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SUMMARY 

This thesis reports on the writer's investigations in gas turbine and in combustion. 

Referring first to the gas turbine studies, these have been predominantly on the 

performance aspects, particularly on transient performance of aero gas turbines. The 

existing prediction methods, Continuity of Mass Flow (CMF) and Intercomponent Volume 

(ICV) have been developed and compared. The comparison extended to a two-spool 

turbofan having mixed exhausts (previously only a single-spool engine had been reported 

on). Noticeable differences in predictions were found only in the H. P. compressor while 
the Inlet Guide Vanes were turning and the air flow rate in the H. P. compressor was 

changing rapidly. The ICV method, which is the more valid, predicted lesser movements 
from the steady-running line than the CMF method. 

A major part of the investigation has been a sequence of studies of the effects of heat 

transfers within the engine components on the transient dynamic response of the engine. 
Non-adiabatic flows, boundary layer changes in the compressor, efficiency changes due to 

tip clearance changes and seal clearance changes giving altered leakages were all 

modelled. Significant changes in dynamic response (i. e. speed, thrust etc) could all be 

predicted. The known tendency to surge the compressor when reaccelerating a "hot" 

engine - the Bodie transient - could also be predicted. The lengthening of the response 

time when accelerating on a hydro-mechanical fuel controller (lengthening typically by 30 

per cent) could be predicted. Low thrust (typically by 2 per cent) at the conclusion of an 

acceleration, could also be predicted. 

There are several locations in the engine where disc cooling flows etc return to the main 
flows. These flows may have a significant momentum transverse to the main flow 

direction. These "transversion injection" flows have been studied on a cold cascade rig. It 

was found that vortices could be generated originating from near the separation bubble 

formed behind the injection slot. The averaged losses of stagnation pressure could be 

modelled by a simple one-dimensional theory. The vortices did not seem to damage the 
flow in the succeeding blade row. 

Developments in fuel controller strateiy have, been studied, including the use of a model- 
based observer controller. 
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Developments in fuel pontroller strategy have been studied, including the use of a model- 
based observer controller. 

The writer's experience in modelling and predicting the dynamic behaviour of engines was 

called on by Rolls-R: oyce (R-R) when he contracted to provide the transient model of the 

new RB 183-03 "Tay" Engine. This was to be a two-spool engine of Bypass ratio 3.0 and 

having the Fan and Intermediate Pressure (I. P. ) compressor on the L. P. shaft. This was a 

novel configuration to R-R: haste was needed. A novel means was devised of representing 

the inner and outer portions of the fan. The transient predictions for the engine design were 

provided. The danger of surging the I. P. compressor during a deceleration was predicted. 

This danger could be alleviated (a) by installing an air-bleed from I. P. compressor 

delivery into the bypass duct, or (b) by making the turning rate of the H. P. compressor 

Inlet Guide Vanes less rapid with non-dimensional shaft speed change. The writer was told 

by R-R that the latter choice was not feasible so the air bleed after the I. P. compressor was 

selected for the prototype engines. However Choice (b) was selected for the production 

engines. 

The combustion studies have covered both pre-mixed and non-premixed gas-air systems, 

particularly where the air was given swirl. Flow patterns have been modelled by Swirl 

Numbers. For the non-premixed investigations, three different fuel injection schemes have 

been tested. These schemes are: (a) central axial, (b) radial outwards from the central 

axis and (c) peripheral from an injection slot/holes surrounding the main air jet entry. 
Peripheral injection offers advantages. Component velocity profiles have been measured, 

as have pressures and temperatures. Concentrations of pollutants have been measured. 
Commercial, and locally developed, prediction codes have been tested against the 

experimental data, with fair success. 
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CHAPTER1 

INTRODUCTION 

The subject matterof this Thesis falls into the two major areas in which the author has 

worked - these being "Gas Turbine Performance" and "Combustion". Some of the work 
has been openly published, while other sections of work (for Rolls-Royce Ltd) have been 

given only restricted circulation. The work reported in this Thesis includes both the openly 

published and the restricted papers. Some of the investigations, and subsequent papers, 
have been the work of teams in which the author was a co-worker. The contribution of the 

author to each of the investigations is shown in the "List of Publications by Authoe, which 
follows Chapter II and "Reference Papers by Other Workers" in Vol. I of this Thesis. 

In the first area of study - gas turbine performance - the investigations have concentrated 

on the predicti6n of the performance in transients of aero gas turbines. When the author 

started his study, in 1968, the principal procedures which had already been developed were 

the continuity of mass flow method and the inter-component volume method. Up to this 

stage, workers had generally assumed that the flows in compressors and turbines were 

effectively adiabatic, that the component efficiencies and capacities were the same as those 

measured under steady-running conditions and seal clearance flows were at design 

proportions etc. This set of assumptions can be referred to as "adiabatic" assumptions. 

The present author has made some contribution to the development of the above 

"adiabatic" continuity of mass flow and inter-component volume methods, and he has 

introduced a high-frequency gas dynamic procedure into the latter. These studies are 

reported in Chapter 2. 

The "adiabatic" predictions procedures referred to above were unable to explain a number 

of anomalies which were being observed in "real" engine behaviour. Typical anomalies 

were that an engine at the conclusion of an acceleration could be developing a thrust 

significantly less than the eventual stabilised value, another being that the time taken to 

carry out an acceleration or deceleration was very frequently as much as 30 per cent longer 

than predicted by the adiabatic procedures. Yet another anomaly was that an engine could 
be more prone to compressor surge when re-accelerating from a "hot" condition than when 
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accelerating from "cold". The present author has proposed that these anomalies can be 

explained by "thermal effects". His investigations into these are reported in Chapter 3 

where the "thermal effects" are quantified and models to represent them are developed. 

One of the thermal effects considered to be worthy of examination is the change of 

clearance of seals. Some of these seals control flows which are, for example, used for 

cooling turbine components such as discs. These flows then return into the main flow 

through the turbine. Usually these returning flows will have a transverse component of 

velocity when they return into the main flow. A study has been made of these transversely 
in ected flows, in relation to the performance of turbines, where this effect probably most 
frequently occurs. This study is reported in Chapter 4. 

The investigations reported in Chapter 2,3 and 4 have been integrated in the form of 
Transient Perfonnance Prediction Codes. These have been applied to a two-spool aero 
turbofan engine currently in production, and predictions are presented and discussed in 

Chapter 5. 

The engine fuel control systems used in the studies reported in Chapters 2 to 5 had been of 
the contemporary hydro-mechanical type. The advent of electronic engine control systems 

allows for more sophisticated control strategies. The author has collaborated in 

investigations into developments in engine control systems. This work is reported in 

Chapter 6. 

A major component of this Thesis is the work which the author carried out for Rolls-Royce 

Limited during the period December 1982 to December 1985 when he was engaged by that 

Company to provide the transient modelling of two of their engines - the existing RB 183- 

02, Mk 555, "Spey" Engine and the then proposed RB183-03 "Tay" Engine. The former 

engine was already in service, performing very satisfactorily. The latter engine was, for 

Rolls-Royce, a new configuration having a Low Pressure (L. P. ) shaft system of Fan plus 

Intermediate Pressure (I. P. ) compressor on the same shaft, driven by the L. P. turbine. The 

High Pressure (H. P. ) Core was to be essentially the same as for the Spey Engine. 

Purchasers of the new "Tay" Engine were being sought as from late 1982. The work which 

the present writer carried out for Rolls-Royce is reported in Chapter 7. This work was used 
in establishing the design of the Engine in 1983/84. 
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The investigations by the author on combustion are surnmarised in Chapters 8 to 10 

inclusive. The first studies made by him were on flame stabilisation and on flame 

"spreading", and the three publications arising from that work are discussed in Chapter 8. 

The first two of these Papers had formed the basis of the author's Ph. D. Thesis, written in 

1955/56. 

Starting in 1965, the author undertook responsibility for a programme of research into the 

aerodynamics of swirling jet flows and their utilisation in furnace combustion. The first 

study was on cold jets in "free" surroundings, and then in an "isothermal" model of a 

furnace. This was followed by a study of burning "free" jets and then burning jets in 

furnaces. The swirl generators were of the inclined flat vane type and the fuel gas and air 

were premixed. This work is reported in Chapter 9. 

Non-premixed combustion systems were next examined, at this stage still using only 

gaseous fuel. A range of fuel injection schemes has been studied - central axial, radial 

outwards from the axis and then peripheral around the main air jet. The swirl generator 

most frequently used was of a radial inwards flow type. The study was directed at 

observing, and predicting, the combustion patterns (flow velocities, temperature 

distributions, etc) and also the formation of pollutants (particularly oxides of nitrogen). In 

these studies, the Glasgow University workers have joined with a team at the National 

Engineering Laboratory (NEL), East Kilbride. A major portion of the experimental work 

was carried out on the NEL Furnace facility. The findings of these investigations are 

summarised in Chapter 10. 

Finally, in Chapter 11, some concluding remarks are given on the work submitted by the 

author. 
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CHAPTER 2 

PREDICTION OF TRANSIENT PERFORMANCE OF GAS TURBINES - ADIABATIC 

PROCEDURES 

In the work described in this Chapter it is assumed that "heat transfer effects", or "thermal 

effects" can be ignored. 

The two methods most commonly used to predict the transient behaviour of gas turbines 

are the "Continuity of Mass Flow" and the "Intercomponent Volume" Method. These two 

methods were in use prior to the present author beginning his studies in this area. 
Typically, the two procedures are described by Fawke and Saravanamuttoo (Ref. 1)*. In 

that paper the "Continuity of Mass Flow" Method is referred to as the "Iterative Method". 

The present author prefers to use the title "Continuity of Mass Flow" as this describes the 

thermodynamic basis of the method rather than the numerical procedure that has to be 

followed. 

As the transient prediction work which will be introduced in Chapters 3 and 5 to 7 

inclusive is essentially based on one or other of these methods, they are now explained in 

slightly more detail. 

2.1/ 

Ref Numbers in brackets relate to "Reference Papers by Other Workers", listed after 
Chapter 11. 
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2.1 "Continuily of Mass Flow" (CMF) Method 

In this method it is assumed that at any given instant the mass flow out of the engine 

matches with the mass flow into it, allowances having been made for bleeds and fuel flow. 

The calculation starts with a guessed pressure ratio, or mass flow, at the first compressor or 

fan. This then leads to a set of conditions at entry to the next component. The calculation, 

with further guesses where necessary, proceeds through the engine. The mass flow at the 

turbine(s) and nozzle must be consistent with the non-dimensional characteristics of these 

components. Calculation checks at these locations will cause iterations in which the initial 

guesses of pressure ratio(s) or mass flow(s) are revised until continuity of mass flow is 

achieved. Energy balances are now carried out on the shaft(s) of the engine and 
instantaneous acceleration rate(s) determined. The procedure of Newton is then adopted in 

which it is assumed that this acceleration will continue throughout the next time interval. 

This gives new shaft speed(s) which form the starting point for the calculation procedure at 

the next instant. 

The number of iterative loops (frequently nested) which are required depends on the 

complexity of the engine. For example, for a single-spool engine operating in a range 
where the turbine is not choked, only one iterative loop is required. By contrast, five 
iterative loops may be required for a two-spool turbofan with mixed exhausts. 

Some workers (Ref. 2) have experienced difficulty in achieving convergence of this 

procedure when attempting to simulate more complex engine configurations. The author 
however has been successftil with up to two-spool turbotan engines. This is discussed in 

Paragraph 2.3 below. 

It is to be noted that the initial guesses of pressure ratio(s) or mass flow(s) that are required 
to start a CMF calculation need not be accurate because no results emerge until the 
iterations have converged on the true pressure ratios etc. The weakness of the CMF 

procedure obviously is that no allowance is made for the accumulation of air, or gas, within 
the components and ducts of the engine during the transient. 
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2.2 "Inter-Component Volume" (ICV) Method 

In this method, allowance is made for the accumulation of mass within the components 

and ducts. The procedure requires an initial estimate of the pressure distribution along 

the engine at the conditions corresponding to the start of the transient. Inter-component 

volumes are identified which include an appropriate proportion of the preceding 

component and an appropriate proportion of the next component. The initially 

estimated pressure distribution will give mass flows into, and out of, these inter- 

component volumes. In general, these mass flows will not match, thus air/gas mass will 

accumulate, or diminish, and the pressure in that volume will rise or fall during the 

subsequent time interval. The new pressure in each inter-component volume is 

determined using the equations which satisfy a mass flow balance and an energy flux 

balance. The new pressure distribution forms the sýarting point for the calculation at the 

next time instant. The calculation is essentially a straight-through procedure with no 
iterations. In practice some iteration may be required in order to achieve the correct 
working point on the characteristics of the first turbine. Because of the small values of 
the inter-component volumes compared to the large magnitudes of the air-gas mass flow 

rates, very short time intervals have to be used otherwise instabilities in the numerical 
calculation occur. Thus computing times are significantly longer than for the CMF 

method described previously. Also, poor initial estimated values for the pressure 
distribution in the engine will lead to erroneous results for the first number of time 
intervals. This can be overcome by having a 'stabilisation' period prior to the transient. 

2.3 Comparison of CMF and ICV Methods - Procedures and Predictions 

The CMF Method is iterative. As stated in Paragraph 2.1, some workers (Ref 2) have 

had difficulty in achieving convergence when attempting to simulate the more complex 

configurations such as two-spool turbofans with mixed exhausts. On the other hand the 

author has been able to achieve satisfactory convergence for two-spool turbofans (Pub. 

25,27,28,30,31,35,36,43 and 65 to 73)*. The author's then Research student, 
Pilidis, has achieved convergence when simulating a three-spool turbofan with separate 

exhausts (Ref. 3). 

Pub. Numbers in brackets relate to "Publications by Author" listed after "Reference 
Papers by Other Workers", following Chapter I I. Copies of these Papers are given 
in Vol. II (or as Appendix to Vol. I for Reports to Rolls-Royce). 

6 



Referring to computing times, Fawke and Saravanamuttoo (Ref. 1) found little difference 

in computing times for single-spool engine simulations. In the comparisons which the 

present author has made for the two-spool turbofan (Pub. 43) it was found that computing 
times for the ICV method were longer by a factor of 5 to 10. This is mainly due to the 

efficient iteration procedures used in the CMF program and the necessity for short time 

steps (0.5 ms or less) required in the ICV program to avoid instabilities. With the CMF 

procedure, and its faster computing times, the possibility exists for predicting in real time. 
This it important for possible engine control applications. 

Considering the predictions of thrust response, Fawke and Saravanamuttoo made no 

comment on the consistency, or otherwise, of the thrust responses predicted by the two 

methods for their single-spool engine. The present author has made the comparison for the 

two-spool turbofan as reported in Publication 43. He found that the CMF procedure tended 
to underpredict the time taken for the thrust response, compared with the predictions from 

the ICV procedure. The underprediction was typically about 4 per cent, i. e. noticeable but 

not large. The present author also found that for accurate predictions from the ICV 

procedure, the computation had to be carried out using double precision. The predictions 
from the ICV procedure are of course the more valid because that procedure does make 
allowances for the change that does occur during a transient in the mass of air/gas 
contained within an engine. 

Finally, comparing trajectories within the compressor(s) predicted by the two procedures, 
Fawke and Saravanamuttoo (Ref 1) have given results for the single-spool engine. In an 

acceleration, when the CMF prediction is used, in response to the jump in fuel flow the 

compressor trajectory jumps immediately to a higher pressure ratio point on the same 

constant speed line, while in the ICV prediction the pressure ratio rises more gradually over 

a series of time steps. Thus the predicted ICV trajectory is more "rounded" in the early 

stages. However, thereafter the two predicted trajectories were virtually identical. 

The present author studied the predicted trajectories in the more complex configuration of 
the two-spool turbofan with mixed exhausts (Pub. 43). A common non-dimensional fuel 

schedule was used for both sets of predictions. The predicted trajectories in the Fan were 
essentially identical, hardly digressing from the steady-running line. In the Intermediate 
Pressure (I. P. ) Compressor, again the trajectories predicted by both procedures were almost 
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identical, in this case there being very significant departures from the steady-running line. 

It was only in the High Pressure (H. P. ) Compressor that the predicted trajectories differed. 

During the period when the Inlet Guide Vanes (I. G. V. s) to the H. P. Compressor were 
turning, that is when there was rapid rate of change of demand for air flow into the H. P. 

compressor, the predicted trajectories using the CMF method moved significantly further 

from the steady-running line than those predicted by the ICV method. The over-prediction 

could be as high as 20 to 30 per cent (Pub. 74, p. 18). 

2.4 Inter-Component Volume Method with High Frequency Gas Dy! ]amics 

In the ICV method described in Paragraph 2.2 it was assumed that the pressure variation 

within a particular Inter-Component Volume occurred uniformly along the Volume. The 

physical reality of the changes during a transient is that pressure changes are associated 

with the propagation of pressure waves from the ends of the Inter-Component Volume. 
Models which incorporate this effect may be described as High-Frequency Gas Dynamic 

models. Models where these have been included are reported by Merriman (Ref, 4). 

The present author, with colleagues, has also introduced these gas dynamic effects into the 
Inter-Component Volume methods already used (Pub. 64). For a two-spool turbofan 

engine, the introduction of these high-frequency gas dynamics models into the procedures 
had negligible effect on the predictions of speed and thrust response and on the predicted 
tra ectories in the compressor as the engine was following a transient acceleration or 
deceleration. This observation is to be expected since the speed change of the engine is, in 

effect, a low-frequency transient. Accurate prediction of the low-frequency transient does 

not require the inclusion of the high-frequency gas dynamic effects. This finding is in line 

with a communication with Merriman (Ref. 5). 

The finding that, for the prediction of the response of an engine in a speed transient, high- 

frequency gas dynamic modelling does not need to be included is an important result. It 

confirms the validity of the procedures previously used over many years which had ignored 

the possible high-frequency gas dynamic effects. 
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2.5 Summaly of Findings by Author 

The author has successfully developed models which can make predictions of the transient 
behaviour of gas turbines of types ranging from the simple single-spool engine to a two- 

spool turbofan with mixed exhausts and having, in the low pressure compression system, a 
fan and, for the core air, an intermediate pressure compressor. The models have been 

based on the Continuity of Mass Flow (CMF) and on the Inter-Component Volume (ICV) 

procedures. He has compared the predictions of these procedures for the two-spool 

turbofan configuration described above. The only noticeable differences in predictions lay 

in the thrust responses and in the trajectory in the High Pressure Compressor. The only 

previously published comparison known to the author has been for a single-spool engine, 

where no significant differences in predictions were reported. 

The author, with colleagues, has extended the ICV procedure to include high-frequency gas 
dynamic effects. They showed that this development of the procedure is not necessary if it 
is only speed transient response predictions that are being sought. 
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CHAPTER3 

THERMAL EFFECTS IN GAS TURBINE TRANSIENTS 

In the first attempts to predict the transient performance of gas turbines - as for example 
Reference I and the descriptions in Chapter 2 preceding, paragraphs 2.1 and 2.2 - "thermal 

effects" or "heat transfer effects" were ignored. However by the late 1960s a number of 
"anomalies" were being observed in engine behaviour during transients. The three most 

obvious anomalies which could not be explained by the adiabatic procedures, were: 

(i) The time taken for an engine to complete a speed transient could be 20 or 30 per cent 

- longer than that predicted by the adiabatic transient procedures (Refs. 6,7). 

(ii) When the speed transient had been completed the thrust developed could still differ 

significantly from that which would be developed when the conditions in the engine 
became fully stabilised (Pub. 6). 

(iii) It was frequently observed that when engines are re-accelerated immediately 

following a deceleration - the so-called "Bodie" transient - surge in a compressor 

was more likely to occur than when accelerating the "cold" engine under equivalent 

control conditions (Refs. 8,9). 

The majority of the references cited above to illustrate the anomalies post date 1968, when 
the present author started his study. However, these problems were recognised within the 

industry prior to 1968. 

3.1 Suggested "Thermal Effects" 

Following from his initial studies, the author, in Publications 6 and 8, proposed that the 

anomalies described above could be explained in terms of the following "thermal effects". 

(i) Non-adiabatic flows in fans, compressors and turbines. 
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(ii) Changes in characteristics of compressors due to heat transfers, this effect being 

additional to that resulting from non-stabilised blade tip clearances. 

(iii) Changes in efficiencies of compressors and turbines due to blade tip clearances not 
being stabilised values. 

(iv) Air flows through seals differing from design proportions due to seal clearances 
during the transient differing from design stabilised values. 

(v) Heat absorption in combustion chambers. 

(vi) Delay in the response of the combustion process. 

Bauerfeind (Ref, 6), in 1968, presented the "thermal effects" which he considered to be 

important. His list included all of the above with the exception of effect (ii). The present 

author has independently analysed in some detail all of the effects, with the exception of 

effect (vi). This author's results are now summarised, and his treatments are compared 

with the methods of Bauerfeind and the few others who have tried to analyse "thermal 

effects". 

3.2 Heat absolptions or rejections in compressors and turbines 

In compressors and turbines, convective heat transfers to or from the air-gas stream take 

place both at the blade aerofoil surfaces and at the surfaces of the platforms of the blades, 

and also at the casings. The writer has studied (Pub. 13) how this process can be modelled. 
Average heat transfer coefficients on the aerofoils may be estimated from correlations such 

as those given by Halls (Ref. 10). Considering the platforms, it can be argued that the 

convective heat transfer coefficient there and on the aerofoils will be similar as the 

boundary layer on the end-wall is continuously being restarted from row to row, as on the 
blade aerofoil surfaces. Looking at the blade platform - aerofoil combination, the aerofoil 

may be regarded as a fin mounted on the comparatively massive platform. It was found 

that a very satisfactory representation of the heat transfer rates to or from the platform- 
blade combination was provided by a "Revised Finned Model" in which the finning effect 

of the blade on the platform modifies as the transient develops. 
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This modelling technique was then used (Pub. 6) to study the heat transfer rates along a 

multi-stage compressor (in this case 17 stage). Heat transfer rates were predicted at th e 

various stages of the compressor and compared with work transfer rates using a parameter, 
f where: 9 

f= rate of heat transfer to air / gas in a stage 3.1 
rate of work transfer from air / gas in that stage 

For a typical adiabatic, polytropic compression, across an element of the compression path 

e. g. a stage or blade-pair, one can write: 

dT 
ý_ y-I dP 

... 3.2 
T qi,, yP 

n-I dP 
nP 

3.3 

where P and T are the stagnation pressure and stagnation temperature respectively, 'npc is 

the polytropic, or small-stage, efficiency of compression and n is the polytropic (adiabatic) 

index. When the flow is not adiabatic, as in a transient, the temperature change, dT, has to 
be modified by the multiplier (I - f) so: 

dT (1-f) y-I dP 
... 3.4 

TyP 

m-1 dP 
... 3.5 

mP 

the index of the polytropic non-adiabatic compression being represented by "m". At a 

given instant in a transient, the parameter f is reasonably constant along the compressor 
(in this case). Equation 3.5 can then be integrated to: 
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M-1 

. ut 
T 

[p 

Tin 

-- 

Piun' 3.6 

For turbines, by equivalent argument, the index ((m - 1)/m) in Equation 3.6, which again 

applies, is given by: 

M-1 Tipt 

m 
3.7 

The polytropic, or small-stage, efficiency will be the same in the case with heat transfer as 
in the adiabatic case, unless it has been altered by a mechanical means such as a change in 

tip clearance. This procedure adopted by the present author is more sound and more 

adaptable than that described by Thomson (Ref, 7) in which the efficiency parameter used 

changes with heat transfer rates. 

Using the present writer's approach, work transfer rates are easily found using the changes 

in stagnation enthalpy given by Equation 3.6 coupled with the fractional heat transfer 

parameter, f. 

[As an aside, it should be noted that in Publication 6 the present author used the, then, non- 

standard definition of the direction of heat transfer as being positive when it is from the 

working fluid. The then standard definition, and definition of f, as given in Equation 3.1 

above, has been used in all subsequent publications and in this Thesis. ] 

With the above modelling of non-adiabatic compressions and expansions, the writer 

studied the behaviour of a single-spool engine (Rolls-Royce Avon) immediately following 

an acceleration at sea-level static conditions (Pub. 6). At 15s from the start of the 

acceleration, and some 3s after achieving maximum speed, the thrust was low by about 1.7 

per cent, compared with the thrust which was developed some 45s later. This discrepancy 

was very satisfactorily explained as being mainly due to heat absorption in the turbine (f =- 
0.03), heat absorption in the compressor (f = +0.01) and low engine air flow (44 per cent), 
presumed due to higher blade tip clearances. This transient in which the speed is 

maintained constant while thermal equilibrium is attained has been called by the writer the 

"Thermal Soak" transient. 
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The satisfactory agreement between predicted performance changes due to heat transfer 

during the thermal soak transient and those actually observed gave encouragement to 

further study. 

The present writer considered it would be advantageous if the thermal representation of a 

multi-stage compressor or turbine could be simplified from the procedure in which the 

temperatures of the aerofoils and platforms in all rows of blades had to be followed. An 

alternative would be if a characteristic or representative blade row could be used. He 

examined this approach and found that very reasonable representation was obtained. 

Discrepancies in heat fluxes were predicted not to exceed 5 per cent except during the final 

2s of a transient when they could rise to between 10 and 15 per cent (Pub. 24). This single 

"characteristic row" representation has been used to quantify heat fluxes in compressors 

and turbines in the engine transient programs, as subsequently described. 

3.3 Changes in Characteristics of Multi-Stage Axial-Compressors due to Heat Transfers 

Three mechanisms have been proposed by the author whereby heat transfers during 

transients might cause the characteristics of compressors to differ from the steady-running 

characteristics. These proposed mechanisms are: 

(i) Changes in density due to the heat transfers which alter the distribution of axial 

component of velocity along the blade-pairs of the compressor - thus inter-stage 

matching is altered. 

(ii) The heat transfers between the air flow and the blade aerofoil material could alter the 

development of the boundary layers on the blade aerofoils, leading to altered average 
turning angles of the flow and possible delayed or advanced separation of the flow 

over the suction surface. 

(iii) Heat transfers with the blade platforms and casings might alter the development of 

end-wall boundary layers - in particular their displacement thickness. Thus end-wall 
blockage is altered. 
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The first mechanism above was theoretically investigated, in 1973 (Pub. 8), the second in 

1977 (Pub. 17) and the third in 1982 (Pub. 26). These mechanisms, their analyses and the 

relevant Publications are now reported in more detail. 

3.3.1 Effect of Density Changes due to Heat Transfer 

As stated above, during a transient there will be heat transfers between the air as it flows 

through the compressor and the various blade aerofoils, platforms and casings. Thus at any 

given instant in the transient, for that particular inlet non-dimensional mass flow, the non- 
dimensional axial component of velocity in the later stages (or blade-pairs) of the 

compressor will differ from what they would have been under steady-running, Le. 

adiabatic, conditions. Thus the inter-stage matching in the transient differs from that under 

steady-running conditions. Hence the overall pressure rise achieved in the complete 

compressor, and the efficiency of that compression, will differ from that obtained under 

steady-running at the same non-dimensional inlet mass flow and rotational speed 

conditions. The present author examined this effect, using the "stage-stacking" procedure 
described by Huppert and Benser (Ref. 11) and inserting between blade-pairs, or stages, the 

density change due to heat transfer. First results were reported in Publication 8. 

Significant movements of the constant-speed line and of the surge line were observed, 

surge line being moved advantageously in an acceleration, but disadvantageously in a 

deceleration, hence the perceived danger in a "Bodie" transient. The author referred to 

these effects as being due to "bulk" density changes. 

In subsequent studies (Pub. 3 1) the author, supported by colleague Pilidis, proposed that 

the movement of the constant-speed line could be regarded as a change to a new "effective" 

non-dimensional speed, and the new "effective" non-dimensional speed could be related to 

the actual non-dimensional speed by: 

N] 
[ýý= 

AN 
in 

+T... 3.8 
Ti, Tin Ti, 4 

in .] 

where 
AN 

= Ci 
06... 

3.9 
Nact 

MCPT. 
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Symbol N represents the rotational speed (typically in r. p. m. ). Symbol 6 
represents the 

summation of the thermal fluxes from the compressor materials to the air and 
ý 

represents the instantaneous air mass flow. Symbols Ti,, and T.. represent respectively the 

air inlet stagnation temperature and the mean air stagnation temperature within the 

compressor. (Stagnation temperatures are taken as being very good approximations for the 

corresponding adiabatic wall temperatures). Subscripts "eff' and "act" refer to "effective" 

and "actual" conditions. 

Similarly it was proposed that changes in predicted surge pressure ratio, at a mass flow, 

due to this effect could be modelled by: 

Rht -1 
=1+ C2f 

Rad -' 
3.10 

where Rht represents the surge pressure ratio under the transient heat transfer conditions 

and Rad represents that under steady-running, i. e. adiabatic, conditions. 

3.3.2 Changes due to Heat Transfer to or from Blade Aerofoils 

The present writer proposed (Pub. 6) that heat transfers between blade aerofoils and the 

passing air stream might cause alterations in the development of the boundary layers on the 

aerofoil surfaces. In particular, in a proposal to Rolls-Royce Ltd in 1968, he suggested that 
heat transfers from the aerofoil to the air, such as occur during and following a 
deceleration, might lead to an earlier separation of the flow on the suction, or convex, 

surface. Rolls-Royce sponsored a research on this subject and a Research Assistant, A. D. 

Grant, was engaged. Both experimental testing on a large convex aerofoil type surface and 

predictions using a momentum integral code did indeed indicate a noticeable influence of 
heat transfer on separation on convex surfaces. Heat flow from the aerofoil surface, as 
during and following a deceleration, did lead to earlier separation (Refs. 12,13). 

The prediction code which had thus been experimentally validated was applied to the blade 

geometries of the twelve-stage H. P. Compressor of a two-spool turbofan. An acceleration 

rate, and the corresponding air flow changes, were taken from experimental results. 
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Predicted changes in the overall characteristics of the compressor were obtained, with new 

positionings of the constant speed lines and of the surge line (Pub. 17). These movements 

were in the same direction, in a given transient, as the predicted movements due to "bulk" 

heat transfers, described in Paragraph 3.3.1 above. [In this work for Publication 17 which 

came later than the first work on "bulk" heat transfer effects (Pub. 8), a row-by-row 

procedure for the prediction of the compressor characteristic was used, based on the 

correlations of Howell and Bonham (Refs. 14,15), rather than the stage-stacking procedure 
first used. ] 

In subsequent work, the writer and his colleague Pilidis have proposed (Pub. 3 1) that the 

changes in "effective" non-dimensional speed could be related to the temperature 
difference between aerofoil and air: 

AN C3 
Tb - Tair 

N T. ir 
3.11 

where Tb represents the blade aerofoil temperature and T. j, the stagnation temperature of 

the adjacent core air flow. It was also proposed that the change in surge pressure ratio, at a 

mass flow, due to this effect could be modelled by: 

Rht -1 
ý-- 1+ CJ 

... 3.12 Rad -1 

where the subscripts have the same meaning as in Eqn. 3.10. 

Predictions of the combined alterations in compressor characteristics resulting from both 

"bulk" density changes and aerofoil boundary layer changes were presented in Publication 

17, referred to above. Transients at altitudes, as expected, showed the greatest effects. At 

the conclusion of a deceleration of a two-spool turbofan when at 12,200 rn altitude, Mach 

number 0.61, it was forecast that the "effective speed" of the HP compressor was reduced 
by about 0.3 per cent and the maximum pressure rise that could be achieved by the 

compressor (i. e. to surge) was reduced by about 10 per cent, at a mass flow rate. Although 

the change in effective speed seems very small, it is not trivial as the compressor is in the 
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range where the Inlet Guide Vanes are turning and small speed changes are associated with 

substantial air mass flow changes. 

The predicted changes quoted above resulting from the transient heat transfer were due in 

roughly equal proportions to the aerofoil boundary layer changes and the bulk density 

changes. 

3.3.3. Chanizes due to Heat Transfers to or from End-Walls 

In an adiabatic investigation, Koch (Ref, 16) demonstrated how the development of end- 

wall blockage at a particular blade-pair or stage of a compressor varied with the pressure 

rise that was being achieved by that blade-pair - the higher the pressure rise the thicker the 

end-wall boundary layer. The present writer took this method and developed it into a 

means of predicting the overall characteristics of a multi-stage axial-flow compressor when 

running under adiabatic, i. e. steady conditions (Pub. 26). The writer then considered the 

effects of heat transfer from or to the end-wall casings and blade platforms on the 

development of the end-wall boundary layers and how these changes will affect the overall 

characteristics of the compressor. Some results from this procedure are given in 

Publication 26, the procedure there being labelled Prediction Method "2". Just as the 

predicted movements in transients of the constant-speed lines and of the surge line due to 

aerofoil boundary layer effects have been in the same direction, or additive, to those due to 

"bulW' heat transfer effects, the movements due to end-wall boundary layer changes are 

also additive. In an acceleration, all three effects cause roughly similar changes towards 
increasing the "effective" speed and raising the surge line. However in a deceleration, the 

dominant effect seemed to be that due to density changes arising from bulk heat transfers. 

This small readjustment in the relative significances is attributed to the fact that the ratios 

of heat transfer to work transfer, i. e. parameter f, are larger during decelerations than 

accelerations. 

In the later investigations (Pub. 31), the present writer and his colleague Pilidis proposed 
that the changes in "effective" speed could be modelled by: 
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AN 
= Cs 

Tw -T. ir 
N Tir 

3.13 

where T, is the temperature of the end-wall. Similarly it was proposed that the changes in 

surge pressure ratio, at a mass flow, due to this effect could be modelled by: 

Rh, -1 
Rad -1 

=1+ C6f 
... 3.14 

3.3.4 Summation of Predicted ChanRes due to Heat Transfers 

The models for the three mechanisms described above may be added to give, for changes in 

effective speed: 

0 
AN 

= C7 
Tb - Taie 

+CQ... 3.15 
N T. 

ie LPT. 

For changes in surge pressure ratio, the composite expression becomes: 

Rht -1 =1+ Cqf 
Rad -1 

3.16. 

The values proposed in Publication 31 for constants C7. C8 and C9 for the L. P. Compressor 

of a particular two-spool turbofan (RR Spey) were -0.07, -0.07 and 0.36. In the H. P. 

compressor the corresponding proposed values were -0.1, -0.1 and 0.36. Strictly, for the 

H. P. Compressor, which has moveable Inlet Guide Vanes (IGVs), the values of the 

constants C7 and C8 referring to changes in "effective" speed will vary depending on 

whether the transient is exclusively within or outwith the IGV turning range. In most cases 

the transient will partially cross the IGV turning range and the values of -0.1 and -0.1 

given above for constants C7 and C8 are mean values in such transients for the two-spool 

turbofan. 
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CHAPTER 4 

EFFECTS OF TRANSVERSE INJECTION 

There are several locations in a gas turbine where an air/gas flow is injected transversely 

into the main, axially flowing, air/gas stream. The most frequent location is where air, 

tapped off from some plane in or after the HP compressor and then used to cool a turbine 

disc, is then returned to the main gas stream flowing through the turbine. This returning 

cooling flow will have a major component of momentum normal to the main gas flow. 

The author thought that this should be studied to detennine if this transverse injection led 

to any adverse effects in the main flow - other than the obvious loss of mass flow through 

the earlier nozzles, and possibly stages, of the turbine. 

The author had the assistance of research students in these investigations (Pub. 18,19,21, 

22) and also the work of a colleague (Pub. 23). 

In the initial study, the flow mechanism was studied in a "cold", straight cascade of high 

aspect ratio (3.0). This aspect ratio was chosen in order to ensure that, at mid-blade height, 

there was minimal effect of secondary flows. The early investigation (Pub. 18) showed the 

creation of a separation bubble on the end wall behind the injection slot, more pronounced 

secondary flows outwith the boundary layer on the end-wall behind the injection slot, and 

the formation of a vortex-like flow originating at the suction surface end of the separation 
bubble behind the injection slot. In the traverse of the flow emerging from the cascade, 

when this continuing vortex was reached, there was a reduction in the main forward flow 

velocity relative to the unaffected plateau velocity. For the most extreme transverse 
injection rate observed, injection velocity 1.5 times the main velocity, the forward velocity 
in the core of the vortex at the cascade exit was lowered to about 0.82 of the unaffected 

plateau velocity. 

Attempts were made to quantify the changes in the more obvious performance parameters, 

resulting from the transverse injection (Pub. 19). The changes in flow capacity and nozzle 

efficiency were in line with a simple theory. Further, attention was given to quantifying the 
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strength of the vortex, mentioned above, which arose from the transverse injection. Three 

possible measures were offered, and results given. 

As mentioned above, the aspect ratio of the blades in the above work was high, at 3.0. The 

next development in the study was to investigate the influence of aspect ratios. Results 

were reported (Pub. 21) for aspect ratios of 1.5 and 1.0. The simple theory, previously 

offered, again was in agreement with flow capacity and efficiency changes. The vortex 

created by the transverse injection was slightly reduced, but persisted. 

A colleague (in Canada) had available an annular cascade and this allowed a useful 

validation (Pub. 23) of the results already obtained in straight cascades. Additionally, it 

was possible in this annular cascade to introduce skewing of the approaching end-wall 
boundary layer (the usual case in turbines). When there was no transverse injection 

immediately in front of the cascade, this skewing had produced considerable effects on the 

secondary flows in the cascade. However when transverse injection was introduce, these 

effects on secondary flows were noticeably reduced. 

There remained the problem of what damage the vortices resulting from transverse 

injection, identified in Publication 18, might do to the flow in the later blade rows. This 

topic was the subject of another investigation, and reported in Publication 22. The flow in 

the next row of blades appeared not to be adversely affected, pressure losses possibly being 

reduced, and the vortices largely suppressed. 

In view of the above studies, it was considered that cooling air flows to discs etc, 

subsequently injected transversely into the main air/gas flow, should incur, for engine 

performance calculations, only the penalty due to the loss of effective mass flow through 

the particular turbine blade pair (or stage). 
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CHAPTER 5 

APPLICATION TO A TWO-SPOOL TURBOFAN ENGINE 

The transient prediction procedures described in Chapter 2 were developed by introducing 

the "thermal effects" models of Chapter 3 and the "transverse injection effects" models of 

Chapter 4. This prediction procedure was then applied to a two-spool turbofan engine in 

which both the Fan and the I. P. Compressor are carried on the L. P. shaft. The engine used 
for this investigation was essentially the Rolls-Royce "Tay" Engine. (The present author 

had contributed considerably to the design of the "Tay" Engine, described in Chapter 7 of 

this Thesis). The more recent investigation, including "thermal effects", etc, was reported 
in Publication 43. This Publication also included a comparison of the Continuity of Mass 

Flow (CMF) and the Intercomponent Volume (ICV) Methods of transient engine 

prediction. 

The principal conclusions of this study were: 

1. The CMF method of prediction generally agreed with those of the more computer 
intensive ICV method, except when the engine was accelerating most rapidly as the 

Inlet Guide Vanes (I. G. V. s) were opening and the H. P. Compressor Bleed valve was 

closing. The more true predictions of the ICV method were always towards less 

extravagant trajectory movements from the steady-running line. Thus, if an engine's 
design were based on the CMF predictions, it would be erring on the safe side. (No 

comparison of these two prediction methods for an engine of this complexity had 

hitherto been published. ) 

2. With regard to the predicted trajectories in the compressors during transients, and 

considering first the adiabatic case: (a) trajectories in the Fans all lay close to the 

steady-running working line, (b) in the I. P. compressor the trajectories moved 

markedly from the steady-running line whenever the H. P. compressor Inlet Guide 

Vanes (I. G. V. s) were turning - the trajectory moved to a lower pressure ratio during 

the acceleration, and to a higher pressure ratio when decelerating (danger of surge 
(! )), (c) the trajectories in the H. P. Compressor were similar to those in the 
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compressor of a single-spool engine - towards the surge line in an acceleration and 
below the steady-running line during a deceleration. 

3. Considering the alterations to the predicted trajectories when "thermal effects", as 

described in Chapter 3, are allowed for: (a) the "heat transfer" effects had 

insignificant influence on the predictions in the Fan (outer and inner) and in the I. P. 

compressor, (b) in the H. P. compressor, during an acceleration of a "cold" engine, 

inclusion of heat transfer effects indicated that the predicted trajectory was moved 

less markedly towards the surge line, and in the deceleration the predicted trajectory 

did not move as far below the steady-running line as predicted for the adiabatic 

situation - but more importantly when a re-acceleration of a "hot" engine (the 

"Bodie" transient) was attempted, again using the hydro-mechanical fuel controller, 

then the trajectory in the H. P. compressor moved markedly further above the steady- 

running line, towards the altered surge line, and could encounter surge. This was in 

contrast to the situation of accelerating the same engine when "cold" (with the same 

hydro-mechanical fuel control system and schedule). For the "cold" engine, the 

acceleration was predicted to be free from surge. 

4. Considering the thrust response, again using the conventional hydro-mechanical fuel 

controller and schedule, the time to accelerate from idle to maximum speed was 

predicted to be about 25 per cent longer, when the "thermal effects" were allowed 
for, as compared to adiabatic predictions. Of course the thrust response followed the 

shaft speed response, particularly the L. P. shaft speed. 

5. It was additionally predicted when "thermal effects" were allowed for, that the thrust 

developed by the engine when it had reached, and steadied at its maximum speed (as 

dictated by maximum fuel flow) was about 2 per cent, or more, below its final value. 

It was predicted that the final value would not be attained until the engine had been 

running for about 3 minutes at its maximum fuel flow. 

The predictions, when "thermal effects" are included, quoted under headings "3" and "4" 

above - namely surge danger in Bodie transient, slower accelerations of engines cf 

adiabatic engines, and low thrust when maximum speeds are first attained following 

accelerations - are in line with observations of actual engines. 
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The author considers that the "thermal effects" allowances should be included in transient 

prediction procedures for actual engines. 
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CHAPTER 6 

DEVELOPMENTS IN CONTROL OF GAS TURBINE ENGINES 

In the transient procedures reported in Chapters 2 to 5, it had been assumed that the engine 

was using a conventional hydro-mechanical fuel control system. This system is in fact 

used for the Rolls-Royce "Spey" and "Tay" Engines. In these cases, the fuel schedules are 

in the form, for the "Spey" Engine, of 
JIN,, 

p P2)as a function of H. P. compressor ratio 

0 (P3/P2)- Symbol f represents the fuel flow, NH the H. P. shaft speed and P2. P3 the 

pressures at inlet to and exit from the H. P. compressor. In the studies on this engine (Pubs. 

30,3 1) it had been predicted that a "cold" engine accelerated slowly, but used a diminished 

amount of the available surge margin in the H. P. compressor. On the other hand, when the 

engine was accelerating when "hot" (the Bodie transient) it accelerated very rapidly, but the 

trajectory in the H. P. compressor was in danger of encountering surge. This led the author 

to think of compensating the accelerating fuel schedule such that the fuel flow was 

enhanced when the engine was cold, but was reduced when the engine was hot. Two such 

proposed methods of compensation involved (a) the temperature of a characteristic blade 

in the H. P. compressor and (b) a "delayed" H. P. shaft speed. The results of this study 

were reported in Publication 35. The "delayed" H. P. shaft speed appeared to offer the 

more effective compensation. 

More sophisticated methods of fuel control are being utilised in the industry - for example 
the Full Authority Digital Electronic Control (FADEC) system. With a view to taking 

advantage of electronic control systems, the author was privileged to collaborate with 
Professor P. J. Gawthrop and O. F. Qi. The first task was to use a multivariable nonlinear 

controller. It was shown (Pub. 50) that this could improve the engine dynamic response. 
This was developed in Publication 5 1. Subsequent studies involved a gain-scheduled 
controller (Pub. 53) and a "model-based observer" (Pubs. 52,63). 

The adaptations taken by a model-based observer should accept some of the engine 
abnormalities caused by thermal effects e. g. loss of efficiency of components due to 
transiently increased tip clearance, and increased seal clearance flows. However they will 
not recognise changes, due to thermal effects, in the characteristics of the compressors. 
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Further study is needed here to blend compressor characteristic changes - namely surge 
line and speed line movements - with the beneficial features of "model-based observer" 
controllers. 
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CHAPTER 7 

DESIGN OF ROLLS-ROYCE RB 183-03 "TAY" ENGINE 

The author was approached, in December 1982, to provide a transient prediction program 
for an engine which Rolls-Royce was proposing - the RB 183-03 Engine (later christened 

with the name "Tay"). The author accepted this invitation. The responses to this 

agreement are given in Publications 65 to 73 inclusive, contained as Appendix in Volume I 

of this Thesis. 

The first step in the contract was that the author should produce a satisfactory transient 

model for the RB 183-02 "Spey" Engine - which was currently in production, and 

providing satisfactory performance for customers. A satisfactory model was produced and 

reported in Publication 65 (March 1983). 

The next step was to create a simulation model for the "Tay" engine. The characteristics 

for the compressors provided by Rolls-Royce were all to a base line of non-dimensional 

mass flow. This was completely satisfactory for the Intermediate Pressure (I. P. ) and High 

Pressure (H. P. ) compressors of the Tay Engine. However for the Fan, this component was 

divided into an "Inner" and an "Outer" section, each with its own pressure ratio (and 

efficiency) characteristic to the base line of non-dimensional mass flow. To the present 

author, this seemed virtually to constrain the engine to operate at a fixed bypass ratio for 

any given non-dimensional speed. This seemed inappropriate for transients. Therefore the 

model which this author evolved incorporated allowance for movement of the streamline 

which arrived on the splitter behind the fan dividing the core and bypass flows. The factor 

which quantified this adjustment was labelled the "fraction of split" (FCSP). The method 

of the determination of this variable FCSP is illustrated on Fig. 7 of Publication 73. 

The first results, for sea level conditions, for simulation of the "Tay" engine were reported 
in Publication 66. The predictions were then extended to altitude conditions (Pub. 67). 

The potential risk of surge in the I. P. compressor when decelerating was recognised. An 

air bleed (to the bypass duct) from between the I. P. and H. P. compressors was considered, 

and predictions presented (Pub. 68). 
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Time was not available to incorporate the thermal capacities, heat transfer areas, etc, 

necessary for the creation of the thermal transient models being developed in Chapter 3. A 

"fix" that had been used, with realistic effect, had been to scale up the polar inertias of the 

shafts by a factor of, typically, 1.3. This factor was introduced in Publication 69, along 

with studies of turbine efficiency changes. 

An examination of the potentials of changing the transient fuel schedule under the hydro- 

mechanical fuel controller was then made (Pub. 70). The author also proposed in that 

Publication that the (NH/4T) range of the turning of the Inlet Guide Vanes (I. G. V. s) of the 

H. P. compressor be extended, such that in a deceleration, the IGVs did not finish "closing" 

until a lower (NHIqT). 

An examination of gross inertia changes was then made for Publication 71. The case was 

examined of the inertia of the L. P. shaft being reduced by a factor of 4.3 (to bring it to the 

value of the Spey Engine). As expected, the deceleration trajectory in the I. P. compressor 

now made only slight excursion from the steady-running line towards the surge line. 

The case of a Spey Engine with an L. P. shaft inertia scaled up by the factor of 4.3 was also 

examined. While the deceleration trajectory movements in the L. P. compressor were now 

more marked, they did not encounter surge (Pub. 7 1). 

The design of the Engine was revised on 13 June 1983 such that from that date the inertia 

of the L. P. shaft was reduced from 415 lb ft2 to 260 lb ft2 . Revised predictions were 

produced (Pub. 72). Surge margin usage in the I. P. compressor during decelerations, 

under the same fuel schedule, was reduced. Rates of thrust reduction were increased. 

An alternative I. G. V. turning range schedule was also examined in this report (Pub. 72) - 
this schedule having an (NH/qT26) range from 513 to 586 as against the range 552 to 586 of 

the original specification H. P. compressor. (T26 represents the temperature at I. P. 

compressor delivery). This extension of the I. G. V. turning range to lower the "closed" 

(NH/qT26) value, while retaining the "fully open" value, thus slowing the rate of turning, 

gave significant easing of the deceleration trajectories in the I. P. compressor. A 

development of this nature was suggested by the author, but he was told at that time that 

the I. G. V. turning range of the H. P. compressor could not be changed, for other reasons. 
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Early in July 1983 the author was informed by Rolls-Royce that the surge line in the I. P. 

compressor had been revised downwards. The original surge line and this revised surge 

line (marked as Jan 1984) are shown in Figs 13,15 etc of Publication 73. 

Later that month (July 1983), the design of the RB 183-03 was being finalised. In view of 

the predicted marginal surge in the I. P. compressor when decelerating under 
(0.9 x (CASC21 1) - see Fig 13 of Pub. 73 - it was decided that the design should include a 

provision of a5 per cent air bleed from the I. P. compressor delivery to the Bypass duct - to 

be activated only in decelerations. 

The Reports to Rolls-Royce (Publications 65 to 72 incl. ) had been written for specific 

requirements, as the design of the engine, and airframe manufacturer's specifications, 

progressed. These Reports were summarised in the later Report RR/l, Publication 73, of 
August 1984. 

An important outcome of the investigation was the appreciation of the influence of the H. P. 

compressor I. G. V. schedule on the potential for surging of the I. P. compressor in a 
deceleration (Pub. 70,72 and 73, summary point 2, Section 4 "Discussion", p. 7). As 

previously indicated, the data provided for the design engine to the author specified that 

H. P. Compressor I. G. V. turning range was 552 to 586 (NH/4T26) - see Fig. 26 of 
Publication 73. 

Initial tests of the prototype engines suggested that the I. P. /H. P. Bleed was not necessary 

for decelerations. (An unintended air leak from I. P. compressor delivery was subsequently 
detected. This leak was later sealed. ) 

For production engines, the 5 per cent I. P. /H. P. Bleed was indeed removed. 

However it has been noted that the (NNT26) range of I. G. V. movement for the H. P. 
tA 

compressor has now been modified to about 495 to 590 (very similar to the range proposed 
by the author in Publication 72). The author was not informed directly of this change, but 

this has been ascertained via students working in the company. This slowing of the rate of 

turning of the I. G. V. s greatly eases the blockage which the I. P. compressor faces in a 
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deceleration, and therefore eases the excursion of the trajectory in that compressor, 

lessening the risk of surge, and obviating the need for the I. P. /H. P. Bleed. 

As a final remark the author wishes to report that it has been informally reported to him 

that the predictions given in his reports have been completely fulfilled. 
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CHAPTERS 

STUDIES IN PREMIXED COMBUSTION 

Premixed combustion requires firstly flame stabilisation, followed by flame propagation. 

The author has worked in both these areas. His first two publications (Pubs. 1,2) were 
based on some of the work of his Ph. D. Thesis submission of 1956. 

1. Flame stabilisation 

It has been shown that flame stabilisation limits on circular burners can be 

correlated by the boundary velocity gradient (Refs. 17,18). The present author 

extended the correlation to rectangular burners in laminar and turbulent flow (Pubs. 

1,5). Flame stabilisation in high velocity systems using cans or pilots was also 

studied for Publication 2. 

2. Flame Propagation 

The present author investigated flame propagation, or flame spreading, in a range of 
flow systems. Laminar, moderately turbulent and highly turbulent systems were 

considered (Pub. 2). The benefit of using flame spreading devices such as inclined 

fingers in highly turbulent combustors e. g. as in ramjets was demonstrated. 
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CHAPTER 9 

THE USE OF SWIRL IN PREMIXED COMBUSTION 

Giving swirl to the air as it enters a combustion chamber has long been recognised as 

having possible beneficial effects, such as in flame stabilisation, or control of flame shape. 

An early example was in the combustion chambers of the first Whittle Jet Engines 

(Welland) of the 1940's. 

In 1965 the present author undertook responsibility for a continuing programme of research 

into the aerodynamics of swirling jet flows and their utilisation in furnace combustion. 
This work had been started by N. M. Kerr and D. Fraser, and their pioneering investigations 

had been reported in References 19 and 20. The next step was to quantify the velocity 

profiles of a "cold" air jet issuing from a vane swirler, firstly when in free surroundings and 

secondly when confined (Pubs. 3,4). The necessary degree of overlap of the vanes was 

established, a swirler pressure drop correlation developed and established, recirculations 

measured, and static pressure and velocity profile decays observed. A swirl number based 

on the tangent of the vane angle (to axial) was confirmed. 

The next development was to introduce combustion. Fuel gas was mixed with the air 

stream prior to entering the swirler. The first series of measurements were taken in the 

unconfined situation. Velocity profiles of the flow in the developing jet flame were 

obtained, as were profiles of temperature and static pressure (Pub. 7). These profiles were, 

as expected, wider than those in the "cold" free jet. Also, a prediction procedure, 
developed at Imperial College, London, was used to give comparisons against the 

experimental results of velocities and temperatures. Difficulty was experienced in 

"stabilising" combustion in the calculation procedure, but when a forced combustion was 
imposed, predictions were in reasonable agreement with experiment (Pub. 7). 

The stability limits of these "free" jet flames were also examined. It was found that the 

weak stability limit, for varying degrees of swirl, could be correlated by consideration of 

the effective fuel/air ratio, after entrainment of external air, at the edge of the recirculation 

zone adjacent to the swirler (Pubs. 9,37,38). This, to the author's knowledge, was the 
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first time that this entrainment effect had been quantitatively used in correlation or 

prediction of combustion results. 

The next stage in this programme of study of swirl, and combusting swirl, was to examine 

combusting, swirling, premixed flows in "confining" furnaces. Two furnaces were used, 
having furnace to burner (swirler) diameter ratios of 5.0 and 2.6. Again, profiles of 

velocities, pressures and temperatures were measured. Also, carbon dioxide (C02) 

concentrations were taken. Combustion was seen to have a marked effect on the flow 

profiles, particularly on the establishment or otherwise of a central recirculation zone 

(CRZ). A simple theory based on momentum fluxes, and using the predicted drop in static 

pressure due to combustion, was found to correlate the transition between flow patterns 
(Pubs. 10,11,12,15,16,45,54). 
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CHAPTER10 

THE USE OF SWIRL IN NON-PREMIXED COMBUSTION 

The previous application of swirl to premixed. combustion was next extended to a study of 

the use of swirl in non-premixed combustion systems. 

Initially, gaseous fuel was selected. The present author was fortunate to have the support of 

a Research Student, A. M. A. Kenbar, and the collaboration of colleagues S. A. Beltagui 

(Glasgow University and National Engineering Laboratory (N. E. L. )) and T. Ralston 

(N. E. L. ). 

An earlystudy was made of the possible benefits of injecting the fuel at the outer periphery 

of the incoming swirling air. This would enable centrifugal buoyancy effects to enhance 

the mixing of air (near the axis) with the burning low density products (in the outer region). 

The experiments were carried out in the Glasgow University furnace. This first 

investigation was reported in Publications 39 and 40. In comparison with central fuel 

injection systems, the peripheral injection systems, with even weak swirl, give much more 

rapid mixing and combustion. This was one of the earliest published studies of the 

peripheral fuel injection process. 

Comparisons of central axial, central radial (from axis) and peripheral fuel injections of a 

gaseous fuel (natural gas), again into swirling airflows, were presented in Publication 41. 

Two combustors or furnaces (at Glasgow University), having furnace to burner diameter 

ratios of 1.0 and 2.5, were used for the peripheral fuel injection studies. A furnace of 

furnace to quarl exit diameter ratio 5.0 (N. E. L. ), was used for the radial injection 

experiments. The peripheral fuel injection exploited the benefits of shear-layer mixing and 

centrifugal buoyancy mixing. For combustion performance equivalent to axial injection 

systems, lower swirl, thus less fan power, was required. The radial outwards (from the 

axis) fuel injection schemes also could give good combustion performance with only 

modest swirl requirements - the radial outwards fuel jets helped establishment of the 

central recirculation zone. 
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The importance of the formation of pollutants was now being recognised (post 1985). The 

study of pollutant formation greatly influenced subsequent investigations - particularly in 

the work carried out by Research Student A. M. A. Kenbar and associates using the N. E. L. 

Furnace. A parametric study was reported (Pub. 42). This included models for NO), 

formation. The study of burner parameters was extended in Publications 44 and 46. 

The study of peripheral fuel injection was extended to its introduction in the N. E. L. 

Furnace with its high furnace to quarl exit diameter ratio (5.0) - Publications 47,58. 

Measurements of NO, concentration were reported. 

Heat transfer rates in the furnace, by convection and radiation, were reported (Pub. 55). 

Extensive experimental measurements were taken, for validation of computational fluid 

dynamic codes that were under development at Harwell (spqnsored by Heat Traqsfer and 

Fluid Flow Services (HTFS)). Again it was shown that peripheral and radial (outwards) 

fuel injection systems have advantages over axial fuel injection both for heat transfer and 

combustion, including pollutant control. 

Predictions were next made of the fluid dynamics of the peripheral fuel injection system 

(Pub. 56). The predictions were made by the PHOENICS code of Ludwig et al (Ref 21), 

and compared with experimental results from Beltagui et al (Ref. 22) and others in that 

series. The main flow parameters were reasonably predicted. 

The experimental results from the peripheral fuel injection case were extended and more 

widely reported in Publication 58. The observations included NO., concentrations. 

The pollutant measurements in the combusting flows in the N. E. L. furnace now enabled a 
further comparison among axial fuel injection, radial outwards injection and peripheral 
injection. These further results were reported in Publication 59. The peripheral fuel 

injection was the only scheme to offer reduction of NO,, by lean combustion, by fuel- 

staging and by air-staging. 

Predictions of NO,, formation were now being made using a well-stiffed reactor model 
based on the Zeldovich mechanism with account for species concentration fluctuations. 

Model predictions were seen to compare quite satisfactorily with measurements (Pub. 60). 
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In 1993 the present author was invited to present Papers to a Symposium in Budapest on 

"Measurement and Control Techniques on Environmental Protection7. The writer drew 

heavily on the collaborations with his colleagues, presenting two Review Papers - 

Publications 61 and 62 - which referred respectively to measurements of pollutants and 

combustion patterns associated with modelling of pollutant formation. 
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CHAPTER 11 

CONCLUDING REMARKS 

First, with reference to the work on gas turbines, the writer's major contributions have been 

in modelling the "thermal effects" that occur during speed transients of a gas turbine 

engine. The significant thermal effects that should be considered are heat absorptions or 

rejections in the compressions and expansions, tip and seal clearance movements, 

compressor characteristic modifications, heat absorption in combustor materials. The 

writer has probably pioneered attempts to quantify and model these effects. It is perhaps 

relevant to quote from an AIAA Paper by Crawford and Burwell, written in 1985 (Ref, 9) 

- p. 2 - Literature Background Investigation - second paragraph - 

"The seven papers (3 - 9) were the works of four authors who had either worked 

together or had detailed knowledge of one another's works. The collected results of Grant, 

MacCallum, Elder and Ladola establish the baseline for the University of Tennessee Space 

Institute investigation. The importance of the successful literature search to this 
investigation cannot be underestimated due to the many man-years of research and analysis 

contained in the published reports. The fact that all the efforts were accomplished outside 
the U. S. supports the importance of international technical symposiums and cooperative 
technical exchanges. 

The conclusions which can be drawn from Refs 3-9 are that sound theoretical models 

predict a significant influence of transient heat transfer on compressor stability, however no 

transient turbine engine data were available to validate model predictions. This 

investigation (Crawfurd and Burwell's) utilizes high quality AEDC transient turbine engine 
data to quantify and support the above conclusions. " 

(Grant, referred to above, was a Research Assistant under the writer's supervision. Laýola 

consulted the writer before starting his research. ) 
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The above favourable comments were written before publication of the writer's subsequent 

collaborations with Pilidis and Qi, with the useftil modelling of tip clearance and seal 

clearance movements, also innovative control strategies. 

Further to work in this area of investigation, the author understands that at Cranfield 

University's "University Technology Centre in Performance Engineering" (largely 

sponsored by Rolls-Royce p1c) investigators are currently (year 2000) pursuing studies on 

predicting the changes in compressor characteristics resulting ftom transient heat transfers. 

The investigators, it is understood, are starting from models such as those introduced in the 

author's Publications 8,13,17 and 3 1. 

In other gas turbine transient work, the writer provided for Rolls-Royce the transient model 

of the RB 183-03 "Tay" engine. The predictions given by that model when the engine was 

being designed were all subsequently validated. 

In the combustion field, the writer's contributions have mainly been in experimentally 

quantifying swirling flow. This research moved through cold flow, open and enclosed, to 

combusting premixed flow, again open and enclosed, and on to combusting non-premixed 
flows in furnaces. The majority of the experimental work was carried out by research 

students, the writer being the research supervisor. 

The writer feels that useful contributions have been made in defining combusting flow 

patterns and in modelling their development. 
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Predicted Transient Response of Engine RB183-02 Mk555 Spey 

TAY PROJECT - Report No. 1 12 Mai-ell 1983 

N. R. L. Maccallum 

1. INTRODUCTION 

This Report gives the steacly-running and transient pei-formance of the RB183-02 
Mk 555 Spev Engine at Sea Level. Static conditions on an ISA clay. 

2. RESULTS 

i HP/LP Shaft Sneed Relationshil)s 

Ilie predicted shaft speed inter-relationship as predicted by Maccallum's programme 
Onarked "NM") are given in Fig. 1. It is seen that for steadY-running the results 

coincide almost identically with those given by the Rolls-Royce Synthesis prograin 
Q538). 

For tile transient cases, tile standard CASC 211 schedUles Nvere taken as controlling 

the fuel flow. The nominal inertia values of the two shaft systeilis were used. It is 

seen from tile results illustrated in Fig. I that in the early part of tile acceleration the 

LP shaft "leads" the HP shaft. Then when the Inlet Guide Vaile(MV)WI-11ing range of 

the HP Compressor is reached. the two shaft speeds advance more or less in step with 

the steady-running shaft speed relationship. 



2.2 Shaft-Speed Resj)onses in Acceleration 

The responses of the LP and HP shafts in the acceleration are Shown in Fig. 2. 'nie 

HP shaft accelerates reasonably rapidly from the start of the acceleration, with a 

gradually increasing acceleration rate until the nlaxillILI111 fUel flow is reached. 

Tile LP shaft acceleration is modest and steady until tile HP compressor reaches tile 

IGV turning range, with Bleed Valve closure. This is reached at about 4,0s. The LP 
I" 

shaft speed acceleration then becomes very rapid until the fUel flow reaches tile 

imposed linlit of 0.74 kgas. 

2.3 Shaft SI)eect Responses in Deceleration 

Predicted Shaft speed i-esponses, when foHowing the CASC 211 Deceleration 

Schedule, are given in Fig. 3. 

2.4 Predicted Running, Linesind Traiectories in LP Compressot 

These results are given in Fig. 4. Tile steady-running line predicted by MaCCallLIM'S 

program agrees Vil-tUally identically with that given by Rolls-Royce Synthesis Program 

Q538). In tile acceleration tile trajectory lifts above the 

steady-runninggline. This fits with tile LPshaft "leiding" tile HP shaft. Notethattilis 

enaine has mixed exhausts. 



In the deceleration tile predicted trajectory drops below tile steady-running line. 

.. 
Line and Tra-iectories in HP Compressoi 2.5 Predicted Running 

Theseare shown in Fig. 5. 

For steady-running. again there is excellent agreement between the preclictions of 

Maccalluill's program and those of Rolls-Royce Synthesis Prograill. Qi38. 

In tile acceleration the trajectory rises. as expected for ail HP system. It is to be noted 

that the trajectory is predicted just to touch tile surge line at about 4.2 s into the 

transient. However. service experience with this engine does not indicate that surge 

occurs under these conditions. It is therefore concluded that the predictions of 

trajectoiy in transients may be erring oil the extreme side. This is not a bad fault in 

tile design stag ze. 

3. CONCLUSIONS 

A transient simulation model (CMF type) has been PrOdLICed for tile R13183-02, 

Mk555. Spey Engine. At steady-running conditions its predictions match excellently 

with those of tile Rol Is-Royce Synthesis Q538). 

It was not possible to compare transient predictions with those from another prograrn 

as none was ava iI able. The t ra n si ent pred ict ions obt ai nect a ppear reason able. 



Table I Shaft speeds at starts and tennination of transient 
Conditions: Sea level. static. 

Starting Speeds Finishing Speeds Starting Finishing 
NL Nli NL NH f 

Acceleration 2572 6216 8931 12218 0.08 0.74 

Deceleration 8759 12085 3077 7217 0.71 0.10 

(Speeds in r. p. m., fuel flows in kiz/s) 
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Initial Preciictions of 'ri-an-sient Response of Engine RB 183-03 Tay 

TAY PROJECT- Report No. 2 

N. R. L. Maccalluin 

1. INTRODUCTION 

29 April 1983 

transient model of the RR-Tay Engine is now working. The model is based oil 

the CMF procedure. Tile model cannot yet cover tile complete speed range, but 

the Lreclictions for the ranae covered give a good guide to the transient behaviour 

of the en-gine. Tile speed range covered in this Report is given in Table 1. 

2. RESULTS 

2.1 HP/LP Shaft Speed Relationship 

These are given in Fig. I for stea(ly_, *m1ning and transient cases - sea level, static. 

The steady-running predictions may be compared with those of Rolls-Royce 

Synthesis Program G519. Agreement is veq satisfactoq except in the high 

speed range - HP speed greater than 11000 r. p. m. and LP speed con-espondingly 

above 6500 r. p. m. 

For the acceleration. in the early part, while the IIP compressor IGV's are 

statioilaiý- and closed. the iviation follows closely to the steady-running relation. 



liowever. whell the ICYV turning range is reached the HP shaft moves, relatively, 

allead of tile LP shaft. In the deceleration tile inverse happens. 

2.2 Sill , ft Sl)ee(I Resj)onsc-s in Transients 

These are given in Fig. 2 for tile acceleration and Fig. 3 for the cleceleration. Tile 

acceleration/deceleration fuel schedule used was CASC 211, factored by a 

IllUltiple of 0.9. 'Hiis gmessed factor of 0.9 was used as the engine is expected to 

be about 10 to 15 per cent more fuel efficient than the Spey. However this 

improvement should not necessarily read directly proportionately across to the fuel 

schedule. It is seen that tile speed responses are very rapid. At this stage, the 

nominal inertins of the two shafts have been used. It is realised that thennal 

effects slow transient speed (and thrust) responses down by typically 30 per cent 

(A. Yarker. 1973). To simulate this effect it is suggested that tile nominal inertias 

be scaled up by a multiplier of 1.3. 

2.3 Running 1-inesand Tra-iectories in Cornlyessors 

2.3.1 Fall 

A movable "split" boundary between tile flows going through tile Inner and OLIter 

Sections of tile Fan has been used. This "split" position is quantified by a "fraction 

of spliC or "f. -, tetot- of spliC. Tlie nominal valtie of this is 1 0. con-espoilding to tlie 



design bypass ratio of 3.0.11, tile calculation IYOCedUre tile appropriate fraction of 

Split is Clictlizite(I to[- each instant. A steady-running fine aild transient trajectories 

are shown in Fig. 4 and Fig. 5 for the Inner Fail and Outer Fail respectively. The 

important prediction to be noted is that in both sections of tile Fail the transient 

trajectories scarcely deviate from tile steady-running lines. 

2.3.2 Intermediate Pressure OP) Comires 

Tile preclictions are shown in Fig. 6. It is predicted that there are very significant 

movements of trajectory away from tile steady-running line both in tile acceleration 

and in the deceleration. These movements coincide with tile periods when the 

HP compressor is moving through its ICJV tunling range. In tile acceleration, fii 

the IGV tuming range. tile HP compressor is seeking a rapid increase in non- 

dimensional air flow entering it. Tile LP shaft is accelerating at only a modest 

rate, so tile increase in non-dinnensional air flow at the exit from the IP 

compressor is achieved only by a reduction of tile IP compressor pressure ratio 

fi-oiiitliesteaci)--i-tiiiiiiii. g\.,, -iliieattll,, it (N/ý-T). In the cleceleration, tile opposite 

occurs and the trajectory rises significantly, towards surge. In the present case 

the prediction is that surge is avoided, but attention must be maintained oil this 

situation. 

2.3.3 H-P, Conloressor 

Here. the trajectories, as shown in Fig. 7 are much as expected. Tile fLiel 

collti-ollel-. follo%N-int, the CASC211 fucl schedule factored by 0.9, successfully 1ý 
prevents surgge in the acceleration. 



FUTURE WORK 

(a) Extend thosIved ran. -ge ofthe simulation 

(b) Improve tile shaft spetqinter-relationship at llighspeed end 

(c) Study logic of the movable "split" boundary between flows through Inner 
Fail and Outer Fall 

(d) Actions to relieve clanger of surge ill IP Compressor ill deceleration: 

i) Effect of varvim, final nozzle size 

ii) Effect of varying inenias of shafts 

iii) Effect of Bleed Valve - to bypass (ILICt - between IP and HP 
Compressors 

iv) Effect of revising the HP Compressow Bleed Schedule 

(e) Can-v out simulation at fli-ght cmise condition at altitude. 

4. CONCLUSIONS 

Coil vergence has been achieved oil a CMF simulation of the Tay Engine. 

Steady-running and transient predictions have been achieved over a fair speed range, 

at sea level static conditions. 

'nle 111, ýJor potential (1,111"er is of surge in tile IP Compressor duringa, deceleration. c 



Table I 

Speed Range Covered in Simulation 

Conditions - Sea level, static 

................................................................................................................................ 
Starting spoed'i Finishing Spoed., -, Starting Finishing 

NL NH NL NH ff 
- -------------- - --------- :t..................................................................................................... 

Acceleration 2770 8.580 8262 11792 0.10 0.74 

Deceleration 7367 11483 2782 8.588 0.60 0.10 

(Speecls in r. p. m., fuel flows in kqeVs) 
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Predicted Transient Response of Engine RB183-03 Tay - Altitude Cruise 

TAY PROJECT - Report No. 34 May 1983 

N. R. L. Maccallum 

1. INTRODUCTION 

This Report gives the predicted altitude cruise perfon-nance of the Tay (RB183-03) 
Engine. The altitude crUise conditions Nvere 0.7 Mach number at 30,000 ft. 

Tlie prediction Inodel used was the sarne as that used for the initial set of transient 
forecasts - Report No. 2 (29 April 1983) - which had been at sea level, static 
conditions. Tile shaft speed ranges covered in the transients. in this Report are 
given in Table 1. 

RESULTS 

2.1 HPILP Shaft Speed Relationships 

Tile relationships for both steady- runn i ilg and transients are given ill Fig. 1. For 
the steady-riuming results, these should be compared with the steady-nuilling 
relationships at sea level, static, previously obtained and shown in Fig. 1 of Report 
No. 2 (29 April 1983). It is seen that for equivalent (NH/, rT-5)6) conditions in the 
HP compressor, the LP shaft runs at a higher (NLJIT1) in , the altitude cruise case. 
'171-lis is because in the altitude cruise at Mach number 0.7, the final nozzle is 
choked. Tile flow capacity (non-dinlensional) of this choked final nozzle is 
greater than the flow capacity when the engine is stationary, with a redUced 
pressure ratio available across the final nozzle (taken simply as a convergent nozzle 
ill this Nvork). With the reduced final nozzle flow capacity ill tile static, sea level, 
case, tile Fail oil tile LP shaft is meeting all increased flow resistance so its speed is 
reduced. 

Considering the transient predictions, in most of tile speed range covered the IGVs 
of tile HP compressor are in their tUming range. Hence there are rapid changes in 
air demand for the HP compressor for modest changes of (NH/TT-26)- Tllis, as hi 
the sea level static case (Report No. 2). causes tile transient acceleration HP shaft 
speed to lead the LP shaft speed. wheil compared with steady-nuining. bi the 
deceleration, as before, the HP shaft speed drops more rapidly than does the LP, 
compared to steady-ninning. 



2.2 Shaft SI)eeci ResI)onses 

TIle individual shaft speed responses, as functions of time, are shown ill Fig. 2. 
Both acceleration and deceleration are fairly rapid. I'lle deceleration is less rapid, 
however, than the deceleration at sea level. This is to be expected since at altitude 
the power transfers ill tile compressor and turbine are less thall at sea level, due to 
the reduced air density at inlet, whereas the inertias of tile shaft systems are still the 
same. 

2.3 Running Lines and Trajectories in Compressors 

2.3.1 Fan 

Results are shown in Figs. 3 and 4 for the Inner and Outer Sections of the Fan 
respectively. Again, tile movable "split" boundqry between tile two sections of tile 
fail was-used (see Repoit No. 2). 

71le steady-running and trajectory lines in both Fails in this altitude cruise case are 
lower than those predicted in tile static, sea level, case. M-ds is because, as 
explained in Para. 2.1 above, at Mach 0.7 (tile altitude cmise case) tile filial nozzle, 
being choked, has a largerflow capacity thanwhen the engine is static (at sea level). 
I'llis higher capacity allows the working lines in the Fail to drop. 

Considering the transient trajectories relative to the steady-nulning lines, the 
transient lines virtually coincide with the steady-mining conditions. Tllus no 
surge d iff iculties are expected in the Fan during transients. 

2.3.2 Intermediate Pressure OP) Cornpresso 

Predictions are shown in Fig. 5. It is to be noted first that tile steady-nulning Elie 
here is significantly higher than at sea level, static. 71iis is because of the higher 
(NLJJ-TI) for that (NH ITTý96). dUe to higher pressure ratios across filial nozzle 
as discussed in Paras. 2.1 and 2.3.1 above. 

Sinlilarl), to the situation at sea level (Report No. 2), in an acceleration tile 
trajectory is predicted to drop significantly below tile steady-nuliling line, and fii 
deceleration it rises above tile steady-riuming line. TIle latter case of course 
presents tile danger of surge. The pred ictions i nd icate that surge is j list avoided in 
the present case. 



2.3.3 HP Compressor 

Trajectories are shown in Fig. 6. 'nie predictions are ill line with expectation. 
'nie CASC 211 schedule. factored by 0.9, is satisfactory inulavoiding surge ill the 
acceleration. j, 2t- 

3. CONCLUSIONS 

The model, as it stood on 29 April 1983, has been applied to transients at 30,000 
ft., 0.7 Mach number, which represents typical altitude cmise conditions. 

The foreseen major area of potential difficulty is a near surge in the IP compressor 
in a deceleration. 



Table 1 Speed Range Covered ill SiIIII. Ilated Transients 

Conditions: Altitude 30,000 ft 
Mach number 0.7 
Intake Recovery 0.995 

StartingSpeeds Finishing Speeds Startin Fini hing 
.91., NL NH NL NH ff 

Acceleration 3540 8890 6 720 10490 0.04 0.20 

Deceleration 6722 10495 3540 8890 0.20 0.04 

(Speects in r. p. m., fuel flows in kg/s) 
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Improved Modelling of Transient Response of Engine RB183-03 Tay - with IP/HP 
Compressor Bleed 

TAY PROJECT - Report No. 4 

N. R. L. Maccallum 

1. INTRODUCTION 

21 May 1983 

MaccallUrn's transient program as at 29 April had not been matching, when set to 
produce steady-running results, with the high-speed shaft interspeed relationships as 
given by the Rolls Royce Synthesis Program G519. This has now been remedied and 
the transient program has been used to predict cleceleration transients with two 
alternative deceleration schedules and a range of IP Bleed ratios. 

2. LINE-UP OF MACCALLUM'S TRANSIENT PROGRAM 

The latest version of Rolls-Royce Synthesis Program G519 was examined. It was 
found that several of the factors oil efficiencies and capacities had now been assigned 
values slightly different froin those given to Maccallum in February. T'lle factor 
change which had caused tile greatest effect had been oil tile capacity of tile HP 
turbine. When these factor changes had been incorporated and also allowances made 
for the return of cooling air into the HP turbine, and for Reynolds number effects in 
the HP and IP compressors, tile agreement oil stabilised shaft speed inteývlationships 
between the predictions of G519 and Maccallurn's prograin becarne very satisfactory 
(Fig. 1). '17he stabilised working points in the compressors predicted by Maccallurn 
agree closely with those given by G519 - although it should be noted that tile 
agreement before the latest adjustments to the program had been generally 
satisfactory. The predicted steady-running lines are shown in Figures 2 to 5 inclusive. 

3. PREDICTIONS FOR DECELERATIONS - SEA LEVEL STATIC 

Tile basic transient fuel schedules remain those of the CASC 211 as used for the Spey 
EngineR13183-02M555. For tile present work tile transient schedules are factored 
by soille constant, as selected. The basic schedules are shown oil Fig. 6- also shown 
are tile steady-running lines for the RB183-02 Spey Engine as predicted by Rolls 
Royce Q538 and by Maccallum (Report No. 1), and the latest prediction by 
Maccallum forthe RBI 83-03 Tay Engine. 

1 lover 



3.1 Speed Resoonses in Decelerations 

To examine a less severe deceleration than that covered in Report No. 2, a scaling 
multiplier of 0.94 oil tile Deceleration Schedule has been used. The predicted speed 
responses, witil zero IP/HP Compressor Bleed and with 15 per cent Bleed, are shown 
in Fig. 7. Comparing this prediction with zero bleed with that given in Report No. 2 
with zero bleed. but Fuel Schedule Factor of 0.90. tile time for speed decay is 
lengthened only by 3 to 5 per cent and the effect oil tile trajectory in the IP 
Compressor (FigSck! 9)iS small. It is suggested that a significantly less severe 
deceleration schedule be tried e. g. with multiplyirig factor of 1.0 or even 1.1. 
ReSUlts are also shown Nvith a 15 per cent IP/HP Bleed, when the shaft deceleration 
rates are only slightlyaltered. 

Considerhig the geiieral deceleration rates, it seems that the decelerations are all., with 
the schedules tested to date. extremely rapid and could afford to be slowed down 
somewhat. 

4. Trajectories in IP Compressor in Deceleration 

Trajectories are showiýfor decelerations with zero and 15 per cent IP/fiP Bleed. The 
fuel schedule factor is 0.94. Bleeds of 5 per cent and 10 per cent were also tested. 
Tile effects oil the usage of surge margin in tile deceleration at 0.3 sec, when the 
trajectory is nearest to surge, are given in Table: 

IP/HP Compressor Bleed Surge Margin Used 
(at 0.3 sec) 

zero 75-80 per cent 

5 per cent 

I per cent 

15 per ceilt 

60 per cent 

45 percent 

20 per cent 

("Surge Margin" used as reference is the value from zero bleed steady-running to surge 
line). 



It is to be e. xpectecl from the above that with this fuel schedule a bleed of abOLIt 5 to 10 per 
cent will be more than adequate to cope with contingencies. 

SUGGESTED ACTIONS 

Compare thrust responses in deceleration of Spey Engine RB183-02 and 
Tay Engine RB183-03 with range of fuel schedules. 

GO Tay Engine RB193-03 with fuel schedule tomatch Spey: study 
decelerations, with inertias factored 1.3 to compensate for thennal effects. 
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Predicted Transient Response of Engine RB 183-03 Tay 

I. Representation of "Thermal Effects" 

2. Effects of Improved Turbine Efficiencies in Deceleration 

3. Alterations to Deceleration Schedule 

4. Selection of Deceleration Schedule to match Spey 

5. Predictions at Sea Level, Mach No. 0.2 

TAY PROJECT - Report No. 5 28 May 1983 

N. R. L. Maccallum 

1. REPRESENTATION OF "THERMAL EFFECTS" BY FACTORING INERTIAS 

An empirical method of simulating "thermal effects" in so far as shaft speed and 
thrust responses are concerned is to factor up the inertia(s) of the shaft system(s). 
A multiplying of value 1.3 has been used previously to give satisfactory agreement 
between prediction and observation for the RB 211-524. 

In the time scale available for giving predictions of the real transient performance 
of the RB 183-03 Tay Engine, it is considered that a similar practice of factoring 
the inertia be adopted and that a multiplying factor value of 1.3 should give 
reasonable estimates for thrust and speed responses. 

The predicted performance in the deceleration at sea level, static conditions, 
nominal inertias, is given in Figs. I to 3 for, respectively, shaft speed responses, 
thrust response, and trajectories in the I. P. compressor (the critical design feature) 
- similar predictions, but with slightly different fuel schedules, have been given in 
Figs. 7 to 9 of Report 4. A range of I. P. compressor bleeds is considered. The 
predictions were repeated for the case where the shaft inertias were scaled up by a 
factor of 1.3 - to simulate the thermal effects. The results are given in Figs. 4 to 
6. The thrust and speed responses are slowed by about 30 per cent, but the 
trajectories in the I. P. compressor are not noticeably different. 

2. EFFECT OF IMPROVED TURBINE EFFICIENCIES 

There was a possibility that in a deceleration the efficiencies of the Turbines 
might be enhanced. The possible effect this might have on the transient behaviour 
has been examined - Figs. 7 to 9. Turbine efficiency improvements of (+ 0.01) 
and (+0.03) were considered. The effects on the speed and thrust responses in the 
deceleration were small - shaft speeds and thrust dropped a little less rapidly. 
Considering the deceleration trajectories in the I. P. compressor (Fig. 9), the 
turbine efficiency improvements allowed a slight easing of the trajectories. This 
was primarily due to the slightly slower shaft speed decelerations. 



3. ALTERATIONS TO DECELERATION SCHEDULES 

In previous Report No. 4 it had been suggested that a noticeably less severe than 
(0.9 x CASC 211) deceleration schedule be examined. A deceleration schedule of 
(L Ix CAS C 211) has therefore been studied. Results are given in Figs. 10 to 12. 
With this schedule the deceleration trajectory in the I. P. compressor was greatly 
eased, only a maximum of about 60 per cent of the available surge margin being 
used (compared with 75 to 80 per cent of margin when using schedule 
(0.94 x CASC 211)). The time to 25 per cent maximum thrust is however 
lengthened from about 1.7 s to 2.5 s (more description in paragraph 4 below). 

4. DECELERATION SCHEDULES FOR TAY ENGINE TO MATCH SPEY 
ENGINE DECELERATION 

The deceleration rate of the Tay Engine, when using 0.9 x CASC 211, is very 
rapid. This imposes a severe strain on I. P. compressor surge margin. 

Need Tay Engine decelerate as rapidly as the Spey Engine? The Spey (Mk 555) 
Engine decelerations, when using the CASC 211, are predicted - Figs. 13 to 15. 
The Spey Engine decelerates very rapidly, dropping to 25 per cent thrust in about 
1.25 s (sea level, static). For the Tay Engine, with (0.9 x CASC 211), Fig. 2, the 
corresponding time is about 1.45 s (and 2.5 s with (1.1 x CASC 211), Fig. 11). 

5. CHANGE OF PREDICTIONS AT SEA LEVEL, MACH NO. 0.2 cf SEA 
LEVEL, STATIC 

Transient predictions for the Tay, at sea level, Mach No. 0.2, using Schedule 
(0.9 x CASC 211) have been carried out. Results are shown in Figs. 16 to 18. 

For practical purposes, these results are virtually identical to those at the sea level, 
static case - certainly for the critical predictions of surge margin usage in the I. P. 
compressor during decelerations. (Fig. 18 cf. Fig. 6). 
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Publication 70 

Adjustments to Fuel Schedules to relieve surges in Decelerations - RB 183-03 Tay 

TAY PROJECT - Report No. 6 

N. R. L. Maccallum 

1. SCHEDULES EXAMINED 

Five Deceleration Schedules were tested: 

"A" reference schedule (0.9 x CASC 211) 

"B" slower schedule (I. Ix CASC 211) 

"C" very slow schedule (1.3 x CASC 211) 

"D" altered profile - see Fig. I 

"E" altered profile - see Fig. I 

2. RESULTS 

9 June 1983 

Thrust responses in Decelerations (sea level, Mach No. 0.2) for Schedules A, B and 
C are given in Fig. 2 and for Schedules D and E in Fig. 3. 

Predicted deceleration trajectories in the I. P. Compressor, for Schedules A, B and C 
are given in Fig. 4, and for Schedules D and E in Fig. 5. 

Predicted deceleration trajectories in the H. P. compressor for Schedules A, B and C 
are given in Fig. 6, and for Schedules D and E in Fig. 7. 

3. DISCUSSION OF RESULTS 

Reference case Schedule A gives usage of surge margin in I. P. compressor of 75 
to 80 per cent. 

Under Schedule B the surge margin usage in the I. P. compressor is 60 per cent (a 
previous result), and thrust reduction is about 40 to 50 per cent slower. 

Under Schedule C the thrust response is too slow to be acceptable. 

Schedule D gives poor performance, with surge margin usage in the I. P. 
compressor still high (at 70 to 75 per cent) but thrust reduction rate being about 50 
per cent slower than reference case (A). 



Schedule E gives better performance, surge margin usage in the I. P. compressor 
being about midway between cases A and B, and thrust reduction rate also lying 
about midway between cases A and B. 

The conclusion drawn is that a factored CASC 211 schedule provides as good 
results as any, although further tuning on "E" might be helpful. 

4. H. P. COMPRESSOR AND I. G. V. SCHEDULE 

In the decelerations, the trajectories move very rapidly across the mass flow range 
when the Inlet Guide Vanes are turning. The rate of change of the non- 
dimensional mass flow into the H. P. compressor with time is very high. In the 
deceleration this tends to throw the I. P. compressor towards surge. 

Can we extend the Inlet Guide Vane rotation range over a wider span of non- 
dimensional speed (NNT)? Suggest we keep the same limits on minimum and 
maximum angles, but lower the "closed" I. G. V. (N, 114T), while keeping the same 
"opeW'I. G. V. (NH/4T). 
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Publication 71 

Predicted Transient Response of Engine RB 183-03 Tay 

Effects of Gross Changes of Shaft Inertias 

TAY PROJECT - Report No. 7 10 June 1983 

N. R. L. Maccallum 

TAY ENGINE - CHANGE TO INERTIA OF L. P. SHAFT TO SPEY ENGINE 
VALUE 

The effects have been examined of reducing the inertia of the Tay engine L. P. shaft 
from the design value of 415 lb ft2 to the inertia value of the L. P. shaft of the Spey 
Engine - 95 lb ft2. This reduction is of course not practicable, but the theoretical 
effects should be understood. The deceleration schedule used has been (0.9 
x CASC 211), and the shaft inertias have all been factored by 1.3 to allow for 
thermal effects. 

The reference deceleration trajectory in the I. P. compressor of the Tay engine with 
nominal inertias is given in Fig. I (sea level, Mach No. 0.2). With the L. P. shaft 
inertia reduced to 95 lb ft2 (a factor of 4.3), the deceleration trajectories in the I. P. 

and H. P. compressors are given in Figs. 2 and 3 respectively. The transient 
excursion in the I. P. compressor is largely suppressed. The excursion in the II. P. 
compressor is not significantly affected (but this is not a critical area). 

2. SPEY ENGINE - CHANGE TO INERTIA OF L. P. SHAFT TO TAY ENGINE 
VALUE 

For further background, the effect on deceleration trajectories in compressors of the 
Spey engine, when the L. P. shaft inertia is increased from 95 to 415 lb ft 2, has been 
examined. The predictions with this change implemented are given in Figs. 4 and 5. 
The trajectory in the L. P. compressor is somewhat raised, but not seriously, 
compared with that in the nominal Spey engine (Report No. 1). The trajectory in the 
H. P. compressor is not significantly altered. 

3. DISCUSSION 

The movements in the trajectories in the I. P. and L. P. compressors are as expected. 
For the Tay engine this demonstrates the advantage of lowering the inertia of the L. P. 
spool. However this order of reduction is certainly not feasible. 

The trajectories in the H. P. compressor are not significantly affected as the H. P. 
compressor is operating in front of usually a choked turbine and the fuel flow is 
controlled by a schedule which uses H. P. compressor pressure ratio as input. 
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Predicted Transient Response of Engine RB 183-03 Tay 

1. With Revised L. P. Shaft Inertia 

2. With Proposed Extended I. G. V. Schedule 

TAY PROJECT - Report No. 8 13 June 1983 

N. R. L. Maccallum 

1. EFFECT OF REVISION OF L. P. SHAFT INERTIA 

The mechanical design of the L. P. Shaft system has been developed and the 
expected inertia is now 260 lb ft2, as compared with the previously expected value 
of 415 lb ft2. 

Perfonnance predictions with this revised inertia have been carried out, attention 
being focused on the deceleration at sea level, Mach 0.2 (the abandoned take-ofo. 

Thrust responses are given in Fig. I for the two deceleration schedules of (0.9 
x CASC 211) and (I. Ix CASC 211) with the revised L. P. Shaft Inertia. These 
thrust responses are then compared with the thrust response of the original inertia 
engine under deceleration schedule (0.9 x CASC 211). The lower inertia engine 
under equivalent decelerations obviously decelerates more rapidly. 

Trajectories in the critical deceleration in the I. P. compressor must also be 
considered (ref, condition - Sea Level, Mach No. 0.2). With this revised L. P. shaft 
inertia, the trajectory in the I. P. compressor is very safe (surge margin usage 55 to 
60 per cent) - Fig. 3, to be compared with Schedule "A" plot on Fig. 4 of Report 
No. 6 (surge margin usage 75 to 80 per cent). 

2. PROPOSED SCHEDULE FOR I. G. V. s OF H. P. COMPRESSOR 

A previous proposal (Report No. 6) had suggested that the rate of opening and 
closing of the I. G. V. s of the H. P. Compressor might be slowed down. Results are 
presented for a case where the H. P. Compressor I. G. V. turning range of 550 to 587 
(NHIqT) - the existing design - is modified to 515 to 587 (NI114T) i. e. the range is 
doubled and the rate of turning of the I. G. V. s halved. The method of establishing 
the equivalent H. P. compressor characteristic with the revised I. G. V. schedule is 
illustrated in Fig. 2. The predicted transient response of thrust (under (0.9 
x CASC 211)) is shown in Fig. 1. The predicted trajectory in the I. P. compressor is 
shown in Fig. 3. It is to be noted that with this modified I. G. V. schedule, the thrust 
response (Fig. 1) scarcely departs from the previous thrust response. Importantly, 
the deceleration trajectory in the I. P. compressor is noticeably relieved (Fig. 3). 



3. DISCUSSION 

(i) The lowering of the L. P. shaft inertia is significantly beneficial. 

The proposal presented of extending the (NIINT) turning range of the 
I. G. V. s. in the H. P. Compressor is worthy of consideration. 
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Computational Models for the Transient Perfomance of 

RB183-02 (Spey) and RB183-03 (Tay) Engines. 

Report RR/I 13 August 1984 

N. R. L. Maccallum University of Glasgow 

I. Introduction to Modelling Methods 

There are two commonly used methods for modelling the transient 
performance of gas turbines. One is the method of "intercomponent 

volumes" and the other is the method of "continuity of mass flow". 

In the method of "intercomponent volumes", volumes are allocated 
to the spaces between ihe components (compressors, combustion chamber, 
turbines, nozzles). Initial mass flows are selected in the components. 
Where mismatches occur, then mass accumulates or diminishes in the 
intercomponent volumes. The pressures there rise or fall, and from the 
new pressures at the end of the time interval, new mass flows in the 
components are then determined. This procedure, which is a "once through" 
calculation at each time step, requires short time intervals and considerable 
computing time. 

In the"continuity of mass flow" method, the intercomponent volumes 
usually are ignored. The calculation procedure at each time step is 
iterative until continuity of mass flow is achieved. Difficulties have 
have been encountered in obtaining convergence of the computation, 
particularly in 2-spool and 3-spool engines. However if convergence can 
be achieved, longer time intervals (e. g. 0.05 sec. ) can be used and less 
computing time is required. 

The predictions by the two methods appear to be basically similar 
(Ref. 1), with the exception of the first time intervals of a transient. 

The method of "continuity of mass flow" has been used for the 
procedures described in this report for modelling the transient 
performance of the RB 183-02 (Spey) and RB183-03 (Tay) Engines. 

k, 



2. 

2. Model for RB 183-02 (SPEY Mk555) Engine 

The Block Diagram for the calculation procedure for the 
RB 183-02 Engine is given in Fig. 1. 

All the coupressions and expansions have been assumed adiabatic. 
It has further been assumed that at the intermediate speeds encountered 
during the transient# the characteristics of the components are the 
same as those observed when the component is running steadily at those 
particular values of corrected speed. 

Experience indicates (Ref. 2) that actual engine accelerations 
and decelerations are about 30% slower than are predicted using the 
assumptions of the preceding paragraph. A crude "rule-of-thumb" to 
compensate for this has been to scale up the inertias of the spoolsof 
the engine. One value of this scaling factor which has been used is 1.3. 
The models described in this report have the facility for incorporating 
a factor of this type. 

Tvpical predictions for accelerations and decelerations are 
shown in Figs. 2 to 6. In this case the engine is at Sea Level, 
Mach 0.2. The acceleration and deceleration fuel schedules are as defined 
by the Combined Acceleration and Speed Control (CASC) No. 211. These 
Schedules are plotted in non7dimensional form in Fig. 2 where they are 
compared with the steady-running fuel flow values as predicted by the 
transient model of the. engine described here (steady-running values are 
obtained by holding the fuel flow constant at some specified value and 
allowing the engine to stabilise itself). The shaft speed and thrust 
responses to the acceleration are shown in Fig. 3 and correspondingly 
for the deceleration in Fig. 4. The multiplying factor of 1.3 was 
applied to the polar moments of inertia of the two spools. The time 
increment used during the transient was 0.05 second. The transient 
trajectories in the LP Compressor are shown in Fig. 5 and in the 
HP Compressor in Fig. 6. The predicted "steady-running" working lines 
in these compressors are also given in these Figures and are compared 
with the working lines given by Rolls-Royce Synthesis Program Q538. 

The agreement between the steady-running working lines as 
predicted by the proposed model and as given by Synthesis Program Q538 
is regarded as being very satisfactory. 

Considering the transient predictionsp the times required for the 
thrust. and speed responses are in broad agreement with experience. It 
is noted that in the LP Compressor the transient trajectories move only 
a small amount away from the steady-running line. However in the 
HP Compressor the trajectories depart significantly from the steady- 
running line. Indeed in the acceleration the trajectory appears to 

reach the surge line. The fact that experience with the engine has not 
thrown up surge problems in acceleration may be partially due to the 
beneficial displacement of the surge line in an acceleration due. to 
heat absorptions in the metal of the compressor (Ref. 3). However 

a detrimental effect on the surge line arises from the higher tip clearances 
usually. encounteý& of a cold engine. There is some 

'Lin 
an acceleration 

,%t evidence that thitkýffect is less marked in the Spey HP Compressor than 
in the RB 211 HP Compressor (Ref. 4) 



3. 

With regard to the choice of the time increment for the transient 
calculations in the model, increasing the time increment from 0.05 second 
to 0.1 second frequently led to computational instabilities. Reducing 
the time increment to 0.02 second made insignificant difference to the 
predictions, but of course increased the computing time required. The 
choice of 0.05 second appeared to be a fair compromise. 

3. Model for RB 183-03 (Tay) Engine 

The characteristics provided for this engine included separate 
representations for the inner and outer sections of the Fan. This may 
be a satisfactory way of treating the Fan under steady-running conditions, 
but it was felt that this procedure might be too rigid for transient 
behaviour, and some allowance should be made for interchange of mass 
flow between the two sections. 

The allowance for interchange of flow was achieved by assuming 
firstly that the characteristics initially provided were based on a 
frontal area split in the ratio I to 3 between the inner and outer 
sections. This was quantified by the pqrameter GEOM which represents 
the fraction of the total frontal flow area allocatýd to the inner 
section in the initial characteristics. GEOM thus was assumed to have 
the value 0.25. 

, 
Small alterations of GEOM to 0.22 or 0.28 made little 

difference to the predicted transient behaviour in the critical areas - 
namely in the IP and HP Compressors. 

The second step to allow for interchange of flow between components 
was to assume that the axial component of velocity of the air into the 
Fan is constant, at any instant, over the whole annular area, and that 
the fraction of this area which "feeds" the inner (or core) Fan is 
not necessarily equal to GEOM, but is some fraction of it. This 
fraction was named the "fraction of split", labelled FCSP. This is 
a floating variable which is calculated in the program at each time 
interval. 

The Block Diagram for the calculation procedure for the RB 183-03 
Engine can now be followed. This is illustrated in Fig. 7. Two 
alternative forms of logic can be used, depending on whether NLOGIC is 
given the value I or 2. The procedure followed when NLOGIC has the 
value I has proved satisfactory for decelerations and for modest 
acceleration schedules. However for the more rapid acceleration 
schedules, the procedure could enter a loop with this form of logic. 
The alternative logic (NLOGIC with value 2) overcomes this difficulty, 
although computing times are lengthened. It is therefore recommended 
that NLOGIC be given the value I (in practice anything other than 2) 
for decelerations and the value 2 for accelerations. 

Adjustments to compressor mass flow capacities and efficiencies, due 
to Reynolds Number effects, are incorporated in the progr=. For the IP 
and HP Compressors the procedure uses the adjustments given in Verses 
24051,24001 (for IP) and 26051 and 26001 (for HP), updated I February 1982, 
and used in Program G519. For the Fan Sections, the procedure follows 
the recommendation of Compressor Research Department Internal Memorandum 
Ref CGB/Tms 7/KR, dated 9 June 1983, that the effect of PI on Tay Fan 
performance should be half that specified in the Spey Synthesis. 



4. 

A time increment of 0.05 seconds was generally used in this model, 
with the exception of the first I second of the transient when an 
increment of half the normal duration was adopted. The reason for 
this was to overcome computational instabilities in the early stages 
of the transient, particularly in decelerations. 

3.1 Sea Level, Mach 0.2, Zero IP Bleed 

The model thus developed has been used to predict transient 
behaviour under a variety of conditions. The first case illustrated 
here is at Sea Level, Mach No. 0.2, Recovery Ratio 0.995. (Recovery 
Ratio being defined by P1/P1 ideal). As a first proposal for acceleration 
and deceleration fuel schedules, schedules scaled by 0.9 from the CASC 211 
have been used. Those are shown in Fig. B. The predicted steady-running 
points are also shown, lying reasonably between the schedules. The 
resulting predicted speed and thrust responses are shown in Figs. 9 and 10. 
It is interesting to compare the acceleration responses of the Tay Engine 
(Fig. 9) and the Spey Engine (Fig. 3). The Tay has been started at much 
lower speeds, and takes 6 seconds to develop 500 lbf of thrust, which is 
the starting point of the Spey acceleration. Thereafter, the Tay is 
predicted to take just over 6 seconds to obtain maximum thrust while the 
Spey reaches its maximum thrust in just over 4 seconds. It will be seen 
on comparing HP trajectories on Figs. 14 and 6 that the transient excursion 
in the Tay is less severe than in the Spey, and so probably a more rapid 
acceleration schedule could be tolerated by the Tay, say with multiplying 
factor 0.95 applied to the CASC 211. Considering the decelerations of 
the two engines (Figs. 10 and 4), both engines drop to 20% of their initial 
steady thrusts. in about 1.25 seconds. 

Examining now the trajectories in the various components, the results 
for the Inner Fan are given in Fig. 11. The mass flow value plotted on 
the base line of this characteristic is the mass flow the component would 
be handling if the same axial velocity entered the area corresponding to 
an FCSP value of 1.0 instead of the actual value of FCSP. It should first 
be noted that the steady-running conditions predicted by this program 
apparently deviate markedly from those predicted by R-R Program G519. This 
is attributed to the different logics of the two programs, and the different 
ways of handling the two sections of the fan. While this difference in 
approaches is worthy of further investigation, it is noted (on Fig. 11) 
that the transient points (acceleration and deceleration) predicted by the 
present program practically coincide with the steady-running points and 
therefore no additional problem should be experienced here during transients. 

The predicted steady-running points and trajectories in the Outer Fan 
are shown in Fig. 12. The steady-running points deviate slightly from 
the predictions of Program G519. The reason is probably as discussed 
above for the Inner Fan. In the Outer Fan, as for the Inner, transient 
trajectories are only slightly displaced from the steady-running line 
and it is considered that, here too, no additional problem should be 
encountered in transients. 
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The results for the IP Compressor are shown in Fig. 13. Before 
discussing the transient trajectories, it should be mentioned that a 
sli hht discrepancy in predicted steady-running points arises at higher 
N/ýgi values. This again is probably partly related to the differing 
fan treatments given in the two programs. In the transients, the 
trajectories depart significantly from the steady-running line. In 
the acceleration this begins after about 9.5 seconds when the 7th Stage 
Bleed in the HP compressor begins to close and the IGV's begin to open. 
The engine begins to accelerate rapidly and the air demand of the HP 
compressor increases more quickly than is available from the IP Compressor 
outlet. This causes the pressure ratio provided by the IP Compressor 
to reduce (at timesAclose to unity), thereby meeting the (ill(T/026 
requirement of the HP Compressor. The opposite situation arises in the 
deceleration, where the trajectory is predicted to approach the surge 
line (as revised Jan, 1984). These results are discussed in more detail 
in Section 4. 

The HP Compressor results are shown in Fig. 14. The predicted 
steady-running points almost coincide with the Spey values. The Tay 
transient trajectories are as expected, with the excursions slightly 
less pronounced than for the Spey, but this is a function of the 
acceleration schedule selected, as discussed above. It shou*ld also be 
noted that in the acceleration there is an overshoot in the (NH/V'T26) 
values before the engine stabilises. This is partly due to an overshoot 
in NH (see Fig. 9). This subject is discussed further in Section 4. 

3.2 Sea Level, Mach 0.2,10% IP Bleed 

One method of relieving the tendency of the IP Compressor to surge 
during decelerations is to bleed a fraction of the IP Compressor delivery 
air into the Bypass Duct. This facility has been incorporated in the 
progran, and the resulting deceleration trajectories in the IP and UP 
Compressors are shown in Figs. 15 and 16 for the case of a 10% IP Bleed 
(flight conditions-sea level, Mach 0.2, as before). The trajectory in 
the IP Compressor is dropped significantly away from surge, about 60% 
of the surge margin between the revised surge line and steady-running 
remaining intact. The trajectory in the HP Compressor is virtually 
unaffected (Fig. 10). The HP speed drops to a slightly lower equilibrium 
speed (Fig. 10). 

3.3 Altitude 41,000 ft, Mach 0.8, Zero and 10% IP Bleeds 

This procedure has also been applied to the flight case of Mach 0.8 
at 41,000 ft, with Recovery Ratio 0.995. The acceleration and 
deceleration fuel schedules were again based on CASC 211 (Altitude, with 
P1=4.4 lbf/in2). Again a multiplying factor of 0.9 was used. The 
schedules, and the predicted steady-running line are shown on Fig. 17. 
It is seen that this acceleration schedule appears to be too far above 
the steady-running line, and likely to cause surge in the HP Compressor, 
as indeed is the case (Fig. 21). The deceleration schedule is such 
that the engine cannot drop to a fuel flow of less than about 0.044 kg/sec. 
Speed and thrust responses in the acceleration (which surges in the HP 
Compressor) are shown in Fig. 18, and in the deceleration in Fig. 19. 
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The trajectories in the IP Compressor are shown in Fig. 20 
(Zero IP Bleed) and Fig. 22 (10% IP Bleed). For steady-running with 
Zero IP Bleed, the working line is significantly raised f rom its sea 
level position (Fig. 20). The relatively modest deceleration schedule 
gives a trajectory which is predicted to cross the revised surge line. 
Provision of a 10% IP Bleed leaves about half the surge margin (relative 
to the sea level working line) intact. 

As seen in Fig. 21, the acceleration schedule is too rapid and the 
predicted trajectory in the HP Compressor crosses into surge. It is 
also seen that as at sea level, there is a considerable overshoot in 
(NH/Y'e 26) before the engine stabilises. The trajectory in the RP T 
Compressor during the deceleration is virtually unaffected by a 10% 
IP Bleed. 

Discussion 

The trajectories etc in the HP Compressor of the Tay are very much 
as expected and similar to those in the Spey. Little further couiient 
is required at this stage. 

The trajectories in the IP Compressor of the Tay and in the LP 
Compressor of the Spey are very different. A major factor obviously 
is that the bypass air is drawn from behind the Spey LP Compressor 
but from in front of the Tay IP Compressor. Other factors are 
suggested by examining the inter-relations of the shaft speeds during 
transients and at steady states. These are shown in Fig. 23 for the 
Spey (at sea level) and in Figs. 24 and 25 for the Tay at sea level and 
altitude respectively. Looking at the Spey engine, in the acceleration 
the LP spool "leads" the HP spool until the IGV turhing range of the 
HP Compressor is reached (Point X, see also Fig. 26). For the range 
where the IGV's are turning (Points X to Y), the transient and steady 
conditions coincide. It therefore appears that, for the Spey, the 
relative spool inertias are well "matched" with the rate of change with 
speed of the air breathing requirements of the HP Compressor when in the 
IGV turning range, but not in the speed range below this. By comparison, 
for the Tay, the sea level results (Fig. 24) indicate that the "matching" 
is good at the low speed range below point X (note the first 9.7 sec. of 
acceleration), but poor where the IGV's are turLdng, and probably also 
at the high speed end. 

A word of explanation might also be given as to why, in the decelerations 
the point at time zero in the LP Compressor of the Spey lies well below 
the steady-running line while in the IP Compressor of the Tay it lies 
virtually on the steady-running line (in this analysis the fuel flow is 
assumed to drop instantaneously to the Deceleration Schedule line, and 
the point marked as time zero is at this reduced fuel flow). In both 
engines the pressure at the final nozzle drops because of the reduced 
turbine exit temperature, the total engine airflow remaining almost 
constant because of the almost vertical pressure characteristics at high 
speed of the Spey LP Compressor and of the outer fan of the Tay. Hence 
in the Spey the LP Compressor delivery pressure drops, because of the 
bypass duct connection. However in the Tay the final nozzle pressure 
reduction merely drops the pressure delivered by the outer fan. The/ 
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The inner fan has almost horizontal characteristics, so the delivery 
pressure from it is almost unaltered. The IP characteristics are almost 
vertical so there is almost no change in the flow conditions of the core 
air up to the inlet to the HP Compressor, hence no movement of the working 
point in the IP Compressor. 

To simmarise for the Tay engine, the factors which have significant 
bearing on the trajectory in the IP Compressor are probably: - 

Relative shaft inertias. The problem in the deceleration 
would be eased by reducing LP shaft inertia. 

2. The rate of change of air breathing capacity of the HP 
Compressor with speed. At present, in the IGV turning 
range, this is on the high side. 

3. The rate of deceleration that is wished. The less rapid this 
is, the easier the trajectory. 

4. The aerodynamic loadings of the compressors on the two shafts. 

The movement towards surge in the IP Compressor during decelerations 
is greatly relieved by bleeding some air from the IP Compressor delivery 
into the bypass duct. A bleed of 10% appears more than adequate. 

Further Work. 

Further investigation is required of the treatment of the inner and 
outer sections of the fan, and of whether the flow distribution is as 
implied by the characteristics currently used in C519, or if there is 
some transient redistribution . 

Investigation should be made of the thermal effects which alter 
surge lines and working lines. These have been ignored up till now, 
but an approximate allowance for the expected detrimental effects has 
been made by adding 30% to both shaft inertias. 

The relative aerodynamic loading of shafts, and associated inertias, 
should be examined to determine if a better "split" of compression can 
be achieved. 

Conclusions 

Computational models have been developed for representing the 
transient performances of the Spey (RB183-02) and Tay (RB183-03) 
Engines. The predictions for the Spey engine are in line with experience 
and this encourages confidence in the modelling technique. 

The predictions for the Tay engine show similar behaviour in the 
HP Compressor to that in the Spey. In the IP Compressor, trajectories 
in accelerations and decelerations move significantly away from the 
steady-running line. In the deceleration this movement is towards 
surge. At sea level the predicted trajectory just touches surge, and at 
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altitude the situation is worse. This situation can be relieved 
by bleeding some air from the IP compressor delivery into the bypass duct. 
A bleed of 10% appears more than adequate. 

Factors which influence the IP Compressor trajectory are discussed. 

Suggestions for further work are made. 
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