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Abstract

This thesis studies the problem of periodic. waveform distortion in electric power systems. A
general framework is formulated in the Hilbert domain to account for any given orthogonal
basis such as complex Fourier. real Fourier. Hartley and Walsh.· Particular applications of
this generalised framework result in unified frames of reference. These domains are unified
frameworks in the sense that they accommodate all the nodes. phases and the full spectrum
of coefficients of the orthogonal basis. Linear and linearised, non-linear elements can be
combined in the same frame of reference for a unified solution.

In rigorous waveform distortion analysis. accurate representation of non-linear charac-
teristics for all power plant components is essential. In this thesis several analytical forms
are studied which provide accurate representations of non-linearities and which are suitable
for efficient. repetitive waveform distortion studies.

Several harmonic domain approaches are also presented. To date most frequency domain
techniques in power systems have used the Complex Fourier expansion but more efficient
solutions can be obtained when using formulations which do not require complex algebra.
With this in mind. two real harmonic domain frames of references are presented: the real
Fourier harmonic domain and the Hartley domain. The solutions exhibit quadratic rate of
convergence. Also, discrete convolutions are proposed as a means for free-aliasing harmonic
domain evaluations; a fact which aids convergence greatly.

Two new models in the harmonic domain are presented: the Three Phase Thyristor
Controlled Reactor model and the Multi-limb Three Phase Transformer model. The former
uses switching functions and discrete convolutions. It yields efficient solutions with strong
characteristics of convergence. The latter is based on the principle of duality and takes
account of the non-linear electromagnetic effects involving iron core, transformer tank and
return air paths. The algorithm exhibits quadratic convergence. Real data is used to
validate both models.

Harmonic distortion can be evaluated by using true Newton-Raphson techniques which
exhibit quadratic convergence. However, these methods can be made to produce faster solu-
tions by using relaxation techniques. Several alternative relaxation techniques are presented.
An algorithm which uses diagonal relaxation has shown good characteristics of convergence
plus the possibility of parallelisation.

The Walsh series are a set of orthogonal functions with rectangular waveforms. They
are used in this thesis to study switching circuits which are quite common in modern power
systems. They have switching functions which resemble Walsh functions substantially.
Accordingly, switching functions may be represented exactly by a finite number of Walsh
functions, whilst a large number of Fourier coefficients may be required to achieve the



Abstract iv

same result. Evaluation of waveform distortion of power networks is a non-linear problem
which is solved by linearisation about an operation point. In this thesis the Walsh domain
is used to study this phenomenon. It has deep theoretical strengths which helps greatly in
understanding waveform distortion and which allows its qualitative assessment.

Traditionally, the problem of finding waveform distortion levels in power networks has
been solved by the use of repetitive linearisation of the problem about an operation point.
In this thesis a step towards a true non-linear solution is made. A new approach, which uses
bi-linearisations as opposed to linearisations, is presented. Bi-linear systems are a class of
simple, non-linear systems which are amenable to analytical solutions. Also, a new method,
based on Taylor series expansions, is used to approximate generic, non-linear systems using
a bi-linear system. It is shown that when using repetitive bi-linearisations, as opposed to
linearisations, solutions show super-quadratic rate of convergence.

Finally, several power system applications using the Walsh approach are presented. A
model of a single phase TCR, a model of three phase bank of transformers and a model of
frequency dependent transmission lines are developed.
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Chapter 1

Introd uction

1.1 Description of the Power System Harmonic Problem

Under ideal operating conditions all power system waveforms are sinusoidal and bal-
anced. A unique operating frequency is expected throughout the system. In prac-
tice, such ideal conditions are difficult to meet. Physical systems are, to a greater
or lesser extent, non-linear. They possess the undesirable characteristic of distorting
ideal, periodic operating conditions. In terms of Fourier analysis, these waveforms
can be expressed as fundamental frequency sinusoids and higher frequency sinusoids,
i.e, harmonics. The study of steady state distorted waveforms is traditionally known
as Harmonic Analysis of Power Systems. However, Fourier series are not the only
alternative for analysing distorted, periodic waveforms in power networks. In fact,
they are not the best choice for cases when the periodic waveforms are rectangular.
This may be the case in power systems containing a substantial component of power
electronic-based devices.

The concept of harmonics is only related to Fourier transform-like expansions,
Hartley transforms included. However, other orthogonal expansions exist which may
contain a more general idea of frequency. For instance, the Walsh domain uses the
concept of sequency. Other transforms exist where the basis functions may not have
zero crossings, e.g. block-pulse expansions. In this work, the distorted waveforms are
not just expressed in terms of Fourier series. Other orthogonal basis are used, de-
pending on the class of waveforms under analysis. Accordingly, the term harmonic
analysis or harmonic distortion is deemed not general enough to express the over-
all ideas presented in this thesis. Other terms, such as Periodic Steady State (PSS)
analysis of non-linear systems (NLS) and non-linear distortion, are preferred.

Non-linear distortion in power systems is not a new phenomenon. In the early days
of power systems, non-linear distortion caused by magnetic saturation of transforms
and rotating machinery was recognised by power engineers. Nowadays, the use of power
electronic-based devices in bulk power transmission systems has exacerbated the risks of
non-linear distortion. These devices achieve their main operating state at the expense
of distorting power network waveforms. It is generally accepted that if the problem
is left unchecked it could easily get out of hand. In the early days of this technology,
most applications were in the area of HVDC transmission. However, the last 15 years
have seen a substantial number of Static VAR compensators (SVCs) being incorporated
into existing AC transmission systems to provide voltage support and reactive power
control. Many utilities worldwide now consider the deployment of the newest and
most advanced generation of power electronic-based plant components, Flexible AC
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Transmission Systems (FACTS) devices, a real alternative to the traditional devices
based on electro-mechanical technologies.

Many adverse technical and economic problems have been traced to the existence
of non-linear distortion and many countries have regulated on permissible levels of
harmonic distortion. Adverse problems include insulation failures, maloperation of
protective devices and communication interference. Economic repercussions include
transmission line losses and watt-hour meter errors, which are causing great concern
to electric utilities and consumers alike.

1.2 Research line of this Work

Over the years, increased levels of waveform distortion have led utilities worldwide
to seek action against this unwanted phenomenon. Corrective and predictive actions
are being adopted by utilities to limit waveform distortion. Corrective actions involve
repairs or replacements of existing equipment. In general, they are expensive and
therefore avoided whenever possible. Preventive actions are cheaper to implement and
are preferred.

As part of preventive actions, two main areas of development can be identified,
namely measuring and simulation. Significant progress has been made in the devel-
opment of accurate instrumentation to monitor waveforms distortion at the point of
measurements but in planning and systems analysis the problem must be approached
differently because the network may not even exist. In such cases, digital simulation
based on mathematical modelling provides an alternative to actual measurement. This
work represents an effort to produce new models to predict non-linear distortion in
power systems.

In the past, time and frequency domain solutions have been used for purposes of
predicting non-linear distortion. To date, most frequency domain techniques have made
use of Fourier series in spite of strong indications that alternative basis such as Hartley,
Walsh, Wavelets etc. can provide more efficient solutions. The methodology developed
in this work is domain independent. Solutions in Fourier, Walsh and Hartley domains
are presented.

1.3 Techniques for Periodic Steady State Analysis of NLS

Integral transforms are a means for the solution of boundary-value and initial value
problems in physics and engineering. In particular, use of the Laplace transform in the
analysis and synthesis of time-invariant systems has proved very popular. For instance,
the periodic solution of linear circuits can easily be obtained with the use of the Laplace
transform. However, this technique cannot be applied to non-linear circuits.

Arguably, a straightforward solution of a Non-Linear System (NLS), though not the
most efficient, is to start the solution from a given initial condition and to integrate
the state equations until the transient disappears. Two major problems are found with
this approach. Firstly, it is not easy to establish, from visual inspection, whether or
not the transient response has died out and secondly, the periodic response is reached
at a high computational cost for cases of poorly damped systems.

Determining the PSS response of NLS is not a trivial matter. The large number of
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publications devoted to this problem seems endless, especially in the areas of circuits
and systems. Various time and frequency domain methods have been developed. Each
has its advantages and drawbacks. The fundamental problem that all methods must
address is the fact that most NLS are represented by equations containing a mixture
of linear and non-linear operators. Linear operators are efficiently handled in the
frequency domain and non-linear operators are easily evaluated in the time domain.
In the past, some methods have used hybrid time-frequency domain approaches.

Single shooting methods [1] were used first to solve this problem. The methods
can be applied to circuits of any kind, even those containing strong non-linearities.
However, they require substantial computational effort since the numerical integration
is rather time consuming. Even modified versions of these methods have proved very
costly in terms of computing time [2, 3,4]. Alternative methods make use of extrapol-
ation [5] or gradient-based iterations [6], but the computational overheads are still a
problem. In a recent paper [7], a multiple shooting method has been presented which
claims to be more efficient. The authors have also reported on substantial improve-
ments in the rate of convergence. The attraction of this new approach is that it can
easily be parallelised.

Also, there are frequency domain methods which make use of Volterra series. A
rather large number of publications has been devoted to the solution of non-linear
circuits [8, 9] via Volterra series approach. Early publications such as references [10,
11, 12] give good examples of this theory. However, the multidimensional structure of
Volterra series and difficulties in identifying Volterra Kernels have rendered Volterra
series unattractive among engineers.

Power series representation provides another useful frequency approach [13, 14].
Similarly to Volterra series, this method provides analytical solutions for periodic re-
sponses. The non-linear characteristics are represented by a power series. It can deal
with stronger non-linearities than Volterra series but the method is not general.

In an attempt to improve on the efficiency of the solution algorithms, frequency-
only or frequency-time domain methods have been developed. These methods assume
a solution in the form of generalised Fourier series and can be grouped in a family
of algorithms knows as Harmonic Balance techniques. These algorithms have gained
acceptance among electric and electronic engineers because they can be written to
take advantage of the fact that large portions of most electric circuits are linear [15].
It is interesting to note that according to open literature, after reference [15] was
published, power systems researchers have developed their own harmonic balance tech-
niques [16, 17, 18]. In the power systems camp two approaches are now clearly identi-
fied, the Gauss-Seidel approach [16]and the Newton-Raphson approach [17]. The latter
approach yields better characteristics of convergence and has become widely accepted.

In the early stages of the harmonic balance technique, most algorithms used to
alternate between time domain and frequency domain in order to evaluate individual
non-linear element responses. Here, the Fourier coefficients of the series are trans-
formed to the time domain for evaluating the non-linearity. Subsequently, the res-
ulting waveforms are transformed back into the frequency domain. These operations
impose unnecessary overheads on the analysis. Furthermore, the method of transform-
ing between time and frequency domains via Fast Fourier Transform (FFT) is not
necessarily accurate. In fact, it may introduce aliasing at each iteration, compromising
accuracy and convergence of the solution.
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In reference[18], a harmonic balance method where the operations are performed
entirely in the frequency domain has been put forward. In this method, round-off
errors are minimised since there is no need to transform harmonic information into
time domain information and vice-versa. Furthermore, the overheads are reduced by
using discrete convolutions. The method described in [18]uses polynomial equations to
represent the non-linearity. However, the method should also be valid for cases when
polynomial rational fraction are used to represent the non-linearity.

The method proposed in this work follows the overall line of harmonic balance
methods but it is more general, orthogonal expansions, other than complex Fourier
series, are used. Similarly to reference [19], the iterative process employed is not
cyclical in the fixed point iteration [16, 17].

The calculation of steady state currents and voltages v(t) at each non-linear plant
component takes place via an iterative process. This computation can be carried out
very efficiently by taking into account that in the neighbourhood of a limit cycle the
cycle's dynamic is almost linear. The authors in reference [19]have used this concept.
However, they extrapolate the limit cycle using time domain calculations. In this work,
the extrapolation of the limit cycle is carried out more efficiently using orthogonal
expansions and an iterative method. It is also shown that a sufficiently large number
of terms in the series is used then the limit cycle can be reached in one iteration.

1.4 Purpose and Objectives of the Present Work

• It was recognised early in the project that the waveforms involved in power system
analysis are always real and that there was no need for a framework of analysis
requiring complex algebra. Accordingly, one of the main purposes of this work
was to investigate the use of real frames of reference were solutions could be
carried out more efficiently.

• To investigate the adequacy of orthogonal transforms, which have not been widely
used in power systems, to model non-linear plant components. These include,
Real Fourier, Hartley and Walsh orthogonal series.

• To developed a general framework where both linear and non-linear power plant
components can be modelled irrespective of the orthogonal basis selected for
modelling individual plant components.

• To realise a unified framework in the sequency domain where non-linear and
linear, time-varying power plant components can be combined together for an
efficient solution.

• To develop frequency dependent transmission line models in the sequency domain.

• To develop models for single phase and three phase Thyristor Controlled Reactor
(TCR) which do not require time-frequency domain transformations.

• To develop a multi-limb, three phase power transformer model based on the
principle of duality.
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• To investigate efficient solution algorithms with reduced storage and cpu require-
ments but without compromising significantly the convergence characteristics of
the full Newton-Raphson method.

• To investigate the properties of a class of non-linear systems known as bi-linear
systems, their ability to approximate more general NLS. The aim of this action is
twofold: to make a step forward towards understanding true non-linear methods
of analysis and to use non-linear approximations in the iterative solution of NLS.

1.5 Publications

The following publications were generated during the course of this research.

Transaction-graded papers

• J.J. Rico and E. Acha 'Harmonic Domain Modelling of Three Phase Thyristor
Controlled Reactors by Means of Switching Vectors and Discrete Convolutions,"
IEEE Transactions on Power Delivery, Vol. 11, No.3, pp. 1678-1684, July, 1996.

• E.Acha, J.J. Rico, S.Acha and M.Madrigal "Harmonic Domain Modelling in
Hartley's Domain with Particular Reference to Three Phase Thyristor-Controlled
Reactors", To be presented at IEEE PES Winter Meeting, 2-5 of February, New
York, 1997.

• C.R. Fuerte-Esquivel, E. Acha, SG. Tan and J.J. Rico "Efficient Object Ori-
ented PowerSystems Software for the Analysis of Large-Scale Networks Contain-
ing FACTS-Controlled Branches ", To be presented at IEEE PES Summer Meet-
ing, 20-24 of July, Berlin, Germany, 1997.

Conference papers

• E. Acha and J.J. Rico" Harmonic Domain Modelling of Non-linear Power Plant
Components," Proceedings of the IEEE leHPS VI, Bologna, Italy, September
21-23, 1994.

1.6 Contributions

The main contributions of this research work are discussed below:

• A general framework for determining the steady-state response of power networks
has been presented. The framework is general, it acommodates linear and non-
linear elements. It is not restricted to anyone orthogonal basis. Particular cases
of this framework are Real Fourier, Hartley and Walsh domains.

• A unified frame of reference in the sequency domain has been highly developed.
In this frame of reference linear and non-linear power plant components can be
represented together. Frequency dependent transmission lines are also repres-
ented in the sequency domain. This avoids the need for evaluating non-linear
elements in the sequency domain and linear elements in the frequency domain.
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• Analytical expressions for the response of linear and linear, time-varying power
plant components in the sequency domain are given. It is shown how static, non-
linear elements are handled in the sequency domain. Given an input expressed
by a Walsh series, expressions for calculating the coefficients of the output are
given in terms of the coefficients of the input.

• It is shown that quasi-linearisations as opposed to linearisations avoids the need
for Norton or Thevenin equivalents. With quasi-linearisations, the non-linear
element is represented as a time varying element. In cases of linear, time-varying
elements the solution is reached in one iteration.

• An important class of non-linear systems, namely bi-linear systems, are analysed
and used to approximate more complex non-linear systems. Non-linear approx-
imations, as opposed to linear approximations, are a step towards non-iterative
solutions of waveform distortion in power systems. The use of bi-linearisations
provides a means for obtaining super-quadratically convergent algorithms.

• It is shown that discrete convolutions are a means for performing harmonic do-
main operations in a free-aliasing fashion. Also, it is shown that not only devices
with polynomial characteristics are amenable to evaluations via discrete convo-
lutions but also devices having characteristics exhibiting dead-band zones. A
new and efficient three phase TeR model based on switching vectors and dis-
crete convolutions has been put forward. The TeR equations are solved using a
Newton-Raphson technique which exhibits quadratic convergence.

• A comprehensive steady state model for multi-limb power transformers based on
the principle of duality has been developed.

• Complete first order Newton-Raphson or Newton-Raphson methods retaining
non-linearity via bi-linearisations produce solutions with strong characteristics of
convergence, however, alternative formulations that speed up the solutions can
be obtained. Such alternatives are also presented in this work.

1.7 Outline of the Thesis

The research generated during the course of this PhD project can be divided into
three main parts: General theory, Harmonic Domain analysis and Sequency Domain
analysis.

Practical applications of software-based tools to predict non-linear distortion have
been limited by their huge storage requirements and their heavy computational load.
One objective of this work is the search for more efficient solution techniques which
ease the computational burden. Several concepts have emerged as being critical to
this endeavour, non-linear characteristic representation, the frame of reference and the
numeric solution. Accordingly, the research generated is presented as follows

• Chapter 2 investigates possible representations of various non-linear character-
istics present in power systems. Both single-valued characteristics and charac-
teristics which include hysteretic behaviour are considered. It is shown in this
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chapter that elements exhibiting hysteresis can be represented by an equivalent
resistance and inductance which are amenable to single valued representations.

• Chapter 3 develops a generalised framework where all non-linear power plant
components can be represented. The framework allows the inclusion of any or-
thogonal expansion.

• In Chapter 4 various orthogonal basis are used to predict non-linear distortion
via iterative techniques. These orthogonal expansions lead to harmonic methods
since they are based on trigonometric expansions. It is also shown in this chapter
that, for studies where all signals are real, the framework based on Complex
Fourier series [17]is redundant and more efficient solutions can be obtained using
series with real coefficients. Real Fourier series and Hartley series are used for
this purpose.

• In Chapter 5, a model for three phase TCRs is presented. The model takes
advantage of switching functions and the iterative solution is performed entirely
in the frequency domain.

• In Chapter 6, three phase multi-limb power transformers are modelled using
the principle of duality. The model makes use of a first order Newton-Raphson
methods. For a given voltage at the transformer terminals, the limit cycle of the
currents is accurately extrapolated using another first order Newton-Raphson
iterative process.

• Chapter 7 deals with the search for an alternative iterative process that can be
used to solve efficiently most practical problems of non-linear distortion. The
alternative algorithms proposed range from algorithms with weak convergence
characteristics but which require a lower number of operations to methods with
strong convergence characteristics which require a larger number of operations.

• Chapter 8 presents a sequency domain framework for studying linear, time-
invariant power plant components.

• Chapter 9 presents the main characteristics of Walsh series-based solutions of
linear, time varying systems. It is shown that closed form solutions can be ob-
tained by using these methods. The theory described is also valid for any other
orthogonal expansion.

• Chapter 10 addresses the calculation of the steady state response of non-linear
electric circuits. Bi-linear systems are analysed in detailed. Polynomial systems
and Hammerstain systems are also studied.

• In Chapter 11, several applications concerning the use of Walsh series to plant
components modelling are presented. In this chapter a new model of single phase
TCRs in the sequence domain is presented. Frequency dependent transmission
lines and three phase bank trasformers are also modelled in the Walsh Domain.

• General Conclusions and suggestions for future research can be found in Chapter
12.



Chapter 2

Analytical Representation of Non-linear
Characteristics

Non-linear elements are responsible for distorting the sinusoidal waveforms ex-
pected during idealised operating conditions of electric power systems. Thus, .
in the study of undesirable effects that such distortion may cause, an accurate
representation of all non-linear characteristics is critically required ..
In principle, experimental input-output set of points could be used for PSS stud-
ies of NLS, however, this is not efficient for cases where the systems equations
must be evaluated repeatedly. Instead, analytical representations are preferred
since they provide a more efficient alternative than working with input-output
set of points.
This chapter presents various alternatives for the analytical representation of
non-linear characteristics normally encountered in non-linear circuits. The ac-
curacy of these methods are tested by using actual saturation characteristics
corresponding to multi-limb transformers.

2.1 Introduction

Most electric circuits consist of three basic elements: resistors, inductors and capacitors. All
possible non-linearities involved in electric circuit analysis are limited to the possible non-
linear behavior of such basic elements. A detailed discussion of theses non-linearities and
their analytical representation is provided in this Chapter.

Mathematical representations of NLS can be classified as either implicit or explicit. Im-
plicit models are those in which the system response is expressed by implicit operations on
the system input. Explicit models are those in which the system response is expressed by
explicit operations on the system input.

The study of electric circuits PSS is concerned with evaluating levels of waveform dis-
tortion. Traditionally, waveform distortion has been expressed in terms of the steady-state
response's frequency spectrum to a periodic input. In open literature, explicit methods have
been preferred to solve this problem, since basic electric elements are well characterised
by their explicit input-output characteristics. Very often information relating to non-linear
power plant components is only available as a set of measurements of the input and the output
and explicit methods become the best solution alternative. The class of explicit, non-linear
systems is exceptionally large and no single analytical approach is applicable to all of them.
However, by considering the class of non-linear input-output characteristics, solution pro-
cedures may be found for specific subclasses. Non-linear systems can be classified according
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Fig. 2.1: Common non-linear characteristics in electric devices

to their non-linearities as inherent and intentional. Inherent non-linearities are those which
naturally come with the system. Examples of these non-linearities include saturation and
hysteresis effects. Usually, such non-linearities produce undesirable effects. Intentional non-
linearities, on the other hand, are artificially introduced by the designer. AC/DC Converters
and static VAR compensators are typical examples of such non-linearities. Non-linearities
can also be classified in terms of their mathematical properties, continuous, discontinuous,
explicit, implicit and static.

2.2 Non-linear Circuits Elements

Combinations of the three basic elements, resistors, inductors and capacitors should suffice to
model most non-linear circuits encountered in the real world. These basic elements are two
terminal devices described by their functional characteristic in the input-output plane. The
input and output signals can be currents, voltages, fluxes and electric charges. Mathematic-
ally, these input-output relationships can be described by continuous, single valued functions,
Figure 2.1(a), or multi-valued functions as shown in Figure 2.1(b). A similar description exists
for discontinuous input-output characteristics. For a 2-terminal element the pair {x(t), y(t)}
can be either {v(t),i(t)} or {i(t),v(t)}, where v(t) and i(t) are the voltage across and the
current through the non-linear element, respectively. If {x(t), y(t)} is {v(t), i(t)} the input-
output characteristic represents a voltage-controlled admittance. If, on the another hand,
{x(t), y(t)} is {i(t), v(t)} the characteristic represents a current-controlled impedance. Note
that since x(t) can be either v(t) or i(t) and y(t) can be v(t) or i(t), the non-linear character-
istics in Figure 2.1 are general representations, where x(t) is the controlling variable and y(t)
is the controlled variable. Accordingly, it is possible to have six types of non-linear elements
since the three basic elements may be either current-controlled or voltage-controlled.
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2.3 The Black Box Approach

A basic rule in mathematical modelling is that one should use as much knowledge and physical
insight as possible of the system being modelled. Approaches which use this rule are most
appealing because, if carried out properly, the model could be quite realistic. Unfortunately,
the principles governing most physical phenomena are not well understood. Alternatively,
postulating suitable mathematical representations which can be made to exhibit the same
response as the system being modelled offer a more practical alternative. The later approach
is known in open literature as the black box approach. Earlier literature on the subject
concentrated on global basis function expansions, such as Volterra expansions [8, 9]. These
representations were not very popular since finding the Volterra kernels is complicated process
and their multi-dimensional nature causes computational overheads. The topic only revived
until alternatives techniques such as neural network, fuzzy models and Wavelets started to
take off. In power systems, physical modelling and the black box approach have been used in
the past. In this research the black box approach is used extensively. In terms of this approach
the problem of modelling non-linear and linear systems can be established as follows.

Let us consider two set of signals, the inputs x(t) and the outputs y(t) of a dynamic
system:

u(t)t = [x(l), x(2), ,x(t)]
y(t)t = [y(l), y(2), ,y(t)]

(2.1)
(2.2)

then, we start by looking at a relationship between past [xt-1, yt-l] values and future outputs,
y(t),

(2.3)

Where the additive function O(t) accounts for the fact that the next output will not be an
exact function of past data. However, the aim is that O(t) is small, so that we may think of
g(xt-1, yt-l) as a good prediction of y(t). A difficult issue to resolve is how to find function 9
in equation (2.3). For linear systems this may be an easy problem but in non-linear systems
the problem is much more difficult since a very rich spectrum of possible model descriptions
must be taken into account. In this chapter, some representations are reviewed. In particular,
representations which have shown promising results in powers systems are described.

Parameterising function 9 with a finite dimensional vector (J gives,

(2.4)

This model is still too general. Indeed, a major topic is finding good parametric representation
of non-linear relations. Once a decision has been taken about the parametric structure and
the data set [xN, yN] has been collected then the quality of the representation can be assessed
by comparing fitted model results and record data:

NL "y(t) - g(xt-1, yt-l, 8)112
t=1

(2.5)

2.4 Representation of Smooth Non-linear Characteristics

In practice, non-linear characteristics are obtained as a set of recorded points x(t) and y(t).
However, their use in digital studies is avoided whenever possible due to the high number of
points that are required for an accurate solution and to the increasing computational effort
caused by these representations when the systems equations are evaluated repeatedly.
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Curve A[linear Msaturation Knee Flux Knee Current b1 b2
1 292.38 0.67 1.037 0.0035 0.0 1.03
2 292.38 1.67 1.037 0.0035 0.0 1.03
3 6.00 1.44 0.290 0.050 0.0 0.22
4 173.33 1.48 0.504 0.0030 0.0 0.50
5 173.33 1.67 0.505 0.0030 0.0 0.50

Tab. 2.1: Magnetising curve parameters

3<fo-31imb 3<fo-51imb
Branch Curve Branch Curve
Main 1 Main 1
Yoke 2 Yoke 5

Leakage 3 Leakage outside phase 4
Leakage central phase 3

Tab. 2.2: Correspondence between transformer core branches and magnet ising curves
in Figure 2.2

Alternatively, experimental curves can be analytically approximated thus reducing stor-
age requirements and computational burden. Analytical representations also provide a way of
classifying non-linear systems into classes that could include say, non-linear systems with poly-
nomial representation, hyperbolic representation, piecewise linear representation etc. Fur-
thermore, in this thesis emphasis is placed on analytical representations as they will dictate,
in general, the most efficient procedure to determine the response of non-linear elements.

There is a wide range of possible analytical representations. Extensive research, has been
devoted to the development of adequate analytical models to represent magnetic core sat-
uration. In this chapter they are reviewed in detail. It is shown that arbitrary accuracy
can be achieved when fitting magnetising characteristics but, in electric power networks,
non-linearities due to magnetic elements are not the only possibility. Often, non-linear char-
acteristics due to dead-band zones of some devices such static VAR compensator or power
converters are difficult to fit with methods that have proven useful for magnetising charac-
teristics. From the analysis of this section it is expected that one can decide which analytical
representation can embody the largest possible classes of non-linear systems without loosing
accuracy or efficiency in the computations. To show the advantages and disadvantages of the
various alternatives, the magnetization curves measured by Dick and Watson in [20] are used.
Multi-limb core transformers have different cross sections and therefore for detailed studies
this fact must be take into account. Data for the non-linear characteristics corresponding
to the different sections of a five-legged, three phase transformer is given in Table 2.1. All
values in this chapter are given in p.u. related to a base of 25 MVA and 110 kV.

Table 2.2 gives the correspondence between cross sections in 3-limb and 5-limb trans-
formers and the measured magnetising characteristics shown in Figure 2.2. It is evident that
considering all transformer sections to have the same non-linear characteristic would lead to
serious errors, especially when operation takes place in the saturation region.
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Fig. 2.2: Non-linear inductances for 3- and 5-limb transformers
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2.4.1 Linear Interpolation
Most physical phenomena are deemed to be continuous, even though we measure them in
discrete form. From such discrete information, we attempt to reconstruct continuity in order
to learn about the phenomena's behaviour. The accuracy with which such phenomena can
be assured to be reconstructed depends on the separation of consecutive samples. Non-linear
characteristics, such as those shown in Figure 2.2, are obtained in the laboratory and then for
the benefit of simulations they are provided as a set of input-output pairs. The behavior of
the analysed system between consecutive samples can be considered as either linear or non-
linear. Provided that enough number of samples is considered, systems are usually considered
linear from one sample to the next. This facilitates the calculations and yields good accuracy.
Algorithms using this idea have succeeded in representing magnetising characteristics [21, 17].
However, the computational effort increases with the number of non-linear elements and with
the number of pairs considered for each non-linear characteristic.

For most physical systems, these drawbacks may be overcome by representing the discrete
data by its best analytical approximation. Moreover, having an analytical description of the
problem may have other advantages, it can be subjected to mathematical manipulations such
as differentiation or integration.

2.4.2 Piecewise linear
Piecewise linear representations have also been used in the past. In publication [22] the au-
thors have modelled magnetising characteristics with two independent equations and have
reported a reasonable match with the actual response of the non-linear elements has been
reported. Two regions are well defined in magnetic characteristics, namely linear and satur-
ating regions. This piecewise linear representation, however, incur substantial errors when
the operating point is about the knee point. The use of independent straight lines introduces
computational overheads in the algorithm [23]. In this section, a piecewise linear representa-
tion with arbitrary accuracy is analysed. The approach produces a single equation. Because
of its analytical nature, this representation allows algebraic manipulations such as derivation
and integration. This is a fact from which waveform distortion analysis can benefit. Ow-
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f(x)

x

Fig. 2.3: Continuous, one-dimensional piecewise-linear function

ing to the simplicity and flexibility of this method, it can be used to represent a wide class
of non-linearities. A fairly generalised canonical representation, where multiple-input and
multiple-output cases are taken into account, has been published in [24]. A comprehensive
analysis of single variable piecewise linear functions can be found in references [25] and [26].

Most single variable, non-linear functions can be approximated, with acceptable accuracy,
by a single piecewise linear equation in canonical form,

l'
f(x) = a + bx + LCilx - xii

i=1
(2.6)

An added advantage of the canonical form is that the parameters a, band c, can be
calculated explicitly.

A function f : IR1 -+ IR1 is said to be continuous, piecewise linear if it is composed of a
finite number of linear segments. Points common to two segments with different slopes are
called break points.

Let us consider a continuous, piecewise-linear function 1with p breakpoints Xl < X2 <
... < Xl" as shown in Figure 2.3. Let mi, i= 0,1,2, ... ,p denote the slope of each segment.
Coefficients a, band Ci can be explicitly calculated [26] by

b 1
(2.7)- '2 (mo+ ml')

1
(2.8)c, - - (mi - mi-d2

l'
a - 1(0) - L CdXil (2.9)

i=1

The canonical, piecewise representation was used to fit the experimental data shown in
Figure 2.2 and the results are presented in Figure 2.4(a). The fitting errors are shown in
Figure 2.4(b) and the number of segments used in the fittings regions is presented in Table
2.3. The errors in this chapter are calculated as the difference of measured data and calculated
points.

Equation 2.6 shows the simplicity of the canonical form, a definitive advantage when re-
petitive use of the equation is required. Normally, saturating regions can be represented with
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I Curve number I Number of linear sections
1 6
2 3
3 5
4 5
5 4

Tab. 2.3: Piecewise approximation data
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(a) Curve fitting (b) Current Vs Error

Fig. 2.4: Piecewise-linear approximation

few segments and the evaluations involve simple operations which do not require high com-
putational effort. Furthermore, it facilitates some algebraic manipulation such as derivation,
an operation from which PSS analysis may benefit. It is proven in [27] that the derivative of
a single-valued, non-linear function is,

p

f'(x) = b+I:ciJ (x - Xi)
;=1

(2.10)

where J(.) is the jump function,

J( ) _ {-I x < 0
x-I x ~ 0

No further derivatives exist for this representation. This can be a limitation for some
applications. It is important to say that piecewise linear functions are a particular case of a
more general family of fitting methods called splines.

{2.11}

2.4.3 Polynomial approximation
Perhaps polynomial functions were the first class of functions which were used for the pur-
pose of curve fitting non-linear characteristics. In power system analysis, polynomial series
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Fig. 2.5: Polynomial approximation

approximation has won acceptance because of its simplicity formulation [28, 17] and because
its analytical representation allows mathematical manipulations in the frequency domain
[18]. Good approximations have been achieved using this approach but there has also been
evidence of problems. For instance, accurate polynomial fitting is obtained by high order
polynomial but this is at the risk of severe oscillations. A trade off between oscillations and
accuracy has been achieved by using truncated polynomial series with two [28, 17] and three
[18] terms,

, = a<p + b<pn

a<p + b<pn + c<pm

(2.12)

(2.13)

Fitted polynomial responses and errors incurred in fitting the magnetising characteristics of
Figure 2.2 are presented in Figure 2.5. It can be seen that good approximations have been
found for cases with rounded knee regions and low slopes in the saturation region, e.g. curves
1 and 3. Difficulties arouse when fitting characteristics with high slopes in the saturation
region. These may be the case of saturation characteristics of synchronous machines and
some of the core sections in multi-limb transformers, e.g. curves 4 and 5. The error of the
fitting is shown in Figure 2.5(b). The relevant data for the calculated polynomials is given
in Table 2.4.

Apart from the poor results that sometimes are obtained with polynomial fittings, their
importance in distortion analysis is considerable. They are amenable to easy harmonic do-
main calculations. Evaluation at a point, addition, multiplication, differentiation and integ-
ration are operations easily carried out. For evaluation at a point, it is only necessary to
multiply and add real numbers together.

There may be ways of circumventing poor accuracy problems inherent in direct polyno-
mial fittings and yet keeping the above advantages. Two variants of polynomial fitting are
considered in this chapter, namely rational-fraction polynomials and spline techniques.
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I Curve number I a cb m In
1 0.002434 0.000071 0.000006 27 29
2 0.146267 0.590694 -0.204350 3 5
3 0.003072 0.002638 -0.000065 13 21
4 0.014620 0.249270 -0.037242 5 9
5 0.060934 0.094885 -0.007289 5 9

Tab. 2.4: Polynomial approximation data
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Current

(a) Curve fitting (b) Current Vs Error

Fig. 2.6: Cubic spline approximation

2.4.4 Cubic splines
One way of avoiding high-degree polynomials is to join adjacent pairs of data points with
polynomials of low degree, ensuring that smoothness at joint points. Splines and other
piecewise polynomial interpolation offer such a possibility. Splines are very popular owing
to their accuracy and well established identification procedures. There are several ways
of carrying out piecewise polynomial fittings, however, open literature indicates that cubic
splines are the most widely used [27]. A cubic spline S(x) has the following structure,

1 1 1n-l
S(x) = -Ax3 + _x2 +D + -6L Ix - kil3

3 2 ~l
(2.14)

This is a cubic polynomial in each subinterval, [ko, kl], [kb k2]"" , [kn-l, kn]. The cubic
segments of the function (2.14) are joined together at the interior knots kl• k2 •••• , kn-1 in
such a way that S{x) has two continuous derivatives within the interval of interest. When
cubic splines are used to approximate the data of Figure 2.2, the results shown in Figure
2.6{a) are obtained with the error shown in Figure 2.6(b).
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Fig. 2.7: Orthogonal approximation

2.4.5 Orthogonal expansions
Orthogonal series such as Fourier, Hartley, Walsh, Haar or Wavelet can also be used to
approximate non-linear characteristics. In this section, the non-linear characteristics are
approximated using Fourier series only but the ideas can be extrapolated to other orthogonal
basis. Fourier series have been used in many areas, powers systems included [29, 30, 31, 32].
They are simple in structure but may be time consuming since their evaluation requires special
functions. Figure 2.7(a) shows the approximation achieved using trigonometric Fourier series.
It can be seen that in some cases the truncated series with 14 terms are enough to obtain
small errors, curves 2,3,4 and 5 in Figure 2.7. In other cases accuracy is poor, curve 1, and
additional terms may be required.

The identification procedure is as follows. Consider the non-linear characteristic shown
in Figure 2.8{a}. In a real system, the input will have a finite maximum amplitude A. Hence,
for Ixl > A, the non-linear characteristic can be arbitrarily approximated without affecting
the output. This is illustrated in Figure 2.8(b}.

From the theory of Fourier series the equivalent transfer characteristic may be written as
follows,

where

(2.15)

1jA (n1r )b.; = A -A f(x) sin AX dx (2.16)

When using orthogonal expansions the error decreases as the number of terms in the series
increases. However, a problem present in Fourier series is that when the number of terms
increases, high oscillations can be introduced in the approximating function. By way of
example, curve 1 has been badly approximated to show that effect. Oscillations are in fact a
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Fig. 2.8: (a) Non-linear characteristic (b) Equivalent transfer characteristic

common problem in orthogonal expansions. This problem can be controlled to a certain extent
using windowing methods, widely used in signal processing. An example of this enhancement
is given later on in this chapter when piecewise continuous characteristics are considered in
Section 2.5.

2.4.6 Rational-fraction polynomials
Polynomials provide adequate fittings for short ranges of independent variables. Unfortu-
nately, they are inadequate for large ranges, as shown in Section 2.4.3.

On the other hand, rational-fraction polynomials of the form,

J(x) = Pn(x) = Po + PlX + + PnXn

Qm(X) qo + qlX + + qmxm

have proven accurate [33] for the purpose of polynomial fitting. In this section, the character-
istics of Figure 2.2 were modelled using this formulation. The results show good fitting along
all the range of interest and for all cases. The fitted polynomials are presented in Figure
2.9(a) whereas Figure 2.9{b) illustrates the error in the range of interest. Data relevant to
the order of the different polynomials is given in Table 2.5.

(2.17)

I Curve number I m I n I
1 11 11
2 7 7
3 5 5
4 5 9
5 17 17

Tab. 2.5: Polynomial rational-fraction approximation data

In general, rational-fractions are of lower order than their polynomial counterpart. They
have also the nice characteristic of minimising oscillations, a problem commonly encountered
with polynomial approximations. Sometimes, the problem of identification can be non-linear
in which case an iterative method of solution is required, or a linearised formulation can be
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Fig. 2.9: Polynomial rational-fraction approximation

used [33]. In the latter case, an artificial error function is proposed and the parameters can
be calculated directly using a generalised least square algorithm.

2.4.7 Hyperbolic functions
Approximation of magnetising characteristics has also been carried out using hyperbolic func-
tions [34]. This approach can be quite accurate, as shown in Figure 2.10(a). The hyperbolic
formulation has won acceptance because the identification of the required parameters can
be performed with only a few hand calculations. If higher accuracy is required in the knee
region, the calculation process becomes iterative. The procedure is based on the following
equation,

(2.18)

where

ml, m2 are the slopes of the unsaturated and saturated regions.

bIt b2 are the ordinates to the origin of the asymptotes to ml and m2

ecp is the correction term

The correction term e'P modulates the knee region. If modulation is not required e'P can
be set an arbitrary value or zero. The solution of the hyperbolic function in the first quadrant
leads to the following expression for the magnetising current,

. -B - J(B2 - 4AC),= . 2A (2.19)

where

A - mlm2
B - ml(b2-cp)+m2(b1-'P)
C - CP2 - cp(b1 + b2 + e)
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Fig. 2.10: Hyperbolic approximation

This alternative is a good option for modelling magnetising characteristics.

2.4.8 Representation of Hysteresis Effects
Hysteresis is observed in many different materials and processes. Perhaps, the most familiar
examples are the hysteretic effects observed in ferromagnetic materials. However, hysteresis
is also observed in many other processes such as stress-strain relationship of materials that
undergo plastic deformation, dielectric stress or the human respiratory system [35].

Basically, two approaches can be used to model hysteresis. One approach uses the differen-
tial equations that describe the principles governing the system. The second approach is based
on postulating suitable mathematical representations which exhibit hysteresis [35, 36, 37] but
which do not take into account the physics of the device. Considering that sometimes the
principles governing most hysteretic phenomena are not well known, the latter approach is
preferred. Furthermore, the analyses of non-linear circuits containing hysteretic elements can
be very difficult. They are normally described by partial differential equations.

In this research, the hysteretic effects are modelled in terms of their input-output rela-
tionships. An advantage of this method is that the a double-valued problem can be mapped
into two, single valued problems. For instance, a non-linear inductor exhibiting hysteresis
can be represented as an equivalent resistor and a non-linear inductor without hysteresis
loop. One attraction of this approach is that the equivalent circuit can be realised from
measured hysteresis data [38]. Also, this method correctly reproduces the property observed
in ferromagnetic materials of increasing loop areas with increasing operating frequencies.

Let us assume that a non-linear element can be represented by the 'black box' shown in
Figure 2.11. The x _ y relationship has been obtained experimentally and plotted in Figure
2.12. The hysteresis loop can be firstly expressed as the summation of two functions,

y(x) = fo(x) + g(x) (2.20)
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Fig. 2.11: Non-linear element represented as a 'black box' with flux x(t) as input and

y(t) as output

y(t

x(t)

Y2(X)

y(t)

Ym

x(t)

(a) Hysteresis loop in inverted position (b) Hysteresis loop decomposed into two
polynomials

Fig. 2.12: Hysteresis loop
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where,

(2.21)

and g(x) is the equation of the ellipse,

g(x) = ± (2.22)

so that equation (2.20) can be rewritten as,

y(x) = lo(x) ±
y2

y2 _.....!!!.xm x2
m

(2.23)

Equation (2.23) is troublesome because of the double sign before the square root. If a sinus-
oidal input of the form,

x(t) = Xm cos(wt) (2.24)

is assumed then it is possible to find an alternative expression for the output which uses the
derivative,

dx . ( )dt = -WXm SIll wt (2.25)

It is not difficult to see that y(t) can be expressed in terms of the function fo(x) and another
function fe(x) which characterises the distance between fo and the periphery of the hysteresis
loop. The function fe(x) as seen in Figure 2.12 is the reverse function to the input x(t). It
reaches a maximum value when x(t) = 0 and a minimum value when x(t) = xm• It has also
negative and positive values. Accordingly one can write,

y(x) = lo(x) + le(x) (2.26)

Here the function I, is expressed as,

1 dx
le(x) = WXm 1m dt

where the derivative determines the sign of the function fe.
Equation (2.26) is interesting in the sense that it has physical interpretation. For instance,

if the non-linear element is a non-linear inductor then fo(x) can be taken to be a current
flowing through a lossless, non-linear inductance while the second term corresponds to a
current flowing through a non-linear resistance. This allows the use of the equivalent circuit
shown in Figure 2.13.

(2.27)

2.4.9 Validation of hysteresis models
In general, systems which exhibit hysteresis are non-linear and their representations must be
non-linear be necessity. In these cases, there are problems with establishing the validity of
models. Superposition is not applicable and the validation of a non-linear model requires an
infinite set of measurements corresponding to all excitation signals. Hence, the validity of
these models can only be established qualitatively.
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Fig. 2.14: Qualitative properties of the hysteretic representation
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Fig. 2.15: Minor hysteresis loops

In this particular case, one must show that the postulated mathematical model exhibits
the same significant properties and features of the hysteretic element. Among these prop-
erties is expansion of the loop with frequency and the presence of minor loops observed in
hysteretic non-linear inductors. The model is constructed using appropriate parameters so
that it would yield realistic responses to one on more test signals. To show that the mathem-
atical representations adopted to model hysteresis reproduce the most important properties
of non-linear inductors, Figure 2.14(a) illustrates the effect of sinusoidal excitation at vari-
ous amplitudes and constant frequency. Figure 2.14(b) shows a family of hysteresis loops
corresponding to sinusoidal excitations with constant amplitude but different frequencies.

Magnetisation history will cause the presence of minor loops [20]. A good model for
hysteresis loops must reproduce this phenomena since some studies such as ferro-resonance
analysis depend on the ability to reproduce these results accurately. Results obtained with
the model used in this research are illustrated in Figure 2.15. The results were obtained
considering small sinusoidal excitation in the presence of remanent flux. This was simulated
as a DC flux component,

t.p = k + a sin(wt) (2.28)

where k is the DC component of the flux and a is the amplitude of the sinusoidal component.

2.5 Non-smooth characteristics

Smooth non-linearities are not the only possibility in power systems. The use of power
electronics in modern power systems control is on the increase leading to the presence of
non-linearities characterised by dead-band zones. As opposed to smooth non-linearities, non-
smooth or hard non-linearities are piecewise linear functions where most of the approximating
approaches described before are likely to fail in producing accurate representations. In this
case, piecewise linear functions are the most suitable representation since they render math-
ematical representation with no errors. However, orthogonal expansion such Fourier series or
Walsh series still provide a way to represent such non-linearities with good accuracy.

A typical example of this class ofnon-linearities is that observed in Static VAR compensat-
ors, relays and AC/DC power converters. Figure 2.5(a) shows a flux-current characteristic



Chapter 2. Analytical Representation of Non-linear Characteristics 26

present in thyristor controlled reactors, plotted together with a Fourier series approxima-
tion. The error is illustrated in Figure 2.5(b). In this case a Hamming window was used
to reduce oscillations. A more complex characteristic is that shown in Figure 2.17, observed
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Fig. 2.16: TCR input-output characteristics with Fourier Series

in ACjDC converters. These characteristics are piecewise polynomials rather than piece-
wise linear. Their piecewise nature presents difficulties for most approximating approaches.
However, good approximations can be found by using linear splines and Fourier series.

2.6 Conclusions

This chapter has addressed a major problem in the analysis of power systems distortion,
namely representation of non-linear characteristics. Various mathematical representations
have been analysed in terms of their ability to approximate experimental data relating to the
input-output response of non-linear power plant components. Both smooth and non-smooth
representations have been considered.

It has been seen that a unified representation capable of modelling both smooth and non-
smooth characteristics can be obtained by using orthogonal expansions or splines. Polynomial
and rational fraction representations are also efficient alternatives for modelling smooth, non-
linear characteristics while piecewise, linear functions are the natural option for representing
characteristics showing dead-band zones.

It was also shown that elements showing hysteretic behaviour, such as iron core trans-
formers, can be modelled with two single valued, non-linear characteristics. An important
feature of this equivalent circuit is the fact that it can be realised purely by electric elements,
a resistor and a inductor. Hence, the model can be made easily to interact with other models
of the power network. It has been shown that these equivalents reproduce some important
phenomena present in hysteretic materials such as frequency dependence and the formation
of minor loops.
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Fig. 2.17: Voltage-current characteristics in ACDC Converters



Chapter 3

Generalised Analysis of Periodic Steady State
Responses of NLS

This chapter presents a generalised frame of reference for the solution of the
periodic steady state response of non-linear circuits. The frame of reference
is based on orthogonal expansions of the non-linear dynamic equations which
govern the circuit. The description is carried out without making reference
to any particular set of orthogonal functions. This generalised frame of refer-
ence embodies unified frameworks based on Fourier series or the unified Walsh
framework introduced in this Thesis. In each particular application, a choice of
frame work is made on the basis of the characteristics of the system waveforms
being studied. The best choice is always the one which requires the minimum
number of coefficients to represent all waveforms within a prescribed error.
This generalised frame of reference allows to investigate efficient numerical
solutions for studying waveform distortion effects in power systems containing
power electronic-based plant components.
Two alternative methods for writing non-linear equations of power networks
are investigated, namely the Sparse Tableau Method (STM) and the Modified
Nodal Analysis (MNA).
STM is proposed as a better alternative to nodal analysis-based methods for
writing the equations of an electric power network. In the generalised domain,
the orthogonal set of equations representing the dynamic equations are trans-
formed into algebraic equations by the use of orthogonal functions. It is shown
in this chapter that the STM is a powerful tool which separates Kirchhoffs'
laws and branch equations. It can be used to formulate hybrid frameworks
were different plant components are represented by different sets of orthogonal
functions.

3.1 Introduction

Integral transforms provide a means for the solution of boundary-value and initial value
problems in physics and engineering. In particular, the use of Laplace transform in the
analysis and synthesis of linear, time-invariant systems (LTIS) has proved very popular. This
transform converts the problem into a linear, algebraic one where the solution is obtained
more easily. For instance, it provides a means for obtaining the periodic response of a
linear, time-invariant circuit by a simple multiplication of the input and the system's transfer
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Fig. 3.1: Block diagram representation of electric networks

function. However, this technique cannot be applied to non-linear systems or linear, time
varying systems (LTVS). In the latter case, Laplace transform methods yield a differential
equation as opposed to an algebraic equation. The case of NLS is even more complicated
since the resulting equations are non-linear algebraic or non-linear differential. Accordingly,
a different approach is required. The one researched in this Thesis consists on expanding
the dynamic, non-linear equations into a set of orthogonal sequence of functions. In this
case, time-varying differential equations are transformed into either linear algebraic or non-
linear algebraic equations. These equations can be solved analytically for linear systems or
iteratively if the set of algebraic equations is non-linear.

Subclasses of orthogonal basis functions include orthogonal functions, orthogonal poly-
nomials, Wavelets, etc. Anyone of these basis series can be used to transform differential
equations into algebraic equations. No given rules exist for selecting a class of orthogonal
basis series. In power systems harmonic studies, for instance, orthogonal expansions in the
form of Fourier series have been used since they resemble more the sinusoidal waveforms
existing in the power system under ideal operating conditions. However, the increasing use
of power electronic-based power plant components characterised by rectangular waveforms
suggest that other orthogonal basis series could produce better results.

In this chapter, a frame of reference based on orthogonal functions is presented. The
motivation of this generalised frame of reference is to investigate more efficient solutions for
power systems subjected to periodic excitations.

3.2 State Variable Description of Electric Power Networks

Electric power systems are an important class of electric circuits. Power systems are, to a
greater or lesser extent, non-linear circuits. Accordingly, if a formulation is valid for power
systems then it is valid for non-linear circuits in general. It is assumed in this Thesis that
these networks are described by a canonical equation of the form,

x = Af(x) +Bg(u) (3.1)

where A E IRnxn and B E IRnxq• The state variable x is an n-vector and u is a q-vector.
The functions f(-) and g(.) are n-vectors of non-linear functions of Xi and Uj, respectively.
Equation (3.1) can be represented in block form as shown in Figure 3.1. A problem when
analysing equation (3.1) is that few methods are available for studying the PSS response of
NLS. The first alternative that springs to mind is the use of numerical integration. However,
the computation process may be very slow in cases of lightly damped circuits. Alternatively,
if the system operates about a fixed point, then steady state techniques can be used for
solving the PSS response can be calculated more efficiently.
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Fig. 3.2: Block diagram of linear, time-varying electric circuits

3.2.1 Linearisation of dynamical equations
Linearisation about a base point Xo and Uo yields,

(3.2)

or

ic = A (d:~)Ix,x) +A (f(Xo) - d:~)Ix,Xo) + Bg(u) (3.3)

In PSS, if x and u are periodic then the linear functions J(.), g(.) and J'(x) are also
periodic.

If one defines,

f~(xn) I (3.4)

and

A(t) = AJ(t) (3.5)

then

x = A(t)x - A(t)xo +Bg(u) + Af(xo) (3.6)

The NLS in equation (3.1) may be approximated, about an operating point, by the linear,
time varying circuit shown in Figure 3.2. The structure of equation 3.6 can be further
simplified by defining,

!(xo) = AJ(xo) - A(t)xo (3.7)
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and

B 1
(3.8)B(t) = [

1

so that,

x = A(t)x+ B(t)g(u) (3.9)

where

(3.10)

For the sake of simplicity, the bar notation is dropped from equation (3.9),

x = A(t)x + B(t)u (3.11)

LTVS are a significant class of problem in their own right.

3.2.2 Forms of solution of periodic LTVS
Systems with parameters that vary periodically are an special class of LTVS. Here,

A(t + T) = A(t)
B(t + T) = B(t) (3.12)

where T is the fundamental period.
These systems are characterised by linear equations with periodic coefficients. Because of

the periodicity of the coefficients, there are important response properties which are unique to
these systems. These properties simplify their analysis and synthesis. The solution becomes
simple and several methods can be used.

It can be proved that the general solution of equation (3.11) is [39],

x(t) = <1>(t,to)xo + it <1>(t,T)B{T)U{T)dT (3.13)

where <1>(.) is a matrix called the state-transition matrix. A major problem with the solution
of (3.13) is that the transition matrix <1>(.) must be known in order to determine x(t). This
is difficult for general LTVS. There is not a unified approach to achieve this task. However,
for periodic piecewise constant cases this can be achieved by using Floquet theory [40]. As a
concrete example, the analysis of power networks with TCRs has been conducted using this
approach [41]. Although this solution does not necessarily apply to the more general case of
periodic LTVS, it can be used to approximate smooth transition matrices [39]. Additional
ideas and contributions on approximations to transition matrices have been presented in
[19,42]. Transition matrices are approximated in this chapter by using generalised orthogonal
expansions.
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Method Linear Time-invariant Linear Time- Varying Bilinear
Piecewise orthogonal Functions

Fourier [44],[45],[46, 47], [48],[49,50] [48]
Hartley

Smooth orthogonal Functions
Walsh [43],[51, 52, 53, 54] [55],[56],[57],[58]

[59, 60, 61] [62],[63],[64], [65]
[66],[67],[68],[69] [70],[71]

Block-Pulse [72],[73],[74],[75] [76],[77] [78],[78]
Haar Wavelets [79]

Orthogonal polynomials
Laguerre [80, 81, 82] [83], [84]
Legendre [85, 86] [83], [84]
Chebyshev [87] [87],[83], [84]
(first kind)
Chebyshev

(second kind) [88],[89],[83] [88],[89],[84]
Jacobi Series [90]

Non-orthogonal polynomials
Taylor Series [91] [84],[91]

Tab. 3.1: Literature on operational matrices

3.3 Analysis of Periodic LTVS Via Orthogonal Expansions

Approximation of functions as linear combinations of sets of orthogonal functions is a standard
tool in numerical analysis and signal processing. Since Walsh functions were first used by
Corrington [43] in 1975 to solve differential and integral equations, orthogonal polynomials
and other orthogonal functions have received considerable attention. A summary of methods,
applications and references is presented in Table 3.1.

The main advantage of these methods is that they reduce the problem to a system of al-
gebraic equations which can be solved efficiently using computer algorithms. This is achieved
by using the concept of operational matrices, a useful tool for solving the problem using mat-
rix algebra. In the following sections these operational matrices are defined in a generalised
fashion. Particular applications are presented throughout the Thesis.

3.3.1 A general representation of orthogonal basis
If hi} is a complete system of orthogonal functions in t E [ti, t J] and f(t) is any function
integrable in the interval t E [ti' tJ] then,

00 m-l

f(t) = I:kri(t) ~ I:= f(m)l(m)
i=O i=O

(3.14)

with

(3.15)
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where k is a constant which is different for different set of orthogonal sets {Ii}. In general,
the coefficients are the spectrum components of a given basis. For instance, the coefficients
could be the Fourier coefficients and the spectra would be the frequency spectra.

3.3.2 Operational matrix P for integration of 'Y(m)(t)
An important feature of the orthogonal basis which is used in the study of TILS and TVLS,
is that the integral of basis functions can also be expanded in terms of the same basis. If,

I(m)(t) =
[

'O(t) IIt(t)

')'m~1 (t)

(3.16)

then

[

'O(t) It ')'1(0li ')'(m)(t)d(t) = P :

')'m-l (t)

(3.17)

where P is the operational matrix of integration which has different values for different
orthogonal basis.

3.3.3 Operational matrix D for differentiation of 'Y(m) (t)
Similarly to the operational matrix of integration, it is possible to show that,

d')'(m)(t) _ D (t)
dt - I(m) (3.18)

or, for higher order derivatives,

(3.19)

where D is the m x m differentiation operational matrix. In general, D may be obtained
as the inverse of P. However, care must be taken when using this concept to calculate the
derivatives of I(m)(t) if the application involves piecewise basis. This is the case of Walsh,
Haar and block-pulse series. It was pointed out by Corrington [43]that the derivatives of such
series result in series of delta-Dirac impulses, one for each discontinuity. Accordingly, the use
of these series is not recommended for the study of differential equations. For instance, the
Walsh expansion of the derivative of a Walsh function is, usually, a divergent Walsh series.

3.3.4 Transformation operational matrix W
Consider a signal I(t) represented in a particular orthogonal basis as,

(3.20)

and the same signal represented by a different orthogonal basis,

(3.21)
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Both coefficient vectors Cl and C2 are components of a Hilbert space representing the same
signal over the interval (0, T). Each vector can be expressed as linear combination of com-
ponents of the other vector,

(3.22)

If W represent an orthogonal transformation, i.e. a rotation of the Hilbert space coordin-
ates system, then the inverse transformation, W-1, equals the transposed transformation
Wt ,

(3.23)

3.3.5 Product and coefficients matrices
The product of a vector of orthogonal functions, I(m)(t), and its transposed, I(m) (t), is called
the product matrix r(mxm)(t). That is,

(3.24)

For some orthogonal basis this matrix can be formed, in a systematic way, by using a computer
algorithm. Several examples are presented in this Thesis. Product matrices for Fourier, Walsh
and Hartley domains are provided.

Similarly, the coefficient matrix C corresponding to the coefficient vector c(m) is defined
as follows,

(3.25)

An important property of product and coefficient matrices is that they facilitate LTVS com-
putations [56, 55],

(3.26)

3.3.6 Analysis of LTVS
Consider equation (3.11) where Xo is specified. Let aij(t) and bjj(t) be the elements of A(t)
and B(t). Assume that all elements are absolutely integrable in the time interval [O,T) then
the generalised series approximation of all elements of A(t) and B(t) become,

aij (t) ~ A!jl(m)(t)
bij (t) ~ B~jl(m)(t)

where

A~· = [ A··o Aij,1 Aij,m ]I) I},

B~· = [ B··o Bjj,l Bij,m ]I} I},

Similarly, x(t) and u(t) may be expanded as,

Xi(t) ~ xh(m)(t)
Ui(t) ~ uh(m)(t)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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where

X~ = [Xi,O Xi, 1 • •• Xi,m]
U~ = [Ui,O Ui,l ... Ui,m]

(3.33)
(3.34)

Therefore, the following relations can be derived,

[ Alt1'(m)(t) A~2"Y(m)(t) . . . Atn1'(m)(t) 1
A(t) ~

A~l"Y(m)(t) A~2"Y(m)(t) ... A2n"Y(m)(t)
(3.35).

~: ~ Ann"Y~m)(t) (nxn)
:

A~l"Y(m)(t) A~2"Y(m) (t)

[ Alt
A~2

Atn 1 [1'(m)(t)
0

1'jJA~l A~2 A2n 0 "Y(m)(t)
(3.36)~ · .· .· .

A~l A~2) Ann 0 0

~ A f(t) (3.37)

and

(3.38)

The product A(t)x(t) can be expressed as follows,

All'Y(m)(t)Xh(m)(t) + A12"Y(m)(t)Xh(m)(t) + + Aln"Y(m) (t)X;'Y(m)(t) 1
A21"Y(m) (t)Xh(m) (t) + A22"Y(m)(t)Xh(m)(t) + + A2n"Y(m) (t)X;"Y(m)(t)

A(t)x(t) ~ •.
AnlT(m)(t)Xh(m)(t) + An2/(m) (t)Xh(m)(t) + ... + Ann'Y(m)(t)X~/(m)(t)

[

XICAll/(m)(t) +X~CAI2/(m)(t) + ",+X;CA1n/(m)(t) 1
XICA21/(m)(t) + X~CA22/(m)(t) + .. ,+X;CA2n"Y(m)(t)

~ (3.39)

Xl CAnl/(m)(t) + X~CAn2'Y(m)(t) + ... +X~CAnnI(m)(t)

~ [:!:] "Y(m)(t) (3.40)
.An

where the use of product and coefficient matrices allow us to write,

(3.41)

and
n

s; = I:XjCAii
j=l

(3.42)

Where XjCAii is the coefficient matrix corresponding to vector Aij.
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Now it is possible to reconstruct the product A(t)x(t) in a more convenient form,

In the same way, we can expand B(t) and u(t) as follows,

[ Bll'l'(m) (t) Bhr(m)(t) ... Bl,'l'(m)(t) I
B(t) ~

B~li(m)(t) B~2i(m) (t) ... B2qi(m)(t)
(3.44)

.: Bnqi~m)(t) (nxq)B~li(m)(t) B~2i(m)(t)

[ Bll
Bb n., I ['l'(m)(t) 0 JJB~l B~2 B2q 0 i(m)(t)

(3.45)~ .' ... .'. .
B;l B;2) ... Bnq 0 0

~ fj r(t) (3.46)

and

[ ::,l:l I~[~l~~::~g~I= [~ili(m)(t) = Ui(m)(t)

un(t) U;i(m)(t) U~

to express the product B(t)u(t) as,

(3.47)

[Bl B2 ... Bn] r(t) -
CSln I
C~2n r(t)

CSnn
(3.48)- XBf(t)

where
q

n, = I:UjCS,j
j=l

(3.49)

Now, integration of equation (3.11) from 0 to t yields,

(3.50)

Substitution of equations (3.43) and (3.48) into equation (3.50) yields,

(3.51)
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or

xf{t) - Xof{t) = XA lot f{r)dr + VR lot f{r)dr (3.52)

Using the operational matrix of integration, we have that,

o
J~l(m) (r)dr

=
[

PO".o p

o 0

o
o

: 1f(t) = I'f(t) (3.53)

Then equation (3.52) can be expressed in compact form as,

Xf(t) - Xof(t) = XAlPf(t) + UJalPf(t) (3.54)

Equation (3.54) represent as set of nm linear algebraic equations that can be solved as follows,

X(I - AlP) = VRJP+ Xo (3.55)

or

x = (VRJP+ Xo)(I - AlP)-l (3.56)

where I is a nm X nm identity matrix and

XO=[Xl(O) 0 ... 0: X2(O) 0 ... 0 Xr(O) 0 ... 0]
(3.57)

3.4 Tableau Analysis in the Generalised Domain
In order to take advantage of operational matrices of integration, product and coefficients,
the electric circuits under analysis are expressed in their state variable form i.e. Equation
3.1. Such representation can be obtained by inspection of the electric network structure
and by proper selection of the state variables. Inspection methods can be easily applied
to generate the state variable equations of a given network, however, developing computer
algorithms capable of generating the state variables equations, can be a difficult task. It
must be remarked that several state descriptions of the system are possible, since the circuit
can be described by different sets of state variables [92]. However, more general methods
are possible. They can be efficiently implemented in computer algorithms. Two methods of
analysis that can be applied to any dynamic circuits are Sparse Tableau Method (STM) and
the Modified Nodal Analysis (MNA) [93]. The two alternative can easily be combined with
the use of operational matrices. The salient characteristics of the STM method are presented
below.
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Fig. 3.3: RLC circuit

3.4.1 Tableau analysis for invariant linear systems
When formulating equations for hand solutions, an obvious objective is to write as few equa-
tions as possible. However, the opposite is true for the STM, where as many equations as
possible are written. The Tableau involves many more equations than alternative approaches
such as MNA. Fortunately, STM is extremely sparse. In fact, the analysis of circuits using
STM yields a set of equations which is more sparse than any other approach. The STM
is a powerful analytical tool for studying general purpose circuits. It segregates Kirchhoff's'
laws from branch equations. STM is considered an excellent tool for studying distortion in
power systems where each power plant component can have a very particular description.
It is shown in this chapter, that the above characteristic of STM allows us to formulate
generalised hybrid methods.

3.4.2 STM for LTIS
The STM is a conceptually simple method. It consists of writing out a complete list of
linearly independent KCL and KVL equations and branch equations. By collecting these
three conditions into a unique matrix relation we have that,

(3.58)

where A is the incidence matrix of the circuit and Nand M are branch operators which can
be in differential or integral form. Some orthogonal expansions such as Walsh and Haar series
are difficult to operate since they generate trains of pulses when differentiated. Hence, the
integral form of Nand M are preferred. The salient features of STM can be demonstrated
by example. Consider the circuit in Figure 3.3. The incidence matrix is,

V ReG L

The static and dynamic elements are modeled independently, with the following relations:
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Inductor

iL = ~ lot vL(t)dt + h(O) (3.59)

Capacitor

1lt (3.60)Vc = C 0 ic(t)dt + vc(O)

Resistor

VR = RiR (3.61)

Conductance

io = GVG (3.62)

Using the operational matrix of integration we have that,

Inductor

(3.63)

Capacitor

(3.64)

Resistor

(3.65)

Conductance

(3.66)
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Collecting expressions (3.63) to (3.66) into a single equation we have that,

1 1 0 0 0 0 0 0 0 0 0 0 0 0 iv
0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0ZR 00 0 0 -1 I 0 0 0 0 0 0 0 0 0 Za 00 0 0 0 0 1 0 0 0 0 -I 0 0 0 Za 00 0 0 0 0 0 1 0 0 0 -1 1 0 0 iL
0 0 0 0 0 0 0 1 0 0 0 -1 0 0 Vv 0

0 0 0 0 0 0 0 0 1 0 0 -1 I 0 VR 0

0 0 0 0 0 0 0 0 0 I 0 0 I 0 Va 0- V0 0 0 0 0 / 0 0 0 0 0 0 0 0 Va
0 R 0 0 0 0 -J 0 0 0 0 0 0 0 VL 0

0 0 I 0 0 0 0 Ipt 0 0 0 0 0 1 VI
0

L 00 0 0 1 0 0 0 0 G 0 0 0 0 0 V2

0 0 0 0 _1.pt 0 0 0 0 -1 0 0 0 1 V3 0

0 0 0 0 4>(1) 0 0 0 0 0 0 0 0 -1 idO) 0
00 0 0 0 0 0 0 4>(1) 0 0 0 0 0 -1 vc(O)

or, in compact form,

Tx=d (3.67)

The initial conditions are given as,

[ 4>0(1) 4>1(1) ... 4>m-l(l) [b = b(O) = 4>h

3.4.3 Tableau analysis for LTVS
If the circuit elements are time-varying capacitances or inductances, the tableau equation can
be rewritten as follows,

[ M~)J

0

~' ][ :. ] = [ ~ ]I (3.68)
Nv(t) J

or, in compact form,

A{t)x(t) = d (3.69)

Then, by using the representation of the product A(t)x(t) in equation (3.48), the solution
can be expressed as follows,

XA=dt (3.70)

where vector d contains the coefficients resulting from the expansion of each term in d.

3.5 Generalised Hybrid Methods
The STM formulation relates a group of voltages and currents waveforms to another group
of voltages and currents waveforms. Therefore, matrix A in equation (3.69) is closely related
to the generalised concept of immittance [69]. The fact that the STM segregates Kirchhoffs'
laws and branch equations allows this method to relate different variables and to enclose any
hybrid method [17, 19]. The method can take advantage of the fact that particular power
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plant components can be modelled more efficiently in a particular domain. By way of example,
lets assume that in the example in section 3.4.2 the capacitor is modelled using a different
domain than the rest of the system. If one were to represent the set of orthogonal functions
relating the capacitor by Xm(t) and W the operational matrix for transforming variables from
the domain of Xm (t) to the base domain of W, then the hybrid STM is expressed as,

1 1 0 0 0 0 0 0 0 0 0 0 0 0 iv
0 -1 W 1 0 0 0 0 0 0 0 0 0 0 0ZR
0 0 0 -1 1 0 0 0 0 0 0 0 0 0 ic

0

0 0 0 0 0 1 0 0 0 0 -1 0 0 0 iG 0

0 0 0 0 0 0 1 0 0 0 -1 1 0 0 iL 0

0 0 0 0 0 0 0 W 0 0 0 -1 0 0 Vv 0

0 0 0 0 0 0 0 0 1 0 0 -/ / 0 VR 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 Vo 0

0 0 0 0 0 / 0 0 0 0 0 0 0 0 Va V

0 R 0 0 0 0 -1 0 0 0 0 0 0 0 VL 0

0 0 1 0 0 0 0 ipt 0 0 0 0 0 1 VI
0

0 0 0 1 0 0 0 0 G 0 0 0 0 0 V2
0

0 0 0 0 _ 1 p,t 0 0 0 0 -J 0 0 0 1 V3 0

0 0 0 0 ¢(1) 0 0 0 0 0 0 0 0 -1 i£(O) 0

0 0 0 0 0 0 0 ¢(1) 0 0 0 0 0 -1 vc(O) 0

In this way, it is shown that matrix A in the STM is not just an immittance matrix relating a
group of variables to another group of variables of the same kind but rather this immittance
matrix can also group variables represented in different domains.

3.6 Modified Nodal Analysis (MNA)

Nodal Analysis (NA) for the study of electric power systems has proved very popular. The
nodal matrix in this formulation can be efficiently handled in the computer. In general, the
admittance matrix is very sparse and solution algorithm can be designed to take advantage
of this feature where the equation for a given circuit can be easily written by inspection.
Furthermore, the number of equations is always smaller than that generated by using STM.
NA has been extended to incorporate the dynamic equations of a the network. Such extension
has been termed the Modified Nodal Analysis (MNA) method. The dynamic equations can be
generated by inspection but since they contain information about the network interconnection
as well as information about the nature of the branches, the equations may not have the clarity
observed in STM where this information is clearly segregated. Owing to this, the degree of
generalisation obtained with STM may not be easily achieved with MNA.

The Underlying ideas of the MNA are: (1) Write the NA equations using nodal voltages
and (2) whenever an element is not voltage-controlled, new variables are introduced to the
node variables vector and the the branch equation is added to the nodal matrix.

To show the salient characteristics of MNA the single phase network of Figure 3.4 is
analysed.

Node equations

-il + i6 - 0 (3.71)
. . C dV2 . 0 (3.72)'1 - '2 - L- - '4 -dt

. C dV3 0 (3.73)'4- L- -dt
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Fig. 3.4: Single phase transmission system

Linear Inductor

Non-Linear inductor

where
1 (.) di4

- ~2 =-LN dc.p

and

, = f(c.p) = a<p + b<pn
d<p
dtv =

Voltage source

Then MNA, in matrix form, is
,..

1
-CL;!; 1 -1 -1

-CLft 1
-1 1 -Lt1t

-1 1 -LL1';
1 -LN(i4)ft .

v,
0
0
0 -
0
0

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

By using the operational matrix of derivation, D, and approximating voltages and currents
as,

Vi(t) ~ V(~)'"Y(m)(t),

ii(t) ~ I[m)'"Y(m) (t),
i=1,2,3

i = 1,2,4

(3.82)

(3.83)
(3.84)
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Equation (3.81) becomes,

Va
o
o
o
o
o

1
-CLD 1 -1 -1

-CLD 1
-1 1 -LtD

-1 1 -LLD
1 -LN(i4)D

(3.85)

3.7 Conclusions
In this chapter a generalised frame of reference for solving PSS responses of power networks
has been introduced. The frame of reference was presented in a such a way that it is inde-
pendent of any particular orthogonal basis function. The motivation for this representation
has been to search for more efficient algorithms for predicting waveform distortion in power
networks.

Two algorithms, the STM and the MNA were investigated in order to write the dynamical
equations of any power network. They were also extended so that they can be combined with
the concepts of operational matrices described in this chapter. However, it was shown that
STM is a powerful analysis tool which provides more flexibility than the MNA. Owing to
its characteristic of separating the Kirchhoffs laws and the branch equations, it is capable
of relating a heterogeneous group of variables to another group of variables with the same
characteristics. It also allows to formulate solutions for cases when different elements are
modelled in different domains.
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Harmonic Domain Modelling



Chapter 4

Harmonic Domain Modelling of Electric
Power Circuits

To date, research efforts worldwide have produced accurate model for predicting
power systems harmonic distortion. Time and frequency domain solutions
have been used for such purpose. Fourier's transform has been used for most
frequency domain purpose. In this and next chapters, more efficient numerical
solutions are explored. Harmonic analysis methods based on Hartley transform
and real Fourier transform are presented. Also, discrete convolution operations
are intruduced to improve frequency domain calculations since they provide
clean harmonic domain evaluations.

4.1 Introduction

The Complex Fourier formulation uses complex algebra, however, the signals to be en-
countered in waveform distortion analysis are always real, hence there is a fundamental
asymmetry between the data domain and the Fourier transform domain. This fact can be
better understood by looking back at the choice made in favour of the familiar complex for-
mulation of the Fourier approach. After the initial work of Fourier, two main streams of
analysis, whose boundaries are not clear, took place. On the one hand, Fourier introduced
his theory in terms of sines and cosines. This permitted him to analyse terms which were
harmonically related using trigonometric functions. This analysis leads to separate lists an
and bn for the cosines and sines terms, respectively. Both lists are real. On the other hand,
the theory of the integral of Fourier with more general purposes (no restricted to periodic
analysis) was also developed. This analysis is required to be in terms of complex variables.
The ability of working with complex algebra was done by packing the two real lists an and
bn into a complex term of the form an - jbn. An interesting feature of the Hartley transform
is that both sines and cosines are packed in a way which does not require complex algebra
leading to more efficient to instruction to the computer, since real operations are less time
consuming than the complex ones.

With this in mind, this chapter harmonic domain addresses formulations which rely solely
on the use of real algebra, i.e, real harmonic domain and Hartley harmonic domain. Each
of these formulations provides an elegant and powerful frame of reference where both non-
linear and linear elements can be combined together for a unified, iterative solution via
Newton-Raphson methods exhibiting quadratic convergence. Solutions to voltage tolerances
of le-6 for the fundamental and harmonic frequencies are obtained in less than five iterations.
Discrete convolutions are used to achieve frequency domain evaluations. Thus, avoiding time
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domain excursions and the use of aliasing-prone FFT.

4.2 Direct Frequency Domain Evaluations

The dynamic equations representing LTIS can be transformed into a linear set of algebraic
equations by using operational matrices of integration. Another operational matrix that fa-
cilitates the solution of LTVS, together with the operational matrix of integration, is the
operational matrix of direct product. The operational matrix of direct product is a power-
ful tool for analysing a class of nonlinear systems, termed bilinear systems, and non-linear
systems that can be represented by polynomial equations,

y = bo + b1x + b2x2 + + bnxn

ao + alx + a2x2 + + an
bo + b1x + b2 + ... + bmxm

(4.1)

(4.2)y -

The product operational matrix for various domains are presented in this chapter. The
methods presented are frequency domain methods as opposed to sequency domain methods.

Equations (4.1) and (4.2) are amenable to direct frequency domain evaluations via discrete
convolutions. Discrete convolutions are central to these methods and they provide a means
for clean harmonic domain evaluations, a fact which aids convergence significantly. To date,
most frequency domain methods have made use of Fourier's transform, in spite of strong
indications that alternative transformations such as Hartley [94], Walsh [69], Wavelets [95]
can provide more efficient solutions.

This chapter presents frequency domain representations of non-linear elements. Equations
(4.1) and (4.2) can be evaluated in the harmonic domain by performing a series of self-
convolutions, e.g.

x2(t) = x(t)x(t) = X ® X = Y (4.3)

and mutual convolutions, e.g.

y(t) = s{t)x{t) = S ® X = Y (4.4)

where x(t), y(t) and s{t) are periodic functions; X, Y and S are harmonic vectors and ® is the
convolution operator. Several harmonic transforms can be used for carrying out operational
products. In this chapter, Complex Fourier, Real Fourier and Hartley transforms are used.

4.3 Harmonic Domain Evaluations Using Complex Fourier Series
Expansions

To date, most power harmonic analysis tools [17] have been developed with inputs x(t) and
outputs y(t) expanded in the Complex Fourier domain, i.e.

00

x(t) = L Xiejiwt (4.5)
i=-oo

and
00

y(t) = L: Yhejhwt (4.6)
h=-oo
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The product x{t) of y(t) can also be expressed in the same basis, i.e.

(4.7)

Direct evaluation of equation (4.7) confirms that Z is the result of convolving vectors X and
Y.

where

x -
Y -
Z -

[ .x., ,X-2,X-I,XO,Xt,X2,··· ,Xi,··.r
[ ,Y_j, ,Y-2, Y-I, Yo,YI,Y2, , lj, l'
[ ,Z-k, ,Z-2, Z-lt Zo, ZI, Z2, , Zk, ]t

Equation (4.8) can also be written in matrix form,

Z= [X]Y -

Xo X-I X-2 ... X-i
. .. ...

X2 Xl Xo X-I X-2 ... X-i
... X2 Xl Xo X-I X-2 ... X-i
Xi ... X2 Xl Xo X-I X-2 ... X-i

Xi ... X2 Xl Xo X-I X-2 ...
Xi ... X2 Xl Xo X-I X-2

... .
Xi ... X2 Xl Xo

(4.8)

(4.9)

(4.10)

where the matrix [Xl is a Hermitian matrix with Toeplitz structure. The elements of [Xl can
be identified by taking one term at the time in the variable Y{t),

or in vector form,

z.; x.i.;

Z-2 X-2-h
Z-l X-I-h
Zo - Yo
Zl Yl-h
=e: Y2-h

=z: Yi-h

(4.11)
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4.3.1 Dynamic elements
The integral of Complex Fourier series can also be written in terms of the Complex Fourier
coefficients as follows,

00 t it ( 00 ) 00L (¥ieiiwt dt = L Xieiiwt dt = L .;_Xieiiwt. Jo 0 . . JZW
1=-00 1=-00 1=-00

or in matrix form

(4.12)

-jiw "
-j2w

-jw
0

jw
j2w ..

\ jiw

-1
X-i -_J_X'pw -I

IX--
X-2 -I2C -2

X-I --LX_I-- zw
Xo - 0
Xl LXI-- zW
X2 IXT 2J w

~ IxJlwi
(4.13)

4.3.2 Numerical example
Harmonic evaluations are better understood with a numerical example. Let us consider the
polynomial equation,

i= f(1jJ) = O.0011jJ+ O.0741jJ4

subjected to the excitation,

eiwt _ e-iwt j
1/J = sin(wt) = 2j = 2

The harmonic evaluation is carried out as follows,

0 -2 0

t/J2 = 1/J • t/J = t
1 -1 ®t 1
0 0 0

2 -1
2 -11

0 2 0

which in matrix form becomes,

0 1
-1 0 1

-1 0 1
-1 0 1

-1 0

0 -2 1

xl
1 -1 1 0
0 0 = - 2 (4.17)

2 -1 4 01

0 2 -1

(4.14)

o
1
o
-1
o 2

-2
-1

(4.15)o

-2
-1

o
1

2

(4.16)
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Also,

0 -3 0 -3
1 -2 0 -2

3 2 1
0 -1 1 -1

'IjJ ='IjJ .'IjJ=- 2 0 @!.. 0 0 (4.18)
4 2

0 1 -1 1

-1 2 0 2
0 3 0 3

or in matrix form

I 2 -1 "
2 -1

-1 2 -1
-1 2 1

-1 2 1
-1 2

\ -1 2

-3 0 -3 -1 -3
-2 0 -2 0 -2
-1 xl

1 -1 3 -1-- =!..0 0 0 0 02 -1 8 -3 (4.19)1 1

2 0 2 0 2
3 0 3 1 3

The cubic polynomial is the evaluated in the complex Fourier domain

L3 0 -3 -1 -3 -jO.OO93
L2 0 -2 0 -2 0
Ll .0.001 1 -1 .0.0743

3 -1 jO.0284
10 =)-- 0 0 +)-- 0 0 - 0
II

2 -1 8 -3 -jO.02841 1

t, 0 2 0 2 0
~ 0 3 1 3 jO.OO93

or

i=0.0568 sin(wt) - 0.0186 sin (3wt)

4.4 Efficient Polynomial Evaluation

-3
-2
-1

o
1 (4.20)
2

3

(4.21)

The mechanics of polynomial evaluation is a straightforward, though cumbersome process.
The number of algebraic operations grows rapidly with the polynomial degree and the har-
monic order of the excitation. Therefore, suitable algorithms for polynomial evaluation must
be developed for practical harmonic domain calculations.

4.4.1 Recursive Evaluation
Many applications in power harmonic analysis require evaluations of power series of the form,

(4.22)

Evaluations of this structure would require many multiplications (convolutions) if brute force
is used. However, operations are minimised if the structure of the polynomial is re-arranged.
Synthetic decision can be used to achieve this aim. For example, consider the polynomial,

(4.23)
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Using brute force evaluations would requires 7 multiplications, but the the same polynomial
can be represented as,

(4.24)

which only requires 4 multiplications in order to be evaluated.
Similarly, polynomials with more specific structure,

(4.25)

can be rewritten as,

(4.26)

for more efficient evaluations.

4.4.2 Exponentiation
Equation (4.26) requires that a factor xq be evaluated. This can be carried out quite efficiently
for large numbers of q. The sequence of convolutions required to evaluate xq can be guided
by the integer q expressed as a binary number [18]. For instance, consider the evaluation
of the factor X19• Table 4.1 shows the binary number corresponding to q. Both sequences,
self-convolutions and mutual convolution are shown. It can be seen that the number of bits
required to represent the decimal number guides the sequence of self-convolutions whereas
non-zero bits guides the mutual convolutions.

Decimal number 19
Significant bits 4 3 2 1 0
Binary number 1 0 1 0 1
Self Convolutions X16 x8 X4 x2 x

Mutual Convolutions XlI) X "I. x

Tab. 4.1: Polynomial evaluations

4.5 Harmonic Domain Evaluations Using Real Fourier Series

The product of two periodic, real variables x and y, expanded in trigonometric series form,
00

x(t) = LX;sin(iwt)+ Xl'cos(iwt)
i=O
00

y(t) = LY~ sin (iwt) + Y~'cos(iwt)
h=O

gives rise to another periodic variable, say z(t), that can also be expressed in the same domain,

(4.27)

00

L Z~ sin(kwt) + ZZ cos(kwt)
k=O

(t.XiSin(iwtl +XfCOS(iwtl) X

(fY,:sin(iwt) + Y~'COS(iwt))
h=O

(4.28)
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A vector form of equation (4.28) can be obtained by using the harmonic coefficients only,

( :;, ) = ( :;, ) ® ( ;:, ) (4.29)

where

x' [xri,xL x~,... ,xnt

x" [X" x" x: x"Y- 0' l' 2' ••• , ;
y' - [Y~,Y{, Y;, ... ,Yhlt
Y" [¥til Y/' Y." ¥,"y- 0' l' 2"'" h

z' [Zb,Z~, Z~, ... ,Zklt
Z" [Z' Z" Z" Z'1t0, l' 2"'" k

The matrix representation of equation (4.29) provides an alternative for performing actual
calculations,

( Z') (X S/J X BC ) ( y' )--z;;- = X cs X cc --y;r (4.30)

The elements of matrices [XU], [XIJC], [XCIJ] and [XCC] are identified by taking one term of
y(t) at a time in equation (4.28) say, Y~:

(t.xi sin (iwt) +Xi' COS(iwt») Y':sin (hwt) (4.31)

and making use of the trigonometric identities

sin Asin B 1- 2 [cos(A - B) - cos(A + B)]

~ [sin (A + B) - sin(A - B)]

1- 2' [cos(A - B) + cos(A + B)]

sinAcosB

cosAcosB

We have that,

z~ = ~ [t.xi cos«i - h)wt) - xi cos«i + h)wt)] Y':

+ ~ [t.-Xi' sin«i - h)wt) +Xi sin«i + h)wt)] Y': (4.32)

Similarly for Yh':

Z;: - ![f:Xfsin((i - h)wt) - Xfsin((i + h)wt)] Y//
2 i=O

+ ![f:-X:' cos((i - h)wt) + xI cos((i + h)wt)] Yh'
2 ;=0

(4.33)
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After considering all terms of the input Y' and ylI, the matrices [Xss], [XBC],[XCB]and [XCC]
are readily identified,

2Xg -X~ X~' - Xf X" X" Xf-X~2 - 4 ...
X" X" 2X" X" X" X" X" X"1 - 3 o - 4 1 - 5 2 - 6 ...
X" - X" X" - X" 2X" - X" X" - X" ...2 4 1 5 o 6 1 7
X" X" X" X" X" X" 2X" - X"3 - 5 2 - 6 1 - 7 o 8 ...

...
2X' X, -Xf +X~ -X2+X~ -X~+X5 ...1 2
2X' X' +X' X' X' +X' X' +X' ...2 1 3 4 1 5 2 4

2X~ X' +X' Xf +X5 X, X' +X' ...2 4 6 I 7
2X' X' +X' X2+X6 X'+X' X' ...4 3 5 I 7 8. . : ··. ·

Xf X' X - 3' X' ...2 4

X~ Xf +X~ X~+X~ X' +X' ...3 5
-Xf +X~ X4 Xl +X5 X~+X6 ...
-X~+X~ -Xf +X5 Xs Xi +X~ ...
X~+X5 -X~+X6 -Xl + X~ X8 ...

: : :. .

XCC=

2Xg X" X" X" X" ...1 2 3 4
2Xf 2Xg+X~ Xi' + XfX~ + X: Xf+X~ ...
2X" Xi' +Xf 2Xo+X: X" + X" X" + X" ...2 1 5 2 6

2X" X" + X" X" +X" 2X" + X" X" + X" ...3 '2 4 '1 5 o 6 1 7

2X% Xf+xg X~+X: X" + X" 2X" + X" ...1 7 o 8. . : : .. . .

(4.34)

(4.35)

(4.36)

(4.37)

It is important to note that the matrix in equation (4.30) has the same dimensions as the
matrix in equation (4.10) but whereas the latter is complex the former is real. In applica-
tions involving real signals, it is expected that equation (4.30) speeds up harmonic domain
calculations while reducing storage requirements.

4.5.1 Dynamic elements
Dynamic elements are handled quite easily in this harmonic domain. Let us consider the
basic relation,

z=x
between the two periodic variables,

00

z(t) =L Z~ sin (kwt) + Z~ cos(kwt)
k=O

and
00

x(t) =LX~ sin (kwt) +Xf cos(kwt)
k=O

(4.38)

(4.39)

(4.40)
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Then equation (4.38) may be written as,
00

LZ:' sin(kwt) + Z~ cos(kwt)
k=O

-!(f:X:' sin (kwt) + X~ COS(kwt))
k=O

00I:kwX:'cos(kwt) - kwX% sin (kwt)
k=O

Alternative, in terms of harmonic coefficients,

z~
Z'_2_

zr..:::.L
Z"o
Z"1
Z"_2_

/ -w \

-2w
. .

-kw
0

w
2w

..
\ kw

-wX~
-2wX2

(4.41)

(4.42)

-kwXf.
o

wX~'
2wX;

kWX"k
This shows that the evaluation of dynamic Real Fourier series is carried out by simple algeb-
raic operations. Equation (4.42) can be written in compact form as,

( Z') ( 0 I D( -kw) ) ( X' )
Z" = D(kw) 0 X"

from which the operational matrix of integration can be written as

(XI) ( 0 I D(i;) ) ( Z' )
X" = D( -6) 0 -z;;-

4.5.2 Numeric example
The polynomial equation,

i= 1/;(t) = D.DDl1/; + D.07431/;3

is subject to a base sinusoidal excitation,

1
o

1

2

tPb = sinwt = 0 0

o 1

o 2

The harmonic evaluation is carried out as follows,

or in matrix form, using [X'C],

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Also,

(4.49)

or in matrix form,

) (

1 ) 0o -1 0 -- -- 3 11011----

~ ~ ~1 2 ~1 : = 4 (~J~ (4.50)

The evaluation of the Fourier coefficients of the current is

(~i)= 0.001x ( ~) ~ + 0.0;43 x ( ~ ) ~ = ( 0.Og67 ) ~
I~ 0 3 -1 3 -0.0186 3 (4.51)

or

i= 0.0567sin(wt) - 0.0186sin(3wt) (4.52)

4.6 Harmonic Domain Evaluations Using Hartley Series
Expansions

Hartley's series [96] is another transform which uses real coefficients only for modelling real
waveforms. The advantage of working with real algebra as opposed to complex algebra has
motivated the analysis presented in this section. For a detailed description of Hartley's
transform see [96]. Important advantages of real transforms over the complex formulation
are presented in [97]. Relevant aspects concerning the advantages of Hartley's transform over
the complex formulation for the analysis of real functions are geometrically explained in [98].

The product of two periodic variables x(t) and y(t) can be expressed in terms of the real
functions cas (a) and cas( -a),

.'fooZ,cas(kvt) = Cf:.X,cas(ivt») C~ooYhcas(hvt») (4.53)

where

cas(vt) - cos(vt) + sin (vt)
cas(vt) - cos(vt) - sin(vt)

v - 2rrf (4.54)

Using the following Hartley's identity,

1
cas(a)cas(,8) = 2 [casto +,8) + casfo -,8) + cas( -a +,8) - cas (-a - ,8)]

leads to equation (4.55),

f Zkcas(kvt) =! f f XiYh [cas(i + h) + cas(i - h) + cas( -i + h) - cas (-i - h)]
k=-oo 2 i=-oo h=-oo (4.55)
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A vector form of equation (4.5.5) can be obtained by using its harmonic coefficients only,

where

XI -
XII
YI

YII -
Z

[X-i, ,X-2,X-I,XO,Xt.X2, ,xilt
[Xi, ,X2, Xl, XO, X-t. X-2, ,X_i]t

[Y-i, ,Y-2, Y-t. Yo, Yt. Y2, , Yh]

[Vi, ,Y2, Yt. Yo, Y-ll Y-2, ••• ,Y-hY

[Z-i, ,Z-2, Z-l, ZO,ZI, Z2,'" ,XkY

Equation (4.56) can be expressed in the following matrix form,

1
Z= '2 [XI +Xn]Y

(4.56)

(4.57)

(4.58)

where the elements of matrices XI and XII are identified by taking one term of the variable
y(t} a the time in equation (4.55). For instance, Yh will identify column h in both matrices,

z.,

Z-2
z.,

1Zo - 2Zl
Z2

Zk
or

z.;

Z-2
Z-l 1
Zo = -
Zl

2

Z2

Zk

X-Hh

X-2+h
X-l+h
XO+h
Xl+h
X2+h

XHh

x.i.,
···

X-2-h
X-I-h
XO-h
X1-h
X2-h
:

xc,

+

,. .
X -i+h+X -i-h

···
X-2+h + X-2-h
X-l+h +X-l-h
XO+h +XO-h
Xl+h +X1-h
X2+h +X2-h

··
XHh +Xi-h

+

Xi+h
.

.
X2+h
X1+h
XO+h
X-l+h
X-2+h
:

X-i+h

xc,

X2-h
X-l+h
XO-h
X-1-h
X-2-h

X-i-h

Xi+h - Xi-h

.
X2+h - X2-h
Xl+h - Xl-h
XO+h - XO-h

X-l+h - X-1-h
X-2+h - X-2-h

L. X-Hh + X-i-h

+

(4.59)

(4.60)
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After considering all terms of Y, the matrices XI and XII become readily identified,

and

XII =

. ,
·· .
·· 2Xo X-I +XI X-2 +X2 X-3+X3

· Xl +X-I 2Xo X-I +XI X-2 + X2 X-3+X3 .
X3+X-3 X2+X-2 Xl +X-I 2Xo X-I +XI

X3+X-3 X2+X-2 Xl +XI +X-I 2Xo

(4.61)

/ . \. .
X-3+X3 X-2 +X2 X-I - Xl 0'·.

X-3 - X3 X-2 -X2 X-I - Xl 0 Xl - X-I
·· X-2 - X2 X-I - Xl 0 Xl - X-I X2 - X-2·
· X-I -Xl 0 XI- X-I X2 - X-2 X3 - X-3

· 0 XI- X-I X2 - X-2 X3 - X-3·
·· . .

\ · .

(4.62)

4.6.1 Dynamic elements
The dynamic relation,

Z=X (4.63)

can be written in Hartley domain as,

00 d(OO ) 00
k~OO Zkcas(kvt) = dt k~OO Xkcas(kvt) = k~OO kvXkcas( -kvt)

Alternatively, in terms of Hartley's harmonic coefficients,

Z-k

Z-2
Z-I
Zo -
Zl
Z2

Zk

(4.64)

/ kv

.
2v

II
0

-II
-211

...
-kll

x., kVXk

X-2 2VX2
X-I IIXI
Xo 0
Xl -IIX_I
X2 -2I1X_2

Xk -wx.,
(4.65)

The evaluation of dynamic terms in Hartley domain is carried out by means of simple algebraic
operations. Equation (4.65) can be written in compact form as,

Z = D(kll)X (4.66)
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and the operational matrix of integration can be written as,

1
X = D(-)Zkll (4.67)

4.6.2 Numeric example
The numeric example used in this chapter will now be solved using Hartley harmonic domain
where the excitation is,

1/Jb = sin (lit) = ~(cas(lIt) - cas] -lit) = ~

o
-1
o
1
o

-2
-1

o
1

2

(4.68)

The harmonic evaluation is carried out as follows,

0 -2 0 -2

2 1
-1 -1 1 -1 -1

1/J = 1/J • 1/J = - 0 0 @- 0 02 1 2 11

0 2 0 2

or in matrix form, using XII,

(4.69)

I -2 o ,
-2 0 2

-2 0 2
-2 0 2

\ 0 2 )

0 -2 -1 -2

1 -1 -1 1 0 -1

- 0 0 - 2 02 1 4
0 (4.70)1 1

0 2 1 2

Also,

0 -3 0 -3
-1 -2 0 -2

1 0 -1 1 -1 -1

1/J3 = 1/J2 • 1/J = - 2 0 @- 0 0 (4.71)4 0
2 1 1

1 2 0 2
0 3 0 3

or in matrix form, using XI,

2 -1
2 -1

-1 2 -1
-1 2 -1

-1 2 -1
-1 2

-1 2

0 -3 1 -3
0 -2 0 -2

1 -1 -1 1 -3 -1

- 0 0 -- 0 02 1 4 3 1 (4.72)
0 2 0 2
0 3 1 3
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and finally the cubic polynomial in Hartley's domain is,

L3 0 -3 1 -3 0.0186 -3
L2 0 -2 0 -2 0 -2-r:;-

0.001
-1 -1 0.0743 -3 -1 -0.0562 -1=t: =--X 0 0 + X 0 0 0

2 4 - 0

It 1 1 3 1 0.0562 1(4.73)
h 0 2 0 2 0 2
13 0 3 1 3 -0.0186 3

or,

i= 0.0562 sin(vt) - 0.0186 sin(3vt) (4.74)

4.7 Harmonic Domain Newton-Raphson Techniques

For most practical purposes, a non-linear relationship,

y = f(x) (4.75)

that can be expanded in Taylor series is amenable to an iterative solution via Newton-Raphson
method,

8f(x)
f(x +Dox) = f(Xb) + --a;-DoX (4.76)

or

tl.y = of (x) D.yox (4.77)

where

(4.78)

Furthermore, if the variables x and y in equation (4.75) are periodic then for small increments
about Xb and Vb, the following harmonic domain linearisation exists,

DoY = JDoX (4.79)

where J is a harmonic Jacobian matrix containing first order partial derivatives of the non-
linear function f(x) with respect to the harmonic coefficients of x. Also, by noticing that the
linearisation has taken place about Xb, Yb in the harmonic domain then,

(4.80)

Substituting relations (4.80) into equation (4.79) produces an alternative expression which
provides further insight into harmonic domain techniques,

Y=JX+YN (4.81)

where

(4.82)
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The subscript N indicates the possibility of interpreting this equation as a harmonic Norton
equivalent. This will be the case when Y is a vector of harmonic current, X is a vector of
harmonic voltages and J is a matrix of harmonic admittances. From equations (4.81) and
(4.82) it is apparent that the harmonic domain solution of a single variable, non-linear function
requires the evaluation of two vectors at each iterative step. The vector Xb corresponds to
the evaluation of the original function J(x) whilst Yb corresponds to the evaluation of its
derivative function J' (x).

Equation (4.81) provides a suitable means to determine the steady state solution of non-
linear circuits by iteration through a Newton-Raphson approach. Its nodal nature makes
it attractive for incorporation into a general harmonic frame-of-reference where any number
of both linear and linearised, non-linear components can be represented together to give
a unified iterative solution that exhibits quadratic convergence. In this environment all the
harmonics, cross-couplings between harmonics, nodes and phases present in the network share
a global nodal admittance matrix which is also a Jacobian matrix. Any of the three harmonic
transforms presented in this chapter can be used to determine the steady state solution of
non-linear circuits via Newton-Raphson techniques.

4.7.1 Newton-Raphson in Real Fourier Harmonic Domain
In the Real Fourier harmonic domain the variables in equation (4.79) will be expressed as,

00

Ax = :L:AXhsin(hwt) + AXhcos(hwt)
h=O

(4.83)

00

Ay - :L:AY; sin(kwt) + AY;' cos(kwt)
k=O

00

j'(x) = j'(x(t)) = :L:ai sin (iwt) + ai' cos(iwt)
;=0

(4.84)

(4.85)

Substituting equations (4.83), (4.84) and (4.85) into equation (4.79) leads to the following
matrix equation,

[ AY'] [A'] [AX'] [ASS ASC] [ AX' ]AY" = A" ® AX" = ACS Ace AX" (4.86)

where the vector and matrix arrangements are similar to those of equation (4.29) and (4.30).
A Norton representation of the kind given by equation (4.81) and (4.82) is easily obtained

for this equation.
In the real Fourier harmonic domain a complex, linear admittance Gk +Bk is represented

as,

(4.87)
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4.7.2 Newton-Raphson in Complex Fourier Harmonic Domain
In the Complex Fourier domain the variables in equation (4.79) will be expressed as,

00

~x = 2: ~Xheihwt (4.88)
h=-oo

00

tl.y L tl.Ykeikwt (4.89)
k=-oo

00

f'(x) - f'(x(t)) = L cjejiwt (4.90)
1=-00

Substituting equations (4.88), (4.89) and (4.90) into equation (4.79) leads to the following
matrix equation.

~y = [C]~X (4.91)

where the vector and matrix arrangements are similar to those of equation (4.9) and (4.10).
In the complex Fouri~r harmonic domain a complex, linear admittance Gk + jBk is rep-

resented as,

(4.92)

4.7.3 Newton-Raphson in Hartley Harmonic Domain
In the Hartley domain the variables in equation (4.79) will be expressed as,

00

tl.x = L ~Xhcas(jhvt) (4.93)
h=-oo

00

~y - L ~Ykcas(jkvt) (4.94)
k=-oo

00

f'(x) = f'(x(t)) = L Cjcas (jivt) (4.95)
i=-oo

Substituting equations (4.93), (4.94) and (4.95) into equation (4.79) leads to the following
matrix equation.

tl.Y = [CI +CI1]~X (4.96)

where the vector and matrix arrangements are similar to those of equation (4.56) and (4.58).
In the real Hartley harmonic domain a complex, linear admittance Gk+jBk is represented

as,

(4.97)



Chapter 4. Harmonic Domain Modelling of Electric Power Circuits 61

Point-by-point EvalWltion
of the Non-linear
Characteristic and

its Hannonic Content
Through FFf procedures

Nwnerical Evaluation
of Flrst Derivative and
Its Hannonic Content /32

Through FFf Procedures

STOP

Fig. 4.1: General procedure for harmonic domain calculations

4.8 Harmonic Domain Computations

Figure 4.1 represents diagrammatically the computational procedure used in harmonic do-
main calculations. The blocks a and f3 are alternative routes for computations involving non-
linearities whilst the 'Y blocks correspond to a harmonic domain Newton-Raphson procedure.
Harmonic domain computations using alternative f3 are detailed in [17] whilst polynomial
evaluations are described in [18]. In this chapter polynomial alternatives are preferred. Both
alternatives can be carried out in any of the three frames of reference described in this chapter.

Some non-linear components, such as electric arcs, fluorescent lamps and magnetic non-
linearities are amenable to a polynomial representation, and route a results in more efficient
calculations. Also, 'some power electronic-base plant components such as TCRs are ameanable
to frequency domain computations following route a but where the polynomial is a first degree
polynomial i.e. switching function. An example of this modelling approach is the three phase
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TCR model presented in chapter 7. Route /3 is used when the non-linearity are not accurately
be represented by polynomials or switching functions. Here, a full cycle of the currents is
evaluated in the time domain at each iterative step. Also, a full cycle of the derivative of the
current with respect to flux with respect to time is required.

Block 0'1 represents the fitting of a non-linear characteristic by a polynomial, a switching
function or any representation amenable to direct frequency domain computations. This
topic was addressed in Chapter 2. The process is carried out just once, outside the iterative
loop. Polynomial evaluations required in blocks 0'2 and 0'3 are achieved efficiently by means
of repeated convolutions. In blocks /31 and /32, a full cycle of the aveform at the fundamental
frequency is obtained point-by-point and then a FFT is applied to find the harmonic content
of the resultant waveforms. An advantage of route /3 is that there is no restriction in the
representation of the non-linear characteristic.

Block ;1 represents the calculation of the mismatch vector function whilst ;2 represents
the calculation of the Jacobian matrix. Sparsity techniques can be used to reduce storage
and cpu time requirements. The updated harmonic state of the non-linear component is
calculated in block ;3. In block ;4 the updated voltages are transformed into fluxes.

The general flow chart of Figure 4.1 shows the case when the Jacobian matrix is updated
at each iterative step. This approach is a true Newton-Raphson method with quadratic con-
vergence. Alternatively, faster Newton-type algorithms are derived from this basic diagram.
A detailed analysis of the alternative numeric technique is presented in Chapter 7.

4.9 Case Studies

The harmonic domain methods presented in this chapter are used to analyse a practical
transmission system for which data and results are available in open literature [16]. Detailed
information of the geometry of the transmission line as well as data for transformers, shunt
reactors and generators is given in Appendix B. The system is shown in Figure 4.2. The
transformer is modelled as a three phase bank with the saturation characteristic taken to be
curve 1 of Figure 2.2. The transmission line is modelled taking frequency dependence and
long line effects into account. The transmission line geometric imbalances are responsible for
the voltage imbalances shown in Figure 4.3.

Jaguara

y
Taquaril

Fig. 4.2: Simplified Jaguara-Taquaril transmission system

When the transformer operates in the saturation region, it draws harmonic currents. The
predominance of a particular harmonic order depends on the system configuration and the
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Fig. 4.3: Voltages at Jaguara bus bar with voltage excitation of 1.1 [p.u.]

transformer connection. In this case, the excitation voltage in the generators is set to 1.1
[p.u.], The voltage waveforms are shown in Figure 4.3{a). In this case, the predominant
harmonic is the fifth harmonic. In most countries power grid regulations impose limits of
5%. In this case, corrective actions should be taken to reduce 5th harmonic voltage levels.
All other harmonics are small enough to cause concern. Harmonic current injection due
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Fig. 4.4: Voltages at Jaguara bus bar with an excitation voltage of 1.15 [p.u.]

to transformer saturation is a highly non-linear phenomenon. Small changes in the voltage
excitation may result in the injection of large currents which, in their turn, may cause highly
distorted voltages. To illustrate this point, a small change in voltage excitation is considered,
from 1.1 to 1.15. The effect of this small change in voltage excitation causes highly distorted
voltage waveforms. The voltages at the Jaguara bus bar are shown in Figure 4.4, the 5th
harmonic goes far beyond any permissible limit. Full Newton-Raphson methods were used
to calculate these results to a voltage tolerance of 10-6•
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4.10 Conclusions

Harmonic domain evaluations in real Fourier or Hartley domains are up to 4 times more
efficient than their complex Fourier domain counterparts. An equal number of operations is
needed in all three domains but real operations are required in both Real Fourier domain
and Harley domain while complex operations are required in the Complex Fourier domain.
The opportunity for savings in the real domains is quite significant as harmonic evaluations
of each non-linear element involves convolutions and multiplications of vectors and matrices
of relatively large dimensions.

New methods for solving power systems harmonic problems have been presented. They
are based on the use of real transforms i.e. Real Fourier and Hartley, and provide more
efficient alternatives then an existing method which uses the Complex Fourier transform.
Any number of linear and non-linear plant components can be represented in these frames
of reference and owing to their nodal nature, any number of buses, phase and harmonics can
be represented with ease for a unified solution via Newton-Raphson techniques exhibiting
quadratic convergence. The theory is tested in a practical transmission system.



Chapter 5

Three-Phase Thyristor Controlled Reactors

In this chapter new harmonic domain models for single and three-phase Thyris-
tor Controlled Reactors (TCR) are presented. The modelling is carried out in
the frequency domain using the complex Fourier domain. It makes use of
harmonic switching vectors and discrete convolutions. In the presence of low
harmonic distortion the switching vectors are calculated only once during the
iterative process. This operation is performed entirely in the frequency domain.
In cases of high harmonic content the switching times defining the switching
functions may require further identifications during the iterative process. A
portion of an actual power network is used to test the TCR model.

5.1 Introduction

Static VAR Compensators, SVCs, are an attractive means of alleviating a wide range of
problems encountered in modern power systems [99]. They provide an adaptable form of
compensation which responds almost instantly to most operating conditions of the power
network.

Thyristor Controlled Reactors, TCRs, are static compensators capable of absorbing react-
ive power from a network as opposed to Thyristor Switched Capacitors, TSCs, which supply
reactive power to a network [100]. This chapter is concerned with the harmonic modelling of
TClis and their interaction with the power network.

From the operational point of view TClts act as controlled susceptances which achieve
their fundamental frequency operating state at the expense of generating harmonic currents
[99, 100]. These harmonics are merely a side effect and measures such as the use of different
three phase arrangements or other control strategies must be used to prevent the harmonics
from reaching the high voltage side of the network. Filtering equipment is often used, but
many repetitive studies are necessary to establish the optimum design of such equipment
which constitutes a significant fraction of the total capital cost of the compensating plant.
Accordingly, there is a need for the development of versatile methods for the rapid and
accurate calculation of TCR harmonics. Comprehensive analysis of 'I'Clls operating under
a wide range of conditions may be economically achieved by digital simulations based on
steady-state techniques.

Power systems reactive compensation by means of solid state devices is a mature but
relatively new technology. Over the last 20 years it has engaged a large number of research-
ers in both industry and academia. Reference [99] gives values of the maximum harmonic
currents drawn by TClts under balanced conditions. However, balanced conditions never
occur in practice. Static compensators are prone to exhibit imbalances due to manufacturing
tolerances in their parts and the high-voltage transmission network can be very unbalanced
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at harmonic frequencies. In 1981 RM Mathur [101] modelled the TCR as an unbalanced
harmonic current source affected by both firing and inductance asymmetries, but network
interaction was ignored. In 1986 R Yacamini and JW Resende published a model which takes
TCR imbalances fully into account [102]. In such a model each TCR branch is represented
as a voltage-dependent set of harmonic current sources, which is injected back into the nodal
impedance of the network to obtain an updated set of harmonic voltages with which the
cycle can be repeated, reaching the harmonic solution by iteration. In this method the TCR
harmonic current coefficients are determined by means of Fourier analysis. In 1988 W Xu,
JR Marti and HW Dommel published a method based on alternate time domain and fre-
quency domain representations of the TCR currents [103]. This involves deriving a full cycle
of the current, at the fundamental frequency, across each TCR branch and then extracting
their harmonic contents via FFT algorithms. These operations are carried out at each itera-
tion. In this method each TCR branch is modelled as a voltage-dependent harmonic current
source. In order to circumvent poor convergence performance associated with this repres-
entation, the same authors published in 1991 an alternative model whereby each individual
TCR branch is modelled as a harmonically 'decoupled' Norton equivalent [104]. Harmonic
current calculation in both methods is the same. The admittance element calculation is based
on fundamental frequency information only, and scaled-down at each frequency of interest.
The authors have reported marked improvements in convergence performance. In 1989 LJ
Bohmann and RH Lasseter reported on a harmonic domain admittance model [105] which
exhibits cross-couplings between frequencies. The model was intended for single phase TCRs
and is based on the use of switching functions.

In 1991 E Acha put forward a three phase TCR model which uses the harmonic domain
as the frame of reference [106],where all the harmonics and cross-couplings between harmonics
are explicitly shown. Each single phase unit of the TCR is modelled as a voltage-dependent
harmonic Norton equivalent. The admittance matrix of the Norton equivalent has a quasi-
Toeplitz structure and plays the role of a Jacobian in the iterative solution. In this method a
full cycle of the current at the fundamental frequency is determined and then a FFT is used
to obtain the harmonic' content of the current waveform. Also, a full cycle of the derivative
of the current with respect to the flux is obtained and the harmonic coefficients obtained
via a FFT are used to assemble the admittance matrix of the Norton equivalent. This
procedure is carried out for each branch, then a three phase TCR model is assembled and
combined with the nodal admittance matrix of the transmission network to obtain an updated
set of harmonic voltages. These harmonic voltages can be used to calculate an updated
harmonic Norton equivalent with which the cycle can be repeated. When a satisfactory
degree of convergence has been achieved, the calculated harmonics will be in balance. This
method requires two FFTs per iteration and there are plenty of opportunities for introducing
unwanted errors in the solution process due to discretisation of the waveform, aliasing and
round-off errors, hence degrading Newton method's quadratic convergence. A more efficient
formulation which overcomes these limitations was published by E Acha and JJ Rico for
the Case of single phase TCRs [107]. This method is a harmonic domain Newton-Raphson
technique, which uses frequency domain information only. It is based on the use of harmonic
vectors and discrete convolutions. The process of transforming back and forth between time
and frequency domains is avoided, as well as the use of FFTs. The Fourier coefficients of the
switching vector are calculated directly in the frequency domain by means of simple, closed-
form, equations. A discrete convolution of the switching vector and the input voltage, which
is a frequency domain operation, provides the harmonic coefficients of the TCR current. The
overall result is a 'true' Newton-Raphson algorithm exhibiting quadratic convergence even in
cases of excessive harmonic distortion.

In the present chapter the author has generalised the single phase TCR model to the case
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Fig. 5.1: (a)Schematic representation of a Single phase TCR (b)instantaneous tP - in
characteristic

of multi-pulse TCRs. Six-pulse and twelve-pulse TCR solutions are derived in this chapter.
These generalised models incorporate with ease any kind of imbalances present in the TCR
or in the external network. The transmission system can be represented in full [108] or as a
reduced equivalent network [109] incorporating detailed frequency-dependent, geometric and
long-line effects [110].

5.2 Single Phase Modelling of Thyristor Controlled Reactors

In power systems compensation studies a single phase TCR is conveniently represented as
a linear inductor in series with two reverse-parallel connected thyristors and a firing control
system. Figure 5.1(a) shows a single phase TCR fed from a sinusoidal voltage source. This
circuit is used as the starting point for deriving a TCR model in the harmonic domain frame
of reference. The flux-current characteristics exhibited by a TCR, acting under a sinusoidal
AC excitation flux, are a family of straight lines which are a function of the delay or firing
angle 0, as shown in Figure 5.1(b).

The conduction angle (1 depends on the firing angle 8 according to the relationship,

a = 2 (11" - 8) (5.1)

In principle at least, the firing angle 8 can be controlled to take any value between 900
and 1800, corresponding to values of (1 between 1800 and 00• The former case corresponds to
the TCR in a fully conducting state while the latter corresponds to the TCR in a completely
non-conducting state. Both operating conditions are free from harmonics, whereas any other
condition in between will be accompanied by the generation of harmonics. If we were to
define a switching function 8 in the time domain which takes a value of 1 if either thyristor
is conducting and takes a value of 0 if neither thyristor is conducting, then we would have
the situation shown in Figure 5.2. It must be noted that the conduction angles of thyristors
Tl and T2 can be different. The excitation voltage and current are shown in Figure 5.2(a)
whilst the switching function for a given conduction angle and its product with the voltage
are shown in Figures 5.2(b) and 5.2(c), respectively.
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5.2.1 TCR Harmonic current vector
The circuit in Figure 5.1(a) may be used to write the dynamic equation of the current

across the TCR,

diR 1Tt = LR s(t)v(t) (5.2)

or

iR = LIR lt s(r)v(r)dr

Applying Fourier Transform to both sides of equation (5.3) we have that,

IR(jw) = LIR:F [lot s(r)v(r)dr]]

(5.3)

(5.4)

Finally, taking the Integration and Frequency Convolution theorems into account and con-
sidering that :F[s(t)] = Sand :F[v(t)] = V, it is possible to write an expression for the current
in the frequency domain as follows,

(5.5)

Considering that V = diag(jhw)iII, where diagO is a diagonal matrix with entries jwh, the
current derivative with respect to the flux \If is expressed as follows,

j'(llt) = ...!_S
LR

(5.6)

which is the switching function scaled down by the inverse of the inductance of the linear
reactor LR. It must be noted that equations (5.5) and (5.6) are used to calculate a linearised
equivalent about a base operating point Vb,h,

(5.7)
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or,

(5.8)

The matrix [F] plays the role of a Jacobian matrix in the iterative solution. It has a
Toeplitz structure [17] and it is assembled with the harmonic coefficients of equation (5.6).

The following relationship exists between [H] and [F],

[H) = [F]diag (j~h) (5.9)

Equation (5.8) may be interpreted as a harmonic Norton equivalent,

(5.10)

where,

(5.11)

The harmonic vector Ib is assembled with the Fourier coefficients of equation (5.5).

5.2.2 Harmonic switching functions
One way of obtaining the harmonic coefficients of the switching vector is by drawing a

full cycle of the switching function at the fundamental frequency and then using a FFT
[17]. However, a faster and more accurate way of achieving this result is by determining
the harmonic coefficients of the switching function in terms of the conduction angles 0'1 and
0'2' The switching function s(t) in equation (5.2), and shown in Figure 5.3, has values of
one whenever the thyristor is on and zero whenever the thyristor is off. In the frequency
domain a periodic train of pulses described by the switching function can be represented by
the harmonic vector (5.12),

(5.12)s=

~+j~

In general, the complex coefficients are written as,

S - ah + .bh 1j1r (t) -jhwtd th - - )- = - sew2 2 11"_1r

The coefficients ah and bh are obtained from the following relations,

(5.13)

1 0'1 + 0'2
-aD =2 211"

2 [. ( ha, ) . (h0'2)] ( lit: )ah - h1l" sin 2 -l-sin 2 cos ""2

bh 2 [. (h0'2) . (hO'I)] . (h1l") (5.14)= h1l" sin """2 - sin """2 sin 2"
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The Fourier coefficients ah and bh are calculated from equations (5.15), (5.16) and (5.17)
which take into account that the switching function has a value of one in the following intervals
[=.!!. _!1:l. =.!!. + !1:l.] and [1!. _ ~ 1!. + ~]
2 2' 2 2 2 2'2 2'

1 [r;"+r (f+r 1
ao - ; J=l!._~ dwt+ J:g.-~ dwt

2 2 2 2

1 (r;"+r (i+r )
ah - ; J=;"-r cos(hwt)dwt+ J~-r cos(hwt)dwt

1 (r;"+r (~+r ); J =l!._~ sin (hwt)dwt + J?J.-~ sin(hwt)dwt
2 2 2 2

(5.15)

(5.16)

(5.17)

Under normal operating conditions, the current across the TCR is comprised of the funda-
mental and odd harmonics which amplitude is a function of the conduction angles 0"1 and 0"2

[99]. The harmonic currents drawn by a single phase TCR connected to an infinite bus bar
have been calculated with the model described above and the results are shown in Figure 5.4.
It shows the percentage of all the relevant harmonics with respect to the maximum funda-
mental current at full conduction. These results are in full agreement with values available
in open literature [99, 105], hence showing evidence of the accuracy of the single phase TCR
model.

5.3 Firing Control Systems

Control firing systems of TCRs may, under certain circumstances, generate and magnify
some of the harmonics present in power systems. In some cases, these effects are of little
consequence but sometimes these disturbances may prevent stable operation of the system.
Over the years new and more robust controllers have been developed. There are two main
classes of TCRs controllers: closed loop and open-loop. Open loop controllers have poor
performance and have been superseded by closed loop controllers. The TCR model developed
in this chapter assumes the use of close-loop controllers. A widely used class of closed loop
controller is the Phase-locked oscillator [102].

An important part of these controllers is that which determines the valve firing times.
There are three firing control systems used in TCRs, namely individual phase control (IPC),
pulse frequency control (PFC) and pulse phase control (PPC). All of them may be simulated
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Fig. 5.4: Harmonic currents versus Conduction angle

in a computer program [111]. IPC controllers are no longer used in the new control schemes
but their use in the early stages of TCR applications suggest the need to take them into
account in modern analysis.

The purpose of a firing system is to determine the firing instants of the reference (phase
a) under the presence of arbitrarily distorted a.c. bus voltages. Prior to the determination
of such firing angles, in any scheme, the voltage zero crossings of the a.c. voltage must be
calculated. This applies to all three iterative schemes.

5.3.1 Voltage zero crossing evaluation
The phase-to-neutral a.c. bus voltages can be generally expressed as,

nh

v{wot) =L (V~cos(wot) + V~/sin(wot))
h=O

where nh is the number of harmonics considered and Wo is the fundamental frequency of the
system, V~ and V~' are the Fourier coefficients corresponding to harmonic h. The voltage
zero crossing angle wot can be calculated, for the reference phase, from following equation,

(5.18)

nh

F(wot) = 0 =E (V~ cos(wot) + V~' sin (wot))
h=O

Equation (5.19) is non-linear and can be solved by Newton-Raphson method,

where

(5.19)

(5.20)

(5.21)

5.3.2 Firing angle evaluation
IPC, PFC and PPC firing schemes control the thyristor firing angles in such a way that the
angle, measured from the voltage zero crossing to the instant of firing, is constant. However,
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there is a fundamental difference between the various control schemes which relates to the
starting point of the delay time, before a firing signal is triggered. In the IPC system a level
detector senses the voltage zero crossing; at this point a ramp voltage is initiated and its
value compared with a reference control voltage. The firing pulse is produced when both
voltages are equal, this can be expressed as,

nh

F(t) = [(wot =L (VhCOS(Wot) + vt sin (wot))
h=O

(5.22)

or

nh

F(t) = KWot - L (VhCOS(Wot) + VhCOS(Wot)) = 0
h=O

(5.23)

The Newton-Raphson solution of equation (5.23) yields, for this nonlinear equation, the
following iteration process,

(5.24)

where

(5.25)

Unlike IPC systems, PFC and PPC schemes initiate the ramp voltage at equidistant firing
instants which are set to values proportional to the control voltage. PFC's frequency is
controlled while the phase is controlled in PPCs. The triggering points do not, in general,
correspond to the voltage zero crossings and the following relation holds,

(5.26)

where 1/J is the angle at the zero crossing time and 8 is the angle elapsed from the zero crossing
to instant of firing. Similarly to the IPC system, the angle 8 is calculated with the following
equation,

8= wat (5.27)

5.3.3 Turn-off time evaluation
A complete definition of the switching function requires knowledge of the firing times tl
and t3 and turn-off times t2 and t4 shown in Figure 5.3. The firing times are evaluated
as explained above. Turns-off switching times are determined by the zero crossing of the
thyristor'S current. LJ Bohmann and RL Lasseter [105] have calculated these by solving the
following non-linear equation,

(5.28)

If the voltage across the TCR is assumed to be a complex harmonic series, the current is a
similar summation of exponentials,

(5.29)
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In the zero crossing we have that,

nh
o = L .Vh ejhwt

h=-nh JhwLR
(5.30)

A Newton-Raphson can be used to solve this non-linear equation. Proper initial conditions
are required to ensure that the solution will converge to the desired solution point. Since the
current also has a zero crossing at the firing instant. A good initial guess for turn off times
can be obtained from a pure sinusoidal voltage.

5.4 Three Phase TCR Modelling

For most three phase applications, the branches of the TCR are delta-connected, in order to
cancel out the third, ninth and fifteenth harmonic currents. Further harmonic cancellation
is made possible by employing two three phase bridges with a shift of 300 between them.

In the case of a three phase delta-connected bridge, the harmonic Norton equivalent can
be found by linear transformations. The harmonic Norton equivalent corresponding to the
unconnected three phase TCR is,

(5.31)

or, in compact form,

(5.32)

In a power invariant, delta-connected circuit the relationships between the unconnected
and connected states are,

(5.33)

and,

(
Ia) L300

( 1h = -- -1
t, J3

(5.34)

or, in compact form,

L30°
Vcp = J3 [Ccpa]Va

L300
/a = J3 [Cacp]/cp

Premultiplying equation (5.32) by LJr [Cacp], we have that

(5.35)

(5.36)

(5.37)
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Fig. 5.5: South Island Test System

Substituting equations (5.35) and (5.36) into equation (5.37) gives the three phase Norton
equivalent equation,

(5.38)

or,

(5.39)

In expanded matrix notation form, the three phase Norton equivalent of the delta-
connected TCR is,

(5.40)

5.5 Case Studies

The three phase TCR model developed in the previous section has been tested on the reduced
South Island system of the 220 kV New Zealand power network. It is a real power system for
which complete data exists in open literature [112]. The relevant data is given in Appendix
A. The system is shown in Figure 5.5. Actual measurements have indicated the presence of
a parallel resonance near the 5th harmonic frequency, i.e. 250 Hz. Comprehensive simulation
studies have been carried out for this reduced system in the past and its frequency response
is well known [113]. This author has used his own multi-phase frequency scan program to
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verify such simulation results independently and a good match has been found. Figure 5.6
shows the harmonic impedance of phase A in p.u., as seen from Tiwai. The presence of a
parallel resonance laying between the 4th and the 5th harmonic frequency is clearly shown.
To test our model, the large converter plant at Tiwai has been replaced by a delta-connected
three phase TCR. Generators, transformers and loads have been assumed to behave linearly.
The software has the option of representing the transmission system in full or as a reduced
equivalent network. The latter option has been used for obtaining the results presented below
because the interest is in analysing the interaction between the TCR and the network at the
point of connection.

5.5.1 Six pulse, three phase TCR
As shown in Figure 5.4, a TCR will inject maximum 5th harmonic current when the conduc-
tion angle is 1400• In the case being analysed, this condition is compounded with the parallel
resonance at the 5th harmonic frequency exhibited by the network to give rise to a badly dis-
torted voltage waveform at Tiwai. Figure 5.7(a) shows the voltage waveforms whilst Figure
5.7(b) shows the harmonic content for the three phases. Large harmonic voltage imbalances
are shown in this result where the percentage of the 5th harmonic reaches almost 12 per cent
for phase C. The remaining harmonic voltages are well below recommended limits and are
cause of no concern [114]. However, filtering equipment would have to be connected at Tiwai
to provide a low impedance path for the 5th harmonic current. The TCR is delta-connected
and under perfectly balanced conditions no third harmonic current should flow towards the
high-voltage side of the network. However, small geometric imbalances in the transmission
system will allow a small amount of 3rd harmonic current to escape the delta producing a
small amount of 3rd harmonic voltage.

According to figure 5.4 the TCR also inject considerable 5th harmonic when the conduc-
tion angle is 700, this condition has also been simulated and the results are shown in Figure
5.8. Figure 5.8(a) shows the voltage waveforms whilst Figure 5.8(b) shows the harmonic
content for the three phases.

DC Component

The TCR model is capable of considering not just angle assymetries in the conduction angle
but also conditions when a DC voltage component already exists at the TCR bus bar voltages.
This may be due to the presence of a DC load in HVDC systems or problems with capacitors.
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To show the capability a DC voltage component of 0.2 p.u. was assumed at Tiwai. This was
injected into the TCR producing the results shown in this Figure 5.9. Figure 5.9(a) shows
the voltage waveforms whilst Figure 5.9(b) shows the harmonic content for the three phases.
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Fig. 5.10: Voltages at Tiwai bus bar

5.5.2 Twelve pulse, three phase TCR
TCR harmonic currents can always be removed by means of filtering equipment. An al-

ternative arrangement for eliminating 5th and 7th TCR harmonic currents is by splitting the
six pulse TCR into two identical half-sized units and employing a three phase transformer
with two secondary windings. The primary winding is grounded star-connected. One sec-
ondary winding is star-connected whilst the other secondary winding is delta-connected. One
half-sized unit is connected to each secondary winding. This configuration produces a 300

phase shift between the fundamental frequency currents drawn by each TCR. Under balanced
operating conditions, the 5th and 7th harmonic currents of both TCRs will be equal in mag-
nitude and in phase opposition at the primary side of the transformer. Consequently, they
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will cancel out with each other at the primary side of the transformer. However, if network
or TCR asymmetries are present then a reduced amount of 5th and 7th harmonic currents
will escape towards the network causing the voltage at the transformer connection point to
be non-sinusoidal if conditions for harmonic voltage magnification exist. This situation is
illustrated in Figure 5.10{a) where the TCR conduction conduction angle is 140°. The three
phase waveform still shows a significant amount of 5th harmonic voltage due to transmission
system imbalances compounded with the presence of a parallel resonance near the 5th har-
monic. Figure 5.10{b) shows a value of 4.5 per cent for phase C. In this case, the use of a
12-pulse TCR has reduced 5th harmonic voltage distortion by almost a third compared to
the 6-pulse TCR used above. Nevertheless, this value still is well above the threshold value
permitted by existing legislation [114] and the use of filtering equipment will be needed to
filter out any trace of 5th harmonic current at the high-voltage side of the transformer.

5.6 Conclusions
A new, three phase TCR harmonic model which is based on the use of harmonic switching
vectors and discrete convolutions, has been presented. This harmonic model is completely
general and can be interpreted as a harmonic Norton equivalent. It is suitable for direct
incorporation into the multi phase harmonic domain frame of reference where it combines
easily with the frequency dependent admittances of the transmission network and with other
linearised components such as saturated transformers, rotating machinery, electric arcs and
power converters. The use of harmonic switching vectors and discrete convolutions has been
shown to be a simple and yet powerful combination in the solution of TCR harmonics. All
operations are conducted in the frequency domain and the use of alternate time domain and
frequency domain representations is avoided and so it is the use of FFTs. This approach
leads to very efficient iterative solutions of power networks containing TCRs by means of a
harmonic Newton-type technique exhibiting quadratic convergence.



Chapter 6

Duality-Based Three-Phase Multi-limb
Transformers

The modelling approach presented in this chapter is based on the principle of
Duality. New harmonic domain models of three phase, multi-limb transform are
developed using this principle. The models accurately incorporates all relevant
effects which become important when the transformer saturates. As opposed to
existing harmonic domain models, the Duality-based methods proposed in this
chapter incorporate construction details of the transformer. Commonly used
core configurations are analysed. The complete linearised model is represented
as a harmonic Norton Equivalent which combines easily with the external power
network taking due account electrical of the transform's connection. A practical
system is used to test the transformer model.

6.1 Introduction

Arguably, transformers are one of the most common and mechanically simple power plant
components. However, no single model has proven appropriate for studying a wide range
of frequencies and different operating conditions. Different component models are used for
steady-state and for slow and fast transient studies. Transformer models for harmonic analysis
as well as transient analysis require rigorous representations. Comprehensive transformer
models have been developed for transient studies [115] but, so far, no transformer model
incorporating such detail and level of sophistication has been developed for harmonic studies.

Over the years, an intensive search for determining models capable of modelling correctly
the interaction of core fluxes, has been carried out. The principle of duality developed by
Cherry [116] and generalised by SIemon [117] provides a means to tackle this problem. At
first, this approach did not receive attention because computers were not powerful enough.
An additional complication was the difficulty in measuring the required parameters. More
recently the method has been successfully applied to the development of multi-limb, three
phase transformers model [115, 118, 119, 120] in the transient analysis field. Promising results
using this modelling approach has motivated research relating to parameter identification
[121, 118]. Recent work in this field has been carried out by A. Narang and R. H. Brierley
[119] and by D. A. Mork and D. L. Stuehm [120].

Accurate transformer models intended for steady state analysis at the fundamental fre-
quency have been in existence for many years. Laughton [122], for instance, put forward a
three-phase transformer model for three-phase banks. The lattice equivalent circuit used in
this model can take into account asymmetries in the operating conditions. Chen and Dillon
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[123]and V. Brandwajn, H.W. Dommel and 1. 1. Dommel [124]have put forward more general
models. These models take account of network imbalances and can accommodate different
types of electrical connections. Easy interfacing with the electrical network is achieved owing
to their nodal nature. A recent publication reports on a more accurate model where the
magnetic circuit of the transformer has been incorporated [125].

Accurate predictions of the electro-magnetic behaviour of the transformer under fast
and slow transients call for more rigorous representations of the transformer's electric and
magnetic circuits. A great deal of activity has been registered in this area. Recently, a
comprehensive model has been put forward by F. De Leon and A. Semlyen in [121]. It
represents accurately both leakage inductances and fluxes in the iron core. The trapezoidal
rule of integration is used to solve the state equations describing the electric model, resulting
in a Norton equivalent. This makes it easy to interface with the external electric network.

Likewise, predicting the periodic steady state behaviour of transformers also require rigor-
ous electro-magnetic models in order to evaluate harmonic distortion due to saturated regions
of the magnetic core. Although the periodic operation of transformers can be assessed by
using time domain methods, steady-state methods are preferred [17]. A. Semlyen, E. Acha
and J. Arrillaga have modelled single phase transformer in the harmonic domain. N. Ra-
jakovic and A. Semlyen have applied harmonic domain modelling techniques to the problem
laminated iron cores in [126]and in [127]. They also devised a simple way of including hyster-
esis effects. The extension of harmonic domain techniques to the solution of quasi-stationary
phenomena has also been carried out by N. Rajakovick and A. Semlyen [128].

The concept of harmonic Norton equivalent in the harmonic domain was extended to the
three phases by E. Acha, J. Arrillaga, A. Medina and A. Semlyen [129]. In this reference a
model for three phase bank of transformer is presented which uses lattice equivalent circuits.
These are easily combined with the rest of the network taking due account of the electrical
connection. In general, however, power transformers used in high-voltage applications will
have multi-limb core with different cross-sectional regions. In such cases, assuming that the
core is magnetically equivalent to three single phase transformers may lead to inaccurate
results. C. Hatziantoniu, G. D. Galanos and J. Milas-Argitis in an earlier publication [130]
presented a three phase transformer model suitable for the study of slow transients and
harmonic distortion. The model takes the structure of the iron core into account but all
magnetic regions are considered to have the same level of saturation. Furthermore the tank
is not considered. A better model which accounts for different cross-sectional branches, yet
simplified in terms ofthe magnetic paths that can take place, was presented by N. Rajakovic
and A. Semlyen [128]. A more detailed multi-limb transformer model has been put forward by
A. Medina and J. Arrillaga in [131]. The model accounts for different cross-sectional regions
of the iron core as well as magnetic flux paths in the air and tank. However, questions arise as
to the assumption of distributing equally the magnetising admittance in all external points.
This assumption is based on the absence of construction details. In some cases, attaching the
iron branch to the winding nearest to the core prod uces acceptable results, especially for the
case of three-legged stacked cores. Validity of the above assumption, however, will depended
on the type of core being analysed.

In this chapter a harmonic domain model for multi-limb transformers which relaxes several
of the constraints used in previous models is presented. The model represents correctly both
leakage paths and the iron core. The transformer model is represented as a harmonic Norton
equivalent which interfaces easily with the external network taking due account of the electric
connection.
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000000
Triplex Core (Stacked or Wound)

Shell Form (Stacked)

5-Lcggcd Wound Core

3-Legged Stacked Core

5-Legged Stacked Core

4-Lcgged Stacked Core

Fig. 6.1: Commonly used Iron Cores

6.2 Magnetic Behaviour of Three Phase Transformers

Under transient and unbalanced conditions, the structure of the iron core of three phase
transformers plays an important role in the levels of harmonic distortion attained. In these
cases modelling the transformer assuming similar magnetic behaviour to three phase banks
may lead to inaccurate results. Figure 6.1 shows some of the most commonly used core con-
figurations. Strictly speaking, only the triplex core displays similar magnetic characteristics
to the three phase bank, provided that magnetic isolation between the phases is in place.
Although, the three cores are enclosed in the same tank the only magnetic coupling between
windings is through magnetic leakage.

Three-legged transformer cores require the least amount of core material to manufacture.
The drawback is that their asymmetric structure introduces unbalanced magnetic paths,
giving rise to zero sequence fluxes which cannot flow through the iron core but through the
insulation oil and the transformer's tank. Eddy currents are exacerbated since tanks are not
laminated. The heat generated by eddy currents in the tank can be quite large, resulting
in considerable reduction in useful equipment life. Figure 6.2 shows the geometry of the
three-legged transformer and its flux distribution. Dashed lines represent magnetic paths.
The use of the Duality principle allows the transformer magnetic circuit to be reduced to an
arrangement of nodes and flux tubes. All the necessary assumptions required to approximate
the actual fields must be introduced at this stage e.g. number of nodes, magnetic branches,etc.
The magnetic circuit in Figure 6.3 represents the three-legged transformer shown in Figure
6.2. Since the permeability of the magnetic system varies with the flux density, it is necessary
to divide the magnetic material into sections having uniform fluxes.
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Ra Rb

Fig. 6.4: Magnetic field distribution in a five-legged transformer

Fig. 6.5: Magnetic circuit associated to the 5-1egged transformer

Five-Legged transformers are provided with magnetic paths for zero sequence fluxes. This
makes them more expensive than 3-legged, 4-legged transformers or shell form transformers.
It has a more symmetric core and sometimes is preferred for its visual appearance in urban
sub-stations. The structure of this transformer and assumed magnetic paths are illustrated
in Figure 6.4.

The first and perhaps critical step to be addressed when using the duality principle is to
determine which flux paths need to be included in the model. This will depend, as seen in
Figure 6.2 and Figure 6.4, on the physical structure of the transformer. For instance, the
three-limb transformer model in Figure 6.3 must take the tank into account, as it serves as a
return path for zero sequence fluxes. Five-limb transformer models do not require the tank to
be included since flux paths for zero sequence fluxes are provided within the magnetic core.
It is believed that analysis based on Finite Element can give a better an insight as to which
flux paths must be considered in the analysis. However, this is consider a future enhancement
of this research.
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Fig. 6.6: 12-terminal Primitive Network of a three-legged Transformer

6.3 Harmonic Electro-Magnetic Models

Three phase transformers have primitive or unconnected networks consisting of six coupled
coils if the transformer has two-winding or nine coupled coils for the case of three windings.
Three phase transformers wounded on a common core will exhibit couplings between all wind-
ings. The values will depend on the type of iron core. Figure 6.6 illustrates the unconnected,
12-terminal, primitive network of a three-legged transformer.

The leakage admittance matrix for this network is as follows,

YI -YI YI YI' YI YI'
-YI YI V;' yt V;' Y?'
YI yl' YI -YI YI y/,
y/, YI" -YI YI V:' Y:"
YI V:' YI YI' YI -YI
V;' y;" Y;' yt -YI YI

VI

V2

V3
(6.1)

V4

V5

V6

where

YI : leakage admittance

YI : mutual leakage admittance between primary coils

yl' : mutual leakage admittance between primary and secondary coils

yi" : mutual leakage admittance between secondary coils

Equation 6.1 is now modified to include the multi-limb magnetic core,

'1
i2
i3
i4 -
i5
i6

YI + Y11 -YI + Y12 Y; + Y13 YI' + Y14 YI + Y15 YI' + Y16

-YI + Y21 YI + Yn Yi' + Y23 YI" + Y24 V:'+ Y25 yl" + Y26

yi + Y31 yi" + Y32 yi + Y33 -YI + Y34 Yi' + Y35 yi" + Y36

yi" + Y41 yi" + Y42 -YI + Y43 YI + Y44 YI' + Y45 Yi" + Y46

yi + Y51 yl' + Y52 YI + Y53 yl' + Y54 YI + Y55 -YI + Y56

yl' + Y61 Y;" + Y62 V;'+ Y63 YI" + Y64 -YI + Y65 YI + Y66

(6.2)

Equation (6.2) is general. It does not commit the transformer to any particular connection or
to any particular iron core. Anyone of the standard electric connections can be represented.
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6.3.1 Transformation from primitive to nodal parameters
The primitive parameters are converted into nodal parameters by using power-invariant trans-
formations,

Vprim = [C)tvnode (6.3)

inode = [C]iprim (6.4)

and

iprim = [Yprim]Vprim (6.5)

Combining equation (6.3) and (6.5) and substituting the resulting equation into (6.4)
yields,

(6.6)

where

(6.7)

Matrix [Ynode] is the nodal admittance matrix of the mutually coupled transformer, including
the three phase winding connection. Matrix [C] is the incidence matrix relating connected
and unconnected parameters. By way of example, matrix [C] is written for the grounded
star-delta connection,

Vl 1 VA
V2 J3 -J3 vB

V3 1 Vc (6.8)- y'3 -y'3V4 Vb

Vs 1 Vc

V6 -y'3 J3 Vc

Other commonly used connections are given in appendix A.

6.4 Harmonic Thevenin Equivalent

Applying duality to the magnetic circuit of Figure 6.3, the electric dual equivalent shown in
Figure 6.7 is obtained. Unlike the models in references [116, 117], the circuit of Figure 6.7
displays three additional negative linear inductances. They model the thickness of windings
[132, 118]. Using loop analysis, the following set of non-linear equations can be written for
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VB Vc

Fig. 6.7: Electric Dual of the three-legged transformer

the 3-phase, 2-winding transformer.

VA
VB
Vav;-

~ -v;-
0
0
0

Xa1 Xa -Xa \

+Xa
Xbl Xb -Xb
+Xb

XCI Xc -Xc
+Xc

Xa Xa2 -Xa
+Xa

Xb Xb2 -Xb
+Xb

Xc XC2 -Xc
+Xc

-Xa -Xa x., -XYI
+Xa
+XYI

-Xb -x, -XYI X1b -XY2
+Xb
+XYI
+XY2

-Xc -Xc -XY2 x.,
+Xc
+XY2/

(6.9)

Equation (6.9) is non-linear since elements Xa, Xb, Xc, XY1 and XY2 vary with current in
a non-linear fashion. The solution of this equation is achieved by repetitive linearisation
through a Newton-Raphson method. The linearisation is about a base operating point [VO, [0]
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in harmonic domain where,

vo=

Vi
v~vg
vo-av.o-yo
_ c_

O
o
o

l~
JOa
Ir
Ir
Ig-
-yo_c_

IYI
I;;;
I;;;

Perturbation of equation (6.9) around [Vo, 1o] yields,

VA vi

VB v2

v,0
Ve e

Va
VOa

- +
Vb v.0b
Vc VO_c_

O 0

0 0

0
0

us ?Li us £fA u: u: 2.l.4. 2.l.4. 2.l.4.
alA alB ale ala alb ale a 1111 a 1112 a 1113

* We Wa ~ o/f; 0/1; U;: U;; UII~

£k £k £k £k £k ?k.. 2k. 2k. 2k.
alA alB ale ala alb ale a 1111 al1J2 al1J3

M! U; M; ~ M; ~ Y:: Y::: Y:::ale "I 112 113

U! ss. ss. llR. llR. llR. su: ss: ss.
alB ale ala alb ale a 1111 a 1112 allis

U! U; ~ U; M; £k II:: ~ H:::a ale III 112 liS

~'l1 ~~~ VI; 8f!: 81ibl 8ii; ~~YI ~}1I1 U"I
III 112 113

81,12 81Y2 81112 81112 81,12 81"2 8/Y2 8/Y2 81112

alA alB ale ala ah ale allil a1'12 a1113

~'t; ~~~ VI; 1L3 81lb3 a/"3 ~fY3 UY3 UY3
e III 112 113

This equation, in compact form, is,

V = VO+ [Z]AI

(6.10)

Ale

(6.11)

(6.12)
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Fig. 6.8: Structure of linearised impedance matrix of the transform.er

Each entry in matrix [Z] consists of the product of a Toeplitz matrix and a D(jwh) diagonal
matrix,

Co C-l C-2 C-3
-j2w

Cl Co C-l C-2 C-3 -JW
C2 Cl Co C-l C-2 *

JW
C3 C2 Cl Co C-l j2w

C3 C2 Cl Co

The structure of the matrix [Z] for the case when 15 harmonics are considered, is shown
in Figure 6.8. The structure of the impedance matrix strongly suggests the use of sparsity
techniq ues for an efficient solution.

In order to reduce model dimensions, the terms relating to the transformer nodes are elim-
inated mathematically by means of a Gaussian elimination. Equation 6.9 can be expressed
in compact form as,

(6.13)

Reduction of equation (6.13) to the transformer terminals yields,

(6.14)

where

Zww - ZWyZ:;; z.;
-ZWyZ:;y1VTy + VT~e
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Fig. 6.9: Unified harmonic domain solution

6.5 Harmonic Norton Equivalent

Owing to the sparse structure of the admittance matrix, most studies in powers system
analysis are carried out using nodal representations. Most industrial power systems applic-
ations, say EMTP or EMTDC use nodal analysis. The harmonic Norton equivalent for the
transformer can be obtained by solving equation (6.14) for the currents at the transformer
terminals,

i:= I~+ YVD (6.15)

6.6 Harmonic Domain Solutions Via Newton-Rapshon Method

Multi-limb cores provide a magnetic link between all phases, at all ports of the transformer.
A change in the value of harmonic k, in any phase, affects all harmonics in the rest of the
circuit. Harmonic interaction is a non-linear problem which can be study by linearisating the
problem about an operating point.

Linearisation of simple iron cores involves one phase only. For a given set of terminal
conditions, the linearisation can be achieved with a single evaluation of the non-linear char-
acteristic. This has been discussed earlier on in the thesis. In contrast, linearisation of
multi-limb iron cores, presents a more difficult case. For a given set of terminal conditions, it
is not possible to determine voltages and currents for all the non-linear branches in the iron
core owing to the non-linear relationship between the branches. The linearisation process is
itself a non-linear problem which can be solved by iteration.
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Jaguara

Taquaril

Fig. 6.10: jaguara Taquaril transmission system

Figure 6.9 shows the main algorithm, in diagram form, for the steady state solution of
non-linear power systems with three-phase power transformers. Two main sections can be
seen, namely sections A and B. One iteration process is used to solve the harmonic behavior
of the network where the interaction between different non-linear devices is accounted for.
The network is represented in the nodal frame of reference, where the sparse nature of the
system admittance matrix can be efficiently exploited. Several non-linear devices such as
Teas or single banks of transformers may be linearised in harmonic domain with no need for
the extra iterative process of section B. However, if the device has inter-phase dependence,
such as multi-limb power transformers then section B of the algorithm is executed until a
linearised element is obtained.

For power transformers, the non-linear equations relating currents and voltages are given
in the loop frame of reference and a power invariant transformation is required to interface
the transformer model with the rest of the network. After the sub-iteration process in B
has converged, and a reduced equivalent transformer model has been obtained, the algorithm
returns to section A.

It is important to notice that the sub-iteration process of section B can be stopped just
after one iteration. This reduces the global number of sub-iterations but this is achieved at the
expense of increasing the number of iterations in the main loop, section A. The advantage of
the internal iterative process can be better appreciated when one considers that, in general,
the main loop consists of a much larger set of equations. An increment in the number
of iterations in the main loop gives rise, therefore, to a very large increment in the total
number of operations. It has been observed that near the solution, the linearisation of the
transformer does not change significantly, so only one sub-iteration is required. Taking the
above observations into account, several alternatives can be considered, in order to optimise
the efficiency of the solution process.

6.7 Case Study

The prowess of the harmonic domain model described in this chapter is demonstrated by
example. The transmission network shown in Figure 11.9 is used for this purpose. This
network has been used in previous works and data and results are available in open literature
[16]. General information for the test system is given in Appendix B. Detailed information of
magnetisation curves of multi-limb cores is seldom available. Manufacturers do not provide
the information required to analyse the transformer in rigorous studies such harmonic analysis
or transient analysis. The magnetisation information used in this chapter has been taken from
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Fig. 6.11: Magnetisation curves of a power transformer
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one of the few sources available in open literature [20]. Further information is presented in
chapter 2.

6.7.1 Voltage supply
Figure 6.12(a) shows a full period of the voltage waveforms at the Jaguara busbar for the
case when the excitation at the supply point is 1.1 p.u. whereas Figure 6.12(b) presents the
harmonic content as a percentage of the fundamental component in phase a. It is quite likely
that, for this case, power grid regulations are satisfied since 3% harmonic voltage distortion
is considered to be within acceptable limits. However, as the supply voltage increases, an
amplification of the harmonic distortion is expected. Figure 6.13(a) shows 0 full period of
the voltage waveforms at the Jaguara busbar whereas Figure 6.13(b) presents the respective
harmonic content, as a percentage of the fundamental component in phase a. It is clear that
in this case the harmonic content is beyond permissible limits and corrective actions must be
carried out. All other harmonics are within permissible limits. In both cases the transformer
shows its ability to inject 5th harmonic current as the supply voltage increases. Harmonic
voltage amplification depends on the operating conditions of the network and transformer
configuration.

As far as the model performance is concerned, it was observed that quadratic convergence
was obtained even for the case of 1.2 p.u. of voltage supply.

6.7.2 Multiple saturation levels
In the absence of detailed information in saturation levels of the transformer, the same
magnetising characteristic for different core branches is normally used [130]. Figure 6.14(a)
shows a full period of the voltage wave form at the Jaguara busbar when all branches of
the core are assumed to have the same characteristic, i.e curve 1 Figure 2.2. The level of
harmonics are lower in all phase than for the case shown in Figure 6.13.

6.8 Conclusions

A new harmonic domain model for modelling multi-limb transformers has been presented.
The model has been developed using the Principle of Duality. It takes into account important
electromagnetic effects present when the transformer is operating under saturation conditions.
Duality takes accurately into account the electromagnetic effects introduced by iron cores with
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Fig. 6.12: Voltages at Jaguara busbar with 1.1 p.u. of voltage supply
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multi-limb, multi transversal iron cores, and the effect of the transformer tank and magnetic
air paths.

The iterative process uses a first order Newton-Raphson that shows quadratic conver-
gence. However, as opposed to single phase iron cores, where the linearisation can be achieved
with a single evaluation of the non-linear characteristic, in multi-limb transformers this lin-
earisations process requires an iterative solution. The latter iterative process is also carried
out using a first order Newton-Raphson algorithm. Accordingly, the overall solution can be
seen as a Newton-Raphson method with a nested iterative solutions. The modelling approach
has been tested using a practical transmission system.



Chapter 7

Analysis of Convergence and Relaxation
Methods

This chapter compares the convergence characteristics of several harmonic
domain iterative techniques. The basic formulation is a frequency domain
Newton-Raphson technique which observes quadratic convergence. Starting
from sinusoidal conditions, convergence is obtained within 4 to 5 iterations to
a specified voltage tolerance of le-6. The technique's convergence character-
istic is not compromised by the level of harmonic distortion being considered.
The Newton-Raphson equations may be solved 'in-block' leading to very robust
harmonic solutions. However, 'in-block' solutions are not the only alternative.
The harmonic Newton-Raphson technique is also amenable to diakoptical solu-
tions. They exhibit linear convergence characteristics, as opposed to quadratic,
but their overall efficiency compares favourably with cases in which 'in-block'
solutions are carried out. Test cases corresponding to a practical transmission
system are presented to show the prowess of the basic Newton-Raphson and
the diakoptical Newton-Raphson techniques.

7.1 Introduction

Harmonic solutions based on the integration of the differential equations which described
the non-linear network were used in the early 60's. The basic principle involved is to integ-
rate these equations over many cycles until the transient response vanishes, leaving only the
periodic steady state response. In most cases this approach requires a great deal of computa-
tional effort and was soon abandoned. Instead, Shooting methods [1] and harmonic balance
techniques [15]were developed. Early harmonic balance techniques relied on gradient-based
optimisation techniques in order to assure convergence. In power systems applications Gaus-
sian relaxation [16] and Newton techniques [17]were developed.

Gaussian relaxation methods allow for fast solutions when solving mild non-linearities
but are a poor choice for solving networks with significant harmonic distortion. Newton-type
methods exhibit stronger convergence characteristics than Gauss-Seidel methods, but hybrid
methodologies which use time and frequency information do not yield quadratic convergence
[129]. This is due, in part, to the use of FFT algorithms, as a means of transforming in-
formation from the time domain into the frequency domain, at each iterative step. Harmonic
Newton-Raphson algorithms are not necessarily easy to implement. They require the utmost
careful programming since even minor oversights in the coding will prevent it from converging
quadratically [17]. 'In-block' Newton-Raphson solutions are not the only alternative available
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Fig. 7.1: Non-linear inductor excited from a periodic voltage source

with this algorithm and results are presented for a variant of the algorithm which combines
the strengths of the Newton-Raphson formulation with diagonal relaxation.

7.2 The Non-linear Inductor in Harmonic Domain

Harmonic domain Newton-Raphson techniques for the solution of the PSS of power systems
have been described in Chapter 4. In this section a non-linear inductor is used to demonstrate
the convergence properties of the harmonic Newton-Raphson techniques. Hence, the dynamic
equations of the non-linear inductor shown in Figure 7.1 will be linearised in the harmonic
domain.

The dynamic equation describing the non-linear inductor is:

R·() Ldi(t) Nd<p(t) ( )zt + --+ --=vtdt dt

Accordingly, the non-linear state equations of the inductor may be written as:

<I> = -(R + jwL)f(<I» + v

i = f(<I»

(7.1)

(7.2)

(7.3)

where equation (7.3) is the magnetising characteristic of the non-linear inductor, N is the
number of turns and <I> = N <pis the total flux linkage.

For harmonic domain calculation purposes the state equations (7.2) and (7.3) must be
transformed into algebraic equations. The linearised form of these equations is:

D(jwh)D.<I>
D.I

-D(R + jwhL)(Ft/» + D.V
(Ftp)D.</>

(7.4)
(7.5)

where (Ft/» is a Toeplitz matrix corresponding to partial derivatives of equation (7.3) with
respect to the elements of the harmonic domain vector <I>, D(jwh) is a diagonal matrix with
entries jwh and D(R + jwhL) is a diagonal matrix with entries R+ jwhL. D. V, D.<I> and !J..I
are vectors of harmonic voltages, fluxes and currents increments, respectively.

Equations (7.4) and (7.5) can be combined together to give rise to the following input-
output relationship:

!J..I = (Hv)!J..V (7.6)
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Hvv

Fig. 7.2: Harmonic Norton equivalent of the non-linear inductor and periodic voltage
source.

where Hv = (F~) [D(jwh) +D{R+ jwhL)(F~)rl is a matrix of harmonic admittances
which, for the case of an ideal non-linear inductor, reduces to (F~)D(jwh)-l.

The harmonic Norton equivalent representation of the non-linear inductor shown in Figure
7.2 is realised by incorporating the base point of linearisation, (Vo, 10), in equation (7.6):

Iv = {Hv)V + IN (7.7)

where IN = 10 - (Hv)Vo is the current source of the harmonic Norton equivalent.
Equation (7.7) posses. many distintic properties. For one, it provides a means for the

harmonic solution of the non-linear inductor by iteration. Full evaluation of equation (7.7)
at each iterative step produces a solution via Newton-Raphson method, where the nodal
admittance matrix (lIv) plays the role of Jacobian. When close to the solution, the al-
gorithm's rate of convergence is quadratic, i.e. the number of significant figures dou bles at
each iteration. Furthermore, the equation's structure allows for an efficient interfacing with
frequency-dependent transmission line admittances and also with other harmonic Norton
equivalents. The interfacing takes place in a harmonic domain frame of reference where all
the harmonics, cross-couplings between harmonics, phases and bus bars of the network are
explicitly represented. The overall nodal admittance matrix of the network also plays the
role of a global Jacobian matrix.

For harmonic calculation purposes the non-linear inductor of Figure 7.1 can be better
modelled as the Norton equivalent of an ideal, non-linear inductor in series with a linear
admittance, as shown in Figure 7.3. This representation allows easy access to the internal
(ficticious) inductor's node, a point where the core flux is proportional to the circuit voltage,
l.e. D(jwh)~ = V. The following nodal matrix equation,

( 11) (D(R + jwhL)-l
-IN = -D(R+jwhLt

-D{R + jwhL)-l ) ( V )
-D{R+jwhL)- +H{, VI (7.8)

represents the circuit of Figure 7.3, where the solution of the harmonic vectors V' and It is
reached by iteration.

7.2.1 Test cases
Power transformers are basic and essential components of any transmission system. Intens-
ive research to determine adequate models capable of accurately reproducing their behaviour
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Fig. 7.3: Harmonic Norton equivalent of the ideal, non-linear inductor in series with
leakage admittance.

Jaguara

TaquariJ

Fig. 7.4: Jaguara- Taquaril transmission system

under transient and steady state operation has been carried out over the years. It was seen in
the previous chapter that to fully described the power transformer the electric and magnetic
circuits should be properly taken into account. In particular, the magnetic circuit represent-
ation can be quite involved as it depends on the magnetic and physical core characteristics.
Arguable, the simplest transformer model is that of a three phase bank of transformers. In
such a case the transformer is modelled as a combinations of three single phase transformers.
Each single phase transformer is modelled by a Norton equivalent such as in Figure 7.3.
Below a test case which considers a transmission system having a three phase single bank,
three windings is used to validate the steady state response of the full Newton-Raphson
and derived algorithms. The transmission system is also useful for comparing the efficiency
and reliability of the various methods towards the convergence. Figure 7.4 shows the 220
kV Jaguara-Taquaril transmission system. The convergence criterion adopted in all results
shown below is a voltage difference smaller than 10-6 between successive iterations. This
applies for all coefficients of the series.

Owing to unloaded conditions in the transmission circuit, the magnetising branch of the
transformer is pushed into saturation and becomes a source of distortion.
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Fig. 7.5: Convergence of full Newton-Raphson

7.2.2 Full Newton-Raphson Method
Provided the harmonic Norton equivalent of the magnetising branch of the transformer is re-
calculated at each iterative step the solution will be obtained in true quadratic convergence
fashion. Furthermore, the excitation voltage and number of harmonics considered in the
analysis is not expected to affect the quadratic convergence characteristics of the method.
This is shown in Figure 7.5 where maximum voltage mismatches at each iteration are plotted
for three different voltage excitation conditions.

100

10-1

s: '0-2.B
0
E '0-3rn
~

10-4

._.__ '"
0········· "".....,...._

·····0 ___
", ...............•..:~~>,.,.

...... '__
..... --....._

"'0.. - ...
··········..·····.0.·...·..·.....,_ Voltage-1.' 0 pu

'"0-''' Voltage-1.' 5 pu
-_._. Voltage-' .20 pu

10-11

2 3 4 5 6 7 8 9 10

Number of iterations

Fig. 7.6: Convergence of single-valued Newton-Raphson
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7.3 Single-valued Newton-Raphson method

If the harmonic Norton equivalent of the magnetising branch of the transformer is re-calculated
at each iteration and combined with the admittances of the linear part of the transmission
system then the global nodal admittance of the system requires re-factorisation. This process
yields considerable overheads to the algorithm even when sparsity-oriented solutions are used.

The numeric overheads can be reduced greatly if the harmonic Norton equivalent is par-
tially calculated only, i.e. the vector current source is calculated at each iterative step while
the admittance matrix is evaluated only once and then kept constant for the remaining of the
iterative process. This simplification in the algorithm reduces numeric overheads but at the
expenses of weakening convergence characteristic, which are linear as opposed to quadratic.
This is shown 7.6.

7.3.1 Gauss-Seidel scheme
If the admittance matrix of the harmonic equivalent is neglected altogether during the it-
erative solution then the magnetising branch of the transformer will be modelled as a set
of harmonic current sources. One harmonic current will be injected at the time into the
nodal impedance matrix representing the linear part of the transmission circuit. This is a
Gauss-Seidel method. it requires a low number of operations at each iteration but this is at
the expense of degrading robustness even further. For circuits with high harmonic distortion
this methods will converge slowly and it may even fail to converge. However, because of
its decoupled structure the formulation is amenable to parallel solutions. Figure 7.7 shows
the convergence characteristics of the Gauss-Seidel method. The solutions with excitation
voltages of 1.10, 1.15 and 1.20 converge in 17, 25 and 128 iterations, respectively.

7.3.2 Diagonal relaxation
An interesting variant of the Newton-Raphson method which is also amenable to parallel
solutions is described below. It retains most of the Newton-Raphson strong convergence
characteristics. Here, the admittance matrix of the linearised element H{r is separated into
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Fig. 7.8: Convergence characteristics of the NR with diagonal relaxation

diagonal and off-diagonal components, say matrices Band C, respectively,

1I~ = B+C (7.9)

The diagonal elements C are grouped together with the linear admittance matrix of the
transmission network while the off-diagonal elements B are grouped together with the current.
This action decouples, coefficient-wise, the network system equations. Furthermore, if the
diagonal elements C are evaluated in the iteration 1 only and then kept constant, the nodal
admittance matrixes of the network will be factorised just once. For instance, equation 7.8
would be modified as follows,

(
II ) (k) = ( D(R + jwhL)-l
-IN -D(R + jwhL)-

+ ( 0 ) (k)
BV'

-D(R+jwhL)-l )(1) (~)k+1
-D(R + jwhL)- +C V'

(7.10)

With the decomposition of equation (7.9) and using voltage values from iteration (k), the
off-diagonal elements B are converted into harmonic currents, which are combined with the
Norton current sources Ij.7), and injected back into the constant, decoupled nodal network
admittances. These harmonic currents are calculated using the most up to date harmonic
voltage information available in order to tighten convergence even further. Figure 7.8 shows
the linear convergence characteristics of this method.

In oder to emphasis the reliability towards the solution of the methods above, Figure 7.9
shows the various methods together for the case of 1.20 p.u. voltage excitation.

7.4 Conclusions

The efficiency of harmonic domain algorithms applied to practical power networks is addressed
in this chapter. It is shown that this efficiency is related to the number of nodes, the number
of non-linear elements and the number of harmonics considered. The computational burden
will increase exponentially with all the above factors. As a first step to achieve efficient
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harmonic solutions, traditional sparse matrix techniques can be applied, however, additional
improvements can be made by further exploiting the Jacobian's structure. In this chapter
advantage is taken from the fact that the Jacobian is used to generate updated values of
the state variables but is not used for confirming convergence. This means that the error in
the Jacobian only affect the rate and region of convergence and not the the accuracy of the
final solution. Here, several alternatives to approximate the Jacobian are used in order to
reduce the number of operations required to achieve harmonic domain evaluations at each
iteration. However, this is at the expense of degrading the asymptotic rate of convergence. It
was shown, for instance that Gauss-Seidel algorithms do not use Jacobian (Norton elements).
Thus, each iterative step requires fewer operations but poor characteristics of convergence are
obtained for network with high harmonic content. The Jacobian is most effectively deployed
when a full Newton-Raphson technique is used. In this case the accuracy with which the
Jacobian is calculated at each iterative step increases the rate and the region of convergence
but a larger number of operations is required at each iterative step. To take advantage of
the best properties of Gauss-Seidel and Newton-Raphson techniques several alternatives are
given. In particular, a Newton-Raphson which uses diagonal relaxation has proved efficient
and has shown good characteristics of convergence.
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Chapter 8

Sequency Domain Modelling of Linear
Time-Invariant Electric Power Networks

The steady-state solution technique presented in this chapter is based on Walsh
functions. It is no longer a frequency domain technique but, rather, a sequency
domain technique. Important properties of the Walsh functions are given.
Together with the Walsh domain representation of linear, time-varying and non-
linear elements, the models presented in this chapter yield a new framework
for the study of non-linear distortion in power systems. Linear, time varying
networks and non-linear networks wi" be addressed in the next two chapters.

8.1 Introduction

Traditionally, Fourier-type frequency analysis has been used in power systems analysis owing
to the near sinusoidal waveforms present in power networks. However, Fourier-type analyses
are not the only alternative. The set of periodic inputs and outputs can also be expressed as
series of Walsh functions which, when truncated to a finite number of coefficients, are stair-
step approximations of the waveforms. Walsh series have most of the properties of Fourier
series. An interesting characteristic of Walsh series is that when a zero memory, non-linear
operation is applied to a Walsh series, the output series can be derived by simple algebraic
operation. This fact is exploited in this and subsequent chapters. The output coefficients
will differ from the input coefficients in magnitude but no new terms will be created.

Walsh series quickly became popular in signal processing and communication systems
analysis [133, 134] owing to their simplicity. Walsh transforms can be calculated by addition
operations as opposed to the multiplication operations required by Fourier series. It was MS
Corrington who in the early sixties first brought up the advantages of using Walsh series
for the analysis of electric circuits [135] but it was not until 1973 that the idea was widely
adopted [43]. Similar ideas are proposed in [134] but minimum analysis is provided. Since
then, a number of publications has been dedicated to exploit these ideas with good results.
For instance, CF Chen and CII Hsiao [51]and VR Karan, PA Frick and RR Mohler [55]show
that the estimation of system parameters is reduced to algebraic operations. They also show
that differential and integral equation can be solved by means of Walsh functions. Walsh
functions have also been applied to the problem of order identification [63]. A comprehensive
review of Walsh functions for the problem of system identification is given in [61]. Recently,
Stoten [71] has used high-speed digital implementations of identification algorithms based on
Walsh functions.

An interesting characteristic of Walsh functions is that they can be used to predict the
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existence of limit cycles and in both linear and non-linear systems. The analysis of LTIS
using Walsh function was first carried out in reference [51J.

It is apparent from open literature that Walsh functions have been widely applied in the
areas of signal processing and in control but very few applications have taken place in the
area of waveform distortion in Power Systems. In fact, it seems that the only application of
Walsh functions in this area is the work ofDJ Kish and GT Heydt [69]. Walsh functions have
been applied in the area of power systems protection, for calculating symmetrical components
[136J.

This chapter is organized as follows. Firstly, the theory of Walsh functions is given.
The advantages and disadvantages of Walsh series with respect to Fourier series, for the
approximation of single variable functions, are stated. Their derivations from Rademacher
functions is fully discussed. Secondly, the structure of the operational matrix of integration
and the operational matrix of direct product are discussed. A simple circuit is used to
illustrate the application of the theory.

8.2 Theory of Walsh Functions

The representation of functions by the superposition of simple functions is a useful attribute
which can have many applications. Orthogonal sets of functions can be used to synthesise
any time function to a required degree of accuracy. In many cases, it may be easier to analyse
systems through this representation than through its original form. The application of digital
techniques in systems design and analysis has motivated the use of orthogonal functions
other than sine and cosine functions. The alternative sets may not have all the properties
of sine-cosine functions but have other advantages which allow a more effective use in some
applications. The Walsh and Haar sets of functions are examples of such orthogonal sets.
Both sets are characterised by taking only two values, namely +1 and -I, thus matching the
behavior of digital logic.

Historically, the Haar series was first described by the Hungarian mathematician, Alfred
Haar in 1910 [137]. He proposed a set of orthogonal functions, taking essentially only two
values. This was a property not possessed by any orthogonal set known until then. The
Walsh functions were defined in 1923 by the American mathematician JL Walsh [138]. They
also take only two values +1 and -1. This set was found to have more similar properties
to the trigonometric basis than the Haar basis. Just before Walsh's work was published,
Rademacher had presented another set of two-level orthogonal functions [139], which were
found to form an incomplete subset of Walsh functions. In fact, Walsh functions can be
expressed as products of Rademacher functions.

8.2.1 Rademacher Functions
The Rademacher functions are an orthonormal set of functions. They represent a series of
rectangular pulses or square-waves having unity ratios. All Rademacher functions have two
arguments nand t. They can be derived from sinusoidal functions as,

rn{t) = Sign[sin(2n7rt)]

where n is the order of the function, t is the independent variable and

. {I x>OStgn(x) = -1 x:( 0

(8.1)

The first 8 Rademacher functions are shown in Figure 8.1. It can be observed that all
the functions have odd symmetry about. t = 0 and t =!. This means that the set is



Chapter 8. Sequency Domain Modelling of Linear Time-Invariant Electric Power Networks 105

'Iro(t) t

'Irl(t) t

'Ir2(t) t

r3(t) ,h-r---J r---J r---J t
L__j[_J [_J LJ

r4(t) '~n n n non n tuuuuuuuu
Fig. 8.1: Rademacher functions

incomplete since the sum of any number of functions will have odd symmetry about this
point. Accordingly, it is not possible to expand functions which have even symmetry.

8.2.2 Walsh Functions
Walsh functions are also rectangular functions, however, they form a complete set offunctions.
Like Rademacher functions, they hold only one of two values, either -lor 1. This renders
them ideal candidates for high-speed digital implementation. Figure 8.2 shows the first 8
Walsh functions.

Open literature abounds with definitions and alternatives for forming the complete set of
Walsh functions. In this work, only two alternatives are considered, Rademacher functions
and Hadamard functions.

From Rademacher Functions

Rademacher functions can be combined to form a complete orthonormal set of Walsh func-
tions. Let bn, ••• ,b2, b1 be a n-digit binary number where the b; are either 0 or 1. The Walsh
function will be defined as the product of n Rademacher functions [133, 134],

<Pbn...b2bl (t) = [rn(t)]bn ••• [r2(t)J2[rl (t)]

Where,

<Po(t) = ro(t)
<PI(t) = rl (t)
<p2(t) = <PlO(t) = r2(t)
<P3(t) = <P11(t) = r2(t)rl (t)
<P4(t) = <P100(t) = r3(t)
<P5(t) = <PlOl(t) = r3(t)rl(t)

<Pn(t) <Pbn...b2bl

(8.2)

(8.3)
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For many applications, it is convenient to relate the order n of the Walsh function to the
number of zero crossings. Open literature provides a wide range of function definitions
holding this characteristic. For instance, Harmuth [133] gives a recursive relationship having
the virtue of ordering the Walsh functions in such a way that increasing n corresponds to
increasing the zero crossings (zc). In such a case it is useful to define waveform sequency ()
as,

()= !5_
2T (8.4)

where T is the time base. Accordingly, it follows that sequency, measured in zero crossings per
second (ZC/s), is a more general form of frequency definition. It can be seen as a measured
frequency but without the restriction of having zero crossings equally spaced. With this in
mind, it is possible to obtain Walsh functions, which preserve their natural order, by means
of Rademacher functions [140]. In this case, the ordered Walsh functions, can be obtained
according to the relationship,

(8.5)

where

and
9i = bi ffi bi+!

Here, ® is the EXCLUSIVE OR operation.

As an example, the generation of <P13(t) is carried out as follows:

1310= 11012 = 1011g

i.e,
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From Hadamard Matrices

Uniform sampling of Walsh functions results in the formation of a matrix called Walsh-
Hadamard matrix [141]. The rows of these matrices represent the Walsh functions uniquely.
For example, periodic sampling of the first 16Walsh functions with increasing zero crossings,
yields the following matrix,

+ + + + + + + + + + + + + + + + \
+ + + + + + + + - - - - - - - -
+ + + + - - - - - - - - + + + +
+ + + + - - - - + + + + - - - -
+ + - - - - + + + + - - - - + +
+ + - - - - + + - - + + + + - -
+ + - - + + - - - - + + - - + +
+ + - - + + - - + + - - + + - -
+ - - + + - - + + - - + + - - +
+ - - + + - - + - + + - - + + -
+ - - + - + + - - + + - + - - +
+ - - + - + + - + - - + - + + -
+ - + - - + - + + - + - - + - +
+ - + - - + - + - + - + + - + -
+ - + - + - + - - + - + - + - +

,+ - + - + - + - + - + - + - + -

Sequence
~
0
1
1
2
2
3
3
4
4 (8.6)5
5
6
6
7
7
8

where IIw(4) is the 24 X 24 Walsh-Hadamard matrix in Walsh or sequency order. The rows
of this matrix represent the Walsh functions whose sequencies are listed. The lower order
Walsh-Hadamard matrices, Ilw(O) to lIw(3), are given below,

Ilw(O) = 1,

Sequence
~
o
1

+ + + +
+ + - -
+ - - +
+ - + -

and

+ + + + + + + +
+ + + + - - - -
+ + - - - - + +
+ + - - + + - -
+ - - + + - - +
+ - - + - + + -
+ - + - - + - +
+ - + - + - + -

sequence
~ o
1
1
2
2
3
3
4

)
Sequence
~
o
1
1
2

(8.7)

(8.8)

Walsh-Hadamard matrices can be obtained by reordering the rows of their respective Hadam-
ard matrices. The lowest Hadamard matrix is of order 2,

lI(l) = ( !I ~ ) (8.9)
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Higher matrices, restricted to having powers of two, can be obtained from the recursive
relationship,

(8.10)

where 0 denotes the Kronecker product and N is a power of two. The Kronecker product
means replacing each element in matrix HN/2 by matrix H2•

Thus,

+ + + +
+ - + -
+ + - -
+ - - +

) (8.11)

and

lIs =

1+ + + + + + + +
+ - + - + - + -
+ + - - + + - -
+ - - + + - - +
+ + + + - - - -
+ - + - - + - +
+ + - - - - + +
+ - - + - + + -

Walsh order
,...-"'--..

<PO(t)
(f>7(t)
<P3(t)
<P4(t)
<PI (t)
<P6(t)
<p2(t)
<P5(t)

(8.12)

Matrices in equations (8.8) and (8.12) highlight the relationship between Hadamard matrices
and Walsh-Hadamard. The ordering of the two matrices is related to each other by the Gray
Code [134, 133, 14~:

<Pn{t) = <PGCBC(n) (t) (8.13)

where GCBe is the Gray Code to the Binary Conversion of n and then bit reversing. For
this case,

Kronecker Order Gray code Bit reversing Sequency order
0 000 000 0
7 100 001 1
3 OlD 010 2
4 110 011 3
1 001 100 4
6 101 101 5
2 011 110 6
5 111 111 7

Tab. 8.1: Ordering of relationship between Walsh-Hadamard and Hadamard matrices
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8.3 Fundamental Properties of Walsh Functions

Some important properties of the Walsh functions are discussed below.

8.3.1 Multiplications
The product of two Walsh functions, 4>m(t) and 4>n(t), is achieved by mod-2 additions of
binary digits. The Walsh functions form a closed set under the multiplication, i.e. the
product of two Walsh functions is also a Walsh function. For example, the multiplication
cf>5(t) and cf>3(t) is,

8.3.2 Trigonometric functions
The trigonometric functions ofWalsh functions are also Walsh functions since Walsh functions
are piecewise constant functions having either values lor -1.

In particular the following identities,

sin( kcf>m (t)) = sin (k )cf>m (t)
cos(kcf>m (t)) = cos( k ) cf>o(t) (8.14)

are very useful.

8.3.3 Orthonormality
It is shown in [138] that Walsh functions form an orthonormal system in 0 ~ t < 1. Thus,

11 cf>m(t)cf>n (t)dt = {~ ::: (8.15)

8.4 Walsh Series

Like Fourier series, Walsh series can be used to expand a function J(t) that is absolutely
integrable in the interval [0,1). This can be expressed as,

J(t) = co4>o(t) + cl4>dt) + ... + cn4>n(t) + ... (8.16)

where en are the coefficients of the Walsh series of J(t) which, owing to orthogonal properties,
can be determined using the following relation,

en = 11f(t)cf>n(t)dt

8.4.1 Walsh series of a ramp function
An important Walsh expansion is that of a ramp function, J(t) = t in 0 :5 t < 1,

(8.17)

00

J(t) = t =E Dncf>n(t)
n=O

(8.18)

where, due to orthogonal properties, the coefficients dn can be calculated from,

(8.19)
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Taking the first four terms only, the following relations are obtained,

Do - 11t</>o(t)dt = ~

r t</>2(t)dt = [t tdt _ [1 tdt = _!
Jo Jo J~ 42

11 11 i1 h~ hI 1t</>2(t)dt = 4 tdt _ 2 tdt + 4 tdt _ tdt = __
o O!! ~ 8

424

[1 [1 [~ 1
Jo t</>3(t)dt = Jo 4 tdt - I,4 tdt +h tdt = 0

4 4

(8.20)

(8.21)

(8.22)

(8.23)

Expressing equation (8.18) in matrix form,

(8.24)

8.4.2 Discrete formulation
Quite often, functions are not in analytic form but, rather, in tabulated-data or graphical
forms. In such cases, the Walsh series is expressed as follows,

m-l

J(k) = L:cn</>n(k), k = 0, 1,2, ... , m - 1
n=O

(8.25)

and the coefficients en are calculated as follows,

1 m-l
en = :; L:J(k)</>n(k), n = 0, 1,2, ... , m - 1

k=O
(8.26)

To illustrate these relations let us consider the first four terms in Equation (8.25), can be
expanded and put in matrix,

</>0(0) </>0(1) </>0(2) </>0(3)
</>1(0) </>1(1) </>1(2) </>d3)
</>2(0) </>2(1) </>2(2) </>2(3)
</>3(0) </>3(1) 4>3(2) 4>3(3)

) (

J(O) )
J(I)
J(2)
J(3)

(8.27)

or,in compact form,

1
c=-WJ

m
(8.28)

Where W is the Walsh matrix.

8.4.3 Convergence
The convergence characteristics of Walsh series are discussed in [138]. If J(t) is a continuous
function in the interval 0 :5 t < 1, the series (8.16) converges uniformly to J(t). If the series
is truncated, so that the series contains N = 21' terms, then the weighted sum of the first N
terms will equal the average value of J(t) in each subinterval of length 2-1'.
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Fig. 8.3: Comparison of Walsh and Fourier spectra

8.4.4 Walsh Series Versus Fourier Series
Walsh series are adequate for the study of signals with sharp edges or discontinuities. In
this context, an equivalent Fourier analysis requires many more terms to achieve a similar
degree of accuracy than a corresponding Walsh series. This situation is depicted in Figure
8.3. In this case the Fourier series requires a large number of high frequency components to
reproduce the sharp edges of the Walsh function (Pt (t). Figure 8.3 also describes the opposite
situation where a smooth sinusoidal function is approximated by a Walsh series. In this case,
high sequency terms are required to smooth out the stair-step functions in order to closely
reproduce the sine function. The number of high sequency terms is substantially smaller
than the number of high frequency terms required by Fourier to approximate the sharp edges
of the rectangular waveform. Accordingly, it may be said that a Walsh series is useful for
dealing with a wide range of smooth and non-smooth signals. In situations where the signals
have sharp edges it will proof more useful than Fourier series. In addition, Walsh functions
are easier to generate and to handle in digital applications.

8.4.5 Numeric examples
Ramp function

The ramp function is analysed below,

k I 0 123
351
8 8 8

Substituting the tabulated data of the ramp function in equation (8.27) and noting that the
4 x 4 matrix W corresponds to the Walsh-Hadamard matrix of order 2, with natural order
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[141], we have that,

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

) ($) ~(*) (8.29)

Triangular function

Let us consider now the triangular function shown in Figure 8.4,

f(t)
1
2
1
4

o It:--+--+----+---+---t
1 1 ~ 1424

Fig. 8.4: Triangular function

The function can also be given in numeric form as,

k f(k) J(k)
0 0 !(0+ ~)= 1
1 1 l(l+!)-~4' 2 4 2 - 8

2 1 l(!+l)-~2 2 2 4 - 8

3 1 !U+0) = 14'

Substituting these values in equation (8.26), we have that,

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1 )(*)~(t) (8.30)

Double triangular

Triangular functions, like the one shown in Figure 8.5, are of particular interest in systems
analysis. Their Walsh coefficients can be evaluated by following the approach presented
above.

The data for these calculations, in tabulated form, is given below,

k f(k) J(k)
0 0 !(0 + ~) = l
1 1 ~U+O) = 14'
2 0 !(o+~) = 1
3 1 !U+o) = 14'
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f(t)

1
4

~--~~~--~~~--- t
! 1 ~ 1424

Fig. 8.5: Double triangular function

o

The Walsh coefficients are calculated as,

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

(8.31)

Alternating triangular

The alternating triangular function shown in Figure 8.6 is a double triangular function with
the second triangle inverted. The sampled values of the alternating triangular function and
its average value in each interval are tabulated below,

f(t)
1
4

1 t
1
4

Fig. 8.6: Alternating triangular function

k

o
1
4
o

!(0 + t) = 1
!U+ 0) = 1
!(0 - i) = -k
!(-i+o)=-l

f(k) /(k)

o
1

2

3

The Walsh coefficients can calculated as,

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

(8.32)
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Fig. 8.7: Integral of Walsh functions

8.4.6 Integrals of Walsh functions
The integrals of rectangular Walsh functions are sets of triangular waveforms. The first four
Walsh functions and their integrals are shown Figure 8.7. These integral can be expanded
into Walsh series. In fact, the expansion correspond to the triangular waveforms analysed in
the previous sections. For most analysis it is useful to write the relationship between Walsh
functions and their integral in matrix form,

( (8.33)

or, in compact form,

(8.34)

where P is called the operational matrix [51].
The accuracy of the operational matrix depends on the dimensions of P and 4>. These

matrices are, for convenience, chosen to be square. Larger matrices than equation (8.34) can
be obtained following similar reasoning. For instance, for the case of eight subdivisions,

J 4>0 {t)dt 1 0 1 0 0 0-8 -16

J <1>1{t)dt 0 _1 0 1 0 0-16

J <1>2{t)dt 0 0 0 0 1 016J <l>3{t)dt 1 0 0 0 0 0 J...
J 4>4 (t)dt - 0 0 0 0 0 0 016J 4>5 (t)dt 0 1 0 0 0 0 0 016J <1>6{t)dt 0 0 1 0 0 0 0 016J 4>7{t)dt 0 0 0 1 0 0 0 016

or, in compact form,

!4>(8)dt = p(8x8)<1\8)

<1>0(t)dt
(PI {t)dt
4>2 (t)dt
<1>3(t) dt
4>4 (t)dt
4>5{t)dt
4>6(t)dt
¢7(t)dt

(8.35)

(8.36)
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It must be noted that the upper left corner of P(8X8) is equal tp P(4X4)' The upper right
corner matrix and the lower left corner are diagonal matrices. The lower right corner matrix
is the null matrix. In general, if m terms are chosen, where m = 2n and n is a positive integer
of power 2, the general operational matrix can be written as follows:

p(mxm)=

I
I
I
I

! : -mi2Im/8
I
I--------r--------
I
I
I

mIj2Im/8: O(m/8)
I

__ 1 I /2
2m m

I-----------------r--------I
I
I

: O(m/4) :
I I
I I
I I--------------------------r--------I

I
I
I
I
I
I
I

8.4.7 Integral representation of differential functions
The differentiation of a Walsh function is a series of Dirac delta-functions, one for each
discontinuity. Accordingly, Walsh series are not useful for solving differential equations, since
the resulting functions are usually divergent. However, differential equations can still be
solved provided they are written in their integral representation first [43]. This is done by
defining the highest order derivative,

dny
dxn = u(x)

Then, the lower order derivatives can be expressed as,

dn-1y r
dxn-1 = 10 u(t)dt

(8.37)

(8.38)

However, this approach is tedious and unnecessary because any nth order differential equation
can be converted into a set of n state equations and the need for representing higher order
derivatives is avoided. Therefore, the state space approach put forward by CF Chen and CH
Hsiao is used instead. It is an elegant alternative that results in a unique Kronecker product
formula for the solution of the linear system of equations,

x = AX +BU, X(O) = X; (8.39)

Where X is a state vector of n components and U is an input vector of I components. A and
Bare n X nand n X I matrices, respectively. Chen and Hsiao solved this problem by using
Walsh functions. The rate vector X instead of the state vector X is approximated by Walsh
series as follows,

Xl = C10¢0(t) + CU¢l(t) + C12¢2(t) + .
X2 = C20¢0(t) + C21¢1(t) + C22¢2(t) + .
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where the Cij are the constants to be determined. Once the _y is determined, X can be
obtained by normal integration procedures. If m terms are used to approximate the solution
then one can write,

X=

Cn(m-l)

Cl(m-l)

c2(m-l)

CnO Cnl

By defining,

C(mxm) =

eno Cnl Cn(m-l)

Cl(m-l)

c2(m-l)

c'1
c'2

(8.40)</>(t)

c'n

and

The state variables may be obtained by integration,

X(t) = C lot </>(r)dr + Xo

(8.41)

(8.42)

(8.43)

However, as discussed above, the integral can be evaluated via the operational matrix,

X(t) = CP4>(t) + Xo

With the input also expressed by Walsh series,

Ul (t) hlO hu h12 h1(m-l)
U2(t) h20 h21 h22 h2(m-l)

U(t) = -

Ul(t) hlO hll h12 h1(m-l)

the state space equation (8.39) can be rewritten as,

C</>= ACP</> + AXo</>+ BH 4>

</>(m-l)

(8.44)

=H</>(t)
(8.45)

(8.46)

where AXo represents initial condition (constant) and can be written in terms of the constant
Walsh function </>o(t),

AXo = [AXo 0 .•. 0 ]4>(t) = G</>(t)

Defining a new matrix J( as,

J(=G+BH

(8.47)

(8.48)
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the matrix equation to be solved becomes,

C= ACP+K (8.49)

In oder to solve equation (8.49) matrix C can be rearranged to form a vector of nm elements.
This is done by taking the first column of C to be the first n entries of such a vector, then
the second column, etc. so as to obtain the following expression,

[ ~.~ 1 = [A 0 pt] [ ~~ 1+ [ ~: 1 = [A 0 pt]c + k
C(~-l) C(~-l) k(~_l)

where A 0 pt is the Kronecker product defined as

(8.50)

A0Pt= (8.51)

PmmA

The solution is,

(8.52)

8.5 Case Studies

The Walsh theory presented in this chapter is now applied to the solution of the circuit shown
in Figure 8.8. The results agree with those obtained by using time domain simulations.

The circuit in Figure 8.8 has the three kinds of elements considered in this work, namely
resistors, inductors and capacitors. The governing differential equations are given in matrix
forms as follows,

Xl 1 0 0 1 0 1-~ -C1 -C1

X2 0 1 0 0 1 1
~ -C; C;

X3 0 0 0 0 0 1
3

X4 - 1 0 0 0 0 0LlXs 0 I 0 0 0 01:;
X6 I 1 0 0 -~t; -r;;

or, in compact form,

x= Ax+Bu

Xl 1
X2 0
X3 + 0

0
U

X4 (8.53)
X5 0
X6 0

(8.54)

The circuit is initially relaxed, i.e. initial zero conditions. The parameters are such that
matrices A and B become,

-1 0 0 -1 0 -1 1
0 -1 0 0 -1 1 0

A= 0 0 0 0 0 1
B= 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 -1 -1 0 0 -1 0
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U t 2

Fig. 8.8: Six order circuit

...... ···········!-···········I············;····u·····i···········fo···········~··········
i ~ ~ i : :

0.00 -.. ..•.. . .•.•...... ~....••.•••. ~.•••..••••.. ~....••.•..• ~...•..•.... i· ~ .
: ; i ; i i
iii iii

>( 0 ,.. ·• l· ; ~ ! : :

; ! ~
-0.06 •..•. ... ··········t·······..··i····..····..l:..·····f.... ···..··1············f··········

: : : : : !
t 1 : 2 t :
I I t I I :

_01 ··.. ••·.. ···i···· ···i··..·······f····..···..I···········~ ~ .
: , I I I I :
: r 2 I : : ;

~ ~ ~ iii .
-0 '&O!:----:&~--:',O:--~'&:----::':20:----::':2&--::30--:3~6-~'

Time [sec]

(a) State variable .:1:2 Vs Time

O.... .-----;,-----.--..,.----.---.----r---.----,

·::IIll!IJ
')f 0.0& ..•••• , •. 1. .1 1 1 1 1 .1 .

o l.. ~ !.. .. 1... ! I I
~M •••••. +11..+111.

40 -O.10!:----!:----:';'o:---!:, ..,---=.0--,.-f:-o --:"'=-0--=..'=-.. _...J4Q

Time [sec]
(b) State variable .:1:6 Vs Time

Fig. 8.9: Runge-Kutta's solution

8.5.1 Response to step functions with Walsh approach
The circuit was solved first using Runge-Kutta's method. Only the dynamics of state variables
X2 and Xa are shown in Figure 8.9. The stability of the circuit has been tested using Phase
Plane analysis. Figure 8.10 shows the phase plane of the two state variables. Two perspectives
are presented to show the evolution of the state variables and their derivatives until they reach
the equilibrium point. The two curves on top, in each Figure 8.10, present the two dimensional
view of the phase planes. The applied function is a step function of unit amplitude.

If the number of Walsh coefficients is restricted to m = 8, the solution can be written as,

Co !A !A !A 0 l6A 0 0 0
tA 4 8

Cl 0 0 !A 0 I~A 0 0
-1A 8

C2 0 0 0 0 0 /6A 08
C3 0 -kA 0 0 0 0 0 I~A- -1..A 0 0 0 0 0 0 0C4 16 (8.55)
Cs 0 -.!..A 0 0 0 0 0 016
Cs 0 0 -.!..A 0 0 0 0 016
C7 0 0 0 -1~A 0 0 0 0

The Runge-Kutta's method and the Walsh solution are compared in Figure 8.11. In this case
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Fig. 8.10: Phase plane analysis
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Fig. 8.11: Solution with 8 Walsh coefficients
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Fig. 8.12: Comparison of time domain solution and the Walsh solution

the accuracy is poor due to the small number of Walsh coefficients being used. However, for
the same case and with the same number of time intervals the Runge-Kutta method fails to
find the solution.

The accuracy of the solution is substantially improved if m increases. Different values of
m where considered i.e, m = 16, m = 32 and m = 128. The solution with m = 128 was
quite accurate but with m = 64 the result is considered satisfactory. Figure 8.12 shows the
various approximations to the time domain solution (solid line). The solution with m = 32
is still poor, but approximations obtained with m = 64 and m = 128 are so accurate that is
very difficult to differentiate them, in Figure 8.12, from the exact solution.

8.5.2 Response to periodic inputs
The periodic response of the circuit shown in Figure 8.8 is carried out below. The circuit
parameters are changed so as to yield the matrix A below,

-1 0 0 -1 0 -1
0 -1 0 0 -1 1

A= 0 0 0 0 0 1
3 0 0 0 0 0
0 3 0 0 0 0
3 -3 -1 0 0 -1

These values produce periodic responses with magnitudes values of around one. The input
used in this case is the square waveform current shown in Figure 8.13. It is represented by
one Walsh coefficient. Results for the state variables X2 and X6 are shown in Figure 8.14.
The limit cycles were determined in the phase plane. Figure 8.14 shows the dynamics of the
two state variables, calculated with Runge-Kutta and Walsh methods. The Walsh solution
was obtained with m = 128. The large number of Walsh coefficients used is due to the large
period of time over which the response is analysed. Figure 8.15 shows the evolution of the
state variables until the limit cycle is reached. It is interesting to see the high accuracy
achieved by the Walsh domain solution . Also, it is important to mention that the set of
equations to be solved is highly sparse and efficient solutions can be obtained taking advantage
of this fact.



Chapter 8. Sequency Domain Modelling of Linear Time-Invariant Electric Power Networks 121

1~ir-------r-------r-----~~-----'------~-------,
11- r-: r- ri- r- .+.~ ,....; ,..... !" ..

o~ : : I.. : ~ ..
So .r: ..:..:::.:: , ..
::) : 1 i
-O~ .. 1. ..
-1 ~ "'r-.~, ~ ~ + ....~ ...!

~ ~-1~o~----~1~O------~~~-----=~~-----~~----~~~----~~
Time [sec]

Fig. 8.13: Input waveform

1~r------r------~----~------~----~------,

-1

-,~0~----~.~----~1~O------~,.~----~~~-----Z~----~~
Time [sec]

(a) State variable :1:2 and input Vs Time

1~r-----~~-----,-------T-------T-------r------~

-1~O~----~5~----~,O~-----,~5~----~~~----~_~----~~
Time [sec]

(b) State variable :1:6 and input Vs Time

Fig. 8.14: Comparison of Walsh and Time domain solutions

v
E
i-=

40

.1 04.4

(a) State variable z ,

'U"v
~

CU
E
i-=

(b) State variable :1:6

Fig. 8.15: Limit Cycles



Chapter 8. Sequency Domain Modelling of Linear Time-Invariant Electric Power Networks 122

8.6 Conclusions

The basic theory of Walsh functions has been described. The ground has been prepared for
the theory to be presented in the three coming chapters where novel ways of analysing non-
linear circuits in the Walsh domain are presented. It has been shown that although Walsh
functions are piecewise constant, they can be used to model smooth signals. They are easy
to generate and to deal with in numerical operations. The best of these functions is obtained
when analysing signals with sharp edges or discontinuities. In such cases, Fourier series may
require an extremely large number of coefficients.

Also, the structure of the operational matrix of integration in the Walsh domain has been
presented. A simple example was used to show the prowess of the Walsh approach. The
results presented were validated using traditional, time domain solutions via Runge-Kutta
method.

The Walsh domain is an alternative technique for the analysis of electric circuits subjected
to periodic functions with sinusoidal and non-sinusoidal inputs.



Chapter 9

Analysis of Linear Time Varying Power Plant
Components Via Walsh Functions

This chapter presents a methodology for analysing LTVS using Walsh ortho-
gonal functions. Closed form solutions for this class of systems are carried out
in the Walsh domain. The product operational matrix is crucial to achieving
this task. It is shown that, if a large number of coefficients in the Walsh series
is considered, the dynamics of limit cycles can be accurately represented and
determined in one iteration. Alternatively, if a smaller number of coefficients
is used, the same level of accuracy can be achieved by resorting to an iterative
process. A detailed numeric example is presented to show the application of
the theory.

9.1 Introduction

Approximations of signals with orthogonal functions have been widely used in the signal
processing camp. They have also played an important role in the solution of problems in
system analysis, parameter identification and optimal control. The main attractions of these
techniques is that they reduce the differential equations describing the problem to algebraic
equations. For LTIS and LTVS, the basic idea is to define an operational matrix of integration
which relates, in the same basis, the orthogonal basis and their integrals. Also, as part of
the solution, a product operational matrix which relates the coefficients of the two operands
and the result is defined. These matrices have been defined for several basis functions and
successfully applied to the solution of several problems. The solution methods can be classified
into three groups, i.e. those which use orthogonal functions, those which use orthogonal
polynomials and those which use non-orthogonal expansions.

The use of the operational matrix was introduced by CF Chen and CH Hsiao in [51],
using Walsh functions as the basis. After that, the use of orthogonal expansions has been
applied extensively in system analysis. Previously, the study of linear systems was confined
to traditional transforms such as Laplace, Fourier and Z transforms.

Arguably, Walsh functions were first used by MS Corrington [43], with the purpose of
solving linear and non-linear differential equations. Since then, there has been a number of
publications were such functions have been used to solve a variety of problems. The concept
of operational matrix was first presented in this domain and later it was extended to other
orthogonal basis.

Operational matrices have also been defined for simple piecewise basis functions, namely
block-pulse orthonormal basis. This basis, as well as the Haar basis, are considered to be
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within the Wavelets family. The simple form of this block-pulse basis renders them good can-
didates for digital implementation. They are amenable to the solution of non-linear problems
and can be applied to the analysis of waveform distortion of power systems.

In recent years, Wavelet analysis has been applied to many fields of science and engineer-
ing. The integration operational matrix has been defined recently [79].

Several researchers have used orthogonal polynomials to transform the differential equa-
tions representing the system into a set of algebraic equations. However, this approach is
inflexible as the function has to be approximated with polynomials. Polynomials are suffi-
ciently accurate for small intervals but, for large intervals, severe oscillations may appear.

Non-orthogonal series have also been applied to the analyses of linear, time-varying sys-
tems and bilinear systems. When compared to orthogonal polynomials, Taylor series show
the advantage of simplicity in integration and product operational matrices. However, they
also have the problem of being inaccurate for large intervals.

In this chapter, the product operational matrix in the Walsh domain is reviewed. This
operational matrix and the operational matrix of integration play an important role in the
analysis of LTVS and NLS.

9.2 Product Operational Matrix

The product of a vector and its transposed is called the product operational matrix q,(mxm),
4>(m)(t)4>(m)(t) = <p(mxm) (9.1)

For the case when m = 2 the matrix is,

[ 4>0 4>1 ] (9.2)q,(2X2) = 4>1 4>0
For the case when m = 4 the matrix is, [~4>1 4>2 ~l4>1 4>0 4>3 4>2 (9.3)<P(4X4) = 4>2 4>3 4>0 4>1

4>3 4>2 4>1 4>0
and for the case when m = 8,

4>0 4>1 4>2 4>3 4>4 4>5 4>6 4>7
4>1 4>0 4>3 4>2 4>5 4>4 4>7 4>6
4>2 4>3 4>0 4>1 4>6 4>7 4>4 4>5
4>3 4>2 4>1 4>0 4>7 4>6 4>5 4>4 (9.4)4>4 4>5 4>6 4>7 4>0 4>1 4>2 4>3
4>5 4>4 4>7 4>6 4>1 4>0 4>3 4>2
4>6 4>7 4>4 4>5 4>2 4>3 4>0 4>1
4>7 4>6 4>5 4>4 4>3 4>2 4>1 4>0

If one defines

<P+!f(!fx!f) = 4>(!fx!f) (9.5)

where the subscript of every time-dependent element of (~ x ~) is increased by ~, the
general form of the product matrix (m x m) is,

(9.6)
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The approximation of a function f(t) in matrix form can be written as,

(9.7)

Similarly to the product matrix, the matrix of coefficients can be defined in general form as,

[
C(!!1x!!1) C+!!1(!!1x!!1) 1C - 22 222(mxm) - C
+ !!1(!!1X !!!.) C(!!1x!!!.)2 2 2 2 2

(9.8)

The following relation is an important property which facilitates the solution of linear, time-
varying and bilinear systems,

(9.9)

By way of example, lets take the case when m = 4,

(9.10)

9.3 Solution of Time-varying Systems

Let us consider a linear, time-varying system,

x(t) = A(t)x(t) + B(t)u(t), x=XO (9.11)

where x(t) is an n-vector, u is a q-vector, A(t) is an n X n matrix and B(t) is an n X q
matrix. Let us define bj to be the jth column of B(t) so that equation (9.11) becomes,

q

x(t) = A(t)x + ~ bj(t)uAt)
j=1

(9.12)

Let aij and bij be elements of A and B, respectively. bij(t) is the ith element of the vector
bj. Let us assume now that every element of A and B is absolutely integrable in the time
interval [0,1) and each element can be approximated by a Walsh series, i.e.

(9.13)

or, in matrix form,

(9.14)

where

(9.15)

and

bij(t) - WijO<PO(t) +Wijl<Pdt) + ...+ Wij(m-l)<P(m-l)(t)

- W~j~m(t)

(9.16)
(9.17)

where

(9.18)
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Therefore,

[

ctl <I>(m) cb<I>(m) •••
C~l <I>(m) C~2<I>(m) •••

A(t) = . . .. . .. . .
C~l <I>(m) C~2<I>(m) •••

ctn<I>(m)(t) 1
C~n <I>(m)(t)

c~n<I>(m)(t)

(9.19)

or

cin 1 [<I>(m)(t)C2n 0
· .· .· .

C~n 0 o
(9.20)

In compact form,

A(t) = c<I>*(t) (9.21)

Similarly,

[

wtj<I>(m){t) 1 [ wij 1
W~j<I>(m) (t) W~j A

bi{t) = t: = =t <I>(m){t) = ,Bi<I>(m){t) (9.22)

Wnj<I>(m) (t) Wnj

If the input variables ui(t), j = 1,2, ... ,q are absolutely integrable in the time interval [0,1),
then they can be expanded into Walsh series,

Ui(t) - gjo<Po{t) + gil<Pl(t) + ... + gj(m-l)<P(m-1)(t)
= gj<I>(m) (t)

(9.23)

(9.24)

where

gtj = [9iO, 9iI! ••• ,9j(m-1)]

The Walsh series approximation of the state variable x{t) is,

(9.25)

x(t)
[

hlO<Po(t)+ hll<Pl(t)+ ••• +h1,m-l<Pm-l(t) 1
h20<P0(t) + h21 <PI(t) + ... + h2,m-l <Pm-l (t)

=

hno<po(t) + hnl <PI(t) + ... + hn,m-l <Pm-dt)

[

hlO hu . . • h1,m-l 1 [ <Po(t) 1h20 h21 • • • h2,m-l <PI(t)
= .. . ... . ... . .

hno hnl hn,m-l <Pm-l (t)

- [ ::,m 1 <I>(m)(t) ll. H<I>(m)(t)

hm-1 (t)

(9.26)

(9.27)

(9.28)

where

(9.29)
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Then the product A(t)x(t) is carried out,

A(t)x(t)
[

c[lq,(t)h[q,(t) + c[2q,(t)hfq,(t) + + c[rq,(t)h;q,(t) 1
Cflq,(t)h[q,(t) + Cf2q,(t)hfq,(t) + + cirq,(t)h;q,(t)

C;lq,(t)h[ q,(t) + c;2q,(t)hf q,(t) + + c;"q,(t)h; q,(t)

[

h[ cu q,(t) + hf Cl2q,(t)+ + h; Clrq,(t) 1
hi C21q,(t)+ hf C22q,(t)+ + h; C2rlP(t)

-

h[ CrllP(t) + hf Cr21P(t)+ ... + h; CrrlP(t)

- [~: 1~(t)

where

In general,
r

c, = :EhJCij
j=1

where Cij is a product operational matrix.

Now we reconstruct A(t)x(t) as follows:

[

cu C12
T T T C2l C22

[Cl C2 . . . Cn ]q,*(t) = [hi h2 . .. hn] :

c-i Cr2

= h*c*q,*(t)

(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

Cl
r 1C~r q,*(t)

Crr
(9.35)

In the same way, we arrange the product B(t)u(t) as,

- [Ui Uf
[

Bn
T B21

... Un] :

n.,
U*B*q,*(t)

B¥q,(t) 1B2qq,(t)

... B;q~(t) (rxr)

(9.37)
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or

B¥ I[cI>(t)B2q 0
· .· .· .

... B;q 0

o Io ..._
: = BcI>*(t)

cI>(t)
(9.38)o

If the input u(t) is written as,

(9.39)

then,

B(t)u(t) = [ :: I (9.40)

Bij is the coefficient matrix of Bij,

Bij = [BijO Bijl Bil . .. Bijn Bin]
Uij = [UijO Uijl Ujl . •. Ui,« Ujn]

Substituting A(t)x(t) and B(t)u(t) into the differential equation (9.11),

h*cI>*(t) = h*c*cI>*(t) + U*B*cI>*(t) (9.41)

Integration of (9.41) yields,

h*cI>*(t) - h*cI>*(O) = lot h*c*cI>*(r)dr + !at U*B*cI>*(r)dr (9.42)

then,

h" - h~= h*c*P * +U*B*P* (9.43)

where

h~ [ Xl (0)
.

X2(O) 0 0
. .

xr(O) 0 o J- 0 ... 0 : : ... ...
h* - [ CIO

,
Xfn CIO Cll

,
Cln cin ]Cll cll•• • Cln CII •••

hi [ CiQ Cil
,

Cin c~n ]- cil ...
X - [ Xl X2 Xr f

U* - [UIO Un U~l'" Uln Ufn : ...
u - [UI U2 Uq f

p' - [I: l L,n+l),,(,n+1»

UlO Ull Uh··· U1n Ufn]

(9.44)
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The above equations form a set of (2n + 1) X r algebraic equations that can be computed as
follows:

h*(I - c*P*) = U*B*P* + ho
or

(9.45)

h" = (U*B*P* + ho)(I - c*p*)-l

9.3.1 Numeric Example

(9.46)

+

c

Fig. 9.1: Periodic circuit

To show the use of Walsh basis for solving time varying problems, the circuit of Figure
9.1 is solved. The voltage source is sinusoidal and the linear, periodic inductor holds the
relationship,

(9.47)

The existence of the limit cycle, i.e. the periodic steady state, is determined via numeric
integration. The dynamic equations are,

t;sin (t)
o
1-r,

or, in compact form,

x = A(t)x + Bu(t)

(9.48)

(9.49)

The parameters of the circuit have been selected so that matrices A and Bare,

[

0 sin (t) 0 1
A = -1 0 1 ,

o -1-1

The voltage source is u(t) = sin(t). The current through the time-varying inductor is shown
in Figure 9.2(a) and the limit cycle is shown in Figure 9.2(b). The solution was first carried
out in the time domain using a Runge-Kutta integration method of integration. The
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60
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~
dt

(b) Limit cycle

o 20 30 40

Time [sec]
(a) Current through time-varyinginductor

Fig. 9.2: Response of a time-varying circuit

numeric example was also solved by using the Walsh approach for linear, time-varying systems
presented in this chapter. Figure 9.3 (a)-(i) show simulation results. The Walsh series can
be used to approximate limit cycles to various degrees of accuracy. The accuracy is directly
related to the number of coefficients considered in the series. In Figure 9.3(a) to (c), for
instance, the response of the system has been approximated using the first 32 coefficients of the
Walsh series. It can be appreciated from Figure 9.3(c) that, for this case, the approximation
of the limit cycle is rather poor, although the approximation of the first periods of the
transient response resembles the behaviour of the system in such periods. Figures 9.3(d) to
(f) illustrate the approximation obtained when the first 64 coefficients of the Walsh series
are considered. It can be seen that the first cycles of the transient period, Figure 9.3(e), has
improved significantly. However, the approximation of the limit cycle, Figure 9.3(f), has to
be further improved. Good agreement between time domain solutions and Walsh solutions
was found when the first 128 terms of the Walsh series were considered. This is shown in
Figure 9.3(g) and (h). The approximation of the limit cycle, Figure 9.3(i), is quite good
and may be accurate enough for some applications. However, rigorous waveform distortion
analysis requires even better solutions.

In theory, the limit cycle could only be represented exactly by an infinite number coef-
ficeints in the Walsh series. In digital implementations, however, the Walsh series must be
truncated to a finite number of coefficients. In cases of closed form solutions, the accuracy
with which the limit cycle is to be calculated dictates the number of Walsh coefficients used
in the series. A very good approximation of the limit cycle, for the case in hand, was obtained
by using the first 512 coefficients the of the Walsh series. This is shown in Figure 9.4. As an
alternative, to the use of such a large number of coefficients to achieve this level of accuracy,
an iterative process can be used.

It was seen in Figure 9.3(h) that Walsh series with 128 terms could represent quite well
the first 4 cycles of the system's transient response. This result can be used as the starting
point of a new solution process, containing the same number of Walsh coefficients. In its
turn, the result of the second solution process can be used to recalculate the series and so on.
This results in a much improved accuracy whilst keeping the number of Walsh coefficients to
a reasonable level. This can be achieved very efficiently owing to the fact that the updated
initial conditions are reflected just in vector he and the solution can be carried out with
little extra computational effort since the operation (I - c·p·)-l, in equation 9.46, needs to
be performed only once. To show the accuracy of this approach two results are represented
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Fig. 9.4: Solution with 512 Walsh coefficients

below. One corresponds to the case when initial conditions were updated every 4 cycles of the
excitation source. This results is shown in Figures 9.5(a). Very good results were obtained
when initial conditions were updated every two cycles. This result is shown in Figure 9.5(b).

The above analyses were carried out considering that the circuit was initially relaxed. In
these cases, a large number of coefficients is required to reproduce both the transient and
steady state responses. However, if the interest is to calculate the PSS response of the circuit
and good initial estimate of the PSS solution can be obtained then the number of Walsh
coefficients required to approximate the limit cycle can be reduced substantially. Results
shown in Figure 9.6 were obtained with the values of the sate variables at the fourth cycle
as the driving force. A number of 256 Walsh coefficients were used. Only the limit cycle is
presented.

Matrix structure of the set of linear equations

In steady state analysis of power systems, a large part of the network can be considered linear
and the only interaction between the various sequences or frequencies is through linear, time-
varying elements. These interactions are best taken into account when a multi-frequency
or multi-sequence framework is used. In practical studies, the mix of time-invariant and
non-linear elements generate sets of large, sparse equations. For example, the structure of
the transposed transfer matrix i.e. equation (9.48), when 32 coefficients of the Walsh serires
are considered, is illustrated in Figure 9.7. In this application, the computational burden
depends on the sequency spectrum. Accordingly, this approach is best suited to cases were
the state variables are themselves switched. In such a case, fewer Walsh coefficients are
required to represent the waveforms. Depending on the waveforms being approximated and
on the orthogonal basis, the matrix in Figure 9.7 will be more or less sparse. Few terms are
required in the Walsh series when the state variables show sharp edges. Waveform currents
in power electronic- based devices are examples of these kind of waveforms. In general, a large
number of Fourier coefficients are required to reproduce waveforms with sharp edges and the
matrix in Figure 9.7 is expected to become less sparse.
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Fig. 9.7: Structure of transfer matrix where 32 Walsh coefficients are considered

9.4 Conclusions

In this chapter, the Walsh series have been used to study linear, time varying circuits. Solu-
tions of time varying circuits are achieved in just one iteration. This has been achieved by
using a large number of coefficients in the Walsh series to approximate the limit cycle. It
has been shown that solution's accuracy is adversely affected if a much reduced number of
coefficients is used in the series. However, solution accuracy can be restored by resorting
to an iterative process where updated initial conditions are used at each iteration. This is
achieved with little computational effort.

This approach can be applied to approximate smooth responses of LTVS. However, it is
better suited to the analysis of waveforms relating to switched signals such as those observed
in electronic loads. In this case, the solutions with the Walsh approach would require far less
coefficients when compared to solutions based on complex Fourier series, leading to significant
reductions in computatinal burden.



Chapter 10

Steady State Analysis of Non-linear Systems

This chapter describes an approach to solve the steady state response of non-
linear electric circuits. The solution takes place in the Walsh domain but the
theory is more general and can be extended to any other domain, e.g. Fourier,
Hartley, etc. The product operational matrix presented in the previous chapter
is used here to solve non-linear circuits having polynomial representation and
Hammerstein structure.
The chapter also investigates the use of non-linear approximations using bi-
linearisations, as opposed to linearisations, to represent non-linear systems
about an operating point. Bi-linearisation is amenable to iterative solutions
with stronger convergence characteristics than the quadratically convergent
first order, Newton-Raphson. Bi-linearisations are shown to possess super-
quadratic convergence characteristics. Illustrative numerical examples are used
to show the advantages of the methodology proposed.

10.1 Introduction

Linear systems theory is a mature subject with a variety of powerful methods and a long
history of successful industrial applications. Thus, it is sensible for one to wonder why a
non-linear systems theory is required for the analysis of physical systems. Several reasons
can be cited. Firstly, physical systems are indeed non-linear and electric circuits are the
rule rather than the exception. Secondly, linear models rely on the key assumption of small
range operations for the linear models to be valid. When large variations are registered about
the operating points these representations perform poorly and the use of successive, linear
approximations are required for accurate solutions. The latter approach, in its turn, mayor
may not converge to the PSS solution, depending on the amplitude of the variations and the
class of non-linearities involved. Thirdly, many systems may not be linearisable about all
operating points, owing to their discontinuous nature.

The method presented in this chapter accounts for non-linearities in two ways, namely
Bilinear Systems Theory (BLS) and polynomial representations. It is shown that BLS theory
provides a better way to solve non-linear systems.

10.1.1 Bilinear Systems
DLS are perhaps the simplest class of NLS. These are systems that are linear in control and
linear in state but not jointly linear in state and control. For instance, they may involve
products of state and control. Hence, superposition does not apply. They are slight gener-
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alizations of linear systems and are sometimes referred to as linear systems with parametric
control.

It will be shown in this chapter that solutions of BLS can be analytically handled. Hence,
they are better representations of physical systems than linearisations. A wide range of phys-
ical systems are amenable to BLS representation. Engineering applications include variable-
impedance networks and variable-field-controlled motors. BLS also arise as a natural repres-
entations for an ample range of applications such as mechanical links, Surface vehicle, heat
transfer, airplanes, nuclear fission, socioeconomics, chemistry, demography agriculture, etc
[40]. BLS may be used to accurately approximate other non-linear systems yielding better
results that linearised models where the non-linearity is neglected altogether. BLS can arise
from Taylor series expansions. In such cases, non-linear systems which are not directly recog-
nised as bilinear in form, may be transformed to BLS by an appropriate redefinition of state
variables. This approach is used in this chapter to approximate non-linear circuits by BLS.
BLS can be considered generalisations of linear systems, hence some important analysis in
linear systems such stability, controllability, observability, etc., can be extended to BLS.

In this chapter, it is shown how non-linear circuits can be reduced to systems with bi-
linear structure. In this situation, the steady state solution of non-linear circuits can be found
with iterative methods possessing super-quadratic convergence. As far as the the author is
aware, bilinear methods have not been used elsewhere in power systems applications.

The analysis carried out in this chapter uses nonlinearities with polynomial representation.
However, any non-linear, system representation can be approximated by a BLS.

10.1.2 Polynomial systems
The polynomial systems addressed in this chapter comprise systems which are non-linear in
control but linear in state. For a specified set of control variables the global system is linear
and its solution can be very carried out efficiently by using properties related to the product
of two signals in the Walsh domain.

10.2 Analysis of Bilinear Systems in Walsh Domain

Time varying bilinear systems have the following state form representation:

m

x(t) = A(t)x(t) +B(t)u(t) + LNk(t)Uk(t)X(t)
k=I

(10.1)

where the state x ERn, the control u E Rm and Nk E Rnxn where k = {1, ... ,m}. The
corresponding BLS state diagram is shown in Figure 10.1. The output may be generated by
y = Cx(t). Time invariant bi-linear systems are a particular case of equation (10.1).

A powerful property of bi-linear systems is that their analysis is essentially the same as
that of time-varying linear systems. Therefore, the analysis presented in previous chapters
can be applied here.

Equation (10.1) can be written as,

x(t) = L(t)x(t) + B(t)u(t) (10.2)

where
m

L(t) = A(t) + LNk(t)Uk
k=l
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u x

Fig. 10.1: Bilinear system state diagram

Matrix A(t) can be expanded in the Walsh domain where it has the following structure,

[ ell "'(m) (t) ct2¢(m) (t) eln<I>(m) (t) I
A(t) = C~l¢~m)(t) C~2¢(m)(t) C~n~(m)(t)

C~l ¢(m)(t) C~2¢(m)(t) C~m¢(m)(t)

or
t t t

[ "'Tt)
0

JJ
cll cl2 cln
t t t ¢(m)(t)

A(t) = C2l C22 C2n

t t t 0Cnl cn2 Cnn

In compact form,

A(t) = c~(t)

Similarly,

(10.3)

(10.4)

(10.5)

(10.6)
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The Walsh series approximation of the state variable x(t) is,

x(t)
[

hlO<I>O(t) + hll<l>l (t) + + hl,m-l <l>m-l (t) 1
h20<l>O(t) + h2l<l>l (t) + + h2,m-I<l>m-1 (t)

hno<l>o(t) + hnl<l>l(t) + + hn,m-l<l>m-l(t)

[

lii» hll hl,m-l 1 [ <l>o(t) 1h20 h21 h2,m-1 <l>l(t).. . ... . ... . .
hno hnl hn,m-l <l>m-l (t)

[

hMt) 1hI (t) ~
: <P(m)(t) = H</>(m)(t)

hm-l (t)

where

If the control variable is written as,

Then integration of (10.1) to yield,

h*<I>(t) - h*<I>(O) = lot h"'c*<I>(r)dr + lot U"'B*cI>(r)dr

or,

h" - h~ = h*c'"P * +U*B"'P'"
where

h~ [ Xl (0) 0 0
.

X2(0) 0- ....
h'" = [ CIO C11 I Cln X{n :Cll •••

hi - [ CiO Cil <1 ... Cin <n ]
X - [ Xl X2 ... z; f

U'" [ UlO U11 U{l'" Uln U{n ·- ·· ...
U - [ UI U2 Uq f

[1
0

i1(,(2n+1)",(2n+1»

P
P'" =

0

o : ... : Xr(O) 0 ... 0]

ICll •••

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)
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The above equations form a set of (2n + 1) X r algebraic equations that can be solved as
follows:

h*(I - c*P*) = V*BOOP*+ ho (10.15)

or

h" = (V*B*P* + h~)(I - C*p*)-l (10.16)

10.3 Numeric Example

The analysis of the response of bi-linear systems to a periodic input is presented in this
section. This is illustrated with an example available in open literature [48]. The solution
was carried out in the time domain and the systems representation is,

q

x = A(t)x(t) + B(t)u + "ENj(t)x(t)Uj(t)
j=l

with q = 2 and

A(t) _ [~2~ 1.5 * sin(t) +3~·8* sin(3 * t) ], B(t) = [~ !]
N1(t) - [:5 ~t], N2(t) = [2

3
0 ~;t]

u(t) = [~], xo = [ ~ ]

Thus we have that for the given input

L(t) = A(t) + tNk(t)Uk = [~1 1.5sin(2t) +_~:sin(3t) -1 ]
k=l

The hi-linear systems is essentially a linear system. In this case, the linear system is also
periodic and can be rewritten as,

[
~1 ] = [-1 1.5 sin(2t) + 1.8 sin(3t) - 1] [ Xl ] + [t 1] [ 0 ]
X2 0 -2t X2 1 t 1 (10.17)

It can be seen that matrix A is responsible for the periodic solutions. This is shown in
Figure 10.2. Figure 10.2(a) shows the state variables while Figure 10.2(b) shows the limit
cycle corresponding to Xl (t). It can be seen that the limit cycle is reached in few cycles. The
set of equations presented in (10.17) is linear and periodic. This allows its solution via any
set of orthogonal functions. In this example, it is shown that event hough bi-linear systems
are non-linear, they can be analysed as linear systems.

10.4 Bi-linearisations of non-linear systems

In many cases, systems which are not recognised as bi-linear in form can be transformed
into bi-linear systems by an appropriate redefinition of state variables. An important aspect
of bilinear systems is that they can be used to approximate other more complex non-linear
systems about an operating point. It must be noticed that bi-linearisations, in this case,
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Fig. 10.2: Time response of a simple bilinear system

will not only provide more accurate representation of the non-linear system in hand but they
will also provide a better way to emulate qualitative properties of the non-linear system. In
this section, it is shown that it is possible to obtain bilinear approximations of non-linear
systems from the Taylor series representation. Consider a non-linear system represented by
the following state equation,

x=Af(x)+Bu (10.18)

where f(x) is a single valued, non-linear function of the state variable z, If we consider that
the system is operating about the point Xb, equation (10.18) can be rewritten taking into
account the first three terms of the Taylor series as,

(10.19)

where J,Hand 0 are the matrices of first, second and third order derivatives, respectively.
dx is the increment in the state variable. We also know that,

Ax = x - Xb
Ax2 _ (x - Xb)2 = x2 - 2XXb + xl
Ax3 _ [z - Xb)3 = x3 - 3X2Xb + 3xxl- x~

Substituting equations (10.20) to (10.22) into equation (10.19), we have taht

x = Af(xb) + AJ(x - Xb) + AH(x2 - 2XXb + xl)
+ AO(x3 - 3X2Xb + 3xxl- x~) +Bu

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

If we define Xb to be a control variable and knowing that about the operating point,

(10.25)
(10.26)

then

(10.27)
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where kl and k2 are constants that can be identified by means of linear search to produce
better approximations.

It is possible to recognise the bilinear structure of equation (10.27). In the third factor
the state variable x and the new control variable Xb are multiplied and the superposition the-
orem no longer applies. In this case the representation is non-linear in control, linear in state
and non-linear together. It can be said that whereas the classic Newton-Raphson approach
takes account of the non-linearity via injection sources, the Newton-Raphson approach us-
ing bi-linearisation takes account of the non-linearity by using bi-linearised elements. These
elements are linear, time varying elements. It is important to note that similarly to the
way first order Newton-Raphson techniques improve the convergence over Gauss-Seidel ap-
proaches, the Newton-Raphson approach proposed in this section improves the convergence
over first order Newton-Raphson methods. The approximation proposed in this section is
truly a non-linear approximation. This approximation is more accurate than calssical meth-
ods and provides a way to emulate better the non-linear behaviour of the non-linear system.
It can be said that whilst Gauss-Seidel methods have monotonic convergent characteristics
and first order Newton-Raphson methods have quadratic convergent characteristics, bi-linear
methods have super-quadratic convergent characteristics.

The derivations presented in this chapter are not restricted to any particular orthogonal
basis and are not restricted to steady state analysis of electric circuits.

10.5 The n-Product Operational Matrix

The product operational matrix presented in the previous chapter is generalised in this section
to the case of n products. Polynomial type, non-linear terms such xn with x as scalar can be
handled using two lemmas presented in [55].

Lemma 1:

and
Lemma 2:

The product of a vector and its transpose is called the product operational matrix 4>(mxm),

(10.28)

If one defines

(10.29)

where the subscript of every element of (': X ~) is increased by n then the general form of
the product matrix (m x m) is,

(10.30)
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Non-linear gain
Linear system

u(t) z(t) x(t) = Ax(t) + Bz(t) y(t)
f(u(t)) ..

y(t) = Cx(t)

Fig. 10.3: Hammerstein model

The approximation of a function f(t), in matrix form, can be written as,

(10.31)

Similarly to the product matrix, the matrix of coefficients can be defined in general form as,

[
C(!!!x!!!) C+!!!(!!!x!!!) 1C - 22 222

(mxm) - C+!!!(!!lx!!l) C(!!!x!!l)2 2 2 2 2

(10.32)

An important property that will facilitate the solution of linear, time-varying and bilinear
systems is the identity of the following relation

(10.33)

Taking m = 4 as exam ple yields

[:~:~:: !:][~~]- [~~~~~:~:][!~]<P2 <P3 <Po <PI C2 - C2 C3 Co Cl <P2
<P3 <P2 <PI <Po C3 C3 C2 Cl Co <P3

Accordingly, the following two lemmas can be established
Proof of these lemmas is found in [55].

(10.34)

10.6 Analysis of Hammerstein Model
Consider a Hamrnerstein model of a non-linear system,

x = Ax+ Bf(u(t)) (10.35)

where x(t) is a n-vector, A is a n X n matrix and B is a n X q matrix. u(t) is the control
input and

is the memoryless, non-linear gain for which the coefficients a; and the order p are selected.
The structure of a Hammerstein model is shown in Figure 10.3.
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10.6.1 Solution and Analysis
Let the Walsh expansion x(t) and of u(t) be represented as,

x
[

Xl = hlO<I>o(t) + hll<l>l(t) + + hl(m-I)<I>(m-l)(t) 1
X2 = h20<l>o(t) + h21<l>I(t) + + h2(m-l)<I>(m-I)(t)..
Xn = hno<l>o(t) + hnl <1>1(t) + ...+ hn(m-l)<I>(m-l} (t)

[

hlO bll ... h1,m-1 1 [ <l>o(t) 1
h20 h21 • •. h2,m-l <1>1(t)

- .. . .., . ... . .
hno hnl hn,m-l <l>m-l (t)

- [ho hI ... hm-l l<l>(m)(t) = H<I>(m)(t)

(10.36)

(10.37)

(10.38)

With reference to Figure 10.3 and integration of equation 10.35 yields,

c" - c~ = c"A*P* + Z*B*P* (10.39)

or

c" = (c~+ Z*B*P*)(I - A*p*)-l (10.40)

where

Co [ Xl (0) 0 0 · X2(0) 0 0 . xr(O) 0 o ]- ·... · ... . ...
c* [ ClQ ql'" Xfn · I c~n ]- Cll Cln · CIO Cll CII ••• Cln·

[ CiO Cil I Cin ~n ]Ci - Cil ...
X - [ Xl X2 z; ]T

U* - [ UlO Uu UtI'" U1n Uin UlO Un Uit ... U1n Uin]

u - [ Ul U2 Uq f

[!
0

ilP
(10.41)P* -

0

The non-linear terms are contained in matrix Z which has the following form,

Z* = [ZI Z2 • •• Zq]

and
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Using Lemmas 1 and 2 repeatedly, z; can be written as follows,

Here, matrices A* and B* have the same meaning as in the time varying case described in
previous chapter. The only difference is that matrices A * and B* are time-invariant and
diagonal.

10.6.2 Numeric example: Polynomial systems
To illustrate the use of the n-product operational matrix the response of a static, non-linear
element to a periodic input is given. The non-linearity has the polynomial representation,

y = ax + bX27 + cx29 (10.42)

and the periodic input has the form,

x(t) = 1.3 sin(t) + 0.15 sin{3t) - 0.1 cos{St) (10.43)

If x(t) is approximated in Walsh domain as,

x(t) = X[m)i(m)(t)
y(t) = y(!n)i(m)(t)

(10.44)

(10.45)

and by using Lemmas

Lemma 3: 1 and

Lemma 4: 2 the output can be expressed as,

Y = aX + bA~ + cA3? (10.46)

The input is shown in Figure 10.4(a) and the output is shown in Figure 10.4(b). Their
respective spectra are shown in Figures 10.4(c) and (d). No new terms in the output were
generated as result of the non-linear operation on the input but sequence coefficients were
re-scaled to reflect the effect of the non-linear operation.

10.7 Numeric example: Bi-linear systems

In order to show, of the of successive approximations via BLS, the network shown in Figure
10.5 has been used. The network represents a single phase system with two loads and one
transmission line. The inductor and both capacitors are non-linear and have the following
characteristics,

ft(qt)
!2(1.{)2)
h(q3)

0.5ql +O.lQr
= 0.5<,02 + O.3<p~5

= O.5q3 + O.lq~7 (10.47)

In general, the non-linear relations can be written as,

VI = ft (qI)
V3 = h(q3)
i2 = !2(1.{)2) (1O.4S)
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Fig. 10.4: Products of Walsh series

where q is the charge in the capacitors and ip is the flux in the inductor.

Applying Kirchoffs laws the following three equations can be written,

nl u = i4 + il + i2
n2 i2 = i3 + is

(10.49)

Writing equation (10.49) in terms of state variables ql, 'P2 and q3 and their derivatives we
have that,

. dq,
'I = dt
i2 = !2('P2)
. dq3
t3=- dt

VI = !t(ql)

V3 = !3(q3)
d'P2

VL=-dt

i4 = !t(ql)

i5 = !3(q3)

(10.50)
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The dynamic equations of the circuit shown in Figure 10.5(a) are:

In matrix form,

(10.51)

[in] [-1 -1 ] [ It (ql)] [1 ]t = 1 -1 !2('P2) + u
7f- 1 -1 !J(q3)

Substituting the polynomial representation (10.47), into matrix equation (10.52),

(10.52)

] [
O.lQF] [1 ]-1 0.3'P~5 + U

-1 O.lqj7 (10.53)
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Fig. 10.6: Steady state solution for an input of 1.1 sin(t)

10.7.1 Time domain solutions
As a first step, the existence of a unique solution for the circuit in hand was investigated
using time domain solutions. Two conditions were tested, the case when U = 1.1 sin(t) and
the case when U = 1.2sin(t). The limit cycles and the state variables have been calculated
using a Runge-Kutta algorithm. These are shown in Figure 10.6 for the case when the input
is 1.1 sin(t).

Figure 10.6(a) shows the state variables in the time domain and Figures 10.6(b)-(d)
present the limit cycles. The solution for the case when the input is 1.2sin(t) is shown in
Figure 10.7. The state variables in the time domain are shown in Figure lO.7(a) while the
limit cycles are shown in Figure 10.7(b) to (d). Both input conditions have unique steady-
state solutions. If a steady state response exists then time domain simulations always reach it.
However, in the case of circuits with large time constants, long simulation runs are required
to arrive at the steady-state. Accordingly, steady state techniques provide a more natural
alternative for the solution of steady state problems.

10.7.2 First order Newton-Raphson solution
The solution of the non-linear circuit was obtained with a Newton-Raphson iterative method
in Walsh Domain. The process took 7 iterations. It must be pointed out that waveforms are
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Fig. 10.7: Steady state solution for an input of 1.2 sin(t)

highly distorted and this represent a difficult problem for the Newton-Raphson method. Nev-
ertheless, the method shows strong convergence even in these circumstances. The methods
shows near quadratic convergence. Figures 10.8(a) to (g) show the progress of the iterative
process towards the solution.

It has been observed that although first order Newton-Raphson methods provide strong
convergence characteristics in most cases, they often produces overshootings in the first it-
eration. This can be observed in Figure 10.8(a). These over-shootings cause an increment
in the number of iterations and, may cause the iterative method to diverge. It can be seen
in Figure 10.8 that changes between successive iterations are significant, specially in those
zones where the over-shooting took place.

10.7.3 Newton-Raphson retaining non-linearity
The steady state solution of the circuit in Figure 10.5 is now calculated using bi-linear ap-
proximations. The results are very good indeed. The progress of the process towards the
convergence is illustrated in Figure 10.9. In this case, only the first and third order terms
of the Taylor series were considered. Numerical problems were observed in cases where only
the first two derivative terms were used, presumably of the even symmetry nature of the
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approximation whilst the non-linear characteristic shows odd symmetry. A similar problem
is found when fitting transformer characteristics with polynomial equations containing even
terms.

The number iterations has been reduced substantially at the expense of having to cal-
culate third derivatives terms of the non-linear relations. The computational expense of
calculating these derivative terms are, however, minor when compared to the computational
effort required for the factorisation of the matrix system. It is this process which always takes
most of the execution time. It must be mentioned that even higher order derivatives can be
taken into account and that this is expected to improve the solution process. However, in
the cases tested the improvements were observed to be minimal. For instance, a case where
the first and the fifth derivatives were taken into account was solved in three iterations. This
can be explained if one considers that whereas x3 can arguably be approximated by xx~, the
approximation of x5 by xx: is rather poor.

It can be observed in Figure 10.9(a) that from the beginning, bi-linearisations produce
a good approximation of the non-linear system and avoids overshootings. Similar results
were found in all analysed cases. The agreement between Walsh domain solutions and time
domain, solutions agree rather well.
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10.7.4 Effect of bi-linearisations in the convergence region
The above results suggest that the region of convergence increases when considering higher
order, bi-linear terms in the Taylor series. To investigate this, the current source magnitude
was further increased.lt was found that for an input of 1.3 sin(t) both Newton approaches
failed to converge but whereas the first order Newton-Raphson diverged in the second iter-
ation, the Newton-Raphson approach using bi-linearity diverged after the seventh iteration.
In this case, however, the limit cycle was reach via numerical integration. The three ap-
proaches converged for an input of 1.25 sin(t). Other tests where carried out but a case
where bi-linearisation reached convergence while linearisations failed to converge were not
found.

10.8 Conclusions

When one is confronted with a non-linear engineering problem, the natural reacton is to
linearise the set of equations describing the problem; since this is way of avoiding the non-
linear aspects of the problem. NLS theory is regarded by most engineers as a difficult and
confusing endeavor. The scepticism of engineers for using non-linear approaches to tackle real
problems is to an extent justifiable. When compared to the variety of techniques available in
linear system theory, the tools for analysis and design of non-linear systems are rather limited.
Bilinear structures, however, comprise a step forward in the search for solutions where systems
can be better represented, taking account of their natural non-linear behaviour. An important
feature of the use of bilinear systems is that they do possess non-linear qualities with the
advantage that they can still be solved with the same tools as those used to solve LTIS and
LTVS.

It was shown in this chapter that the use of bi-linearisations provide iterative methods
for the steady state solution of non-linear circuits, with stronger convergence than first order
Newton-Raphson techniques. The new alternative shows super-quadratic, convergence char-
acteristics. It is also shown that while the bi-linear method converges substantially faster than
linear methods, it also diverges slower than first order Newton-Raphson for cases when no
solution is found. Although, it was expected that bi-linearisations would increased the region
of convergence of the iterative methods owing to the stronger, convergence characteristics
shown, this was not proven with the cases analysed.

It was presented in this chapter a way to obtain bi-linear approximations of more general
non-linear systems form the linear and non-linear terms of Taylor series.



Chapter 11

Applications of Walsh Functions to Power
Systems Distortion

In this chapter applications of Walsh functions to powers system waveform dis-
tortion are presented. Three applications are considered. In the first application
the model of a single phase TCR which uses switching functions, is provided.
A TCR admittance representation is used as opposed to a Norton equivalent
representation. The second application addresses the modelling of three phase
bank of transformers. Finally, a model for frequency dependent transmission
lines in the sequency domain is provided,. This is significant as it makes pos-
sible to carry out analysis in the sequency domain via unified Newton-Raphson
techniques.

11.1 Introduction

As switching circuits in power systems proliferate, there is an increasing need to model
accurately the waveform distortion problems that they introduce. In the past, these circuits
have been modelled using time domain and frequency domain techniques [17]. However, a
large number of coefficients is required to accurately model the sharp edges of the signals
present in this kind of circuits. Walsh functions, however, are themselves switching functions
and a finite number of them will represent exactly the switching functions observed in many
power electronic-based devices. With this in mind, a single phase TCR, which admittance
matrix is a switching function, is analysed in the sequency domain.

In harmonic domain, the combined use of NA and the technique of linearisation described
in [17] allows a global harmonic representation for the entire network in the form of equation,

(11.1)

where [YJ] is a harmonic admittance matrix for the entire network, L\V is a vector of incre-
mental voltages and Al is a vector of incremental currents. The nodal matrix accommodates
all the nodes, phases and the most significant harmonics of the full spectrum. This matrix
also combines the linear and linearised, non-linear components and therefore the solution is
reached by iteration. This implies a re-linearisation of the non-linear components at each
iterative step which may also be interpreted as a linearisation of the entire system and, thus,
finding the harmonic solution through a Newton type procedure, where the admittance mat-
rix [YJ] plays the role of a Jacobian. This Jacobian matrix is only used to generate updated
voltages, AV. It is not used to confirm convergence, so errors in the Jacobian only affect
the rate of convergence, not the accuracy of the solution. When a non-linear component is
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excited by a sinusoidal input, the output will always consist of a sinusoid with a frequency
equal to the frequency of the input and all harmonics. Accordingly, owing to the practical
need to consider a limited number of harmonics the Jacobian will always be approximated
with an error which depends on the pruning of the Jacobian, and affecting the rate and the
region of convergence of the Newton-Raphson process.

A very interesting characteristic of Walsh functions is that when a non-linear component
is excited by a Walsh series, it will have an output which consists of another Walsh series
having the same coefficients as the input but different magnitudes. Therefore, in the Walsh
domain the Jacobian at each iterative step is never pruned and, thus, the rate of convergence
is not degraded due to truncations errors. In this chapter a three phase bank of transformers
is modelled in the Walsh domain.

Transmission lines are frequency dependent elements that must be accurately modelled
in rigorous distortion analysis. Traditionally, the models for transmission lines have been
developed in the time domain or in the frequency domain. As a last application in this chapter,
a model for frequency dependent transmission lines in the sequency domain is provided. With
this model, it is now possible to obtain a unified Newton-Raphson method in the sequency
domain which accommodates all power plant components and which is free of convergence
problems due to truncation errors.

11.2 Single Phase TCRs

In modern power systems there are many devices which exhibit non-linear characteristics.
Here, an important device that is used for purposes of voltage control, namely TCR, is ana-
lysed. Several methods have been put forward in open literature to study the waveform
distortion introduced by TCRs [105, 41]. They can be classified into three categories. Time
domain solutions solve the dynamic equations through numerical integration. Another ap-
proach uses harmonic domain techniques [142]. In the third approach, the state equations
are formulated and then solved using linear system theory [105].

An alternative approach is proposed below. It also uses the TCR state equations but
rather than solving them directly, they are transformed into algebraic equations by using
orthogonal functions. The algebraic equations are then solved analytically. This approach
is used in this section to provide a model for single phase TCRs. The model is presented
in general form thus allowing for any orthogonal set to be used but the solution is obtained
using sequency domain techniques.

11.2.1 The TCR and Power Systems Equations
In this section expressions for the current through the TCR and voltage across the TCR are
give. Consider first the single phase TCR shown in Figure 11.1(b). The thyristors Ti and T2
are gated once each half cycle allowing control of the current in the reactor and thus allowing
control of the reactive current drawn by the circuit. The current in the reactor can be found
by integrating the voltage across the reactor, VR(t), which can be represented by the terminal
voltage, VT, multiplied by the switching function set). The switching function is shown in
Figure 11.1(b). It has a value of 1 whenever a thyristor is on and a value of zero whenever
the thyristors are off.

The current in the reactor can be expressed as the integral,

iR(t) = L lot set - r)vr(r)dr + iR(O) (11.2)

where iRCO) represents the initial condition of the reactor.
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(a) Single phase Thyristor Con-
trolled Reactor

(b) Switchingfunction

Fig. 11.1: Piecewise-linear approximation

On the other hand, the power system is represented by a Thevenin equivalent as seem
from the bus bar connecting the TCR to the external system. The system to be analysed in
this case is shown in Figure 11.2. In the sequency domain the equivalent system impedance
is represented by a diagonal matrix. In this circuit f = 50Hz, L. = 0.000318, LR = 0.0016
and v. = v'2sin(wt). The state equation of the system can be written as,

diR _ s(t)v.(t)
dt - (L. + LR) (11.3)

which in canonical form is,

x = A(t)x + B(t)u(t)

with x(t) = iR(t), A(t) = 0, B(t) = L:~tRand u(t) = vB(t).

(11.4)

Time domain solution

Equation 11.4 can be solved in the time domain by means of numerical integration to cal-
culate the current flowing through the rector. This current is shown in Figure 11.3(a). The
integration process was carried out using a fourth order Runge-Kutta with variable step size.
The voltage across the TCR is shown in Figure 1l.3(a). It must be mentioned that the dis-
continuous nature of the switching function and the current in the TCR present a difficult
case for most numerical integration methods. In this case a very small step size had to be
used in order to achieve this result. Accordingly, long solutions times were experienced.

Also, in the time domain but using linear system theory, equation 11.4 can be solved
using Floquet theory [39]. The strength of this approach is its great theoretical depth. It
allows qualitative assessment of stability. Floquet theory can also be used to analyse periodic
systems where the transfer function set) is not necessarily a switching function but rather a
smooth function.
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+

VT(t)

Fig. 11.2: The reduced equivalent system
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Fig. 11.3: Time domain solution for 0'1 = (72 = 30°

Walsh domain solution

Alternatively to time domain solutions, equation (11.4) can be solved in frequency domain
[142]or in sequency domain. Walsh functions are used to transform the state equation (11.4)
into the sequency domain.

Equation (11.4) is written in integral form as,

iR(t) = L 1L r s(t - T)V,(T)dT + iR(O)•+ R 10 (11.5)
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Then approximation of s(t), v ..(t) and i..(t),

s(t) ~ st</>(m)(t)
vB(t) ~ v:</>(m)(t)
iR(t) ~ I1</>(m)(t)
iR(O) Iho</>Cm)(t)

(11.6)
(11.7)
(11.8)

(11.9)

where

st - [ So SI ... SCm-I) J
11 = [I~ IRI IR(m_l) J
Vt [ Vso V"l V"(m_l) J..
It - [ iR(O) 0 o ]Ro

allows to rewrite equation (11.5) as,

(11.10)

or

(11.11)

Using properties of the product of Walsh functions we have that,

(11.12)

where S is the matrix of coefficients corresponding to the switching function, s(t). Using the
operational matrix of integration the current in the TCR's reactor can be calculated as,

(11.13)

Solving for the coefficients of the current yields,

(11.14)

From equation (11.14), it is possible to give an admittance matrix representation of the
'I'Cl], In this case, the admittance can be written as,

y= 1 S
(L ..+ LR)

(11.15)

where S is the matrix of coefficients corresponding to vector S. It has the following structure
when only four Walsh coefficients are considered,

(11.16)
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Similarly, one can write the admittance matrix representation of the TCR as,

1
YTCR= -SLR (11.17)

Having found YTCR. it is possible to write an expression to determine the voltage at TCR
terminals,

(11.18)

where Z. is related to the matrix of coefficients corresponding to L•. Substituting of the IR
yields,

(11.19)

and solving for VT,

(11.20)

It is important to say that assumptions made in the switching function affects greatly the
complexity of the problem. In this case the switching function was assumed constant for a
given conduction angle. Therefore, from equation (11.20) it can be seen that the solution of
equation (11.20) is non-iterative. However, more realistic studies will involve system imped-
ances with resistive part different from zero as well as capacitive effects. In this case, the
switching function shifted to an unknown position and an iterative process will required.

The circuit of Figure 11.2 is now solved using equation (11.14). This result is shown in
Figure 11.4. The current flowing through the circuit is shown in Figure 11.4(b) whilst the
voltages is shown in Figure 11.4(b). Figure 11.4(c) shows that the TCR switching functions
can be approximated with a finite number of Walsh coefficients. The voltage at the TCR

(a) Current flowing through
TCR

-'10 0((6 00' 00'1 002 0011 003 0035 004

Time [sec]
(b) Voltage across TCR's in-
ductor

00 0.005 001 0015 002 0011 003 o.o:!) 004

Time [sec]
(c) Approximation of switch-
ing function

Fig. 11.4: Walsh domain solution 0'1 = 0'2 = 30°

terminals is shown in Figure 11.S( a). The harmonic content of this voltage is shown in Figure
11.S(b)

The model presented in this section accounts for imbalances in the firing control, i.e.
different conduction angles. In Figure 11.6, results are obtained for conduction angles of 0"1 =
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(a) Voltage at terminals of TCR
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Fig. 11.5: TCR, Terminal voltage waveform
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(b) Voltage across TCR's in-
ductor
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(c) Approximation of switch-
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Fig. 11.6: \Valsh domain solution for 0'1 = 30° and 0'2 = 45°

30° and (12 = 45°. Figure 1l.6(a) shows the current flowing through the TCR whilst Figures
11.6(b) shows the voltage across the TCR inductor and the switching function, respectively.

The waveform distortion injected by the TCR into the system depends on system im-
pedance and on conduction angles. In Figure 11.7(a) the sequency currents injected to the
system are plotted for various conduction angles.

In Figure 11.7(b) only the most significant sequences are plotted. It can be seen that
the single phase TeR will inject mainly currents of sequence 2, 14, 22, 26, 38 and 42. All
other sequence magnitudes are very small and do not contribute significantly to waveform
distortion. Significant differences can be seen between the behaviour of the sequence currents
and harmonic currents. It can be observed in Figure 11.7(b) that several sequence currents
increase monotonically as the conduction angle increases.
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Fig. 11.7: Sequence currents Vs conduction angles

11.3 Modelling of Single Core Three Phase Transformers

In this section, thr phase bank of transformers are modelled in the seq uency domain. Some
important properties r lating non-linear input-output characteristics in terms of Walsh series
are discussed (,0 show how Newton Raphson iterative methods may circumvent convergence
probl rns wh n pruned Jacobians are used.

Th harmonic admittance matrix of equation (11.1) combines linear and linearised, non-
linear plant components. The distorted solution is reached by means of an iterative process.
The non-linear com ponents are re-linearised at each iterative step, In this section the linear-
isation process is arried out in the sequency domain as opposed to the frequency domain
[17] .

11.3.1 Newton-Raphson in the Sequency Domain
In th s quen y domain, variables r lating to the Newton-Raphson formulation will be ex-
pressed as,

00

x(t) = L Xh<Ph(t) (11.21)
h=O
00

y(t) = LYk¢k(t) (11.22)
k=O

00

f'(x) J'(x(t) = L Ci¢i(t) (11.23)
i=O
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Substituting relations (11.21) to (11.23) into equation (4.77) leads to the following matrix
equation,

AY = [C]AX (11.24)

where the matrix arrangement is similar to that of equation (11.46).

In the sequency domain, a linear admittance is represented as,

(11.25)

where [P] is the operational matrix of integration. In harmonic domain applications or in
sequence domain applications the problem may be purely static, as in equation (11.24), or it
may contain dynamic terms, as in equation (11.25). The task, however, is always to evaluate
a non-linear function of one or several variables. This evaluation can be carried out in the
sequency domain. In this domain non-linear evaluations are carried out very efficiently as
only summations are required. An additional attraction of using sequence domain Newton-
Raphsons is that no truncation errors are introduced in the Jacobian. In the section below
the evaluation of single valued non-linear functions is carried out in the sequency domain.

11.3.2 Effect of Non-Linear Operations on Walsh Series
/

Perhaps the most elegant and powerful property of Walsh functions, when applied to non-
linear systems, is the one described by Corrington in [43],

Property 1: If a zero memory non-linear transformation is applied to a Walsh series, the output
series can be derived by simple algebraic processes. The magnitude of the coefficients of the input
series will change but no new ~erms will be created.

Consider a single valued, non-linear relation exhibiting odd symmetry, (No(x(t», and sub-
jected to an input of the form,

x (t) = aQ>2(t) + bQ>l(t) (11.26)

The input and the non-linear transformation are shown in Figure 11.8, where it can be seen
that the output may be written as,

x(t) = 0Q>2(t) + f3Q>1(t) (11.27)

where

20 = No(a + b) - No(b - a)
2f3 = No(b - a) + No(a + b)

(11.28)
(11.29)

This property is analogous to the behavior of a linear system subjected to a sinusoidal
input with frequencies w. In such a case the emerging signal contains the same frequency but
different amplitude.
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4>2(t)

4>1 (t)
t y(t) No(a+b)
No(x(t))

x(t) ¢>
t t

o ! ! ~ 1 O!! ~ 1424 424
Fig. 11.8: Response of a non-linear element to a Walsh series

11.3.3 Response of a non-linear element to a Walsh series
Based on Property 1, the coefficients of the input Walsh series to a memoryless, non-linear
element are related to the coefficients of the output Walsh series by algebraic means. Let us
consider a stair step input represented by Walsh series,

x(t) = cotPo(t) + Cl<Pl (t) + ... + cntPn(t) + ... (11.30)

and the non-linear relation,

y(t) = N(x(t)) (11.31)

Where NO can have any analytical representation.
If only the coefficients of equation (11.30) are used, this equation can be written in vector

form,

x(t) = c!4> (11.32)

where

c - [COl CIt··· I CN_l]t (11.33)

4> - [4>a(tl, 4>1(t), ... I tPN -1 (t)] (11.34)

c is called the Walsh coefficient vector and 4> is called the Walsh vector.
The magnitude of each one of the N segments can be found with the discrete formula,

x(k) = WCx (11.35)

where W is the Walsh matrix.
If a non-linear transformation N(x(t)) is applied to x{t) the coefficients of the input can

be found as follows,

y(k) = N(x(k)) = WCII (11.36)
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Substituting equation (11.35) into equation (11.36),

N(IVcx) = WCy (11.37)

Then,

Cy = W-IN(WCx) (11.38)

Since W is an orthogonal matrix,

Wt = W-l (11.39)

the coefficients of the output can be calculated as,

1 t
cy = -W N(Wcx)m

(11.40)

Equation (11.40) relates the coefficients of the input and the output but, unlike the Fourier
transform, there will be no truncations error. It is important to mention that since W is a
matrix with all entries set to 1 or -1, no products are required in the evaluation of equation
(11.40)

11.3.4 Product of Walsh Series
The product of two real variables x and y expressed in Walsh Domain as,

N;

x(t) =L XicPi(t),=0
Nj

y(t) =L l'i</>j{t)
j=O

(11.41)

(11.42)

gives rise to another periodic variable, say z,

(11.43)

A vector form equation can be obtained by using the Walsh coefficients only,

Z=X®Y (11.44)

where

X - [ Xo Xl ... Xi ... x«: ]
Y - [ Yo Y1 y:. YNj_l ]J

Z = [ Zo Zl Zk ZNIc_l ]

The matrix form representation of equation (11.44) is an alternative for performing actual
calculations,

Z=Xy (11.45)

where the elements of matrix X can be easily identified by performing hand calculations and
taking account that the product of two Walsh functions gives rise to another Walsh function.
Then, it can be shown that,
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x=

Xo Xl ·.. Xi ... XN-l
Xl Xo ... Xi+! ... XN-2. · · · .
: : : : :
Xi Xi+! ·.. Xo ... XN-i
: · · ·· ·· .

XN-l XN-2 ·.. XN-i ... Xo

(11.46)

11.3.5 Effect of Trigonometric Transformations
Consider again the waveform x(t) in Walsh domain,

(11.47)

which is required to evaluate the following trigonometric relations,

y(t) - sin(kx(t))

z(t) - cos(kx(t))
(11.48)

(11.49)

(11.50)

The procedure to determine the relationship between the Walsh coefficients of the variable
x(t) and the above trigonometric function is similar to the one followed to find the integration
and operational matrices. For m = 4, we have that,

(11.51)

and for the trigonometric operation,

(11.52)

Applying, recursively, the trigonometric identities,

sin{A + B) = sin AcosB + cos Asin B
cos(A + B) = cos A cos B - sin A sin B

yields,

sin(kx(t)) =
- sin (kco<Po(t)) sin (kCl<Pl (t)) sin (kC2<P2 (t)) cos (kC3<P3 (t))
- sin (kco<Po(t)) sin (kCl<Pl(t)) cos (kC2<P2(t)) sin (kC3<P3(t))
- sin (kco<Po(t)) cos (kCl<Pl (t)) sin (kC2<P2 (t)) sin (kC3<P3 (t))
- cos (kco<Po (t)) sin (kCl<Pl (t)) sin (kC2<P2 (t)) sin (kC3<P3( t))
+ sin (kco<Po (t)) cos (kCl<Pl (t)) cos (kC2<P2 (t)) cos (kC3<P3( t))
+ cos (kco<Po(t)) sin (kCl<PI(t)) cos (kC24>2 (t)) cos (kC3<P3(t))
+ cos (kco<Po(t)) cos (kCl<P1 (t)) sin (kC2<P2(t)) cos (kC3<P3(t))
+ cos (kco<Po(t)) cos (kCI<Pdt)) cos (kC24>2 (t)) sin (kC3<P3( t)) (11.53)
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From the properties of Walsh function, described in Chapter 4, we can rewrite equation
(11.53) as,

sin(kx(t)) =
- sin (kco) sin (kcd sin (kc2) cos (kc3) ¢>IGl2(t)
- sin (kco) sin (kcd cos (kc2) sin (kc3) ¢>IGl3(t)
- sin (kco) cos (kcd sin (kc2) sin (kc3) ¢>2Gl3(t)
- cos (kco) sin (kcd sin (kc2) sin (kc3) <PIGl2Gl3(t)
+ sin (kco) cos (kcd cos (kc2) cos (kc3) <Po(t)
+ cos (kco) sin (kcd cos (kc2) cos (kc3) <PI(t)
+ cos (kco) cos (kcd sin (kc2) cos (kc3) ¢>2(t)
+ cos (kco) cos (kcd cos (kc2) sin (kc3) <P3(t) (11.54)

Performing Module-2 additions,

equation (11.54) simplifies to,

sin(kx(t)) =
- sin (kco) sin (kcI) sin (kc2) cos (kc3) <P3(t)
- sin (kco) sin (kcI) cos (kc2) sin (kc3) <P2(t)
- sin (kco) cos (kcl) sin (kc2) sin (kc3) <PI (t)
- cos (kco) sin (kcl) sin (kc2) sin (kc3) <Po(t)
+ sin (kco) cos (kcd cos (kC2) cos (kC3) <Po(t)
+ cos (kco) sin (kcd cos (kC2) cos (kc3) <PI(t)
+ cos (kco) cos (kcd sin (kC2) cos (kc3) <P2(t)
+ cos (kco) cos (kcl) cos (kc2) sin (kc3) <P3(t) (11.55)

Finally, using the relations,

sinAsinD = ~(A-B)-~(A+B)

cosAcosB = ~(A-B)+~(A+B)

sinAcosB _ ~(A+B)+~(A-B)
(11.56) .

and assuming that Yo,YI! Y2 and Y3 are the Walsh functions at the input,

+O.25sin(co + Cl - C2 - C3)
+0.25sin(co - CI + C2 - C3)
+0.25sin(co - CI - C2+ C3)
+0.25 sin (co + CI + C2 + C3)

Yo= (11.57)



Chapter 11. Applications of Walsh Functions to Power Systems Distortion 165

+0.25 sin (co+ Cl - C2 - C3)
-0.25 sin (co - ct + C2 - C3)
-0.25 sin(co - Cl - C2 + C3)
+0.25 sin(co + Cl + C2 + C3)

(11.58)

Y:z =

-0.25 sin(co + Cl - C2 - C3)
+0.25 sin (co - Cl + C2 - C3)
-0.25 sin(co - Cl - C2 + C3)
+0.25 sin (co+ Cl + C2 + C3)

(11.59)

-0.25 sin (co+ Cl - C2 - C3)
-0.25 sin (co - Cl + C2 - C3)
+0.25sin(co - Cl - C2 + C3)
+0.25 sin (co+ Cl + C2 + C3)

(11.60)

It can be seen that these relations can be expressed in matrix form as,

[fn = [

1 1 1 1
1 -1 -1 1

-1 1 -1 1
-1 -1 1 1

1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 1 1 1 (11.61)

If we recall that,

w= [

1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 1 1 1

] (11.62)

is the Walsh matrix then equation (11.61) can be rewritten in compact form as,

y = Wtsin(Wc) (11.63)

which has exactly the same form as equation (11.40). It is important to note that the
analytical expression agrees exactly with the discrete transforms and anti-transforms from
Walsh to time domain and vice versa. Also, it can be seen that the sine function can be
substituted by any non-linear function. The entries of the Walsh matrix Ware either 1 or
-1 and evaluations of equation (11.61) are reduced to summations.

11.3.6 Transformer Equivalent Circuit
A transformer consists of a magnetic part (magnetising branch) and an electric part (leakage
reactance). The former is represented as a sequence Norton equivalent but it can also be
represented as an admittance matrix, similarly to the application above. The latter may be
seen as a lattice-diagram, one for each sequence. Here, both representations are combined
resulting in a model for the single phase transformer, in the sequency domain. Two-winding,
single phase transformer models are then used to assemble three phase bank of transformers.
This is achieved by suitable combinations of three sequence lattice equivalent circuits.
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11.3.7 Test Case
A small but real transmission system has been used for the purpose of validating the theory.
Complete data exist for the test system, which has already served for the purpose of validation
[131]. The criterion of convergence in all iterative solutions was a voltage difference smaller
than 10-6 between two successive iterations. This criterion applies to the fundamental and
harmonic frequencies. All solutions have been achieved in less than five iterations. The

Jaguara

Taquaril

Fig. 11.9: J aguara- Taquaril transmission system

relevant data for this system is given in Appendix B. Figure 11.10 shows the voltage waveform
at Jaguara bus bar for the case when the voltage in the generator is 1.2 p.u. Good agreement
between the solution given by the sequency and alternative formulations [17] was achieved.
Figure 11.10 shows both solutions where no differences can be detected. The Walsh approach
is used to calculate the coefficients of the output in a more efficient and 'clean' manner.

11.4 Transmission line Representation in Walsh Series

For most practical purposes, transmission lines behave linearly because they normally op-
erate below the corona threshold. However, transmission line impedances will vary with
frequency in a non-linear fashion and as the electrical distance increases with frequency even
relatively short transmission lines will exhibit long-line effects at frequencies higher than the
fundamental. Hence, realistic models of multi-conductor transmission lines for the analysis of

2
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0 0.002 0.004 0.006 0.00II 0.01 0.012 0.014 0.016 0.018

Time [sec]
Fig. 11.10: Voltages at Jaguara bus bars
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harmonic propagation studies should incorporate several effects which are normally of little
or no consequence at fundamental frequency studies. These effects are frequency dependence,
long-line effects, line transpositions and geometric imbalances. They can be represented and
efficiently manipulated by using ABeD equivalents [143],

[Vs]=[A B][ Vr]
Is C D -Ir (11.64)

where the subscripts sand r stand for the sending and receiving ends of the transmission
lines, respectively.

By interchanging block rows and columns and partially inverting equation (11.64), an
impedance form representation is arrived at,

[ ~ ] = [:' ~] [ ~: ] (11.65)

or, in expanded form,

Vo
Vb
-v;-

=VA
VB
Vc

I'" Zao Zab Zae ZaA ZaB ZaC

z; Zbb Zbc ZbA ZbB ZbC

Zca Zeb z; ZeA ZcB ZcC

ZAa ZAb ZAc ZAA ZAB ZAC

ZBa ZBb ZBc ZBA ZBB ZBC

ZCo ZCb ZOe ZCA ZCB ZCC

(11.66)

In the real Fourier domain and considering h harmonics, each elements of matrix equation
(11.66) has the following generic form,

Va = Za-rI-r (11.67)

where

V~g .s:
V~I .s:

Va = V~h
fa = I~h

ViI Ji'....:.2.L. _:..!!L

V" I"
....:..!!l- ...:.2l-

Vi' Ji'ah ah

Ra"YO

Ra"Yl -Xa'Yl.. .
Ra"Yh x..;

Ra-ro

Xa"Yl Ra-rl.. ..
Xa"Yh Ra'Yh

(11.68)

where a = {a,b,c,A,B,C}, 'Y = {a,b,c,A,B,C} and h = 1,2,3, .... At this point, an
operational matrix is introduced which gives the real Fourier expansion of a Walsh series.
The trigonometric series and the Walsh series are related as follows,

(11.69)
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Where A is the operational matrix and F and ¢> are the vectors of coefficients correspond-
ing to Fourier series and Walsh series, respectively. Matrix A has the following structure,

F~'
Fi' cos(t)
F2' cos(2t)
F~' cos(3t)
F~' cos(4t)

···
Fi sin (t)
F~ sin(2t)
F~ sin(3t)
F~ cos(4t)

···

..

1
0.629 -0.261

0.604
0.187 0.452

0.5

: I : I : I : I : I : I : I : I : I : I : I :
0.629 0.261 0.125

0.604 0.250
-0.187 0.452 0.125

Using these relationships, the transmission line equation in the sequency domain can be
written as,

(11.70)

where,

A=

A
A

A
A

A
A

Since A is an orthogonal matrix,
At = A-I

In the sequency domain each element of the Walsh impedance matrix, At Za-yA, has the
following structure, for the when m = 64,

o II .: .:.: ••':.1 .1':':. .: • ....: ..: ••Ii:!·: Ii·! :i Ii:! I ·1 Ii:! .:::.! .:.....: .... .. .... .. .... ...... ..
•1 :1 1:'1 ::.:.: :: ::.:.: ::.: II ::.:10 ':': ••11...:.1....: .LI.:....: i':.:.. .:.:..::... ••:I ·1 •••: .....: :: ••-! .. ••••... .-; -. .... .... .... .. ....
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11.5 Conclusions

Three applications which take advantage of Walsh function properties have been presented in
this chapter. A model for a single phase TCR in the sequency domain has been put forward.
An admittance representation of the TCR is given as opposed to the Norton equivalent
representation used previously in the thesis. If the switching function is considered 'blind' to
changes in the voltage across the TCR then the switching function is periodic and the entire
system can be represented by a linear, periodic system which in its turn is solved in closed
form, i.e. no iterative process is required.

Three phase bank of transformers have been modelled in the sequency domain where
the input output relations of the magnetic branch are evaluated very efficiently. A sequence
Newton-Raphson was used to evaluate waveform distortion in a transmission system where
a three phase bank of transformers is pushed into saturation.

Multi-phase, frequency dependent transmission line have also been modelled in the se-
quency domain. This allow a unified solution of the waveform distortion problem in power
systems via sequency domain Newton type methods.



Chapter 12

Conclusions and Suggestions for Future
Research Work

12.1 General Conclusions

Accurate models of plant components making up the electric power network are a necessity
for the operation and control of modern power systems. Rigorous digital models for predicting
waveform distortion give information from which better corrective action can be taken. Also,
the specifications of future power networks can be better established to keep the level of
waveform distortion within the recommended limits. Waveform distortion studies may be
carried out in the computer using several methods. These methods can range from simple
numerical integration of the dynamic equations to very sophisticated methods which use the
most up-to-date developments in the area of non-linear analysis.

A fundamental aim of this research has been to provide accurate and comprehensive
models of power plant components such as multi-limb transformers and power electronic-
based devices. As a first step towards a more rigorous modelling approach, the analytical
representation of the non-linear characteristics of commonly used power plant components
has been carefully addressed. It has been found that splines representations can achieve very
accurate approximations. Linear piecewise are the simplest form of splines, they can be used
to approximate smooth non-Iinearities. They are also the most suitable representations for
approximating non-Iinearities relating to power electronic-based devices. Polynomials are
most suitable for frequency domain evaluations, however, practical non-linear characteristics
are often difficult to represent by these analytical functions. Other representations such
hyperbolic functions may be very efficient when repetitive evaluations are required but they
are limited to certain classes of non-linearities. They do not offer the possibility of performing
harmonic domain evaluations in the frequency domain.

Traditionally, harmonic domain methods have been formulated in the Complex Fourier
domain in spite of the fact that all waveforms in electric networks are real. The complex
formulation is adequate for solving all harmonic problems such as harmonic interaction of
non-linear components but it can be substituted by more efficient formulations which use real
algebra. This reduces storage requirements as well as the number of required operations. Two
real harmonic domain formulations are presented in this thesis: the Real Fourier Harmonic
Domain and the Hartley Domain.

First order Newton-Raphson techniques provide solutions which show strong characterist-
ics of convergence. However, the computational effort required to perform harmonic domain
evaluations at each iterative step increases with the number of harmonics considered and
with the size of the network. One approach is to evaluate the non-linearity in the time do-
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main and then using FFT algorithms to extract the harmonic content. However, the FFT
is not necessarily accurate and it may compromise the accuracy and rate of convergence of
the solution. To provide faster and more reliable harmonic domain solutions the use of dis-
crete convolutions and Newton-Raphson techniques which use diagonal relaxation have been
proposed in this work.

New harmonic domain models for single phase and three phase TeRs have been given.
The modelling approach uses discrete convolutions and switching vectors as a way of providing
'clean' and more efficient calculations. The method shows quadratic rate of convergence.

A New model for multi-limb, three phase transformer is presented. It follows a more
rigorous modelling approach than existing models. It is based on the Duality principle where
proper representation of leakage admittances can be take into account. Also, a more rigorous
evaluation of the flux circulating through the different magnetic branches of the core can be
obtained by using this principle.

A unified frame of reference in the Walsh domain is developed in this thesis. A com-
prehensive description of important properties of the Walsh functions is given, highlighting
those ones which make the Walsh domain an attractive alternative for the study of switching
circuits and non-linear systems. The application of Walsh series to the solution of linear,
time invariant systems, linear, time varying systems and non-linear systems is addressed
separately. It is shown that linear, time varying systems can be solved analytically; using
Walsh series or any other orthogonal series. These analytical solutions provide insight into
the waveform distortion introduced by linear, time varying systems. The same theory is also
used in the linearisation of non-linear systems.

A simple class of non-linear systems is analysed in this work. Bi-linear systems are
perhaps the simplest class of non-linear systems. They are linear in state and linear in
control but non-linear together. They are considered generalisations of linear systems which
present some of the qualities observed in non-linear systems. Superposition does not apply
to bi-linear systems. However, an important feature of this class of system is that even
though they are non-linear they can still be analysed with the tools used in linear system
theory. With this in mind, bi-linear systems are proposed as a better approximation of non-
linear systems than the approximations based on Iinearisations. It is shown that the use of
bi-linearisations provides solutions with stronger characteristics of convergence than those
shown by algorithms using first order Newton-Raphsons.

To show the prowess of the Walsh approach, three power systems applications are presen-
ted. Firstly, a Walsh domain model of a single phase TCR is given. An admittance matrix
representation is given for this device as opposed to a Norton equivalent. Another application
relates to a three phase bank of transformers. It is shown in this application that memory-
less, non-linear operations can be efficiently performed since analytical relations between the
Walsh coefficients of the input and the Walsh coefficients of the output can be easily estab-
lished. Finally, a model for frequency dependent transmission lines in the Walsh domain is
presented.

12.2 Future Research Work

In many ways, this research work can be seen as a step towards a more general and rigorous
modelling approach for predicting waveform distortion in power systems. It is expected
that the generalised method for evaluating the periodic steady state response of power plant
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components will facilitate development of other unified frames of reference which have not
been considered in this thesis. \Vith the hope of facilitating further investigation and research
contributions in this area of a power systems, the author wishes to put forward the following
ideas:

• Applying sparse matrix techniques to solve waveform distortion problems via Newton-
Raphson methods increases greatly the efficiency of the solution. However, more actions
can be taken to improve solution times. Reduction of the density of the Jacobian matrix
will make this matrix sparser, reducing substantially the number of operations required
to reach the solution. In order to achieve sparser Jacobian matrices, adaptive pruning
of the Jacobian has been used in the past. The idea is to set to zero those Fourier
coefficients with values close to zero. The pruning of the Jacobian, in this case, affects
the rate and region of convergence but, at the same time, reduces substantially the total
number of operations. The above idea should be further investigated in future work to
evaluate the effects of the pruned Jacobians on the rate and region of convergence and
to provide guidelines as to which values of the Jacobian can be set to zero to reduce the
number of operations without affecting significantly the convergence characteristics.

• The author suggests that there is an alternative solution to this problem which may
reduce the density of the Jacobian without affecting the rate and region of convergence.
This is based on the use of Wavelets theory. Wavelets have proved a valuable tool for
signal and image coding because most of the information about global characteristics
of signals and systems are retained in a small number of coefficients. The operational
matrix of integration in the Wavelet domain has already been provided in open literat-
ure. Further research must address the issue of developing other operational matrices
such as the product operational matrix.

• The bi-Iinear solutions used in this thesis to solve waveform distortion problems in
power systems provide a step towards a non-linear and more natural form of solution.
The benefit of this approach is to achieve solutions with stronger characteristics of con-
vergence. The author suggests that the periodic, steady state solution of power systems
may be addressed by using a truly non-linear approach based on the use of Volterra
series, which is a non-iterative method. So far, Volterra series have been applied to
systems with polynomial representation. Volterra series have received attention over
the the years and some headway has been made in their application to engineering
systems. These achievements, for instance, have made it possible to apply of Volterra
series to non-linear systems such as ACDC converters.

• A sequency domain, single phase TCR has been provided in this thesis. Its extension to
the three phase case should be undertaken. Also, the Walsh approach must be applied
to other switching devices such as ACne power converters.

• The Newton-Raphson methods using diagonal relaxation provide very fast waveform
distortion solutions. However, even faster solutions could be achieved by using paral-
lelised solutions. Owing to the large dimensions of waveform distortion problems, this
issue should be addressed in the near future

• The Sparse Tableau Method has been found to be a powerful technique to generate
the dynamic equations of a given network. It also provides a means for implementing
a generalised hybrid method where different non-linear elements can be modelled in
different domains. It is recommended that a computer program which fully exploits
the Sparse Tableau Method characteristics be written.
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Appendix A

Parameters of the South Island Reduced
System

The data of the test system used in Chapter 5 are as follows:

A.l Transmission lines:
Earth resistivity: 100 S-m.

The phase conductors of the first three transmission lines are arranged in a double circuit
configuration; symmetrically placed with respect to the tower vertical axis. There are two
conductor per phase and the coordinates, given for one of the circuits, are taken form the
center of the tower at the ground level. The fourth trasmission line is a two single-circuit
line of flat configuration with one conductor per phase. The coordinates, given for the two
circuits, are taken from the extreme left conductor at the ground level.

A.1.1 Invercagill220-Manapouri220
Line length: 152.9 km

Conductor type: GOAT(30/3.71+7/3.71 ACSR)
Earth-wire type: (7/3.05 Gehss)
Conductor coordinates (in meters):

Phase a 4.80 12.50
Phase b 06.34 18.00
Phase c 4.42 23.50

Earth-wire 0.00 29.00

A.1.2 Manapouri220- Tiwai220.
Line length:175.60 km

Type and coordinates of earth-wire and phase conductots are identical to those of line
InvercagiJl220-Manapouri220.

A.1.3 Invercagill220- Tiwai220.
Line length:24.3 km

Conductor type: GOAT(30/371+7/3.71 ACSR)
Earth-wire type: (7/3.05 Gehss)
Conductor coordinates of circuit one (in meters):
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Phase a 0.00 12.50
Phase b 6.47 12.50
Phase c 12.94 12.50

Earth-wire 1.86 18.41
Earth-wire 11.08 18.41

Conductor coordinates of circuit two (in meters):

Phase a 22.94 12.50
Phase b 30.14 12.50
Phase c 37.34 12.50

A.2 Generators:
Generator X" xgd

ManapourilO14 0.0370 0.0197
Manapouri2014 0.1480 0.0788
Manapouri3014 0.1480 0.0788
Roxburgh1011 0.0620 0.0323

A.3 Transformers:
Transformers x,

Manapouri220 Manapouri1014 0.0269
Manapouri220 Manapouri2014 0.1072
Manapouri220 Manapouri3014 0.0269
Invercagill033 Invercagill220 0.1029
Invercagill033 Invercagill220 0.1029
Roxburgh220 Roxburgh1011 0.0382
RoxburghOll Roxburgh220 0.07632
RoxburghOll Roxburgh220 0.0382

A.4 Loads:
Load P(MW) Q(MVAR)

RoxburghOll 90.0 54.0
Manapouri2014 135.0 36.0

A.5 System parameters:

Base frequency: 50.0Hz
Base power: 100.0 MVA
Base voltage:220.0 kV



Appendix B

Parameters of the Jaguara Taquaril System

B.1 System data

Base frequency f = 60H z Base power PB = 100MV A Base voltage,K VB = 345I(V

B.2 Transformers

XPS = 0.117p.u. XPT = 0.115p.u. XST = 0.241p.u.

B.3 Generators

Xd = 0.1385p.u. Xo = 0.047

B.4 Shunt reactor

91 MVAR Xo = 0.35

8.5 Transmission line

Earth resistivity: 100 n - m Phase conductors arranged in a horizontal configuration with
two 954 MCM-ACSR conductors per phase and two 3~' galvanised steel earth-wires. line
length: 398 km Conductor type: 954 MCM-ACSR Phase conductor height: 13.18 m Phase
spacing: 8.5 m Earth wires height: 22.97 m Earth wires spacing: 12.5



Appendix C

Power-Invariant Transformation for
Transformer Connections

The following transformation matrices can be used to enable the admittance matrix of any
transformer to be found in a systematic manner.

Delta-Delta connection:

VI
V2
V3 1

~ V4 =y'3
V5
V6

1
1

-1 VA
-1 Vb

1 -1 VB (C.1)1 -1 Vb
1 Va

1 Vc

-1
-1

Star-Star connection:

VA
VI 1 '-1 Vb
v2 1 -1 VB
V3 1 -1 Vb (C.2)- 1 -1V4 Va
V5 . 1 -1 Vc

V6 1 -1 VN
Vn
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