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For Jim and June



Abstract Let Fn denote the free group of rank n with free basis X. The palindromic

automorphism group ΠAn of Fn consists of automorphisms taking each member of X to a

palindrome: that is, a word on X±1 that reads the same backwards as forwards. We obtain

finite generating sets for certain stabiliser subgroups of ΠAn. We use these generating

sets to find an infinite generating set for the so-called palindromic Torelli group PIn, the

subgroup of ΠAn consisting of palindromic automorphisms inducing the identity on the

abelianisation of Fn. Two crucial tools for finding this generating set are a new simplicial

complex, the so-called complex of partial π-bases, on which ΠAn acts, and a Birman exact

sequence for ΠAn, which allows us to induct on n.

We also obtain a rigidity result for automorphism groups of right-angled Artin groups. Let

Γ be a finite simplicial graph, defining the right-angled Artin group AΓ. We show that

as AΓ ranges over all right-angled Artin groups, the order of Out(Aut(AΓ)) does not have

a uniform upper bound. This is in contrast with extremal cases when AΓ is free or free

abelian: in this case, |Out(Aut(AΓ))| ≤ 4. We prove that no uniform upper bound exists

in general by placing constraints on the graph Γ that yield tractable decompositions of

Aut(AΓ). These decompositions allow us to construct explicit members of Out(Aut(AΓ)).
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Chapter 1

Introduction

The goal of this thesis is to investigate the structure of certain automorphism groups of free

groups and, more generally, of right-angled Artin groups. In particular, we will find explicit

generating sets for certain subgroups of the so-called palindromic automorphism group of

a free group, using geometric methods, as well as investigating the structure of the outer

automorphism group of the automorphism group of a right-angled Artin group.

The Torelli group. Let Fn be the free group of rank n on some fixed free basis X =

{x1, . . . , xn}. Both Fn and its automorphism group Aut(Fn) are fundamental objects of

study in group theory, due to the ubiquity of Fn throughout mathematics. For instance,

free groups appear as fundamental groups of graphs and oriented surfaces with boundary,

and every finitely generated group is the quotient of some finite rank free group. While

Aut(Fn) has been studied for a century, there is still much to be learned about its structure.

It has a rich subgroup structure, containing certain mapping class groups [29] and braid

groups [7], for example. One particularly interesting subgroup of Aut(Fn) is IAn, the kernel

of the canonical surjection Ψ : Aut(Fn)→ GL(n,Z) induced by abelianising Fn. This kernel

is called the Torelli group, and we have the short exact sequence

1 −→ IAn −→ Aut(Fn) −→ GL(n,Z) −→ 1.

While Magnus gave a finite generating set for IAn in 1935 [43], it is still unknown whether

IAn is finitely presentable for n ≥ 4 (while IA2
∼= F2 [49] and IA3 is not finitely presentable

[40]).
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Palindromic automorphisms of free groups. The subgroup of Aut(Fn) we shall study

in Chapter 2 is the palindromic automorphism group of Fn, denoted ΠAn. Introduced by

Collins [18], ΠAn consists of automorphisms of Fn that send each x ∈ X to a palindrome,

that is, a word on X±1 that may be read the same backwards as forwards. Collins gave a

finite presentation for ΠAn, and it can be shown that a certain subgroup PΠAn ≤ ΠAn,

the pure palindromic automorphism group of Fn, surjects onto Γn[2], the principal level 2

congruence subgroup of GL(n,Z), via the restriction of the canonical map Ψ : Aut(Fn) →

GL(n,Z). Glover-Jensen [31] attribute this surjection to Collins [18], although it is not

made explicit in Collins’ paper that the restriction of Ψ is onto. We show that this is

indeed the case in Chapter 2, and obtain the short exact sequence

1 −→ PIn −→ PΠAn −→ Γn[2] −→ 1,

where PIn is the group IAn ∩ PΠAn, which we call the palindromic Torelli group.

One particularly strong motivation to study ΠAn arises from the extensive analogy between

Aut(Fn) and the mapping class group Mod(S) of a closed, oriented surface S. The hyper-

elliptic mapping class group SMod(S) is the centraliser in Mod(S) of a fixed hyperelliptic

involution, s, that is, a member of Mod(S) that acts as −I on H1(S,Z). The obvious

analogue of s in Aut(Fn) is the automorphism ι that inverts each x ∈ X; then clearly ι

acts as −I on H1(Fn,Z). The best candidate then for an analogy of SMod(S) in Aut(Fn)

is the centraliser of ι: this is precisely ΠAn [31]. Thus, by studying ΠAn we may extend

the analogy that holds between Aut(Fn) and Mod(S). We explore this analogy in further

detail in Chapter 2.

A striking comparison may be drawn between ΠAn and the pure symmetric automorphism

group of Fn, PΣAn, which consists of automorphisms of Fn that take each x ∈ X to a

conjugate of itself. As Collins pointed out [18], there is a finite index torison-free subgroup

of ΠAn, EΠAn, which has a finite presentation (given in Chapter 2) extremely similar to

that of PΣAn. This similarity is not entirely surprising, as in some sense we may think of

a palindrome xyx (x, y ∈ X) as a ‘mod 2’ version of the conjugate xyx−1. One notable

difference between ΠAn and PΣAn, however, is that PΣAn is a subgroup of IAn, whereas

the palindromic Torelli group PIn is a proper subgroup of ΠAn.

In Chapter 2, we obtain an infinite generating set for PIn. In particular, we show that PIn
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is the normal closure in ΠAn of two elements. Let Pij ∈ ΠAn denote the automorphism

mapping xi to xjxixj and fixing the other members of X (i 6= j).

Theorem. For n ≥ 3, the group PIn is normally generated in ΠAn by the automorphisms

[P12, P13] and (P23P13
−1P31P32P12P21

−1)2.

As an immediate corollary of this theorem, we obtain an explicit finite presentation of Γn[2],

induced by Collins’ finite presentation of PΠAn. We note that a version of this presentation

was obtained independently by Margalit-Putman [9, p5] and R. Kobayashi [39].

To obtain this generating set, we adapt a method of Day-Putman [24]. One key tool in the

proof is a Birman exact sequence for PΠAn, which allows us to induct on n. Let

PΠAn(k) := {α ∈ PΠAn | α(xi) = xi for 1 ≤ i ≤ k}.

The Birman exact sequence we establish is the short exact sequence

1 −→ Jn(k) −→ PΠAn(k) −→ PΠAn−k −→ 1,

where Jn(k) is the appropriately defined Birman kernel. We also require finite generating

sets for the stabiliser subgroups PΠAn(k).

Theorem. Fix 0 ≤ k ≤ n, and let ΠAn(k) consist of automorphisms which fix x1, . . . , xk,

with the convention that ΠAn(0) = ΠAn. Then ΠAn(k) is generated by its intersection with

Collins’ generating set for ΠAn.

Note that in the case k = 0, our proof recovers Collins’ original generating set for PΠAn [18].

While Collins takes a purely combinatorial approach, our proof is more geometric, using

Stallings’ graph folding algorithm [55] to write any α ∈ PΠAn(k) as a product of simple

generators. The use of Stallings’ algorithm was motivated by a proof of Wade [58, Theorem

4.1], which showed that the pure symmetric automorphism group PΣAn is amenable to

folding.

We introduce a second key tool, the complex of partial π-bases of Fn, denoted Bπ
n, in Section

2.3. The groups ΠAn and PIn act on Bπ
n, and it is this action that allows us to determine the

generating set for PIn. If the complexes Bπ
n and Bπ

n/PIn are sufficiently highly-connected,

a construction of Armstrong [2] allows us to conclude that PIn is generated by its vertex

stabilisers of the action on Bπ
n. We obtain the following connectivity result for Bπ

n.
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Theorem. For n ≥ 3, the complex Bπ
n is simply-connected.

The quotient Bπ
n/PIn is related to complexes already studied by Charney [14], and from

Charney’s work we obtain that the quotient is sufficiently connected for us to apply Arm-

strong’s construction when n > 3. For the n = 3 case, which forms the base case of our

inductive proof, the quotient is not simply-connected, so we approach the problem dif-

ferently, obtaining a compatible finite presentation of the congruence group Γ3[2], whose

relators may be lifted to a normal generating set for PI3. This is done in Section 2.5.

Automorphisms of right-angled Artin groups. A right-angled Artin group AΓ is a

finitely presented group, which may be presented so that its only relators are commutators

between members of its generating set. This commuting information may be encoded using

the finite simplicial graph Γ with a vertex for each generator and an edge between two

vertices whenever the corresponding generators commute. Right-angled Artin groups were

first studied by Baudisch [5], under the name semifree groups, and for completeness we

note that they are also known as partially commutative groups, graph groups and trace

groups [26]. While they are exceptionally easy to define, right-angled Artin groups provide

a rich collection of complicated objects to study. For instance, at first glance, one might

guess that any subgroup of AΓ will also be a right-angled Artin group. However, in reality

we observe an incredibly diverse subgroup structure. Right-angled Artin groups contain,

among others, almost all surface groups [20], graph braid groups [20] and virtual 3-manifold

groups. The presence of virtual 3-manifold groups as subgroups, in particular, was a crucial

piece of Agol’s groundbreaking proof of the Virtual Haken and Virtual Fibering Conjectures

of hyperbolic 3-manifold theory [1], [60].

A further reason right-angled Artin groups are worthy of study is that they allow us to

interpolate between many classes of well-studied groups. These interpolations all stem from

the fact that at one extreme, when AΓ has no relators, it is a free group, Fn, whereas at the

other, when AΓ has all possible relators, it is a free abelian group, Zn. We are thus able to

interpolate between free and free abelian groups by adding or removing relators to obtain

a sequence of right-angled Artin groups. Many properties shared by free and free abelian

groups are shared by all right-angled Artin groups: for example, for any graph Γ, the group

AΓ is linear [22] and biautomatic [34].
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The automorphism group Aut(AΓ) of a right-angled Artin group AΓ is also a well-studied

object, as passing to automorphism groups during the aforementioned interpolation be-

tween Fn and Zn allows us to interpolate between Aut(Fn) and Aut(Zn) = GL(n,Z). The

groups Aut(Fn) and GL(n,Z) are fundamental objects of study in geometric group theory,

with numerous strong analogies holding between the two. Unifying their study in the more

general context of automorphism groups of right-angled Artin groups is thus an attractive

proposition. In this direction, Laurence [41], proving a conjecture of Servatius [54], ob-

tained a finite generating set for Aut(AΓ), and Day [25] later found a finite presentation

of Aut(AΓ). Recently, Charney-Stambaugh-Vogtmann [16] constructed a virtual classify-

ing space for a right-angled Artin group’s outer automorphism group, Out(AΓ), general-

ising Culler-Vogtmann’s so-called outer space of the outer automorphism group of a free

group [21]. Outer space is a contractible cell complex on which Out(Fn) acts cocompactly

with finite stabilisers. There is an analogous auter space, on which the group Aut(Fn) acts.

Both spaces are free group analogues of the Teichmüller space of an orientable surface, and

points in the spaces correspond to homotopy equivalences between graphs with fundamental

group Fn.

One property shared by both Aut(Fn) and GL(n,Z) is that both Out(Aut(Fn)) and

Out(GL(n,Z)) are finite. We interpret this as ‘algebraic rigidity’: up to conjugation,

all but finitely many of the automorphisms of these groups are induced by the conjuga-

tion action of the group on itself. Dyer-Formanek [27] showed that Out(Aut(Fn)) = 1,

as did Bridson-Vogtmann [10], using more geometric methods, as well as Khramtsov [38].

(Bridson-Vogtmann and Khramtsov also showed that Out(Out(Fn)) = 1 for n ≥ 3). Hua-

Reiner [35] explicitly computed Out(GL(n,Z)), its structure depending, in general, on the

parity of n. They found that for all n, the order of Out(GL(n,Z)) is at most 4. We thus say

that the orders of Out(Aut(Fn)), Out(Out(Fn)) and Out(GL(n,Z)) are uniformly bounded

above for all n by 4. In Chapter 3, we show that no such uniform upper bound exists when

we consider a larger class of right-angled Artin groups.

Theorem. For any N ∈ N, there exists a right-angled Artin group AΓ such that

|Out(Aut(AΓ))| > N.

We prove this theorem in two ways: our first proof uses right-angled Artin groups with
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non-trivial centre, while in our second proof, we work over right-angled Artin groups with

trivial centre. We also prove the analogous result for Out(AΓ).

Theorem. For any N ∈ N, there exists a right-angled Artin group AΓ such that

|Out(Out(AΓ))| > N.

Our strategy for proving both of these theorems is to place certain constraints upon the

graph Γ. The structure of Aut(AΓ) and Out(AΓ) heavily depends upon the structure of

Γ: the constraints we place upon Γ lead to tractable decompositions of these groups as

semi-direct products. We exploit these decompositions to construct many explicit examples

of non-trivial members of Out(Aut(AΓ)) and Out(Out(AΓ)), proving the theorems.

These two theorems fit into a more general framework of algebraic rigidity within geometric

group theory. For instance, the outer automorphism groups of many mapping class groups

and braid groups is Z/2 [28], [36]. In keeping with these results, and those of Hua-Reiner

on GL(n,Z), further inspection of the members of Out(Aut(AΓ)) we construct in Chapter

3 shows that they generate a direct sum of finitely many copies of Z/2.

An open question is whether or not there exist infinite order members of Out(Aut(AΓ))

and Out(Out(AΓ)), as our methods only yield finite order elements. We state the following

ambitious problem.

Problem. Classify the graphs Γ for which Out(Aut(AΓ)) (resp. Out(Out(AΓ))) is (i)

trivial, (ii) finite, and (iii) infinite.

1.1 Conventions

Throughout this thesis, we shall apply functions from right to left. For g, h ∈ G a group,

we let [g, h] = ghg−1h−1 be the commutator of g and h, and we write gh = hgh−1. When

it is unambiguous, we shall conflate a relation P = Q in a group with its relator PQ−1.

In general, we shall think of a graph Y as a one-dimensional CW complex. Edges shall be

oriented, with the reverse of an edge e being denoted ē, however we shall frequently forget

about this orientation. Explicitly, an orientation of Y is a set containing exactly one of
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e or ē for each edge e of Y . When we refer to the underlying unoriented graph of Y , we

mean the CW complex taken without orientations on the edges. Given an (oriented) edge

e, we denote by i(e) and t(e) the initial and terminal vertices of e, respectively. We will

frequently represent the edge e using the notation

i(e)− t(e).

A path in Y is taken to be a sequence of edges of Y

f1f2 . . . fk

such that t(fi) = i(fi+1), for 1 ≤ i < k. A path is said to be reduced if fi 6= fi+1 for

1 ≤ i < k. Note that we may sensibly talk about the orientation of a path p, and define p̄

to be the reverse of the path p. The fundamental group of Y based at b, denoted π1(Y, b),

is defined to be the set paths beginning and ending at b, up to insertion and deletion of

subpaths of the form eē (e an edge of Y ), with multiplication defined by composition of

paths.

A map of (oriented) graphs θ : Y → Z is a map taking edges to edges and vertices to vertices

that preserves the structure of Y in the obvious way. Such a map induces a homomorphism

θ∗ : π1(Y, b)→ π1(Z, θ(b)).



Chapter 2

Palindromic automorphisms of free

groups

2.1 Introduction

Let Fn be the free group of rank n on some fixed free basis X. A palindrome on X is a

word on X±1 that reads the same backwards as forwards. The palindromic automorphism

group of Fn, denoted ΠAn, consists of automorphisms of Fn that take each member of X to

a palindrome. Collins [18] introduced the group ΠAn in 1995 and proved that it is finitely

presented, giving an explicit presentation. Glover-Jensen [31] obtained further results about

ΠAn, utilising a contractible subspace of the so-called ‘auter space’ of Fn on which ΠAn

acts cocompactly and with finite stabilisers. For instance, they are able to calculate that

the virtual cohomological dimension of ΠAn is n− 1. One reason in particular that ΠAn is

of interest to geometric group theorists is that it is an obvious free group analogue of the

symmetric mapping class group of an oriented surface, a connection we shall further discuss

later in this section.

Recall that the Torelli group of Aut(Fn), denoted IAn, is the kernel of the canonical surjec-

tion Aut(Fn)→ GL(n,Z). The group IAn is very well-studied, however there are still many

open questions regarding its structure and properties. In this chapter, we are primarily

concerned with the intersection of ΠAn with IAn. We denote this intersection by PIn,

15
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and refer to it as the palindromic Torelli group of Fn. Little appears to be known about

the group PIn: Collins [18] first pointed that it is non-trivial, and Jensen-McCammond-

Meier [37, Corollary 6.3] showed that PIn is not homologically finite for n ≥ 3. The main

theorem of this chapter establishes a generating set for PIn. We let Pij ∈ ΠAn denote the

automorphism mapping xi to xjxixj for xi, xj ∈ X (i 6= j) and fixing all other members of

X.

Theorem 2.1.1. The group PIn is normally generated in ΠAn by the automorphisms

[P12, P13] and (P23P13
−1P31P32P12P21

−1)2.

Let Γn[2] denote the principal level 2 congruence subgroup of GL(n,Z): that is, the kernel

of the map GL(n,Z) → GL(n,Z/2) that reduces matrix entries mod 2. The palindromic

Torelli group forms the kernel of a short exact sequence with quotient Γn[2], discussed in

Chapter 2.2. For 1 ≤ i 6= j ≤ n, let Sij ∈ GL(n,Z) have 1s on the diagonal and 2 in the

(i, j) position, with 0s elsewhere, and let Oi ∈ GL(n,Z) differ from the identity only in

having −1 in the (i, i) position. Theorem 2.1.1 has the following corollary. Note that for

n = 2 and n = 3, some of these relators do not exist: in these cases, we simply remove them

to obtain a complete list of defining relators.

Corollary 2.1.2. The principal level 2 congruence group Γn[2] of GL(n,Z) is generated by

{Sij , Oi | 1 ≤ i 6= j ≤ n},

subject to the defining relators

1. Oi
2,

2. [Oi, Oj ],

3. (OiSij)
2,

4. (OjSij)
2,

5. [Oi, Sjk],

6. [Ski, Skj ],

7. [Sij , Skl],

8. [Sji, Ski],

9. [Skj , Sji]S
−2
ki ,

10. (SijSik
−1SkiSjiSjkSkj

−1)2

where 1 ≤ i, j, k, l ≤ n are pairwise distinct.



CHAPTER 2. PALINDROMIC AUTOMORPHISMS OF FREE GROUPS 17

We note that in the proof of Theorem 2.1.1 and Corollary 2.1.2, it becomes apparent that

not every relator of type 10 is needed: in fact, for each choice of three indices i, j and k, we

need only select one such word (and disregard the others, for which the indices have been

permuted).

Corollary 2.1.2 gives a particularly natural presentation for Γn[2] [47], as the relations

which hold between the Sij bear a strong resemblance to the Steinberg relations which

hold between the transvections generating SL(n,Z), as we now explain. Let Eij be the

elementary matrix with 1 in the (i, j) position. Clearly Sij = Eij
2. A complete set of

relators for the group 〈Eij〉 = SL(n,Z) (n ≥ 3) is

1. [Eij , Eik],

2. [Eik, Ejk],

3. [Eij , Ejk]Eik
−1,

4. (E12E21
−1E12)4,

where the indices i, j, k are taken to be pairwise distinct. Relators of type 1 – 3 are referred to

as Steinberg relations [47, §5]. As pointed out by Margalit-Putman [45], the relations holding

between the Sij consist of ‘Steinberg-like’ relations (types 6 – 9 in Corollary 2.1.2) and one

extra relation (relator 10), which bears a certain resemblance to the relator (E12E21
−1E12)4.

A similar presentation for Γn[2] was obtained independently by Kobayashi [39], and was

also known to Margalit-Putman [45].

2.1.1 A comparison with mapping class groups

While ΠAn is defined entirely algebraically, it may viewed as a free group analogue of a

group that arises in low-dimensional topology. Let S1
g be the compact, connected, oriented

surface of genus g with one boundary component. Recall that the mapping class group

of S1
g , denoted Mod(S1

g ), is the group of orientation-preserving homeomorphisms up to

isotopy. Our convention is only to consider homeomorphisms and isotopies that fix the

boundary component point-wise. The mapping class group has induced actions on both

the fundamental group π1(S1
g ) = F2g and the first homology group H1(S1

g ,Z) = Z2g of the

surface. Both of these actions shall be of interest to us.

Let Sg be the result of capping off the boundary component of S1
g with a disk. A hyperelliptic
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. . . s

Figure 2.1: The hyperelliptic involution s ∈ Mod(Sg) shown rotates the surface by π radians along

the indicated axis.

involution of Sg is an involution s ∈ Mod(Sg) that acts as −I on H1(Sg,Z). For g ≥ 1, all

hyperelliptic involutions are conjugate in Mod(Sg) [29, Proposition 7.15]: an example of one

is seen in Figure 2.1. As the disk we attached to obtain Sg is invariant under this involution

s, we may also consider the involution s shown in Figure 2.1 as a homeomorphism of S1
g ,

however notice that it does not fix the boundary component point-wise. Clearly, we still

have s ∈ Homeo+(S1
g ), the group of orientation-preserving self-homeomorphisms of S1

g .

We define the hyperelliptic mapping class group of S1
g , denoted SMod(S1

g ), to be the sub-

group of Mod(S1
g ) of mapping classes that have a representative that commute with s

in Homeo+(S1
g ). There is an analogously-defined hyperelliptic mapping class group of Sg,

denoted SMod(Sg), with a more succinct definition: it is simply the centraliser of [s] in

Mod(Sg), where [s] is the isotopy class of the involution s ∈ Homeo+(Sg). Recall that, like

Aut(Fn), Mod(Sg) and Mod(S1
g ) have large subgroups that act trivially on first homology

of the surface. These groups are also called Torelli groups, and are denoted Ig and I1
g ,

respectively.

Translating these notions into the context of Aut(Fn), an obvious analogue in Aut(Fn) of

the involution s is the automorphism ι that inverts each member of the free basis X. The

following proposition, which is noted by Glover-Jensen [31], establishes that ΠAn is the

centraliser of ι in Aut(Fn).

Proposition 2.1.3. The centraliser in Aut(Fn) of ι is ΠAn.

Proof. We carry out a straightforward calculation. Let α ∈ Aut(Fn), x ∈ X and write

α(x) = w1 . . . wr (for some r ∈ N and wi ∈ X±1). The automorphism α centralises ι if and
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x2g−1
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Figure 2.2:

(a) The involution s rotates the surface by π radians. Under the classical Nielsen embedding, we

may view the braid group B2g ≤ SMod(S1
g) as a subgroup of ΠA2g ≤ Aut(F2g), where F2g is the free

group on the oriented loops x1, . . . , x2g.

(b) The standard symmetric chain in S1
g . The Dehn twists about c1, . . . , c2g generate SMod(S1

g) ∼=

B2g+1.

only αι = ια: that is, if and only if

w−1
r . . . w−1

1 = w−1
1 . . . w−1

r .

Assuming, without loss of generality, that w1 . . . wr was a reduced expression of α(x), we

have that α(x) is a palindrome, and so the proposition is established.

The comparison between ΠAn and SMod(S1
g ) is made more precise using the classical

Nielsen embedding Mod(S1
g ) ↪→ Aut(F2g). Take the 2g oriented loops seen in Figure 2.2a as

a free basis for π1(S1
g ). Observe that s acts on these loops by switching their orientations.

In order to use Nielsen’s embedding into Aut(F2g), we must take these loops to be based

on the boundary; we surger using the arc A to achieve this. The group SMod(S1
g ) is iso-

morphic to the braid group B2g+1 by the Birman-Hilden theorem [8], and is generated by

Dehn twists about the curves in the standard, symmetric chain on S1
g , seen in Figure 2.2b.

The Dehn twists about the 2g − 1 curves c2, . . . , c2g generate the braid group B2g. Taking

the loops seen in Figure 2.2a as our free basis X, a straightforward calculation shows that

the images of these 2g− 1 twists in Aut(F2g) lie in ΠA2g. Specifically, the twist about ci+1
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x1

x2

x3

C

Figure 2.3: The Dehn twist about the symmetric, separating curve C is the preimage in SI(S1
g) of

χ ∈ PI2g under the Nielsen embedding.

is taken to the automorphism Qi of the form

xi 7→ xi+1,

xi+1 7→ xi+1xi
−1xi+1,

xj 7→ xj

for 1 ≤ i < 2g and j 6= i, i + 1. This shows that ΠAn contains the braid group Bn as a

subgroup, when n is even. This embedding of Bn is a restriction of one studied by Perron-

Vannier [51] and Crisp-Paris [19]. When n is odd, we also have Bn ↪→ ΠAn, since discarding

Q1 gives a generating set for B2g−1 inside ΠA2g−1 ≤ Aut(F2g).

The main focus of our study of this chapter is the palindromic Torelli group, PIn. This

group arises as a natural analogue of a subgroup of SMod(S1
g ). The Torelli subgroup of

Mod(S1
g ), denoted I1

g , consists of mapping classes that act trivially on H1(S1
g ,Z). There is

non-trivial intersection between I1
g and SMod(S1

g ); we define SI(S1
g ) := SMod(S1

g ) ∩ I1
g to

be the hyperelliptic Torelli group. Brendle-Margalit-Putman [9] recently proved a conjecture

of Hain [32], also stated by Morifuji [48], showing that SI(S1
g ) is generated by Dehn twists

about separating simple closed curves of genus 1 and 2 that are fixed by s. (Recall that a

simple closed curve c on a surface S is said to be separating if S \ c is disconnected, and

that the genus of such a curve c is the minimum of the genera of the connected components

of S \ c). Our generating set for PIn compares favourably with Brendle-Margalit-Putman’s

for SI(S1
g ), in the following way. The generator χ := (P23P13

−1P31P32P12P21
−1)2 in the

statement of Theorem 2.1.1 can be realised topologically on S1
g , as it lies in the image of

SI(S1
g ) in ΠA2g. Direct computation shows that χ is the image of the Dehn twist about the
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i i+ 1

Figure 2.4: The standard braid generator σi (1 ≤ i < 2g + 1) interchanges the ith and (i + 1)th

punctures in a clockwise direction, as shown.

curve C seen in Figure 2.3, with the loops oriented as shown. Note that C is a symmetric,

separating curve of genus 1, and so is one of the two normal generators of Brendle-Margalit-

Putman’s generating set. We shall see in Proposition 2.3.7 that conjugates in ΠAn of our

other normal generator [P12, P13] do not suffice to generate PIn, so we observe that our

generating set involves Brendle-Margalit-Putman’s generators in a significant way. The

similarity between SI1
g and PIn is not just a superficial comparison of definitions: the

Nielsen embedding gives rise to a deeper connection between these two groups.

The analogy breaks down. One way in which the analogy between PIn and SI(S1
g )

breaks down, however, is their behaviour when ΠAn and SMod(S1
g ) are abelianised, to Z/2

and Z respectively. An immediate corollary of Theorem 2.1.1 is that PIn vanishes in the

abelianisation of ΠAn. In contrast, the image of SI(S1
g ) in the abelianisation of SMod(S1

g )

is 4Z, which we now prove.

Theorem 2.1.4. The group SI(S1
g ) has image 4Z in the abelianisation of SMod(S1

g ).

Proof. We pass to the (2g+1)-punctured disk of which S1
g is a branched double cover by the

involution s, and use the Birman-Hilden theorem to identify SMod(S1
g ) with the braid group

B2g+1. We refer the reader to Farb-Margalit [29, Chapter 9.4] for a detailed discussion of

this procedure.

Let σi denote the standard half-twist generator of B2g+1 that swaps the ith and (i + 1)th

punctures in a clockwise direction, as seen in Figure 2.4. A Dehn twist about a genus 1 (resp.

2) symmetric separating curve in S1
g descends to the square of a Dehn twist about a simple

closed curve in D2g+1 surrounding 3 (resp. 5) punctures. A straightforward calculation

shows that

T3 := σ2
1[σ2σ

2
1σ2],



CHAPTER 2. PALINDROMIC AUTOMORPHISMS OF FREE GROUPS 22

1 2 3 4 5
. . .

n

Figure 2.5: Curves in a punctured disk surrounding 3 and 5 punctures, respectively. For n = 2g+1,

Brendle-Margalit-Putman show that the squares of the Dehn twists about these curves normally

generate the image of SI2g+1 in B2g+1.

and

T5 := σ2
1[σ2σ

2
1σ2][σ3σ2σ

2
1σ2σ3][σ4σ3σ2σ

2
1σ2σ3σ4],

are equal to Dehn twists about the simple closed curves in D2g+1 surrounding 3 and 5

punctures, respectively, shown in Figure 2.5. The image of SI(S1
g ) in the abelianisation

of B2g+1 depends only upon the images of T3 and T5, as their squares normally generate

SI(S1
g ).

Let Z = 〈t〉 be the abelianisation of B2g+1. The image in Z of T3
2 is t12, and the image of

T5
2 is t40, so SI(S1

g ) has image 〈t4〉 = 4Z.

We also observe that Dehn twists about both genus 1 and genus 2 separating curves are

needed to generate SI(S1
g ), as we show in the following corollary.

Corollary 2.1.5. The set of Dehn twists about symmetric simple separating curves of genus

1 (resp. 2) does not generate SI(S1
g ).

Proof. The subgroup normally generated by only twists about genus 1 (resp. 2) curves has
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image 12Z (resp. 40Z) in the abelianisation of B2g+1, and so cannot equal SI(S1
g ).

2.1.2 Approach of the proof of Theorem 2.1.1

To prove Theorem 2.1.1, we employ a standard technique of geometric group theory: we find

a sufficiently connected simplicial complex on which PIn acts with sufficiently connected

quotient, and use a theorem of Armstrong [2] to conclude that PIn (n > 3) is generated by

the action’s vertex stabilisers. This approach is modelled on a proof of Day-Putman [24]

which recovers Magnus’ finite generating set for the Torelli subgroup of Aut(Fn). We treat

the n = 3 case separately, obtaining a compatible finite presentation for Γ3[2], whose relators

correspond to a normal generating set for PI3 in ΠA3.

2.1.3 Outline of chapter

In Section 2.2, the definitions of the palindromic automorphism group and palindromic

Torelli group of a free group are given, along with some elementary properties of these

groups. In Section 2.3, we introduce our new complex, the complex of partial π-bases of Fn,

and use it to obtain a generating set for PIn. In Section 2.4, we prove key results about

the connectivity of the complexes involved in the proof of Theorem 2.1.1. In Section 2.5, we

obtain a finite presentation of Γ3[2] used in the base case of our inductive proof of Theorem

2.1.1.

2.2 The palindromic automorphism group

Let Fn be the free group of rank n, on some fixed free basis X := {x1, . . . , xn}.

2.2.1 Palindromes in Fn

For a word w = l1 . . . lk on X±1, let wrev denote the reverse of w; that is, we have wrev =

lk . . . l1. Such a word w is said to be a palindrome on X if wrev = w. For example, x1, x2
2

and x2x
−1
1 x2 are all palindromes on X.
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An odd-length palindrome wrevxεii w (εi ∈ {±1}) and the conjugate w−1xεii w have the same

image in the free Coxeter group quotient of Fn obtained by adding the relators xi
2 = 1 (1 ≤

i ≤ n). We might therefore expect there to be some connection between conjugation and

palindromes in Fn, however the following proposition shows that they are rather orthogonal

concepts.

Proposition 2.2.1. Let p ∈ Fn be a palindrome.

1. If p has odd length, it is the only palindrome in its conjugacy class,

2. If p has even length, there is precisely one other palindrome p′ 6= p in its conjugacy

class.

Proof. Without loss of generality, we assume that p is a reduced word in Fn. This proof

may seem heavy-handed, but it yields more information about palindromic conjugates of p

than more elementary proofs might. We deal with the odd length case first.

Suppose that q ∈ Fn is a palindrome conjugate to p, which is also reduced as a word in Fn.

This means q is simply a cyclic permutation of the word p. Suppose p has length 2k + 1

(k ≥ 0), and let

p = l−k . . . l−1l0l1 . . . lk,

where li ∈ X±1 and l−i = li. We have a similar expression for q, with

q = l̃−k . . . l̃−1 l̃0 l̃1 . . . l̃k,

where l̃i ∈ X±1 and l̃−i = l̃i. Our strategy is to find a way of translating the condition

l̃−i = l̃i into one between members of {li}.

To do this translating, we work in the ring Z/(2k + 1), setting up the obvious bijection

between the set of letters {li} of p and

Z/(2k + 1) = {−k, . . . ,−1, 0, 1, . . . k}.

Fix c ∈ Z/(2k+ 1), and suppose that l̃0 = lc. We refer the reader to the graph K in Figure

2.6, where vertices correspond to members of Z/(2k+1), and two vertices i and j are joined

by an edge if li = lj . The horizontal edges arise due to the relations l−i = li, and the

non-horizontal, dashed edges arise due to the relations l̃−i = l̃i. We obtain a closed path in
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Figure 2.6: The graph K for k = 4 and c = 3.

K by following an alternating sequence of horizontal and dashed edges: the one exception

to this is the path joining 0 and c. Clearly l0 = lc, so we add an edge between the vertices 0

and c. To traverse a horizontal edge at the vertex i, we move to the vertex −i: we call such

a move the negation of a vertex. To traverse a dashed edge at the vertex i, we move to the

vertex −i + 2c: this corresponds to ‘conjugating’ the negation of a vertex by the rotation

j 7→ j + c.

By repeatedly applying these two operations, one after the other, we see that each closed

path consists precisely of the members of the cosets i+ 〈2c〉 and −i+ 〈2c〉, for some i, where

〈2c〉 is the ideal generated by 2c in Z/(2k+ 1). Let d be such that (Z/(2k+ 1))/〈2c〉 ∼= Z/d.

Obviously d is an (odd) divisor of 2k+1, and p is wholly determined by l0, l1, . . . , ld−1, since,

up to a cyclic reordering, it is simply some power of l0l1 . . . ld−1. Since gcd(2c, 2k + 1) ≤ c,

it must be the case that c is a multiple of d. The vertex associated to l̃i is i+c mod (2k+1),

so li = l̃i, since their associated vertices lie in the same coset of 〈d〉 in Z/(2k + 1). Thus

p = q.

When p is an even length palindrome of length, say, 2k, the above argument is not applicable

immediately, as there is no way to label the 2k vertices of the corresponding graph K so

that traversing horizontal edges corresponds to negation in Z/2k. We get around this by

introducing 2k ‘dummy’ vertices, as seen in Figure 2.7. The labelling seen in Figure 2.7

then allows the previous argument to go through, essentially unchanged, since no dummy
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Figure 2.7: The graph K for k = 3 and c = 2, where the white vertices are the dummy vertices we

have introduced.

vertex will be joined by an edge to a non-dummy vertex. Note, however, that in the even

case, the palindrome l1 . . . lklk . . . l1 is conjugate to the palindrome lk . . . l1l1 . . . lk, which

may be a different word in Fn. This corresponds to doing a ‘half-rotation’ of the graph K

that is not possible in the odd case. Any other rotation leads to the same analysis as in the

odd case.

2.2.2 Palindromic automorphisms of Fn

We fix the free basis X = {x1, . . . , xn} once and for all. An automorphism α ∈ Aut(Fn) is

said to be palindromic if for each xi ∈ X, the word α(xi) may be written as a palindrome

on X. Such automorphisms form a subgroup of Aut(Fn) which we call the palindromic

automorphism group of Fn and denote by ΠAn. That ΠAn is a group is easily shown by

verifying that ΠAn is the centraliser in Aut(Fn) of the automorphism ι which inverts each

member of X, as we did in the proof of Proposition 2.1.3. The following proposition allows

us to conclude that the palindromes α(xi) must all have odd length and each have a unique

‘central’ letter.

Proposition 2.2.2. Let α ∈ ΠAn and xi ∈ X. Then α(xi) = wrevσ(xi)
εiw, where w is a

word on X±1, σ is a permutation of X and εi ∈ {±1}.
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Proof. For a palindrome p = wrevxεii w ∈ Fn of odd length (w ∈ Fn, xi ∈ X, εi ∈ {±1}), let

c(p) = xi. We refer to c(p) as the core of p. The following argument is implicit in the work

of Collins [18].

Let α ∈ ΠAn. There is a natural surjection Fn → (Z/2)n induced by adding the relators

xi
2 and [xi, xj ] to Fn (1 ≤ i 6= j ≤ n): since α(X) is a free basis for Fn, its image under

this surjection must suffice to generate (Z/2)n. If some α(xi) was of even length, it would

have zero image in (Z/2)n, and so the image of α(X) could not generate. Similarly, if

c(α(xi)) = c(α(xj)) for some i 6= j, then α(xi) and α(xj) would have the same image in

(Z/2)n, and so again α(X) could not generate.

2.2.3 Stallings’ graph folding algorithm

We momentarily divert our attention to a graph theoretic technique that we shall use in

Section 2.2.4. Given certain fixed choices, there is a canonical way to realise any automor-

phism α ∈ Aut(Fn) as a map of graphs, which we describe shortly. Stallings [55] developed

a powerful technique of ‘folding’ graphs, one application of which is to take this map of

graphs and use it to factor α as a product of simpler automorphisms. This provides a

geometric proof of the finite generation of Aut(Fn); we shall use similar ideas to find finite

generating sets for ΠAn and certain stabiliser subgroups, in Section 2.2.4.

We remark that while we use Stallings’ combinatorial description of graphs (following Serre

[53]) and foldings, it is possible to view folding more topologically, regarding graphs as

topological spaces and foldings as continuous maps onto quotient spaces (see Bestvina-

Handel [6]), for example).

Let Y be a finite graph with a distinguished vertex b, which will act as a base point. Select

a maximal tree T in Y . We orient an edge e of T by defining the initial vertex i(e) to be

the endpoint of e that is closer to b under the edge metric on T : denote this orientation by

O(T, b). Choose an orientation of the edges Y \ T =: {f1, . . . , fn}. For any vertex v in Y ,

we define pv to be the unique reduced (oriented) path in T from b to v. Let

yi = pi(fi)fipt(fi)

for 1 ≤ i ≤ n. The following classical theorem gives a free basis for π1(Y, b), given T and
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the chosen associated orientations.

Theorem 2.2.3 (Lyndon-Schupp [42]). The set {y1, . . . , yn} is a free basis for π1(Y, b).

Moreover, a sequence of edges forming a member of π1(Y, b) may be expressed in terms of

this free basis by deleting any edges of T and replacing each fi with yi and each fi with yi
−1.

Let θ : Y → Z be a map of graphs. We call θ an immersion if for each vertex v of Y , the

restriction of θ to the edges with initial vertex v is injective, and a homotopy equivalence if

the induced homomorphism θ∗ is an isomorphism of fundamental groups.

If such a map θ is not an immersion, there must exist a vertex v of Y with two edges coming

out of it that have the same image in Z. The map θ hence factors through the quotient

graph Y ′ obtained by identifying these edges (and their terminal vertices). We get induced

maps φ : Y → Y ′ and θ′ : Y ′ → Z such that θ = θ′φ. We call this procedure folding,

with φ being called the folding map. In an obvious way, we think of the map θ′ as being

closer to being an immersion than θ, as we have removed one instance of θ failing to be an

immersion. The following theorem is the key ingredient to Stallings’ folding algorithm.

Theorem 2.2.4 (Stallings [55]). Suppose X is a finite, connected graph. Let θ : Y → Z be

a map of graphs. Then

1. If θ is an immersion, then

θ∗ : π1(Y, b)→ π1(Z, θ(b))

is an injection;

2. If θ is not an immersion, there is a sequence of foldings

Y
φ1
// Y1

φ2
// . . .

φk // Yk

and an immersion θ′ : Yk → Z such that θ = θ′φk . . . φ1.

We are interested in the case where θ is a homotopy equivalence: in this case, there are

only two types of folding, as seen in Figure 2.8. Let Rn denote the graph obtained by

gluing together n copies of S1 together at a base point labelled o, and let θ : Y → Rn be a

homotopy equivalence. Following Wade [58], we refer to θ along with the choices we made
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t

t′
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fi f ′i

Figure 2.8: The two types of folding that occur when θ is a homotopy equivalence. Wade [58] refers

to the top fold as a type 1 fold, and to the bottom as a type 2 fold. The edges are labelled suggestively:

we will demand that s, t ∈ T and fi 6∈ T .

in order to state Theorem 2.2.3 (b, T , and an ordered orientation of Y \ T ) as a branding G

of the graph Y . With this data, Y becomes an branded graph, with branding G.

Each branded graph yields an automorphism BG ∈ Aut(Fn). For each xi in the free basis

X of Fn, we have

BG(xi) = θ∗(yi),

where yi is as stated in Theorem 2.2.3, and we have made an identification between X and

the (oriented, ordered) loops of Rn. Note that this is a well-defined automorphism, as we

have insisted that θ is a homotopy equivalence, and so θ∗ is an isomorphism.

Given a branding of Y , we may fold θ if it is not an immersion. Repeatedly folding, by

Theorem 2.2.4 we eventually obtain an immersion θ′ : Yk → Rn. By observing what effect

the folds of type 1 and 2 have on BG , we shall be able to write BG as a product of what are

known as Whitehead automorphisms, whose definition we now recall.

A Whitehead automorphism of type 1 is simply a member of Ω±1(X), the group of permu-

tations and inversions of members of X. Let a ∈ X±1 and A ⊂ X±1 be such that a ∈ A
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but a−1 6∈ A. The Whitehead automorphism of type 2, (A, a) ∈ Aut(Fn), is defined by

(A, a)(xi) =



xi if xi = a±1

axi if xi ∈ A and xi
−1 6∈ A

xia
−1 if xi 6∈ A and xi

−1 ∈ A

axia
−1 if xi ∈ A and xi

−1 ∈ A

.

If we insist that the edges s and t seen in Figure 2.8 lie in T , and that the edge fi does

not, carrying out either fold induces a branding G′ of the folded graph Y ′ (it is non-trivial

to verify that the image of T in Y ′ is a maximal tree; we leave this to Wade). We find

that BG = BG′ ·W , where W is a Whitehead automorphism of type 2. It may also be the

case that we wish to carry out a fold of type 1 or type 2, but that s or t does not lie in

T . Before folding, we must change maximal tree so that the relevant edges lie in the new

tree. This defines a new branding Gt of Y . Again, we find that BG = BGt ·W , where W

is a Whitehead automorphism of type 2. With this notation set, the following propositions

make these notions precise.

Proposition 2.2.5 (Proposition 3.1, [58]). Suppose that we carry out a fold of type 1 to

the branded graph Y , with s, t ∈ T . Then BG = BG′.

To carry out a type 2 fold (that is, identify the edges t and fi seen in Figure 2.8), first let

ε = 1 if t ∈ O(T, b) and ε = −1 otherwise, where O(T, b) is the canonical orientation we

assign to T .

Proposition 2.2.6 (Proposition 3.2, [58]). Suppose that we carry out a fold of type 2 to

the branded graph Y , with t ∈ T . Let A ⊂ X±1 be such that

1. xi
ε ∈ A,

2. xi
−ε 6∈ A,

3. xj ∈ A if and only if t or t̄ is an edge of pi(fj), and

4. xj
−1 ∈ A if and only if t or t̄ is an edge of pt(fj).

Then BG = BG′ · (A, xiε).
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Finally, we consider the effect of changing the maximal tree T . We must do this if s or t

is not in T . Without loss of generality, assume t 6∈ T . Then t = fj or t̄ = fj , for some

1 ≤ j ≤ n. Choose an edge f ′j that is contained in only one of pi(fj) and pt(fj) (such an edge

much exist, as t has distinct endpoints. Removing f ′j from T and replacing it with t gives

a new branding Gt of Y (again, Wade verifies that this process yields a new maximal tree).

Define ε = 1 if f ′j ∈ pi(fj) and ε = −1 if f ′j ∈ pt(ej).

Proposition 2.2.7 (Proposition 3.3, [58]). Let G and Gt be brandings of Y as above. Let

A ⊂ X±1 be such that

1. xj
ε ∈ A,

2. xj
−ε 6∈ A,

3. xk ∈ A if and only if f ′j or f ′j is an edge of pi(fk), and

4. xk
−1 ∈ A if and only if f ′j or f ′j is an edge of pt(fk).

Then BG = BG′ · (A, xjε).

By Theorem 2.2.4, we know that after a finite sequence of foldings, we obtain an immersion

θ′ : Yk → Rn that is also a homotopy equivalence. Let G′ be any branding of the graph Yk

under θ′. Lemma 2.7 of Wade [58] allows us to conclude that θ′ is a graph isomorphism and

that BG′ is a Whitehead automorphism of type 1. Thus, our sequence of foldings terminates

at θ′ : Yk → Rn, and we have a factorisation of BG into Whitehead automorphisms.

2.2.4 Finite generation of ΠAn

Collins first studied the group ΠAn, giving a finite presentation for it. For i 6= j, let

Pij ∈ ΠAn map xi to xjxixj and fix xk with k 6= i. For each 1 ≤ j ≤ n, let ιj ∈ ΠAn map

xj to x−1
j and fix xk with k 6= j. We refer to Pij as an elementary palindromic automorphism

and to ιj as an inversion. We let Ω±1(X) denote the group generated by the inversions and

the permutations of X. The group generated by all elementary palindromic automorphisms

and inversions is called the pure palindromic automorphism group of Fn, and is denoted

PΠAn.
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Collins showed that ΠAn
∼= EΠAnoΩ±1(X), where EΠAn = 〈Pij〉. The group Ω±1(X) acts

on EΠAn in the natural way, by permuting and/or inverting the elementary palindromic

automorphisms. A defining set of relations for EΠAn is given by

1. [Pij , Pik] = 1,

2. [Pij , Pkl] = 1, and

3. PijPjkPik = Pik
−1PjkPij ,

where i, j, k, l are pairwise distinct. Note that for n = 2 or 3, some of these relations are

not defined. Removing undefined relations from the list gives a complete set of defining

relations in these cases.

A striking comparison is made by Collins between these defining relators for EΠAn, and

a finite presentation for the pure symmetric automorphism group of Fn, denoted PΣAn, of

automorphisms that take each x ∈ X to a conjugate of itself. Let Cij ∈ PΣAn map xi

to xj
−1xixj (i 6= j) and fix all xk ∈ X with k 6= i. Then PΣAn is generated by the set

{Cij | i 6= j}, subject to the defining relations

1. [Cij , Cik] = 1,

2. [Cij , Ckl] = 1, and

3. CijCjkCik = CikCjkCij ,

where i, j, k, l are pairwise distinct. Note that these abstractly differ from the relations

defining EΠAn only in the exponent of Cik in relations of type 3. This comparison of

Collins motivated the suggestion that EΠAn could be understood by adapting methods

that had been used to analyse PΣAn. Indeed, this proved fruitful, with Glover-Jensen [31]

letting EΠAn act on a contractible subcomplex of auter space (an analogue of Teichmüller

space for Aut(Fn)) to study torsion and cohomological properties of ΠAn.

Using graph folding techniques of Stallings, we obtain a new proof of finite generation of

ΠAn, as well as finding generating sets for certain fixed point subgroups of ΠAn.
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v

Figure 2.9: An example of an arch, with base point v. The dashed edges indicate the bridges that

have been added to the trees that were glued together at the base point.

Proposition 2.2.8. Fix 0 ≤ k ≤ n, and let ΠAn(k) consist of automorphisms which fix

x1, . . . , xk, with the convention that ΠAn(0) = ΠAn. A finite generating set for ΠAn(k) is

[
Ω±1(X) ∩ΠAn(k)

]
∪ {Pij | i > k}.

Proof. The idea behind this proof was inspired by a proof of Wade [58, Theorem 4.1]. We

begin by introducing some terminology. Let φ : S → T be an isomorphism of finite trees.

For a vertex (resp. edge) r of S, denote by r′ the image of r under φ. Choose a distinguished

vertex v of S, of valence 1. An arch of S at v (see Figure 2.9) is the graph formed by gluing

S to T along v and v′, then for each vertex r ∈ S \{v}, adding some (possibly zero) number

of edges between r and r′. We refer to these new edges as bridges. The image of v in the

arch forms a natural base point, and any edge with v as one of its endpoints is called a

stem. By an wedge of arches we mean a collection of arches glued together at their base

points.

Let α ∈ ΠAn(k) and let Rn be n copies of S1 glued together at a single point, where each

S1 is endowed with an orientation to give a canonical generating set for π1(Rn) = Fn. We

may realise α as a map of graphs θ : Y → Rn, where Y is the result of subdividing each S1

of Rn into the appropriate number of edges, and ‘spelling out’ the word α(xi) on the ith

copy of S1: precisely, the jth edge of the oriented, subdivided S1 corresponding to α(xi) is

mapped to the loop in Rn corresponding to the jth letter of α(xi), correctly oriented. We
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s s

fj

fk

fl fl

fk

fj

Figure 2.10: The two adjacent solid edges are folded onto fj. The dashed edges represent edges

excluded from the graph’s chosen maximal tree. In order to record what effect this type B 2-fold has

on the branded graph’s associated automorphism, we must swap fj into the maximal tree, in place

of the stem s.

now use graph folding to write α as a product of permutations, inversions and elementary

palindromic automorphisms.

We use the terminology of Wade [58], which we introduced in Section 2.2.3. Observe that

Y is a wedge of n arches, each of which arises from an isomorphism of trees φi : Si → Ti

(1 ≤ i ≤ n). Due to the symmetry of a palindromic word, folds come together in natural

pairs. Consider folds of type 1. For instance, if we are able to fold together two edges

hi ∈ Si and hj ∈ Sj , since θ(hi) = θ(hj), then we will also be able to fold together φi(hi)

and φj(hj), as they will also both have the same image under θ. We call this pair of folds a

type A 2-fold. We may also have a sequence of edges (hj−1, hj , hj+1) in Si mapped under θ

to the sequence (x̄, x, x̄) where hj is a bridge and x is some edge in Rn. We fold hj−1 and

hj+1 onto hj , and call this pair of folds a type B 2-fold. Such a fold is seen in Figure 2.10.

Doing either of these 2-folds to Y yields another, different wedge of arches. The argument

just used also applies to this new wedge of arches, and so we may continue to carry out

2-folds, each of which reduces the number of edges in the graph.

In order to see what effect these 2-folds have on α ∈ ΠAn(k), we must keep track of a

canonical maximal tree T we define on Y . The edges of Y not in T are the bridges coming

from each arch. In order to carry out a type B 2-fold we must swap the bridge fj into the

maximal tree. Recall pi(fj) is the unique reduced path in T joining the base point to the
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initial vertex of fj . Apart from one degenerate case, which we deal with separately, we may

always swap fj into the maximal tree T by excluding the stem appearing in pi(fj). We show

that the result of swapping maximal trees, doing a type B 2-fold, then swapping back to

the maximal tree where all bridges are excluded is to carry out an elementary palindromic

automorphism, P εkij , to some members of X.

Let θ̂ : Ŷ → Rn be a map of graphs obtained by carrying out a sequence of 2-folds to the

map θ : Y → Rn. With our canonical maximal tree T , these data constitute a branding

H1 of Ŷ . Suppose that we wish to do a type B 2-fold onto the bridge fj , as seen in Figure

2.10. First we swap fj into the maximal tree in place of the stem s in pi(fj) to produce a

new branding H2 of Ŷ . Then by Proposition 2.2.7, we have

BH1 = BH2 · (A, xjε),

where A consists precisely of the elements xk
εk when pi(fk) or pt(fk) involve the edge s (with

εk chosen to be 1 or −1 accordingly). We then fold the two edges onto the bridge, and

obtain a new graph Y ′ with branding H3. By Proposition 2.2.5, we have BH2 = BH3 .

Finally, we return to the canonical maximal tree of Y ′ by swapping s back into the tree.

As per the instructions in Section 2.2.3, we do this by excluding the edge fj , and obtain a

branding H4. Again by Proposition 2.2.7, we see that

BH3 = BH4 ·W,

for some Whitehead automorphism W .

It is straightforward to verify what the automorphism W ·(A, xj) does to the members of the

free basis X. Let xl ∈ X be such that fl is as shown in Figure 2.10 (that is, i(fj) 6∈ pi(fl)).

Then W · (A, xj) fixes xl. Let xk ∈ X be such that fk is as shown in Figure 2.10 (that is,

i(fk) ∈ pi(fk)). Then W ·(A, xj) maps xk to xj
εkxkxj

εk , where εk depends on the orientations

in the graph Ŷ .

The only degenerate case of the above is when one (and hence both) of the edges we want

to fold onto a bridge is a stem. In this case, we change maximal trees as before then

fold one of the stems onto the bridge with a type 1 fold. This causes the other stem to

become a loop, around which we fold the bridge using a type 2 fold. The Whitehead

automorphisms associated to these three steps compose as before to give a product of

elementary palindromic automorphisms.
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Carrying out a sequence of 2-folds of types A and B eventually produces a map Rn → Rn,

and so we complete the algorithm by applying the appropriate Whitehead automorphism

of type 1. Notice that since α ∈ ΠAn(k), the graph Y we constructed has a single loop at

the base point for each xi (1 ≤ i ≤ k), as α(xi) = xi, so the first k ordered loops of Rn

were not subdivided to form Y . Thus, while folding such a graph Y , we only need Collins’

generators (the elementary palindromic automorphisms and members of Ω±1(X)) that fix

the first k members of the free basis X. The proposition is thus proved.

Corollary 2.2.9. The group PΠAn(k) of pure palindromic automorphisms fixing x1, . . . , xk

(0 ≤ k ≤ n) is generated by the set {Pij, ιi | i > k}.

2.2.5 The level 2 congruence subgroup of GL(n,Z)

Let Γn[2] denote the kernel of the map GL(n,Z) → GL(n,Z2) given by reducing matrix

entries mod 2. This is the so-called principal level 2 congruence subgroup of GL(n,Z).

Let Sij be the matrix with 1s on the diagonal, 2 in the (i, j) position and 0s elsewhere,

and let Oi be the matrix which differs from the identity matrix only in having −1 in the

(i, i) position. The following lemma verifies a well-known generating set for Γn[2] (see, for

example, McCarthy-Pinkall [46, Corollary 2.3].

Lemma 2.2.10. The set {Oi, Sij | 1 ≤ i 6= j ≤ n} generates Γn[2].

Proof. Observe that we may think of the matrices Sij as corresponding to carrying out

‘even’ row operations: that is, adding an even multiple of one matrix row to another. Let

u be the first column of some matrix in Γn[2], and denote by u(i) the ith entry of u. Let v1

be the standard column vector with 1 in the first entry and 0s elsewhere.

Claim: The column u can be reduced to ±v1 using even row operations.

We use induction on |u(1)|. For |u(1)| = 1, the result is trivial. Now suppose |u(1)| > 1. As

in the proof of Proposition 2.2.2, we deduce that there must be some u(j) which is not a

multiple of u(1). By the Division Algorithm, there exist q, r ∈ Z such that u(j) = q|u(1)|+ r,

with 0 ≤ r < |u(1)|. If q is not even, we instead write u(j) = (q+ 1)|u(1)|+ (r− |u(1)|). Note

that if q is odd, then r 6= 0, since u(1) is odd and u(j) is even, and so −|u(1)| < r − |u(1)|.

Depending on the parity of q, we do the appropriate number of even row operations to
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replace u(j) with r or r − |u(1)|. In both cases, we have replaced u(j) with an integer of

absolute value smaller than |u(1)|. It is clear that now we may reduce the absolute value

of u(1) by either adding or subtracting twice the jth row from the first row, and so by

induction we have proved the claim.

We now induct on n to prove the lemma. It is clear that Γ1[2] = 〈O1〉. Using the above

claim, we may assume that we have reduced M ∈ Γn[2] so it is of the form ±1 ∗

0 N

 ,
where N ∈ Γn−1[2]. Our aim is to further reduce M to the identity matrix using the set

of matrices in the statement of the lemma. By induction, we may assume that N can

be reduced to the identity matrix using the appropriate members of {Eij , Oi | i, j > 1}.

Then we simply use even row operations to fix the top row, and finish by applying O1 if

necessary.

By Lemma 2.2.10, the restriction of the short exact sequence

1 −→ IAn −→ Aut(Fn) −→ GL(n,Z) −→ 1

to PΠAn gives the short exact sequence

1 −→ PIn −→ PΠAn −→ Γn[2] −→ 1,

since Pij maps to Sji and ιi maps to Oi.

The rest of this chapter is concerned with finding a generating set for PIn. We find

such a set by constructing a new complex on which PIn acts in a suitable way. We then

apply a theorem of Armstrong [2] to conclude that PIn is generated by the action’s vertex

stabilisers. In the following section, we define the complex and use it to prove Theorem

2.1.1.

2.3 The complex of partial π-bases

Day-Putman [24] use the complex of partial bases of Fn, denoted Bn, to derive a generating

set for IAn. We build a complex modelled on Bn, and follow the approach of Day-Putman

to find a generating set for PIn.
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Fix X := {x1, . . . , xn} as a free basis of Fn. A π-basis is a set of palindromes on X which

also forms a free basis of Fn. A partial π-basis is a set of palindromes on X which may be

extended to a π-basis. The complex of partial π-bases of Fn, denoted Bπ
n, is defined to be

the simplicial complex whose (k − 1)-simplices correspond to partial π-bases {w1, . . . , wk}.

We postpone until Section 2.4 the proof of the following theorem on the connectedness of

Bπ
n.

Theorem 2.3.1. For n ≥ 3, the complex Bπ
n is simply-connected.

Our complex Bπ
n is technically not a subcomplex of Bn, as the vertices of Bn are taken to

be conjugacy classes, rather than genuine members of Fn. We ignore this technicality, as

Proposition 2.2.1 shows that if two odd-length palindromes are conjugate, they are equal.

It is clear, however, that Bπ
n is isomorphic to a subcomplex of Bn.

There is an obvious simplicial action of ΠAn on Bπ
n. This action is, by definition, transitive

on the set of k-simplices, for each 0 ≤ k < n. Further, PIn acts without rotations: that is,

if φ ∈ PIn stabilises a simplex σ of Bπ
n, then it fixes σ pointwise. The quotient of Bπ

n by

PIn is highly connected, by a theorem of Charney [14].

Theorem 2.3.2 (Charney). For n ≥ 3, the quotient Bπ
n/PIn is (n− 3)-connected.

The proof of this theorem is discussed in Section 2.4.

These theorems allow us to apply the following theorem of Armstrong [2] to the action of

PIn on Bπ
n, for n ≥ 4. The statement of the theorem is as given in Day-Putman [24].

Theorem 2.3.3. Let G act simplicially on a simply-connected simplicial complex X, with-

out rotations. Then G is generated by the vertex stabilisers of the action if and only if X/G

is simply-connected.

We analyse the vertex stabilisers of PIn using an inductive argument. It is known that

PI1 = 1 and PI2 = 1: the latter inequality follows from the fact that IA2 = Inn(F2) [49]

and Inn(Fn) ∩ ΠAn = 1 for n ≥ 1. We treat the n = 3 case differently, as the quotient

Bπ
3/PI3 is not simply-connected, and so does not allow us to apply Armstrong’s theorem

directly. This treatment is postponed until Section 2.5.
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2.3.1 A Birman exact sequence

We require a version of the free group analogue of the Birman exact sequence, as developed

by Day-Putman [23]. Recall that PΠAn(k) consists of the pure palindromic automorphisms

fixing x1, . . . , xk.

Proposition 2.3.4. For 0 ≤ k ≤ n, there exists the split short exact sequence

1 −→ Jn(k) −→ PΠAn(k) −→ PΠAn−k −→ 1,

where Jn(k) is the normal closure in PΠAn(k) of the set {Pij | i > k, j ≤ k}.

Proof. A map PΠAn(k) → PΠAn−k is induced by the map Fn → Fn−k that trivialises

x1, . . . , xk. The existence of the split short exact sequence follows from Corollary 2.2.9.

Our ‘Birman kernel’ Jn(k) is rather worse behaved than the analogous Birman kernel of

Day-Putman: theirs, denoted Kn,k,l, is finitely generated whereas it may be shown by

adapting the proof of their Theorem E [23] that Jn(k) is not. This difference is due in part

to the fact that their version of PΠAn(k) need only fix each of x1, . . . , xk up to conjugacy.

The lack of finite generation of Jn(k) is, however, not an obstacle to the goal of this chapter:

we only require that Jn(k) is normally generated by a finite set.

Our Birman exact sequence projects into GL(n,Z) in an obvious way, made precise in the

following lemma. Let vi denote the image of xi ∈ Fn under the abelianisation map. We

denote by Γn[2](k) the members of Γn[2] which fix v1, . . . , vk ∈ Zn, and by Hn(k) the group

Hom(Zn−k, (2Z)k).

Lemma 2.3.5. Fix 0 ≤ k ≤ n. Then there exists the following commutative diagram of

split short exact sequences

1 // Jn(k) //

����

PΠAn(k) //

����

PΠAn−k

s
ii

//

����

1

1 // Hn(k) // Γn[2](k) // Γn−k[2]

t

ii
// 1

,

where s and t are the obvious splitting homomorphisms.
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Proof. The top row is given by Proposition 2.3.4. A generating set for Γn[2](k) follows

from the proof of Lemma 2.2.10; it is precisely the image in GL(n,Z) of {Pij , ιi | i > k},

the generating set of PΠAn(k) given by Corollary 2.2.9. The bottom row then follows by

an argument similar to the proof of Proposition 2.3.4, noting that the kernel is generated

by the images of Pij (i > k, j ≤ k). It is straightforward to verify that this kernel is

Hom(Zn−k, (2Z)k). Intuitively, α ∈ Hom(Zn−k, (2Z)k) is encoding how many (even) multi-

ples of vj (1 ≤ i ≤ k) are added to each vi (k < j ≤ n).

The right hand vertical map follows from Lemma 2.2.10. It is clear that all the arrows com-

mute, and that the splitting homomorphisms s and t are compatible with the commutative

diagram, so the proof is complete.

2.3.2 A generating set for Jn(1) ∩ PIn

By mapping PΠAn(k) into Γn[2](k) then conjugating the normal subgroupHn(k), we obtain

a homomorphism αk : PΠAn(k) → Aut(Hn(k)). Setting k = 1, we obtain the following

lemma.

Lemma 2.3.6. The group Jn(1) ∩ PIn is normally generated in Jn(1) by the set

{[Pij , Pi1], [Pij , Pj1]P 2
i1 | 1 < i 6= j ≤ n}.

Proof. By Lemma 2.3.5, there is a short exact sequence

1 −→ Jn(1) ∩ PIn −→ Jn(1) −→ Hn(1) −→ 1.

The set Y := {φPj1φ−1 | φ ∈ PΠAn(1), 1 < j ≤ n} generates Jn(1) by Proposition 2.3.4.

Let aj denote the image of Pj1 in GL(n,Z). A straightforward calculation verifies that the

set {aj} is a free abelian basis for Hn(1); this follows since Hn(1) = 〈S1k〉 (k > 1), with this

generating set being a free abelian basis for Hn(1).

For φ ∈ PΠAn(1), let φ̄ denote the image of φ in Γn[2](1), and let Ȳ denote the image of

Y . The set of relations

{[ai, aj ] = 1, φ̄aiφ̄
−1 = α1(φ)(ai) | 1 < i 6= j ≤ n, φ ∈ PΠAn(1)},
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together with the generating set Ȳ , form a presentation for Hn(k). It is clear that the image

of any member of Y in Hn(1) is a word on the free abelian basis {ai}, and that this word

is determined by the homomorphism α1.

It is a standard fact (see, for example, the proof of Theorem 2.1 in Magnus-Karrass-Solitar

[44]) that Jn(1)∩PIn is normally generated in Jn(1) by the obvious lifts of the (infinitely

many) relators in the given presentation for Hn(1). The relators of the form [ai, aj ] have

trivial lift, and so are not required in the generating set. Let C be the finite generating set

for PΠAn(1) given by Corollary 2.2.9. It can be shown that the obvious lift of the finite set

of relators

D := {c̄aj c̄−1α1(c)(aj)
−1 | c ∈ C, 1 < j ≤ n}

suffices to normally generate Jn(1) ∩ PIn in Jn(1). This may be seen using a simple

induction argument on the length of the word φ ∈ PΠAn(1) on C, as we now show. Let

φ = c1 . . . ck with ci ∈ C±1. We wish to show that

W :=
[
c̄1 . . . c̄kaj c̄

−1
k . . . c̄−1

1

]
α1(c1 . . . ck)(aj)

−1

lies in the normal closure of the lift of D in Jn(1). By definition,

α1(c1 . . . ck)(aj)
−1 = α1(c1)

[
α1(c2 . . . ck)(aj)

−1
]

= c̄1 · α1(c2 . . . ck)(aj)
−1 · c̄−1

1 ,

and so

W =
[
c̄1(c2 . . . ckaj c̄

−1
k . . . c̄−1

2 )c̄−1
1

] [
c̄1α1(c2 . . . ck)(aj)

−1c̄−1
1

]
.

Induction now allows us to conclude that W lies in the normal closure, as desired.

All that remains is to verify that the obvious lift of D is the set given in the statement of

the lemma; this is a straightforward calculation, which is summarised in Table 2.1.

2.3.3 Proof of Theorem 2.1.1

We now prove Theorem 2.1.1, using the action of PIn on Bπ
n.

Proof of Theorem 2.1.1. The action of PIn on Bπ
n is simplicial and without rotations. Com-

bining Theorems 2.3.1, 2.3.2 and 2.3.3, we conclude that for n ≥ 4, PIn is generated by

the vertex stabilisers of the action on Bπ
n.
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Generator c ∈ C The lift of c̄aj c̄
−1α1(c)(aj)

−1 to Jn(1)

ιj 1

ιi 1

Pk1 1

Pil 1

Pij [Pij , Pj1]Pi1
2

Pji [Pji, Pj1]

Table 2.1: The lifts of the members of the set D, where the indices i, j, k and l are taken to be

pairwise distinct, with i, j, k 6= 1.

Recall that PIn(1) denotes the stabiliser of the vertex x1. Since ΠAn acts transitively

on the vertices of Bπ
n, the stabiliser in PIn of any vertex is conjugate in ΠAn to PIn(1).

Lemma 2.3.5 gives us the split short exact sequence

1 −→ Jn(1) ∩ PIn −→ PIn(1) −→ PIn−1 −→ 1.

We induct on n. By the above split short exact sequence, to generate PIn(1) it suffices to

combine a generating set of Jn(1) ∩ PIn(1) with a lift of one of PIn−1.

We begin with the base case, n = 3. In Section 2.5, we verify that the presentation of Γ3[2]

given in Corollary 2.1.2 is correct when n = 3. Given the short exact sequence

1 −→ PI3 −→ PΠA3 −→ Γ3[2] −→ 1,

we may take the obvious lifts of the relators in this presentation as a normal generating

set for PI3 in PΠA3. Relators 1-6 are trivial when lifted, while relator 8 and 9 lift to

[Pij , Pik] and (an automorphism equal to) Pik[Pij , Pik]Pik
−1, respectively, both of which are

conjugate to [P12, P13]. Finally, relator 10 lifts to

(P23P13
−1P31P32P12P21

−1)2,

so the base case n = 3 is true.

Now suppose n > 3. By induction, the group PIn−1 is normally generated by [P42, P43] and

(P23P43
−1P34P32P42P24

−1)2, say, in ΠAn−1. We lift this normal generating set to PIn(1)

in the obvious way.
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By Lemma 2.3.6, we need only add in Jn(1)-conjugates of the words [Pij , Pi1] and [Pij , Pj1]P 2
i1,

for 1 < i 6= j ≤ n. The former are clearly conjugate in ΠAn to [P12, P13]. For the latter,

observe that

[Pij , Pj1]P 2
i1 = [Pij , P

−1
i1 ],

which again is conjugate to [P12, P13], so we are done.

Corollary 2.1.2 follows immediately from Theorem 2.1.1. Since Γn[2] ∼= PΠAn/PIn, by

adding the normal generators in Theorem 2.1.1 (and all words obtained by permuting their

indices) as relators to Collins’ presentation of PΠAn, we obtain a finite presentation of Γn[2].

Applying the obvious Tietze transformations yields the presentation given in Corollary 2.1.2.

We end this section by proving that the (normal) generator (P23P13
−1P31P32P12P21

−1)2 in

the statement of Theorem 2.1.1 is necessary.

Proposition 2.3.7. For n ≥ 3, the group normally generated by [P12, P13] in ΠAn is a

proper subgroup of PIn.

Proof. Suppose PIn is the normal closure of [P12, P13] in ΠAn. Then the orbit of [P12, P13]

under the action of the symmetric group on the free basis X produces a normal generating

set for PIn in PΠAn. Adding these to the presentation of PΠAn as relators yields a finite

presentation Q of Γn[2], which may be altered using Tietze transformations so that it looks

like the presentation in Corollary 2.1.2, with relator 10 removed.

We know that

χ := (S32S31
−1S13S23S21S12

−1)2

is trivial in Γn[2], and so we should be able to deduce this as a consequence of the relations

in Q. We derive a contradiction by showing that χ is non-trivial in the group presented by

Q. Observe that by killing all the generators of Γn[2] except for S12 and S21, we surject onto

the free Coxeter group generated by the images of S12 and S21, say A and B, respectively.

This is easily verified by examining the relators of Q. The image of χ under this map is

ABAB 6= 1, and so χ is non-trivial in the group presented by Q. Therefore the normal

closure of [P12, P13] in ΠAn is not all of PIn.
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Note that in the proof of Proposition 2.3.7 we also showed that relators 1–9 of Corollary

2.1.2 are not a sufficient set of relators that hold between the Oi and Sjk: relator 10 is not

a consequence of the others.

Corollary 2.3.8. The complex Bπ
3/PI3 is not simply-connected.

Proof. By Theorem 2.3.3, the complex Bπ
3/PI3 is simply-connected if and only if PI3

is generated by the vertex stabilisers of the action. Proposition 2.3.7 shows that vertex

stabilisers do not suffice to generate PI3, so the quotient is not simply-connected.

2.4 The connectivity of Bπ
n and its quotient

In this section, we determine the levels of connectivity of Bπ
n and Bπ

n/PIn. The former is

found to be simply-connected, following the same approach as Day-Putman [24], while the

latter is shown to be closely related to a complex already studied by Charney [14], which is

(n− 3)-connected.

2.4.1 The connectivity of Bπ
n

First, we recall the definition of the Cayley graph of a group. Let G be a group with finite

generating set S. The Cayley graph of G with respect to S, denoted Cay(G,S), is the graph

with vertex set G and edge set {(g, gs) | g ∈ G, s ∈ S±1}, where an ordered pair (x, y)

indicates that vertices x and y are joined by an edge. If s ∈ S has order 2, we identify

each pair of edges (g, gs) and (g, gs−1) for each g ∈ G, to ensure that the Cayley graph is

simplicial.

We establish Theorem 2.3.1 by constructing a map Ψ from the Cayley graph of ΠAn to

Bπ
n and demonstrating that the induced map of fundamental groups is both surjective and

trivial. We require the Cayley graph of ΠAn with respect to a particular generating set,

which we now describe. Assume that n ≥ 3. For 1 ≤ i 6= j < n, let tij permute xi and xj ,

fixing xk with k 6= i, j. Using the symmetric group action on X, we deduce from Proposition

2.2.8 that we may generate ΠAn using the set

Z := {tij , ι2, ι3, P21, P23, P31, P34 | 1 ≤ i 6= j ≤ n}.
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We may use the symmetric group action on X to streamline the presentation of ΠAn given

in Section 2.2, to obtain the following list of defining relators for ΠAn on the generating set

Z:

1. tij = tji,

2. t2ij = 1,

3. utiju
−1 = tu(i)u(j),

4. ι2
2 = 1,

5. (ι2ι3)2 = 1,

6. [ι2, P31] = 1,

7. (ι2P21)2 = 1,

8. (ι3P23)2 = 1,

9. P23P31P21 = P−1
21 P31P23,

10. [P21, P31] = 1,

11. [P21, P34] = 1,

12. ι3 = t23ι2t23,

13. P31 = t23P21t23,

14. P23 = t13P21t13,

15. P34 = t14t23P21t23t14,

16. P21 = wP21w
−1 for w ∈ W,

17. ι2 = vι2v
−1 for v ∈ V,

where 1 ≤ i 6= j ≤ n, u ∈ {tij} and W and V are the sets of words on {tij} that fix

x1 and x2, and only x2, respectively. The relations of type 16 and 17 arise due to the

streamlining of the presentation of ΠAn = EΠAnoΩ±1(X) given in Section 2.2. Note that

relations 1 – 3 are a complete set of relations for the symmetric group, when generated by

the transpositions {tij} [52].

We now consider the Cayley graph Cay(ΠAn, Z). Observe that for each z ∈ Z±1, either

z(x1) = x1 or {x1, z(x1)} forms a partial π-basis for Fn. This allows us to construct a map of

complexes from the star of the vertex 1 in Cay(ΠAn, Z) to Bπ
n, by mapping an edge z ∈ Z±1

to the edge v1−z(v1) (which may be degenerate). Using the actions of ΠAn on Cay(ΠAn, Z)

and Bπ
n, we can extend this map to a map of complexes Ψ : Cay(ΠAn, Z)→ Bπ

n. Explicitly,

Ψ takes a vertex z1 . . . zr of Cay(ΠAn, Z) (zi ∈ Z±1) to the vertex z1 . . . zr(x1).

Proof of Theorem 2.3.1. This proof is modelled on Day-Putman’s proof of their Theorem

A [24]. Let

Ψ∗ : π1(Cay(ΠAn, Z), 1)→ π1(Bπ
n, x1)
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be the map of fundamental groups induced by Ψ. Explicitly, the image of a loop z1 . . . zk

(zi ∈ Z±1) in π1(Cay(ΠAn, Z), 1) under Ψ∗ is

x1 − z1(x1)− z1z2(x1)− . . .− z1z2 . . . zk(x1) = x1.

We first show that Ψ∗ is the trivial map, then show that it is also surjective.

Recall that the Cayley graph C of a group G with presentation 〈X | R〉 forms the 1-

skeleton of its Cayley complex, which we obtain by attaching disks along the loops in C

corresponding to all conjugates in G of the words in R. It is well-known that the Cayley

complex of a group G is simply-connected [42, Proposition 4.2]. We now verify that the loops

in π1(Cay(ΠAn, Z), 1) corresponding to the relators given at the start of Section 2.4.1 have

trivial image under Ψ∗. This allows us to extend Ψ to a map from the (simply-connected)

Cayley complex of ΠAn (rel. Z), and so conclude that Ψ∗ is trivial.

Note that in the following we confuse a relator with the loop in π1(Cay(ΠAn, Z), 1) to which

it corresponds. Many of the relators 1 – 17 map to x1 in Bπ
n, as they are words on members

of Z that fix x1. The only ones we need to check are 1 – 3 and 14 – 17. Relators 1 – 3 map

into the contractible simplex spanned by x1, . . . , xn, so are trivial. Relators 14 and 15 are

mapped into the simplices x1 − x3 and x1 − x4, respectively. We rewrite relators 16 and

17 as P21w = wP21 and ι2w = wι2. It is clear, then, that relators of type 16 map into the

contractible subcomplex of Bπ
n spanned by x1, . . . , xn and x1x2x1, and relators of type 17

map into the contractible subcomplex spanned by x1, x
±1
2 , . . . , xn. All relators have now

been dealt with, so we conclude that Ψ∗ is the trivial map.

We argue as in Day-Putman’s proof [24] for the surjectivity of Ψ∗. We represent a loop

ω ∈ π1(Bπ
n, x1) as

x1 = w0 − w1 − . . .− wk = x1,

for some k ≥ 0. We will demonstrate that for any such path (not necessarily with wk = x1),

there exist φ1, . . . , φk ∈ ΠAn(1) such that

wi = φ1t12φ2t12 . . . φit12(x1),

for 0 ≤ i ≤ k. We use induction. In the case k = 0, there is nothing to prove. Now suppose

k > 0. Consider the subpath

w0 − w1 − . . .− wk−1.
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By induction, to prove the claim all we need find is φk ∈ ΠAn(1) such that

wk = φ1t12 . . . φkt12(x1).

We know that wk−1 = φ1t12 . . . φk−1t12(x1) and wk form a partial π-basis, therefore so

do x1 and (φ1t12 . . . φk−1t12)−1(wk). By construction, the action of ΠAn is transitive

on the set of two-element partial π-bases, so there exists φk ∈ ΠAn(1) mapping x2 to

(φ1t12 . . . φk−1t12)−1(wk). Therefore

wk = φ1t12 . . . φkt12(x1),

as required.

Now, we define

φk+1 = (φ1t12 . . . φkt12)−1,

so that

R := φ1t12 . . . φkt12φk+1 = 1

is a relation in ΠAn. Observe that since wk = x1, we have φk+1 ∈ ΠAn(1). Also, the

generating set Z contains a subset that generates ΠAn(1), by Proposition 2.2.8. We are

thus able to write

φi = zi1 . . . z
i
pi ,

for some zij ∈ Z±1 (1 ≤ i ≤ k + 1, 1 ≤ j ≤ pi), each of which fixes x1. We see that

R ∈ π1(Cay(ΠAn, Z), 1) maps to ω ∈ π1(Bπ
n, x1): removing repeated vertices, R maps to

x1 − φ1t12(x1)− . . .− φ1t12 . . . φkt12φk+1(x1) = x1,

which equals ω by construction. Hence Ψ∗ is surjective as well as trivial, so π1(Bπ
n, x1) =

1.

2.4.2 The connectivity of Bπ
n/PIn

A complex analogous to Bπ
n may be defined when working over Zn rather than Fn. We

write Bn(Z) for the complex of partial bases of Zn, whose (k − 1)-simplices correspond to

subsets {v1, . . . , vk} of free abelian bases of Zn. Writing members of Zn multiplicatively,

there is an analogous notion of a palindrome on some fixed free abelian basis V , and so also



CHAPTER 2. PALINDROMIC AUTOMORPHISMS OF FREE GROUPS 48

of a partial π-basis. The complex of partial π-bases of Zn is defined in the obvious way, and

denoted Bπ
n(Z).

We first show that Bπ
n/PIn ∼= Bπ

n(Z), then show that Bπ
n(Z) is (n − 3)-connected using

a related complex studied by Charney [14]. To prove the former, the following lemma is

required.

Lemma 2.4.1. Fix {v1, . . . , vn} as a π-basis for Zn, and let ρ : Fn → Zn be the abeliani-

sation map. Let Ṽ = {ṽ1, . . . , ṽk} be a partial π-basis of Fn such that ρ(ṽi) = vi for each

1 ≤ i ≤ k. Then we can extend Ṽ to a π-basis of Fn, {ṽ1, . . . , ṽn}, such that ρ(ṽi) = vi for

1 ≤ i ≤ n.

Proof. Extend {ṽ1, . . . , ṽk} to a full π-basis of Fn, {ṽ1, . . . , ṽ
′
k+1, . . . , ṽ

′
n}, and define v′j =

ρ(ṽ′j) for k + 1 ≤ j ≤ n. Then {v1, . . . , vk, v
′
k+1, . . . , v

′
n} is a π-basis for Zn. The group

Γn[2] acts transitively on the set of π-bases of Zn, so there exists φ ∈ Γn[2](k) such that

φ(v′j) = vj for k + 1 ≤ j ≤ n. By Proposition 2.3.5, φ lifts to some φ̃ ∈ PΠAn(k), and the

π-basis {ṽ1, . . . , ṽk, φ̃(ṽ′k+1), . . . , φ̃(ṽ′n)} projects onto {v1, . . . , vn} as desired.

Now we establish an isomorphism of simplicial complexes between Bπ
n/PIn and Bπ

n(Z).

Theorem 2.4.2. The spaces Bπ
n/PIn and Bπ

n(Z) are isomorphic as simplicial complexes.

Proof. Let ρ : Fn → Zn be the abelianisation map, and define a map of simplicial complexes

Φ : Bπ
n → Bπ

n(Z) on simplices by {w1, . . . , wk} 7→ {ρ(w1), . . . , ρ(wk)}, for 1 ≤ k ≤ n. The

map Φ is surjective: by Lemma 2.4.1, each π-basis of Zn is projected onto by some π-basis

of Fn, and π-bases of Zn correspond to maximal simplices of Bπ
n(Z).

It is clear that the map Φ is invariant under the action of PIn on Bπ
n, and so Φ factors

through Bπ
n/PIn. To establish the theorem, all we need do is show that the induced map

from Bπ
n/PIn → Bπ

n(Z) is injective. In other words, we must show that if two simplices

s, s′ of Bπ
n have the same image under Φ, then s and s′ differ by the action of some member

of PIn.

Suppose that s = {w1, . . . , wk} and s′ = {w′1, . . . , w′k} have the same image under Φ. We

may assume that ρ(wi) = ρ(w′i) for 1 ≤ i ≤ k. Let Φ(s) = {w̄1, . . . , w̄k}, and extend this
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partial π-basis of Zn to a full π-basis, W = {w̄1, . . . , w̄n}. By Lemma 2.4.1, we may extend

{w1, . . . , wk} to {w1, . . . , wn} and {w′1, . . . , w′k} to {w′1, . . . , w′n}, such that both of these

full π-bases map onto W . Define θ ∈ ΠAn by θ(wi) = w′i for 1 ≤ i ≤ n. By construction,

θ(s) = s′ and θ ∈ PIn, so the theorem is proved.

This more explicit description of Bπ
n/PIn as Bπ

n(Z) enables us to investigate the quotient’s

connectivity.

Proof of Theorem 2.3.2. By a unimodular sequence in Zn, we mean an (ordered) sequence

(w1, . . . , wk) ⊂ (Zn)k whose entries form a basis of a direct summand of Zn. Observe

that this is just an ordered version of the notion of a partial basis of Zn. The set of all

such sequences of length at least one form a poset under subsequence inclusion. Charney

[14] considers (among others) the subposet of sequences (w1, . . . , wk) such that each wi is

congruent to a standard basis vector vj under mod 2 reduction of the entries of wi. We

denote by Xn the poset complex given by the subposet of such sequences. Theorem 2.5 of

Charney [14] says that Xn is (n− 3)-connected.

Let Bπ
n(Z)∗ denote the barycentric subdivision of Bπ

n(Z). Label each vertex of Bπ
n(Z)∗ by

the partial π-basis associated to the simplex of Bπ
n(Z) to which the vertex corresponds.

Define a simplicial map h : Xn → Bπ
n(Z)∗ by (w1, . . . , wk) 7→ {w1, . . . , wk}. We may think

of h as ‘forgetting the order’ of each unimodular sequence. Comparing the definitions of

Xn and Bπ
n(Z), it is not immediately clear that h is well-defined: there might be some

vertex (v1, . . . , vk) of Xn such that {v1, . . . , vk} extends to a full basis of Zn, but not a full

π-basis. However, viewing the full basis of Zn as a matrix in Γn[2], a straightforward column

operations argument shows that this cannot be the case, so h is well-defined.

We see that h induces a map πi(Xn) → πi(B
π
n(Z)∗) for i ≥ 0, and show that the induced

map is surjective. Set a consistent lexicographical order on the vertices of Bπ
n(Z)∗, and view

ω ∈ πi(Bπ
n(Z)∗) as a simplicial i-sphere. The chosen lexicographical ordering allows us to

lift ω to πi(Xn), so the induced maps are surjective. The statement of the theorem follows

immediately, as πi(Xn) = 1 for 0 ≤ i ≤ n− 3.
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2.5 A presentation for Γ3[2]

In order to apply Armstrong’s theorem [2], it must be the case that Bπ
n/PIn ∼= Bπ

n(Z)

is simply-connected. However, we know from Corollary 2.3.8 that when n = 3, the space

Bπ
n(Z) has non-trivial fundamental group. The case n = 3 forms the base case of our

inductive proof of Theorem 2.1.1, so we require an alternative approach to find a generating

set for PI3. Our approach is to find a specific finite presentation of Γ3[2], and use the short

exact sequence

1 −→ PI3 −→ PΠA3 −→ Γ3[2] −→ 1

to lift the relators in the presentation of Γ3[2] to a normal generating set for PI3.

2.5.1 A presentation theorem

In order to present Γ3[2], we apply a theorem of Armstrong [3] (not Theorem 2.3.3!) to the

action of Γ3[2] on a simply-connected simplicial complex we construct by adding simplices

to Bπ
3 (Z). Before discussing this complex and the action on it, we introduce the terminology

necessary to state and apply Armstrong’s theorem. Note that the theorem was first obtained

by Brown [12] in greater generality, however Armstrong’s theorem is stated more simply,

and suffices for our purposes.

Let G be a group acting simplicially on a non-empty, simply-connected simplicial complex

K. We shall assume that G does not invert any edges of K. We denote by K1 the 1-skeleton

of K. For a vertex v of K, we denote by Gv its stabiliser subgroup in G. Similarly, we write

gv for any g ∈ G that stabilises v, to distinguish it as a member of Gv.

We choose a maximal tree M in the graph K1/G. We lift M to a subtree T in K1, and take

the vertices of T as a set of representatives for the vertices of K/G. Consider an (oriented)

edge f of K1/G not in the tree M . The edge f has a canonical lift to K, e say, such that

i(e) ∈ T . Moreover, there is a unique vertex y ∈ T which is equivalent to t(e) under the

action of G. We fix γf ∈ G as some member that takes y to t(e). With these choices

made, we lift the reverse edge f̄ ∈ K1/G to γ−1
f (ē): this edge has initial vertex y ∈ T and

γf̄ := γ−1
f sends i(e) to to the terminal vertex of γ−1

f (ē). We formally define γf = 1 for

f ∈M .
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Let g ∈ G, and let E = e1e2 . . . ek be a sequence of edges joining a fixed vertex v ∈ T to the

vertex g(v). If this path never leaves the tree T , then we must have g(v) = v, as the vertices

of T are in one-to-one correspondence with the orbits of the action of G on the vertices of

K. Suppose then that the path E does not lie completely in T . Then there is a first edge,

el say, that lies outside T . Armstrong calls the subpath elel+1 . . . ek the tail of E.

Let y1 ∈ T be the initial vertex of el. We map el into the quotient K1/G to f1, say, and

consider e1, the canonical lift of f1 to K1. Note that necessarily i(e1) = y1. Pick some

ay1 ∈ Gy1 that maps e1 to el. Such an ay1 must exist, as e1 and el share the initial vertex

y1, and lie in the same orbit under G.

For l + 1 ≤ i ≤ k, we define

e1
i = γ−1

f1
a−1
y1 (ei),

and replace the original path E with the newly-constructed path

E1 := e1
l+1e

1
l+2 . . . e

1
k.

Armstrong [3] refers to replacing the tail of the path E with a new path as tail wagging.

Observe that E1 begins at the vertex i(e1
l+1) ∈ T and terminates at γ−1

f1
a−1
y1 g(v). Repeatedly

applying this process, we will eventually end up with a path that is completely contained

inside the tree T , since at each stage of the procedure the tails of the paths strictly decrease

in length. This final path will end at the vertex

γ−1
fq
a−1
yq . . . γ

−1
f1
a−1
y1 g(v),

where the yj , fj and ayj are chosen specifically as above.

By our previous discussion, since this final path lies entirely in T , it must be the case that

γ−1
fq
a−1
yq . . . γ

−1
f1
a−1
y1 g = av ∈ Gv.

As Armstrong notes [3], this proves that G is generated by the vertex stabilisers Gv (v ∈ T )

and the symbols γf , for edges f of K1/G, since for any g ∈ G, we can now write

g = ay1γf1 . . . ayqγfqav.

Relations in G may arise by traversing the boundary of a 2-simplex ∆ in K, starting at a

vertex v ∈ T , and then wagging this closed path. Taking g = 1 in the above discussion, we
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get a path that starts and ends at the same vertex: wagging, we obtain an expression r∆

that is necessarily equal to the identity. We are now able to state Armstrong’s Presentation

Theorem, with all the above notation assumed.

Theorem 2.5.1 (Armstrong [3]). Let G be a group acting simplicially on a simply-connected

simplicial complex K, where G does not invert any edge of K. Fix T as the lift to K of

our maximal tree M of K1/G. Let F be the free group on the symbols λf , where f is an

(oriented) edge of K1/G. Then G is presented by taking the free product

(∗
w∈T

Gw) ∗ F

and adding the relators:

1. λf , if f ∈M ,

2. λf̄λf , for all edges f in K1/G,

3. λf̄gxλf (γf̄gγf )−1
z , where e is the canonical lift of f to K, and g ∈ G fixes e,

4. rλ∆, where this word is obtain from r∆ by changing each γf in r∆ to λf , and one such

word is taken for each G-orbit of 2-simplices.

We refer to relators of type 3 as edge relators, as they arise due to edge stabiliser subgroups

of G. We now describe a corollary of Theorem 2.5.1 which gives a simpler presentation

when the quotient K/G has a particular structure. It will be this corollary that we apply

to present Γ3[2].

Corollary 2.5.2. Let G, F and K be as in the statement of Theorem 2.5.1. Assume that

the image in K/G of each 2-simplex of K has two edges in the maximal tree M . Then G

is presented by taking the free product

(∗
w∈T

Gw) ∗ F

and adding the relators:

1. gx(gz)
−1, when g stabilises one of the canonical lifts e.
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Proof. Let f1f2f3 be the boundary of a 2-simplex ∆ in K/G. Without loss of generality,

we may assume f1, f2 ∈ M and f3 6∈ M . Lift fi to the canonical ei ∈ T (1 ≤ i ≤ 3). Note

that we have i(e3), t(e3) ∈ T . We show that the relation rλ∆ = 1 in this case gives λf3 = 1.

Tail wagging the path e1e2e3, we get the relation

γ−1
f3
a−1
i(e3) = 1,

since e3 is such that γf3 = ai(e3) = 1. Hence we find rλ∆ = λf3 .

Since all 2-simplices in K/G have two edges in M , we thus kill all the symbols λf . We have

also arranged it so that all the symbols γf are trivial, so the relators in Theorem 2.5.1 may

be replaced with those in the statement of the corollary.

In practice, when presenting G, we find a generating set for the edge stabiliser subgroups,

and adjoin one relator for each generator, as in Corollary 2.5.2.

2.5.2 The augmented partial π-basis complex for Z3

Recall that Bn(Z) is the partial basis complex of Zn. We represent its vertices by column

vectors u =


u(1)

...

u(n)

. For use in the proof of Theorem 2.5.3, we follow Day-Putman [24] and

define the rank of u to be |u(n)|, and denote it by R(u). Let Y denote the full subcomplex

of B3(Z) spanned by Bπ
3 (Z) and vertices u for which u(1) and u(2) are odd and u(3) is even.

We call Y the augmented partial π-basis complex for Z3. We now demonstrate that Y is

simply-connected.

Theorem 2.5.3. The complex Y is simply-connected.

Proof. By Theorem 2.5 of Charney [14], we know that Bπ
3 (Z) is 0-connected, and hence

so is Y. To show that Y is simply-connected, we adapt the proof of Theorem B of Day-

Putman [24].

Let u be a vertex of a simplicial complex C. The link of u in C, denoted lkC(u), is the full

subcomplex of C spanned by vertices joined by an edge to u. Let v3 ∈ Z3 be the standard
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basis vector with third entry 1 and 0s elsewhere. Observe that for any vertex u ∈ Y, we

have lkY(u) ∼= lkY(v3). This is because there is a transitive, simplicial action on the vertices

of Y by the group generated by Γ3[2] and the matrix

E =


1 0 0

1 1 0

0 0 1

 .
This action is transitive because E acts by sending a vertex in Y \ Bπ

3 (Z) to a vertex of

Bπ
3 (Z), and because Γ3[2] acts transitively on the vertices of Bπ

3 (Z).

We begin by establishing that lkY(v3) is connected (and hence, by the above, so is the link

of any vertex). By considering what the columns of M ∈ GL(3,Z) whose final column is v3

must look like, we see that a necessary and sufficient condition for


u(1)

u(2)

u(3)

 to be a member

of lkY(v3) is that

u(1)

u(2)

 is a vertex of B2(Z). The link lkY(v3) consists of a copy of B2(Z)

for each d ∈ 2Z, with two vertices u,w ∈ lkY(v3) being joined by an edge if there is an

edge between them in some copy of B2(Z). Hence lkY(v3) is connected, though note that

its fundamental group is an infinite rank free group.

Now, let ω ∈ π1(Y, v3). We represent ω by the sequence of vertices

w0 − w1 − . . .− wr,

where wi (1 ≤ i ≤ r) are vertices of Y, and w0 = wk = v3. Our goal is to systematically

homotope this loop so that the rank of each vertex in the sequence is 0. Such a loop is

contained in lkY(v3), and so may be contracted to the vertex v3.

Consider a vertex wi for some 1 < i < r, with R(wi) 6= 0. Since lkY(wi) is connected, there

is some path

wi−1 − q1 − q2 . . .− qs − wi+1

in lkY(wi), as seen in Figure 2.11. Fix attention on some qj (1 ≤ j ≤ s). By the Division

Algorithm, there exists aj , bj ∈ Z such that R(qj) = aj ·R(wi)+bj such that 0 ≤ bj < R(wi).

As in the proof of Lemma 2.2.10, we wish to ensure that aj is even, if possible. In all but
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. . .

. . .

wi

wi−1 wi+1

q1 qs

q̃1 q̃s

Figure 2.11: We find two homotopic paths that bound a disk inside lkY(wi), where the ‘upper’ path

seen here is constructed so that R(q̃j) < R(qj) for 1 ≤ j ≤ s.

one case, we will be able to rewrite the Division Algorithm as R(qj) = Aj ·R(wi) +Bj , for

some Aj , Bj ∈ Z such that Aj is even and 0 ≤ |Bj | < R(wi). We do a case-by-case parity

analysis. Note that R(qj) and R(wi) cannot both be odd, as qj and wi are joined by an

edge. If R(qj) and R(wi) have different parities and aj is odd, we may take Aj = aj + 1

and Bj = bj −R(wi). If both R(qj) and R(wi) are even, we may still do this, unless bj = 0.

We now associate to each qj a new vertex, q̃j , defined by

q̃j =


qj − aj · wi if aj even,

qj −Aj · wi if aj odd, bj 6= 0,

qj − aj · wi if aj odd, bj = 0

.

Note that when bj = 0, R(q̃j) = 0, and under the conditions given, q̃j is always well-defined

as a vertex of Y. The path

wi−1 − q1 − . . .− qs − wi+1

is homotopic inside lkY(wi) to the path

wi−1 − q̃1 − . . .− q̃s − wi+1,

as seen in Figure 2.11. By construction, R(q̃j) < R(wi). Iterating this procedure continually

homotopes ω until it is inside lkY(e3), and hence is trivial. Therefore π1(Y) = 1.

The complex Bπ
3 (Z) is not simply-connected. It may be tempting to try to use the

method in the above proof to show that Bπ
3 (Z) is simply-connected, however we know by
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v1 v2

v1 + v2

v3

Figure 2.12: The quotient complex of Y under the action of Γ3[2]. We have labelled its vertices

using representatives from the vertex set of Y.

Corollary 2.3.8 that Bπ
3 (Z) has non-trivial fundamental group. The obstruction to the

above proof going through occurs when defining q̃j in the case that aj is odd and bj = 0:

we find q̃j 6∈ Bπ
3 (Z). When aj is odd and bj = 0, there is no even multiple of wi that can

be added to qj to decrease its rank, so this method of homotoping loops to a point will not

work.

2.5.3 Presenting Γ3[2]

Having demonstrated that Y is simply-connected, we now turn our attention to the obvious

action of Γ3[2] on Y. This action is simplicial, does not invert edges, and the quotient

complex under the action is contractible, as seen in Figure 2.12. We now apply Corollary

2.5.2 to obtain a presentation of Γ3[2].

We may choose a maximal tree in the 1-skeleton of the quotient of Y that includes two edges

from every 2-simplex, so we are able to use the simpler presentation given by Corollary

2.5.2. We begin by giving a finite presentation for Γ3[2](v1), the stabiliser of the vertex v1

in Y, which we obtain from the semi-direct production decomposition of Γ3[2](1) given by

Lemma 2.3.5. The group Γ3[2](v1) is generated by the set {O2, O3, S23, S32, S12, S13}, with

a complete list of relators given by
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1. O2
2,

2. O3
2,

3. (O2O3)2,

4. (O2S23)2,

5. (O2S32)2,

6. (O2S12)2,

7. [O2, S13],

8. (O3S23)2,

9. (O3S32)2,

10. (O3S13)2,

11. [O3, S12],

12. [S23, S13],

13. [S12, S32],

14. [S12, S13],

15. [S12, S23]S−2
13 ,

16. [S13, S32]S−2
12 .

By permuting the indices accordingly, we also obtain finite presentations for Γ3[2](v2) and

Γ3[2](v3). Temporarily ignoring the vertex v1 + v2 in the quotient, it is clear that the effect

of including the edge relators of Corollary 2.5.2 in the presentation of the free product of

the stabilisers {Γ3[2](vi)} (1 ≤ i ≤ 3) produces the presentation given in Corollary 2.1.2

without relators 7 and 10. We denote this (incomplete) presentation by P. This results

simply because the stabiliser subgroup of the edge between vi and vj (i 6= j) is generated by

the intersection of the generating sets for Γ3[2](vi) and Γ3[2](vj) given above. For example,

the stabiliser Γ3[2](v1, v2) of the edge between v1 and v2 is generated by {O3, S13, S23}.

For the final vertex, v1 + v2, we begin by abstractly presenting its stabiliser, Γ3[2](v1 + v2).

Since Γ3[2](v1 + v2) and Γ3[2](v1) are conjugate inside GL(3,Z), we take the set of formal

symbols

{Ô2, Ô3, Ŝ23, Ŝ32, Ŝ12, Ŝ13}

as a generating set for Γ3[2](v1 + v2). A defining list of relators for these generators is

obtained from the above list for Γ3[2](v1) by placing a ‘hat’ above each generator.

The members of Γ3[2](v1 +v2) are not, however, strings of formal symbols, but are members

of Γ3[2]. To express them as such, we observe that

Γ3[2](v1 + v2) = E21 · Γ3[2](v1) · E21
−1,

where E21 is the elementary matrix with a 1 in the (2, 1) position. In Table 2.2, we see
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the conjugates of the generators of Γ3[2](v1) by E21: these give expressions for the formal

symbols generating Γ3[2](v1 + v2). For example,

Ŝ12 = E21S12E21
−1 = O1O2S21S12

−1.

Generator M of Γ3[2](v1) The conjugate M̂ = E21 ·M · E21
−1

O2 S21O2

O3 O3

S12 O1O2S21S12
−1

S13 S13S23

S23 S23

S32 S32S31
−1

Table 2.2: The conjugates of the generating set of Γ3[2](v1) by E21.

We now consider the edge relators corresponding to the final three edges of the quotient of

Y. Let fi be the edge joining v1 + v2 to vi (1 ≤ i ≤ 3), and let Ji be the stabiliser of fi. We

consider these each in turn. Observe that

J2 = E21 · Γ3[2](v1, v2) · E21
−1,

so J2 is generated by {O3, S13S23, S23}. We have expressed those three generators in terms

of the generators of Γ3[2](v1): to obtain our edge relations, we must express them using the

generators of Γ3[2](v1 + v2), and set them to be equal accordingly. Consulting Table 2.2,

we get the edge relations Ô3 = O3, Ŝ13 = S13S23 and Ŝ23 = S23. Note that these relations

simply reiterate the expressions we had already determined for Ô3, Ŝ13 and Ŝ23. Similarly,

as we obtain J3 by conjugating Γ3[2](v1, v3) by E21, the edge relations arising from the edge

f3 are Ô2 = S21O2, Ŝ12 = O1O2S21S12
−1 and Ŝ32 = S32S31

−1.

Finally, to obtain J1, we conjugate Γ3[2](v1, v2) by the elementary matrix E12. We obtain

that J1 is generated by {O3, S13, S13S23}, which gives edge relations Ô3 = O3, S13 = Ŝ13Ŝ
−1
23

and Ŝ13 = S13S23. Note that these relations all arise as consequences of the edge relations

coming from the edges f2 and f3, so are not required.
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Thus, using Tietze transformations, we deduce that Γ3[2] is finitely presented by adding

the relators in the right-hand column of Table 2.3 to those in the presentation P. Direct

Relator R Relator R′

Ô2
2 (S21O2)2

Ô2
3 O2

3

(Ô2Ô3)2 (S21O2O3)2

(Ô2Ŝ23)2 (S21O2S23)2

(Ô2Ŝ32)2 (S21O2S32S31
−1)2

(Ô2Ŝ12)2 (S21O2O1O2S21S12
−1)2

[Ô2, Ŝ13] [S21O2, S13S23]

(Ô3Ŝ23)2 (O3S23)2

(Ô3Ŝ32)2 (O3S32S31
−1)2

(Ô3Ŝ13)2 (O3S13S23)2

[Ô3, Ŝ12] [O3, O1O2S21S12
−1]

[Ŝ23, Ŝ13] [S23, S13S23]

[Ŝ12, Ŝ32] [O1O2S21S12
−1, S32S31

−1]

[Ŝ12, Ŝ13] [O1O2S21S12
−1, S13S23]

[Ŝ12, Ŝ23]Ŝ−2
13 [O1O2S21S12

−1, S23](S13S23)−2

[Ŝ13, Ŝ32]Ŝ−2
12 [S13S23, S32S31

−1](O1O2S21S12
−1)−2

Table 2.3: Here we see two different expressions for each relator: the left-hand column contains

expressions in terms of the abstract symbols generating Γ3[2], while the right-hand column reinterprets

these relators in terms of the generating set of the presentation P.

computation reveals that all the relators in the right-hand column, except for the final one,

are consequences of the relators of P, so may be removed from our presentation. Let

χ := [S13S23, S32S31
−1](O1O2S21S12

−1)−2

be the final relator in Table 2.3. Observe that we may replace the relator in the final entry

of the left-hand column with

Ŝ32Ŝ13Ŝ12Ŝ
−1
32 Ŝ

−1
13 Ŝ12,

by rearranging the original relator using relations in Γ3[2](v1 + v2). This replaces χ with
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the relator

χ′ := (S32S31
−1S13S23S21S12

−1)2,

or, more correctly, a word also involving O1 and O2 which is clearly equal to χ′. We have

thus verified that the presentation given in Corollary 2.1.2 is correct in the n = 3 case.



Chapter 3

Outer automorphisms of

automorphism groups of

right-angled Artin groups

3.1 Overview

Let Γ be a finite simplicial graph, with vertex set V . Let E be the edge set of Γ, which we

view as subset of V × V : precisely, (v, w) ∈ E if and only if the vertices v and w are joined

by an edge in Γ. When (v, w) ∈ E, we say v is adjacent to w, and vice versa. The graph Γ

defines the right-angled Artin group AΓ via the presentation

〈v ∈ V | [v, w] = 1 if (v, w) ∈ E〉.

The class of right-angled Artin groups contains all finite rank free and free abelian groups,

and allows us to interpolate between these two classically well-studied classes of groups.

A centreless group G is complete if the natural embedding Inn(G) ↪→ Aut(G) is an isomor-

phism. Dyer-Formanek [27] showed that Aut(Fn) is complete for Fn a free group of rank

n ≥ 2, giving Out(Aut(Fn)) = 1. Their approach is algebraic, and relies upon a criterion of

Burnside [13], which states that a centreless group G is complete if and only if G is normal in

Aut(Aut(G)), embedding G as Inn(G) ↪→ Aut(G) ↪→ Aut(Aut(G)). Bridson-Vogtmann [10]

independently proved the completeness of Aut(Fn) for n ≥ 3, using geometric methods, and

61
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also showed that Out(Fn) is complete. Their proof uses the actions of Aut(Fn) and Out(Fn)

on auter space and outer space, respectively.

Although Aut(Zn) = GL(n,Z) is not complete, as its centre is Z/2, we observe similar

behaviour for free abelian groups: that is, we find that Out(GL(n,Z)) has small order

for all n. Hua-Reiner [35] explicitly determined Out(GL(n,Z)); in particular, we have the

following theorem.

Theorem 3.1.1 (Hua-Reiner [35]). Let A1 ∈ Aut(GL(n,Z)) map M ∈ GL(n,Z) to

det(M) ·M . Let A2 ∈ Aut(GL(n,Z)) map M ∈ GL(n,Z) to (MTr)
−1

, where MTr denotes

the transpose of M . Then

• if n = 2, Out(GL(n,Z)) = Z/2× Z/2,

• if n ≥ 3 is odd, Out(GL(n,Z)) = Z/2 = 〈Ā2〉,

• if n > 2 is even, Out(GL(n,Z)) = Z/2× Z/2 = 〈Ā1, Ā2〉,

where Āi denotes the image of Ai in Out(GL(n,Z)) (i = 1, 2).

To summarise the results of Dyer-Formanek [27], Bridson-Vogtmann [10] and Hua-Reiner

[35], we say that for free or free abelian AΓ, the orders of Out(Aut(AΓ)) and Out(Out(AΓ))

are both uniformly bounded above by 4. The main result of this chapter is that no such

uniform upper bounds exist when AΓ ranges over all right-angled Artin groups.

Theorem 3.1.2. For any N ∈ N, there exists a right-angled Artin group AΓ such that

|Out(Aut(AΓ))| > N.

We give two proofs of Theorem 3.1.2: in the first, we work over right-angled Artin groups

with non-trivial centre, while in the second we work over right-angled Artin groups with

trivial centre. We also prove the analogous result regarding the order of Out(Out(AΓ)).

Theorem 3.1.3. For any N ∈ N, there exists a right-angled Artin group AΓ such that

|Out(Out(AΓ))| > N.

We remark that neither Theorem 3.1.2 nor 3.1.3 follows from the other, since in general,

given a quotient G/N , the groups Aut(G/N) and Aut(G) may behave very differently.
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Many of the groups that arise in geometric group theory display ‘algebraic rigidity’, in

the sense that their outer automorphism groups are small. The aforementioned results

of Dyer-Formanek [27], Bridson-Vogtmann [10] and Hua-Reiner [35] are examples of this

phenomenon. Further examples are given by braid groups [28] and many mapping class

groups [36], as these groups have Z/2 as their outer automorphism groups. Theorems 3.1.2

and 3.1.3 thus fit into a more general framework of the study of algebraic rigidity within

geometric group theory.

We prove both theorems by exhibiting classes of right-angled Artin groups over which the

groups in question grow without bound. We introduce the notions of an austere graph and

an austere graph with star cuts in Sections 3.2 and 3.4, respectively. These lead to tractable

decompositions of Aut(AΓ) and Out(AΓ) as semi-direct products, which then yield numerous

members of Out(Aut(AΓ)) and Out(Out(AΓ)). Our methods do not obviously yield infinite

order elements of Out(Aut(AΓ)); we discuss this further in Section 3.5.

3.1.1 Outline of chapter

In Section 3.2, we recall a finite generating set of Aut(AΓ) and give the proof of Theorem

3.1.3. Sections 3.3 and 3.4 contain two proofs of Theorem 3.1.2; first for right-angled Artin

groups with non-trivial centre, then for those with trivial centre. In Section 3.5, we discuss

generalisations of this work, including the question of extremal behaviour of Out(Aut(AΓ)).

3.2 Proof of Theorem 3.1.3

Let Γ be a finite simplicial graph with vertex set V and edge set E ⊂ V × V . We write

Γ = (V,E). We will abuse notation and consider v ∈ V as both a vertex of Γ and a generator

of AΓ. We will also often consider a subset S ⊆ V as the full subgraph of Γ which it spans.

For a vertex v ∈ V , we define its link, lk(v), to be the set of vertices in V adjacent to v,

and its star, st(v), to be lk(v) ∪ {v}.
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 

(a)



D1

D2

(b)

Figure 3.1: (a) The local picture of a vertex α being dominated by a vertex β. (b) Removing the

star of the vertex σ leaves two connected components, D1 and D2.

3.2.1 The LS generators

Laurence [41], proving a conjecture of Servatius [54], gave a finite generating set for Aut(AΓ),

which we now recall. We specify the action of the generator on the elements of V . If a

vertex v ∈ V is omitted, it is assumed to be fixed. There are four types of generators:

1. Inversions, ιv: for each v ∈ V , ιv maps v to v−1. We denote by IΓ the subgroup of

Aut(AΓ) generated by the inversions.

2. Graph symmetries, φ: each φ ∈ Aut(Γ) induces an automorphism of AΓ, which we

also denote by φ, mapping v ∈ V to φ(v).

3. Dominated transvections, τxy: for x, y ∈ V , whenever lk(y) ⊆ st(x), we write y ≤ x,

and say y is dominated by x (see Figure 3.1a). In this case, τxy is well-defined, and

maps y to yx. The vertex x may be adjacent to y, but it need not be.

4. Partial conjugations, γc,D: fix c ∈ V , and select a connected component D of Γ \ st(c)

(see Figure 3.1b). The partial conjugation γc,D maps every d ∈ D to cdc−1. We

denote by PC(AΓ) the subgroup of Aut(AΓ) generated by the partial conjugations.

We refer to the generators on this list as the LS generators of Aut(AΓ).
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3.2.2 Austere graphs.

We say that a graph Γ = (V,E) is austere if it has trivial symmetry group, no dominated

vertices, and for each v ∈ V , the graph Γ \ st(v) is connected. We describe such graphs as

being ‘austere’ because their properties make the list of LS generators of Aut(AΓ) as short

as possible. We use examples of austere graphs to prove Theorem 3.1.3.

Figure 3.2: The Frucht graph, an example of a graph which is austere.

Proof of Theorem 3.1.3. For an austere graph Γ = (V,E), the only well-defined LS genera-

tors of Aut(AΓ) are the inversions and the partial conjugations, as by definition Γ has no

symmetries or dominated vertices. Let n = |V |. Note that each partial conjugation is an

inner automorphism, since by construction, for each v ∈ V , the graph Γ\st(v) is connected.

We have the decomposition

Aut(AΓ) ∼= Inn(AΓ) o IΓ,

where IΓ
∼= (Z/2)n is the group generated by the inversions. The inversions act on

Inn(AΓ) ∼= AΓ in the obvious way, either inverting or fixing (conjugation by) each v ∈ V .

We have

Out(AΓ) = Aut(AΓ)/Inn(AΓ) ∼= IΓ,

and so, since IΓ is abelian,

Aut(Out(AΓ)) ∼= Out(Out(AΓ)) ∼= GL(n,Z/2).

If we can find austere graphs for which n is as large as we like, then we will have proved

Theorem 3.1.3, as the order of GL(n,Z/2) strictly increases with n.
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The Frucht graph, seen in Figure 3.2, was constructed by Frucht [30] as an example of a

3-regular simplicial graph with trivial symmetry group. In fact, it is easily checked that the

Frucht graph is austere. Baron-Imrich [4] generalised the Frucht graph to produce a family

of finite, 3-regular simplicial graphs with trivial symmetry groups, over which n = |V | is

unbounded. Like the Frucht graph, these graphs may also be shown to be austere, and so

they define a class of right-angled Artin groups which proves Theorem 3.1.3.

3.3 Proof of Theorem 3.1.2: right-angled Artin groups with

non-trivial centre

In this section, we assume that AΓ has non-trivial centre. Let {Γi} be a collection of graphs.

The join, J {Γi}, of {Γi} is the graph obtained from the disjoint union of {Γi} by adding

an edge (vi, vj) for all vertices vi of Γi and vj of Γj , for all i 6= j. Observe that for a finite

collection of finite simplicial graphs {Γi}, we have

AJ{Γi}
∼=
∏
i

AΓi ,

as the edges we add to form the join correspond precisely with the relators needed to form

the direct product. When we take the join of only two graphs, Γ and ∆, we write J (Γ,∆)

for their join.

3.3.1 Decomposing Aut(AΓ)

A vertex s ∈ V is said to be social if it is adjacent to every vertex of V \ {s}. Let S denote

the set of social vertices of Γ and set k = |S|. Let ∆ = Γ \ S. We have Γ = J (S,∆),

so AΓ
∼= Zk × A∆, and by The Centralizer Theorem of Servatius [54], the centre of AΓ is

AS = Zk. A first step to understanding how the structure of Aut(AΓ) relates to Aut(AS)

and Aut(A∆) is the following proposition.

Proposition 3.3.1. The group GL(k,Z)×Aut(A∆) is a proper subgroup of Aut(AΓ).

Proof. We examine the LS generators that are well-defined for each graph, S and ∆. Each

of these LS generators is also a well-defined LS generator for Aut(AΓ), as we now show
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by considering each in turn. The inversions are clearly well-defined in Aut(AΓ). Any

φ ∈ Aut(Γ) must preserve S and ∆ as sets, since clearly φ must preserve the property of

being (or not being) adjacent to every other vertex of Γ, so all the graph symmetries of S and

∆ extend to symmetries of Γ. There are no partial conjugations to consider in Aut(AS),

and removing the star of any vertex in Γ \ S produces the same graph as removing the

same vertex from ∆ (considered as an abstract graph, not a subgraph of Γ), so any partial

conjugation of A∆ extends to a partial conjugation of AΓ. Let x dominate y in S (resp.

∆). In Γ, x and y both gain all vertices in ∆ (resp. S) as neighbours, so x continues to

dominate y in Γ. Thus, the dominated transvection τxy is well-defined in Aut(AΓ).

It is easy to see that these LS generators generate GL(k,Z) and Aut(A∆) inside Aut(AΓ).

That they generate the direct product in the statement of the proposition follows from

observing that they act on different sets of vertices: namely, S and ∆. We get a proper

subgroup of Aut(AΓ), as there exist LS generators of Aut(AΓ) which do not preserve AS

and A∆ as sets.

No vertex v ∈ ∆ can dominate any vertex of S (otherwise v would be social), however each

s ∈ S dominates each v ∈ ∆: this is due to the join construction of Γ, and also since S

consists of social vertices. The only LS generators not contained in the proper subgroup

GL(k,Z)×Aut(A∆) are of the form τsa, where s ∈ S and a ∈ ∆. We will refer to this type

of transvection as a lateral transvection, as they occur ‘between’ the two graphs, S and ∆.

Proposition 3.3.2. Let Γ = J (S,∆) define a right-angled Artin group, AΓ, with non-trivial

centre. The group L generated by the lateral transvections is isomorphic to Zk|∆|.

Proof. It is clear the lateral transvections τsa and τtb commute if a 6= b, as they act on

distinct vertices. The only case left to check is τsa and τta, for s, t ∈ S and a ∈ ∆. We see

that

τtaτsaτ
−1
ta (a) = τtaτsa(at

−1) = τta(ast
−1) = atst−1 = as,

since s and t commute. Therefore τtaτsaτ
−1
ta = τsa, and hence L is abelian.

We see that L is torsion-free: suppose T ∈ L sends a ∈ ∆ to aw, for some w ∈ AS = Zk.

Let m ∈ Z such that Tm is the identity. Then Tm(a) = awm = a. Since Zk is torsion-free,

we must have m = 0, and so L is torsion-free.
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A straightforward calculation verifies that the lateral transvections form a Z-basis for L:

suppose T p11 . . . T prr = 1, where the Ti are lateral transvections and pi ∈ Z (1 ≤ i ≤ r). As

soon as some pi is non-zero, some vertex a ∈ ∆ is not fixed, and so the product T p11 . . . T prr

is non-trivial. This relies upon the fact that S forms a Z-basis for AS .

To deduce the rank, observe there is a bijection between {τsa | S ∈ S, a ∈ ∆} and S×∆.

We now show that L is the kernel of a split product decomposition of Aut(AΓ). This is an

Aut(AΓ) version of a decomposition of Out(AΓ) given by Charney-Vogtmann [17].

Proposition 3.3.3. Let Γ = J (S,∆) define a right-angled Artin group, AΓ, with non-trivial

centre. The group Aut(AΓ) splits as the product

Zk|∆| o [GL(k,Z)×Aut(A∆)] .

Proof. Standard computations show that L ∼= Zk|∆| is closed under conjugation by the LS

generators and their inverses: these calculations are summarised in Table 3.1. Note that we

decompose any φ ∈ Aut(Γ) into its actions on S and ∆, and use a proper subset T of the

LS generators, which suffices to generate Aut(AΓ).

λ ∈ T ∪ T−1 λ · τsa · λ−1 λ ∈ T ∪ T−1 λ · τsa · λ−1

ιt τsa ιb τsa

ιs −τsa ιa −τsa

τst τsa τbd τsa

τrt τsa τab τsa − τsb
τts τsa + τta τ−1

ab τsa + τsb

τ−1
ts τsa − τta φ ∈ Aut(∆) τsφ(a)

γc,D τsa

Table 3.1: The conjugates of a lateral transvection τsa. The vertices a, b, d ∈ ∆ and r, s, t ∈ S are

taken to be distinct, and D being any connected component of Γ \ st(c).

We observe that the intersection of L and GL(k,Z) × Aut(A∆) is trivial: the elements of

L transvect vertices of ∆ by vertices of S, whereas the elements of GL(k,Z) × Aut(A∆)

carry Zk and A∆ back into themselves. Thus, Aut(AΓ) splits as in the statement of the

proposition.
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We look to the Zk|∆| kernel as a source of automorphisms of Aut(AΓ). We must how-

ever ensure that the split product action is preserved; this is achieved using the theory of

automorphisms of split products, which we now recall.

3.3.2 Automorphisms of split products

We refer the reader to Brown [11], Passi-Singh-Yadav [50] and Wells [59] for further details

of the exposition in this subsection.

Let G = N oH be a split product, where N is abelian, with the action of H on N being

encoded by a homomorphism α : H → Aut(N), writing α(h) = αh. For brevity, we will

often write (n, h) ∈ G simply as nh, when the meaning is clear. Let Aut(G,N) ≤ Aut(G)

be the subgroup of automorphisms that preserve N as a set. Let γ ∈ Aut(G,N). We get

an induced automorphism φ, say, of G/N , defined by φ(gN) = γ(g)N . This is well-defined

since γ(N) = N . We also obtain an automorphism θ, say, of N , by restriction: that is,

θ = γ|N . The map P : Aut(G,N) → Aut(N) × Aut(H) given by P (γ) = (θ, φ) is a

homomorphism.

An element (θ, φ) ∈ Aut(N) × Aut(H) is said to be a compatible pair if θαhθ
−1 = αφ(h),

for all h ∈ H. Let C ≤ Aut(N) × Aut(H) be the subgroup of all compatible pairs. This

is a special (split, abelian kernel) case of the notion of compatibility for group extensions

[50], [59]. Notice that the image of P is contained in C, since γ ∈ Aut(G,N) must preserve

the relation hnh−1 = αh(n) for all h ∈ H,n ∈ N . We therefore restrict the codomain of

P to C. Note that while P (with its new codomain) is surjective, it need not be injective.

Injectivity may fail since the map P does not see the difference between automorphisms of

G that preserve H and those which do not. Precisely, there may be some γ ∈ Aut(G,N)

which restricts to the identity on N and induces the identity on G/N , so is in the kernel of

P , but maps (1, h) to (nh, h), where nh need not be trivial.

We map C back into Aut(G,N) using the homomorphism R, defined by

R(θ, φ)(nh) = θ(n)φ(h).

Let AutH(G,N) be the subgroup of Aut(G,N) of maps which induce the identity on H.
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This group is mapped via P onto

C1 := {θ ∈ Aut(N) | θα(h)θ−1 = α(h) ∀h ∈ H}.

Note C1 is the centraliser of im(α) in Aut(N). Our strategy for proving Theorem 3.1.2 is

to determine C1 for the split decomposition of Aut(AΓ) given by Proposition 3.3.3, and use

R to map C1 into Aut(Aut(AΓ)).

3.3.3 Ordering the lateral transvections

In order to determine the image of α for our split product, Zk|∆| o [GL(k,Z)×Aut(A∆)],

we specify an ordering on the lateral transvections. We do this because the image of α is a

subgroup of Aut(Zk|∆|) = GL(k|∆|,Z), and the ordering we specify will allow us to give a

concrete description of the members of this subgroup using block matrices.

Let s1 ≤ . . . ≤ sk be an arbitrary total order on the vertices of S. For lateral transvections

τsia, τsjb, we say τsia ≤ τsjb if si ≤ sj . For a fixed i, we refer to the set {τsia | a ∈ ∆} as a

∆-block.

We now use properties of the graph ∆ to determine the rest of the ordering on the lateral

transvections. Recall that for vertices x, y ∈ V , x dominates y if lk(y) ⊆ st(x), and we

write y ≤ x. Charney-Vogtmann [17, Lemma 2.2] show that ≤ is a pre-order (that is, a

reflexive, transitive relation) on V , and use it to define the following equivalence relation.

Let v, w ∈ V . We say v and w are domination equivalent if v ≤ w and w ≤ v. If this is the

case, we write v ∼ w, and let [v] denote the domination equivalence class of v.

The pre-order on V descends to a partial order on V/ ∼, the set of domination equivalence

classes of V . [17]. We also denote this partial order by ≤. The group Aut(∆) acts on the

set of domination classes of ∆. Let O be the set of orbits of this action, writing O[v] for the

orbit of the class [v]. Note that, by construction, there is a transitive action of Aut(∆) on

O[v] for each v ∈ ∆. We wish to define a partial order � on O which respects the partial

order on the domination classes. That is, if [v] ≤ [w], then O[v] � O[w], for domination

classes [v] and [w].

We achieve this by defining a relation � on O by the rule O[v] � O[w] if and only if there

exists [w′] ∈ O[w] such that [v] ≤ [w′]. This is well-defined, since Aut(∆) acts transitively
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on each O[v] ∈ O. The properties of ≤ discussed above give us the following proposition.

Proposition 3.3.4. The relation � on O is a partial order.

Proof. The relation � is reflexive, since [v] ≤ [v] for all v ∈ ∆. To obtain transitivity and

anti-symmetry of �, we utilise the transitive action of Aut(∆) on each O[v] ∈ O. Suppose

O[u] � O[v] � O[w]. By acting on O[v] and O[w] by a member of Aut(∆) if need be, we

may conclude that [u] ≤ [v] ≤ [w], so [u] ≤ [w]. Thus, O[u] � O[w], and so � is transitive.

Anti-symmetry of � may be established by noting that if [v] ≤ [w], then |st(v)| ≤ |st(w)|,

and if [v] ≤ [w] with |st(v)| = |st(w)| then [v] = [w].

We use � to define a total order on the vertices of ∆, by first extending � to a total order

on O. We also place total orders on the domination classes within each O[v] ∈ O, and on the

vertices within each domination class. Now each vertex is relabelled T (p, q, r) to indicate its

place in the order: T (p, q, r) is the rth vertex of the qth domination class of the pth orbit.

Precisely, we order the set of symbols {T (p, q, r)} using a lexicographic ordering on the set

{(p, q, r)}. When working with a given ∆-block, we can identify the lateral transvections

with the vertices of ∆, allowing us to think of T (p, q, r) as a lateral transvection. Thus, we

may think of a specific ∆-block as inheriting an order from the ordering on ∆.

3.3.4 The centraliser of the image of α

We now explicitly determine the image of α, and its centraliser, in GL(k|∆|,Z). Looking

at how GL(k,Z)×Aut(A∆) acts on Zk|∆| (see Table 3.1), we see that the image of α is

Q := GL(k,Z)× Φ∆,

where Φ∆ ≤ GL(|∆|,Z) is the image of Aut(A∆) under the homomorphism induced by

abelianising A∆. The action of Q on Zk|∆| factors through GL(k+ |∆|,Z) in an obvious way,

as pointed out by an anonymous referee, simply by mapping Q and Zk|∆| into GL(k+|∆|,Z)

via this induced homomorphism. Working in GL(k+ |∆|,Z) instead of GL(k|∆|,Z) is sim-

pler, however it does not allow us to fully determine the group C1: working in GL(k|∆|,Z),

we exhaust the members of C1.



CHAPTER 3. OUTER AUTOMORPHISMS OF AUT(AΓ) 72

The matrices in Q have a natural block decomposition given by the ∆-blocks: each M ∈ Q

may be partitioned into k horizontal blocks and k vertical blocks, each of which has size

|∆| × |∆|. We write M = (Aij), where Aij is the block matrix entry in the ith row and jth

column. Under this decomposition, we see that the GL(k,Z) factor of Q is embedded as

GL(k,Z) ∼= {(aij · I|∆|) | (aij) ∈ GL(k,Z)},

where I|∆| is the identity matrix in GL(|∆|,Z). We write Diag(D1, . . . , Dk) to denote the

block diagonal matrix (Bij) where Bii = Di and Bij = 0 if i 6= j. The Φ∆ factor of Q

embeds as

Φ∆
∼= {Diag(M, . . . ,M) |M ∈ Φ∆} ≤ Q.

We now determine the centraliser, C(Q), of Q in GL(k|∆|,Z). The proof is similar to the

standard computation of Z(GL(k,Z)).

Lemma 3.3.5. The centraliser C(Q) is a subgroup of {Diag(M, . . . ,M) |M ∈ GL(|∆|,Z)}.

Proof. Clearly an element of C(Q) must centralise the GL(k,Z) factor of Q. Let D be the

subgroup of diagonal matrices in GL(k,Z), and define

D̂ := {(εij · I|∆|) | (εij) ∈ D} ≤ Q.

Suppose (Aij) ∈ C(Q) centralises D̂. Then for each (εij · I|∆|) ∈ D̂, we must have

(Aij) = (εij · I|∆|)(Aij)(εij · I|∆|) = (εiiεjjAij),

since (εij · I|∆|) is block diagonal. Since εii ∈ {−1, 1} for 1 ≤ i ≤ k, we must have Aij = 0

if i 6= j, so (Aij) is block diagonal. By considering which block diagonal matrices centralise

(Eij · I|∆|), where (Eij) ∈ GL(k,Z) is an elementary matrix, we see that any block diagonal

matrix centralising the GL(k,Z) factor of Q must have the same matrix M ∈ GL(|∆|,Z)

in each diagonal block. It is then a standard calculation to verify that any choice of M ∈

GL(|∆|,Z) will centralise the GL(k,Z) factor of Q.

The problem of determining C(Q) has therefore been reduced to determining the centraliser

of Φ∆ in GL(|∆|,Z). The total order we specified on the vertices of ∆ gives a block lower

triangular decomposition of M ∈ Φ∆, which we utilise in the proof of Proposition 3.3.6.

This builds upon a matrix decomposition given by Day [25] and Wade [57].
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Observe that Φ∆ contains the diagonal matrices of GL(|∆|,Z). As in the above proof,

anything centralising Φ∆ must be a diagonal matrix. For a diagonal matrix E ∈ GL(|∆|,Z),

we write E(p, q, r) for the diagonal entry corresponding to the vertex T (p, q, r) of ∆.

Proposition 3.3.6. A diagonal matrix E ∈ GL(|∆|,Z) centralises Φ∆ if and only if the

following conditions hold:

(1) If p = p′, then E(p, q, r) = E(p′, q′, r′), and,

(2) If T (p, q, r) is dominated by T (p′, q′, r′), then E(p, q, r) = E(p′, q′, r′)

Proof. We define a block decomposition of the matrices in GL(|∆|,Z) using the sizes of the

orbits, O[v1] � . . .� O[vl]. Let mi = |O[vi]|. We partition M ∈ GL(|∆|,Z) into l horizontal

blocks and l vertical blocks, writing M = (Mij), where Mij is an mi ×mj matrix. Observe

that due to the ordering on the lateral transvections, if i < j, then Mij = 0.

Let E ∈ GL(|∆|,Z) satisfy the conditions in the statement of the proposition. We may

write E = Diag(ε1 · Im1×m1 , . . . , εl · Iml×ml
), where each εi ∈ {−1, 1} (1 ≤ i ≤ l). Then

EM = (εi ·Mij) and ME = (εj ·Mij). We see that ME and EM agree on the diagonal

blocks, and on the blocks where Mij = 0. If i > j and Mij 6= 0, then there must be a

vertex T (j, q, r) being dominated by a vertex T (i, q′, r′). By assumption, εi = εj . Therefore

EM = ME and E ∈ C(Q).

Suppose now that E ∈ GL(|∆|,Z) fails the first condition. Without loss of generality, sup-

pose E(p, q, 1) 6= E(p, q′, 1). Since, by definition, Aut(∆) acts transitively on the elements of

O[vp], there is some P ∈ GL(|∆|,Z) induced by some φ ∈ Aut(∆) which acts by exchanging

the qth and q′th domination classes. A standard calculation shows that [E,P ] 6= 1.

Finally, suppose E ∈ GL(|∆|,Z) fails the second condition. Assume that T (p, q, r) is domi-

nated by T (p′, q′, r′), but that E(p, q, r) 6= E(p′, q′, r′). In this case, E fails to centralise the

elementary matrix which is the result of transvecting T (p, q, r) by T (p′, q′, r′).

3.3.5 Extending elements of C(Q) to automorphisms of Aut(AΓ)

Using the map R from section 3.1.2, for A ∈ C(Q) = C1 we obtain R(A) ∈ Aut(Aut(AΓ))

which acts as A on Zk|∆| ≤ Aut(AΓ) and as the identity on GL(k,Z)×Aut(A∆) ≤ Aut(AΓ).
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If there are d domination classes in ∆, then |C1| ≤ 2d, by Proposition 3.3.6. We now

determine R̂(C1), the image of R(C1) in Out(Aut(AΓ)).

Let nh ∈ Zk|∆| o [GL(k,Z)×Aut(A∆)], with h 6= 1. Conjugating Aut(AΓ) by nh fixes

GL(k,Z)×Aut(A∆) pointwise only if h is central in GL(k,Z)×Aut(A∆). The only such non-

trivial central element is ι, the automorphism inverting each generator of Zk (see Proposition

3.5.1). Given that αι(n) = −n for each n ∈ Zk|∆|, we see that for any m ∈ Zk|∆|, we have

(m, 1)(n,ι) = (−m, 1).

So, regardless of which n we choose, the automorphism of Aut(AΓ) induced by conjugation

by nι is equal to R(−Ik|∆|). In other words, when we conjugate by nι, we map each

lateral transvection to its inverse. Thus, for A,B ∈ C1, R(AB−1) is inner if and only if

A(p, q, r) = −B(p, q, r) for every p, q, and r: that is, if and only if AB−1 = −Ik|∆|. This

means |R(C1)| = 2|R̂(C1)|.

3.3.6 First proof of Theorem 3.1.2

We are now able to prove Theorem 3.1.2 for right-angled Artin groups with non-trivial

centre.

Proof (1) of Theorem 3.1.2. By Proposition 3.3.3, we have a split decomposition of Aut(AΓ),

whose kernel is Zk|∆|. The structure of C1 = C(Q) is given by Proposition 3.3.6. We have

fewest constraints on C1 if ∆ is such that domination occurs only between vertices in the

same domination class, and when each domination class lies in an Aut(∆)-orbit by itself.

This is achieved, for example, if ∆ = C, a disjoint union of pairwise non-isomorphic com-

plete graphs, each of rank at least two. The graph symmetries of C form a direct product of

symmetric groups, as vertices may only be permuted with ones in their own connected com-

ponents. Similarly, a vertex is dominated by another if and only if they belong to the same

connected component. Thus, the domination equivalence classes of C sit in Aut(C)-orbits

by themselves.

Suppose C has d connected components. For A ∈ C(Q), Proposition 3.3.6 implies A is

entirely determined by the entries A(p, 1, 1) (1 ≤ p ≤ d), working within a fixed ∆-block.

This gives |C(Q)| = 2d, and so the image of C(Q) in Out(Aut(AΓ)) has order 2d−1, by
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the discussion in Section 3.3.5. As we may choose d to be as large as we like, the result

follows.

3.4 Proof of Theorem 3.1.2: centreless right-angled Artin

groups

In this section, we demonstrate that Theorem 3.1.2 also holds when working over classes

of centreless right-angled Artin groups. From now on, we assume that the graph Γ has no

social vertices, so that AΓ has trivial centre. A simplicial graph Γ = (V,E) is said to have

no separating intersection of links (‘no SILs’) if for all v, w ∈ V with v not adjacent to

w, each connected component of Γ \ (lk(v) ∩ lk(w)) contains either v or w. We have the

following theorem.

Theorem 3.4.1 (Charney-Ruane-Stambaugh-Vijayan [15]). Let Γ be a finite simplicial

graph with no SILs. Then PC(AΓ), the subgroup of Aut(AΓ) generated by partial conjuga-

tions, is a right-angled Artin group, whose defining graph has vertices in bijection with the

partial conjugations of AΓ.

We restrict ourselves to looking at certain no SILs graphs, to obtain a nice decomposition

of Aut(AΓ). We say a graph Γ is weakly austere if it has trivial symmetry group and no

dominated vertices. Note that this is a loosening of the definition of an austere graph:

removing a vertex star need no longer leave the graph connected.

Lemma 3.4.2. Let Γ = (V,E) be weakly austere and have no SILs. For c ∈ V , let

Kc = |π0(Γ \ st(c))|. Then

|Out(Aut(AΓ))| ≥ 2Kc−1.

Proof. Since Γ is weakly austere, the only LS generators which are defined are the inver-

sions and the partial conjugations. Letting IΓ denote the finite subgroup generated by the

inversions ιv (v ∈ V ), we obtain the decomposition

Aut(AΓ) ∼= PC(AΓ) o IΓ,
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where the inversions act by inverting or commuting with partial conjugations in the obvious

way. Since Γ has no SILs, it follows from Theorem 3.4.1 that PC(AΓ) ∼= A∆ for some

simplicial graph ∆ whose vertices are in bijection with the partial conjugations of AΓ.

Fix c ∈ V and let {γc,Di | 1 ≤ i ≤ Kc} be the set of partial conjugations by c. Let ηc,j be

the LS generator of Aut(A∆) which inverts γc,Dj , but fixes the other vertex-generators of

A∆. This extends to an automorphism of Aut(AΓ), by specifying that IΓ is fixed pointwise:

all that needs to be checked is that the action of IΓ on PC(AΓ) is preserved, which is a

straightforward calculation. We abuse notation, and write ηc,j ∈ Aut(Aut(AΓ)).

If Kc > 1, we see ηc,j is not inner. Assume ηc,j is equal to conjugation by pκ ∈ PC(AΓ) o

IΓ. For any γ ∈ PC(AΓ), we have (γ, 1)(p,κ) = (pγκp−1, 1). Since, by assumption,

p(γc,Dj )
κp−1 = ηc,j(γc,Dj ) = γc,Dj

−1, an exponent sum argument tells us that κ must

act by inverting γc,Dj , and so κ must invert c in AΓ. (We know that the exponent sum with

respect to γc,Dj is well-defined, since PC(AΓ) is a right-angled Artin group by assumption,

and it is trivial to check that exponent sums are always well-defined for right-angled Artin

groups). However, ηc,j fixes γc,Di for all i 6= j, by definition, and a similar exponent sum

argument implies that κ cannot invert c in AΓ. Thus, by contradiction, ηc,j cannot be inner.

As above, we may choose a subset of {γc,Di} to invert, and extend this to an automorphism

of Aut(AΓ). Take two distinct such automorphisms, η1 and η2. Their difference η1η
−1
2 is

inner if and only if it inverts every element of {γc,Di}. Otherwise, we would get the same

contradiction as before. An elementary counting argument gives the desired lower bound of

2Kc−1: we simply choose whether or not to invert each of theKc partial conjugations {γc,Dj},

then note that they get identified in pairs when they are mapped into Out(Aut(AΓ)).

Observe that if Γ is austere, we cannot find a vertex c with Kc > 1. This is the reason we

loosen the definition and consider weakly austere graphs.

3.4.1 Second proof of Theorem 3.1.2

By exhibiting an infinite family of graphs over which the size of |{γc,Di}| is unbounded,

applying Lemma 3.4.2 will give a second proof of Theorem 3.1.2.
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Proof (2) of Theorem 3.1.2. Fix t ∈ Z with t ≥ 3. Define σ0 = 0 and choose {σ1 < . . . <

σt} ⊂ Z+ subject to the conditions:

(1) For each 0 < i ≤ t, we have σi − σi−1 > 2, and

(2) If i 6= j, then σi − σi−1 6= σj − σj−1.

We use the set E := {σi | 0 ≤ i ≤ t} to construct a simplicial graph. Begin with a cycle on

σt vertices, labelled 0, 1, . . . , σt − 1 in the natural way. Join one extra vertex, labelled c, to

those labelled σi, for 0 ≤ i < t. We denote the resulting graph by ΓE . Figure 3.3 shows an

example of such a ΓE .





Figure 3.3: The graph ΓE, for E = {3, 7, 12}.

For E ⊂ Z+ satisfying the above conditions, we see that ΓE is weakly austere and has no

SILs. Condition (1) ensures that no vertex is dominated by another: there is no domination

in the original cycle graph we started with, so all we need to check is that no vertices

dominate or are dominated by c. If c dominated some vertex v 6= c, then Condition (1)

would be violated. Suppose v is labelled by σi: then its neighbours are labelled σi−1, σi+1

(mod σt), and perhaps c. The neighbours of c are never contained in such a set, so v cannot

dominate c. We note that if the inequality in Condition (1) is changed to σi − σi−1 ≥ 2,

then domination may occur.

Observe that c is fixed by any φ ∈ Aut(ΓE), as it is the unique vertex of ΓE whose neighbours

all have three neighbours. Since each connected component of Γ \ st(c) has σi − σi−1 − 1

elements (for some 1 ≤ i ≤ t), condition (2) implies that Aut(ΓE) = 1. To see that ΓE has
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no SILs, observe that the intersection of the links of any two vertices has order at most 1.

When a single vertex is removed, ΓE remains connected, and so it has no SILs.

Lemma 3.4.2 applied to the family of graphs {ΓE} proves the theorem.

3.5 Extremal behaviour and generalisations

In Sections 3.3 and 3.4, we gave examples of AΓ for which Out(Aut(AΓ)) was non-trivial, but

not necessarily infinite. Currently, there are very few known AΓ for which Out(Aut(AΓ))

exhibits ‘extremal behaviour’, that is, AΓ for which Out(Aut(AΓ))) is trivial or infinite. In

this final section, we discuss the possibility of such behaviour, and generalisations of the

current work to automorphism towers.

3.5.1 Complete automorphisms groups

Recall that a groupG is said to be complete if it has trivial centre and every automorphism of

G is inner. Our proofs of Theorems 3.1.2 and 3.1.3 relied upon us being able to exhibit large

families of right-angled Artin groups whose automorphisms groups are not complete. It is

worth noting that if AΓ is not free abelian, then Aut(AΓ) has trivial centre, so completeness

of Aut(AΓ) is not ruled out.

Proposition 3.5.1. Let AΓ be a right-angled Artin group. Then Z(Aut(AΓ)) has order at

most two. In particular, if AΓ is not free abelian, then Aut(AΓ) is centreless.

Proof. For brevity of proof, we assume that AΓ
∼= Zk ×A∆, taking k = 0, and Zk = 1 if AΓ

is centreless. If AΓ is free abelian of rank k, then Z(Aut(AΓ)) ∼= Z(GL(k,Z)) ∼= Z/2. From

now on, we assume the centre of AΓ is proper.

We now adapt the standard proof that a centreless group has centreless automorphism

group. Suppose that φ ∈ Aut(AΓ) is central. We know that Inn(AΓ) ∼= AΓ/Zk ∼= A∆. For

any γw ∈ Inn(AΓ), we must have γw = φγwφ
−1 = γφ(w). So, for φ to be central, it must fix

every element of A∆. Observe that if k = 0, then φ must be trivial, and we are done.

Assume now that k ≥ 1. For any φ ∈ Aut(AΓ), we also have φ(u) ∈ Zk, for all u ∈ Zk. So,
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a central φ must simply be an element of GL(k,Z), since it must be the identity on A∆,

and take Zk into itself.

In particular, we have that Z(Aut(AΓ)) ≤ Z(GL(k,Z)) = {1, ι}, where ι is the automor-

phism inverting each generator of Zk. However, lateral transvections are not centralised by

ι, and so the centre of Aut(AΓ) is trivial.

In this chapter, we have focused on finding right-angled Artin groups whose automorphism

groups are not complete: an equally interesting question is which right-angled Artin groups

do have complete automorphism groups, beyond the obvious examples of ones built out of

direct products of free groups. We conjecture the following.

Conjecture 3.5.2. When Γ is austere, Aut(AΓ) is complete.

It might also be possible to adapt Bridson-Vogtmann’s geometric proof [10] of the com-

pleteness of Out(Fn) to find examples of AΓ for which Out(AΓ) is complete, using Charney-

Stambaugh-Vogtmann’s newly developed outer space for right-angled Artin groups [16].

3.5.2 Infinite order automorphisms

At the other extreme, we might wonder which AΓ, if any, have Out(Aut(AΓ)) of infinite

order. An obvious approach to this problem is to exhibit an element α ∈ Out(Aut(AΓ)) of

infinite order. The approach taken in Section 3.4, involving graphs Γ with no SILs, might

seem hopeful, as we certainly know of infinite order non-inner elements of Aut(PC(AΓ)): in

particular, dominated transvections and partial conjugations. A key property that allowed

us to extend ηc,j ∈ Aut(PC(AΓ)) to an element of Aut(Aut(AΓ)) was that it respected the

natural partition of the partial conjugations by their conjugating vertex. More precisely,

ηc,j sent a partial conjugation by v ∈ V to a string of partial conjugations and their inverses,

each by v. This ensured that the action of IΓ on PC(AΓ) was preserved when we extended

ηc,j to be the identity on IΓ.

It might be hoped that we could find a transvection τ ∈ Aut(PC(AΓ)) which also re-

spected this partition, as τ could then easily be extended to an infinite order element of

Aut(Aut(AΓ)). However, it is not difficult to verify that whenever Γ has no dominated
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vertices, as in Section 3.4, no such τ will be well-defined. Similarly, the only obvious way

to extend a partial conjugation γ ∈ PC(PC(AΓ)) is to an element of Inn(Aut(AΓ)). This

leads us to formulate the following open question.

Question: Does there exist a simplicial graph Γ such that Out(Aut(AΓ)) is infinite?

It seems possible that such a Γ could exist, however the methods used in this chapter do not

find one. Our main approach was to find elements of Aut(Aut(AΓ)) which preserve some

nice decomposition of Aut(AΓ). To find infinite order elements of Out(Aut(AΓ)), it may be

necessary to loosen this constraint. This would be analogous to the situation where we find

only two field automorphisms of C which preserve R, but uncountably many which do not.

3.5.3 Automorphism towers

Let G be a centreless group. Then G embeds into its automorphism group, Aut(G), as the

subgroup of inner automorphisms, Inn(G), and Aut(G) is also centreless. We inductively

define

Auti(G) = Aut(Auti−1(G))

for i ≥ 0, with Aut0(G) = G. This yields the following chain of normal subgroups:

GC Aut(G) C Aut(Aut(G)) C . . .C Auti(G) C . . . ,

which we refer to as the automorphism tower of G. This sequence of groups is extended

transfinitely using direct limits in the obvious way. An automorphism tower is said to

terminate if there exists some i such that the canonical embedding Auti(G) ↪→ Auti+1(G)

is an isomorphism. Observe that a complete group’s automorphism tower terminates at the

first step. Thomas [56] showed that any centreless group has a terminating automorphism

tower, although it may not terminate after a finite number of steps. Hamkins [33] showed

that the automorphism tower of any group terminates, although in the above definition, we

have only considered automorphism towers of centreless groups. In the case of groups with

non-trivial centre, we no longer have embeddings Auti(G) ↪→ Auti+1(G), but an analogous

tower of normal subgroups may be formed using the obvious non-injective homomorphisms

Auti(G)→ Auti+1(G). The following problem suggests itself.

Problem: Determine the automorphism tower of AΓ for an arbitrary Γ.



CHAPTER 3. OUTER AUTOMORPHISMS OF AUT(AΓ) 81

This seems a difficult problem in general: it is not even currently know what the group

Aut2(GL(n,Z)) is. A first approach might be to find AΓ for which Out(Aut(AΓ)) is finite.

It would then perhaps be easier to study the structure of Aut2(AΓ).
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