultaneous decrease in glucose generation 

in isolated rat hepatocytes (Anderson & Bridges, 1982), may be responsible 

for the plasma glucose lowering effect. 

The results of Anderson & Bridges, (1982), were supported by Venter et aI., 

(1990), who noted a reduced fasting serum glucose after dietary supplementation 

with propionate in healthy subjects. In this study total cholesterol levels did not 

show any change in man, although HDL cholesterol were increased by feeding 

7.5 g sodium propionate per day to a group of female volunteers. 

1.5.1.1.3 n-Butyrate 

Roediger (1980) identified n-butyrate as a preferred source of energy for the 

colonocytes in vitro. In his in vitro study, clear intra-colonic regional differences 
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were noted for n-butyrate utilisation, suggesting that n-butyrate is the major 

source of energy for the colonic mucosa, particularly of the distal colon. As 

lower molar ratios of butyrate were reported in portal veins compared with the 

colon of sudden death victims (Cummings et aI., 1987), it seemed that surplus n

butyrate, not metabolised by colonocytes, enters the portal blood system and is 

effectively metabolised by the hepatic tissues. 

The n-butyrate is considered particularly important because of its various effects 

on colonic mucosal health and it is implicated in reducing the risk of malignant 

changes in the colonic epithelium, in addition to providing the energy to the 

colonocytes in human. n-Butyrate has been studied extensively for its effect on 

the colonic epithelium at the cellular level (Kruh, 1982; Sakata, 1983; Smith, 

1986). It is emerging as a promising nutritional agent in the treatment of mild to 

moderate distal ulcerative colitis. Beneficial effects of butyrate enemas on the 

colonic mucosa, were reported in patients with distal ulcerative colitis 

(Scheppach et aI., 1992). In this study, irrigation with 100mmolll sodium 

butyrate, decreased stool frequency significantly and stopped blood discharge in 9 

out of 10 patients. Similarly the degree of histological inflammation decreased 

significantly. These results indicated a possible role of butyrate deficiency in 

pathogenesis of the distal ulcerative colitis. 

In another study a lower ratio of butyrate was reported in enema samples from 

subjects with polyp-colon cancer, compared with that from normal subjects 

(Weaver et aI., 1988). Since n-butyrate has been implied in direct gene 

expression, as explained later, its production at the site of tumour formation may 

35 



be a significant protective mechanism of certain dietary fibres. It seems that n

butyrate is of greater significance than the other SCF A in distal colon. Therefore, 

a dietary fibre, with n-butyrate predominant fermentation in the distal colon, may 

be very important and beneficial for colonic health. Reduced tumour mass was 

noted by feeding n-butyrate predominant fibres in a rat model (McIntyre et aI., 

1993). These authors reported a significant negative correlation between the 

concentration of faecal butyrate and tumour mass in distal colon. Clausen et aI., 

(1991) supported these results by showing a reduced ratio of butyrate when 

different fibres were incubated in vitro with the faeces from patients with colonic 

adenomas and cancer as compared with healthy individuals. In this study, faecal 

bacteria from patients with colonic adenomas and cancers showed a significantly 

reduced capacity for producing butyrate which suggested that lack of butyrate 

may be important in the genesis of colonic neoplasia. On basis of these studies, it 

may be hypothesised that subjects characterised by a colonic flora with a 

relatively low capacity of butyrate synthesis, may have an increased risk of 

developing colonic adenomas and cancer. It is possible that this risk could be 

overcome by a diet rich in fermentable carbohydrates, producing high butyrate 

especially at a distal colonic site. 

n-Butyrate possesses an anti-neoplastic property (Cummings, 1984) and because 

of this property, it is thought to interact with genetic events of the tumour cells, 

playing an important role in regulation of the rate of differentiation of colonic 

cancer cells (Kruh, 1982). n-Butyrate has properties of affecting the cellular 

activities including the arrest of cell growth, alteration of gene expression, 
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suppression of several cancer-specific properties oftransfonned cells, and 

modification of cell morphology and ultra-structure. The effects ofn-butyrate are 

reversible, whereas, other SCF A are, in general, much less effective or not 

effective at all in inducing cellular changes (Kruh, 1982). A significantly 

diminished proliferation was noted in the mucosal cell by feeding healthy 

volunteers a diet supplemented with amylomaize, a source of higher n-butyrate 

ratios (van Munster et aI., 1994). In this study, a significant increase in faecal 

SCF A was noted. However, n-butyrate was reported, in earlier studies, to reduce 

the DNA synthesis and suppress the proliferation in a variety of cell types (Leder 

& Leder 1975; Hagopian et a11977; Borenfreund et aI. 1980). In another study, 

butyrate showed a positive effect on cell proliferation (Sakata, 1989), stimulating 

cell tum over in gut which may lead to enhanced chances of transcriptional errors 

and that of production of more tumour cells. However, n-butyrate has also been 

shown in vitro to stimulate the apoptosis or programmed cell death in colonic 

tumour cells (Hague et aI., 1993; Hague & Paraskeva, 1995). Similarly n

butyrate helps the healing of damaged mucosa in the gut and it is believed to play 

an important role in prevention of colonic cancer through this effect. 

Interestingly when colon cancer cells were treated with n-butyrate, they started 

differentiating in vitro (Augeron & Laboisse, 1984; Whitehead et aI., 1986). n

Butyrate has an important role in the modulation of the nucleic acid metabolism 

especially affecting the gene expression and cell growth. n-Butyrate induced 

differentiation in a range of mammalian cells including colorectal cancer cell 

lines (Whitehead et aI. 1986). It is also effective in inducing phenotypic 
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maturation in cells derived from human colon carcinoma (Whitehead et aI., 

1986). 

Butyrate has shown the potential to modulate gene expression directly. n

Butyrate showed an in vitro inhibition of histone deacetylase which, in tum, 

resulted in hyperacetylation of histone. The hyperacetylation of histone stabilises 

DNA structure by opening it and facilitating its accessibility to DNA repair 

systems. In this way n-butyrate facilitates the repair of DNA by affecting histone 

deacetylase and methylation of DNA (Candido, 1978; Smith, 1986). Another 

mechanism for the health implications ofn-butyrate in colon cancer was that it 

suppressed the in vitro growth rate of isolated cancer cells from colon by 

prolonging the doubling time (Kruh, 1982; Whitehead et aI., 1986). These 

findings were confirmed by subsequent studies reporting a reversible alteration in 

properties of cancer celUine by prolonging the doubling time and retarding the 

growth rate (Sakata, 1987; Gamet et aI., 1992). 

When we look at the results of different studies in relation to the effects of 

butyrate on cellular activity of colonic mucosa, interesting contrast in its effects 

are seen. On one hand, butyrate stimulates the growth of colonic mucosa, 

whereas, on the other hand, it inhibits the growth and induction of differentiation 

in colonic cancer lines (Hague et aI., 1997). Higher production of n-butyrate, 

therefore, is of great importance and is identified with an significant role in 

human colonic health because of its capacity to affect the cell growth in healthy 

and diseased colonic epithelium. At the same time, not only a higher ratio of n

butyrate, but also the site of its generation, may be important in relation to 

38 



colonic mucosal health. Thus, it may be possible to prevent the incidence of 

colitis and cancer in human colon, by facilitating the production of more butyrate 

at more distal site. Incidence of tumours is more in the distal colon of human 

patients whereas SCF A production from carbohydrates fennentation declines as 

digesta passes from proximal colon towards more distal site. Therefore, it is 

important to facilitate higher production of n-butyrate at more distal site. In this 

thesis, the possibility of producing higher amount of butyrate at more distal 

colonic site will be explored. In this study, I will evaluate different mixtures of 

indigestible carbohydrates, to identify a mixture which could produce more 

butyrate at more distal site, by delaying the bacterial fennentation to an optimum 

extent and at the same time to avoid the undesirable side effects of large doses of 

such indigestible carbohydrates including bloating, distension, flatulence, 

abdominal pain, diarrhoea, etc. 

1.5.2 Other organic acids 

Sometimes other organic acids, as intennediate or end products, including 

electron sink products, e.g. lactate and succinate, may be produced to a lesser 

degree during bacterial fennentation in the human colon (Cummings et aI., 1987). 

A very acidic environment in gut favours the production of lactate by 

fennentation activity of some bacterial species and production of lactate is 

affected by the speed offennentation. When large quantities of rapidly 

fennenting carbohydrates are readily available, lactate production is favoured. 

Lactate may be produced from pyruvate by the fennentation activity of some 

bacterial species. Although lactate may be produced to a lesser degree during 
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bacterial fermentation in the human colon (Cummings et aI., 1987), the increased 

fermentation of a rapidly fermenting carbohydrate may reduce luminal pH which, 

in tum, inhibits the metabolic activity of the lactate utilising bacteria. This may 

increase the amounts of lactate in lumenal contents in the case of rapid 

fermentation. Lactate act as electron sink products in the metabolic chain 

reaction by accepting the electron from NADH in the form ofH+, making the 

NAD available for further metabolic reactions. Lactate is not a key intermediate 

in the fermentation process and, therefore, no significant amounts are found, 

especially after prolonged fermentation. Lactate is not as well absorbed as the 

other SCF A and its accumulation may increase the lumenal osmolarity, resulting 

in acceleration of transit, consequently loss of energy in faeces. 

1.5.3 Fermentation of nitrogenous compounds 

Protein may be fermented by gut micro flora into other end products including 

phenols, indoles, amines, ammonia. Some of the metabolites resulting from 

protein fermentation in the colon, unlike the end products of bacterial 

fermentation of carbohydrates, are of potential hazard to the host (Cummings & 

Macfarlane, 1991). For example, NH3 is produced as one of the main end product 

by de-amination of amino acids in the gut. Ammonia can affect DNA synthesis, 

reducing the life span of epithelial cells by a faster turnover. An enhanced cell 

proliferation may increase the chances of duplicating errors in DNA copying, 

unmasking latent DNA changes resulting from earlier mutagenesis (Visek, 1978). 

A replicating cell may be more vulnerable to carcinogenesis and the extent of this 

vulnerability may vary at different stages of replication. This concept is 

supported by the evidence of increased sensitivity of the newborn and 
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regenerating adult mammalian liver to the carcinogenic action of certain 

chemicals or radiation (Warwick, 1971). In this way, a high NH3 concentration in 

the colon may select for neoplastic growth. Ammonia is rapidly absorbed from 

gut and detoxified by urea formation in human liver. Alternatively, NH3 

concentration may be reduced by increased bacterial fermentation of carbohydrate 

in the gut which may result in stimulation of bacterial growth (Cummings & 

MacFarlane, 1991). 

Bacterial fermentation of tyrosine, produces phenols and p-creso1 as the major 

phenolic compounds which act as co-carcinogens. Increased carbohydrate 

fermentation may decrease the production of these compounds by using higher 

amounts of amino acids for further growth of bacterial mass. This has been 

shown by a decreased phenol excretion in urine after an increased bacterial 

fermentation of carbohydrates in the human colon (Cummings & Macfarlane, 

1991). 

1.5.4 pH changes 

Higher production of organic acids such as acetic, propionic, lactic acids, may 

result in the depression of pH in the gut, the lowest pH (i.e. pH 5.6) in gut, was 

noted in the caecum (Bown et al. 1974; Cummings et al.,1987). Such decreased 

pH has a number of effects on the activity of gut bacteria and on metabolic 

reactions in the human gut. The reduced pH may decrease the solubility and so 

the absorption of bile acids and fatty acids, resulting in the enhanced excretion of 

these metabolites with faeces. In this way, low pH mobi1ises the reserves of body 
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cholesterol for further synthesis of bile acids and fatty acids, and as a result the 

plasma cholesterol level is lowered. 

A low pH may have a protective action against colonic cancer and higher faecal 

pH has been considered as a indicator for the risk of cancer incidence (Walker et 

aI., 1986; Malhotra, 1982). Lower pH may help in reducing the potential 

carcinogenic agents in different ways, such as changing the ionic level, affecting 

the enzymic activity. An acidic pH may facilitate the conversion of potentially 

toxic ammonia (NH3) into ammonium (NH/) ion (Visek, 1978) which is not well 

absorbed from colon resulting in a reduced blood urea. 

The intracellular and extracellular biochemical reactions in the bacterial cells, are 

catalysed by various enzymes, and lowered pH may affect the fermentation 

reactions by influencing the intracellular and extracellular enzyme activity of 

such bacterial cells. Changes in pH may affect the metabolism due to the 

different optimal pH requirements of enzymes involved in various metabolic 

reaction.s.For example, a decreased pH in the colon is considered helpful in 

reducing the synthesis of carcinogens such as conversion of primary bile acids 

into secondary bile acids through 7 a de-hydroxylation by the catalytic activity of 

a bacterial enzyme, 7a dehydroxlase (Thornton, 1981). This enzyme requires an 

optimum pH 7-8 and enzymatic conversion of primary bile acids into secondary 

bile acids by this enzyme, is inhibited at acidic pH (Nagengast et aI., 1988). 

Changes in pH can affect the physiological activities of the gut bacteria without 

affecting the numeric values of species. This may lead to different metabolic 
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pathways, for example, a lower in vitro pH (6.0) favoured the production of 

propionate rather than acetate (Edwards et aI., 1985). A lowered pH inhibits the 

pathogenic bacteria such as E. coli, CI. perfringens. and promotes the growth of 

bifidobacteria and lactobacilli which are beneficial bacteria in the human gut 

(Wang & Gibson, 1993). Similarly changes in pH may make conditions 

unfavourable for the optimal growth of certain bacterial species because the 

specific growth rates of different bacteria vary with growth conditions such as 

pH. For example, lactobacilli show optimal growth at an acidic pH (5.4 - 6.4) 

whereas optimal growth of Clostridium species is in pH (6.5 - 7.5). A number of 

Bacteroides species were well maintained at all pH from 5 to 7 in continuous 

anaerobic cultures (Edwards et aI., 1985). In the same experiment, lactobacilli 

and bifidobacteria survived in cultures at pH 5 but disappeared with increasing 

pH from 5 to 6 and then to pH 7. CI. perfringens demonstrated a reverse ability 

by disappearing with the decreasing pH from 7 to 6 and then to 5. In another in 

vitro experiment, B. infantis withstood the effects of acidic conditions at pH 5.0 

and 4.5, but the same pH inhibited the growth of E. coli and CI. perfringens 

completely (Wang & Gibson, 1993). 

Changes in pH caused by fermentation may affect the absorption of various 

substrates or minerals. This may be due to the increased solubility of minerals. A 

higher solubility of calcium is reported in caecal contents of rats in presence of a 

lower pH, achieved by an increased fermentation of resistant starch RS2 (Younes 

et aI., 1996). These authors reported 5 to 6 fold increase in absorption of calcium 

and also an increased caecal absorption of magnesium by feeding resistant starch. 
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This showed that the large intestine may act as a major absorptive site for calcium 

and magnesium, due to its acidic environment resulting from its fermentation 

capacity. 

1.5.5 Production of gases 

The gases resulting from bacterial fermentation in the colon include H2, CO2, CH4 

and H2S. Total gas production may depend on the dietary intake of the 

individual, ranging from 0.5 to 4 lid. H2 is produced as a result of oxidation of 

pyruvate, formate or reduced pyridine nucleotides. Saccharolytic Clostridia 

produce H2 from pyruvate via ferredoxin in butyrate fermentation while 

Enterobacteria produce H2 through cleavage of pyruvate by pyruvate-formate 

lyase, the resulting formate is converted to CO2 and H2 (Cummings & 

MacFarlane, 1991). Many studies have extensively investigated the production 

of gases by colonic fermentation of carbohydrates (Anderson et ai., 1981; Olesen 

et ai., 1992; Rumessen, 1992). 

Breath H2 measurements have been adopted as an indirect measurement of 

colonic fermentation and in different studies, changes in breath H2 and serum 

acetate levels were used as qualitative markers of colonic fermentation (Muir et 

ai., 1995; Zavoshy, 1998). A rise in breath H2 has been considered an indication 

of the fermentation activity in human large intestine although there has been a 

controversy about its quantitative interpretation. Measurement of breath 

hydrogen is not reproducible (Florent et ai., 1985) and does not always relate 

directly to amount of carbohydrate being fermented (McBurney & Thompson, 

1989; McBurney et ai., 1990). 
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Colonic gases may be either excreted rectally or absorbed from colon, re

metabolised and then excreted via the lungs in breath. Gibson et aI., (1990) 

described several ways ofH2 disposal including methanogensis, sulphate 

reduction, acetogenesis. H2 may either be absorbed by the gut tissues and 

excreted in breath or re-metabolised by the gut bacteria in methanogenesis 

forming methane(Gibson et aI., 1990) or utilised in sulphate reduction forming 

H2S (Gibson et aI., 1988; Gibson et aI., 1990) or it may combine with CO2 during 

acetogenesis producing acetate (Gibson et aI., 1990; Lajoie et aI., 1988). Carbon 

dioxide may be reduced to methane, and as a result of higher consumption of CO2 

for methanogenesis, may consequently lead to change of acetate to propionate 

ratios. All these studies showed that there are several possible routes for H2 

disposal in vivo depending on different factors such as composition of microbial 

population, sulphate availability, etc. 

1.6 Actions of carbohydrates and important determinants 

There are a number of factors, such as chemical composition, water solubility, 

viscosity, extent and rate of fermentation, end products from their degradation, 

gut motility which affect the ultimate physiological impact of each ingested 

carbohydrate. Some factors are inter-dependent and others are independent. The 

physiological role of each indigestible carbohydrate depends on the site, rate and 

extent of their fermentation. The most important factors are discussed below; 

1.6.1 Water solubility and viscosity of carbohydrates 

Water solubility is considered a very important factor for the fermentation 

characteristics of a carbohydrate. The soluble fibre content may determine the 
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rate and extent of fermentation (Cherbut et aI., 1991). The water solubility of 

indigestible carbohydrates may result in higher fermentability. Soluble 

carbohydrates such as raftilose, pectin, lactulose, are more readily fermented than 

insoluble carbohydrates such as resistant starch, cellulose. Eighty five to 100 

percent of pectin and gums are fermented, in comparison to 10 to 50 percent 

fermentation of cellulose and 30 to 40 percent fermentability of wheat bran which 

is a rich source of cellulose (Hill, 1995a). Therefore, the water solubility of the 

indigestible carbohydrates has important implications on metabolic activities in 

the body. 

Many soluble carbohydrates for example pectin, guar gum are viscous. Guar gum 

is more viscous than pectin. Viscosity is an important determinant in the 

regulation of gastric emptying and small gut transit time. Fibres, such as guar 

gum, showed a very strong positive correlation between viscosity and mouth to 

caecum transit time (Jenkins et aI., 1978; Edwards et aI., 1987). Another 

metabolically important aspect of high viscosity is that it may reduce the 

interaction of nutrients with mucosal receptors which control motility reflexes 

and the secretion of enzymes and hormones. This anti-motility action may lead 

to the inhibition of the effects of intestinal contraction. This may then result in 

malabsorption or slower absorption of carbohydrates and other nutrients because 

of the reduced mixing of enzymes and substrates, and reduced movement of the 

nutrients to the epithelial surface (Read & Eastwood, 1992). Different 

concentrations of guar gum significantly reduced glucose absorption and insulin 

secretion in growing pigs (Ellis et aI., 1995). In this study, an inverse relationship 
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between the rate of glucose absorption and the viscosity of jejunal digesta was 

found. 

Viscous indigestible carbohydrates; such as guar gum, are 

considered the most effective in reducing blood glucose after a carbohydrate 

meal. They act by decreasing the rate of absorption in the small intestine (Jenkins 

et aI., 1977; Blackburn et aI., 1984; Leclere et aI., 1994; Ellis et aI., 1995). 

Viscous indigestible carbohydrates may also reduce serum lipid and cholesterol 

levels (Blake et aI., 1997), which may be due to the trapping of bile acids and fat 

molecules in the human small intestine. These effects however, may be fibre 

specific. For example, guar gum reduced both blood glucose and the serum 

cholesterol levels (Ellis et aI., 1995; Blake et aI., 1997). Similarly guar gum had 

the greater effect on the flow of glucose and bile acid in an in vitro model. In 

contrast, pectin was predicted to be a good agent for lowering serum cholesterol 

but did not show any effect on glucose movement (Adiotomre et aI., 1990). 

1.6.2 Extent of fermentation 

The fermentibility of a carbohydrate is a prime factor in its physiological action. 

The extent of in vitro fermentation of a carbohydrate can be determined partly by 

its solubility and its acidic polysaccharide content (Cherbut et aI., 1991). Water 

insoluble carbohydrates, such as cellulose, are mostly resistant to the 

fermentation, whereas, water soluble pectin and gums are highly fermentable in 

the gut (Hill, 1995a). A readily fermentable carbohydrate will produce more 

SCF A than a slowly fermentable carbohydrate and such highly fermentable 
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carbohydrates have their main effects in the gut via the action of the SCF A 

produced during colonic fermentation. 

Insoluble carbohydrates are generally less fermentable and thus affect gut 

function by physical influences such as increasing the volume of the colonic 

contents and stimulating propulsion. Ispaghula was fermented throughout the 

colon of the rat and it increased the volume of colonic contents, consequently 

resulting in increased stool weight (Edwards et aI., 1992a). In another study 

ispaghula and wheat bran, both increased the stool output but in different ways; 

ispaghula increased the volume of the colonic contents, whereas, wheat bran did 

not show any effect on the colonic contents (Edwards & Eastwood, 1992). 

Possibly, the increase in colonic contents may be due to large water holding 

capacity ofispaghula (about 7g water per 19 ofispaghula; Dr. Edwards- personal 

communication), whereas, slowly fermentable wheat bran affected the stool 

output by increasing the propulsion of the colonic contents. One fact is very well 

established as these studies showed that the faecal bulking effect is more 

prominent when a non starch polysaccharide is resistant to the bacterial 

fermentation in large gut. 

In fact, the stool bulking properties of fibre are complex and the mechanism 

varies with different individual fibres. In earlier studies, the water holding 

capacity of a particular carbohydrate was regarded as the most important 

determinant in the stool bulking. However it is the water holding capacity after 

fermentation of a carbohydrate that is most related to stool bulking (McBurney et 

aI., 1985). Most of the carbohydrates with the largest water holding capacities 

48 



lost most of the water held after fermentation. Even the water holding capacity 

after fermentation is not considered as the ultimate determinant in the stool 

bulking. Some other factors may contribute to stool bUlking. A diet with low 

residue is usually associated with slow transit time and small faecal output 

(Spiller et aI., 1980) but some studies reported the stool bulking effect of high 

amounts of resistant starch (Scheppach et aI., 1988a; Phillips et aI., 1995). 

Resistant starch has very little water holding capacity and is reported to be mainly 

fermented in the colon. One explanation for this is an increase in the bacterial 

biomass. Increased fermentation in presence of large amount of protein, may 

result in an increased bacterial biomass in the gut. Since water is the main 

component of the bacterial cell, an increase in the bacterial mass may result in an 

increased stool output (Table 1.2). 

In summary, the action of indigestible carbohydrates on gut function may be due 

to increased volume of gut contents, which in tum increases stool output. These 

functions are influenced by a number of factors such as the water holding 

capacity of the fibre remaining after fermentation, loss of organic matter, particle 

size, and stimulation of microbial growth increasing microbial mass. 

A carbohydrate with intermediate fermentability may have the best action 

because it produces a higher concentration of SCF A as well as contributing to 

stool output (Table 1.2). Generally, such an ideal therapeutic effect is not 

possible with a single carbohydrate. To develop an ideal carbohydrate 

supplement, it will be logical to combine various indigestible carbohydrates with 
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different degrees of solubility, fennentability and residual water capacities, which 

is the main aim of this study. 

Table 1.2 The fennentation of carbohydrates in relation to stool output. 

Solubility of 

carbohydrates 

Insoluble 

carbohydrates 

Soluble 

carbohydrates 

Extent of 

fermentation 

Poor fennentation 

complete 

fennentation 

complete 

fennentation 

slow or poor 

fennentation 

* Stephen & Cummings, 1980 

1.6.3 Rate & site of fermentation 

Effect on stool output 

i) Most action is due to residual water 

holding capacity. 

ii) Stimulation of propulsion, e.g. wheat 

bran 

No effect on stool output, e.g. lactulose 

Increased biomass contributes to the 

increased stool output, e.g. cabbage 

fibre* 

Some residual water holding capacity 

contributes to increased stool output, 

e.g. ispaghula 

The rate of fennentation of a carbohydrate is very important in detennining the 

fate of resulting SCF A. The rate of fennentation of a carbohydrate is partly 

detennined by its solubility and its content of acidic polysaccharides (Cherbut et 

aI., 1991). A rapid fennentation of carbohydrate may result in the early 

production and absorption of end products such as SCF A, in the caecum and 

proximal colon. For example, lactulose is a water soluble and rapidly fennenting 
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carbohydrate; its fermentation starts in the caecum, producing higher amounts of 

SCF A, which are readily absorbed in proximal colon. Although lactulose is less 

effective in stool bulking due to its rapid fermentation and highly fermentable 

characteristics, large amounts of lactulose, which exceed the fermentation 

capacity of the gut, may result in the osmotic diarrhoea. In contrast, slowly 

fermenting carbohydrates, such as ispaghula, may be important resulting in 

increased volume of gut contents, stool bulking. As ispaghula undergoes 

fermentation throughout the colon (Edwards et aI., 1992a), it may take the effects 

of fermentation to more distal colonic sites. 

The site of fermentation, in conjunction with the rate of fermentation, is another 

important determinant of the metabolic role of a particular carbohydrate in human 

health. Fermentation of carbohydrates occurs more in the proximal colon and it 

declines gradually as colonic contents pass through towards the distal end of the 

colon. The distal colon is more prone to disease than the proximal colon. 

Therefore, a lower availability of carbohydrates for fermentation and the 

production of SCF A in the distal colon may be more important in relation to 

colonic disease. In this context, a slow rate of fermentation may result in the 

production and absorption of the SCF A at more distal colonic site. Such 

production and absorption of SCF A may provide energy over a prolonged period 

as well as affecting the physiology of colonocytes at more distal sites. On the 

other hand, an extremely slow fermentation may result in loss of un-degraded 

fibre and un-salvaged energy in faeces. Therefore, it is important to achieve a 

balance between the rate of fermentation and the transit time, so the carbohydrate 
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is fermented and SCFA are absorbed at a distal colonic site. This objective can 

be achieved by developing a mixture of carbohydrates with higher fermentability 

and an intermediate rate of fermentation. 

1.6.4 Gut transit time 

Colonic transit time plays an important role in different human pathologies. The 

rate of transit through the gut affects a number of gut functions directly including 

the extent of energy salvage and the absorption of different metabolites from gut 

contents. For example, a longer transit time gives more chance of fermentation 

and efficient absorption of SCF A than a short transit time which may cause a loss 

of unfermented food components and unabsorbed SCF A in faeces. The rate of 

transit also determines the duration of exposure of the colonic epithelium to 

different beneficial and harmful metabolites, which may be important in the 

aetiology of gut diseases. 

Ideally, rate of fermentation must not exceed the transit time. There should be an 

optimised balance between the extent of fermentation, rate of fermentation and 

the transit time of a particular carbohydrate. For example, lactulose is rapidly 

fermented, producing higher amounts of SCF A. These SCF A are absorbed 

rapidly in the proximal colon and very little SCF A may reach the distal colonic 

sites. Although lactulose has different therapeutic benefits (discussed later), a 

high dose of lactulose, which exceeds the fermentation capacity of the gut, may 

result in the osmotic diarrhoea. In this case, there would be a loss of unfermented 

carbohydrate and unabsorbed SCFA (Wiggins, 1984). Either case is not 

desirable. It will be beneficial for colonic health to facilitate the production and 
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absorption of higher amounts of SCF A from fermentation of a rapidly fermenting 

carbohydrate such as lactulose, at a distal colonic site. Such an ideal situation 

may be achieved by combining rapidly fermenting lactulose with a slowly 

fermenting carbohydrate, such as ispaghula. A combination of carbohydrates 

with such contrasting fermentation properties may regulate the short transit time 

of the lactulose (Washington et aI., 1998) by diluting its osmotic effect in gut and, 

at the same time, it may facilitate production of higher amounts of SCF A at a 

more distal colonic site. 

Little is known about the mechanisms involved in the regulation of gut transit 

time. There may be a number of extrinsic and intrinsic factors. Physicochemical 

characteristics of fibres, such as particle size, solubility and water binding 

capacity, may be important in this regard but the exact mechanism is not 

identified yet. Intestinal transit time mainly depends on the type of diet ingested 

as a study reported an association of low residual diet with slow gut transit 

(Spiller et aI., 1980). However, another study noted the importance of higher 

amount of water held after fermentation of a fibre, in relation to transit 

acceleration (McBurney et aI., 1985). Different studies noted rapid gut transit 

and higher faecal output with wheat bran or ispaghu1a or a mixed high fibre diet 

(Cummings et aI., 1976; Eastwood et aI., 1978; Spiller et aI., 1980). Other 

studies reported an inverse relationship between transit time and the faecal weight 

(Stephen et aI., 1987; Ourfir et aI., 1996) but it is not clear which of the two, is an 

independent factor with a primary role. This relationship is not always strict, as 

another study reported the possibility of an independent influence of feeding 
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viscous polysaccharides on these indices (Tomlin & Read, 1988). These authors 

noted a significant correlation between the stool frequency and transit time, but 

not faecal output. 

Although fibres may exert mechanical influence in regulating transit through the 

gut, mechanical action cannot be the only mode of action, rather it seemed that 

there may be some other factors involved in this event. Possibly, colonic 

fermentation may be involved in regulating the intestinal transit via the 

production of SCF A and different colonic gases (Cherbut et al., 1991; Ourfir et 

al., 1996). Gases produced during colonic fermentation, may cause propulsion of 

gut contents by distension of the bowel. Different studies, although 

contradictory, implicated the SCF A in this regard. For example, an in vitro study 

reported that propionate and n-butyrate stimulated the contraction of muscle 

strips from rat colon (Yajima, 1985), whereas, another in vitro study reported an 

inhibition of colonic contraction by SCF A in rats (Squires et a1., 1992). In the 

first of these studies, strips of colonic wall were used, which have lost the enteric 

neural connections and therefore, their response to the stimuli may be affected by 

this disruption of normal neural processes. There is much published information 

in this regard but it is beyond the scope of this thesis. 

Still, another possible explanation is the action of bile acids or fatty acids which 

are adsorbed onto the fibres. When fibres are fermented in large intestine, these 

adsorbed acids are released and transformed into metabolites, such as 

deoxycholic acid, hydroxy fatty acid. Such metabolites have laxative properties 

and these may be involved in enhancing the transit through gut, as stimulation of 
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colonic propulsion by bile acids was noted in a study (Kirwan et al., 1975). 

Similarly large rectal contractions were reported in humans, after infusion of low 

concentration of deoxycholic acid into rectum of healthy individuals (Edwards et 

al., 1989). In this regard, a recent study is very important, summarising all the 

speculated factors, and establishing a relation between different fermentation 

events and transit time in gut (Ourfir et al., 1996). These authors showed an 

inverse relationship of whole gut transit time to production of SCF A, sulphate 

reducing bacteria, H2 excretion and pH of the colonic contents. 

1.7 Main factors affecting amount and profile of SCFA 

The ultimate physiological role of indigestible carbohydrates depends mainly on 

the amount and type of the SCF A produced during the gut fermentation. The 

profile of SCF A depends on the type of substrate, bacterial species and the gut 

environment. 

1.7.1 Gut microbial composition 

There is growing evidence that intestinal bacteria playa vital role in both health 

and disease in human, affecting the bowel under normal circumstances as well as 

these link to specific digestive disorders. The microbial composition is one of the 

most important factors in determining the amounts and types of SCF A during 

fermentation in gut. Therefore, it is important to understand the association of 

gut bacteria with their host from the perspective of their beneficial effects and 

their role in maintaining the homeostasis, principally through fermentation. 

Bacteria use the unabsorbed food residues for their own metabolism and in the 

process new compounds are formed, such as SCF A, sulphides, secondary bile 
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acids, etc. Weaver et aI., (1992) reported considerable variations of fermentation 

rate and production of gases between faecal cultures from different subjects 

emphasising the importance of the flora as the determinant of the end product of 

the fermentation of a substrate. 

The human colon contains a diverse and complex microbial population of about 

1011 to 1012 bacteria per gram of dry faeces. The majority of this microbial 

population consists of anaerobic bacteria which outnumber the aerobic bacteria 

by 1000 to 1 (Gustafsson, 1982) and this microbial community is comprised of 

approximately 400 to 500 species (Finegold et ai., 1983). The bacterial profile of 

the gut depends on the internal environment of the gut which, in tum, depends on 

the intrinsic and the extrinsic sources of the substrate. The complexity and 

diversity of the gut microbial community in the human is due to the diversity in 

carbon and energy sources, available to the gut bacteria. The huge microbial 

population requires daily about 70 g of a substrate for their maintenance 

(Cummings, 1981). About 4.1g (3.2 - 5.7g) resistant starch (Asp et aI., 1996) and 

10 to 20g/day non-starch polysaccharides are provided from the food everyday 

(OPCS, 1990). Intrinsic sources like mucus, dead mucosal and bacterial cells 

also contribute to the substrate for microbial metabolism. 

The majority of the microbial popUlation in the human gut, is saccharolytic using 

carbohydrates as substrate for their metabolic activity and the principal bacteria, 

that degrade the polysaccharides, are probably gram negative anaerobes from the 

genus bacteroides (Salyers & Leedle, 1983). These are able to grow on a variety 

of polysaccharides because of their ability to synthesise a wide range of the cell-
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associated polysaccharide degrading enzymes such as glycosidases, 

polysaccharides depolymerases (Macfarlane et aI., 1990). Since high molecular 

weight carbohydrates cannot be absorbed and metabolised intracellular within the 

bacterial cell, extracellular enzymes degrade such large polymers to their 

constituent hexoses and pentoses including mainly glucose, galactose, arabinose, 

xylose and uronic acids. These small molecular weight products are then 

metabolised intracellularly by the gut bacteria (Tomlin et aI., 1986; Englyst et aI., 

1987b). The extracellular and intracellular activity of these cell-associated 

enzymes means that the degradation of high molecular weight polymers is the 

part of a synergistic activity with enzymes from many different species. Only a 

small number (29 out of 286 strains) of anaerobic colonic bacteria were reported 

to ferment guar gum in isolation (Salyers et aI., 1977 a, b). It is probable that 

only these strains can produce extracellular enzymes. Production of such 

enzymes is often induced by the presence of their substrate (Salyers & Leedle, 

1983; Daly et aI., 1993). In another in vitro study, 28 % of the Bacteroides 

strains were able to degrade guar gum (Tomlin et aI., 1988). Pre-digestion by 

extracellular enzymes can make guar gum available to 33 percent more strains for 

fermentation (Tomlin et aI., 1988). 

Simple sugars, generated by extracellular enzymatic activity, which after entering 

the bacterial cell are converted to glucose or glucose-I-phosphate which enter 

glycolysis yielding pyruvate. Pyruvate is the main intermediate through which all 

carbohydrates pass during their fermentation to synthesise SCF A, colonic gases 

and other organic metabolites. Pyruvate is further metabolised through various 
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routes depending on the bacterial species present in the gut. It may be converted 

to acetate via formation of acetyl CoA or may produce succinate or lactate. 

Succinate is converted to methylmalonyl-CoA, an intermediate precursor of the 

propionate while lactate is reduced to propionyl-CoA, a precursor of the 

propionate, prior to the formation of propionate. The most common pathway for 

the formation of butyrate is reversal of ~-oxidation. 

Some bacteria degrade proteins, peptides and amino acids, producing branched 

SCF A such as iso-butyrate, iso-valerate and n-valerate (Macfarlane & Alison, 

1986) from the de-amination of branched chain amino acids. Protein degradation 

is greatest in the left colon as evident from the higher ratio of the branched chain 

fatty acids in distal colon (Cummings et aI., 1987). Methanogens and some other 

bacteria grow on the intermediate products of fermentation, such as hydrogen, 

lactate, succinate and ethanol and there is a competition between methanogens 

and sulphate reducing bacteria for H2 (Gibson et aI., 1990). The faecal flora in 

humans faeces is thought to be of four types dominated by one of these genera, 

such as bacteroides, or bifidobacterium, or eubacteria or a mixed flora from all 

genera (Gustafsson, 1982). Most of the colonic bacterial species belong to 

important genera, such as bacteroides, fusobacterium, bifidobacterium, 

eubacterium and gram-positive cocci. Numerically less predominant species are 

non-spore forming anaerobes from the genera bacteroides, eubacterium and 

bifidobacterium. Other quantitatively less important groups include lactobacilli, 

clostridium, enterobacteria and gram-positive cocci (Finegold et aI., 1983). 
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Considering the metabolic role of bacteria in human colon, these microorganisms 

may be grouped in two broad categories of beneficial or pathogenic bacteria. For 

example, bifidobacterium and lactobacilli are considered beneficial to the human 

health, whereas, many enterobacteria and clostridia can be undesirable bacteria in 

respect to human health. Beneficial bacteria are considered to create conditions 

unfavourable for the growth of potentially pathogenic species (Edwards et al., 

1985). Their health benefits may be due to their stimulatory effect on immune 

function, vitamin B synthesis, restoration of a normal flora after antibiotic 

therapy, and prevention of growth of pathogenic species in the human gut 

(Cummings & Englyst, 1995). Bifidobacteria are the major flora in breast fed 

babies, representing up to 95 % of total gut bacteria. They make up only 25 

percent in the adult. This could be one mechanism whereby breast fed infants are 

protected against gut infections (Cummings & Englyst, 1995). 

Recently the concept of the 'probiotic', was used for beneficial bacteria such as 

bifidobacteria, lactobacilli (Gibson & Fuller, 1998), and the term 'prebiotic', was 

used for the indigestible carbohydrates that stimulated the growth and/or activity 

of one or a limited number of beneficial bacteria in the human colon, thus 

improving the human health (Fuller, 1989; Gibson & Roberfroid, 1995). Due to 

beneficial effects in the human gut, addition of these probiotics to yoghurt is a 

common practice in many countries. 

Different SCF A profile are characteristic of different microbial species, often 

used for species identification. For example, nbutyrate is produced by clostridia, 

eubacteria, fusobacteria and peptococci while propionate is produced by 
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bacteroides, clostridia, propionibacteria and veillonella (Macfarlane & Gibson, 

1995). The bacterial species that are known to produce butyrate are not the most 

numerous species in the colon (Rao, 1995). Microorganisms may affect the 

SCF A profile in different ways. For example, there is competition for H2 

between methanogens and SUlphate reducing bacteria. H2 may be absorbed by the 

gut tissues and excreted in breath, or re-metabolised by the gut bacteria in 

methanogenesis or sulphate reduction forming H2S, combined with CO2 during 

acetogenesis producing acetate (Gibson et ai., 1990; Lajoie et ai., 1988). Higher 

consumption of CO2 by methanogenesis may, in tum, change the acetate to 

propionate ratio. Similarly, the profile of different SCF A may be related to 

different metabolic pathways. Propionate formation involves the production of 

succinate as an intermediate whereas both acetate and n-butyrate directly result 

from pyruvate via acetyl CoA. Therefore such preferential use of metabolic 

routes, influences the profiles of end products. It is evident that the SCF A profile 

in the human gut depends on the gut microbial composition while this 

composition, in tum, depends on type of the substrate reaching the large intestine. 

1.7.2 Substrate 

The substrate is one of the prime determinants of the amount and profile of SCF A 

production from bacterial fermentation in the gut. The most important aspect of 

substrate availability for fermentation in colon is its unavailability to the digestive 

enzymes in the small intestine. Substrates which escape digestion in upper gut, 

reach the large intestine where they are degraded by the gut bacteria. Dietary 

factors, particularly fibre, affect the total number of bacteria in the colon and thus 

have an important effect on the bowel habit. The amount of material escaping 
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digestion in the small intestine varies and there is a direct relation between the 

amount of this substrate and the bacterial activity in the large intestine. Some 

indigestible carbohydrates are ingested as part of daily food and may include 

oligosaccharides, non starch polysaccharide and resistant starch. Others such as 

lactulose and ispaghula are ingested as part of special diet for gut therapy. 

Of the many possible factors, physicochemical structure and amount of substrate 

are the most important in relation to production of different SCF A and other 

metabolites. Such factors are the easiest to manipulate to be of benefit in human 

health. For example, manipulation ofthe diet can reduce the amount of gas 

produced by bacterial fermentation, relieving a distressing symptom in IBS. The 

chemical nature and physical arrangement of sugars in the fibre matrix may 

control the rate and extent of fermentation, together with the SCF A produced by 

fermentation of these sugars (Salvador et ai., 1993). However, other factors may 

also affect the end products of a fermentation reaction (sections 1.7.1 & 1.7.3). A 

number of in vitro and in vivo studies showed that the intermediate products and 

end products of fermentation have some relationship with the chemical and 

physicochemical characteristics of the fibres (Mortensen et ai., 1988; Cherbut et 

ai., 1991; Salvador et ai., 1993). For example, starch fermentation produced 29% 

n-butyrate compared with the 2 % n-butyrate by the fermentation of a more 

oxidised substrate such as pectin. Similarly, fermentation of pectin produced 

more acetate compared with the fermentation of starch (Englyst et ai., 1987b; 

Scheppach et ai., 1988b). Starch is a polymer of glucose, whereas, the main 

component of pectin is D-galacturonic acid, with L-rhamnose, L-arabinose and 
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D-galactose as the part of the structure. Some of the galacturonic acid units are 

esterified. The acidic polysaccharide content of the fibre was also important. 

When equal quantities of soluble fibre were compared, the richer the fibres were 

in acidic polysaccharides the more they were fermented (Cherbut et aI., 1991). 

Fibres richest in pectic substances and uronic acids produced a higher ratio of 

acetate in most in vitro studies (McBurney & Thompson, 1987; Mortensen et aI., 

1988; Cherbut et aI., 1991; Salvador et aI., 1993). 

The ratios of SCF A produced by fermentation, are very important in the 

metabolic impact of a particular carbohydrate. Different indigestible 

carbohydrates have different SCF A profiles. Acetate is common to all the 

carbohydrates but a carbohydrate may be either propionate or n-butyrate 

predominant (Edwards & Rowland, 1992). Fermentation ofispaghula produced 

more propionate than n-butyrate, whereas, fermentation of resistant starch yielded 

more n-butyrate than propionate. Similarly, fermentation of resistant starch 

produced a higher ratio of n-butyrate than fermentation of pectin which produced 

a higherratio of acetate (Englyst et aI., 1987b). Other in vitro studies reported a 

higher proportion of propionate from the fermentation of guar gum and pectin 

(Adiotomre et aI., 1990; Englyst et aI., 1987b), whereas oat bran and wheat bran 

produced more butyrate proportionally (Adiotomre et aI., 1990; McBurney & 

Thompson, 1987). In a vivo study, the propionate content of faeces was much 

higher in rats fed ispaghula compared to those fed a low fibre or wheat bran diet 

(Edwards & Eastwood, 1992). 
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As discussed previously, colonic bacteria act in synergy. The break down of 

higher molecular weight polysaccharides by some bacteria is necessary for the 

initiation of a fermentation reaction by other bacteria. Thus, the relative rate of 

de-polymerisation of complex carbohydrates, may influence the profile of 

fermentation end products. Enzymes are often induced and synthesised in 

accordance with the saccharides available, enabling the bacteria to switch from 

one substrate to another as the diet changes (Salyers & Leedle, 1983; Daly et aI., 

an 
1993). When. indigestible carbohydrates is not a usual part of the normal diet, 

the extracellular enzyme necessary for its degradation may not be present in the 

gut and may need to be induced. Studies in man have shown that feeding a new 

fibre source for 1 week can demonstrate induction of such enzymes (Daly et aI., 

1993). 

Oligosaccharides which are prebiotics (section 1.2.4.2 for definition), are 

different in their physical and other characteristics from resistant starch and non 

starch polysaccharides. Prebiotics produce a favourable environment for the 

friendly bacteria in the human colon. These indigestible carbohydrates also have 

therapeutic importance due to their specific SCF A profiles. Therefore, addition 

ofprebiotics to the diet may cause proliferation of particular types of beneficial 

bacteria and may suppress the harmful bacteria which may become an important 

preventive or therapeutic measure. 

1.7.3 Host related factors 

Host related factors may also be important in the metabolic role of the 

carbohydrates and these factors can affect the end product profile of a particular 

63 



carbohydrate fermentation. For example, the age and gender of a host can affect 

the bacterial activity in the gut. Similarly, the host's dietary habits may also be 

important in determining the metabolic effect of a carbohydrate. Different dietary 

habits can influence the environment of gut producing different types of bacterial 

population and, in tum, different end product profiles. Different diets may 

influence the metabolic activity through a number of factors. For example, 

enzymes are often induced and synthesised in accordance with the saccharides 

available, thus enabling the bacteria to switch from one substrate to another as the 

diet changes (Salyers & Leedle, 1983). Higher amounts of resistant starch 

reduced the faecal pH, and produced higher faecal n-butyrate in human subjects 

(Phillips et aI., 1995). As starch is a normal part of the diet especially in the 

Asian countries, it may influence fermentation events in human colon depending 

on the dietary habits of the individual. Similarly, pectin and cellulose are part of 

normal human diet and their amounts may vary, depending on the individual 

dietary habits. 

The anatomy and physiology of the gut may influence the ultimate products of 

the fermentation by influencing the bacterial activity in the gut. Vegetarians, in 

general, have longer colons than omnivore human beings (Hill, 1995b). Similarly 

different hosts may have different transit time due to genetic reasons or individual 

dietary habits. A diet with low residue is associated with slow transit and low 

stool output (Spiller et aI., 1980). A longer transit time will give more chance to 

bacteria for the degradation of a fibre. Whole gut transit time ranges from 20-140 

hours with a mean of 60 hours in normal individuals in the UK (Cummings & 
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Macfarlane, 1991). An inverse relationship has been noted between whole gut 

transit time and sulphate reducing bacteria and H2 excretion (Ourfir et aI., 1996). 

Similarly, methane producing subjects had slower gut transit than non methane 

producing subjects (Edwards, 1997). Whereas, the production of methane and 

H2S may depend on the amount of sulphate in colonic contents (Gibson et aI., 

1988). Therefore, intake of drugs or diet with high sulphate content or sulphur 

containing protein, can increase the growth of sulphate reducing bacteria with a 

simultaneous decrease in methane production, which will affect metabolic 

profiles, as discussed previously. All these studies, showed that transit of the 

digesta through the large gut strongly influenced the bacterial activity in the gut, 

and thus the end products of their metabolism. As stated above, drugs may 

influence the activity or growth of the gut bacteria. Antibiotics can suppress the 

activity of all or selective bacteria in the gut (Rao, 1995) and, therefore, 

administration of certain drugs can influence the SCF A profile by increasing the 

growth of certain bacteria and at the same time inhibiting the growth of the 

others. The gut bacterial populations and their metabolites may also depend on 

the immune system and antibiotic resistance of the particular host. 

Other host related genetic factors have physiological implications in this regard. 

Some individuals are incapable of digesting simple carbohydrates. Such 

digestible carbohydrates reach the large gut where they may be fermented 

resulting in a different SCF A profile. Lactose intolerance is a good example in 

this regard (Caspary, 1986). In the case of increased amount in the large 
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intestine, lactose may lead to the osmotic diarrhoea, which may affect the SCF A 

fonnation. 

1.8 Absorption of SCF A 

The end products of fermentation reactions in gut are very important for the man 

because after their absorption, they affect different metabolic processes. Colonic 

epithelial cells are exposed to very high concentrations of total SCF A and other 

organic anions, up to 175 mmol/L in human. SCF A are rapidly absorbed and 

transferred from the gut lumen to blood at a very high rate through gut epithelial 

cells, faciliating the absorption of water and sodium (Ruppin et aI., 1980), thus 

preventing an accumulation of SCF A. Acetate and propionate, after their 

absorption from gut, enter the portal blood system and are transported to the liver 

for further metabolism. n-Butyrate is a preferred fuel for human colonocytes 

(Roediger, 1980; Roediger, 1982), and is used mainly by the colonic mucosa. 

In normal conditions, 90 to 95 percent of the SCF A from colonic fennentation, 

are absorbed during transit through the human gut (Cummings, 1981; Hill, 

1995b) and as little as 5 to 10 percent of SCF A are excreted in faeces. When the 

production rate of SCF A exceeds the absorption rate of SCF A, total solute levels 

in faecal water, are increased. Rapid SCF A absorption is accompanied by the 

stimulation of sodium and water absorption from lumen, and in exchange there is 

an excessive accumulation of bicarbonate ions (Ruppin et aI., 1980; Cummings, 

1981; Engelhardt, 1995; Omaida et aI., 1996). Transport ofSCFA results in 

increased pH, creating a more alkaline environment in gut lumen. The absorption 

of SCF A facilitates absorption of excess water [rom the gut by acting as a 
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powerful driving force for water movement and such absorption may prevent the 

occurrence of osmotic diarrhoea. 

Although precise mechanisms of SCF A absorption are not known in man with 

certainty, it is concentration dependent. It seems that absorption of the SCFA is 

most likely by a passive diffusion in the large intestine with considerable 

segmental differences in the permeability of the intestinal mucosa. Passive 

diffusion is a major route for the absorption of SCFA in the protonated form 

across the colonocyte membrane and most of the total SCF A absorption is 

reported through such passive diffusion (Ruppin et aI., 1980; Engelhardt, 1995). 

These authors reported consistent results suggesting the existence of two 

mechanisms for SCF A absorption from the gut lumen. 1) non-ionic diffusion of 

protonated SCFA involving consumption of the CO2 ; and, 2) cellular uptake by 

ionic diffusion of the Na or K salt of the SCFA. 

Most studies are carried out with faecal parameters in order to depict the events in 

colonic fermentation because of the physical inaccessibility of the intact human 

gut. In view of the high percentage of SCF A absorption from the colonic lumen, 

interpretation of events in the large intestine on the basis of faecal SCF A is not an 

ideal approach. Adding normal amounts of indigestible carbohydrates to the diet 

may not produce any significant changes in the faecal SCF A, therefore, this 

approach will not present a true picture of intra-lumenal events. However, it is 

the easiest and least expensive mean of understanding events in the intact gut, 

especially in human. 

67 



1.9 Effects of indigestible carbohydrates in the human 

The effects of different indigestible carbohydrates in the human body made it 

possible to some extent, to group the action of isolated indigestible carbohydrates 

or concentrated sources of these carbohydrates arbitrarily into two overlapping 

categories; First, their actions on gut function before bacterial degradation; and 

secondly, the physiological implications after the absorption of metabolites 

resulting from their bacterial fermentation. 

1.9.1 Pre-absorption effects 

The pre-absorption effects mainly include the physical influences of the 

indigestible carbohydrates in the gut either by their physical action on the gut 

function or by creating a specific physicochemical environment. However, the 

gut environment and the physical influences are interdependent (Table 1.4). 

These effects include changes in viscosity and bulking of gut contents, and pH 

changes in the gut (Table 1.3). 

Absorption in the upper gut may also be affected mainly by the physical presence 

of soluble and insoluble non starch polysaccharides. Some water soluble 

carbohydrates delay gastric emptying and slow down the transit of digesta by 

increasing the viscosity of gut contents. This may affect the rate of absorption of 

glucose or other metabolites in upper gut (Blackburn et ai., 1984). Therefore, the 

action of fibre on absorption in the small intestine must also be considered. 

Changes in viscosity or the volume of gut contents may affect intra-lumenal 

mixing which may be critical for enzyme-substrate interaction and the movement 
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of nutrients from the bulk phase to the absorptive gut epithelium (Edwards et aI., 

1988). A large volume of colonic contents may dilute carcinogenic and other 

Table 1.3 Actions of non starch polysaccharides in vivo 
Soluble Polysaccharides Insoluble Polysaccharides 

stomach & small intestine 

Delay in gastric emptying 1 Accelerated intestinal transit8 

Increased Satiety 

Lowering of plasma glucose3 

Reduced plasma lipids and cholestero14
, 5, 6 

Probable osmotic action with higher amounts? 

Laq:e intestine 

Higher fermentabi1ity2,3 Less fermentability2,3 

Enhanced bacterial growth 12 Higher stool frequency13 

Higher concentration of SCF A12 Higher stool output13 

and volume of colonic gases 12 Softer and wetter stool texture13 

Ease of stool passage and reduced risk 

of constipation13 

1. Edwards et ai., 1987; 2. Hill, 1995a; 3. Cherbut et ai., 1991; 4. Topping, 1991; 5. Eastwood et 

ai., 1986; 6. Anderson et ai., 1991; 7. Wiggins, 1984; 8. Jenkins et ai., 1978; 9. Jenkins et ai., 

1977; 10. Blackburn et ai., 1984; 11. Leclere et ai., 1994; 12. Edwards & Parrette, 1996; 13. 

Edwards et ai., 1992. 
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hannful compounds such as bile acids and NH3• Increased intake of insoluble 

dietary fibre may increase stool output and also increase the transit of digesta 

through gut. Ispaghula is an exception to this, as despite being a soluble 

carbohydrate, it increases the volume of gut contents and consequently, increases 

the gut motility and accelerates the passage of digesta through the gut. Insoluble 

and unfennented non starch polysaccharides increase stool bulk and make faeces 

softer and easier to pass. 

Higher production of short chain fatty acids by carbohydrate fennentation, lowers 

the pH of lumenal environment. Different studies have reported that such low pH 

plays an important role in regulating the bacterial activity in the gut as well 

affecting the physical action of the gut. Low pH may also change the gut 

bacterial population, and the ionisation and absorption of metabolites (Wang & 

Gibson, 1993). Although certain dietary fibres hinder mineral absorption in the 

small intestine, increased fennentation of indigestible carbohydrates in gut, may 

increase mineral absorption in the large intestine (section 1.5.4 for detailed effects 

of pH). Higher amounts of short chain fatty acids produced during fermentation, 

may also increase the mucosal surface area of the proximal colon, increasing the 

absorption capacity at this site (Sakata, 1987). 

1.9.2 Post-absorption effects 

The post-absorption effects mainly include the physiological actions of the end 

products of bacterial reactions which are absorbed in the colon (Table 1.4). The 

major end products of carbohydrates break down, absorbed from the gut are 
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monosaccharides, especially glucose, from the small intestine and, then short 

chain fatty acids from the large intestine. 

SCF A absorbed from the gut lumen are metabolised by the tissues of the human 

body. The post absorption physiological role of these SCFA is still not well 

understood. They have been implicated in different health related aspects such as 

irritable bowel syndrome (Heaton, 1992), colorectal carcinogenesis (Kruh, 1982), 

glucose tolerance (Anderson & Bridges, 1982; Venter et aI., 1990), cholesterol 

metabolism (Chen et aI., 1984; Venter et aI., 1990; Wolver, 1995; Berggren et aI., 

1996), and energy metabolism (Remesy et aI., 1992; Molis et aI., 1996), and in 

treatment of ulcerative colitis (Breuer et aI., 1991). Propionate may affect 

carbohydrate and cholesterol metabolism, whereas, n-butyrate provides energy 

for colonocytes and may affect different cellular activities in the colonic 

epithelium, these effects will be discussed in detail in the next section (section 

1.10). 

Table 1.4 Possible actions of glucose and SCF A in the human bod 
Glucose I SCF A 

Energy source for body tissues I Energy source for colonocytes and other tissues. 

Increases insulin production I Promote water and mineral absorption in the 

Glycogenesis I colon. 

Exclusive source of energy for brain, I Stimulation of bacterial growth in the colon. 

nervous system and some other tissues I Protection against colonic cancer. 
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1.10 Two important physiological effects related to 

indigestible carbohydrates 

The indigestible carbohydrates are believed to affect two major metabolic 

activities; lipids and carbohydrate metabolism, either via their actions in the gut 

or at the physiological level through metabolism of their end products. 

Knowledge about effects of dietary fibre on lipid and carbohydrate metabolism 

was mostly derived from the studies with single polysaccharides (Truswell & 

Beynen, 1992) and these isolated polysaccharides were used in larger amounts 

than that present in normal diets. 

1.10.1 Lipid Metabolism 

Soluble indigestible carbohydrates may lower blood cholesterol by different 

mechanisms such as altered bile acids metabolism and reduced rate of nutrient 

absorption by increased viscosity of gut contents and by inhibition of lipogenesis 

by SCF A. It is sometimes suggested that high fibre diets tend to be high in starch 

and low in fat, and that the reduction of LDL and triglycerides is due to the low 

fat content of a high fibre diet (Swain et aI., 1990). However, there is a definite 

role of certain dietary fibres in reducing serum lipids, as not all non-starch 

polysaccharides have an effect. Different studies reported a reduction of 10-20 % 

in serum cholesterol after ingestion of different soluble fibres such as oat bran, 

beans, guar gum and pectin (Eastwood et aI., 1986; Anderson et aI., 1991). This 

would be sufficient to reduce the associated risk of cardiovascular disease. Oat 

bran significantly reduced serum total and LDL cholesterol (Kestin et aI., 1990; 

Anderson et aI., 1991; Keenan et aI., 1991; Cara et aI., 1992). 
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Although the exact mechanism oflipid lowering effect by soluble fibres is 

unknown, several possible mechanisms are suggested by different studies 

(Anderson, 1995). Fibres from different food sources have different modes of 

action. For example, oat bran increased total faecal sterol but reduced 

chenodeoxycholic acid in faeces, while beans showed completely the opposite 

effect on faecal bile acid contents. At the same time both sources of dietary fibre 

had a similar reducing effect on serum cholesterol (Anderson et aI., 1984). The 

most widely believed explanation for this, is the binding or chelating of dietary 

cholesterol and bile acids by the fibres. This chelation of ions hinders the 

absorption or re-absorption of the dietary cholesterol and related substances in 

small intestine. Pectin, being a soluble fibre, binds bile acids to the charged sites 

in their structure resulting in increased faecal loss of these acids. This loss in the 

enterohepatic pool of bile acids has to be replenished by increased the de novo 

synthesis of bile acids from the cholesterol, thus decreasing cholesterol levels in 

the body. However, the alteration in bile metabolism and influence on the rate of 

absorption, may depend on the level of mixing of dietary fibre with the meal 

ingested. Wolver et aI., (1994) showed a significant reduction in the blood 

cholesterol after feeding ispaghula as part of a meal but no effect from the same 

ispaghula eaten between meals. Similarly not all fibres show the same properties, 

however, soluble fibres such as oat bran, guar gum and pectin are more potent 

and effective in lowering of the plasma cholesterol in the human (Topping, 1991). 

Soluble fibres are usually viscous and most are completely fermented by gut 

bacteria. Such fibres may be more effective in lowering serum cholesterol levels 
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by slowing absorption of lipids and other nutrients due to increased the viscosity 

of contents in the upper gut (Edwards et aI., 1988). The products of their 

fermentation may also have an effect on the cholesterol level (section 1.10.1.1). 

However, Ahrens et aI., (1986) reported a 50% reduction in serum cholesterol of 

mini pigs after feeding pectin orally but no effect when the same amount of the 

pectin was instilled directly into the caecum, suggesting no role of fermentation 

in the lipid lowering effect. 

However, Fernandez showed that guar gum significantly altered endogenous 

hepatic cholesterol metabolism and cholesterol homeostasis by reducing the 

plasma LDL concentrations but cholesterol absorption was not affected or 

decreased (Fernandez et aI., 1995). This suggests that multiple mechanisms are 

involved in down regulating hepatic and serum cholesterol. One mechanism may 

be by increasing the binding of bile acids as reported by other investigators (see 

above). These findings emphasise the importance of defining the physiological 

changes that are responsible for the onset of specific metabolic responses to 

different soluble fibres. 

1.10.1.1 Propionate production 

Propionate production from fermentation of carbohydrates in the colon may be 

another mechanism which could be involved in reducing serum and hepatic lipid 

level. Rectal infusions of propionate interacted with acetate partly blocking the 

rise in serum cholesterol noted when acetate was infused alone rectally (Wolever 

et aI., 1991). In this way, the ratio of acetate to propionate may be very important 

in the overall physiological effect of carbohydrate fermentation in the colon 
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(Wolver, 1991). This author suggested that acetate and propionate, after reaching 

the liver, influence the metabolism of carbohydrates and lipid, probably in an 

opposing way. Acetate is a precursor of acetyl CoA resulting in lipogenesis, 

whereas, propionate hinders further metabolism of acetate. Thus propionate may 

inhibit lipogenesis, resulting in reduced hepatic cholesterol and other related 

metabolites. 

Moreover, soluble fibers, such as ispaghu1a, guar gum, which reduce cholesterol 

synthesis are normally propionate predominant when fermented. Chen et a1 

(1984) demonstrated a hypocho1estero1aemic effect of dietary propionate. This 

suggested that SCF A, especially propionate, may exert the inhibitory effect on 

hepatic cholesterol synthesis seen with soluble fibres. However, the effects of 

propionate given orally may not be the same as the effects of propionate from 

colonic fermentation (refer to section 1.5.1.1.2). Propionate increased the 

synthesis and secretion of bile acid in isolated rat hepatocytes (Imaizumi et aI., 

1992) in vitro suggesting that altered bile acid metabolism by the action of 

propionate may be responsible for cho1estero110wering effect. However, studies 

with ileostomy models suggested different modes of action of dietary fibre such 

as reduced cholesterol absorption and an increased excretion of bile acids and 

cholesterol (Anderson, 1992; Zhang et aI., 1992). Similar findings were reported 

in another study (de Deckere et aI., 1995) which found higher total bile acid in 

caecal contents and in faeces of rats fed diets containing resistant starch (14%) 

than diets low in resistant starch (1 %). As such loss of bile acids must be 

replenished by synthesis of new bile acids from the body's cholesterol pool, this 
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may be helpful in reducing the serum cholesterol. Yamashita et aI., (1984) 

reported that fructo-oligosaccharides may also affect lipid metabolism, decreasing 

triglycerides and cholesterol in diabetic humans. 

1.10.2 Carbohydrate Metabolism 

Changes in the physical properties of gut contents such as viscosity and volume 

induced by the physical action of indigestible carbohydrates may be of 

importance in regulating carbohydrate metabolism and post-prandial responses. 

There are a number of ways in which indigestible carbohydrates may affect 

carbohydrate metabolism in the gut. These include affecting amylase activity and 

starch digestibility in the small intestine, decreasing small intestinal transit time, 

increasing the viscosity of intestinal contents and hindering enzyme accessibility 

to substrate. Most of the physiological effects of dietary fibre are attributed to 

their viscous nature (Edwards et aI., 1988) which may play an important role in 

the gastrointestinal tract. Viscosity may hinder gastric emptying, reducing the 

glycaemic responses after food (Blackburn et aI., 1984). Also increased viscosity 

in the small intestine may hinder the mobility of enzymes reducing their 

hydrolytic actions on starch and other food ingredients. Although increased 

viscosity may explain the effects in small intestine to some extent, too much 

emphasis on viscosity could be misleading because the physiological effects 

should be lost if viscosity is reduced due to processing of the food or 

fermentation in the large intestine. It has also been suggested that the viscosity of 

fibres, such as ~ glucan in cereals, may be less important than their structural 

properties for glycaemic responses. The structural properties may restrict the 
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availability of starch for the hydrolytic action of enzymes (Granfeldt et aI., 1994; 

Liljeberg et al.,1994). For example, finely ground flour of the same cereal, will 

produce a greater glycaemic response than coarsely ground flour because starch 

and other simple carbohydrates in the coarse flour will be less accessible to 

hydrolytic enzymes. 

There may be more than one mechanism for the influence of dietary fibre on 

carbohydrate metabolism and post-prandial responses. Some fibres may trap the 

water and nutrients, including water soluble sugars or may dilute the action of 

hydrolytic enzymes. Due to the high fibre matrix, mobility of absorbable 

nutrients may be restricted resulting in slower absorption of glucose from the gut 

and consequently a slower post-prandial response to a meal (Flourie, 1992). This 

may be very important in diabetes and other pathological conditions in humans. 

Another important aspect is the effect of resistant starch which is not absorbed in 

the human small intestine. Therefore, starchy foods with higher amounts of 

resistant starch are expected to show a lower glycaemic response compared with 

starchy foods containing same amount of rapidly digestible starch. Achour et aI., 

(1996) reported a higher post-prandial glucose and insulin response with 

digestible starch compared with retrograded starch from the same maize source in 

human subjects. 

In summary, the lowering effect of fibre on plasma glucose is related to: a) 

stimulation of overall glucose utilisation; b) increased hepatic uptake of ingested 
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glucose, thus reducing the entry of glucose into the systemic circulation; or c) 

delayed or decreased glucose absorption from the gut (Flourie, 1992). 

1.11 Carbohydrate fermentation and colonic diseases 

Indigestible carbohydrates are suggested for the treatment of different diseases 

such as bowl cancer, diverticular diseases, ulcerative colitis, Crohn's disease, 

diabetes, obesity, CHD and gallstones. A number of studies have shown their 

importance in different colonic disorders. Recent research shows that interactions 

between bacteria, growing on indigestible carbohydrates, and the body's immune 

system, or interactions between chemicals produced by bacteria and the colonic 

lining, play an important role in long continued inflammations such as ulcerative 

colitis and Crohn's disease. 

1.11.1 Colitis and Colonic Cancer 

The large bowl is the second most common site for cancer in the British men and 

women. Epidemiological studies have shown that the diet plays a major role in 

the incidence of colorectal cancer. A survey showed a strong negative correlation 

between colorectal cancer incidence and the starch intake in 12 populations in 

different parts of the world (Cassidy et aI., 1994). Similarly, higher incidence of 

the colon cancer was reported in populations consuming higher amounts of 

dietary fat and protein, whereas, the reverse was observed in populations 

consuming high amounts of dietary fibre and vegetables (Lipkin, 1988; Bingham, 

1990). In controlled experimental studies, when animals were exposed to 

chemical carcinogens, bran was consistently reported to reduce the number of 

tumours (Klurfeld, 1990), showing a potential protective action of bran against 
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these chemically initiated cancers. A recent study supported the association of 

high consumption of refined cereals with an increased risk of cancers of the large 

bowel, the stomach, and other selected digestive and non-digestive sites 

(Chatenoud et aI., 1999). This may be due to the lack of fibre in diet or may be 

due simply to association of such refined cereals with poor intake of fruits and 

vegetables. These contain anti-oxidant which are considered to play an important role 

in the prevention of colonic cancer (World Cancer Research Fund, 1997). 

Although a low incidence of large bowel cancer is a general trend for populations 

with high fibre intakes, this negative relationship is very sharply reduced when 

the relationship is corrected for fat and meat intake (Webb, 1995). Vegetarian 

groups, such as 7th day Adventists in the USA, have lower incidence of bowel 

cancer compared to the other Americans. Vegetarians, however, consume a diet 

high in antioxidants but with no animal fat and meat. The incidence of bowl 

cancer is most strongly and positively correlated with meat and fat intake. For 

example, in Japanese populations incidence of bowl cancer had increased two 

fold with new dietary trends of consuming more meat, animal fat, dairy products 

instead of their traditional diet with high consumption of rice, over past few 

decades. Although there is no obvious change in fibre intake, there has been a 

substantial change in the calories derived from starch (Webb, 1995). 

The hypothesis discussed above sounds plausible but the role of dietary fibre is 

not exclusively due to the displacement of fat contents. A more specific role 

cannot be ruled out, because there are other studies, correlating metabolites from 

fermentation of dietary fibres with human colonic health. In this regard, n-
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butyrate has been studied extensively for its effect on the colonic epithelium at 

the cellular level (Kruh, 1982; Sakata, 1983; Smith, 1986; Scheppach et ai., 1992; 

refer to section 1.5.1.1.3 for details). It has been noted that less availability or 

utilisation of SCF A, especially n-butyrate, may lead to colitis, ultimately 

resulting in colonic carcinogenesis. The majority of colon tumours are found in 

distal colon, and n-butyrate enemas were found positively effective in treatment 

of distal ulcerative colitis (Scheppach et ai., 1992). Therefore, dietary fibre is 

likely to playa role in the prevention of large bowl cancer. Fibre might protect 

against the bowl cancer through a number of possible mechanisms; 

1) Insoluble fibres may be protective through bulking of intestinal contents, 

increasing stool output and, in acute cases, causing a laxative effect (Burkitt, 

1971; Stephen & Cummings, 1980). Such a bulking effect may result in the 

dilution of potential carcinogens and tumour promoters. Fibre may speed up 

intestinal transit and the elimination of carcinogens from the gut, reducing the 

exposure time of colonic mucosa to such carcinogens. Therefore, insoluble 

carbohydrate sources may be of help in reducing the risk of colonic cancer. 

Cummings et ai., (1992) supported this hypothesis by reporting a significant 

inverse relation between stool weight and incidence of colon cancer in two 

cities of UK. 

2) Fermentable fibres may lower colonic pH. A low pH has been implicated in a 

lower risk of colorectal cancer (Walker et ai., 1986; Newmark & Lupton, 

1990), which may act through control of different metabolic pathways. This 

was supported by the findings that a higher faecal pH was noted in patients 

with colorectal cancer than healthy human subjects (Vernia et ai., 1989). 
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Increased fermentation of dietary fibre results in a lowered pH by producing 

different organic acids. This fall in colonic pH may be helpful in the 

prevention or reduced synthesis of carcinogens such as NH3, secondary bile 

acids (Thornton, 1981; Bruce, 1987; Nagengast et aI., 1988). These secondary 

bile acids, deoxycholic acid and lithocholic acid, were found to be tumour 

promoters in rats (Narisawa et aI., 1974; Summerton et aI., 1985). Secondary 

bile acids are derived from primary bile acids, cholic acid and 

chenodeoxycholic acid, by 7a dehydroxylation. The enzyme, 7a 

dehydroxlase, required for this conversion, is synthesised by obligate 

anaerobic bacteria and has an optimum pH 7-8 (MacDonald et aI., 1978). 

Therefore, low pH resulting from increased colonic fermentation, may inhibit 

dehydroxylation of primary into secondary bile acids (van Munster et aI., 

1994; van Munster et aI., 1995) which are potential carcinogens (section 1.5.4 

for detail). Another hypothesis suggests that faecal pH becomes alkaline in 

presence of diets that are high in fat and protein, low in fibre, resistant starch 

and perhaps certain minerals. In this situation acidic lipids become more 

soluble and toxic to the colonic epithelium. This leads to increased epithelial 

proliferation and increased sensitivity to carcinogens (Bruce, 1987). 

3) Butyrate production: A number of studies implicated the lower production of 

SCF A, especially n-butyrate, in the increased incidence of colorectal cancer in 

animals and human (Candido et aI., 1978; Kruh, 1982; Sakata, 1983; Smith, 

1986; Weaver et aI., 1988; Clausen et aI., 1991; Scheppach et aI., 1992; 

McIntyre et aI., 1993; Hague et aI., 1993; Hague & Paraskeva, 1995). 

Therefore, it is thought that higher fermentation of indigestible carbohydrates, 
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and higher production of SCF A in colon may be beneficial in human colonic 

health. Since, the majority of human colonic tumours occur in the distal colon 

in humans (Eastwood, 1987), the incidence of colorectal cancer could be 

controlled by increased production of SCFA, especially n-butyrate, in more 

distal colonic sites. Increased production of SCF A could be achieved by 

increasing the bacterial fermentation of carbohydrates in more distal sites of 

the colon. 

The aim of the study in this thesis is to evaluate in vitro fermentation of 

individual carbohydrates and their mixtures, and to predict their effects on gut 

function. The study will focus on their rate of fermentation to determine their 

expected site of in vivo fermentation. With the help of this in vitro study, I will 

be able to relate the fermentation characteristics of mixtures to their expected end 

products and the site of their maximum fermentation activity in the gut. This 

should help predict their action in human colonic health. 

1.12 Why use mixtures of carbohydrates at all? 

Considering the properties and specific actions of indigestible carbohydrates, it is 

important to study the fermentation characteristics of some of these carbohydrates 

in relation to their specific therapeutic effects. Interest in the physiological action 

of indigestible carbohydrates was initiated in early 70s (Trowell, 1972; 1976; 

Burkit, 1971). An immediate consideration with realisation of the metabolic 

importance of indigestible carbohydrates, was to provide these carbohydrates 

without disturbing the balance of other dietary contents. Many researchers 

considered supplementation of the isolated carbohydrates as a solution to the 
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problem. Such isolated polysaccharides like pectin, guar gum and locust bean 

gum were tested and approved for use in food preparations (Jenkins et aI., 1976; 

Jenkins et aI., 1977; Cummings et aI., 1978) 

The interesting metabolic effects of these indigestible carbohydrates attracted 

much attention. It is difficult to distinguish between the physical effects of fibre 

on gut functions and the metabolic effects of SCF A from fermentation in vivo. 

However, it is possible to predict some expected effects of these carbohydrates 

from in vitro studies. Previously different individual indigestible carbohydrates 

were studied extensively for their in vitro fermentation and in vivo metabolic 

implications (Englyst et aI., 1987b; Adiotomre et aI., 1990; Wang & Gibson, 

1993; Younes et aI., 1996). Most of the work is done in vitro, using these 

carbohydrates in isolated form, whereas, data from in vivo studies is usually 

lacking information about processing, cooking methods and other related aspects. 

The apparent clinical usefulness of such carbohydrates in large amounts, as 

required to be metabolically effective, will be oflittle value in view of their low 

organoleptic value, in addition to their adverse gastrointestinal effects. These 

carbohydrates have interesting therapeutic properties but, as stated above, large 

amounts of these carbohydrates have undesirable side effects such as bloating, 

osmotic diarrhoea. Considering the idiosyncratic actions of individual 

carbohydrates, it is unlikely that any single carbohydrate will provide ideal 

therapeutic actions without having some undesirable effects. A logical approach 

would be to combine different indigestible carbohydrates in mixtures of one or 

more carbohydrates in order to harvest their potential therapeutic benefits and 
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simultaneously avoid their undesirable side effects. Such mixed carbohydrates 

supplementation, could be considered ideal for use in major colonic problems. At 

present very little is known about the interaction of fibres with each other in vitro 

or in vivo (Washington, 1998). Therefore, a study is needed to investigate the 

fermentation and interaction of these carbohydrates in mixtures. 

The questions about supplementation with these therapeutic carbohydrates in 

mixtures are; First, whether these carbohydrates affect the properties of each 

other when ingested in the mixtures and second, whether such effects are 

interactive or simply additive. 

For example a slowly fermenting carbohydrate may alter the fermentation of a 

rapidly fermenting carbohydrate and vice versa. It may be beneficial to delay the 

fermentation of rapidly fermenting carbohydrates, which are generally higher 

SCF A producers. Similarly carbohydrates of different SCF A profile may affect 

the ability of each other in their production of a particular SCF A. In this way, 

higher production of a particular SCF A, especially n-butyrate, at more distal 

colonic site, may be of great benefit in the colonic diseases discussed above. 

Therefore, mixtures of indigestible carbohydrates should be between 

carbohydrates of different fermentability, rate of fermentation and other related 

characteristics. Since, it is not always possible to feed patients meals containing 

such supplement, the characteristics of the constituent carbohydrates, such as 

their solubility, and viscosity should be considered in relation to developing a 

supplement mixture for tube feeding. 
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In this study, I will investigate the effect of combining carbohydrates with 

different fermentative properties and look for their interactive influences, 

reflected in the end products of their fermentation in vitro. The ideal 

carbohydrate mixture should contain a slowly fermenting carbohydrate, a rapidly 

fermenting carbohydrate and will be a good source of n-butyrate. In addition to 

this, such mixture should be suitable for tube feeding. 
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General methods, used throughout this thesis, are described in this chapter. 

Specific methods for each experiment are described in their respective 

chapter. 

2.1 Measurement of fermentation 

In vivo fermentation methods allow determination of the extent of 

fermentation of a dietary fibre, but it is almost impossible to predict the 

amount of SCF A produced during in vivo colonic fermentation in humans 

because of extensive absorption and metabolism in gut. Direct in vivo 

measurement of the end products from colonic fermentation is possible only 

when sampling is carried out directly from the colon over a number of short 

time periods. Such frequent collection of samples of colonic contents from 

the intact human gut, is not possible due to the inaccessibility of the proximal 

colon, the major site of the carbohydrate fermentation. The only published 

data, in this regard, have been obtained from victims of sudden death 

(Cummings et aI., 1987). However, such data provide information only about 

the colonic environment and the metabolism at the time of death, and very 

little information about the dynamic metabolic environment of the colon. 

2.1.1 In vivo methods 

2.1.1.1 Human subjects 

In humans, the intact gut is not easily accessible and procedures, such as 

intubation, which are very invasive and very expensive, are necessary. Such 

studies need strict medical supervision and are not practicable for routine 

assessment of the fermentability of carbohydrates in a normal research unit. 

In addition, the use of a tube may interfere with the normal functions of the 

human gut, and may alter transit time (Read et aI., 1983). Speeding up the 
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transit may interfere with absorption in small intestine. The bowel 

preparation and washing prior to intubation may also interfere with the normal 

physiology of the gut (Edwards & Rowland, 1992). 

Alternative in vivo methods using indirect measurements have been adopted 

including breath H2 measurement, blood sampling for measuring acetate and 

other SCFA (Pomare et al., 1985; Muir et al., 1995; Zavoshy, 1998), and 

measurement of end products of fermentation in the human faeces (Scheppach 

et al., 1988b; Phillips et al., 1995). Most of these methods are limited in their 

interpretation. However, measurement of breath H2 is the most commonly 

used method for measuring the colonic fermentation. An increase in breath H2 

is an indication of fermentation activity in the human large intestine but it 

does not yield any quantitative information about the important metabolites of 

colonic fermentation. There is controversy about the quantitative 

interpretation of data from breath H2 (Florent et al., 1985; McBurney & 

Thompson, 1989; McBurney et al., 1990). A reduced breath H2 was noted in 

human subjects after feeding lactulose for eight weeks, despite the presence of 

increased colonic fermentation (Florent et al., 1985). There are several 

alternate routes for the disposal ofH2, including acetogenesis and 

methanogenesis, and the use of H2 by a terminal oxidiser such as sulphate, 

forming H2S (Gibson et al., 1988). These make it more difficult to measure 

all the H2 produced during the colonic fermentation and the use of such data 

as an index of fermentation. 

Acetate in peripheral blood is another method for the assessment of the 

colonic fermentation. As the principal SCF A from colonic fermentation, only 

acetate reaches the peripheral blood system. Propionate is metabolised by the 
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liver while butyrate is cleared by the colonic epithelium. (Roediger, 1980; 

Roediger, 1982; Demigne & Remesy, 1991). Therefore, measurement of only 

acetate is possible in the human because of the easy accessibility of peripheral 

circulatory system. Measurement of SCF A in portal blood systems is only 

possible at the time of postmortem (Cummings et aI., 1987) or during surgery. 

Since only acetate reaches the peripheral blood system, measurements of 

peripheral blood do not provide a quantitative measure of all short chain fatty 

acids produced during colonic fermentation, especially butyrate and 

propionate. Quantitative measurement of all SCF A production was necessary 

in our study. In addition to this, the use of frequent blood samples was 

impracticable in a screening study like ours. Another limitation of this 

method of measuring acetate in peripheral system, is the endogenous 

synthesis of acetate by the human tissues which is indistinguishable from 

bacterial synthesis in the human gut (Pethick et aI, 1981; Ballard, 1972). 

In view of these difficulties, some studies have used measurement of 

metabolites in faeces as an index of in vivo fermentation products with 

different carbohydrates (Scheppach et aI., 1988b). Measurement of faecal 

SCF A, produced by carbohydrate fermentation, is not very helpful in the 

interpretation of events taking place in the colon, especially in the proximal 

colon because most of the short chain fatty acids are absorbed by the intestinal 

epithelium during the transit of digesta. Only a minor proportion, up to about 

10 percent of the short chain fatty acids, are excreted in faeces (Hill, 1995b). 

In rapidly fermenting carbohydrates these SCF A are readily absorbed in the 

proximal colon and only negligible amounts are excreted in the faeces. A rise 

in faecal SCF A may indicate the prolonged or slow fermentation of the 
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carbohydrate. A recent in vitro study reported that caecal and faecal inocula 

from the same rats produced different profiles of SCF A from the same 

substrates ( Monsma & Marlett, 1995). Thus, the faecal SCF A profile cannot 

be considered with celiainty as representative of events taking place in the 

large intestine and such data cannot be considered quantitatively 

representative of the SCFA produced in the colonic fermentation. Above all, 

control of the diet in human subjects is a difficult task, especially when the 

study involves a long term feeding of the test food. This difficulty can be 

overcome by the use of the animal models for study. 

2.1.1.2 Animal models 

In view of the difficulties faced during the direct studies in humans, animal 

models are frequently used for in vivo study. Rats and pigs are the animals 

which are used as models in most of such studies (Bach Knudsen et aI., 1991; 

Mathers & Smith, 1993; Ellis et aI., 1995; Monsoma & Mallete, 1995; 

Berggren, 1996; Djouzi & Claude, 1997). There are number of advantages in 

using animal models. Digestive and circulatory systems of animals are easily 

accessible, and animals can be fed a control diet under strict experimental 

conditions. The major limitation to this model is the difficulty of inter

laboratory comparison of such studies in the literature due to the variation of 

the basal diets from laboratory to laboratory (Edwards & Rowland, 1992). 

The basal diets used in animal feeding varied from zero (Edwards et aI., 

1992c) to 16g of fibre per day. The length of study period varied from less 

than 1 week to 18 months (Edwards et aI., 1992c) and the level of fibre 

inclusion varied from 1.5g (Edwards et aI., 1992a) to 109 per day (Nyman & 

Asp, 1988). Such variable conditions of different studies may make inter-
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laboratory comparison very difficult because variable fibre contents of the 

basal diet may interfere with the effects of the test material. The adaptation 

period of the colonic bacteria in the rat to a new diet may be over 4 weeks 

(Walter et aI., 1988). Extrapolating data obtained from animals to humans, 

however is also questionable, due to a large number of genetic and anatomical 

differences. 

2.1.1.2.1 Rat model 

The colon is a major site for fermentation in humans whereas, rats have a 

bigger caecum and are considered caecal fermenters. Although rats are easily 

housed and large numbers of animals can be used for replication to avoid 

individual variations, with a limited amount of test material. However, it will 

be very impracticable to screen large numbers of carbohydrates. For example, 

in this study for a single substrate I needed over 25 cultures (five incubation 

time periods, 5 replications) for one screening experiment. In this way, I 

would have to use hundreds of cultures. Therefore, it would be difficult to 

carry out such a study in rats because for quantitative measurement thousands 

of animals would be required to make measurements at short intervals, due to 

the rapid absorption and metabolism in vivo systems. 

Moreover, a number of species differences exist between rat models and 

humans. Rats are not ideal models for the human colon, because rats have 

shorter transit time and, the pattern of digesta flow and SCF A production in 

their hind gut differ markedly from the human condition (Rume, 1995). 

Coprophagy is another problem which is difficult to prevent completely in 

rats. Rats may be better adapted to digest cereals, other food materials, etc., 

than humans, especially because the rat is more likely to eat uncooked foods. 
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In addition, rats have a smaller diameter of the pyloric sphincter compared 

with humans. This may affect the particle size of the food ingredients that 

pass from the stomach to the small intestine which may be important in the 

digestibility and subsequent fermentability in rat gut (Roe et aI., 1996). Since 

metabolism in mammals has been shown to be strongly correlated to body 

mass and the length of the alimentary canal (Speakman, 1997), extrapolation 

of the data, achieved from experimentation in the rat, to humans may be 

misleading. Despite a good correlation between rats and humans for effects of 

dietary fibre on stool output (Edwards et aI., 1992b; Nyman et aI., 1986), the 

effects on SCF A production may be less comparable. 

2.1.1.2.2 Pig model 

Pigs are considered 'colon fermenters' and their body mass is also comparable 

to that of man but interpretation of fermentation data may be affected by ileal 

fermentation in the pigs. Besides, pig hind gut capacity is significantly larger 

(48% of total gut capacity) compared with that (17 % of total gut capacity) in 

the man (Rume, 1995). Animal models, especially pigs, need suitable 

facilities which may be impractical in some cases and are also expensive for 

screening purpose of large number of substrates as in our study. 

2.1.2 In vitro methods 

The human colon is not a closed system, and the absorption of the 

metabolites, in addition to faecal excretion, will have a different impact on the 

bacterial population than that measured in an in vitro system. The difficulty 

of sampling from intact colon and quantitative in vivo measurement of the 

short chain fatty acids in contents from different regions of the large intestine, 

results in the adoption of in vitro models for the study of carbohydrate 
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fermentation because in vivo methods are not suitable for initial prediction of 

the carbohydrates fermentation and its end product profiles. For 

this purpose simple, rapid and cost effective methods are needed. 

Post mortem studies have shown that the composition of lumenal flora was 

relatively constant from proximal colon to rectum (Moore et aI., 1978). The 

microbial composition in human faeces can be a good representative sample of 

the gut microbial population, although it is not as complex a population. 

Therefore, in vitro fermentation models, using human faeces in presence of a 

basic salts medium, is the simplest and cheapest method to screen 

carbohydrates. In this way, assessing the fermentation of a carbohydrate is 

more cost effective and practicable, and such methods offer an interpretable 

picture of fermentation events in the human gut such as SCF A profile, lactate 

and other bacterial products. Despite the simplicity of this method, it provides 

useful information about the extent of carbohydrate fermentation and relative 

proportions of the short chain fatty acids in cultures. This method is also 

helpful in getting an index of rate of fermentation by stopping the cultures after 

different time periods of incubation. 

Such in vitro methods are rapid and very suitable for comparing large number 

of indigestible carbohydrates. These methods could be particularly useful 

when the aim of the study is the quantitative measurement of the fermentation 

products (Edwards et aI., 1996) because, unlike the intact gut, there is no 

epithelial absorptive surface in vitro methods. On the other hand, this situation 

poses a limitation because of accumulation of the intermediary and end 

products and low pH, which may affect the metabolic activity in the cultures. 

Problems of changed physiological conditions in in vitro cultures will be 

addressed in this thesis. 
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The most important factors regarding in vitro fermentation methods, include 

consideration of source and size of inoculum, type of fermentation media, 

maintenance of anaerobic conditions, choice of buffer, mixing rate and 

sampling time. In the recent years research studies have started to consider 

these factors, whereas in the past little attention was paid to report the 

rationale of in vitro system. A number of in vitro methods used human 

faeces as the source of gut bacteria (Table 2.1). Some of these studies did not 

consider the necessity of including a source of nitrogen and basic essential 

minerals as a requirement for further growth of bacterial mass. These 

essential macro- and micro nutrients may affect the growth and survival of 

bacteria, as well their lag phase. Whereas, other methods ignored the need of 

buffering pH changes in cultures which could have adverse effects on the 

activity of the bacteria in such cultures. Still other methods did not adopt the 

shaking of cultures which could be helpful in dispersion and accessibility of 

substrate for the bacteria, and to mimic motility in the gut. 

2.1.2.1 Limitations of ill vitro methods 

In vitro methods have two important limitations. In most of the studies, 

human faeces instead of inocula from the actual site of the fermentation i.e. 

colon, are used as source of the microorganisms. It can be argued that the 

faecal flora are not considered representative of the intestinal flora. Emerging 

data suggested that fermentation in the caecum and proximal colon may differ 

from that obtained with faecal inoculum. Monsma and Martlett (1995) 

reported different profiles and higher amount of short chain fatty acids 

produced by the same substrates, using the caecal inocula compared to faecal 

inocula from rats. In addition to this, a problem with using the faeces as 
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Table 2.1 A summary of the main characteristics of different in vitro fermentation methods. (adapted and modified from Barry et aI., 1995; 
-- ----- -- ----;> -- - - -

Reference Inoculum Substrate *Bufferlsalt solution N2 -Source Micronutrients Shaking Duration 
(gIL) (gIL) (Hours) 

Adiotomre et aI., 1990 40 10 P tripticase Yes Yes 24 

Barry et aI.,1995 200 5,10,20 CIP urea Yes Yes 0-24 

Daly et aI., 1993 25 1.25 NaHC03 solution Tryptone NaC!, KCl None 24 

Edwards et aI., 1996 160 10 P none None Yes 24 

McBurney et aI., 1985 5 C - Yes 24 - -

McBurney et aI., 1988 60 10 CIP - Yes 24 

McBurney & Thompson 13.3 10 CIP trypticase peptone Yes swirled at 0-24 
1987; 1989 intervals 
Monsma & Martlett 1995 10 (rat 10.2 NaHC03, NaC!, - None agitated at 0-96 

faeces) K2HP04 intervals 
Mortensen & Nordgaard- 166 10 NaHC03 solution None None None 6,24 
Anderson 1993 
Mortensen et aI., 1988 200 ~ 10 - 50 NalK solution None None None 0-72 

Mortensen et aI., 1991 166 2.5 - 30 Bicarbonate solution None None None 6,24 

Rasmussen et aI., 1987 167 up to ~50 None None none None 0-72 

Salvador et aI., 1993 250 20 CIP Urea Yes None 0-24 

Stevenson et aI., 1997b 16 2.5 - 10 None None Yes Partly 0,24 
Tomlin et aI., 1986; Tomlin 50 5 chloride, bicarbonate Tryptone None None 21 
& Read, 1988 solution. 
Vince et aI., 1990 250 10 Saline (0.9 %) None None None 48 
Weaver et aI., 1989 50 & 100 10 NaHC03; KH2P04 None Yes Yes 0-24 
*C- for carbonate buffer; P- for phosphate buffer. 
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source of inoculum, is that, after defaecation, the faecal composition starts 

changing and this change continues through out incubation process. 

Another objection to the use of faeces as source of fermenting bacteria, was 

the presence of any unfermented fibres or other fermentable components in 

faeces which might lead to erroneous results of fermentation of the test 

carbohydrate. A control without the addition of test material for each faecal 

sample, was helpful in solving this problem and providing the base level data 

in each incubation run (Mortensen et ai., 1988). Despite these objections, in 

most cases, using faeces is the only practical and easy way of obtaining a 

source of human gut flora, and methods to use a representative inoculum from 

the exact site, may present almost the same practical difficulties which can be 

encountered in in vivo studies. McBurney and Thompson (1990) pointed out 

that some fibre preparations, such as wheat bran, may contain digestible 

carbohydrates and protein. Such preparations are suitable for in vivo use 

because digestible substrates are absorbed in the small intestine but in vitro 

this is not the case and it will be necessary to pre digest such preparations 

before their use in in vitro fermentation. 

The in vitro systems lack the ideal in vivo conditions, for example, they lack 

an absorptive epithelial surface. This single limitation leads to the 

accumulation of end product such as SCF A, gases, consequently resulting in 

the creation of an imbalance of the in vitro conditions by changing pH and 

partial pressure ofH2 in a closed system (Edwards & Rowland, 1992). This 

may lead to changes in the physiological conditions of cultures, probably 
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affecting bacterial composition or at least the bacterial metabolic activity in 

culture. The internal physiological conditions of an in vitro system may start 

conditions of an in vitro system may start changing early and continue to do so 

until the end of incubation and it is unlikely that the environmental conditions 

remain optimal for bacterial metabolic activity because of this. As a result, 

the metabolic activities of the microbes may under go transformation due to 

the changed experimental conditions in cultures, which cannot be maintained 

critically. For example, a number of Bacteroides species were well 

maintained at all the pH from 5 to 7 in continuous anaerobic cultures, 

whereas, lactobacilli and bifidobacteria survived in cultures at pH 5. 

However, these species disappeared with the increasing pH from 5 to pH 7. 

Similarly Cl. perfringens disappeared with the decreasing pH from 7 to 5 

(Edwards et aI., 1985). In another in vitro experiment, B. infantis 

demonstrated the ability of withstanding an acidic pH 5.0 and 4.5, whereas, 

the same pH inhibited the growth of E. coli and Cl. perfringens completely 

(Wang & Gibson, 1993). In this way, the bacterio-static conditions maybe 

initiated in in vitro batch cultures. The impact of changed physiological 

conditions can be judged by three methods; 

1) stopping cultures at different time points. 

2) using the increasing amounts of individual carbohydrates in cultures. 

3) chromatographic determination of the residual carbohydrate in cultures. 

I used all these three approaches in this study to investigate changes in the 

production of SCF A in cultures. In this way it will be possible to ascertain the 

extent and rate of fermentation by comparing the accumulation of end products at different 
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time points, as the time of incubation has a consistent effect on the total SCF A 

production (Monsma & Marlett, 1995). 

2.1.2.2 Why to use ill vitro system at all? 

Despite these limitations, in vitro systems provide useful information on the 

extent and product of fermentation (Table 2.2). Using a well planned in vitro 

fermentation system provides the opportunity to infer information about the 

site and rate of SCF A production in the large bowel. An in vitro study can 

assess the rate of fermentation, by sampling the cultures at regular intervals, 

and thus getting a basic idea of fermentation rate. Thus in vitro models offer 

the ease to determine the rates of SCF A production, the extent of 

production at each time point and the maximum production of SCF A by 

conducting in vitro fermentation for several periods of time (Monsma & 

Marlett, 1995). The in vitro systems also offer the possibility of measuring 

the production of gases. Another advantage of in vitro fermentation is that it 

is a good screening tool, facilitating the quantitative measurement of 

individual short chain fatty acids, which is necessary for the screening 

purpose, and also this is one of the requirements in my study. 

The simplest and cheapest in vitro method is in vitro fermentation using 

human faeces as an inoculum in presence of basic salts fermentation medium, 

for assessing the fermentabi1ity of a carbohydrate and determining SCF A 

profile, lactate and other bacterial products (Adiotomre et aI., 1990). This 

method of fermentation was adopted in the study by Edwards et aI., (1996). 

In this study, a simpler method was developed for study of in vitro 

fermentation and it was tested in eight laboratories with faecal inocula from a 

total of 40 SUbjects. Trends of the fermentation were same and comparable 
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between most of the laboratories. The variation in the mean results between 

the laboratories was of the similar or less magnitude than the intra-laboratory 

data. The method used by Edwards et aI., (1996) has taken good account of 

the properties of human colon, thus mimicking the in vivo environment of the 

human colon. This method consisted of three important characteristics 

including size of the inoculum, shaking of cultures and addition of buffer to 

the culture. Shaking was helpful in mixing cultures and stopping deposits of 

the sedimentation of substrates in bottom of culture bottles. Mixing also stops 

building up the preferential 

Table 2.2 Advantages and disadvantages of the in vitro fermentation 
methods. 

Advantages 

Rapid 

Cheap 

Manageability for large number of 
samples 
Good screening tool 

Possibility of reproducability and 
precision (repeatability) check. 

Offers the quantitative measurement 
of products 

Disadvantages 

Difficulty in maintenance of critical 
conditions 
No absorptive surface 

Product inhibition 

Lag phase 

metabolic layers by the bacteria in cultures of bigger volume. Viability of the 

microorganisms, present in in vitro fermentation cultures, depends on the 

characteristics of original inoculum (McBurney & Thompson, 1987). In this 

regard, inoculum size is an important characteristic of an in vitro fermentation 

procedure. Since survival of the bacteria and lag phase are critical in the in 

vitro system, large inoculum size provides larger popUlation of the bacteria 
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initially which allows better bacterial survival and limits the lag phase. A 

larger inoculum size can also provide the micro-minerals and bile salts for the 

bacteria to grow in. Therefore, the chemical and physical nature of the culture 

is closer to that of colonic contents compared to the use of a smaller inoculum 

size (Edwards et aI., 1996). A large inoculum size is reported to increase 

bacterial survival rate and, to produce a lower redox potential and higher final 

osmolality in cultures (Edwards, 1984). These parameters serve as the 

indicators for higher production of SCF A. This in vitro system is very helpful 

in testing and comparing large number of the test materials in a very short 

period oftime without involving complicated expensive systems which, after 

all, will not be able to cover large number of samples. 

2.2 Fermentation procedure in this study 

The fermentation of complex carbohydrates in vitro was studied according to 

the fermentation model of Adiotomre et aI. (1990), which was modified to our 

laboratory conditions (Fig. 2.1). The amount of substrate and volume of the 

fermentation medium was reduced five fold from that reported in the original 

method, to make the results more comparable to the earlier work and to 

facilitate the manageability of large numbers of cultures in our laboratory. 

A faecal slurry (32%) was used to inoculate the culture, in presence of the pre

reduced basic salt medium in McCartney bottles, containing 100mg (or none 

in case of control cultures) of the carbohydrate substrate. Each McCartney 

bottle was fitted with a screw cap containing a hole in the centre and a rubber 

lining to allow flushing of culture with oxygen free nitrogen (OFN) before 

incubation for creating an internal anaerobic environment. With this type of 

bottle, it was possible to sample the gases produced during fermentation. 
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32g Freshly voided faeces (2 hours) 
+ 100ml Phosphate buffer (pre
reduced), pH 7.0 

Substrate as sole 
extraneous source of 
Carbohydrates 

Filtered through cotton mesh 

I Oneml . Variable amounts 
from 0-1 OOmg 

28ml capacity McCartney 
bottle, flushed with OFN, initial 
pH, 37°C, shaking 50 strokes per 
minute, 0-48 hours incubation 

I Gas collection & fInal pH, 

I Centrifuge (4°C, 3000 rpm, 30 min.) I 

/ ~ 

Fermentation medium 
with tryptone & basic 
salts, pre-reduced 

I 9ml 

Supernatant for SCF A, 
lactate 

r, P-e~l':"le-t-fj-re-e-z-e-d-:-r-ie-d-fo-r-w-at-e--'r I 

contents 

Fig 2.1 Flow chart of the in vitro fermentation method. 
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The cultures were mixed (vortex) mechanically before flushing them with 

oxygen free nitrogen to create an anaerobic atmosphere. The incubation was 

carried out at 37°C in a shaking water bath at 50 strokes per minute. These 

bottles, lying horizontally in shaking water bath, were also good for 

maintaining the optimum surface area/volume ratio of cultures (Stevenson et 

aI., 1997b). The cultures were stopped at different time points from 0-48 

hours (Fig. 2.1). Exact details are given in chapters of individual experiments. 

The fermentation procedure was replicated with faeces from different healthy 

subjects. The number of replications were different in individual experiments 

and details are given in the respective chapters, but always at least five 

subjects were used, the number which was recommended by previous work 

(Edwards et aI., 1992b). 

2.3 Substrates 

Details of the substrates are given in the table 2.3. 

2.4 Reagents & fermentation media 

The fermentation medium used in my study was adapted from Adiotomre et 

aI., (1990). It was a complex nutritive growth medium (Table 2.4). This 

medium contained all the essential mineral salts, and tryptone as the principle 

source of nitrogen, for further growth of the bacterial population. The 

phosphate and carbonate buffers were used as part of the medium to delay 

changes in pH in cultures. Although the pH decreased to pH 5-6 range in 

some cultures, this was in the range near to that reported in the large gut 

(Cummings et aI., 1987). Use of phosphate buffer negated the need of CO2 

supply, necessary with the bicarbonate buffer, as bicarbonate is a 

physiological component secreted within the digestive tract. 

101 



Table 2.3 Substrate used for in vitro fermentation in this study 

Substrate 

Lactulose 

Raftilose 

Raftiline 

Fibruline 

Raw potato 

starch 

Gum arabica 

Guar gum 

Pectin 

Oat fibre 

Ispaghula 

Source 

Duphalac- Duphar Laboratories Ltd 

Gaters Hill Southompton 

Raffinerie Tirlemontoise SA Brussells 

Belgium 

Siber Heghner Ltd 221-241 

Beckenham Road Beckenham Kent 

JC Dudley & Co Ltd Cheyney House 

Francis Yard East Street Chesham Bucks 

Englyst Carbohydrate Services Ltd 

Cambridge UK 

KWR Ltd Food Ingredient Division 

Basingstoke Hants RG24 

Meyhall Chemical AG 

Supplied by SHS Liverpool 

Supplied by SHS Liverpool 

Madaus AG, Cologne, Germany 

Remarks 

Each 5ml contains; 

Lactulose 3.35g; lactose 

:S0.3g; galactose:S0.55g 

P95; 93.2-95.8% 

oligo fructose 

ST; 90-94% inulin 

mixture of oligo- and 

polysaccharides 

Powdered inulin, 30 

(Instant) <50 microns 

80.1 % total starch 

contents; 56.7% RS 

Meyprogat 30 MR 4812; 

low molecular weight 

Low viscosity HM citrus 

pectin B11503 

Specified properties not 

known 
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The medium was pre-reduced by addition of a solution of cysteine 

hydrochloride and sodium sulphide (N~S). The cysteine, which contains a 

sulpha-hydral group, is a reducing agent and plays a protective role to 

anaerobic microbes against oxygen toxicity. Iron salts are also protective 

against the toxic substances. Some of the minerals are essential for inducting 

bacterial enzymes. The medium was adjusted to pH 7.0 with 5M HCl. 

Sorensen's phosphate buffer (PH 7.0) was made with proportions of solutions 

ofKH2P04.anhydrous and N~HP04.2H20. The buffer was used to prepare 

faecal slurry from freshly voided faeces immediately after defaecation (within 

two hours). The fermentation medium and phosphate buffer were boiled, 

cooled and kept under anaerobic conditions by flushing with oxygen free 

nitrogen before use. 

2.5 Subjects used as donors of faecal inocula 

Fresh human faeces were used as a source of fermenting bacteria for in vitro 

inoculation. Faecal samples were collected from different healthy individuals 

with no previous history of serious gastrointestinal disorder and who did not 

take antibiotics over three months prior to faecal delivery for the study. 

Faeces were used to inoculate cultures within the shortest possible time not 

exceeding at any time two hours of defecation, as faeces could be used 

successfully within two hours (Personal communication - Dr. C A Edwards, 

Human Nutrition, University of Glasgow). Due to the large number of 

cultures per subject, two hours was set as the latest start of the incubation, 

most inoculation of cultures were accomplished well before this target each 

time. 
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Table 2.4 General composition of the fermentation media and other reagents 
used in this study. 

Sorensen's phosphate buffer (PH 7.0) 

Solution A containing KH2P04 

39 parts 

Solution B containing Na2HP04.2H20 61 parts 

Van Soest fermentation medium (Adiotomre et aI., 1990) 

Tryptone as source of nitrogen 

Micro-mineral solution Macro-mineral solution 

in distilled water containing; in distilled water containing; 

CaClz,2H20 

MnClz,4H20 

CoCh.6H20 

FeCh.6H20 

Buffer solution 

in distilled water containing; 

Ammonium bicarbonate & Sodium 

bicarbonate 

Na2HP04.2H20 

KH2P04.anhydrous 

MgS04.anhydrous 

Reducing solution 

in distilled water containing; 

Cysteine hydrochloride 

Sodium sulphide.9H20 

Sodium hydroxide 

McBurney & Thompson (1987) recommended that several donors, at least 

three, be used to improve the accuracy of in vitro estimates of colonic 

production, thus enhancing the predictive value of in vitro fermentation 

variables for in vivo situation. Edwards et aI., (1996) reported the greatest 

intra-laboratory variance in their inter- laboratories study, where inocula were 

used from only four faecal donors. Therefore, at least five and where possible 

more than five inocula from different human subjects, were used for the best 
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estimation of fermentability in my study. Details of the gender and age range 

is given in the individual chapters of different experiments. 

2.6 Detection of un-metabolised sugars in cultures 

Since cultures show a flattening curve after 8 hours of incubation, to rule out 

the possibility of unfermented substrate present in cultures, thin layer 

chromatography (TLC) was used to identify sugars in culture residues. The 

presence of an oligosaccharide, raftilose, was determined by TLC to ascertain 

inhibition of its fermentation. This method was adopted from Humbel & 

Collart (1975) and modified for our purpose. A standard mixture ofraftilose 

(Sigma Chemical Co. Ltd., Poole, UK), lactulose (Sigma Chemical Co. Ltd., 

Poole, UK), sucrose (Sigma Chemical Co. Ltd., Poole, UK) and fructose 

(Sigma Chemical Co. Ltd., Poole, UK), was prepared freshly before the TLC. 

A 100mg of each carbohydrates was dissolved and made up to 25ml separately 

with 10% (V/V) isopropanol (AnalaR, BDH, Ltd. Poole, UK). One ml of each 

sugar solution were pooled together to make a 4 ml standard mixture 

containing 1 flg/l fll of each sugar. 

Thin layer chromatography was performed on cultures containing raftilose 

after 4-24 hours of incubation. From each test culture and standard mixture, 

samples of lOfll were applied as 1.5cm lines at a distance of2 cm from each 

other. Side edges of 2.0 cm were left on a 20cm x 20cm silicagel plate 

(Camlab-DC Fertigplatten Sil Gel 25- Tenside. Layer: 0.25mm Silica gel 

G25, (NH4)zS04 impregnated). The cultures were applied at a distance of 

2.5cm from lower edge ofthe TLC plate. After thoroughly drying the plates 

in air, chromatography was developed overnight for about 24 hours in 200ml 

of freshly prepared solvent (n-butanol/acetic acid/water; 100:50:50 V IV). 
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Orcinol developing solution was made freshly by putting 0.2 g orcinol in 

100ml of sulphuric acid (llml cone. H2S04 1100ml water). After drying, the 

chromatographic plate was evenly sprayed with freshly prepared orcinol 

solution in a fume cupboard and then heated for 10 minutes at 100°C and 

observed for presence of raftilose. 

2.7 pH of cultures 

A Kent pH meter model ElL 7045/46 was used to measure pH of cultures 

before and after incubation. Buffer tablets (pH 4.0±0.02 & pH 7.0±0.02) 

from BDH while buffer tablets (PH 9.2) from Fison Scientific Equipment, 

England were used for calibration. Before setting up cultures for incubation, 

the initial pH of individual cultures was noted. Cultures were stopped at 

different times and after sampling for gases, final pH were noted. 

2.8 Preservation of cultures for further measurements 

The cultures were centrifuged at 3000 rpm in a refrigerated centrifuge (4°C) 

for 30 minutes. After centrifugation, supernatants and sediments of cultures 

were stored separately in a freezer at -20°C for use in further analysis. 

2.9 Percent dry weight of sediments after incubation 

The sediments of cultures were freeze dried in Edwards Micromodulyo 1.5 K 

Freeze Dryer, Edwards High vacuum International, England. The weight of 

the sediment before and after freeze drying was used to determine the dry 

weight of the residue after fermentation and the water held in the residue. 

Water content in residue (%)={(wet weight of the sediment - dry weight of the 

sediment) 1 (wet weight of the sediment)} x 100 
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2.10 SCFA measurement by GLC 

SCFA were measured in supernatants from cultures by GLC. 

2.10.1 Internal standard stock solution 

13 methyl valerie acid (Sigma Chemical Co. Ltd., Poole, UK) was used as the 

internal standard. One g (1.075ml) of 13 methyl valerie acid was dissolved and 

diluted up to 100ml with distilled water. The solution was adjusted to pH 7.0 

with 0.34g ofNaOH (Merck Loughborough, UK). 

2.10.2 External standard stock solution 

The external standard stock solution was a mixture of acetic acid, propionic 

acid, iso-butyric acid, n-butyric acid, iso-valerie acid and n-valeric acid 

(Sigma Chemical Co. Ltd., Poole, UK). A mixture of 19 of each of these 

acids was dissolved in distilled water and diluted to up to 100ml, after adding 

2.9g NaOH (Merck Loughborough, UK), in order to adjust pH 7.0 of the 

solution. This external standard mixture was used for plotting a calibration 

curve and calculation of individual short chain fatty acids in the test samples 

from cultures. 

2.10.3 Sample extraction procedure for GLC 

A series of six external standard concentrations was set up by putting 10111, 

25111,50111, 100111,200111,300111 in separate extraction tubes and making up to 

800111 each with distilled water. A volume of 800111 of supernatant of each 

test samples from fermentation cultures, was taken in separate extraction 

tubes. To all the standards and test samples 100111 of internal standard and 

100111 of ortho-phosphoric acid (AnalaR, BDH, Ltd. Poole, UK) were added. 
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Three ml of diethyl ether (AnalaR, BDH, Ltd. Poole, UK) was added to each 

tube and vortex mixed for 1 minute. The supernatant layer was collected in 

separate tubes from each respective extraction tube. This extraction procedure 

was repeated three times for each external standard and the test sample. The 

supernatant layers from three repeated extraction, were pooled in a single tube 

for each sample (Spiller et aI., 1980). A sample of 3JlI from the pooled ether 

extract was injected in the GLC to determine concentration of SCF A in each 

sample (Spiller et aI., 1980). 

2.10.4 GLC conditions 

Short chain fatty acids were measured using a Philips Pye Unicam 304 series 

GLC (Gas Liquid Chromatograph, Unicam Ltd., Cambridge), this was 

connected to a Phillips pm257 (Unicam Ltd., Cambridge) chart recorder. A 

glass packed column 4ft in length with 'l'4 inches external diameter and 0.19 

inches internal diameter, was used in GLC for determination of SCF A. The 

packing material was 10% SP 1 000+H3P04 on Chromo sorb W A W 80-100 

mesh (Phase Separation Ltd., Deeside). A flame ionisation detector was used 

for the purpose of detection. GLC Conditions were as follow: 

Gas flow rates [carrier gas, nitrogen: 60m1lmin; flame gases, air: 30m1lmin & 

Hydrogen: 20psi]. Temperature [Column, 200°C; injector, 180°C; detector, 

200°C]. GLC running conditions [Column temperature, 125°C; Initial time, 2 

minutes; rate lOoC/minute; upper time, 1 minute; Final temperature: 150-155 

°C; Attenuation: 2-16]. After injecting a 3JlI ether extracted sample, it took 

about 10 minutes to complete a single run of each sample. 
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Most of the chromatogram from each sample consisted of at least three 

principal SCF A, with an additional peak for the internal standard. Some of 

the chromatograms, but not all, had peaks of the branched chain fatty acids 

(iso-butyarte, iso-valerate, n-va1erate). The position of the respective peaks 

were determined by the position ofthe external standards peaks. The eluent 

sequence of the short chain fatty acids was acetate, propionate, iso-butyrate, n

butyrate, iso-valerate, n-va1erate. 

2.10.5 Calculation of SCFA concentration 

For quantitative measurement, height of individual peaks were divided by the 

peak height of internal standard and a peak ratio was calculated for both 

external standards as well as test samples. A standard curve was plotted using 

the peak ratio as y-axis against the known concentration of the respective 

SCF A in the external standards mixture. Using the peak ratio of individual 

SCF A in chromatogram of each sample, concentration of particular SCF A 

was calculated. 

Concentration of SCF A (/1mo1es/m1); 

(Z) x (lOOO/mo1.wt. of specific SCFA) x 1.25 

The value of 'Z', the x-axis was calculated from the standard curve in InStat 

and value 1.25 was derived from ratio of liquid sample i.e. 1000/11/800/11. 

The repeatability of the method showed 2.7%,6.3%,4.2% error for acetic 

acid, propionic acid and n-butyrate respectively (Lokerse, 1994). 

2.11 Measurement of lactate 

Prior to analysis on GLC, samples had to be methylated to make the lactate 

volatile. 
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2.11.1 Internal standard 

Succinic acid (Sigma Chemical Co. Ltd., Poole, UK) was used as the internal 

standard. One g of succinic acid was dissolved and diluted up to 100ml with 

distilled water. 

2.11.2 External standard 

The external standard stock solution was a mixture of 833).!11actic acid 

(AnalaR, BDH, Ltd. Poole, UK) and 19 phenylacetic acid (Sigma Chemical 

Co. Ltd., Poole, UK). Mixture of these acids was diluted to up to 100ml with 

distilled water. 

This external standard mixture was used for plotting a calibration curve which 

was used to calculate lactate concentration in the test samples from cultures. 

2.11.3 Lactate sample extraction procedure for GLC 

Lactate was measured by GLC using method described by Holdmann & 

Moore (1973). A series of three external standard concentrations was set up 

by putting 25 ).!l, 50).!1, 100).!1 and making their volume up to 500).!1 each with 

distilled water into separate extraction tubes. A volume of 500).!1 of 

supernatant of each test samples from fermentation cultures, was taken in 

separate extraction tubes. To all standards and test samples 200).!1 of 50% 

sulphuric acid (AnalaR, BDH, Ltd. Poole, UK) was added. After adding 1ml 

methanol (AnalaR, BDH, Ltd. Poole, UK), 100).!1 internal standard, the tubes 

were stopped with covers and heated at 55°C for 30 minute in a water bath. 

After completion of heating, 100).!1 of orthophosphoric acid (Ana1aR, BDH, 

Ltd. Poole, UK) was added to each tube. 
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After addition of 1.5ml of diethyl ether (AnalaR, BDH, Ltd. Poole, UK), each 

tube was vortex mixed for 1 minute and supernatant was collected. This 

extraction procedure was repeated three times for each external standard and 

the test sample. The supernatant layers from three repeated extraction, were 

pooled in a single separate tube for each sample and standard. A sample of 

3/l1 from the pooled ether extract was injected in GLC to determine 

concentration of lactate in each sample. 

2.11.4 GLC conditions 

Lactate was measured using a Philips Pye Unicam PU 4550 Gas 

Chromatgraph (Unicam Ltd., Cambridge), this was connected to a Phillips 

PM257 (Unicam Ltd., Cambridge) chart recorder. A glass packed column 

4ft., in length with 14 inches external diameter and 0.19inches internal 

diameter, was used. The packing material was 10% SP1000+H3P04 on 

Chromosorb WAW 80-100 mesh (Phase Separation Ltd., Deeside). A flame 

ionisation detector was used for the purpose of detection. GLC Conditions 

were as follow: 

Gas flow rates [carrier gas, Helium: 60 mllmin; flame gases, air: 30 mllmin & 

Hydrogen: 20psi]. Temperature [Column, 200°C; injector, 180°C; detector, 

200°C]. GLC running conditions [Column temperature, 117°C; Initial time, 

2minutes; rate, 10oC/minute; upper time, 2minute; Final temperature, 146°C; 

Attenuation, 2-16]. After injecting a 3/l1 ether extracted sample, it took about 

11 minutes to complete a single run of each sample. Each chromatogram 

consisted of peaks of the internal standard and lactate, if the sample contained 
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lactate. The first peak adjacent to the solvent front was lactate, followed by 

the peak of the internal standard. 

2.11.5 Calculation of lactate concentration 

For quantitative measurement, the height oflactate peak was divided by the 

peak height of the internal standard and a peak ratio was calculated for both 

external standards as well as test samples. A standard curve was plotted using 

the peak ratio as y-axis against the x-axis which is the known concentration of 

lactate in external standard mixture. Using the peak ratio of the lactate in 

chromatogram of each sample, concentration of lactate in the particular 

sample was calculated. 

Concentration of Lactate (~moles/ml); 

(Z) x (1000 / mol. wt. of specific SCF A) x 2.0 

The value of 'Z " the x-axis, was calculated from the standard curve in InStat 

and value 2.0 was derived from ratio ofliquid sample i.e. 1000 ~1/500~l. 

Repeatability ofthe method showed 2.5% error (Lokerse, 1994). 

2.12 Fermentation rate 

The rate of fermentation was estimated by the rate of SCF A accumulation in 

cultures. Quantitative measurement of the fermentation rate was not practical 

with this method but by plotting a graph of concentration of SCF A against the 

time of sampling, it was possible to gain a basic index of the rate of 

fermentation. In this way, the rate of fermentation was estimated by the rate 

of accumulation of SCF A in the cultures at different time points. 

The pattern of the SCFA accumulation varied between cultures. Sometimes a 

plateau occurred and sometimes the accumulation continued up to 24 or 48 

hours. If two curves reached a plateau at different values of SCF A 
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concentration, the lower curve was described as representing lower production 

of SCF A. If one curve had a lower accumulation of SCF A than the other at 

most time points, but did not plateau, and showed evidence of the possibility 

of reaching the final SCF A concentration of the other curve with extended 

fermentation, it was considered to a have a slower rate of fermentation. , 

2.13 Statistical Analysis 

The data of SCF As and lactate were calculated from a calibration curve in a 

statistical computer software package, InStat 2.01. Concentrations and ratios 

of SCF A were calculated by the procedure and formula given in section 

2.12.5. Ratios were the expression of percentage value of individual SCFA of 

the total SCFA. Net total SCFA were calculated by subtracting values of total 

SCFA in control (with no added carbohydrates) cultures from values of 

substrate cultures for each set of incubation. Mean data of SCF A were 

calculated in most cases from five to eight subjects for interpretation of the 

fermentation of different carbohydrates and their mixtures in this study. 

Concentrations of SCF A that could be expected from fermentation of 

hypothetical mixtures were calculated by arithmetical addition of the values 

obtained from fermentation of25mg (Chapter 3 & 4) or 50mg (Chapter 6) of 

such individual carbohydrates. Computer application Excel95 was used for 

general calculation of the results, means and SEM. Minitab 10.5 was used for one 

way ANOV A, two tailed unpaired t-test and simple regression. Means of different 

factors were compared by one way ANOV A and then followed by the comparison of 

individual mean by two tailed t-test. 

The differences in the initial and final pH of the respective cultures were converted 

into a percentage value. 
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3.1 Introduction 

In this chapter, an in vitro fermentation model is validated which will be used 

in all subsequent experiments in the present study. The experiments described 

were designed to explore the limitations of the system and to allow adaptation 

and corrections where necessary. As discussed in Chapter 1, indigestible 

carbohydrates are fermented by colonic bacteria into SCFA and gases. The 

type of substrate has a significant impact on the rate, amount and profile of 

SCF A produced during the bacterial fermentation (McBurney & Thompson, 

1987). 

The fermentation rate of a carbohydrate determines the fate of SCF A produced 

in vivo. In the case of rapidly fermenting carbohydrate, for example lactulose, 

fermentation occurs in the caecum and the proximal colon, and the SCF A are 

readily absorbed in the proximal colon. In contrast, in the case of a slowly 

fermenting carbohydrates, for example ispaghula, fermentation occurs 

throughout the large intestine and SCF A may then either be absorbed at a 

more distal site or they may escape in faeces (Edwards et aI., 1992a). Higher 

production of SCF A by carbohydrate fermentation lowers the pH of the 

lumenal environment (Cummings, 1984; MacFarlane & Cummings, 1991). 

Carbohydrate fermentation and subsequent absorption of SCF A causes the pH 

of colon to change from the lowest (pH 5.4-5.9) in the caecum with a gradual 

rise to about pH 6.6-6.9 towards the distal end (Cummings et aI., 1987). This 

low pH plays an important role in changing the gut bacterial population and 

regulating the bacterial activity in the gut as well as affecting the motility of the 

gut. A lowered pH may affect the ionisation, thus facilitating the absorption, 

of metabolites produced during fermentation in the gut (Sakata 1987). 

113 



Conversely, in vivo fennentation may be affected by host factors such as transit time 

and the dietary habits of the host. In vitro fennentation however may be affected by 

other factors, not critical in vivo, such as changing physiological conditions in 

cultures. 

There are many difficulties in conducting and observing the effects of carbohydrate 

fennentation in humans. It is possible to detennine the extent of degradation of a 

dietary fibre in the human gut by measuring faecal residues of a particular indigestible 

carbohydrate (Prynne & Southgate, 1979; Nyman et aI., 1986; Phillips et aI., 1995). 

However, it is almost impossible to predict the amount of SCF A produced in human 

large intestine due to their extensive absorption and metabolism and the difficulty of 

collecting a sample of colonic contents from the intact gut. The only published data, 

in this regard, have been obtained from the victims of sudden death (Cummings et aI., 

1987). In view of these difficulties, in vitro fennentation methods are useful tools to 

predict the fennentation properties of dietary fibre, including quantitative 

detennination ofSCFA production (McBurney & Thompson, 1987; McBurney& 

Thompson, 1989; Adiotomre et aI., 1990). When the main objective is to study the 

extent of SCF A production and other factors related to fennentation, in vitro batch 

systems are generally adopted. In vitro methods have many limitations but their 

usefulness can be enhanced if such limitations have been taken in account (section 

2.1.2.1 for detailed discussion). 

The experimental conditions, that are usually not controlled critically in in vitro batch 

systems, and may keep changing from start to the end of incubation. This deviation 

from ideal in vivo conditions may affect the growth and 
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metabolic activities of the bacteria in in vitro cultures and the bacterial 

composition may change continuously throughout the entire period of 

incubation, resulting in a marked transformation of the metabolic activities of 

bacteria. For example, higher production and accumulation of organic acids in 

in vitro cultures, results in the depression of pH which may lead to different 

metabolic pathways such as the production of propionate rather than acetate at 

pH 6 as seen previously in continuous culture (Edwards et aI., 1985). The 

changing conditions in in vitro cultures can affect fermentation reactions in 

more than one way, but mostly through influencing the intracellular and 

extracellular enzyme activity. 

3.1.1 Relation of pH to the bacterial metabolism 

Adverse pH affects at least two aspects of a bacterial cell; the functioning of its 

enzymes and the transport of nutrients into the cell. Changes in pH alone can 

affect the physiological activities of faecal bacteria without affecting the 

numeric values of species (Edwards et aI., 1985). These changes in pH may 

make conditions unfavourable for the optimal activity of certain bacterial 

species in in vitro cultures because of the variable growth requirements of 

different bacteria. It seems that pH can affect the metabolic reactions in 

bacterial cell in several ways. 

3.1.1.1 Effect of pH on ionisation of active site of an enzyme 

The catalytic activity of an enzyme may require a specific ionisation state of its 

substrate and the enzyme for their interaction. The ionic character of side 

chains ionisable groups is affected on either side of neutrality, increasing 

denaturation of membrane and transport enzymes (Jay, 1996), and other 
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extracellular and intracellular enzymes. For example, it may require an amino 

group of the enzyme be in the protonated form (-NH3~). Alkaline pH can 

deprotonate such groups. Therefore, pH can affect the ionisation of an active 

site of the enzyme, completely changing the reactivity of the enzyme towards 

the substrate. Although pH is an indicator ofthe presence of acidity in the 

cultures, it is not a true measure of the amount ofthe organic acids present. 

+ 
The pH is a measure ofH concentration and organic acids do not ionise 

completely because they are weak acids with low pKa. Therefore, the 

presence of higher amounts of acids, than indicated by pH, can lead to the 

denaturation of proteins (enzymes) required in metabolic pathways of the 

bacterial cells. Such extreme conditions may result in metabolic inhibition, 

causing a decrease or a halt in the bacterial activity in culture. 

It seems that the influence of pH is mostly extracellular, affecting the enzymes 

related to the extracellular degradation of complex substrate molecules. For 

example, Lactobacilli, Bifidobacteria and Eubacteria species were able to 

maintain an intracellular pH of 6.5 with decreased caecal pH, even in the 

presence ofan extracellular pH of3.5 or less (Padan et aI., 1981). At such 

acidic pH these microorganisms remained good producers of ~ galactosidase 

(Florent et aI., 1985). 

3.1.1.2 Optimum pH requirement of different enzymes 

The pH changes in cultures can affect the reaction velocity due to differences 

in the optimum pH for different enzymes in the metabolic reactions. For 

example, a decreased colonic pH is considered helpful in reducing the synthesis 

of carcinogens such as conversion of primary bile acids into secondary bile 

116 



acids through 7 a de-hydroxylation by the catalytic activity of7 a de-hydroxlase 

(Thornton, 1981; Nagengast et aI., 1988), is inhibited at acidic pH due to optimal pH 

requirement (pH 7-8) of this enzyme. 

With increasing amounts of intermediary and end products and decreasing amounts of 

substrate, bacterial cells may induce (see section 3.1.2) enzymes with very different 

requirements for their activity. This may result in a shift from one metabolic pathway 

to another producing different end products for example production of lactate. 

Generally, glucose is converted into pyruvic acid through glycolysis in the bacterial 

cell. This pyruvic acid is subsequently metabolised into different metabolites like 

acetate, lactate, propionate, butyrate, by different species depending on the conditions 

in culture. For example, in an in vitro study of colonic bacteria, significantly lower 

SCFA were found in cultures at pH 5.0 compared with cultures at pH 6 to 7 (Edwards 

et aI., 1985). Acetate was highest at pH 7 and lower at pH 6 and 5, whereas, 

propionate was higher at pH 6 than at pH 5 or pH 7. 

3.1.1.3 The pH and the bacterial growth 

Changes in pH may make conditions unfavourable for the optimal growth of certain 

bacterial species in in vitro cultures, because the growth rates of different bacteria 

change with variations in growth conditions. Some species, such as lactobacilli, show 

an optimal growth at an acidic pH (5.4 - 6.4), whereas, optimal growth of Clostridium 

species is at higher pH (6.5 - 7.5). A number of Bacteroides species were well 

maintained at all pH from 5 to 7 in continuous anaerobic cultures (Edwards et aI., 

1985). In the same experiment, Lactobacilli and Bifidobacteria species survived in 

cultures at pH 5 but 
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disappeared with increasing pH from 5 to 6 and then to pH 7. In contrast, Cl. 

perfringens disappeared with decreasing pH from 7 to 6 and then to 5. On 

either side ofthe optimum pH range, microorganisms undergo an increased lag 

phase. 

In another competition experiment (Wang & Gibson, 1993), batch fermenters 

were inoculated with actively growing cultures of different bacteria and 

maintained at a pH from 3.5 to 7.0, to determine the effect of pH on bacterial 

growth. B. infantis, E. coli, and Cl. perfringens showed approximately equal 

growth rates at neutral pH (7.0), whereas, growth ofBifidobacterium species 

remained unaffected at lower pH. B. infantis demonstrated the ability to 

withstand the effect of acidic conditions at pH 5.0 and 4.5, but the same pH 

inhibited the growth of E. coli and Cl. perfringens completely. 

The state and stages of life cycle of bacterial cells may be important regarding 

their sensitivity to pH changes. Young cells are more susceptible to pH 

changes than older and resting cells. Similarly an optimal pH range should not 

be accepted as an absolute determinant of growth since it may depend on a 

number of growth factors, such as the types of acid and salt present in the 

medium (Jay, 1996). For example, the growth of certain lactobacilli is 

permitted at lower pH with citric, hydrochloric, phosphoric and tartaric acids 

compared with acetic and lactic acids (Juven, 1976). Therefore, it is important 

to know about the acid that is responsible for the reduction in pH, to determine 

the rate of subsequent growth and minimal pH for a microorganism to initiate 

its growth. Chung and Geopfert (1970) reported a minimal pH of 4.05 for 

salmonella to initiate growth when HCI and citric acids were used, but 5.4 and 
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5.5 when acetic and propionic acids were used respectively. Similarly, 

Alacaligenesfaecalis has been shown to grow over a wider range of pH in the 

presence of 0.2 M NaCL than in the absence ofNaCI or in the presence of 

0.2M sodium citrate (Sherman & Holm, 1922). These authors noted similar 

effects for E. coli. This shows the ability of bacteria to adapt to their 

environment more easily in the presence of one substance (or acid) compared 

with another (or acid). 

3.1.1.4 Relation of pH to the rate of absorption into the cell 

An adverse pH may also affect the transport of nutrients into the cell, as 

bacterial cells tend to have a residual negative charge. Therefore, non-ionised 

compounds can enter cells, whereas, ionised compounds cannot (Jay, 1996). 

Moreover, intracellular reactions require different minerals as prosthetic 

groups to their enzymes and rates of different biosynthetic pathways may be 

determined by the rate of diffusion of such minerals through the cell 

membrane. Thus, transport processes across the cell membrane can also serve 

as pacemakers in changed physiological conditions (Metzler, 1977). Changes 

in pH may affect the absorption of various substrates or minerals and a 

lowered lumenal pH has been shown to play an effective role in mineral 

absorption, probably resulting from increased solubility. A higher solubility of 

calcium was reported in caecal contents of rats in the presence of a low pH 

(Younes et aI., 1996). These authors reported a 5 to 6 fold increase in 

absorption of calcium and increased caecal absorption of magnesium after 

feeding the resistant starch. Such effects on the absorption of colonocytes may 

also be relevant to bacterial cells. 
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3.1.2 De novo enzymes synthesis or repression 

The inhibitory modifications of enzyme activity by different mechanisms, as 

discussed above (sections 3.1.1), are concerned with existing enzymes 

participating in the metabolic reactions. In certain situations, the bacterial cells 

may regulate reactions by controlling the availability of enzymes for particular 

reactions under the stress of changed physiological conditions. This is usually 

accomplished by altering the rate of enzyme synthesis, as the rate ofthe 

reaction is directly proportional to the enzyme concentration at all substrate 

concentrations (Champe & Harvey, 1994). 

The production of some enzymes is referred to as constitutive, implying that 

the enzyme is formed irrespective of the environmental conditions of the cell. 

For example, bacterial cells synthesise the enzymes required to catabolise 

glucose under all conditions of growth. Another group of enzymes, known as 

inducible enzymes, are often produced only in trace amounts and their 

synthesis is regulated by their need for a specific substrate. For example, when 

E. coli cells are grown in a culture containing lactose, without prior exposure 

to this substrate, they exhibit an appreciable lag phase before fermenting the 

lactose at a high rate. However, if cells are already grown in the presence of 

lactose, such cells will met abo lise this disaccharide at almost the same rate as 

they degrade glucose (Stanier et aI., 1986). When E. coli cells are cultivated 

in the presence oflactose, they induce a series of enzymes required for the 

catabolism of that disaccharide, otherwise repressed (Metzler, 1977). A 

comparison of the enzymatic composition of E. coli cells grown separately in 

glucose and lactose, revealed that the enzymes barely detectable in the 

glucose-grown cultures are present in appreciable concentrations in the lactose 
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cultures (Stanier et aI., 1986). Such enzymes include an extracellular 

galactoside permease and an intracellular ~-galactosidase. The former 

facilitates the entry oflactose into the cells and the latter hydrolyses the lactose 

into its constituent monosaccharides. As a result of the release of these 

monosaccharides, three other enzymes (galactokinase, transferase, epimerase) 

are induced to convert galactose into glucose derivative to initiate the 

Embden-Meyerhof pathway. Hence, a single compound lactose, induced two 

enzymes (one extracellular & other intracellular) directly, and three other 

intracellular enzymes indirectly as a consequence for further metabolism of 

galactose (Stanier et aI., 1986). 

The inductive or repressive status of protein ( enzyme) synthesis leads to an 

alteration in the total number of available active sites, rather than influencing 

the efficiency of the existing enzyme molecules. The enzymes, which are 

induced and regulated through synthesis, are often those that are needed at 

only one stage of development or under selected physiological conditions. 

Such alterations in the protein (enzyme) synthesis are very slow (hours to 

days) compared to the instantaneous allosteric changes in the activity (Champe 

& Harvey, 1994). 

The repression of enzymes may be affected through catabolite repression or 

end product repression. When bacterial cells are grown in cultures containing 

a rapidly metabolisable energy source, the increasing intracellular 

concentrations of ATP lead to the repression of enzymes required for the 

catabolism ofless rapidly degrading energy sources. For example, when E. 

coli cells are actively involved in the degradation of glucose, synthesis of the 
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l3-galactosidase, enzyme for the degradation oflactose, is repressed. This 

phenomenon is called catabolite repression, which is the basis of diauxic 

growth, a peculiar growth response to substrate mixtures. In many 

biosynthetic pathways the catalysing enzymes are repressed by the end product 

of a particular pathway. This phenomenon results in the regulation of the rate 

of a metabolic pathway by the intracellular concentration of its end products. 

The rate of such a pathway is higher when the end products are rapidly utilised 

in the further metabolism and vice versa (Starrier et aI., 1986). 

3.1.3 Substrate concentration 

The present study tested different levels of substrate to evaluate any changes in 

in vitro fermentation due to increasing concentration of substrate. The 

intracellular and extracellular availability of bacterial enzymes can be 

influenced by the presence of a particular substrate during in vitro 

fermentation. For example, enzymes are often induced and synthesised in 

accordance with the saccharides available, enabling the bacteria to switch from 

one substrate to another as the diet changes (Salyers & Leedle, 1983; Starrier 

et aI., 1986). Gut bacteria are capable of inducing required extracellular 

enzymes for a particular complex carbohydrate. This has been shown by 

feeding a particular carbohydrate for one week in human subjects (Daly et aI., 

1993; section 3.1.2). 

Similarly, the reaction velocity of different intracellular and extracellular 

enzymes in microbial culture will be affected because the reaction rates of most 

of the enzymes are responsive to changes in substrate concentration. 

Generally, each biochemical reaction proceeds by forming an enzyme-substrate 
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(ES) complex, with an intermediate conversion to enzyme-product (EP) 

complex, which subsequently dissociates to enzyme and product. Although in 

many enzyme catalysed reactions, the equilibrium lies far to one side, and such 

reactions are irreversible, some are freely reversible. In this case, when 

concentrations of substrate and the product are at equilibrium, rates of forward 

and reverse reactions are about the same. In such a case, a metabolic pathway 

can keep going in the forward direction, only if the product is being removed 

rapidly by a subsequent reaction with another enzyme. 

Normally the intracellular levels of many substrates are in the range of the Krn 

(substrate concentration at half maximum reaction velocity), oftheir respective 

enzymes. In the case of higher amounts, binding of a substrate molecule at one 

site on the allosteric enzyme may enhance the catalytic properties of the other 

substrate-binding sites demonstrating co-operativity between the active sites of 

a particular enzyme. This mechanism may operate in the initial hours of 

incubation where higher amounts of substrate may prompt an increase in the 

reaction velocity, bringing the concentration of substrate towards acceptable 

levels. However, this increase in the reaction velocity poses another problem 

in in vitro fermentation. It results in the higher accumulation of end products 

over a short period of time, which may trigger end product feedback inhibition. 

3.1.4 End product inhibition 

To co-ordinate numerous extracellular and intracellular metabolic processes, a 

bacterial cell actively regulates enzymatic activity through certain rapid 

mechanisms, other than those discussed above, without a significant time 

lapse. Only those bacterial enzymes which hold strategic branch points in the 
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complex network of intermediary metabolic pathways and affect flow rate of 

the metabolites through the entire pathway at the first step, are controlled 

through these immediate regulatory mechanisms (Stanier et at, 1986). Many 

enzymes are inhibited by compounds which have sufficiently close steric 

similarity to their respective substrates. Enzymes which have the ability to be 

inhibited or activated by compounds of low molecular weight with no close 

steric resemblance to their substrate are termed allosteric. In metabolic 

pathways, the enzyme that catalyses the first step in a particular series of 

reaction are characteristically allosteric in their nature. Most often the activity 

of the first enzyme unique to a particular metabolic pathway, is checked by 

end-product inhibition or in general terms by feedback inhibition. End product 

inhibition of a particular biochemical pathway is more common than any other 

effect on an enzyme. The end product of a metabolic sequence accumulates 

and turns off the enzyme needed for its own formation (Metzler, 1977). For 

example, in E. coli the conversion of fructose-6-phosphate into fructose-1,6-

phosphate is subjected to allosteric inhibition of the enzyme, 

phosphofructokinase by the phospho-enol pyruvic acid, blocking the 

biosynthetic pathway to its fate of producing the pyruvic acid (Starrier et at, 

1986). 

The enzymatic activity in a chemical reaction may be slowed down or stopped 

by an intermediate product, exerting inhibitory force on the reaction. A 

product often inhibits more than one enzyme in a biosynthetic sequence. When 

the velocity of the reverse reaction is much less than that ofthe forward 

reaction, to maintain the equilibrium of the reaction, the Km of the product has 

to be much lower than that of the forward reaction. In an equilibrated reverse 
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reaction, the product will have higher affinity, i.e. be more strongly bound, for the 

enzyme due to its low Km value, in order to maintain the equilibrium. In such a 

situation, the product will remain tightly bound to the enzyme and since velocity of 

the reverse reaction is low, it will tend to clog the enzyme. Such product inhibition 

may sometimes slow down a whole metabolic pathway. This is a kind of 'one way 

safety valve' that turns off the flow in a metabolic pathway when the concentration of 

its product rises (Metzler, 1977). Thus, inhibition by the intermediate product or end 

product serves to coordinate the flow of substrate or intermediate molecules through a 

series of reactions with the needs of cell for the product of that particular pathway. 

In summary, there are a number of the possible mechanisms regulating enzyme 

activity in closed in vitro batch cultures. Those with immediate effect include the 

amount of substrate, product and end product in cultures with large amounts of 

substrates. The control of synthesis or degradation of the particular enzymes may take 

effect after prolonged fermentation (Champe & Harvey, 1994). 

At present very little is known about the effects of substrate levels (Mortensen et aI., 

1991; Barry et aI., 1995; Stevenson et aI., 1997b) and the possible effect of end 

product on in vitro fermentation of carbohydrates (Edwards et aI., 1985). Therefore, it 

is important to develop a fermentation model for complex carbohydrates, which can 

evaluate the practicable amounts of substrates and their potential impact on SCF A 

production. The present study was designed to examine the in vitro effect of different 

amounts of substrate of a rapidly and a slowly fermenting carbohydrate. A rapidly 

fermenting carbohydrate, lactulose and slowly fermenting ispaghula were used in 

these experiments to model for different types of carbohydrates used in subsequent 
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studies in the present thesis. The impact of different levels of carbohydrates on in 

vitro fermentation of carbohydrates were noted. 

3.1.3 Lactulose 

Lactulose is a semi synthetic disaccharide, which is highly soluble in water. It is 

resistant to the digestive enzymes in the human small intestine, however, lactulose is 

readily fermented by bacteria in the large intestine. Lactulose differs from other 

indigestible carbohydrates due to its simple disaccharide structure, resulting in great 

variability of its fermentative properties. Bacterial fermentation of lactulose yielded 

higher ratio ofn-butyrate compared with pectin and guar gum (Remesy & Demigne, 

1989). Although lactulose produced higher concentrations of acetate, another in vitro 

study confirmed that lactulose was rapidly fermented and produced a SCF A profile 

with n-butyrate predominance (Vince et aI., 1990). Due to its rapid fermentation in 

caecum, lactulose produced high amounts of SCF A and, as a result significantly 

lowers caecal pH from 7.0 to well below 5.0 after 8 days oflactulose maintenance 

(Florent et aI., 1985). Similar low pH was noted in in vitro study (Vince et aI., 1990). 

3.1.4 Ispaghula 

Ispaghula (psyllium) is the husk (epidermis) of seeds from Plantago ovatum, and in 

lesser amounts from Plantago psyllium. Ispaghula is a concentrated mucilage made of 

hemicellulose in the form of a highly branched acidic 
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arabinoxylan (Sandhu et aI., 1981). Ispaghula is a good source of 85 percent water

soluble viscous fibre. Ispaghula is slowly fermented and although, in vitro molar 

ratios of the SCF A for ispaghula vary, a consistent profile of the propionate 

predominance was demonstrated in different laboratories (Mortensen et aI., 1991; 

Stevenson et aI., 1997a). 

3.2 Hypothesis 

This study tested the hypothesis that with increasing amount of substrate, the increase 

in in vitro production of SCF A is not linear due to inhibition of fermentation. 

3.3 Objectives 

The objectives of this study were to determine; 

1) the properties of a rapidly and slowly fermenting carbohydrate in an in vitro 

fermentation system. 

2) the SCF A produced in vitro by different amounts of carbohydrates. 

3) the inhibitory effect in in vitro fermentation with increasing amounts of substrates. 

3.4 Methods 

The specific procedures for this experiment are described in this chapter, whereas, 

general methods are detailed in the Chapter 2. 

3.4.1 In vitro measurement of fermentation 

1) A general description of the in vitro incubation system used in this study is given 

in the section 2.2. Metabolic inhibition or bacterio-static conditions may be 
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expected in in vitro batch cultures. Inhibition of fermentation with increasing 

amounts of substrate can be judged by two methods; 

2) stopping the cultures at different time points. 

3) using the increasing amounts of individual carbohydrates in cultures. 

I have used both procedures in my study, to investigate this phenomenon. 

3.4.2 Subjects used as donors of faecal inocula 

Fresh faeces from five different healthy human subjects were used as source of 

fermenting bacteria for in vitro inoculation (aged between 30-56, all female). 

Although the target was to get a mix of subjects, only women subjects could provide 

faecal samples on the days of the study. Incremental portions of each substrate were 

fermented with faeces from subjects aged between 27-58 years, three men and two 

women, in the second part of the study (section 2.5 for a detailed criterion of the 

donors). 

3.4.3 Fermentation procedure 

Detailed general fermentation procedures are given in Chapter 2 (section 2.2). 

Lactulose and ispaghula (isolated portions 25,50, 75 and 100mg) were used as the 

sole extraneous source of carbohydrate in these experiments. One control culture 

without any added substrate was used separately with each set of incubations to allow 

for the fermentation of the indigestible substrates in the original inoculum. 

Incubation times ofO, 4,8, 12 and 24 hours were used for the cultures with 100mg of 

the substrates. Since the 12 hour point was not practicable and also 
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did not provide any different information about the fermentation pattern in 

initial studies, beyond that provided by 8 & 24 hours points of incubation, 12 

hours incubation cultures were excluded from further experimentation. 

A 2 hours incubation time was substituted for further investigation to allow 

better characterisation of early events. Cultures of small portions of individual 

carbohydrates were stopped at 0, 2, 4, 8 and 24 hours to determine the initial 

rates of production, the extent of production at each time point and the 

maximum production of SCF A. This was to allow the prediction about the site 

of SCF A production in the large bowel. 

The details of the analytical procedure and statistical analysis are the same as 

described in Chapter 2. 

3.4.4 Data presentation 

The values of net total SCF A from the fermentation of small isolated portions 

oflactulose and ispaghula were corrected to 100mg by multiplying with 

respective fractions (i.e. 25mg x4, 50mg x2, 75mg x4/3) to achieve theoretical 

values ofSCFA that could be expected from a hypotheticallOOmg of the 

substrate. The percent inhibition was calculated with values of SCF A from 

25mg of the two substrates at 8 hours, assuming zero inhibition at the 25mg 

level of substrates. 

3.5 Results 

3.5.1 The in vitro fermentation of lactulose and ispaghula 

Lactulose (lOOmg) was fermented rapidly, producing higher concentrations of 

SCFA in initial hours, whereas, ispaghula (100mg) was very slowly fermented, 

producing lower concentrations of SCF A even at 24 hours. Ispaghula did not 
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show any noticeable variation in the amount of SCF A with increasing 

incubation from 4 to 24 hours (Fig. 3.1). 

Although higher concentrations of SCF A were produced by 100mg lactulose 

with increasing incubation from 8 to 24 hours, the gradient became 

progressively less linear after 8 hours of incubation (Fig. 3.1). The rate of 

fermentation in cultures of 100mg lactulose (p < 0.02, between 4 and 8 hours 

of incubation o flactulose ) was significantly more rapid than in the case of 

100mg ispaghula, where there was no significant increase with time. The 

increasing concentrations of the SCF A produced by the fermentation of 100mg 

lactulose at 24 hours were significantly higher from that at 8 hours (p < 0.05), 

but there was no significant difference between 8 and 12 hours of fermentation 

or between 12 and 24 hours of fermentation. 

3.5.2 Fermentation of the incremental portions of lactulose 

Since values of net total SCF A produced by fermentation of small portions of 

ispaghula did not vary appreciably, only values from fermentation oflactulose 

are reported (Fig. 3.2). There was no significant difference in SCFA 

production with increasing amounts 25mg to 75mg oflactulose at 2 and 4 

hours (Fig. 3.2). In general, fermentation of different amounts oflactulose 

started losing linearity in production of SCF A with increasing amounts of the 

substrate after 8 hours of fermentation. There was no significant increase 

between the SCF A produced by the fermentation of different amounts of 

lactulose at 24 hours compared with that at 8 hour but there was a significant 
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difference between concentrations of SCF A at 8 hours and 24 hours in cultures 
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of 100mg lactulose (p < 0.05). This increase in SCFA continued until the end 

of incubation, however, the rate of fermentation was not linear after 4 hours of 

incubation (Fig. 3.2), showing a flattening of the slope from 8 to 24 hours 

(Fig. 3.2). Therefore, net total SCFA produced at 8 hours point of incubation 

were used for further interpretation of the fermentation of two carbohydrates 

(Fig. 3.3). A rapid increase was noted in production ofSCFA by the 

fermentation of different amounts of lactulose at 8 hours. There was a highly 

significant difference between the values of SCF A produced by the 

fermentation of incremental amounts of lactulose at 8 hours of fermentation (p 

< 0.02). Fermentation of 75mg lactulose produced significantly higher net 

total SCF A compared with that produced by the fermentation of 100mg 

lactulose (p < 0.02). However, production ofSCFA continued in the 100mg 

lactulose culture and there was no significant difference between the cultures 
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of7Smg and IOOmg oflactulose at 24 hours offermentation. There was no 

significant difference between the SCFA produced by SOmg and IOOmg 

lactulose at 8 and 24 hours of fermentation. 

3.5.4 Inhibition of SCFA production by increasing amounts of 

substrate 
Net total SCF A from the fermentation of incremental isolated portions ofthe 

lactulose and ispaghula were made up to values that could be expected ii-om a 

hypothetical IOOmg substrate by multiplying with respective fractions 

(2Smgx4, SOmgx2, 7Smgx4/3) to achieve theoretical values ofSCFA that 

could be expected from fermentation of IOOmg of the respective substrate, for 

comparison with the actual values of SCF A from IOOmg ofthe substrate. 

Such theoretical values for the fermentation of lactulose showed that 

production of SCF A progressively decreased with the increasing amounts of 

lactulose at 4 to 24 hours of incubation (Fig. 3.4). 
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The smallest quantity (25mg) oflactulose tested produced SCF A 

concentration (mean value 125. 1 J...lmoles/ml) at 8 hours, apparently reaching 

the maximum extent of fermentation at this time point (Fig. 3.2), showing no 

significant increase in net total SCF A with extended incubation. Thus, value of 

SCF A produced by fermentation of 25mg of lactulose at 8 hours of incubation, 

was selected for further interpretation, using it as the base level data for detennination 

of any reduced SCF A accumulation in cultures of lactulose. 

The impact of substrate concentration was judged by using theoretical values of 

SCF A that could be expected from a hypothetical culture of such composition. 

Theoretical concentrations of SCF A calculated from incremental portions of 

the two substrates, decreased progressively with the increasing amounts of 

substrate at 8 hours (Fig. 3.5). 
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The increase in production of SCF A was not linear with increasing amounts of 

substrate. SCF A production was significantly lower in culture of 100mg of 

these carbohydrates compared with the theoretical concentrations of SCF A 

(value from 25mgx4) of the respective substrates (p < 0.02; Fig. 3.5). 

Although there was no significant difference between the incremental portions 

from 25mg to 75mg made up to 100mg at 8 hours of fermentation, there was a 

significant difference 25mgx4 vs 100mg (p < 0.02), 50mgx2 vs 100mg (p < 

0.02) and 75mgx4/3 vs 100mg (p < 0.02) at 8 hours offermentation. A 

percentage inhibition in the production of net total SCF A was calculated for 

the increasing amounts oflactulose at 8 hours (Table 3.1). 

Table 3.1 The concentrations expected from the fermentation of different 
amounts oflactulose at 8 hours and inhibition (%) of the fermentation. 
Substrate Net total SCF A Inhibition 
(mg) (~mo1/m1) (%) 

25mgx4 

50mgx2 

75mgx4/3 

100mg 

125.1 

112.3 

103.1 

50.7 

10.2 

22.6 

60.2 

The production of SCF A was significantly inhibited in cultures of increasing 

amounts oflactulose (p < 0.02). Fermentation of 100mg lactulose produced 

60.2% less SCF A compared with the theoretically expected value for 100mg 

(25mg x4) at 8 hours (Table 3.1). A highly significant difference was noted 

between the percent inhibition at 50mg x2 vs 75mg x4/3 (p < 0.02), 50mg x2 

vs 100mg (p < 0.02) and 75mg x4/3 vs 100mg (p < 0.02) at 8 hours (Table 

3.1). Although a similar pattern was seen with ispaghula, showing 51.4% 

inhibition in production of SCF A by the fermentation of 100mg of ispaghula 
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compared with theoretical values (25mg x4) at 8 hours, the difference was not 

significant. 

The fermentation of 100mg lactulose, although partially recovered from the 

inhibitory effects with the extended incubation at 24 hours, was still inhibited 

(42.2 %) compared with the theoretical values at 24 hours. 

3.5.3 Fermentation of the two carbohydrates and pH 

The pH markedly decreased with increasing amounts oflactulose as incubation 

progressed. A highly significant difference was noted in the reduction of pH 

between the cultures containing different amounts oflactulose at 8 and 24 

hours (p < 0.02). There were significant differences between the pH in 

cultures containing 25mg to 100mg lactulose (p < 0.05) at 8 hours. However, 

the percent reduction in pH in cultures containing 50 and 75mg lactulose was 

not significantly different from that in cultures containing 100mg at 8 hours. 

Fermentation of25 to 100mg lactulose did not show any significant difference 

in decreasing the pH within cultures between 8 and 24 hours of incubation 

(Fig. 3.6). Cultures containing different amounts ofispaghula showed no 

appreciable differences in the final pH from initial pH. Therefore, the pH in 

cultures of ispaghula was not further reported. 

The reduction in pH increased linearly with increasing amounts of lactulose but 

linearity was lost at 100mg (Fig. 3.7) 
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Fig. 3.6 The decrease in pH (%) by the fermentation of 
different amounts of lactulose with the human faecal 

bacteria. 
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of ill vitro fermentation with the human faecal bacteria. 
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3.6 Discussion 

In this experiment, lactulose and ispaghula were fermented in accordance with earlier 

studies (Vince et aI., 1990; Edwards & Rowland, 1992). Lactulose was fermented 

rapidly producing higher concentrations of SCF A with increasing hours of incubation 

from 0 to 24 hours. However, this increase in the production of SCF A was less linear 

from 4 to 24 hours of incubation for rapidly fermenting carbohydrate. In contrast, 

ispaghula was fermented slowly, producing lower concentrations of SCF A than 

lactulose and showing no appreciable change with increasing hours of incubation 

from 0 to 24 hours (Fig. 3.1). There may be important factors such as initial substrate 

concentration, pH changes and accumulation of fermentation products, influencing 

the rate of in vitro fermentation in these cultures. 

3.6.1 The in vitro fermentation of the two carbohydrates 

The fermentation activity was under the influence of the characteristics of the original 

inoculum in in vitro cultures in the initial hours in our study. However, it appeared 

that amount of substrate was the dominant influence on the fermentation profile in 

later hours until substrate became limiting or physiological conditions in cultures are 

changed for the bacterial activity. Of course, this would depend on the amount and 

fermentability of the substrate used. In the present study, almost all the substrate 

seemed exhausted with the fermentation of the 25mg of the rapidly fermenting 

lactulose, apparently reaching the maximum extent of fermentation by 8 hours of 

incubation (Fig. 3.2). In the case of smaller amounts such as 50mg & 75mg ofthe 

substrate, some substrate may be left for further fermentation after 8 hours of 

incubation. In a previous study of guar gum increased SCF A which occurred after 
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exhaustion of the guar gum was explained by the lysis and re-fermentation after 12 

hours (McBurney & Thompson, 1987). 

In the present study, the linearity in the rate of fermentation was lost with increasing 

amounts of the respective substrate at 8 hours of incubation. The increase in 

production of SCF A with increasing amount of substrate was not linear compared 

with the expected concentrations ofSCFA of the respective substrates (Fig. 3.4). 

Accumulation of SCF A in cultures of 100mg lactulose was reduced by 60.2 % at 8 

hours compared with the expected production of net total SCF A. Accumulation of 

SCFA in cultures of 100mg ispaghula was also inhibited at 8 hours, however, the 

effect was not statistically significant. In our study, although less linear rates of 

fermentation for lactulose were noted even with the longest incubation time (24 

hours), the percent inhibition was reduced at 24 hours and it was not significant when 

the incremental portions were compared. In this context, 8 hours incubation seemed 

logical to be used for further interpretation. 

3.6.2 Reduced SCFA production from the fermentation of lactulose 

Small portions, 25mg, of lactulose were nearly completely fermented at 8 hours due 

to the rapid fermenting nature of the substrate. However, larger amounts showed an 

inhibition in the rate of fermentation (Fig. 3.2). This may be due to the occurrence of 

extreme changes (Edwards & Rowland, 1992) such as increase of acidity and lower 

pH, in cultures containing higher amounts of substrate. The decrease in rate of 

fermentation with the increasing amounts of lactulose may be an indication of an 

inhibition exerted by the changed physiological conditions in cultures of rapidly 

fermenting carbohydrates. Such changed physiological conditions may result in a 

complete transformation of 
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the microbial population in cultures of rapidly fermenting lactulose after 8 

hours of incubation (Wang & Gibson, 1993; Edwards et aI., 1985). 

The production of SCF A progressively declined in our study with increasing 

amounts of lactulose, showing an extreme fall in the concentration of SCF A 

with the fermentation of 100mg lactulose (Table 3.1). The significantly higher 

net total SCFA in cultures containing 75mg compared with 100mg oflactulose 

at 8 hours of fermentation, showed that the fermentation of 100mg lactulose 

was slowed down and did not reach its full potential. On the other hand, net 

total SCF A in cultures of 100mg was not significantly different from that in 

cultures of 75mg lactulose at 24 hours of fermentation. This showed that the 

fermentation of 100mg lactulose continued slowly and approached the values 

for 75mg lactulose after 24 hours of fermentation. This finding is in agreement 

with previously reported studies (Mortensen et al.,1991; Barry et aI., 1995; 

Stevenson et at, 1997b). 

There was no significant difference in the SCF A produced by 50mg compared 

with 100mg lactulose at 8 and 24 hours of fermentation. Thus, we do not lose 

any SCF A, even using 50mg instead of 100mg lactulose. This suggested that 

use of 50mg substrate in in vitro could be an ideal amount in the case of 

rapidly fermenting carbohydrate. In another in vitro study, the production of 

SCF A was almost identical whether the substrate, monosaccharides or 

lactulose, was added in concentrations of 100 or 300mmoVI (Mortensen et aI., 

1988). This showed that amount of substrate is an important determinant in 

the concentrations of SCF A produced by the fermentation of a particular 

substrate. A linear increase in the SCF A production was reported with the 
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substrate concentration up to 30mg/m1 of culture in 24 hours incubation, but this 

linearity was lost with higher concentration of substrates (Mortensen et ai., 1991). 

In another in vitro study, relatively less SCF A were produced with increasing 

amounts of substrate (Barry et ai., 1995). This was a complimentary experiment 

during an inter-laboratories study, using 50, 100 and 200mg of pectin per 10 m1 of the 

culture. These authors found higher but less linear production of SCF A with the 

increasing amounts of substrates. In addition, these authors noted that an increased 

amount of substrate led to a reduced rate of fibre degradation. Similarly, a recent 

study showed that the rate of fermentation is inversely dependent upon the substrate 

mass (Stevenson et ai., 1997b). These authors used 25,50, and 100mg of pectin and 

reported a proportional increase in SCF A production after 24 hours of incubation 

when less substrate was added to culture (Stevenson et ai., 1997b). This indicated an 

inverse relation between the substrate mass and the SCF A production. Although these 

authors suggested accessibility of the substrate, as the likely cause, this may not be 

important with highly soluble and rapidly fermenting pectin, and changing 

physiological conditions may be more important. The accessibility of the substrate, 

however, may be a factor with higher amounts of slowly fermenting carbohydrates 

such as ispaghu1a, as noted in our experiment. 

The amount (Barry et ai., 1995; Stevenson et ai., 1997b) and consequently, the rate of 

fermentation of a particular substrate appeared to be important in in vitro fermentation 

procedures. In the present study, a loss of linearity was noted with much smaller 

amounts than those reported by Mortensen et ai., (1991). This may be due to some 

difference in the fermentation method which is not very clear. 
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The lack of an absorptive epithelial surface in in vitro fennentation models leads to 

the accumulation of excessive amount of SCF A and other end products. The 

accumulating organic acids may change the physiological conditions in cultures and 

may lead to a transfonnation in the bacterial activity. For example, their 

accumulation may cause a depression in the pH of cultures. Such a depression in pH 

was noted also in the present study with the increasing amount of rapidly fennenting 

lactulose (Fig. 3.6). Due to extreme changes in cultures of lactulose the bacterial 

population may undergo a corresponding change in the metabolic pathways, or it may 

lead to bacteriolysis with prolonged time. 

3.6.2.1 Feed back Inhibition 

In the case of high amounts, binding of a substrate molecule on the allosteric site of 

the respective enzyme (refer to section 3.1.3) may enhance the rapid degradation of 

the substrate. Probably this may be true in the initial hours of incubation in the 

present study where higher amounts of the substrates may prompt an increase in the 

reaction velocity, bringing the concentration of substrate towards acceptable levels. 

But this increase in the reaction velocity leads to the high accumulation of end 

products in the fennentation vessels in a very short period of time. The only way that 

an enzymatic sequence could keep going in the forward direction, if an intennediate 

product or end product, was rapidly removed by a subsequent reaction with a second 

enzyme. 

In contrast to in vivo fennentation, there was no absorptive epithelial surface in this in 

vitro fennentation models, resulting in the accumulation of excessive amount of 

SCF A and other end products. Such accumulating organic acids and other end 
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products, may exert the end product feedback inhibition in an allosteric fashion 

(Champe & Harvey, 1994; Metzler, 1977) on the intracellular andlor extracellular 

enzymes, thus affecting the different fermentation reactions in in vitro cultures (for 

details section 3.1.4). The changed physiological conditions and accumulating 

organic acids would reduce the subsequent SCF A production in in vitro cultures. 

However, it is not clear how such changes would inhibit carbohydrate degradation. 

Indeed the normal problem with rapid fermentation is the excessive accumulation of 

intermediary products such as lactate. Therefore, it is not very likely that SCF A 

accumulation will inhibit carbohydrate fermentation directly. 

3.6.2.2 Low pH and other regulatory mechanisms 

Higher concentrations of SCF A were noted in cultures of lactulose in the present 

study and there was a corresponding decline in the pH with the increasing amounts of 

lactulose in cultures (Fig. 3.6). The greatest decrease was noted in pH at 8 hours in all 

cultures. There was no significant difference in the reduction of pH between 8 and 24 

hours in cultures containing 25 to 100mg oflactulose (Fig. 3.6). 

The bacterial population may undergo a corresponding change, such as bacteriolysis 

and re-fermentation (McBurney & Thompson, 1987), due to such extreme changes in 

pH of cultures containing rapidly fermenting lactulose. Such low pH has been 

implicated in different metabolic pathways or change in microbial populations 

(Edwards et al., 1985; Wang & Gibson, 1993). Although apparently low pH seemed 

the main effector in the inhibition of lactulose fermentation in the present study, it is 

difficult to separate the effect of pH from other factors, as other factors at the same 

pH may be very important (Sherman & Holm, 1922; Chung & Geopfert, 1970; Juven, 

1976) and such factors may playa significant role in the varying abilities of organic 

acids as growth inhibitors. A low pH may have favoured other metabolic routes 
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through requirements of optimal pH for different necessary enzymes, thus re-routing 

the reactions in cultures. In this way, different metabolic pathways may have utilised 

the substrate or organic acids already present in cultures, producing different 

metabolites (Jay, 1996). Consequently, there may be a decrease in the SCF A 

concentration, resulting in an increased pH with extended incubation (Fig. 3.6). 

Therefore, the increase in pH noted at 24 hours of incubation may be a function of re

fermentation of SCF A in other metabolites. Other effects of low pH such as effects 

on the metabolic pathways and cell transport are discussed in the introduction to this 

chapter. Such effects could not be examined in this simple in vitro model. 

3.6.3 Fermentation of slowly fermenting ispagbula 

Ispaghula showed an insignificant reduction in the production of SCF A at 8 hours. 

There was no marked difference in fermentation with increasing amounts of the 

substrate up to 4 hours of fermentation and a linear increase was noted in the SCF A 

production with 25-75mg ispaghula. Although there was no apparent inhibition with 

25-7 5mg substrate at 24 hours of incubation, the rate of fermentation of 100mg 

ispaghula was not linear even at 24 hours of incubation. The final pH was also not 

appreciably changed from initial pH. The bulking properties of higher amounts of 

ispaghula may hinder the accessibility of the fibre to fermenting bacteria. 

3.7 Conclusion 

In this study of the in vitro model, there was an accumulation of SCF A and organic 

acids in culture vessels through rapid fermentation of large amounts of lactulose, 

resulting in a lowered pH. A reduced SCF A production was noted with the increasing 

amounts oflactulose. No evidence for the exact mechanism was identified but 

decreasing pH may have a possible role. The impact of carbohydrate level and 

catabolic repression could not be separated in this study. However, this study allows 
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a proposal for the best substrate to be used in such models to avoid any artefactual 

decrease in SCF A production. There was no significant difference in the SCF A 

produced by 50mg compared with 100mg lactulose at 8 and 24 hours of fermentation, 

showing the possibility of obtaining similar results, using 50 to 100mg lactulose. As 

previous studies have indicated that lower amounts do not give reproducible results 

(Mortensen et aI., 1991), 50mg of substrate would therefore be the most appropriate 

amount for such rapidly fermented materials in in vitro models such as this. 

Although all these experiments were performed concurrently and information from 

one experiment could not be taken in account in the next experiment, in the next 

chapter mixture of lactulose and ispaghula is described taking the reduced production 

of SCF A into account. 
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4.1 Introduction 

In this chapter, I will discuss a study of the in vitro fermentation of mixtures of 

two indigestible carbohydrates with different fermentation properties, and their 

interactive effect in combination. Most studies of fermentation have 

considered a single source of carbohydrate. However, it is likely that when 

two carbohydrates of different physical properties are combined, the final 

fermentation characteristics will result not simply as an addition of the 

fermentation of each but from an interaction of the properties of the two 

component carbohydrates. Indigestible carbohydrates differ in their 

physicochemical characteristics, which can result in great variability in their 

fermentative properties. This difference in their physicochemical 

characteristics is due to the different sugar components, the bonds between 

individual sugar residues and the final three dimensional structure. 

The rates of production, amounts and types of SCF A are dependent on the 

type and chemical nature ofthe substrate fermented by colonic bacteria. For 

example, starch (Englyst et aI., 1987), resistant starch (Englyst & MacFarlane, 

1986), oat bran (McBurney & Thompson, 1987) and lactulose (Vince et aI., 

1990) produced proportionally more n butyrate during fermentation, whereas 

ispaghula (Edwards et aI., 1992a), gum arabic, tragacanth, xanthan, Gellan 

(Adiotomre et aI., 1990), guar gum (Adiotomre et aI., 1990; McBurney & 

Thompson, 1987), arabinogalactan (Englyst et aI., 1987) produced 

proportionally more propionate. 

Some carbohydrates, such as ispaghula, are slowly fermented, resisting 

bacterial degradation in the human gut (Edwards & Eastwood, 1992; Morteau 
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et aI., 1994), whereas others including lactulose and gum arabic, are rapidly 

fermented (Vince et aI., 1990). The rate offermentation determines the fate of 

SCFA in vivo. In the case of rapidly fermenting carbohydrate, for example 

lactulose which is fermented in the caecum, SCF A are readily absorbed in the 

proximal colon and become available to the body. In the case of slowly 

fermenting carbohydrates, for example ispaghula which is fermented 

throughout the large intestine, SCF A may either be absorbed at a more distal 

site or they may escape in faeces (Edwards et aI., 1992a). 

In Chapter 1, the health benefits of fermentation were discussed. It is unlikely 

that anyone indigestible carbohydrate will in isolation provide optimal 

conditions for health such as higher SCF A and low pH at more distal sites in 

the human gut. Rather a more logical approach is to study the effects of 

combining different carbohydrates. It is important to evaluate the fermentation 

of mixtures of complex carbohydrates and their potential impact on SCF A 

production. At present very little is known about the effects of mixtures of 

carbohydrates during fermentation (Washington et aI., 1998). The present 

study was designed to examine the effect of a slowly fermenting carbohydrate 

on the fermentation of rapidly fermenting carbohydrate in vitro. I selected 

lactulose, a very rapidly fermenting carbohydrate, in combination with slowly 

fermenting ispaghula to determine the impact on fermentation of carbohydrates 

in mixtures. This choice of carbohydrates would also provide a butyric acid 

predominant carbohydrate and a propionic acid predominant carbohydrate. 

The known knowledge of the fermentation of these individual carbohydrates is 

discussed below; 
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4.1.1 Ispagbula 

Ispaghula husk, the epidermis of seeds of Plantago species, is a concentrated 

mucilage made of hemicellulose in the form of a highly branched acidic 

arabinoxylan (Sandhu et aI., 1981). Ispaghula husk is a good source of soluble 

viscous fibre. The component polysaccharides make viscous solutions over a 

wide range of concentrations. Being a structural component of the plant, 

ispaghula forms a matrix, when hydrated, and this matrix resists hydrolysis 

(Washington, 1998). Similarly, Ispaghula, being a very slowly fermenting 

substrate, resists the degradation by colonic bacteria in the human gut 

(Edwards & Eastwood, 1992; Marteau et at, 1994). In rats, ispaghula was 

fermented throughout the colon and increased the volume of colonic contents, 

resulting in increased stool weight (Edwards & Eastwood, 1992) and faster 

transit of digesta through the gut. Degradation of ispaghula is usually 85-

100% (Hill 1995b; Prynne & Southgate, 1979). Ispaghula showed paradoxical 

properties of treating constipation (Kumar et aI., 1987) and improving chronic 

diarrhoea (Qvitzau et aI., 1988). These contrasting effects are due to its 

property of increasing the volume and viscosity of gut contents, and ultimately 

increasing stool output because of its high hemicellulose content (Williams & 

Olmsted, 1936) which holds a lot of water, approximately 7g per g fibre 

(Personal communication-Dr C A Edwards). As discussed previously, 

ispaghula has a consistent SCF A profile of propionate predominance (Bovlquin 

et at, 1993; McBurney & Thompson, 1987; Mortensen et at, 1988; 

Mortensen et aI., 1991). 
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4.1.2 Lactulose 

Highly water soluble lactulose, although resistant to the digestive enzymes in 

the human small intestine, is rapidly fermented by the colonic bacteria. 

Lactulose, compared with pectin and guar gum, yielded a higher ratio of n

butyrate after bacterial fermentation (Remesy & Demigne, 1989; Vince et ai., 

1990), although Wang & Gibson (1993) showed a higher acetate profile. Due 

to rapid fermentation of lactulose in the caecum, high production of SCF A 

significantly lowered caecal pH (Florent et ai., 1985). Rapid fermentation of 

lactulose also produces gases which may speed up intestinal transit. Another 

factor, which contributes to the speed of transit through the gut, is the 

retention of fluid by lactulose in the small intestine. Lactulose acts as an 

osmotic laxative if intake exceeds the fermentation capacity of the colonic 

flora (Read et ai., 1980). This limits the use oflarge amounts oflactulose in 

vivo. Rapid fermentation in in vitro cultures increases the production of 

gases, improves anaerobic conditions in cultures and also stimulates the 

growth of new bio-mass if the fermentation is taking place in the presence of 

an abundant source of nitrogen. Lactulose was used as a marker of mouth to 

caecum transit time because of its rapid fermentation in the caecum (Levitt et 

ai., 1987; Anderson et ai., 1981; Zavoshy, 1998). 

4.1.3 Expected effects of carbohydrate interaction 

The physical properties of carbohydrates in a mixture can be very important 

under in vitro and in vivo conditions. Although influence of the changed 

physiological conditions on SCF A production is a very important factor in in 

vitro cultures (Chapter 3), it may not be as effective in vivo. In the nonnal 

gut, the organic acids and other end products are rapidly cleared by the colonic 
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mucosa and nonnally there is no accumulation of the end products. Although 

lactulose significantly reduced colonic pH due to accumulation of acidic end 

products through its rapid fennentation (Bown et aI., 1974), the changed 

physiological conditions are unlikely to a sufficient extent to reduce the rate of 

colonic fennentation over a prolonged time period. Therefore, in vivo 

conditions we expect that the physical properties of the component 

carbohydrates will be more effective in the interaction of the carbohydrates in 

mixtures. In this regard, the most important factor is the physical accessibility 

of the substrate to the enzymes. 

A slowly fennenting carbohydrate such as ispaghula could interfere with the 

fennentation of a rapidly fennenting carbohydrate such as lactulose in a 

mixture by hindering its accessibility for bacterial enzymes. In contrast, a 

rapidly fennenting carbohydrate may inhibit or stimulate the bacteria which 

could fennent a slowly fennenting carbohydrate. For example, the rapid 

fennentation of lactulose stimulates the growth of new bacterial mass which 

may result in an increase of bacterial cells with more efficient fennentative 

action on the slowly fennenting ispaghula. 

4.1.4 The fermentation and interaction of carbohydrates in 

mixtures 

As there are many difficulties in measuring fennentation, especially the 

quantitative detennination of SCF A production in humans (Chapters 2), I 

adopted the in vitro fennentation model which is described in detail in 

previous two chapters. Similar in vitro fennentation models have been used 

in different studies for quantitative detennination of SCF A produced, and 
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prediction of other fermentation characteristics of different indigestible 

carbohydrates (McBurney & Thompson, 1987; McBurney & Thompson, 

1989; Adiotmre et aI., 1990). However, such an in vitro fermentation model 

has its own limitations which may have an impact on the fermentation 

reactions in cultures (detail in Chapter 3). Despite this limitation, such model 

is useful for the quantitative prediction of the SCF A produced by the 

indigestible carbohydrates and its usefulness could be enhanced if such 

limitations have been taken in account. This is now possible because of the 

study presented in the previous chapter. 

4.2 Hypothesis 

In this study, I tested the hypothesis that a slowly fermenting carbohydrate 

affects the fermentation of a rapidly fermenting carbohydrate using two 

carbohydrates, ispaghula and lactulose, with extremely different fermentation 

characteristics. Both carbohydrates were tested in isolation and in 

combinations of different proportions. 

4.3 Objectives 

The objectives of this study were to determine; 

1) the fermentation properties of a rapidly and a slowly fermenting 

carbohydrate in an in vitro fermentation system. 

2) the SCF A produced in vitro by mixtures of these two carbohydrates 

3) the additive or interactive effect of one carbohydrate on the other in 

mixture during in vitro fermentation. 
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4.4 Methods 

The specific procedures for this experiment are described in this chapter, 

whereas, general methods are detailed in Chapter 2. 

4.4.1 In vitro measurement of fermentation 

A general description of the in vitro incubation system used in this study is 

given in Section 2.2. The impact of the interaction of the fermentation of two 

carbohydrates can be judged by two methods; 

l) stopping cultures at different time points. 

2) using mixtures containing the component carbohydrates in different ratios in 

cultures. 

I have used both procedures in my study, to investigate this interaction 

between the two carbohydrates (detailed discussion of the method is given in 

Chapter 2). 

4.4.2 Subjects used as donors of faecal inocula 

Fresh faeces from human subjects were used as a source of fermenting bacteria 

for in vitro inoculation (age and gender details are given in section 3.4.2). 

4.4.3 Fermentation of mixtures of substrates in the cultures 

Details of the fermentation procedure are the same as described in Chapter 2. 

Lactulose and ispaghula were used as the sole extraneous source of 

carbohydrate in these experiments. Ispaghula and lactulose were incubated 

individually on their own and in combinations of25:75, 50:50 and 75:25 

(Lactulose: Ispaghula) making a totall OOmg of substrate in each culture. A 

control culture, without carbohydrate substrate, was incubated with each set of 

cultures to allow for fermentation of endogenous carbohydrates in faeces. 
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Cultures were stopped at different time points of 0, 4, 8, 12 and 24 hours to 

determine the initial rates of production, the extent of production at each time 

point and the maximum production of SCF A. 

Data from fermentation studies of smaller portions of the two substrates (refer 

to section 3.4.3) were used in this study. In this second set of experiment 

separate 25,50 and 75mg portions ofispaghula and lactulose were fermented. 

Values of net total SCFA from the fermentation of 25mg portions oflactulose 

and ispaghula were used to calculate the theoretical values of SCF A that could 

be expected from a hypothetical 100mg mixture of such composition. Cultures 

were stopped at 0, 2, 4, 8 and 24 hours (section 3.4.3). The procedure and 

calculation for determination of SCF A by GLC were same as described in the 

Chapter 2 of general methods. Statistical analysis were performed as detailed 

in section 2.14. 

4.5 Results 

4.5.1 Fermentation of individual carbohydrates 

4.5.1.1 Net total SCF A 

Values of net total SCF A were used to characterise the fermentation pattern of 

the two individual carbohydrates in this experiment. Higher concentrations of 

net total SCF A showed that 100mg lactulose was fermented significantly more 

rapidly than ispaghula. Fermentation oflactulose showed a linear increase in 

the production of net total SCF A up to 8 hours, but then the production 

progressively lost its linearity (Fig.4.1). The increasing concentration of SCF A 

produced by the fermentation of 100mg lactulose were significantly higher at 8 
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hours compared with that at 4 hours (p< 0.02) and similarly at 24 hours 

compared with that at 8 hours (p < 0.05). There was no 

significant difference in the SCF A in cultures containing 100mg lactulose at 8 

and 12 hours, and at 12 and 24 hours of fermentation (Fig. 4.1). In contrast, 

ispaghula did not show appreciable change in total SCF A with increasing 

incubation, exhibiting the property of very slow fermentation over 24 hours. 

Production of SCF A by ispaghula between 4 and 24 hours of faecal incubation 

were practically the same (Fig. 4.1). Patterns of fermentation were described 

by plotting net total SCF A produced at different time points, against the 

amount of the lactulose in the substrate mixture (Fig. 4.2). 

Although production of net total SCF A increased at 4 hours compared with 0 

hours of incubation, there were no differences with increasing amounts of 

lactulose in the substrate mixtures at 4 hours of incubation. All the substrates 

produced the same level of net total SCFA irrespective of the composition of 

substrate mixture at 4 hours (Fig. 4.2). These cultures started showing 

increased production of net total SCFA with increasing amounts oflactulose in 

substrate mixtures after 4 hours of incubation. Thus the differentiating 

changes in net total SCFA, corresponding to the composition of the substrate 

mixtures, were seen at 8 hours of incubation for the first time. 

4.5.1.2 J\cetate 

Lactulose was rapidly fermented producing significantly higher concentrations 

of acetate than ispaghula and control cultures at 4 to 24 hours of incubation (p 
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< 0.02 at 8 and 24 hours; Fig. 4.3). Ispaghula showed 
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higher concentrations of acetate at 0 hours because ispaghula was found to 

have a small amount of acetate present before fermentation. Lactulose 

produced significantly higher acetate ratios compared with ispaghula at 24 

hours (p < 0.02). The acetate ratios by lactulose peaked at 8 hours and then 

declined until 24 hours. Acetate ratios for ispaghula showed a gradual decline 

with increasing fermentation (FigAA). 

4.5.1.3 Propionate 

The amount of propionate was significantly higher in cultures containing 

lactulose compared with cultures ofispaghula at 8 and 24 hours (p < 0.02), 

however, ispaghula did not produce markedly different propionate compared 

with the control cultures at any time (Fig. 4.5). 

There was no significant difference in the ratio of propionate between 

ispaghula and lactulose at 8 and 24 hours. The ratios of propionate produced 

by lactulose decreased progressively with increasing incubation, these ratios 

were not significantly different at 24 hours compared with that at 8 hours (Fig. 

4.6). 

4.5.1.4 n-Butyrate 

Fermentation oflactulose produced significantly higher concentrations of n-

butyrate than cultures of ispaghula (p < 0.02) at 24 hours. Ispaghula did not 

produce appreciably different concentrations of n-butyrate from control 

cultures at any time (Fig. 4.7). 

There was a corresponding increase in the ratio ofn-butyrate (Fig. 4.8) with 

declining ratio of acetate (Fig. 4.4)in cultures oflactulose from 8 to 24 hours. 
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ratio of n-butyrate which was higher but not significantly different from the 

ratio of propionate at 24 hours of fermentation (Fig. 4.6, 4.8). Ratios ofn

butyrate were significantly higher in cultures containing lactulose compared 

with ispaghula at 24 hours of fermentation (p < 0.02). Ispaghula did not show 

an appreciable change in the ratios ofn-butyrate with increasing fermentation, 

rather this ratio ofn-butyrate was significantly lower compared with the 

control cultures at 24 hours of fermentation (p < 0.02). Ispaghula produced 

significantly lower ratios of butyrate compared with propionate at 8 and 24 

hours (p < 0.02; Fig. 4.6 & 4.8) 

4.5.2 Fermentation of lactulose in combination with ispaghula 

4.6.2.1 Net total SCF A 

All substrates produced similar net total SCFA irrespective of the composition 

of the substrate mixtures at the 4 hours time point. Significant differences 

were noted in mixtures at 8 and 24 hours offermentation (p < 0.05 & p < 0.02 

respectively) and a corresponding increase was noted in the production of net 

total SCFA with the increasing amounts oflactulose in substrate mixtures for 

the first time (Fig. 4.2 & 4.9). 

Mixture with 50mg of each substrate produced net total SCF A which were not 

significantly different compared with 25mg and 75mg lactulose in combination 

with ispaghula, these values in mixture containing 50mg of each component 

carbohydrates were significantly different from 100mg of ispaghula (p<0.02) 

and 100mg oflactulose at 8 hours (p<0.05). Mixtures containing either 75mg 

lactulose or 75mg ispaghula in combination with 25mg complimentary 
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carbohydrate did not produce significantly different net total SCFA from 100mg of 

the respective major constituting carbohydrate. 

4.5.2.2 ~cetate 

Acetate production was significantly lower (p < 0.02) in mixtures containing 

25mg (p < 0.02) and 50mg (p < 0.05) oflactulose than cultures containing 

100mg lactulose but there was no significant difference between the 

concentrations of acetate produced by mixture of75mg lactulose and 25mg 

ispaghula compared culture containing 100mg lactulose at 8 hours of 

fermentation. In contrast, the mixtures containing 25mg lactulose and 75mg 

ispaghula produced significantly higher acetate than 100mg ispaghula at 8 

hours (p < 0.02; Fig. 4.10). 
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The concentration of acetate was not appreciably different at 4 hours with 

increasing amounts of lactulose but this concentration was significantly 

different at 8 hours (p < 0.02). Acetate concentrations produced by mixture 
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containing 2Smg lactulose and SOmg lactulose, and similarly acetate 

concentrations in mixed substrate cultures of sOmg and 7Smg lactulose in 

combination with ispaghula were not significantly different from each other. 

However, mixture containing 7Smg lactulose produced significantly higher 

acetate concentrations than mixture containing 2Smg lactulose in combination 

with ispaghula (p < 0.02) after 24 hours fermentation (Fig. 4.10). Mixture 

containing 2Smg lactulose and 7Smg ispaghula produced significantly higher 

acetate compared with 100mg ispaghula at 24 hours (p < 0.02). Cultures 

containing SOmg of each carbohydrate did not produce significantly different 

acetate from cultures of 100mg lactulose (p < O.OS). 

There was no significant difference in acetate ratio in the three mixtures and 

the individual component carbohydrates at 8 hours of fermentation. These 

ratios were slightly higher at 8 hours compared with 12 and 24 hours, except 

for mixture containing SOmg of each carbohydrate (Fig. 4.11). Ratios of 

acetate were significantly higher in mixtures compared with cultures of 100mg 

ispaghula (p < 0.02). 

4.5.2.3 Propionate 

Considering the pattern of fermentation in Figures 4.S and 4.12, the 

concentration of propionate produced by different substrate mixtures showed 

that fermentation patterns were more under the influence of amount of 

lactulose in mixtures (Fig. 4.12). The concentration of propionate was 

significantly different in mixtures from that in cultures containing 100mg 

component carbohydrates at 8 hours (p < 0.02). Cultures containing 100mg 

lactulose produced similar propionate to that produced by mixtures containing 
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50mg of each carbohydrate at 8 hours. In contrast, the same combination 

(50mg of each) produced significantly higher propionate than 100mg ispaghula 

at 8 hours of fermentation (p < 0.02). Significant differences were also noted 

between mixtures and the individual component carbohydrates at 24 hours of 

fermentation. 

There was no significant difference in the ratio of propionate in cultures of 

mixed substrates and individual component carbohydrates (Fig. 4.13). 

4.5.2.4 n-Butyrate 

The concentrations of n-butyrate, produced by the fermentation of different 

mixtures, were more differentiating according to the composition of mixtures 

after 8 hours (Fig. 4.14). There was no significant difference in the 

concentrations ofn-butyrate in different cultures at 8 hours of fermentation, 

however, this difference was significant in different cultures at 24 hours (p < 

0.02). Mixture containing 75mg oflactulose and 25mg ispaghula produced 

significantly lower n-butyrate than 100mg lactulose at 24 hours (p < 0.02). 

This mixture produced significantly higher n-butyrate at 24 hours than at 8 

hours (p < 0.02). Similarly, mixtures containing 25 and 50mg oflactulose in 

combination with ispaghula produced significantly higher n-butyrate at 24 

hours than at 8 hours (p < 0.02). Mixture of25mg oflactulose and 75mg 

ispaghula produced significantly higher n-butyrate compared with 100mg 

ispaghula at 24 hours (p < 0.02). In contrast, mixture of 50mg of each 

carbohydrate produced significantly lower n-butyrate than 100mg lactulose 

alone at 24 hours. 
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There was no significant difference in the ratio of n-butyrate in cultures of 

mixed substrate and of individual carbohydrates at 8 hours of fermentation. 

However this difference was significant at 24 hours (p < 0.02). Significantly 
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higher n-butyrate ratios were produced in cultures containing 100mg of 

lactulose compared with mixture of50mg each carbohydrate (p < 0.02). 

There was no significant difference in the ratio ofn-butyrate in cultures 

containing 25 to 75mg lactulose in mixtures at 24 hours and 8 hours (Fig. 

4.15). When the pattern of fermentation was compared (Figs 4.8 and 4.15), the 

ratio of n-butyrate and the pattern of production were seen to be more under 

the influence of increasing amounts of lactulose than ispaghula. 

4.5.3 Production of branched-chain SCFA 

The ratios of branched iso-butyrate, iso-valerate and n-valerate, produced by 

the fermentation of nitrogenous substances, increased from the lowest amount 

in lactulose to higher amounts in ispaghula and control cultures. Lactulose 

produced negligible ratios (1 %) of branched SCF A, whereas, ispaghula 

produced higher ratios (nearly 15%) ofthese SCFA after 24 hours of 

incubation. Similarly, mixtures showed an increased production of branched 

SCF A with increasing amounts of ispaghula. 

4.5.4 Lactate 

The levels of lactate produced by different substrates in this study are reported 

in Table 4.1. Production oflactate was high in cultures containing high 

amounts of lactulose at 4 and 8 hours. 
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Table 4.1 Concentrations Lactate (/lmoVrnl) produced by the in vitro fermentation oflactulose, ispaghula and their 

combinations with the human faecal bacteria (Medians and ranges). 

Substrates o hours 4 hours 8 hours 12 hours 24 hours 

Control 0 0 0 1.3 0 
(0 - 2.2) (0 - 4.6) (0 - 2.6) (0) 

Lactulose 0 1.8 6.4 0 0(0) 
(0 - 2.5) (0 - 6.7) (0.8-12.4) (0 - 4.6) 

Ispaghula 2.8 0 0 0 0 
(0 - 7.6) (0 - 4.2) (0 - 4) (0 - 0.6) (0 - 1.8) 

LI 2575 0 0 0 0 0 
(0 - 1.3) (0 - 0.7) (0 - 1.5) (0) 

LI 5050 0 0 0 0 0 
(0 - 2.6) (0 - 2.6) (0 - 3.3) (0 - 1.9) 

LI7525 0 1.5 5.0 0 0 
(0 - 2.8) (0 - 6.3) (0 - 9.2) (0 - 1.5) (0 - 3.9) 

U- represents mixtures oflactulose and ispaghula with different compositions. 
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4.5.5 Changes in pH of cultures 

Cultures of ispaghula did not show any noticeable decrease in pH even after 8 

& 24 hours of fermentation, therefore, these results are not reported (Fig. 

4.16). 
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Fig. 4.16 The decrease in pH (%) by the fermentation of 
different amounts of lactulose (L) in combination with 
ispaghula (Isp) with the human faecal bacteria . 

A corresponding decrease in pH was noted with increasing amounts of 

lactulose in cultures at all incubation times. This decrease was significantly 

different between incremental portions of lactulose in cultures at 8 and at 24 

hours (p < 0.02). The percent pH reduction was significantly greater, with the 

increasing amounts oflactulose in cultures from 25mg to 75mg lactulose in 

combination with ispaghula at 8 hours offermentation (p < 0.02). There was 

no significant difference in the pH between cultures of75mg lactulose and 

25mg ispaghula and cultures of 100mg lactulose at 8 hours. 

Mixtures of25mg lactulose and 75mg ispaghula did not show any marked 

decrease in pH after 4 hours of incubation, whereas, cultures with 75mg and 
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100mg lactulose in mixtures, showed a greater decrease in pH at 8 hours of 

incubation but no significant change thereafter. The decrease in pH of mixtures 

containing 50mg of each carbohydrate remained consistent in the subsequent 

incubation compared with that in other mixtures (Fig. 4.16). 

4.5.6 Interaction of lactulose and ispagbula in mixture 

In view of the observations in the previous and current chapters, results at 8 

hours of incubation will be used for comparison and interpretation of different 

combinations ofthe carbohydrates. In the previous chapter, fermentation rates 

of the two carbohydrates were inhibited with increasing amounts of substrate 

(Fig. 3.6; Section 3.5.3). Further observations and comparison of actual 

mixtures with theoretical mixtures of the two carbohydrates revealed that there 

was more inhibition than could be explained by rapid fennentation of increasing amounts 

140 of substrate or low pH. 
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In the current chapter, we tried to determine any change in the fermentation 

rate of one carbohydrate under the influence of a second carbohydrate present 

in the mixture. Such interaction was judged by using values of net total SCF A 

from 8 hours fermentation ofthe two carbohydrates. Net total SCF A derived 

from 8 hours fermentation of 25mg of each carbohydrate were used to 

calculate theoretically expected values of net total SCF A for 100mg of mixed 

substrates (refer to section 3.5.4). These expected values of net total SCFA in 

theoretical mixtures, were significantly higher (p < 0.02) than the actual values 

of SCF A in cultures containing corresponding amounts of lactulose in actual 

mixtures (Fig. 4.17). 

The net total SCF A produced by the actual mixtures lost their linearity 

progressively, whereas, theoretical values of such mixtures were linear with the 

increasing amounts oflactulose. The pattern of increasing net total SCFA 

produced by the actual mixtures was not the same as that shown by the 

expected values of SCF A. The gradient of production of SCF A, became less 

sharp progressively with increasing amounts of lactulose in actual mixtures of 

the two carbohydrates. The difference between the actual and the expected 

values of SCF A gradually increased with increasing amounts of lactulose, 

especially at 75mg and 100mg oflactulose, (Fig. 4.17). This situation revealed 

an inhibition of the fermentation in the actual mixtures of the two 

carbohydrates. 

The actual values of net total SCF A produced by the fermentation of lactulose 

in different combinations with ispaghula were corrected for the percent 

inhibition that may be expected resulting from the inhibitory effects of 
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increasing amounts oflactulose (Fig. 3.6; Section 3.5.3). Such corrected 

values of net total SCF A in mixtures of lactulose and ispaghula were 

significantly lower (p<O.05) than the actual values from individual incremental 

portions oflactulose in cultures (Fig. 4.18), revealing the existence of another 

inhibitory force affecting the rate of lactulose fermentation in mixtures. 
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The percentage inhibition after substrate concentration had been taken into 

account revealed inhibition oflactulose fermentation with increasing amounts 

of ispaghula in mixtures, showing an influence due to the physical presence of 

ispaghula (Fig. 4.19). 

There was a progressive decrease in the production of net total SCF A by the 

fermentation of lactulose with increasing amounts of ispaghula in mixtures. 

This SCF A lowering effect is more noticeable with 75mg ispaghula in mixtures 
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(44.4 % inhibition) compared with the 38.4% inhibition exerted by the 

presence of25mg ispaghula. 
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Fig. 4.19 Percent inhibition of latulose fermentation by the 
presence of ispaghula in mixed substrate cultures incubated 
with faecal inoculum for 8 hours. 

In summary, the fermentation of highly fermented lactulose was inhibited by 

increasing amount oflactulose (refer to section 3.6.3) as well as by the 

physical presence of slowly fermenting ispaghula. 

4.6 Discussion 

In this study 100mg substrate was used by combining rapidly fermenting 

lactulose and the slowly fermenting ispaghula in different proportions. 

4.6.1 Fermentation of individual carbohydrates 

4.6.1.1 Net total SCFA 

This study confirmed earlier reports about the general fermentation 

characteristics and SCF A profile of these two individual indigestible 

carbohydrates (Vince et aI., 1990; Edwards et aI., 1992a; Edwards & 
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Eastwood, 1992; Morteau et aI., 1994). Lactulose was fermented rapidly 

producing higher concentrations of SCF A at all times. Ispaghula was 

fermented very slowly, producing small concentrations of SCF A even at 24 

hours of fermentation. This slowly fermenting property of ispaghula is in 

agreement with the other studies (Edwards & Eastwood, 1992; Morteau et aI., 

1994). Lactulose produced a higher proportion ofn-butyrate in culture of24 

hours (Fig. 4.8), whereas, ispaghula produced significantly higher ratios of 

propionate compared with butyrate at 8 and 24 hours. 

Fermentation oflactulose was in two phases. The first phase was up to 4 

hours where fermentation started in cultures but it was at the same level in 

cultures of all substrates including mixtures of the two carbohydrates. Mixed 

substrates with different composition could not be differentiated (Fig. 4.1 & 

4.2). The second phase offermentation started at 8 hours of incubation when 

the composition of mixed substrates in cultures started to influence the SCF A 

profiles. 

4.6.1.2 Individual short chain fatty acids 

Lactulose produced significantly higher concentrations of acetate compared 

with ispaghula at 8 and 24 hours. Similarly, higher acetate ratios were noted in 

cultures containing 100mg lactulose compared with 100mg ispaghula at 8 to 

24 hours. The acetate ratio was the highest at 8 hours of fermentation in 

cultures containing 100mg lactulose. These ratios subsequently declined from 

12 to 24 hours (Fig. 4.4), with a corresponding increase in the ratio ofn

butyrate. It may be that the decrease in acetate ratios with corresponding 

increase in the ratio of n-butyrate is due to the utilisation of acetate in the 

174 



formation of ketone bodies, hindering the path ofn-butyrate in this direction. 

This may result in the accumulation of more n-butyrate at later stages of 

fermentation (Remesy et aI., 1992). 

Ispaghula did not produce high concentrations of SCF A and did not show any 

marked increase in the ratios of the three principal SCFA. Rather, there was 

progressive decrease in the ratios of acetate and propionate, and no change in 

ratio ofn-butyrate with increasing fermentation time. The only explanation for 

this could be the increasing ratios of branched chain SCFA (refer to 4.7.3). 

There was an increase in the ratio ofn-butyrate in cultures containing 100mg 

lactulose so that the n-butyrate ratio was higher than the propionate ratio at 24 

hours (Fig. 4.6, 4.8). This n-butyrate predominance oflactulose is in 

agreement with the earlier studies. Lactulose was reported to yield a higher 

ratio of n-butyrate than pectin and guar gum in rat caecal contents after 

bacterial fermentation (Remesy & Demigne, 1989). In another in vitro study 

lactulose produced very high acetate (81 %), with higher propionate (12%) 

than n-butyrate (7%) (Wang & Gibson 1993). This may have been because the 

fermenter in this latter study was maintained at pH 7 throughout and, 

therefore, higher pH did not favour the production of the propionate and n

butyrate as noted in an earlier study (Edwards et aI., 1985). The SCF A profile 

with higher ratio of propionate compared with n-butyrate produced by 

ispaghula, is the same as reported by the earlier studies (Vince et aI., 1990; 

Edwards et aI., 1992a). 
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4.6.2 Fermentation of lactulose in combination with ispaghula 

There was a corresponding increase in the production of SCF A with increasing 

amounts oflactulose in mixtures at 8 and 24 hours. 

4.6.2.1 Net total SCFA 

The differentiating changes in the net total SCF A corresponding to the 

composition of the substrate mixtures were noted at 8 hours of incubation for 

the first time (Fig. 4.2). The initial hours of incubation may be passed in lag 

phase by the bacteria regaining fermentative activity after 4 hours. 

4.6.2.2 Individual SCF A 

Acetate concentrations were also similar in all cultures at 4 hours but increased 

with increasing lactulose in mixtures at 8 hours of fermentation (Fig. 4.10). 

There was some indication of interaction between the two carbohydrates in 

mixtures with respect to acetate production (Fig. 4.3). However, no 

significant difference was noted in the concentrations of propionate in culture 

containing 100mg lactulose compared with that produced in mixture 

containing 50mg each carbohydrate. At the same time this combination (50mg 

of each) produced significantly higher propionate compared with 100mg 

ispaghula (Fig. 4.6 & 4.13). If combinations of carbohydrates, such as 

lactulose and ispaghula, are to be used therapeutically, it is important that the 

amounts of beneficial SCFA such as propionate and n-butyrate are equivalent 

to that produced from fermentation of 100mg lactulose alone. In this way, the 

benefit of the higher SCF A production by the fermentation of 100mg lactulose 

will be maintained without the unwanted side effects of using 100mg of either 

constituent carbohydrate. 
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In this study, the SCF A profiles at 4 hours for different substrates were more 

under the influence of original inoculum than the substrate composition (Figs. 

4.11,4.13,4.15). The mixed substrates showed increasing influence related to 

their composition on the fermentation only after 8 hours incubation. 

Propionate ratios were higher at 8 hours compared with that at 24 hours of 

incubation in all mixtures. A corresponding delayed production of n-butyrate 

was noted in these cultures. In addition, the actual ratios of propionate and n

butyrate were lower than those expected from such mixtures when calculated 

theoretically. It is possible that the physiological conditions were not 

favourable for the pathway producing propionate as an end product at 24 

hours, resulting in increasing ratios of n-butyrate. This delay in the production 

of SCF A, especially of n-butyrate may be beneficial in the human colon, as 

with delayed production n-butyrate may be produced at a distal colonic site, 

which would show positive implications in health. 

4.6.3 Branched chain SCF A 

The branched SCFA (iso-butyrate, iso-valerate and n-valerate), which are 

derived from the fermentation of nitrogenous substances, were produced in 

these cultures when highly fermentable carbohydrate was limited. The 

differences of branched SCF A concentrations in different cultures depend on 

the availability of nitrogenous compounds for fermentation, which in these 

cultures would be provided by the tryptone in the media, from sources in the 

faecal inoculum and possibly from dead and lysed bacteria. In cultures with 

large amounts of fermentable carbohydrate the available sources of nitrogen 

are used for bacterial cell growth. Ispaghula was a slowly fermenting 
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carbohydrate and bacterial growth was presumably lower allowing more 

fermentation of amino acids. 

4.6.2 Changes in pH and the SCFA 

The effects of pH on bacterial fermentation have been discussed at length in 

the previous chapter. The pH fell to the greatest extent in 100mg lactulose 

cultures and very little decrease was seen in cultures containing high amounts 

ofispaghula. In some cultures (containing 75mg and 100mg lactulose), pH 

appeared to rise a little after 8 hours. The greater decrease in pH at 8 hours 

could be due to the higher production of lactate and acetate. Some organisms 

may re-ferment (Gibson et ai., 1990; Jay, 1996) these acids to other 

metabolites at 12 and 24 hours of incubation, resulting in a slight increase in 

pH. 

The initial lowering of pH may make the conditions in cultures favourable for 

production of propionate (Edwards et al., 1985) or butyrate depending on the 

specific nature of substrates. Other factors, in addition to pH, such as the 

presence of a particular acid, may be important in this regard (Chung & 

Geopfert, 1970; for detail Chapter 3). In the present study, lactulose produced 

more propionate compared with n-butyrate up to 8 hours of fermentation. The 

increased production of propionate at lower pH may be related to changes 

favouring propionate producing bacteria. However, with increasing time, 

lactulose produced a SCF A profile with n-butyrate predominance. This 

indicated that re-fermentation of acetate during prolonged fermentation, may 

make the physiological conditions in cultures unfavourable for producing 

propionate but favourable for n-butyrate production. Propionate production 

178 



was reduced at pH 5 in an earlier study (Edwards et aI., 1985). Propionate and 

n-butyrate are produced by different bacterial species. Eubacteria, 

fusobacteria, peptococci produce n-butyrate, whereas, bacteroides, 

propionibacteria, veillonella produce propionate. The accumulating SCF A 

may have further reduced the pH and changed the physiological conditions in 

cultures and instead of inhibiting, actually facilitated the production of n

butyrate with increasing fermentation. 

Although the fermentation pattem in this study indicated that production of 

these three principal SCF A corresponded to the prevailing pH in cultures, pH 

could not be the exclusive factor in this regard. Similar microorganisms have 

different optimal pH under different physiological conditions. The real 

optimal pH range for a particular bacteria may depend on a number of growth 

factors such as type of acid, types of salt present in the medium of growth 

(Sherman & Holm, 1922; Juven, 1976; Jay, 1996; detail in Chapter 3). 

Therefore, not only pH, but pH in conjunction with changing physiological 

conditions may become progressively more favourable for the production of 

one SCF A compared with the other. In this way, the low pH, although not 

exclusive, is an important driving factor in the production of different SCF A, 

as reported by earlier study (Edwards et aI., 1985; detail was discussed 

previously). 

4.6.3 Interaction between the two carbohydrates 

In this study, mixtures contained rapidly fermenting lactulose in combination 

with slowly fermenting ispaghula as the second carbohydrate. Lactulose is 

highly soluble in water and it loses its viscosity very rapidly in the solution. 
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Whereas, ispaghula is fermented very slowly and makes a viscous matrix 

when hydrated, maintaining its viscosity over a longer period (Tomlin & 

Read, 1988). An important interaction was noted between these two 

carbohydrates because of their contrasting physico-chemical characteristics. 

Apparently two inhibitory forces were working during the in vitro 

fermentation of mixtures of these carbohydrates. The inhibitory effect due to 

decreased pH and other changes in the physiological conditions of cultures 

with increasing amounts of lactulose was discussed in the previous chapter 

(Section 3.6.3). Previous studies have also noted that the amount of rapidly 

fermenting substrate affected in vitro fermentation (Barry et aI., 1995; 

Stevenson et aI., 1997b), where end products are accumulated due to the lack 

of absorptive epithelial surface (Section 3.1). As discussed in the previous 

chapter, an inhibition in the SCF A production with increasing amounts of 

lactulose was noted. However, in the normal colon, such high concentrations 

of SCF A from fermentation are rapidly cleared by the colonic epithelium and 

physiological conditions in the colon are not changed to such an extent. 

In this chapter, another type of inhibition was described (Fig. 4.19). 

Fermentation of smaller portions of rapidly fermenting lactulose in mixtures 

with ispaghula did not reach their maximum potential. When net total SCF A 

produced by mixtures were corrected for the expected inhibition due to the 

increasing amounts of lactulose, SCF A production was sti11lower than that 

may be expected (Fig. 4.18). This additional inhibition of the fermentation of 

lactulose may be because of the presence of slowly fermenting ispaghula (Fig. 

4.18). Net total SCFA produced from lactulose in combination with ispaghula 
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progressively decreased with increasing amounts of ispaghula (Fig. 4.19). 

This highest inhibition was seen with 75mg ispaghula (44.4 %) compared 

with the inhibition (38.4 %) in presence of25mg ispaghula in mixture. 

However, this difference is small. Unfortunately, we were unable to measure 

the final viscosity of these cultures so the inhibition could not be compared 

with the viscosity. 

SCF A and other metabolites from fermentation in the colon are rapidly 

absorbed and so the physical properties of slowly fermenting carbohydrates 

such as ispaghula, may become more important than changes in physiological 

conditions and resulting influence on the SCF A production. Three effects of 

ispaghula in the human gut, diluting the colonic contents, viscosity and 

stimulation of propulsion, could delay the fermentation of lactulose, making it 

available for bacterial fermentation at more distal site of the colon. The 

viscosity of ispaghula may trap the smaller molecules of lactulose in a 

complex three dimensional viscous matrix which may make the molecules of 

lactulose less accessible to bacteria. 

The viscous and bulking properties of ispaghula may also inhibit absorption of 

metabolites from fermentation as well as promoting propulsion. These 

effects could take the production and absorption of SCF A towards more distal 

sites before they are available for absorption and/or further metabolism where 

they would be of more use in preventing colonic diseases. In a recent study in 

which a mixture oflactulose and ispaghula was fed to human subjects the 

fermentation of lactulose was delayed and its effects on transit time were 

reduced by ispaghula (Washington 1998). 
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4.7 Conclusion 

The fennentation of lactulose was inhibited by the presence of increasing 

amounts of ispaghula in vitro. This was probably related to the increased 

viscosity of these cultures. Such effects in vivo may help to move SCF A 

production and absorption to more distal sites in the large intestine where 

most disease occurs. 

The impact of increasing amounts of substrate can be corrected for in an in 

vitro system. To reduce this effect, it is recommended that substrate 

concentration of 50mg of rapidly fennented carbohydrate per 10ml incubation 

volume is used in vitro. 
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CHAPTERS 

Indigestible carbohydrates and their fermentation properties 



5.1 Introduction 

Indigestible carbohydrates belong to all the different classes of saccharides, 

including disaccharides, such as lactulose, and polysaccharides such as 

resistant starch and polysaccharide gums. Interest in the physiological action 

of these unabsorbable carbohydrates was initiated in the early 70s (Chapter 1). 

In the wake of this interest in their metabolic importance and potential health 

benefits, an immediate consideration was to provide these carbohydrates 

without disturbing the balance of the other constituents in the human diet. 

Many researchers considered supplementation with isolated carbohydrates as a 

solution to the problem and isolated polysaccharides such as guar gum and 

locust bean gum were tested and approved for use. Studies of guar gum 

showed a reduction in postprandial glucose levels (Jenkins et aI., 1978) and 

cholesterol (Blake et aI., 1997). 

As discussed in previous chapters, there are difficulties in the in vivo as well as 

in vitro investigation, of these carbohydrates. Despite these difficulties, it is 

possible to predict some of the effects of these carbohydrates on the basis of in 

vitro studies, using the in vitro model discussed in Chapter 2. 

As discussed in Chapter 1, these un-absorbable carbohydrates have potential 

therapeutic properties which need to be carefully considered and explored 

before they can be used in mixtures to promote health and prevent diseases. It 

is unlikely that any single carbohydrate will provide the optimal conditions in 

the gut which could be considered ideal in major colonic problems. The 

logical approach would be to combine different indigestible carbohydrates in 

mixtures of two or more carbohydrates. In the previous chapter, it was noted 

that a slowly fermented carbohydrate could alter the fermentation of a rapidly 
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fermented carbohydrate and vice versa. Similarly, carbohydrates with different 

SCF A profile interacted in their ability to produce a particular SCF A. At 

present very little study has been performed on this aspect of indigestible 

carbohydrates. Before embarking on studies of combining different 

carbohydrates, it is necessary to evaluate the fermentation characteristics of 

individual carbohydrates. 

In the present study, individual carbohydrates were evaluated for their 

properties, reflected in the end products of their fermentation cultures, before 

speculating on their interactive influences and on the results that may be 

expected from different combinations of these carbohydrates. Some of the 

important indigestible carbohydrates, used in this experiments are described 

below; 

5.1.1 Oligosaccharides 

Some oligo saccharides are indigestible carbohydrates but are readily soluble in 

water (Cummings & Englyst, 1995) and in vitro studies showed that these 

carbohydrates are fermented by the colonic bacteria (Wang &Gibson, 1993). 

The oligosaccharides are mostly produced synthetically or by the processing of 

higher molecular weight carbohydrates, for example, maltodextrins are 

produced from partial hydrolysis of the starch. In nature oligosaccharides 

mainly originate from legumes, onions, artichokes and root vegetables 

(Wiggins, 1984). 

The importance of oligo saccharides emerged in late 1980s as a result of 

suggestions that they may affect microbial function in the human large intestine 

in a beneficial way (Hidaka, 1986). There is a growing interest since then in 
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these indigestible carbohydrates which stimulate the growth of beneficial 

bacteria such as bifidobacteria and lactobacilli (pro-biotics), and suppress 

harmful bacteria, such as clostridia, in the human gut. Oligo saccharides with 

such beneficial effects have been recently termed as pre-biotics (Gibson & 

Roberfroid, 1995). The fructo- and galacto-oligosaccharides and some inulins 

are common examples of these oligosaccharides (Cummings & Englyst, 1995). 

Among such oligo saccharides, fructo-oligosaccharides meet all the criteria of 

being ideal candidate for the classification as pre-biotics. The fructo-

oligo saccharides include an oligofructose commercially known as raftilose 

(Gibson & Roberfroid, 1995). 

5.1.1.1 Raftilose 

This is a food ingredient which is composed of oligo fructose, fructose, glucose 

and sucrose. The oligofructose (DP 2 - 8) is a mixture of oligo saccharides 

which are composed of fructose units linked together by ~(2-1) linkages. 

These molecules are terminated by a glucose unit. Raftilose (fructo

oligosaccahrides) is produced by partial hydrolysis of chicory inulin by using 

endoglycosidases (Cummings & Englyst, 1995). In batch cultures, both 

oligo fructose and inulin specifically stimulated bifidobacterial growth (Yazawa 

& Tamura, 1982; Hidaka et aI., 1986; Wang & Gibson, 1993), an effect that 

has been confirmed in humans (Gibson et aI., 1993). In contrast, B. infantis 

inhibited the growth ofC!. perfringens and E. coli (Wang & Gibson, 1993). 

The mechanism for this inhibition was thought to be related to the lowering of 

intestinal pH by bifidobacterial fermentation (Cummings & Englyst 1995) but 

Gibson and Wang (1994) showed that factors other than pH, lead to repression 
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of the growth of Clostridial species. A number of factors may be relevant in 

this regard. For example, Bifidobacterial species may compete with the 

Clostridial species for the substrate or for binding sites for adhesion on to the 

mucosa. In addition, the beneficial bacteria may produce proteases to destroy 

biotoxins produced by harmful bacteria. 

Raftilose promotes butyrate production, which, as previously discussed, is 

essential for colonic health. However, large amounts of small molecules have 

a potential osmotic effect in the small intestine, by retaining larger quantities of 

fluids in the intestine. This effect may increase the bulk of intestinal contents 

and, thus faecal output after ingestion of moderate amounts and higher 

amounts may result in osmotic diarrhoea. Despite this, raftilose is a larger 

molecule than lactulose, used in Chapters 3 and 4, and is less likely to induce 

diarrhoea. 

5.1.2 Raftiline & Fibruline 

The raftiline used in this study is a chicory inulin which is a mixture of oligo-

and polysaccharides which are composed of fructose units linked together by 

13(2 - 1) linkages. Almost every molecule is terminated by a glucose unit. The 

total number of fructose or glucose units ranges mainly between 2 and 60. 

Fibruline is also a polysaccharide inulin . 

5.1.2 Indigestible polysaccharides 

The polysaccharides resistant to digestion in the human small intestine, belong 

to two categories; 

Resistant Starch 

Non-starch Polysaccharides. 
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In this experiment, raw potato starch and different types of non starch 

polysaccharides, such as pectin, guar gum, gum arabica and oat fibre were 

tested for their fermentation properties. 

5.1.2.1 Raw potato starch 

Raw potato starch has large starch granules with type B crystalline structure. 

It is resistant to digestion in the small intestine because of the intact structure 

and specific crystalline pattern of granules and is generally referred to as 

resistant starch 2 (see detailed description in section 1.2.4.2.3.1). 

Fermentation of resistant starch is much slower than most dietary fibre 

(Achour et al., 1996). A recent study reported an estimated 78 to 82 % 

fermentation of resistant starch in human subjects, using cooked and uncooked 

flour supplements from green banana, wheat grains and corn (Phillips et aI., 

1995). These researchers also found a significant inverse relation between 

dietary intake of resistant starch and faecal pH. Significantly higher faecal 

SCF A were reported with diets containing high resistant starch contents 

compared to diets with low resistant starch contents. Faecal n-butyrate was 

increased after starch ingestion in the diet (Scheppach et aI., 1988; Phillips et 

aI., 1995). 

In another study, breath H2 and total serum acetate were significantly higher 

with a diet containing high amounts of resistant starch compared with a low 

resistant starch diet (Muir et aI., 1995). Similar results were reported in vitro 

where a semi-purified retrograded amylose (resistant starch 3) from potatoes, 

was less fermentable, producing the lowest SCF A, than raw potato starch 

(Edwards et aI., 1996) which, in turn, was less fermentable than cooked starch. 
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This study showed that resistant starch may resist not only amylolytic action in the 

small intestine, but also degradation by bacteria in the large intestine. Starches from 

different sources may be fermented differently in the colon. Although both 

amylomaize and potato starch decreased caecal pH in rats, there was marked variation 

in the production of SCF A between resistant starches from the two sources. 

Amylomaize increased SCF A but potato starch did not (Mallet et aI., 1988), 

suggesting that the substantial decline in pH was due to the production of another 

organic acid such as lactate. Resistant starch yielded a profile of SCF A with a higher 

ratio of n-butyrate in in vitro fermentation studies with human faecal slurries (Englyst 

et aI., 1987b; Weaver et aI., 1992). Production ofn butyrate was 29 % compared with 

only 2 % n-butyrate produced by pectin during in vitro fermentation with human 

faeces (Englyst et aI., 1987b; Wang & Gibson, 1993). 

5.1.2.2 Gum arabica 

Gum arabica is the sap exudate from the Acacia species. Gum arabic is a water-

soluble, rapidly fermented complex heteropolysaccharide with the unique property of 

dissolving up to 50 percent concentration. At low concentrations, it provides little 

viscosity, making itself a prefelTed choice for use in combinations with other 

stabilisers (Chinachoti, 1995). It produced a propionate predominant SCFA profile in 

vitro system using human faecal inoculum (Adiotomre et aI., 1990). Gum arabic is a 

highly branched arabinogalactan. Gum arabic ingestion decreased serum cholesterol 

significantly but did not affect excretion of bile acids. It increased the H2 excretion 

but had no effect on faecal weight or faecal constituents (McLean Ross et aI., 1983). 
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5.1.2.3 Guar gum 

Guar gum, a storage polysaccharide derived from seeds of the cluster bean 

(Cyamopsis tetragonoloba), is frequently used as a model indigestible 

polysaccharide in physiological and nutritional studies for several reasons. It is 

possible to isolate guar gum in a relatively pure form and it has well 

characterised physico-chemical properties. In addition, de-polymerisation of 

guar gum is easy to achieve. Guar gum is composed of galactomannans with 

single unit galactose side chains and has a mannose to galactose ratio of 2: 1. It 

is cold water soluble, giving a highly viscous medium even at a low 

concentration (Chinachoti, 1995). Guar has no significant osmotic effect in the 

small intestine but forms viscous solutions in the stomach and small intestine. 

This viscous property delays the absorption of the glucose and other nutrients 

from the small intestine by several mechanisms (Blackburn et aI., 1984; Ellis et 

aI., 1995). These included delayed gastric emptying, reduction of mixing in the 

small intestine, and delayed transit through the small intestine. Guar gum 

fermentation produced a propionate predominant profile in vitro (McBurney & 

Thompson, 1987; Adiotomre et aI., 1990), and in the caecum in rats in vivo 

(Remesy & Demigne, 1989). In rats, guar gum produced higher SCF A and 

lower caecal pH compared with lactulose and pectin. The acetate/propionate 

ratio is 2:1 for guar gum (Wolever, 1991b). 

Guar gum is used clinically to treat the diabetes mellitus (Jenkins et aI., 1977). 

The effects of guar gum on postprandial glucose and insulin levels were not 

influenced by large variations in the molecular weight or particle size of guar 

gum (Ellis et aI., 1991) suggesting that viscosity was not important, as these 
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parameters are important determinants of viscosity. However, in another study 

by the same group, different concentrations of guar gum significantly reduced 

glucose absorption and insulin secretion in the growing pigs and this was 

related to the viscosity of jejunal digesta (Ellis et aI., 1995). 

Blake et aI., (1997) reported a significant reduction (10%) in total plasma 

cholesterol concentration by feeding a de-polymerised guar gum in wheat 

bread in human hypercholesterolaemic subjects. Guar gum is reported to alter 

significantly endogenous cholesterol metabolism in guinea pigs by different 

mechanisms (Fernandez et aI., 1995). These included decreasing the 

cholesterol absorption and the release of cholesterol to the liver by the 

chylomicron remnant or by trapping bile acids, resulting in the mobilisation of 

the hepatic cholesterol pools because of an increased need for bile acid 

synthesis. 

5.1.2.4 Pectin 

After cellulose, pectin is one ofthe most abundant carbohydrates on Earth. In 

pure form pectin can readily make viscous solutions in water. Pectin is a non 

cellulosic polysaccharide in the plant cell wall with a backbone of galacturonic 

acid derived from carbohydrates. Pectin has common side chains including 

arabinose, xylose, rhamnose and fucose constructed from various monomers 

(Whitneyet aI., 1998). Fruits and vegetables contain approximately 1 % 

pectin, mainly in the cell walls and it is extracted commercially. There are two 

types of pectin; on each residue of galacturonic acid in the long chains of 

pectin molecules, is a carboxyl (-COOH) group. Sometimes these groups are 

modified by the addition of methyl (-CH3) groups. The result is a methoxyl 
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( -COOCH3) group. Pectin in which half or more of the acid residues have 

methoxyl groups tagged onto them is called high methoxyl pectin; where there 

are fewer, they are termed low methoxyl pectin. In this way, pectins from 

different sources may be different in their chemical and metabolic actions. For 

example, apple pectin is highly methylated compared with pectin from oranges 

which is only partly methylated. This is because orange juice naturally 

contains large amounts of pectin esterase; an enzyme which strips methoxyl 

groups from the pectin molecules. 

Pectin is a propionate predominant carbohydrate, although it also produced 

very high levels of acetate (Englyst et aI., 1987; Adiotomre et aI., 1990). A 

similar SCF A profile was noted in rat caecum (Remesy & Demigne, 1989). In 

one study however, pectin produced higher n-butyrate (Vince et aI., 1990). 

This may be due to the increased time (48 hours) of incubation. Pectin 

molecules, unlike guar gum, carry a charge due to the presence of 

polygalacturonic acid residues. This charge will aid binding of bile acids and 

may be one of the mechanisms involved in the reduction of blood cholesterol 

by the soluble fibres such as pectin (Anderson et aI., 1990). Fernandez et aI., 

(1994) reported that dietary citrus pectin showed modest effects on plasma 

LDL level and hepatic cholesterol equilibrium in presence oflow dietary 

cholesterol content. However, these researchers noted significant effects of 

high doses of citrus pectin on the regulatory enzymes of cholesterol synthesis 

and esterification, and expression of the hepatic apolipoprotein (apo) BIE 

receptors in guinea pigs, fed high dietary cholesterol. 
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The acetate/propionate ratio for pectin is 5:1 (Wolver, 1991b). Vince et aI., 

(1990) reported very high acetate production by pectin after in vitro 

fermentation and supported the 5: 1 acetate/propionate ratio for pectin, but this 

ratio was 3: 1 in rat caecum (Remesy & Demigne, 1989). These studies 

suggested that since pectin from various sources contain different chemical 

groups associated in side chains or different degree of methyl groups, the 

levels of individual SCF A will be affected, as the chemical and physico

chemical properties ofthe fibre source are important in this regard (Mortensen 

et aI., 1988; Cherbut et aI., 1991; Salvador et aI., 1993). 

5.1.2.5 Oat fibre 

Although there has been an extensive amount of research to establish the 

cholesterol lowering effect of oats or its components (Swain et aI., 1990; 

Kestin et aI., 1990; Anderson et aI., 1991; Keenan et aI., 1991; Van Hom et ai. 

1991; Uusitupa et aI., 1992; Zhang et aI., 1992; Cara et aI., 1992; Braaten et 

aI., 1994), little research work, with less consistent results, is reported about 

its effects on glycaemic response (Braaten et aI., 1991; Kestin et aI., 1990; 

Cara et aI., 1992). The highly soluble p-glucan contents of oats have been 

shown to reduce serum cholesterol in several studies (Topping, 1991; Uusitupa 

et aI., 1992; Braaten et aI., 1994). A recent study, however, reported no 

consistent lipid lowering effects consistently but did show reduced glycaemic 

response (Hallfrisch, 1995). 
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5.2 Aim 

This study was designed to identify the SCF A profiles of potentially beneficial 

indigestible carbohydrates for identifying the most suitable for developing 

mixtures for supplementation and for tube feeding. 

5.3 Objectives 

The objectives of this study were to determine; 

1) the properties of indigestible carbohydrates with different fermentability in 

an in vitro fermentation system, thus comparing the utilisation ofthese 

carbohydrates by faecal bacteria. 

2) the SCF A profiles produced in vitro by different indigestible carbohydrates 

in our faecal incubation model. 

5.4 Methods 

The specific procedures for this experiment are described in this chapter, 

whereas, general methods are detailed in the Chapter 2. 

5.4.1 In vitro measurement of fermentation 

A general description of an in vitro incubation systems used in this study is 

given in the section 2.2, of fermentation procedure. The rates of fermentation 

of different indigestible carbohydrates were determined by stopping the 

cultures at different time points from 0 to 24 hours. 

5.4.2 Subjects used as donors of faecal inocula 

Faecal samples were collected from five different healthy individuals (age 

range 26-57 years; 1 male, 4 females). The criterion for the faecal donors is 

described in Chapter 2. 
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5.4.3 Fermentation procedure 

The details of fermentation procedure are same as described in Chapter 2. 

All substrates (100mg each) were used separately in culture. Raftilose, 

raftiline, raw potato starch, guar gum, gum arabica, pectin, oat fibres and 

fibruline were used as the sole source of carbohydrate in these experiments. 

The cultures were stopped at time points of 0, 2, 4,8 and 24 hours of 

incubation. The analytical procedures were the same as described in Chapter 

2. Statistical analyses were performed as detailed in section 2.14. Details of 

reagents and fermentation media are given in Chapter 2. 

5.5 Results 
Different carbohydrates showed different patterns of fermentability. Raftilose, 

raftiline, fibruline and pectin were rapidly fermented, whereas, oat fibre 

showed a negligible degree of fermentation. Other carbohydrates were 

intermediate in their rate of fermentation and fermentability. 

5.5.1 In vitro fermentation of individual carbohydrates 

Net total SCF A, produced during in vitro fermentation were used to 

characterise the individual carbohydrates in this study (Fig. 5.1). There was no 

significant difference in the net total SCF A produced in these cultures at 0 and 

2 hours of incubation. It was noted that the SCF A produced from different 

substrates started differentiating between carbohydrates at 4 hours, as the first 

significant differences were seen after this time point (p<0.02). However, the 

slowly fermenting carbohydrates such as raw potato starch, gum arabica were 

not differentiated significantly from the very slowly fermenting oat fibre even 

at 4 hours fermentation. Even rapidly fermenting fibruline, did not produce 
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significantly different net total SCF A compared with oat fibre at 4 hours. 

There was no significant difference in net total SCF A between fibruline, raw 

potato starch and gum arabica at 8 hours, whereas, guar gum produced 

significantly higher net total SCF A compared with raw potato starch (p<O.02) 

and gum arabica (p<O.02) at 8 hours. Net total SCFA in cultures containing 

raftilose, raftiline, fibruline and pectin were not significantly different from 

each other at 8 hours. Raftilose produced significantly higher SCF A compared 

with raw potato starch (p<O.02), gum arabic a (p<O.02), guar gum (p<O.02) at 

8 hours. Oat fibre produced significantly lower net total SCF A compared with 

other carbohydrates at 8 hours. 
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Raftilose and raftiline produced almost the same concentrations of net total 

SCF A at all times. The fermentation patterns of the two carbohydrates were 

also similar, showing an initial rapid fermentation and then a slight plateau with 
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increased incubation after 8 hours. Pectin produced a net total SCFA of the 

same order as that noted in cultures containing raftilose but this reached a 

complete plateau after 8 hours of fermentation. There was no significant 

difference in net total SCF A at 24 hours compared with 8 hours in cultures 

containing oat fibre, fibruline and pectin. All other cultures produced 

significantly higher net total SCF A at 24 hours compared with that at 8 hours 

of fermentation (p<O.05). Oat fibre produced negligible concentrations of 

SCFA even after 24 hours of fermentation (Fig. 5.1). 

Guar gum produced significantly higher net total SCF A than gum 

arabic a and raw potato starch at 8 hours (p<O.02). The latter two indigestible 

carbohydrates showed similar fermentation patterns to each other, producing 

almost the same concentrations of SCF A with no significant difference at 8 and 

24 hours (Fig. 5.1). 

5.5.2 Concentrations and ratios of SCFA produced by 

individual carbohydrates 

5.5.2.1 Acetate 

Fermentation ofraftilose, raftiline, fibruline and pectin produced acetate very 

rapidly but this production showed a plateau after 8 hours. There was no 

significant difference in acetate concentration at 8 and 24 hours of 

fermentation in these cultures. Fermentation of raftilose, raftiline and pectin 

showed the same pattern of acetate production. There was a consistent but 

not very rapid increase in acetate in cultures containing guar gum, gum arabica 

and raw potato starch with significantly higher acetate (p<O.02) at 24 hours 

compared with that at 8 hours (Fig. 5.2). 

196 



Fermentation of oat fibre produced significantly higher concentrations of 

acetate at 24 hours compared with 8 hours (p<0.05). The rate of acetate 

production was very slow. Acetate concentrations were not significantly 

higher than that produced in control cultures up to 8 hours but the increase 

above control levels did reach statistical significance at 24 hours (p<0.05; Fig. 

5.2) . 
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Fig 5.2 Mean (±SEM) concentrations of acetate 

().lmole/ml) produced by the fermentation of different 
carbohydrates with the human faecal bacteria. 

In cultures containing pectin, the acetate ratio remained appreciably higher, 

whereas, acetate ratios produced by the fermentation of guar gum, gum 

arabica and raw potato starch were markedly lowered compared with pectin, 

raftilose, raftiline and fibruline. Fermentation of pectin produced a significantly 

higher acetate ratio compared with raftilose (p < 0.05), gum arabica (p < 0.05) 

and raw potato starch (p < 0.02). Raftilose, raftiline and fibruline produced 

almost similar acetate ratios to each other. The acetate ratio in cultures 

containing these carbohydrates increased rapidly initially then declined with the 

prolonged fermentation (Fig. 5.3) . 
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In cultures of the other carbohydrates, there was a slow increase in acetate 

ratio initially which declined similarly in all cultures after 8 hours of incubation, 

with the exception of cultures containing pectin and guar gum. There was no 

significant difference in acetate ratios in cultures containing raftiline, fibruline, 

pectin and guar gum at 8 hours. Fermentation of pectin produced a 

significantly higher acetate ratio compared with that in cultures containing 

raftilose (p < 0.02), raftiline (p < 0.02), guar gum (p < 0.02), whereas, gum 

arabica produced significantly higher acetate ratios compared with cultures 

containing raftilose (p < 0.05), fibruline (p < 0.02) and guar gum (p < 0.02) at 

24 hours of fermentation. Oat fibre produced a significantly lower acetate 

ratio compared with all the other carbohydrates except that in cultures 

containing raw potato starch, raftiline and guar gum at 24 hours. 
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Fig 5.3 Mean (±SEM) acetate percent of total SCFA 
produced by the fermentation of different carbohydrates 
incubated with the human faecal bacteria. 
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There was no significant difference in the acetate ratio at 8 and 24 hours within 

cultures, except for guar gum cultures in which the acetate ratio at 8 hours was 

significantly higher than that at 24 hours (p<0.02). 

5.5.2.2 Propionate 

Propionate production was very slow in the initial hours of fermentation, even 

in cultures containing propionate predominant carbohydrates, such as pectin, 

guar gum. In later stages of fermentation, raftilose, raftiline, fibruline and guar 

gum, produced rapidly higher propionate compared with gum arabica and raw 

potato starch (raftilose vs raw potato starch or vs gum arabic a p<0.02) at 24 

hours. There was no significant difference in the propionate production in 

cultures of raftilose, raftiline and fibruline at 24 hours. Gum arabica and raw 

potato starch produced similar propionate at 24 hours of fermentation to each 

other. 

Guar gum was ranked the highest in propionate production at 24 hours, which 

was significantly higher compared with that in cultures of raftilose and raw 

potato starch at 24 hours (p < 0.02). There was no significant difference 

between propionate production in cultures of guar gum, raftiline and fibruline 

at 24 hours (Fig. 5.4). The culture containing guar gum produced significantly 

higher propionate than pectin (p<0.00), which produced similar propionate to 

gum arabic a at 24 hours. 
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Fermentation of guar gum showed a consistent increase in propionate 

production with increasing incubation. Concentrations of propionate in 

cultures of guar gum, gum arabica and raw potato starch were significantly 

higher at 24 hours than that at 8 hours (p<O.02). There was no significant 

difference in the concentrations of propionate within cultures of rapidly 

fermenting raftilose, raftiline, fibrulin and pectin at 8 and 24 hours. Propionate 

production rate was very slow in cultures containing oat fibre. Concentrations 

were not appreciably higher than that produced in control cultures and there 

was no significant difference of concentrations between 8 and 24 hours of 

fermentation (Fig. 5.4). 

Propionate ratios declined in cultures of all indigestible carbohydrates during 

the initial hours of incubation. There was a rapid increase in the ratio of 

propionate in cultures containing raftilose, raftiline, fibruline and guar gum 

after 4 hours. Fermentation of guar gum yielded significantly higher 
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propionate ratios compared with all the other carbohydrates tested in this 

experiment at 24 hours of incubation (Fig. 5.5). Gum arabica produced a 

significantly higher propionate ratio compared with raw potato starch (p= 

0.025) and pectin (p= 0.026) at 24 hours. Similarly, raftiline yielded 

significantly higher propionate ratio compared with raw potato starch and 

pectin at 24 hours (p < 0.05). All the other cultures had similar ratio of 

propionate at 24 hours. Guar gum was the only carbohydrate to have a 

significantly higher propionate ratio at 24 hours than at 8 hours. 

5.5.2.3 n-Butyrate 

Fermentation of guar gum showed a consistent increase in n-butyrate 

production with the increasing incubation. Fermentation of gum arabic a and 
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pectin also showed a substantial butyrate production with the increasing 

incubation. The rate of production of n-butyrate was very slow in cultures of 
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oat fibre (Fig. 5.6). Fermentation ofraftilose produced the highest 

concentrations ofn-butyrate. Raftiline showed similar very rapid n-butyrate 

production. Raw potato starch, although only slowly fermented, was ranked 

next in the production ofn-butyrate at 24 hours (Fig. 5.6). In terms ofn

butyrate concentration, two distinct groups emerged; the lower : 

concentrations ofn-butyrate were produced by gum arabic a, guar gum and 

pectin. Higher concentrations were produced by raftilose, raftiline and raw 

potato starch. There was no significant difference in the production of n

butyrate between carbohydrates in each ofthese groups at 24 hours of 

fermentation. When the two groups were compared, raftilose and raftiline 

produced significantly higher n-butyrate (p < 0.02) compared with gum 

arabic a, guar gum and pectin at 24 hours. However there was no significant 

difference in n-butyrate concentration in cultures containing raw potato starch, 

guar gum, gum arabica or pectin at 24 hours. 

Rapidly fermenting carbohydrates such as raftilose, raftiline, fibruline and 

pectin had no further increase in concentrations of n-butyrate in cultures after 

8 hours. Cultures containing raw potato starch, guar gum and gum arabica 

produced significantly higher n-butyrate at 24 hours than at 8 hours (p < 0.05). 

The increase in n-butyrate ratio was not rapid in any culture. There was a 

gradual increase in n-butyrate ratios in cultures containing raftilose, raftiline, 

fibruline and raw potato starch. Only cultures containing raw potato starch 

continued an increasing trend in n-butyrate ratio, whereas, fermentation ofthe 

other indigestible carbohydrates showed a decline in n-butyrate ratios. 
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Cultures containing pectin showed a rapid decline in ratio ofn-butyrate initially 

but these ratio increased later. Cultures containing gum arabic a and guar gum 

showed a slight but progressive decrease in n-butyrate ratios with increasing 

hours offermentation (Fig. 5.7). 
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Fig 5.7 Mean (±SEM) nbutyrate percent of total SCFA 
produced by the fermentation of different carbohydrates with 
the human faecal bacteria. 

At 24 hours, two distinct groups again emerged; those which yielded lower n-

butyrate ratios included oat fibre, fibruline, guar gum, gum arabic a and pectin, 

whereas, those which produced higher n-butyrate ratios included raftiline, 

raftilose and raw potato starch. Within these two groups there was no 

significant difference in the ratio of n-butyrate. Comparing the two groups 

raftilose yielded significantly higher n-butyrate ratio (p < 0.02) than oat fibre, 

guar gum, gum arabic a and pectin at 24 hours. Raw potato starch did not 

produce significantly higher n-butyrate ratios than any of these carbohydrates. 

Raftiline produced significantly higher n-butyrate ratios than guar gum (p < 
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0.02) but not than the other carbohydrates. There was no significant 

difference in n-butyrate ratio between cultures containing fibruline and other 

carbohydrate at 24 hours. No carbohydrate culture showed a greater ratio of 

n-butyrate at 24 hours than at 8 hours. 

5.5.3 SCF A predominance profiles 

Ratios of the three principal SCF A produced by the fermentation of different 

indigestible carbohydrates are described in relation to the branched SCF A 

produced by the fermentation of nitrogenous compounds at 8 and 24 hours 

(Table 5.1). Oat fibre, raftiline, fibruline, guar gum and gum arabic a produced 

significantly higher propionate ratios (p < 0.05) compared with n-butyrate 

ratios at 24 hours. There were no significant differences in these two ratios 

within cultures containing raftilose, raw potato starch and pectin. Pectin 

produced significantly higher acetate ratios compared with oat fibre, raftilose, 

raftiline and guar gum (p < 0.02) at 24 hours (Table 5.1). The sum of the 

ratios of the three principal SCFA produced by carbohydrates were in 

increasing order from raftilose, guar gum, pectin, gum arabic a and raw potato 

starch at 24 hours of fermentation. Raw potato starch fermented slowly but 

produced a significantly higher total ratio of these three SCFA than cultures 

containing oat fibre and control cultures (with no added carbohydrate) at 24 

hours of fermentation (Table 5.1). The ratios of branched SCFA (isobutyrate, 

iso-valerate, n-valerate) were higher in cultures containing slowly fermenting 

carbohydrates. After oat fibre, raw potato starch produced the highest 

branched SCFA at 24 hours of fermentation (Table 5.1). 
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5.5.4 Lactate 

Only raftilose produced lactate (mean value 5.9 ± 1.0) after fermentation at 4 

hours with faecal inoculum from all five subjects. At 2 hours of fermentation 

the inoculum from only one subject produced lactate in cultures containing 

raftilose and raftiline. 

5.5.5 In vitro carbohydrate fermentation and pH changes 

The pH decreased rapidly during the fermentation of raftilose, raftiline, 

fibruline, guar gum and pectin up to 8 hours. The pH in cultures of pectin 

progressively decreased up to 4 hours, then it did not change appreciably 

during prolonged incubation. A progressive fall in pH from 2 hours to 24 

hours of fermentation was seen only in cultures containing raw potato starch 

and gum arabica. The final pH (24 hours) was significantly lower than at 8 

hours only for these two substrates (p<0.02; Fig. 5.8). 

Fermentation of oat fibre did not show any appreciable change in pH even after 

24 hours of fermentation with no difference from that of control cultures (Fig. 

5.8). The carbohydrates in this study can be grouped in three categories on the 

basis of pH reduction at 8 hours of fermentation; 
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Table 5.1 The mean ratios of individual SCFA (% of total SCFA) produced by the fermentation of different carbohydrates with 
the human faecal bacteria for 8 and 24 hours (n = 5 ), (see SEM in the figures). 

8 hours 24 hours 

Substrates Acetate Propionate n-Butyrate Branched SCF A Acetate Propionate n-Butyrate Branched SCF A 

Raftilose 59 21 18 2 55 24 17 4 

Raftiline 59 22 18 1 56 25 16 3 

Fibruline 61 21 16 2 60 24 13 3 

RP starch 56 20 16 8 58 16 19 7 

Guar gum 62 26 9 3 51 37 8 4 

Gum arabic a 60 19 10 11 62 22 10 6 

Pectin 72 13 10 5 67 16 12 5 

Oat fibres 54 18 13 15 49 19 12 20 
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lesser order than the first group. In this group the pH progressively decreased 

throughout fermentation with a significantly greater reduction (p < 0.02) than 

with gum arabica and raw potato starch after 8 hours (Fig. 5.8). In the third 
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Fig. 5.8 The decrease in pH (%) by the fermentation of 
different carbohydrates incubated with the human faecal 
bacteria. 

group, oat fibre, gum arabica and raw potato starch, a very slow reduction in 

pH was noted (Fig. 5.8). Fibruline was intermediate between groups I and II, 

and the fall in pH in this culture was not significantly different from cultures of 

guar gum, pectin, raftilose and raftiline at 8 hours. 

5.5.6 Dry weight of the residue and water held in cultures 

The percent water held by residue was highest in culture ofispaghula (from 

experiment of the previous chapter) with significantly more water held than 

raw potato starch and oat fibre at 24 hours (p<0.02). The final dry weight of 

the residue was also higher in culture of ispaghula than other carbohydrates 

(p<0.02; Table 5.2). 
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5.6 Discussion 

5.6.1 Patterns & rates of fermentation 

The indigestible carbohydrates used in this study showed different rates of 

fermentation and on this basis, can be loosely be grouped in three categories. 

Raftilose, raftiline and pectin were rapidly fermented, whereas fibruline and 

guar gum showed an intermediate rate of fermentation. Finally, oat fibre, gum 

arabica and raw potato starch were fermented slowly. 

These results were in general agreement with earlier studies (Vince et aI., 

1990; Adiotomre et aI., 1990; Weaver et aI., 1992; Achour et aI., 1996; 

Edwards et aI., 1996). In an in vitro study raw potato starch was fermented 

slowly with incomplete fermentation and residual starch in the culture and low 

Table 5.2 Dry weight of residues and water held (%) in cultures of different 
carbohydrates after fermentation with the human faecal bacteria at 24 hours. 

Lactulose 

Raftilose 

Raw potato 
starch 
Guar gum 

Gum arabic 

Pectin 

Oat fibres 

Ispaghula 

Dry weight of residues 
(g) 

0.064 

0.035 

0.043 

0.044 

0.032 

0.046 

0.111 

0.149 

Water held in residue 
(%) 

1.22 

0.66 

0.72 

0.82 

0.69 

0.76 

1.7 

4.73 
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SCFA production (Edwards et aI., 1996). Fermentation of resistant starch is 

much slower than most dietary fibres. The peak of fibre fermentation, 

measured by breath H2, was reached within 6 hours compared with 10-13 

hours of fermentation of resistant starch (Achour et aI., 1996). Significantly 

higher SCF A in faeces of subjects with high resistant starch in their diet have 

also been recorded (Scheppach et aI., 1988; Phillips et aI., 1995). This slow 

fermentation may be either due to slower transit of resistant starch through 

small intestine or to a greater resistance to bacterial fermentation than most 

dietary fibre. Oat fibre was fermented very slowly, was not characteristic of 

oat fibre and it was not in accordance with the earlier reports (McBurney & 

Thompson, 1987; Fig. 5.1). 

5.6.2 Concentrations of SCF A 

5.6.2.1 llcetate 

Fermentation ofraftilose, raftiline, fibruline and pectin produced acetate very 

rapidly up to 4 hours of fermentation but this production showed a plateau 

after 8 hours. This increased production of acetate in cultures containing 

pectin is in accordance with the other studies (Englyst et aI., 1987; Adiotomre 

et aI., 1990; Vince et aI., 1990). Fermentation ofraftilose, raftiline and pectin 

showed the same pattern of acetate production. It indicated that there was 

accumulation of the end product due to rapid fermentation in these cultures 

and the changing physiological conditions may have slowed down the 

fermentation of these cultures, as discussed earlier in Chapter 3. 

Guar gum, gum arabica and raw potato starch showed appreciably linear 

increase in the SCF A and these cultures did not show any significant difference 
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in production of net total SCF A and acetate from each other at 24 hours (Fig. 

5.1). 

5.6.2.2 Propionate 

Propionate production was initially very slow, then rapidly increased in 

cultures of all carbohydrates in this study. Fermentation of guar gum showed a 

consistent increase in propionate production with increased incubation. Such 

delayed production of propionate was noted also in the previous chapter 

(section 4.6.1.2). This is probably due to the pH changes induced in cultures 

resulting from the production of different organic acids. Fermentation 

reactions producing propionate, may be favoured by the initial lowering of pH 

(Edwards et aI., 1985). 

There was a rapid increase in the ratio of propionate in cultures containing 

raftilose, raftiline, fibruline and guar gum after 4 hours. Fermentation of guar 

gum yielded the highest propionate ratio at 24 hours of incubation (Fig. 5.5). 

5.6.2.3 n-Butyrate 

The highest n-butyrate producing carbohydrates included raftilose, raftiline and 

raw potato starch. Intermediate producers ofn-butyrate included gum arabica, 

guar gum and pectin. Raftilose produced significantly higher n-butyrate 

(p<O. 02) compared with gum arabic a, guar gum and pectin, whereas, there 

was no significant difference in n-butyrate between raw potato starch and these 

carbohydrates at 24 hours. Raw potato starch produced n-butyrate very 

slowly compared with all the other carbohydrates (Fig 5.17 8 hours vs 24 

hours p<0.02). 
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5.6.3 SCF A predominance profiles 

The SCF A profiles yielded by the fermentation of starch, guar gum and gum 

arabica were in agreement with the earlier studies (McBurney & Thompson, 

1987; Adiotomre et aI., 1990). Pectin produced very high acetate ratios 

(Mortensen et aI., 1991). Guar gum and gum arabica, although not better n

butyrate producers, had a higher production of propionate, which is another 

important SCF A, which may have a role in reducing cholesterol (Chen et aI., 

1984). Raftilose, guar gum and pectin have all been shown to reduce the 

plasma cholesterol in man (Ellis et aI., 1991; Gibson et aI., 1993; Wang & 

Gibson 1993; Ellis et aI., 1995; Fernandez et aI., 1995; Blake et aI., 1997). 

In most of the cultures acetate ratios peaked at 8 hours of fermentation, then 

showed a decline with prolonged fermentation. The acetate ratio was the 

highest in cultures containing pectin and the lowest in cultures containing guar 

gum, the other carbohydrates were in between these two extremes. 

Fermentation of pectin produced higher ratios of acetate with increasing 

incubation (Fig. 5.3), in accordance with other in vitro studies (Vince et aI., 

1990; Adiotomre et aI., 1990; Weaver et aI., 1992; Wang & Gibson, 1993). 

Pectin was reported as a n-butyrate predominant carbohydrate (Vince et aI., 

1990), in contrast to the other studies in which this was noted as propionate 

predominant carbohydrate (Englyst et aI., 1987b; Adiotomre et aI., 1990). Our 

findings are in agreement with these latter studies, showing a higher yield of 

acetate as well. In study of Vince et aI., (1990) probably prolonged 

fermentation (48 hours) favoured the production ofn-butyrate more. 
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All these carbohydrates showed SCF A profile with propionate predominance 

in this experiment at 8 and 24 hours of fermentation, except the culture 

containing raw potato starch which showed a SCF A profile with n-butyrate 

predominance at 24 hours of incubation. Our results of guar gum and gum 

arabic a yielding propionate predominant SCF A profiles, were in agreement 

with the findings of other studies (McBurney & Thompson, 1987; Adiotomre 

et aI., 1990). Similarly SCFA profile with n-butyrate predominance produced 

by starch were also observed by earlier in vitro studies (Englyst et aI., 1987b; 

Weaver et aI., 1992; Wang & Gibson, 1993). The fermentation of all 

indigestible carbohydrates, except starch and pectin, showed a decline in the 

ratio of n-butyrate with increasing fermentation from 8 to 24 hours time point 

(Fig. 5.7). Pectin yielded higher ratios ofn-butyrate with prolonged (48 hours) 

incubation. Raw potato starch, however, produced a higher ratio ofn-butyrate 

than pectin in agreement with other in vitro studies (Englyst et aI., 1987b, 

Wang & Gibson, 1993; Weaver et aI., 1992). 

The profile characteristic of each carbohydrate was seen mainly at 24 hours 

and not before. This finding is in accordance with our previous results 

reported in Chapter 4 (Section 4.6.1.2), where combinations of different 

compositions showed corresponding SCF A profiles only after 8 hours. 

Cultures containing gum arabica and guar gum, showed a slight but 

progressive decrease in n-butyrate ratios (Fig. 5.7), with a corresponding 

increase in propionate ratios with increasing fermentation (Fig. 5.5). The final 

profile was that usually reported for these fibres (McBurney & Thompson, 

1987; Adiotomre et aI., 1990). 
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In general, the ratios of acetate, propionate and n-butyrate, were higher at 8 

hours than at 24 hours of fermentation in cultures of all carbohydrates, except 

starch and pectin. This may be an indication ofre-fermentation (McBurney & 

Thompson, 1987) in these cultures. The ratios of the branched chain SCFA 

showed a similar pattern to previous study (Chapter 4) with more being 

produced when fermentation of carbohydrate was limited. This probably reflects the 

low growth of biomass and increased cell death. 

5.6.4 SCF A production and pH in cultures 

The patterns of decreasing pH in these cultures were as expected in view of 

their SCFA production. The same groups of carbohydrates as in section 5.6.1 

could be identified on the basis of pH. Decreased colonic pH from 

fermentation of carbohydrates, has been shown to stimulate growth of 

beneficial bacteria (Edwards et aI., 1985; Wang &Gibson 1993). The pH 

decreased progressively only in cultures containing raw potato starch and gum 

arabic a from 2 hours to 24 hours of fermentation (8 hours vs 24 hours: p < 

0.02; Fig. 5.8). No other culture showed a significant reduction in pH after 8 

hours of fermentation. This was related to the profile of SCF A. 

5.6.5 Chemical composition and fermentation of carbohydrates 

Several in vitro and in vivo studies have shown that the intermediate products 

and end products of fermentation are related to the chemical and 

physicochemical characteristics of the fibre sources (Mortensen et aI., 1988; 

Cherbut et aI., 1991; Salvador et aI., 1993). Salvador et aI., (1993) suggested 

that chemical nature and physical arrangement of sugars in the fibre matrix 

controlled the rate and the extent of fermentation as well as the SCFA profiles 
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produced. The chemical bonds between the constituent monosaccharides may 

also be important. However, the chemical nature of the monosaccharides may 

be more important but no general rule can be applied. Fermentation of 

individual monosaccharides showed that all promoted acetate production. 

Propionate production was promoted by rhamnose, arabinose xylose, ribose 

galacturonic acid and glucuronic acid and butyrate was promoted by sorbitol, 

galacturonic acid and glucuronic acid (Mortensen et aI1988). Salvador et aI., 

(1993) measured the disappearance of sugars from fibre during fermentation 

and found that uronic acid promoted acetate, glucose, xylose and arabinose 

promoted propionate and xylose had the greatest impact on butyrate, with 

some promotion by glucose and uronic acid.. In support of this, ispaghula, an 

arabinoxylan, promoted propionic· acid in our study but starch, a polyglucan, 

promoted butyrate rather than propionate. Pectin which is mainly 

polygalacturonic acid, on the other hand, produced more acetate, but in our 

study, produced more propionate than n-butyrate as previously reported 

(Englyst et aI., 1987b; Adiotomre et aI., 1990). Moreover, Salvador et aI., 

(1993) showed completely different fermentability ofD-glucose and L

glucose, which means the arrangement ofthe bonds in molecule of a 

monosaccharide is also important. 

5.7 Conclusion 

In this study, the aim was to identifY carbohydrate to be used in mixtures 

which gave the best actions of individual carbohydrates while diluting the 

potential side effects. In summary, rafiilose, rafiiline and pectin were rapidly 

fermented, fibruline and guar gum showed an intermediate rate of 
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fermentation, whereas, gum arabica and raw potato starch were fermented slowly. 

Generally, two categories of carbohydrates emerged on basis of SCF A profile 

predominance at 24 hours of fermentation; Good producers of propionate included 

raftilose; raftiline; fibruline; guar gum and gum arabica. Good producers of n

butyrate were raftilose, raftiline and raw potato starch. Raftilose emerged as the most 

suitable carbohydrate for the production of SCF A, especially n-butyrate. A delay in 

the rapid felmentation of raftilose will be beneficial in producing more SCF A, 

especially n-butyrate, at a more distal colonic site in the human. Raftilose has higher 

water solubility and can be easily used in water based liquid food supplements for 

tube feeding. On the other hand, raftilose, being a small molecule (oligosaccharide), 

may have a higher osmotic effect. Ingesting large amounts of raftilose may result in 

osmotic diarrhoea, thus it will not be possible to use very large amounts of raftilose. 

Therefore, it would be better to mix raftilose with another suitable carbohydrate to 

develop a mixed supplement. 

For this purpose, an ideal situation might be to combine raftilose with raw potato 

starch, as both carbohydrates are higher n-butyrate producers. However, raw potato 

starch, although a good producer of n-butyrate and a slowly fermenting carbohydrate, 

is not an ideal substrate for tube feeding due to its insolubility in the water, as it will 

sediment at the bottom of any solution. 

Good alternatives include guar gum, gum arabica and pectin which give the additional 

benefits of their action in the small intestine (Jenkins et aI., 1977; McLean Ross et aI., 

1982; Blackburn et aI., 1984; Ellis et aI., 1991; Fernandez et aI., 1994; Ellis et aI., 

1995; Fernandez et aI., 1995; Blake et aI., 1997). These three carbohydrates are 

soluble in water and could be easily incorporated into the water based liquid food 
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supplements for tube feeding. In case of the guar gum, high viscosity may become a 

problem in tube feeding, but in our study we used lower molecular weight guar gum. 

This may not be a factor in its effects()n plasma glucose and cholesterol (Ellis et aI., 

1991; Blake et aI., 1997). Mixing raftilose with guar gum would also reduce the poor 

organoleptic properties of a guar gum only preparation. 

Ispaghula, studied in Chapter 4, should also be considered as it has already been 

shown to increase the SCF A in the distal colon and to promote propulsion in the large 

intestine. 
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CHAPTER 6 

Fermentation of mixtures of indigestible carbohydrates 



6.1 Introduction 

As discussed in previous chapters, indigestible carbohydrates have therapeutic 

properties which could be exploited in the treatment and prevention of several 

diseases. Ideally, a carbohydrate should provide higher amounts of SCF A, 

especially n-butyrate, while promoting gut transit so that the production of 

these SCF A occurs more at a distal colonic site. On the other hand, such 

carbohydrates should have good organoleptic properties, and should not have 

undesirable effects such as bloating, and osmotic diarrhoea. Some 

carbohydrates are not suitable for naso-gastric tube feeding due to their 

insolubility and sedimentation in water-based liquid supplements. Considering 

the idiosyncratic actions of individual indigestible carbohydrates, it is unlikely 

that any single carbohydrate will provide therapeutically optimal conditions in 

major human colonic pathologies. 

To demonstrate the potential of mixtures of indigestible carbohydrates, I will 

consider the case of the oligosaccharide raftilose. Raftilose has lower osmotic 

action than lactulose due to its higher molecular weight. The pre-biotic action 

ofraftilose, stimulating bifidobacterial growth, is especially characteristic 

(Gibson et aI., 1993). Raftilose is readily soluble in water, however, ingesting 

large amounts may result in osmotic diarrhoea and, as it is rapidly fermented, is 

likely to promote flatulence and bloating. Therefore, smaller amounts of 

raftilose used in mixture with another suitable carbohydrate, if this can be 

achieved without affecting its beneficial actions, will be more effective and 

practicable for therapeutic supplements. The high solubility of raftilose, makes 

it ideal for water based naso-gastric tube feeding. 
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Raftilose, ispaghula, pectin, guar gum and gum arabic a were selected from 

previous experiments (Chapters 4-5). Most of these indigestible carbohydrates 

are good SCF A producers, showing potential therapeutic effects in different 

human pathologies, however, these carbohydrates have some undesirable side 

effects, if ingested in excess (Table 6.1). 

Therefore, a logical approach would be to combine different indigestible 

carbohydrates in mixtures of two or more carbohydrates in order to harvest 

their potential therapeutic benefits and simultaneously avoid their undesirable 

side effects. 

6.1.1 Potential actions of carbohydrate mixtures. 

Tables 6.2A & B show the potential effects of carbohydrates and their 

mixtures in this chapter based on their known actions and properties from 

previous studies. It would appear ideal to combine a rapidly fermenting 

carbohydrate with a slowly fermenting carbohydrate. Rapidly fermenting 

carbohydrate could produce higher SCF A, especially n-butyrate, in mixtures 

with a complementary carbohydrate. The other physical properties of 

carbohydrates such as their viscosity, bulking of colonic contents could have 

an important role in the interaction of two or more carbohydrates. Such 

interactions in cultures containing mixtures of carbohydrates with contrasting 

properties, may result in delayed fermentation of rapidly fermenting 

carbohydrates such as raftilose or pectin by slowly fermenting carbohydrates 

such as gums or ispaghula. 

In this experiment, mixtures of individual carbohydrates were evaluated for 

their fermentative properties. First the results of the last chapter will be used 
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to predict the results that may be expected from different combinations of 

these carbohydrates in human intestine. The speculated and observed effects 

Table 6.1 Advantages and disadvantages of indigestible carbohydrates in vivo 

Advantage 

i) Delay in gastric emptying & increased 

satiety, e.g. guar gum. 

ii) Lowering of plasma glucose, e.g. guar 

gum. 

iii) Reduced plasma lipids and cholesterol, 

e.g. pectin. 

iv) Accelerated intestinal transit, e.g. 

ispaghula. 

v) Higher fermentability, producing higher 

concentration of SCF A, consequently may 

prevent certain colonic diseases, which may 

be cost effective, e.g. lactulose, raftilose. 

vi) Enhanced the selective bacterial growth, 

e.g. raftilose. 

vii) Higher stool frequency and in some cases 

increased stool output; softer and wetter 

stool texture, consequently ease of stool 

passage and reduced risk of constipation, 

e.g. ispaghula. 

Disadvantages 

i) Organoleptic un-acceptability, 

e.g. higher amounts of higher 

molecular weight guar gum. 

ii)Bloating, e.g. guar gum. 

iii) Probable osmotic action with 

higher amounts, in acute case may 

result in osmotic diarrhoea, e.g. 

lactulose, raftilose. 

iv) Abdominal pain, e.g. higher 

amounts of lactulose. 

v) Distension & higher volume of 
colonic gases and consequently 
increased flatulence, e.g. higher 
amounts of lactulose and raftilose. 

vi) Very slow fermentation may 

result in loss of un-degraded fibre 

and un-absorbed SCF A in faeces. 
e.g. resistant starch 

of these carbohydrates and their mixtures are given (Table 6.2A & B). 
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Table 6.2A Observed and eXEected effects of the fermentation of individual carbohydrates. 

Raftilose 

Highly soluble; 

potential 

osmotic effect; 

very rapid 

fermentation in 

proximal colon; 

butyrate 

production; pre

biotic; very low 

pH. 

Gum arabic a Guar gum 

Non viscous even at Intermediate 

high concentration; fermentation; 

slower fermentation; propionate 

acetate predominant. production2
; high 

viscositl; low 

palatability; lower 

digestion and 

absorption in the 

small intestinal 

resulting in lower 

plasma glucose and 

cholestero19 
• 

Pectin Ispaghula 

Intermediate Intermediate 

palatability; rapid palatability and 

fermentation; acetate viscosity; very slow 

predominant6
• fermentation7

; 

Viscous; and charged 

molecule; slower 

digestion and 

absorption in the 

small intestinal 

resulting in lower 

plasma glucose and 

cholesterol. 

propionate 

predominances; high 

water holding 

capacity4 (7g/g); 

improved plasma 

cho lestero 1; 

increased stool 

output; faster 

colonic transie. 

(1) Hidaka, 1986; Mitsuoka et a\., 1987; Gibson et a\., 1993; Wang & Gibson, 1993 (2) Wo1ver et a\. 1991; McBurney & Thompson, 1987; Adiotomre et a\., 1990; Vince et a\., 1990 (3) Edwards et 

a\., 1992a (4) personal communication- Dr. Edwards (5) McBurney & Thompson, 1987; Mortensen et a\., 1988; Mortensen et a\., 1991; Bourquin et a\., 1993 (6) (Englyst et a\., 1987; Adiotomre et 

a\., 1990; Vince et a\., 1990; Weaver et a\., 1992; Wang & Gibson, 1993 (7) Edwards & Rowland, 1992 (8) Chinachoti, 1995 (9) Holt et a\., 1979; Johnson & Gee 1980; Blackburn et a\., 1984; 

Jenkins et al 1977; Aro et a\., 1984. 
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Table 6.2B Expected effects of the fermentation of mixtures of carbohydrates. 

Substrates Gum arabica Guar gum Pectin Ispaghula 

Raftilose Reduced Reduced osmotic load; Lower osmotic load, No probable osmotic effect; improved 

in mixture osmotic load higher viscosity but much increased viscosity (but lower palatability of ispaghula; less rapid 

with Slower less than GG alone; than pectin), slightly slower fermentation of raftilose; high n-

fermentation; butyrate and propionate fermentation, increased butyrate at more distal site; 

increased predominance; effects on acetate production, as well as bifidogenic; high solubility; improved 

propionate; bi- nutrient absorption in maintained butyrate; pre- bulking and water holding capacity; 

fidogenic. small intestine; Still pre- biotic. metabolic effects. 

biotic effect. 

Pectin in not done not done not done Less rapid fermentation; delayed high 

mixture propionate production; reduced 

with viscosity; improved bulking and water 

holding capacity; improved metabolic 

effects. 

Raftilose and not done not done not done less rapid fermentation; no less SCF A 

pectin in especially high n-butyrate; less rapid 

mixture with fermentation; no osmotic effect; 

improved palatability & metabolic 

effect. 
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6.2 Objectives 

The objectives of this study were to determine; 

1) the SCFAproduced by mixtures of two or three carbohydrates, using 

carbohydrates with different fermentation properties in an in vitro 

fermentation system. 

2) the additive or interactive effect of one carbohydrate on another 

carbohydrate in mixtures during the in vitro fermentation. 

3) evaluation of mixtures of carbohydrates with different properties, to 

speculate on their potential benefit in the human gut. 

This may enable us to develop mixtures of carbohydrates with different 

properties to achieve an optimised beneficial effect in the human gut. 

6.3 Methods 

The specific procedures for this experiment are described in this chapter, 

whereas, general methods are detailed in the Chapter 2. 

6.3.1 In vitro measurement of fermentation 

A general description of the in vitro system used in this study is given in 

section 2.2. 

6.3.2 Subjects used as donors of faecal inocula 

Fresh faeces from human subjects were used as source of inoculum for in vitro 

fermentation, age ranged from 26 years to 57 years, with four males and four 

females. Faecal samples were collected from eight (five in some cases) 

different healthy individuals. The criterion for the faecal donors was the same 

described in Chapter 2. 
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6.3.3 Fermentation procedure 

General details of the fermentation procedure are described in Chapter 2. 

Three experiments are described in this chapter. In general, guar gum, gum 

arabic a, pectin, ispaghula, and their respective mixtures with raftilose, were 

used as the sole source of carbohydrate. In each experiment, a control culture 

without any substrate was incubated to allow for the fermentation ofthe 

indigestible substrates in the original inoculum. The procedure and calculation 

for determination of SCF A by GLC are described in Chapter 2. Statistical 

analyses were performed as detailed in section 2.14. 

6.3.3.1 Two-carbohydrate mixtures of raftilose with gum arabica or guar 

gum 

Raftilose was tested in combination with either gum arabic a or guar gum. In 

each mixture, 50mg of each carbohydrate was used, making 100mg of total 

amount ofthe substrate in each culture (n=8). Since cultures showed a 

flattened curve after 8 hours of incubation in previous experiments and in the 

initial five subjects of this experiment, cultures from the last three subjects 

(part of experiment) were incubated for extended period of 48 hours in this 

experiment, to rule out the possibility of unfermented residual substrate and to 

determine the full extent of fermentation. 

6.3.3.2 Small amounts of the respective substrates 

In the second experiment, isolated portions of 50mg of raftilose, gum arabica 

and guar gum were tested to provide predicted values of SCF A production for 

hypothetical mixtures of these carbohydrates (n=5). 
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6.3.3.3 Raftilose in combination with ispaghula and pectin 

In the third experiment (n=5), pectin and ispaghula were tested individually 

and in mixtures with each other and with raftilose, 50mg from each 

carbohydrate, thus making the total amount of the substrate 100mg. In the 

same experiment, three-carbohydrates mixture was also tested to determine the 

interaction of three carbohydrates in mixture. In this experiment, all the three 

carbohydrates were in equal amounts, making the total amount of substrate 

100mg. 

6.3.4 Detection of residual sugars in cultures by thin layer 

chromatography 

Since cultures containing raftilose showed a flattening curve after 8 hours of 

incubation in previous studies and during the initial stage of this experiment, 

TLC was used to follow the disappearance of raftilose in these cultures from 

4-24 hours. Raftilose, was determined by comparison with standards. This 

method was adopted from Humbel & Collart (1975) and modified for our 

purpose. Details are given in section 2.6. 

6.4 Results 

6.4.1 Fermentation of raftilose in combination with gum 

arabica 

Raftilose was fermented very rapidly and gum arabica was fermented slowly. 

The rate of fermentation in mixtures was not significantly different from that in 

cultures of rapidly fermenting raftilose but were significantly higher compared 

with gum arabic a (p< 0.02). There was no significant difference in the 

production of net total SCF A between three cultures at 24 hours. SCF A 
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production declined in mixture as well in culture containing raftilose after 24 

hours (Fig. 6.1). 
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Fig 6.1 Mean (±SEM) concentrations of net total SCFA 
(!!mole/ml) produced by the fermentation of carbohydrates 
and their mixture with the faecal inoculum [50+50mg 
represents value of hypothetical mixture; GA:Rftls5050 
represents values of actual mixture]. 

SCF A production was not significantly different in cultures of actual mixtures 

of two carbohydrates from a hypothetical mixture of such composition at 8 and 

24 hours of fermentation (Fig. 6.1). 

6.4.1.1 Acetate production 

The concentrations of acetate was not significantly different in cultures of all 

three substrates at 24 hours. Acetate was significantly higher in cultures 

containing mixtures compared with cultures of gum arabica up to 8 hours (p< 

0.00). This mixture did not produce significantly different acetate from that 

predicted with the hypothetical mixture (Fig. 6.2). Cultures containing 

226 

, . 



mixtures of these carbohydrates did not produce significantly different ratios 
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Fig 6.2 Mean (±SEM) concentrations of acetate (Ilmole/ml) 
produced by the fermentation of carbohydrates and their mixture, 
with the human faecal bacteria [50+50mg represents values of 
hypothetical mixture; GA+RFTS represents values of actual 
mixture]. 
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human faecal bacteria [GA:RFTS represents values of actual 
mixture]. 
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of acetate from cultures of individual carbohydrates at 8 and 24 hours (Fig. 

6.3). 

6.4.1.2 Propionate production 

Mixture of raftilose and gum arabic a did not differ in concentration of 

propionate from those containing raftilose alone but had significantly higher 

propionate compared with culture of gum arabic a alone at 8 hours (p < 0.018). 

There was no difference between any of these cultures at 24 hours. Similarly, 

the actual mixture did not produce significantly different propionate from a 

hypothetical mixture of such composition at 8 and 24 hours (Fig. 6.4). 

There was no significant difference in the propionate ratios in any ofthese 

cultures (Fig. 6.5). 

6.4.1.3 n-Butyrate production 

There was significantly more n-butyrate in mixed carbohydrate cultures than in 

cultures of only gum arabica at 8 and 24 hours (p< 0.02), but there was no 

significant difference compared with that in cultures of raftilose at 8 and 24 

hours. n-Butyrate was produced less rapidly in mixture of these two 

carbohydrates compared with raftilose alone. There was no difference 

between real and hypothetical mixtures (Fig. 6.6). n-Butyrate production in 

mixture was more linear compared with individual component carbohydrates 

after 24 hours. 

Although raftilose produced significantly higher ratios of n-butyrate than gum 

arabic a (p<0.05), mixture of these two carbohydrates did not produce 

significantly different ratios compared with cultures of component 

carbohydrates at 8 hours. Interestingly, this mixture produced significantly 
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by the fermentation of carbohydrates and their mixture with the 
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higher n-butyrate ratios than gum arabica (p< 0.02) and significantly lower 

than culture of raftilose at 24 hours. Consequently n-butyrate ratio in mixture 
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was not significantly lower than in cultures of raftilose at 48 hours of 

fermentation (Fig. 6.7). 

6.4.2 Fermentation of raftilose in combination with guar gum 

Cultures containing mixtures of raftilose and guar gum produced significantly 

higher net total SCF A compared with cultures containing 100mg guar gum 

(p<O.02), but were not significantly different from cultures containing 100mg 

raftilose at 4 and 8 hours. The rate of fermentation was less rapid in cultures 

containing mixed substrate compared with cultures ofraftilose alone (Fig. 6.8). 
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Fig 6.8 Mean (±SEM) concentrations of net total SCFA 
(Ilmole/ml) produced by the fermentation of carbohydrates and 
their mixture with faecal inoculum [50+50mg represents value of 
hypothetical mixture; GG:Rftls5050 represents values of actual 
mixture] . 

Cultures containing either raftilose or guar gum (100mg), showed a decline in 

SCF A production at 48 hours, but production in mixtures continued to 

increase between 8 and 24 hours. The net total SCF A in mixture was similar 

to that in culture containing 100mg raftilose at 48 hours (Fig. 6.8). The 

production of net total SCF A in actual mixture was not significantly different 
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from values that expected fi'om mixture of the same composition at 8 and 24 

hours. 

6.4.2.1 Acetate production 

Acetate production was less rapid in mixtures than in cultures of raftilose 

alone. The mixture, in contrast to cultures containing individual 

carbohydrates, showed a continuous increase in acetate even after 24 hours. 

Acetate concentration was significantly higher in mixture compared with guar 

gum (p< 0.05), but not with raftilose at 8 hours (Fig. 6.9). Acetate 

concentrations were significantly lower in actual mixtures compared with 

hypothetical mixtures of such composition at 8 and 24 hours (p< 0.02). 

Ratios of acetate were not significantly different in mixtures compared with 

culture of raftilose or guar gum at 8 and 24 hours alone (Fig. 6.10). 
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6.4.2.2 Propionate production 

Propionate concentration was not significantly different in mixture from that in 

culture of 100mg raftilose or guar gum at 8 and 24 hours. The production of 

propionate was less rapid in mixture than culture of guar gum alone. Actual 

mixtures, in contrast to cultures of raftilose, showed a continuous increase in 

propionate concentrations even after 24 hours. The rate of propionate 

production was significantly lower in the actual mixture than that in a 

hypothetical mixture of such composition at 8 and 24 hours (p< 0.05; Fig. 

6.11). 

Ratios of propionate were not significantly different in mixture of raftilose and 

guar gum compared with culture of 100mg raftilose or guar gum at 8 hours. 

Ratios of propionate were intermediate and significantly different (p<0.02) in 
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mixture compared with that in cultures of individual component carbohydrates 

at 24 hours (Fig. 6.12). 

6.4.2.3 "-Butyrate 

Mixtures produced significantly higher concentrations of n-butyrate than 

cultures of guar gum alone (p< 0.02). Production ofn-butyrate in mixtures 

was not significantly different from that in cultures of raftilose alone at 8 and 

24 hours. Production of n-butyrate in mixtures, however, was less rapid than 

in cultures of raftilose. n-Butyrate concentration was not significantly different 

from that in a hypothetical mixture (Fig. 6.13). 

Ratios of n-butyrate were significantly higher (p<0.05) in mixture than in 

cultures of guar gum alone but not in cultures of 100mg raftilose at 8 and 24 

hours (Fig. 6.14). 
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6.4.3 Fermentation of raftilose in combination with ispaghula 

The rate of fermentation of mixed substrates was markedly slower than 

cultures of 100mg raftilose. Net total SCF A were significantly higher in 

mixtures than in cultures of 100mg ispaghula at 8 and 24 hours (p< 0.02), but 

not significantly different from culture of 100mg raftilose at 8 hours. Net total 

SCF A in mixed substrates were significantly lower than in culture of 100mg 

raftilose at 24 hours (p<0.05). Net total SCFA produced in the actual 

mixtures were not significantly different from that expected from hypothetical 

mixture of such composition at 8 and 24 hours (Fig. 6.15). 

6.4.3.1 Acetate production 

Acetate was produced less rapidly in mixture compared with cultures 

containing 100mg raftilose. Fermentation of mixtures produced significantly 

higher acetate concentrations than cultures of 100mg ispaghula at 8 and 24 

hours (p< 0.05 & p< 0.02 respectively), but not significantly different from 

cultures of 100mg raftilose (Fig. 6.16). Production of acetate in actual mixture 

was not significantly different from a hypothetical mixture at 8 hours (Fig. 

6.16). 

Acetate ratios were not significantly different in mixture from that in cultures 

ofthe constituent carbohydrates (Fig. 6.17). 

6.4.3.2 Propionate production 

Mixtures produced significantly higher propionate concentrations than cultures 

of 100mg ispaghula at 8 and 24 hours (p<0.02). The rate of production was 

less rapid with significantly lower propionate concentrations in mixture than 
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culture of raftilose at 24 hours (p<O.05), but not significantly different at 8 

hours (Fig. 6.18). Production of propionate was not significantly different in 
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actual mixture from hypothetical mixture of such combination at 8 and 24 

hours (Fig. 6.18). 

Propionate ratios were not significantly different in mixtures from cultures of 

the constituent carbohydrates at 8 and 24 hours (Fig. 6.19). 

6.4.3.3 n-Butyrate production 

Significantly higher n-butyrate concentrations were produced in mixtures than 

cultures of 100mg ispaghula (p < 0.02 & P < 0.05) at 8 and 24 hours 

respectively. n-Butyrate production was less rapid, however, n-butyrate 

concentrations were not significantly different in mixtures than cultures of 

100mg raftilose at 8 and 24 hours. n-Butyrate concentrations was not 

significantly different in mixtures from hypothetical mixtures (Fig. 6.20). 

There was no significant difference in the ratios of n-butyrate in cultures of 

100mg ispaghula, raftilose and their mixtures at 8 and 24 hours (Fig. 6.21). 
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Fig. 6.21 Mean (±SEM) nbutyrate percent of the total SCFA 
produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [Rftls:lspg represents 
values of mixture]. 

6.4.4 Fermentation of raftilose in combination with pectin 

The rate of fermentation was slightly more rapid in mixtures compared with 

the constituent carbohydrates. Mixed substrate cultures showed a linear 

increase in concentrations of net total SCF A, unlike the plateau effect noted in 

cultures of 100mg pectin,. The fermentation pattern of raftilose was dominant 

in cultures of mixed substrates. Net total SCF A were not significantly 

different in mixtures from cultures of the constituent carbohydrates (Fig. 6.22). 

6.4.4.1 Acetate production 

Acetate concentrations were not significantly different in mixtures from 

cultures ofthe individual constituent carbohydrates at 8 and 24 hours. The 

plateau effect observed in cultures of pectin, was not noted in mixtures (Fig. 

6.23). 

241 



80 -

70 -.-

~ 60 -

~ 
(5 50 
E 
2: 
tt 40 
() 
U) 

]i 30 
.B -+-- Raftilose 
Q) 

z 20 -+- Pectin 

-h.- Rftls: Pctn 

10 

0 
0 5 10 15 20 25 

Hours 

Fig 6.22 Mean (±SEM) concentrations of net total SCFA 
(J.lmole/ml) produced by the fermentation of carbohydrates and 
their mixture with the human faecal bacteria [Rftls:Pctn 
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Fig. 6.23 Mean (±SEM) concentrations of acetate (J.lmole/ml) 
produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [Rftls:pectin represents 
values of actual mixture]. 
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Acetate ratios in mixtures of raftilose and pectin were not significantly 

different from that in cultures of the constituent carbohydrates at 8 and 24 

hours (Fig. 6.24). 

6.4.4.2 Propionate production 

The rate of propionate production was not different in mixtures of raftilose and 

pectin from cultures of the constituent carbohydrates, except at 24 hours, 

where production of propionate was significantly higher in the mixture 

compared with the culture of 100mg pectin (p <0.05). Propionate 

concentration was not significantly different in mixtures compared with 

cultures of 100mg raftilose (Fig. 6.25). 

Ratios of propionate were not significantly different in mixtures of raftilose 

and pectin from that in cultures of the constituent carbohydrates at 8 and 24 

hours (Fig. 6.26). 
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Fig. 6.24 Mean (±SEM) acetate percent of the total SCFA 
produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [Rftls:Pctn 
represents values of mixture]. 
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Fig. 6.26 Mean (±SEM) propionate percent of the total SCFA 
produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [Rftls:Pctn represents 
values of mixture] . 
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6.4.4.3 n-Butyrate production 

Mixtures of raftilose and pectin did not produce significantly different n-

butyrate concentrations from cultures of the constituent carbohydrates. 

Production of n-butyrate was less rapid in mixtures compared with cultures of 

IOOmg raftilose (Fig. 6.27). 
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Fig. 6.27 Mean (±SEM) concentrations of nbutyrate 
(Ilmole/ml) produced by the fermentation of carbohydrates 
and their mixture with the human faecal bacteria [Rftls:Pctn -
represents values of mixture]. 

Ratios of n-butyrate were not significantly different in mixtures from cultures 

of the constituent carbohydrates. Ratios ofn-butyrate in mixtures gradually 

decreased as in culture of IOOmg raftilose. These ratios declined to the similar 

level of those in cultures of 1 OOmg pectin at 24 hours of fermentation (Fig. 

6.28). 

6.4.5 Fermentation of ispaghula in combination with pectin 

Mixtures containing ispaghula and pectin performed similarly to cultures 

containing IOOmg pectin. Net total SCF A were significantly higher in mixtures 

compared with IOOmg ispaghula at 8 and 24 hours of fermentation (p<O.02), 
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but significantly lower compared with 100mg pectin at 8 and 24 hours (p<0.05 

& p<0.02). Ispaghula significantly slowed the rate of fermentation in mixture 

(Fig. 6.29). 

6.4.5.1 Acetate production 

Acetate production was less rapid in mixtures containing pectin and ispaghula 

than cultures of 100mg of pectin. Acetate concentration was significantly 

higher than culture of ispaghula (p< 0.02), but not significantly different from 

cultures of 100mg pectin at 8 and 24 hours (Fig. 6.30). 

Acetate ratios were not significantly different in mixture from that in culture of 

ispaghula at 8 hours, but were significantly higher in mixture than in culture of 

ispaghula at 24 hours (p<0.02). Similarly acetate ratios in mixtures were not 

significantly different form cultures of 100mg pectin (Fig. 6.31). 
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Fig. 6.28 Mean (±SEM) nbutyrate percent of the total SCFA 
produced by the fermentation of carbohydrates and their 
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Fig. 6.29 Mean (±SEM) concentrations of net total SCFA 
(J..lmole/ml) produced by the fermentation of carbohydrates 
and their mixture with the human faecal bacteria [lspg:Pctn 
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produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [lspg:Pctn represents 
values of actual mixture]. 

247 



::R 
~ 
Q) 

ro 
ill 
0 « 

100 

90 

80 

70 

60 

50 

40 t -+- Ispaghula 

30 
-+- Pectin 

-I:r- lspg:Pctn 
20 

10 -.-

0 
0 5 10 15 20 25 

Hours 

Fig. 6.31 Mean (±SEM) acetate percent of the total 
SCFA produced by the fermentation of carbohydrates 
and their mixture with the human faecal bacteria 
[lspg:Pctn represents values of mixture]. 

6.4.5.2 Propionate production 

Propionate concentration was significantly higher in mixtures than in cultures 

of 100mg ispaghula at 8 and 24 hours (p <0.02). Propionate concentration 

was significantly lower in mixture compared with culture of 100mg pectin at 

24 hours (p <0.02). The rate of propionate production was less rapid in 

mixtures compared with cultures of 100mg pectin (Fig. 6.32). Propionate 

ratios in mixtures were not significantly different from that in cultures of the 

constituent carbohydrates (Fig. 6.33). 
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(f,lmole/ml) produced by the fermentation of carbohydrates and 
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Fig. 6.33 Mean (±SEM) propionate percent of the total SCFA 
produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [lspg:Pctn represents 
values of actual mixture]. 

6.4.5.3 n-Butyrate production 

The rate of n-butyrate production was less rapid in mixture compared with 

culture of 100mg pectin. n-Butyrate concentration in mixture was not 
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significantly different from culture of 100mg pectin at 8 hours, but significantly 

lower at 24 hours (p<0.02). n-Butyrate concentrations were significantly 

higher in cultures of mixed substrate than cultures of 100mg ispaghula 

(p<0.05; p<0.02) at 8 and 24 hours (Fig. 6.34). 

Ratios of n-butyrate were not significantly different in cultures of constituent 

carbohydrates and their mixtures at 8 and 24 hours (Fig. 6.35). 

6.4.6 Fermentation of raftilose in combination with ispaghula 

and pectin in mixture of three carbohydrates 

Fermentation was slower in mixtures compared with cultures of raftilose or 

pectin alone. Net total SCFA were significantly higher in mixtures than in 

cultures of 100mg ispaghula (p< 0.02). SCF A production was not significantly 

different in three-carbohydrates mixture compared with cultures of raftilose or 

pectin alone (Fig. 6.36). 
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Fig. 6.34 Mean (±SEM) concentrations of nbutyrate 
(flmole/ml) produced by the fermentation of carbohydrates 
and their mixture with the human faecal bacteria [lspg:Pctn
represents values of mixture]. 
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Fig. 6.35 Mean (±SEM) nbutyrate percent of the total SCFA 
produced by the fermentation of carbohydrates and their mixture 
with the human faecal bacteria [lspg:Pctn represents values of 
actual mixture]. 

6.4.6.1 Acetate production 

Production of acetate in mixtures was more linear compared with the cultures 

of pectin alone, showing the rate of production was almost similar as in 

cultures of 100mg of raftilose. Fermentation of mixture produced significantly 

higher acetate concentrations than that in culture ofispaghula (p< 0.02). 

There was no significant difference in the acetate production in mixtures 

compared with cultures containing 100mg raftilose or pectin (Fig. 6.37). 

Acetate ratios in mixtures were significantly higher than cultures of 100mg 

raftilose or ispaghula (p< 0.02) at 24 hours, but not significantly different from 

that in cultures of 100mg pectin at 8 and 24 hours (Fig. 6.38). 
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Fig. 6.36 Mean (±SEM) concentrations of net total SCFA 
(Ilmole/ml) produced by the fermentation of carbohydrates 
and their mixture with the human faecal bacteria 
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Fig. 6.37 Mean (±SEM) concentrations of acetate (Ilmole/ml) produced 
by the fermentation of carbohydrates and their mixture with the human 
faecal bacteria [Raftis:lspg:pctn represents values of the mixture]. 
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6.4.6.2 Propionate production 

Propionate production was less rapid in three-carbohydrates mixture than in 

culture of 100mg raftilose, but was similar to cultures of pectin alone. 

Propionate concentration was significantly higher in mixture than in culture of 

ispaghula (p < 0.02), but not significantly different than in cultures of 100mg 

raftilose or pectin at 8 hours. Mixture produced significantly lower propionate 

compared with culture of raftilose at 24 hours (Fig. 6.39). Fermentation of 

three-carbohydrates mixture yielded similar ratios of propionate to cultures of 

individual constituent carbohydrates at 8 and 24 hours (Fig. 6.40). 

6.4.6.3 n-Butyrate production 

n-Butyrate production was less rapid in three-carbohydrates mixture than in 

culture of 100mg raftilose. n-Butyrate concentration was not significantly 
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different in mixture from culture of raftilose or pectin, but significantly higher 

than in cultures ofispaghula (p<0.02 & p< 0.05) at 8 and 24 hours (Fig. 6.41). 

Ratios ofn-butyrate were not significantly different in mixtures from cultures 

containing 100mg of the three constituent carbohydrates (Fig. 6.42). 

6.4.7 Ratios of branched SCFA 

Ratios of branched chain SCF A were highest in cultures of gum arabic a, at 8 

and 24 hours. Much lower ratios of branched chain SCF A were observed in 

mixtures of gum arabic a and raftilose (Table 6.4). Similarly the highest ratios 

of branched SCFA were noted in cultures ofispaghula but not in two

carbohydrates mixture containing ispaghula with raftilose or pectin or in three

carbohydrates mixture (Table 6.4). 

6.4.8 Fermentation and pH changes in cultures 

In most cultures, the pH was not significantly different at 24 hours from that at 

8 hours. The pH decreased gradually in mixtures of raftilose and gum arabica 

in comparison to rapidly decreasing pH in mixtures of raftilose and guar gum. 

The pH was not significantly different in these two mixtures from their 

constituent carbohydrates at 24 hours (Fig. 6.43). 
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Fig. 6.39 Mean (±SEM) concentrations of propionate 
(flmole/ml) produced by the fermentation of carbohydrates 
and their mixture with the human faecal bacteria 
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produced by the fermentation of carbohydrates and their 
mixture with the human faecal bacteria [Rftls:lspg:Pctn
represents values of mixture]. 
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Table 6.3 Summary of observed (in vitro) and possible effects (in vivo) on basis of results from the fermentation of mixtures of 
carbohydrates. 

Carbohydrate Raftilose 

Raftilose in 

mixture with 

Pectin in more rapid 

mixture with fermentation; 

no effect on 

SCFA. 

Gumarabica 

no change in 

solubility; less rapid 

fermentation; no less 

SCF A, especially n-

butyrate; lower pH 

than in culture of 

gum arabica. 

Not done 

Guar gum 

no change in 

solubility; less rapid 

fermentation; no less 

SCF A, especially n-

butyrate; lower pH 

than in culture of 

guar gum. 

Not done 

Ispaghula Pectin & 
is,Eaghula 

less rapid fermentation; Less rapid 

no less of SCF A fermentation; 

especially n-butyrate; no less SCFA, 

lower pH than in especially n-

ispaghula. butyrate. 

Less propionate and n- Not done 

butyrate compared 

with pectin; apparently 

no interaction with 

ispaghula. 
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Table 6.4 Mean ratios of SCFA (% of total SCF A) produced by the fermentation of different carbohydrates and their mixtures 
with human faeces (n=5-8). 

8 hours 24 hours 

Substrates Acetate Propionate n-Butyrate Branched SCF A Acetate Propionate n-Butyrate Branched SCF A 

Raftilose 65 17 16 2 58 22 16 4 

Guar gum 60 27 9 4 52 35 9 4 

Ispaghula 61 13 13 14 54 16 12 18 

Pectin 72 13 10 4 67 16 12 5 

Gum 59 19 12 10 66 19 10 5 

arabic a 

GARaftls 67 17 13 3 64 19 13 4 

50:50 

GGRaftis 62 22 14 2 55 27 15 3 

50:50 

RftlsIspg 60 19 16 5 57 21 15 7 

50:50 

RftlsPctn 67 16 14 3 64 18 13 5 

50:50 

IspgPctn 70 14 11 6 66 16 10 8 

50:50 
RftlsIspgPctn 65 17 13 5 64 17 14 5 

34:33:33 
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At 8 hours, pH was significantly lower in culture of raftilose than in mixture of 

raftilose and gum arabica but there was no significant difference between the 

pH in culture of raftilose and in mixture of raftilose and guar gum at 8 hours. 

The pH, in general, increased with extended hours offermentation in these 

cultures (Fig. 6.43). 
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Fig 6.43 The decrease in pH (%) produced by the fermentation 
of carbohydrates and their mixtures with the human faecal 
bacteria. 

The decrease in pH was significantly more rapid in cultures of 100mg pectin 

and raftilose than in culture of 100mg ispaghula. The lowest pH was in culture 

of raftilose at 8 hours, but this did not change with extended incubation. The 

pH in cultures of raftilose was not significantly different from cultures of 

pectin. The pH rapidly decreased in mixtures of raftilose and pectin, showing 

a significant difference from the pH in mixtures of ispaghula at 8 hours. On 

the other hand, the pH changed gradually in two-carbohydrates mixtures of 

ispaghula with pectin or raftilose or three-carbohydrates mixture (Fig. 6.44). 
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The pH in mixtures ofraftilose and ispaghula was not significantly different 

from cultures of ispaghula at 8 hours, but decreased more significantly than in 

cultures of ispaghula at 24hours. There was no significant difference in the pH 

in different mixtures at 24 hours of fermentation (Fig. 6.44). 
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Fig 6.44 The decrease in pH (%) produced by the 
fermentation of carbohydrates and their mixtures with the 
human faecal bacteria. 

6.4.9 Residual raftilose in single and mixed carbohydrate 

cultures 

Cultures of raftilose and its mixtures with gum arabic a and guar gum were 

tested for residual raftilose in cultures. Cultures from 8 and 24 hours of 

fermentation did not show any residual raftilose but very small amounts of 

raftilose were noted in cultures of 100mg raftilose at 4 hours of inoubation. 

There was no detectable residual raftilose in cultures containing 50mg of raftilose in 

combination with 50mg of guar gum or gum arabica or in cultures containing only 

50mg of raftilose at 4 hours of fermentation. 
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6.S Discussion 

In this study, we were trying to identify a mixture of carbohydrates which 

would delay but not reduce the production ofn-butyrate by raftilose. In this 

way we hoped to achieve the maximum benefit by using smaller amounts of 

raftilose, which would reduce the risk of osmotic load and symptoms 

associated with very rapidly fermented carbohydrates, but which would also, 

by using smaller amounts of viscous polysaccharides, avoid poor organoleptic 

values and high viscosity. 

6.5.1 Fermentation of raftilose in combination with guar gum 

and gum arabica 

Raftilose dominated the fermentation patterns in mixtures of raftilose with guar 

gum or gum arabic a, showing a general decrease in the rate of fermentation. 

However, guar gum was more effective in influencing the fermentation of 

raftilose (Fig. 6.8) than gum arabica (Fig. 6.1). Fermentation in these mixtures 

was delayed. However, production ofSCFA was not affected (Table 6.3; Fig. 

6.1 & 6.8). This effect could be of great use, as the same amount of net total 

SCF A would be produced with only 50mg of raftilose in mixture avoiding the 

unwanted effects oflarger amounts of raftilose. Fermentation continued in 

mixtures of guar and raftilose (Fig. 6.8), in contrast, there was no further 

fermentation in mixtures of gum arabic a and raftilose after 24 hours (Fig.6.1). 

Such different performance of the two mixtures after 24 hours may be an 

indication of difference of interaction in the two mixtures. Since guar gum was 

not as slowly fermenting as gum arabica, it was expected that the substrate in 

mixtures of guar gum and raftilose would be exhausted comparatively earlier 

than in mixtures of raftilose and gum arabica, apparently the reverse was true. 
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This may be due to the viscous property of guar gum resulting in a delay of 

fermentation. Decreased SCF A in mixtures of gum arabica and rafti10se at 48 hours, 

may be due to re-fermentation of SCF A into other metabolites (McBurney & 

Thompson, 1987; Jay, 1996). Thus, not all carbohydrates can be expected to interact 

in similar manner in mixtures. 

The initial very rapid production of SCF A seen in cultures of 1 OOmg rafti10se was 

preserved in mixtures with the gums although these contained only 50mg rafti10se but 

slowed after 4 to 8 hours. This may reflect a phenomenon called catabolite 

repression, which is the basis of diauxic growth, a peculiar growth response to 

substrate mixtures. When the bacterial cells are grown in cultures contain a rapidly 

metabolisab1e energy source, the increasing intracellular concentrations of ATP leads 

to the repression of enzymes required for the catabolism of the less rapidly degrading 

energy sources. For example, when E.coli cells are actively involved in the 

degradation of glucose, synthesis of the f3-galactosidase, enzyme for the degradation 

of lactose, is repressed (Stanier et aI., 1986). 

Net total SCFA in the actual mixtures were similar to that predicted by their 

respective hypothetical mixtures which the higher amount of substrate did not affect 

the production ofSCFA (Fig. 6.1 & 6.8) and no loss ofSCFA (table 6.3). This is an 

interesting finding, in comparison with the results from Chapter 3. 

The pattern of propionate production was completely different in these two mixtures 

of guar/rafti10se and gum arabicalrafti10se suggesting that the two gums interacted 

with rafti10se in different ways. Gum arabica did not affect the rate of propionate 
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production, whereas, propionate was produced less rapidly in mixtures than cultures 

of guar gum. This may be due to their different SCF A profiles, as guar gum is 

propionate predominant compared with the acetate predominance of gum arabi ca. 

Both raftilose and guar gum when fermented are propionate predominant and as 

expected that propionate production was an additive activity of the two constituent 

carbohydrates and the propionate concentration of mixture was intermediate between 

the two constituent carbohydrates. In the case of the mixture ofraftilose and gum 

arabica, the rate and pattern of propionate production was the same as in cultures of 

raftilose alone. Moreover, the production of propionate in these mixtures was not 

similar in comparison with their respective hypothetical mixtures. It seemed that 

there was an inhibition and delay in the production of propionate in mixture of guar 

gum and raftilose, an indication of different responses of the mixtures to propionate 

production. 

The concentrations and patterns of n-butyrate production were important features of 

these mixtures. Production of n-butyrate in both mixtures showed a gradual increase 

even after 24 hours of fermentation (Fig. 6.6 & 6.13), which was an indication of less 

rapid and delayed production of n-butyrate. Thus the presence of gums lowered the 

rate ofn-butyrate production from that in cultures of 100mg raftilose (Table 6.3). 

This was a useful effect of these mixtures of raftilose with guar gum or gum arabica, 

as replacing 50% of raftilose with a comparatively slower fermenting gum did not 

reduce butyrate production but may delay the release of butyrate. Producing such an 

effect in vivo may be helpful in prolonging n-butyrate production and perhaps move 

butyrate further round the colon, at the same time reducing the potential adverse 

effects of raftilose. Moreover, the addition of guar gum would add the therapeutic 
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effects of delaying nutrient absorption in the small intestine as well (Jenkins et aI., 

1977; Aro et aI., 1984; Blackburn et aI., 1984; Fernandez et aI., 1995). 

6.5.2 Fermentation of rapidly fermenting carbohydrates in 

combination with slowly fermenting carbohydrate 

As discussed in earlier chapters two inhibitory forces may be working during the in 

vitro fermentation of mixtures of a rapidly fermenting and a slowly fermenting 

carbohydrates; An inhibitory effect due to the decreased pH and changes in the 

physiological conditions of cultures, with increasing amounts of 1actu10se (Chapter 3) 

and inhibition of fermentation of rapidly fermenting 1actu10se due to the physical 

presence of slowly fermenting ispaghu1a in mixed substrate culture (Chapter 4). The 

amount of rapidly fermenting substrate appeared to be important in the in vitro 

fermentation procedures (Barry et aI., 1995; Stevenson et aI., 1997b). On the 

contrary, in normal healthy human colon such high amounts of SCF A from 

fermentation reactions are rapidly cleared by the colonic epithelium and these do not 

accumulate to have a negative effect on physiological conditions in the normal state 

of colonic health. Therefore, the physical properties of slowly fermenting 

carbohydrates such as ispaghu1a, may become more important, compared with the 

extreme changes in pH and other conditions in the colonic fermentation as discussed 

in earlier chapters. The specific properties of ispaghu1a (bulking of gut contents, 

increased stool out put, increased butyrate in the distal colon: Edwards & Eastwood, 

1992; Morteau et aI., 1994; Edwards et aI., 1992a; Washington et aI., 1998) should 

make it an ideal complimentary carbohydrate 
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in mixture with rapidly fermenting carbohydrates (Chapter 4). This would be 

particularly useful in the case of carbohydrates with osmotic properties such as 

lactulose and raftilose. 

In view of such an expected role, ispaghula was mixed, in this study, with 

other rapidly fermenting carbohydrates raftilose (an oligosaccharide) and 

pectin (a polysaccharide). In general, the pattern of fermentation in both 

mixtures was under the influence of rapidly fermenting carbohydrates, and 

apparently ispaghula in these mixtures of two carbohydrates did not affect the 

pattern of fermentation of rapidly fermenting carbohydrates. Ispaghula 

lowered the rate of fermentation in mixture with raftilose (Table 6.3; Fig. 6.15) 

but it did not affect the rate in mixture with pectin (Table 6.3; Fig. 6.29). In 

both mixtures, the pattern of fermentation was under the influence of the 

rapidly fermenting component in mixtures. Net total SCFA in mixture of 

raftilose and ispaghula were significantly lower than that in culture of raftilose. 

Similar results were noted with mixtures oflactulose and ispaghula (Chapter 

4). Ispaghula probably delayed the fermentation of the mixture due to its 

viscous property and by entrapping the molecules ofraftilose in its bulking 

matrix. This effect of ispaghula may play an important role in delaying the 

fermentation of rapidly fermenting raftilose and making it available for 

bacterial fermentation at more distal site of the colon. 

Cultures of raftilose or pectin alone did not produce significantly different 

acetate from their respective mixtures with ispaghula. These results were 

similar to those noted with mixtures oflactulose and ispaghula (Chapter 4). 

All three mixtures showed similar acetate production, despite the differences of 

265 



rapidly fermenting carbohydrates in mixed substrates. Acetate concentrations 

were not as expected in mixtures of ispaghula and pectin. Pectin is an acetate 

predominant carbohydrate (Chapter 5; Vince et aI., 1990). It would be 

predicted that acetate production in mixtures would be less than that in 

cultures of pectin. In contrast, acetate concentrations were not significantly 

different from cultures of pectin (Fig.6.30). 

The higher propionate concentrations in both mixtures than that found in 

cultures of ispaghula alone is a positive effect of mixing these carbohydrates 

(Fig. 6.18 & 6.32). However, comparing the propionate concentrations in 

mixtures with that produced by the rapidly fermenting component of respective 

mixtures, revealed no apparent interaction between the constituent 

carbohydrates regarding the production of propionate in mixtures. In both 

mixtures, the rapidly fermenting component may have become limited in the 

initial hours and ispaghula did not add any significant propionate to the 

cultures. In contrast, propionate was not significantly different in cultures of 

100mg lactulose from that produced in mixture containing 50mg lactulose in 

combination with ispaghula (Chapter 4). It showed that all these three rapidly 

fermenting carbohydrates behaved differently in the production of propionate 

when combined with ispaghula in a mixture. In using mixture of such 

composition, we could take the advantage of the presence ofispaghula and 

avoid the undesirable side effects of rapidly fermenting carbohydrates, 

particularly raftilose and lactulose. 

Both mixtures produced significantly more n-butyrate than culture of ispaghula 

alone. However, these mixtures behaved differently in comparison with the 
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rapidly fermenting component in cultures. Mixture of ispaghula and raftilose 

had similar concentrations of butyrate as raftilose alone but a delayed release 

ofn-butyrate. Rate ofn-butyrate production was less rapid compared with 

cultures of rapidly fermenting 100mg raftilose (Table 6.3; Fig 6.20). The slow 

rate of production indicated that it is possible to delay the production of n

butyrate by using mixture of such combination. Mixture of pectin and 

ispaghula had lower n-butyrate than pectin alone (Table 6.3; Fig. 6.34), which 

was the same as mixtures oflactulose and ispaghula. In contrast to the 

mixtures oflactulose and ispaghula (Chapter 4), and mixtures of pectin and 

ispaghula (Chapter 6), the mixture of raftilose and ispaghula did not produce 

significantly different n-butyrate compared with the cultures of rapidly 

fermenting raftilose alone. This difference between mixtures of different 

rapidly fermenting carbohydrates (lactulose, raftilose and pectin) with slowly 

fermenting ispaghula showed that different carbohydrates interacted in 

different ways. This is probably dependent on their chemistry or some physical 

factors other than viscosity, but is not dependent solely on their rate of 

fermentation. n-Butyrate concentration in mixture of raftilose and ispaghula 

was not significantly different from a hypothetical mixture (Table 6.3; Fig. 

6.20), in contrast to mixture oflactulose and ispaghula where n-butyrate was 

significantly lower in actual mixture than predicted from hypothetical mixture. 

In general, ispaghula reduced the rate of fermentation but did not affect the 

level of SCF A production adversely in mixture with raftilose. Whereas, 

ispaghula did not show any appreciable interaction with pectin and showed a 

significant reduction in SCF A in mixture with pectin. 
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6.5.3 Fermentation of two rapidly fermenting carbohydrates in 

a mixture 

The fermentation pattern of raftilose was dominant in mixtures of raftilose and 

pectin. The net total SCF A, unlike in cultures of pectin, increased linearly in 

mixtures with no plateau, despite, the rapid rate of fermentation, showing a 

positive interaction between the constituent carbohydrates (Table 6.3; Fig. 

6.22). The two rapidly fermenting carbohydrates (raftilose and pectin) 

appeared to affect the rate of fermentation in an additive manner. The 

production of SFCA was not inhibited in mixtures even with a rapid 

fermentation, suggesting that fermentation of 100mg mixed substrate of two or 

more different carbohydrates in in vitro cultures, may not necessarily inhibit 

the rate of fermentation. Therefore, using such mixtures may be helpful in 

overcoming the inhibitory effect oflarger amounts of a single substrate and 

may produce higher SCF A concentrations. 

Acetate concentrations in mixtures followed the same pattern as that of net 

total SCFA (Fig. 6.23). The pattern of propionate production in mixtures 

showed a gradual increase from 8 to 24 hours, suggesting that production of 

propionate was slowed in mixtures (Table 6.3; Fig. 6.25). Production of n

butyrate, unlike in mixtures of raftilose and guar, and raftilose and gum 

arabica, did not show any appreciable interaction in mixtures of raftilose and 

pectin (Fig. 6.27). The viscosity of pectin did not appear to affect the level of 

production, however, a less rapid rate of fermentation was noted in mixture 

than culture of raftilose alone. 
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6.5.4 Fermentation of three-carbohydrates mixture containing 

two rapidly fermenting carbohydrates with slowly fermenting 

ispaghula 

Mixture of three carbohydrates was fermented less rapidly than the rapidly 

fermenting carbohydrates constituents in mixture (Table 6.3; Fig. 6.36). On 

the other hand, net total SCF A were significantly higher in mixture than in 

culture of 100mg ispaghula. The more linear production of net total SCF A in 

mixture than culture of pectin, suggested a reduced inhibition in mixture. No 

loss of SCF A in mixture was evident. This suggested that SCF A production 

may occur over a more prolonged period compared with rapidly fermenting 

raftilose and pectin. 

The more linear and gradual increase in acetate concentrations showed that 

acetate production was not under the influence of pectin in mixtures, showing 

less rapid production (Fig. 6.37). On the other hand, propionate production in 

mixture was exactly the same as in culture of pectin, and less rapid than in 

cultures of raftilose (Fig. 6.39). Significantly lower propionate concentrations 

in mixture than in culture of raftilose, suggested that raftilose became limited 

first, and then pectin continued to contribute to propionate concentrations in 

the latter stages of fermentation. Interaction between the three carbohydrates 

affected the rate of propionate production in this mixture. 

The rate ofn-butyrate production was less rapid in mixture of the three 

carbohydrates than culture of 100mg raftilose (Table 6.3). Similarly 

comparing the n-butyrate concentrations in mixture to that in cultures of 

100mg pectin or raftilose, showed that the presence of ispaghula did not affect 
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the concentrations of n-butyrate produced but influenced the rate of 

production (Table 6.3; Fig. 6.41). The 3-carbohydrates mixtures produced 

higher n-butyrate than mixed two-carbohydrate cultures oflactulose and 

ispaghula (Chapter 4), and pectin and ispaghula (Chapter 6). On the other 

hand, levels of n-butyrate were similar as noted in mixture of raftilose and 

ispaghula, but lower than two-carbohydrate mixtures of raftilose with gums. 

In this way, there was no loss ofn-butyrate in this three-carbohydrate mixture. 

A delayed production of n-butyrate could be of potential benefit to human 

health. 

6.5.5 Ratios of branched SCF A 

The concentrations of branched SCFA were highest in cultures of slowly 

fermenting carbohydrates. This may be due to a lower rate of bacterial growth 

as well as a higher incidence of bacteriolysis. An earlier study suggested that 

fermentation at 24 hours may be a product ofre-fermentation and lysis 

(McBurney & Thompson, 1987). 

6.5.6 Reduction in pH 

Low colonic pH may be beneficial in certain pathological conditions such as 

cancer in the human gut (Chapter 1). In this study, carbohydrates affected the 

pH in cultures to different degrees (Table 6.3; Figs. 6.43 & 6.44). In most 

cultures, the pH dropped rapidly and remained low for the duration of culture 

incubation. However, in some cultures there was a recovery towards 

neutrality. In slowly fermenting carbohydrate cultures, such as gum arabica, 

the reduction in pH was gradual but continued falling for the duration of 24 

hour. This effect, in general, was maintained in mixtures. This suggested that 
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combining a slowly fermenting carbohydrate with a rapidly fermenting 

carbohydrate in a mixture may prolong the impact of reduced pH. This may 

not be as relevant in vivo where the colon is more efficient at buffering pH 

changes. 

6.5.7 Disappearance of raftilose from mixed substrate cultures 

Very little raftilose was found in single carbohydrate cultures after 4 hours of 

incubation. When included in mixtures residual raftilose was not detected at 

any time. This indicates that raftilose is fermented very rapidly in all cultures 

and presumably before the more complex carbohydrates in mixtures. This 

might have implications for the site of production of SCF A from raftilose in 

vivo i.e. butyrate from raftilose would be more likely to be produced in the 

proximal colon even in mixtures. However, it should be noted that these 

mixtures continued to produce butyrate beyond 4 hours and to the same level 

as cultures ofraftilose alone. The fermentation ofraftilose alone produced 

much lactate at 4 hours which was then further metabolised to the SCF A after 

all the raftilose had been fermented. 

6.6 Conclusion 

In summary, mixtures of carbohydrates including raftilose were fermented 

more slowly than raftilose alone or raftilose in combination with pectin. 

Overall, it seemed that ispaghula was the most effective in slowing the rate of 

fermentation when compared with pectin or gums. Mixing raftilose with 

ispaghula or guar gum gave the best preservation of butyrate and propionate 

production. Three-carbohydrates mixture was also effective in preserving 

butyrate production. 
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The following conclusion can be drawn from these experiments discussed in 

this chapter; 

1) Combination of carbohydrates of different fermentability, especially 

ispaghula, may allow a slower fermentation but may preserve the 

production of important SCF A such as n-butyrate. 

2) Carbohydrates with similar rates of fermentation may not necessarily 

interact with other carbohydrates in the same way. Every combination of 

different carbohydrates will have unique patterns of fermentation. 

3) The decline in SCF A production after 24 hours suggests that 8 and 24 

hours are ideal time points to determine the maximum possible 

concentrations of SCF A in in vitro models for describing the fermentability 

of carbohydrates. 
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General Discussion 

The metabolic and specific therapeutic effects of indigestible carbohydrates in 

the human colon have attracted much attention from researchers. In view of 

the metabolic importance ofthese carbohydrates, many researchers have 

considered supplementation with isolated carbohydrates without disturbing the 

balance of other dietary contents (Jenkins et aI., 1977; Jenkins et aI., 1976; 

Cummings et aI., 1978). Previously, complex carbohydrates were studied 

extensively for their in vitro fermentation and in vivo metabolic implications 

(Englyst et aI., 1987b; Adiotomre et aI., 1990; Wang & Gibson, 1993; Younes 

et aI., 1996). Most of this work was carried out in vitro, using carbohydrates 

in isolation. However, the potential benefits ofthese carbohydrates, especially 

iflarge amounts are required to be metabolically effective, will be of little value 

if they have poor organoleptic properties. In addition, they may have adverse 

gastrointestinal effects such as bloating and osmotic diarrhoea. In view of the 

idiosyncratic actions of these individual carbohydrates, it is unlikely that any 

single carbohydrate will provide therapeutic conditions without having some 

undesirable effects. Therefore, a logical approach would be to combine 

different indigestible carbohydrates in mixtures of two or more carbohydrates 

in order to harvest the potential therapeutic benefits but simultaneously avoid 

their undesirable side effects. However, there is very little information of 

about the fermentation of carbohydrates mixture (Washington et aI., 1998). In 

this thesis, therefore, the fermentation and interaction of these carbohydrates in 

mixtures in in vitro cultures were investigated to provide a basis for predicting 

their action in vivo. 
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The main aspect of the interaction of carbohydrates studied was their 

fermentability and their SCFA profile produced. The aim of this study, 

therefore, was to develop a carbohydrate mixture, which would probably 

contain a slowly fermenting carbohydrate and a rapidly fermenting 

carbohydrate and which would be a good source of n-butyrate. In this way, 

we were trying to identifY a mixture of carbohydrates which would delay but 

not reduce the production of n-butyrate by a very fermentable carbohydrate 

such as raftilose. Such mixture would be of maximum benefit using smaller 

amounts of raftilose which would reduce the risk of osmotic load and other 

symptoms associated with large amounts of very rapidly fermented 

carbohydrates. This approach would, at the same time, avoid poor 

organoleptic values and high viscosity by using smaller amounts of viscous 

polysaccharides in mixtures. To develop such a mixture for tube fed patients, 

specific characteristics of the constituent carbohydrates, such as their 

solubility, viscosity, and ease of feeding down a tube were considered. There 

are currently some commercial products available containing mixtures of 

complex carbohydrate including Jevity® (Ross laboratories, UK), containing a 

mixture of soy polysaccharides, oat hull fibre, gum arabic a, 

carboxymethylcellulose and fructo-oligosaccharide. This product is used for 

tube feeding but use of such mixtures is not based on published scientific 

information about the potential interactions and benefits of the specific 

carbohydrates used. 

In this thesis, it was hypothesised that a slowly fermenting carbohydrate would 

alter the fermentation of a rapidly fermenting carbohydrate and vice versa. 

This would result in a delay in the fermentation of a rapidly fermenting 
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carbohydrate, which are generally high SCF A producers. In addition, it was 

hypothesised that carbohydrates of different SCF A profile may affect the 

ability of each other to produce a particular SCF A, especially n-butyrate. 

Therefore, indigestible carbohydrates with different fermentability, rate of 

fermentation and other related characteristics, were used in mixtures in this 

study. 

To evaluate the potential use of mixtures of indigestible carbohydrates, I have 

used a simple in vitro model. This model is not designed to mimic all aspects 

of the human colon and will only give an indication of the effects of mixtures 

in vivo. However, the ability to screen many carbohydrates and to investigate 

in more detail the possible interactions ofthese carbohydrates makes the in 

vitro system useful in this context. Because of the limitations of the model, 

some aspects of the model system had to be evaluated to allow better 

interpretation of the results and better understanding of how they may relate to 

the effects of mixtures in vivo. 

7.1 Investigation of the in vitro model 

The most important limitation of such in vitro models is the absence of an 

absorptive epithelium resulting in the accumulation of end products. This may 

cause changes in in vitro cultures and inhibit the fermentation of carbohydrate 

and the production of SCF A. Only a few studies have recognised the 

importance of the amount of test substrate in in vitro fermentation procedures 

(Mortensen et aI., 1988; Mortensen et aI., 1991; Barry et aI., 1995; Stevenson 

et aI., 1997b). These studies agreed on 50 to lOOg substrate per litre of media 

as the optimal amount of a particular carbohydrate to be used in an in vitro 
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model. However, the most suitable amount of substrate to avoid inhibition of 

fermentation may depend on its fermentability. I, therefore, investigated this 

limitation using a highly fermentable and a poorly fermentable substrate to test the 

hypothesis that with increasing amounts of substrate, the increase in in vitro 

fermentation is not linear (Chapter 3). 

Rapid in vitro fermentation of carbohydrate produces higher amounts of SCF A which, 

in contrast to in vivo conditions, are not absorbed. Consequently, such rapid 

fermentation results in a rapid decline in pH, increased production of gases and other 

metabolites. Such rapidly changing conditions in in vitro cultures may cause 

environmental selection resulting in a change in the bacterial activity from that 

present in the initial stages of the fermentation. In this way, a rapidly fermenting 

carbohydrate may create conditions that are favourable for the growth and subsequent 

metabolic activity of bacteria, which are more effective in the fermentation of a 

slowly fermenting carbohydrate. Of the known factors, which would change the 

physiological conditions, influencing the bacterial activity, the most important are the 

accumulating amounts of SCF A and reduced pH in in vitro cultures. 

In the present study, these two factors were addressed. The fermentation of 

incremental portions of lactulose demonstrated that fermentation of lOOmg lactulose 

was inhibited significantly compared with the fermentation of 25mg lactulose. 

Almost all the substrate was fermented in cultures of 25mg of lactulose but when 

larger amounts were included, an inhibition in the rate of fermentation was apparent 

(Chapter 3). It can be speculated that factors such as substrate concentration, pH 

changes, and the accumulation of intermediary and end products, influence the rate of 

in vitro fermentation in these cultures. 
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Such changed physiological conditions may result in a transformation of the 

micro bial population in cultures of lactulose after 8 hours of incubation. Low 

pH has been implicated in inducing different metabolic pathways or a change in 

microbial populations (Edwards et aI., 1985; Edwards & Rowland, 1992; 

Wang & Gibson, 1993). 

In our study, a loss of linearity in SCFA production was noted with much 

smaller amounts of substrate compared with other studies (Mortensen et aI., 

1991). This may be due to the differences in the fermentation methods of the 

two studies. Lactulose was very rapidly fermented in the present study and 

produced higher concentrations of SCF A quickly and caused a rapid decrease 

in pH (Chapter 3). 

7.2 Is pH the main factor regulating the fermentation 

in vitro? 

Although the low pH seemed to be the main effector in the inhibition of the in 

vitro fermentation oflactulose in the present study, it is difficult to separate the 

effect of pH from other factors. The effects of pH may not be related to its 

absolute measurement but may depend on a number of growth conditions such 

as type of acid, types of salt present in the medium of growth (Jay, 1996). For 

example, the growth of certain lactobacilli is permitted at lower pH with citric, 

hydrochloric, phosphoric and tartaric acids compared with acetic and lactic 

acids (Juven, 1976). Therefore, it is important to know about the acids that 

are responsible for the reduction in pH, to determine the rate of subsequent 

growth and the minimal pH for a microorganism to initiate its growth. Chung 

and Geopfert (1970) reported the minimal pH 4.05 for salmonella to initiate 
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growth when HCI and citric acids were used, but 5.4 and 5.5 when acetic and 

propionic acids were used respectively. Similarly, Alacaligenes faecalis has 

been shown to grow over a wider range of pH in the presence of 0.2 M NaCI 

than in the absence ofNaCI or in the presence ofO.2M Sodium citrate 

(Sherman & Holm, 1922). This shows that a low pH may transform the 

metabolic activity of bacterial cells depending on other conditions in culture. 

Low pH may be implicated beneficially in certain pathological conditions, such 

as colon cancer (detail discussion in Chapter 1). 

In this study, fermentation of lactulose produced higher concentrations of 

SCF A with a corresponding decline in pH, whereas, ispaghula did not produce 

significant concentrations of SCF A or change in pH. When mixtures of 

lactulose and ispaghula were fermented, concentrations of SCF A increased 

with higher amounts oflactulose with a corresponding decrease in pH. The 

greatest decrease in pH was noted at 8 hours in all cultures (Chapter 4-6). 

Similarly, pH decreased rapidly with increasing production of the SCF A in 

cultures of other rapidly fermenting carbohydrates such as raftilose and pectin, 

up to 8 hours. A recovery in pH towards neutrality was then noted with slight 

decrease in SCFA, indicating that concentrations of the SCFA are one of the 

major factors influencing the pH in these cultures. However, it is also possible 

that the bacteria may have used the substrate or organic acids already present 

in cultures, to produced different metabolites such as amines from amino acids, 

butanol from butyric acid, and acetoin from pyruvic acid (Jay, 1996). This use 

of organic acids may decrease the concentration of SCF A and other organic 

acids, resulting in an increased pH at latter stages of incubation. Therefore, 
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the increase in pH noted at 24 hours of incubation may be a function of 

conversion ofSCFA to other metabolites. 

Low pH may influence the fermentation in different ways (Chapter 3; Metzler, 

1977; Edwards et al., 1985). A low pH may favour other metabolic routes. 

For example, propionic acid may be favoured over acetic and butyric acid. 

Since fermentation of some carbohydrates, such as raftilose and lactulose 

produced higher concentrations of acetate, lactate and other organic acids in 

the initial stages of the cultures, there was a corresponding decrease in pH. In 

cultures containing these carbohydrates, the initial lowering of pH by the 

production of acetate and/or lactate, may make the conditions favourable for 

production of propionate (Edwards et al., 1985) or butyrate. The second 

major factor may be that SCF A would depend on the specific nature of 

available substrates or the species of bacteria which could convert these 

substrates to SCF A. Propionate and n-butyrate are produced by different 

bacterial species (Macfarlane & Gibson, 1995). 

In our study, the accumulating SCF A may have further reduced pH and 

changed the physiological conditions in cultures so that instead of inhibiting, 

they actually facilitated and changed the metabolic route for the production of 

n-butyrate as fermentation progressed. In this way, physiological conditions 

may become progressively more effective favouring the production of different 

SCF A particularly n-butyrate compared with the production of propionate. 

7.3 Feed back Inhibition 

Another factor influencing the fermentation in these cultures may be feed back 

inhibition of intracellular and/or extracellular enzymes by the accumulation of 
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organic acids and other end products (Chapter 3; Metzler, 1977; Champ & 

Harvey, 1994). However, as I was measuring fermentation by the 

accumulation of SCF A, it was not possible to test this mechanism in my study. 

If! had measured residual carbohydrate it may have been possible to 

investigate the impact of accumulating SCF A but these methods were not 

available to me at that time. Later raftilose only was measured in cultures by 

TLC. Raftilose was no longer present in cultures after lthours (Chapter 6). 

7.4 Inhibition of fermentation of a rapidly fermenting 

carbohydrate due to the presence of a slowly 

fermenting carbohydrate 

In this study, another inhibition was investigated which may originate directly 

from the interaction of carbohydrates in mixtures. In the first experiment, 

ispaghula and lactulose were used in mixtures. The specific properties of 

ispaghula (Edwards & Eastwood, 1992; Edwards et aI., 1992a; Morteau et aI., 

1994; Washington et aI., 1998) make it an ideal complimentary carbohydrate in 

mixture with rapidly fermenting carbohydrates. In this study, ispaghula was 

combined with rapidly fermenting lactulose. Lactulose, being a small molecule 

(disaccharide), may result in osmotic diarrhoea if ingested in large quantity. 

On the other hand, lactulose is good n-butyrate producer. Therefore, it 

seemed ideal to combine the rapidly fermenting and higher SCF A, especially n

butyrate, producing lactulose in mixtures with slowly fermenting, viscous, and 

stool bulking ispaghula. It was hypothesised that such combinations would 

delay fermentation of rapidly fermenting lactulose through the action of slowly 

fermenting ispaghula. Such combination may result in the production of higher 
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amounts of SCF A, especially n-butyrate, at more distal sites in the colon. This would 

fulfil one of the aims of this thesis, to evaluate mixtures of carbohydrates with 

different properties, to achieve the optimised beneficial effect in the human gut. 

Combining carbohydrates with different rates of fermentation may influence the 

fermentation of both carbohydrates. It was hypothesised that a rapidly fermenting 

carbohydrate would enhance the rate of fermentation of a slowly fermenting 

carbohydrate by increasing bacterial mass and changing physiological conditions. On 

the other hand, a slowly fermenting carbohydrate may delay the fermentation of a 

rapidly femlenting carbohydrate. In particular, the viscous or bulking properties of 

ispaghula may hinder the accessibility to fermenting bacteria. 

In addition to reduced SCF A production with increasing amounts of lactulose 

(Chapter 3), the physical presence of ispaghula reduced the rate of lactulose 

fermentation in mixtures (Chapter 4). When fermentation of such mixtures occurs in 

the colon, the SCF A are rapidly absorbed and their concentrations may not be 

sufficient enough to have a negative effect on physiological conditions in the colon. 

Therefore, the physical properties of slowly fermenting carbohydrates such as 

ispaghula, may become more important. The bulking of colonic contents and the high 

viscosity of ispaghula in the human colon (Edwards & Eastwood, 1992), could also 

promote a delayed fermentation of lactulose, making it available for bacterial 

fermentation at more distal colonic site. The high viscosity of ispaghula may trap the 

small molecules of lactulose in a complex three-dimensional matrix making lactulose 

less accessible to bacteria, thus impeding the fermentation of lactulose. Ispaghula 

may also reduce the absorption of fermentation products by reducing the diffusion. 

281 



Therefore, SCF A or molecules of other substrates, entrapped in the digesta, may be 

transported to more distal sites for absorption and/or for further metabolism. This 

hypothesis is supported by the delay in fermentation of lactulose in combination with 

ispaghula in man (Washington et aI., 1998). 

7.5 Ideal amount of substrate for in vitro fermentation 

As inhibition was noted with the increasing amounts of substrate (Chapter 3), it is 

logical to suggest acceptable amounts for such in vitro fermentation systems. 

Considering the fermentation of incremental portions of lactulose, 50mg produced 

similar SCF A as cultures of lOOmg lactulose at 8 and 24 hours. In this way, there was 

no loss in SCF A, despite using half of the amount of substrate. This suggested that 

50mg substrate would be a more appropriate amount of a rapidly fermenting 

carbohydrate. This is supported by a previous study which did not achieve 

reproducible results with 25mg substrate (Mortensen et aI., 1991). Higher amounts of 

carbohydrate may result in the inhibition of fermentation. 

When ispaghula and lactulose were combined in different proportions, it was noted 

that the best substrate ratio of the two carbohydrates was 50mg of each carbohydrate. 

The mixture of 50mg of each carbohydrate produced significantly more of the three 

principal SCF A than other mixtures of lactulose and ispaghula at 8 hours of 

incubation (Chapter 4). Although this mixture, produced less SCFA than 100mg 

lactulose alone, (ispaghula inhibited the fermentation) mixture of raftilose and guar 

gum in the same proportion produced similar SCF A as in culture of 100mg raftilose 

(Chapter 6). 
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The reduction in pH after fermentation of a mixture of 50mg of lactulose and 

ispaghula reached a plateau with no further change, suggesting that it may be helpful 

in preventing a fmiher deterioration of physiological conditions in cultures. Also 

combining two carbohydrates with contrasting fermentation properties, in such 

proportions will be more effective, as both carbohydrates in a mixture would have 

optimum chances for their role in the mutual interaction. Fermentation of such 

mixtures will reap the benefit of both carbohydrates and, on the other hand, will avoid 

the adverse effects of the two. 

7.6 Actual values compared with expected values from 

hypothetical mixtures 

When values of SCF A in actual mixtures were compared with theoretical values 

calculated from hypothetical mixtures of the same composition, the trends were not 

similar in these mixtures. The net total SCF A in actual mixtures of raftilose with gum 

arabica, guar gum or ispaghula were similar to that predicted for their respective 

hypothetical mixtures suggesting the absence of end product inhibition (Chapter 6). 

This contrasts with the results from mixtures of lactulose and ispaghula where 

influence of ispaghula in reducing the SCF A production by the fermentation of 

lactulose was seen (Chapter 4). 

In mixtures ofraftilose and guar gum (both propionate predominant) it was expected 

that propionate production would be an additive. On the contrary, the propionate 

concentration in actual mixture was significantly lower than the theoretical expected 

value. Similar findings were noted in mixture of lactulose 
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and ispaghula. On the other hand, in mixture of raftilose and gum arabic a, the 

rate and concentrations of propionate were similar to hypothetical mixture 

(Chapter 6). In all these cultures, except in mixture oflactulose and ispaghula, 

n-butyrate concentrations were not significantly different from hypothetical 

value. Mixture of lactulose and ispaghula produced significantly lower n

butyrate in actual mixture than predicted from hypothetical mixture. 

In general, it may be speculated that although all carbohydrates responded 

differently, the inhibition due to large amount of substrates may be controlled 

by mixing different carbohydrates. With the help of such mixtures, we may 

achieve a slower rate ofn-butyrate production, without affecting the 

concentrations of n-butyrate. 

7.7 Patterns & rates of fermentation 

The indigestible carbohydrates used in this thesis showed different rates of 

fermentation and could be grouped in three categories. Lactulose, raftilose, 

raftiline and pectin were rapidly fermented, ispaghula, oat fibre, gum arabic a 

and raw potato starch were fermented slowly, and fibruline and guar gum 

showed an intermediate rate of fermentation (Chapters 4 & 5). The difference 

in concentrations of propionate in cultures of guar gum, gum arabic a and raw 

potato starch at 8 and 24 hours indicated a slow or less rapid fermentation. 

Although raftilose produced a SCF A profile with propionate predominance, it 

still produced significantly higher concentrations of n-butyrate compared with 

culture of gum arabic a, guar gum, pectin and raw potato starch. The pattern 

and slower rate of n-butyrate production in culture of raw potato starch may 

be beneficial in individuals with long transit time. However, in individuals with 
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short transit time, un-fermented raw starch or un-absorbed n-butyrate will be 

excreted with faeces. 

In general, the pattern of fermentation seen in mixtures of carbohydrates was 

under the influence of the rapidly fermenting component. Ispaghula did not 

affect the fermentation pattern of rapidly fermenting carbohydrates. Ispaghula 

lowered the rate of fermentation in mixtures with raftilose but no obvious 

interaction was noted in mixtures of pectin and ispaghula (Chapter 6). 

Different mixtures of carbohydrates showed different rates of fermentation. 

For example, guar gum was more effective in influencing the fermentation of 

raftilose (Fig. 6.8) than gum arabica. (Fig. 6.1). Such different performance 

suggests different interactions in the two mixtures after 24 hours. Guar gum 

was not as slowly fermenting as gum arabica. It was, therefore, expected that 

the substrate in mixtures of guar gum and raftilose would be fermented 

comparatively earlier than in mixtures ofraftilose and gum arabica. However, 

the reverse was true. In addition, these mixtures showed a different pattern of 

propionate production suggesting that the two gums interacted with raftilose in 

total different ways. Gum arabic a did not affect the rate of propionate 

production, whereas, propionate was produced less rapidly in mixture of guar 

gum. This may be due to the different SCFA profile of these carbohydrates. 

On the other hand, propionate production in mixture of lactulose and ispaghula 

was similar to that of lactulose alone. All the three rapidly fermenting 

carbohydrates (lactulose, raftilose, pectin) behaved differently in the 

production of propionate when combined with ispaghula in a mixture. 

Therefore, it seems that not all carbohydrates can be expected to interact in 
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similar manner in mixture. All these mixtures produced significantly higher 

SCF A than ispaghula alone. Thus, ispaghula can be incorporated in mixtures 

providing the benefit of its useful properties of delaying fermentation and 

increasing stool output, at no cost of SCF A. 

Similarly, the mixture of three carbohydrates were fermented less rapidly, but 

with no less SCF A, than the constituent rapidly fermenting carbohydrates in 

the mixture (Fig. 6.36). Fermentation of pectin on its own produced a plateau 

in SCF A production after 8 hours. In contrast, the three-carbohydrate mixture 

did not demonstrate a plateau in SCF A at any time. This indicated that any 

inhibition occurring in pectin only cultures is prevented in this mixed 

carbohydrate culture, suggesting the possibility of SCF A production over a 

more prolonged period than with raftilose and pectin alone. 

Interestingly the fermentation pattern of raftilose was dominant in mixtures of 

raftilose and pectin. The net total SCF A increased linearly in mixtures with no 

plateau, despite rapid fermentation. This was a positive interaction between 

the constituent carbohydrates (Fig. 6.22), indicating the absence of inhibition 

of SFCA production in mixtures even with a rapid fermentation. It may be 

predicted that fermentation of 100mg mixed substrate of two or more 

carbohydrates in in vitro cultures, may not be inhibited fermentation. Such 

mixtures may be helpful in overcoming the inhibitory effect oflarge amounts of 

single rapidly fermenting substrates and may produce higher SCF A 

concentrations by combining the two. 

In general, fermentation of mixtures helped in achieving a linear production of 

SCF A. The only exception was the mixtures of ispaghula and pectin. All 

286 



other mixtures showed a gradual increase in net total SCF A. It was noted that 

three-carbohydrate mixtures performed better than two-carbohydrate mixtures 

of ispaghula with lactulose or with raftilose or with pectin, whereas, the same 

three-carbohydrate mixture produced lower net total SCF A than mixtures of 

raftilose with guar gum or with gum arabic (Fig. 7.1). 
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Fig. 7.1 Mean concentraions (flmole/ml) of net total SCFA 
produced by the fermentation of mixtures of carbohydrates with 
the human faecal bacteria. 

This raised the question of what caused this diversity in the fermentation 

properties of different carbohydrates. 

7.8 Does carbohydrate chemistry determine the 

fermentation? 

Several in vitro and in vivo studies have shown that the intermediate and end 

products of fermentation have some relationship with the chemical and 

physicochemical characteristics offibres (Mortensen et aI. , 1988; Cherbut et 

aI., 1991; Salvador et aI., 1993). For example, starch fermentation produced 
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29% n butyrate compared with 2 % n butyrate from a more oxidised substrate 

such as pectin. Similarly, fermentation of pectin produced more acetate than 

starch (Englyst et aI., 1987b; Scheppach et aI., 1988b). Our study agreed with 

SCF A profiles reported in these studies. The two carbohydrates are different 

in their chemical composition, suggesting a relationship with their chemistry 

(detailed discussion in Chapter 5). Cherbut showed that with an equal content 

of soluble fibre, the richer fibres were in acidic polysaccharides the more they 

were fermented (Cherbut et aI., 1991). Fibres richest in pectic substances and 

uronic acids produced higher ratios of acetate in most in vitro studies (Chapter 

5; McBurney & Thompson, 1987; Mortensen et aI., 1988; Cherbut et aI., 

1991; Salvador et aI., 1993). Salvador et aI., (1993) suggested that the 

chemical nature and physical arrangement of sugars in the fibre matrix 

controlled the rate and extent of fermentation, together with the SCFA profiles 

produced by fermentation of these fibres. These properties cannot be the 

exclusive basis for the prediction of end products and other fermentation 

events. More important may be the chemical bonds between the 

monosaccharides of the higher molecular weight carbohydrate. It may be 

speculated that the type of bond between the component monosaccharides has 

a role, as all these carbohydrates have a diverse range of chemical bonds 

between their components. These bonds are broken by specific enzymes that 

may be produced by different bacterial species and, in this way different SCF A. 

All these species may work at different stages of fermentation, as the task such 

as the presence of a chemical bond to be hydrolysed, may demand, depending 

on the prevailing physiological conditions in cultures. A particular bacterial 

species may hydrolyse one bond, thus stripping the target carbohydrate from 
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other chemical linkages and exposing certain bonds for another species specific 

for that linkage. In this way, we may find different SCFA at different stages of 

fermentation as a result of the synergy between different bacterial cells (Salyers 

et at, 1977 a, b; Tomlin et at, 1986; Englyst et at, 1987b). 

In this study, three rapidly fermenting carbohydrates, lactulose, raftilose and 

pectin were combined with ispaghula in mixtures of two carbohydrates. 

Lactulose is a disaccharide composed of galactose and fructose (Chapters 3 & 

4). On the other hand, raftilose is an oligosaccharide composed mainly of 

fructose and some glucose. Pectin is a non-cellulosic polysaccharide in the 

plant cell wall with a backbone of galacturonic acid. Pectin has common side 

chains including arabinose, xylose, rhamnose and fucose constructed from 

various monomers (Whitney et at, 1994). Ispaghula husk is a highly branched 

arabinoxylan composed mainly of neutral sugars, about 90% of which 

consisted of arabinose and xylose (Marte au et at, 1994). Starch is a

polyglucan composed of glucose units linked by a 1,4 and a 1,6 glycosidic 

bonds. Guar gum is galactomannan whereas gum arabic a is arabinogalactan. 

The great structural diversity of these carbohydrates in contrast to the 

uniformity of their SCF A profiles at 8 hours, indicates that these profiles are 

not exclusively governed by the chemical composition of these carbohydrates. 

Even those authors who have specifically studied the effects of individual sugar 

composition of monosaccharides and polysaccharides could not totally explain 

the fermentability and SCF A profile on the basis of chemical composition alone 

(Mortensen et at, 1988; Cherbut et at, 1991; Salvador et at, 1993). It is 

evident from these studies, that monosaccharide composition is not the major 
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factor playing a role in this regard, rather intramolecular and intermolecular 

bond of the individual monosaccharides are more important. For example, L

glucose, in contrast to D-glucose, did not change SCF A significantly compared 

with the control cultures. Even in the production ofn-butyrate the two 

monosaccharides acted significantly different from each other (Mortesen et aI., 

1988). In addition, the same monosaccharide can have different 

fermentabilities depending on the fibre source. Arabinose in sugar beet, cocoa 

and pea was completely fermented in vitro compared with almost undegraded 

arabinose in wheat bran and maize. A similar situation occurs with xylose in 

wheat bran compared with that in other fibres (Salvador et aI., 1993). These 

authors also noted that propionic acid could be promoted by the fermentation 

of glucose, whereas, xylose promoted n-butyrate more than uronic acid and 

glucose. This suggests that glucose should promote propionic acid over 

butyrate but starch, which is a polyglucan, has been shown to be n-butyrate 

predominant (Chapter 5; Phillips et aI., 1995; Scheppach et aI., 1988b). Thus, 

fermentability and SCF A profile of the fibres may be predicted to some extent 

on the basis of their chemical composition and to larger extent on the basis of 

their structural arrangement of monosaccharides in the complex molecule of 

fibre but the real determinants in each case are complex and not easily 

identified or understood. 

7.9 Different stages of fermentation and SCF A 

production 

In general, all cultures showed decreasing acetate ratios and corresponding 

increasing ratios of propionate or butyrate with extended fermentation. 

Propionate production was initially very slow, then increased rapidly in the 
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later stages of the fermentation in all cultures in this study. This could be 

under the influence of decreasing pH. Fermentation reactions that produce 

propionate may be favoured by the lower pH (Edwards et aI., 1985). 

However, ispaghula produced a significantly higher ratio of propionate 

compared with n-butyrate at 8 and 24 hours (Chapter 4) without a significant 

fall in pH. Moreover, lactulose, which produced a significantly higher ratio of 

propionate than n-butyrate at 8 hours, increased its ratio ofn-butyrate as the 

incubation progressed further, thus the n-butyrate ratio was higher than the 

propionate ratio at 24 hours of incubation. It seems that SCF A predominance 

is also governed by the stage of fermentation as well as the type of substrate 

(Chapters 4 & 5). The profile in the initial stages of the process may be 

governed by different factors than those determining the profile after several 

hours. For example, all carbohydrates produced more acetate initially, 

followed by a higher production of propionate at 8 hours. Even raw potato 

starch, which is well established for its n-butyrate predominance (Phillips et aI., 

1995; Scheppach et aI., 1988b), produced higher propionate compared with n

butyrate at 8 hours although this did not always achieve statistical significance. 

With subsequent fermentation, raw potato starch and lactulose produced more 

n-butyrate than propionate at 24 hours. However, all the other carbohydrates 

produced more propionate than n-butyrate at 8 and 24 hours. Thus it is not 

until the later stages of fermentation that the predominant pattern of SCF A, 

which is characteristic ofthe carbohydrate, emerges. 

It is likely that the bacteria responsible for the carbohydrate specific SCF A 

profile become dominant only after 8 hours of fermentation. These bacteria 

are likely to be strict anaerobes such as bacteriodes or clostridia. It may be 
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that they require some release of substrate in a synergistic attack on the 

carbohydrate or a drop in pH or redox potential caused by the action of 

facultative organisms. Once they become active these anaerobes would then 

expose the characteristic SCF A profile of the carbohydrate, be it propionate or 

butyrate predominant. Our results suggested that the butyrate predominant 

profile takes longer to be exposed than propionate predominance. It is also 

possible that the complex metabolic pathways occurring in individual bacterial 

cells and between synergistic bacteria may be affected by the accumulation of 

fermentation products in a way that changes the final end products. Acetate 

may be utilised in the formation of ketone bodies, instead ofn-butyrate. This 

may result in the accumulation of more n-butyrate at later stages of 

fermentation (Remesy et aI., 1992) and as a consequence a decreased acetate 

ratio and an increased n-butyrate ratio. 

In mixtures of different proportions of lactulose and ispaghula, the impact of 

the higher proportions of lactulose was evident only after 8 hours of incubation 

(Chapter 4). The earlier hours of incubation may represent a lag phase ofthe 

fermenting bacteria, which recover fermentative activity after 4 hours. Again, 

this recovery may be prolonged for those bacteria responsible for the 

carbohydrate specific SCF A profile. Therefore the ratios of individual SCF A 

are more under the influence of original inoculum than substrate composition 

in the initial hours (Chapter 4) or lag phase. However, the substrate becomes 

the dominant influence on the fermentation profile after 8 and up to 24 hours 

until substrate becomes limiting or changed physiological conditions inhibit the 

bacterial activity in cultures. Of course, this will depend on the amount and 

fermentability of the substrate used. The SCF A profile in the original faecal 
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inocula showed a high ratio of propionate and butyrate. This could indicate a 

more rapid absorption of acetate in the colon. It may, however, reflect the 

dominance of a carbohydrate fermentation that is more representative ofthe 

later stages of our cultures, than during the earlier stages at 0, 4 and 8 hours. 

The changing pattern of fermentation with time is highlighted by the transient 

appearance of lactate in cultures of rapidly fermented carbohydrates. Lactate 

is usually seen only at 4 hours incubations and has decreased substantially or 

disappeared by 8 hours. This also corresponds to the biggest changes in the 

pH in cultures. Lactate is an electron sink, which allows regeneration of 

NAD+ during rapid fermentation. It is unclear which bacteria are responsible 

for lactate production at 4 hours but it may be different species which 

subsequently convert the lactate to the SCFA more characteristic of the 

carbohydrate fermented. 

7.10 Was delayed n-butyrate production achieved? 

The main aim ofthis thesis was to produce a mixture of carbohydrates which 

would delay but would not reduce butyrate production from rapidly fermenting 

carbohydrates such as lactulose or raftilose. This was achieved in several 

mixtures but mostly those containing ispaghula. Mixture of raftilose and 

ispaghula produced the same n-butyrate as raftilose alone but mixtures of 

ispaghula with lactulose or with pectin produced lower n-butyrate than pectin 

or lactulose alone (Chapters 4 & 6). The rate ofn-butyrate production was 

less rapid in three-carbohydrates mixture (raftilose, ispaghula and pectin) than 

culture of 100mg raftilose but the concentration of n-butyrate was preserved 

(Fig. 6.41). 
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Mixtures of ispaghula with lactulose or with pectin produced the lowest 

concentrations of butyrate and exhibited a plateau at 8 or 12 hours (Fig.7.2). 
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Fig. 7.2 Mean concentraions (Ilmole/ml) of nbutyrate produced by 
the fermentation of mixtures of carbohydrates with the human 
faecal bacteria. 

Ispaghula and raftilose in two-carbohydrates mixture and ispaghula, pectin and 

raftilose in three-carbohydrates mixture would fulfil our requirements for using 

less raftilose, with delayed release of butyrate but with no loss in butyrate 

production. Producing such an effect in vivo may be helpful in prolonging n-

butyrate production and perhaps moving butyrate further round the colon, at 

the same time reducing the potential adverse effects of raftilose. Moreover, 

the addition of pectin (or guar gum) may add the therapeutic effects of 

delaying nutrient absorption in the small intestine as well (Jenkins et aI. , 1977; 

Aro et aI., 1984; Blackburn et aI. , 1984; Fernandez et aI. , 1995). 

Support for the delaying effects of ispaghula on fermentation of a rapidly 

fermentable carbohydrate in vivo was supplied by the study of Washington et 
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aI., (1998). They showed that psyllium (ispaghula) delayed the fermentation 

(breath hydrogen response) oflarge doses oflactulose with no change in 

mouth to caecum transit time in 8 human volunteers. 

The experiments in this thesis are all based on in vitro fermentation using a 

very simple batch culture model that had many limitations. In addition, it was 

very difficult to carry out these studies in large numbers which restricted the 

power of each experiment. However, the results of these mixtures gave a clear 

indication oftheir possible benefits and this series of preliminary screening 

studies has identified at least two mixtures (Raftilose & Ispaghula; Raftilose 

Ispaghula & Pectin) which would be worth studying in more detail in vivo in 

man. 
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