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Abstract  

Introduction  

Autophagy is a cellular process whereby elements within cytoplasm become 

engulfed within membrane vesicles and trafficked to fuse with lysosomes. This is a 

common cellular response to starvation, allowing non-essential cytoplasmic 

contents to be recycled in times of energy deprivation. However, autophagy also 

plays an important role in immunity and inflammation, where it promotes host 

defence and down-regulates inflammation. A specialised bacterial virulence 

mechanism, the type III secretion system (T3SS) in Pseudomonas aeruginosa (PA), 

an extracellular bacterium, is responsible for the activation of the inflammasome and 

IL-1β production, a key cytokine in host defence. The relationship between 

inflammasome activation and induction of autophagy is not clear.  

Hypothesis and aims 

The central hypothesis is that induction of autophagy occurs following PA 

infection and that this process will influence inflammasome activation in 

macrophages. 

Our aims were to determine the role of the T3SS in the induction of 

autophagy in macrophages following infection with PA, and to investigate the effects 

of autophagy on inflammasome activation and other pro-inflammatory pathways 

following infection with these bacteria.  

 

 

 

 



Materials and methods 

Primary mouse bone marrow macrophages BMDMs were infected with PA, in 

vitro. Induction of autophagy was determined using five different methods: - electron 

microscopy, immunostaining of the autophagocytic marker LC3, FACS, RT-PCR 

assays for autophagy genes, and post-translational conjugation of phosphatidyl-

ethanoloamine (PE) to LC3 using Western blot. Inflammasome activation was 

measured by secretion of active IL-1β and caspase-1 using ELISA and Western 

blot. Functional requirements of proteins were determined using knockout animals 

or SiRNA mediated knockdown. 

 

Result and Conclusions  

PA induced autophagy that was not dependent on a functional T3SS but was 

dependent on TLR4 and the signaling molecule TRIF. PA infection also strongly 

induced activation of the inflammasome which was absolutely dependent on a 

functional T3SS. We found that inhibition of inflammasome activation increased 

autophagy, suggesting that the inflammasome normally inhibits this process. Further 

experiments showed that this inhibitory effect was due to the proteolytic action of 

caspase-1 on the signaling molecule TRIF. Using a construct of TRIF with a 

mutation in the proteolytic cleavage site, prevented caspase-1 cleavage and 

increased autophagy. TRIF is also involved in the production of interferon-β 

following infection. We also found that caspase-1 cleavage of TRIF down-regulated 

this pathway as well. 

Caspase-1 mediated inhibition of TRIF-mediated signaling is a novel pathway 

in the inflammatory response to infection. It is potentially amenable to therapeutic 

intervention.  



Recognition of a pathogen infection is a key function of the innate immune 

system that allows an appropriate defensive response to be initiated. One of the 

most important innate immune defences is provided by a multi-subunit cytoplasmic 

platform termed the inflammasome that results in production of the cytokine IL-1β.  

The human pathogen Pseudomonas aeruginosa activates the inflammasome 

following infection in a process that is dependent on a specialized bacterial 

virulence apparatus, the type III secretory system (T3SS). Here, we report the novel 

finding that this infection results in mitochondrial damage and release of 

mitochondrial DNA into the cytoplasm. This initiates activation of an inflammasome 

based on the protein NLRC4. Autophagy induced during infection removes 

damaged mitochondria and acts to down-regulate NLRC4 activation following 

infection. Our results highlight a new pathway in innate immune activation following 

infection with a pathogenic bacterium that could be exploited to improve outcomes 

following infection.  
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1    Introduction 
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1.1 Pseudomonas aeruginosa 

Pseudomonas aeruginosa is a Gram negative pathogen which can 

cause opportunistic infections in the host. It belongs to the family of 

Pseudomonadacae. It is a common environmental organism, widely found 

in the soil and water. Pseudomonas aeruginosa can survive in many 

different types of environmental conditions and metabolise a wide range of 

carbon containing sources for its nutritional requirements. This bacterium 

can survive in high temperature even up to 42˚C (Berthelot et al., 2001).   

1.1.1 Pseudomonas aeruginosa infections  

P. aeruginosa  can cause serious  infections in the healthy tissues 

but it more  typically causes acute and chronic infections in almost any 

immuno-deficient individual where it takes advantage of a deficient host 

immune system, such as a breach in mucosal continuity or skin injury 

(Lyczak et al., 2000). P. aeruginosa can cause urinary tract infections, 

respiratory system infections, dermatitis, soft tissue infections and a variety 

of systemic infections in severely immuno- compromised patients. Patients 

with cystic fibrosis are particularly at risk, and virtually all affected patients 

develop chronic pseudomonal respiratory infections (Lyczak et al., 2000) 

(Gaspar et al., 2013).  

 

P. aeruginosa pneumonia is a very common cause of healthcare-

associated infections responsible for almost 10 % of all hospital acquired 

infection in the USA: this number is much higher in developing countries. 

The natural properties of this pathogen are suitable for an opportunistic and 

nosocomial infection (Weber et al., 2007), as it shows resistance to high 



3 
 

concentrations of salts, dyes, weak antiseptics and many antibiotics. It has 

been successfully isolated in the hospital environment from disinfectants, 

respiratory equipment, food, sinks, taps, toilets, showers and mops (Sadikot 

et al., 2005).   

 

 In general, P. aeruginosa is resistant to а wide range of common 

аntimicrobiаl аgents which makes its treatment often difficult. Resistаnce 

mаy or mаy not be plаsmid-mediаted but can be explained by the 

permeability barrier afforded by its Gram-negative outer membrane and its 

tendency to form a biofilm layer on colonized surfaces, which results in 

resistance to therapeutic concentration of antibiotics. Due to its natural 

habitat of soil it has developed resistance to naturally occurring antibiotic 

from bacilli, actinomycetes and molds. In addition it possess several 

multidrug efflux pumps which also contributes to the resistance (Yoshihara 

and Eda, 2007). P. аeruginosа can also undergo horizontal gene transfer 

such as transduction and conjugation which enables transfer of antibiotic 

resistance plasmids. The antibiotics still effective against P. аeruginosа 

include agents such as Imipenem, Gentаmicin, and Fluoroquinolones 

(Poole and McKay, 2003). 

1.1.2 Pseudomonas aeruginosa virulence factors  

P. аeruginosа produces severаl extrаcellulаr products thаt аfter 

colonizаtion cаn cаuse extensive tissue dаmаge, bloodstreаm invаsion, аnd 

disseminаted systematic disease. P. аeruginosа has a wide array of 

virulence factors, which results in a multifactorial pathogenesis where 

normal host defences are altered or circumvented. This wide array of 

virulence factors contribute to the ability of P. аeruginosа to cause such a 
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wide variety of diseases throughout the body. P. аeruginosа has several 

cell- associated and secreted proteins which contribute to its virulence. 

Examples are elastase A, phospholipase C and other effector proteins 

translocated via the type III secretory system (T3SS), and considered 

further below (Travassos et al., 2005). Some P. аeruginosа strains have a 

single polar flagellum, which contributes to the motility of the bacterium, but 

it is also an important virulence factor (Soscia et al., 2007). All P. 

аeruginosа strains have multiple pili structure belonging to the type IVa pilin 

class (Woods et al., 1980). P. аeruginosа  has two isoform of LPS , smooth 

and rough (Pier and Ames, 1984). In addition, P. аeruginosа  has a wide 

range of other virulence factors such as iron acquisition proteins (Poole and 

McKay, 2003). Invasion of tissues by P. аeruginosа  is dependent on 

production of extracellular enzymes and toxins such as LasA protease, 

protease IV, elastase and alkaline protease and pyocyanin (Bejarano et al., 

1989). P. аeruginosа also produces exotoxin A (Allured et al., 1986). P. 

аeruginosа also produce haemolycin, phospholipase C (PlcHR) and 

Rhamnolipid, which results in degradation of host cell phospholipids 

(Terada et al., 1999) . Some strains of P. аeruginosа produces alignate, a 

mucoid exopolysacchadide which contributes to biofilm formation (Lau et al., 

2004).   

1.1.3 Pseudomonas aeruginosa type III secretion system 

The type III secretion system (T3SS) is exclusive to Gram-negative 

bacteria and is structurally related to the flagellum (Desvaux et al., 2006). 

T3SS are essential for the pathogenicity of many Gram-negative bacteria. It 

allows the bacteria to inject protein effectors into the host cell in one single 
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step altering the function of the host cell and promoting survival of the 

bacteria (Salmond and Reeves, 1993). The T3SS of P. аeruginosа is similar 

to that found in Yersinia species at both a structural and functional level 

(Keizer et al., 2001). The P. аeruginosа T3SS is encoded by 36 genes 

found in five operons that are clustered together into the exoenzyme S 

regulon (Frank, 1997). This regulon is divided into 5 parts: needle complex, 

translocated secreted proteins, regulated proteins, chaperone proteins, and 

effector proteins (Fig. 1-1) (Hauser, 2009). The T3SS of P. аeruginosа has 

been shown to enhance disease severity in an acute pneumonia model 

(Lee et al., 2005), bacteremia (Vance et al., 2005), keratitis (Lee et al., 

2003), burn infections (Holder et al., 2001) and ventilator-associated 

pneumonia (Hauser et al., 2002).   
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Figure 1.1; Pseudomonas aeruginosa T3SS 

 The components of T3SS are: the needle complex (Yellow, Brown), translocation apparatus 

(Blue), the effector proteins (Green), chaperon (White), and regulatory proteins (not presented 

in this figure). PM, plasma membrane; OM, outer membrane; PGN, peptidoglycan layer; IM, 

inner membrane. T, ExoT; S,ExoS; Y,ExoY; U,ExoU.  Figure adapted from (Hauser, 2009)  
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1.2 Autophagy 

            Autophagy, derived from the Greek words meaning “self-eating” was 

coined by Christian De Dove in 1963 (Klionsky, 2008). He used it to 

describe what had been called ‘cytolysosomes’, structures related to 

lysosome that contained a variety of cytoplasmic contents, including 

mitochondria, ER membranes, and ribosomes in an apparent state of 

decomposition. The essentials of an autophagocytic vacuole are the 

presence of diverse cytoplasmic contents contained within a double 

membrane vacuole (Fig. 1-2). Autophagy is an essential homeostatic 

process and the only system for the degradation of large cellular 

components and aggregates which cannot be degraded by the ubiquitin- 

proteasome pathway. This important lysosomal degradation pathway is 

activated as one of the adaptive responses to starvation, and subsequent 

studies have shown that it is a process found in virtually all eukaryotic cells 

that is essential for survival. 34 autophagy related (ATG) genes have been 

identified in yeast, with their orthologous well conserved throughout 

eukaryotes (Heath and Xavier, 2009b). It is also a pathway used to degrade 

microorganisms i.e. viruses, bacteria and protozoa that invade intracellularly 

(Deretic and Levine, 2009), (Virgin and Levine, 2009), . A large number of 

studies have shown that the Atg genes play an important role, not just in the 

response to nutrient deprivation, but also in inflammatory diseases, 

neurodegenerative disorders and cancer (Heath and Xavier, 2009a).  

              Three different forms of autophagy have been described; 

macroautophagy, microautophagy and chaperone-mediated autophagy. 

Macroautophagy is the main pathway, which encloses cytoplasmic contents 
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in a double membrane structure,  after which it is combined with a lysosome 

(Cesen et al., 2012). In Microautophagy, a lysosome directly surrounds the 

degraded structures (Cesen et al., 2012). In the chaperone mediated 

autophagy (CMA), proteins with a KFERQ-like motif of Hsp70 chaperones 

are recognized and led to the lysosome, where they pass through the 

lysosomal membrane-associated protein 2 (LAMP-2A) into the lysosome 

and are degraded (Bandyopadhyay et al., 2008). 

1.2.1 Autophagy pathway                

1.2.1.1 Induction                  

 The molecular mechanisms of autophagy were first described in 

yeast cells; these seem well conserved throughout higher eukaryotes. 

Autophagy induced by nutrient starvation is mediated by a protein kinase 

called target of rapamycin (Tor). Tor is a negative regulator of autophagy 

with two main effects: firstly it controls both general transcription and 

translation machinery; secondly it specifically acts to produce 

hyperphosphoryation of the Atg13 protein which results in this protein 

having a much lower affinity for the Atg1 kinase that results in inhibition of 

autophagy. Rapamycin, through inhibiting Tor, relieves this inhibition and is 

thus a potent inducer of autophagy. 

The subsequent steps of the process can be broken down into 

selection of cargo and packaging, nucleation of the autophagocytic vesicle, 

expansion and closure of the vesicle, retrieval of targeting proteins, 

targeting, docking and fusion with lysosomes, and finally vesicle breakdown. 

This is an extremely complex series of processes with many proteins being 
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involved at each step. A large number of these proteins have homologues 

with very similar functions in higher eukaryotes. I will highlight here some of 

the more important proteins involved. Atg8 is an ubiquitin-like protein which 

has essential role in the formation of the autophagocytic vacuole. It 

undergoes a complex processing pathway analogous to the ubiquitin 

conjugation system pathway. This pathway transfer ubiquitin initially to an 

ubiquitin-activating enzyme (E1). In turn the ubiquitin is then transferred to 

an ubiquitin carrier enzyme (E2). Finally, the action of an ubiquitin ligase 

(E3) binds to the E2-ubiquitin complex and transfers the ubiquitin to its 

target. The mechanism is as follows: 

1. Initially the C terminus of Atg8 is proteolytically cleaved by the Atg4 to 

reveal a terminal glycine. 

           2. This glycine is conjugated to the E1-like enzyme Atg7. 

3. The Atg8 is then transferred from Atg7 and conjugated to the E2-like 

enzyme Atg3. 

4. A complex of covalently joined Atg5-Atg12 together with Atg16 acts as an 

E3-like ligase, covalently linking the Atg8 to the lipid 

phosphatidylethanolamine. 

This lipid modification targets the Atg8 molecule to the 

autophagocytic vacuole membrane. Importantly, Atg8 is not retrieved from 

the membrane. Thus, the detection of lipid-modified Atg8 and its localization 

to the autophagocytic membrane are very useful markers of the 

autophagocytic process. Importantly, the proteins involved in this lipid 
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modification are highly conserved in higher eukaryotes. In mammals, the 

Atg8 gene family has expanded into three sub-families (Slobodkin and 

Elazar, 2013), of which microtubule-associated protein light chain 3 

(MAPLC3) is the functional analogue of Atg8 in yeast. Specifically, MAPLC3 

B (usually abbreviated LC3B) shows the closest functional relationship to 

yeast Atg8 and is a reliable marker of autophagosome in mammalian cells 

when lipidated. Levels of the Atg8 mRNA and protein are usually markedly 

upregulated in yeast following induction of autophagy (Kirisako et al., 1999). 

Mammalian LC3B also show transcriptional and translational upregulation 

following induction of autophagy (Polager et al., 2008).     

1.2.1.2 Autophagosome formation  

             There are several potential interconnections between the protein 

complexes involved in autophagosomal membrane formation which could 

be a potential source for membrane formation (Behrends et al., 2010). 

According to some studies membranes of mitochondria, ER, plasma 

membrane and the nuclear membrane could be sources for 

autophagosome membrane formation (Hailey et al., 2010, Ravikumar et al., 

2010) but the absence of specific protein markers for these structures on 

the autophagosomal membrane does not agree with the assumption that 

these membrane could be the source of autophagosome membrane. 

1.2.1.3 Docking and fusion with the lysosome  

      The mechanism of closure of the autophagosome and fusion with 

the lysosome  are  not as clear as the mechanisms of the early stages of 

autophagosome formation (Noda et al., 2009). As LC3 does not dissociate 
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from the autophagosome like the Atg16 complex, it may play an important 

role in the closure of autophagosome (Fujita et al., 2008). After closure,  the 

autophagosome is trafficked  to the peri-nuclear region of the cell for fusion 

with lysosomes with the help of microtubules and dynein (Kimura et al., 

2008). Upon closure, the Atg16 complex rapidly dissociates from the 

autophagosome while the modified LC3 remains attached. Dynein may be 

recruited to the phagosome through an interaction with LC3 after the 

dissociation of the Atg16 complex (Noda et al., 2009). The final step is 

maturation of the autophagosome in which there is fusion of the outer 

autophagic membrane with the lysosomal membrane resulting in the 

formation of the autolysosome (Fig. 1-2).   
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Figure 1.2; Autophagy pathway. 

 Schematic representation of Autophagy pathway steps; Induction, Autophagosome 

formation, Autophagosome fusion, and Autophagosome breakdown.   
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1.2.2 Mitophagy   

The autophagocytic process may also target specific organelles 

within the cell. One important organelle targeted in this fashion is the 

mitochondria, which I explore in some detail in the experimental work 

carried out in this thesis; this process is termed mitophagy (Kim et al., 2007). 

Mitochondria are removed by this process in cells such as reticulocytes as 

part of a developmental program (Zhang et al., 2009). However, 

mitochondria are also removed as part of a quality control process when 

they become depolarized (Wu et al., 2009). This process has increasingly 

been recognized as important in the pathophysiology of a number of 

important disease states. Genetic studies of familial forms of Parkinson’s 

diseases revealed two genes linked to the development of disease termed 

Parkin and PINK1. The protein products of these genes are now 

understood to be on the same pathway and linked to the mechanism 

whereby defective mitochondria are removed by mitophagy (Jin and Youle, 

2012). PINK1 has a mitochondrial-targeting signal that results in the protein 

being located within the inner mitochondrial membrane. Here it is 

processed from its full length 64 kDs form to a truncated 52 kDs fragment. 

This shorter PINK1 fragment is then degraded by a protease, keeping 

steady state levels of PINK1 low. However, on mitochondrial damage and 

depolarization, the import and processing of PINK1 are inhibited, leading to 

an accumulation of mature full-length PINK1 in the outer mitochondrial 

membrane. This then acts to recruit Parkin to the damaged mitochondrion. 

Parkin is an E3 ubiquitin ligase, producing ubiquitinylation of numerous 

mitochondrial proteins that lead to the initiation of mitophagy. The 



14 
 

accumulation of defective mitochondria in patients with mutations in parkin 

is thought to underlie the onset Parkinson’s diseases in these families.  

More recent work has linked mitochondrial damage to the activation 

of the inflammasome, and this is considered in more detail below. 

1.2.3 Role of autophagy in host defence 

              Autophаgy pаrticipаtes in neаrly аll аspects of immunity, аffecting 

both innаte аnd аdаptive immunity processes (Deretic, 2011) (Fig. 1-3).   	  	  

The autophagy pathway and autophagy proteins play a major part in 

controlling immunity in multicellular organisms. This has possibly evolved as 

a stress response to allow eukaryotic organisms to survive in unfavourable 

conditions,  probably by regulating energy homeostasis and quality control 

of proteins and organelles (Kroemer et al., 2010). There are direct 

interactions between autophagy proteins and immune signalling molecules 

(Saitoh and Akira, 2010).   
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Figure 1.3; Autophagy in immunity. 

 Schematic representation role of autophagy in immunity. Figure adapted from (Deretic, 2011) 
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The role of autophagy proteins in adaptive immunity, includes the 

development and homeostasis of the immune system and in antigen 

presentation. The knockout of different autophagy genes in specific 

lymphocyte populations in mice has shown a crucial role for autophagy 

proteins in the maintenance of a number of cell lineages of importance in 

the immune response, including B1a B cells, CD4+ T cells, CD8+ T cells 

and fetal haematopoietic stem cells  (Heath and Xavier, 2009b). In T cells, 

in which mitochondrial numbers are developmentally regulated during the 

transition from thymocyte to mature circulating T cell, the developmental 

defect in autophagy-deficient cells may be related to the defective 

clearance of mitochondria (Noda et al., 2009). Autophagy plays a role  in 

the elimination of autoreactive T cells in the thymus (Noda et al., 2009). 

Within thymic epithelial cells, in which autophagy participates in the delivery 

of self-antigens to MHC class II loading compartments. This is important as   

genetic disruption of Atg5 in thymic epithelial cells leads to the altered 

selection of certain MHC class II restricted T-cell specificities and 

autoimmunity (Meissner et al., 2010).  

Initially, autophagy was considered as a non-selective bulk 

degradation process, but now it has become quite clear that this process 

can degrade substrates in a selective manner as well (Kraft et al., 2010). 

For example, intracellular pathogens can be degraded by autophagy, a 

process called xenophagy. The precise mechanism of xenophagy and its 

membrane dynamics is still not clearly understood. The vacuoles of 

engulfed bacteria are similar to the autophagosomes and their formation 

requires the core autophagy machinery. The diameter of  the vacuoles 

containing bacteria are typically bigger than the autophagosomes which are 
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generated by the RAB7 dependent fusion of small isolation membranes 

(Yamaguchi et al., 2009). There are four pathways assumed to be used for 

ATG protein dependent targeting of bacteria to the lysosome(Levine et al., 

2011): 

1. Autophagy proteins may induce bacteria- containing phagosomes to fuse 

with lysosomes for degradation. 

2. Autophagosomal membranes may engulf bacterial 

phagosomes/endosomes.  

3. Fusion of bacteria containing phagosomes/ endosomes with 

autophagosomes, or 

4. Xenophobic capture of bacteria that are within the cytoplasm, but the 

precise route for several bacteria is still unclear. 

              A microbial sensor SLAM, the self-ligand and cell-surface receptor, 

recruits complex of beclin-1 class-III PI(3)K kinase to the bacteria 

containing phagosome. This facilitates phago-lysosomal fusion and 

activation of NADPH oxidase (NOX2) complex (Berger et al., 2010). In 

addition the engagement of TLR or Fcγ receptors during phagocytosis 

recruits LC3 to the phagosome through NOX2-dependent generation of 

reactive oxygen species (Huang et al., 2009a). In bacterial infections, this 

process may thus contribute to removal of intracellular bacteria. Impaired 

recruitment of autophagy proteins to the phagosome may contribute to the 

pathogenesis of chronic granulomatous disease, a genetic disorder caused 

by mutations in the NOX2 (CYBB) gene and characterized by recurrent 

bacterial and fungal infections and inflammatory complications. 

Autophagy proteins can also destroy pathogens independent of 

triggering autophagy, as seen in interferon-γ (IFN-γ) treated macrophages 
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infected with the parasite Toxoplasma gondii. A parasite derived 

membranous vacuole undergoes destruction through a mechanism that 

involves ATG5 dependent recruitment of the immunity-related GTPase 

proteins to the parasitophorous vacuole leading to parasite death inside the 

infected cell (Zhao et al., 2008, Zhao et al., 2009). The mechanisms that 

cells use to target intracellular bacteria to autophagosomal compartments 

are similar to the selective autophagy of endogenous cargo. Cellular cargo 

is commonly targeted to autophagosomes by interactions between a 

molecular tag and LC3 in the autophagosome membrane. Examples of 

such molecules are the polyubiquitin adaptor proteins i.e. p62 (SQSTM1 or 

sequestome-1) and NBR1 (which recognize these tags and contain an LC3-

interacting region (LIR) characterized by a WXXL or WXXI motif) (Kraft et 

al., 2010). After escape into the cytoplasm or in vacuolar membrane 

compartments damaged by type-III secretion system (T3SS) effectors, 

bacteria-containing compartments may become coated with ubiquitin and 

associate with p62 and nascent LC3-positive isolation membranes. 

Salmonella targeting also requires a cellular factor, NDP52 (nuclear dot 

protein-52), an autophagy adaptor protein that, like p62, contains an LIR 

and ubiquitin-binding domains restricting intracellular bacterial replication 

(Shahnazari et al., 2010) . 

These different molecular strategies may be used to target microbes 

inside the cytoplasm to the autophagosome, which will facilitate their 

destruction following fusion with lysosomes. In addation, autophagic 

targeting of pathogen-damaged membranes could help to control 

detrimental downstream inflammatory signalling during bacterial invasion in 

to host cell.  
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1.3 Inflammation  

Inflammation is а localized nonspecific response of the body to injury. 

It is characterized by five cardinal signs which are pain, redness, heаt, 

swelling, and loss of function. These signs reflect increased blood flow, 

elevated cellular metabolism, vasodilation, release of soluble mediators, 

extravasation of fluids and cellular influx. Inflammation usually is a self-

limiting process that protects the host аgаinst а variety of invading 

pathogens or injury. Inflammation can occur and dissipаte over а short time 

frame (аcute inflаmmаtion) or cаn persist for а much longer periods 

(chronic inflаmmаtion) (Ferrero-Miliani et al., 2007). Inflammation utilizes a 

great amount of metabolic energy and can result in damage and destruction 

of the tissue. Therefore, controls over the termination of inflammation are 

required, to limit any possible damage caused (Barton, 2008).  

1.3.1 Innate immune response 

Immunity is defined as the body’s resistance against infectious 

agents. There are two types of immunity: innate (natural) and acquired. 

Innate immunity is the type of immunity which is genetically pre-

programmed and is not specific to a particular pathogen. As a result, it is 

able to recognize diverse microorganisms such as bacteria, viruses, and 

fungi. Pattern recognition receptors (PRRs) allow the innate immune system 

to recognise specific molecular feature of microbes. Recognition of these 

lead to activation of various inflammatory pathway that contribute to host 

defence. Increasingly, it has been realized that PRRs not only recognize 

invading pathogens but also the damage they cause.  . 
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 PRRs are expressed by several cell types such as monocytes, 

macrophages, dendritic cells (DCs), neutrophils and epithelial cells 

(Martinon et al., 2009). PRRs include: soluble pentaxin receptors, 

membrane –bound receptors: Toll like receptors (TLRs) (Akira et al., 2006) 

C-type lectin receptors (CLRs) (Brown, 2006), as well as cytosolic Nod-like 

receptors (NLRs) (Martinon et al., 2009), RIG-like helicase, RLRs (Nakhaei 

et al., 2009) and DNA sensors (Hornung et al., 2009) (Fig. 1-4).   
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Figure 1.4; Structure of different PRRs 

 Schematic representation of PRRs. Abbreviation; TLR; Toll-like receptor, CLR; C-type lectin 

receptor, RLR; RIG-1-like receptor; NLR; NOD-like receptor, NLRP and NLRC; major 

subfamilies in NLR-protein family, Aim2; absence in melanoma 2 (DNA sensor), LRR; 

leucine-richrepeats, TIR;Toll-interleukin-1 receptor interacting domain, ITAM; immunoreceptor 

tyrosine-based activationmotif, NAD; NACHT associated domain, NACHT; nucleotide binding 

and oligomerization domain, PYD; pyrin domain, CARD; Caspase recruitment domain and 

HIN200, HIN200 domain.  Figure adapted from (Bryant and Fitzgerald, 2009).   
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1.3.2 Inflammasome  

 The inflammasome is a multi-protein complex that leads to activation 

of the 17KDa pro-inflammatory cytokine IL-1β, from its 31kDa precursor, 

pro-IL-1β, via caspase 1. This process also leads to activation of the IL-1 

family member IL-18. (Ghayur et al., 1997) IL-33 is another IL-1 family 

member, but it is not clear if caspase-1 is necessary for its activation in vivo 

(Carriere et al., 2007), although activation via caspase-1 has been 

demonstrated in vitro (Schmitz et al., 2005). Activation of the inflammasome 

is also associated with the onset of a form of cell death termed pyroptosis 

(Fernandes-Alnemri et al., 2007). The name inflammasome comes from the 

word inflammation, which reflects the function of the complex, and ˮsomeˮ, 

which is from the Greek word for body, soma. The name also reflects 

similarities with the apoptosome, which triggers apoptosis (Zou et al., 1999). 

The production of IL-1β and IL-18 by the inflammasome is one of the first 

lines of defence аgаinst tissue dаmаge аnd pаthogen invаsion.  

1.3.2.1 IL-1β and IL-18  

Interleukin-1β (IL-1β) аlso known аs cаtаbolin, is а member of the 

interleukin 1 cytokine fаmily of ligands, which include, IL-1α, IL-18 and IL-

33(Dinarello, 2009). IL-1β is related to IL-18 and IL-33 and all of these 

cytokines result in the intiation of a Myd88-depending signaling pathway, 

similar to the pathway intiated by TLR4 signalling. Inflammasome activation 

therefore leads to the activation of a TLR-like receptor such as IL-1R and 

IL-18R. IL-1β is а pleiotropic cytokine. It is involved in the inflаmmаtory 

response, cell growth, аnd tissue repair in the cortex. It is a proinflammatory 

cytokine, which plays an important role as a mediator of inflammation 
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(Dinarello, 2009). It is produced by blood monocytes but also by 

macrophage, dendritic cells and a variety of other cells in the body (Ferrero-

Miliani et al., 2007). IL-1β participates in the generation of systemic and 

local responses to infection and injury by generating fever, activating 

lymphocytes and by promoting leukocyte infiltration at sites of infection or 

injury.  IL-18 induces IFN-γ production and contributes to T-helper 1 (Th1) 

cell polarization.  IL-1β is believed to be the major mediator of inflammation 

in the periodic fever syndromes caused by mutations in the NLRP family 

genes. It has been shown that treatment of the patients with an inhibitor of 

IL-1(IL-1Ra) can improve their symptoms (Hawkins et al., 2003). IL-1Ra has 

also been shown to help patients with rheumatoid arthritis (Dinarello, 2009). 

 The inflаmmаsome is аble of recognizing a diverse range of threats, 

both from endogenous and exogenous sources. Endogenous signals that 

are known to аctivаte the inflаmmаsome include uric аcid, ATP, potassium 

efflux (Kahlenberg and Dubyak, 2004)  from the cell and a newly identified 

endogenous peptide, аcALY18. External stressors include pаthogen-

аssociаted moleculаr pаtterns derived from а diverse range of conserved 

moleculаr motifs that are unique to bacteria, viruses and pаrаsites, from 

exogenous chemicals or ultrаviolet light. The mechаnism by which these 

signals are detected has yet to be fully elucidаted for the mаjority of 

inflаmmаsomes.  

The core structure of all inflammasomes is of course caspase-1, 

variety of other proteins co-assemble with procaspase-1 to bring about its 

activation. Many, but not at all inflammasomes, have a member of the 

neucleotide-binding domin and leucine-rich repeat containing (NLR) gene 
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family (Ting et al., 2008). Protiens encoded by this gene family have a 

tripartite domain structure: a central nucleotide-binding oligomerization 

domain; a C terminal leucine-rich repeat containing domain; and an N 

terminal domain from four recognizable families. These N terminal domains 

are used to classify the NLR proteins into subfamilies, denoted by a letter 

appended to the NLR designation: an acidic transactivation domain (A); a 

pyrin domain (P); a caspase recruitment domain (CARD) (C); and a 

baculoviral inhibitory repeat-like (BIR) domain (B). Finally, for NLR proteins 

with an N terminal domain that has no recognizable homology to other NLR 

family members are denoted by appending X. Different members of the 

subfamilies are denoted by sequential numbers. More recently, 

inflammasome without a member of the NLR family have been recognized 

and these are considered further below.  

Another protein of central importance in controlling Inflammasome 

activation is apoptosis speck-like protein containing a caspase activation 

and recruitment domain (ASC),  which contains PYRIN domains but lacks a 

CARD domain. It also plays an important role in inflammasomes containing 

an NLR protein with CARD domains (Broz et al., 2010). Only one ASC 

speck is formed in a cell following infection (Huang et al., 2009b)  

Thus, the inflammasome contains a variety of proteins that following 

activation results in the recruitment of pro-caspase-1 in to the complex that 

is then proteolytically processed to active caspase-1 via an auto-catalytic 

pathway. Once caspase-1 is activated, it is then able to cleave and active a 

number of key pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18  
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(Fig. 1-5). In general, pro-IL-1β is present at very low level in resting 

cells, and requires activation of its gene to produce protein expression. This 

is typically achieved by inflammatory signalling through Toll-like receptor or 

other innate immune signalling pathways. Conversely, pro-IL-18 is present 

in resting cells and an induction stimulus is not required. 

  

Figure 1.5; Caspase-1 activation . 

Schematic representation of the activation of the inflammasome complex by a wide range of 

stimuli.  Figure adapted from (Evans, 2009).   
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A number of inflammasome complexes have been identified, of 

which we will consider four in more details; NLRP1, NLRP3, NLRC4 and 

Aim2. In addition, several NLRP proteins might be involved as scaffolding 

proteins of the inflammasome complex (Martinon et al., 2007) (Fig.1-6). 

  

Figure 1.6; The inflammasome structure. 

 The inflammasomes are assembled by self-oligomerizing proteins. The NLRP3 

inflammasome consists of NLRP3, ASC and caspase-1. NLRC4 directly binds with 

procaspase-1 but NLRC4 activation may require ASC. The AIM2 inflammasome is composed 

of AIM2, ASC and caspase-1. The PYD domain of AIM2 interacts with PYD of ASC through 

homotypic PYD-PYD interaction, so that the ASC CARD domain can recruit procaspase to 

the compex. Figure adapted from (Eitel et al., 2010) .   
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1.3.2.2 NLRP1 

The first inflammasome identified was the NLRP1 inflammasome by 

(Martinon et al., 2002). The NLRP1 inflammasome has been shown to be 

activated following exposure to anthrax lethal toxin. Anthrax is caused by 

Bacillus anthracis through the action of its secreted toxins. One of these 

toxins is anthrax lethal toxin. It has been shown that a polymorphism in the 

NLRP1 gene results in impaired caspase-1 activation (Boyden and Dietrich, 

2006). The proteolytic activity of LeTx appears to be responsible for NLRP1 

activation by causing cleavage of NLRP1B; this was sufficient for activation 

(Chavarria-Smith and Vance, 2013). NLRP1 is also activated following 

exposure to muramyl dipeptide (MDP) moiety of peptidoglycans (Faustin et 

al., 2007) . 

1.3.2.3 NLRP3 

The NLRP3 inflammasome consists of the NLR protein, NLRP3 the 

ASC adaptor, and caspase-1. The NLRP3 inflammasome is triggered upon 

exposure to pathogens, as well as numbers of structurally diverse and 

environmental irritants (Gross et al., 2011).  

NLRP3 is the best studied of all inflammasomes but it still remains 

unclear how such a wide array of stimuli elicit a response from a single 

sensor (Gross et al., 2011). One feature that many NLRP3 activators share 

is the ability to cause loss of intracellular potassium, first describe by Petrili 

(Petrilli et al., 2007). The activation of the NLRP3 inflammasome by 

reduction in intracellular potassium provided an explanation as to how so 

many different stimuli could all lead to NLRP3 activation. Thus, extracellular 
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ATP acts on the P2X7 receptor which acts as an ATP-gated potassium 

channel (Di Virgilio, 2007), while lytic toxins such as pneumolycin also 

cause potassium efflux from cells by forming non-selective pores in the cell 

membrane (Witzenrath et al., 2011). 

However, other intermediates also play a role in NLRP3 activation. 

Production of reactive oxygen species (ROS) is important (Cruz et al., 

2007). Although ROS production is often associated with a drop in 

intracellular potassium concentration, the exact relationship between ROS 

production and reduction in intracellular potassium remains unclear.  

Another report suggests that crystals formed within lysosomes cause 

disruptions and a release of active cathepsin-B which may act as an 

upstream activator of NLRP3 (Hornung et al., 2008). Once activated, 

NLRP3 interacts with ASC and procaspase-1 enzymes (Agostini et al., 2004) 

to cause the cleavage and activation of Caspase-1, which in turn cleaves 

and activates IL-1β and IL-18 cytokines.  

Recently, an important role for mitochondria in NLRP3 activation has 

been suggested (Zhou et al., 2011) . That ROS from damaged mitochondria 

activated NLRP3 also linked with earlier work showing that autophagy 

down-regulated NLRP3 activation (Saitoh et al., 2008a). Selective 

mitophagy of damaged mitochondria would thus act to down-regulate 

NLRP3 activation. Several papers suggest that mitochondria are the main 

source of ROS and oxidized DNA necessary to activate NLRP3 (Nakahira 

et al., 2011, Shimada et al., 2012) while others suggest that ROS 

production is sufficient to prime the NLRP3 response but not activate it 
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(Bauernfeind et al., 2011). Intriguingly, the studies of Nakahira et al and 

Shimada et al suggested it was the release of DNA from damaged 

mitochondria that was responsible for NLRP3 activation. Oxidation of this 

DNA was thought to potentiate its NLRP3 activating ability (Shimada et al., 

2012). However, this remains controversial since another study found no 

role for mitochondrial damage in NLRP3 activation, just loss of intracellular 

potassium (Munoz-Planillo et al., 2013). 

A number of accessory proteins are known to modify NLRP3 

activation (Latz et al., 2013). The role of these protiens is in many cases not 

entirely clear. For example, Guanylate binding protein 5 (GBP5) has been 

found to promote NLRP3 activation (Shenoy et al., 2012); however, GBP5 

seems to have no involvement in mitochondrial recruitment or other stimuli 

thought to active NLRP3. 

 Although the basic mechanisms of the NLRP3 inflammasome 

activation is remain unclear, its role within signalling in disease is better 

appreciated. Several autoimmune conditions are brought about by 

mutations which cause a gain of function which can be ameliorated by the 

neutralisation of IL-1β (Goldbach-Mansky and Kastner, 2009). Furthermore 

the NLRP3 inflammasome has been linked to the production of excess 

inflammation in response to host cell damage in the absence of infection 

(Duewell et al., 2010). Such cases are thought to increase the severity of 

tissue damage in sterile injury.  
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1.3.2.4 NLRC4   

In contrast to NLRP3, the inflammasome based on the NLR protein 

NLRC4 has been shown to respond to bacterial derived products delivered 

via secretion systems.  Activation of the NLRC4 inflammasome has been 

shown to be important in host defence for a number of pathogens. The first 

pathogen described to active the inflammasome in a NLRC4-dependent 

manner was Salmonella typhimurium (Mariathasan et al., 2004). Despite 

this NLRC4-dificient mice did not have enhanced susceptibility to infection 

with Salmonella typhimurium but caspase-1 deficient mice did (Lara-Tejero 

et al., 2006). This indicates that additional pathways are involved in the 

caspase-1 activation by Salmonella. L.pneumophila also activates the 

inflammasome in a NLRC4-dependent manner (Zamboni et al., 2006). 

Pseudomonas aeruginosa has been shown to active the inflammasome in a 

NLRC4-dependent manner. Additionally it has been shown that NLRC4-

deficient mice are more susceptible to infection by Pseudomonas 

aeruginosa in a pulmonary and peritoneal in vivo infection model (Franchi et 

al., 2007) (Sutterwala et al., 2007). However, another study found that 

activation of the NLRC4 inflammasome increases bacterial burden in a 

model of P. aeruginosa pneumonia (Cohen and Prince, 2013). NLRC4 

inflammasome activation is critical in host defence against Klebsiella 

pneumonia (Cai et al., 2012). 

In contrast to the NLRP3 inflammasome, the molecular mechanisms 

underlying NLRC4 activation are much better understood. Specific bacterial 

ligands are known to trigger the activation. The first of these to be described 

was bacterial flagellin (Miao et al., 2006, Franchi et al., 2006, Amer et al., 
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2006). The flagellin was introduced into the cell via a type III or type IV 

secretory system. 

However, certain aspects of this activation were not easily explained. 

Flagellin deficient mutants of P. aeruginosa were efficient activators of the 

NLRC4 inflammasome (Sutterwala et al., 2007, Arlehamn et al., 2010). 

Additionally, no direct interaction between NLRC4 and flagellin had been 

demonstrated. Further work has clarified the nature of the activation of 

NLRC4 by flagellin. Additonal proteins belonging to the NLR apoptosis-

inhibitory protein (NAIP) family, specifically NAIP5, has been shown to 

sense flagellin directly and to activate NLRC4 (Lightfield et al., 2008, 

Kofoed and Vance, 2011). Morever, further work identified a conserved 

protein called PrgJ in Salmonella spp. That is part of the T3SS rod 

apparatus as an additional activator of the NLRC4 inflammasome (Miao et 

al., 2010). This activation also required a NAIP family member, in this case 

NAIP2 (Zhao et al., 2011). More recently, it has been proposed that multiple 

needle proteins of the T3SS can also activate the NLRC4 inflammasome, 

requiring NAIP1 as an accessory protein (Yang et al., 2013). 

Additional signals also regulate NLRC4 activation. Phosphorylation 

of NLRC4 has been shown to be essential for its activation (Qu et al., 2012). 

How this relates to the interactions between bacterial proteins and NAIP 

family members is not clear.   

1.3.2.5 AIM2  

Aim2 is a member of the pyrin and HIN domain-containing protein 

(PYHIN) family. Double- stranded DNA triggers Aim2 oligomerization, which 

results in Aim2 inflammasome formation together with ASC and caspase-
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1(Fernandes-Alnemri et al., 2009).  Aim2 was recently identified as the key 

sensor for cytoplasmic dsDNA (Burckstummer et al., 2009) (Hornung et al., 

2009). Not surprisingly, Aim2 plays an important role in host defence 

against viruses such as CMV and vaccinia (Rathinam et al., 2010). 

However, it is also important in defence against a range of bacterial 

pathogens, including Francisella tularensis, Listeria monocytogenes, and 

Legionella pneumophila (Rathinam et al., 2010) (Kim et al., 2010) (Ge et al., 

2012). Release of bacterial DNA into the cytoplasm during infection would 

appear to be the trigger in these infections. Aim2 is also recently reported to 

be important in inflammasome activation during infection with Streptococcus 

pneumonia (Fang et al., 2014). 

1.3.2.6  Caspase-11  

Genetically engineerd mice lacking Caspase-1 have been widely 

used to determine the role that this protein plays in infection and immunity. 

However, the mouse strain in which the Caspase-1 gene was detected 

were generated using 129 ES cells which harbour a 5 bp detection 

encompassing the Cap11 exon 7 splice acceptor junction (Kayagaki et al., 

2011). Consequently, these mice have a non-functional Caspase-11 gene 

and do not produce functional Caspase-11. Caspase-1 and Caspase-11 are 

tightly linked, hence separation of the alleles by backcrossing is very rare 

and thus the Casp1 knockout mice are also Casp11 null as well. This led to 

a re-evaluation of the relative roles in of Caspase-1 and Caspase-11 in 

inflammasome function. Caspase-11 has been shown to be important in 

host defence against Salmonella typhimurium (Broz et al., 2012) and a 
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variety of Gram-negative and other bacteria that escape into the host 

cytosol (Rathinam et al., 2012) (Aachoui et al., 2013).       

1.3.3 Role of Autophagy in inflammatory and autoimmune diseases 

There are clear links between the genes controlling autophagy and 

control of immune response. For example, a study by (Barrett et al., 2008), 

identified a number of genes involved in the pathogenesis of  Crohn’s 

disease, that induced genes involved in the autophagy pathway such as 

ATG16L1  also described by (Saitoh et al., 2008a). Dendritic cells from 

patients with the Crohn’s disease associated ATG16L1 mutation (T300A) 

risk variant are defective in presenting bacterial antigen to CD4+ T cells 

(Cooney et al., 2010). However, it is not yet known how the T300A mutation 

affects the function of the mammalian ATG16L1 protein. This mutation 

resides in the carboxy-terminal WD-repeat domain that is absent in yeast 

Atg16 and is dispensable for autophagy. It remains controversial whether 

the increased risk versus protective alleles of ATG16L1 has differences in 

stability or antibacterial autophagic activity (Fujita et al., 2009).  

The study of (Saitoh et al., 2008a), shows that loss of Atg16L1 

function in mice results in enhanced TLR agonist induced pro-inflammatory 

cytokine production by macrophages. Other studies also suggest that 

changes in the autophagy pathway may also result in inflammatory 

autoimmune disease. Genome-wide association studies have linked several 

single nucleotide polymorphisms (SNPs) in ATG5 to SLE susceptibility (Han 

et al., 2009) . Atg5 has an important role in negative selection in the thymus 

during T cell development: this may underline the autoimmunity and multi-

organ inflammation in mice lacking Atg5 (Nedjic et al., 2008). 
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1.4 Reciprocal Interaction between inflammasome activation and 
autophagy   

Several studies have now shown strong cross-talk between 

autophagocytic pathways and inflammasome activation. Studies reveal that 

treatment with LPS, a potent TLR4 agonist, is not sufficient to induce 

inflammasome activation in wild type macrophages. However, Atg16L1-/- 

and Atg7-/- macrophages which lack specific autophagy receptors can 

undergo LPS-dependent inflammasome activation, implying that in wild type 

macrophages autophagy normally counters this activation with LPS (Saitoh 

et al., 2008b).  Although the specific mechanisms  were not identified in this 

study, LPS-dependent inflammasome activation in Atg16L1 knockout 

animals is dependent on K+ efflux and generation of reactive oxygen 

species, which suggests the involvement of NLRP3. It has been suggested 

that autophagosomes may target the inflammasome for degradation (Harris 

et al., 2011). However, given the dependency of NLRP3 activation on ROS 

generation and the suppressive effect ROS blockade has on NLRP3 

activation (Saitoh et al., 2008b, Bensaad et al., 2009, Dupont et al., 2009) 

an inhibition of the inflammasome through indirect suppression of ROS 

generation cannot be ruled out. Furthermore, autophagy appears to 

downregulate pyroptosis (Suzuki and Nunez, 2008)  and ROS derived from 

both NADPH oxidases and the mitochondrial electron transport chain up-

regulate autophagocytosis (Chen et al., 2009, Huang et al., 2009a). 

Therefore, the regulation of autophagy through ROS may represent a 

negative feedback system which acts to limit ROS modulated caspase-1 

activation while also removing organelles which have been damages by 

ROS. Another report by Suzuki et al. (2007) which implicates that the 
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inflammasome down-regulates autophagy further complicates the situation. 

This study found that Caspase-1 deficiency increases autophagy in cells 

infected with S. flexneri, an IPAF agonist. There is a considerable need for 

further research in order to fully understand the complexity of this 

relationship.    
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1.5 Hypothesis and aims  

Autophagy not only degrades unwanted organelles, but also helps in 

controlling immunity and inflammation. As outlined above, there is 

considerable evidence showing that autophagy can downregulate NLRP3 

inflammasome activation. This is little current information regarding any 

possible involvement of autophagy in controlling inflammasome activation 

by NLRC4.  Moreover, there are no studies that have addressed the 

possible influence of inflammasome activation on autophagy. The 

specialised bacterial virulence mechanism, the Type III secretion system 

(T3SS) is able to activate the inflammasome producing IL-1β production. 

The relationship between this process and induction of autophagy is not 

clear. 

The central hypothesis underlying this study is that induction of 

autophagy by infection will inhibit NLRC4 inflammasome activation in 

macrophages, limiting the inflammatory response and promoting cell 

survival. We also propose that other pro-inflammatory pathways will be 

similarly down-regulated. We studied the microbe Pseudomonas 

aeruginosa an extra-cellular bacterium which possesses a T3SS that can 

activate the inflammasome. Our aims are: 

1. To determine the role of the T3SS in the induction of autophagy within 

macrophages following infection. 

2. To investigate the effects of autophagy on activation of the NLRC4 

inflammasome by these bacteria. 
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3. To investigate the effects of autophagy on the activation of other pro-

inflammatory pathways following infection with these bacteria.  

4. To investigate the effects of inflammasome activation on the induction 

and progression of autophagy. 
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2    Materials and methods  
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2.1 Tissue culture  

2.1.1  Cell line 

2.1.1.1  THP-1 cells        

THP-1 cells are a human monocytic cell line (gift of Dr. Damo Xu, 

University of Glasgow). Cells are derived from an acute monocytic leukemic 

patient. Cells were grown in RPMI-1640 media (Sigma. Cat.No.R8758, USA) 

supplemented with 2mM L-glutamine (Invitrogen. Cat.No.25030, USA), 10% 

heat inactivated fetal calf serum (Invitrogen. Cat. No.15561020, USA), 100 

µg/ml Streptomycin, 100 IU/ml Penicillin (Sigma. Cat. No. P0781 UAS), and 

1 mM Hepes solution (Sigma. Cat. No. H0887, USA). To maintain cell 

culture, cells were split at approximately 85% confluence. 2hr before 

infection cells were washed twice with sterile PBS (Invitrogen. 

Cat.No.14190-094, USA) and complete media without Penicillin and 

Streptomycin was added. 

2.1.1.2  J774A.1 cells   

The murine macrophage cell line J774A.1 was grown in RPMI -1640 

medium as described for THP-1 cells. Cell culture was maintained at 37˚C 

in 5% CO2. Cell were cultured at a concentration 1×106cell/ml. 24 hr before 

infection, cells were seeded in complete RPMI-1640 media in 6, and 12 well 

tissue culture plates ( Costar. Cat.No.3513, USA). 2hr before infection cells 

were washed twice with sterile PBS and complete media without Penicillin 

and Streptomycin was added.  
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2.1.1.3 RAW264.7 cells    

The murine macrophage cell line RAW264.7 was grown as 

described for THP-1 cells.   

2.1.1.4 L929 cells    

The murine cell line L929 produce M-CSF in cell culture. They were 

cultured in RPMI-1640 media supplemented with 2mM L-glutamine, 10% 

heat inactivated fetal calf serum, 100 µg/ml Streptomycin, 100 IU/ml 

Penicillin. When cells were around 85% confluent they were treated with 

0.05% Trypsin with EDTA (Sigma. Cat.No.T3924, USA) to cover the cells. 

The culture flask was incubated for 5-10 min at 37˚C until cells had 

detached. Complete RPMI-1640 media was added to stop the Trypsin. 

Cells were resuspended in fresh media. When culturing to obtain M-CSF, 

cells were split in to large tissue culture flask (Corning. Cat.No.430824, 

USA) and cultured for 7 days following full confluency. Cells supernatant 

was taken off, sterile filtered and then stored at -20˚C until used for culturing 

of BMDMs.  

2.1.1.5 HEK 293 cells     

HEK 293 cells were grown in DMEM with 4.5gm/L D-Glucose and 

1mM Sodium pyruvate (Gibco. Cat. No. 21969-035, UK) supplemented with 

10% heat inactivated fetal calf serum, 100 µg/ml Streptomycin, 100 IU/ml 

Penicillin. When cells were around 85% confluent they were transfected 

with N-terminal FLAG-tagged WT and D281E D289E TRIF constructs. 
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2.1.2 Primary cell preparations   

2.1.2.1 Bone –marrow derived macrophages  

   Mice were maintained according to Institutional and National (UK 

Home Office) guidelines. C57/BL6 mice were obtained from Harlan UK. 

Primary bone-marrow macrophages BMDMs were isolated as described from 

C57/BL6 mice (Celada et al., 1984). Briefly, mice were sacrificed by cervical 

dislocation and femurs and tibias were dissected out. Femurs and tibias were 

flushed with media using a 25G needle (BD. Cat.No.300600, USA) to obtain 

bone marrow mononuclear phagocytic precursor cells. To remove tissues 

and debris cell suspension was passed through a Nitex mesh (Cadisch Sons, 

London, UK). Cells were cultured in RPMI-1640 supplemented with 10% heat 

inactivated FCS, Streptomycin (100 µg/ml), Penicillin (100 IU/ml), L-

glutamine (2mM) and 1 mM Hepes solution( Sigma.Cat.No. H0887, USA) pH 

7.3 on 9 cm plastic Petri dishes (Sterlin. Cat.No.24998, UK) at a 

concentration of 3×106 cells/plate.  Macrophages were selected by addition 

of M-CSF 10ng/ml (Peprotech. Cat.No.315-02, UK) or by using the 

supernatant of L929 cells at a final concentration of 30%. Cells were cultured 

at 37˚C, 5% CO2 and allowed to grow for between 6 – 9 days before use. 

Under these conditions, the resultant cell population was > 95% 

macrophages as judged by staining with the macrophage marker F4/80 (Fig 

2-1).    

2.1.2.2 Generation of bone-marrow derived dendritic cells  

Bone marrow derived dendritic cells was generated and grown as 

described for  BMDMs but, instead of M-CSF, cells were cultured in 

complete RPMI-1640 media supplemented with 20ng/ml GM-CSF 
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(Peprotech. Cat. No. 315-03, UK). Under these conditions, the resultant cell 

population was > 95% dendritic cell as judged by staining with the D.cells 

marker CD11c (Fig 2-2).    

 

 

 

 

 

 



43 
 

  

 

 

 

 

 

                                                                                         

Figure 2.1; F4/80 staining of BMDMs. 

BMDMs cells were isolated from WT mice and analysed for F4/80. F4/80 staining 

compared to isotype. Cells were gated based on forward and side scatter (top panels, 

65.6% for isotype, and 64.1% for F4/80), these events were then gated based on 7-AAD 

(middle panel). Alive cells were gated based on F4/80 staining (bottom panel, 2.2% 

isotype, and 92.1% F4/80). 
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Figure 2.2; LPS CD11c staining of dendritic cells. 

a, Dendritic cells were isolated from WT mice and analysed for CD11c. CD11c staining 

compared to isotype. Cells were gated based on forward and side scatter (65.7% for 

isotype, and 68% for CD11c). b, events were then gated based on 7-AAD, 7-AAD 

negative are live cells. c,  Alive cells were gated based on CD11c staining. d, CD11c 

were treated with 1µg/ml LPS for 18 hrs for the expression of CD40. 
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2.2 Methods  

2.2.1 Cell viability assay     

Cell viability was determined by exclusion of trypan blue. 50µl of the 

cells were incubated at room temperature for 3 minutes with 50µl of 0.04% 

(w/v) trypan blue (Sigma. Cat. No. T8154, USA) in PBS and viable cells 

excluding trypan blue counted in a hemocytometer (Superior. Germany). 

Cell viability in all assays was >85%.  In addition, the viability of the cells 

remained comparable throughout all time points used in this study.  

2.2.2 Bacterial cultures 

   P. aeruginosa PA103ΔUΔT and PA103pcrV- were kindly provided by 

Dara Frank. Bacterial strains were cultured in LB broth (Invitrogen. Cat. 

No.12780-052, USA) to mid-log phase (OD 0.4-0.6) immediately prior to use. 

The bacteria were then centrifuged at 3500 ×g for 15 minutes at 4˚C, the 

pellet was washed twice in sterile PBS and then resuspended in the same 

PenStrep -free media as the cells being infected to a concentration of 

approximately 1× 106cfu/µl = (O.D.600/0.4) ×1.8 ml. (1×106 cell/ml) were then 

infected at indicated multiplicity of infection (MOI) and time.   

2.2.3  Immunofluorescence Microscopy 

  For immunofluorescence, cells were seeded onto Lab-tek 2 well 

chamber slides (Thermoscientific.Cat.No.177399, USA). Following 

experimental treatments, cells were washed 3 times with sterile PBS then 

fixed in 2% paraformaldehyde (VWR, UK) in PBS for 30 minutes at room 

temperature. Fixed cells were washed 3 times with PBS and then 
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permeabilized in 0.2% Triton X-100 (Sigma-Aldrich. Cat. No .9002-93-1, USA) 

in PBS for 20 minutes at room temperature. Permeabilized cells were 

washed 3 times in PBS and blocked with 10% normal goat serum (Sigma-

Aldrich. Cat No.G9023, USA) in PBS for 1 hour. Cells were then incubated 

overnight at 4˚C with1.25 µg/ml rabbit polyclonal LC3 (Abgent. Cat. No. 

AP1802a, USA), or with 1µg/ml mouse mab to ATPase inhibitory factor-1 

antibody (abcam. Cat.No.ab110277, UK) in 10% NGS in PBS. Cells were 

then washed three times with 1ml sterile PBS for 5 minutes and incubated 

with 1µg/ml Alexa Fluor 488-conjugated goat anti-rabbit IgG (Invitrogen. Cat. 

No. A11034, USA), or with 1µg/ml Alexa Fluor 568-conjugated goat anti-

mouse IgG (Invitrogen. Cat.No.A11031, USA)   in 10% NGS in PBS for 1 

hour at room temperature. Following washing as before, cells were mounted 

in Vectashield with DAPI (Vector. Cat.No.H-1500, USA), and viewed using a 

Zeiss Axiovert S100 microscope using Open Lab software (PerkinElmer) or a 

LSM 510 Meta Confocal microscope (Carl Zeiss) using Meta 510 software.  

  For quantification of LC3 puncta, image analysis was performed 

using Image J (NIH, Maryland, USA). All results show values of mean 

number of puncta per cell; for each analysis at least 50 cells were analysed. 

2.2.4 Western blot   

Western blot was done according to manufacturer’s standard 

protocol (abcam). Cells were infected, or stimulated as indicated. The cell 

samples were washed in ice- cold PBS 3 times and lysed in cold lysis buffer 

(20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% SDS, and 1 mM EDTA) in the 

presence of protease inhibitors (Roche. Cat.No.04693159001, Germany) 

for 30 min on ice. Cells were harvested using a cell scraper (Greinor Bio-
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One. Cat.No.541070, Germany) and cell lysate was collected. The protein 

concentrations were determined with Micro BCA protein detection kit 

(Pierce. Cat.No.23235, USA) and adjusted to equal concentrations across 

different samples. Lysates were diluted using LDS sample buffer (Invitrogen. 

Cat.No.NP0007, USA) and sample reducing agent (Invitrogen. 

Cat.No.NP0004, USA). Samples were heated at 70˚C for 15 minutes and 

loaded on to NU-PAGE Bis-Tris gels (Invitrogen Cat.No.NP0322, NP0341, 

USA). 25µg of each sample was used. The gel was run at 100V, 125 mA 

until the dye reached the base of the gel. The samples were transferred on 

to Hybond-P polyvinylidene difluoride PVDF membrane (GE Healthcare 

Cat.No.RPN303F, UK) using a Hoefer TE 22 tank transfer unit (Amersham 

Bioscience. Cat. No. 80-6204-26, USA) and NuPAGE transfer buffer 

(Novex. Cat.No.NP0006-1, USA) supplemented with 20% methanol (Fisher 

chemicals. Cat.No.M/4000/PC17, UK) at 30v, 125mA for 2 hrs at room 

temperature. Transfer was checked by Ponceau’s solution (Sigma-Aldrich. 

Cat.No.P7170, USA). The membranes were blocked with 5% dried 

skimmed milk (Marvel. Cat.No.92962, Ireland) in PBS 1% for 1 hr and then 

incubated overnight at 4°C with primary antibodies as shown in table (2-2). 

The unbound primary antibodies were washed away three times in PBS -

Tween then the membranes were incubated with secondary antibodies 

table (2-2) for 1 hr in room temperature. The unbound secondary antibodies 

were washed off as above. Bound antibodies were detected using 

enhanced chemiluminescence ECL kit (GE Healthcare. Cat.No.RPN2209, 

UK) and visualized by exposure to X ray film. For reprobing blots they were 

rinsed in DD.W then Washed 3 times for 5 minutes in PBS/Tween. Stripping 

buffer (100m M 2-Mercaptoethanol, 2%SDS, 62.5 mM Tris-Hcl pH, 6.7) was 
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added to the blots, and incubated for 30 minutes at 50°C with occasional 

agitatation. Blots were then washed 3 times for 10 minutes in PBS/Tween 

before re-blocking in 5% dried skimmed milk for one hour at room 

temperature and then incubated overnight at 4°C with monoclonal Anti β-

tubulin antibody (Sigma-Aldrich. Cat.No.T8328, USA). The unbound 

primary antibody was washed away three times in PBS /Tween then the 

membranes were incubated with Anti-mouse IgG HRP linked antibody (Cell 

signalling technology. Cat.No.7076, UK) for 1 hr in room temperature .The 

unbound secondary antibody was washed off as above. Bound antibodies 

were visualised as above.  

2.2.5 ELISA   

The cytokine concentration (IL-1β) in cell culture supernatants was 

measured by ELISA kit according to manufacturer’s standard protocol (R 

and D systems Cat No. DY401, USA). ELISA flat bottom 96 well   plates 

(Corning Costar. Cat. No.9018, USA) were coated with 50 µl capture 

antibody at a concentration of 4 µg/ml diluted in PBS, sealed and incubated 

overnight at room temperature. The wells were washed five times with wash 

buffer (PBS, 0.05% Tween 20) and blocked with 1 % BSA (Sigma. Cat. No. 

A7030-50, USA) in PBS at room temperature for 1 hour. After five washes 

in wash buffer, the samples and standards (50µl) were added with a top 

standard of 1000 pg/ml serially diluted 1:2 10 times. After 2 hours 

incubation at room temperature and five washes, detection antibody was 

added at a concentration of 2.5 µg/ml diluted in reagent diluent (0.1% BSA, 

0.05% Tween 20 in Tris-buffered saline pH 7.4) and incubated 2hr at room 

temperature. After five washes, streptavidin-HRP was added at a dilution 
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1:200 in reagent diluent for 20 minutes at room temperature in the dark.  

After final five washes, TMB Micro well Peroxidase substrate solution          

(KPL, Cat.No. 52-00-00, USA) was added for 20 minutes at room 

temperature in the dark. Development was stopped by the addition 25µl of 

TMB stop solution (KPL, Cat.No.52-58-04, USA) and plates were read at 

570 nm on a Tecan sunrise plate reader using Magellan software. 

The cytokine concentration (TNF-α), in cell culture supernatants was 

measured by ELISA kit according to manufacturer’s standard protocol 

(eBioscience Cat No. 88-7324-22, USA).  

For human IL-1β, the protocol was as above for TNF-α assay except 

using coating buffer (Cat.No.00-0044-59), capture antibody ( Cat.No.14-

7018-68, USA), standard (Cat.No.39-8016-60, USA ), and detection 

antibody (Cat.No.33-7016-68, USA). 

2.2.6   Transmission electron microscopy  

   BMDM cells infected by Pseudomonas aeruginosa for 4 h were 

harvested by scraping the cells followed by centrifugation at 500 g for 10 min. 

The pellets were washed with Sorensen’s Phosphate buffer and pre-fixed 

with 2% glutaraldehyde, followed by post-fixation with 1% OsO4 in 6.6 mM 

Sorensen’s phosphate buffer. All pellets were dehydrated stepwise in a 

graded series of ethanol and embedded in araldite CY212. The blocks were 

sectioned on Reichert–JunG ultra-cut microtome. Ultra-thin sections were 

double stained with uranyl acetate and lead citrate (all stains from Agar 

scientific). Sections were examined using a Tecnai transmission electron 

microscope (Model No. 943205018411, FEI Company, Czech republic) 
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equipped with Olympus digital camera (VELETA) at the Department of 

Pathology, Western Infirmary, Glasgow. 

2.2.7      Flow cytometry   

Blocking of non-specific Fc-mediated binding of antibodies to Fc 

receptors was performed using 1ug/ml of a rat anti-mouse CD16/CD32 

antibody (BD Biosciences. Cat. No. 553141, USA) for 15 minute at 4°C. 

Intracellular LC3B II was detected as follows, following the method 

described by (Eng et al., 2010). Cells were fixed and permeabilized using 

fixation/permeabilization solution which contains 0.1% saponin (BD 

Bioscience, Cat. No. 51-2090KZ, USA) and resuspended in 

permeabilization wash buffer (BD Bioscience. Cat. No. 00-8333-56, USA). 

Cells were then incubated for 1hr at 4°C with 2 µg/ml rabbit polyclonal LC3 

(Novus biological. Cat.No.NB100-2220, UK) in 1X permeabilization /wash 

buffer. After washing, cells were then incubated with 1µg/ml Alexa Fluor 

488-conjugated goat anti-rabbit IgG (Invitrogen. Cat.No.A11034, USA) in 

1X permeabilization/wash buffer for 1 h at 4˚C. Cells were then washed and 

resuspended in phosphate buffered saline supplemented with 2.5% fetal 

calf serum for analysis. 

Bacterial uptake was measured in cells using 1mg/ml pHrodo E.coli 

Bio Particles for 2hrs at 37°C (Invitrogen. Cat. No. P35366, USA) prior to 

analysis by flow cytometry. Reactive oxygen intermediates were assayed 

using CellRox deep red reagent at 5µM for 30 min at 37°C (Invitrogen. Cat. 

No. C10422, USA) and flow cytometry.  
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Mitochondrial ROS were measured in cells after infection as 

indicated by using MitoSox staining (Invitrogen. Cat. No. M36008, USA) at 

2.5 µM for 30 min at 37˚C. For measurement of mitochondrial mass, cells 

were stained for 30 min at 37˚C with 50 nM MitoTracker Green FM 

(Invitrogen. Cat. No. M7514, USA), and 50 nM MitoTracker Red FM 

(Invitrogen. Cat. No. M22426, USA). Cells were then washed and 

resuspended in phosphate buffered saline supplemented with 2.5% fetal 

calf serum for analysis.  

Cells were analysed using a CyAn ADP (Beckman Coulter) or 

Facscalibur flow cytometer (BD). Flow cytometry data was analysed with 

Flowjo Software (Tree Star Inc.). 

2.2.8   RT-PCR   

Total cellular RNA was isolated with an RNeasy Mini kit (Qiagen. Cat. 

No. 74104, UK) according to the manufacturer’s instructions. cDNA was 

synthesised from DNase I treated RNA using Superscript II reverse 

transcriptase (Invitrogen. Cat. No. 18064-071, USA) according to the 

manufacturer’s instructions. Quantitative reverse transcription PCR (q RT-

PCR) was performed using fast SYBR Green PCR master mix (Applied 

Biosystems. Cat. No. 4385612, UK) using the 7900HT fast system (Applied 

Biosystems). The following primers were used for RT- PCR:  

Ifn-β: sense, 5'-CCGAGCAGAGATCTTCAGGAA-3';   

antisense, 5'-GCAACCACCACTCATTCT-3'.  
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Lc3b : sense, 5'-ACAAAGAGTGGAAGATGTCCG-3' ; antisense, 5'-  

CCCCTTGTATCGCTCTATATTCAC-3'.  

Gene expression levels were normalised to TATA binding protein (TBP): 

sense, 5'-TTCACCATGACTCCTATGACC-3';  

antisense, 5'-CAAGTTTACAGCCAAGATTCACG-3' .  

The mean relative gene expression was calculated using Livak’s 

method (Livak and Schmittgen, 2001). All determinations were performed in 

triplicate. 

2.2.9 Measuring Cytoplasmic mitochondrial DNA   

For measuring cytoplasmic mtDNA, 1 × 107 cells infected as 

indicated were homogenized with a Dounce homogenizer in 100 mM NaOH 

solution, pH 7.4, containing 0.25 M Sucrose, 1 mM EDTA, and protease 

inhibitors, then centrifuged at 800g for 12 min at 4 °C. The protein 

concentrations were determined with Micro BCA protein detection kit 

(Pierce. Cat.No.23235, USA) and adjusted to equal concentrations across 

different samples, followed by centrifugation at 12,000g for 30 min at 4 °C 

for the production of a supernatant corresponding to the cytosolic fraction. 

Total DNA was isolated from 200 µl of the cytosolic fraction with a DNeasy 

blood and tissue kit (Qiagen. Cat. No. 69504, UK).  

2.2.10 Quantitative real-time PCR   

Quantitative PCR was used for measurement of cytoplasmic 

mitochondrial DNA mtDNA using fast SYPR Green PCR master mix 
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(Applied Biosystems. Cat. No. 4385612, UK). The copy number of 

cytoplasmic mtDNA was normalized to that of nuclear DNA as the ratio of 

DNA encoding cytochrome c oxidase I to nuclear DNA encoding 18S 

ribosomal RNA  (Tal et al., 2009). The following primers were used for q-

PCR: 

  18S sense, 5′-TAGAGGGACAAGTGGCGTTC-3′,  

 anti-sense, 5′-CGCTGAGCCAGTCAGTGT-3′;  

 Mouse cytochrome c oxidase I sense, 5′-GCCCCAGATATAGCATTCCC-3′,  

anti-sense, 5′-GTTCATCCTGTTCCTGCTCC-3′. 

The copy number of DNA encoding cytochrome c oxidase I was measured by 

quantitative real-time PCR with same volume of the DNA solution. 

2.2.11 Isolation of mitochondrial DNA  

Mouse mitochondrial DNA (mtDNA) was isolated from 40 × 106 

J774A.1cell with a mitochondrial DNA isolation kit (Thermo scientific 

Cat.No.89874, USA) according to the manufacturer’s instructions. 

Mitochondrial DNA was isolated from the pellet with a DNeasy blood and 

tissue kit (Qiagen Cat. No. 69504, UK) according to the manufacturer’s 

instructions. To generate oxidized mtDNA, the material was incubated with 

100 µM hydrogen peroxide for 30 min at 37C. 
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2.2.12 Transfection of mtDNA 

   BMDMs were transfected for 6 hr with 2µg/ml isolated mtDNA, and 

oxidized mtDNA through the use of 3µl Attractene (Qiagen. Cat.No.301005, 

UK) according to the manufacturer’s instructions. 

2.2.13 Protein transfection  

Protein transfection was performed using Polyplus reagent according 

to the manufacturer’s standard protocol (Polyplus transfection. Cat. No. 

PPLU501-01, USA). Cells were incubated with the protein/transfection 

reagent complex for 5 hr at 37°C in a 5% CO2 incubator. After removing the 

media, cells were washed 2 times with sterile PBS, cells were incubated in 

complete growth media without antibiotic, and then infected with 

PA103ΔUΔT for 4 hr (MOI 1:25).  

2.2.14 siRNA and transfection  

Control siRNA and siRNAs to the indicated genes were all from 

Dharmacon RNAi Technologies UK (On Target plus SMART pool siRNA) 

Table (2-1). Silencing constructs were introduced into cells using HiPerfect 

transfection reagent (Qiagen. Cat.No.301704, UK), according to the 

Manufacturer’s instructions. Transfection of BMDMs was optimised using 

SiGLO Green transfection indicator (Dharmacon RNAi Technologies. Cat. 

No. D-001630-01-05, UK) and flow cytometry. Cells were plated at a 

density of 0.5 x 106 cells per well of a 12-well plate in 500 µl of RPMI1640 

culture medium. siRNA was added at a concentration of 40 nM together 

with 9 µl of transfection reagent. This routinely gave transfection efficiencies 
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greater than 90% Fig (2-3). For efficient knock down, cells were cultured for 

24 – 48 h.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

Table 2.1 siRNA used in this study 

siRNA Target sequences  Cat. No. 
Lc3b   5´- ACUAUGGUGCGAUCAGUAA-3´ 

5´- CAUCCUAAGUUGCCAAUAA-3´ 
5´- GGAUAUAGCUCUAAGCCGG-3´ 
5´- CUAAUAAAGGCACAACGAA-3´ 
 

L-040989-01-0005 

Atg5 5´- GCAUAAAAGUCAAGUGAUC-3´ 
5´- CCAAUUGGUUUACUAUUUG-3´ 
5´- CGAAUUCCAACUUGCUUUA-3´ 
5´- UUAGUGAGAUAUGGUUUGA-3´ 
 

L-064838-0005 

Caspase-1 5´- GAAUACAACCACUCGUACA-3´ 
5´- GCCAAAUCUUUAUCACUUA-3´ 
5´- GGUAUACCGUGAAAGUGAA-3´ 
5´- GCAUUAAGAAGGCCCAUAU-3´  

L-048913-00-0005 

Caspase-11 5´-GAUGUGCUACAGUAUGAUA-3´  
5´-CGAAAGGCUCUUAUCAUAU-3´    
5´-AAGCUAAUCUGGAAAUGGA-3´  
5´-GUGCAACAAUCAUUUGAAA-3´ 
 

L-042432-00-0005 

TRIF  5´-GAUCGGUGCAGUUCAGAAUA-3´ 
5´-GAACAGCCUUACACAGUCU-3´    
5´-GGAAAGCAGUGGCCUAUUA-3´  
5´-GAGAUAAGCUGGCCUCCAU-3´ 
 

L-055987-00-0005 

Tlr4 5´- UGACGAACCUAGUACAUGU-3´  
5´- GGAAUUGUAUCGCCUUCUU-3´  
5´- GAGUUCAGGUUAACAUAUA-3´  
5´- GCAUAGAGGUAGUUCCUAA-3´  
  

L-047487-00-0005 

Nlrc4 5´- UCGAAACACUGUACGAUCA-3´ 
5´- GAACAUCCCUGACUAUUUA-3´ 
5´- CAAUAGGGCUCCUCUGUAA-3´ 
5´- GCGAUGACCUCUUUGCAUU-3´ 
 

L-055000-00-0005 
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Figure 2.3; siRNA transfection optimization  

 BMDMs were transfected using SiGLO Green transfection indicator at a concentration of 

(20, and 40 nM) with (3, 6, and 9 µl) of HiPerfect transfection reagent for 24 hr and then 

analysed using flow cytometry.     
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2.2.15 Transfection of electrocompetent E.coli (EC100)  

   TransforMax EC100 electrocompetent E.coli (Cambio 

bioscience .Cat.No.EC10005, UK) were transformed according to 

manufacturer’s protocol. Briefly, electroporation cuvettes GenePluser 

cuvettes 0.1 cm (Life Technologies.Cat.No.P410-50, USA) were chilled on 

ice and 50µl electrocompetent cells were defrosted on ice. TRIF FLAG WT 

and D281E D289E Plasmids were added and mixed gently with the bacteria. 

Immediately following this cells were transferred to an electroporation cuvette 

and pulsed on a Gene Pluser X cell system (BioRad.Cat.No.165-2660, UAS) 

using a program for E.coli (1800 V, 25µF, 200 Ω, 4 seconds time constant). 

950µl super optimal broth with catabolite repression (SOC) medium (Life 

technologies .Cat.No.15544-034, USA) at room temperature was then added 

and cells placed in a shaking incubator (Stuart scientific, UK) (250 RPM) at 

37˚C for 1.5 hour to allow expression of any antibiotic resistance marker. 200 

µl of bacteria were then plated on to appropriate LB-Agar plates with 75µg/ml 

Ampicillin (Sigma .Cat.No.A9518.USA) and allowed to grow at 37˚C 

overnight.   

2.2.16 TRIF- FLAG plasmids purification 

Plasmids were purified using plasmid maxi kit (Qiagen. Cat. No. 

12162, UK) according to manufacturer’s instructions. 

2.2.17 Plasmid transfection 

N-terminal FLAG-tagged WT and D281E D289E TRIF constructs 

(Lei et al., 2011) in pcDNA3.1 were kindly provided by Dr. Lei, (China). 

Plasmids were transfected into cells using Attractene (Qiagen. Cat. No. 
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301005, UK), or using Lipofectamine 2000 (Invitrogen, Cat. No.11668-027, 

USA), according to the manufacturer’s instructions. Cells were harvested at 

24 h after transfection.  

2.2.18 Construction of plasmids  

Restriction enzyme XbaI (New England BioLab. Cat. No. R0145S, 

UK), and BstXI (Promega. Cat. No. R6471, USA), all were used according 

to manufacturer’s instructions in suitable buffers provided with enzyme.  

C-terminal and N-terminal of WT FLAG plasmid were amplified using 

the following primers  

TRIF C- Terminal sense,  

5′-CACCATGCCCGCAGCTCCAGAAACCAGCA-3′,  

 anti-sense, 5′-TTCTGCCTCCTGCGTCTTGTC-3′;  

TRIF N-Terminal sense,  

5′-CACCATGGCCTGCACAGGCCCATCACTTC-3′,  

anti-sense, 5′-ATCTGGGGCCACTTCGGGAAGCCC-3′; 

The resulting product was cloned in to pcDNA3.1D/V5-His-Topo 

vector (Invitrogen. Cat. No. 45-0158, USA), according to manufacturer’s 

instructions.    

2.2.19 Agarose gel electrophoresis    

PCR products, plasmid preparations and restriction enzyme digests 

were resolved using agarose gel electrophoresis and a Horizon 58 life 
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technologies horizontal gel electrophoresis apparatus (Serial No. 00239825, 

USA). 2% agarose (BIO-RAD, Cat. No. 161-3101, USA) was dissolved in 

1x Tris/Borate/EDTA (TBE) buffer and 1x SYBR safe gel DNA stain 

(Invitrogen. Cat. No. S33102, USA). Gels were viewed and photographed 

using Gel Logic 200 imaging system (KODAK).      

2.2.20 Generation of mtDNA deficient ρ0 cells 

J774A.1 macrophages were grown in  RPMI 1640 media 

supplemented with 10% heat inactivated FCS, 100 µg/ml Streptomycin, 

100IU/ml Penicillin,  1mM Hepes solution, and Uridine 25µg/ml  . EtBr (500 

ng/ml) (Sigma- Aldrich. Cat. No. 1510, USA) was added to the medium for 

15 day (Hashiguchi and Zhang-Akiyama, 2009). Depletion of mitochondrial 

DNA was evaluated by quantitative PCR for the mitochondrial gene 

cytochrome c oxidase I and compared to nuclear DNA encoding 18S 

ribosomal RNA.  

2.2.21 Immunoprecipitation    

BMDMs were preloaded with BrdU (10 mM) (Sigma. Cat.No.B5002, 

USA) for 48 hr and then seeded into 6 well plates (Costar. Cat. No. 3516, 

USA) at 2.5 ×106 cell/ml RPMI 1640 media and then infected with 

PA103ΔUΔT (2, 4 hr) at (MOI 25). After infection cells were washed twice 

with ice-cold PBS and then lysed in 500µl RIPA lysis buffer (Thermo 

scientific. Cat.No.89900, USA) for 30 minutes. Cells were collected by cell 

scraper and the lysate centrifuged at 13,000 g at 4˚ C for 20 minutes. 

Lysates were pre-cleared by addition of 50 µl of anti-rabbit IgG beads 

(eBioscience. Cat.No.00-8800-25, USA) on ice for 50 minutes with gentle 

agitation and then spun at 11,000 x g for at 4˚ C for 3 minutes. 5µg of rabbit 
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anti-NLRC4 (Novus Biologicals. Cat. No. NBP1-78979SS, UK) antibody or 

5 µg of negative control rabbit IgG (Dakocytomation. Cat.No.X0936, 

Denmark) were added to 250 µl aliquots of the lysate and incubated on ice 

for 1.5 hr. 50µl of anti-rabbit IgG beads was added and the samples were 

further incubated at 4˚C for 1 hr. Immune complexes were then washed 3 

times with ice-cold RIPA lysis buffer and bound material eluted with distilled 

water at 100˚C for 10 minutes. A 20µl aliquot was analysed on a standard 

Western blot for NLRC4 protein. DNA in the remaining 80 µl aliquot was 

denatured by addition of 8 µl of 4M NaOH and 1.6µl of 0.5 M EDTA and 

incubated at 100˚C for 5 minutes. The sample was cooled on ice and 

neutralized by addition of 110µl of ice-cold 2M Ammonium acetate pH 7 

before transferring to nitrocellulose membranes using a Bio-Dot 

microfiltration apparatus (Bio-Rad Cat.No.170-6542, Germany). 

Membranes were rinsed in 2X SSC and cross-linked to the nitrocellulose 

using UV irradiation. Membranes were then blocked with 5% dried skimmed 

milk for 1 hr and incubated overnight at 4°C with primary antibodies to BrdU 

mAb (1.5µg/ml; Sigma. Cat.No.BU33, USA) or mouse anti-8OH-dG mAb 

(1µg/ml; Santa Cruz biotechnology. Cat.No.SC-66036, U.K.). Following 

washing and incubation with horseradish peroxidase conjugated secondary 

antibody, bound antibody was detected using enhanced a 

chemiluminescence ECL kit (Fisher scientific. Cat.No.RPN2209, UK).  

2.2.22 Gentamicin protection assay 

Viable intracellular bacterial counts were determined by a gentamicin 

protection assay as described (Lindestam Arlehamn et al., 2010).  
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2.2.23 LDH Release  

Cells were incubated in media lacking Phenol red. Lactate 

dehydrogenase release determinations were performed using the Cytotox 

96 cytotoxicity assay kit (Promega. Cat. No. G1781, USA).   

2.2.24  Animal models   

Model 1  

Female C57/BL6 mice aged 8 weeks were obtained from Harlan UK. 

Mice were randomly divided into to three groups, n=3 per group. Control 

groups were injected intraperitoneally (ip) with sterile PBS. Experimental 

groups were injected (ip) with PA103ΔUΔT (107 cfu) alone or with caspase 

inhibitor Z-YVAD-FMK 0.1mg/kg. 6 hours after infection, animals were 

sacrificed and blood and peritoneal fluid collected for analysis as indicated.   

Model 2     

  Peritoneal macrophages were depleted using clodronate liposomes 

(Foundation Clodronate Liposomes, Amsterdam). 200 μ l clodronate 

liposomes were injected 96 hours and 24 hours prior to infection. Depletion 

was confirmed by performing peritoneal lavage on animals injected with 

clodronate liposomes or PBS liposome controls and performing total cell 

counts and Romanowski staining after cytocentrifugation. Bone marrow 

derived macrophages were stained with eFluor 450 proliferation dye 

(eBioscience, Cat. No. 65-0842, UK) at a concentration of 10 µM according 

to the manufacturer’s instructions. Mice were injected intra-peritoneally with 5 

x 106 of eFluor 450 stained macrophages. 1 hour later mice were injected 

with 107 cfu of PA103ΔUΔT or PBS. After 6 hours mice were culled by 
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inhalation of CO2. Peritoneal fluid was collected by injection and subsequent 

aspiration of 5ml of cold PBS. 

Neutrophils were enumerated by performing total cell counts and 

Romanowski staining after cytocentrifugation or peritoneal lavage fluid. 

Cells were then stained with Alexa Fluor 700 anti-CD11b (M1/70, 

Biolegend), PE anti-F4/80 (BM8, Biolegend), Alexa Fluor 647 anti-Ly-6G 

(1A8, Biolegend) or appropriate isotype controls. Following fixation and 

permeabilisation cells were then stained for LC3 as already described. 

Macrophages were selected on the basis of being CD11b+F4/80+Ly-6G- 

and extrinsic macrophages were then identified on the basis of staining with 

eFluor 450. 

Model 3   

Female C57/BL6 mice aged 8 weeks were obtained from Harlan UK. 

Mice were randomly divided in to six groups (n=3 per group). Three control 

groups were injected intraperitonial (ip) with sterile PBS, rapamycin (1.5 

gm/kg) (Harris et al., 2011), or 3-MA (30mg/kg) (Kim et al., 2012). 

Experimental groups were injected (ip) with PA103ΔUΔT (107 cfu) alone, or 

with rapamycin or with 3-MA. Blood and peritoneal fluid was taken after 6 

hrs for analysis of IL-1β and TNF secretion by ELISA and for protein 

concentration.   

 

 

 



64 
 

Table 2.2 Antibodies used in this study  

Antibody 
description  

Manufacturer Cat. No. Applications Working 
concentration 

Purified rabbit 
polyclonal antibody 
Pab, Autophagy 
LC3 antibody (AP 
G8B) (N-term).  

Abgent (USA) AP 1802a IF  1.25µg/ml 

Alex flour 488 goat 
anti-rabbit IgG 
(H+L).  

Invitrogen 
(USA) 

A11034 IF  

FACS  

1µg/ml 
 

Alex flour 568 goat 
anti-mouse IgG 
(H+L).  

Invitrogen 
(USA) 

A11031  IF 

   

1µg/ml 

 Negative control , 
Rabbit 
immunoglobulin  
fraction (sold-
phase absorbed)  

DakoCytomation 

 (Denmark) 

X0936 IF  

FACS  

IP  

 
1.25µg/ml 
 

5µg/ml 

8-OHdG  

Mouse monoclonal 
IgG2b  

Santa cruz 
biotechnology 
(UK) 

Sc-66036 IP 1µg/ml 

Mouse monoclonal 
Anti-BrdU 

Sigma-Aldrich 
(USA) 

B8434 IP 2µg/ml 

Anti-rabbit IgG 
HRP- linked 
antibody.  

Cell signaling 
technology 
(UK) 

7074 WB 1:2000 

LC3  Antibody  
LC3 B  

Novus 
Biological (UK) 

NB100-
2220 

WB  

FACS  

1µg/ml 
 

Anti-Mouse IgG 
HRP- linked 
antibody. 

Cell signaling 
technology 
(UK) 

7076 WB 1:2000 

Monoclonal Anti-β-
Tubulin antibody 
produced in mouse  

Sigma-Aldrich 
(USA) 

T8328 WB 1µg/ml 

Capture Antibody.  R and D 80134 ELISA 4µg/ml 
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system (USA)  

Detection 
Antibody.  

R and D 
system (USA)  

80135 ELISA 600ηg/ml 
 

Caspase -1 p10 
(M-20) Antibody.  

Santa cruz 
biotechnology 
(UK)  

sc-514 WB 1µg/ml 

Caspase -1 (A-19) 
Antibody. 

Santa cruz 
biotechnology 
(UK) 

sc-622 WB 1µg/ml 

Capase-11 
Antibody 

Abcam (UK) ab22684 WB 1/5000 

Rabbit polyclonal 
to IL-1 β.  

Abcam (UK) ab9722 WB 1µg/ml 

Rabbit polyclonal 
to TRIF.  

abcam (UK) ab13810 WB 1 µg/ml 

NLRC4 Antibody. Novus 
Biologicals  

NBP1-
78979SS 

WB  

IP 

 

2µg/ml  
 
5µg/ml 
 
 
 

Monoclonal ANTI-
FLAG, M2, Clone 
M2. 

Sigma (USA) F1804 

 

WB 1µg/ml 

Mouse Anti-rabbit 
IgG .mAb (HRP 
conjugate). 

Cell signaling 
technology 
(UK) 

5127 WB  1:2000 

Anti-AIM2 Purified. eBioscience 
(UK) 

14-6008 WB 1. 5µg/ml 

Capture Ab 
purified anti-mouse 
TNF –α. 

eBioscience 
(UK) 

14-7423-
67A 

ELISA 1:250 

Detection Ab 
Biotin-conjugate 
anti-mouse TNF –
α polyclonal. 

eBioscience 
(UK) 

13-7341-
67A 

ELISA 1:250 

Capture Ab eBioscience 14-7018- ELISA 1:250 
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purified anti-
human IL-1β. 

(UK) 68 

Detection Ab 
Biotin-conjugate 
anti-human IL-1 β 
–α polyclonal 

eBioscience 
(UK) 

33-7016-
68 

ELISA 1:250 

Anti-Atg5 
Antibody. 

Novus 
Biologicals 
(UK) 

NB110-
53818SS 

WB 0.5µg/ml 

Ms mab to ATPase 
inhibitory factor 1. 

abcam  (UK) ab110277 WB 

IF  

1µg/ml 
 

Mouse TLR4 Ab Abcam(UK) Ab22048 WB 2µg/ml 

Anti- rabbit IgG IP 
beads  

eBioscience 
(UK) 

00-8800-
25 

IP  1:10 

Rabbit polyclonal  
anti-PINK1 
Antibody  

Novus 
Biological  

BC100-
494 

W.B.  1µg/ml 

Mouse anti- V5 tag Invitrogen 377500 W.B. 1µg/ml 

 

 

Table 3.3 Knockout mice used in this study  

 KO Mice Source 

Tlr4 Prof. Tim Mitchell  University of Glasgow ( UK) 

Nlrc4 Prof. Clare Bryant  University of Cambridge (UK) 

Trif Prof. Clare Bryant  University of Cambridge (UK) 

Aim2 Prof. Katherine Fitzgerald  University of Massachusetts (USA) 

Atg7 Prof. Anna Katharina Simon University of Oxford (UK) 

Myd88 Prof. David Gray University of Edinburgh (UK) 
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2.3 Solutions and buffers used in this study                                                             

• Phosphate buffer saline (8.0 gm Nacl+0.45gm NaH2Po4+2.3gm Na2HPo4+ 
0.2 gm KCl ) in 1liter of distilled water, PH=7.4.    

• Trypan blue stain.  (Sigma-Aldrich. Cat No.T8154, USA). 

• 10% Normal goat serum in PBS.  (Sigma-Aldrich. Cat No.G9023, USA).    

• Fetal calf serum. (Invitrogen .Cat No.15561020, USA). 

• Vectashield with DAPI. (Vector. Cat No.H-1500, USA).     

• Micro BCA Reagent  A (MA), 240 ml (in Product No. 23235), containing 

sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium 

tartrate in 0.2 M sodium hydroxide (Pierce. Cat.No.23231, USA).        

• MicroBCA Reagent B (MB), 240 ml, containing 4% bicinchoninic acid in 

water (Pierce. Cat.No.23232, USA).        

• MicroBCA Reagent C (MC), 12 ml, containing 4% cupric sulphate, 

pentahydrate in water (Pierce. Cat.No.23234, USA).         

• Albumin Standard Ampules, 2 mg/ml, 10 × 1 ml ampoules, containing 

bovine serum albumin (BSA) at 2.0 mg/ml in 0.9% saline and 0.05% sodium 

azide (Pierce. Cat.No.23209, USA).        

• Lysis buffer (1mM EDTA, 150 mM NaCl, 20 mM Tris-Cl, PH7.5, and 1% 

SDS in DW. 

• LDS (Loading) buffer 4X.  (Invitrogen.  Cat.No.NP0007, USA).  

• Sample reducing agent 10X. (Invitrogen. Cat.No.NP0004, USA). 

•  MES SDS Running buffer 20X. (Invitrogen. Cat.No.NP0002, USA). 

• Transfer buffer 20X. (Invitrogen. Cat.No.NP0006-1, USA). 

• Ponceau’s  solution 0.1% PonceauS. (w/v) in 5% (v/v) acetic acid. (Sigma-

Aldrich. Cat.No.P7170, USA).  

• HRP- Streptavidin Horseradish Peroxidase Conjugate. (Invitrogen. Cat 

No.43-4323, USA). 

• ECL kit (Lumigen P5-3 detection reagent solution A, Cat. No. RPN 2132 V1 

and Lumigen P5-3 detection reagent solution B, Cat. No. RPN 2132 V2, GE 

healthcare (UK).  
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• 5% dried skimmed milk (Marvel. Cat.No.92962, Ireland) in PBS. 

• Stripping buffer (100m M 2-Mercaptoethanol, 2%SDS, 62.5m M Tris-Hcl.  

pH 6.7). 

• (2S,3S)-Trans-Epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester, 

EST.  (Sigma-Aldrich. Cat. No. E8640, USA). 

• Pepstatin A. (Sigma-Aldrich Cat.No.P5318, USA). 

• Bafilomycin A (Sigma. Cat. No. B1793, USA).    

• 1% BSA (Sigma. Cat. No. A7030-50, USA) in PBS. 

•  ELISA Reagent diluent (0 .1% BSA, 0.05% Tween 20 in Trise-buffered 

saline (20 mM Trizma base, 150m M NaCl) PH 7.2-7.4, 0.2 µm filtered. 

•  ELISA Substrate Solution (1:1 mixture of colour reagent A H2O2  and colour 

reagent B Tetramethylbenzidine. (Rand D system.  Cat. No. DY 999, USA). 

•  ELISA Stop Solution 2N H2SO4. (R and D system. Cat. No. DY 994   USA). 

• Triton X-100. (Sigma-Aldrich. Cat. No .9002-93-1, USA).  

• Low- potassium buffer (140 mM NaCl, 5 mM KCl, 10 mM Hepes solution, 

1.3 mM  CaCl2, 0.5 mM MgCl2, 0.36 mM K2HPO4, 0.44 mM  KH2PO4, 5.5 mM 

D-glucose, and 4.2mM NaHCO3). Autoclaved and filtered then 

supplemented with 1X MEM vitamin solution (Cat.No.M6895), 2 mM L-

glutamine (Cat.No.G7513), 1X MEM amino acids solution (Cat.No.M1567), 

and 100 µM /ml Sodium Pyruvate (Cat. No. S 8636) all from (Sigma-Aldrich, 

USA).   

• High- Potassium buffer (5 mM NaCl, 140 mM KCl, 10 mM Hepes solution, 

1.3 mM  CaCl2, 0.5 mM MgCl2, 0.36 mM K2HPO4, 0.44 mM  KH2PO4, 5.5 mM 

D-glucose, and 4.2mM NaHCO3 ). Autoclaved and filtered then 

supplemented with 1X MEM vitamin solution (Cat.No.M6895), 2 mM L-

glutamine (Cat.No.G7513), 1X MEM amino acids solution (Cat.No.M1567), 

and 100 µM /ml Sodium Pyruvate (Cat. No. S 8636) all from (Sigma-Aldrich, 

USA).   

• 2% PFA (Alfa Aesas. Cat. No. 43368, USA). 

• Tween 20. (Sigma-Aldrich. Cat.No.P2287, USA). 
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•  LDH Assay buffer. (Promega. Cat. No. G 180, USA). Substrate mix 

(Promega. Cat. No. G 179, USA). 

• Stop solution. (Promega. Cat. No. G 183, USA).  

• 5X siRNA buffer (Dharmacon. Cat. No. B-002000-UB-100, UK) containing  

(300 mM  KCl, 30mM Hepes solution pH  7.5, and 1.0mM MgCl2 ). 

• 1X siRNA buffer four volumes of sterile RNase-free water- (Dharmacon. Cat. 

No. B-002000-WB-100, UK) with one volume of 5X siRNA buffer.   

• TE buffer 10 mM Tris pH 8.0 and 1 mM EDTA.  

• SOC medium (Invitrogen. Cat.No.15544-034, USA).  

• Mitochondrial isolation buffer (100 mM trise base, pH7.4 containing 0.25 M 

Sucrose, 1mM EDTA and protease inhibitor).   

• 20 X SSC (3M NaCl +0.3M Trisodium citrate). Dissolve 175.0 gm NaCl and 

88.2gm Trisodium citrate in D.W.  Adjust volume to 1 L with D.W.  

• RNase free water. (Qiagen.  Cat. No. 74104, UK).  

• Mitochondrial isolation reagent A. (Thermo scientific. Cat. No. 1859692, 

USA). 

• Mitochondrial isolation reagent B. (Thermo scientific, Cat. No. 1859693, 

USA).   

• Mitochondrial isolation reagent C. (Thermo scientific, Cat. No. 1859694, 

USA).   

• AW1. (Cat. No. 69504), AW2. (Cat. No. 69504), ATL.  (Cat. No. 69504), AE. 

(Cat. No. 69504), and AL. (Cat. No. 69504) (all from Qiagen, UK). 

• Buffer P1.  (Cat. No. 12162), Buffer P2. (Cat. No. 12162), Buffer P3. (Cat. 

No. 12162), Buffer QF. (Cat. No. 12162), Buffer QBT. (Cat. No. 12162), and 

Buffer QC. (Cat. No. 12162) (all from Qiagen, UK).  

• FACS buffer 2%FCS in PBS, and 0.05% Sodium azide.  

• Live imaging solution 1X pH 7.4 (Hepes buffered physiological saline) 

(Invitrogen. Cat.No.A1429IDJ, USA).  

• TBE buffer (54g Tris base, 27.5g of Boric acid, and 20ml of 0.5 M EDTA in 

1L DW). 
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2.4 Statistics                         

Comparison between groups at one time point was made using 

unpaired t test. A p value of < 0.05 was considered significant.  
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3    Role of T3SS in autophagy following Pseudomonas 
aeruginosa infection 
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3.1 Introduction 

Autophagy is a cellular process whereby cytosolic components are 

incorporated into a double membrane-bound compartment that is then 

targeted for lysosomal delivery and ultimate degradation. It was originally 

described as a process occurring in response to starvation that allowed 

degradation of cellular organelles and proteins to supply new materials for 

continued cell survival. It is a process found in virtually all eukaryotic cells 

and the basic machinery that regulates autophagy is evolutionarily highly 

conserved (Kundu and Thompson, 2008). Increasingly, autophagy is 

recognised as playing a part in many human diseases ranging from cancer 

to atherosclerosis. In infectious disease, autophagy is important in removing 

intracellular microbes, as well as producing and delivering ligands that 

trigger innate immune signalling (Deretic and Levine, 2009).  

Pseudomonas aeruginosa is an important gram negative organism 

and accounts for about 25% of all gram negative infections isolated from 

hospital environments. P. aeruginosa commonly infects immunodeficient 

people and those with Tuberculosis, cystic fibrosis and cancer could be 

potential victims of this pathogen (Yuan et al., 2012). P. aeruginosa has 

been classified as an extracellular pathogen with a spectrum of virulence 

factors, which help prevent it from clearance by the host innate immunity 

(Sadikot et al., 2005). P. aeruginosa can produce resistant strains and 

traditional antibiotic therapies fail to protect against these resistant strains 

(Chastre and Fagon, 2002). To study the relationship between 

macrophages and microorganisms is important to clear the picture of host 
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defence and might help finding some new therapies for the control of these 

pathogens (Wang et al., 2010)  (Yuan et al., 2012) 

Bacteria use many mechanisms to subvert cellular processes to their 

benefit. One such mechanism is the Gram-negative type III secretion 

system (T3SS), a nanomachine that directly introduces bacterial toxins into 

animal cells and is widely distributed amongst pathogenic Gram-negative 

organisms. In addition to delivering bacterial toxins, the T3SS has been 

implicated in delivering other pathogen-derived molecules that can activate 

the inflammasome, such as flagellin (Miao et al., 2006). 

The classical intracellular autophagic pathway consist of a signalling 

mechanism which relies mainly on two Ubiquitin-like conjugation systems 

involving autophagy-related genes (Atg), Atg7-Atg12-Atg5 or Atg4-Atg7-

Atg8 (called LC3 in mammals).These two systems rely on Atg6 (beclin-1 in 

mammals) which is crucial in early complex formation containing class III 

phosphoinositide3-kinase (PI3K, also known as VPS4), and eventually 

forming the autophagosome (Ohsumi and Mizushima, 2004). Another 

system involving Atg-8 (LC3) is cleaved by another autophagy related 

protein Atg-4 to expose its C terminal Glycine residue. This system is also 

similar to the first system  in which LC3 is activated by Atg7 and then 

transferred to Atg3 (a ubiquitin 2 like protein) The activated LC3 then forms 

complex with PE which is present abundantly in the membrane 

phospholipids of the cells (Ichimura et al., 2000) 

Recent research has demonstrated an essential role of autophagy in 

immune response against pathogens in many diseases including viral and 



74 
 

bacterial infections (Ogawa et al., 2005, Colombo, 2007). Virus and bacteria 

once engulfed by macrophages are capable of escaping from phagosome 

but they are taken up by autophagosome again for further survival and 

replication (Dorn et al., 2002, Campoy and Colombo, 2009). Autophagy 

potentially captures pathogens that have escaped from phagosome into the 

cytoplasm and thereby deliver it to autophagosomes and then to 

autolysosomes, where they are destroyed by the  lysosomal enzymes 

(Campoy and Colombo, 2009). 

According to some authors, the outcome of autophagy is specific for 

different types of bacteria and there are different mechanisms of autophagy 

for destruction of different bacteria (Colombo, 2007, Ogawa et al., 2005), i.e. 

Mycobacterium and group A Streptococci also induce autophagy  where 

they benefit from the host defence (Songane et al., 2012). Until now most of 

the studies demonstrated autophagy in the intracellular pathogens 

(Burdette et al., 2008, Ogawa et al., 2009, Songane et al., 2012) and very 

little is known about the autophagy induction in extracellular pathogens 

(Yuan et al., 2012).  

The inflammasome is a multi-subunit platform for the activation of 

caspase-1, resulting in processing of IL-1β and IL-18 from inactive 

precursors to their active secreted forms (Franchi et al., 2009, Martinon et 

al., 2009, Yu and Finlay, 2008). The inflammasome also triggers a form of 

cell death termed pyroptosis, itself also important in host defence (Miao et 

al., 2011). Although autophagy and inflammasome activation both play 

significant roles in host defence against microbial infection, they do have 

some clear opposing effects. Thus, autophagy can promote cell survival 
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(Baehrecke, 2005) while inflammasome activation will lead to cell death by 

pyroptosis (Bergsbaken et al., 2009). Additionally, autophagy can act to 

down-regulate inflammasome activation by the sequestration of defective 

mitochondria (Saitoh et al., 2008). This results in inhibiting the release of 

mitochondrial reactive oxygen intermediates and mitochondrial DNA that 

can activate the NLRP3 inflammasome (Martinon, 2012, Shimada et al., 

2012, Nakahira et al., 2011). The effects of inflammasome activation on 

autophagy are not known. 

 We hypothesized that inflammasome activation would lead to a 

reciprocal inhibition of autophagy. To test this hypothesis, we used a model 

system of infection of macrophages with the Gram-negative pathogen P. 

aeruginosa. This microbe is a common cause of pneumonia in 

immunocompromised and hospitalized patients, as well as cystic fibrosis 

(Pier and Ramphal, 2005). It activates the NLRC4 inflammasome through a 

type III secretion dependent pathway (Miao et al., 2008, Sutterwala et al., 

2007, Franchi et al., 2007). We demonstrate here that P. aeruginosa 

activates autophagy in macrophages following infection via the classical 

autophagy pathway. We show by multiple independent methods that 

inhibition of inflammasome and caspase-1 activation augments the 

autophagocytic response. 

To know whether autophagy is induced by P. aeruginosa, we studied 

this degradative mechanism in mammalian cells such as mice BMDMs, 

dendritic cells, RAW264.7 cells, J774A.1 cells, and human cell line THP-1 

cells. Our study revealed that autophagy is induced by P. aeruginosa in 

BMDMs through different pathways including Atg8 (LC3), Atg5 and Atg7. 
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Our observation could provide useful potential information for 

understanding this important mechanism in innate immune cells during 

infection with P. aeruginosa.  
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3.2 Results    

3.2.1 Pseudomonas aeruginosa induces autophagy that is enhanced in the 
absence of T3SS.  

P. aeruginosa PAO1 has been shown to induce autophagy (Yuan et 

al., 2012). We set out to determine the influence of the T3SS upon this 

process. We used a strain of P. aeruginosa, PA103ΔUΔT that has a 

functional T3SS but does not translocate any exotoxins, and an isogenic 

strain, PA103pcrV-, that lacks a functional T3SS (Frank et al., 2002, Vallis 

et al., 1999). Recent studies have demonstrated that inflammasome 

activation following infection is entirely dependent on a functional T3SS in 

both PAO1 and PA103ΔUΔT (Arlehamn and Evans, 2011, Sutterwala et al., 

2007). We used a number of different methods to quantify and confirm the 

presence of autophagy. Firstly, we followed the conversion of the protein 

LC3 to its lipidated form (LC3 II) by Western blot (Fig. 3-1), a modification 

that is produced following incorporation of LC3 into the autophagocytic 

vacuole (Mizushima et al., 2010). This clearly demonstrated a marked 

increase in the absolute amount of LC3 II relative to β-tubulin following 

infection, to levels in excess of those seen using the positive control of 

rapamycin, a classic inducer of autophagy. Moreover, the ratio of LC3 II to 

β-tubulin following infection with P. aeruginosa was consistently significantly 

greater with an otherwise isogenic strain that lacked PcrV, an essential 

component of the T3SS (Fig. 3-1, a, b and c).  

 We confirmed these observations using a number of different 

approaches. The localization of endogenous LC3 to autophagocytic 

vacuoles was visualized using immunofluorescence. Following infection 
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with P. aeruginosa, we observed a marked increase in the numbers of LC3 

containing vacuoles within BMDMs that was consistently significantly higher 

in the T3SS defective mutant (Fig. 3-2, a and b), and to a level comparable 

to that seen with rapamycin. Both in these experiments following LC3 by 

immunofluorescence and in those using Western blotting, we noticed that 

the apparent expression level of LC3 also increased. We quantified this 

using RT-PCR and found that P. aeruginosa infection increased the 

expression of Lc3b as has been described in the induction of autophagy in 

other systems, notably in yeast (Stromhaug and Klionsky, 2001). The 

increase in Lc3b expression was higher in the T3SS mutant (Fig. 3-2, c), 

consistent with the results obtained by Western blotting and 

immunofluorescence.  

Finally, we used a validated flow cytometric method to quantify 

intracellular LC3 II staining following cell permeabilization (Eng et al., 2010) . 

This was in agreement with our other results showing that the level of 

autophagy was increased in the absence of a functional T3SS (Fig. 3-2, d). 

Examination of infected cells by transmission electron microscopy 

confirmed the presence of autophagosomes containing cytoplasmic 

contents (Fig. 3-3) (Fig. 3-4). In these panels, the double membrane 

structure of the autophagosome is arrowed and surrounds another 

membrane bound organelle, probably degraded mitochondria as well as 

other cytoplasmic structures. During the time and dose course experiments 

we observed that P. aeruginosa induced autophagy which could be 

detected at 1hr with different MOI (5, 25) (Fig. 3-5).   
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  We confirmed that the increase in LC3 II reflected a real increase in 

flux through the autophagocytic pathway by repeating the experiment in the 

presence of inhibitors of lysosomal degradation (Fig. 3-6). This increased 

still further the amounts of LC3 II following infection, showing that the 

increased levels observed were due to greater flux of LC3 through the 

autophagocytic pathway and not inhibition of LC3 processing. Our data 

showed that conversion of LC3-I to LC3-II was increased when cells pre-

treated with lysosomes inhibitors such as Pepstatin A, E64d, and 

Bafilomycin A, which prevent loss of LC3-II during lysosomal degradation 

and recycling of the lipid conjugation form LC3-II to the cytosolic form LC3-I 

after fusion between autophagosome with lysosomes. Therefore these 

inhibitors increase the autophagy markers via blocking autophagy flux  

(Mizushima and Yoshimori, 2007). Importantly, under the conditions of 

these experiments, we did not observe a significant increase in cell death, 

as measured by the release of LDH (Fig. 3-7).  
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 Figure 3.1; Assessment of LC3 I and II levels in BMDMs cells infected with 
Pseudomonas aeruginosa.  

 

a, Western blot analysis of LC3-I and LC3-II protein levels in BMDM left untreated (B), infected 
with PA103ΔUΔT or PA103pcrV– strains of P. aeruginosa for 2,and 4 hrs (MOI 5), or treated 
with rapamycin (50µg/ml) for 4 h. Blot was stripped and reprobed for β-tubulin. b, BMDM left 
untreated (B), infected with PA103ΔUΔT or PA103pcrV– strains of P. aeruginosa for 3 hrs (MOI 
10), or treated with rapamycin (50µg/ml) for 4 hrs. Graph shows densitometric measurement of 
the ratio of LC3-II/ β-tubulin. * Statistically different from PA103ΔUΔT, p< 0.05. c,  BMDM left 
untreated (B), infected with PA103ΔUΔT or PA103pcrV– strains of P. aeruginosa for 4 h (MOI 
25), or treated with rapamycin (50µg/ml) for 4 hrs. Graph shows densitometric measurement of 
the ratio of LC3-II/ β-tubulin in 3 independent experiments. ** statistically different from 
PA103ΔUΔT, p < 0.01 (repeated in 3 independent experiments).      
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 Figure 3.2; P. aeruginosa induces autophagy in BMDMs that is enhanced 
in the absence of a functional T3SS. 

 

a , Representative immunofluorescence images of LC3 in BMDM left 

uninfected (Basal), treated with rapamycin, or infected with PA103ΔUΔT or 

PA103pcrV– strains for 4hrs at a MOI of 25. Cells were stained with DAPI to 

visualize nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm (5 

independent experiments). b, Number of LC3 puncta in BMDM cells following 

infection (at specified MOI) or rapamycin treatment as indicated cells were 

quantified using Image J software . Asterisks indicate statistically different from 

PA103ΔUΔT at the same MOI, * p < 0.05, *** p < 0.001. c, qRT-PCR of Lc3b 

mRNA following infection as indicated at a MOI of 25 for 4hr (3 independent 

experiments). ** Statistically different from PA103ΔUΔT, p < 0.01. d, FACS 

analysis for LC3 protein following infection with the strains indicated (MOI 25 

for 4h) or treatment with rapamycin (3 independent experiments). 
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 Figure 3.3; TEM observation of autophagosome in BMDMs infected with 
P. aeruginosa. 

 

Electron micrographs of autophagosomes in BMDM infected with PA103ΔUΔT 

or PA103pcrV– for 4hr, at (MOI 25). BMDM left uninfected (Basal), or treated 

with rapamycin 50µg/ml as a positive control. Arrows indicate autophagosomes 

in different stages. Scale bar 200 nm. 
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Figure 3.4; Ultrastructural analysis of Pseudomonas aeruginosa 
induced autophagy by TEM. 

 

Electron micrographs of autophagosomes in BMDM infected with 

PA103ΔUΔT or PA103pcrV– for 4hr, at (MOI 25). Arrows indicate 

autophagosomes in different stages.Graph represents quantitation of the 

number of autophagosomes per-cross sectioned cell.* Statistically different 

from PA103ΔUΔT, p < 0.05. 
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 Figure 3.5; P. aeruginosa  induced autophagy in a dose and time 
dependent manner. 

 

a ,Western blot analysis of LC3-I and LC3-II protein levels in BMDMs infected 

with    PA103ΔUΔT or PA103pcrV– for 1, 2, and 4hr,at (MOI 25). BMDM left 

uninfected (Basal), treated with rapamycin 50µg/ml for 4hrs as a positive control. 

b, Representative immunofluorescence images of LC3 in BMDMs were infected 

with PA103ΔUΔT or PA103pcrV– strains for indicated time  at (MOI 5, 25). Cells 

were stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as 

green. Scale bar 10 µm (5 independent experiments). c, Number of LC3 puncta 

in BMDM cells following infection (at specified MOI) . Asterisks indicate 

statistically different from PA103ΔUΔT at the same MOI. Columns are mean of 

five independent determinations; error bars are SEM. * p < 0.05, ** p < 0.01.  (5 

independent experiments). 
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 Figure 3.6; Lysosomes inhibitors increase autophagy flux . 

 

a ,b, Western blot analysis of LC3-I and LC3-II protein levels in BMDMs were   

infected with PA103ΔUΔT or PA103pcrV– for and 4hr in the presence (+) or 

absence(-) of 10µg/ml Pepstatin A , E64d (a) and 50nM/ml Bafilomycin A (b) ,at 

(MOI 25). BMDM left uninfected (Basal), treated with rapamycin 50µg/ml for 

4hrs as a positive control. c, Representative immunofluorescence images of 

LC3 in BMDMs were infected with PA103ΔUΔT or PA103pcrV– strains for 4hrs  

at (MOI  25). Cells were stained with DAPI to visualize nuclei (blue), and LC3 

staining is shown as green. Scale bar 10 µm .d, FACS analysis for LC3-II 

protein following infection with the strains indicated (MOI 25 for 4h) (3 

independent experiments).  
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 Figure 3.7; LDH release caused by P. aeruginosa in BMDMs. 

 

a, BMDMs were infected with PA103ΔUΔT or PA103pcrV– for 2hrs (MOI 5) . 

Supernatants were analysed for cytotoxicity caused by measurement of LDH 

release. b, Light microscope observation of BMDMs infected as indicated, or 

treated with 1% Triton-x as a positive control, or left without treatment (basal). 

Scale bar 10µm. (3 independent experiments).  
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3.2.2 Autophagy is induced by P. aeruginosa in several mammalian cells. 

 In order to investigate whether P. aeruginosa is able to induce 

autophagy in other mammalian cells, dendritic cells, J774A.1, RAW264.7 

cells, and THP-1 cells were infected with PA103ΔUΔT and PA103pcrV- as 

indicated. We used a number of different methods to quantify and confirm 

the presence of autophagy. Firstly, we followed the conversion of the 

protein LC3 to its lipidated form (LC3 II) by Western blot analysis and the 

localization of endogenous LC3 to autophagocytic vacuoles was visualized 

using immunofluorescence. Following infection with P. aeruginosa, we 

observed a marked increase in the number of LC3 containing vacuoles 

within cells that was consistently significantly higher in the T3SS defective 

mutant, to a level comparable to that seen with rapamycin. Both in these 

experiments following LC3 by immunofluorescence and in those using 

Western blotting, we noticed that the apparent expression level of LC3 also 

increased. We quantified this using RT-PCR and found that P. aeruginosa 

infection increased the expression of Lc3b as has been described in the 

induction of autophagy in other systems, notably in yeast following 

incorporation of LC3 into the autophagocytic, Finally, we used a validated 

flow cytometric method to quantify intracellular LC3 II staining following cell 

permeabilization. Our results showed PA induces autophagy. Since both 

strains induce autophagy, a functional T3SS does not seem to be required 

for this process (Figures (3-8), (3-9), (3-10), and (3-11) respectively).  

 

 

 



88 
 

  

 

 

 Figure 3.8; Induction of autophagy in THP-1 cells by P. aeruginosa. 

 

a ,Western blot analysis of LC3-I and LC3-II protein levels in THP-1 cells infected 

with    PA103ΔUΔT or PA103pcrV– for  2, and 4hr,at (MOI 25) or left uninfected 

(Basal). b, FACS analysis for LC3-II protein following infection with the strains 
indicated (MOI 25 for 4h) . c, Representative immunofluorescence images of 

LC3 in THP-1 left uninfected (Basal), treated with rapamycin as a positive 

control, or infected with PA103ΔUΔT or PA103pcrV– strains for 4hrs at a MOI of 

25. Cells were stained with DAPI to visualize nuclei (blue), and LC3 staining is 

shown as green. Scale bar 10 µm. d, Number of LC3 puncta in THP-1 cells 

following infection (at 25 MOI) or rapamycin treatment as indicated. Staining was 

quantified using Image J software. Asterisks indicate statistically different from 

PA103ΔUΔT at the same MOI. error bars are SEM. * p < 0.05. (3 independent 

experiments). 
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 Figure 3.9; Induction of autophagy in D.cells by P. aeruginosa. 

 

a ,Western blot analysis of LC3-I and LC3-II protein levels in D.Cs infected with    

PA103ΔUΔT or PA103pcrV– for 4hrs,at (MOI 25). D.Cs left uninfected (Basal) or 

treated with rapamycin as a positive control. b, Representative 

immunofluorescence images of LC3 in D.Cs left uninfected (Basal), treated with 

rapamycin as a positive control, or infected with PA103ΔUΔT or PA103pcrV– 

strains for 4hrs at a (MOI of 25). Cells were stained with DAPI to visualize nuclei 

(blue), and LC3 staining is shown as green. Scale bar 10 µm. c, Number of LC3 

puncta in D.Cs cells following infection (at 25 MOI) or rapamycin treatment as 

indicated. Staining was quantified using Image J software. Asterisks indicate 

statistically different from PA103ΔUΔT at the same MOI, * p < 0.05. d, qRT-PCR 

of Lc3b mRNA following infection as indicated at a MOI of 25 for 4hr (3 

independent experiments). * Statistically different from PA103ΔUΔT, p < 0.05. e, 

FACS analysis for LC3-II protein following infection with the strains indicated 

(MOI 25 for 4h) or treatment with rapamycin (3 independent experiments).  
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 Figure 3.10; Induction of autophagy in J774A.1 cells by P. aeruginosa. 

 

a, Western blot analysis of LC3-I and LC3-II protein levels in J774A.1 cells 

infected with  PA103ΔUΔT or PA103pcrV– for 4hrs,at (MOI 25) or left uninfected 

(Basal) or treated with rapamycin as a positive control. b, Representative 

immunofluorescence images of LC3 in J774A.1 left uninfected (Basal), treated 

with rapamycin as a positive control, or infected with PA103ΔUΔT or 

PA103pcrV– strains for 4hrs at a MOI of 25. Cells were stained with DAPI to 

visualize nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm. c, 

Number of LC3 puncta in J774A.1 cells following infection (at 25 MOI) or 

rapamycin treatment as indicated. Staining was quantified using Image J 

software. Asterisks indicate statistically different from PA103ΔUΔT at the same 

MOI, * p < 0.05.d, qRT-PCR of Lc3b mRNA following infection as indicated at a 

MOI of 25 for 4hr.* Statistically different from PA103ΔUΔT, p < 0.05. e, FACS 

analysis for LC3-II protein following infection with the strains indicated (MOI 25 

for 4h) or cells left untreated(Basal) (3 independent experiments).  
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 Figure 3.11; Induction of autophagy in RAW264.7 cells by P. aeruginosa. 

 

a, Western blot analysis of LC3-I and LC3-II protein levels in RAW264.7 cells infected with 

PA103ΔUΔT or PA103pcrV– for 4hrs,at (MOI 25) or left uninfected (Basal) or treated with 

rapamycin as a positive control. b, Representative immunofluorescence images of LC3 in 

RAW264.7 left uninfected (Basal), treated with rapamycin as a positive control, or infected 

with PA103ΔUΔT or PA103pcrV– strains for 4hrs at a MOI of 25. Cells were stained with 

DAPI to visualize nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm. c, 

Number of LC3 puncta in RAW264.7 cells following infection (at 25 MOI) or rapamycin 

treatment as indicated. Staining was quantified using Image J software. Asterisks indicate 

statistically different from PA103ΔUΔT at the same MOI, * p < 0.05.d, qRT-PCR of Lc3b 

mRNA following infection as indicated at a MOI of 25 for 4hr (3 independent experiments). 

* Statistically different from PA103ΔUΔT, p < 0.05. e, FACS analysis for LC3-II protein 

following infection with the strains indicated (MOI 25 for 4h) or treatment with rapamycin 

(3 independent experiments).  
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3.2.3 Pseudomonas aeruginosa induced autophagy in BMDMs cells via 
classical autophagy pathway 

We tested the role of the genes involved in the classical 

autophagocytic pathway. Knockdown of Lc3b confirmed that the signals 

used to quantify autophagy by analysis of LC3 by Western blot, 

enumeration of puncta, RT-PCR and flow cytometry were indeed specific 

for this gene and protein (Fig. 3-12). In a similar fashion, we tested the 

dependence of autophagy following P. aeruginosa infection on the genes 

Atg7 and Atg5. Infection of BMDMs from mice with a conditional KO of Atg7 

in bone marrow precursors (Mortensen et al., 2010) compared to control 

BMDMs showed a large significant reduction in the processing of LC3 to its 

lipidated form  as well as the accumulation of LC3 in autophagocytic 

vacuoles,and RT-PCR  (Fig. 3-13). Finally, using siRNA to knockdown Atg5, 

we showed that, as with Atg7, this resulted in a reduction in LC3 lipidation, 

accumulation of autophagocytic puncta and increased detection of 

intracellular LC3 as assayed by flow cytometry (Fig. 3-14). Using the same 

assays, we also showed the autophagy following infection was inhibited by 

3-methyladenine (Fig. 3-15), and (Fig. 3-16) respectively.   
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 Figure 3.12;  P. aeruginosa induced autophagy is dependent on Lc3b. 

 

a, Western blot analysis of LC3-I and LC3-II protein levels in BMDMs. Cells transfected with 

siRNA against Lc3b then infected with PA103ΔUΔT or PA103pcrV– for 4hrs,at (MOI 25) or 

left uninfected (Basal). b, Levels of intracellular LC3-II assayed by flow cytometry following 

treatments as indicated. c, Representative immunofluorescence images of LC3 in BMDMs 

left uninfected (Basal), treated with rapamycin as a positive control, or infected with 

PA103ΔUΔT or PA103pcrV– strains for 4hrs at a MOI of 25. Cells were stained with DAPI to 

visualize nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm. d, 
Quantification of LC3 puncta present per cell following treatments and infections as 

indicated. *** denotes significant difference between control and Lc3b siRNA, p < 0.001. e, 
qRT-PCR of Lc3b mRNA levels following treatments as shown; *** significant difference 

between control and Lc3b, p < 0.001 . (3 independent experiments).  
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Figure 3.13;  P. aeruginosa induced autophagy is dependent on Atg7. 

a, Western blot analysis of LC3-I and LC3-II protein levels in BMDMs lacking Atg7 (Vav-

Atg-/-) vs WT BMDMs Vav-Atg7+/+ . Cells were infected with PA103ΔUΔT or PA103pcrV– 

for 4hrs,at (MOI 25) or left uninfected (Basal). b, Representative immunofluorescence 

images of  BMDMs lacking Atg7 (Vav-Atg-/-) vs WT. Cells left uninfected (Basal), or 

infected with PA103ΔUΔT or PA103pcrV– strains for 4hrs at a MOI of 25. Cells were 

stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as green. Scale bar 

10 µm. c, Quantification of LC3 puncta present per cell following treatments and infections 

as indicated. *** denotes significant difference between BMDMs WT and Vav-Atg7-/-, p < 

0.001. d,  qRT-PCR of Lc3b mRNA levels following treatments as shown; ** significant 

difference between BMDMs WT and Vav-Atg7-/-, p < 0. 01. (3 independent experiments).  
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Figure 3.14; P. aeruginosa induced autophagy is dependent on Atg5. 

 a, Western blot of Atg5 was performed to show the successful reduction in Atg5. β-

tubulin was probed as a loading control. b, Representative immunofluorescence images 

of LC3 in BMDMs left uninfected (Basal) or infected with PA103ΔUΔT or PA103pcrV– 

strains for 4hrs at a MOI of 25. Cells were stained with DAPI to visualize nuclei (blue), 

and LC3 staining is shown as green. Scale bar 10 µm. c, Quantification of LC3 puncta 

present per cell following treatments and infections as indicated. *** denotes significant 

difference between control and Atg5 siRNA, p < 0.001. d, Levels of intracellular LC3-II 

assayed by flow cytometry following treatments as indicated. e, qRT-PCR of Lc3b 

mRNA levels following treatments as shown; ** significant difference between control 

and Atg5, p < 0.01 . (3 independent experiments). 
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Figure 3.15; 3-MA inhibits autophagy following P.aeruginosa infection in BMDMs. 

 BMDMs were infected with P.aeruginosa at (MOI 25) for the indicated time in hours in 

the presence (+) or absence (–) of 3-MA (10 mM). a, Western blot analysis of LC3-I and 

LC3-II protein levels in BMDMs cells infected with PA103ΔUΔT or PA103pcrV– for 

4hrs,at (MOI 25) or left uninfected (Basal) or treated with rapamycin as a positive 

control. b, Representative immunofluorescence images of LC3 in BMDMs left uninfected 

(Basal) or infected with PA103ΔUΔT or PA103pcrV– strains for 4hrs at a MOI of 25. 

Cells were stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as 

green. Scale bar 10 µm. c, Quantification of LC3 puncta present per cell following 

treatments and infections as indicated. *** significant difference between infected 

BMDMs±3-MA, p < 0.001.d, qRT-PCR of Lc3b mRNA levels following treatments as 

shown; *** significant difference between infected BMDMs ±3-MA, p < 0.001 . (3 

independent experiments). 

 . 
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Figure 3.16; 3-MA inhibits autophagy following P.aeruginosa infection in THP-1 
cells. 

THP-1 were infected with PA103ΔUΔT (MOI 25) for the indicated time in hours in the 

presence (+) or absence (–) of 3-MA (10 mM). Levels of intracellular LC3-II assayed by 

flow cytometry following treatments as indicated. Cells left uninfected (Basal), or 

infected with PA103ΔUΔT, and PA103pcrV- strain for 4hrs at a MOI of 25. 
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3.2.4  Caspase-1 activation by the inflammasome down regulates autophagy.   

The reduction in autophagy following infection with P. aeruginosa in 

a strain with a functional as compared to a non-functional T3SS suggested 

that this might be due to the effects of caspase-1 activation by the 

inflammasome that is induced by the T3SS. We thus tested the effect of Z-

YVAD-FMK, a selective caspase-1 inhibitor, on autophagy following 

PA103ΔUΔT infection. This drug produced the expected reduction in 

caspase-1 processing and secretion of IL-1β as shown in (Fig. 3-17). 

Inhibition of caspase-1 with this drug increased autophagy following 

infection as evidenced by enhanced levels of LC3- II as detected by 

Western blotting and a marked increase in the number of LC3 containing 

vacuoles. Additionally, level of lc3b mRNA increased as shown by RT-PCR, 

and increased intracellular staining of LC3-II as assayed by flow cytometry 

(Fig. 3-18). We repeated this experiment using different mammalian cells. 

Again, in the presence of caspase-1 inhibitor, we observed a marked 

increase in the level of LC3II as detected by western blotting, and increased 

intracellular staining of LC3-II assayed by flow cytometry (Fig. 3-19). 

 To confirm the role of caspase-1 in inhibiting autophagy, we 

measured levels of LC3 II following infection of BMDMs derived from mice 

lacking capase-1. This showed an increase in the conversion of LC3 I to 

LC3 II following infection in the absence of caspase-1 (Fig. 3-20).  However, 

caspase-1 knockout animals also lack a functional caspase-11, which has 

been shown to be important in inflammasome activation with various 

bacteria, but not P. aeruginosa possessing a functional T3SS that we are 

using in our experiments (Rathinam et al., 2012, Kayagaki et al., 2011).  We 
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tested specifically for a role of caspase-1 by knocking down the gene using 

siRNA (Fig. 3-21a). Knockdown of caspase-1 increased LC3 lipidation and 

formation of autophagocytic puncta, increased expression of lc3b mRNA, 

and increased intracellular staining of LC3-II as assayed by flow cytometry  

(Fig. 3-21c, d, e, and f) respectively. We tested for involvement of caspase-

11 by knocking down the protein using siRNA (Fig. 3-22a). This had no 

effect on induction of autophagy or production of IL-1β following infection 

(Fig. 3-22b-e).Taken together, these results demonstrate that activated 

casapse-1 inhibits the process of autophagy following infection with P. 

aeruginosa and that caspase-11 is not involved. 
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Figure 3.17; Inflammasome activation by P.aeruginosa is inhibited by caspase-1 inhibitor 
Z-YVAD-FMK. 

a, BMDMs were infected with PA103ΔUΔT (MOI 25) for the indicated time in hours in the 

presence (+) or absence (–) of the capsase-1 inhibitor Z-YVAD-FMK (10µM/ml). The panels 

show Western blot of pro-caspase-1, the caspase-1 p10 subunit, and β-tubulin as a loading 

control. b, Western blot analysis of Pro-IL-1β and mature IL-1β in cell supernatants form 

BMDMs infected as indicated in the presence(+) or absence(-) of the caspase-1 inhibitor Z-

YVAD-FMK(10µM/ml). c, IL-1β levels following infection as indicated in the absence (open bars) 

or presence (filled bars) of Z-YVAD-FMK. Column shows the mean;  error bars are SEM. ** and 

*** indicate significant differences between the levels in the presence and absence of the 

inhibitor, p < 0.01 and < 0.001 respectively. d, percent cytotoxicity in supernatant were 

measured using LDH release.  (3 independent experiments). 
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Figure 3.18; Caspase-1 inhibitor Z-YVAD-FMK Up-regulates autophagy following    
P.aeruginosa infection. 

a, BMDMs were infected with PA103ΔUΔT (MOI 25) for the indicated time in hours in the 

presence (+) or absence (–) of the capsase-1 inhibitor Z-YVAD-FMK (10µM/ml). The panels show 

Western blot analysis of LC3-I and LC3-II protein levels, and β-tubulin as a loading control. b, 
densitometric ratio of LC3-II to β-tubulin for 5 independent experiments; each column shows the 

mean; error bar is SEM. ***, significantly different between untreated and treated cells, p < 

0.001.c, Representative immunofluorescence images of LC3 in BMDMs left uninfected (Basal) , 

or infected with PA103ΔUΔT  for 4hrs at a MOI of 25 in the presence (+) or absence (–) of the 

capsase-1 inhibitor Z-YVAD-FMK (10µM/ml) . Cells were stained with DAPI to visualize nuclei 

(blue), and LC3 staining is shown as green. Scale bar 10 µm. d, Quantification of LC3 puncta 

present per cell following treatments and infections as indicated. *** significant difference between 

infected BMDMs± Z-YVAD-FMK, p < 0.001. e, Levels of intracellular LC3-II assayed by flow 

cytometry following treatments as indicated. f, qRT-PCR of Lc3b mRNA levels following 

treatments as shown; ** significant difference between BMDMs ± Z-YVAD-FMK, p < 0.01 . (3 

independent experiments).    
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Figure 3.19; Caspase-1 inhibitor Z-YVAD-FMK Up-regulates autophagy following   
P.aeruginosa infection in mammalian cells. 

a, Cells  were infected with PA103ΔUΔT (MOI 25) for 4hrs in the presence (+) or absence (–

) of the capsase-1 inhibitor Z-YVAD-FMK (10µM/ml). The panels show Western blot 

analysis of LC3-I and LC3-II protein levels, and β-tubulin as a loading control. b, Secreated 

IL-1β  released during  infection as indicated in the absence  or presence  of Z-YVAD-FMK 

a measured by ELISA. ** and *** indicate significant differences between the levels in the 

presence and absence of the inhibitor, p < 0.01 and < 0.001 respectively. c, Levels of 

intracellular LC3-II assayed by flow cytometry following treatments as indicated .  (2 

independent experiments). 

 . 
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Figure 3.20; Caspase-1 Knockout BMDMs  Up-regulate autophagy following    
P.aeruginosa infection. 

a, IL-1β levels in supernatants of BMDMs treated as shown (MOI of 25) in WT (open bars) 

and Casp1-/- animals (filled bars). Bars are mean of triplicate determinations; error bars are 

SEM. *** significant difference between animal groups, p < 0.001. b, Western blot of LC3 I 

and II isoforms in cells left uninfected (Basal), treated with rapamycin (R), or infected with 

PA103ΔUΔT (MOI 25) for the indicated time in hours in WT (Casp1+/+) mice or in animals 

lacking Caspase-1 (Casp1-/-). Experiment repeated with the same results. 

  

 . 
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Figure 3.21; Caspase-1 Knock -down Up-regulated autophagy following    
P.aeruginosa infection. 

a, Western blot of caspase-1 was performed to show the successful reduction in levels 

after siRNA knockdown. β-tubulin was probed as a loading control. b,  IL-1β levels in 

supernatants of BMDMs treated as shown (MOI of 25) in control siRNA against Casp1 

siRNA BMDMs. Bars are mean of triplicate determinations; error bars are SEM. ** 

significant difference between animal groups, p < 0.01. c, Western blot analysis of LC3 I 

and II levels following infection for 4h at MOI of 25 with PA103ΔUΔT as show in BMDMs 

transfected with control siRNA  or siRNA specific for caspase-1 . d, shows the ratio of LC3 

II/β-tubulin with indicated treatments for 3 independent experiments. Bars are means; error 

bars are SEM. **, significantly different from control siRNA. e, Levels of intracellular LC3 

assayed by flow cytometry following treatments as indicated. f, Representative 

immunofluorescence images of LC3 in BMDMs left uninfected (Basal) or infected with 

PA103ΔUΔT  for 4hrs at a MOI of 25. Cells were stained with DAPI to visualize nuclei 

(blue), and LC3 staining is shown as green. Scale bar 10 µm. g, Quantification of LC3 
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puncta present per cell following treatments and infections as indicated. *** denotes 

significant difference between control siRNA and Casp.1 siRNA, p < 0.001. h, qRT-PCR of 

Lc3b mRNA levels following treatments as shown; * significant difference between control 

and caspase-1, p < 0.05. (3 independent experiments). 

 

  

 . 
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Figure 3.22; Caspase-11 does not influence autophagy following  P.aeruginosa 
infection. 

a, Western blot of caspase-11 was performed to show the successful reduction following 

siRNA knockdown. β-tubulin was probed as a loading control. b,  IL-1β levels in 

supernatants of BMDMs treated as shown (MOI of 25) in  control siRNA against caspase-

11 siRNA BMDMs. Bars are mean of triplicate determinations; error bars are SEM. ns is 

non- significant difference between  groups, p > 0.05. c, Western blot analysis of LC3 I and 

II levels following infection for 4h at MOI of 25 with PA103ΔUΔT as show in BMDMs 

transfected with control siRNA  or siRNA specific for caspase-11.  d, Levels of intracellular 

LC3-11 assayed by flow cytometry following treatments as indicated. e, qRT-PCR of Lc3b 

mRNA levels following treatments as shown; ns is non- significant difference between 

control and capase-11, p > 0.05 .  

 

  

 . 

 



107 
 

 This inhibitory effect of caspase-1 on autophagy was most likely 

mediated by the activation of the NLRC4 inflammasome following P. 

aeruginosa infection. To confirm this supposition, we assayed the amount 

of autophagy observed following P. aeruginosa infection after inhibition of 

this inflammasome by various means. Previously, it has been shown that 

elevation of extracellular K+ inhibits NLRC4 inflammasome activation by P. 

aeruginosa (Lindestam Arlehamn et al., 2010). We confirmed that BMDMs, 

THP-1 cells, dendritic cells, and J774A.1cells incubated in a high 

extracellular concentration of K+ had a markedly attenuated production of 

caspase-1 p10 and IL-1β following infection (Fig. 3-23), while maintaining 

very similar levels of production of TNF-α (Fig. 3-23b). This inhibitory effect 

on inflammasome activation resulted in elevation of the levels of LC3 II, 

increased numbers of autophagocytic puncta, increased expression of lc3b 

mRNA, and increased intracellular staining of LC3-II as assayed by flow 

cytometry (Fig. 3-24) (Fig. 3-25). Similarly, in BMDMs derived from animals 

with a targeted gene deletion of Nlrc4, infection with P. aeruginosa resulted 

in increased conversion of LC3 to its lipidated form, and increased numbers 

of autophagocytic puncta (Fig. 3-26). Knockdown of Nlrc4 mRNA with 

siRNA also increased autophagy following infection, as evidenced by an 

increase in the numbers of autophagocytic LC3 containing puncta per cell, 

and increased formation of LC3 II as well as intracellular LC3 and levels of 

Lc3b mRNA (Fig. 3-27). Taken together, these data demonstrate that 

activation of the NLRC4 inflammasome following P. aeruginosa infection 

leads to an inhibition of autophagy and that this is directly mediated by 

caspase-1. 
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Figure 3.23; Inflammasome activation following P.aeruginosa infection is dependent on 
Potassium efflux.           

BMDMs, THP-1cells, D.Cs, and J774A.1 cells were incubated in media with normal K+ (5 mM; Low K+) 

or high K+ (140 mM) as indicated and infected with PA103ΔUΔT (4h, MOI of 25) and levels of processed 

caspase-1, and procaspase-1 (a), secreted IL-1β, and secreted TNF (b) determined as shown. 

Columns are means of triplicate determinations; error bars are SEM. Open bars are in low K+, closed 

bars high K+. ***, significantly different from levels seen with low K+ (p < 0.001). c, Western blot analysis 

of Pro-IL-1β and mature IL-1β in cell supernatants form BMDMs infected as indicated in  media with 

normal K+ (5 mM; Low K+) or high K+ (140 mM) as indicated. d – f, shows Western blot analysis of pro-

caspase- 1 , caspase-1, and mature IL-1β in cells lysates, and β-tubulin was probed as a loading 

control in DCs(d), THP-1 cells(e), or J774A.1 cells(f) . Graphs show IL-1β secretion was measured by 

ELISA. Columns are means of triplicate determinations; error bars are SEM. Open bars are in low K+, 

closed bars high K+. **, ***, significantly different from levels seen with low K+ (p<0.01),(p < 0.001) 

respectively. (Experiments repeated three times).  
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Figure 3.24; Blocking K+ efflux up-regulates level of autophagy  following P.aeruginosa 
infection. 

BMDMs  were incubated in media with normal K+ (5 mM; Low K+) or high K+ (140 mM) as indicated 

and infected with PA103ΔUΔT (4h, MOI of 25). a, Western blot analysis of LC3 I and II levels 

following infection for 4h at MOI of 25 with PA103ΔUΔT. b, shows the ratio of LC3 II/β-tubulin with 

indicated treatments for 5 independent experiments. Bars are means; error bars are SEM. ***, 

significantly different between groups, (p < 0.001). c, Representative immunofluorescence images of 

LC3 in BMDMs left uninfected (Basal) or infected with PA103ΔUΔT  for 4hrs at a MOI of 25. Cells 

were stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as green. Scale bar 10 

µm. d, Quantification of LC3 puncta present per cell following treatments and infections as indicated. 

*** significant difference between group, p < 0.001. e, Levels of intracellular LC3-II assayed by flow 

cytometry following treatments as indicated. f, qRT-PCR of Lc3b mRNA levels following treatments 

as shown; * significant difference between groups, p < 0.05 . (3 independent experiments).   



110 
 

 

                                        

Figure 3.25; Blocking Potassium efflux up-regulates level of autophagy following 
P.aeruginosa infection in different mammalin cells. 

 THP-1cells, D.Cs, and J774A.1 cells were incubated in media with normal K+ (5 mM; Low K+) or 

high K+ (140 mM) as indicated and infected with PA103ΔUΔT (4h, MOI of 25). a, Western blot 

analysis of LC3 I and II levels following infection for 4h at MOI of 25 with PA103ΔUΔT. b, 

Representative immunofluorescence images of LC3 in BMDMs left uninfected (Basal) , or 

infected with PA103ΔUΔT  for 4hrs at a MOI of 25. Cells were stained with DAPI to visualize 

nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm. c, Levels of intracellular 

LC3-II assayed by flow cytometry following treatments as indicated. (Experiments repeated 

three times).   
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Figure 3.26; Nlrc4 influences level of autophagy following P. aeruginosa infection. 

  a, IL-1β levels in supernatants of BMDMs treated as shown (MOI of 25) in WT  and Nlrc4-/- 

animals. Bars are mean of triplicate determinations; error bars are SEM. *** significant 

difference between animal groups, p < 0.001. b, Western blot of LC3 I and II isoforms in cells 

left uninfected (Basal), or infected with PA103ΔUΔT (MOI 25) for 4hrs in WT (Nlrc4+/+) mice 

or in animals lacking Nlrc4 (Nlrc4-/-). c, Representative immunofluorescence images of LC3 in 

BMDMs left uninfected (Basal) or infected with PA103ΔUΔT  for 4hrs at a MOI of 25. Cells 

were stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as green. Scale 

bar 10 µm. Experiment repeated with the same results. 

 

  

 . 
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Figure 3.27; Nlrc4 Knock-down up-regulates  autophagy following P. aeruginosa 
infection. 

a, Western blot of Nlrc4 was performed to show the successful reduction in Nlrc4. β-tubulin 

was probed as a loading control. b,  IL-1β levels in supernatants of BMDMs treated as shown 

(MOI of 25) in control siRNA against Nlrc4 siRNA treated BMDMs. Bars are mean of triplicate 

determinations; error bars are SEM. *** significant difference between groups, p < 0.001. c, 

Western blot analysis of LC3 I and II levels following infection for 4h at MOI of 25 with 

PA103ΔUΔT as show in BMDMs transfected with control siRNA  or siRNA specific for Nlrc4 .   

d, Representative immunofluorescence images of LC3 in BMDMs left uninfected (Basal) or 

infected with PA103ΔUΔT  for 4hrs at a MOI of 25. Cells were stained with DAPI to visualize 
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nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm. e, Quantification of LC3 

puncta present per cell following treatments and infections as indicated. *** Significant 

difference between control siRNA and Nlrc4 siRNA, p < 0.001. f, Levels of intracellular LC3 

assayed by flow cytometry following treatments as indicated. g, qRT-PCR of Lc3b mRNA 

levels following treatments as shown; ** significant difference between control and Nlrc4, p < 

0.01 . (3 independent experiments). 
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3.3 Discussion          

In our study, we found that P. aeruginosa infection induces 

autophagy in macrophages, D.Cs, J774A.1 and RAW264.7 cells, and the 

human cell line THP-1 cells. We observed that autophagy could be induced 

in macrophages through a classical pathway including Atg7 and Atg5. We 

also observed the involvement of LC3 (Atg-8) in the induction of autophagy 

through P. aeruginosa. Previous literature has shown the induction of 

autophagy with intracellular bacteria but the involved pathway, the impact 

and outcome of infection with these bacteria remained is different as 

compared to P. aeruginosa. 

P. aeruginosa is considered as an extracellular bacterium and its 

virulence factors e.g. biofilms and type III secretion systems are crucial in 

its pathogenicity (Hoiby et al., 2011). These virulence factors could possibly 

be involved in the autophagic pathway.  

As we know from the previous literature that new microtubule 

associated protein light chain-3 MAP-LC3 is produced in the cells and is 

processed at its C terminus through an autophagy related protein, Atg4. 

After processing LC3 is converted to LC3-I and is distributed in the 

cytoplasm. When there are some stressful conditions like starvation or 

infection, LC3-1 is converted to LC3-II by the conjugation of phosphatidyl 

ethanolamine (PE) (Ichimura et al., 2004). The conjugated form of LC3 is 

distributed to both outer and inner membranes of autophagosome, a double 

membrane vesicle inside the cells. The presence of LC3-II is used as a 

typical marker for the autophagy detection. 
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Rapamycin a widely used autophagy inducer was used as positive 

control and we found a similar strong signal in samples infected with 

Pseudomonas aeruginosa mutant strain pcrV- and found that there is 

increase in the signal produced by the bacterial infection. When we 

compared our results using genetic methods such as Atg7 knock out 

animals , Atg5 siRNA, and Lc3b siRNA, or with 3 Methyl adenine (3MA), we 

found that autophagy was inhibited and the production of LC3 positive 

markers decreased with 1 hour pre-treatment with 3-MA. 

In our experimental work, we used some genetic methods to inhibit 

autophagy. Deletion of Atg7 blocked autophagy induction by the bacterium 

P. aeruginosa. Similarly Atg5-siRNA transfection was also performed and 

found also resulted in autophagy inhibition. These experiments together 

indicated that P. aeruginosa induces autophagy and is dependent upon the 

classical pathway for autophagy.  

Macrophages play an important role in innate and adaptive immunity 

during bacterial infection and the induction in these macrophages could 

impact infection with P. aeruginosa. To find whether autophagy only occurs 

in BMDMs, we also investigated P. aeruginosa infection in murine D.Cs, 

J774A.1 cells, RAW264.7 cells and the human cell line THP-1 cells. A 

similar pattern of autophagy induction was seen in these cells.  

  

In conclusion, the results presented in this chapter demonstrate that 

the extracellular bacterium P. aeruginosa infection induced autophagy in 

BMDMs, DCs, J774A.1 cells, RAW264.7 cells, and THP-1 cells. We have 

studied this using the human pathogen P. aeruginosa and different cell type. 

To determine the role of the T3SS in this process, we utilised two bacterial 
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strains, both derivatives of the type strains, PA103ΔUΔT has a fully 

functional T3SS but does not translocate any bacterial exotoxins and 

PA103pcrV- lacks a functional T3SS.Our results showed PA induces 

autophagy. Since both strains induce autophagy, a functional T3SS does 

not seem to be required for this process. PA also infection also strongly 

induced activation of the inflammasome which was absolutely dependent 

on a functional T3SS. We found that inhibition of inflammasome activation 

increased autophagy, suggesting that the inflammasome normally inhibits 

this process. Loss of type III secretion increased autophagy, which was due 

to NLRC4 activation and caspase-1 activity. We also addressed another 

important question: what specific role does autophagy play in the immune 

response? 
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4     TRIF –Dependent TLR4 signalling is required for 
Pseudomonas aeruginosa induced autophagy 
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4.1 Introduction  

Microbial interactions with host immune cells can trigger a number of 

innate immune responses (Akira et al., 2006, Kumar et al., 2009, Diacovich 

and Gorvel, 2010). Two fundamental processes that can be initiated are 

those of macroautophagy (Orvedahl and Levine, 2009, Deretic and Levine, 

2009) (hereafter termed autophagy) and activation of the inflammasome 

(Martinon et al., 2009, Franchi et al., 2012b). Autophagy is a process that 

results in sequestration of cytoplasmic contents within a membranous 

vacuole that then fuses with lysosomes, ultimately resulting in degradation 

and recycling of the vacuole contents (Kundu and Thompson, 2008). 

Autophagy has now been to occur found in almost all eukaryotic cells, with 

genes controlling the pathway being highly conserved from yeast to 

mammals (Stromhaug and Klionsky, 2001). Autophagy also occurs in 

response to microbial infection and has been shown to be important in host 

defence against a number of microbes, such as Mycobacterium 

tuberculosis, group A streptococcus, Shigella flexneri, Salmonella enterica, 

and Listeria monocytogenes, viruses such as herpes simplex virus type 

1(HSV-1), and parasites such as Toxoplasma gondii  (Songane et al., 2012, 

Birmingham et al., 2006, Py et al., 2007, Iwasaki, 2007, Andrade et al., 

2006) as well as enhancing antigen presentation in adaptive immune 

response to a variety of pathogens (Patterson and Mintern, 2012).  

TLR4 is the signаlling receptor thаt mediаtes а robust inflаmmаtory 

response to LPS, but it requires severаl co-receptors аs well аs аdаptor 

molecules for signаl trаnsduction (Lu et al., 2008).Toll-like receptors (TLRs) 

are membrane-expressed signaling pattern recognition receptors (PRRs). 
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For example, TLR2, and TLR4, distributed on the cell surface, and 

TLR3/7/8/9, located within endosomаl compartments, can recognize viral 

molecular determinants. With the exception of TLR3, all these TLRs recruit 

the аdаptor MyD88 upon engagement. TLR4 recruits in addition the аdаptor 

TRIF, which is also used by TLR3. MyD88 аssociаtes with а serine 

proteаse to trаnsduce signаls to аctivаte nucleаr fаctor-kаppа B (NF-κB), а 

trаnscription fаctor thаt regulаtes the synthesis of inflаmmаtory cytokines 

(Lebeis et al., 2009). TRIF relаys signаls leаding to the аctivаtion of type I 

IFN regulаtory trаnscription fаctors (IRF), for type I IFN synthesis. A 

MyD88-dependent signal may also trigger type I IFN production upon virus 

infection. Newly synthesized type I IFN аre the mаjor effector cytokines of 

the host immune response аgаinst virаl infections. They bind to the type I 

IFN receptor (IFNAR) which transduces signals leading to the expression of 

hundreds of IFN stimulating genes (ISGs) that have а direct аntivirаl effect 

(Guo and Cheng, 2007).  

We demonstrate in chapter three that P. aeruginosa activates 

autophagy in macrophages following infection via the classical autophagy 

pathway. We show by multiple independent methods that inhibition of 

inflammasome and caspase-1 activation augments the autophagocytic 

response. This inhibitory effect of caspase-1 on induction of autophagy is 

shown to result from caspase-1 mediated cleavage of the signalling 

intermediate TRIF, an essential part of the TLR4 mediated signalling 

pathway leading to promotion of autophagy (Xu et al., 2007). Moreover, we 

also found that caspase-1 cleavage of TRIF reduced the signalling required 

to induce type I IFNs. We show that these inhibitory effects of activated 

caspase-1 have important functional effects, reducing macrophage 
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phagocytosis and reactive oxygen generation. Additionally, the caspase-1 

mediated down-regulation of autophagy results in a reduction of NLRP3 

inflammasome activation by LPS+ATP.  
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4.2 Results  

4.2.1 Autophagy following P. aeruginosa infection is mediated via 
TLR4 and TRIF.     

LPS has been shown to induce autophagy through TLR4 signalling 

to the intermediate TRIF (Xu et al., 2007). We hypothesised that a similar 

pathway might operate to induce autophagy following P. aeruginosa 

infection. We tested this by measuring the amount of autophagy in BMDMs 

from mice with a targeted deletion of Tlr4 compared to wild-type animals. 

Firstly, we confirmed that LPS induced autophagy in BMDMs by assaying 

for conversion of LC3 I to the lipidated LC3 II form. This conversion was 

significantly abrogated in BMDMs from Tlr4 KO mice, reduced numbers of 

autophagocytic puncta, and reduced intracellular LC3 II as assayed by flow 

cytometry (Fig 4-1). We then followed the conversion of LC3 to its lipidated 

form over time following P. aeruginosa infection (Fig 4-2a). This showed 

clearly that the increase in autophagy following infection was largely 

abolished in the absence of TLR4, both for the PA103ΔUΔT and 

PA103pcrV– strains. Autophagy induced by rapamycin was, as expected, 

not diminished in the absence of TLR4 (Fig 4-2a). To confirm these 

observations, we followed the accumulation of LC3 puncta following 

infection as a marker of autophagy. This also showed a virtual abolition of 

autophagy following infection in the absence of TLR4 (Fig 4-2a and b). 

Finally, using siRNA to knockdown Tlr4, our results showed reduced 

intracellular LC3 II as assayed by flow cytometry (Fig 4-2d). 
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Figure 4.1; LPS induces autophagy via Tlr4 dependent signaling. 

 a, Western blot analysis of LC3 I and II levels. Cells were treated with LPS 500ng/ml for 

4h. b, Representative immunofluorescence images of LC3 in BMDMs left untreated 

(Basal), or treated with LPS 500ng/ml  for 4hrs. Cells were stained with DAPI to visualize 

nuclei (blue), and LC3 staining is shown as green. Scale bar 10 µm. c, Western blot of 

Tlr4 was performed to show the successful reduction in Tlr4. β-tubulin was probed as a 

loading control. d, levels of intracellular LC3 assayed by flow cytometry following 

treatments as indicated. e, electron micrographs of autophagosome in Tlr4 WT BMDMs 

after treated with 500ng/ml LPS for 4 hrs. Arrow indicated autophagosome. ( Experiments 

repeated 2 times) 
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Figure 4.2; Autophagic signaling is induced by Pseudomonas aeruginosa  via Tlr4 
dependent signaling. 

 a, LC3 I and II assayed by Western blotting in BMDMs from WT or Tlr4-/- mice (KO), 

uninfected (Basal), rapamycin (Rap) or infected with P. aeruginosa strains as indicated 

(MOI 25) for 1, 2 or 4 h. b, Representative immunofluorescence images of LC3 in 

BMDMs left uninfected (Basal) , or infected with P.aeruginosa strains as indicated(MOI 

25) for 4hrs. Cells were stained with DAPI to visualize nuclei (blue), and LC3 staining is 

shown as green. Scale bar 10 µm. c, Number of puncta per cell in BMDMs infected as 

shown under the conditions in panel b. Bars are means of 3 independent counts for at 

least 50 cells; error bars are SEM. ***, significantly different from WT cells, p < 0.001.d, 

Levels of intracellular LC3 assayed by flow cytometry following treatments as indicated. 

(Experiments repeated 2 times) 
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We then determined the role of Myd88 and TRIF in the induction of 

autophagy following P. aeruginosa infection. In macrophages from mice 

with a deletion of Myd88, there was no reduction in autophagy following 

infection with the PA103 strains or the wild type PAO1 (Fig 4-3a). In 

macrophages from mice with deletion of Trif, we found that autophagy as 

measured by conversion of LC3 I to the LC3 II form was greatly reduced 

(Fig 4-3b) following infection with both PA103 strains and the wild type 

PAO1. Similarly, the accumulation of LC3 puncta was abrogated in the 

absence of TRIF (Fig 4-3c and d). Taken together, these data show that P. 

aeruginosa induces autophagy via signalling through TLR4 and the 

intermediate TRIF.   
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Figure 4.3; TRIF is required for Pseudomonas aeruginosa induced autophagy. 

 a, b, Western blot analysis of LC3 I and II levels. Cells were infected with P. aeruginosa 

strains as indicated (MOI 25) for 4hr in wild type or Myd88 and Trif deficient macrophages 

(KO). c, Representative immunofluorescence images of LC3 in BMDMs left uninfected 

(Basal) , or infected with P.aeruginosa strains as indicated (MOI 25) for 4hrs. Cells were 

stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as green. Scale 

bar 10 µm. d, Number of puncta per cell in BMDMs infected as shown under the 

conditions in c. Bars are means of 3 independent counts for at least 50 cells; error bars 

are SEM. ***, significantly different between (WT) and (KO) Trif cells, p < 0.001. 

(Experiments repeated 3 times). 
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4.2.2 Caspase-1 Cleaves TRIF  

Caspases have been proposed to cleave the signalling intermediates 

Cardif and TRIF (Rebsamen et al., 2008). We hypothesised that one 

mechanism that could explain why caspase-1 activation down-regulated 

autophagy was through proteolytic cleavage of TRIF. To test this 

hypothesis we examined cell lysates for endogenous TRIF fragments 

following infection of BMDMs with P. aeruginosa. After infection with the 

inflammasome activating strain PA103ΔUΔT, we observed immunoreactive 

TRIF fragments between 28 – 30 kDa at 4 hours after infection. These were 

not seen following infection with the T3SS inactive strain PA103pcrV– which 

does not activate the inflammasome, and were also considerably reduced 

in the presence of ZYVAD-FMK, a caspase-1 inhibitor (Fig 4-4a). This was 

a highly reproducible finding, shown for four independent cell lysates in (Fig 

4-4b), although the separation of the cleaved product into two bands of 

similar molecular weight varied depending on the exact conditions under 

which the proteins were separated by SDS PAGE. The antibody used in 

these immunoblots recognises a C terminal epitope, thus suggesting that 

the cleavage site lies in the middle portion of TRIF (molecular weight 

74kDa), to generate the ~ 30kDa fragments seen in (Fig 4-4).  

To confirm that the observed cleavage products were produced by 

caspase-1, we examined lysates from BMDMs from mice with targeted 

deletion of the Caspase-1 gene as well as WT animals (Fig 4-5a). This 

showed that the cleavage products were absent following infection of 

BMDMs from the Capsase-1 knock out animals. We obtained the same 

results with knockdown of Caspase-1 (Fig 4-5b). Knockdown of caspase-11 
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had no effect on TRIF cleavage following infection (Fig 4-6a), which was 

also seen with the wild type PAO1 strain. In macrophages from NLRC4 

knockout mice, no TRIF cleavage was seen, either with PA103ΔUΔT or the 

wild type PAO1 (Fig 4-6b). Similarly, infection of BMDMs in high 

extracellular potassium (which inhibits inflammasome activation), also 

inhibited the appearance of these cleaved products (Fig 4-7).   

 

 

 

.  
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Figure 4.4; TRIF is cleaved following infection with P. aeruginosa PA103ΔUΔT strain. 

 a, Western blot using 12% acrylamide gel for TRIF in BMDMs lysates that were 

uninfected (Basal), or infected with the P. aeruginosa strains shown for 1, 2, and 4 hrs. 

Where shown, cells were treated with the caspase-1 inhibitor Z-YVAD-FMK. Full length 

and cleaved TRIF products are labelled. Molecular weight markers in kDa are shown to 

the left of the gel. The blot was re-probed for β-tubulin as a loading control (lower panel). 

Experiment repeated with the same results. b As a, but using 4-12% acrylamide gel; cells 

infected for 4h at MOI of 25. Each lane of infected samples represents an independent 

experiment. 
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Figure 4.5; TRIF is cleaved by Caspase-1 following P. aeruginosa activation of the 
inflammasome. 

 a, Western blot using 4-12% acrylamide gel for TRIF in BMDMs lysates from WT 

(Casp1+/+) or Casp1 KO mice (Casp1-/-) that were uninfected (Basal), or infected with the 

P. aeruginosa strains shown (MOI 25) for 4 hrs. Full length and cleaved TRIF products 

are labelled. Molecular weight markers in kDa are shown to the left of the gel. The middle 

panels shown Pro-caspase-1, Caspase-1, and mature IL-1β. The blot was re-probed for 

β-tubulin as a loading control (lower panel). Experiment repeated with the same results. b 

As a, but using BMDMs from control siRNA against Caspase-1 siRNA.  (Experiment 

repeated with the same results) 
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Figure 4.6;  Role of Nlrc4 and Caspase-11 in TRIF cleavage following P. aeruginosa 
infection. 

Western blot using 4-12% acrylamide gel for TRIF in BMDM lysates that were uninfected 

(Basal), or infected with the P. aeruginosa strains shown (MOI 25) for 4 hrs. Cells were 

transfected with Control siRNA or siRNA specific for Caspase-11 (a) and in BMDMs from 

(WT) or Nlrc4 (KO) mice (b). Full length and cleaved TRIF products are labelled. 

Molecular weight markers in kDa are shown to the left of the gel. Experiment repeated 

with the same results. 
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Figure 4.7; Role of extracellular Potassium in TRIF cleavage following P. aeruginosa 
infection. 

BMDMs cells were incubated in media with normal K+ (5 mM; Low K+) or high K+ (140 

mM).  Western blot using 4-12% acrylamide gel for TRIF in BMDM lysates that were 

uninfected (Basal), or infected with the P. aeruginosa strains shown for 4 hrs. Full length 

and cleaved TRIF products are labelled.  Molecular weight markers in kDa are shown to 

the left of the gel. Graph shows cytotoxicity under the same conditions, measured by LDH 

release.  
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Although these data show that caspase-1 is required for the 

generation of TRIF cleavage products, it might be an indirect effect via 

activation of other caspases or proteases by caspase-1. To prove that 

caspase-1 directly cleaved TRIF, we purified recombinant TRIF expressed 

in HEK cells with the FLAG epitope tag. The previous report that suggested 

TRIF was a substrate for caspase cleavage identified the aspartic acid 

residues at positions 281 (VAPDA) and 289 (GLPDT) of the human 

sequence as essential for caspase-mediated cleavage (Rebsamen et al., 

2008). Mutation of both of these residues to glutamic acid residues (D281E 

D289E) effectively abolished caspase cleavage. Murine TRIF has similar 

well conserved caspase-1 cleavage sites at positions 286 (ILPDA) and 292 

(AAPDT). We thus additionally purified recombinant FLAG-tagged D281E 

D289E TRIF from HEK cells. The purified proteins were then incubated with 

recombinant activated human caspase-1. This cleaved the WT TRIF but not 

the D281E D289E mutant. Thus, caspase-1 directly cleaves TRIF (Fig 4-8). 
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Figure 4.8; Caspase-1 is required for the generation TRIF cleavage products. 

HEK cells were transfected with WT TRIF-FLAG, and D281E D289E TRIF-FLAG 

plasmids.  Purified recombinant TRIF proteins as shown incubated with active caspase-1 

as shown and analysed by Western blot for the FLAG epitope.   
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4.2.3 Prevention of TRIF Cleavage by Caspase-1 Augments Autophagy 

  To confirm that the cleavage products we observed in pervious 

figures were truly derived from TRIF, we expressed FLAG-tagged human 

TRIF within BMDMs. Following infection with PA103ΔUΔT, we again saw 

the appearance of a cleaved product of molecular weight ~ 30kDa (Fig 4-9). 

This was not seen following infection with the T3SS defective mutant strain 

PA103pcrV– that does not activate the inflammasome. Moreover, mutation 

of the sites previously identified as essential to TRIF cleavage by caspases 

also inhibited the production of the cleaved products following infection 

(cells transfected with plasmid expressing D281E D289E TRIF-FLAG) (Fig 

4-9) .   

We noted in these experiments that although TRIF was cleaved, the 

levels of full-length TRIF were not significantly diminished. We hypothesised 

that cleavage of TRIF would generate products that could exert a dominant 

negative effect and thus inhibit TRIF function as previously described 

(Yamamoto et al., 2002). To test this hypothesis, we cloned the segments 

of TRIF encoding the N terminal (amino-acids 1 - 281) and C terminal 

(amino-acids 290 – 712) that are generated by caspase-1 cleavage and 

expressed these in BMDMs. Expression of both the N and C terminal 

fragments individually and together potently inhibited the induction of 

autophagy following infection (Fig 4-10), even at low levels of expression. 

The two fragments also inhibited the induction of Ifnb mRNA induction in 

BMDMs following treatment with the TLR3 agonist polyI:C (Fig 4-11). Thus, 

caspase-1 cleavage of TRIF generates products that inhibit TRIF induction 

of autophagy and Ifnb gene expression. 
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  Proteolytic cleavage of TRIF prevents it functioning normally. Thus, 

cells expressing the D281E D289E TRIF-FLAG that is not cleaved by 

caspase-1 should have enhanced TRIF functions under conditions where 

caspase-1 is active compared to cells expressing the WT TRIF. To test this 

hypothesis, we transfected BMDMs with WT TRIF-FLAG or D281E D289E 

TRIF-FLAG and then followed the progress of autophagy within these cells 

after infection with the PA103ΔUΔT strain of P. aeruginosa. This strain will 

activate the inflammasome, leading to capsase-1 cleavage and inactivation 

of TRIF. Since TRIF is an essential intermediate in initiating autophagy 

following P. aeruginosa infection, prevention of its cleavage by caspase-1 

should lead to increased autophagy. We tested this directly by infecting 

BMDMs transfected with either WT TRIF or the non-cleavable D281E 

D289E TRIF construct. When cells were transfected with the D281E D289E 

TRIF construct we observed an increase in the degree of autophagy, as 

assayed by increased amounts of LC3 II (Fig 4-12), increased number of 

LC3 containing puncta (Fig 4-13), increase in intracellular LC3 II staining on 

flow cytometry, and increase in the degree of induction of the Lc3b mRNA 

(Fig 4-14). This was under conditions where the expression level of the 

different TRIF proteins was identical (Fig 4-9).  

Previous study of the TRIF fragments generated by caspase 

cleavage clearly demonstrated that the D281E D289E mutant TRIF had 

completely normal signal-transducing functions (Rebsamen et al., 2008). 

We tested the effects of expression of the D281E D289E mutant TRIF on 

Ifnb expression induced by PolyI:C (Fig 4-15). Expression of the mutant did 

not affect TLR3 signal transduction; additionally, no cleavage of TRIF was 

seen in response to PolyI:C which does not activate the inflammasome 
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when added extracellularly (Rajan et al., 2010). Thus, the effects of the 

mutant non-cleavable TRIF are not due to effects on over all TRIF function. 

Similarly, infecting human THP-1 cells transfected with either WT 

TRIF or the non-cleavable D281E D289E TRIF construct. When cells were 

transfected with the D281E D289E TRIF construct we observed an increase 

in the degree of autophagy, as assayed by increased amounts of LC3 II (Fig 

4-16). Thus, capsase-1 activation leads to TRIF cleavage, which partially 

inhibits the pathway leading to autophagy following infection. 
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Figure 4.9;  Effect of mutant Caspase-1 cleavage site on TRIF cleavage following P. 
aeruginosa infection. 

Cells were transfected with plasmids encoding FLAG-tagged WT TRIF or with the 

indicated mutations, and then left uninfected (Basal), or infected for the indicated times 

with the P. aeruginosa strains as shown (MOI 25). Western blot was probed with anti-

FLAG antibody. β -tubulin western blot is shown as loading control. (Experiment repeated 

three times).  
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Figure 4.10;  Dominant negative effect of TRIF cleavage inhibits autophagy following 
P. aeruginosa infection. 

 BMDMs transfected with indicated amounts of TRIF expression plasmids (µg) and left 

uninfected (B) or infected as shown. Panel shows cell lysates blotted for V5 (epitope tag 

for TRIF) and LC3; β-tubulin shown as loading control.  
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Figure 4.11; TRIF N and C fragments inhibit induction of Ifnb mRNA following 
treatment with TLR3 agonist PolyI:C.   

Levels of Ifnb mRNA assayed by RT-PCR following PolyI:C treatment and transfection 

with TRIF constructs as shown. Columns are means of triplicates; error bars sem. ** 

significantly different from untreated (p<0.01). 
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Figure 4.12;  Effect of inhibiting TRIF cleavage  on the level of LC3-II following P. 
aeruginosa infection. 

 a, Western blot analysis of LC3 I and II levels. BMDMs cells transfected with the 

indicated amounts of plasmids (in µg), using Attractene (in µl). Cells were left uninfected 

or infected with P. aeruginosa strain as indicated (MOI 25). b,  BMDMs transfected with 

plasmids encoding FLAG-tagged WT TRIF or with the indicated mutations  (0.8µg), 

using Attractene(3µl). Cells were infected as shown (4h, MOI 25) and assayed for LC3 I 

and II levels by Western blot (upper panel). Lower panel shows LC3/β-tubulin ratio for 3 

independent experiments under the indicated conditions. Columns show means; error 

bar is SEM. ***, significantly different from infected cells transfected with WT TRIF, p < 

0.001. 
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Figure 4.13;  Inhibiting TRIF cleavage  increases formation of autophagosomes   
following P. aeruginosa infection. 

BMDMs transfected with plasmids encoding FLAG-tagged WT TRIF or with the indicated 

mutations. Cells were infected as indicated for 4 hrs. (MOI 25). a, Representative 

immunofluorescence images of LC3 in BMDMs left uninfected (Basal), or infected with 

P .aeruginosa strain PA103ΔUΔT . Cells were stained with DAPI to visualize nuclei 

(blue), and LC3 staining is shown as green. Scale bar 10 µm. b, LC3 puncta quantified in 

BMDMs transfected with indicated constructs and infected as shown (4hrs, MOI 25). ***, 

significantly different from infected cells transfected with WT TRIF, p < 0.001. 
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Figure 4.14;  Inhibiting TRIF cleavage  increases autophagy markers following P. 
aeruginosa infection. 

a, Intracellular LC3 II levels assayed by flow cytometry in cells transfected with indicated 

plasmids and left uninfected (Basal) or infected as indicted (4h, MOI 25)b, Levels of Lc3b 

mRNA  with conditions as in a . ***, significantly different from infected cells transfected 

with WT TRIF, p < 0.001. 
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Figure 4.15;  Non-cleavable TRIF mediated normal signal transduction after 
PolyI:C treatment. 

BMDMs were treated with PolyI:C (1µg/ml for 5 hours) after transfection with TRIF 

constructs as shown. Levels of Ifnb mRNA were measured by RT-PCR; columns are 

means of triplicates; error bars are sem. *** and **, significant different from 

unstimulated cells, p<0.001 and 0.01 respectively. Differences between the results in 

the presence of PolyI:C were not significantly different from one another. Western blot 

shows TRIF following the same treatment as indicated. 
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Figure 4.16;  Inhibiting TRIF cleavge  increases autophagy markers  in human THP-1 
cells. 

a, Human THP-1 cells transfected with the indicated amounts of plasmids (in µg) were 

left uninfected or infected as shown (4h, MOI 25) and probed with antibody to FLAG. 

Experiment performed on two occasions with same results. b, THP-1 cells were 

transfected with plasmids encoding FLAG-tagged WT TRIF or with the indicated 

mutations (0.8µg), using Attractene(3µl). Cells were infected as shown (4h, MOI 25) and 

assayed for LC3 I and II levels by Western blot.  
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4.2.4 TRIF Cleavage by Capsase-1 Down-regulates Induction of Type I 
IFNs Following P. aeruginosa infection.  

  Next, we tested whether preventing TRIF cleavage by caspase-1 

would lead to upregulation of other pathways mediated by TRIF following P. 

aeruginosa infection. Activation of TLR4 leads to induction of the type I IFNs 

via TRIF; type I IFN production plays a number of important roles in 

bacterial infection (Kelly-Scumpia et al., 2010). Firstly we showed that P. 

aeruginosa infection led to induction of IFN-β mRNA in BMDMs. Consistent 

with down-regulation of this pathway by caspase-1 activation, we found that 

the T3SS mutant PA103pcrV– produced greater levels of Ifnb1 mRNA 

compared to the T3SS competent PA103 ΔUΔT strain (Fig 4-17). In both 

cases, knockout of TRIF led to marked inhibition of Ifnb1 mRNA induction, 

confirming that TRIF plays an essential role in the induction of type I IFNs 

following P. aeruginosa infection (Fig 4-17).  
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Figure 4.17; Role of  TRIF in induction of type I IFNs following P.aeruginosa infection. 

Quantitative RT-PCR levels of Ifnb1 in BMDMs Cells from (WT) or Trif (KO) and left 

uninfected (Basal) or infected as shown (4h MOI 25). ***, shows significant difference 

between the pairs of values, p < 0.001. 
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 We then investigated whether inhibition of caspase-1 activation 

following P. aeruginosa infection would lead to increased induction of Ifnb1 

mRNA. Inhibiting caspase-1 by chemical inhibition (Fig 4-18a) and by knock 

down of the caspase-1 gene by siRNA (Fig 4-18b) both led to a significant 

rise in the levels of Ifnb1 mRNA following infection. Additionally, blocking 

inflammasome activation by raising extracellular K+ concentration also led 

to increased Ifnb1 mRNA induction (Fig 4-18c). These results support the 

conclusion that caspase-1 activation via the inflammasome leads to down-

regulation of type I IFN induction by the proteolytic degradation of TRIF. 

  We confirmed this conclusion by comparing the degree of Ifnb1 

mRNA induction after infection in BMDMs transfected either with WT TRIF 

or the non-cleavable D281E D289E mutant TRIF. As shown in (Fig 4-19), in 

cells expressing the non-cleavable TRIF mutant, the levels of Ifnb1 mRNA 

induced following infection were significantly increased. Thus, caspase-1 

activation by the inflammasome leads to a reduction in TRIF activity and 

hence inhibition of the induction of type I IFNs. 
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Figure 4.18;  Inhibition of Caspase-1 increases induction of type I IFNs following 
P.aeruginosa infection. 

Quantitative RT-PCR levels of Ifnb1 in BMDMs a, cells infected as shown (4h MOI 25) 

in the absence (–) or presence (+CI) of the caspase-1 inhibitor Z-YVAD-FMK. **, 

significantly different from untreated, p < 0.01. b,  cells transfected with control siRNA 

(C) or with siRNA specific for Caspase-1 and infected as in a. ***, significantly different 

from control siRNA, p < 0.001. c,  cells infected as in a under conditions of low and high 

K+ . **, significantly different from low K+, p < 0.01.  
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Figure 4.19;  Inhibiting TRIF cleavge  increases induction of type I IFNs following 
P.aeruginosa infection. 

Quantitative RT-PCR levels of ifnb1 mRNA in BMDMs cells transfected with the 

constructs as shown and left uninfected (basal) or infected with PA103ΔUΔT (4h, MOI 

25). ***, significantly different from WT TRIF, p < 0.001. 
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4.2.5 Functional Effects of TRIF Inactivation by Caspase-1 in BMDMs 

  Type I IFNs increase the phagocytic activity of macrophages as well 

as their production of reactive oxygen intermediates, both important in host 

defence against bacteria. We thus set out to determine whether the 

reduction in type I IFN induction resulting from caspase-1 cleavage of TRIF 

had such functional effects. We measured phagocytic activity of BMDMs by 

uptake of a tagged E. coli that only gave a fluorescent signal on trafficking 

to an acidic lysosomal compartment, and reactive oxygen production by 

another fluorescent probe, CellROX Deep Red. Firstly, we compared 

phagocytosis and production of reactive oxygen intermediates following 

infection of BMDMs with the T3SS competent strain of P. aeruginosa 

PA103ΔUΔT compared to the T3SS defective strain PA103pcrV–. This 

showed that PA103ΔUΔT led to less phagocytosis and lower production of 

reactive oxygen intermediates following infection compared to the 

PA103pcrV– strain (Fig 4-20). This is consistent with the reduced levels of 

type I IFNs resulting from inflammasome activation by the T3SS competent 

strain and hence capsase-1 cleavage of TRIF. Importantly, adding β-IFN 

back to the BMDMs infected with the T3SS competent PA103ΔUΔT strain 

restored the level of phagocytosis and reactive oxygen production to the 

levels seen with the T3SS defective PA103pcrV– strain (Fig 4-20). Thus, the 

defect in phagocytosis and production of reactive oxygen observed in the 

strain of P. aeruginosa that activates capsase-1 could be corrected by 

addition of a product normally produced via TRIF mediated signalling.   
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Figure 4.20; Type I IFNs is required for phagocytosis and intracellular killing of  
P.aeruginosa . 

a, amount of phagocytosed E. coli particles (pHrodo E. coli; and b reactive oxygen 

(CellROX) Deep Red as assayed by Flow cytometry. BMDMs pre-treated with IFN 

(10ng/ml) and then infected as indicated (3h, MOI 25) or left uninfected (Basal). 
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To establish that the reduction in these macrophage functions was 

due to caspase-1 degradation of TRIF, we tested the effect of knocking 

down both TRIF and caspase-1 on phagocytosis and production of reactive 

oxygen. When TRIF levels were reduced by siRNA, the ability of BMDMs to 

perform these functions was markedly reduced (Fig 4-21a, and b). This 

inhibitory effect was reversed by the addition of β-IFN, demonstrating the 

importance of TRIF-mediated production of this cytokine in enhancing 

phagocytosis and production of reactive oxygen. Knock down of caspase-1 

enhanced the ability of BMDMs to phagocytose and produce reactive 

oxygen following P. aeruginosa infection (Fig 4-21c, and d). This 

enhancement in these functions was similar to that seen following the 

addition of β-IFN to BMDMs infected with the inflammasome activating P. 

aeruginosa strain PA103ΔUΔT (Fig 4-21c, and d). Taken together, these 

results support the conclusion that caspase-1 mediated proteolysis of TRIF 

following P. aeruginosa infection of BMDMs leads to down regulation of 

IFN-β production and reduction in phagocytosis and reactive oxygen 

production.  
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Figure 4.21; TRIF cleavage reduces type I IFN mediated increases in phagocytosis 

and generation of reactive oxygen intermediates.  

a and c phagocytosed E. coli particles (pHrodo E. coli and b and d reactive oxygen 

(CellROX) Deep Red as assayed by Flow cytometry. Cells were treated with control (C) 

siRNA or specific siRNA as shown (KD). Where indicated, cells were pre-treated with 

IFN-β (IFN) (10ng/ml) and then infected as indicated (3h, MOI 25) or left uninfected 

(Basal). 
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 To confirm that the cleavage of TRIF was responsible for the down-

regulation of phagocytosis and reactive oxygen production following 

caspase-1 activation, we examined these functions in BMDMs transfected 

with wild-type and non-cleavable TRIF (D281E D289E TRIF). Compared to 

cells transfected with wild-type TRIF, BMDMs transfected with the D281E 

D289E TRIF had higher levels of phagocytosis and reactive oxygen 

production (Fig 4-22a, and b). Again, we could increase the lower levels 

seen in cells expressing wild-type TRIF by addition of β-IFN. Thus, by 

preventing TRIF cleavage by caspase-1, we could augment the ability of 

BMDMs to phagocytose E. coli particles and produce reactive oxygen 

intermediates through TRIF-mediated β-IFN production.    
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Figure 4.22;  Inhibiting TRIF cleavge  increases phagocytosis and intracellular killing 
of  P.aeruginosa . 

a, phagocytosed E. coli particles (pHrodo E. coli and b reactive oxygen (CellROX) Deep 

Red as assayed by Flow cytometry. Cells were transfected with plasmids encoding the 

TRIF constructs as shown. Cells were pre-treated with IFN-β (IFN) (10ng/ml) and then 

infected as indicated (3h, MOI 25) or left uninfected (Basal). 
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We determined the numbers of viable internalised P. aeruginosa in 

BMDMs following infection to gauge the net result of both phagocytosis and 

intracellular killing. Knock down of TRIF led to an increase in the numbers 

of viable intracellular PA103ΔUΔT; this could be reversed by the addition of 

β-IFN (Fig 4-23a). This suggests that under these conditions the reduction 

in reactive oxygen resulting from TRIF knock down is more significant than 

the reduction in phagocytosis, hence leading to an increase in the numbers 

of internalised viable bacteria. Inhibiting TRIF breakdown by adding 

inhibitors of caspase-1 or knock down by siRNA led to a reduction in the 

numbers of viable internalised bacteria (Fig 4-23b, and c). This was again 

consistent with the predominant effect of inhibiting TRIF function being to 

reduce the ability of BMDMs to kill intracellular bacteria. The reduction in 

viable intracellular bacteria consequent to inhibition or knock down of 

caspase-1 was reproduced by treating the BMDMs with β-IFN (Fig 4-23b, 

and c). Finally, we examined the numbers of viable intracellular bacteria 

recovered after infection in BMDMs transfected with expression vectors for 

either the WT or the non-cleavable D281E D289E TRIF. In the presence of 

the non-cleavable TRIF, fewer viable intracellular bacteria were recovered 

compared to cells expressing the WT TRIF protein (Fig 4-23d). This 

reduction in viable internalised bacteria could be reproduced in cells 

expressing WT TRIF by treatment with β-IFN. Thus, taken together, these 

data suggest that the caspase-1 mediated cleavage of TRIF leads to a 

reduction in β-IFN production that result in an increase in the numbers of 

viable P. aeruginosa following infection of BMDMs.  
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Figure 4.23;  Bactericidal assay of infected BMDMs  with P.aeruginosa. 

Panels show numbers of viable internalized bacteria 3h after infection with PA103ΔUΔT 

(MOI 25) with the indicated treatments. Columns are means of triplicate determinations; 

error bars are SEM. Differences with IFN addition were significantly different, ** p < 0.01, 

*** p < 0.001. 
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4.2.6 Effect of caspase-1 TRIF cleavage on infection with P.aeruginosa 
in vivo   

These data from macrophages in culture show important functional 

effects of TRIF cleavage but do not evaluate the total effect of this process 

on the cytokine responses and bacterial killing in an infectious process. 

Thus, we evaluated the effects of Caspase-1 TRIF cleavage on the cytokine 

responses and bacterial killing in an in vivo model of infection. We utilized 

an acute intraperitoneal model of P. aeruginosa infection in mice. Firstly, we 

evaluated the effects of inhibiting Caspase-1 activity in infection by 

intraperitoneal administration of ZYVAD-FMK. In this model, inhibition of 

caspase-1 led to reduced serum levels of IL-1β as expected with no 

reduction in TNF (Fig 4-24a). In cells harvested from the peritoneum 6 

hours following infection (predominantly neutrophils), there was an increase 

in the level of lipidated LC3 in animals treated with the caspase-1 inhibitor 

(Fig 4-24a). The treated animals had a significant reduction in the numbers 

of viable bacteria recovered from the peritoneum (Fig 4-24a). These data 

suggest that the decreased IL-1β production and increased autophagy 

produced by caspase-1 inhibition results in increased bacterial clearance.  

  As a more direct test of the effect of preventing Caspase-1 mediated 

TRIF cleavage during infection, we set up the following animal model. We 

depleted intraperitoneal macrophages by instillation of liposomal clodronate 

(Fig 4-24b). We then re-introduced macrophages transfected with 

expression plasmids for either wild type TRIF or the D281E D289E mutant; 

these were loaded with a fluorescent dye to allow subsequent identification 

using flow cytometry. Animals were then infected with P. aeruginosa by the 
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intraperitoneal route. 6 hours following infection, we harvested serum and 

peritoneal contents. Autophagy within the introduced transfected 

macrophages was measured by flow cytometric measurement of 

intracellular LC3 II (Fig 4-24c and d). This showed that macrophage 

autophagy was increased following infection in vivo, and that macrophages 

expressing the non-cleavable TRIF mutant showed increased levels of 

autophagy compared to the wild type protein. Interestingly, animals 

populated with macrophages expressing the non-cleavable D281E D289E 

mutant TRIF had lower serum IL-1β levels compared to those populated 

with macrophages expressing wild type TRIF; TNF levels were the same 

(Fig 4-24d). Expression of the non-cleavable TRIF was also associated with 

significantly lower intraperitoneal protein concentrations and viable bacterial 

counts (Fig 4-24d). Thus, in this model, preventing TRIF cleavage results in 

increased autophagy following infection that is associated with reduced IL-

1β production but decreased numbers of viable intraperitoneal bacteria. 

This suggests autophagy may well control NLRC4 inflammasome activation 

following P. aeruginosa infection as has been found for NLRP3 

inflammasome activation (Saitoh et al., 2008).    
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Figure 4.24;  Role of TRIF cleavage by caspase-1 in an vivo infection model. 

a, Mice were infected with P. aeruginosa ip or treated with PBS. Panels show LC3 

immunoblot with loading control of total cell extract from one representative animal, mean 

levels of serum  IL-1β and TNF (n = 3, error bars are SEM) and recovered viable bacteria 
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from the peritoneal cavity at 6h (n=3, error bars SEM). Animals were pre-treated with Z-

YVAD-FMK (CI) as shown). * and *** are significant differences from untreated animals, p 

<0.05 and p < 0.001 respectively. b, Peritoneal macrophage population in animals 

treated with liposomal clodronate as shown. Columns are means of three determinations; 

error bars are SEM. **, significantly different from control (p < 0.01). c and d show results 

from animals infected ip following depletion of intraperitoneal macrophages and 

reconstitution with macrophages transfected as shown.  c, Levels of intracellular LC3 II 

assayed by flow cytometry, gated on introduced macrophage populations, transfected 

with constructs as shown.  Representative plot from one animal. d, Panels show mean 

values of indicated measures from n=3 animals, error bars are SEM. Values are of LC3 II 

mean fluorescence intensity (LC3 MFI), serum IL-1β and TNF, peritoneal protein 

concentration, and recovered viable bacterial colonies (CFU/ml x 103). Peritoneal 

macrophages were transfected with constructs as shown before repopulation of the 

peritoneal cavity.  
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4.2.7 Effect of Caspase-1 TRIF Cleavage on Activation of the NLRP3 
Inflammasome 

  We wished to extend our observations to other situations where 

TRIF cleavage by caspase-1 could have important effects. Recently, 

activation of the NLRP3 inflammasome has been shown to be triggered by 

mitochondrial damage (Nakahira et al., 2011). This activation is limited by 

autophagy of mitochondria – mitophagy – which by limiting release of 

mitochondrial DNA into the cytoplasm acts to inhibit NLRP3 inflammasome 

activation. We reasoned, therefore, that caspase-1 mediated inactivation of 

TRIF would limit mitophagy and thus could act to enhance NLRP3 

activation, leading to greater capsase-1 activation and production of IL-1β. 

To test this hypothesis, we examined the effects of limiting TRIF cleavage 

by casapse-1 in BMDMs stimulated with LPS and ATP, which is a potent 

stimulus to NLRP3 inflammasome activation. We transfected BMDMs with 

expression vectors encoding either WT TRIF or the D281E D289E TRIF 

mutant that is resistant to caspase-1 cleavage. Following LPS/ATP 

stimulation, we observed increased levels of caspase-1 p10 and secreted 

IL-1β as expected in the BMDMs transfected with WT TRIF (Fig 4-25). This 

was associated with cleavage of TRIF as we have observed with 

inflammasome activation by P. aeruginosa. We also found that the LPS 

stimulus increased autophagy, as we have previously observed in these 

cells (Fig 4-1). In the cells transfected with the D281E D289E TRIF mutant 

that is resistant to caspase-1 cleavage, we observed an increase in levels 

of the LC3 II isoform following LPS/ATP stimulation, indicative of increased 

autophagy (Fig 4-25), a marked increase in the numbers of LC3 containing 

vacuoles, and increased intracellular staining of LC3 as assayed by flow 
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cytometry (Fig 4-26). We also observed a marked reduction in 

inflammasome activation and secretion of IL-1β (Fig 4-25), but not TNF. 

Thus, a highly significant effect of the caspase-1 induced cleavage of TRIF 

is to inhibit on going autophagy that otherwise would severely limit the 

degree of inflammasome activation and resultant IL-1β produced.  
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Figure 4.25; Effect of Inhibition of  TRIF cleavge on NLRP3 activation following 
treatment with LPS+ATP. 

BMDMs were transfected with plasmids expressing WT TRIF or the D281E D289E 

mutant as shown. Cells were left untreated (Basal) or LPS (500 ng/ml) was added for 4 

hours followed by 5 mM ATP for 20 minutes where indicated (LPS + ATP). Western blot 

of the indicated proteins are shown. The bottom panel shows the levels of secreted Il-

1β and TNF from the same cells as used in the Western blot with the treatments as 

indicated. Each column is mean of 3 determinations; error bars are SEM. Filled columns 

are results from cells transfected with the non-cleavable TRIF, open columns from WT 

TRIF. ***, significant from WT, p < 0.001.    
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Figure 4.26;  Inhibition of TRIF cleavage  increases  autophagy markers  in 
BMDMs  following treated with LPS+ATP. 

BMDMs were transfected with plasmids expressing WT TRIF or the D281E D289E 

mutant as shown. Cells were left untreated (Basal) or LPS (500 ng/ml) was added for 4 

hours followed by 5 mM ATP for 20 minutes where indicated (LPS + ATP). a, 

Representative immunofluorescence images of LC3 in BMDMs left untreated (Basal) , 

or treated with LPA+ATP. Cells were stained with DAPI to visualize nuclei (blue), and 

LC3 staining is shown as green. Scale bar 10 µm. b, Intracellular LC3 II levels assayed 

by flow cytometry in cells transfected with indicated plasmids and left uninfected (Basal).   
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 We repeated this experiment but additionally down-regulated 

autophagy by knock down of Lc3b or Atg5 expression using siRNA (Fig 4-

27). In cells in which autophagy was inhibited, the amount of secreted IL-

1β and caspase-1 activation in the presence of WT TRIF was significantly 

increased compared to cells transfected with control siRNA (Fig 4-27). This 

is consistent with autophagy down-regulating the signals required to trigger 

NLRP3 inflammasome activation and secretion of IL-1β in response to LPS 

+ ATP. In cells expressing the D281E D289E mutant TRIF with inhibition of 

autophagy by Lc3b or Atg5 knockdown, although there was a reduction in 

secreted IL1-β, this did not reach statistical significance compared to cells 

expressing WT TRIF (Fig 4-27). This is consistent with the conclusion that 

the reduction in secreted IL-β in the presence of TRIF that cannot be 

cleaved by caspase-1 is as a result of an increase in auto- and mitophagy 

that acts to attenuate the triggering of the NLRP3 inflammasome by LPS + 

ATP. Prevention of TRIF cleavage results in increased type I interferon 

production in infection; this has been shown to suppress NLRP3 

inflammasome activation principally through an IL-10 mediated down-

regulation of pro-IL-1β levels (Guarda et al., 2011) as well as an 

uncharacterised direct effect on the NLRP3 inflammasome that required at 

least 6 hours treatment. The suppressive effect of the non-cleavable TRIF 

is evident after 4 hours of LPS/ATP, and we did not observe any changes in 

pro-IL-1β or pro-caspase-1 levels in treated cells that had been transfected 

with the mutant D281E D289E non-cleavable TRIF (Fig 4-27). Thus, the 

observed effects of preventing TRIF cleavage on inhibiting NLRP3 

activation by LPS/ATP would seem most likely mediated by the increased 

levels of autophagy rather than increased type I interferon production, 
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although some contribution of type I interferon directly inhibiting NLRP3 

inflammasome activation cannot be ruled out entirely.  

                                                             

      

                      

Figure 4.27; Prevention of TRIF cleavage attenuates NLRP3 mediated caspase 1 
activation and production of mature IL-1β . 

BMDMs were transfected with control siRNA or lc3b (left panel), or control or Atg5 siRNA 

(right panel). Cells were left untreated (Basal) or LPS (500 ng/ml) was added for 4 hours 

followed by 5 mM ATP for 20 minutes where indicated (LPS + ATP). BMDMs were 

transfected with plasmids expressing WT TRIF or the D281E D289E mutant as shown.     

Western blot of the indicated proteins is shown. The bottom panel shows the levels of 

secreted IL-1β from the same cells as used in the immunoblotting with the treatments as 

indicated. Each column is mean of 3 determinations; error bars are SEM. Filled columns 

are results from cells transfected with the non-cleavable TRIF, open columns from WT 

TRIF. Statistical differences between bracketed columns are shown: *p<0.05, **, p < 

0.01, *** p < 0.001. All experiments repeated 2 times.    
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 Finally, we extended these observations using the human 

macrophage cell line THP-1 (Fig 4-28). In the presence of the mutant TRIF 

that cannot be cleaved by caspase-1, LPS + ATP produces less caspase-1 

activation, less secreted IL-1β and a greater amount of autophagy as 

measured by conversion of LC3 to its lipidated type II isoform (Fig 4-28a). 

We also confirmed the increase in autophagy by measuring the numbers of 

LC3 puncta within the cells under the different conditions (Fig 4-28b).  
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Figure 4.28; Prevention of TRIF cleavage attenuates NLRP3 mediated caspase-1 
activation and production of mature IL-1β  in THP-1 cells.   

a, THP-1 cells were transfected with plasmids expressing WT TRIF or the D281E 

D289E mutant as shown. Cells were left untreated (Basal) or LPS (500 ng/ml) was 

added for 4 hours followed by 5 mM ATP for 20 minutes where indicated (LPS + ATP). 

Western blot of the indicated proteins are shown. The bottom panel shows the levels of 

secreted Il-1β from the same cells as used in the Western blot with the treatments as 

indicated. Each column is mean of 3 determinations; error bars are SEM. Filled columns 

are results from cells transfected with the non-cleavable TRIF, open columns from WT 

TRIF. **, significant from WT, p < 0.01. b, Representative immunofluorescence images 

of LC3 in THP-1 cells treated as in (a). Cells were stained with DAPI to visualize nuclei 

(blue), and LC3 staining is shown as green. Scale bar 10 µm.               
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4.3 Discussion     

In this chapter, we have shown that activation of caspase-1 by either 

the NLRP3 or NLRC4 inflammasome leads to proteolytic cleavage of the 

signalling intermediate TRIF in both murine and human cells. TRIF plays a 

key role in mediating some of the effects of TLR4 signalling, including the 

induction of autophagy as well as the production of type I IFNs. By multiple 

independent methods, we demonstrate that TRIF cleavage leads to a 

down-regulation of autophagy following infection of BMDMs by P. 

aeruginosa or stimulation via LPS. Additionally, this cleavage of TRIF 

results in an inhibition of the production of type I IFN. We show that this 

results in a diminution in phagocytosis and production of reactive oxygen 

intermediates within BMDMs, and reduced the ability of macrophages to kill 

intracellular bacteria. In an in vivo model of Pseudomonas aeruginosa 

infection, preventing TRIF cleavage augmented bacterial clearance but 

reduced the production of IL-1β. One additional consequence of the 

inhibition of autophagy by caspase-1 is to prevent the limiting effect of 

autophagy on caspase-1 activation, hence leading to greater activation of 

this protein and increased IL-1β production. Thus, caspase-1 cleavage of 

TRIF results in multiple effects with significant impact on processes that are 

central to host defence and inflammation.  

 The results of TRIF cleavage by caspase-1 have a number of   

effects on immediate host defence to a pathogen such as P. aeruginosa. 

On the one hand, the reduction in production of type I IFNs results in a 

diminution in macrophage phagocytosis and production of reactive oxygen. 

However, we also found that following in vivo infection, there was a 
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reduction in production of IL-1β. This was associated with increased 

bacterial clearance, as has been found by others (Cohen and Prince, 2013). 

The reduction in IL-1β production following infection with Pseudomonas 

aeruginosa under condition where TRIF cleavage is blocked, suggest that 

autophagy restrains NLRC4 inflammasome activation in this infection, in 

much the same way as has been shown for NLRP3 activation. We have 

gone to explore this in depth and have found that autophagy does inhibit 

NLRC4 inflammasome activation by Pseudomonas aeruginosa (chapter 5). 

The reduction in auto- and mitophagy consequent to TRIF cleavage 

prevents these processes inhibiting NLRP3 caspase-1 activation. If TRIF 

were not cleaved in this way, the degree of activation of this inflammasome 

would be much less and production of IL-1β significantly reduced. The 

magnitude of this effect is large (Figs 4-26, 4-27, and 4-28) and thus we 

speculate that this is the principal evolutionary selection pressure that has 

maintained the cleavage site for caspase-1 within the TRIF protein. IL-1β is 

a key cytokine in promoting host defence and without cleavage of TRIF by 

caspase-1, the levels of active IL-1β following NLRP3 activation would be 

much less. The overall effect of increased inflammasome activation 

consequent to TRIF cleavage varies depending on the specific infection 

involved. NLRC4 inflammasome activation is critical in host defence against 

Klebseilla pneumoniae (Cai et al., 2012) and oral Salmonella infection in 

Balb/c mice (Franchi et al., 2012a), but increases bacterial burden in model 

of Pseudomonas aeruginosa pneumonia (Cohen and Prince, 2013). 

Moreover, TRIF has been shown to be an important intermediate in 

triggering autophagy not just from TLR4 but also from TLR3 stimulation 

(Delgado et al., 2008). Thus, cleavage of TRIF may also play a role in 
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limiting autophagy and enhancing inflammasome activation in infections 

that signal via TLR3, such as influenza. Additionally, a previous study with 

Shigella flexneri infected macrophages suggested that caspase-1 activation 

limited autophagy (Suzuki et al., 2007). The data presented in the work 

described here suggest cleavage of TRIF would account for this effect. 

 TRIF has recently been shown to be an important intermediate in the 

induction of NLRP3 inflammasome activation by Gram-negative bacteria 

(Rathinam et al., 2012). Type I IFNs triggered by TLR4 via TRIF mediate 

the induction of capsase-11, a protease that can amplify caspase-1 

activation by NLRP3. This has been shown to be of importance in infections 

caused by enterohemorrhagic E.coli and Citrobacter rodentium (Kayagaki 

et al., 2011), as well as other Gram-negative organisms (Broz et al., 2012, 

Aachoui et al., 2013). It does not seem to play a role in the activation of the 

NLRC4 inflammasome, the mechanism by which P. aeruginosa activates 

the inflammasome via its type III secretion apparatus. However, in 

organisms lacking a functional type III apparatus, the TLR4/TRIF/caspase-

11 pathway can act to produce NLRP3 activation, albeit with much slower 

kinetics than the NLRC4 mediated effects (Rathinam et al., 2012). We show 

here by specific knockdown of Caspase-11 using siRNA that this protein 

does not play a role in the activation of the inflammasome by PA103ΔUΔT 

or in the cleavage of TRIF. From our results, we would predict that TRIF 

cleavage by caspase-1 would serve to down-regulate activation of caspase-

11 by attenuating the continued production of type I IFNs. The overall 

influence of TRIF cleavage in an infection will thus be dependent on 

potentially complex interactions between caspase-11 dependent and 

independent pathways. 
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 Although TRIF cleavage restricts autophagy and thus can augment 

NLRP3 activation and IL-1β secretion, it will also lead to down-regulation of 

type I IFN production. We show here that in isolated BMDMs these results 

in decreases in phagocytic ability and production of reactive oxygen 

intermediates. A number of studies have shown the importance of TRIF-

mediated type I IFN production in a variety of enteric and pulmonary Gram-

negative infections (Kelly-Scumpia et al., 2010). Again, the overall outcome 

will depend on the relative balance between effective IL-1β production and 

attenuation of type I IFN. This may be of greater significance in viral 

infections that trigger caspase-1 activation. In this setting, type I IFN 

production can be crucial in determining outcome. 

 The cleavage of TRIF by caspase-1 does reduce to some degree the 

levels of full-length TRIF, but not to an extent that could account for the 

inhibitory effects observed. We speculate, therefore, that one or more of the 

cleavage products of TRIF that are produced by caspase-1 is acting as a 

dominant-negative inhibitor. The central TIR domain of TRIF has been 

shown to be such an inhibitor (Yamamoto et al., 2002). Cleavage of TRIF at 

amino-acids 281 and 289 results in N- and C-terminal truncated products 

that have been shown to lack most TRIF activity (Rebsamen et al., 2008). 

Caspase-1 activation results in activation of caspase-7, which may cleave 

additional sites within the molecule (Lamkanfi et al., 2008). Moreover, initial 

cleavage may expose additional sites that can be cleaved by other cellular 

proteases. The detailed molecular mechanisms whereby TRIF cleavage 

results in inhibiting TRIF function requires further study. However, it is clear 

that in both human and murine cells, expression of mutated TRIF lacking 
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caspase-1 cleavage sites results in a molecule that augments autophagy 

and hence down-regulates the activation of the NLRP3 inflammasome.  

 Autophagy can down-regulate the activation of the NLRP3 

inflammasome by removal of damaged mitochondria (Nakahira et al., 2011). 

We describe here a reciprocal process by which inflammasome activation 

of caspase-1 acts to down-regulate autophagy. This is achieved through the 

specific proteolysis of TRIF, the key signalling intermediate that triggers 

autophagy following TLR4 activation. We also show that this removal of 

TRIF activity acts to further enhance NLRP3 inflammasome activation, 

although it does limit TRIF-dependent induction of type I IFN responses. 

Modulation of autophagy is thus a possible therapeutic target – either to 

limit its negative effects on inflammasome activation to augment host 

defence or to augment its action to limit excessive inflammation by 

caspase-1 and to enhance TRIF-mediated responses. 

In conclusion, we found that Pseudomonas aeruginosa induced 

autophagy through signalling via TLR4 and TRIF. Loss of type III secretion 

increased autophagy, which was due to NLRC4 activation and caspase-1 

activity. We show that caspase-1 cleaved TRIF, resulting in a diminution of 

TRIF-mediated signalling, not only resulting in inhibition of autophagy but 

also in production of type I IFNs. Prevention of TRIF cleavage through 

mutation of the caspase-1 cleavage sites resulted in augmented autophagy, 

increased type I IFN production and enhanced phagocytosis and reactive 

oxygen production within macrophages. Expression of a mutated TRIF 

lacking caspase-1 cleavage sites enhanced autophagy and diminished 

NLRP3 inflammasome activation in both mouse and human cells, leading to 
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a marked reduction in IL-1β production. We have thus defined caspase-1 

mediated TRIF cleavage as a key event in controlling both NLRP3 

inflammasome activation and autophagy, with important functional 

consequences.  
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5    Pseudomonas aeruginosa activation of the NLRC4 
inflammasome is dependent on release of Mitochondrial 
DNA and is inhibited by autophagy   
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5.1 Introduction   

The innate immune response to infection is a key component in host 

defence that not only provides immediate protection but also shapes the 

nature of the subsequent adaptive immune response (Schenten and 

Medzhitov, 2011, Kumar et al., 2009). One of the main mediators of the 

innate response is the cytokine IL-1β, which has diverse roles, including 

induction of fever, production of pro-inflammatory chemokines and 

prostanoids, augmenting neutrophil, B cell and dendritic cell function, and 

acting as a co-factor in the differentiation of Th17 cells (Dinarello, 2009). IL-

1β production is tightly regulated by a multi-subunit protein complex termed 

the inflammasome (Franchi et al., 2012, Brodsky and Monack, 2009, 

Martinon et al., 2009). At its core is caspase-1, which on activation will not 

only produce mature IL-1β from pro-IL1β but also release of active IL-18, a 

cytokine important in Th1 cell development (Smith, 2011). Understanding 

the mechanisms regulating inflammasome activation is thus of crucial 

importance in comprehending its role in innate immune response to 

infection as well as numerous inflammatory conditions. 

Apart from caspase-1, a variety of other proteins can be present in 

the inflammasome and these determine the nature of the stimuli that will 

lead to inflammasome activation. One of the best understood 

inflammasomes is that based on the NOD-like receptor family protein 

NLRP3 (Franchi et al., 2012). The NLRP3 inflammasome can be activated 

by a wide variety of stimuli, including bacterial toxins (Chu et al., 2009), inert 

particles such as urate crystals (Martinon et al., 2006) and silica (Hornung 

et al., 2008), and ATP (Hogquist et al., 1991). The exact molecular 
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mechanisms by which these diverse stimuli activate the NLRP3 

inflammasome are not clear. Another caspase, caspase-11 synergises with 

the assembled NLRP3 inflammasome and augments its activity (Aachoui et 

al., 2013, Rathinam et al., 2012, Kayagaki et al., 2011). Several groups 

have shown the importance of mitochondrial damage and sensing of 

released mitochondrial DNA in NLRP3 inflammasome activation (Nakahira 

et al., 2011, Shimada et al., 2012). Mitochondrial generation of reactive 

oxygen species has been implicated in the activation of the NLRP3 

inflammasome, and removal of damaged mitochondria by selective 

autophagy (mitophagy) inhibits this activation. Nakahira et al showed that 

release of mitochondrial DNA following damage to this organelle was 

responsible for the NLRP3 activation (Nakahira et al., 2011). Shimada et al 

found that release and binding of oxidised mitochondrial DNA to the NLRP3 

inflammasome was important in its activation (Shimada et al., 2012). 

However, a recent report found that lowering of intracellular K+ levels was 

the only common factor in the diverse signals that can activate the NLRP3 

inflammasome (Munoz-Planillo et al., 2013).  

 The inflammasome based on the NLR protein NLRC4 is activated by 

a number of bacterial pathogens (Franchi et al., 2012). The activation is 

dependent on bacterial products, notably flagellin (Miao et al., 2006, Franchi 

et al., 2006) and PrgJ (Miao et al., 2010, Zhao et al., 2011), one of the rod 

proteins found in the type III secretion system (T3SS) that are conserved in 

a number of Gram-negative organisms. These proteins in murine cells 

interact with the adaptors NAIP5 and NAIP2 respectively leading to NLRC4 

inflammasome activation (Lightfield et al., 2008, Zhao et al., 2011). 

However, NAIP5 is dispensable for inflammasome activation by Salmonella 
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enterica, despite the flagellin of this organism binding to NAIP5 (Kofoed and 

Vance, 2011). T3SS needle proteins homologous to Salmonella enterica 

PrgI are also reported to activate NLRC4 via the adaptor NAIP1 (Yang et al., 

2013).  

 Previous work demonstrated  that activation of the NLRC4 

inflammasome can be prevented by raising extracellular potassium ion 

concentration (Lindestam Arlehamn et al., 2010); similar findings have been 

reported for the NLRP1 (Fink et al., 2008) and AIM2 (Muruve et al., 2008) 

based inflammasomes. A previous study of inflammasome activation by the 

pathogen Vibrio parahaemolyticus suggested that a bacterial effector, Vop, 

inhibited NLRC4 inflammasome activation by inducing autophagy 

degradation, but the mechanism was not determined (Higa et al., 2013). 

This strongly suggests that additional mechanisms for activating these 

inflammasomes are operative. We set out therefore to examine in more 

details the nature of activation of the NLRC4 inflammasome using infection 

with the common human pathogen Pseudomonas aeruginosa, which 

produces a rapid activation of the inflammasome by a mechanism that is 

entirely dependent on its T3SS (Sutterwala et al., 2007, Miao et al., 2008, 

Franchi et al., 2007, Arlehamn and Evans, 2011). Infection with this 

bacterium also initiates autophagy (Yuan et al., 2012). 

The NLRC4 inflammasome can be activated by pathogenic bacteria 

via products translocated through the microbial type III secretion apparatus 

(T3SS). Recent work has shown that activation of the NLRP3 

inflammasome is down-regulated by autophagy, but the influence of 

autophagy on NLRC4 activation is unclear. We set out to determine how 
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autophagy might influence this process, using the bacterium P. aeruginosa, 

which actives the NLRC4 inflammasome via its T3SS. Infection resulted in 

T3SS-dependent mitochondrial damage with increased production of 

reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting 

mitochondrial reactive oxygen release or degrading intracellular 

mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, 

macrophages lacking mitochondria failed to activate NLRC4 following 

infection. Removal of damaged mitochondria by autophagy significantly 

attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound 

specifically to NLRC4 immunoprecipitates and transfection of mitochondrial 

DNA directly activated the NLRC4 inflammasome; oxidation of the DNA 

enhanced this effect. We found that inhibition of autophagy upregulated 

inflammasome activation following P. aeruginosa infection. This was due to 

autophagy removing damaged mitochondria that released mitochondrial 

DNA following infection in a process dependent on production of reactive 

oxygen intermediates. Released mitochondrial DNA was found to bind and 

activate the NLRC4 inflammasome. Manipulation of autophagy altered the 

degree of inflammasome activation and inflammation in an in vivo model of 

P. aeruginosa infection.  Our results reveal a novel mechanism for NLRC4 

activation by P. aeruginosa via release of mitochondrial DNA triggered by 

the bacterial T3SS that is down-regulated by autophagy. 
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5.2 Results   

5.2.1 Autophagy inhibits inflammasome activation following P. 
aeruginosa.   

We have previously demonstrated that P. aeruginosa induces 

autophagy in BMDMs in a TLR4 dependent fashion (Jabir et al., 2014). We 

infected cells with P. aeruginosa PA103ΔUΔT which has a functional T3SS 

that activates the inflammasome via NLRC4. We set out to examine the 

effect of an absence of autophagy on the activation of the NLRC4 

inflammasome by P. aeruginosa using BMDMs from mice with a targeted 

deletion of the essential autophagy gene Atg7 in marrow precursors (Vav-

Atg7-/- mice) (Mortensen et al., 2011, Mortensen et al., 2010). We assayed 

for the induction of autophagy by measuring production of the lipidated form 

of LC3 (LC3 II) (Mizushima et al., 2010), and intracellular LC3 staining  (Fig. 

5-1a and b). In infected cells from the Vav-Atg7-/- mice there was a virtually 

complete inhibition of autophagy compared to infected cells from wild type 

mice. We then compared inflammasome activation following infection in 

macrophages from wild type and Vav-Atg7-/- mice. In the absence of 

autophagy, we found that inflammasome activation was markedly increased, 

as shown by enhanced conversion of caspase-1 to the active p10 form (Fig. 

5-1c), and greater production of secreted IL-1β (Fig. 5-1d), but no 

significant change in secreted TNF (Fig. 5-1d). We used a different method 

to inhibit autophagy by knockdown of the essential autophagy gene Atg5 

(Fig. 5-2a). This also led to increased production of IL-1β, but not TNF and 

enhanced conversion of pro-caspase-1 and pro-IL-1β to the active p10 and 

secreted p17 IL-1 β forms respectively (Fig. 5-2b and c).  
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In a similar fashion, knock down of Lc3b with siRNA in BMDMs also 

increased production of activated caspase-1 (Fig. 5-3a) and IL-1β following 

infection (Fig. 5-3b) but not TNF (Fig. 5-3c).  

To confirm these observations, we used 3-MA to inhibit autophagy 

following infection of BMDMs, murine J774A.1, and dendritic cells as well 

as the human macrophage cell line THP-1 (Fig. 5-4). 3-MA inhibited 

autophagy in all these cells, as assayed by conversion of LC3 to its 

lipidated form (Fig.5-4a), enumeration of LC3 containing puncta, and LC3 

intracellular staining (Fig 5-4b and c). Inflammasome activation in these 

cells was determined by measurement of secreted IL-1β and conversion of 

caspase-1 to its active p10 subunit (Fig. 5-5 a and b). 3-MA enhanced 

production of the caspase-1 p10 subunit in BMDMs and increased the 

levels of IL-1β and did not affect TNF-α secretion (Fig. 5-5 c), and increased 

production of IL-1β in THP-1, J774 and dendritic cells (Fig. 5-5d). The P. 

aeruginosa PAO1 strain also induced autophagy in BMDMs. We verified 

this observation by assaying LC3 I conversion to LC3 II in these cells, which 

was prevented by 3-MA (Fig. 5-6). Taken together, these data show that in 

the absence of autophagy, there is an increase in the activation of the 

NLRC4 inflammasome following P. aeruginosa infection. 
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Figure 5.1; Absence of  autophagic protein Atg7 increases  Inflammasome 
activation following P.aeruginosa PA103ΔUΔT infection.       

 a – d, BMDMs from wild type mice (Vav-Atg7+/+) or mice with a conditional deletion of 

Atg7 in bone-marrow derived cells (Vav-Atg7-/-) were infected with PA103ΔUΔT and 

autophagy quantified. a, Western blot of cell lysates infected as shown and 

immunostained for LC3. The unmodified (LC3 I) and lipidated isoform (LC3 II) are 

shown in three separate experiments. β-tubulin is shown as a loading control. b, Levels 

of intracellular LC3 assayed by flow cytometry following treatments as indicated. c, 

immunoblot for pro-caspase-1 and pro-IL-1β , and caspase-1 p10 fragment and mature 

IL-1β p17 (supernatants) of cells infected as shown. d, secretion of active IL-1β and 

TNF from basal and infected BMDMs as shown. Columns are means of 3 independent 

determinations; error bars are SEM. *** indicates a significant difference between the 

levels in BMDMs from WT or Vav-Atg7-/- mice, p < 0.001.   
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Figure 5.2; Absence of  autophagic protein Atg5 increases  Inflammasome 
activation following P.aeruginosa PA103ΔUΔT infection. 

a, LC3 I and II assayed by Western blotting in BMDMs transfected with control siRNA or 

siRNA to Atg5, uninfected (Basal), or infected with P. aeruginosa strain as indicated 

(MOI 25) for 4 hr. Blot shows 4 independent experiments. b, immunoblot for pro-

caspase-1 and pro-IL-1β , and caspase-1 p10 fragment and mature IL-1β p17 of cells 

infected as shown.  c, ELISA of IL-1β and TNF secretion from cells treated as shown. 

Columns are means of triplicate independent experiments; error bars SEM. ** indicates 

significant difference between the levels in infected BMDMs transfected with siRNA to 

Atg5, compared to control siRNA, p < 0.01. n.s., not significant.  
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Figure 5.3; Gene silencing of  Lc3b by siRNA increases Inflammasome 
activatation following P. aeruginosa  PA103ΔUΔT infection.   

a, immunoblot of cell lysates (LC3 and pro-caspase-1) and (capsase-1 p10) from cells 

infected and treated as shown. β-tubulin is shown as a loading control. b, Immunoblot 

of pro-IL-1 β and mature IL-1 β in cell supernatant after infections and treatments as 

indicated. c, ELISA of IL-1β and TNF secretion from cells treated as shown. Columns 

are means of triplicate independent determinations; error bars are SEM. ** indicates 

significant difference from control siRNA treated cells, p < 0.01. Data are representative 

of 3 independent experiments. 
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Figure 5.4; 3-MA inhibits autophagy following P.aeruginosa PA103ΔUΔT infection. 

BMDMs, THP-1, dendritic cells, and J774A.1 cells were infected with PA103ΔUΔT (MOI 

25) for the indicated time in hours in the presence (+) or absence (–) of 3-MA (10 mM). 

a, The panels show representative Western blot of LC3 isoforms and β-tubulin as a 

loading control. b, representative immunofluorescence images of cells as indicated; 

LC3 staining is green and nuclei are stained blue (DAPI). Scale bar is 10µm. c, Levels 

of intracellular LC3 assayed by flow cytometry following treatments as indicated. 
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Figure 5.5; 3-MA increases  Inflammasome activation following P.aeruginosa 
PA103ΔUΔT infection.  

a, immunoblot of cell lysates of pro-caspase-1 and capsase-1 p10 subunit of cells 

infected and treated as shown. b, Immunoblot of mature IL-1 β in cell supernatant after 

infections and treatments as indicated. (3 independent experiment). c, d,  ELISA of 

secreted IL-1β and TNF from cells as shown. Columns are means of triplicate 

independent determinations; error bars are SEM. * indicate significant differences 

between the levels in the presence and absence of 3-MA, p<0.05, and ** p < 0.01.  

 



188 
 

 

Figure 5.6; 3-MA increases  Inflammasome activation following infection with 
P.aeruginosa PAO1.  

BMDMs cells were infected with PAO1 (MOI 25) for 4 hours in the presence (+) or 

absence (–) of 3-MA (5,10 mM). The panels show representative Western blot of LC3 

isoforms and β-tubulin as a loading control.  ELISA of secreted IL-1β and TNF from cells 

supernatents as shown. Columns are means of triplicate independent determinations; 

error bars are SEM. * indicate significant differences between the levels in the presence 

and absence of 3-MA, p<0.05, and ** p < 0.01 respectively.  
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5.2.2 Mitochondrial Reactive Oxygen activates the inflammasome 
following P. aeruginosa infection.    

Autophagy can removed damaged mitochondria by mitophagy. Thus, 

we hypothesized that the increase in inflammasome activation in P. 

aeruginosa infected cells after inhibition of autophagy was due to an 

increase in release of reactive oxygen intermediates from defective 

mitochondria that failed to be removed by mitophagy. To confirm that 

autophagy was indeed directly targeting mitochondria and removing them 

through mitophagy, we performed localization studies using 

immunofluorescent microscopy (Fig. 5-7). Mitochondria were visualised by 

staining with an antibody to the mitochondrial protein ATPase inhibitory 

factor. Following infection of BMDMs with PA103ΔUΔT, we found extensive 

co-localization of mitochondria with the LC3 protein that localizes on 

autophagocytic vacuoles. Transmission electron microscopy revealed the 

presence of mitochondria within double-membraned autophagocytic 

vacuoles (Fig. 5-8). The delivery of damaged mitochondria to 

autophagocytic vacuoles is controlled by the mitochondrial protein PINK-

1(Narendra et al., 2012, Jin and Youle, 2012, Narendra et al., 2010). This 

normally undergoes proteolytic processing by healthy mitochondria, but 

following damage and depolarization, this processing is abrogated and full 

length PINK-1 accumulates on the surface of mitochondria. Full length 

PINK-1 then recruits Parkin to the mitochondrial surface and initiates 

mitophagy. Western blotting of BMDM lysates following infection with 

PA103ΔUΔT showed an accumulation of full length compared to cleaved 

PINK-1 (Fig. 5-9). This was partially reversed by Mito-TEMPO, a specific 

inhibitor of mitochondrial reactive oxygen production (Smith et al., 2011) 
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(Fig. 5-8). PA103 lacking a functional T3SS that does not activate the 

inflammasome, PA103pcrV-, did not prevent cleavage of PINK-1 (Fig. 5-9). 

These data show that mitochondria are damaged by the T3SS system in P. 

aeruginosa infection leading to inhibition of PINK-1 cleavage that then 

initiates mitophagy.  

 

Figure 5.7; Mitochondria targeted by autophagosomes following P.aeruginosa infection.  

Representative confocal images of BMDMs infected with PA103ΔUΔT (MOI 25 for 4h), fixed, 

permeabilized and stained for LC3 (green), and mitochondrial ATPIF1 (Mito, red); nuclei are 

stained blue with DAPI. Colo shows areas of colocalization of the mitochondrial and LC3 staining 

in grey. Overlay shows the merged LC3 and mitochondrial signals; co-localising areas shown as 

yellow. Scale bar is 0.5µm. Repeated three times.    
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Figure 5.8; EM analysis of Mitochondria targeted by autophagosomes following P.aeruginosa 
infection. 

Electron micrographs of a untreated BMDM (control) or b-d infected with PA103ΔUΔT (MOI 25) 

for 4 hrs. Arrow indicates autophagosome, M indicate mitochondria. Scale bar is 500 nm. 

Representative image from > 10 infected cells. 
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Figure 5.9; PINK-1 cleavage following P.aeruginosa infection.  

Immunoblot of BMDMs infected at a MOI of 25 with PA103pcrV- or PA103ΔUΔT± Mito-

TEMPO (500µM) for 4 hours and probed for PINK-1. Full length and cleaved PINK-1 are 

labelled. The blot was re-probed for β-tubulin as a loading control. Representative of two 

independent experiments. 
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Next, we examined the production of reactive oxygen by 

mitochondria following infection with P. aeruginosa and the effect of this on 

inflammasome activation. We measured production of reactive oxygen 

intermediates from mitochondria using the selective fluorescent indicator 

MitoSox (Li et al., 2003). Following infection with the PA103ΔUΔT strain of 

P. aeruginosa, there was a marked increase in mitochondrial reactive 

oxygen production. However, following infection with the PA103pcrV- 

mutant that does not have a functional T3SS and does not produce 

inflammasome activation, mitochondrial reactive oxygen was not increased 

(Fig. 5-10 a and b). To test the dependence of inflammasome activation 

following P. aeruginosa infection on production of mitochondrial reactive 

oxygen production, we used the general reactive oxygen inhibitor N-acetyl 

cysteine (NAC) as well as Mito-TEMPO, a specific inhibitor of mitochondrial 

reactive oxygen production. Following infection, both these inhibitors 

produced a dose-dependent reduction in capsase-1 activation and 

production of active IL-1β (Fig 5-11a), but with no effect on secreted TNF. 

Both inhibitors produced the expected reduction in mitochondrial production 

of reactive oxygen (Fig. 5-11b).  PA103 lacks functional flagella, thus it 

activates NLRC4 via NAIP2 rather than NAIP5/6 (Zhao et al.2011; Kofoed 

and Vance, 2011). To determine if reactive oxygen production was 

important in infection with flagellated P. aeruginosa that can active NLRC4 

via NAIP5/6, we utilised the strain PAO1. Infection of BMDMs with this 

strain activated the inflammasome with production of the p10 caspase-1 

fragment and secreted IL-1β. Both NAC and Mito-TEMPO inhibited this 

activation (Fig 5-12a). Additionally, PAO1 infection produced an increase 

output of mitochondrial reactive oxygen that was inhibited by Mito-TEMPO 



194 
 

and NAC (Fig. 5-12b). Thus, P. aeruginosa signalling via either NAIP2 or 

NAIP5/6 produce mitochondrial reactive oxygen intermediates that are 

important in NLRC4 inflammasome activation.   
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Figure 5.10;   Mitochondrial ROS generation is dependent on inflammasome activation 
following Peudomonas aeruginosa infection. 

a, Western blot  analysis of Pro-caspase, caspase-1 p10 subunit, and mature IL-1β p17 ( in 

cells supernatant) of  BMDMs. Cells were left uninfected (basal) or infected with  PA103pcrV - , 

and PA103ΔUΔT at ( MOI of 25) for 4 hr. ELISA of secreted IL-1β and TNF from cells as 

shown. Columns are means of triplicate independent determinations; error bars are SEM. *** 

indicate significant differences. p<0. 001. b, Flow cytometry of untreated BMDMs (basal) or 

infected  as indicate. Cells stained with MitoSox (2.5 µM for 30 min at 37˚C).    



196 
 

   

 

Figure 5.11; Mitochondrial inhibitors reduce inflammasome activation following  
P.aeruginosa PA103ΔUΔT infection. 

a, Western blot  analysis of Pro-caspase, caspase-1 p10 subunit, pro-IL1 β and mature IL-1β 

p17 of BMDMs. Cells were left uninfected(basal) or infected with  PA103DUDT at a MOI of 25 

for 4 hr ± Mito-TEMPO (µM), or ± NAC (mM). ELISA of IL-1β and TNF-α in BMDMs. Columns 

are means of triplicate independent determinations; error bars are SEM. **, and *** indicate 

significant differences between levels in the presence and absence of mitochondrial inhibitors. 

p<0.01, p<0. 001 respectively. b, Flow cytometry of untreated BMDMs (basal) or infected  as 

indicated. Cells stained with MitoSox (2.5 µM for 30 min at 37˚C).       
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Figure 5.12; Inhibition of mitochondrial reactive oxygen production attenuates 
inflammasome activation by PAO1. 

a, Western blot  analysis of Pro-caspase, caspase-1 p10 subunit, pro-IL1 β and mature IL-1β 

p17 of BMDMs. Cells were left uninfected(basal) or infected with  PAO1 at a MOI of 25 for 4 hr 

± Mito-TEMPO (500µM), or ± NAC (25mM). ELISA of IL-1β and TNF-α in BMDMs. Columns 

are means of triplicate independent determinations; error bars are SEM. **, indicates 

significant differences between levels in the presence and absence of mitochondrial inhibitors. 

p<0.01. b, Flow cytometry of untreated BMDMs (basal) or infected  as indicated. Cells stained 

with MitoSox (2.5 µM for 30 min at 37˚C).       
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Next, we tested the effect of inhibiting autophagy on the production 

of mitochondrial reactive oxygen intermediates and assessed the functional 

mitochondrial pool in cells following infection of BMDMs with P. aeruginosa 

PA103ΔUΔT. Production of mitochondrial reactive oxygen intermediates 

following infection was further increased when autophagy was inhibited with 

3-MA (Fig. 5-13). Next, we attenuated autophagy by knockdown of the 

essential autophagy genes Lc3b and Atg5 using siRNA. Using both these 

approaches, we observed a marked increase in the production of 

mitochondrial reactive oxygen intermediates following infection. Finally, in 

BMDMs from mice lacking the essential autophagy gene Atg7 in bone-

marrow cells (Vav-Atg7-/-) there was an increase in the amount of 

mitochondrial reactive oxygen produced following infection compared to 

control wild type animals (Fig. 5-14), and (Fig. 5-15) . Taken together, these 

data show that autophagy reduced the levels of mitochondrial reactive 

oxygen produced following infection of BMDMs with P. aeruginosa.  
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Figure 5.13;  Inhibition of autophagy/mitophagy using 3-MA increases ROS 
generation and mitochondrial damage following P.aeruginosa PA103ΔUΔT 
infection.  

a, Flow cytometry of untreated BMDMs (basal) or infected  for  4h at MOI of 25 with 

PA103ΔUΔT. Cells stained with MitoSox( 2.5 µM for 30 min at 37˚C) . b, Flow cytometry 

of BMDMs following treatments as in (a). Cells were stained with MitoTracker deep Red 

and MitoTracker Green (50 nM for 30 min at 37˚C).  Numbers above indicate % cells 

with loss of mitochondrial membrane potential (damaged mitochondria). Representative 

of two independent experiments.  

 



200 
 

 

Figure 5.14; Gene silencing of  Lc3b by siRNA increases  ROS generation and 
mitochondrial damage following P.aeruginosa PA103ΔUΔT infection. 

a, Flow cytometry of BMDMs transfected as shown and then left uninfected (basal) or 

infected  for  4h at MOI of 25 with PA103ΔUΔT. Cells stained with MitoSox(2.5 µM for 30 

min at 37˚C) . b, Flow cytometry of BMDMs following treatments as in (a). Cells were 

stained with MitoTracker deep Red and MitoTracker Green (50 nM for 30 min at 37˚C).  

Numbers above indicate % cells with loss of mitochondrial membrane potential (damaged 

mitochondria). Representative of three independent experiments.  
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Figure 5.15;  Depletion of  autophagic proteins  increases  ROS generation and 
mitochondrial damage following P.aeruginosa PA103ΔUΔT infection. 

 a, Flow cytometry in BMDMs from WT  or Vav-Atg7 -/-  mice , and transfected with  

control siRNA or siRNA to Atg5 as shown. Cells were left BMDMs (basal) or infected  for  

4h at MOI of 25 with PA103ΔUΔT. Cells stained with MitoSox ( 2.5 µM for 30 min at 

37˚C) . b, Flow cytometry of BMDMs transfected with control siRNA or siRNA to Atg5. 

Cells were left untreated (basal) or infected for 4h at MOI of 25 with PA103ΔUΔT. Cells 

were stained with MitoTracker deep Red and MitoTracker Green (50 nM for 30 min at 

37˚C).  Numbers above indicate % cells with loss of mitochondrial membrane potential 

(damaged mitochondria).  Representative of two independent experiments. 
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We then determined whether increased inflammasome activation 

following inhibition of autophagy in infected cells was due to increased 

mitochondrial reactive oxygen production. In BMDMs in which autophagy 

was inhibited by knock down of Lc3b, both NAC and mito-TEMPO 

prevented caspase-1 activation and production of mature IL-1β, without 

affecting TNF production (Fig. 5-16). In BMDMs in which autophagy was 

inhibited by 3MA, both NAC and mito-TEMPO prevented caspase-1 

activation and production of mature IL-1β, without affecting TNF production 

(Fig. 5-17). Similarly, in infected cells from Vav-Atg7-/- mice, Mito-TEMPO 

reduced IL-1β but not TNF production and inhibited the production of 

activated caspase-1 (Fig. 5-18). Finally, we tested the effects of mito-

TEMPO on inflammasome activation in infected BMDMs in which 

autophagy was inhibited by knockdown of Atg5 with siRNA. Again, mito-

TEMPO inhibited the increase in IL-1β production and generation of 

activated caspase-1 that was seen when autophagy was prevented (Fig. 5-

19). 
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Figure 5.16; Increased inflammasome activation produced by gene silencing of  Lc3b 
is dependent on  ROS generation following P.aeruginosa PA103ΔUΔT infection. 

BMDMs were transfected with control siRNA and siRNA to Lc3b. then infected with 

PA103ΔUΔT at MOI of 25 for 4 hr ± Mito-TEMPO (µM), or ± NAC (mM). Figure shows 

Western blot analysis of Pro-caspase-1, caspase-1 p10 subunit, and mature IL-1β and 

level of IL-1β and TNF-α secretion. Columns are means of triplicate independent 

determinations; error bars are SEM. *** indicates significant differences between the 

levels in the presence and absence of mitochondrial inhibitors, p<0.001. Representative 

of two independent experiments. 
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Figure 5.17; Increased inflammasome activation produced by autophagy inhibitor 3-
MA is dependent on ROS following P. aeruginosa PA103ΔUΔT infection. 

 BMDMs cells were pre-treated in media with 3-MA (10 mM) then infected with 

PA103ΔUΔT at ( MOI of 25) for 4 hr ± Mito-TEMPO (µM) ,or ± NAC (mM). Figure shows 

Western blot analysis of Pro-caspase-1, caspase-1 p10 subunit, Pro-IL-1β, mature IL-1β 

and level of IL-1β and TNF-α secretion. Columns are means of triplicate independent 

determinations; error bars are SEM. *** indicate significant differences between the levels 

in the presence and absence of mitochondrial inhibitors, and 3-MA (10 mM), p<0.001. 

Representative of two independent experiments.   
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Figure 5.18; Increased inflammasome activation in the absence of  autophagic 
protein Atg7 induced  Inflammasome activation is dependent on ROS following 
P.aeruginosa PA103ΔUΔT infection.    

 Figure shows Western blot analysis of Pro-caspase, caspase-1 p10 subunit, mature IL-

1β p17 ± Mito-TEMPO and levels of IL-1β and TNF-α in BMDMs from WT or Vav-Atg7 -/- 

mice. Cells left uninfected (Basal), or infected with PA103ΔUΔT for 4hrs at a MOI of 25 ± 

Mito-TEMPO as indicated. Columns are means of triplicate independent determinations; 

error bars are SEM. *** indicate significant differences between WT animals and Vav-

Atg7 -/- mice ± Mito-TEMPO. p<0.001. n.s. not significant. Representative of two 

independent experiments.   
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Figure 5.19;  Increased inflammasome activation in the absence of  autophagic 
protein Atg5 induced  Inflammasome activation is dependent on ROS following 
P.aeruginosa PA103ΔUΔT infection.    

Figure shows Western blot analysis of Pro-caspase, caspase-1 p10 subunit, Pro-IL-1 β, 

mature IL-1 β and levels of IL-1β and TNF-α secretion. Cells left uninfected (Basal), or 

infected with PA103ΔUΔT for 4hrs at a MOI of 25 ± Mito-TEMPO as indicated. Columns 

are means of triplicate independent determinations; error bars are SEM.  **, and *** 

indicate significant differences between control siRNA and siRNA to Atg5 ± Mito-

TEMPO. p<0.001. Representative of two independent experiments.      
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5.2.3 P.aeruginosa produces release of Mitochondrial DNA that is 
essential for activation of the NLRC4 inflammasome  

One consequence of mitochondrial damage is release of 

mitochondrial DNA (Nakahira et al., 2011, Shimada et al., 2012). We 

hypothesised that the mitochondrial damage following P. aeruginosa 

infection would result in release of mitochondrial DNA that would be 

important in activating the NLRC4 inflammasome. First, we assayed for 

cytoplasmic mitochondrial DNA release following infection of BMDMs using 

quantitative PCR. Following infection with PA103ΔUΔT there was a marked 

increase in the relative amount of mitochondrial to nuclear cytoplasmic DNA 

(Fig. 5-20). This was further increased by inhibiting autophagy with 3-MA or 

by knockdown of Lc3b with siRNA (Fig. 5-20a). Inhibiting mitochondrial 

reactive oxygen production with Mito-TEMPO significantly inhibited 

mitochondrial DNA release (Fig. 5-20b). 
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Figure 5.20;  Mitochondrial DNA release following P.aeruginosa PA103ΔUΔT 
infection 

qPCR analysis of cytosolic mitochondrial DNA (mtDNA) relative to nuclear DNA in 

macrophages pre-treated a with Mito-TEMPO (500 µM) or 3-MA(10 mM) or control or 

Lc3b siRNA (b) and infected with PA103ΔUΔT (MOI 25) for 4 hours or uninfected (Basal) 

as shown. Columns show means of three independent determinations; error bars are 

SEM. * and *** indicate significant differences between groups ± 3-MA, or Mito- TEMPO. 

p<0.05, p<0.001 respectively. Representative of two independent experiments.      
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Further to establish the importance of mitochondria in the 

activation of the NLRC4 inflammasome by P. aeruginosa, we grew 

J774A.1 murine macrophages in ethidium bromide to generate cells 

that lack mitochondria (Hashiguchi and Zhang-Akiyama, 2009) 

(ρ0J774A.1). We confirmed that these cells had lost mitochondria by 

measuring cellular mitochondrial DNA content by quantitative PCR, 

Western blotting cell lysates for the mitochondrial protein ATPase 

inhibitory factor and flow cytometry of cells stained with the 

mitochondrial specific dye Mitotracker Green (Fig. 5-21a, b, and c). 

Infection of the ρ0J774A.1 cells with PA103ΔUΔT gave no increase in 

mitochondrial reactive oxygen production (Fig. 5-22a). Moreover, 

when infected with PA103ΔUΔT the ρ0J774A.1 cells lacking 

mitochondria failed to activate caspase-1 and produced significantly 

less IL-1β but similar amounts of TNF. Autophagy, as assayed by the 

formation of LC3 II and appearance of LC3 puncta, was maintained 

in ρ0J774A.1 cells compared to J774A.1 cells (Fig. 5-22b, c, and d), 

showing that loss of mitochondria had not inhibited this process. 

Thus, mitochondria are essential for P. aeruginosa to activate the 

inflammasome. 
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Figure 5.21; Depletion of Mitochondrial DNA following EtBr treatment 

a, Mitochondrial content of J774A.1 cells exposed to EtBr at the indicated concentration 

(ng/ml) measured by qPCR (normalised to untreated cells) and b immunoblot for the 

mitochondrial protein ATPIF1 at low and high exposure time; β-tubulin is show as a 

loading control. c, mitochondrial content of control of ethidium bromide treated J774A.1 

cells (ρJ774A.1) assayed by flow cytometry of MitoTracker stained cells. Representative 

of two independent experiments. 
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Figure 5.22; EtBr abolishes inflammasome activation following P.aeruginosa 
PA103ΔUΔT infection. 

a, Flow cytometry of J774A.1 and ρ˚J774A.1 cells left uninfected (Basal) or infected with 

PA103ΔUΔT (MOI 25) for 4hr and stained with MitoSox (2.5µM for 30 min at 37˚C). b, 

J774A.1 and ρ˚J774A.1 cells left untreated (basal) or infected with PA103ΔUΔT(MOI 25) 

for 4 hrs. The panels show Western blot of LC3 II, pro-caspase-1, the caspase-1 p10 

subunit, Pro-IL-1β, mature IL-1β and β-tubulin as a loading control. Graphs show IL-1β 

and TNF secretion. Columns show means of three independent determinations; error 

bars are SEM.  *** indicate significant differences between the levels in the presence and 

absence of the EtBr (500ng/ml), p < 0.001. c, Immunofluorescent staining of cells 

following infection as in panel b, Panels show staining for LC3 (green), ATPIF1 (red; 

Mito), colocalized red and green signal (Coloc) and merged res and green channels 

together with nuclei stained blue (Overlay). Scale bar is 5µm. All data representative from 

2-3 independent experiments.  
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5.2.4 Mitochondrial DNA directly activates the NLRC4 inflammasome  

Next, we explored the role of cytoplasmic mitochondrial DNA in 

activating the NLRC4 inflammasome following P. aeruginosa infection. We 

transfected BMDMs with DNAse-1, or with a control protein LDH or heat-

inactivated DNAse-1. We then determined the effect of these transfected 

proteins on the activation of the inflammasome. LDH or heat-inactivated 

DNAse-1 did not affect the production of activated capsase-1 or production 

of IL-1β following infection (Fig. 5-23). However, active DNAse-1 prevented 

caspase-1 activation and significantly reduced the production of mature IL-

1β following infection without affecting production of TNF (Fig. 5-23). 

DNAse-1 treatment reduced the presence of cytosolic mitochondrial DNA 

as expected (Fig. 5-23). Transfection of active DNAse-1 also reduced the 

inflammasome activation produced by infection of BMDMs with PAO1 strain 

without affecting TNF (Fig. 5-24). 
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Figure 5.23;  Cytosolic mtDNA is coactivator of  NLRC4 inflammasome activation 
following P. aeruginosa PA103ΔUΔT infection 

BMDMs were transfected with 3 µg DNAse-I, lactate dehydrogenase (LDH), or heat-

inactivated (HI) DNAse-I as shown and then infected with PA103ΔUΔT (MOI 25) for 4 

hrs. The panels show immunoblot of the indicated proteins and β-tubulin as a loading 

control. The graphs show IL-1β and TNF secretion and qPCR analysis of cytosolic 

mtDNA. Columns show means of three independent determinations; error bars are 

SEM. *** indicates significant difference from HI DNAse-I, p<0.001. Representative of 

two independent experiments. 
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Figure 5.24; mtDNA is required for inflammasome activation following P. aeruginosa 
PAO1 infection. 

BMDMs were transfected with 3 µg DNAse-I, lactate dehydrogenase (LDH), or heat-

inactivated (HI) DNAse-I as shown and then infected with PAO1 (MOI 25) for 4 hrs. The 

panels show IL-1β and TNF secretion. Columns show means of three independent 

determinations; error bars are SEM. ** indicates significant difference from HI DNAse-I, 

p<0.01.  
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Mitochondrial DNA may undergo oxidation on release and oxidised 

mitochondrial DNA has been shown to be important in activating the NLRP3 

inflammasome (Shimada et al., 2012). Thus, we set out to determine the 

role of native and oxidised mitochondrial DNA on activation of the NLRC4 

inflammasome in P. aeruginosa infection. Firstly, we transfected native and 

oxidised mitochondrial DNA into LPS primed BMDMs and showed that this 

increased IL-1β but not TNF release (Fig. 5-25a) as has been shown 

previously. Oxidised mitochondrial DNA produced a significantly greater 

amount of IL-1β (Fig. 5-25 a). Digestion of the DNA with DNAse-1 

abrogated the observed stimulation. We then repeated this experiment but 

infected the transfected BMDMs with PA103ΔUΔT. The transfected DNA 

significantly augmented the production of IL-1β in infected BMDMs without 

altering TNF secretion (Fig. 5-25 b). Again, oxidised DNA was more 

effective than native mitochondrial DNA. We repeated this experiment in 

BMDMs infected with PAO1 and found that transfection of mitochondrial 

DNA augmented inflammasome activation (Fig. 5-26). Taken together, 

these data support the conclusion that the release of mitochondrial DNA 

following infection with flagellated or non-flagellated P. aeruginosa is 

essential for subsequent activation of the NLRC4 inflammasome.  
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Figure 5.25; Cytosolic mtDNA is involved in NLRP3 and NLRC4 inflammasome 
activation  

a, IL-1β and TNF secretion from LPS primed BMDMs transfected for 6 hr with 2 µg 

mtDNA, 2 µg oxidised mtDNA, or DNA predigested by DNAse-I.as shown. Columns are 

means of triplicate independent determinations; error bars are SEM. *, ** and *** indicate 

significant difference at a level of p < 0.05, 0.01 or 0.001 respectively for the indicted 

comparison or from the result with oxidised DNA + LPS. b, as panel a but in BMDMs 

infected with PA103ΔUΔT (MOI 25) for 4 hrs as shown. Representative of two 

independent experiments.  
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Figure 5.26; mtDNA is involved in NLRC4 inflammasome activation following 
P.aeruginosa PAO1 infection. 

BMDMs were transfected with native or oxidised mDNA as shown and then infected with P. 

aeruginosa PAO1 (MOI: 25 for 4hrs). Upper panels show ELISA of IL-1β and TNF 

secretion. Columns are means of triplicate independent determinations; error bars are 

SEM. *, ** and *** indicate significant difference at a level of p < 0.05, 0.01 or 0.001 

respectively for the indicted comparison or from the result with oxidised DNA. Lower panel 

shows western blot of pro-IL-1β and mature secreted IL-1β.  
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A number of cytoplasmic DNA sensors might be responsible for 

these observed effects, including AIM2 as well as NLRP3 as previously 

described. We thus examined the effect of transfected mitochondrial DNA 

on IL-1β production in BMDMs from mice with a knockout of the Aim2 gene 

(Rathinam et al., 2010) (Aim2-/-). Compared to wild type macrophages 

(Aim2+/+), the transfected mitochondrial DNA produced less IL-1β in the 

Aim2-/- cells (Fig. 5-27). However, there was still a significant increase in IL-

1β production following transfection of mitochondrial DNA into LPS primed 

Aim2-/- BMDMs (Fig. 5-27a). Oxidised DNA was more effective than native, 

and TNF levels were unaffected. Thus, there is an AIM2 independent 

production of IL-1β stimulated by mitochondrial DNA, as has been 

previously observed and attributed to NLRP3. Similarly, in cells infected 

with PA103ΔUΔT, there was a reduction in amounts of IL-1β produced in 

Aim2 deficient cells, but this was still much greater than the output from 

uninfected cells (Fig. 5-27b). Again, even in the absence of AIM2, 

transfected mitochondrial DNA boosted IL-1β production in infected cells; 

oxidised DNA was more effective and TNF levels were unchanged (Fig. 5-

27b). 
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Figure 5.27; Mitochondrial DNA activates the inflammasome independently of Aim2.   

a, b, IL-1β and TNF secretion from LPS primed BMDMs from Aim2+/+ and Aim2-/-   

transfected for 6 hr with 2 µg mtDNA, 2 µg oxidised mtDNA, or DNA predigested by 

DNAse-I.as shown. Columns are means of triplicate independent determinations; error 

bars are SEM. *, ** and *** indicate significant difference at a level of p < 0.05, 0.01 or 

0.001 respectively for the indicted comparison or from the result with oxidised DNA + 

LPS. b, as panel a but in BMDMs infected with PA103ΔUΔT (MOI 25) for 4 hrs as shown. 

Representative of two independent experiments.  
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Unequivocally to show a role for NLRC4 in the detection of 

mitochondrial DNA, we repeated these experiments using BMDMs from 

mice with a knockout of the Nlrc4 gene (Nlrc4-/-). LPS primed cells were 

then transfected with mitochondrial DNA and inflammasome activation 

determined. Compared to wild type BMDMs (Nlrc4+/+), transfection of 

mitochondrial DNA into Nlrc4 knockout cells produced significantly reduced 

amounts of IL-1β and activated caspase-1 (Fig. 5-28). There was still some 

residual response to mitochondrial DNA in the Nlrc4-/- cells as would be 

expected from the remaining AIM2 and NLRP3, but it was substantially and 

significantly reduced. Therefore, NLRC4 independently can mediate 

activation of the inflammasome in response to transfected mitochondrial 

DNA. We then tested the effect of transfected DNA in infected cells from 

wild type and Nlrc4 knockout animals. Nlrc4-/- BMDMs showed no evidence 

of inflammasome activation following infection, as expected (Fig. 5-29). In 

Nlrc4-/- BMDMs transfected with mitochondrial DNA there was some 

residual stimulation of inflammasome activation after infection, but much 

less than seen in the infected and DNA transfected wild-type cells (Fig. 5-

29). Thus, there is a NLRC4 dependent response to mitochondrial DNA 

independent of other cytoplasmic DNA sensors. 
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Figure 5.28; Role of NLRC4 in activation of the inflammasome by mediated mtDNA.  

The panels show Western blot of pro-caspase-1, the caspase-1 p10 subunit, Pro-IL-1β, 

mature IL-1β in cells supernatant  and β-tubulin as a loading control in LPS primed 

Nlrc4+/+ and Nlrc4-/- BMDMs transfected for 6 hr with 2 µg mtDNA, or with  2 µg 

Oxd.mtDNA. Graphs show IL-1β and TNF secretion. Columns are means of triplicate 

independent determinations; error bars are SEM. *, ** and *** indicate significant 

difference at a level of p < 0.05, 0.01 or 0.001 respectively for the indicted comparison or 

from the result with oxidised DNA + LPS. Representative of two independent 

experiments. 
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Figure 5.29; Role of NLRC4 in activation of the inflammasome by mtDNA following P. 
aeruginosa PA103ΔUΔT infection. 

BMDMs from Nlrc4+/+ and Nlrc4-/- were transfected for 6 hr with 2 µg mtDNA, or with 2 µg 

Oxd.mtDNA and infected with PA103ΔUΔT (MOI 25) for 4 hrs. The panels show Western 

blot of pro-caspase-1, the caspase-1 p10 subunit, Pro-IL-1β, mature IL-1β in cells 

supernatant and β-tubulin as a loading control. Graphs show IL-1β and TNF secretion. 

Columns are means of triplicate independent determinations; error bars are SEM. *, ** 

and *** indicate significant difference at a level of p < 0.05, 0.01 or 0.001 respectively for 

the indicted comparison or from the result with oxidised DNA. Representative of two 

independent experiments. 
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5.2.5 NLRC4 Interacts with and is activated by Mitochondrial DNA  

We hypothesised that the activation of the NLRC4 inflammasome by 

mitochondrial DNA was mediated by binding to the NLRC4 protein. To test 

this, we grew cells in BrdU and prepared cell lysates before and after 

infection. NLRC4 was immunoprecipitated from the lysates and bound DNA 

in the immunoprecipitates detected by probing slot blots of the eluates with 

antibody to BrdU (Fig. 5-30). We added 3-MA to some of the cells prior to 

lysis to block autophagy and thus enhance the release of mitochondrial 

DNA. In lysates prepared from uninfected cells, no DNA was detected in the 

NLRC4 immunoprecipitates., even in the presence of 3-MA (Fig. 5-30a). 

Following infection, NLRC4, but not control, immunoprecipitates contained 

DNA; the amount was further increased in the presence of 3-MA (Fig. 5-

30a). We repeated this experiment, but probed the slot blot with an antibody 

to 8-OH deoxyguanosine, a modified deoxynuceloside found commonly in 

oxidised DNA (Fig. 5-30b) (Maki and Sekiguchi, 1992). NLRC4, but not 

control, immunoprecipitates contained material reacting with this antibody. 

Thus, following infection with P. aeruginosa, NLRC4 has a direct or indirect 

interaction with DNA, including DNA that has undergone oxidation. To 

demonstrate that this DNA is mitochondrial in origin, we performed NLRC4 

immunoprecipitation from both infected J774A.1 and ρ0J774A.1 that lack 

mitochondria. In lysates from infected cells lacking mitochondria, 

immunoprecipitates of NLRC4 did not contain DNA (Fig. 5-31). 
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Figure 5.30; NLRC4 binds mtDNA following P.aeruginosa PA103ΔUΔT infection.   

a, BMDMs were grown in BrdU (10 mM) and infected for 4hr (MOI 25) with PA103ΔUΔT 

in the absence and prescence of 3-MA  as shown before lysates were 

immunoprecipitated with anti-NLRC4 or control rabbit serum as indicated. Bound material 

was slot-blotted to nitrocellulose and then blotted with anti-BrdU. b, as in a, but re-probed 

with antibody to 8OHdG. c, The panel shows separate immunoblot of eluted material 

from NLRC4 immunoprecipitates blotted for NLRC4. Representative of three independent 

experiments. 
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Figure 5.31; EtBr abolishes DNA binding to NLRC4 

a , J774A.1 and ρ˚J77A.1 cells  were grown in the presence of (10mM ) of BrdU to label 

DNA and then left uninfected or infected with PA103ΔUΔT(MOI 25) for 4 hr. Panel shows 

slot blot of elutes immunoprecipitated with anti-NLRC4 or control rabbit serum as 

indicated. b, as in a but re-probed with anti- 8OHdG. c, The panel shows separate 

immunoblot of eluted material from NLRC4 immunoprecipitates blotted for NLRC4. 

Representative of two independent experiments. 
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Next, we set out to determine if the interaction between NLRC4 and 

mitochondrial DNA was important in initiating inflammasome activation. To 

determine if mitochondrial DNA could directly activate NLRC4, we tested 

the effect of mitochondrial DNA on caspase-1 activation in a reconstituted 

cell based assay. This work was performed by Dr. Lee Hopkins in Professor 

Clare Bryant’s laboratory in Cambridge. This comprised of HEK cells 

transfected with expression plasmids encoding NLRC4 and NAIP. These 

cells were then transfected with mitochondrial DNA and activation of 

caspase-1 detected by a fluorescent probe, FLICACasp1. Using a variety of 

transfection reagents, we detected ‘spots’ of activated caspase-1 in cells 

following transfection of mitochondrial DNA, but not in control cells 

transfected without DNA (Fig. 5-32). Thus, mitochondrial DNA alone is 

sufficient in this assay to result in NLRC4 inflammasome activation. 
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Figure 5.32; Mitochondrial DNA activates NLRC4 in HEK cells. 

HEK cells transfected with NLRC4 and NAIP were transfected with and without mitochondrial DNA 

and active caspase-1 localised by immunofluorescent imaging using FLICACasp1. Panels show 

representative images of cells stained with FLICACasp1 (green) and nuclei stained with DAPI (blue) 

using the indicated transfection reagents. Arrows show ‘spots’ of active Caspase-1 formation.  
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5.2.6 Manipulation of autophagy alters inflammasome activation in 
vivo following P.areuginosa infection  

Given that autophagy attenuates the activation of the inflammasome 

by P. aeruginosa infection, we hypothesised that by drug manipulation of 

autophagy we could alter inflammasome activation in vivo. Firstly, we tested 

the effect of adding the known inducer of autophagy, rapamycin, to P. 

aeruginosa infected BMDMs as well as the macrophage lines J774A.1 and 

THP-1. We found that rapamycin augmented the degree of autophagy 

observed during infection, by assay of LC3 containing puncta, also LC3 II 

determination using a validated flow cytometric assay (Fig. 5-33a, b), and 

formation of the LC3 II isoform by Western blot assay (Fig. 5-34). In all cells 

studied, the addition of rapamycin significantly reduced the amount of IL-1β 

produced during infection (Fig. 5-34). Neither rapamycin nor 3-MA had any 

significant effect on the growth of P. aeruginosa in culture broth (data not 

shown).    

 Next, we tested the effect of altering autophagy on an in vivo model 

of P. aeruginosa infection in mice. Animals were infected with the microbe 

intraperitoneally and the effects of augmenting autophagy with rapamycin 

and inhibiting autophagy with 3-MA studied. These treatments boosted and 

inhibited respectively the degree of autophagy in cells recovered from the 

peritoneal cavity as assayed by levels of LC3 II and LC3 puncta per cell 

(Fig. 5-35). We found that rapamycin treatment significantly reduced the 

amount of IL-1β recovered from the peritoneal cavity after infection, but had 

no effect on levels of TNF (Fig. 5-36). Inhibiting autophagy with 3-MA 

significantly enhanced IL-1β levels, with no effect on TNF (Fig. 5-36). As an 
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indicator of disruption to the peritoneal barrier, we measured protein 

concentration in peritoneal fluid recovered after infection. Rapamycin 

significantly reduced the protein concentration while 3-MA enhanced it (Fig. 

5-37). We also measured the numbers of viable bacteria recovered from the 

peritoneal cavity following infection (Fig. 5-38). This showed that 

Rapamycin reduced the numbers of bacteria while 3-MA increased these 

numbers. Thus, increasing the degree of autophagy with rapamycin 

reduces the amount of inflammasome activation and resulting inflammatory 

response following infection in vivo. Inhibiting autophagy with 3-MA has the 

opposite effect. However, increasing the degree of autophagy with 

rapamycin results in lower numbers of bacteria remaining after infection; 

again inhibition of autophagy with 3-MA had the opposite effect.    
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Figure 5.33;  Rapamycin augments autophagy following  P.aeruginosa PA103ΔUΔT 
infection.    

a, representative immunofluorescence images of LC3 in THP-1, BMDM, and 

J774A.1cells. Cells left uninfected (Basal), treated with rapamycin (50µg/ml) for 4 h, or 

infected with PA103ΔUΔT or PA103ΔUΔT+rapamycin for 4hrs at a MOI of 25. Cells were 

stained with DAPI to visualize nuclei (blue), and LC3 staining is shown as green. Scale 

bar 10 µm. Representative of three independent experiments. b, FACS analysis for LC3 

protein following infection with PA103ΔUΔT (MOI 25 for 4h), in the presence and 

absence of rapamycin. Representative of two independent experiments.  
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Figure 5.34;  Induction of autophagy inhibits inflammasome activation in vitro. 

The panels show representative Western blot of LC3 isoforms, and β-tubulin as a loading 

control following infection and rapamycin treatment as indicated. Graphs are means (with 

SEM as error bars) of IL-1β secretion in the same experiment. THP-1, BMDM, and 

J774A.1cells were used as indicated.  *** indicate significant differences between the 

levels in the presence and absence of rapamycin during infection, p < 0.001. 

Representative of two independent experiments. 
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Figure 5.35; Pharmacological  manipulation  modulates  autophagy  following 
infection in vivo.  

Results from intraperitoneal infection of female C57/BL6 mice with PA103ΔUΔT treated 

with rapamycin (R), or 3-methyl adenine as indicated. Panel shows level of LC3 I and II in 

peritoneal cells recovered following infections and treatments as shown; lower panel 

shows mean (±SEM) numbers of LC3 containing puncta per cell. Representative of two 

independent experiments. 
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Figure 5.36; Induction of autophagy inhibits inflammasome activation in vivo following  
P. aeruginosa PA103ΔUΔT infection.   

Results from intraperitoneal infection of female C57/BL6 mice with PA103ΔUΔT treated 

with rapamycin (R), or 3-methyl adenine as indicated.  Graphs shows mean levels (n=3) 

of IL-1β and TNF (error bars are SEM) in the blood (a) and peritoneal washings (b) 

before and 6 hr after infection with the indicated treatments. *and ** and *** indicate 

significant differences from the levels in infected animals with no pre-treatment. 

Representative of two independent experiments. 
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Figure 5.37; Protein concentration following  intraperitoneal fluid infection.  

Protein concentration in peritoneal fluid following infection and treatments as in figure 5-

36. Representative of two independent experiments. 
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Figure 5.38; Autophagy contributes to bacterial killing in vivo following P. 
aeruginosa infection.  

Bacterial colony counts per ml of recovered fluid from the peritoneal cavity with 

treatments as shown. Columns are means of triplicate determinations; error bars SEM. 

Representative of two independent experiments. 
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5.3 Discussion      

We have shown here that mitochondria play an essential role in the 

activation of the NLRC4 inflammasome by the pathogen P. aeruginosa. 

Taken together, these data establish a novel pathway of NLRC4 activation 

dependent on mitochondrial sensing of infection. Flagellin (Miao et al., 2006) 

and components of the T3SS rod and needle complex have been reported 

to activate the NLRC4 inflammasome, utilising proteins of the NAIP family 

as adaptors (Miao et al., 2010, Zhao et al., 2011, Kofoed and Vance, 2011). 

We propose that these bacterial interactions with NAIP proteins are 

upstream of a subsequent initiation of mitochondrial damage and release of 

mitochondrial DNA. Given that NLRP3 activation has also been shown to be 

dependent on mitochondrial DNA release. The mechanism by which P. 

aeruginosa produces this mitochondrial damage is unclear. However, the 

initiation of inflammasome activation and pyroptosis has many similarities to 

apoptosis, in which mitochondria play a key role. For example, the Fas 

apoptosis pathway can results in cleavage of the protein Bid to a form that 

moves from the cytoplasm to mitochondria where it initiates damage and 

release of cytochrome c, amplifying the apoptotic signal (Billen et al., 2008). 

We speculate that in a similar fashion NAIP proteins may translocate to 

mitochondria after activation by flagellin or T3SS rod proteins. 

  The interaction of the T3SS of the microbe with its target cell results 

in mitochondrial production of reactive oxygen intermediates and the 

release of mitochondrial DNA. Through a number of independent 

approaches we have shown that this mitochondrial damage is essential to 

subsequent activation of the NLRC4 inflammasome by this pathogen and 
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that it can be attenuated by selective mitophagy, also triggered by the T3SS. 

We have shown that mitochondrial DNA is sufficient to activate the NLRC4 

inflammasome separately from other DNA sensors; oxidised DNA is more 

potent in this regard than the native form. NLRC4 complexes can bind 

mitochondrial DNA and results in inflammasome activation. Manipulation of 

the autophagocytic pathway in vivo can alter the activation of the 

inflammasome by P. aeruginosa infection and the subsequent inflammatory 

response.  

P. aeruginosa that lack a functional T3SS can activate the NLRP3 

inflammasome by a mechanism that requires a TRIF-dependent activation 

of caspase-11 (Rathinam et al., 2012, Kayagaki et al., 2011). This is a 

slower process than activation via the T3SS as it requires transcriptional 

activation of caspase-11, which typically takes some hours. All the work 

described here was with P. aeruginosa that has an active T3SS which 

produces rapid inflammasome activation that is independent of caspase-11 

and NLRP3 and is abolished in the absence of NLRC4 (Rathinam et al., 

2012, Arlehamn and Evans, 2011). Thus, the involvement of mitochondria 

in the activation of the inflammasome that we describe here is quite 

independent of caspase-11 and NLRP3 involvement. 

  Several groups have shown the importance of mitochondrial damage 

and sensing of released mitochondrial DNA in NLRP3 inflammasome 

activation (Nakahira et al., 2011, Shimada et al., 2012); removal of 

damaged mitochondria by selective autophagy (mitophagy) inhibits this 

activation. Thus, the question remains as to how specific NLRP3 or NLRC4 

inflammasome activation can be achieved through an identical signal. We 
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propose that additional proteins must be involved in triggering either a 

NLRC4 or NLRP3 response. These might be NAIP family members that in 

the context of binding to flagellin or T3SS rod/needle proteins direct a 

NLRC4 response over NLRP3 activation. As the original description of the 

inflammasome makes clear, an activating signal is required to bring 

together an inflammasome complex (Martinon et al., 2002). Thus, the 

presence of particular activated binding partners, such as NAIPs, may lead 

to assembly of the NLRC4 inflammasome, while different protein 

interactions may produce a NLRP3 inflammasome. For example, the 

guanylate binding protein GBP5 has been shown to be important for 

assembly of the NLRP3 inflammasome for some, but not all triggering 

stimuli (Shenoy et al., 2012). Indeed, different inflammasomes may 

assemble at different times during a triggering event such as an infection. A 

role for mitochondrial damage and sensing of mitochondrial DNA may 

therefore be a common factor that is required for the final activation of the 

assembled inflammasome.  

  We show here that immunoprecipitated NLRC4 contains bound 

mitochondrial DNA (Fig. 5-30). Similar results have been found for NLRP3. 

We do not know whether DNA is binding directly to the NLR proteins or if it 

binds to an associated protein. Direct binding to these different NLRs might 

suggest a role for the common central NOD domain of these proteins as 

DNA binding elements; equally, other interacting proteins may be involved. 

Further experiments to define the exact element that interacts with DNA are 

required. 
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  The results presented in this chapter show that autophagy regulates 

NLRC4 activation following P. aeruginosa infection, by selective removal of 

damaged mitochondria – mitophagy. The T3SS of the P. aeruginosa 

triggers a process that leads to the accumulation of full-length PINK-1 on 

the surface of mitochondria (Fig. 5-9) and their removal by mitophagy. This 

acts to abrogate the activation of the NLRC4 inflammasome. We have also 

found that there is a reciprocal effect of inflammasome activation on the 

process of autophagy, such that caspase-1 activation leads to proteolytic 

processing of the signalling intermediate TRIF and hence down-regulates 

autophagy (chapter 4). This is important to consider when evaluating the 

effects of interrupting NLRC4 activation on the production of mitochondrial 

reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting 

NLRC4 activation results in attenuated caspase-1 activity and hence a 

reduction in TRIF processing and increased autophagy. This will lead to a 

reduction in mitochondrial reactive oxygen production and release of 

mitochondrial DNA. We suggest that this is the mechanism that accounts 

for the apparent dependence of mitochondrial damage on NLRP3 as 

reported by (Nakahira et al., 2011).  

  We show using an in vivo peritoneal infection model with P. 

aeruginosa that manipulation of the autophagocytic pathway with rapamycin 

and 3-MA can alter the degree of activation of the inflammasome and 

subsequent inflammation. This reinforces the physiological relevance of the 

mechanisms we have described in this work. Additionally, it suggests that 

manipulation of autophagy could be exploited therapeutically to modify the 

IL-1β response following infection. Clearly, IL-1β plays an important role in 

host defense, but excess production of inflammatory mediators is 
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deleterious as found in sepsis and septic shock. Down-regulating 

inflammasome activation by promoting autophagy in sepsis might therefore 

be a useful therapeutic strategy. Autophagy also has a role in clearance of 

P. aeruginosa; in our model of infection, augmenting or inhibiting autophagy 

decreased or increased respectively the numbers of bacteria recovered 

from peritoneal cavity (Fig. 5-38). 

  In conclusion, the work described here establishes a novel pathway 

by which infection activates the NLRC4 inflammasome, by inducing 

mitochondrial damage and release of mitochondrial DNA. This pathway is 

similar to that described for the activation of the NLRP3 inflammasome by 

LPS and ATP. Further work will be required to establish how each pathway 

operates independently. This study serves to underscore the importance of 

mitochondria in initiating an inflammatory response through activation of the 

inflammasome, and how control of mitochondrial quality through autophagy 

is central in limiting this response. 
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6    General discussion and Conclusions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



242 
 

 It has been proved that mutation of autophagy genes increases 

susceptibility to infection by intracellular organisms in plants, flies worms, 

mice, and possibly to humans. It is suggested that autophagy pathway 

functions of autophagy proteins also have major role in controlling other 

aspects of immunity in multicellular organisms. The autophagy machinery is 

thought to have evolved as a stress response to allow eukaryotic organisms 

to survive in unfavourable conditions probably by regulating energy 

homeostasis and quality control of proteins and organelles. The autophagy 

machinery interacts with cellular stress response pathways (Kroemer et al., 

2010), including those responsible for controlling immune responses and 

the process of inflammation. There is direct   interaction between autophagy 

proteins and immune signalling molecules (Saitoh et al., 2009).  

 

To know whether autophagy is induced by P. aeruginosa, we studied 

this degradative mechanism in BMDMs, dendritic cells, the macrophage cell 

lines J774A.1, and RAW264.7, and the human cell line THP-1 cells. Our 

study revealed that autophagy is induced by P. aeruginosa in BMDMs 

through different pathways including Atg8 (LC3), Atg5 and Atg7. The results 

in chapter 3 and chapter 4 show that Pseudomonas aeruginosa induced 

autophagy and the PA103 pcrV mutant appears to show more autophagy 

than the PA103ΔUΔT strain, that was not dependent on functional T3SS 

but was dependent on TLR4 and the signaling molecule TRIF. PA infection 

also strongly induced activation of the inflammasome which was absolutely 

dependent on a functional T3SS. We found that inhibition of inflammasome 

activation increased autophagy, suggesting that the inflammasome normally 

inhibits this process. Further experiments showed that this inhibitory effect 
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was due to the proteolytic action of caspase-1 on the signaling molecule 

TRIF. Using a construct of TRIF with a mutation in the proteolytic cleavage 

site prevented caspase-1 cleavage and increased autophagy. TRIF is also 

involved in the production of interferon-β following infection. We also found 

that caspase-1 cleavage of TRIF down-regulated this pathway as well. 

Caspase-1 mediated inhibition of TRIF-mediated signaling is a novel 

pathway in the inflammatory response to infection. It is potentially amenable 

to therapeutic intervention. 

 Induction of autophagy following PA infection was determined using 

different methods: - electron microscopy, immunostaining of the 

autophagocytic marker, LC3 and post-translational conjugation of 

phosphatidyl-ethanoloamine (PE) to LC3 using Western blot, RT-PCR, and 

FACS for LC3 intracellular staining. We hypothesized the reciprocal link 

between autophagy and inflammasome activation. To test this hypothesis, 

we studied autophagy in the mouse BMDMs, dendritic cells, the 

macrophage cell lines J774A.1, and RAW264.7, and human cell line THP-1 

cells. Cells were infected with Pseudomonas aeruginosa PA103ΔUΔT, 

which has a fully functional T3SS but lacks translocated toxins and the 

PA103ΔpcrV strain which lacks a functional T3SS and is known not to 

activate the inflammasome. Incubations were conducted using different 

(MOI) and different time, and with Rapamycin 50µg/ml for 4 hours as 

positive control. This led to the redistribution of microtubule-associated 

protein 1 light chain (LC3) from diffuse to punctate staining, which is typical 

of autophagosome vacuoles (Ogawa et al., 2005); (Gutierrez et al., 2004). 

A well-recognised marker of activation of the autophagic mechanism within 

a cell is the conjugation of microtubule associated protein 1 light chain 3 
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(LC3-I) with phosphatidylethanolamine to generate LC3-II, which becomes 

bound to the membrane of the autophagosome (Kabeya et al., 2000). 

During the autophagy process, (LC3-I) undergoes processing to (LC3-II), 

and then the new form is targeted to autophagosomal membranes (Tanida 

et al., 2004).  LC3-I and LC3-II are separated by SDS-PAGE 12% due to a 

mobility shift, and the amount of LC3-II correlates with the number of 

autophagosome vesicles (Mizushima and Yoshimori, 2007).To further prove 

induction of autophagic vesicles in Pseudomonas aeruginosa infected cells, 

western blotting with an antibody against LC3 was done to monitor  

conversion of endogenous LC3-I to LC3-II. The conversion of the cystolic 

form of LC3-I to the lipid conjugated form of  LC3-II increased when BMDM 

were treated with 50 µg/ml Rapamycin for 4 h. Similarly, infection of BMDM 

with Pseudomonas aeruginosa wild-type PA103ΔUΔT and mutant strain 

PA103ΔpcrV also led to a rapid increase in cellular levels of LC3-II within 1 

hour compared to uninfected cells. Our data showed that conversion of 

LC3-I to LC3-II, number of autophagic vacuoles, and LC3 intracellular 

staining was increased when cells pre-treated with lysosomal inhibitors 

such as Pepstatin A, E64d, and Bafilomycin A which prevent loss of LC3-II 

during lysosomal degradation and recycling of the lipid conjugated form 

LC3-II to the cystolic form LC3-I after fusion of autophagosome with 

lysosomes. Therefore these inhibitors increase the autophagy marker (LC3 

protein) via blocking autophagy flux (Mizushima and Yoshimori, 2007).  

Numerous studies have demonstrated a role of potassium efflux in 

both NLRP3, and NLRC4 inflammasome activation (Sharp et al., 2009), 

(Hornung et al., 2008), (Gurcel et al., 2006) (Arlehamn et al., 2010). We 

found that treating of BMDMs, dendritic cells, J774A.1, and human cell line 



245 
 

THP-1cells with a high concentration of KCl 140mM/ml during infection with 

PA increased autophagy.  

The results in chapter 5 show the inhibition of autophagy by other 

means increases the activation of the inflammasome and production of the 

active IL-1β. Thus, autophagy acts normally to limit activation of the 

inflammasome and production of IL-1β. We also addressed another 

important question: How does autophagy limit inflammasome activation? 

Our hypothesis was the production of reactive oxygen intermediates (ROI) 

from mitochondria would be a force driving inflammasome activation, and 

that autophagy could remove sick mitochondria produced in infection and 

thus limit the production of ROI and hence inflammasome activation. We 

tested this hypothesis using specific inhibitors of mitochondrial ROS 

production. These did inhibit inflammasome activation, supporting our 

hypothesis. They were specific as they had no effect on cellular TNF 

production following bacterial infection. Activation of the NLRC4 

inflammasome by pathogenic bacteria is a central event in the innate 

immune response. We set out to determine the role of autophagy in 

controlling the activation of the NLRC4 by the pathogenic bacterium, 

Pseudomonas aeruginosa. We show that infection results in mitochondrial 

damage with increased production of reactive oxygen intermediates and 

release of mitochondrial DNA. This free cytoplasmic mitochondrial DNA 

activates the NLRC4 inflammasome. Autophagy attenuates this activation 

by removal of damaged mitochondria. NLRC4 immunoprecipitates bind 

mitochondrial DNA and transfection of mitochondrial DNA can activate a 

reconstituted NLRC4 inflammasome. Manipulation of autophagy alters the 

degree of inflammasome activation in an in vivo model of P. aeruginosa 
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infection, with modulation of the inflammatory response generated. These 

data demonstrate a novel mechanism by which the NLRC4 inflammasome 

can be activated, with similarities for mechanisms proposed for activation of 

the NLRP3 inflammasome. 

  The mechanism (s) by which the autophagy pathway inhibits 

inflammasome activation are not yet understood. One possibility includes 

direct interactions between autophagy proteins and inflammasome 

components, or indirect inhibition of inflammasome activity through 

autophagic suppression of mitochondrial ROS accumulation, or autophagic 

degradation of danger signals that activate the inflammasome. In line with 

the latter model, the autophagic degradation of amyotrophic-lateral-

sclerosis-linked mutant superoxide dismutase has been proposed to limit 

caspase 1 activation and IL-1β production (Meissner et al., 2010). 

3-MA inhibits autophagy by blocking autophagosome formation 

through the inhibition of type III Phosphatidylinositol 3-kinases PI3KIII which 

is required in the early stage of autophagy process for autophagosome 

generation (Petiot et al., 2000). Inhibition of PI3KIII by 3-methyladenine 

(3MA) or Wortmannin (Wm) has been shown to inhibit starvation-induced 

autophagy (Lum et al., 2005). Our results showed that 3MA (10 mM) is able 

to block Pseudomonas aeruginosa infection -induced autophagy.  A 

previous study showed that LPS plays a crucial role in inducing 

inflammasome activation and IL-1β secretion in embryonic liver 

macrophages from Atg16L -/- mice, suggesting a role for autophagy in 

dampening the inflammatory response to endotoxin (Saitoh et al., 2008). 

Autophagy has also been linked to augmenting and inhibiting inflammatory 



247 
 

responses. In inflammasome activation and induction of cell death by 

pyroptosis, autophagy has been shown to have a marked inhibitory effect 

(Saitoh et al., 2008).  

To demonstrate the crucial role of autophagic proteins during 

inflammasome activation following infection with PA, we isolated 

macrophages from mice with deletion of autophagy gene Vav-Atg7-/-, and 

infected the cells with PA103 ΔUΔT. First, we examined the effect of 

deficiency of the autophagic protein Atg7 on the activation of the 

inflammasome by measuring caspase-1 in BMDM WT, and Vav-Atg7-/- 

animals. Our results show the macrophages from mice lacking Atg7 had 

more of the active, cleaved form of caspase-1 in response to treatment with 

PA103 ΔUΔT than did wild-type macrophages. Additionally, the cleaved 

form of IL-1β, produced from the precursor pro-IL-1β through the action of 

activated caspase-1, was greater in abundance in the lysates and culture 

medium of Vav-Atg7-/- knockout macrophages. To prove induction of 

autophagic vesicles in Pseudomonas aeruginosa infected cells, 

immunofluorescence, western blotting, and FACS with an antibody against 

LC3 as well as RT-PCR was done in Vav-Atg7-/- compared with WT 

BMDMs. Similarly, knockdown of Atg5, and Lc3b mediated by small 

interfering RNA also enhanced IL-1β secretion and activation of caspase- 1 

in BMDM. In addition, secretion of tumour necrosis factor (TNF) in response 

to PA103 ΔUΔT was similar among the genotypes. Collectively these 

results demonstrate that depletion of autophagy proteins enhances 

caspase-1 activation and the secretion of IL-1β in BMDMs macrophages in 

response to PA103 ΔUΔT. Our results agree with the other studies (Castillo 

et al., 2012), their results showed M.tuberculosis infection of Atg5fl/fl LysM-
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Cre+ mice increased IL-1β levels. Other studies have shown inhibition of 

autophagy increases inflammasome activation by increase caspase-1, IL-

1α,β , and IL-18 secretion (Kleinnijenhuis et al., 2011) (Nakahira et al., 

2011). According to (Fujishima et al., 2011) the deletion of Atg7 in intestinal 

epithelium cells treated with LPS induces higher levels of IL-1β mRNA, 

compared to wild type mice. These results suggest that the autophagy 

pathway normally controls and regulates endogenous factors that would 

otherwise induce inflammasome assembly and activation (Harris, 2013).   

According to recent studies, there is a complex relation between 

autophagy and inflammasome activation. According to Newman etal. 2009, 

there is unclear information about the mechanism that accounts for 

autophagy producing inflammasome inhibition is not clear. In the study of 

(Harris et al., 2011) , autophagosomes were proposed to attack the 

inflammasome for the purpose of degradation. Though, since NLRP3 

inflammasome action is concealed by reactive oxygen species (ROS) 

obstruction and autophagy negatively controls ROS generation, it is likely 

that autophagic suppression of ROS restrains inflammasome activity 

indirectly (Okamoto and Kondo-Okamoto, 2012) . 

 

Another complexity in the relation between autophagy and 

inflammasome was put forward in a study by (Suzuki and Nunez, 2008). 

According to this study, inflammasome activation has a negative regulation 

on autophagy. This study found that caspase-1 deficiency promotes 

autophagy in macrophages infected with Shigella.  However, the report 

failed to provide complete information about the reciprocal nature of the 

relation between the two concepts.  
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According to (Shi et al., 2012), and (Harris et al., 2011), the induction 

of autophagy results in the reduction of IL-1β processing and secretion. 

According to Harris et al., 2011, the reduction was shown in cells that were 

treated with LPS or PAM3CysK4. They suggested that induction of 

autophagy is inducing degradation of pro-IL-1β, rather than processing and 

secretion of the mature (p17) form. Similarly, rapamycin abrogated IL-1 β 

secretion in response to treatment with LPS and ATP. The combination of 

rapamycin and LPS powerfully forced the formation of autophagosome in 

LC3-GFP iBMMs. These authors propose that autophagy acts to minimize 

the accessibility of pro-IL-1β under stimulated cells and represents a novel 

mechanism for self-regulation of inflammatory responses by macrophages 

and dendritic cells.  

 

Mitochondrial DNA has recently been emerged as the main element 

that can take active part in the establishment of inflammasome. A study of 

(Nakahira et al., 2011) showed that mitochondrial DNA has an involvement 

in NLRP3 inflammasome activation. Mitochondrial DNA directly induced 

NLRP3 inflammasome activation, because ρ˚ J774A.1cells lacking 

mitochondrial DNA after treatment with EtBr had severely attenuated IL-1β 

production, yet still underwent apoptosis. Thus, the data reveal that 

oxidized mitochondrial DNA released during programmed cell death causes 

activation of the NLRP3 inflammasome. These data supply or expand a 

missing link between apoptosis and inflammasome activation, through 

binding between cytosolic oxidized mitochondrial DNA and the NLRP3 

inflammasome (Shimada et al., 2012).  
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There could be an inverse relationship between the Atg proteins and 

immunity and inflammation and these proteins function both in induction 

and suppression of immune and inflammatory responses and similarly the 

immune and inflammatory signals function in both the induction and 

suppression of autophagy (Levine and Kroemer, 2008). The discovery of 

autophagy proteins and the relation between autophagy, immunity and 

Inflammation will reshape the understanding of immunity and disease. The 

autophagy proteins not only arrange the lysosomal degradation of 

unwanted cargo, but also help in the control of immunity and inflammation. 

Thus, the autophagy pathway and autophagy proteins may function as a 

balance between the beneficial and harmful effects of the host response to 

infection and immunological stimuli. Autophagy has been implicated in 

either the pathogenesis or response to a wide variety of diseases, chronic 

bacterial infections, viral infections, cancers, neurodegenerative diseases, 

and atherosclerosis (Kundu et al., 2008).   

 

Future work 

1- Further studies are necessary to determine how the immune responses 

are altered and specifically and interact with other critical innate and 

acquired immune responses (in vivo model). 

2- Investigate role of autophagy in Ag presentation following PA infection. 

Does blocking or enhancing the autophagy mechanism alter antigen 

presentation following PA infection? 

3- Further studies are needed to understand the molecular link between 

inflammasome activation, pyroptosis, and autophagy, as well as their 
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role in regulating host innate immune response against extracellular 

bacteria. 

4- Further studies are needed to understand how endogenous cytosolic 

mitochondrial DNA connects mitochondrial dysfunction to caspase-1 

activation following PA infection. 

5- Further studies are needed to understand how the pharmacological 

manipulation of the autophagy pathway could be of  therapeutic benefit 

in the treatment of PA infection in vivo. 
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