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Abstract

This thesis studies the problem of periodic, waveform distortion in electric power systems. A
general framework is formulated in the Hilbert domain to account for any given orthogonal
basis such as complex Fourier, real Fourier, Hartley and Walsh. - Particular applications of
this generalised framework result in unified frames of reference. These domains are unified
frameworks in the sense that they accommodate all the nodes, phases and the full spectrum
of coefficients of the orthogonal basis. Linear and linearised, non-linear elements can be
combined in the same frame of reference for a unified solution.

In rigorous waveform distortion analysis, accurate representation of non-linear charac-
teristics for all power plant components is essential. In this thesis several analytical forms
are studied which provide accurate representations of non-linearities and which are suitable
for efficient, repetitive waveform distortion studies.

Several harmonic domain approaches are also presented. To date most frequency domain
techniques in power systems have used the Complex Fourier expansion but more efficient
solutions can be obtained when using formulations which do not require complex algebra.
With this in mind, two real harmonic domain frames of references are presented: the real
Fourier harmonic domain and the Hartley domain. The solutions exhibit quadratic rate of
convergence. Also, discrete convolutions are proposed as a means for free-aliasing harmonic
domain evaluations; a fact which aids convergence greatly.

Two new models in the harmonic domain are presented: the Three Phase Thyristor
Controlled Reactor model and the Multi-limb Three Phase Transformer model. The former
uses switching functions and discrete convolutions. It yields efficient solutions with strong
characteristics of convergence. The latter is based on the principle of duality and takes
account of the non-linear electromagnetic effects involving iron core, transformer tank and
return air paths. The algorithm exhibits quadratic convergence. Real data is used to
validate both models.

Harmonic distortion can be evaluated by using true Newton-Raphson techniques which
exhibit quadratic convergence. However, these methods can be made to produce faster solu-
tions by using relaxation techniques. Several alternative relaxation techniques are presented.
An algorithm which uses diagonal relaxation has shown good characteristics of convergence

plus the possibility of parallelisation.

The Walsh series are a set of orthogonal functions with rectangular waveforms. They
are used in this thesis to study switching circuits which are quite common in modern power
systems. They have switching functions which resemble Walsh functions substantially.
Accordingly, switching functions may be represented exactly by a finite number of Walsh
functions, whilst a large number of Fourier coefficients may be required to achieve the
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same result. Evaluation of waveform distortion of power networks is a non-linear problem
which is solved by linearisation about an operation point. In this thesis the Walsh domain
is used to study this phenomenon. It has deep theoretical strengths which helps greatly in
understanding waveform distortion and which allows its qualitative assessment.

Traditionally, the problem of finding waveform distortion levels in power networks has
been solved by the use of repetitive linearisation of the problem about an operation point.
In this thesis a step towards a true non-linear solution is made. A new approach, which uses
bi-linearisations as opposed to linearisations, is presented. Bi-linear systems are a class of
simple, non-linear systems which are amenable to analytical solutions. Also, a new method,
based on Taylor series expansions, is used to approximate generic, non-linear systems using
a bi-linear system. It is shown that when using repetitive bi-linearisations, as opposed to
linearisations, solutions show super-quadratic rate of convergence.

Finally, several power system applications using the Walsh approach are presented. A
model of a single phase TCR, a model of three phase bank of transformers and a model of
frequency dependent transmission lines are developed.
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Chapter 1

Introduction

1.1 Description of the Power System Harmonic Problem

Under ideal operating conditions all power system waveforms are sinusoidal and bal-
anced. A unique operating frequency is expected throughout the system. In prac-
tice, such ideal conditions are difficult to meet. Physical systems are, to a greater
or lesser extent, non-linear. They possess the undesirable characteristic of distorting
ideal, periodic operating conditions. In terms of Fourier analysis, these waveforms
can be expressed as fundamental frequency sinusoids and higher frequency sinusoids,
i.e. harmonics. The study of steady state distorted waveforms is traditionally known
as Harmonic Analysis of Power Systems. However, Fourier series are not the only
alternative for analysing distorted, periodic waveforms in power networks. In fact,
they are not the best choice for cases when the periodic waveforms are rectangular.
This may be the case in power systems containing a substantial component of power
electronic-based devices.

The concept of harmonics is only related to Fourier transform-like expansions,
Hartley transforms included. However, other orthogonal expansions exist which may
contain a more general idea of frequency. For instance, the Walsh domain uses the
concept of sequency. Other transforms exist where the basis functions may not have
zero crossings, e.g. block-pulse expansions. In this work, the distorted waveforms are
not just expressed in terms of Fourier series. Other orthogonal basis are used, de-
pending on the class of waveforms under analysis. Accordingly, the term harmonic
analysis or harmonic distortion is deemed not general enough to express the over-
all ideas presented in this thesis. Other terms, such as Periodic Steady State (PSS)
analysis of non-linear systems (NLS) and non-linear distortion, are preferred.

Non-linear distortion in power systems is not a new phenomenon. In the early days
of power systems, non-linear distortion caused by magnetic saturation of transforms
and rotating machinery was recognised by power engineers. Nowadays, the use of power
electronic-based devices in bulk power transmission systems has exacerbated the risks of
non-linear distortion. These devices achieve their main operating state at the expense
of distorting power network waveforms. It is generally accepted that if the problem
is left unchecked it could easily get out of hand. In the early days of this technology,
most applications were in the area of HVDC transmission. However, the last 15 years
have seen a substantial number of Static VAR compensators (SVCs) being incorporated
into existing AC transmission systems to provide voltage support and reactive power
control. Many utilities worldwide now consider the deployment of the newest and
most advanced generation of power electronic-based plant components, Flexible AC
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Transmission Systems (FACTS) devices, a real alternative to the traditional devices
based on electro-mechanical technologies.

Many adverse technical and economic problems have been traced to the existence
of non-linear distortion and many countries have regulated on permissible levels of
harmonic distortion. Adverse problems include insulation failures, maloperation of
protective devices and communication interference. Economic repercussions include
transmission line losses and watt-hour meter errors, which are causing great concern
to electric utilities and consumers alike.

1.2 Research Line of this Work

Over the years, increased levels of waveform distortion have led utilities worldwide
to seek action against this unwanted phenomenon. Corrective and predictive actions
are being adopted by utilities to limit waveform distortion. Corrective actions involve
repairs or replacements of existing equipment. In general, they are expensive and
therefore avoided whenever possible. Preventive actions are cheaper to implement and
are preferred.

As part of preventive actions, two main areas of development can be identified,
namely measuring and simulation. Significant progress has been made in the devel-
opment of accurate instrumentation to monitor waveforms distortion at the point of
measurements but in planning and systems analysis the problem must be approached
differently because the network may not even exist. In such cases, digital simulation
based on mathematical modelling provides an alternative to actual measurement. This
work represents an effort to produce new models to predict non-linear distortion in
power systems.

In the past, time and frequency domain solutions have been used for purposes of
predicting non-linear distortion. To date, most frequency domain techniques have made
use of Fourier series in spite of strong indications that alternative basis such as Hartley,
Walsh, Wavelets etc. can provide more efficient solutions. The methodology developed
in this work is domain independent. Solutions in Fourier, Walsh and Hartley domains

are presented.

1.3 Techniques for Periodic Steady State Analysis of NLS

Integral transforms are a means for the solution of boundary-value and initial value
problems in physics and engineering. In particular, use of the Laplace transform in the
analysis and synthesis of time-invariant systems has proved very popular. For instance,
the periodic solution of linear circuits can easily be obtained with the use of the Laplace
transform. However, this technique cannot be applied to non-linear circuits.

Arguably, a straightforward solution of a Non-Linear System (NLS), though not the
most efficient, is to start the solution from a given initial condition and to integrate
the state equations until the transient disappears. Two major problems are found with
this approach. Firstly, it is not easy to establish, from visual inspection, whether or
not the transient response has died out and secondly, the periodic response is reached
at a high computational cost for cases of poorly damped systems.

Determining the PSS response of NLS is not a trivial matter. The large number of
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publications devoted to this problem seems endless, especially in the areas of circuits
and systems. Various time and frequency domain methods have been developed. Each
has its advantages and drawbacks. The fundamental problem that all methods must
address is the fact that most NLS are represented by equations containing a mixture
of linear and non-linear operators. Linear operators are efficiently handled in the
frequency domain and non-linear operators are easily evaluated in the time domain.
In the past, some methods have used hybrid time-frequency domain approaches.

Single shooting methods [1] were used first to solve this problem. The methods
can be applied to circuits of any kind, even those containing strong non-linearities.
However, they require substantial computational effort since the numerical integration
is rather time consuming. Even modified versions of these methods have proved very
costly in terms of computing time [2, 3, 4]. Alternative methods make use of extrapol-
ation [5] or gradient-based iterations [6], but the computational overheads are still a
problem. In a recent paper [7}], a multiple shooting method has been presented which
claims to be more efficient. The authors have also reported on substantial improve-
ments in the rate of convergence. The attraction of this new approach is that it can
easily be parallelised.

Also, there are frequency domain methods which make use of Volterra series. A
rather large number of publications has been devoted to the solution of non-linear
circuits [8, 9] via Volterra series approach. Early publications such as references [10,
11, 12] give good examples of this theory. However, the multidimensional structure of
Volterra series and difficulties in identifying Volterra Kernels have rendered Volterra
series unattractive among engineers.

Power series representation provides another useful frequency approach [13, 14].
Similarly to Volterra series, this method provides analytical solutions for periodic re-
sponses. The non-linear characteristics are represented by a power series. It can deal
with stronger non-linearities than Volterra series but the method is not general.

In an attempt to improve on the efficiency of the solution algorithms, frequency-
only or frequency-time domain methods have been developed. These methods assume
a solution in the form of generalised Fourier series and can be grouped in a family
of algorithms knows as Harmonic Balance techniques. These algorithms have gained
acceptance among electric and electronic engineers because they can be written to
take advantage of the fact that large portions of most electric circuits are linear [15].
It is interesting to note that according to open literature, after reference [15] was
published, power systems researchers have developed their own harmonic balance tech-
niques [16, 17, 18]. In the power systems camp two approaches are now clearly identi-
fied, the Gauss-Seidel approach [16] and the Newton-Raphson approach [17]. The latter
approach yields better characteristics of convergence and has become widely accepted.

In the early stages of the harmonic balance technique, most algorithms used to
alternate between time domain and frequency domain in order to evaluate individual
non-linear element responses. Here, the Fourier coefficients of the series are trans-
formed to the time domain for evaluating the non-linearity. Subsequently, the res-
ulting waveforms are transformed back into the frequency domain. These operations
impose unnecessary overheads on the analysis. Furthermore, the method of transform-
ing between time and frequency domains via Fast Fourier Transform (FFT) is not
necessarily accurate. In fact, it may introduce aliasing at each iteration, compromising
accuracy and convergence of the solution.
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In reference[18], a harmonic balance method where the operations are performed
entirely in the frequency domain has been put forward. In this method, round-off
errors are minimised since there is no need to transform harmonic information into
time domain information and vice-versa. Furthermore, the overheads are reduced by
using discrete convolutions. The method described in [18] uses polynomial equations to
represent the non-linearity. However, the method should also be valid for cases when
polynomial rational fraction are used to represent the non-linearity.

The method proposed in this work follows the overall line of harmonic balance
methods but it is more general, orthogonal expansions, other than complex Fourier
series, are used. Similarly to reference [19], the iterative process employed is not
cyclical in the fixed point iteration [16, 17].

The calculation of steady state currents and voltages v(t) at each non-linear plant
component takes place via an iterative process. This computation can be carried out
very efliciently by taking into account that in the neighbourhood of a limit cycle the
cycle’s dynamic is almost linear. The authors in reference [19] have used this concept.
However, they extrapolate the limit cycle using time domain calculations. In this work,
the extrapolation of the limit cycle is carried out more efliciently using orthogonal
expansions and an iterative method. It is also shown that a sufficiently large number
of terms in the series is used then the limit cycle can be reached in one iteration.

1.4 Purpose and Objectives of the Present Work

o It was recognised early in the project that the waveforms involved in power system
analysis are always real and that there was no need for a framework of analysis
requiring complex algebra. Accordingly, one of the main purposes of this work
was to investigate the use of real frames of reference were solutions could be
carried out more efficiently.

o To investigate the adequacy of orthogonal transforms, which have not been widely
used in power systems, to model non-linear plant components. These include,
Real Fourier, Hartley and Walsh orthogonal series.

¢ To developed a general framework where both linear and non-linear power plant
components can be modelled irrespective of the orthogonal basis selected for
modelling individual plant components.

o To realise a unified framework in the sequency domain where non-linear and
linear, time-varying power plant components can be combined together for an
efficient solution.

¢ To develop frequency dependent transmission line models in the sequency domain.

e To develop models for single phase and three phase Thyristor Controlled Reactor
(TCR) which do not require time-frequency domain transformations.

e To develop a multi-limb, three phase power transformer model based on the
principle of duality.
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¢ To investigate efficient solution algorithms with reduced storage and cpu require-
ments but without compromising significantly the convergence characteristics of
the full Newton-Raphson method.

o To investigate the properties of a class of non-linear systems known as bi-linear
systems, their ability to approximate more general NLS. The aim of this action is
- twofold: to make a step forward towards understanding true non-linear methods
of analysis and to use non-linear approximations in the iterative solution of NLS.

1.5 Publications

The following publications were generated during the course of this research.

Transaction-graded papers

e J.J. Rico and E. Acha ‘Harmonic Domain Modelling of Three Phase Thyristor
Controlled Reactors by Means of Switching Vectors and Discrete Convolutions,”
IEEE Transactions on Power Delivery, Vol. 11, No. 3, pp. 1678-1684, July, 1996.

o E.Acha, J.J. Rico, S.Acha and M.Madrigal “Harmonic Domain Modelling in
Hartley’s Domain with Particular Reference to Three Phase Thyristor-Controlled
Reactors”, To be presented at IEEE PES Winter Meeting, 2-5 of February, New
York, 1997.

e C.R. Fuerte-Esquivel, E. Acha, SG. Tan and J.J. Rico "Efficient Object Ori-
ented PowerSystems Software for the Analysis of Large-Scale Networks Contain-
ing FACTS-Controlled Branches“ To be presented at IEEE PES Summer Meet-
ing, 20-24 of July, Berlin, Germany, 1997.

Conference papers

o E. Acha and J.J. Rico “ Harmonic Domain Modelling of Non-linear Power Plant
Components,” Proceedings of the IEEE ICHPS VI, Bologna, Italy, September
21-23, 19%4.

1.6 Contributions

The main contributions of this research work are discussed below:

o A general framework for determining the steady-state response of power networks
has been presented. The framework is general, it acommodates linear and non-
linear elements. It is not restricted to anyone orthogonal basis. Particular cases
of this framework are Real Fourier, Hartley and Walsh domains.

e A unified frame of reference in the sequency domain has been highly developed.
In this frame of reference linear and non-linear power plant components can be
represented together. Frequency dependent transmission lines are also repres-
ented in the sequency domain. This avoids the need for evaluating non-linear
elements in the sequency domain and linear elements in the frequency domain.
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e Analytical expressions for the response of linear and linear, time-varying power
plant components in the sequency domain are given. It is shown how static, non-
linear elements are handled in the sequency domain. Given an input expressed
by a Walsh series, expressions for calculating the coefficients of the output are
given in terms of the coeflicients of the input.

o It is shown that quasi-linearisations as opposed to linearisations avoids the need
for Norton or Thevenin equivalents. With quasi-linearisations, the non-linear
element is represented as a time varying element. In cases of linear, time-varying
elements the solution is reached in one iteration.

¢ An important class of non-linear systems, namely bi-linear systems, are analysed
and used to approximate more complex non-linear systems. Non-linear approx-
imations, as opposed to linear approximations, are a step towards non-iterative
solutions of waveform distortion in power systems. The use of bi-linearisations
provides a means for obtaining super-quadratically convergent algorithms.

e It is shown that discrete convolutions are a means for performing harmonic do-
main operations in a free-aliasing fashion. Also, it is shown that not only devices
with polynomial characteristics are amenable to evaluations via discrete convo-
lutions but also devices having characteristics exhibiting dead-band zones. A
new and efficient three phase TCR model based on switching vectors and dis-
crete convolutions has been put forward. The TCR equations are solved using a
Newton-Raphson technique which exhibits quadratic convergence.

o A comprehensive steady state model for multi-limb power transformers based on
the principle of duality has been developed.

e Complete first order Newton-Raphson or Newton-Raphson methods retaining
non-linearity via bi-linearisations produce solutions with strong characteristics of
convergence, however, alternative formulations that speed up the solutions can
be obtained. Such alternatives are also presented in this work.

1.7 Outline of the Thesis

The research generated during the course of this PhD project can be divided into
three main parts: General theory, Ilarmonic Domain analysis and Sequency Domain
analysis.

Practical applications of software-based tools to predict non-linear distortion have
been limited by their huge storage requirements and their heavy computational load.
One objective of this work is the search for more efficient solution techniques which
ease the computational burden. Several concepts have emerged as being critical to
this endeavour, non-linear characteristic representation, the frame of reference and the
numeric solution. Accordingly, the research generated is presented as follows

e Chapter 2 investigates possible representations of various non-linear character-
istics present in power systems. Both single-valued characteristics and charac-
teristics which include hysteretic behaviour are considered. It is shown in this
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chapter that elements exhibiting hysteresis can be represented by an equivalent
resistance and inductance which are amenable to single valued representations.

e Chapter 3 develops a generalised framework where all non-linear power plant
components can be represented. The framework allows the inclusion of any or-
thogonal expansion.

e In Chapter 4 various orthogonal basis are used to predict non-linear distortion
via iterative techniques. These orthogonal expansions lead to harmonic methods
since they are based on trigonometric expansions. 1t is also shown in this chapter
that, for studies where all signals are real, the framework based on Complex
Fourier series [17] is redundant and more efficient solutions can be obtained using
series with real coefficients. Real Fourier series and Hartley series are used for
this purpose.

o In Chapter 5, a model for three phase TCRs is presented. The model takes
advantage of switching functions and the iterative solution is performed entirely
in the frequency domain.

e In Chapter 6, three phase multi-limb power transformers are modelled using
the principle of duality. The model makes use of a first order Newton-Raphson
methods. For a given voltage at the transformer terminals, the limit cycle of the
currents is accurately extrapolated using another first order Newton-Raphson
iterative process.

e Chapter 7 deals with the search for an alternative iterative process that can be
used to solve efficiently most practical problems of non-linear distortion. The
alternative algorithms proposed range from algorithms with weak convergence
characteristics but which require a lower number of operations to methods with
strong convergence characteristics which require a larger number of operations.

e Chapter 8 presents a sequency domain framework for studying linear, time-
invariant power plant components.

o Chapter 9 presents the main characteristics of Walsh series-based solutions of
linear, time varying systems. It is shown that closed form solutions can be ob-
tained by using these methods. The theory described is also valid for any other
orthogonal expansion.

e Chapter 10 addresses the calculation of the steady state response of non-linear
electric circuits. Bi-linear systems are analysed in detailed. Polynomial systems
and Hammerstain systems are also studied.

¢ In Chapter 11, several applications concerning the use of Walsh series to plant
components modelling are presented. In this chapter a new model of single phase
TCRs in the sequence domain is presented. Frequency dependent transmission
lines and three phase bank trasformers are also modelled in the Walsh Domain.

e General Conclusions and suggestions for future research can be found in Chapter
12. '



Chapter 2

Analytical Representation of Non-linear
Characteristics

Non-linear elements are responsible for distorting the sinusoidal waveforms ex-
pected during idealised operating conditions of electric power systems. Thus, "
in the study of undesirable effects that such distortion may cause, an accurate
representation of all non-linear characteristics is critically required.. .

In principle, experimental input-output set of points could be used for PSS stud- -
ies of NLS, however, this is not efficient for cases where the systems equations
must be evaluated repeatedly. Instead, analytical representations are preferred
since they provide a more efficient alternative than working with input-output
set of points.

This chapter presents various alternatives for the analytical representation of
non-linear characteristics normally encountered in non-linear circuits. The ac-
curacy of these methods are tested by using actual saturation characteristics
corresponding to multi-limb transformers.

2.1 Introduction

Most electric circuits consist of three basic elements: resistors, inductors and capacitors. All
possible non-linearities involved in electric circuit analysis are limited to the possible non-
linear behavior of such basic elements. A detailed discussion of theses non-linearities and
their analytical representation is provided in this Chapter.

Mathematical representations of NLS can be classified as either implicit or explicit. Im-
plicit models are those in which the system response is expressed by implicit operations on
the system input. Explicit models are those in which the system response is expressed by
explicit operations on the system input.

The study of electric circuits PSS is concerned with evaluating levels of waveform dis-
tortion. Traditionally, waveform distortion has been expressed in terms of the steady-state
response’s frequency spectrum to a periodic input. In open literature, explicit methods have
been preferred to solve this problem, since basic electric elements are well characterised
by their explicit input-output characteristics. Very often information relating to non-linear
power plant components is only available as a set of measurements of the input and the output
and explicit methods become the best solution alternative. The class of explicit, non-linear
systems is exceptionally large and no single analytical approach is applicable to all of them.
However, by considering the class of non-linear input-output characteristics, solution pro-
cedures may be found for specific subclasses. Non-linear systems can be classified according
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Fig. 2.1: Common non-linear characteristics in electric devices

to their non-linearities as inherent and intentional. Inherent non-linearities are those which
naturally come with the system. Examples of these non-linearities include saturation and
hysteresis effects. Usually, such non-linearities produce undesirable effects. Intentional non-
linearities, on the other hand, are artificially introduced by the designer. AC/DC Converters
and static VAR compensators are typical examples of such non-linearities. Non-linearities
can also be classified in terms of their mathematical properties, continuous, discontinuous,
ezplicit, implicit and static.

2.2 Non-linear Circuits Elements

Combinations of the three basic elements, resistors, inductors and capacitors should suffice to
model most non-linear circuits encountered in the real world. These basic elements are two
terminal devices described by their functional characteristic in the input-output plane. The
input and output signals can be currents, voltages, fluxes and electric charges. Mathematic-
ally, these input-output relationships can be described by continuous, single valued functions,
Figure 2.1(a), or multi-valued functions as shown in Figure 2.1(b). A similar description exists
for discontinuous input-output characteristics. For a 2-terminal element the pair {z(t), y(t)}
can be either {v(t),i(t)} or {i(t),v(t)}, where v(t) and i(t) are the voltage across and the
current through the non-linear element, respectively. If {z(t),y(t)} is {v(t),(¢)} the input-
output characteristic represents a voltage-controlled admittance. If, on the another hand,
{z(t),y(t)} is {i(t), v(t)} the characteristic represents a current-controlled impedance. Note
that since z(t) can be either v(t) or i(t) and y(t) can be v(t) or i(t), the non-linear character-
istics in Figure 2.1 are general representations, where z(t) is the controlling variable and y(t)
is the controlled variable. Accordingly, it is possible to have six types of non-linear elements
since the three basic elements may be either current-controlled or voltage-controlled.
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2.3 The Black Box Approach

A basic rule in mathematical modelling is that one should use as much knowledge and physical
insight as possible of the system being modelled. Approaches which use this rule are most
appealing because, if carried out properly, the model could be quite realistic. Unfortunately,
the principles governing most physical phenomena are not well understood. Alternatively,
postulating suitable mathematical representations which can be made to exhibit the same
response as the system being modelled offer a more practical alternative. The later approach
is known in open literature as the black box approach. Earlier literature on the subject
concentrated on global basis function expansions, such as Volterra expansions [8, 9]. These
representations were not very popular since finding the Volterra kernels is complicated process
and their multi-dimensional nature causes computational overheads. The topic only revived
until alternatives techniques such as neural network, fuzzy models and Wavelets started to
take off. In power systems, physical modelling and the black box approach have been used in
the past. In this research the black box approach is used extensively. In terms of this approach
the problem of modelling non-linear and linear systems can be established as follows.

Let us consider two set of signals, the inputs z(¢) and the outputs y(t) of a dynamic
system:

ut) = [z(1),2(2),...,2(t)] (2.1)

y(®)' = [y(1),y(2),...,y()] (2.2)

then, we start by looking at a relationship between past [z'~1, y*~1] values and future outputs,
y(t),

y(t) = g(=""1, 4" 1) + O(1) (2.3)

Where the additive function O(t) accounts for the fact that the next output will not be an
exact function of past data. However, the aim is that O(t) is small, so that we may think of
g(zt~1,y*1) as a good prediction of y(t). A difficult issue to resolve is how to find function g
in equation (2.3). For linear systems this may be an easy problem but in non-linear systems
the problem is much more difficult since a very rich spectrum of possible model descriptions
must be taken into account. In this chapter, some representations are reviewed. In particular,
representations which have shown promising results in powers systems are described.
Parameterising function g with a finite dimensional vector 4 gives,

y(t) = g(e*1, 4", 0) (2.4)

This model is still too general. Indeed, a major topic is finding good parametric representation
of non-linear relations. Once a decision has been taken about the parametric structure and
the data set {z"V, V] has been collected then the quality of the representation can be assessed
by comparing fitted model results and record data:

N
3 llu(t) - o=, v, 0)1 2.5)
t=1

2.4 Representation of Smooth Non-linear Characteristics

In practice, non-linear characteristics are obtained as a set of recorded points z(t) and y(t).
However, their use in digital studies is avoided whenever possible due to the high number of
points that are required for an accurate solution and to the increasing computational effort
caused by these representations when the systems equations are evaluated repeatedly.
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Curve | Minear | Msaturation | Knee Flux | Knee Current | b, b,
1 292.38 0.67 1.037 0.0035 0.0 1.03
2 292.38 1.67 1.037 0.0035 0.0 | 1.03
3 6.00 1.44 0.290 0.050 0.0 0.22
4 173.33 1.48 0.504 0.0030 0.0 } 0.50
5 173.33 1.67 0.505 0.0030 0.0 0.50

Tab. 2.1: Magnetising curve parameters

3¢-3limb 3¢-5limb
Branch | Curve Branch Curve
Main 1 Main 1
Yoke 2 Yoke 5
Leakage 3 Leakage outside phase 4
: Leakage central phase 3

Tab. 2.2: Correspondence between transformer core branches and magnetising curves
in Figure 2.2

Alternatively, experimental curves can be analytically approximated thus reducing stor-
age requirements and computational burden. Analytical representations also provide a way of
classifying non-linear systems into classes that could include say, non-linear systems with poly-
nomial representation, hyperbolic representation, piecewise linear representation etc. Fur-
thermore, in this thesis emphasis is placed on analytical representations as they will dictate,
in general, the most efficient procedure to determine the response of non-linear elements.

There is a wide range of possible analytical representations. Extensive research, has been
devoted to the development of adequate analytical models to represent magnetic core sat-
uration. In this chapter they are reviewed in detail. It is shown that arbitrary accuracy
can be achieved when fitting magnetising characteristics but, in electric power networks,
non-linearities due to magnetic elements are not the only possibility. Often, non-linear char-
acteristics due to dead-band zones of some devices such static VAR compensator or power
converters are difficult to fit with methods that have proven useful for magnetising charac-
teristics. From the analysis of this section it is expected that one can decide which analytical
representation can embody the largest possible classes of non-linear systems without loosing
accuracy or efficiency in the computations. To show the advantages and disadvantages of the
various alternatives, the magnetization curves measured by Dick and Watson in [20] are used.
Multi-limb core transformers have different cross sections and therefore for detailed studies
this fact must be take into account. Data for the non-linear characteristics corresponding
to the different sections of a five-legged, three phase transformer is given in Table 2.1. All
values in this chapter are given in p.u. related to a base of 25 MVA and 110 kV.

Table 2.2 gives the correspondence between cross sections in 3-limb and 5-limb trans-
formers and the measured magnetising characteristics shown in Figure 2.2. It is evident that
considering all transformer sections to have the same non-linear characteristic would lead to
serious errors, especially when operation takes place in the saturation region.
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Fig. 2.2: Non-linear inductances for 3- and 5-limb transformers

2.4.1 Linear Interpolation

Most physical phenomena are deemed to be continuous, even though we measure them in
discrete form. From such discrete information, we attempt to reconstruct continuity in order
to learn about the phenomena’s behaviour. The accuracy with which such phenomena can
be assured to be reconstructed depends on the separation of consecutive samples. Non-linear
characteristics, such as those shown in Figure 2.2, are obtained in the laboratory and then for
the benefit of simulations they are provided as a set of input-output pairs. The behavior of
the analysed system between consecutive samples can be considered as either linear or non-
linear. Provided that enough number of samples is considered, systems are usually considered
linear from one sample to the next. This facilitates the calculations and yields good accuracy.
Algorithms using this idea have succeeded in representing magnetising characteristics [21, 17].
However, the computational effort increases with the number of non-linear elements and with
the number of pairs considered for each non-linear characteristic. ‘

For most physical systems, these drawbacks may be overcome by representing the discrete
data by its best analytical approximation. Moreover, having an analytical description of the
problem may have other advantages, it can be subjected to mathematical manipulations such
as differentiation or integration.

2.4.2 Piecewise linear

Piecewise linear representations have also been used in the past. In publication [22] the au-
thors have modelled magnetising characteristics with two independent equations and have
reported a reasonable match with the actual response of the non-linear elements has been
reported. Two regions are well defined in magnetic characteristics, namely linear and satur-
ating regions. This piecewise linear representation, however, incur substantial errors when
the operating point is about the knee point. The use of independent straight lines introduces
computational overheads in the algorithm [23]. In this section, a piecewise linear representa-
tion with arbitrary accuracy is analysed. The approach produces a single equation. Because
of its analytical nature, this representation allows algebraic manipulations such as derivation
and integration. This is a fact from which waveform distortion analysis can benefit. Ow-
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Fig. 2.3: Continuous, one-dimensional piecewise-linear function

ing to the simplicity and flexibility of this method, it can be used to represent a wide class
of non-linearities. A fairly generalised canonical representation, where multiple-input and
multiple-output cases are taken into account, has been published in [24]. A comprehensive
analysis of single variable piecewise linear functions can be found in references [25] and [26).

Most single variable, non-linear functions can be approximated, with acceptable accuracy,
by a single piecewise linear equation in canonical form,

P
f(z) = a+bz+zc;|x — x| (2.6)

=1

An added advantage of the canonical form is that the parameters a,b and ¢; can be
calculated explicitly.

A function f : R! — R!is said to be continuous, piecewise linear if it is composed of a
finite number of linear segments. Points common to two segments with different slopes are
called break points.

Let us consider a continuous, piecewise-linear function f with p breakpoints r; < z3 <
... < zp, as shown in Figure 2.3. Let m;,1=0,1,2,...,p denote the slope of each segment.
Coeflicients a, b and ¢; can be explicitly calculated [26] by

b= 3 (motmy) (2.7)

G = -;—(m,-—m.-_l) (2.8)
P

a = f(0)-) ezl (2.9)
=1

The canonical, piecewise representation was used to fit the experimental data shown in
Figure 2.2 and the results are presented in Figure 2.4(a). The fitting errors are shown in
Figure 2.4(b) and the number of segments used in the fittings regions is presented in Table
2.3. The errorsin this chapter are calculated as the difference of measured data and calculated
points.

Equation 2.6 shows the simplicity of the canonical form, a definitive advantage when re-
petitive use of the equation is required. Normally, saturating regions can be represented with
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Curve number [ Number of linear sections
1 6
2 3
3 5
4 5
5 4
Tab. 2.3: Piecewise approximation data
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Fig. 2.4: Piecewise-linear approximation

few segments and the evaluations involve simple operations which do not require high com-
putational effort. Furthermore, it facilitates some algebraic manipulation such as derivation,
an operation from which PSS analysis may benefit. It is proven in [27] that the derivative of
a single-valued, non-linear function is,

P
flz)=b+ ZC.'J (z ~ ) (2.10)
=1
where J(-) is the jump function, |
| -1 z<0
J(z) = { 1 230 (2.11)

No further derivatives exist for this representation. This can be a limitation for some
applications. It is important to say that piecewise linear functions are a particular case of a
more general family of fitting methods called splines.

2.4.3 Polynomial approximation

Perhaps polynomial functions were the first class of functions which were used for the pur-
pose of curve fitting non-linear characteristics. In power system analysis, polynomial series
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Fig. 2.5: Polynomial approximation

approximation has won acceptance because of its simplicity formulation [28, 17] and because
its analytical representation allows mathematical manipulations in the frequency domain
[18]. Good approximations have been achieved using this approach but there has also been
evidence of problems. For instance, accurate polynomial fitting is obtained by high order
polynomial but this is at the risk of severe oscillations. A trade off between oscillations and
accuracy has been achieved by using truncated polynomial series with two [28, 17] and three
(18] terms,

i = ap+bp" (2.12)
i = ap+bp™ +cp™ (2.13)

Fitted polynomial responses and errors incurred in fitting the magnetising characteristics of
Figure 2.2 are presented in Figure 2.5. It can be seen that good approximations have been
found for cases with rounded knee regions and low slopes in the saturation region, e.g. curves
1 and 3. Difficulties arouse when fitting characteristics with high slopes in the saturation
region. These may be the case of saturation characteristics of synchronous machines and
some of the core sections in multi-limb transformers, e.g. curves 4 and 5. The error of the
fitting is shown in Figure 2.5(b). The relevant data for the calculated polynomials is given
in Table 2.4.

Apart from the poor results that sometimes are obtained with polynomial fittings, their
importance in distortion analysis is considerable. They are amenable to easy harmonic do-
main calculations. Evaluation at a point, addition, multiplication, differentiation and integ-
ration are operations easily carried out. For evaluation at a point, it is only necessary to
multiply and add real numbers together.

There may be ways of circumventing poor accuracy problems inherent in direct polyno-
mial fittings and yet keeping the above advantages. Two variants of polynomial fitting are
considered in this chapter, namely rational-fraction polynomials and spline techniques.
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| Curve number a ] b c m | n |
1 0.002434 | 0.000071 | 0.000006 | 27 | 29
2 0.146267 | 0.590694 | -0.204350 | 3 | 5
3 0.003072 { 0.002638 | -0.000065 | 13 | 21
4 0.014620 | 0.249270 | -0.037242 | 5 | 9
5 0.060934 | 0.094885 [ -0.007289 | 5 | 9

Tab. 2.4: Polynomial approximation data
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Fig. 2.6: Cubic spline approximation

2.4.4 Cubic splines

One way of avoiding high-degree polynomials is to join adjacent pairs of data points with
polynomials of low degree, ensuring that smoothness at joint points. Splines and other
piecewise polynomial interpolation offer such a possibility. Splines are very popular owing
to their accuracy and well established identification procedures. There are several ways
of carrying out piecewise polynomial fittings, however, open literature indicates that cubic
splines are the most widely used [27]. A cubic spline S(z) has the following structure,

1 1 133
S(z) = §Az3 + -2—:1:2 +D+ EZ |z — k|3 (2.14)

=1

This is a cubic polynomial in each subinterval, [ko, ki1],[k1,k2),...,[kn=1,kn). The cubic
segments of the function (2.14) are joined together at the interior knots ky, ks, ..., ky—y in
such a way that S(z) has two continuous derivatives within the interval of interest. When
cubic splines are used to approximate the data of Figure 2.2, the results shown in Figure
2.6(a) are obtained with the error shown in Figure 2.6(b).
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Fig. 2.7: Orthogonal approximation

2.4.5 Orthogonal expansions

Orthogonal series such as Fourier, Hartley, Walsh, Haar or Wavelet can also be used to
approximate non-linear characteristics. In this section, the non-linear characteristics are
approximated using Fourier series only but the ideas can be extrapolated to other orthogonal
basis. Fourier series have been used in many areas, powers systems included {29, 30, 31, 32].
They are simple in structure but may be time consuming since their evaluation requires special
functions. Figure 2.7(a) shows the approximation achieved using trigonometric Fourier series.
It can be seen that in some cases the truncated series with 14 terms are enough to obtain
small errors, curves 2,3,4 and 5 in Figure 2.7. In other cases accuracy is poor, curve 1, and
additional terms may be required.

The identification procedure is as follows. Consider the non-linear characteristic shown
in Figure 2.8(a). In a real system, the input will have a finite maximum amplitude A. Hence,
for |z| > A, the non-linear characteristic can be arbitrarily approximated without affecting
the output. This is illustrated in Figure 2.8(b).

From the theory of Fourier series the equivalent transfer characteristic may be written as
follows,

N
y= bysin ("—:z) (2.15)
n=1

where
1 /4 . /N7
bo= /_ fa)sin (%2) do (2.16)

When using orthogonal expansions the error decreases as the number of terms in the series
increases. lHowever, a problem present in Fourier series is that when the number of terms
increases, high oscillations can be introduced in the approximating function. By way of
example, curve 1 has been badly approximated to show that effect. Oscillations are in fact a
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N

(b)

Fig. 2.8: (a) Non-linear characteristic (b)Equivalent transfer characteristic

common problem in orthogonal expansions. This problem can be controlled to a certain extent
using windowing methods, widely used in signal processing. An example of this enhancement
is given later on in this chapter when piecewise continuous characteristics are considered in

Section 2.5.

2.4.6 Rational-fraction polynomials

Polynomials provide adequate fittings for short ranges of independent variables. Unfortu-
nately, they are inadequate for large ranges, as shown in Section 2.4.3.
On the other hand, rational-fraction polynomials of the form,

_ Pi(z) _ po+piz+...4paz”

= = 2.17
Qm(®) @+az+...+gnz™ (2.17)

f(z)

have proven accurate [33] for the purpose of polynomial fitting. In this section, the character-
istics of Figure 2.2 were modelled using this formulation. The results show good fitting along
all the range of interest and for all cases. The fitted polynomials are presented in Figure
2.9(a) whereas Figure 2.9(b) illustrates the error in the range of interest. Data relevant to
the order of the different polynomials is given in Table 2.5.

Curve number | m | n |
1 11|11
2 717
3 5 5
4 519
) 17 | 17

Tab. 2.5: Polynomial rational-fraction approximation data

In general, rational-fractions are of lower order than their polynomial counterpart. They
have also the nice characteristic of minimising oscillations, a problem commonly encountered
with polynomial approximations. Sometimes, the problem of identification can be non-linear
in which case an iterative method of solution is required, or a linearised formulation can be
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Fig. 2.9: Polynomial rational-fraction approximation

used [33]. In the latter case, an artificial error function is proposed and the parameters can
be calculated directly using a generalised least square algorithm.

2.4.7 Hyperbolic functions

Approximation of magnetising characteristics has also been carried out using hyperbolic func-
tions [34]. This approach can be quite accurate, as shown in Figure 2.10(a). The hyperbolic
formulation has won acceptance because the identification of the required parameters can
be performed with only a few hand calculations. If higher accuracy is required in the knee
region, the calculation process becomes iterative. The procedure is based on the following

equation, 4
F(’L, (P) = (mlz + bl - <p)(m22 + b2 - (,O) - b1b2 = f(p (2.18)
where

my, my are the slopes of the unsaturated and saturated regions.
b1, by are the ordinates to the origin of the asymptotes to m; and m;

§p is the correction term

The correction term £p modulates the knee region. If modulation is not required £y can
be set an arbitrary value or zero. The solution of the hyperbolic function in the first quadrant
leads to the following expression for the magnetising current,

~-B - /(BT—4AC) (2.19)

24

1=

where

= mpmg

= my(bz — @) + ma(b1 - ¢)
C = pa—pbr+b+¢)

T
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Fig. 2.10: Hyperbolic approximation
This alternative is a good option for modelling magnetising characteristics.

2.4.8 Representation of Hysteresis Effects

Hysteresis is observed in many different materials and processes. Perhaps, the most familiar
examples are the hysteretic effects observed in ferromagnetic materials. However, hysteresis
is also observed in many other processes such as stress-strain relationship of materials that
undergo plastic deformation, dielectric stress or the human respiratory system [35].

Basically, two approaches can be used to model hysteresis. One approach uses the differen-
tial equations that describe the principles governing the system. The second approach is based
on postulating suitable mathematical representations which exhibit hysteresis [35, 36, 37] but
which do not take into account the physics of the device. Considering that sometimes the
principles governing most hysteretic phenomena are not well known, the latter approach is
preferred. Furthermore, the analyses of non-linear circuits containing hysteretic elements can
be very difficult. They are normally described by partial differential equations.

In this research, the hysteretic effects are modelled in terms of their input-output rela-
tionships. An advantage of this method is that the a double-valued problem can be mapped
into two, single valued problems. For instance, a non-linear inductor exhibiting hysteresis
can be represented as an equivalent resistor and a non-linear inductor without hysteresis
loop. One attraction of this approach is that the equivalent circuit can be realised from
measured hysteresis data [38]. Also, this method correctly reproduces the property observed
in ferromagnetic materials of increasing loop areas with increasing operating frequencies.

Let us assume that a non-linear element can be represented by the ‘black box’ shown in
Figure 2.11. The z - y relationship has been obtained experimentally and plotted in Figure
2.12. The hysteresis loop can be firstly expressed as the summation of two functions,

y(z) = fo(z) +9(2) (2.20)
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x(t) y(t)

— Black bax P>

Fig. 2.11: Non-linear element represented as a ’black box’ with flux z(¢) as input and
y(t) as output

(a) Hysteresis loop in inverted position (b) Hysteresis loop decomposed into two
polynomials

Fig. 2.12: Hysteresis loop
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where,

fo(x) — yl(z) +y2(27)

5 (2.21)

and g(z) is the equation of the ellipse,

2
g(z) = i\/yﬁl - g—'élm (2.22)

so that equation (2.20) can be rewritten as,

(2) = fola) £ ok - L2z (2.23)

Equation (2.23) is troublesome because of the double sign before the square root. If a sinus-
oidal input of the form,

z(t) = z, cos(wt) (2.24)
is assumed then it is possible to find an alternative expression for the output which uses the
derivative,

dz .
5 = ~wWomsin (wt) (2.25)

It is not difficult to see that y(t) can be expressed in terms of the function fy(z) and another
function f.(z) which characterises the distance between fy and the periphery of the hysteresis -
loop. The function f.(z) as seen in Figure 2.12 is the reverse function to the input z(t). It
reaches a maximum value when z(¢) = 0 and a minimum value when z(t) = z,. It has also
negative and positive values. Accordingly one can write,

y(z) = fo(z) + fe(z) (2.26)
Here the function f, is expressed as,

dz
fle) = =t (227
where the derivative determines the sign of the function f..

Equation (2.26) is interesting in the sense that it has physical interpretation. For instance,
if the non-linear element is a non-linear inductor then f,(z) can be taken to be a current
flowing through a lossless, non-linear inductance while the second term corresponds to a
current flowing through a non-linear resistance. This allows the use of the equivalent circuit

shown in Figure 2.13.

2.4.9 Validation of hysteresis models

In general, systems which exhibit hysteresis are non-linear and their representations must be
non-linear be necessity. In these cases, there are problems with establishing the validity of
models. Superposition is not applicable and the validation of a non-linear model requires an
infinite set of measurements corresponding to all excitation signals. Hence, the validity of
these models can only be established qualitatively.
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Fig. 2.15: Minor hysteresis loops

In this particular case, one must show that the postulated mathematical model exhibits
the same significant properties and features of the hysteretic element. Among these prop-
erties is expansion of the loop with frequency and the presence of minor loops observed in
hysteretic non-linear inductors. The model is constructed using appropriate parameters so
that it would yield realistic responses to one on more test signals. To show that the mathem-
atical representations adopted to model hysteresis reproduce the most important properties
of non-linear inductors, Figure 2.14(a) illustrates the effect of sinusoidal excitation at vari-
ous amplitudes and constant frequency. Figure 2.14(b) shows a family of hysteresis loops
corresponding to sinusoidal excitations with constant amplitude but different frequencies.

Magnetisation history will cause the presence of minor loops [20]. A good model for
hysteresis loops must reproduce this phenomena since some studies such as ferro-resonance
analysis depend on the ability to reproduce these results accurately. Results obtained with
the model used in this research are illustrated in Figure 2.15. The results were obtained
considering small sinusoidal excitation in the presence of remanent flux. This was simulated

as a DC flux component,
¢ =k+ asin(wt) (2.28)

where k is the DC component of the flux and a is the amplitude of the sinusoidal component.

2.5 Non-smooth characteristics

Smooth non-linearities are not the only possibility in power systems. The use of power
electronics in modern power systems control is on the increase leading to the presence of
non-linearities characterised by dead-band zones. As opposed to smooth non-linearities, non-
smooth or hard non-linearities are piecewise linear functions where most of the approximating
approaches described before are likely to fail in producing accurate representations. In this
case, piecewise linear functions are the most suitable representation since they render math-
ematical representation with no errors. However, orthogonal expansion such Fourier series or
Walsh series still provide a way to represent such non-linearities with good accuracy.

A typical example of this class of non-linearities is that observed in Static VAR compensat-
ors, relays and AC/DC power converters. Figure 2.5(a) shows a flux-current characteristic
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present in thyristor controlled reactors, plotted together with a Fourier series approxima-
tion. The error is illustrated in Figure 2.5(b). In this case a Hamming window was used
to reduce oscillations. A more complex characteristic is that shown in Figure 2.17, observed
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Fig. 2.16: TCR input-output characteristics with Fourier Series

in AC/DC converters. These characteristics are piecewise polynomials rather than piece-
wise linear. Their piecewise nature presents difficulties for most approximating approaches.
However, good approximations can be found by using linear splines and Fourier series.

2.6 Conclusions

This chapter has addressed a major problem in the analysis of power systems distortion,
namely representation of non-linear characteristics. Various mathematical representations
have been analysed in terms of their ability to approximate experimental data relating to the
input-output response of non-linear power plant components. Both smooth and non-smooth
representations have been considered.

It has been seen that a unified representation capable of modelling both smooth and non-
smooth characteristics can be obtained by using orthogonal expansions or splines. Polynomial
and rational fraction representations are also efficient alternatives for modelling smooth, non-
linear characteristics while piecewise, linear functions are the natural option for representing
characteristics showing dead-band zones.

It was also shown that elements showing hysteretic behaviour, such as iron core trans-
formers, can be modelled with two single valued, non-linear characteristics. An important
feature of this equivalent circuit is the fact that it can be realised purely by electric elements,
a resistor and a inductor. Hence, the model can be made easily to interact with other models
of the power network. It has been shown that these equivalents reproduce some important
phenomena present in hysteretic materials such as frequency dependence and the formation
of minor loops.
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Fig. 2.17: Voltage-current characteristics in ACDC Converters



Chapter 3

Generalised Analysis of Periodic Steady State
Responses of NLS

This chapter presents a generalised frame of reference for the solution of the
periodic steady state response of non-linear circuits. The frame of reference
is based on orthogonal expansions of the non-linear dynamic equations which
govern the circuit. The description is carried out without making reference
to any particular set of orthogonal functions. This generalised frame of refer-
ence embodies unified frameworks based on Fourier series or the unified Walsh
framework introduced in this Thesis. In each particular application, a choice of
frame work is made on the basis of the characteristics of the system waveforms
being studied. The best choice is always the one which requires the minimum
number of coefficients to represent all waveforms within a prescribed error.
This generalised frame of reference allows to investigate efficient numerical
solutions for studying waveform distortion effects in power systems containing
power electronic-based plant components.

Two alternative methods for writing non-linear equations of power networks
are investigated, namely the Sparse Tableau Method (STM) and the Modified
Nodal Analysis (MNA). v

STM is proposed as a better alternative to nodal analysis-based methods for
writing the equations of an electric power network. In the generalised domain,
the orthogonal set of equations representing the dynamic equations are trans-
formed into algebraic equations by the use of orthogonal functions. It is shown
in this chapter that the STM is a powerful tool which separates Kirchhoffs'
laws and branch equations. It can be used to formulate hybrid frameworks
were different plant components are represented by different sets of orthogonal
functions.

3.1 Introduction

Integral transforms provide a means for the solution of boundary-value and initial value
problems in physics and engineering. In particular, the use of Laplace transform in the
analysis and synthesis of linear, time-invariant systems (LTIS) has proved very popular. This
transform converts the problem into a linear, algebraic one where the solution is obtained
more easily. For instance, it provides a means for obtaining the periodic response of a
linear, time-invariant circuit by a simple multiplication of the input and the system’s transfer
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function. However, this technique cannot be applied to non-linear systems or linear, time
varying systems (LTVS). In the latter case, Laplace transform methods yield a differential
equation as opposed to an algebraic equation. The case of NLS is even more complicated
since the resulting equations are non-linear algebraic or non-linear differential. Accordingly,
a different approach is required. The one researched in this Thesis consists on expanding
the dynamic, non-linear equations into a set of orthogonal sequence of functions. In this
case, time-varying differential equations are transformed into either linear algebraic or non-
linear algebraic equations. These equations can be solved analytically for linear systems or
iteratively if the set of algebraic equations is non-linear.

Subclasses of orthogonal basis functions include orthogonal functions, orthogonal poly-
nomials, Wavelets, etc. Any one of these basis series can be used to transform differential
equations into algebraic equations. No given rules exist for selecting a class of orthogonal
basis series. In power systems harmonic studies, for instance, orthogonal expansions in the
form of Fourier series have been used since they resemble more the sinusoidal waveforms
existing in the power system under ideal operating conditions. However, the increasing use
of power electronic-based power plant components characterised by rectangular waveforms
suggest that other orthogonal basis series could produce better results.

In this chapter, a frame of reference based on orthogonal functions is presented. The
motivation of this generalised frame of reference is to investigate more efficient solutions for
power systems subjected to periodic excitations.

3.2 State Variable Description of Electric Power Networks

Electric power systems are an important class of electric circuits. Power systems are, to a
greater or lesser extent, non-linear circuits. Accordingly, if a formulation is valid for power
systems then it is valid for non-linear circuits in general. It is assumed in this Thesis that
these networks are described by a canonical equation of the form,

x = Af(x)+ Bg(u) 3.1)

where A € R™*" and B € R"*9. The state variable x is an n-vector and u is a g-vector.
The functions f(-) and g(-) are n-vectors of non-linear functions of z; and u;, respectively.
Equation (3.1) can be represented in block form as shown in Figure 3.1. A problem when
analysing equation (3.1) is that few methods are available for studying the PSS response of
NLS. The first alternative that springs to mind is the use of numerical integration. However,
the computation process may be very slow in cases of lightly damped circuits. Alternatively,
if the system operates about a fixed point, then steady state techniques can be used for
solving the PSS response can be calculated more efficiently.
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Fig. 3.2: Block diagram of linear, time-varying electric circuits

3.2.1 Linearisation of dynamical equations

Linearisation about a base point xq and ug yields,

x=A (f(xo) + gz(f—) Ax) + Bg(u) (3.2)
or
. df (x d
x:A(-ch)xox)-}-A(f(Xo)——{T(;E)-XOXQ)-{-BQ(U) (3.3)

In PSS, if x and u are periodic then the linear functions f(:), g(-) and f’(x) are also
periodic.

If one defines,

fi(z1)
J= ale2) . (3.4)
' filaw)
and
A(t) = AJ(2) : (3.5)
then
x = A(t)x — A(t)xo + Bg(u) + A f(x0) (3.6)

The NLS in equation (3.1) may be approximated, about an operating point , by the linear,
time varying circuit shown in Figure 3.2. The structure of equation 3.6 can be further
simplified by defining,

f(XQ) = Af(XQ) -_ A(t)XO (37)
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and
1
_ B 1
B(t) = .. (3.8)
1
so that,
x = A(t)x + B(t)g(a) (3.9)
where
g = [ g(w)* | f(xo)* |’ (3.10)

For the sake of simplicity, the bar notation is dropped from equation (3.9),
x=A(t)x+ B(t)u (3.11)

LTVS are a significant class of problem in their own right.

3.2.2 Forms of solution of periodic LTVS

Systems with parameters that vary periodically are an special class of LTVS. Here,

At+T) = A(t)
B(t+T)=B(t) (3.12)

where T is the fundamental period.

These systems are characterised by linear equations with periodic coefficients. Because of
the periodicity of the coefficients, there are important response properties which are unique to
these systems. These properties simplify their analysis and synthesis. The solution becomes
simple and several methods can be used.

It can be proved that the general solution of equation (3.11) is [39)],

x(t) = ®(t, to)xo + /Ot@(t, 7)B(r)u(r)dr (3.13)

where @(-) is a matrix called the state-transition matrix. A major problem with the solution
of (3.13) is that the transition matrix ®(-) must be known in order to determine x(t). This
is difficult for general LTVS. There is not a unified approach to achieve this task. However,
for periodic piecewise constant cases this can be achieved by using Floquet theory [40]. As a
concrete example, the analysis of power networks with TCRs has been conducted using this
approach [41]. Although this solution does not necessarily apply to the more general case of
periodic LTVS, it can be used to approximate smooth transition matrices [39]. Additional
ideas and contributions on approximations to transition matrices have been presented in
[19, 42). Transition matrices are approximated in this chapter by using generalised orthogonal
expansions.



Chapter 3. Generalised Analysis of Periodic Steady State Responses of NLS 32

Method | Linear Time-invariant | Linear Time-Varying | Bilinear
Piecewise orthogonal Functions
Fourier [44],[45],[46, 47], [48],[49, 50] [48]
Hartley
Smooth orthogonal Functions
Walsh [43],[51, 52, 53, 54] [55],[56],[57],[58]
[59, 60, 61] [62],(63],[64], [65]
66],(67],(68],[69 70],[71
Block-Pulse 72),173},174],[75 [76],[77] 78],[78]
Haar Wavelets [79]
Orthogonal polynomials
Laguerre (80, 81, 82] 83], 84
Legendre [85, 86] 83], 84
Chebyshev [87] [87],83], 84
(first kind)
Chebyshev
(second kind) [88],[89],[83] [88],(89],[84]
Jacobi Series [90]
Non-orthogonal polynomials
Taylor Series | ] [91] | [84],191]

Tab. 3.1: Literature on operational matrices

3.3 Analysis of Periodic LTVS Via Orthogonal Expansions

Approximation of functions as linear combinations of sets of orthogonal functions is a standard
tool in numerical analysis and signal processing. Since Walsh functions were first used by
Corrington [43] in 1975 to solve differential and integral equations, orthogonal polynomials
and other orthogonal functions have received considerable attention. A summary of methods,
applications and references is presented in Table 3.1.

The main advantage of these methods is that they reduce the problem to a system of al-
gebraic equations which can be solved efficiently using computer algorithms. This is achieved
by using the concept of operational matrices, a useful tool for solving the problem using mat-
rix algebra. In the following sections these operational matrices are defined in a generalised
fashion. Particular applications are presented throughout the Thesis.

3.3.1 A general representation of orthogonal basis

If {~;} is 2 complete system of orthogonal functions in ¢t € [t;,t;] and f(t) is any function
integrable in the interval ¢ € [¢;, ;] then,

oo m-—1
[0 = fm®) = S = Fytim) (3.14)
1=0 t=0

with

fi=k d f(t)vidt (3.15)
t
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where k is a constant which is different for different set of orthogonal sets {f;}. In general,
the coefficients are the spectrum components of a given basis. For instance, the coefficients
could be the Fourier coefficients and the spectra would be the frequency spectra.

3.3.2 Operational matrix P for integration of Yim)(t)

An important feature of the orthogonal basis which is used in the study of TILS and TVLS,
is that the integral of basis functions can also be expanded in terms of the same basis. If,

Yo(t)
Ym) (8) = 71;(0 (3.16)
Pnea(t)
then
Yo(t)
/t ’t'y(m)(t)d(t):P “:(t) (3.17)
' -

where P is the operational matrix of integration which has different values for different
orthogonal basis.

3.3.3 Operational matrix D for differentiation of v, (t)

Similarly to the operational matrix of integration, it is possible to show that,

d7(m) (t)

o = Drm(®) (3.18)
or, for higher order derivatives,
d vy (t :
—%ﬁil=17WmU) (3-19)

where D is the m X m differentiation operational matrix. In general, D may be obtained
as the inverse of P. However, care must be taken when using this concept to calculate the
derivatives of 7(m)(t) if the application involves piecewise basis. This is the case of Walsh,
Haar and block-pulse series. It was pointed out by Corrington [43] that the derivatives of such
series result in series of delta-Dirac impulses, one for each discontinuity. Accordingly, the use
of these series is not recommended for the study of differential equations. For instance, the
Walsh expansion of the derivative of a Walsh function is, usually, a divergent Walsh series.

3.3.4 Transformation operational matrix W

Consider a signal f(t) represented in a particular orthogonal basis as,

f(t) = €1v(m) () (3.20)

and the same signal represented by a different orthogonal basis,

F(8) = €37y (t) (3.21)



Chapter 3. Generalised Analysis of Periodic Steady State Responses of NLS 34

Both coefficient vectors ¢; and c; are components of a Hilbert space representing the same
signal over the interval (0,7). Each vector can be expressed as linear combination of com-
ponents of the other vector,

c; = Weg (3.22)

If W represent an orthogonal transformation, i.e. a rotation of the Hilbert space coordin-
ates system, then the inverse transformation, W~!, equals the transposed transformation
wt,

ey =Wie; =W lel (3.23)

3.3.5 Product and coefficients matrices

The product of a vector of orthogonal functions, 7(,)(t), and its transposed, 'y(‘m)(t), is called
the product matrix I'(yxm)(t). That is,

Ym) )Y (m)(®) = Tmxrm) (t) (3.24)

For some orthogonal basis this matrix can be formed, in a systematic way, by using a computer
algorithm. Several examples are presented in this Thesis. Product matrices for Fourier, Walsh

and Hartley domains are provided.
Similarly, the coefficient matrix C corresponding to the coefficient vector €(m) is defined

as follows,
C = ¢(m)C{m) (3.25)

An important property of product and coefficient matrices is that they facilitate LTVS com-
putations [56, 55],

L mxm)€m) = CY(m) (3.26)

3.3.6  Analysis of LTVS

Consider equation (3.11) where xq is specified. Let a;;(t) and b;;(t) be the elements of A(t)
and B(t). Assume that all elements are absolutely integrable in the time interval [0,T) then
the generalised series approximation of all elements of A(t) and B(t) become,

aij(t) & AhLym)(®) (3.27)
bij(t) = Bivm(t) (3.28)
where
AL = [ Ao Agr oo Aijm | (3.29)
B, = [Bijo Bipi ... Bijm | (3.30)
Similarly, x(t) and u(t) may be expanded as,
ri(t) & Xiym () (3.31)
w(t) & Uiym)(t) (3.32)
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where
Xf = [ Xio Xi1 «o. Xim ] (3.33)
Ui = [Uip Uiy Uim | (3.34)
Therefore, the following relations can be derived,
FA:n‘Y(m)Et; A?zY(m)Etg coo ApnYm) ()
ALY () ALy () ... Agpvm(t
A g | T TR ( ) (3.35)
L ALY () ALY () - Ann¥em)(®) ]
F A:l A{z oo A]n ')’(m)(t) 0 con 0
~ AL, AL, ... A, 0 Ym)(t) .. 0 (3.36)
L A:ll A:l2) cee Ann 0 0 oo 7(171) (t)
~ AT() (3.37)
and
z1(¢) X:l’)’(m) (t) Xti
z2(t) X37m)y(?) X3
: ~ ) =1 .7 Ym)(®) = Xym)(?) (3.38)
za(t) X7 7(m) (t) X3

The product A(t)x(t) can be expressed as follows,

[ A117(m) (t)X:17(m)(t) + A127(m)(t)x:27(m) (t) +...t Aln7(m) (t)xfz'ﬂm)(t)
A21Y(m) (X1 Y(m) (8) + A22Y(m) ) XEV(m) () + - . . + Agn(m) () XEY(m (¢
Ax() & 21Y(m) () X1Y(m) (£) + A227(m) (t) 2 ) () 2nY(m) (1) X5 Y(m) (t)
| AntY(m)(O) XY (m) (8) + An2Y(m) OX2Y(m) (1) + - - -+ Ann¥(m) O XE¥(m) (£)
[ xchu‘Y(m)(t) + X;Csz'y(m) t+...+ X;CAIn’y(m) (t)
-~ chAn')’(m)(t) + XECA227(m) ) +...+ X:ICAZ’n‘)/(m) (t) (3.39)
L XlCAn17(m) (t) + xgcAnz')’(m)(t) +...+ X:’LCAnn’)I(m) (t)
r A, |
& | A2 | ym() (3.40)
| fAn
where the use of product and coefficient matrices allow us to write,
AL m)OX7m) (1) = X¥(m) )Yy () Aij = XiCa, (3.41)
and
A; = Z XjCA.-j (3.42)

=1

Where X;Cj,,; is the coefficient matrix corresponding to vector Ajj.
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Now it is possible to reconstruct the product A (¢)x(t) in a more convenient form,

Ca;; Cap,, ... Cay,
- C C ... C ~
[Ar A . AT = [X5 X5 ..o x4] [ 0 T T T R
Ca,, Ca., ... Ca..
= XA[(@) (3.43)
In the same way, we can expand B(t) and u(t) as follows,
[ Béﬂ(m)(t) B:127(m)§t) cor Bigymy(t)
Bl v () Bivm(t) .. Bagym(t
B(t) ~ 21 Em) 22 Em) ) g Em)() (3.44)
| Bfu')’(m)(t) Bf—,z?’(m)(t) Bnq'Y(m)(t) (nxq)
_ ]B3:11 g:n . glq '7(,,,0)(t) O(t) g
vee 2 Y(m e
I e | (3.45)
| B,t,ll B:‘A2) v Bnq 0 0 “oe ’Y(m)(t)
~ BT(@t) (3.46)
and
uy(t) U:l7(m) (t) U:l
uz(t) Ul v(m)(t) U}
L= . =1 . | 7w =Uym () (3.47)
un(t) UL (m)(?) L4
to express the product B(t)u(t) as,
Cs, Cs,; Cg.,
~ C C
[B, By ... B, ]B() = [Uf vy ... ug]| o %% Sl V0
CBnl CBn2 CBnn
= XB[(¢t) (3.48)
where
g
B; =) _U;Cs, (3.49)
j=1
Now, integration of equation (3.11) from 0 to ¢ yields,
t t
x-xo=/ A(T)X(T)dT+/ B(r)u(tr)dr (3.50)
0 0

Substitution of equations (3.43) and (3.48) into equation (3.50) yields,

XT(t) — Xol'(t) = / " XAL(r)dr + / " UBE (r)dr (3.51)
0 0
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or
XI(t) = Xol'(t) = XA / tf‘(r)dr + UB / : L(r)dr (3.52)
0 0

Using the operational matrix of integration, we have that,

i fot Ym)(T)dT t 0 0
t_ 0 m dr ... 0
[T 0 Jorm()er
0 : e :
A 0 0 oo JiAmy(r)dr
[P 0... O
o P ... 01{._ _
=|. . 7 |rew=pre (3.53)
0o o ... P

Then equation (3.52) can be expressed in compact form as,
XT(t) - Xol'(t) = XAPT(t) + UBPI(2) (3.54)
Equation (3.54) represent as set of nm linear algebraic equations that can be solved as follows,
X(I- AP) = UBP + X, (3.55)

or
X = (UBP + Xo)(I - AP)™! (3.56)

where I is a nm X nm identity matrix and

Xo=[2y0) 0 ... 0} 22000 0 ... 0} ... } 2(0) 0 ... 0]
(3.57)

3.4 Tableau Analysis in the Generalised Domain

In order to take advantage of operational matrices of integration, product and coefficients,
the electric circuits under analysis are expressed in their state variable form i.e. Equation
3.1. Such representation can be obtained by inspection of the electric network structure
and by proper selection of the state variables. Inspection methods can be easily applied
to generate the state variable equations of a given network, however, developing computer
algorithms capable of generating the state variables equations, can be a difficult task. It
must be remarked that several state descriptions of the system are possible, since the circuit
can be described by different sets of state variables [92]. However, more general methods
are possible. They can be efficiently implemented in computer algorithms. Two methods of
analysis that can be applied to any dynamic circuits are Sparse Tableau Method (STM) and
the Modified Nodal Analysis (MNA) [93]. The two alternative can easily be combined with
the use of operational matrices. The salient characteristics of the STM method are presented

below.
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Fig. 3.3: RLC circuit

3.4.1 Tableau analysis for invariant linear systems

When formulating equations for hand solutions, an obvious objective is to write as few equa-
tions as possible. However, the opposite is true for the STM, where as many equations as
possible are written. The Tableau involves many more equations than alternative approaches
such as MNA. Fortunately, STM is extremely sparse. In fact, the analysis of circuits using
STM yields a set of equations which is more sparse than any other approach. The STM
is a powerful analytical tool for studying general purpose circuits. It segregates Kirchhoffs’
laws from branch equations. STM is considered an excellent tool for studying distortion in
power systems where each power plant component can have a very particular description.
It is shown in this chapter, that the above characteristic of STM allows us to formulate
generalised hybrid methods.

3.4.2 STM for LTIS

The STM is a conceptually simple method. It consists of writing out a complete list of
linearly independent KCL and KVL equations and branch equations. By collecting these
three conditions into a unique matrix relation we have that,

A 0 0 1 0
0 I A v |[=]0 (3.58)
M;[f N,f o Un u

where A is the incidence matrix of the circuit and N and M are branch operators which can
be in differential or integral form. Some orthogonal expansions such as Walsh and Haar series
are difficult to operate since they generate trains of pulses when differentiated. Hence, the
integral form of N and M are preferred. The salient features of STM can be demonstrated
by example. Consider the circuit in Figure 3.3. The incidence matrix is,

VR C G L

I 1 00 o] (1]
A=[0 -1 1 1 o] [2]
0

-1 1] 3

The static and dynamic elements are modeled independently, with the following relations:
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Inductor
1 t
=1 / vL(8)dt + i(0) (3.59)
0
Capacitor
1 t
ve = & / io(t)dt + ve(0) (3.60)
CJo
Resistor
VR = Rip (3.61)
Conductance
i¢ = Guvg (3.62)
Using the operational matrix of integration we have that,
Inductor
I, VLo iL(O)
I Vi- 0
L. Y= %P‘ o+ . = —P'vy +iL(0) (3.63)
ILm—l VLm_1 0
Capacitor
VCo ICO 'UC(O)
Ve I 1
% = lPt . = =P'Is + ve (0) (3.64)
L : i3
VCm_l Icm—l 0
Resistor
VR, I,
V Ip_
o =g ' | = Rlig (3.65)
VRm—l IRm-—l
Conductance
Ig, Va,
I Vi
“ lzgpt| @ |=clve (3.66)

IGm_] VGm—l
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Collecting expressions (3.63) to (3.66) into a single equation we have that,

I 1 00 0 0O O OO 0 OO0 O iy F o
0o-rr1 1 0 00 0 0O 0 00 0 iR 0
0 0 0-f I 00 O O0OOC 0 00 0 ic 0
00 00 0 I 0 0 0 0 -I 0f0 0 ic 0
0 000 O0 0TI 0 00 —-I If0 0 i 0
0000 0 00 I 0 0 0 -Il0o 0 W 0
00 00 ©0 00 0 I 0 0 -IlIoO Vr 0
0 000 0 O0O0 O 0 I 0 O0{I O e |=|v
0 6 00 0 I 0 0 0 O O 00 O Ve 0
0 RO O O 0-I 0 0 0 0 0610 0 Vi 0
0 0 I 0 0 0 0 fPP O 0 0 0|0 1 Vi 0
0o 00 I o0 0O O G O 0 00 0 Va 0
0 6 0 0 -2PP0 0 O 0 -I 0 00 1 Vs 0
0 0 0 0 ¢1) 0 0 0 0 0 0 O [0 -1 i (0) 0
00 0 0 0 0 0 ¢1) 0 0 0 0|0 -1 | w(0)] L 7-
or, in compact form,
Tx=d (3.67)

The initial conditions are given as,

[ do(1) ¢1(1) ... ém-1(1) ]b=15(0)=¢b

3.4.3 Tableau analysis for LTVS

If the circuit elements are time-varying capacitances or inductances, the tableau equation can

be rewritten as follows,
A 0 0 i 0
0 I Al v {=1]0 (3.68)

M) NS 0 ][ v,
or, in compact form,
A)x(t)=d (3.69)

Then, by using the representation of the product A(t)x(t) in equation (3.48), the solution
can be expressed as follows,

XA = dt (3.70)

where vector d contains the coeflicients resulting from the expansion of each term in d.

3.5 Generalised Hybrid Methods

The STM formulation relates a group of voltages and currents waveforms to another group
of voltages and currents waveforms. Therefore, matrix A in equation (3.69) is closely related
to the generalised concept of immittance {69]. The fact that the STM segregates Kirchhoffs’
laws and branch equations allows this method to relate different variables and to enclose any
hybrid method [17, 19]. The method can take advantage of the fact that particular power
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plant components can be modelled more efficiently in a particular domain. By way of example,
lets assume that in the example in section 3.4.2 the capacitor is modelled using a different
domain than the rest of the system. If one were to represent the set of orthogonal functions
relating the capacitor by xm(t) and W the operational matrix for transforming variables from
the domain of X, (t) to the base domain of W, then the hybrid STM is expressed as,

"I 7T 0 0 0 00 0 0 0 0 0]0 0 iy -
oI W I 0 00 0 00 0 00 0 in 0
0o 0 0 -I I 00 0 0 0 0 010 0 ic 0
00 0 0 ©0 I 0 0 0 0 —I 00 o0 i 0
00 0 0 0 07 0 0 0 —I Ilo o iL 0
00 0 0 0 00 W 0 0 0 -I|0 0 Ve 0
00 0 0 ©0 00 0 I 0 0 -I|I 0 Va 0
© 0 0 0 0 00 0 0 I 0 oI 0 Vo |= ‘0/
© 0 0 0 0 I 0 0 0 0 0 00 0 Vo
O R 0 0 0 0-I 0 0 0 0 0]/0 0 Vi 0
0 0 I 0 0 0 0 Pt 0 O 0 0|0 1 Vi g
6 0 0 I 0 00 0 G O 0 010 0 v,

0 0 0 0 %P, 0 0 0 0 -I 0 0|0 1 Vs g
0 0 0 0 1) 0 0 0 0 0 0 00 =1]|] i0) 0
000 0 0 0 00 ¢ 0 0 0 00 -1]|ve]

In this way, it is shown that matrix A in the STM is not just an immittance matrix relating a
group of variables to another group of variables of the same kind but rather this immittance
matrix can also group variables represented in different domains.

3.6 Modified Nodal Analysis (MNA)

Nodal Analysis (NA) for the study of electric power systems has proved very popular. The
nodal matrix in this formulation can be efficiently handled in the computer. In general, the
admittance matrix is very sparse and solution algorithm can be designed to take advantage
of this feature where the equation for a given circuit can be easily written by inspection.
Furthermore, the number of equations is always smaller than that generated by using STM.
NA has been extended to incorporate the dynamic equations of a the network. Such extension
has been termed the Modified Nodal Analysis (MNA) method. The dynamic equations can be
generated by inspection but since they contain information about the network interconnection
as well as information about the nature of the branches, the equations may not have the clarity
observed in STM where this information is clearly segregated. Owing to this, the degree of
generalisation obtained with STM may not be easily achieved with MNA.

The Underlying ideas of the MNA are: (1) Write the NA equations using nodal voltages
and (2) whenever an element is not voltage-controlled, new variables are introduced to the
node variables vector and the the branch equation is added to the nodal matrix.

To show the salient characteristics of MNA the single phase network of Figure 3.4 is
analysed.

Node equations

—i1+ig = 0 (3.71)

.. d .
Zl—tg—CLT’U:‘—M =0 (372)
o R (3.73)
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Fig. 3.4: Single phase transmission system

Linear Inductor

di
vg = vg — Ltg'tl =0 (3.74)
&
va—vg—LLﬁ =0 (3.75)
Non-Linear inductor
. di
vy — LN(zz)—d-tl =0 (3.76)
where
1, di
'L—;(lz) = (3.77)
and
i = [fle)=ap+by" (3.78)
dy
Voltage source
v =1, (3.80)
Then MNA, in matrix form, is
" Uy ] [ 1 1r v
0 -CL % 1 -1 -1 ™
0 _ -"CLg't' 1 U3
0| | -1 1 -Li% i
; .81
Lo ] | 1 —Ln(ia) % JLig

By using the operational matrix of derivation, D, and approximating voltages and currents
a‘S’
v,-(t)
ii(t)

Viyrm(®), =123 (3.82)
Inyymy(®),  i=1,2,4 (3.83)
(3.84)

2 1



Chapter 3. Generalised Analysis of Periodic Steady State Responses of NLS 43

Equation (3.81) becomes,

VT -1 1TV
0 -CLD 1 -1 -1 Va
0 | ~-CrD 1 Vs
0 -1 1 -L;D L
0 1 1 .o ||| @8
L 04 L 1 —Ln(ig)D J LI

3.7 Conclusions

In this chapter a generalised frame of reference for solving PSS responses of power networks
has been introduced. The frame of reference was presented in a such a way that it is inde-
pendent of any particular orthogonal basis function. The motivation for this representation
has been to search for more efficient algorithms for predicting waveform distortion in power
networks.

Two algorithms, the STM and the MNA were investigated in order to write the dynamical
equations of any power network. They were also extended so that they can be combined with
the concepts of operational matrices described in this chapter. However, it was shown that
STM is a powerful analysis tool which provides more flexibility than the MNA. Owing to
its characteristic of separating the Kirchhoffs laws and the branch equations, it is capable
of relating a heterogeneous group of variables to another group of variables with the same
characteristics. It also allows to formulate solutions for cases when different elements are

modelled in different domains.
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Chapter 4

Harmonic Domain Modelling of Electric
Power Circuits

To date, research efforts worldwide have produced accurate model for predicting
power systems harmonic distortion. Time and frequency domain solutions
have been used for such purpose. Fourier's transform has been used for most
frequency domain purpose. In this and next chapters, more efficient numerical
solutions are explored. Harmonic analysis methods based on Hartley transform
and real Fourier transform are presented. Also, discrete convolution operations
are intruduced to improve frequency domain calculations since they provide
clean harmonic domain evaluations.

4.1 Introduction

The Complex Fourier formulation uses complex algebra, however, the signals to be en-
‘countered in waveform distortion analysis are always real, hence there is a fundamental
asymmetry between the data domain and the Fourier transform domain. This fact can be
better understood by looking back at the choice made in favour of the familiar complex for-
mulation of the Fourier approach. After the initial work of Fourier, two main streams of
analysis, whose boundaries are not clear, took place. On the one hand, Fourier introduced
his theory in terms of sines and cosines. This permitted him to analyse terms which were
harmonically related using trigonometric functions. This analysis leads to separate lists a,
and b, for the cosines and sines terms, respectively. Both lists are real. On the other hand,
the theory of the integral of Fourier with more general purposes (no restricted to periodic
analysis) was also developed. This analysis is required to be in terms of complex variables.
The ability of working with complex algebra was done by packing the two real lists a,, and
b, into a complex term of the form a, — jb,. An interesting feature of the Hartley transform
is that both sines and cosines are packed in a way which does not require complex algebra
leading to more efficient to instruction to the computer, since real operations are less time
consuming than the complex ones.

With this in mind, this chapter harmonic domain addresses formulations which rely solely
on the use of real algebra, i.e. real harmonic domain and Hartley harmonic domain. Each
of these formulations provides an elegant and powerful frame of reference where both non-
linear and linear elements can be combined together for a unified, iterative solution via
Newton-Raphson methods exhibiting quadratic convergence. Solutions to voltage tolerances
of 1e-6 for the fundamental and harmonic frequencies are obtained in less than five iterations.
Discrete convolutions are used to achieve frequency domain evaluations. Thus, avoiding time
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domain excursions and the use of aliasing-prone FFT.

4.2 Direct Frequency Domain Evaluations

The dynamic equations representing LTIS can be transformed into a linear set of algebraic
equations by using operational matrices of integration. Another operational matrix that fa-
cilitates the solution of LTVS, together with the operational matrix of integration, is the
operational matrix of direct product. The operational matrix of direct product is a power-
ful tool for analysing a class of nonlinear systems, termed bilinear systems, and non-linear
systems that can be represented by polynomial equations,

y = bo+biz+bz?+...+b2" (4.1)
ap+ a1z +az?+...4+a, (4.2)
bo+bix+by+ ...+ bpz™

y

The product operational matrix for various domains are presented in this chapter. The
methods presented are frequency domain methods as opposed to sequency domain methods.

Equations (4.1) and (4.2) are amenable to direct frequency domain evaluations via discrete
convolutions. Discrete convolutions are central to these methods and they provide a means
for clean harmonic domain evaluations, a fact which aids convergence significantly. To date,
most frequency domain methods have made use of Fourier’s transform, in spite of strong
indications that alternative transformations such as Hartley [94], Walsh [69], Wavelets [95]

can provide more efficient solutions.
This chapter presents frequency domain representations of non-linear elements. Equations
(4.1) and (4.2) can be evaluated in the harmonic domain by performing a series of self-

convolutions, e.g.
() =z)zt) = XX =Y (4.3)
and mutual convolutions, e.g.
yt)=st)zt)=Se®X =Y (4.4)

where z(t), y(t) and s(t) are periodic functions; X, Y and S are harmonic vectors and ® is the
convolution operator. Several harmonic transforms can be used for carrying out operational
products. In this chapter, Complex Fourier, Real Fourier and Hartley transforms are used.

4.3 Harmonic Domain Evaluations Using Complex Fourier Series
Expansions

To date, most power harmonic analysis tools [17] have been developed with inputs z(t) and
outputs y(t) expanded in the Complex Fourier domain, i.e.
w ..
()= ) Xie'™ (4.5)
i=—00

and

y(t) = f: Y, elhut (4.6)

h=-00
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The product z(t) of y(t) can also be expressed in the same basis, i.e.
w . w . w o
Y Zett = ( > Xie’""t) ( > Yhef’““‘) (4.7)
k=-o00 1==—=00 h=—o00

Direct evaluation of equation (4.7) confirms that Z is the result of convolving vectors X and

Y.
Z=XoY (4.8)

where

X = [-..,X_{,...,X_Q,X_I,XO,XI,Xz,...,Xi,...]t
Y = [..,Y.,..., Y2,V ,Yo 0, Vs, Y5, L
Z = [ eisZopyenirZ-2,2-1,20,21, 22, ..., Z1y...]J! (4.9)

Equation (4.8) can also be written in matrix form,

[ Xo|X_a|X_2| ... | X \WAZA
X | Xy Xo | Xeor 1 Xoo| oon | X2 Y.,
o] Xo | Xy Xo | Xy | X2 voe | X Y,
Z=[X]Y = D, €3 X, X Xo | Xoq | X oov | X Y,
Xi | ..o Xo | Xh | Xo | X | Xgf ... Y;
X; oo | X2 | Xy Xo | Xo1 ] Xog Y,
\ Xi | | X2 [ X1 | X0 )\ Y )
(4.10)

where the matrix [X] is a Hermitian matrix with Toeplitz structure. The elements of [X] can
be identified by taking one term at the time in the variable Y (¢),

i Zkejkwt — ( i ej(H-h)wt) Y

f=—00

or in vector form,

(2a) (K
Z..z X_;—h
/) X_1-h
2y = Yo (4.11)
Z Yi_x
Zy Yo_n
=) 7o)
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4.3.1 Dynamic elements

The integral of Complex Fourier series can also be written in terms of the Complex Fourier

coefficients as follows,

5 [viea= [ (
or in matrix form

(] \

t=—00 t=~—00

-7 2w

jw

72w

\ 17

4.3.2 Numerical example

$ xom)an 52 2

]zw

-1

e

X_o
X1
Xo
X1
X

)

X e]twt

(4.12)

Harmonic evaluations are better understood with a numerical example. Let us consider the

polynomial equation,

i= f(¢) = 0.001¢ + 0.074¢*

subjected to the excitation,

) ejwt _ e—jwt j
=sinfwt) = ———==
#=sinut) = =2 =2
The harmonic evaluation is carried out as follows,
0 -2
il i
P=y¢.yp=3]"0 0o ®5
2| —— 2
-1
0 2
which in matrix form becomes,
0|1
. -17 0 1
PP = % —1] 0|1 x2
-110 |1
-110

0\ -2
1| 4
0 | o
=1 |
0/ 2

0 -2
1) .
0 | o
-1 | ,
0/ 2

0\ -2

RS B 1

0| o =3
-1 1

0 /) 2

(4.14)

(4.15)

(4.16)

2 (4.17)
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Also,
(0) (o) S
1 -2 0 —_2
2 1|2 | J N
P=y¢g=71_2 | o @5 0 | o (4.18)
0 1 -1 1
-1 2 0 2
3 \ 0 ) 3

or in matrix form

(2] [-1 \ s [0) = (L) s

2 [ |1 SO R R DT

-1 2 -1 1 L] 1 1 .| 3 -1

| B 5 N N L S ¥ O PR D
-1 2 1| 1 -1 ] 1 -3 | 4.19)

-1 2 2 0 | 2 0 | 2

\ -1 2) 3 \—6—} 3 \—T—/ 3

The cubic polynomial is the evaluated in the complex Fourier domain

(L3 ) (0 (L) - (=o)L

L S O o

T, - 3| o 700981 |

= =]o.gm i +jo.og43 o P Rt
! Mt 3 =31 1 —50.0284 | ; (4.20)

7 i | o | -

\"T "/ \0 ) s \"1/ s\ 700003 ) s

or

i = 0.0568 sin(wt) — 0.0186 sin(3wt) (4.21)

4.4 Efficient Polynomial Evaluation

The mechanics of polynomial evaluation is a straightforward, though cumbersome process.
The number of algebraic operations grows rapidly with the polynomial degree and the har-
monic order of the excitation. Therefore, suitable algorithms for polynomial evaluation must
be developed for practical harmonic domain calculations.

4.4.1 Recursive Evaluation

Many applications in power harmonic analysis require evaluations of power series of the form,
y=ao+a1z+ a2’ +...+a,z" (4.22)

Evaluations of this structure would require many multiplications (convolutions) if brute force
is used. However, operations are minimised if the structure of the polynomial is re-arranged.
Synthetic devision can be used to achieve this aim. For example, consider the polynomial,

¥y =ao+ a1z + az? + a3z + a4zt (4.23)



Chapter 4. Harmonic Domain Modelling of Electric Power Circuits 50

Using brute force evaluations would requires 7 multiplications, but the the same polynomial
can be represented as,

y = ag + z(a; + z(az + z(as + a4z))) (4.24)

which only requires 4 multiplications in order to be evaluated.
Similarly, polynomials with more specific structure,

y=a1z+a,z" +apz™ (4.25)
can be rewritten as,
y=2z(a; + 2" Y (an + anz™ ")) (4.26)

for more efficient evaluations.

4.4.2 Exponentiation

Equation (4.26) requires that a factor 29 be evaluated. This can be carried out quite efficiently
for large numbers of q. The sequence of convolutions required to evaluate 27 can be guided
by the integer ¢ expressed as a binary number [18]. For instance, consider the evaluation
of the factor z!°. Table 4.1 shows the binary number corresponding to q. Both sequences,
self-convolutions and mutual convolution are shown. It can be seen that the number of bits
required to represent the decimal number guides the sequence of self-convolutions whereas

non-zero bits guides the mutual convolutions.

Decimal number 19
Significant bits 4 13 (12(1]0
Binary number 1 10]1]0}1

Self Convolutions | z'® | z% [z [z [z

Mutual Convolutions | z!© ¢ |z

Tab. 4.1: Polynomial evaluations

4.5 Harmonic Domain Evaluations Using Real Fourier Series

The product of two periodic, real variables z and y, expanded in trigonometric series form,

z(t) = Z X! sin(iwt) + X/ cos(iwt)

1=0
o0

y(t) = Z Y, sin(iwt) + Y}’ cos(iwt) (4.27)
h=0

gives rise to another periodic variable, say z(t), that can also be expressed in the same domain,

Z Z} sin(kwt) + Z} cos(kwt) = (Z X/sin(iwt) + X/ cos(iwt)) X

k=0 =0

<§°:°: Y, sin(iwt) + Y, cos(iwt)) (4.28)

h=0
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A vector form of equation (4.28) can be obtained by using the harmonic coefficients only,
A X' Y/
(’ZT) = ( X7 ) ® ( Y7 ) (4.29)

X' = [X&X1L, X5 X

where

X" = [X{,’,X{’,X{,’,... ,X,{']t
Y = [Yol’ Yl’v Y2’7 sre Yl:]t
YII = [YOII, Yl”' Y2”, vy Y’:’]t
zZ' = [Z, Z{,Z;,... ,Z,'c]t

2" = [20,20,2},..., 24}

The matrix representation of equation (4.29) provides an alternative for performing actual

calculations,
ZI XSB XBC Y'
( VA > = ( X Ixcc ) ( Y? ) (4.30)

The elements of matrices [X**],[X*9],[X ] and [X ] are identified by taking one term of
y(t) at a time in equation (4.28) say, Y,

00
(Z X/sin(iwt) + X{’ cos(iwt)) Y}, sin (hwt) (4.31)
i=0

and making use of the trigonometric identities
sinAsinB = % [cos(A — B) — cos(A + B)]
sinAcosB = % [sin(A+ B) —sin(A - B)]
cosAcosB = % [cos(A — B) + cos(A + B)]

We have that,

Y

N
1l
N

[i X! cos((i — h)wt) — X{ cos((i + h)wt)

=0

—

Y/ (4.32)

=0

+ 3 [fj —X!'sin((i — h)wt) + X sin((i + h)wt)

Similarly for Y/":

zy = % I:i X/sin((i = h)wt) — X]sin((i + h)wt)] Yy
1=0
+ % [Z — X7 cos((i — h)wt) + X/ cos((i + h)wt)] 174 (4.33)
=0
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After considering all terms of the input Y’ and Y, the matrices [X %], [X *¢], [X ] and [X*]

are readily identified,

2X¢ - Xy | XY -X§ | XY -X! | Xt~ X!
X7 — X2 | 2Xg - X§ | XV = X! | X=X/
Xpo= | KXo =Xa | X7 =Xy [oXg - X7 | X/ = X7
n "
X7 XU | XU X0 | X7 = X7 [2X) = X7
2X{| X} | -X{+X{|-X5+ X, | X4+ XL
2X; | Xi+ X5 | X, X[+ X, | X3+X,
xee = | 2X5 X5+ X4 | X[+ X4 X¢ X/ + X}
2X; [ X5+ X5 | Xo+ X5 | X, + X5 X}
(X X X -3 X}
X} X1 +X5 | X5+ X; | X5+ X4
Lo =T X X1+ Xs | X;+ X}
X=X ¥ X1 = X1+ X2 | X§ T+ X
X3+ X [ -X5+Xe | - X1+ X5 Xs
2x(l)l X{I Xél Xél Xél
2XT [ 2X3+ X5 | Xi + X5X5+ X5 | Xi+ X7
.| 2xxT X 2Xo + X; X7+ XU | X0+ X3
X=X [ X5+ X7 X7+ X0 [ 2X0+ X7 | X+ X7
2X7 | XT+ XY X7+ X! X7+ X2 [ 2XZ ¥ X!

(4.34)

(4.35)

(4.36)

(4.37)

It is important to note that the matrix in equation (4.30) has the same dimensions as the
matrix in equation (4.10) but whereas the latter is complex the former is real. In applica-
tions involving real signals, it is expected that equation (4.30) speeds up harmonic domain
calculations while reducing storage requirements.

4.5.1 Dynamic elements

Dynamic elements are handled quite easily in this harmonic domain. Let us consider the

basic relation,

between the two periodic variables,

and

2(t) = z Z} sin(kwt) + Zy cos(kwt)
k=0

oo
z(t) = Z X sin(kwt) + X} cos(kwt)

k=0

(4.38)

(4.39)

(4.40)
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Then equation (4.38) may be written as,

Z Z sin(kwt) + Z} cos(kwt) =

k=0 k=0

I
s &=~

>
Il

0

Alternative, in terms of harmonic coefficients,

0o
Z Xy sin(kwt) + X} cos(kwt))

kwXj, cos(kwt) — kw X! sin (kwt)

[z —w \ [=wXi )
Z —2w —2wX;
_Z__.Z —kw —Icc;:X,'c
zy | = 0 0
A4 w wXy
Zy 2w 2wXy
\7) \ o ) \wxy)

(4.41)

(4.42)

This shows that the evaluation of dynamic Real Fourier series is carried out by simple algeb-
raic operations. Equation (4.42) can be written in compact form as,

(#) - (zet7) (57)

from which the operational matrix of integration can be written as

() - (et ™) (&)

0
< D(-z5)| 0 z"
4.5.2 Numeric example

The polynomial equation,
i = (t) = 0.001¢) 4 0.0743¢°
is subject to a basé sinusoidal excitation,

1
9
Yp=sinwt=1] 0

BN = O N e

o
0

The harmonic evaluation is carried out as follows,

2_ .0 (1)1
¢—¢¢-(0)2

or in matrix form, using [X*9],

, 1[19
Y =z | 0T
=10

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Also,

1 0
¢3=¢-¢2=(%) ; @( 0 ) 1 (4.49)
-1

3\ L
0 2 (4.50)
—1 3
The evaluation of the Fourier coefficients of the current is
Iy 1\ 3\ 1 0.0567 \
s O —_ 4 = LA SOl
Ié = 0.001 x i 2 + -0—0—47—3 0 7 = 0 2
Ié 0 3 -1 3 —0.0186 3 (4.51)

= 0.0567 sin(wt) — 0.0186 sin(3wt) (4.52)

or in matrix form,

or

4.6 Harmonic Domain Evaluations Using Hartley Series
Expansions

Hartley’s series [96] is another transform which uses real coefficients only for modelling real
waveforms. The advantage of working with real algebra as opposed to complex algebra has
motivated the analysis presented in this section. For a detailed description of Hartley’s
transform see [96). Important advantages of real transforms over the complex formulation
are presented in [97]. Relevant aspects concerning the advantages of Hartley’s transform over
the complex formulation for the analysis of real functions are geometrically explained in [98].

The product of two periodic variables z(t) and y(t) can be expressed in terms of the real
functions cas(a) and cas(—a),

f: Zycas(kut) = ( f: X,-cas(iut)) ( > tha,s(hut)> (4.53)

k=—0c0 1=-00 h=-00
where
cas(vt) = cos(vt) + sin(vt)
cas(vt) = cos(vt) —sin(vt)
v = 2nf (4.54)

Using the foliowing Hartley’s identity,
cas(a)cas(f) = [cas(a + B) + cas(a ~ B) + cas(—a + 3) — cas(—a — f§)]

leads to equation (4.55),

Z Zycas(kvt) = = E Z XYy [cas(i + h) + cas(¢ — h) + cas(—i + h) — cas(—i — h)]
k=—00 s——oo h=—oc0 (4.55)
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A vector form of equation (4.55) can be obtained by using its harmonic coefficients only,
1
Z=5Xr1@Yi+X1®Yu+Xu®Yr - X ®Yi] (4.56)
where
X1 = [X-h ooy X2, Xop,y Xoy X1, Xy .. aXi]t
Xir = [Xia ooy X2y X1, Xoy, Xo1, X ooy . aX—i]t
Y1 = [Y-iv ey Yo2,Y1, Yo, 1, Yy, . ’Yh]
YII = [Yn see 1Y21 Yla YO, y—lv Y—2a oo ,Y—h]t
Z = [Z—i’ ey Z—2v Z_l, ZO9 Zl) ZZ) R ’Xk]t
(4.57)
Equation (4.56) can be expressed in the following matrix form,
1
Z =3 [Xr+XulY (4.58)

where the elements of matrices X7 and Xy are identified by taking one term of the variable
y(t) a the time in equation (4.55). For instance, Y} will identify column A in both matrices,

or

( Z= )

7_

Z
Zo
Zy
Zy

N

Z=2
Z—
Zo
Zy
Zy

(

7

[ X_ih | C X_ion | [ Xien ] [ Xin \
X_24n X_2-n Xo4n Xo—h
X_14n X_1-p X144 X-14h
Xogn |+ | Xo-n Xo+h | — | Xo-an
Xi4h Xi-n X_14h X-1-n
Xoth Xa-n X_24n X_2-h

| Xien | | Xien [ | X-ien | B R j)

[ X_in+X—ion | [ Xegn=Xicn )
X-oo4h +X-2-n Xogh — Xo_p
1 Xoaph +X-1-p Xi1gh — X1
2 Xo+h + Xo-n Xo+h — Xo-n Yy
Xi4h + X1-n Xo14h—Xo1-p
Xogn + Xo-n Xoogh — Xo2op
Xith + Xizh | Xoivh + Xin _/

Y
(4.59)

(4.60)
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After considering all terms of Y, the matrices X1 and X5 become readily identified,

(- \
' 2Xo Xa+ X | X o+ X, X.3+ X3
X = X1+ X 2Xo X1+ Xy X2+ X3 X3+ X3
Xa+ X3 | Xo+ X2 | Xi + X4 2Xo X1+ X1
Xa+ X3 | Xo+ X2 | Xi+ X1+ X 2Xo
(4.61)
and
X3+ X3 | X2+ X | Xaa - Xn 0"
X3-Xa| X=X | X1 -X, 0 X1 —-X
X = X2 =X, X-1-Xy 0 X1— X1 | Xo9—=X_9
4.62
X.1-X1 0 X1—- X | Xo—=X_2 | X3—-X_3 (4.62)
0 X1 —-Xq | Xo=-X_2| X3—X_3
4.6.1 Dynamic elements
The dynamic relation,
z=¢ (4.63)
can be written in Hartley domain as,
00
Z Zycas(kvt) = ( E Xrcas(kvt) ) = Z kvXicas(—kvt) (4.64)
k==00 k=<o00 k==c0
Alternatively, in terms of Hartley’s harmonic coefficients,

(2 [ b\ (X (kX )
Z~2 2v X_2 2UX2
Z..1 v X..l I/Xl

Z() = 0 Xo = 0
Zl -V Xl -vX_1
Za -2v X, -2vX_q
\ Zk ) \ —kv } \ Xk \ —kvX_g }
(4.65)

The evaluation of dynamic terms in Hartley domain is carried out by means of simple algebraic
operations. Equation (4.65) can be written in compact form as,

Z = D(kv)X

(4.66)
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and the operational matrix of integration can be written as,

X = D(%)Z (4.67)

4.6.2 Numeric example

The numeric example used in this chapter will now be solved using Hartley harmonic domain
where the excitation is,

0 -2
1 1| =L ]
Py = sin(vt) = E(cas(ut) — cas(-vt) = 3 0 0 (4.68)
1 1
0 2
The harmonic evaluation is carried out as follows,
0 -2 0 —2
1 -1 -1 1 -1 -1
Pr=¢-p==] 0 | o ®5| 0 | o (4.69)
2 | —— 2| —
1 1 1 1
0 2 0 2
or in matrix form, using Xyj,
-21|0 0 -2 -1 -2
-210 |2 -1 -1 0 -1
1 —_—
Pr= % -2 0| 2 5[0 0 = i- 2 0
-2| 0| 2 1 1 0 1 (4.70)
0 2 0 2 1 2
Also,
() - (L) -
-1 -2 0 2
' DU R it B B
P=ylyp==|"2 | o ®@5|_0 | o (4.71)
4 | — 2 | —
0 1 1 1
1 2 0 2
\ 0 ) 3 \ 0 } 3

or in matrix form, using X7,

(2] |- S S S

2 -1 0 | _, I

-1 2 =1 -1 | =3 | _,

¢3=% —1 2 ~1 -;- 0 | o =% 0 | o
-1 2 -1 1 | 3| 12

-1 2 0 2 0 2

\ ) 2 ) \"0 / s \"1 / s
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and finally the cubic polynomial in Hartley’s domain is,

(13 ) [0\ (1) » [_0018 \ _

1_2 0 -2 0 -2 O -2

T -1 | =3 | . ~0.0562 | _,

Io = %1 X 0 o + 0'0:43 X 0 0o = 0 0
I; 1 1 3 1 0.0562 1 (4.73)

I 0 2 0 2 0 2

\" \0 /) s \'1 / s\ =008 ) s

or,

i = 0.0562sin(vt) — 0.0186 sin(3vt) (4.74)

4.7 Harmonic Domain Newton-Raphson Techniques
For most practical purposes, a non-linear relationship,
y=f(z) (4.75)

that can be expanded in Taylor series is amenable to an iterative solution via Newton-Raphson
method,

f(z+ Az) = f(zp) + %Az (4.76)
Ay = a—fa—g—)Ay 4.77)

where
Ay = f(z + Az) — f(zs) (4.78)

Furthermore, if the variables z and y in equation (4.75) are periodic then for small increments
about zp and y, the following harmonic domain linearisation exists,

AY = JAX (4.79)

where J is a harmonic Jacobian matrix containing first order partial derivatives of the non-
linear function f(z) with respect to the harmonic coefficients of z. Also, by noticing that the
linearisation has taken place about Xj, Y} in the harmonic domain then,

AY = Y-V
AX = X-X, (4.80)

Substituting relations (4.80) into equation (4.79) produces an alternative expression which
provides further insight into harmonic domain techniques,

Y =JX+Yyn (4.81)

where

Yn=¥-JX, (4.82)
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The subscript N indicates the possibility of interpreting this equation as a harmonic Norton
equivalent. This will be the case when Y is a vector of harmonic current, X is a vector of
harmonic voltages and J is a matrix of harmonic admittances. From equations (4.81) and
(4.82) it is apparent that the harmonic domain solution of a single variable, non-linear function
requires the evaluation of two vectors at each iterative step. The vector X} corresponds to
the evaluation of the original function f(z) whilst ¥; corresponds to the evaluation of its
derivative function f'(z).

Equation (4.81) provides a suitable means to determine the steady state solution of non-
linear circuits by iteration through a Newton-Raphson approach. Its nodal nature makes
it attractive for incorporation into a general harmonic frame-of-reference where any number
of both linear and linearised, non-linear components can be represented together to give
a unified iterative solution that exhibits quadratic convergence. In this environment all the
harmonics, cross-couplings between harmonics, nodes and phases present in the network share
a global nodal admittance matrix which is also a Jacobian matrix. Any of the three harmonic
transforms presented in this chapter can be used to determine the steady state solution of

non-linear circuits via Newton-Raphson techniques.

4.7.1 Newton-Raphson in Real Fourier Harmonic Domain

In the Real Fourier harmonic domain the variables in equation (4.79) will be expressed as,

(o]
Ar = Z AXj sin(hwt) + AX} cos(hwt) (4.83)
h=0
Ay = > AV/sin(kwt) + AV} cos(kwt) (4.84)
k=0
flz) = fllz®) = Za; sin(iwt) + a! cos(iwt) (4.85)
1=0

Substituting equations (4.83), (4.84) and (4.85) into equation (4.79) leads to the following

matrix equation,
AY’ A AX' As® A% AX!
[ AYII ] = [ AII ] @ [ AXI/ ] = [ Acs ACC ] [ AX/I ] (4°86)

where the vector and matrix arrangements are similar to those of equation (4.29) and (4.30).
A Norton representation of the kind given by equation (4.81) and (4.82) is easily obtained

for this equation.
In the real Fourier harmonic domain a complex, linear admittance G + By, is represented

I,'c _ G, B Vk,
[1::]"[—3:: GkHv: (4.87)

as,
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4.7.2 Newton-Raphson in Complex Fourier Harmonic Domain

In the Complex Fourier domain the variables in equation (4.79) will be expressed as,

Az = i AXpetht (4.88)
h==00

Ay = > AYiett (4.89)
k=—o00

f@) = f®)= 3 a™ (4.90)

Substituting equations (4.88), (4.89) and (4.90) into equation (4.79) leads to the following
matrix equation.

AY =[C]AX (4.91)

where the vector and matrix arrangements are similar to those of equation (4.9) and (4.10).
In the complex Fourier harmonic domain a complex, linear admittance G + jB; is rep-

resented as,
Iy | _ | Gk =3Bk 0 ] [ V_k ]
[ Ii ] - [ 0 Gr+ 7Bk Vi (4.92)

4.7.3 Newton-Raphson in Hartley Harmonic Domain

In the Hartley domain the variables in equation (4.79) will be expressed as,

Az = f: AXjpcas(jhut) (4.93)
h==-00

Ay = io: AYycas(jkuvt) (4.94)
k=-o0

fi@) = fa)= ) ccasjivt) (4.95)

Substituting equations (4.93), (4.94) and (4.95) into equation (4.79) leads to the following
matrix equation,

AY =[C1+C)AX (4.96)

where the vector and matrix arrangements are similar to those of equation (4.56) and (4.58).
In the real Hartley harmonic domain a complex, linear admittance G +j By is represented

[ II.: ] _ [%: —Glik ] [ ‘;-kk ] (4.97)
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Fig. 4.1: General procedure for harmonic domain calculations

4.8 Harmonic Domain Computations

Figure 4.1 represents diagrammatically the computational procedure used in harmonic do-
main calculations. The blocks & and 3 are alternative routes for computations involving non-
linearities whilst the v blocks correspond to a harmonic domain Newton-Raphson procedure.
Harmonic domain computations using alternative § are detailed in [17] whilst polynomial
evaluations are described in [18]. In this chapter polynomial alternatives are preferred. Both
alternatives can be carried out in any of the three frames of reference described in this chapter.

Some non-linear components, such as electric arcs, fluorescent lamps and magnetic non-
linearities are amenable to a polynomial representation, and route a results in more efficient
calculations. Also, some power electronic-base plant components such as TCRs are ameanable
to frequency domain computations following route o but where the polynomial is a first degree
polynomial i.e. switching function. An example of this modelling approach is the three phase
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TCR model presented in chapter 7. Route 3 is used when the non-linearity are not accurately
be represented by polynomials or switching functions. Here, a full cycle of the currents is
evaluated in the time domain at each iterative step. Also, a full cycle of the derivative of the
current with respect to flux with respect to time is required.

Block o represents the fitting of a non-linear characteristic by a polynomial, a switching
function or any representation amenable to direct frequency domain computations. This
topic was addressed in Chapter 2. The process is carried out just once, outside the iterative
loop. Polynomial evaluations required in blocks a; and a3 are achieved efficiently by means
of repeated convolutions. In blocks 8; and (s, a full cycle of the aveform at the fundamental
frequency is obtained point-by-point and then a FFT is applied to find the harmonic content
of the resultant waveforms. An advantage of route § is that there is no restriction in the
representation of the non-linear characteristic.

Block 7; represents the calculation of the mismatch vector function whilst 4 represents
the calculation of the Jacobian matrix. Sparsity techniques can be used to reduce storage
and cpu time requirements. The updated harmonic state of the non-linear component is
calculated in block 3. In block 44 the updated voltages are transformed into fluxes. .

The general flow chart of Figure 4.1 shows the case when the Jacobian matrix is updated
at each iterative step. This approach is a true Newton-Raphson method with quadratic con-
vergence. Alternatively, faster Newton-type algorithms are derived from this basic diagram.
A detailed analysis of the alternative numeric technique is presented in Chapter 7.

4.9 Case Studies

The harmonic domain methods presented in this chapter are used to analyse a practical
transmission system for which data and results are available in open literature [16]. Detailed
information of the geometry of the transmission line as well as data for transformers, shunt
reactors and generators is given in Appendix B. The system is shown in Figure 4.2. The
transformer is modelled as a three phase bank with the saturation characteristic taken to be
curve 1 of Figure 2.2. The transmission line is modelled taking frequency dependence and
long line effects into account. The transmission line geometric imbalances are responsible for

the voltage imbalances shown in Figure 4.3.

®_-H_Z Jaguara Taquaril
P
O+

Fig. 4.2: Simplified Jaguara-Taquaril transmission system

When the transformer operates in the saturation region, it draws harmonic currents. The
predominance of a particular harmonic order depends on the system configuration and the
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Fig. 4.3: Voltages at Jaguara bus bar with voltage excitation of 1.1 [p.u.]

transformer connection. In this case, the excitation voltage in the generators is set to 1.1
[p.u.]. The voltage waveforms are shown in Figure 4.3(a). In this case, the predominant
harmonic is the fifth harmonic. In most countries power grid regulations impose limits of
5%. In this case, corrective actions should be taken to reduce 5th harmonic voltage levels.
All other harmonics are small enough to cause concern. Harmonic current injection due
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Fig. 4.4: Voltages at Jaguara bus bar with an excitation voltage of 1.15 [p.u.]

to transformer saturation is a highly non-linear phenomenon. Small changes in the voltage
excitation may result in the injection of large currents which, in their turn, may cause highly
distorted voltages . To illustrate this point, a small change in voltage excitation is considered,
from 1.1 to 1.15. The effect of this small change in voltage excitation causes highly distorted
voltage waveforms. The voltages at the Jaguara bus bar are shown in Figure 4.4, the 5th
harmonic goes far beyond any permissible limit. Full Newton-Raphson methods were used
to calculate these results to a voltage tolerance of 10~°.



Chapter 4. Harmonic Domain Modelling of Electric Power Circuits 64

4.10 Conclusions

Harmonic domain evaluations in real Fourier or Hartley domains are up to 4 times more
efficient than their complex Fourier domain counterparts. An equal number of operations is
needed in all three domains but real operations are required in both Real Fourier domain
and Harley domain while complex operations are required in the Complex Fourier domain.
The opportunity for savings in the real domains is quite significant as harmonic evaluations
of each non-linear element involves convolutions and multiplications of vectors and matrices
of relatively large dimensions.

New methods for solving power systems harmonic problems have been presented. They
are based on the use of real transforms i.e. Real Fourier and Hartley, and provide more
efficient alternatives then an existing method which uses the Complex Fourier transform.
Any number of linear and non-linear plant components can be represented in these frames
of reference and owing to their nodal nature, any number of buses, phase and harmonics can
be represented with ease for a unified solution via Newton-Raphson techniques exhibiting
quadratic convergence. The theory is tested in a practical transmission system.



Chapter 5

Three-Phase Thyristor Controlled Reactors

In this chapter new harmonic domain models for single and three-phase Thyris-

tor Controlled Reactors (TCR) are presented. The modelling is carried out in

the frequency domain using the complex Fourier domain. It makes use of
harmonic switching vectors and discrete convolutions.. In the presence of low
harmonic distortion the switching vectors are calculated only once during the - .
iterative process. This operation is performed entirely in the frequency domain. .
In cases of high harmonic content the switching times defining the switching
functions may require further identifications during the iterative process. A
portion of an actual power network is used to test the TCR model.

5.1 Introduction

Static VAR Compensators, SVCs, are an attractive means of alleviating a wide range of
problems encountered in modern power systems [99]. They provide an adaptable form of
compensation which responds almost instantly to most operating conditions of the power
network.

Thyristor Controlled Reactors, TCRs, are static compensators capable of absorbing react-
ive power from a network as opposed to Thyristor Switched Capacitors, TSCs, which supply
reactive power to a network [100]. This chapter is concerned with the harmonic modelling of
TCRs and their interaction with the power network.

From the operational point of view TCRs act as controlled susceptances which achieve
their fundamental frequency operating state at the expense of generating harmonic currents
{99, 100]. These harmonics are merely a side effect and measures such as the use of different
three phase arrangements or other control strategies must be used to prevent the harmonics
from reaching the high voltage side of the network. Filtering equipment is often used, but
many repetitive studies are necessary to establish the optimum design of such equipment
which constitutes a significant fraction of the total capital cost of the compensating plant.
Accordingly, there is a need for the development of versatile methods for the rapid and
accurate calculation of TCR harmonics. Comprehensive analysis of TCRs operating under
a wide range of conditions may be economically achieved by digital simulations based on
steady-state techniques.

Power systems reactive compensation by means of solid state devices is a mature but
relatively new technology. Over the last 20 years it has engaged a large number of research-
ers in both industry and academia. Reference [99] gives values of the maximum harmonic
currents drawn by TCRs under balanced conditions. However, balanced conditions never
occur in practice. Static compensators are prone to exhibit imbalances due to manufacturing
tolerances in their parts and the high-voltage transmission network can be very unbalanced
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at harmonic frequencies. In 1981 RM Mathur [101] modelled the TCR as an unbalanced
harmonic current source affected by both firing and inductance asymmetries, but network
interaction was ignored. In 1986 R Yacamini and JW Resende published a model which takes
TCR imbalances fully into account [102]. In such a model each TCR branch is represented
as a voltage-dependent set of harmonic current sources, which is injected back into the nodal
impedance of the network to obtain an updated set of harmonic voltages with which the
cycle can be repeated, reaching the harmonic solution by iteration. In this method the TCR
harmonic current coeflicients are determined by means of Fourier analysis. In 1988 W Xu,
JR Marti and HW Dommel published a method based on alternate time domain and fre-
quency domain representations of the TCR currents [103]. This involves deriving a full cycle
of the current, at the fundamental frequency, across each TCR branch and then extracting
their harmonic contents via FFT algorithms. These operations are carried out at each itera-
tion. In this method each TCR branch is modelled as a voltage-dependent harmonic current
source. In order to circumvent poor convergence performance associated with this repres-
entation, the same authors published in 1991 an alternative model whereby each individual
TCR branch is modelled as a harmonically ’decoupled’ Norton equivalent {104]. Harmonic
current calculation in both methods is the same. The admittance element calculation is based
on fundamental frequency information only, and scaled-down at each frequency of interest.
The authors have reported marked improvements in convergence performance. In 1989 LJ
Bohmann and RH Lasseter reported on a harmonic domain admittance model [105] which
exhibits cross-couplings between frequencies. The model was intended for single phase TCRs
and is based on the use of switching functions.

In 1991 E Acha put forward a three phase TCR model which uses the harmonic domain
as the frame of reference [106], where all the harmonics and cross-couplings between harmonics
are explicitly shown. Each single phase unit of the TCR is modelled as a voltage-dependent
harmonic Norton equivalent. The admittance matrix of the Norton equivalent has a quasi-
Toeplitz structure and plays the role of a Jacobian in the iterative solution. In this method a
full cycle of the current at the fundamental frequency is determined and then a FFT is used
to obtain the harmonic content of the current waveform. Also, a full cycle of the derivative
of the current with respect to the flux is obtained and the harmonic coefficients obtained
via a FFT are used to assemble the admittance matrix of the Norton equivalent. This
procedure is carried out for each branch, then a three phase TCR model is assembled and
combined with the nodal admittance matrix of the transmission network to obtain an updated
set of harmonic voltages. These harmonic voltages can be used to calculate an updated
harmonic Norton equivalent with which the cycle can be repeated. When a satisfactory
degree of convergence has been achieved, the calculated harmonics will be in balance. This
method requires two FFTs per iteration and there are plenty of opportunities for introducing
unwanted errors in the solution process due to discretisation of the waveform, aliasing and
round-off errors, hence degrading Newton method’s quadratic convergence. A more efficient
formulation which overcomes these limitations was published by E Acha and JJ Rico for
the case of single phase TCRs [107]. This method is a harmonic domain Newton-Raphson
technique, which uses frequency domain information only. It is based on the use of harmonic
vectors and discrete convolutions. The process of transforming back and forth between time
and frequency domains is avoided, as well as the use of FFTs. The Fourier coefficients of the
switching vector are calculated directly in the frequency domain by means of simple, closed-
form, equations. A discrete convolution of the switching vector and the input voltage, which
is a frequency domain operation, provides the harmonic coeflicients of the TCR current. The
overall result is a ‘true’ Newton-Raphson algorithm exhibiting quadratic convergence even in

cases of excessive harmonic distortion.
In the present chapter the author has generalised the single phase TCR model to the case
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of multi-pulse TCRs. Six-pulse and twelve-pulse TCR solutions are derived in this chapter.
These generalised models incorporate with ease any kind of imbalances present in the TCR
or in the external network. The transmission system can be represented in full [108] or as a
reduced equivalent network [109] incorporating detailed frequency-dependent, geometric and
long-line effects [110].

5.2 Single Phase Modelling of Thyristor Controlled Reactors

In power systems compensation studies a single phase TCR is conveniently represented as
a linear inductor in series with two reverse-parallel connected thyristors and a firing control
system. Figure 5.1(a) shows a single phase TCR fed from a sinusoidal voltage source. This
circuit is used as the starting point for deriving a TCR model in the harmonic domain frame
of reference. The flux-current characteristics exhibited by a TCR, acting under a sinusoidal
AC excitation flux, are a family of straight lines which are a function of the delay or firing
angle 4, as shown in Figure 5.1(b).

The conduction angle o depends on the firing angle é according to the relationship,

o =2(r -8 (5.1)

In principle at least, the firing angle § can be controlled to take any value between 90°
and 180°, corresponding to values of o between 180° and 0°. The former case corresponds to
the TCR in a fully conducting state while the latter corresponds to the TCR in a completely
non-conducting state. Both operating conditions are free from harmonics, whereas any other
condition in between will be accompanied by the generation of harmonics. If we were to
define a switching function s in the time domain which takes a value of 1 if either thyristor
is conducting and takes a value of 0 if neither thyristor is conducting, then we would have
the situation shown in Figure 5.2. It must be noted that the conduction angles of thyristors
Ty and T, can be different. The excitation voltage and current are shown in Figure 5.2(a)
whilst the switching function for a given conduction angle and its product with the voltage
are shown in Figures 5.2(b) and 5.2(c), respectively.
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5.2.1 TCR Harmonic current vector

The circuit in Figure 5.1(a) may be used to write the dynamic equation of the current

across the TCR,
din 1
T = s (5.2)

or
t

"B=Tr o
Applying Fourier Transform to both sides of equation (5.3) we have that,
1 t
Ir(jw) = —F [/ s(r)v(r)dr]] (5.4)
Lr Lo

Finally, taking the Integration and Frequency Convolution theorems into account and con-
sidering that F[s(t)] = S and F[v(t)] = V, it is possible to write an expression for the current
in the frequency domain as follows,

s(t)v(r)dr (5.3)

1

" jhwLp
Considering that V = diag(jhw)¥, where diag() is a diagonal matrix with entries jwh, the
current derivative with respect to the flux ¥ is expressed as follows,

£ =75 (5.6)

Ir SeV (5.5)

which is the switching function scaled down by the inverse of the inductance of the linear
reactor Lr. It must be noted that equations (5.5) and (5.6) are used to calculate a linearised
equivalent about a base operating point V4, Iy,

Alp =[F]AV (5.7)
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or,
Alr = [H]AV (5.8)
The matrix [F] plays the role of a Jacobian matrix in the iterative solution. It has a

Toeplitz structure [17] and it is assembled with the harmonic coefficients of equation (5.6).
The following relationship exists between [H] and [F],

(] = [Fldiag (=) 5:9)
Equation (5.8) may be interpreted as a harmonic Norton equivalent,
I =[HVily (5.10)
where,
In=1,-[HV, (5.11)

The harmonic vector I is assembled with the Fourier coefficients of equation (5.5).

5.2.2 Harmonic switching functions

One way of obtaining the harmonic coefficients of the switching vector is by drawing a
full cycle of the switching function at the fundamental frequency and then using a FFT
[17]. However, a faster and more accurate way of achieving this result is by determining
the harmonic coefficients of the switching function in terms of the conduction angles ¢; and
oy. The switching function s(t) in equation (5.2), and shown in Figure 5.3, has values of
one whenever the thyristor is on and zero whenever the thyristor is off. In the frequency
domain a periodic train of pulses described by the switching function can be represented by
the harmonic vector (5.12),

(%52 -33 )
- 2b_
=i
a-1 _ gboy
7 —J732
S = % (5.12)
b
e
2 +5%
b
\ @ +5% /
In general, the complex coefficients are written as,
an , b 1 [T — ihot
= — —= - e " duwt 5.13
Sh=+ig=1 [ st (5.13)
The coefficients aj, and b, are obtained from the following relations,
la _ o1+02
270 = 2

- E) o ()] (3)
- R () () e
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The Fourier coefficients a; and by are calculated from equations (5.15), (5.16) and (5.17)
which takeinto account that the switching function has a value of one in the following intervals

5 -5 7+ glend 5~ 25+ %)

1 ELERSY L 22

4 = _[/’ Yot [’ ”dwt] (5.15)
n == _2 r_22

2 2 2 2

1{ 3+% EREY

ap = — / cos(hwt)dwt + cos(hwt)dwt (5.16)
T\JE-F -7
1 [T HE

by = - / sin(hwt)dot + [ sin(hwt)dot (5.17)
T\Jg-F i-%

Under normal operating conditions, the current across the TCR is comprised of the funda-
mental and odd harmonics which amplitude is a function of the conduction angles ¢; and o3
[99]. The harmonic currents drawn by a single phase TCR connected to an infinite bus bar
have been calculated with the model described above and the results are shown in Figure 5.4.
It shows the percentage of all the relevant harmonics with respect to the maximum funda-
mental current at full conduction. These results are in full agreement with values available
in open literature [99, 105], hence showing evidence of the accuracy of the single phase TCR
model.

5.3 Firing Control Systems

Control firing systems of TCRs may, under certain circumstances, generate and magnify
some of the harmonics present in power systems. In some cases, these effects are of little
consequence but sometimes these disturbances may prevent stable operation of the system.
Over the years new and more robust controllers have been developed. There are two main
classes of TCRs controllers: closed loop and open-loop. Open loop controllers have poor
performance and have been superseded by closed loop controllers. The TCR model developed
in this chapter assumes the use of close-loop controllers. A widely used class of closed loop
controller is the Phase-locked oscillator [102].

An important part of these controllers is that which determines the valve firing times.
There are three firing control systems used in TCRs, namely individual phase control (IPC),
pulse frequency control (PFC) and pulse phase control (PPC). All of them may be simulated
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Fig. 5.4: Harmonic currents versus Conduction angle

in a computer program [111]. IPC controllers are no longer used in the new control schemes
but their use in the early stages of TCR applications suggest the need to take them into
account in modern analysis.

The purpose of a firing system is to determine the firing instants of the reference (phase
a) under the presence of arbitrarily distorted a.c. bus voltages. Prior to the determination
of such firing angles, in any scheme, the voltage zero crossings of the a.c. voltage must be
calculated. This applies to all three iterative schemes.

5.3.1 Voltage zero crossing evaluation
The phase-to-neutral a.c. bus voltages can be generally expressed as,

nh
v(wot) = Z (Vi cos(wot) + Vy' sin(wot)) (5.18)
=0
where nh is the number of harmonics considered and wp is the fundamental frequency of the

system, V; and V) are the Fourier coefficients corresponding to harmonic h. The voltage
zero crossing angle wot can be calculated, for the reference phase, from following equation,

nh
F(wot) =0= Z (Vi cos(wot) 4 V3 sin(wot)) (5.19)
h=0

Equation (5.19) is non-linear and can be solved by Newton-Raphson method,

(wo)™ = (wot)™ + A(wot)” (5.20)
where
Alwot)™ = _%l) (5.21)

5.3.2 Firing angle evaluation

IPC, PFC and PPC firing schemes control the thyristor firing angles in such a way that the
angle, measured from the voltage zero crossing to the instant of firing, is constant. However,
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there is a fundamental difference between the various control schemes which relates to the
starting point of the delay time, before a firing signal is triggered. In the IPC system a level
detector senses the voltage zero crossing; at this point a ramp voltage is initiated and its
value compared with a reference control voltage. The firing pulse is produced when both
voltages are equal, this can be expressed as,

nh

F(t) = Kwot = E (Vi cos(wot) + Vi’ sin(wot)) (5.22)
h=0
or
nh
F(t) = Kwot — Z (Vi cos(wpt) + Vi cos(wet)) =0 (5.23)
h=0

The Newton-Raphson solution of equation (5.23) yields, for this nonlinear equation, the
following iteration process,

= ¢t A" (5.24)
where
n_ _ FE")
At" = F’(t") (5.25)

Unlike IPC systems, PFC and PPC schemes initiate the ramp voltage at equidistant firing
instants which are set to values proportional to the control voltage. PFC’s frequency is
controlled while the phase is controlled in PPCs. The triggering points do not, in general,
correspond to the voltage zero crossings and the following relation holds,

a=v+46 (5.26)

where 1 is the angle at the zero crossing time and ¢ is the angle elapsed from the zero crossing
to instant of firing. Similarly to the IPC system, the angle § is calculated with the following

equation,

§ = wot (5.27)

5.3.3 Turn-off time evaluation

A complete definition of the switching function requires knowledge of the firing times ¢,
and t3 and turn-off times ¢; and t4 shown in Figure 5.3. The firing times are evaluated
as explained above. Turns-off switching times are determined by the zero crossing of the
thyristor’s current. LJ Bohmann and RL Lasseter [105] have calculated these by solving the

following non-linear equation,
/——vR (wt)dwt (5.28)

If the voltage across the TCR is assumed to be a complex harmonic series, the current is a
similar summation of exponentials,

nh

. Vi jhwt
ipwt)= ) e (5.29)
hamn Il
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In the zero crossing we have that,

nh Vh
0= ) ——elh (5.30)
nian I LR

A Newton-Raphson can be used to solve this non-linear equation. Proper initial conditions
are required to ensure that the solution will converge to the desired solution point. Since the
current also has a zero crossing at the firing instant. A good initial guess for turn off times
can be obtained from a pure sinusoidal voltage.

5.4 Three Phase TCR Modelling

For most three phase applications, the branches of the TCR are delta-connected, in order to
cancel out the third, ninth and fifteenth harmonic currents. Further harmonic cancellation
is made possible by employing two three phase bridges with a shift of 30° between them.

In the case of a three phase delta-connected bridge, the harmonic Norton equivalent can
be found by linear transformations. The harmonic Norton equivalent corresponding to the
unconnected three phase TCR is,

11 GN,l Vl IN,l
L | = GnN,2 V2 1+ | In2 (5.31)
I3 GnNg3 Vi Ings

or, in compact form,
I, = [GplVp + Ion (5.32)

In a power invariant, delta-connected circuit the relationships between the unconnected
and connected states are,

i o 1 -1 Va
A 1 -1 Vi (5.33)
o) VBl 1 /\w
and,
I, /1 -1 I
L | =2Y( 5 1 I, (5.34)
I, V3 -1 1 I3
or, in compact form,
Z£30°
Vo= 73_[Cwa]Va (5.35)
£30°
Ia = 7_3—[Ca¢]1¢ (5.36)
Premultiplying equation (5.32) by %%E[Cw], we have that
£30° £30°
7§‘[chllw = W[Cav][awplvw
£30°

+ W[Cacp] I¢N (537)
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Substituting equations (5.35) and (5.36) into equation (5.37) gives the three phase Norton
equivalent equation,

Z30° Z - 30°
I, = —\/T[C’w][GW] 7 [CoalVa
Z30°
+ ‘\/—g[Cw]LpN (5.38)

or,

1
I, = g[Caw][Gwp][Ccpa]Va
£30°
+ —
7 [
In expanded matrix notation form, the three phase Norton equivalent of the delta-
connected TCR is,

CoolIoN (5.39)

I, 1 [ Gra+Gnr2 -GN, -GN
Iy = 3 -Gn2  Gna2+Gnz -GNg3
I -GNy -Gns  Gna+Gny
Va Z30° IgoN,l h I¢N,2
x Vi |+ 73 I,N2 = IoNg3 (5.40)
V;: ItpN,3 e IcpN,l

5.5 Case Studies

The three phase TCR model developed in the previous section has been tested on the reduced
South Island system of the 220 kV New Zealand power network. It is a real power system for
which complete data exists in open literature [112]. The relevant data is given in Appendix
A. The system is shown in Figure 5.5. Actual measurements have indicated the presence of
a parallel resonance near the 5th harmonic frequency, i.e. 250 Hz. Comprehensive simulation
studies have been carried out for this reduced system in the past and its frequency response
is well known [113]. This author has used his own multi-phase frequency scan program to
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verify such simulation results independently and a good match has been found. Figure 5.6
shows the harmonic impedance of phase A in p.u., as seen from Tiwai. The presence of a
parallel resonance laying between the 4th and the 5th harmonic frequency is clearly shown.
To test our model, the large converter plant at Tiwai has been replaced by a delta-connected
three phase TCR. Generators, transformers and loads have been assumed to behave linearly.
The software has the option of representing the transmission system in full or as a reduced
equivalent network. The latter option has been used for obtaining the results presented below
because the interest is in analysing the interaction between the TCR and the network at the
point of connection.

5.5.1 Six pulse, three phase TCR

As shown in Figure 5.4, a TCR will inject maximum 5th harmonic current when the conduc-
tion angle is 140°. In the case being analysed, this condition is compounded with the parallel
resonance at the 5th harmonic frequency exhibited by the network to give rise to a badly dis-
torted voltage waveform at Tiwai. Figure 5.7(a) shows the voltage waveforms whilst Figure
5.7(b) shows the harmonic content for the three phases. Large harmonic voltage imbalances
are shown in this result where the percentage of the 5th harmonic reaches almost 12 per cent
for phase C. The remaining harmonic voltages are well below recommended limits and are
cause of no concern [114]. However, filtering equipment would have to be connected at Tiwai
to provide a low impedance path for the 5th harmonic current. The TCR is delta-connected
and under perfectly balanced conditions no third harmonic current should flow towards the
high-voltage side of the network. However, small geometric imbalances in the transmission
system will allow a small amount of 3rd harmonic current to escape the delta producing a
small amount of 3rd harmonic voltage., '

According to figure 5.4 the TCR also inject considerable 5th harmonic when the conduc-
tion angle is 70°, this condition has also been simulated and the results are shown in Figure
5.8. Figure 5.8(a) shows the voltage waveforms whilst Figure 5.8(b) shows the harmonic

content for the three phases.

DC Component

The TCR model is capable of considering not just angle assymetries in the conduction angle
but also conditions when a DC voltage component already exists at the TCR bus bar voltages.
This may be due to the presence of a DC load in HVDC systems or problems with capacitors.
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To show the capability a DC voltage component of 0.2 p.u. was assumed at Tiwai. This was
injected into the TCR producing the results shown in this Figure 5.9. Figure 5.9(a) shows
the voltage waveforms whilst Figure 5.9(b) shows the harmonic content for the three phases.
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Fig. 5.10: Voltages at Tiwai bus bar

5.5.2 Twelve pulse, three phase TCR

TCR harmonic currents can always be removed by means of filtering equipment. An al-
ternative arrangement for eliminating 5th and 7th TCR harmonic currents is by splitting the
six pulse TCR into two identical half-sized units and employing a three phase transformer
with two secondary windings. The primary winding is grounded star-connected. One sec-
ondary winding is star-connected whilst the other secondary winding is delta-connected. One
half-sized unit is connected to each secondary winding. This configuration produces a 30°
phase shift between the fundamental frequency currents drawn by each TCR. Under balanced
operating conditions, the 5th and 7th harmonic currents of both TCRs will be equal in mag-
nitude and in phase opposition at the primary side of the transformer. Consequently, they
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will cancel out with each other at the primary side of the transformer. However, if network
or TCR asymmetries are present then a reduced amount of 5th and 7th harmonic currents
will escape towards the network causing the voltage at the transformer connection point to
be non-sinusoidal if conditions for harmonic voltage magnification exist. This situation is
illustrated in Figure 5.10(a) where the TCR conduction conduction angle is 140°. The three
phase waveform still shows a significant amount of 5th harmonic voltage due to transmission
system imbalances compounded with the presence of a parallel resonance near the 5th har-
monic. Figure 5.10(b) shows a value of 4.5 per cent for phase C. In this case, the use of a
12-pulse TCR has reduced 5th harmonic voltage distortion by almost a third compared to
the 6-pulse TCR used above. Nevertheless, this value still is well above the threshold value
permitted by existing legislation [114] and the use of filtering equipment will be needed to
filter out any trace of 5th harmonic current at the high-voltage side of the transformer.

5.6 Conclusions

A new, three phase TCR harmonic model which is based on the use of harmonic switching
vectors and discrete convolutions, has been presented. This harmonic model is completely
general and can be interpreted as a harmonic Norton equivalent. It is suitable for direct
incorporation into the multi phase harmonic domain frame of reference where it combines
easily with the frequency dependent admittances of the transmission network and with other
linearised components such as saturated transformers, rotating machinery, electric arcs and
power converters. The use of harmonic switching vectors and discrete convolutions has been
shown to be a simple and yet powerful combination in the solution of TCR harmonics. All
operations are conducted in the frequency domain and the use of alternate time domain and
frequency domain representations is avoided and so it is the use of FFTs. This approach
leads to very efficient iterative solutions of power networks containing TCRs by means of a
harmonic Newton-type technique exhibiting quadratic convergence.



Chapter 6
Duality-Based Three-Phase Multi-limb

Transformers

The modelling approach presented in this chapter is based on the principle of
Duality. New harmonic domain models of three phase, multi-limb transform are
developed using this principle. The models accurately incorporates all relevant
effects which become important when the transformer saturates. As opposed to
existing harmonic domain models, the Duality-based methods proposed in this
chapter incorporate construction details of the transformer. Commonly used
core configurations are analysed. The complete linearised model is represented
as a harmonic Norton Equivalent which combines easily with the external power
network taking due account electrical of the transform’s connection. A practical
system is used to test the transformer model.

6.1 Introduction

Arguably, transformers are one of the most common and mechanically simple power plant
components. However, no single model has proven appropriate for studying a wide range
of frequencies and different operating conditions. Different component models are used for
steady-state and for slow and fast transient studies. Transformer models for harmonic analysis
as well as transient analysis require rigorous representations. Comprehensive transformer
models have been developed for transient studies [115] but, so far, no transformer model
incorporating such detail and level of sophistication has been developed for harmonic studies.

Over the years, an intensive search for determining models capable of modelling correctly
the interaction of core fluxes, has been carried out. The principle of duality developed by
Cherry [116] and generalised by Slemon [117] provides a means to tackle this problem. At
first, this approach did not receive attention because computers were not powerful enough.
An additional complication was the difliculty in measuring the required parameters. More
recently the method has been successfully applied to the development of multi-limb, three
phase transformers model [115, 118, 119, 120] in the transient analysis field. Promising results
using this modelling approach has motivated research relating to parameter identification
(121, 118). Recent work in this field has been carried out by A. Narang and R. H. Brierley
[119] and by B. A. Mork and D. L. Stuehm [120].

Accurate transformer models intended for steady state analysis at the fundamental fre-
quency have been in existence for many years. Laughton [122], for instance, put forward a
three-phase transformer model for three-phase banks. The lattice equivalent circuit used in
this model can take into account asymmetries in the operating conditions. Chen and Dillon
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[123] and V. Brandwajn, H.W. Dommel and I. I. Dommel [124] have put forward more general
models. These models take account of network imbalances and can accommodate different
types of electrical connections. Easy interfacing with the electrical network is achieved owing
to their nodal nature. A recent publication reports on a more accurate model where the
magnetic circuit of the transformer has been incorporated [125].

Accurate predictions of the electro-magnetic behaviour of the transformer under fast
and slow transients call for more rigorous representations of the transformer’s electric and
magnetic circuits. A great deal of activity has been registered in this area. Recently, a
comprehensive model has been put forward by F. De Leon and A. Semlyen in [121]. It
represents accurately both leakage inductances and fluxes in the iron core. The trapezoidal
rule of integration is used to solve the state equations describing the electric model, resulting
in a Norton equivalent. This makes it easy to interface with the external electric network.

Likewise, predicting the periodic steady state behaviour of transformers also require rigor-
ous electro-magnetic models in order to evaluate harmonic distortion due to saturated regions
of the magnetic core. Although the periodic operation of transformers can be assessed by
using time domain methods, steady-state methods are preferred [17]. A. Semlyen, E. Acha
and J. Arrillaga have modelled single phase transformer in the harmonic domain. N. Ra-
jakovic and A. Semlyen have applied harmonic domain modelling techniques to the problem
laminated iron cores in [126] and in [127]. They also devised a simple way of including hyster-
esis effects. The extension of harmonic domain techniques to the solution of quasi-stationary
phenomena has also been carried out by N. Rajakovick and A. Semlyen [128].

The concept of harmonic Norton equivalent in the harmonic domain was extended to the
three phases by E. Acha, J. Arrillaga, A. Medina and A. Semlyen [129]. In this reference a
model for three phase bank of transformer is presented which uses lattice equivalent circuits.
These are easily combined with the rest of the network taking due account of the electrical
connection. In general, however, power transformers used in high-voltage applications will
have multi-limb core with different cross-sectional regions. In such cases, assuming that the
core is magnetically equivalent to three single phase transformers may lead to inaccurate
results. C. Hatziantoniu, G. D. Galanos and J. Milas-Argitis in an earlier publication [130]
presented a three phase transformer model suitable for the study of slow transients and
harmonic distortion. The model takes the structure of the iron core into account but all
magnetic regions are considered to have the same level of saturation. Furthermore the tank
is not considered. A better model which accounts for different cross-sectional branches, yet
simplified in terms of the magnetic paths that can take place, was presented by N. Rajakovic
and A. Semlyen [128]. A more detailed multi-limb transformer model has been put forward by
A. Medina and J. Arrillaga in [131). The model accounts for different cross-sectional regions
of the iron core as well as magnetic flux paths in the air and tank. However, questions arise as
to the assumption of distributing equally the magnetising admittance in all external points.
This assumption is based on the absence of construction details. In some cases, attaching the
iron branch to the winding nearest to the core produces acceptable results, especially for the
case of three-legged stacked cores. Validity of the above assumption, however, will depended
on the type of core being analysed.

In this chapter a harmonic domain model for multi-limb transformers which relaxes several
of the constraints used in previous models is presented. The model represents correctly both
leakage paths and the iron core. The transformer model is represented as a harmonic Norton
equivalent which interfaces easily with the external network taking due account of the electric
connection.
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Fig. 6.1: Commonly used Iron Cores

6.2 Magnetic Behaviour of Three Phase Transformers

Under transient and unbalanced conditions, the structure of the iron core of three phase
transformers plays an important role in the levels of harmonic distortion attained. In these
cases modelling the transformer assuming similar magnetic behaviour to three phase banks
may lead to inaccurate results. Figure 6.1 shows some of the most commonly used core con-
figurations. Strictly speaking, only the triplex core displays similar magnetic characteristics
to the three phase bank, provided that magnetic isolation between the phases is in place.
Although, the three cores are enclosed in the same tank the only magnetic coupling between
windings is through magnetic leakage.

Three-legged transformer cores require the least amount of core material to manufacture.
The drawback is that their asymmetric structure introduces unbalanced magnetic paths,
giving rise to zero sequence fluxes which cannot flow through the iron core but through the
insulation oil and the transformer’s tank. Eddy currents are exacer