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Abstract
Space tethers are high strength, low-density cables that connect satellites, probes or space

stations to each other in space. The cables are typically very long structures ranging from a

few hundred metres to several kilometres and have a relatively small diameter, being only a

few millimetres thick. Many applications have been proposed for tethers and much

experience and knowledge has been gained through in-orbit flight-testing of conductive and

non-conductive tethers. Tethers are also being supported by the major space agencies and

companies can already foresee the possibility of commercially exploiting tethers to make a

profit. The aim of this thesis was to address some of the issues relating to the performance

and dynamics of momentum exchange tethers.

The multiple scales perturbation method successfully generated an approximate closed-form

solution to the three dimensional motion of a tethered dumbbell on an elliptical orbit, which

is valid for small initial angular displacements close to the gravity vector and orbit

eccentricities less than 0.1. However, numerical integration has to be employed if the

dynamics of the tether are to be comprehensively studied for values greater than the given

initial conditions and those likely to be encountered in space. The planar and three-

dimensional attitude dynamics of a tethered dumbbell on an elliptical orbit were, therefore,

explored numerically. The largest stable region exists for a tether with no initial angular

velocity and initially positioned close to the local vertical. For certain initial conditions the

tether libration occurs as a transient and a remarkable structure was uncovered within the

region that governs the duration of the transient. The generation of velocity increments upon

completion of a single orbit through the spin-orbit coupling on an elliptical orbit was not

found to be of particular use. Few initial conditions exist that allow the payload to be reliably

released above the facility when the spinning tether is aligned exactly along the gravity

vector at perigee. The dumbbell deviated from the planar tether's qualitative behaviour only

when the initial out-of-plane angular displacement became sufficiently large. A strong link

was observed between libration and regular tether motion and between chaos and a tumbling

dumbbell, which suggests a dumbbell librating either within or out of the orbital plane is

associated with regular motion and a chaotic regime gives rise to tumbling.

Three fundamental tether motions were considered for payload orbital transfer with tethers:

hanging, prograde libration and prograde motorised spin. The symmetrical double-ended

motorised spinning tether performed best and was most efficient, improving by two orders of

magnitude on the librating tether which in tum improved on the hanging tether by roughly a

factor of two. An upper payload using long tethers with a motorised tether on a circular orbit
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can be transferred from a low to a geostationary Earth orbit by employing relatively high

motor torque and a safety factor on the tether strength close to unity. Two common literature

results, the constant efficiency index of seven for a hanging tether upper payload release and

the maximum efficiency index of fourteen for an upper payload released from a prograde

librating tether, were found to be a lower bound and quite readily breached, respectively.

Orbit circularisation through tether release was found to be feasible with retrograde librating

tethers. When the point of release does not occur along the local vertical then a non-optimum

release of the payload was found to severely reduce the performance of payload transfer with

tethers. Consequently, a very precise and accurately timed release is important for the

success of payload orbital transfer with tethers since missing the point of release by a single

degree with a spinning tether, say, can cause the payload to miss its required target. The best

design for the outrigger system to provide the necessary resistive torque is to utilise the

gravity gradient and trap the outrigger system within the gravitational potential well. In this

manner the outrigger tether length can be significantly reduced and the outrigger end masses

can be minimised, thus saving valuable launch mass and cost, as well as exposing less tether

surface area to the space environment. With current materials the maximum ll.V to be

expected with a motorised tether is between 600-1400 m1s depending on the tether length

and payload mass. The duration of the spin-up lasts approximately between half and a full

Earth day but may vary by an hour, say, depending on the initial conditions and orbit

eccentricity. Ensuring the motor torque axis remains perpendicular to the orbital plane was

found to be vital otherwise the spin-up time is greatly increased. The motorised tether has the

ability to shift the datum of a hanging tether, which may have useful applications in Earth

monitoring or tethered interferometry. Out-of-plane initial angular displacements or the

motor torque axis not remaining perpendicular to the orbital plane caused the motorised

tether to precess. Furthermore, the motion of the motorised tether with a constant motor

torque was found to be regular, but quasi-periodic, which implies that the payload cannot be

reliably delivered at perigee along the local vertical.
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Chapter 1
An Introduction to Tethers in Space

1.0 Introduction

Telecommunication is now largely done through satellites in space and this trend is set to

continue with the ever-growing use of wireless application products, global positioning

handsets and mobile phones. Furthermore, a better understanding has not only been achieved

of the Earth but also of the solar system and the universe with the use of satellites and

probes. The importance and value of space technology to industry, science, culture and

society is significant and yet the cost and risk involved with putting an object into and

travelling through space is immense. Depending mainly on the type of launcher used the

current launch costs per kilogram of payload range, according to Beardsley (1999), between

$15,000-$20,000. Clearly, the cost of the launch alone is prohibiting the continued

exploration of space and thus slowing the breakthroughs that could be made in science, the

untapped resources that industry could exploit and tourism in space, which has always

captured the public's imagination.

The current use of expendable multi-stage to orbit rockets generates a lot of debris in orbit

and is posing a greater threat not only for satellites and the International Space Station (ISS)

already in orbit but also for vehicles reaching space and then re-entering the Earth's

atmosphere. In addition the construction and operation of expendable rockets is costly since

new parts have to continuously be manufactured and proceed through rigorous testing to

ensure their function is reliable. A possible solution to this problem is to employ reusable

single-stage-to-orbit (SSTO) rockets such as the proposed Roton Rotary Rocket or fully

reusable multi-stage-to-orbit rockets as proposed by the US company Scaled Composites.

Although hopes were initially high that NASA would quickly develop a reusable SSTO

rocket to replace the Space Shuttle, it is now evident that significant developments in

technology are still required to achieve an SSTO rocket that can realistically replace the

Shuttle. Furthermore, budget constraints and cuts suggest that many years will pass until

SSTO rockets are a realistic replacement for expendable multi-stage rockets.

On Earth humanity has developed many forms of propulsion and employs these in their most

economical and appropriate manner. For example, heavy cargo is transported over several

thousand kilometres by airplanes or boats whereas bicycles or automobiles are employed to

transport humans over tens to hundreds of kilometres. Moreover, different forms of
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propulsion are combined to generate very effective transportation networks. A person

travelling from their house to a meeting in another city might well use the combination of a

bicycle, train, conveyor belt, airplane, car and an elevator to reach their destination. To reach

a low Earth orbit in space, however, only one form of propulsion system is currently used:

chemically fuelled rocket engines. Once in orbit, the same primary method of propulsion is

employed and enhanced by gravity assists. The great challenge facing astronautical

engineers is therefore to develop new propulsion methods that are safe, reliable and

effective, as well as being financially viable. Only by having an array of propulsion systems

will it be possible to optimally employ these methods to propel a given payload and evolve a

space transportation network, similar in principle to that on Earth, that will ultimately drive

costs down and make space more accessible.

Many concepts for advanced space propulsion exist and span a large range of ideas from

antimatter propelled spacecraft to the recent successful implementation of ion propulsion as

the primary propulsion system on NASA's Deep Space 1 mission, launched in 1998. Of the

many proposed forms of advanced space propulsion, space tethers have the potential in the

near term to reduce the operational costs of the ISS, decrease costs of launching payloads

into orbit, deorbit space junk, transfer payloads from low to high orbits and vice versa, and

ultimately offer the possibility of a low cost and reusable transportation system for cargo

destined from Earth to space stations, asteroids, moons or planets.

1.1 Definition of a Space Tether

Space tethers are high strength, low-density cables that connect satellites, probes or space

stations to each other in space. The cables are typically very long structures ranging from a

few hundred metres to several kilometres and have a relatively small diameter, being only a

few millimetres thick. Consequently, the material used to manufacture the tether has to

endure high stresses and be lightweight to ensure the mass penalty at launch is kept to a

minimum. A common material that has been employed in the past is DuPont's high strength

polymer, Spectra 1000, which, according to Lorenzini and Carroll (1991), has an ultimate

tensile strength of approximately 3 GPa and a density of 970 kg/m", Note, that this polymer

has a similar density to water but has an ultimate tensile strength approximately 3.5 times

greater than a titanium alloy. Space tethers can be broadly categorised into two classes:

conductive and non-conductive tethers. A tether that possesses a conductive core permits the

tether to interact with the Earth's magnetic field and is termed an electrodynamic tether.

Many potential applications exist for tethers that are completely non-conductive but when

employed to generate propulsive effects, such a tether is termed a momentum-exchange

tether.
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1.2 Electrodynamic Tethers

The Earth possesses a magnetic field with its north and south magnetic poles currently

aligned roughly along the Earth's geometric north and south poles. Whilst orbiting the Earth

on a low inclination orbit with respect to the Earth's equator, the conductive core of the

electrodynamic tether will move through the Earth's magnetic field. This is in principle how

a dynamo is employed to generate electricity and, similarly, a current will be generated in the

conductive core of the tether, which can be utilised to power the tether's end masses instead

of using heavy on-board batteries. Since electrical energy is derived from the tether's kinetic

energy, this method of power generation will cause a decrease in the tether's orbital altitude.

Bekey (1983) estimates that the energy conversion occurs with an efficiency of

approximately 70% and proposes continuous or periodic reboosts to make up the altitude

loss, thus converting chemical energy into electrical energy at relatively high efficiencies.

The power output from an electrodynamic tether is a function of tether length and Bekey

(1983) suggests that 10-100 kW of power could be readily produced with a tether length

ranging between 20-100 km. Cosmo and Lorenzini (1997) present calculations for a 200 kW

system and indicate that electrodynamic tethers may possibly generate power in the

megawatt range. Bekey (1983) goes on to claim that this method of power generation would

be a simpler and cheaper way than achieving the same power output with solar arrays.

As the conducting tether moves through the Earth's magnetic field the electro-motive force

generates a potential difference across the tether. The tether ends must make electrical

contact with the plasma in the Earth's ionosphere to enable a current to flow from the

potential difference, thereby generating a closed circuit or current loop. Cosmo and

Lorenzini (1997) describe three concepts for plasma contactors: (a) a passive large area

conductor at both tether ends, e.g. a metallic balloon, (b) a passive large area conductor at

one end and an electron gun at the other, and (c) a plasma generating hollow cathode at both

ends. Of the three configurations Cosmo and Lorenzini (1997) recommend the third option

as being the most promising since it does not rely, as do the first two concepts, on a large

conducting surface to passively collect electrons. Instead, the hollow cathodes generate an

expanding cloud of conductive plasma, which has a sufficient thermal electron density to

carry the full tether current in either direction at any distance from the tether end. Hollow

cathodes, however, do require an on-board power and gas supply to operate but Cosmo and

Lorenzini (1997) comment that a hollow cathode requires less power than an electron gun

and that a gas supply would not represent a severe weight penalty. Beletsky and Levin

(1993) remark that the predicted performance of hollow cathodes is somewhat optimistic and

that a large development in technology is still required to ensure the plasma contactors only
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cause a low voltage drop. Indeed the design of plasma contactors is a very active field of

research with new concepts being developed, such as the field emitter array cathodes. A field

emitter array cathode, as Morris et al. (2000) explain, consists of many hundreds or

thousands of small micron level cathode/gate pairs printed on a semiconductor wafer that

effect a cold field emission at relatively low voltages. Morris et al. (2000) express the hope

that this inexpensive technology will provide the required high level of current emissions for

an electrodynamic tether mission, whilst being simple to integrate and demanding little

power.

Electrodynamic tethers are usually thought of as long conductive cables covered by an

insulating sheath, which allows the exchange of electrical charge with the ionosphere to

occur at either end of the tether. A recent development in the design of electrodynamic

tethers is the concept of a bare tether, where a portion of the conducting cable is itself

exposed to the ionosphere to permit electron collection. Estes et al. (2000b) argue that

relatively simple bare electrodynamic tethers situated in low Earth orbit should attain

currents in the lOA range and be unaffected by plasma density variations encountered on

orbit, which is a problem for large passive area collectors. This would permit bare tethers to

operate both at night and day because of the system's inherent self-adjusting electron

collection area. Rather than being fixed, the bare portion of the tether collecting the electrons

can be varied, thus allowing a greater area to be exposed to the ionosphere if the electron

density drops during the orbit revolution. Consequently, a bare electrodynamic tether should,

according to Estes et al. (2000b), maintain a steady output.

The ability to reverse the current with hollow cathodes, say, permits the electrodynamic

tether not only to be operated as a generator but also as a thruster. If an on-board solar power

generated current is driven along the conductive cable then the tether will generate its own

magnetic field and consequently interact with that of the Earth's. Depending on the direction

ofthe current flow along the tether, the resulting electro-motive force will either point in the

same direction as the tether's orbital velocity vector, thereby causing a positive thrust and

increasing the tether's orbital radius, or it will oppose the orbital velocity and generate a

negative thrust, leading to a reduction in the orbital radius. The significant achievement of

this concept is the ability to alter the tether's orbital altitude without the ejection of chemical

fuel, thereby saving valuable launch mass. Cosmo and Lorenzini (1997) point out that it is

necessary to distinguish between electrodynamic tethers orbiting at sub-synchronous

altitudes and those on orbits greater than the synchronous altitude, where the sense of

relative velocity between the tether and the magnetic field's rotating reference frame is

reversed. Hence, a power generating electrodynamic tether orbiting at an altitude greater

4



than the synchronous orbit will, according to Cosmo and Lorenzini (1997), generate a thrust

on the tether instead of a drag.

Propulsive electrodynamic tethers offer the attractive possibility of deorbiting satellites,

defunct or other spent bodies, after they have reached the end of their operational life in

orbit. The US company, Tethers Unlimited, are developing several products that hope to

commercially exploit electrodynamic tethers. The first is the Terminator Tether, which is a

device attached prior to launch to a satellite. During the operational period of the satellite the

Terminator Tether remains dormant but upon activation the tether is deployed, causing the

satellite to deorbit. Tethers Unlimited's device is designed to be 2-3% of the host's mass and

Forward et al. (2000) claim that depending on the initial orbit configuration the Terminator

Tether can deorbit a typical communication satellite within several weeks or months.

Forward et al. (2000) also present the concept of the Remora Remover, a device that after

attaching itself to an enemy satellite deploys an electrodynamic tether to deorbit the hostile

craft. Another company, Delta-Utec, based in the Netherlands, has explored the use of

electrodynamic tethers to deorbit space debris. Heide and Kruijff (2000) conclude that

tethers 5-10 km long and operating within the maximum plasma density can achieve deorbit

rates between 2 and 50 km per day, thereby helping mitigate the in-orbit debris risk. Ahedo

and Sanmartin (2002) analyse the performance, design criteria and system mass of bare

electrodynamic tethers for deorbiting satellites and deduce from a trade off comparison with

electric thrusters that bare tethers are by far the cheapest deorbiting option for low and mid

inclination orbits. For electrodynamic tethers to be commercially exploited, however, Vas

(2000) comments that additional investigation is required into the design of the conducting

tether, method of tether deployment, tether lifetime, safety aspects regarding power demand,

and safe tether release methodologies.

Since a few months are required to deorbit spent satellites with electrodynamic tethers, the

risk of a several kilometre long tether striking another object in orbit is greatly increased.

Chobotov and Mains (1999), Matney et al. (2000) and Patera (2002) developed analytical

and numerical techniques to quantify the probability of the tether colliding with satellites and

debris. Chobotov and Mains (1999) focussed their study on the Tethered Satellite System

flown in 1996 (see Section 1.7.3) and concluded that the tether experienced several impacts

by particles of 0.1 mm in diameter. However, the probability of collision with larger in-orbit

bodies was estimated to be in the order of 10-3per month. The numerical results of Patera

(2002) reveal the collision probability of a tether is several hundred times greater than that of

a space body with a 6m radius.
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A study carried out by Vas et al. (2000) into the possibility of utilising a propulsive

electrodynamic tether to reboost the International Space Station's decaying orbit due to

atmospheric drag, estimates a 7 km long partially bare tether operating at a power level of 5

kW could provide savings over a ten year period of more than a $1 billion. The savings arise

due to the reduction in flights delivering propellant to the station for reboost and with greater

use of the tether could possibly be increased. Furthermore, should the delivery of propellant

be for any reason delayed then an on-board electrodynamic tether would provide a backup

system for the space station. Vas et al. (2000) also suggest the tether may improve the

microgravity environment on the International Space Station since during quiescent periods

atmospheric drag could be neutralised, as well as optimising the positioning of laboratories

with respect to acceleration contours.

Jupiter possesses a particularly strong magnetic field and with the high orbital velocities

required to orbit Jupiter's great mass, very large relative velocities between the magnetic

field and the spacecraft should be expected. The feasibility study carried out by Gallagher et

al. (1998) found the use of electrodynamic tethers in the Jovian system presents entirely new

engineering challenges but on the basis of Jupiter's plasma physics is theoretically possible.

Their study estimates that induced tether voltages could reach as high as 50 kV, current

levels may exceed 20 A, power levels can top 1MW, and propulsive forces of SON could be

attained. Tethers one kilometre long could be employed for power generation or facilitating

orbital manoeuvres but would have to be relative heavy to manage the large power levels.

Moreover, the large predicted currents imply a special thermal control will be necessary to

stop the spacecraft from overheating. Gallagher et al. (1998) conclude that utilising

electrodynamic tethers about Jupiter is beyond the currently available technology and that

further investigation is required to assess whether the tether dynamics will permit stability

either naturally or by means of control.

Cosmo and Lorenzini (1997) explain that in addition to the in-plane component, the

electromagnetic force on the tether current generally has an out-of-plane component,

pointing perpendicular to the tether velocity. This effect allows electrodynamic tethers to

achieve orbital plane changes since the out-of-plane force component acts to change the

orbital inclination whilst, according to Cosmo and Lorenzini (1997), inducing no electro-

motive force to oppose the current flow in the conductive cable. Hoyt (2000b) reports

Tethers Unlimited hope to exploit this through their JLPETpropulsion system, in which

orbital transfer and inclination changes for micro-satellites are achieved through

electrodynamic tethers.
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The electrodynamic forces acting on conductive tethers have been found in numerical

simulations to exhibit complex dynamics. Beletsky and Levin (1993) demonstrated that the

electrodynamic forces drive the in- and out-of-plane motions of a flexible tether on a

circular, equatorial orbit, such that the tether's equilibrium positions become unstable and

result in the tether spinning end over end. According to Ruiz et al. (2001), Lorenzini et al.

(1999) and Pelaez et al. (1999) extended Beletsky and Levin's model to take account of the

tether moving on inclined orbits and found many more factors affecting the instabilities

observed in their numerical investigations. In an attempt to understand the observed

instabilities better, Pelaez et aJ. (2000) adopted the approach of studying a simplified one-bar

tether model, which would allow the basic mechanism causing the instability to be

investigated. This simplified model was extended by Pelaez et al. (2002) to take account of a

two-bar tether on an inclined orbit. The simplified models discovered the electrodynamic

forces in the long-term continually pump energy into the system, which over long periods of

time leads the in-plane motion to shift from libration to rotation. Moreover, the simplified

models suggested that the destabilising mechanism is independent of tether flexibility or

rigidity, unlike the one identified by Beletsky and Levin (1993), which was dependent on the

tether's longitudinal flexibility. By studying the lateral oscillations of an electrodynamic

tether, Dobrowolny (2002) concluded that only the mechanism proposed by Pelaez et al.

(2002) could account for the inherently unstable motions of the lateral tether oscillations.

Pelaez and Lara (2003) developed a numerical algorithm to search the parameter space for

possible periodic solutions, which successfully uncovered a class of periodic solutions not

found with analytical asymptotic techniques. Pelaez and Lara (2003) conclude, though, that

these periodic solutions are rather unstable and not practically suited for the operation of

electrodynamic tethers. Consequently, a control methodology is required to ensure the long-

term operation of propulsive electrodynamic tethers is feasible. Corsi and less (2000)

investigated an on-off modulation of the tether current, which is phased with the sign of the

mechanical power, to ensure the libration amplitude of the tether remains bounded. Corsi and

less (2000) demonstrated that the attitude dynamics can be effectively controlled in this

manner but the deorbiting times will consequently be reduced by a factor ofO.8-0.95. Pelaez

et al. (2001) attempt to control the attitude motion of the electrodynamic tether by adding

damping in form of a dashpot to the system. From their preliminary findings, Pelaez et al.

(2001) conclude that nonlinear coupling between the in- and out-of-plane motion is weak

and therefore lateral oscillations of the tether cannot be damped out with control laws based

on a single state variable. A further conclusion drawn is that due to the weak nonlinear

coupling the out-of-plane oscillations will be the more difficult to control.
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1.3 Gravity Gradient Stabilisation

Consider the case of two masses connected by a tether, which is aligned along the gravity

vector, and its common centre of mass (COM) prescribing, say, a circular orbit about the

Earth. Without the tether, the mass closest to the planet would have a greater angular

velocity to ensure the orbit is maintained, since the reaction to centripetal acceleration must

balance with the greater gravitational pull. Similarly, the gravitational attraction is reduced

for the mass on the larger orbit because it is further from the planet and so a smaller reaction

to centripetal acceleration is necessary to preserve the orbit. However, the tether connection

ensures both masses orbit the Earth with the same angular velocity and that a gravity

gradient acts along the tether. Since the lower end mass is orbiting the Earth with the now

lower than required angular velocity, the mass must experience a net force pointing towards

the Earth. At the same time the mass furthest from the Earth is orbiting at a greater than

required angular velocity and hence a net force experienced by the upper mass must be

directed away from the Earth. Consequently, the end masses are not in force equilibrium and

the tether must therefore go into tension, establishing a force equilibrium across the tethered

system. Assuming the tether is on a circular orbit and no other forces perturb the tether, then

the tether will remain aligned along the gravity vector, which is a stable equilibrium. The

configuration is stabilised by the gravity gradient and is termed a hanging tether.

When a hanging tether is perturbed away from its equilibrium position, either within or out

of the orbital plane, then due to the gravity gradient a torque is created about the tether's

COM. There are no additional forces that can balance the system once the tether has moved

away from its stable equilibrium position and consequently the tether proceeds to oscillate,

or librate, about the COM. The librations would continue indefinitely without the presence of

damping but a real tether system in orbit experiences material damping within the tether and

some atmospheric drag that ultimately returns the tether to its stable equilibrium. Assuming

the perturbation is small and the tether length is short in comparison to the orbital radius,

then Arnold (1987) demonstrates by means of a simple but elegant analysis that the in- and

out-of-plane librations are decoupled and oscillate at a frequency equal to..[j and 2 times the

orbital angular rate, respectively.

Beletsky and Levin (1993) obtain two further equilibrium states for a rigid massless tether on

a circular orbit. The first is when the tether is aligned tangentially to the orbit and within the

orbital plane, and the second when the tether is tangential to the orbit and perpendicular to

the orbital plane. Both of these configurations are found by Beletsky and Levin (1993) to be

unstable, since small perturbations cause the tether to diverge from these two stationary

points. The physical explanation for this is that the reaction to centripetal acceleration and
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the gravitational attraction are no longer in line with each other and thus cannot maintain

tether tension. In practice the two unstable configurations are best avoided since the tether

may go slack and endanger the end masses and the mission. Adams (1970) finds a closed

form solution by means of elliptic integrals of the first kind for the idealised massless and

planar tether on a circular orbit in order to predict regimes when the tether may go slack.

When Adams (1970) included damping he observed that the motion of the tether aligns itself

along the gravity vector and that the tether slackness subsides.

1.4Mechanics of Payload Orbital Transfer with Momentum Exchange Tethers

Tethered masses, orbiting a source of gravity in space, possess the same orbital angular

velocity as its common centre of mass (COM). If the upper payload is released from a

hanging tether, i.e. always aligned along the gravity vector, the upper payload carries more

angular velocity than it requires to stay on that circular orbit, but since the upper payload

does not have enough energy to escape the Earth's gravity, the upper payload goes into an

elliptical orbit with the release point being the perigee of the orbit, as shown in Figure 1.1.

Similarly, the lower payload does not have enough velocity to stay on its circular orbit when

it is released and so the lower payload goes into an elliptical orbit, too, but this time with the

release point being the apogee of the orbit. Half an orbit later the upper payload reaches its

apogee and is hence further from the Earth than it was at the point of release. Upon reaching

the perigee of the orbit, the lower payload is closer to the Earth than it was at release. Thus,

the upper and lower masses released from a hanging tether are respectively raised and

lowered. A prograde swing or spin will add velocity to the upper payload and decrease the

velocity of the lower. A retrograde swing or spin will decrease the upper payload's velocity

which means the payload at release will either have more, just the correct amount of, or not

enough velocity to stay on its original orbit. The release point, therefore, will either be the

perigee or the apogee of the elliptical orbit or it could stay on the original circular orbit. The

reverse holds for the lower payload experiencing a retrograde spin or swing, which will have

either not enough, just the right amount of, or too much velocity to stay on orbit. The release

point will, consequently, be the apogee or perigee of an elliptical orbit or the released mass

could stay on its circular orbit. For maximum apogee altitude gain and perigee altitude loss

the most desirable tether motion has to be either a prograde swing or spin as more tangential

velocity is added to the upper and subtracted from the lower payload. The optimum release

point for a swinging or spinning tether is when the tether is aligned along its gravity vector

and when the motion itself is coplanar with the orbital plane. The radial separation, Y ..

between the payload half an orbit after release and the tether COM's circular orbital radius at

release is greater than the tether's length, L, for orbit raising and less than L for orbit

lowering.
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Figure 1.1 Orbital path of a payload released above the tether's COM on a circular orbit

Colombo et al. (1982) were one of the first to propose raising or lowering a payload's orbit

with momentum exchange tethers. A hanging tether in a circular orbit was considered by

Bekey and Penzo (1986) for transferring a payload from low Earth orbit (LEO) to

geostationary Earth orbit (GEO). However, a potentially dangerous drop in the shuttle's

perigee after release and resulting tether tension exceeding the strength of any known

material were cited as problems against this proposal. Kelly (1984) suggested tethering the

space shuttle to its external fuel tank at separation in order to raise the shuttle's orbit and to

simultaneously deorbit the tank, concluding that the proposal was attractive but control

stability and guidance dispersion issues of the external tank had to be addressed. Lorenzini et

al. (2000) investigated propelling a payload from LEO to GEO using a two-stage tether

system, where the transfer time was found to be comparable to that of a chemical upper

stage. Their study claims that a two-stage tether system is more competitive on a mass basis

than a chemical-propellant upper stage after two orbital transfers.

The results for Mx, treating the case of upper payload release, are given by Bekey and Penzo

(1986), Carroll (1986), Arnold (1987), Cosmo and Lorenzini (1997), and Lorenzini et al.

(2000), to be

hanging tether

swinging tether

(1.1)

(1.2)
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Ar,,> 14L spinning tether (1.3)

Bekey (1983) claimed the spinning tether release generates Sr;» 25L. Cosmo and Lorenzini

(1997) give a formula to calculate ArK for a swinging release, provided the tether and its end

mass remain on the original circular orbit

Sr; ~ (7+.J48 sin {}MAX ~ (1.4)

where (}MAX, the maximum libration angle between the tether and the gravity vector, is

positive for prograde and negative for retrograde rotation. Moreover, Cosmo and Lorenzini

(1997) state that (1.1)-(1.4) only hold as long as ArK« Te.

Kyroudis and Conway (1988) tried to improve the orbital transfer achieved with tethers by

examining the use of a librating tethered dumbbell system on an elliptical orbit for satellite

transfer to GEO. They reported that the .1.V savings and payload gain compared to a

Hohmann transfer improve with higher eccentricity orbits, longer tether lengths and faster

deployment speeds for similar initial periapse altitudes. Kumar et al. (1992) studied the

effects of various tether deployment schemes as well as the out-of-plane libration on payload

orbit raising of a tethered dumbbell on an elliptical orbit. For the swinging in-plane dumbbell

on a circular orbit they derived the following expression

ArK ~ (7 + 4 'I/~/(}'}L (1.5)

where '1/; is the angular pitch velocity when the tether is aligned along gravity vector and

{}' is the angular orbital velocity. Equation (1.5) holds for both swinging and spinning

systems assuming L « re. Contrary to the analysis of Kyroudis and Conway (1988), who

observed an increase in apogee altitude of the payload with deployment rate, Kumar et al.

(1992) found from their 3D analysis that the apogee altitude gain versus deployment rate

relationship is characterised by non-trivial peaks and valleys. Furthermore, Kumar et al.

(1992) claim that non-zero initial roll angles have little effect on the orientation of the

payload orbit after its release.

Equations (1.4) and (1.5) support the results in (1.1)-( 1.3) that a payload released above a

hanging tether rises approximately seven times the tether's length half an orbit later. This

result is independent of the COM's orbital radius, despite the tangential orbital velocity

being a function of the orbital radius. Equation (1.4), moreover, is independent of both the

facility's orbital radius and payload mass, where both should affect the payload's

momentum. Equation (l.5) takes the angular orbital and pitch velocities into account but is

not directly dependent on the orbital radius. The results in the literature, therefore, do not

appear to fully capture the physics of payload orbital transfer with tethers. With some papers

in the literature discussing the use of longer tethers and mission designers needing to know
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where to optimally place momentum exchange tethers in orbit, revisiting the validity of the

above expressions would appear to be warranted. Moreover, if the performance of different

momentum exchange tethers is to be compared, then accurate expressions instead of

approximations are desirable.

Moravec (1977) considered a planar prograde rotating momentum exchange tether orbiting a

planet on a circular orbit, where the orbit altitude and tether length are designed in such a

way that the tether's tip touches the planet's surface if no atmosphere is present, e.g. the

Moon, or the upper echelons of an atmosphere-bearing planet. The tether's rotation is

selected to ensure the tip velocity cancels the orbital velocity during a contact, when both the

velocity vector directions are parallel to each other. Having a relative zero velocity between

the tether and the planet offers the opportunity in relative terms to easily transfer a payload

from the planet to the tether, or vice versa. Moravec christened his idea a skyhook but the

skyhook in orbit about the Moon has colloquially become known as the Lunavator. Rather

than employing a tether of constant cross-sectional area, Moravec (1977) proposed a tapered

tether, where the tether has the approximate shape of a narrow onion in order to have a

greater cross-sectional area at the point of greatest stress. Following on from this, Moravec

(1977) discusses various difficulties with the skyhook, such as modal vibrations of the long

tether cables, varying orbital velocity and the change in altitude of the skyhook when

releasing or catching payloads. An issue that Moravec (1977) does not discuss is the fact that

a payload attached to the skyhook is not only translating but also rotating about the

skyhook's centre of mass. Upon release, the payload's linear velocity relative to the planet's

surface would be zero but the payload will continue to spin with an angular rate equal to that

of the tether's angular velocity. This velocity would have to be cancelled if the payload's

orientation is critical to the handover.

Hoyt and Forward (1997) exploit the skyhook concept of Moravec (1977) to propose a

continuous payload exchange between the Earth and Moon that solely employs momentum

exchange tethers. Two momentum exchange tethers orbiting the Earth ensure the lunar

bound payload first transfers into a higher orbit and subsequently reaches the required escape

velocity in order to transfer to the Moon. A Lunavator at the Moon catches the incoming

payload and delivers it to the lunar surface. The outward journey causes all three tethers to

alter their orbital altitude since the total momentum must be preserved, hence, Hoyt and

Forward (1997) ingeniously propose to establish all of the tethers' orbital height by returning

a payload from the Moon to Earth. Hereby, momentum exchange tethers are utilised to

transfer payloads between two celestial bodies without the use of rocket engines or chemical

fuel as the primary in-space propulsion technique. The Moon-Earth payload exchange
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concept is developed further by Hoyt and Uphoff (2000), whereas Nordley and Forward

(2001) model a continuous payload exchange with momentum exchange tethers between

Earth and Mars. These studies represent initial feasibility studies but there is clearly scope

for further work here, as the treatment of the orbital mechanics appears to be relatively

simplified.

Crellin and Jansses (1996) investigate the velocity increments a planar momentum exchange

tether could generate on an elliptical orbit. The maximum value they report for a 100 km

long tether was 102.8 m/s after completing its first orbit, which is a magnitude not

particularly useful for payload orbital transfer with tethers. Although Crellin and Janssens

(1996) comment that the velocity increment generation requires further investigation, the

low velocity suggests a drive may be required to intentionally spin the momentum exchange

tether. The first to propose an intentionally torque driven tether were Puig-Suari et al.

(1995b), who discuss the power requirements and design configurations of the tether sling.

An electric motor located at the tether's centre is driven by solar panels and generates the

necessary torque to spin the tether, thereby allowing both ends to carry a payload. To provide

the necessary resistive torque for the motor to rotate the tether, the motor's stator will have to

be unacceptably large and the spin rates will probably be very high. Consequently, Puig-

Suari et al. (1995b) propose adding an additional counter rotating tether to the momentum

exchange tether to supply the required torque resistance. Cartmell (1998) also proposes a

design for a motorised momentum exchange tether but instead of locating the motor at the

tether's centre, as done by Puig-Suari et al. (1995b), the motor is situated at one of the

tether's ends with another pair of tethers providing the necessary resistance. The advantage

of the symmetrical concept from Puig-Suari et al. (1995b) is that the tether's orbit should

remain largely unperturbed if a simultaneous release of the payloads can be ensured, whereas

the design of Cartmell (1998) will loose orbital altitude upon payload release. Moreover, the

symmetrical motorised tether concept lends itself beautifully to a continuous interplanetary

payload exchange with tethers as the facility naturally accommodates an in and out coming

mass. Cartmell and Ziegler (1999), who independently ofPuig-Suari et al. (1995b) invented

the symmetrical motorised tether concept, carry out a preliminary analysis of a continuous

payload exchange between the Earth and Moon with motorised tethers. However, the

numerical results obtained by Cartmell (1998) demonstrate that the three dimensional

dynamics of the motorised tether can affect the system's performance and definitely warrants

further analysis to assess the viability of motorised momentum exchange tethers.
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1.5 Further Suggested Applications of Tethers

A plethora of concepts exist for the use and exploitations of space tethers, which Cosmo and

Lorenzini (1997) present in a fairly comprehensive overview. Tethers have been proposed to

aid in the detection of gravity waves, measurement of the Earth's atmospheric properties,

construction of tethered platforms, interplanetary travel of spacecraft by utilising the

interaction between electrodynamic tethers and the solar wind, generation of low frequency

waves by an orbiting electrodynamic tether for worldwide communications, return of

samples from comets and asteroids, collection of micrometeoroids from the upper

atmosphere, generation of variable or low gravity in-orbit laboratories, docking of the Space

Shuttle with the International Space Station, and passive attitude stabilisation of spacecraft.

Tethers have also been proposed to aid in the provision of artificial gravity for long space

missions involving humans. A tether connecting the astronauts' living and working quarters

with another mass, say, could be spun around the system's common centre of mass to

provide a 1g environment for an appropriate rate of rotation and tether length.

Clarke (1981) reinvigorated the ideas of Tsiolkovsky (1961) of constructing a tower at the

Earth's equator to a point just beyond geostationary Earth orbit, which promises to

revolutionise travel into space. Clarke (1981) also considered the possibility of tethering the

Martian moon Deimos to Mars, and Lemke (1985) studied the possibility of constructing a

space elevator from the Moon's surface. Pearson (1975) was one of the first to investigate

the design issues of building a tethered space elevator, proposing various ideas on the

tower's construction and use. Recently, Edwards (2000) conducted an excellent conceptual

design study of a space elevator, which demonstrated that the concept's viability is not only

limited by required advances in material science but also by relatively trivial matters, in

technology terms, such as geographic location and political unrest.

Cosmo and Lorenzini (1997) describe a method, termed orbital pumping, which involves the

reeling in and out of a tether in phase with the natural Iibration of the tether. In this manner

electrical energy is employed, assuming proper timing is established, to affect the

spacecraft's orbit eccentricity. Gratus and Tucker (2003) derive a control methodology for

orbital pumping and find a suitably varied tether of 50 km can achieve an increase in the

spacecraft's orbital altitude of300 m an hour.

In an attempt to eliminate the need for a retro-propulsive manoeuvre to circularise a

spacecraft's orbit, tethers have been considered for aerobraking at an atmosphere-bearing

planet. A spacecraft deploying a tether could dip a body into the planet'S atmosphere, thus

slowing the craft. Puig-Suari et al. (1995a) develop a model of the flexible tether interacting

14



with the atmosphere and suggest the aerobraking tether can achieve aerocapture at any

atmosphere-bearing planet in the solar system for less mass than a corresponding propellant

of a typical retro firing rocket system. Biswell and Puig-Suari (2001) find the use of a lifting

probe improves the performance of the aerobraking tether and propose several methods for

cutting the tether to ensure the spacecraft is not deorbited once the desired orbit is reached.

A formation of spacecraft could be utilised to form interferometers in space but the

formation flying of spacecraft could be costly if each craft has its own propulsion system and

fuel source. Furthermore, the control and stability of formation free flying spacecraft possess

its own technological challenges. Tethers have been proposed as a lower cost means of

maintaining the formation. DeCou (1989) investigates the use of a spinning, multi-tether

Michelson interferometer, Moccia et al. (1996) describe the possibility of employing a

tethered synthetic aperture radar for natural disaster monitoring, and Maccone (1999)

proposes a design of a tethered radio telescope to observe the black hole at the galactic

centre.

1.6 Historical Background

K. E. Tsiolkovsky is credited by Clarke (1981), Bekey (1983), and Beletsky and Levin

(1993) to be the first person in 1895 to propose tethering large masses in space by a long thin

cable to the Earth's surface to allow gravity gradient forces to be exploited. Beletskyand

Levin (1993) claim Tsiolkovsky also devised at the time a 500 m long rotating tethered

structure to create artificial gravity in space. In 1910, according to Beletsky and Levin

(1993), F. Tsander calculated the necessary cable taper to connect the Earth to the Moon

with a steel cable. Beletsky and Levin (1993) state that Artsutanov, Isaaks, and Pearson

respectively reinvented the idea for a space elevator or Earth-Moon tether in the 1960s.

However, the modern era of space tethers began, as Cosmo and Lorenzini (1997) explain, in

the early 1970s by Mario Grossi of the Smithsonian Astrophysical Observatory and

Giuseppe Colombo of Padua University proposing the concept of the tethered satellite

system to NASA and the Italian Space Agency. Between 1979 and 1984 various committees

and bodies considered the concept and finally announced in April 1984 their approval for

flight-testing of the tethered satellite system aboard the Space Shuttle.

1.7 Past Tether Missions

1.7.1 Gemini Missions

The very first time a tether was employed in space was, according to Bekey (1983) and

Beletsky and Levin (1993), on the Gemini 11 flight launched on 12 September 1966. A 15 m
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long tether deployed a counter balance mass from the Gemini spacecraft and after 20

minutes the motion of the tether settled sufficiently to allow the tethered system to be spun.

The aim of the experiment was to explore the feasibility of generating artificial gravity with

tethers. Although the mission successfully generated artificial gravity, Lang and Nolting

(1967) report that the measured acceleration was only one thousandth of that on Earth. The

experiment lasted for three hours and the tether plus its end mass were ejected from the

Gemini module. Gemini 12 was launched on 11 November 1966 and carried out the same

experiment as on Gemini 11 but with a 30 m long tether. Rotation of the tethered system

generated again a miniscule amount of artificial gravity. The tether was observed to remain a

little slack yet very stable throughout the test.

1.7.2 Tethered Satellite System 1 (TSS-l)

TSS-l was launched 31 July 1992 on the Space Shuttle, STS-46, and deployed a conductive

tether with an insulating sheath to a length of 268 m directly above the Orbiter where it

remained for most of the mission. A positively biased sub satellite, shaped as a metallic

sphere of 1.6 m diameter and a mass of 500 kg, served as the electron collector. Twenty

hours of stable deployment were recorded in the vicinity of the Orbiter at an orbital altitude

of 300 km, which Cosmo and Lorenzini (1997) explain was one of the greatest concerns

during mission planning. According to Cosmo and Lorenzini (1997) the TSS-l mission

conclusively proved the feasibility of gravity gradient stabilised tethers, overcame issues on

tether deployment, and reduced concerns about safety, thus paving the way clear for the

TSS-l R mission to focus on scientific objectives.

1.7.3 Tethered Satellite System 1Retlight (TSS-IR)

The TSS-IR mission was launched aboard the Space Shuttle, STS-75, on 22 February 1996

with the aim of generating power for 20 hours through a 20.7 km long electrodynamic tether.

This was to be followed by a second test at a length of2.5 km to carry out additional science

experiments for 7-9 hours. However, the total length of20.7 km was not achieved on the 300

km high circular orbit and instead the tether deployed to 19.7 km before it was severed. The

true cause of the tether severing has to this day not been found but according to Estes et al.

(2000b) the commonly accepted explanation is air contained within the tether fibres escaped

from a worn part of the tether and sufficiently ionised to act as a plasma contactor, which

ultimately formed a spark severing the cable. Nonetheless, TSS-l R represents the longest

electrodynamic tether to be deployed in orbit. Cosmo and Lorenzini (1997) highlight several

other successes of the mission. Five hours had passed from the moment the tether had begun

deploying to the point when the tether was lost and during this period a quality data set was

gathered, such as the measurement of the electro-motive force, satellite and Orbiter potential,
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tether current, charged particle distributions, and electric and magnetic field strengths. From

the collected data the following three conclusions are listed by Cosmo and Lorenzini (1997):

• The tether collected current of 0.3 A exceeded the numerically predicted level by a

factor of three. Estes et al. (2000b) report a current of 1 A was collected immediately

before and after the tether failure.

• Electrons, not of natural ionospheric origin and whose energy ranged as high as 10keV,

were probably energised by wave-particle interactions since they were observed to flow

coincident with the tether current.

• The plasma density was enhanced by the ionisation of the neutral gas emitted by the

tether's end mass thrusters.

Cosmo and Lorenzini (1997) feel that these results have improved the understanding of

current collection with electrodynamic tethers and will aid in the future development and

design of tether missions.

1.7.4 Small Expendable Deployer System (SEDS)

NASA Marshall Spaceflight Center awarded Joe Carroll a Small Business Innovative

Research contract to provide hardware that could deploy a 20 km long tether in space. The

design of SEDS is in comparison to the TSS missions, as Lorenzini and Carroll (1991)

explain, drastically simplified because the tether is not retrieved at the end of its mission,

therefore, avoiding complex control systems for retrieval. The developed technology was

tested twice as a secondary payload on Delta II launches of global positioning satellites. The

SEDS-l mission was launched on 29 March 1993 and demonstrated the capability of

deorbiting through aerodynamic drag a 25 kg payload from a perigee altitude of 190 km and

allowed the re-entry of a cut tether into the atmosphere to be studied. SEDS-l successfully

re-entered the Earth and landed off the coast of Mexico. The SEDS-2 mission flew on 9

March 1994 and verified the use of a closed loop control law to deploy a tethered payload

along the gravity vector. The mission's aim was to achieve a final libration angle of ]00

along the local vertical. Cosmo and Lorenzini (1997) report the deployment law exceeded

expectations as the finallibration angle was estimated to be within 40• SEDS-2 was placed in

a 350 km high circular orbit but after five days the tether was, according to Cosmo and

Lorenzini (1997), severed by micrometeoroids or space debris.

1.7.5 Plasma Motor Generator (PMG)

The PMG was launched on 26 June 1993 and used hollow cathodes for charge exchange at

both ends of the tether, allowing it to operate both in a generator and motor mode. According

to Estes et al. (2000a), the PMG mission has so far been the only tether experiment to use an

active node, which measured a current of 0.3 A and an anodic bias of 100 V. Cosmo and
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Lorenzini (1997) explain that a 500 m long tether was employed to ensure a complete

separation between the tether ends, thereby forcing current closure to occur through the

ionosphere rather than with a local overlap between each end masses' plasma cloud. Contact

with the plasma was maintained for seven hours until the onboard batteries expired. Estes et

al. (2000a) comment that a disappointing fact observed with the PMG mission was the sharp

decrease of collected current with the ambient electron density.

1.7.6 Tether Physics and Survivability Spacecraft (TiPS)

The two mission objectives for TiPS were to investigate the long-term orbit and attitude

dynamics of a non-conducting tether, and the survivability of a tether. TiPS was designed

and built within a year by the US Naval Research Laboratory and launched on 20 June 1996.

Tether deployment from two free flying satellites began immediately after being jettisoned

from its host spacecraft and deployed to a length of 4 km. Cosmo and Lorenzini (1997)

report that ground based visual observations through a laser ranging network permitted the

attitude and orbital motion of the tethered system to be tracked, which observed the libration

amplitude decrease from a maximum 47° to 12° with respect to the local vertical over a

period of 3 months. According to the US Naval Research Laboratory's website the TiPS

tether survived for at least 15 months, which is a tremendous achievement considering all

previous tether missions did not survived for longer than five days.

1.7.7 OEDIPUS A

OEDIPUS is short for Observations of Electric-field Distribution in the Ionospheric Plasma

- a Unique Strategy. The OEDIPUS program was jointly run between the National Research

Council of Canada, Communication Research Center in Ottawa, NASA, various Canadian

universities, the US Air Force Phillips Laboratory, and Bristol Aerospace Ltd. The

OEDIPUS A was a large double probe and designed to make sensitive measurements of the

weak electric fields in the aurora's plasma. On 30 January 1989 a three stage sounding

rocket, Black Brant X, launched OEDIPUS A, consisting of two tethered spinning payloads

with a mass of 84 kg and 131 kg, respectively, from Andeya in Norway. The mission

objectives were, according to Cosmo and Lorenzini (1997), to make passive observations of

the auroral ionosphere, measure the large probe's response in the ionospheric plasma, and to

observe the plane- and sheath-wave radio frequency propagation in plasma. The conducting

tether was deployed during the suborbital flight of 11 minutes to a length of 958 m. The

mission objectives were successfully met but Cosmo and Lorenzini (1997) report that a post-

flight analysis found the motion of the tether had rather unexpectedly interacted with the

dynamics of the end masses causing a rapid increase in the coning angle, despite the short
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flight time and the tether's mass being negligible in comparison to the end bodies' mass. The

tethered masses re-entered the atmosphere after 13.5minutes and were not recovered.

1.7.8 OEDIPUS C

The second flight of the OEDIPUS program was launched on 6 November 1995 from the

Poker Flat Research Range, near Fairbanks, Alaska. Cosmo and Lorenzini (1997) say the

mission objectives for OEDIPUS C were identical as those for OEDIPUS A apart from

launching the tethered bodies into a higher orbit where the plasma density was expected to

be greater. Furthermore, the conductive tether was deployed to a greater length of 1174 m

and for the second half of the suborbital flight the tether was cut at both ends to enable the

radio frequency wave propagation between the payloads to be studied. During the suborbital

flight data was returned for 15minutes until the payloads re-entered and landed in the Arctic

Ocean.

1.7.9 Advanced Tether Experiment (ATEx)

On 3 October 1998 the Space Technology Experiment (STEX) spacecraft was launched from

the Vandenberg Air Force Base reaching a 751 km circular orbit at 85 degrees inclination.

The orbit transfer and spacecraft checkout were completed by January 1999 and from this

point the Advanced Tether Experiment (ATEx) was to start with a planned duration of 61

days. STEX contained ATEx, which was built by the US Naval Research Laboratory as a

subsidiary experiment to the active spacecraft. The aims of the ATEx mission, as stated by

Zedd (1997), were to demonstrate tether system stability and control, demonstrate end-body

attitude determination and control, and fly a tether designed for survivability.

The ATEx system consisted of a passive, unpowered upper end body and a lower end body,

attached to the top of the STEX spacecraft, which housed the 6.05 km long tether,

electronics and deployer mechanism. During the tether deployment and Iibration control

experiments, the lower end body was to remain fixed to the STEX craft and subsequently

separate for the tether survivability phase of the mission. Attempting to increase the tether's

chances of survivability in Space, a thin, flat, tape tether was adopted with a thickness and

width of 0.127 mm and 25 mm, respectively. The tether was manufactured from a 6.5 km
continuous extrusion of low-density polyethylene with three reinforcing wires made from

Spectra running lengthways down the tether.

The tether deployment commenced by raising the upper end body 2.5 cm off its contact

points and in so doing avoided any possibility of recontact and ejection perturbations. To

allow any excited oscillations to dampen down, the raised state of the upper end mass was
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held for 10 min, after which the stepper motor was instructed to produce a steady 2 cmls

deployment rate. This rate was to be maintained for the entire deployment, expected to last

approximately 3.5 days. However, roughly 18 min after starting the stepper motor and only

22 m of tether deployed, the tether departure angle sensor detected the tether in an

anomalous location and shortly afterwards the tether passed an out-of-bounds limit causing

an unacceptable risk to the STEX spacecraft. The lower end body was subsequently

jettisoned from the STEX craft, thereby, ending the ATEx mission.

Excessive tether slackness most probably caused the mission to be aborted, and Gates et al.

(2001) propose four possible failure mechanisms. Despite the polyethylene material being

capable of amassing electrostatic charge, ground experiments did not show any static charge

build-up during testing. However, the charged particles in the Space environment may have

led to a charged tether possibly sticking to the deployer mechanism and thus manifesting

itself as an apparent slack tether condition.

A second failure mechanism could a have been excessive tipoff rates, required to be less than

0.2 deg/s, during the initial separation of the upper end body from the STEX craft. This

requirement was stipulated to avoid contact between the upper end mass and the tether as the

occurrence of such could disrupt the deployment and possibly lead to excessive tether

slackness. Furthermore, the pitching motion of the spacecraft in response to the initial reel

acceleration could also have contributed to increased tipoff rates.

Shape memory and strain relief properties of the tether are the third possible failure

mechanism. On exiting the pinch rollers of the deployer during ground tests in air and

thermal vacuum, the tether was found to assume a sinusoidal shape with a wavelength of 38

mm and an amplitude of 3 mm. Analysis carried out by Gates et al. (2001) found that the net

effect of this shape memory effect was to reduce the deployment stream to less than 2 cmls

and, thereby, possibly generate tether slack. Additional shape memory curvature may have

occurred from the tether being stored on its reel for nearly 24 months. The tether strain

relaxation during deployment may also have caused a drop in the effective deployment rate.

The tether on the reel experiences a tension of 4.5 N and as the tether transitions off the reel

the tension drops to 1.8 N. After exiting the deployer's pinch rollers in the early part of

deployment the tension drops to nearly zero. If a complete relaxation of the tether occurred

outboard rather than over the contact point within the pinch rollers then the tether would

experience an effective contraction in length.
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The telemetry was not designed to record early deployment dynamics nor anomaly

resolution and thus the returned data was rather coarse and limited. Consequently, a

definitive cause for the excessive tether slackness cannot be determined but Gates et al.

(2001) believe that the thermal expansion of the tether was most likely the principal cause of

the tether passing the out-of-bounds limit. The tether exited the deployer at a temperature of

10 °C and because deployment began in full eclipse the tether would rapidly cool to -100 °C

upon entering the cold of space. The drop in temperature would cause the tether to contract,

thus slowing the deployment rate of the upper end body below the required 2 cm/so Despite

the tether contraction the telemetry did not register any anomalies that occurred during the

deployment conducted in eclipse. 17.5 min after commencing deployment the ATEx entered

sunlight inducing a rapid heating from -100 °C to -30 °C. The 70 °C temperature increase is

estimated to have expanded the 22 m tether by 15.5 cm. The first anomaly was registered 36

seconds after leaving the eclipse and 10 seconds later the onboard instrumentation registered

the tether having a 10 cm horizontal displacement and therefore jettisoning ATEx, as the out-

of-bounds limit had been passed. The thermal expansion rate of the tether was not considered

in the tether deployment simulations carried out during the design phase of the deployer and

the importance of thermal expansion was only realised in the post-jettison failure analysis.

1.STether Missions Planned for the Near Term

I.S.1 Propulsive Small Expendable Deployer System (proSEDS)

The ProSEDS experiment, according to Ahedo and Sanmartin (2000), will be a secondary

payload on a Delta II rocket and aims to demonstrate the on-orbit propulsive capability of

electrodynamic tethers by deorbiting the rocket's second stage in two to three weeks from a

400 km high circular orbit by means of a 0.4 N electrodynamic drag, which is generated by a

1-2 A current. The mission objective is to demonstrate that the tether can decrease the orbit

by at least 5 km per day, although Balance and Johnson (2001) report that the ProSEDS

tether should in theory be capable of decreasing the orbit on average by 14 km per day.

Vaughn et al. (2000) state the total tether length is 15 km of which 5 km is a bare aluminium

cable. The flight was initially scheduled for the end of2000 and then for 2001 but as yet has

still not been flown.

1.S.2 STEP-Airseds

Gilchrist et al. (2000) state that designs are being carried out for a tether mission to follow

ProSEDS, called STEP-Airseds, which aims to demonstrate multiple boostldeboost and

inclination change operations over a period of a year, covering an orbital altitude range

between 400-700 km.
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1.S.3Advanced Safety Tether Operation and Reliability (ASTOR) Satellite

Originally scheduled for 2003, the 65 kg ASTOR satellite is to be ejected from the Space

Shuttle and subsequently separate into two equal masses connected by a 2 km long tether.

The project. according to Mazzoleni (2000), is managed by the Texas Space Grant

Consortium, NASA Marshall Space Flight Center and the Michigan Technic Corporation.

The University of Texas at Dallas, Texas Christian University and the Smithsonian

Astrophysical Observatory are also involved in the project. The four mission objectives are

to: (a) investigate the performance of the Emergency Tether Deployment system which is

designed to overcome tether snags during deployment, (b) demonstrate the feasibility of

generating artificial gravity by spinning a tethered system about its centre of mass, (c)

transfer one end mass via momentum transfer to a higher orbit. and (d) provide a platform

for school children to design and fly space-based experiments.

Once on orbit gas jets will initiate the satellite to separate and commence deployment of the

tether. After the initial 500 m of tether are freely deployed, a passive brake will deploy the

remaining 1500 m of tether. As the tether reaches its fully deployed length, thin wires

intentionally connecting the tether to the spacecraft will be broken by the tether's own

momentum, thereby causing a jerk in the tether and simulating a snag condition. The main

concern about a snag occurring is the possible rebound and contact of the tether and end

mass with the deployer. Hoffman et al. (2001) propose to deploy from the other end mass,

the so-called Emergency Tether Deployer, 10m of solder embedded tether to mitigate the

snapback possibility.

The ASTOR spacecraft will accommodate 4-6 science and student supplied experiments,

studying primarily the properties of the Earth's atmosphere and Space environment. Upon

completion of the snag simulation, tether deployment and onboard experiments, a motorised

take-up reel will reel-in up to one half of the tether. As the tether is retrieved, Mazzoleni and

Hoffman (2001) claim that a rapid increase in the rotational motion will occur due to

conservation of angular momentum and thus cause the system to spin about its centre of

mass. This spin-up manoeuvre is to demonstrate a method of developing artificial gravity in

a spacecraft that could be employed by humans travelling to other planets in the solar

system. The mission will conclude by releasing one of the end masses from the tether,

thereby, causing the released end mass' orbit to be raised due to the exchange of momentum

between the two end bodies. Both end masses and the tether will eventually bum up in the

atmosphere upon re-entry. The initial deployment demonstration will take approximately 60

minutes and the total mission duration is expected to last up to 30 days.
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1.8.4 Tether System Experiment (TSE)

The TSE mission is being sponsored by the European Space Agency with the ultimate aim of

providing a frequent Earth sample return capability from the International Space Station.

After supplying the ISS with cargo, the Russian Progress vehicle will separate from the

station and subsequently eject a subsatellite connected to a 35 km long tether. The mission's

aims are, according to Gavira-Izquierdo (2000), to demonstrate the operation of a tether

deployment mechanism suitable for sample return from the ISS, to demonstrate the

necessary technology associated with a re-entry capsule from the ISS, and finally to collect

experimental data on the tether oscillations, librations and deployment dynamics. Gavira-

Izquierdo (2000) state that the target launch date was 2002 but to date this has not yet taken

place.

1.9 Tether Survivability and Design

Tethers that have been deployed in space have been single strand high strength synthetic

fibres, such as DuPont's Spectra 1000, Spectra 2000 or Kevlar. Apart from the TiPS mission,

all previous tethers have not survived the harsh space environment for longer than five days.

McBride and Taylor (1997) present numerical models based on particle flux models and

impact damage equations to predict the survivability of tether designs. In addition, McBride

and Taylor (1997) carried out hypervelocity impact experiments on tether strands in the

region of 5 km/s to verify the applicability of their model. The conclusions of McBride and

Taylor (1997) are that tethers with a diameter less than 1mm are not viable for long duration

missions. The model predicts the SEDS-2 tether would fail in less than two weeks and that

thicker tethers have a greater life expectancy. For the 4 km long, 2 mm thick TiPS tether

McBride and Taylor (1997) predict the tether will have a lifetime of a year and based on the

past missions in space, their predictions are found to be correct. The poor capability of single

strand tethers to survive micrometeoroid impacts is confirmed by numerical modelling

carried out by Anselmo and Pardini (2000). Moreover, Matney et al. (2000) point out that

further experimental and numerical work is required to investigate the tether's survivability

not only of a direct but also of a grazing micrometeoroid impact. Forward and Hoyt (1995)

developed the concept of the Hoytether, a tether where the fibres are woven in such a manner

to generate a multitude of diamond shapes within the cable, thereby creating a highly

redundant structure. The hope is that the redundant fibres will take the strain as soon as other

load bearing fibres are severed by debris. Forward and Hoyt (1995) present results that claim

their design will ensure the tether survives for tens of years, although these claims still

remain unsubstantiated. The future of tether design and materials looks likely to benefit from

recent advancements in chemistry. Edwards (2000) reports that in future tethers may be
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manufactured out of carbon nanotubes, which have a reported tensile strength of 130GPa, or

synthetically produced spider's silk.

1.10 Nonlinear Dynamics of a Tethered Dumbbell

A system comprising two satellites, treated as point masses, connected by a massless rigid

tether is usually referred to as a tethered dumbbell. The model of a tethered dumbbell is very

much an idealised version of a real tether in orbit and yet the study of a dumbbell's attitude

motion yields very complex and interesting behaviour. When the dumbbell is constrained to

orbit within the orbital plane on a circular orbit, the governing equation of motion is very

similar to that of a simple pendulum. Moran (1961), Modi and Brereton (1969), and Adams

(1970) derive an exact closed form solution for the planar dumbbell on a circular orbit in

terms of elliptic integrals of the first kind, which describe the tether's libration about its

gravity vector and also its tumbling motion. Consequently, the dumbbell's phase plane is

identical to that of a simple pendulum apart from the location of its stable and unstable

equilibria, which are shifted by Tt: along the axis depicting angular displacement.

Karasopoulos and Richardson (1992) give a succinct and effective summary of the

dumbbell's planar dynamics, as well as derive the conditions that determine when the tether

will tumble or librate on a circular orbit. Moran (1961) investigates whether the coupling

between the tether's librations and the orbital motion is strong and reports that in most cases

the disturbances in the orbital motion caused by the tether libration are small. However, in

his analysis Moran (1961) discovered certain libration frequencies causing resonance with

the orbital motion but advises the reader not to jump to the conclusion that the dumbbell will

violently oscillate about the unperturbed orbit until atmospheric drag deorbits the tether.

Instead, Moran (1961) speculates that for these identified frequencies the linearised analysis

is no longer valid and that the inclusion of nonlinearities would ensure the tether's orbital

motion remains bounded.

For a tethered dumbbell restricted to move on a circular orbit but free to oscillate out of the

orbital plane, Melvin (1988) discovered a set of initial conditions giving rise to a periodic

solution describing the dumbbell oscillating on a figure of eight path through three

dimensions. Moreover, Melvin (1988) also discovered another set of initial conditions that

yielded very irregular librations, which he claims are chaotic. However, since no Lyapunov

exponents are presented this claim remained unsubstantiated. A system that undergoes

chaotic motion is in the long-term highly sensitive to perturbations and Lyapunov exponents

are a numerical tool from dynamical systems theory that can unequivocally identify chaos.

Misra et al. (2001) revisited the three dimensional dumbbell on a circular orbit, although the

material presented in their paper was originally published by Nixon and Misra (1993).
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Through numerical integration Misra et al. (2001) obtain time histories, phase plane plots,

power spectra, Poincare maps and Lyapunov exponents for an initial angular displacement

equal in the in- and out-of-plane angles, as well as the initial tether angular velocities set to

zero, which clearly indicate that the dumbbell exhibits regular, quasi-periodic and chaotic

motion. The value for the necessary initial conditions in both the angular displacements to

facilitate the change from regular to chaotic motion was found to be 43°. Due to the limited

choice of initial conditions investigated by Misra et al. (2001), there remains scope for

further investigation into the nonlinear dynamics of a dumbbell on a circular orbit.

The dynamics of a dumbbell are rather different when the tether is allowed to prescribe an

elliptic orbit. Modi and Brereton (1966) were one of the first to derive an approximate closed

form solution to the equation of motion governing a planar tethered dumbbell on an elliptical

orbit by employing the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) perturbation method,

which was a considerable improvement on the first-order perturbation technique attempted

by Schechter (1964) involving numerical integration to obtain a simulation. Approximate

closed-form solutions were also derived by Modi and Brereton (1969) using the method of

harmonic balance and by Anand et al. (1971), who employed a somewhat unconventional

asymptotic perturbation technique. The closed form solution derived by Modi and Brereton

(1966) visibly points out a fundamental difference between dumbbells moving on circular

and elliptical orbits. A tether on an elliptical orbit continuously executes libration and, unlike

the hanging tether on a circular orbit, does not remain aligned along the gravity vector. The

physical reason for this lies in the tether's varying orbital radius whilst on the elliptical orbit.

As the tether moves from the orbit's perigee to its apogee, say, then the influence of gravity

on the tether's end masses decreases. Similarly, the end masses experience a greater

gravitational pull as they approach the orbit's perigee. Hence, the varying gravitational

attraction manifests itself as a sinusoidal forcing term in the planar dumbbell's attitude

motion, resulting in the tether to constantly oscillate.

The analytical approaches yielding closed form solutions only permit the dumbbell to be

considered on nearly circular orbits. Consequently, Brereton and Modi (1966) resort to

numerical integration to investigate the boundary between libration and tumbling motion for

a range of initial conditions. The results are quite remarkable as the boundary between

libration and spin is quite complex and found to be highly dependent on the orbit eccentricity

and initial values for angular displacement and velocity. When the initial angular velocity

and displacement is zero an orbit eccentricity of 0.355 is observed by Brereton and Modi

(1966) to be the largest eccentricity that can sustain librational motion. The identical analysis

is carried out by Modi and Brereton (1968) for a tether with an additional degree of freedom
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in the longitudinal direction and the libration-tumbling boundary is deemed to be

qualitatively very similar. Modi and Brereton (1968) conclude though that the introduction

of the flexibility in the longitudinal direction encourages the onset of tumbling to occur

sooner than for the case of the completely rigid dumbbell.

Beletsky and Levin (1993) expand the equations of motion governing the planar dumbbell on

an elliptical orbit in terms of a series and after numerically evaluating the series determine

that periodic solutions exist when the eccentricity is less than 0.442. Moreover, their

numerical results suggest the tether does not tumble when the orbit eccentricity is less than

0.353 or between 0.427 and 0.442.

Crellin and Janssens (1996) proceed to investigate the boundary between libration and spin

more thoroughly for an initial zero value in angular velocity and displacement. When the

orbit eccentricity is less than 0.317, Crellin and Janssens (1996) observe the tether to be

stable in the long-term, where stability here is equated to a state where the tether is not

tumbling. Moreover, the intriguing discovery made by Crellin and Janssens (1996) is that the

notion of stability is highly dependent on the number of completed orbits. After three

completed orbits the tether is not found to tumble up to an orbit eccentricity of 0.387. After

five orbits the tether is librating for eccentricities up to 0.33 and between 0.374 and 0.383.

However, if the simulation runs for 20 orbits then the tether is considered only to be stable

for eccentricities less than 0.317.

There is a large discrepancy in the literature between the numerically obtained libration-spin

boundary. However, the results of Crellin and Janssens (1996) are probably the more

credible because the boundary determined by Modi and Brereton (1968) of 0.355 may

possibly be affected by a relatively large round-off error, considering the limited computing

power in the late 1960s to carry out accurate floating point calculations. Furthermore, the

results derived by Beletsky and Levin (1993) are subjected to the number of terms taken into

the series expansion, and will consequently at best represent an approximation.

Karasopoulos and Richardson (1992) numerically generate Poincare maps, bifurcation

diagrams, Lyapunov exponents and a chaos plot for a planar gravity gradient satellite, which

has the same equation of motion as a tethered dumbbell. Their results unmistakably show

that the dumbbell exhibits regular, quasi-periodic and chaotic motion, with the onset of chaos

estimated to occur at an orbit eccentricity of approximately 0.3 for both a zero initial

displacement and velocity. When Karasopoulos and Richardson (1992), however, focus on

the region around the eccentricity of 0.3, they find the boundary between regular motion and

26



chaos is not trivial. When the orbit eccentricity is 0.312 the dumbbell's motion is found to be

chaotic, however, for eccentricity values slightly less than 0.312 the Poincare map suggests

the motion is quasi-periodic. For values slightly greater than 0.312 Karasopoulos and

Richardson (1992) detect a period 7 attractor. Similar observations occur for orbit

eccentricities between 0.314 and 0.3145, although for values above 03145 the global onset

of chaos appears to have set in. Fujii and Ichiki (1997) extend this work to consider the

effect of the tether's longitudinal extension on the onset of chaos. The obtained Lyapunov

exponents show that the onset of chaos drops from roughly 031 to 0.28 for an initial value of

zero in the angular displacement and velocity, and EA = 104 N, where E = modulus of

elasticity and A = cross-sectional area of the tether. Note, that the results from Fujii and

Ichiki (1997) resonate with the results obtained by Modi and Brereton (1968) since the

presence of longitudinal flexibility appears to encourage the onset of tumbling and chaos.

The literature appears though not to have investigated whether there is a link between the

tether tumbling and the tether undergoing chaotic motion, despite the fact that the boundaries

of 0.317 and 0.3145 are relatively close to each other.

The Melnikov function from dynamical systems theory is, as Tong and Rimrott (1991)

explain, a measure of the behaviour of the trajectories in phase space near the separatrix for

small orbit eccentricities. The function, according to Thomsen (1997), determines if

transverse intersections of stable and unstable manifolds occur and so may be an analytical

prediction for the onset of chaos. Koch and Bruhn (1989) and Teofilatto and Graziani (1996)

each independently derive the Melnikov function for the tethered dumbbell. Seisl and Steindl

(1989) take into account the atmospheric drag when deriving the Melnikov function for the

tethered dumbbell and Tong and Rimrott (1991) derive the Melnikov function for an

irregularly shaped satellite, which is applicable to the dumbbell if the appropriate principle

inertias are chosen. In summary, the conclusion of all the papers is that the Melnikov

function yields a result when the orbit eccentricity is nearly circular but for larger values of

eccentricity the function breaks down since the Hamiltonian is non integrable. Thus, an

analytical prediction for the onset of chaos could not be obtained via the Melnikov function.

Misra et al. (2001) extend the work by Karasopoulos and Richardson (1992) by numerically

investigating the in- and out-of-plane motion of a tethered dumbbell on elliptical orbits.

Power spectra and Lyapunov exponents are presented for initial conditions where the initial

angular velocities are zero and the initial angular displacements equal each other but only for

an orbit eccentricity of 0.1. For initial angular displacements less than 26° the motion was

found to be regular and above 30° the Lyapunov exponents clearly proved the motion was

globally chaotic. In the region between 27° and 28° Misra et al. (2001) state the observed
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motion is weakly chaotic. In addition to the tether flexibility, the out-of-plane motion also

visibly affects the boundary between regular and chaotic motion but a global map describing

how the out-of-plane motion influences that boundary is currently lacking in the literature.

1.11 Aims and Objectives

The above literature survey demonstrates that tethers in space have the potential in the near

future of becoming a viable and cost-effective propulsion system. Many applications have

been proposed for tethers and much experience and knowledge has been gained through in-

orbit flight-testing of conductive and non-conductive tethers. Tethers are also being

supported by the major space agencies and companies can already foresee the possibility of

commercially exploiting tethers to make a profit. The literature survey, however, also

identifies many gaps in the understanding of tethers and the aim of this thesis is to address

some of the issues relating to the performance and dynamics of momentum exchange tethers.

In particular the objectives of the thesis are to:

• Derive an approximate closed-form solution using the perturbation method of multiple

scales to the three-dimensional motion governing a tethered dumbbell on elliptical

orbits.

• Map the influence of initial conditions on the boundary between regular and chaotic

motion of in- and out-of plane motion of tethered dumbbells on circular and elliptical

orbits.

• Map the boundary between libration and spin for a tethered dumbbell on elliptical orbits.

• Establish whether a link exists between the dumbbell's chaotic motion and tether

tumbling.

• Explore more deeply the number of orbits a tethered dumbbell completes on elliptical

orbits before spinning occurs.

• Derive equations governing payload orbital transfer with momentum exchange tethers to

permit accurate performance comparisons between tether configurations.

• Compare the performance of hanging and librating tethers, as well as symmetrical

motorised momentum exchange tethers, at payload orbit transfer.

• Derive the equations of motion governing a motorised tether so that the planar, spin up

and three-dimensional dynamics can be explored.

• Assess whether the required velocities for payload transfer are, based on the simulated

dynamics, achievable with motorised tethers.
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Chapter z

Derivation of the
Governing Equations of Motion

2.0 Modelling the Motion of a Tether in Space

A tethered satellite system simply consists of two end masses that are connected by a flexible

cable. A critical issue when modelling tethers is the decision of how to model the flexible

cable. Being a flexible body there are, as Chapel and Flanders (1993) describe, six types of

motion that can occur: in- and out-of-plane libration, spring-mass mode, satellite pendulous

mode, planar lateral vibration, skip rope mode and finally longitudinal modes. When the

tether undergoes in- and out-of-plane Iibration, the tether, together with the end masses,

oscillates about the common centre of mass like a giant pendulum. For the spring-mass

mode, also known as the bobbing or plunge mode, the tether acts much like a linear spring

causing the end masses to contract and extend relative to each other. The case of the end

mass rotating relative to the tether is termed the pendulous mode with the frequency of

oscillation dependent on the tether's tension. Chapel and Flanders (1993) note that the end

mass' frequency of oscillations are not necessarily identical in the pitch and roll directions

because the end body can have different mass moments of inertia in these directions. The

tether can also undergo lateral vibrations in a particular mode within the orbital plane, with

the maximum amplitude of vibration occurring along the tether whilst the end masses remain

almost undisturbed. However, when the tether additionally has a lateral oscillation out of the

orbital plane, then these modes are termed skip rope modes. Finally, the longitudinal mode

generates motion along the longitudinal axis of the tether with the end masses remaining

almost stationary to the system's centre of mass.

In order to capture the possible cable dynamics, Netzer and Kane (1995) state that the tether

can be modelled as (a) a rigid, inextensible massless or massive rod, (b) a sequence of rigid

or extensible segments, or (c) a continuous, massive, extensible or inextensible cable. The

more sophisticated the model the more phenomena the model is likely to capture but at the

expense of requiring a lot of complex analysis or computational power.

Modelling the tether as a rigid and massless rod is the simplest of models and is ideal for

capturing the system's rigid body motion but does not account for tether bending or

extension. The literature on the nonlinear attitude dynamics of tethered dumbbells typically

29



models the tether as a rigid and massless rod. The rigid massless model is also employed in

other areas as the resulting equations permit their treatment with analytical methods. Liaw

and Abed (1990) assume the tether is rigid and massless to study the stabilisation of a tether

during station keeping by controlling the cable's tension with a nonlinear feedback loop.

Netzer and Kane (1993) model the cable as a straight and massless body to optimise

proposed control laws for the deployment and retrieval of the tether. An inextensible and

straight tether is used by Mazzoleni (2000) to simulate the spin up and retrieval dynamics of

the proposed ASTOR satellite.

A tether that is represented by a sequence of elements, such as point masses connected by

rigid massless rods or point masses connected by massless springs, will describe the tether's

motion more realistically since the model accounts for tether curvature. Banerjee (1990)

remarks that the lumped mass model can be considered more general than the continuum

models since it deals better with small curvature and large elastic displacement of the tether.

Furthermore, geometric nonlinearity is inherent in the bead model, which is a further

advantage over continuum models as Kim and Vadali (1995) point out. A large number of

point masses or elements are required to obtain a high resolution of the cable dynamics. On

the other hand, if too many masses are employed then the complexity of the analysis rises, as

well as the necessary computational effort needed to numerically integrate the equations.

Consequently, Netzer and Kane (1995) make the comment that this type of model is

generally used to simulate the tether's dynamics and rarely made use of in controller design.

Banerjee (1990), however, employs a 5 lumped mass model connected by massless springs

and in doing so was the first to develop a theory for deployment rate control with a lumped

mass model. Puig-Suari et al. (1993) analyse the possibility of using an aerobraking tether at

Mars and present simulations involving a three-rod model of the tether with no springs. Puig-

Suari et al. (1995a) extend this to a five hinged model connected by springs to incorporate

the tether's extension. Netzer and Kane (1995) represent the tether by eight rigid massive

rods that are free to rotate and thereby demonstrate a tethered satellite system can be suitably

controlled with a thruster at one of the end masses.

When the tether is modelled as a continuum the cable may be treated as a flexible or

inextensible body. The resulting equations of motion are a partial differential equation and

usually a numerical method of discretisation must be followed to obtain a solution.

Discretisation can be achieved by a finite difference or a finite element approach, as well as

transforming the partial differential equations into a set of ordinary differential equations by

prescribing a particular mode shape, e.g. by means of Galerkin's method. The Galerkin or

assumed-modes methods achieve the discretisation by expanding the solutions in a finite
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series of known functions, where in this case the mode shape provides the required

information. A decision must be made as to how many modes to include and usually the

more modes included the better the approximation is to the real tether. The methods of finite

element and finite difference physically discretise the tether into lumped parameters. An

important difference between the two approaches, as Min et al. (1999) explain, is finite

element or finite difference methods can only yield a numerical solution, whereas assumed-

modes or Galerkin methods deliver an analytical solution.

Quadrelli (2001) employs a finite difference approximation of the tether's partial differential

equation to investigate several tether configurations for use as an interferometer. Krupa et al.

(1996) utilise a finite difference discretisation to compute the relative equilibria of a flexible

tether. Danilin et al. (1999) use a finite element model to obtain the spatial motion of the

tether's dynamics during deployment and retrieval. Steiner et al. (1996) and Wiedermann et

al. (2000) introduce a spatial discretisation by means of finite elements for the numerical

solution of the tether's equations to simulate the deployment of a subsatellite from the Space

Shuttle. Keshmiri et al. (1996) discretise the continuous tether by an assumed-mode method

and proceed to conduct a stability analysis of the tether during its station keeping phase.

Liangdong and Bainum (1990) employ the Rayleigh-Ritz solution to obtain a mathematical

model of a large tethered antenna. An excellent overview on the attempts to model the

flexible tether mechanics is provided by Misra and Modi (1982), who tabularise all the

physical effects and discretisation procedures employed in investigations during the 1970s.

The previous literature investigating the nonlinear attitude dynamics of a tethered dumbbell

modelled the tether as a massless rigid rod. This simple model allows the dynamics of the

tethered satellite system to be efficiently explored without the added complexity of the

flexible tether dynamics, which may not significantly affect the motion of the end bodies.

Steiner et al. (1995) consider two rigid end masses connected by a massive visco-elastic

cable and their results suggest that a rigid tether model can satisfactorily approximate a

librating or spinning tether provided the tether length is short in comparison to the orbital

radius and the mass of the end bodies is much larger than the tether mass. Since this thesis

aims to address aspects related to the literature on tethered dumbbells and investigate the

dynamics of spinning motorised tethers, the tether will, therefore, be modelled as a rigid

body.

2.1 Co-ordinate System

The geocentric co-ordinate system, where the Earth's centre of mass is treated as the origin,

is adopted from Chobotov (1996) to provide an inertial system in space in which the
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governing equations of motion can be derived for tethered bodies orbiting the Earth. The ZE

axis, as displayed in Figure 2.1. points in the direction of the Earth's north pole and

represents the Earth's axis of rotation in a positive direction. noting that the XE, YE, ZE system

is non-rotating with respect to the stars and that the Earth rotates relative to the co-ordinate

system. The XE, YE plane is coplanar with the Earth's equator and is inclined by 23.5° to the

ecliptic plane, the plane of the Earth's orbit about the Sun, as illustrated in Figure 2.2. On the

first day of the northern hemisphere's spring the ecliptic and the XE, YE plane intersect along

a line, which is coincidental with the XE vector, pointing to the first point of the Aries

constellation, or the vernal equinox direction.

Earth's
le North

Pole

~orbit Plane
,----Ecliptic Plane

Earth Equatorial Plane
AscendingNode

Figure 2.1 Geocentric inertial co-ordinate system

In reality the geocentric system is not a true inertial system. The Earth orbits the Sun on an

almost circular orbit and in tum the Sun orbits the centre of the Milky Way on an

approximately circular orbit. Thus, the geocentric system is continuously experiencing an

acceleration and, therefore, cannot be considered as a proper inertial reference frame.

Furthermore, the direction of the Earth's axis of rotation does not remain constant because of

the precessional motion due to the Sun with a period, given by Sidi (1997), of 25800 years

together with a nutational motion due to the Moon with a period of 18.6 years. Moreover.

Sidi (1997) states that both the equatorial and ecliptic plane move with respect to the stars

since the planets affect the orientation of the ecliptic plane in the slow rotational motion of

planetary precession. Consequently, the geocentric system moves slowly relative to the stars

and when extreme precision is required the co-ordinates of an object based on the vernal
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equinox direction of a particular year or epoch have to be specified. However, the

accelerations are relatively small and for practical purposes the geocentric system can be

accepted as being inertial.

First Day
of Winter

First Day
of Autumn

Vernal Equinox Direction
(first point in Aries)

Figure 2.2 Heliocentric ecliptic co-ordinate system defining vernal equinox direction

The plane of the tether's orbit about the Earth is inclined to the Earth's equatorial plane by

the angle i, the inclination of the orbit, where the intersection of the two planes occurs at the

node line, as depicted in Figure 2.1. The right ascension, n, measures the angle in the plane

of the equator from the vernal equinox eastward to the ascending node. The angle formed in

the orbit plane in the direction of motion from the ascending node to perigee is the argument

of perigee, w. In the orbit plane, R, represents the radius vector to the orbiting tether's centre

of mass and rp, is the radius vector to the perigee of the orbit. The true anomaly, B, gives the

angle in the direction of motion from the perigee to the tether's centre of mass. These

parameters together with the orbit eccentricity, e, and mean anomaly are sufficient to

completely define the position of the tether's centre of mass in space. The mean anomaly is

defined as the orbital mean motion multiplied with the time elapsed since passing perigee.

Figure 2.3 illustrates the two final co-ordinate systems required to describe the tether's rigid

body motion in space. The Earth's centre of mass, E, is defined as the origin of the X, Y,Z

system and the origin of the relative rotating xo, Yo, Zo co-ordinate system is placed at the

tether's centre of mass. Both the X, Y plane and the xo,yo plane lie within the orbit plane,

where both the Z and Zo axes are perpendicular to the orbit plane. The X axis is aligned along

rp in the direction of the perigee of the orbit and the Xo axis rotates aligned with R. The in-

plane angle, 'II, measures the angle from the Xo axis to the projection of the tether onto the

orbit plane. The out-of-plane angle, a, spans from the projection of the tether onto the orbit

plane to the tether where a is always within a plane normal to the orbit plane.
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Figure 2.3 Geometry of tethered dumbbell orbiting Earth

2.2 Derivation of the Equations of Motion Governing a Tethered Dumbbell

The equations of motion are obtained through the Lagrangian formulation. The model shown

in Figure 2.3 consists of two end masses, MI and M2, connected by a tether where the

distance from the tether's centre of mass to the each end mass is denoted by LI and L2•

Environmental effects such as solar radiation, aerodynamic drag and electrodynamic forces,

that can influence the tether, as discussed by Misra and Modi (1989), are assumed to be

negligible, as are gravitational perturbations caused by the Earth's oblateness, the Sun and

Moon. For this derivation of the tethered dumbbell the tether is assumed to be massless

relative to the mass of the two end bodies, which are treated as point masses with no mass

moments of inertia. The cartesian components of the end masses taken about E are found

from Figure 2.3 to be

XI = Rcose + LI cosacos(V' + e)
YI =Rsine+LI cosasin(V/+e)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

ZI =LI sina

x2 = Rcose -L2 cos a cos(V/ + e)
Y2 = Rsin e - L2 cos a sin (V'+ e)
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(2.6)

where R, 0, a, 'I' are the independent generalised co-ordinates and functions of time. The

distance from the Earth's centre to the end masses are determined by

RI =~x~ + y~ +z~ =~L: +R2 +2LIRcosacos'l'

R2 =~x; + y; +z; =~L~ +R2 -2L2Rcosacos'l'

As the end masses are treated as point masses the kinetic energy of the system comprises

solely the translation of the end bodies. Hence,

(2.7)

(2.8)

T-!M(x,2+y,2+z,2)+ 1M (x,2+y,2+Z,2)-2 I I I I '2 2 2 2 2

where the prime denotes differentiation with respect to time. Differentiating (2.1 )-(2.6) with

(2.9)

respect to time and substituting the resulting expressions into (2.9) gives, assuming that

moment equilibrium MILl =M2L2, holds,
(2.10)

The gravitational potential energy is obtained by integrating Newton's gravitational law and

by convention defining one of the states of the evaluated integral to be zero at infinity. Thus,

the tether's potential energy is given by

U=_pMI _pM2
RI R2

where p is the product of the universal gravitational constant, G, and the Earth's mass, MH•

Substituting (2.7) and (2.8) into (2.11) gives the system's potential energy without resorting

(2.11)

to an expansion

U= pMI _ pM2
~L: +R2 +2LIRcosacos'l' ~L~ +R2 -2L2Rcosacos'l'

The kinetic and potential energy, (2.10) and (2.12), are substituted into Lagrange's equation

(2.12)

in the form of

!!_[aTJ- aT + au = Q. i=I,2, ...,Ndt aq: aqi aqi '
where Qi equates to zero since the assumption is made that no non-conservative forces are

acting on the system. Evaluating (2.13) generates the following four equations of motion

(2.13)

governing the tether's in and out-of-plane angles, true anomaly and radial distance from the

focus of the elliptical orbit to the tether's centre of mass:
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f//"+ 0" - 2 tan a a' ( f//'+ 0') + Jl R sin f//sec a [(R2 + L~ - 2RL2 cos f//cos a r.%
4+~

- (R2 +4 + 2R4 cosw cos e r.%] = 0

a" + .!.sin 2a (f//' + o'y + Jl Rcos f//sin a [(R2 + L~ - 2RL2 cosf// cosa r.%
2 LI +L2

- (R2 +L~ + 2RLI cose-coso r.%] = 0

(MI + M2)(R20" + 2RR'O')+ (MIL; + M2L~)[COS2a(O" + f//")
-a' sin 2a(O' + f//')]= 0

R" _0'2 R+ Jl [MI(R+ 4 Cosf//cosa)(R2 +4 + 2R4 coswcose r.%
MI+M2

+M2(R - L2Cosf//cosa)(R2 + L~ - 2RL2 cosw cosrz r.%] = 0

(2.14)

(2.15)

(2.16)

(2.17)

The equations of motion in (2.14)-(2.17) are a function of the independent variable of time.

Alternatively, the governing equations can also be expressed as a function of the orbit's true

anomaly if the tether is assumed to remain on a Keplerian orbit. Transforming from time to

the true anomaly results in R, a and f// becoming functions of 0 with the velocities and

accelerations given as

, df// dO 0"f// =--= f//
dO dt

a' = da dO =O'a
dO dt

,,_ d '0' ')-0'2" O,n,'f// - dt \!. f// - f//+ U f//

,,_ d '0")-0,2" 0'0'"a--\!.a- a+ a
dt

0" =!!_ (0') = O'B'
dt

where the dot denotes differentiation with respect to the true anomaly and

R(O)= rAl+e)
1+ecosO

0' = -2e (Jl )3 (1+ ecosO)sin 0rJ, 1+ e
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



The expression in (2.24) is a consequence of conservation of angular momentum and is a

standard result from the two-body problem, which is discussed in detail, for example, by

Chobotov (1996). The three dimensional motion of the tether on an elliptical orbit with

respect to the true anomaly is obtained by substituting (2.18)-(2.23) and (2.25) into (2.14)

and (2.15), giving

tii-[ 2esinO +2tanaa](!Ji+l)+ R(Otsin'l'seca [(R(OY +L~
l+ecosO (4 +~Xl+ecosO)

- 2R(0)~ cos 'I'cos a t% - (R(OY + r: + 2R(O)4 cos 'I' cos a r%] = 0

(2.26)

.. 2esinO. 1.2 (. 1)2 R(O)4cos'l'sina f1(R(1l)2 L2
a - a + -SIO a 'I' + + ( X ~ 0 + 21+ ecosO 2 L) + L2 1+ ecosO)

- 2R(O)L2 Cos'l'cosat% - (R(O)2 + L: + 2R(O)L) cos e cosc )-%] = 0

(2.27)

The length of the tether is typically two to three orders of magnitude less than the orbital

radius. Therefore, the tether's potential energy in (2.12) can be justifiably expanded with bj

=LIIR and bi = L2IR, where both bj « 1 and b2« 1. Up to and includingO(8)2) and 0(8;),

assuming MIL) =M2L2, the potential energy expression becomes

p(M) + M 2) P (M IL: + M 2Ln( 1- 3cos 2 a cos 2 '1')u = - + ~__!'--.!...--.!:..-=...!..~----___:..~

R 2R3

(2.28)

Substituting (2.28) and (2.1 0) into (2.13) gives the equations of motion with respect to time

for the in and out-of-plane angles, true anomaly and radial distance, respectively:

'1''' + 0" - 2a' tan a ('1" + 0')+ 3P3 sin 2'1' = 0
2R

(2.29)

a" + .!..sin 2a ('1" + 0')2 + 3P3 cos? 'I' sin 2a = 0
2 2R

M L2 +M L2 r
R20"+2RR'0'+ I I 2 2 Lcos2a(O"+'I''')-a'sin2a(O'+'I'')]=0

MI+M2

(MI+M2)[R" -RO,2 + ~]- 3P4 (Mlr: +M2L~)(1-3cos2 'l'cos2 a)= 0
R 2R

(2.30)

(2.31)

(2.32)

Transforming the independent variable from time to the true anomaly gives

.. [2. 2e sin 0 ] ( . 1) 3 sin 2'1' 0
'I' - a tan a + 1+ e cos 0 'I' + + 2(1+ ecos 0)

.. 2esinO. 1. 2 [I. 1)2 3COS
2
'1'] 0a- a+-sm a \'1'+ + =

1+ e cos 0 2 1+ e cos 0 .

(2.33)

(2.34)

37



Finally, if the expansion is carried up to and including 0(5)3) and 0(51), assuming M)L) =

ML2, then

U = _ J.l(M) + M2) + J.l(M)L: + M2L~)( 1-3cos2 acos2 1/1) (2.35)
R 2R3

_ J.l(M)L~ - M2L~)(3cosacosI/I - Scos3 acos3 1/1)
2R4

Substituting (2.35) and (2.1 0) into (2.13) gives the equations of motion with respect to time

for the in and out-of-plane angles, true anomaly and radial distance, respectively,

(2.36)

" 1. 2 I , 0,)2 3J.lcos21/1sin2aa +-sm a\I/I + + 3
2 2R

+ 3J.l (L) - L2) cosw sina (1- 5 cos! 1/1cos2 a)= 0
2R4

(2.37)

M L2 +M L2 r ]R20" +2RR'O' + I I 2 2 Lcos2a((J" +I/I")-a'sin2a(O' +1/1') =0
M)+M2

(M + M )[R" _ RO,2 +L]_(M L2 + M L2 )[3J.l (1- 3 cos
2
1/1cos

2
a)

) 2 R2 I I 2 2 2R4

_ 2J.l(LI -L2)cosl/lcosa(3-Scos2 I/ICOS
2 a)]=o

RS

(2.38)

(2.39)

Transforming the independent variable from time to the true anomaly and setting e = 0, gives

. 3 . 3(L - L )sin 1/1sec a ( ) (2 40)Y; - 2a tan a(I/I + 1)+ - sm 21/1+ I 2 1- Scos 2 1/1cos 2 a = 0 .
2 2re

ii + .!..sin 2a [(vi + 1)2 + 3 cos? 1/1]
2

+ 3(LI - L2) cosl/lsina(l- Scos2 I/ICOS2 a )=0
2re

where re = orbital radius of a circular orbit.

(2.41)

(2.33) and (2.34) represent the equations of motion governing a tethered dumbbell

constrained to move on a Keplerian orbit and are commonly found in the literature. (2.14)-

(2.17), however, as well as (2.26)-(2.27), (2.36)-(2.39), and (2.40)-(2.41), are rarely

presented, if at all. Note how the acceleration terms in all the sets of equations of motion

describing the tether's attitude dynamics are linear and uncoupled, and that the source of the

nonlinearity in the remaining terms arises solely due to the potential energy, the kinematic

interaction between the in- and out-of-plane motion and the constraint to Keplerian motion.
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Expanding the potential energy to 0(01
2
) andO(oi) and constraining the tether's motion to a

Keplerian orbit non-dimensionalises (2.33) and (2.34) and apart from the orbit eccentricity is

void of any tethered system or orbital properties. Observe that this is not the case when the

potential energy is expanded up to 0(0:) and 0(8i ).

Figure 2.4 shows the effect on the dumbbell's orbital radius due to the coupling with the

tether's Iibration. As a tether librates or spins its mass moment of inertia about the centre of

the Earth will change accordingly, thus causing a change in the tether's angular acceleration

about the Earth. Since momentum must be conserved the dumbbell's orbit will change

altitude accordingly. The conclusion from Figure 2.4 is that a tether on an initially circular

orbit does not prescribe a true circular orbit about a planet. Similarly, a tether initially on an

elliptical orbit will also not follow the anticipated elliptical path. Instead the tether orbits

close to the expected trajectory but in reality follows a slight non-Keplerian orbit.

Consequently, constraining the tether to a Keplerian orbit is therefore an assumption but as

the discrepancy depicted in Figure 2.4 is small relative to the orbital radius the assumption

can be justified. Although small, a discrepancy of 80 m, say, should not be forgotten when

considering payload orbital transfer, as such a distance may be significant for a tether facility

about to rendezvous with an incoming payload.

L'.R[m]

60

80

40

20

Orbits

Figure 2.4 Difference in orbital radius between expected circular and actual orbit of a

tethered dumbbell with MI =M = 1000 kg, LI = L2= 10 km and ",(0) = 0.1 rad against the

number of orbits completed for an initially circular orbit at R(O) = 7000 km.

A small quantitative discrepancy exists, due to both the expansion of the potential energy

and the constraint to the Keplerian orbit, in the in- and out-of-plane motion between the

output generated from (2.14)-(2.17) and (2.33)-(2.34), as shown in Figure 2.S. However, the

response obtained from both forms of equations of motion gives qualitatively very similar
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results. Thus, (2.33)-(2.34) represent a valid approximation to the full equations of motion

but with the advantage of requiring less computational effort to numerically integrate.
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Figure 2.5 Comparison between the time history for the dumbbell's in- and out-of-plane

motion from (2.14)-(2.17) (grey) and (2.33)-(2.34) (black). Tether properties are MI =M2 =

1000 kg and LI = L2= 10 km with e = 0.25, vi(O)= VI'(O)= 0 and VI(O)= 0.1 rad.

2.3 Concept of Symmetrical Motorised Tether

Generating velocity increments with a tethered dumbbell is essentially a passive procedure

as the amount of !J.V achievable is dependent on the initial conditions, eccentricity of the

orbit, the properties and geometry of both the tether and payload. The inclusion of a motor to

intentionally spin the tethered system allows an additional !J.Vto be generated in addition to

that from the initial conditions. Two 'propulsion' tethers are attached in a symmetrical

fashion, as suggested by Cartmell and Ziegler (1999) and shown in Figure 2.6, to the casing

of an electric motor, which is located at the COM and obtains its electricity from solar panels

or a fuel cell. A payload is attached to each remaining free end of the tether. Once the tether

is fully deployed the motor is energised, thereby, applying a torque to the tethers. However,

the tethers cannot transmit the torque to the payloads at first due to their flexibility and lack

of inherent static stiffness. Small tangential boosters are needed in each payload to provide

thrust during the initial stages of the tether spin-up to account for the lack of centripetal
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acceleration required to keep the tethers taught and hence stop the tethers winding

themselves around the motor. The boosters can gradually be switched off as the tethered

system's acceleration due to the motor builds up about the COM. Eventually the tangential

velocity of the payloads reaches the required level and the payloads are released onto a

desired tangential path. If the payloads and tethers are identical and symmetrically attached,

then upon simultaneous payload release the tethered facility's COM will not significantly

shift. However, with the facility's new mass moment of inertia and perturbational

detachment forces some additional boost will probably be required to maintain the facility's

altitude. The motor consists of a rotor, which is attached to the propulsion tethers and a stator

connected to the rotor by means of a suitable bearing. The power supplies, control systems,

and communication equipment are likely to be fitted within the stator assembly in any

practical installation. The stator provides the necessary back rotation that is required for the

rotor to spin-up in a friction free environment. Deploying a pair of shorter 'outrigger' tethers

from the stator housing, which terminate in end masses, controls the stator's angular

acceleration by increasing the stator's mass moment of inertia.

braided
propulsion

tether-tube #1 and #2 ~

=paYIOad
Mass#1

/

.>".;;:~...... / ....
....;:;..~~~~':.......

~

Payload
Launcher Motor

(Rotor)

Launcher Motor
(Stator)

braided
outrigger

tether-tube #1 and #2

Figure 2.6 Schematic of Symmetrical Motorised Tether Concept, as proposed by Cartmell

and Ziegler (1999).

2.4 Derivation of the Equations of Motion Governing a Symmetrical Motorised Tether

In addition to the assumptions made in deriving the equations of motion for the tethered

dumbbell, the bearing connecting the motor's rotor and stator will be assumed to be perfect
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and cause no significant frictional losses. This assumption implies that the outrigger will

behave identically to the propulsion side but rotate in the opposite direction and, thus,

requiring only the propulsion side to be modelled. The motor torque will be assumed to

remain coplanar with the propulsive tethers and payloads. The connection between the tether

and the motor will be modelled as a rigid connection, hence when the tether moves out of the

orbital plane the motor will similarly rotate about its centre of mass. If the end masses are

substantially more massive than the tethers, then the tether mass may be assumed negligible.

Finally, the tether is assumed to be rigid and does not longitudinally extend nor twist in any

direction. The kinetic energy of a symmetrical motorised tether is composed of its

translational motion in the inertial frame and its rotation about its centre of mass, as shown in

Figure 2.7.

y

Zo Normal to
Orbit Plane

/
- Z:_?

/
/ /

z
/

/LL _
Yo

Normal to
Orbit Plane R a

Figure 2.7 Geometry of the motorised tether orbiting Earth

If the motor and the end masses are treated as point masses, then the kinetic energy for the

symmetrical tether is given by

1M ( ,2 ,2 ,2) 1M ( ,2 ,2 ,2) 1M (,2 ,2 ,2)T = - P X PI + YPI + Z PI + - P X P2 + YP2 + Z P2 + - M X M + YM + Z M
2 2 2

The Cartesian components of the end bodies plus the motor are given by

(2.42)
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Xp1=RcosO + Lcosacos(", +0) (2.43)

YPI =RsinO + Lcosasin(", +0) (2.44)

Zpl =Lsina (2.45)

XP2= R cos 0 - L cosa cos(", +0) (2.46)

YP2 =Rsin 0 - L cos a sin(", +0) (2.47)

zP2 =-Lsina (2.48)

xM =RcosO (2.49)

YM =RsinO (2.50)

ZM =0 (2.51)

Differentiating (2.43)-(2.51) with respect to time, squaring and substituting into (2.42) gives

T =[ M P +~MM YR,2 + R20,2)+ M pL2 [a,2 + (",' +0,)2 cos? a ] (2.52)

The potential energy is given by

U=_IiMp _liMp _IiMM
Rpl RP2 RM

(2.53)

where

Rpl =~X;'l +Y;l +Z;l =~L2 +R2 +2LRcosacos",

RP2 =~X;'2 + Y;'2 +Z;'2 =~L2 +R2 -2LRcosacos",

RM =~x1 + Y1 +z1 =R

(2.54)

(2.55)

(2.56)

Substituting (2.54)-(2.56) into (2.53) gives

u=- liMp
~R2 +L2 +2LRcosacos",

liMp _IiMM
~R2 +L2 -2LRcosacos", R

(2.57)

Before substituting (2.52) and (2.57) into Lagrange's equations in (2.13), the generalised

torque exerted by the motor on the system needs to be derived. From first principles virtual

work is defined as

(2.58)

Considering the virtual work done by all non-conservative forces through a virtual

displacement, leads to

OWa == Qa {I}8a

OW" == Q" (/}8",

(2.59)

(2.60)

In other words

f) OX ay ozQ \1 =F-+F -+Fz-a x oa y oa oa
(2.61)
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(2.62)

Thus, determining the x, y and z-components ofthe force F =Yr ' shown in Figure 2.8, and

partially differentiating these yields the generalised force terms. An additional angle, y,

which does not alter the location of the end masses' centre of mass, needs to be included

because the torque axis is free to rotate about the longitudinal axis of the tethers. Note that

the orbital angle, e, does not affect the generalised force as the principle of virtual work only

considers the virtual displacements due to the applied non-conservative forces. From above

the Cartesian components are

x = L cos a cos 'If

y = Lcosasin 'If

z =Lsina

(2.63)

(2.64)

(2.65)

From Figure 2.8 the x, y and z-components of the force F =Yr are

F, = - F cos r sin 'If - F sin y sin a cos 'If

Fy = F cosy cos 'If - Fsinysin a sin 'If

F, = F sin y cos a

(2.66)

(2.67)

(2.68)

Partially differentiating (2.63)-(2.65) with respect to a and substituting along with (2.66)-

(2.68) into (2.61) gives after simplification

Qa = FLsin y = r sin y (2.69)

Similarly, partially differentiating (2.63)-(2.65) with respect to 'lfand substituting along with

(2.66)-(2.68) into (2.62) yields after simplification

QV' = FLcosycosa = rcosycosa (2.70)

Thus, an initially planar motorised tether with y = 0 will exert a torque solely within the

orbital plane, as expected.
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Figure 2.8 Geometrical Depiction of the Xo-Yo-Zo Components of F = ){

Substituting (2.52), (2.57), (2.69) and (2.70) into (2.13) gives the governing equations of

motion of a motorised tether:

2L2Mp ('1'''+B")cos2 a - 2L2M pa' (1//' + B')sin 2a

+ J.iM pLR sin 'I' cos a[ (R2 + L2 - 2RL cos 'I' cos a t%
_ (R2 + L2 + 2RLcos'l'cosa y.%] = r cos j-cos zr

(2.71)

2M pL2a" +M pL2 sin 2a (1//' + B'Y

+J.iMpLRCOS'l'Sina[(R2 +L2 -2RLcoS'l'cosaY);

_(R2 +L2 +2RLCOSl//cosaY.%]=rsinr

(2.72)

(MM +2Mp)(R2e"+2RR'e')
+ 2M pL2 [cos2 a (e" + 'I'''}-a' sin 2a(e' + '1',)]= 0

(MM +2MpXR"-B,2R)
+ ,liMp [(R + L cos 'I' cos a )(R2 + L2 + 2RL cos 1//cos ay);

+(R-Lcos'l'Cosa)(R2 +L2 -2RLCOS'l'Cosat);]+ ,liMM =0R2

(2.73)

(2.74)
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As with the tethered dumbbell, the motorised tether's potential energy can be similarly

expanded to find

U = _ Jl ( M M + 2M p ) + ,uM pL2
( 1- 3 cos 2 a cos 2

'" )

R R3
(2.75)

Substituting (2.52), (2.69), (2.70) and (2.75) into (2.13) gives

2M pL2 cos? a(",w + 0") - 2M pL2a' sin 2a (",' + 0')
3,uM L2

+ ; sin2",cos2a=Tcosrcosa
R

(2.76)

2M pL2a" + M pL2 sin 2a (",' + 0')2 + 3J.LM;L2 cos? '" sin 2a = r sin r
R

(MM + 2M P XR20" + 2RR'0')+ 2M pL2 [cos2 a(O" + ",")

- a' sin 2a (0' + ",')] = 0

(M +2M )[R"_RO,2+L]_3Jl M L2 (1-3cos2 ",cos2a)=0
M p R2 R4 p

Transforming (2.76)-(2.77) to the true anomaly using (2.18)-(2.25) gives

(2.77)

(2.78)

(2.79)

.. [2' 2e sin 0 ] ( . 1) 3sin 2",
"'- atana+ "'+ + ( )1+ e cos 0 2 1+ e cos 0

Tr;(I+eY cosr=
2J.LMpL2(1 + ecosO)4 cosa

(2.80)

.. 2esinO. 1. (2 )[(. 1)2 3COS2",]a - a +-sm a '" + +----=--
1+ ecosO 2 1+ ecosO

T r;(l + e)3 .
= ( )4 s10r2J.LMpL21+ecosO

Note, that unlike the tethered dumbbell these equations of motion are not independent of the

(2.S1)

tether and orbit properties.

Neglecting the tether mass and mass moment of inertia is justifiable when the qualitative

-dynamics are of interest. However, some quantitative studies will need to be carried out,

such as the time required for the motorised tether to reach the desired release velocity. To

obtain accurate quantitative statements a model including the tether's mass and mass

moment of inertia is required. Initially a full three-dimensional model of the tether was

derived but the nonJinearities due to the mass moment of inertia being dependent on a and"

generated very large equations of motion, which were computationally expensive to

evaluate. Hence, an accurate planar model of the motorised tether is derived.
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The kinetic energy of a motorised tether taking into account the translation and rotation of

each component is given by

(2.82)

where

Xn = Rcose + L cos(II/ + e)
2

Yn = Rsin e + L sin(II/ + e)
2

XT2 = Rcose - L cos(II/ + e)
2

YT2 = Rsin e - L sin(II/ + e)
2

The mass moments of inertia can be derived from first principles, as shown by Wells (1967),

(2.83)

(2.84)

(2.85)

(2.86)

and are given by

1 2Ip =-Mprpayload
2

(2.87)

1 (2 2)IT =-pAL 3rT + L
12

(2.88)

(2.89)

where Ip = mass moment of inertia of the payload, IT = mass moment of inertia of the tether,

1M= mass moment of inertia of the motor, rpayload= radius of the payload, rr = radius of the

tether, and ru = radius of the motor. Note, that the parallel axis theorem does not need to be

applied since the translation of the body is included separately in (2.82). Differentiating

(2.43)-(2.51) and (2.83)-(2.86) with respect to time, squaring and substituting into (2.82)

gives

r=[Mp +pAL+~MM ]{R,2 +R2e,2}

+ [M AL2 + r;ayload/2}+ MMr~ /4 + pAL{4L2 + 3r; }/12](II/' + e'Y

The potential energy is given by

(2.90)

u=- pMp pMp
~R2 + L2 + 2LR cos 11/ ~R2 + L2 - 2LRcosII/

L )/
- ppA J{R2 + [2 + 21R cos 11/)-72dl

-L

(2.91)

and evaluating the integral gives the total potential energy of the system
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u=
~R2 +L2 +2LRcosf// ~R2 +L2 -2LRcosf//

[
R cos f// - L +~R 2 + L2

- 2LR COS f// ]+ ppA In -_;____ _ __.:,.;=========
Rcosf//+L+~R2 +L2 +2LRCOSf//

(2.92)

Substituting (2.69), (2.70), (2.92) and (2.90) into Lagrange's equations gives

(MMrlt /2 +u,(2L2 +r'jay/oad)+pAL(4L2 +3r; )/6Xf//"+0")
ppA(Lcosf// + R) ppA(Lcosf// - R)

+ +-_~=========
sinf//~R2 +L2 +2RLcosf// sinf//~R2 +L2 -2RLcosf//

(2.93)

pM pLR sin f//
+ --;:=:===========
~R2 +L2 -2RLcosf//

(MM +2Mp +2pAL)(R20"+2RR'0')

+ .!.[4L2(3M p +pAL)+3(MMrlt +2M pr'jay/oad+pALr; )10" +f//")= 0
6

(MM +2(Mp + pAL)XR" -0'2R)+ ~M + pMp(R+Lcosf//)
R ~R2 + L2 + 2RL cos f//

pM p (R - L cos f//) ppAL
+ +--r====:========

~ R2 +L2 - 2RL cos f// R~ R2 +L2 +2RL cos f//

+ ppAL =0
R~ R2 + L2 - 2RL cos f//

Note that (2.92) and (2.93) have a singularity at 'I' = 1C, which means for the case of a

(2.94)

(2.95)

spinning motorised tether problems will be encountered when numerically integrating (2.93)-

(2.95). To avoid this an alternative description of the potential energy is derived, which

discretises the tether mass into point masses, as follows

u= pMp pMp
~ R 2 +L2 +2LR cos f// ~ R 2 +L2

- 2LR cos f//

-f ppAL

;=1 N R2 [(2; _I)L]2 2(2i -I)RL+ + cosf//
2N 2N

(2.96)

-f--r=======P'=P.=~L==========
;=1 N R2 [(2; _I)L]2 2(2; -I)RL

+ 2N - 2N cosw

where N is the number of discretised masses considered.

When N = 1 the equation of motion governing the full planar motorised tether becomes
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(M M r~ /2 +u , (2L2 + riaYload)+pAL(4L2 + 3r} )/6X'I'w + (r)
ppAL2 R sin 'I' ppAL2 R sin 'I'~r=============+-.==============

2~R2 +L2/4+RLcos'l' 2~R2 +L2/4-RLcos'l'
11M pLR sin 'I'

+ r=========
~R2 +L2 -2RLcos'l'

(2.97)

pM pLR sin 'I'
r============= r
~R2 +L2 +2RLcos'l'

(MM + 2Mp + 2pAL)(R20w + 2RR'O')

+.!_[4L2(3M p + pAL) + 3(M Mr~ + 2M prjayload+ pALr} )Xon+ 'l'n) = 0
6

(MM +2(Mp+pAL)XRW-O'2R)+~M + pMAR+Lcos'l')
R ~R2 + L2 + 2RL COS 'I'

pM p (R - L cos 'I' ) I1PAL(2R + L cos 'I' )+ +~~==============
~R2 +L2 -2RLcoS'l' 2~R2 +L2/4+RLcos'l'

ppAL{2R - L cos 'I' )
+ =0
2~ R 2 + L2

/4 - RL cos 'I'

(2.98)

(2.99)

Expanding the number of terms included in the tether's potential energy symbolically is

easily implemented in Mathematica. Figure 2.9 evaluates how many discrete masses are

needed to approximate the tether's potential energy satisfactorily and, as is seen, a minimum

of 15 masses is required for a 100 km long tether. Moreover, when the tether's potential

energy is differentiated with respect to 'l'then the convergence, presented in Figure 2.10, is a

little slower, requiring at least 20 masses to adequately approximate the full tether. The

number of discrete masses required in Figure 2.9 and Figure 2.10 is observed to be

insensitive to the angular displacement and tether length.

U[GJ)
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• •
5 15 N20

Figure 2.9 Comparison between the discrete (black) and full (grey) tether's potential energy

for 'I' = 0.1 and L = 100 km.
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Figure 2.10 Comparison between the discrete (black) and full (grey) tether's potential energy

differentiated with respect to If! for If! = 0.1 and L = 100 km.

2.S Conclusions

The equations of motion governing a rigid massless tethered dumbbell and a rigid

symmetrical motorised tether have been derived. Constraining the tether's motion to a

Keplerian orbit reduces and considerably simplifies the three dimensional equations of

motion from four to two ordinary differential equations, thus making them more expedient to

integrate numerically. The presented results indicate that the simplified equations appear to

be valid approximations as the qualitative behaviour is wholly captured, but small

quantitative discrepancies exist, which need to be taken into account when considering

payload orbital transfer with tethers, for example. If the discrete formulation of the spinning

motorised tether is employed, then a minimum number of point masses must be included.
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Chapter g
Derivation and Evaluation of

Closed-Form Solutions
for the Tethered Dumbbell

3.0 Introduction

In this chapter an approximate closed form solution is sought to the equations of motion

governing a tethered dumbbell. The method of multiple scales has proved to be a very

successful and powerful perturbation technique employed in many fields within mechanical

engineering. Nayfeh (2000) gives an excellent introduction to the technique and presents

numerous examples of the implementation and use of the multiple scales method. In addition

to Nayfeh (2000), the treatment by Thomsen (1997) is very readable and easily understood.

The method of multiple scales is employed in this chapter to obtain an approximate closed-

form solution to the dumbbell's equations of motion, which are subsequently evaluated to

assess the validity of the obtained equations.

3.1 2nd Order Method of Multiple Scales Analysis of the Tethered Dumbbell on an

Elliptical Orbit

A 2nd order approximate solution of (2.33)-(2.34) is sought that is uniformly valid near "'= a

= 0 and that accounts for nonlinear effects. To achieve this the trigonometric functions

present in (2.33)-(2.34) are expanded using Taylor series and the first terms are retained.

Consequently, (2.33)-(2.34) become

(1+ce cosO)Vi- 2(1+ce cosO )aa - 2ce sin 0 Ij/+m:", = 2ce sin () (3.1)

(1+cecosO)ii +2(1+cecos())alj/ - 2cesinO a +cecosO a +m~a = 0 (3.2)

where the natural frequency terms equal

m =..fj ma = 2 (3.3) (3.4)
I" '

The necessary assumption is made that the orbit eccentricity is close to zero, representing

therefore a nearly circular orbit. To denote the smallness of the orbit eccentricity, e, in (3.1)

and (3.2) has been replaced with

e=ce (3.5)
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where the small parameter 8, e « 1, is introduced to indicate the weak orbit eccentricity and

serves merely as a book-keeping device. Following the method of multiple scales, the

solution of(3.1) and (3.2) is approximated by uniformly valid expansions of the form

'I'(O,E) = E'I'I (To,r.)+S2'1'2 (To,r.)+ 0(E3) (3.6)

(3.7)

where 'l'h '1/2, al and a2 are functions to be determined. Note that the zeroth order terms, '1'0

and ao in this specific case, have to be assumed to be negligible to ensure that the lowest

order perturbation equation yields a closed form solution. Without this assumption the

method of multiple scales will not yield a solution to the given problem. The uniformly valid

expansions are subject to independent time-scales where To is the fast time and T) the slow

time, such that

10 =0 , Tj = EO (3.8) (3.9)

Upon substituting (3.6) and (3.7) into (3.1) and (3.2) the derivatives with respect to 0 are

required which become partial derivatives with respect to the independent time scales,

according to

d dToa dTja a a
-=--+--=-+s-=Do+ED)ao so et; ao aTj a10 ar.

d
2

2 = a (Do +ED1) +s a (Do +ED)) = D~ +2EDoD) +s2D)2
dO et; aTj

(3.10)

(3.11)

where the partial differential operator has been defined through

. aj

D!=--.
aT;'

(3.12)

Substituting (3.6), (3.7), (3.10) and (3.11) into (3.1) and (3.2), and equating to zero the

coefficients to like powers of syields, to order e:
D~'I') +m;'I') = 0

and to order il:

(3.13) (3.14)

D~'I'2 +m;'I'2 =2esinToDo'l'l +2esinTo -ecosToD~'I') +2a)DOa)

-2DOD)'I')

(3.15)

D~a2 +m;a2 = 2esinToDoa) -ecosToa) -ecosToD~al -2a)Do'l')
-2DoD)a)

The solutions to the undamped and unforced linear oscillators in (3.13) and (3.14) can be

(3.16)

written in the complex exponential form

(3.17) (3.18)
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where A and B are unknown complex-valued functions of the slow scale T], and A and Ii
are the respective complex conjugates. Substituting (3.17) and (3.18) into (3.15) and (3.16)

gives

D2,,, +m211' = 2iOJ B2ei2maTo - 2iOJ D Aeim!lfTo- i"eeiTo
0"'2 ,,"'2 a " 1

1- ( 2) i(m -I}ro 1 - ( 2) i(w +I}ro+-eOJ \OJ - Ae!lf +-eOJ \OJ + Ae I' +cc
2 "" 2 ""

D2a +m2a =-2iOJ DBeimaTo_2iOJ ABei(wa+w,,}ro+2iOJ ABei(ma-IlI,,}ro
o 2 a 2 a 1 " "

+'!"efOJ2 +2m _1)Bei(ma+l}ro +'!"efOJ2 -2OJ _1)Bei(ma-l}ro2 ~a a 2 ~a a

+cc

(3.19)

(3.20)

where cc denotes the complex conjugates ofthe preceding terms. The term containing ei~To

in (3.19) and the term containing eimal'o in (3.20), known as secular terms, resonantly excite

their respective undamped oscillators at the natural frequency. However, as the OJ" and lOa

terms in (3.3) and (3.4) are constant, there are no other resonance conditions possible. Thus,

to eliminate secular terms from (3.19) and (3.20), which will otherwise grow unbounded

with time and thus violate the assumption of the uniformly valid expansion, the fol1owing

conditions must hold

-2iOJ,,~A=0 (3.21) (3.22)

which are commonly termed the solvability conditions for the multiple scales analysis. With

the solvability conditions fulfilled, (3.19) and (3.20) constitute linear oscillators with

multiple harmonic forcing terms. Inserting the assumed form of

1f12=C(7;)ei2Il1aTo +E(7;)eiTo +F(7;)ei(IlI,,-I}ro +G(7;)ei(m,,+I}ro (3.23)

a2 = H(7;)ei(ma+wl')ro + 1(1!)ei(wa-w,,)ro + J(1!)ei(Wa+IFo + K(1!)ei(wa-IFo

into (3.19) and (3.20), the coefficients are found to be

C(r.)- 2iOJaB2 E(T,)- -ie
1-242' 1-2

OJ" - OJa m" -I

( ) e OJ" (OJ" - 2)A () e loll' (OJ" + 2)AFT,- ( GT,- J
1 - 2\2OJ" -1)' 1 - 2(2OJ" +i

H(7;)= 2iAB , 1(7;)= 2iAB
20Ja +OJ" 20Ja - loll'

J(T,) = e(OJ~ +20Ja -I)B K(T,) = e(m~ - 20Ja -I)B
1 2(2OJa+I)' 1 2(2ma-l)

(3.24)

(3.25) (3.26)

(3.27) (3.28)

(3.29) (3.30)

(3.31) (3.32)

Hence, the particular solution is
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The A and B functions expressed in polar notation, are

1 .A =-ae'~12 '
(3.35) (3.36)

where a, b, <Ph <P2 are real valued functions of TI• Substituting (3.35) and (3.36) into the

solvability conditions of(3.21) and (3.22) yields upon separating the real components

aJ",aD1<P1=0, aJabD1<P2= 0

and imaginary parts

(3.37) (3.38)

(3.39) (3.40)

which are first order, ordinary differential equations and are readily solved to find

(3.41) (3.42)

(3.43) (3.44)

with ah ai, rPI, th being arbitrary constants of integration. The second order approximate

solution for the tether's three dimensional motion on an elliptical orbit can be assembled by

substituting (3.17), (3.33), (3.35), (3.36) and (3.41)-(3.44) into (3.6)

2.-
S I e IToe
aJ2 -1

II'

(3.45)

and substituting (3.18), (3.34), (3.35), (3.36) and (3.41 )-(3.44) into (3.7)

a(To,c)=c.!..a2ei(¢2+(I)aTo) + 1 c
2
ia1a2 ei(~+~+((I)a+(I),,)ro)

2 2 2ma + aJ"

+ 1 c2;a1a2 /(¢2-;'+(Wa-(I),,)ro) _ 1 c2e(m~ + 2aJa -1)a2 ei(¢2+(wa+l)1
2 2ma - m", 2 2(2aJa + 1)

+ 1 c2e(m~ -2aJa -1)a2 ei(¢2+«(I)a-l)To)+cc+O(c3)
2 2(2aJa -1)

(3.46)
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Finally, substituting (3.8) into (3.45) and (3.46) and converting the complex exponentials

back into trigonometric functions, yields

(3.47)

(3.48)

where ah a2, rA, rh are determined by the initial conditions and snow serves to indicate the

assumed magnitude of the terms. The presented solutions were derived by hand but were

also obtained with a Mathematica solver developed by Khanin et al. (2000) who automated

the method of multiple scales. Both methods yielded identical solutions.

The closed-form solution given in (3.47) and (3.48) shows that the motion of a tether on a

circular orbit will remain planar if there is no initial out-of-plane displacement or velocity.

This is due to the nature of the coupling between the in and out-of-plane angles, which only

exists when an out-of-plane displacement is present. Furthermore, a tether that is aligned

along the gravity vector on a circular orbit will remain radial because all the terms in (3.47)

and (3.48) evaluate to zero due to e = O.However, the presence of the particular solution in

(3.47), where the amplitude of oscillation is governed by the orbit eccentricity alone, implies

that the tether cannot remain radial on an elliptical orbit and will, therefore, always be in

motion. In the elliptical orbit case the qualitative interaction between the in and out-of-plane

angles is identical to the circular case as the coupling terms are independent of the orbit

eccentricity. Thus, out-of-plane motion on an elliptical orbit is only possible with an initial

out-of-plane displacement or velocity. If the amplitudes of the in and out-of-plane angles are

very small on a circular orbit, such that the terms to first order are only taken into account,

then the tether's in and out-of-plane motions are uncoupled and librate at frequency of J3
and 2 times the orbital frequency, respectively. This is a well-known property of the

55



linearised tethered dumbbell, which Arnold (1987) derived by simpler means. Equation

(3.47) suggests that the frequency spectrum associated with the motion of the in-plane angle

on an elliptical orbit consists of the frequency of planar libration in a circular orbit, the

orbital frequency, twice the frequency of the out-of-plane libration in a circular orbit, and

modulation frequencies composed of the sum and difference between the frequency of planar

libration in a circular orbit and the orbital frequency. The frequency spectrum associated

with the motion in the out-of-plane angle on an elliptical orbit, according to (3.48),

comprises the frequency of out-of-plane libration on a circular orbit, the sum and difference

between the frequency of out-of-plane libration on a circular orbit and the orbital frequency,

and finally the sum and difference between the in and out-of-plane libration frequency on a

circular orbit.

3.2 Alternative Closed-Form Solutions for the Planar Tethered Dumbbell OD Elliptical

Orbits

The approximate solutions obtained in (3.47) and (3.48) are not the first attempt to derive

closed-form solutions for the tethered dumbbell on an elliptical orbit. Modi and Brereton

(1966) derived a closed form solution to (2.33) with a = 0 using an approximation to the

Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) method. Their solution is only valid for the

planar case and is stated in the following form

",(0)= AI"'I +A2"'2 + "'3 (3.49)

where

J;; 5+ 2/3 (J;; \n 2/3 - 5 (J;; \n"'1=cosv.)O-e cos\v3+lp+e cosv3-lp
12 12

"'2 = sin/30-e 5+ 2/3 sin(/3 + 1~+e 2/3 -5 sin(/3 -1~
12 12

• Ll esin/30"'3=eslOu- /3

The constants Al andA2 are determined by the initial conditions.

(3.50)

(3.51)

(3.52)

Combining the use of variation of parameters and a perturbation method with the expansion

in terms of the orbit eccentricity, Anand et al. (1971) derived a closed form solution to (2.33)

with a = 0, again only valid for the planar case, which is given as

",(0)=Aocos(/3e - ¢}+ eAI +e2A2 + ... (3.53)

where

A. = A. _ 6/3e2 e
'I' '1'0 44

(3.54)
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Al = sin o + .J3Ao [(.J3 - 2)ni- (.J3 +2)n; ]
2

A2 = -~sin(2(})+ .J3Ao [(v') - 2Xv') - 3)n; + (v') + 2Xv') + 3)n; ]2 16

(3.55)

(3.56)

and

(3.57)

The constants Ao and t/kJ are determined by the initial conditions.

Apart from a single trigonometric term in (3.56), describing a frequency component at twice

the orbital frequency, there is no difference between the qualitative frequency spectrum

predicted by the closed-form solutions when comparing the solutions obtained with the

method of multiple scales to those obtained by Modi and Brereton (1966) and Anand et al.

(1971). This suggests the multiple scales method is generating an approximate solution that

is capturing the same part of the tether's motion as the previously published solutions.

However, (3.47) and (3.48) have an important advantage over the solutions given by Modi

and Brereton (1966) and Anand et al. (1971) in that they are more elegant and considerably

more compact. The planar case in (3.47) constitutes only four terms in comparison to the

eight terms in (3.49) and the seven terms in (3.53). Moreover, the presented analysis has

extended previous work to also include the tether's out-of-plane motion.

3.3 3rd Order Method of Multiple Scales Analysis of the Tethered Dumbbell on a

Circular Orbit

A third order approximate solution to (2.40)-(2.41) is sought that is uniformly valid near If/=

a = 0 and that accounts for nonlinear effects. To this end the trigonometric functions are
expanded using Taylor Series and the first two terms are retained. Consequently, (2.40)-

(2.41) become

Vi - 2aa - 2aatiJ + ~la21f/ + ~21f/3+ {i)~1f/= 0

ii + 2atiJ + atiJ2 + ~3a1f/2+ ~4a3 + (i)~a = 0

(3.58)

(3.59)

where

2 3(re -2(~ + L2))(i) = ,
" r.e

(3.60) (3.61)

;2 = 17(~ +L2)-4re
2rc

(3.62) (3.63)
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~3 = 3{7{lt-~)-2rc),
2rc

~4 = 51{L2 -It)-16rc
6rc

(3.64) (3.65)

Following the method of multiple scales the solution of (3.58) and (3.59) are approximated

by uniformly valid expansions

'I'{B,E)= E'I'I(To,1J,T2)+ E2'1'2(To,1J.T2)+ E3'1'3(To,1J,T2)+ O(E4) (3.66)

(3.67)

where '1'1. '?l, '1'3,ah a2 and a3 are functions to be determined. As before, the zeroth order

terms, '1'0and ao in this specific case, have to be assumed to be negligible to ensure that the

lowest order perturbation equation yields a closed form solution. Without this assumption the

method of multiple scales will not yield a solution to the given problem. The uniformly valid

expansions are subject to independent time-scales where To is a fast time, TI equals a

medium time scale and T2 represents a slow time scale, such that

(3.68) (3.69) (3.70)

Upon substituting (3.66) and (3.67) into (3.58) and (3.59) the derivatives with respect to B

are required, which become partial derivatives with respect to the independent time scales,

according to

(3.71)d dToa d1Ja dT2a a a 2a 2-=--+--+--=-+E-+E -=Do+EDI+E D2ao dB et; ao a1J ao aT2 aTo a1J aT2

.!f_ = a(Do + EDI+ E2D2) + E a(Do + EDI+ E2D2) + E2 a(Do + EDI+ E2D2)
dB2 ot; a1J aT2

= D~ + 2EDo~ + 2E2DoD2 + E2DI2+ 2E3~ D2 + E4Di

Substituting (3.66), (3.67), (3.71) and (3.72) into (3.58) and (3.59), and equating to zero the

coefficients to like powers of syields, to order d:

(3.72)

(3.73) (3.74)D~'I'I + (1);'1'1= 0

to order l:
Dg'l'2 + (1);'1'2= 2a,Doal - 2DOD)'I'1

D~a2 + (1)~a2= -2al Do'l'l - 2DoDIai

and to order d:

D~'I'3 + (1);'1'3= 2aIDoa,Do'l'l + 2a2Doai + 2alDoa2 + 2alD)al - 2DOD)'I'2

-2DoD2'1'I-DI2'1'1 -~,'I'laf -~2'1'~

Dga3 +(1)~a3=-2DoD1a2 -2DOD2a) -D12al -~3al'l'12 -~4a: -2aIDo'l'2

-2al~'I'1 -2a2Do'l'l-al{Do'l'lf
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The solutions to the undamped and unforced linear oscillators in (3.73) and (3.74) can be

written in the complex exponential form

'1/1 = A(1i,T2)eitIJ"To + A (1i,T2)e -itIJ"To

al =B(1i,T2)eitIJa
To +B(1i,T2)e-itIJaTo

(3.79)

(3.80)

where A and B are unknown complex-valued functions of the slow scales TI and T2, and A
and B are the respective complex conjugates. Substituting (3.79) and (3.80) into (3.75) and

(3.76) gives

D211' +w2,,, = 2i W B2 ei2OJaTo- 2i W D AeiOJ"To+cco T 2 'Ill' 2 a 'I' I

D2a + w2a = 2iw ABei(OJa-m,.}ro - 2iw D BeiOJal'o - 2iw ABei(OJa+OJ,,'Po+ CC
02 a2 'I' al 'I'

(3.81)

(3.82)

where cc denotes the complex conjugates of the preceding terms. The w'I' and Wa terms in

(3.60) and (3.61) are, in contrast to the second order treatment, not constant with respect to

the orbital radius and tether length and, following from (3.81), could theoretically give rise to

the internal resonance condition of

(3.83)

Substituting the square root of (3.60) and (3.61) into (3.83) leads to an expression that

determines the length of LI required to create the internal resonance,

13 5
~ =-rc +-L2

18 3

which states that LI must be at least 70% of re's length. This not only violates the

(3.84)

assumption of LI «re made in the derivation of the equations of motion but is for practical

reasons unrealistic. The identified internal resonance condition is, therefore, not of relevance.

Thus, to eliminate secular terms from (3.81) and (3.82) the following conditions must hold

(3.85) (3.86)

which imply that A = A(T2) and B = B(T2)' With the solvability conditions fulfilled, (3.81)

and (3.82) constitute linear oscillators with harmonic forcing terms. Inserting the assumed

form of

(3.87)

(3.88)

into (3.81) and (3.82) results in the coefficients being found

C(1i,T2)= ~i~aB2 2 E(1i,T2)= 2iAB
- Wa +W'I' 2wa +W'I'

(3.89) (3.90)

(3.91)
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Hence, the particular solution for f?l and a2 are

(3.92)

(3.93)

(3.95)

with DIB = 0 and DIA = 0, because A and B are now solely functions of T2due to (3.85) and

(3.86), the equations (3.94) and (3.95) become
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+

The secular terms from (3.96) and (3.97) need to be eliminated, such that

- 2- 16{()IJI{()aABB .
2~IABB + 3~2A A + 2 2 + 21{()IJID2A :;;;;0

4{()a - {()IJI

(3.97)

(3.98)

(3.99)

With the solvability conditions fulfilled, (3.96) and (3.97) constitute linear oscillators with

harmonic forcing terms. Inserting the assumed form ofthe particular solution

_G(r. rt: )ei34l"To H(r.'" )ei(24la -4l,,)To /(r.'" )ei(24la +4l,,)To
'1/3 - l,l2 + l,l2 + l,l2 +CC

(3.100)

(3.1 0 1)

(3.102) (3.103)

(3.104) (3.105)

are found, leading to
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(3.108)

(3.109)

The A and B functions expressed in polar notation, are

1 .
A =-ae''Il1,

2

(3.110) (3.l11)

where a, b, <Ph <P2 are real valued functions of TI and T2• Substituting (3.110) and (3.111) into

the solvability conditions of(3.98) and (3.99), yields upon separating the real components

(3.112)

(3.113)

and imaginary parts

(tJ",D2a = 0 (3.114) (3.115)

which are first order, ordinary differential equations and are readily solved to find

(3.l16) (3.117)

(3.118)

(3.119)

where a), a2, tA, ~ are arbitrary constants of integration. The third order approximate

solution for the tether's three dimensional motion on a circular orbit can be assembled by

substituting (3.79), (3.92), (3.l 08), (3.110), (3.l11), (3.l16) and (3.117) into (3.66)
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(3.120)

and substituting (3.80), (3.93), (3.109), (3.110), (3.111), (3.116) and (3.117) into (3.67)

(3.121)
(To ) 1 i(Ql2+tlJ To) 1 s2iala2 i(QlI+Ql2+(ala+al,,)To)a o,s =-&a2e a +- e

2 2 2ma + OJ",

+..!.. s2iala2 /(-QlI+Ql2+(ala-all")To)

2 2m a -m",

_ s3(2~3OJa -4m", -~3OJ", -2OJaOJ; +OJ!~~a2 ei(2QlI-Ql2+(2al,,-tlJa)To)

32OJ", (ma - OJ",X2ma -m",)
+ S3 (2~3ma - 4m", +~3OJ", - 2OJam~ - OJ! ~~ a2 ei(2QlI+Ql2+(2al,,+ala )To)

32m", (OJa+OJ",X2ma +m'lf )

+.!..s3[~4a~ + a~ ]ei(3Ql2+3tlJaTo)+cc+o(e4)
88m2 4OJ2 _m2a a 'If

Finally, substituting (3.68) and (3.70) into (3.120) and (3.121), and converting the complex

exponential terms back into trigonometric functions, yields
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where

(3.123)

(3.124)

(3.125)

The constants ah a2, ¢I, rh. are determined by the initial conditions and e now merely

indicates the assumed magnitude of the terms. The derivation of the 3rd order solutions was

carried out by hand but was also obtained with the Mathematica solver developed by Khanin

et al. (2000). Both methods again yielded identical solutions.

3.4 Evaluation and Comparison ofthe Derived Closed-Form Solutions

The validity and accuracy of the approximate uniformly valid solutions obtained from the

multiple scales method to second and third order are evaluated in the following figures

below, Figure 3.1 to Figure 3.15, by comparing the output from the closed-form solutions

with the results obtained by numerically integrating equations (2.33)-(2.34) and (2.40)-

(2.41). The approximate solutions to second and third order in equations (3.47) and (3.48),

(3.122) and (3.123) with (3.124) and (3.125) appropriately substituted, were differentiated

with respect to the true anomaly to allow the constants of integration at () = 0 to be

determined numerically. The figures from Figure 3.8 to Figure 3.10 also contain the

alternative closed-form solutions derived by Modi and Brereton (1966), given in (3.49)-

(3.52), and Anand et al. (1971), stated in (3.53)-(3.57), which were similarly differentiated

and evaluated to obtain the constants of integration at ()=O.The numerical integration was

carried out with a fourth/fifth-order Fehlberg Runge-Kutta method. A typical low Earth orbit

radius was selected, where r» = 7000 km, and short tether lengths were used, with LI = L2 =
500 rn, to ensure the ratio between the tether length and orbital radius is kept well below
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unity. In determining the constants of integration the initial velocity in both angles was

assumed to be zero. Finally, swas set to unity as the perturbation parameter now only relates

to the assumed magnitude of the terms.

Figure 3.1 gives the in and out-of-plane response on a circular orbit to an initial angular

displacement of 'I' = a = 0.05 rad in both angles and shows that the 2nd and 3rd order

solutions completely overlap with the numerical results. Magnifying the results between the

4th and Slh orbit, as shown in Figure 3.2, confirms that the discrepancy between the analytical

and numerical results is certainly small. Increasing the initial displacement in Figure 3.3 to 'I'

= a = 0.1 rad, the approximate solutions are slightly out of phase with the numerical

response but still manage to capture the motion of the system very well. On closer inspection

both the second and third order approximations in Figure 3.4 are found to be equal1y out of

phase with the numerical solution with no advantage to either order of solution. In Figure 3.5

the initial conditions are set to 'I' = a = 0.2 rad and a large discrepancy between the

approximate solutions and the numerical integration has appeared in both the phase and

amplitude of the response due to the higher order terms neglected in the expansion. This is

seen very clearly in the higher resolution depicted in Figure 3.6. Since at this point the

second and third order closed-form solutions fail to capture the system's quantitative

response, there is little necessity to evaluate the performance of the approximate solutions to

larger initial conditions. Hence, both the second and third order approximate solutions to

equations (2.33)-(2.34) and (2.40)-(2.41) are only valid, as demonstrated by the comparisons,

when the initial angular displacements in both the in and out-of-plane angles are less than 0.1

rad. Furthermore, the results show that despite the higher order expansion, the third order

approximate solution does not significantly capture more of the system's response than the

second order solution. In Figure 3.7, the fast Fourier transform of the time history in Figure

3.3 shows that there are real1y only two frequency components to capture for the in-plane

and three for the out-of-plane motion. The second order analysis generated a solution, which

already possessed this level of detail and, hence, explains why the third order analysis does

not improve on simulating the tether's response.
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Figure 3.1 In-plane, (a), and out-of-plane, (b), angular response over 5 circular orbits

against true anomaly with, vi(O) = a(O) = 0 and \1/(0) = a(O) = 0.05 rad

(solid black = numerical, solid grey = 2nd order analysis, dash = 3rd order analysis)
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Figure 3.2 In-plane, (a), and out-of-plane, (b), angular response between the 4thand 5th

circular orbit against true anomaly with vi(O) = a(O) = 0 and \1/(0) = a(O) = 0.05 rad

(solid black = numerical, solid grey = 2nd order analysis, dash = 3rd order analysis)
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Figure 3.3 In-plane, (a), and out-of-plane, (b), angular response over 5 circular orbits

against true anomaly with vi( 0) = a( 0) = 0 and \1/(0) = a(0) = 0.1 rad

(solid black = numerical, solid grey = 2nd order analysis, dash = 3rd order analysis)
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Figure 3.4 In-plane, (a), and out-of-plane, (b), angular response between the 4tJ1 and 5th

circular orbit against true anomaly with vi(O)=a(O)=O and'l'(O)=a(O)=O.lrad

(solid black = numerical, solid grey = 2nd order analysis, dash = 3rd order analysis)
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Figure 3.5 In-plane, (a), and out-of-plane, (b), angular response over 5 circular orbits

against true anomaly with vi(O) = a(O) = 0 and '1'(0) = a(O) = 0.2 rad

(solid black = numerical, solid grey = 2nd order analysis, dash = 3rd order analysis)
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Figure 3.6 In-plane, (a), and out-of-plane, (b), angular response between the 4th and 5th

circular orbit against true anomaly with Ij/(O) = a(O) = 0 and '1'(0) = a(O) = 0.2 rad

(solid black = numerical, solid grey = 2nd order analysis, dash = 3rd order analysis)
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Figure 3.7 Power spectra ofthe in-plane, (a), and out-of-plane, (b), motion

on a circular orbit with vi'(0) = a(O) = 0 and 1//(0)= a(O) = 0.1 Tad

Figure 3.8 In-plane angular response over 10 orbits against true anomaly

with e = 0.01 and vi'(0) = 1//(0)= 0 (solid black = numerical, solid grey = multiple scales,

short thick dash =Modi & Brereton (1966), long thin dash = Anand et al. (1971))
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Figure 3.9 In-plane angular response over 10 orbits against true anomaly

with e = 0.1 and vi'(0)= 1//(0)= 0 (solid black = numerical, solid grey = multiple scales,

short thick dash = Modi & Brereton (1966), long thin dash = Anand et al. (1971))
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Figure 3.10 In-plane angular response over 10 orbits against true anomaly

with e = 0.2 and vi(O) = I{I(O) = 0 (solid black = numerical, solid grey = multiple scales,

short thick dash =Modi & Brereton (1966), long thin dash = Anand et al. (1971))

As predicted by the approximate solution, the in-plane angular response of a tether on an

elliptical orbit with no initial angular displacement or velocity is seen in Figure 3.8 to Figure

3.10 to always be in motion. The constant forcing of the elliptical orbit simply does not let

the tether align itself along the gravity vector. For a nearly circular orbit, Figure 3.8

demonstrates an excellent agreement between the closed form solutions obtained by the

multiple scales method, Modi and Brereton (1966) and Anand et al. (1971), and those

generated by the numerical integration. Setting the orbit eccentricity to e = 0.1 in Figure 3.9

shows, despite small discrepancies, that the approximate solutions are still able to capture the

response found numerically. However, in Figure 3.10 the closed-form solutions are all

unable to capture the tether's qualitative response when the orbit eccentricity is raised to e =
0.2. The results, therefore, suggest that the obtained closed-form solutions are only valid

when e < 0.1. The results also demonstrate that the solution obtained by the method of

multiple scales does not improve on the previously obtained approximate solutions, which is

to be expected, since the multiple scales method did not yield any additional frequency terms

to those derived by Modi and Brereton (1966) and Anand et al. (1971).
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Figure 3.11 In-plane, (a), and out-of-plane, (b), angular response over 5 orbits against

trueanomalywithe=O.Ol, IJi(O)=a(O)=O and V/(O)=a(O)=O.Olrad

(solid black = numerical, dash = 2nd order analysis)
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Figure 3.12 In-plane, (a), and out-of-plane, (b), angular response over 5 orbits against

true anomaly with e = 0.1, vi(O) = li(O) = 0 and If/(O) = a(O) = 0.01 rad

(solid black = numerical, dash = 2nd order analysis)

As shown in Figure 3.11, both the in and out-of-plane motion of the tether on a nearly

circular orbit are captured very well by the second order analysis when both angles are given

an initial condition of '1'(0) = a(O) = 0.01 rad with zero initial velocity. When the orbit

eccentricity is increased to e = 0.1 the closed-form solution still satisfactorily captures the

out-of-plane motion given in Figure 3.12 but for the in-plane motion qualitative

discrepancies appear between the analytical and numerical solution. Indeed, the approximate

solution still fares well in capturing the out-of-plane motion when the orbit eccentricity is

raised to e = 0.2 in figure 3.13 and only when the eccentricity is set to e = 0.3 do large

qualitative differences arise, as Figure 3.14 demonstrates. For the larger orbit eccentricities,

however, the approximate solution is unable to reproduce the subtleties displayed by the

numerical integration for the tether's in-plane motion. Between the numerical simulation and

the multiple scales solution for both the in and out-of-plane angles, Figure 3.15 shows large

deviations in amplitude and phase when the initial angular displacement is increased to

1f/(0)=a(0)=0.2rad on an orbit with e = 0.1. Consequently, the derived second order

approximate solution for the three dimensional motion of a tethered dumbbell on an elliptical

orbit appears only to hold when e < 0.1 and the initial angular displacements are both nearly

aligned along the gravity vector. The fast Fourier transform in Figure 3.16 of the time history

in Figure 3.12 shows numerous frequency components in both the in and out-of-plane angles

that the second order analysis does not generate. For the given initial conditions the derived

closed-form solution manages to represent the numerical solution but as soon as these are

increased the additional frequency components begin to significantly contribute to the

tether's motion. The algebra involved in carrying out the third order analysis for the tether on
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a circular orbit is already quite cumbersome without having achieved a measurable

advantage. Figure 3.16 suggests a closed-form solution would have to be carried out to a

very high order for the frequency spectra to be captured and, hence, a multiple scales

analysis greater than two has not been carried out for the tether on an elliptical orbit.
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Figure 3.13 In-plane, (a), and out-of-plane, (b), angular response over 5 orbits against

true anomaly with e = 0.2, ';(0) = a(O) = 0 and '1'(0) = a(O) = 0.01rad

(solid black = numerical, dash = 2nd order analysis)
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Figure 3.14 In-plane, (a), and out-of-plane, (b), angular response over 5 orbits against

true anomaly with e ::::0.3, ifr(O):::: a(O):::: 0 and 1f'(0):::: a(O):::: 0.01 rad

(solid black= numerical, dash= 2nd order analysis)
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Figure 3.15 In-plane, (a), and out-of-plane, (b), angular response over 5 orbits against
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(solid black = numerical, dash= 2nd order analysis)

-25
-50
-751----t-

-100
6

Figure 3.16 Power spectra of the in-plane, (a), and out-of-plane, (b), motion on an

elliptical orbit with e = 0.1, vi'(0) = a(O) = 0 and VI(O)= a(O) = 0.01 rad

3.5 Conclusions

The method of multiple scales has successfully generated a closed-form solution to the three

dimensional motion of a tethered dumbbell on an elliptical orbit, which are valid for small

initial angular displacements close to the gravity vector and orbit eccentricities less than

e < 0.1 . Moreover, the analytical solution has elegantly explained some of the fundamental

principles of the tether's motion. However, numerical integration will have to be resorted to

if the dynamics of the tether are to be comprehensively studied for values greater than the

given initial conditions and those likely to be encountered in space.
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Chapter-a
Planar Dynamics of a

Tethered Dumbbell on Elliptical Orbits

4.0 Introduction

The aims of this chapter are to explore numerically the boundary between libration and

tumbling, as well as the boundary between regular and chaotic motion, thus enabling an

investigation into the potential link between tumbling and chaos. In addition to the long-term

dynamics, the transient libration before the onset of tether rotation is studied in detail. The

possibility of generating velocity increments through spin-orbit coupling of a freely moving

dumbbell brings the chapter to a close.

4.1 Numerical Methods

4.1.1 Numerical Integration

All the numerical results were obtained by integrating the governing equations of motion

(2.33) in Mathematica with a fourth/fifth-order Fehlberg Runge-Kutta method and in Matlab

with a fourth/fifth-order Runge-Kutta method using a relative error of at least 10-11,

respectively. Due to the long integration times required the relative error needed to be

smaller than 10-7 to avoid spurious results. For instance, the planar dumbbell on a circular

orbit was found with time to begin tumbling for zero initial velocity but with an initial

angular displacement near tr/2 when the relative error was set to 10-0.The lack of an energy

input plus no initial velocity means the presence of tumbling clearly violates the expected

physics of a tether on a circular orbit. This effect, which due to the build up of numerical

errors, disappears by decreasing the relative error in the integrator. Additional checks were

also initially carried out with a sixth/seventh-order Runge-Kutta method from the Numerical

Algorithms Group libraries and an adaptive step-size fourth/fifth order Runge-Kutta method

from Press et al. (1995). Very good agreement was found between the results from all

integrators and results were found not to differ significantly when relative errors smaller than

10-8were used.

4.1.2 Poincare Map

A Poincare map consists of a collection of discrete points obtained by numerically

integrating the governing equations of motion and periodically sampling the state variables.

In essence the Poincare map represents a stroboscopic view of the phase plane and can
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concisely represent a system's underlying dynamics. For example, a system oscillating at a

single frequency will periodically return to the same point in the phase space and will

manifest itself as a single point in the Poincare map. Similarly a system vibrating at four

different frequencies, say, will appear on the Poincare map as four discrete points. A

Poincare map will produce a closed loop for a system undergoing regular motion but that is

incommensurate with the sampling frequency. This motion is termed quasi-periodic and only

occurs when the ratio between the frequency of the system's oscillations and the sampling

frequency is irrational. When a deterministic nonlinear system becomes globally sensitive to

initial conditions then the motion can be defined as being chaotic. Chaos manifests itself as

an infinite number of frequencies and thus fills the Poincare map with a cloud of dots. Moon

(1992) states that the points in the Poincare map of a Hamiltonian system do not form a

fractal structure, as is the case for a non-conservative system. Thus, the map will be

uniformly filled with points since chaotic orbits in conservative systems visit all parts of the

phase plane. The Poincare maps presented in this chapter sample the tethered dumbbell's

angular displacement and velocity at each perigee crossing. In this manner the state variables

are sampled every 21l' of the true anomaly. The physical justification for this is that the

perigee represents the point on the orbit in orbital transfer applications where the tether

releases the payload. Consequently, the Poincare map can provide valuable information

about the practicalities of payload orbital transfer at the perigee of an elliptical orbit.

4.1.3 Bifurcation Diagram

A bifurcation diagram is produced by sampling a single state variable in the same way as for

a Poincare map and plotting it against a system parameter. The bifurcation diagram is a

powerful numerical tool for observing period doubling and subharmonic bifurcations, as is

shown by Moon (1992) in numerous examples. The bifurcation diagrams for the planar

tethered dumbbell presented in this chapter show the tether's angular displacement sampled

at each perigee crossing against the orbit eccentricity. Note that each column of data in the

bifurcation diagram is generated by numerically integrating the system from the same initial

conditions instead of slowly evolving the orbit eccentricity with time.

4.1.4 Lyapunov Exponents

Lyapunov exponents measure the sensitivity of a system to perturbations in the initial

conditions by averaging the rate of convergence or divergence of nearby orbits in phase

space. When the Lyapunov exponent is positive the nearby orbits separate exponentially.

Thomsen (1997) explains that this causes a stretching of the phase space but since the phase

space in real systems is bounded the separation cannot go on indefinitely. As a result the

orbits have to repeatedly fold and stretch within the phase space but without ever actually
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making contact. The infinitely repeated process of stretching and folding is in essence what

defines chaos and thus a positive Lyapunov exponent when properly computed is one of the

strongest indicators of chaotic dynamics. For each dimension of the system a Lyapunov

exponent is calculated and the exponent with the largest magnitude is termed the first or

largest Lyapunov exponent. When the largest exponent is zero or less than zero then the

motion is deemed to be regular. The largest Lyapunov exponent can only be negative when

the system is dissipative, as damping causes the perturbation between the two trajectories to

decrease. Consequently for Hamiltonian systems the largest exponent is either positive or

zero. For a nonlinear system to exhibit chaos the system must possess a minimum of three

dimensions. One of the Lyapunov exponents will always be zero because there cannot be any

divergence for a perturbed trajectory in the direction of the unperturbed trajectory.

Karasopoulos and Richardson (1992) explain that the area of the phase space must be

conserved in Hamiltonian systems and so the stretching in one direction is accompanied by

an identical contraction in another direction. Thus in conservative systems the non-zero

Lyapunov exponents appear as additive inverse pairs with equal magnitude but opposite

sign.

If do is a measure of the initial perturbation between two trajectories, then the distance

between the two orbits after a short time interval is given by Moon (1992) as

d{t)=do2).(t-to) (4.1)

where 1 is the Lyapunov exponent. Conceptually do can, according to Moon (1992), be

imagined as a small sphere containing the initial condition within the phase space and the

Lyapunov exponent tracks the deformation of the sphere into an ellipse of maximum length

d due to the system's dynamics. A single measurement does not however suffice and the

calculation must be averaged over different regions of the phase space, which Moon (1992)

gives as

1 I· 1 ~ 1 I d,
/I. = 1m - L.J-- og2 -

N_" NIt; - to; do;

(4.2)

The seminal paper by Wolf et al. (1985) describes the algorithm required to obtain

numerically the Lyapunov exponent for smooth dynamical systems governed by a system of

2nd order differential equations. The Lyapunov exponents were obtained in Mathematica by

modifying the code produced by Sandri (1996). Rewriting the Lyapunov Exponents Toolbox

in Matlab allowed the calculated exponents to be compared, thus providing an additional

check. Before considering the case of the tethered dumbbell, the accuracy of the programs

was investigated by revisiting many different systems considered by Moon (1992) for which

he presents Lyapunov exponents. No qualitative differences and only small quantitative
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discrepancies less than 1% were observed between the two programs and previous results in

the literature.

4.2 Data and Tether Models

All the simulations presented in this chapter were carried out with the tether starting from the

perigee. To investigate the influence of the initial position along the orbit some simulations

were repeated with the tether starting at the apogee and for the few cases examined the

qualitative effect on the tether's dynamics appears to be minor. Furthermore, the influence of

the initial true anomaly on the long-term stability boundary is shown in Figure 4.1 to have no

visible effect. This observation agrees with the findings of Crellin and Janssens (1996) who

found the onset of tether spin occurred almost for the identical orbit eccentricity when the

tether was started at either the perigee or apogee. Therefore, the effect of the starting position

along the orbit appears to have little effect on the global dynamics of the dumbbell and

consequently all the simulations were started from the perigee.

e
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0.5
0.40.3~---------------------
0.2
0.1
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Ini tial e [rad]

Figure 4.1 Effect of initial true anomaly on the long-term stability boundary on an elliptical

orbit. 200 points in the interval between O:S;() :s; 21rand integrating for a duration of 30

completed orbits with 1Ji(0)= ",(0)= 0 and a step size in e ofO.0005.

(2.14 )-(2.17) are dependent on the properties of the tether and orbital parameters. In order to

compare the possible influence of the accuracy of the model (2.29)-(2.32) with the

appropriate terms set to zero were integrated and compared to the results obtained for (2.33)-

(2.34). Simulations were carried out for tethers with unequal end masses and different

perigee altitudes for constant eccentricity and although the qualitative dynamics remained

unchanged small but visible discrepancies were observed. This finding was also made by

Crellin and Janssens (1996) who observed the onset of tumbling motion varied by 0.01 in the

orbit eccentricity for different initial orbit radii. Since the qualitative attitude dynamics of the

tethered dumbbell appears to be relatively unaffected by the accuracy of the tether modelling

the results in this chapter are generated using (2.33) with a = O.
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4.3 Transition from Libration to Spin

An initially radial and motionless tether placed on an elliptical orbit with an eccentricity of

0.1 is seen over thirty completed orbits to continuously librate in Figure 4.2. However, the

tether mayor may not librate for an indefinite period of time and as Figure 4.3 demonstrates

a librating tether on an elliptical orbit may commence tumbling after completing numerous

orbits. When the orbit eccentricity is increased to 0.32 for the initially radial and motionless

tether, Figure 4.3 shows the tether librates for the first 11 orbits but during the Ith orbit the

tether begins to tumble. For the case presented in Figure 4.3 the spinning does not continue

indefinitely. Instead, the tether completes several revolutions before collapsing back into

libration only to be followed by further rotation. This interplay between libration and spin is

repeated many times over the 30 orbits. Thus, the orbit eccentricity is seen to have a large

influence over the stability of the tether.
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Figure 4.2 Time history of dumbbell's angular displacement over 30 orbits with e = 0.1 and

~(o)= V/(O)= o.
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Figure 4.3 Time history of dumbbell's angular displacement over 30 orbits with e = 0.32 and

vi(O)= V/(O)= o.
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Figure 4.4 establishes the long-term boundary between Iibration and spin for an initial

angular displacement but with vi"(0)= o. For a given initial condition and orbit eccentricity

(2.33) is numerically integrated for a duration of30 orbits. Upon the 30th perigee crossing the

tether's attitude displacement is evaluated and if the magnitude of the displacement ranges

between ± 1!/2 then the tether is deemed to be librating and if not then tether spin must have

taken place. Starting from a zero orbit eccentricity this algorithm can be implemented to

increment the eccentricity until the boundary between libration and spin is found for a given

1//(0). Repeating this process for various values of 1//(0) leads to the generation of Figure

4.4. Modi and Brereton (1966) were the first to generate this type of plot and the qualitative

comparison between their results and Figure 4.4 is on the whole favourable. However, there

do exist large quantitative discrepancies, which may possibly be accounted for by the lack of

computing power in the 1960s causing a large round-off error in the floating-point number.

The area below the depicted boundary between libration and spin can be interpreted as a

region permitting long-term stable tether motion, although the notion of long-term is highly

dependent, as shown in Figure 4.3, on the number of completed orbits the numerical

integration covers. For the resolution presented in Figure 4.4 the boundary is found to be

insensitive to integration periods lasting longer than 30 orbits and hence the perception of

long-term stability would appear to be a reasonable one. A weakness of the presented

algorithm is the inability to detect either prograde tether rotation quickly followed by

retrograde spin to return the angular displacement to a value between ± 1!/2 either during a

single orbit or over the whole 30 orbit duration. Should this occur then the algorithm would

falsely label this case as being stable even though rotation had clearly taken place.

Intuitively, the perigee is the only position on the orbit that is capable of generating a large

enough torque through the gravity gradient to reverse the tether's direction of rotation.

Although retrograde rotation certainly occurs over many orbits no change from prograde to

retrograde spin was observed in the planar dumbbell with vi"(0)= 0 over a single orbit to

return a spinning tether into the region of ± 1!/2. The obtained results were also integrated

for periods longer than 30 orbits and no discrepancies caused by a spinning tether returning

the value of", to within ± 1!/2 were identified.

The largest stable region in Figure 4.4 is for the initially radial tether, where the onset of spin

occurs for an eccentricity between 0.31 and 0.32. As soon as the initial angular displacement

deviates from the local vertical the onset of spin is seen to commence for smaller

eccentricities and the greater the displacement becomes the more tether spin is encouraged
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on less elliptical orbits. The curve appears to be on the whole symmetrical about the local

vertical and possesses visible features, such as "horns" near ± 0.5 rad and "humps" close to

± 7r/2. The area around the left hump close to - 7r/2 is magnified in Figure 4.5 and a non-

trivial boundary with discontinuous jumps, as well as complicated peaks and valleys, are

uncovered. Moreover, the obtained results do not form a smooth and continuous line as they

do in Figure 4.5 for V'(0)~ -1.18 rad. The equivalent "hump" on the right-hand side is

zoomed in upon in Figure 4.6 and is clearly not a mirror image of the left-hand "hump".

Consequently, the detail ofthe libration-spin boundary is not perfectly symmetrical about the

local vertical. For V'(0)~ 1.18rad the boundary changes from a smooth line to a discrete

collection of lines with complicated peaks and val1eys.Magnifications of both of the "horns"

from the left- and right-hand sides are presented in Figure 4.7 and Figure 4.8, respectively.

As before, the areas are not mirror images of each other and discrete jumps, as well as non-

trivial peaks and valleys, again form prominent features of the boundary. Hence, in addition

to the orbit eccentricity the initial angular displacement is observed to affect the long-term

stability boundary.
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Figure 4.4 Effect of initial angular displacement on the long-term stability boundary on an

e11ipticalorbit. 400 points in the interval between -7r/2~V'(0)~7r/2and integrating for 30

perigee passings with a step size in e ofO.OOOS
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Figure 4.5 Effect of initial angular displacement on the long-term stability boundary on an

elliptical orbit. 500 points in the interval between -1.57 ~ If/{0) ~ -1.1 rad and integrating for

30 perigee passings with a step size in e ofO.00005.
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Figure 4.6 Effect of initial angular displacement on the long-term stability boundary on an

elliptical orbit. 500 points in the interval between 1.1 ~ If/{0) ~ -1.57 rad and integrating for

30 perigee passings with step size in e ofO.OOOOS.
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Figure 4.7 Effect of initial angular displacement on the long-term stability boundary on an

elliptical orbit. 500 points in the interval between - 0.65 ~ If/{0) ~ -004 rad and integrating for

30 perigee passings with a step size in e ofO.0005.
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Figure 4.8 Effect of initial angular displacement on the long-term stability boundary on an

elliptical orbit. 500 points in the interval between 0.4:s; ",(O):s; 0.65 rad and integrating for 30

perigee passings (starting at the perigee) step size in e ofO.OOOS.

The adopted approach to detect the onset of spin does not investigate whether stable attitude

motion exists for orbit eccentricities greater than the boundary. Consequently, the algorithm

used to produce Figure 4.4 - Figure 4.8 was rerun but with the duration of integration limited

to a single orbit. The aim of this methodology was to identify when the tether commenced

rotation during the first completed orbit. The black line shown in Figure 4.9 was generated

by starting with a circular orbit and incrementing the eccentricity until the tether starts

spinning but can be equally obtained by starting with e = 1 and reducing the eccentricity

until only tether libration exists during the first orbit. In stark contrast to the long-term

stability boundary the onset of spin during the first orbit, presented in Figure 4.9, is

asymmetrical with a local and global maximum encountered near ",(0) ~ 0.45 rad and

",(0) ~ 1.1rad, respectively. The grey curve in Figure 4.9 represents the last steady-state

tether libration observed before the first tether tumbling is encountered for larger orbit

eccentricities. The grey boundary does not, however, preclude that steady-state libration

cannot exist for larger orbit eccentricities between the grey and black curves. Hence, the

region fenced in between the two curves in Figure 4.9 represents a zone for the dumbbell

where either steady-state libration occurs or where the libration is a transient, which

eventually gives way to tumbling.
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Figure 4.9 Comparison between the onset of tether spin during first orbit (black) and the

long-term stability boundary (grey) up to 30 perigee passings. 750 points between

- 1C/2 $ 1fI(0) $ 1C /2 with a step size in e of 0.001.

Crellin and Janssens (1996) were the first to consider how many orbits an initially radial

tether with ';(0) = 0 completes before Iibration gives way to spin on an elliptical orbit and

their results are reproduced as the grey dots in Figure 4.10. At each perigee crossing the

integration of (2.33) for given initial conditions and orbit eccentricity is paused to examine

whether tether spin has begun and if not the integration is repeatedly advanced to the next

perigee until spin is finally encountered. The last perigee passing prior to the onset of spin is

recorded as the quantity 11.Thus, for each investigated orbit eccentricity 11is a discrete and

whole number measurement of the number of completed orbits for which continued

Iibrational motion occurs before the onset of spin. The results of Crellin and Janssens (1996)

do not cover the whole region between the long-term stability boundary and the onset of spin

during the first orbit for a radial tether, as determined by Figure 4.9. Consequently, 11is

determined throughout the whole interval and at a much finer resolution than that employed

by Crellin and Janssens (1996). Comparing the obtained results with those of Crellin and

Janssens (1996) suggests, apart from a handful of cases, that very good qualitative and

quantitative agreement exists between the two. Figure 4.10 only required 20 perigee passings

to differentiate between steady state and transient librational motion, hence, ,!max = 20

implies the dumbbell is in steady state libration. The line of points on the left-hand side of

Figure 4.10 ind icates the end of the long-term boundary between libration and spin, whereas

the line of points on the right-hand side marks the onset of the tether spinning during the first

orbit. The zone between these two limits for the radial tether has three large distinct plateaux

at values of five, three and unity for 11. In between these three plateaux plus the two

boundaries there exists a formation of dots that clearly distinguish the regions. The

arrangement of the dots is very complex with no obvious underlying structure. For example,
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at e = 0.38582 " is determined to be 4, whereas for e = 0.38616 n is found to be 10.

Moreover, increasing e yet again to 0.3865 causes" to change to 5. Hence, within this region

" appears to be very sensitive to e. Integrating through the zone in Figure 4.9 for the initial

conditions of '1'(0) = 0.5 rad and ,,(0) = 0 has a profound change on 11when compared to the

initially radial tether. Figure 4.11 displays a single prominent plateau for" = 1 with an

immediately adjacent but considerably smaller plateau at " = 2. The complex arrangement of

points is again a feature between the long-term stability boundary and the plateaux as well as

between the onset of spin during the first orbit and the plateau. Notice that "max had to be

increased to 200 to aid differentiation between the steady state and transient librations. 11max

has to be increased to 500 to be able to differentiate between transient and steady state

libration in Figure 4.12. The change in the initial condition is seen again to greatly affect the

dumbbell's dynamics between the stability boundary and onset of spin during the first orbit.

Zones again exist, which do not possess an obvious structure between the two visible

plateaux and the previously defined boundaries. Moreover, many orbits have to be

completed before tumbling is initiated and even after 500 orbits there are still many orbit

eccentricities within the bounded zone that have not yielded rotation.
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Figure 4.10 Number of orbit passing before tether begins to spin, 17,against orbit eccentricity

for ,,(0) = '1'(0) = 0 with "max= 20. 500 points between 0.31 and 0.48 with a step size of

0.00034. Grey = Crellin and Janssens (1996); black = numerical integration of (2.33).

The discrete measure proposed for" may possibly contribute artificially to the nature of the

results reported in Figure 4.10 - Figure 4.12. To dispel any concern, the results were rerun

with the value for" recorded at the point along the orbit where the angular displacement

precisely equals 1!/2 instead of noting the last completed perigee. Figure 4.13 shows the

precisely calculated" for the case presented in Figure 4.10, where very little quantitative

difference is observed. Thus, the original defmition of 11appears to be acceptable.
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Figure 4.11 Number of orbit passing before tether begins to spin, 71,against orbit eccentricity

for r;i(0)=0 and 1/I(0)=0.5radwith nmax = 200.500 points between 0.13 and 0.645 with a

step size ofO.00l03.
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Figure 4.12 Number of orbit passing before tether begins to spin, 71,against orbit eccentricity

for r;i(0)= 0 and 1/1(0)= -0.5rad with r,max = 500.500 points between 0.135 and 0.23 with a

step size ofO.00019.
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Figure 4.13 Number of orbit passing before tether begins to spin, ." (exact), against orbit

eccentricity for tfr(O)= If/(O)= 0 with 1'/max = 20.500 points between 0.31 and 0.48 with a step

size of 0.00034.

In an attempt to understand the full effect of the initial conditions and the orbit eccentricity

on ", the identified region in Figure 4.9 is numerically evaluated to determine n, the results

of which are presented in Figure 4.14. Figure 4.14 yields a truly remarkable, clear and

unexpected structure within the boundaries of steady state Iibration and tether rotation during

the first orbit. Many large plateaux are uncovered which merge into narrow regions

eventually forming lines. These explain the complex assortment of points in Figure 4.l 0 -

Figure 4.12, which represent cross-sections through Figure 4.14. The magnification of the

area around the local vertical in Figure 4.15 shows rather beautifully how the plateaux merge

to form structured peaks, which when cut through parallel to the e axis as in Figure 4.10 -

Figure 4.12, appear as a complex cloud of dots. Note how the plateaux are separated by a

thin line of points for which" is higher than the adjacent plateaux on either side, especially

prior to the region of tether spin during the first orbit. However, when a cross-section is

taken through the region of transient libration as shown in Figure 4.16, then the obtained n,

for the values of If/(0) and e along the cross-section from left to right, are presented in

Figure 4.17. A more definitive structure emerges in Figure 4.17 between the plateaux in the

form of peaks compared to Figure 4.] 0 - Figure 4.12. The fact that the dots are not perfectly

ordered is likely to be a result of the cross-section not optimally slicing the peaks seen in

Figure 4.] 5.
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Figure 4.l4 Number of completed orbits before the onset of tumbling within the identified

zone of transient libration. The magnitude of 1'/, ranging between zero and 20, is converted

into a grey scale where a darker grey tone is assigned to a higher value for 1'/, as given by:
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Figure 4.15 Number of completed orbits before the onset of tumbling within the identified

zone of transient libration.n, ranging between zero and 20, is converted into a grey scale

where a darker grey tone is assigned to a higher value for 1'/, as assigned above.
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Figure 4.16 Location of the cross-section viewed in Figure 4.17
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Figure 4.17 Cross-section through transient libration region, as shown in Figure 4.16.

4.4 Transition from Regular to Chaotic Motion

The bifurcation diagram for the initially radial tether in Figure 4.18 shows the motion of the

tether remains bounded for orbit eccentricities approximately less than 0.31 and for higher

eccentricities the tether visits all regions of the phase space. The maximum Lyapunov

exponent shown in Figure 4.19 is seen to be zero for orbit eccentricities less than 0.31 and

remains positive for all values above 0.31-0.32. Consequently, the initially radial tether's

motion is regular for e less than roughly 0.31 and becomes chaotic for larger orbit

eccentricities. The region in the bifurcation diagram for 0 ~ e ~ 0.3 is magnified in Figure

4.20 and yields a structure depicting periodic windows and bands of points between the

bounded regions. The general conical shape of the bifurcation diagram emanates from a

single point at e = 0 where a period-I attractor exists, representing the gravity gradient
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stabilised tether on a circular orbit. Note, this is the only period-l attractor for this system

when '!i(O)= O. Both these bifurcation diagrams agree with those obtained by Karasopoulos

and Richardson (1992) and Fujii and Ichiki (1997). At e = 0.24955 with '!i(O)= If/(O)= 0 a

genuine period-3 orbit is identified, where the sampling over 2000 orbits as shown in Figure

4.21 returns three precise points. The motion of the tether for the eccentricities plotted in

Figure 4.20 is typically quasi-periodic, which is exemplified by the closed curve seen in the

Poincare map for e = 0.072 and '!i(O)=If/(O)=O in Figure 4.22. Many of the periodic

windows visible in Figure 4.20 are, however, slightly misleading as only 50 points are

sampled for the Poincare map, i.e. 50 points are plotted in each column of Figure 4.20. Many

of the periodic windows disappear once more sampled points are included in the bifurcation

diagram indicating these are in the long-term quasi-periodic. An interesting example though

is shown in Figure 4.23, where after sampling the dumbbell with e = 0.147 and

'!i(O) = If/(O) = 0 for 50 orbits the Poincare map suggests the tether is librating very nearly on

a 7-period orbit. However, as Figure 4.24 demonstrates, when the number of samples is

increased to )000 the motion is not strictly periodic and yet it is not typically quasi-periodic

like the case shown in Figure 4.22 since the seven lines do not yet form with the additional

samples a perfectly closed curve. Thus, over relatively short periods of time the tether is

librating with a near period 7, the frequencies of which are slowly drifting over the long-

term. Figure 4.25 presents another interesting case for a tether with e = 0.24795 and

'!i(O)= ",(0)= 0, for which the orbit eccentricity is very close to that shown in Figure 4.21. In

Figure 4.25 the tether is librating with three incommensurate frequencies causing the tether

to periodically visit the same area in the phase space but with the precise position drifting

quasi-periodically.

I/! (e)

3

2

1

ot- ....-.
-1

-2

e0.2 0.4 0.6 0.8 1

Figure 4.18 Bifurcation Diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are '!i(0)= If/(O)= 0 with a step size in e ofO.01. Each column

of results contains 200 points.
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Figure 4.19 First Lyapunov exponent for a tether with '!i'(0)= 1If(0)= o. 100 points are

plotted, each calculated over 40 orbits, with a stepsize in e of 0.0 1.
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Figure 4.20 Bifurcation diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are '!i'(0)=1If(0)=0 with a step size in e of 0.00075. Each

column in essence a Poincare map itself contains 50 points.
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Figure 4.21 Poincare map sampling at each perigee crossing for 2000 orbits with e = 0.24955

and yi(O)= 1If(0)= o.
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Figure 4.22 Poincare map sampling at each perigee crossing for 1000 orbits with e = 0.072

and yi(O)= y/(O)= o.
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Figure 4.23 Poincare map sampling at perigee for 50 orbits with e = 0.147 and

yi(O)= y/(O)= o.
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Figure 4.24 Poincare map sampling at perigee for 1000 orbits with e = 0.147 and

yi(O)= y/(O)= o.
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Figure 4.25 Poincare map sampling at each perigee crossing for 1000 orbits with e = 0.24795

and vi(O)= ",(0)= o.

The bifurcation diagram shown in Figure 4.26 magnifies the region ranging between

0.31~e~0.315 for a tethered dumbbell with vi(O)=",(O)=O and is the part of the

bifurcation diagramjust prior to where the tether visits all parts of the phase space. A period-

7 window is visible in Figure 4.26, which after taking 2000 samples the Poincare map in

Figure 4.27 confirms to be a genuine period-7 orbit for a dumbbell with e = 0.313025 and

vi(O)= ",(0)= o. When the orbit eccentricity is increased to e = 0.33 for an initially radial

tether then the Poincare map becomes freely populated with points, as shown in Figure 4.28,

suggesting the tether is undergoing chaotic motion, which is confirmed by the positive

Lyapunov exponent in Figure 4.19. The global onset of chaos is seen to commence for the

radial tether upon orbit eccentricities of 0.3144. However, weakly chaotic motions as

indicated by the small but positive first Lyapunov exponent in Figure 4.29 exist for e around

0.314. These results and observations agree with those made by Karasopoulos and

Richardson (1992).
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Figure 4.26 Bifurcation Diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are v.i(0) = 0 and yt( 0) = 0 rad with a step size in e of

0.000025. Each column of results contains 50 points.
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Figure 4.27 Poincare map sampling at each perigee crossing for 2000 orbits with e =
0.313025 and v.i(0)= ",(0)= o.

1/1(8)

Figure 4.28 Poincare map sampling at each perigee crossing for 1000 orbits with e = 0.33

and vi(O)= yt(O)= O.

94



0.2

0.15

....: 0.1

0.05

O~~~~~~==~==~~~A~~~
0.31 0.311 0.312 0.313 0.314 0.315

e
Figure 4.29 First Lyapunov exponent for a tether with ';(0)= If/(O)=0 between

0.31::s;e ::s;0.315. 200 points are plotted, each calculated over 80 orbits, with a stepsize in e

ofO.000025.

By introducing an initial angular displacement away from the local vertical the conical shape

to the bifurcation diagram at low eccentricities is seen to disappear in Figure 4.30 and Figure

4.32. Moreover, the point at which the tether commences to visit all regions of the phase

space reduces from e s:::l 0.31 to e s:::l 0.14 for both initial conditions of If/(0) = ±0.5 rad. The

first Lyapunov exponent in Figure 4.31 and Figure 4.33 confirms the motion ofthe dumbbell

above eccentricities of -0.14 to be chaotic. Consequently, the initial angular displacement is

seen in addition to the orbit eccentricity to have a strong influence on the onset of chaos. The

magnification of the region 0.14::s;e::S; 0.145 in Figure 4.34 and Figure 4.35 for

If/(O)= 0.5 rad shows it is not a mirror image of the same magnified zone in Figure 4.36 and

Figure 4.37 for If/(O)=-0.5rad. The largest Lyapunov exponent for If/(O)=±0.5rad in

Figure 4.35 and Figure 4.37 suggest the global onset of chaos occurs in both cases slightly

below e = 0.141.

Figure 4.38 presents the largest Lyapunov exponent calculated for any given orbit

eccentricity and initial angular displacement. All the previously presented Lyapunov

exponents represent cross-sections through Figure 4.38. The use of the colour red indicates a

value of zero for the largest Lyapunov exponent and the remaining colours portray from

yellow to purple a positive first Lyapunov exponent. The figure clearly shows the Lyapunov

exponent growing for larger values of e and that the largest zone of regular motion occurs for

a tether initially close to the local vertical. The shape of the red area of regular motion is

strikingly similar to the region of long-term tether libration in Figure 4.4. Thus, there appears

to be a strong correlation between regular and libration motion of the tether, as well as

between tumbling and chaotic motion. Hence, the results suggest a planar tether with
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Ijt = 0 on an elliptical orbit does not indefinitely librate in a chaotic manner and does not

tumble in a periodic manner.

I/I(e)

e
0.6

Figure 4.30 Bifurcation diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are 1jt(0)=0 and ",(0)=0.5rad and the step size in e is 0.01.

Each column of results contains 200 points.
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Figure 4.31 First Lyapunov exponent for a tether with 1jt(0)=0 and ",(0)=0.5 rad. 100

points are plotted, each calculated over 40 orbits, with a stepsize in e of 0.01.
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Figure 4.32 Bifurcation diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are 1fr(0)= 0 and ",(0) = -0.5 rad and the step size in e is 0.01.

Each column of results contains 200 points.
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Figure 4.33 First Lyapunov exponent for a tether with 1fr(0)=0 and ",(0)=-0.5 rad. 100

points are plotted, each calculated over 40 orbits, with a stepsize in e of 0.01.
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Figure 4.34 Bifurcation diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are 1fr(0)= 0 and ",(0) = 0.5 rad and the step size in e is

0.000025. Each column of results contains 50 points.
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Figure 4.35 First Lyapunov exponent for a tether with vi(O)=O and 1f/(0)=0.5 rad.200

points are plotted, each calculated over 80 orbits, with a stepsize in e ofO.000025.
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Figure 4.36 Bifurcation diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are vi( 0)= 0 and If/(0) = -0.5 rad and the step size in e is

0.000025. Each column of results contains 50 points.
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Figure 4.37 First Lyapunov exponent for a tether with vi(O)=O and 1f/(0)=-0.5 rad.200

points are plotted, each calculated over 80 orbits, with a stepsize in e of 0.000025.
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The dumbbell's motion changes rather dramatically for orbit eccentricities above 0.314425.

Figure 4.43-Figure 4.46 show the tether starting to tumble after librating for numerous orbits.

During the period of initial tether libration the largest Lyapunov exponent slowly decays

although whether the point of convergence is zero remains unclear. However, the first

Lyapunov exponent is seen in these four examples to visibly rise the very moment the tether

commences tumbling and clearly stays positive. The correlation between tumbling and

positive increase of the Lyaponov exponent is very striking and unequivocal. The four power

spectra exhibit a broad spectrum of frequencies, which is a classic hallmark of chaotic

motion in low dimensional systems. Moreover, the spectra are qualitatively different to those

obtained in the quasi-periodic cases. Finally, upon spinning the sampled points begin to

freely fill the phase space in the same manner as observed in Figure 4.28.

These observations also hold for the tethered dumbbell that has a non-zero initial angular

displacement. In Figure 4.41 the tether undergoes quasi-periodic and librational motion at e

= 0.1405 with \11(0)=-0.5 rad but when the eccentricity is increased to e = 0.1415 in Figure

4.48 then the tether is seen to eventually tumble with a corresponding increase in the

maximum Lyapunov exponent. Similarly, when \11(0)=0.5 rad the dumbbell's libration

yields a first Lyapunov exponent converging to zero at e = 0.1405 and a positive Lyapunov

for a tumbling tether with e = 0.141. Hence, the classic diagnostic tests for chaos strongly

suggest the motion of the planar tumbling tether with vi(O)= 0 is indeed chaotic and that

regular motion is associated with long-term libration.

4.6 Vt'lodty In(~mt'Dt Gt'neratioo Through Tether Spin-Orbit Coupling

The following section explores the possibility of exploiting the nonlinear dynamics of a
planar tethered dumbbell on an elliptical orbit to generate velocity increments, or l!t.V. The

results presented in Figure 4.51 - Figure 4.58 were obtained by numerically integrating

(2.33) and converting the tether's tip velocity to mls using AV = Ld'l//dt =

L(u{1 +e)/r1)-12 d'l'/dO. whcre n = 3.9877848.1014 m3s·2• r= 7000 km, and L = 100 km.

The numerical simulations were started at perigee with zero angular velocity and a given

initial pitch angle ranging between -tr/2 ~ \11(0)~ n'l2, therefore utilising the spin-orbit

coupling to generate the required libration or rotation. After completing a full orbit the pitch

angle and AV were recorded upon return to perigee. The tether is assumed to be librating

when the pitch angle at perigee, 1/11" lies between -tr/2 ~ '1/p ~ tr/2 .
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The AV and I/Ip obtained at perigee with respect to e is given in Figure 4.51 and Figure 4.52

for 1/1(0) = 0 rad. The results suggest that the radial tether starts to spin after one full orbit at e

= 0.4796, which agrees with Figure 4.9, and that the maximum AV for the prograde librating

and spinning tether is 114.4 mls and 117.0 mls with I/Ip = -0.35 and 2.75 rad at e = 0.4232

and 0.48, respectively. Crellin and Janssens (1996) investigated the AV generated by a 100

km long tether moving freely on an elliptical orbit and their results are not identical but

quantitatively similar to those in Figure 4.51. In the majority of cases the spinning tether is,

due to the negative AV, undergoing retrograde motion at perigee and, in addition, Figure

4.51 shows that the magnitude of the retrograde AV is larger than that of the prograde

motion. Furthermore, the largest positive AV for the spinning tether occurs shortly after the

tether has begun to rotate and tapers off, along with the maximum negative AV, with larger

e. This suggests that a spinning tether does not necessarily generate greater AV within the

first orbit at higher e. The tether may have an initial angular displacement at the time of

payload capture, thus requiring the payload, however, to be delivered to a higher altitude by

the ground launcher. The AV and I/Ip achievable at perigee with -7r/2~",(0)~7r/2 is given

in Figure 4.53 and Figure 4.54 for e = 0.1. The result suggests that a positive 1/1(0) delays the

onset of spin whereas a negative 1/1(0) encourages tether rotation, as is also observed in

Figure 4.9. Figure 4.55 to Figure 4.58, which display the AV and I/Ip obtained at perigee with

respect to e for 1/1(0) = ±0.3 rad, confirm these observations. The tether, in Figure 4.53 and

Figure 4.54, is found to spin when -7r/2~",(0)~-0.841 rad, 1.484~",(0)~1.515 rad and

1.538~",(0)~Jll2 rad. When e = 0.1 the maximum AV for the prograde librating and

spinning tether is 162mls and 195.6mis, with 1/1(0) = -0.72 and -1.49 rad, and I/Ip = -0.13 and

6.23 rad, respectively. The results show that the largest positive AV at perigee does not

necessarily occur when the payload is above the facility with the tether aligned along the

gravity vector.

For optimum payload transfer of an incoming payload from Earth, the largest possible

positive AV is required when", p = ±(7r+ 2mr) rad, where n = 0, 1, 2,.... The radial tether

can deliver the payload at perigee close to the vertical above the facility with n = 0, I/Ip =
3.15 rad, e = 0.482 and!J.V = 5.6 mls in a window where prograde rotation occurs within

0.4796 se s 0.482. The following data gives the next three opportunities for delivering the

payload as required: n = 1, I/Ip = 9.43 rad, e = 0.5692 and !J.V = 52.8 mls in a window where

prograde rotation occurs within 0.5652~e~O.5712; n = 2, I/IP = 15.7 rad, e = 0.6372 and

!J.V = 4.6 mls in a window where prograde rotation occurs within 0.632 ~ e ~ 0.6372; n = 3,

I/Ip = 21.99 rad, e = 0.6828 and!J.V = 15.3 mls in a window where prograde rotation occurs

within 0.6792 ~ e ~ 0.6832. When the tether has an initial angular displacement at the time
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of payload capture then the payload can be delivered above the facility close to the vertical

for the following sole case: 1/1(0) = -0.842 rad, e = 0.1, I/Ip = 3.17 rad and 6..V = 177 mls.

However, a small change in the given 1/1(0) leads to values for I/Ip that are not close to 1f and

hence the practical implementation of this initial condition is questionable. The results above

show it is difficult to find initial conditions that allow the payload to be released above the

facility at perigee when the spinning tether is aligned exactly along the gravity vector at

perigee, a problem which is not encountered on circular orbits. This small discrepancy

reduces the effective tangential velocity of the payload imparted on release and causes a

change in the released payload's orbital elements due to the 6..V vector not being aligned

with the tangential orbital velocity vector. Furthermore, once all the environmental

perturbations are taken into account, and observing the nature of the spinning tether depicted

in Figure 4.51 - Figure 4.58 along with the small windows in which prograde rotation

occurs, it becomes questionable whether the spin-orbit coupling of the tether is a viable

method of generating 6..V. Moreover, mission analyses envisage the tethers to be reused, thus

becoming competitive with chemical propulsion, and therefore remaining in orbit over

longer periods of time. From the results above the motion of an initial radial tethered

dumbbell is chaotic for orbit eccentricities greater than approximately 0.314. Hence, the orbit

eccentricities that are greater than 0.314 are impractical for a freely moving dumbbell as the

tether position and 6..V cannot be predicted in the long-term for payload rendezvous or

release.

0.8 1

Figure 4.51 6..V obtained at perigee after a full orbit with respect to e for 1/1(0) = 0 rad. Plot

contains 5000 points with a step size in e of 0.0002.
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Figure 4.52 1/11'(modulus 21r where 1/11'E [-1l', 1l'» obtained at perigee after a full orbit with

respect to e for 1/1(0) = 0 rad. Plot contains 5000 points with a step size in e of 0.0002.
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Figure 4.53 IIV obtained at perigee after a full orbit with respect to 1/1(0) for e = 0.1. Plot

contains 2500 points with a step size in 1/1(0) of 1l'12500 rad.
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Figure 4.54 1/11'obtained at perigee after a full orbit with respect to 1/1(0) for e = 0.1. Plot

contains 2500 points with a step size in 1/1(0) of 1l'12500 rad.
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Figure 4.SS11 V obtained at perigee after a full orbit with respect to e for 1/1(0) = 0.3 rad.

Plot contains SOOOpoints with a step size in e of 0.0002.
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Figure 4.56 I/Ip (modulus 21r where I/Ip E [-1f, 11'» obtained at perigee after a full orbit with

respect to s for 1/1(0) = 0.3 rad. Plot contains 5000 points with a step size in e of 0.0002.
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Figure 4.57 IIV obtained at perigee after a full orbit with respect to e for 1/1(0)= -0.3 rad. Plot

contains SOOOpoints with a step size in e of 0.0002.
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Figure 4.58 !/If (modulus 21r where !/If E [-1r, 1r» obtained at perigee after a full orbit with

respect to e for !/I(O) = -0.3 rad. Plot contains 5000 points with a step size in e ofO.0002.

4.7 Conclusions

The planar attitude dynamics of a tethered dumbbell on an elliptical orbit have been

numerically explored in this chapter. The orbit eccentricity and initial angular displacement

were found to affect the boundary between long-term libration and tumbling. The largest

stable region exists for a tether with no initial angular velocity and initially positioned close

to the local vertical. The long-term libration-tumbling boundary is globally symmetrical

about the local vertical but is not found in all cases to be a clearly defined and continuous

curve since some regions exhibited discontinuities. A further asymmetrical boundary was

discovered for the onset of spin during the first completed orbit, which results in a positive

initial angular displacement delaying the onset of tumbling, whereas a negative initial

condition encourages tether rotation. The two identified boundaries describe a region where

tether libration occurs as a transient and a remarkable structure is uncovered within the

region that governs the duration of the transient. The onset of chaos was similarly found to

be a function of orbit eccentricity and initial angular displacement. The first Lyapunov

exponent with respect to the orbit eccentricity and initial condition yielded a region

corresponding to the area of long-term libration. The correlation between tumbling and

positive increase of the Lyaponov exponent is found to be very striking and unequivocal.

The results suggest a planar tether with if! = 0 on an elliptical orbit does not indefinitely

librate in a chaotic manner and does not tumble in a periodic manner. Finally, the generation

of velocity increments upon completion of a single orbit through the spin-orbit coupling on

an elliptical orbit is not found to be of particular use. Few initial conditions exist that allow

the payload to be reliably released above the facility when the spinning tether is aligned

exactly along the gravity vector at perigee. Moreover, the largest positive Il.V of a couple of

hundred metres per second at perigee does not necessarily occur when the payload is above

the facility with the tether aligned along the gravity vector, thus releasing the payload in a

non-optimum configuration in relation to the orbital velocities.
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Chapter g
Three-Dimensional Dynamics of a

Tethered Dumbbell
on Circular and Elliptical Orbits

s.e Introduction

The previous chapter focussed on the planar dynamics of the tethered dumbbell on elliptical

orbits. This chapter will remove the constraint of the tether moving within the orbital plane

and investigate how an initial angular displacement out of the orbital plane affects the

dumbbell's motion. In particular the chapter aims to map the boundary at which the tether

commences tumbling and to assess whether chaotic motion is associated with tether

tumbling. Following the discovery in the previous chapter of a structured zone of transient

libration prior to tumbling, the tether's three-dimensional transient behaviour will also be

investigated.

S.l Steady-state Boundary between Libration and Spin

The graphs in Figure S.l-Figure 5.4 are generated by numerically integrating (2.33)-(2.34)

for a duration of 50 orbits and subsequently checking at every perigee and apogee whether

the tether has tumbled. In contrast to the planar tether the three-dimensional motion is

equally prone to both prograde and retrograde motion where prograde rotation was generally

found to dominate the planar dumbbell. Moroever, the dumbbell with an out-of-plane initial

condition is observed in many cases to quite readily switch from prograde to retrograde

tumbling or vice versa. lienee, the introduction of additional evaluations at every perigee and

apogee to ensure tether rotation is recorded after the completion of 50 orbits. If tumbling is

observed for a given pair of initial angular displacements within or out of the orbital plane

then a point is plotted in the graphs. If after 50 orbits the tether has not tumbled then the

tether is considered to be librating indefinitely, which for the resolution in Figure 5.1-Figure

5.4 is found to be satisfactory. The results are symmetric about the axis defined by a(O) = 0

and hence only the results for positive a(O) are presented.

Figure 5.1 shows that a relatively large number of initial conditions exist for which the

dumbbell undergoes steady-state libration on a circular orbit. The results are largely

symmetrical about the vl{O) = 0 axis but when looked at in detail the boundary is not found to

be a precise mirror image. The maximum initial out-of-plane displacement that yields
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Iibration is when the tether is initially aligned along the local vertical. The larger the initial

angular displacement is in '" the smaller a(O) has to be for libration to exist. Increasing the

orbit eccentricity from zero to 0.1, as depicted in Figure 5.2, causes the number of initial

conditions giving rise to libration to significantly decrease. The boundary between steady-

state libration and spin is not trivial with many islands of initial conditions causing the tether

to tumble within the general area of libration. In detail the boundary is clearly not

symmetrical about the local vertical. The libration-spin boundary becomes more

straightforward upon increasing the orbit eccentricity to 0.2, as seen in Figure 5.3. The zone

of steady-state libration is further reduced with the majority of initial conditions giving way

to tumbling. When the eccentricity is yet further increased to 0.3 only a small number of

initial conditions remain that let the tether librate. Furthermore, Figure 5.1-Figure 5.4

indicate that a relatively small out-of-plane initial displacement does not eause the tethered

dumbbell to behave qualitatively different from the planar case. The dumbbell deviates from

the planar tether's qualitative behaviour only when a(O) becomes sufficiently large. The

maximum permissible out-of-plane angle for stable motion exists when the tether is initially

aligned along the local vertical.
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Figure 5.1 Effect of initial in- and out-of-plane angular displacement on tether libration

(white) and tumbling (black) over 50 completed orbits with e =O.Plot contains 80000 points

with a step size of 1rI400 for both '1'(0) and a(O), respectively.
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Figure 5.2 Effect of initial in- and out-of-plane angular displacement on tether libration

(white) and tumbling (black) over 50 completed orbits with e = 0.1. Plot contains 80000

points with a step size of 1r1400for both 1jI(0)and a(O), respectively.
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Figure 5.3 Effect of initial in- and out-of-plane angular displacement on tether Iibration

(white) and tumbling (black) over 50 completed orbits with e = 0.2. Plot contains 80000

points with a step size of 7rf400 for both 1jI(0)and a(O), respectively.
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Figure 5.4 Effect of initial in- and out-of-plane angular displacement on tether libration

(white) and tumbling (black) over 50 completed orbits with e = 0.3. Plot contains 80000

points with a step size of 7rf400 for both 1jI(0)and a(O), respectively.
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5.2 Tether Tumbling during First Completed Orbit

Figure S.S-Figure 5.8 explore the pairs of initial conditions that give rise to tether tumbling

within the first completed orbit. (2.33)-(2.34) are numerically integrated for a single orbit

and the angular displacements are evaluated at the perigee, as well as the apogee, to test

whether ± tr/2 has been breached. In contrast to Figure S.l-Figure S.4 the results shown in

Figure S.5-Figure 5.8 are asymmetrical. The motion of a tether on a circular orbit is largely

seen in Figure 5.5 to be libration. For very large out-of-plane angular displacements the

dumbbell undergoes rotation before the first perigee pass, as well as for most out-of-plane

displacements where IJI(O) is near -fr /2. Two additional islands exist for the initial

conditions where tumbling occurs during the first orbit with one adjacent to the zone of

rotation near IJI(O)= -fr/2 and the other close to 1fI(0)= fr/2. Placing the dumbbell onto an

elliptical orbit of 0.1 has a major influence on the islands but no effect on the boundary for

very large a(O). The island in the left-hand quadrant increases more rapidly than the one on

the right-hand side leaving most initial conditions with a negative 1fI(0)to tumble. Increasing

the eccentricity to 0.2 causes the islands to grow even further but still separated by a zone of

libration. However, for e = 0.3 the islands merge to form a zone separated by a thin line

when a(O) is relatively large and a zone of libration around the local vertical for small out-of-

plane angular displacements. Starting with e = 0.1 a small island of libration forms near 1fI(0)

= fr/2, which still endures when e = 0.3. The graphs in Figure S.S-Figure 5.8 indicate that a

positive initial condition in IJI(O)resists tumbling within the first orbit and that an increase in

the orbit eccentricity encourages the tether to tumble. In general a larger initial condition in

a(O) promotes tether rotation although a narrow band exists for large a(O) where the tether is

found to librate during the first completed orbit.
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Figure 5.5 Effect of initial in- and out-of-plane angular displacement on tether libration

(white) and tumbling (black) over a single completed orbit with e = O. Plot contains 45000

points with a step size of ,u)00 for both VJ{O)and a(O), respectively.
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Figure 5.6 Effect of initial in- and out-of-plane angular displacement on tether Iibration

(white) and tumbling (black) over a single completed orbit with e = 0.1. Plot contains 45000

points with a step size of 7d300 for both 1jI(0)and a(O), respectively.
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Figure 5.7 Effect of initial in- and out-of-plane angular displacement on tether libration

(white) and tumbling (black) over a single completed orbit with e = 0.2. Plot contains 45000

points with a step size of 1CI300for both 1jI(0)and a(O), respectively.
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Figure 5.8 Effect of initial in- and out-of-plane angular displacement on tether libration

(white) and tumbling (black) over a single completed orbit with e = 0.3. Plot contains 45000

points with a step size of 7d300 for both 1jI(0)and a(O), respectively.
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5.3 Duration orTransient Librations

The existence of libration during the first completed orbit in Figure S.5-Figure 5.8 does not

imply that the librational motion endures into the steady state, seen in Figure S.l-Figure 5.4.

Thus, the libration forms a transient that eventually gives way to tether tumbling. The

number of perigee passes where libration occurs can be recorded to examine when tumbling

commences and as defined in Chapter 4 this discrete quantity is denoted n. The graphs in

Figure S.9-Figure 5.12 represent" as a grey scale with black and white representing" = 20

and" = 0, respectively. The numerical integration of (2.33)-(2.34) was halted at 20 perigee

passes because a larger number of completed orbits become increasingly difficult to

differentiate with the grey scale. The transient dynamics of the tethered dumbbell on a

circular orbit is seen in Figure 5.9 to be rather complex. A multitude of plateaux exist where

the same number of orbits are completed before tumbling ensues. The boundary between two

plateaux is never a simple discrete jump but instead a peak is formed between two regions

where more orbits are completed before spin occurs. Many of the plateaux in Figure 5.9

merge to form a boundary between two further plateaux at another part of the initial

condition parameter space. Placing the dumbbell on an elliptical orbit of e = 0.1 reduces the

number of different plateaux and the transient libration is seen in the majority of cases to

endure in Figure 5.10 for only one or two perigee crossings. Around the region of steady-

state libration the transient libration remains complex with many plateaux merging to form a

multitude of peaks. Increasing the orbit eccentricity to 0.2 in Figure 5.11 causes the tether to

predominantly librate only for a single orbit before tumbling. The band around the steady-

state libration region has increased to exhibit a complex merging of plateaux. Increasing the

eccentricity to 0.3 encourages the tether to tumble fairly rapidly in Figure 5.12. There are

few initial conditions about the region of steady-state libration that allow the tether to librate

for 20 orbits when compared to Figure 5.11. The structure of initial conditions yielding the

transient libration is less complicated with far fewer plateaux than the case of the dumbbell

placed on a circular orbit.
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5.4 Comparison between the Onset of Tumbling and Chaos

For the case of the planar dumbbell the maximum Lyapunov exponent in Figure 4.38 was

computed for the IJI(O)-e parameter space, and this took 18 full days to complete on a PC

with a 1.4 Gllz Athlon processor and 528 Mb of RAM. Including the out-of-plane motion

causes the computation time of the Lyapunov exponents to increase by approximately a

factor of three. Consequently, determining the Lyapunov exponents for the tp(0)-a(0)

parameter space is limited by the given processing power. However, with the processing

power of PCs doubling roughly every 18 months this will become feasible in the near future.

Thus, determining a conclusive boundary between regular and chaotic motion for the three-

dimensional dumbbell is prohibitively expensive in computational terms. Figure 5.13-Figure

5.24, therefore, investigate the tether's librationlspin and regular/chaotic characteristics for a

range of initial conditions. Each figure presents the Poincare map for the in- and out-of-plane

motion as well as their respective power spectra for a duration of 150 orbits. The tether's

attitude position is plotted onto a unit sphere, as well as a projection of the unit sphere onto a

2D plane, to aid visualising the tether's motion within the relative rotating xo-yo-zo co-

ordinate frame. The in-plane angular response over time is presented as the dumbbell is

observed to only tumble in 'II and not a. Finally, the first Lyapunov exponent is shown to

determine whether the motion for the given initial conditions is regular or chaotic.

For the given initial conditions in Figure 5.13-Figure 5.15 the tethered dumbbell on a

circular orbit is librating. The maximum Lyapunov exponent is converging towards zero for

all three cases, which suggest that the motion is regular. The curves being formed by the

points in the Poincare maps suggest the motion is quasi-periodic and this is supported by the

power spectra, which show a multitude of discrete frequencies contributing to the tether's

motion. However, the three figures show that the tether's attitude motion is qualitatively

dependent on the initial conditions. In Figure 5.13 the tether sweeps along an approximate

figure-of-eight, Figure 5.14 shows the tether tracing out a rectangle and in Figure 5.15 the

dumbbell follows a distinct trajectory within a square. Figure 5.16-

Figure 5.18 show three pairs of initial conditions that give rise to tether tumbling. In Figure

5.16 the dumbbell is seen to librate for 65 orbits and then tumbles retrogradely several times

before resuming libration. The Lyapunov exponent is clearly positive implying that the

tether's motion is chaotic. The dense power spectra in both the in- and out-of-plane is

indicative of chaos and the Poincare map is being filled with a cloud of dots. An earlier made

observation of the motion not being mirrored about the tp(0) = 0 axis is confirmed by Figure

5.17. For the same magnitude but positive initial conditions as in Figure 5.16, Figure 5.17

shows that the dumbbell commences tumbling after roughly 200 completed orbits and rotates
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in the prograde direction. The motion is chaotic due to the positive first Lyapunov exponent,

which the power spectra and Poincare maps support. The results in Figure 5.17 agree with

those obtained by Misra and Nixon (2001), who only considered initial conditions where

",(0) =a(O) =constant. For the initial conditions in

Figure 5.18 the dumbbell is rotating predominately in the retrograde direction and due to the

positive Lyapunov exponent is again chaotic.

Placing the tethered dumbbell on an elliptical orbit with an eccentricity of 0.1 introduces

more frequencies into the power spectra in Figure 5.19 than the equivalent initial conditions

on the circular orbit shown in Figure S.13. The tether in Figure S.19 undergoes libration with

the Lyapunov exponent converging towards zero. Thus, the motion is regular and quasi-

periodic due to the closed curves forming in the Poincare maps. However, for the initial

conditions in Figure 5.20 the tether is found to tumble progradely after completing 28 orbits

of libration. The first Lyapunov exponent rises distinctly at the onset of tumbling and is

clearly positive thus implying chaos. The Poincare maps and power spectra show the

expected characteristics for chaos and thus support the finding of the Lyapunov exponents.

Increasing the orbit eccentricity to 0.2 introduces yet further frequency components in the

power spectra of

Figure 5.21 but the librational motion is regular according to the maximum Lyapunov

exponent. The Poincare maps again suggest the libration is quasi-periodic. The tumbling

observed in Figure 5.22 is accompanied by a positive Lyapunov exponent, where the power

spectra lift off the zero-axes and the Poincare maps are filled with a cloud of dots. The initial

conditions of ",(0)=0 and a(0)=0.5 rad yield libration when the orbit eccentricity ranges

between 0 and 0.2. However, when the eccentricity is set 0.3 the tether is seen to tumble in

Figure 5.24. The motion is seen to be chaotic and tumbling at times progradely and

retrogradely. A very small set of initial conditions gives rise to steady-state libration when e

= 0.3 of which one of these is depicted in Figure 5.23. The Poincare maps begin to form

closed curves and the Lyapunov exponent settles to zero, suggesting the motion is quasi-

periodic. In summary a strong connection is established between libration and regular tether

motion and between chaos and a tumbling dumbbell. Of all the cases investigated and

presented no set of initial conditions was identified that yielded a chaotically librating tether

or a periodically tumbling tether.
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5.4 Conclusions

A relatively small out-of-plane initial displacement does not significantly affect the region of

stable motion observed for the planar tethered dumbbell. The dumbbell deviates from the

planar tether's qualitative behaviour only when a(O) becomes sufficiently large and the

maximum permissible out-of-plane angle for stable motion occurs for a tether initially

aligned along the local vertical. A positive initial condition in '1'<0) resists tumbling within

the first orbit but an increase in the orbit eccentricity promotes tether rotation. In general a

larger initial condition in a(O) promotes tether rotation although a narrow band exists for

large a(O) where the tether is found to librate during the first completed orbit. The transient

dynamics of the tethered dumbbell on a circular orbit are observed to be intricate and

complex. A multitude of plateaux exist where the same number orbits are completed before

tumbling ensues. The boundary between two plateaux is not a discrete jump but rather a peak

formed between two regions where more orbits are completed before spin occurs. Finally, a

strong link is observed between libration and regular tether motion and between chaos and a

tumbling dumbbell, which suggests a dumbbelllibrating out of the orbital plane is associated

with regular motion and a chaotic regime gives rise to tumbling.
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Chapter6
Payload Orbital Transfer with

Motorised Tethers
6.0 Introduction

This chapter considers the release of both the upper and lower payloads from a hanging and

librating tether, as well as a spinning motorised tether. This is an important step in the

conceptual evaluation of the motorised tether's performance and can only be fully

appreciated in comparison with the release conditions obtained from hanging or librating

tether configurations. Moreover, the literature survey identified the need to derive accurate

expressions governing the orbital elements of a released payload to allow a valid comparison

to be made.

6.1 Orbital Elements of the Payload after Tether Release

The motorised tether facility is assumed to orbit the Earth on a circular path and it is also

assumed that the Earth's gravitational field is spherical, environmental perturbations are

negligible, the tether's motion is coplanar with the orbital plane, the tethers are rigid, the

cross-sectional area of the tether is constant and the tethers are fully deployed before payload

release is considered. Apart from the last two assumptions, which are dependent on the

tether's design and operation, there is little physical justification for the above assumptions

since the real environmental conditions in space will affect the released payload's orbit.

However, the presented analysis is a preliminary evaluation of the motorised tether's

performance at payload orbital transfer. If the analysis demonstrates that the motorised tether

concept is attractive for payload orbital transfer then a more realistic analysis should be

considered. The effort involved in taking the environmental conditions into account would

not be warranted if the concept possesses poor performance characteristics. Consequently,

although not ideal, choosing a relatively unsophisticated model for an initial feasibility is

justifiable.

If the payload is released when the tether is aligned along the gravity vector then, assuming

the released payload has not reached eseape velocity, the release point will either be the

perigee or apogee of the payload's elliptical orbit. This release condition is the most

desirable for orbit raising or lowering since the full component of the velocity vectors are

summed or subtracted. I lowever, there is no guarantee that the payload can be released at the

instant when the tether is in line with the gravity vector. Any misalignment between the
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tether and gravity vector at payload release will cause a reduction in the maximum

achievable altitude gain and the apogee of the released payload's orbit will no longer

coincide with that of the ideal or planned release scenario. Hence, in deriving the orbital

elements of a released payload the obtained expressions must be general enough to

encompass not only the ideal release conditions but also non-ideal scenarios.

Figure 6.1 Geometry of a general planar release

The general equation for the radius r on an elliptical orbit is of the form

p
r=-_..;;.--

1+ e cos O

and is classically derived in the mathematics describing conic sections. The orbit eccentricity

is denoted e, the released payload's position on the orbit is given by the true anomaly e, and
p is the orbit's scmilatus rectum. From (6.1) the following relationships in (6.2) can be

derived between p, the semimajor axis a, orbit eccentricity, the periapsis radius rrs; and the

apoapsis radius rAP.

p = a(l-e2)= rpli (I+ e)= rAP (1- e}

(6.1)

(6.2)

Rearranging (6.2) allows the periapsis and apoapsis radius to be determined in terms of the

semimajor axis and eccentricity. The periapsis is, thus, described by

rpE = a{l-e} (6.3)

and, similarly, for the apoapsis

rAP =a(1 +e} (6.4)

lienee, to determine the orbital elements of a payload released from a tether, expressions

need to be derived that link the release conditions and tether alignment to the semimajor axis

and the eccentricity.
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The semimajor axis can be obtained by squaring the expression in (6.5), which originates, as

Chobotov (1996) shows, from the vis-viva equation,

v=f[R (6.5)

and rearranges to yield

_ _..:....p_r..:.;_l!_
a=

2p-V2rb,

where p = the product of the gravitational constant G and the planet's mass, which in this

case is Earth, re = the distance from the Earth's centre to the payload Mh and V = payload's

(6.6)

total velocity at release. The distance from the Earth's centre to the payload M, is obtained

by considering the geometry in Figure 6.1:

rE = ~r(~ + Lf + 2reLt cos VI (6.7)

where re = circular orbit radius to the tether's COM, L, = the tether length from the COM to

the released payload, and '" = angle between the tether and gravity vector. The velocity in

(6.6) comprises the normal and radial velocity components of M, along rs:
(6.8)

The radial velocity is composed of the component of the tether's tip velocity about its centre

of mass VCOM:

VR = VCOM sin; (6.9)

and the normal velocity component is described by the payload's orbital velocity VE plus the

tether's tip velocity about the COM:

VN = VE + Vc'OM cos;

The velocities Vb' and Vee},\{ are given by

VE = rEO' = r« '4.V1

(6.10)

(6.11)

and

(6.12)

where 0' = orbital angular velocity of the tethered system about the Earth and ",' = tether

angular velocity about the COM. The angle ¢measures the angle between VeoM and VE, and

can be found in terms of VIby employing the sine rule:

;=Sin-'[:: Sin,,]
Substituting (6.11 )-(6.13) into (6.9) and (6.10) yields

(6.13)
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(6.14)

and

(6.15)

The semi-major axis can now be obtained with (6.7), (6.14) and (6.15). The final term to be

found in (6.3) and (6.4) is the orbit eccentricity, which Chobotov (1996) gives as

e=JI- =
(6.16)

Chobotov (1996) also shows the semilatus rectum can be expressed in terms of the angular

momentum. II:
(6.17)

This completes all the required expressions needed to determine the orbital elements of a

payload released for any initial condition within the orbital plane from a rigid tether. A

further quantity of interest is the position of the payload within its transfer orbit at the point

of release. A non-optimum release will not necessarily guarantee that the point of release is

either the apoapsis or periapsis of the orbit. Thus, the transfer orbit's true anomaly at the

point of release eO. is stated by Chobotov (1996) to be:

a . _t[PVR]u = sm --
o ell

(6.18)

The shift in the orbit's apoapsis or periapsis in relation to the ideal periapsis or apoapsis is

portrayed in Figure 6.2 for the release of the upper payload and determined by

(6.19)

The apoapsis of an orbit-raised payload represents, as part of a continuous interplanetary

payload exchange with tethers, the point of rendezvous between the incoming payload and

the catching cable end of another tether. To obtain the orbital radius of a non-optimally

released payload at the location of the ideal or required apoapsis, the orbit's true anomaly

defining this position is given by

(6.20)

Similarly for a non-optimum release of the lower payload the transfer orbit's true anomaly at

the position of the ideal periapsis is given by

(6.21)
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- - PeriapsisofNon-idealRelease

Figure 6.2 Comparison of periapsis from an ideal and non-ideal release

6.2 Altitude Gain or Drop of a Payload Released from a Tether Aligned Along the

Gravity Gradient

The distance, half an orbit after the tether has released the payload, between the payload and

the facility's circular orbit at the time of release is of primary interest when considering

payload orbital transfer with tethers. The literature denotes this distance 1lr1" as shown in

Figure 1.1. The optimum release condition is met when the point of release occurs along the

local vertical. Thus, with '11= 0 and inserting (6.2), (6.6)-(6.8) and (6.14)-(6.17) into (6.1)

gives Y" for the release of the upper payload from a hanging tether, i.e. '1/' = 0,

(re + L)4
y = - r.e• 3 ( )1 .2re - re + L .

(6.22)

and similarly for the lower payload

(re - L)4 (6.23)
Ilr. = 3 ( )1 - re2re - re -L-

Carrying out the same substitution for a prograde swinging or spinning tether gives for the

upper payload

(r, + L)2[(r, + LYJ' + L'I/,]2 (6.24)
Ilr = =rc

• 2,u - (rc + LX(rc + LYJ' + L'I/,]2
and similarly for the lower payload

(re - L)2[(r(' - LYJ' - L'I/,]2
Y = -rc

• 2,u - (rc - LX(rc - LYJ' - L'I/,]2
(6.25)

Assuming L «rc implies 8« I, where 8= Llrc and allows a binomial expansion to be

applied to (6.22)-(6.25), giving to O(b)

N t::s7L
"

. (6.26)
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llr. ::=-7L

!!.r. == (7 + 4 ",' /O')L
&-. == -(7 + 4 ",' /O')L

and to 0(81)

!!.r. == (7 + 30 L/re)L

!!.r. == (- 7 + 30 L/r(..}L

&-. tt; (7+ 30L/re +4",'/0' + 2Lri",'(180' + 5",')/ fJ)r
llr. tt; (-7 + 30 L/re - 4",'/0' + 2Lri",' (180' + 5",')/fJ)r

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

respectively. As can be seen, the above derivation obtains the identical expressions in (6.26)

and (6.28) to those in the literature discussed in Chapter 1, (1.1) and (1.5). In contrast to

(6.26), which is linear and solely dependent on L, (6.22) is a nonlinear expression and a

function of re and L. Equation (6.24), moreover, is dependent on re; L, u, ",', and 0'

whereas (6.28) is solely dependent on L, ",', and 0'. Note that the second order

simplification in (6.30) and (6.31) gives a mission designer a better insight into the most

effective orbital position for the hanging tether than the first order terms in (6.26) and (6.27).

To obtain ",' for an expression above, it is necessary to distinguish between cases where the

motor is on or off.

6.3 Tether Angular Velocity,Tether Strength and Spin-up Criterion

An untorqucd tethered system on a circular orbit will hang, librate or spin depending on the

tether's initial conditions. However, this chapter only considers the hanging and librating

cases as the untorqued tether is presumed to have no initial angular velocity. ",' has to be

obtained when the tether is precisely aligned along its gravity vector, i.e. when the tether is

vertical, so that (6.24), (6.25), (6.28), (6.29), (6.32) and (6.33) can be evaluated. An

analytical expression for ",' is desirable and the equation of motion of the motorised tether

is derived in Chapter 2. Thus, integrating (2.95) or (2.99) with respect to 1/1, assuming the

tether starts from rest on a circular orbit, gives

(6.34)

where the subscripts 0 and 1 represent the beginning and end states, respectively, and the

square brackets the evaluation of the total potential energy U at each of these states.

Equation (6.34) allows M'1l to be determined analytically, and numerically integrating

(2.95)-(2.97) provides a numerical answer for comparison. Libration results are obtained

from (2.95)-(2.97) and (6.34) by setting the motor torque T to zero.

140



When the tether is torqued, fII' can be obtained analytically from (6.34) or by numerically

integrating (2.95)-(2.97). This approach gives the conditions under which the tether can be

spun, the nature of the spin-up and the time required to reach a desired velocity but it does

not give the maximum achievable velocity. For this an expression is needed which

incorporates the tether's strength. A tether, holding a payload at one end and rotating about

the other, will experience centripetal acceleration and a resulting tensile force. Equating the

two, whilst assuming the gravity gradient effects are negligible, gives
I.

M pL fII'2 + pA fII,2 fldl = F,ensiOlt = (TA
o

(6.35)

yielding

fII' =
(TA (6.36)

L{M p + pAL/2)

Equation (6.36) can be used to determine the orbital elements of a payload after release from

a motorised tether facility, which unjustifiably assumes that the velocity obtained from

(6.36) can be achieved when the tether aligns itself along the gravity vector. However, as the

relatively slow dynamics occur over a large period of time the difference between the

prediction of (6.36) and fII' at the last vertical position before reaching the value from

(6.36), which will be within one full rotation, is very small. Nonetheless, the results obtained

using (6.36) will represent the maximum achievable orbital elements for the given

configuration. Using (6.36), furthermore. presumes that an initial condition exists where the

tether is able to spin-up. The Earth's gravity exerts a force on the tether and payload masses,

which acts through the tether length, depending on the tether's orientation and direction of

motion, as either an additive or resistive torque on the motor. If the motor's torque is not

large enough to override the resulting gravity torque the tether will simply librate rather than

spin-up. A symmetrical double-ended motorised tether with an initial starting angle between

-tr/2S'I'0 Str/2 will spin-up in a prograde manner as long as fII' from (6.34) is positive

and real at 1/1. = te/2. Thus. the analytical spin-up criterion is given by

(,,/2 - fIIo}r - U[,,/2] +U[fllo] > 0 (6.37)

where due to symmetry only -Tr/2 s 1/10 < te/2 needs to be considered.

6.4 Definition of Performance and Efficiency Indices

llr. gives the distance, half an orbit after the tether releases the payload. between the payload

and the facility's orbit at the time of release. Essentially llr" describes how well the tether

facility performs at transferring the payload. In the case of apogee altitude gain the larger llrlf

is, the better the tether's performance in payload raising. and in the case of perigee altitude
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loss, the smaller tJ.r. is, the better the tether's performance in payload lowering. Hence, ~rtr
can be defined as the tether's performance index. It is also of interest to know how well the

tether is performing in relation to its own length. A new ratio, ~rJL, is introduced here and

defines the tether's efficiency index. In the case of apogee altitude gain, a more efficient

tether will have a larger ~r,/ L whereas in the case of perigee altitude loss ~rJL will be

smaller. With this distinction made, a further aim of the chapter is to investigate the validity

of the literature's prediction of the efficiency index for given configurations.

6.5 Results and Discussion for Optimum Release of Payload

Unless stated otherwise all the results were generated with the following system parameters:

J.l = 3.9877848.1014 m3s-2, M» = 1000 kg, MM = 5000 kg, ru = rpayload= 0.5 m, L = 50 km, re

= 6870 km, rn = 4 mm, rt» = 6 mm, A = 62.83 mrrr', p = 970 kgm", o: = 3.25 GPa, safety

factor (S.F.) = 2, 1/10 = -0.9 rad, 1/1. = O. The data for the tether are based on Spectra 2000.

Numerical results were obtained by integrating (2.95)-(2.97) with T = 0 in Mathematica with

a fourthlfifth-order Fehlberg Runge-Kutta method and in Matlab with a fourth/fifth-order

Runge-Kutta method using a relative error of 10-8 and 10-1°, respectively. Very good

agreement was found between the results from both integrators and results were found not to

significantly differ when relative errors smaller than 10-8were used.

6.5.1 Hanging Tether

The hanging tether results for the upper, Figure 6.3, and lower, Figure 6.4, payload release

show the analytical, first and second order approximations of the performance and efficiency

indices, (6.22), (6.26), (6.30) and (6.23), (6.27), (6.31), respectively. The efficiency and

performance of the upper payload released from a hanging tether increases with larger L. As

re increases the indices are found to decrease, tailing off for larger re. which suggests the

most efficient and best performing hanging tether for payload raising is one which is as close

as possible to Earth with the longest possible length. Such a configuration would have to be

optimised as this position in orbit experiences the greatest atmospheric drag. However, a

change in L has a greater effect on performance and efficiency than altering the orbital radius

and thus it is L that dominates the design of the hanging tether. The constant efficiency index

of seven predicted by (6.26) is, as Figure 6.3(c) and Figure 6.3(d) shows, a lower bound.

The results in Figure 6.4 show that the requirements for high efficiency and performance in

payload dcorbiting from a hanging tether are different to those of payload raising. The

performance of a lower payload release improves with larger L and re, whereas the

efficiency drops with larger L and increases with greater re. A high performance hanging

tether for payload deorbit would, therefore, be as far as possible from Earth with a large
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tether length. Similarly, for efficient payload deorbit the tether is as far as possible from

Earth but with a tether length that is as short as possible. As before, altering L has a greater

effect on performance and efficiency than changing the orbital radius. The constant

efficiency index of negative seven predicted by (6.27) is, as Figure 6.4 (c) and Figure 6.4(d)

show, an upper bound.

The first order approximation is independent of L when considering the tether's efficiency

and also of re, for both payload raising and lowering from a hanging tether, and therefore

differs qualitatively from the full analytical solution. When L is less than 50 km, (6.26) and

(6.27), according to Figure 6.3(a) and Figure 6.4(a), agree qualitatively and quantitatively

with the full solution but due to their linearity are not able to capture the curve exhibited by

(6.22) and (6.23) when L is greater than 50 km. The second order approximation is

qualitatively similar to the performance index of the full analytical solution. The quantitative

discrepancy between the second order approximation and the full solution, seen in Figure

6.3(b), Figure 6.3(d), Figure 6.4(b) and Figure 6.4(d), is small due to the choice of Land

increases when L is larger. When L is less than 150 km (6.30) and (6.31) are in good

agreement with the AT" of(6.22) and (6.23). Similarly, when L is less than 50 km, (6.30) and

(6.31) are in good agreement with the Ar';L of (6.22) and (6.23). However, as L moves

above these thresholds the discrepancy between the solutions grows with increasing L. The

results presented in Figure 6.3-Figure 6.12, show that the first and second order

approximations quantitatively under predict the tether's performance and efficiency at

payload raising, whereas the first and second order approximations, respectively, over and

under predict the tether's performance and efficiency at payload deorbiting. In all cases the

second order approximation is, as expected, quantitatively closer to the analytical solution

than the first order approximation and is superior to the first order simplifications in

capturing the qualitative behaviour ofthe full nonlinear expressions.
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Figure 6.3 Pcrfonnance and efficiency of upper payload released from a hanging tether: solid

= analytical, (6.22); long dash = 1st order approximation, (6.26); short dash = 2nd order
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6.5.1 Librating Tetber

The results of the performance and efficiency of a prograde librating tether at payload raising

and deorbiting are presented in Figure 6.S-Figure 6.8, which combine the numerical

simulation results, (1.4), and the full analytical solution, (6.24) and (6.25), along with its first

and second order approximations, (6.28), (6.29) and (6.32), (6.33), respectively. These

results show there is hardly any discrepancy between the full analytical and numerical results

and between (1.4) and the first order approximation. Despite quantitative differences, the

first order approximation is qualitatively similar to the full analytical solution when 1/10 and

M» is varied but independent of L with regard to efficiency and re and thus differs

qualitatively from the analytical results. When L is less than 50 km, there is good

quantitative and qualitative agreement between the performance predictions of the analytical

solution and its first order approximation, but due to its linearity, the approximation is unable

to follow the curve of the full solution when this threshold is exceeded. The discrepancy

between the analytical solution and its second order approximation, shown in Figure 6.S(a),

Figure 6.5 (c), Figure 6.5 (d), Figure 6.6(a), Figure 6.6(c), Figure 6.6(d), Figure 6.7(a),

Figure 6.7(c), Figure 6.7 (d), Figure 6.8(a), Figure 6.8(c) and Figure 6.8(d), is relatively

small because of the choice of L and increases with larger L.Good agreement exists between

the full solution and the second order approximation for efficiency and performance when L

is less than SO km and 150 km, respectively. However, a discrepancy between these two

occurs when these thresholds are exceeded and this discrepancy increases with larger L.

The performance and efficiency of a librating tether at payload transfer improves but also

levels off with larger 1/10, see Figure 6.5(a), Figure 6.6(a), Figure 6.7(a) and Figure 6.8(a).

The results in Figs. Figure 6.5(b), Figure 6.6(b) and Figure 6.8(b) show the performance at

payload lowering and performance and efficiency at payload raising increases with larger L

but as shown in Figure 6.7(b) larger L decreases the efficiency at payload lowering. The

performance and efficiency of payload raising and lowering decreases and increases,

respectively, as re is increased, as shown in Figure 6.5(c), Figure 6.6(c), Figure 6.7(e) and

Figure 6.8(c), and is found to tail off the larger re becomes. The results shown in Figure

6.S(d), Figure 6.6(d), Figure 6.7(d) and Figure 6.8(d) demonstrate that M» does not

significantly affect the performance nor the efficiency of the librating tether's ability at

payload transfer. Ilowever, on closer inspection Mp is found to influence the numerical

results, the analytical solution and both its approximations but not (1.4). The performance

and efficiency of payload transfer for both upper and lower payload release improves very

slightly with larger MJ•• For payload raising the most efficient and best performing prograde

librating tether is found to be one which has the largest possible maximum libration angle

and tether length as well as orbiting Earth as closely as possible. A prograde librating tether
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facility that has a large maximum libration angle and is situated as far as possible from Earth

is very effici nt and performs well at payload lowering. A long tether improves the

performanc wher as a hort tether improves the efficiency at payload lowering. The

maximum eff ien y inde of fourteen as quoted from the literature in (1.2) is not found to

hold ace rding t igure 6.S(a) and Figure 6.S(b) because values above fourteen are readily

seen to be btained. he re ults show that the prograde librating tether improves, up to

roughly a fact r f tv , n the performance and efficiency ofthe hanging tether.
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h perf rrnan and efficiency of a prograde motorised tether at payload raising are

pre nted in igure 6.9 and Figure 6.10 which use (6.24), (6.28) and (6.32). The performance

and effici n y i und t improve with larger re and smaller S.F. and Mp. A larger L

perf rrnan but decreases the efficiency if the S.F. is medium or high.

igure 6.1 c) haws, when the S.F. is close to unity, or if the tether's ultimate

n be in rea ed then the efficiency with respect to the tether's length

minimum and impr ve with very long tethers greater than 200 km. For S.F. =
I th minimum ur f r the iven data at L = 132.561 km and is not predicted by the first

and c nd re! r pp xirnati ns. At low s.F. the approximations level off with increasing

L, n in i Ufi 6. b) and Figure 6.9(c), and fail to capture the drastically improved

p rf rman e p di t db (6.24). Apart from these differences both orders of approximations

full analytical solution but do under predict the motorised

nd ffici ncy quantitatively. The best performing motorised tether is

ry high ten ile stress with a lightweight payload mass and long tether

po ibl from Earth. Unless tether lengths very much greater than

km ar u d th m t ffi i nt m torised tether has the same configuration as for highest

p rei rrnan ut v ith t th 'r length that are as short as possible.
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As seen in Figure 6.11 and Figure 6.12, which utilise (6.25), (6.29) and (6.33), larger re and

smaller S.F. and A~, improve the performance and efficiency of payload lowering of the

prograde motorised tether. A larger L increases the performance but decreases the efficiency

with no appearance of a minimum as seen with the release of the upper payload. Note that

the llr. achieved with motorised tethers for payload deorbiting is higher than is actually

necessary in LEO where the performance of the hanging or librating tether would be

sufficient. The first and second order approximations are both generally qualitatively similar

to the full analytical solution, apart from Figure 6.11 (c) where the second order

approximation predicts the performance to improve with larger S.F. and to decrease with

larger L. The best configuration for performance is to have a tether that can sustain very high

tensile stresses with a low mass payload and long tether length situated as far as possible

from the Earth. whereas for high efficiency the same configuration would be adopted but

with short tether lengths. The motorised tether improves on the performance and efficiency

of the hanging and librating tether by two orders of magnitude.

For orbital transfer, the results demonstrate that either for payload raising or lowering the

motorised tether performs best and is the most efficient out of the three fundamental tether

motions investigated in this chapter. Figure 6.9(c) shows that by using long tethers an upper

payload can be propelled by a motorised tether in a circular LEO to GEO. A motorised tether

using the above data along with P = 5.5 kW, T = 464720 Nm, S.F. = 1.2 and L = 139.122 km

can achieve llr. = 35467.38 km but requires a very large motor torque and puts great

demands on the tether's strength. }lere the relationship of P = T 11/' is employed and a rating

of 5.5 kW appears reasonable, if not a little conservative, as the solar panels on satellites

being currently launched are able to generate 10-12.5 kW. Increasing the S.F. requires larger

L and higher values of motor torque to deliver the payload to GEO. Hence, unless

expendable tethers are used, multiple tether stages or tethers on elliptical orbits will have to

be considered. Multiple tether stages could utilise long tethers which are greater than 10 km,

but Figure 6.10 and Figure 6.11 suggest that the more efficient shorter tethers, roughly 1 km

in length, are worthy of consideration. Despite the poor performance, short tethers have the

advantage of being lighter, therefore, costing less to deliver into orbit, less susceptible to

being severed due to the reduced area exposed to space debris, easier to manufacture and

requiring less material, thereby, reducing costs. Generating the same tangential velocity with

short tethers as achieved with long tethers requires an increase in 11/' and a reduction in

motor torque if the available power remains constant. Hence, the central facility's mass can

be reduced as a lesser amount of torque utilises a smaller gearbox.
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The results of numerically integrating (2.95)-(2.97) to obtain the angular pitch displacement

achieved from different 1/10 over 50000 seconds, are shown in Figure 6.13. In general, when

the tether is librating then -rrl2 < I/Isoooo < rr/2 and if it is spinning progradely then

If'soooo> IT/2. The threshold between libration and spin-up is obtained from (6.37) and

shows very good agreement with the numerical results. The 50 km long tether in Figure

6.13(a) spins up for -IT /2 -5. '1'0 -5. -1.3977 rad and 1.5608 -5.1f' 0 s IT/2 rad using P = 5.5 kW,

whereas a Ikm long tether driven by the same power source spins up for all 1/10 in Figure

6. t3(b). If P = 55 W then the 1 km tether, shown in Figure 6.13( c), spins up for

-IT /2 -5. '1'0 -5. -1.21 08 rad and 1.5262 -5. 'I'0 ~ IT/2 rad which is a larger region than that of

the 50 km tcther. Thus, a further advantage of short tethers is the ability to spin-up for any

1/10. as in Figure 6.13(b), and a larger region of 1/10 for which spin-up is possible if the power

source is reduced, thereby, ruling out sophisticated, vulnerable and expensive orientational

controls for start-up that would be required for motorised tethers using long tethers. The

disadvantage is of course the increase in risk of losing a payload due to the additionally

required transfers.

Rather than deploying the tethers fully before energising the motor to spin the system, the

results in Figure 6.13 suggest that the motor should be energised prior to deploying the

tethers. The reaction to the centripetal acceleration caused by the spinning rotor should aid

deployment and increase the range of 1/10 enabling spin-up, if not altogether avoiding the

problems with the resistive gravity torque at start-up. Further work should model the

proposed deployment and investigate the effects of tether flexibility and deployment on the

performance and efficiency of the tether mediated payload orbital transfer.
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6.6 Release of Payloads from a Tether onto a Circular Orbit

Once a payload currently reaches the desired orbital radius an on-board thruster is fired to

circularise the orbit. However, a retrograde spinning or librating tether has the potential of

releasing 8 payload so that the released payload travels on a circular orbit. Assuming the

point of release of the upper payload occurs along the local vertical then (6.24) must equal L

if a circular orbit is to be achieved. Similarly, (6.25) must equal -L if the lower payload is

released on to a circular orbit. Thus, equating (6.24) with L and rearranging yields an

expression for the required tether angular velocity to ensure orbit circularisation of the upper

payload,

(II'=!J p _ {re +L}9'
L 'c+L L

(6.38)

Similarly, setting (6.25) equal to -L and rearranging gives the pitch angular velocity for orbit

circularisation of the lower payload,

(II' = Vc _ L}9' -!J. Jl
L L 'c-L

Note that (6.38) and (6.39) actually have two solutions due to the positive and negative

(6.39)

square root. However, only the feasible solutions are presented since the other solution

causes the released payload to orbit the Earth in the opposite direction to the tether, which is

a manoeuvre clearly beyond the material strength of the cable. Although there is a small

numerical difference between (6.38) and (6.39), when the expressions are plotted against the

orbital radius for a 50 km long tether, as shown in Figure 6.14, the difference is on the whole

rather small. Moreover, the magnitudes displayed in Figure 6.14 show that only a retrograde

librating tether is required to achieve the orbit circularisation. Equating (6.38) and (6.39)

does not yield a physically meaningful solution, thus precise simultaneous orbit

circularisation of both payloads from a symmetrical tether is not possible. However, upon

circularising either the upper or lower payload the other payload will travel on a nearly

circular orbit. If for example the lower payload is circularised from a 50 km long tether

precisely at the local vertical from an orbital altitude of 7000 km, then upon simultaneous

release the upper payload will have an orbit eccentricity of7.68*10-5•
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tether with the orbital radius is prescribed.

6.7 Effeet or Non-optimum Release on Payload Orbital Transfer with Tethers

The literature and the above analysis have assumed the release of the payload occurs whilst

the tether is parallel to the local vertical or gravity vector. This represents the ideal release

conditions for payload raising or lowering as the full component of the relevant velocity

vectors are in line with each other. Moreover, investigating the perfect release conditions

allows the full potential of tethers to be quantified. However, studying the effect of a non-

optimum release on the payload transfer with tethers is equally important as this indicates

how the performance of tethers will be affected by the inaccuracies at release and can specify

how accurate the payload release has to be. In the context of continuous interplanetary

payload exchange the examination of non -optimum release will also give an insight into how

large the distance between an incoming payload and the catching tether tip might be and

what problems a catch mechanism would have to overcome.

The following considers some non-optimum release conditions for a hanging, librating and

spinning tether. Instead of releasing the payload from a hanging tether the payload might be

cut from a tether that is slightly librating. This scenario is not unrealistic as the finallibration

angle on the SEDS-2 mission in 1994 was controlled to within 4°. The point of release could

occur at the maximum libration angle. whilst the tether is aligned along the gravity vector, or

perhaps somewhere in between. For a swinging or spinning release there is no guarantee that

the payload will be released upon the tether reaching the local vertical. A slight error in the

timing of the release or perhaps a delay in the mechanism severing the contact between the

payload and cable can cause the point of release to drift either side of the local vertical.
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difference becomes 5955 m. If the error from a shorter tether is investigated for the identical

scenarios then the discrepancy reduces for a 20 km long tether to 12.4 km and 2473 m,

respectively.

Figure 6.17 and Figure 6.18 display the effect of releasing the upper and lower payload,

respectively. from a 50 km long prograde librating tether where the point of release occurs

either before of after the local vertical. The ratio of Sr; for the non-optimum and perfect

release is calculated and plotted against the angle the tether forms with the local vertical at

the point of release. In relation to the perfect release the periapsis and apoapsis of the non-

optimum release of both the upper and lower payload are found to shift by less than 1°.

Similarly. inspecting the discrepancy between the orbital radius at the payload's apogee or

perigee and the payload's orbital radius in line with the location of the ideal apogee or

perigee finds the difference to be less than a metre for both payload raising and lowering.

The effect of these can probably be discounted since the error caused by the non-optimum

release portrayed in Figure 6.17 and Figure 6.18 are larger by at least an order of magnitude.

Furthermore, the curves presented in Figure 6.17 and Figure 6.18 were found to be largely

unaffected by different tether lengths. Four maximum libration angles are presented: -25°,

-20°. -IS°. and -10°. with the negative sign indicating a prograde rotation. For both payload

raising and lowering the larger the maximum libration angle is the less the percentage

difference is on the ratio between the perfect and non-optimum release. Moreover, the error

between the desired and non-optimum release increases in a parabolic fashion the earlier the

payload is released before the local vertical. The difference between a 50 km long tether with

a maximum libration angle of -25° releasing the upper payload at 1° before the local vertical

compared 10 a perfect release is 227 m. When the maximum libration angle is reduced to -

10° the difference between the two release conditions rises to 412 m. For a 20 km long

tether. however. this drops for the same conditions to 86 m and 158 m, respectively.

Similarly. when the lower payload is released from a 50 km long tether with maximum

libration angles measuring _250 and -10° at 10 prior to the local vertical the difference

between optimum and non-optimum release is found to be ]91 m and 356 m. These decrease

to 80 m and 149 m, respectively, for a 20 km long tether with the same release conditions as

before.

The ratio of the non-optimum over the ideal Sr; is investigated in Figure 6.19 for a prograde

spinning tether and is scen not to be particularly informative, as there is little discrepancy

between the three tether lengths of 10 km, 25 km and 50 km. Furthermore, the small

difference in percent observed over the ±5° angle prior to the local vertical at which the
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payload is released hides the fact that a few percent of a large Ar" represents a large absolute

error. lienee, when the non-optimum Ar" is subtracted from the ideal Ar1C, as shown in Figure

6.20 and Figure 6.21, the drop in performance from a non-optimum release measures several

kilometres. Moreover, the longer the tether is the larger the error becomes between a perfect

and non-optimum release of the upper of lower payload. In addition to this, the error between

the two release conditions increases in a parabolic manner the earlier the payload is released

prior to the local vertical. For the case of the spinning tether release the discrepancy between

the orbital radius at the payload's apogee or perigee and the payload's orbital radius in line

with the location of the ideal apogee or perigee is found to be significant and therefore

cannot be neglected for payload raising or lowering. The perigee of the non-optimum release

is additionally found to shift relative to the ideal perigee by several degrees. The difference

between a SO km long tether spinning at 0.01 rad/s and releasing the upper payload at 5°

before the local vertical compared to a perfect release is 12 km, and drops to 494 m when the

angle prior to the local vertical reduces to 1°. For a 10 km long tether the differences are in

comparison 4043 m and 162 m, respectively. Likewise, the difference between a 50 km long

tether spinning at 0.0 I rad/s and releasing the lower payload at 5° before the local vertical

compared to a perfect release is 5792 m, and reduces to 232 m when the error drops to 1°.

The differences for a 10 km long tether in comparison measure 2942 m and 118 m,

respective Iy.
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Figure 6.17 Ratio of non-optimum over perfect release of the upper payload from a librating

tether. Solid: V'(O) = -25°, long dashed: V'(O) = -20°, short dashed: ",(0) = -15°, and chain

dashed: V'(O) - _10°.
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Figure 6.18 Ratio of non-optimum over perfect release of the lower payload from a librating
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Figure 6.19 Ratio of non -optimum over perfect release of the upper payload from a spinning

tether with a non-zero angular displacement relative to the local vertical. Solid: L = 50 km,

long dashed: L - 2S km. short dashed: L = 10 km.
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Figure 6.20 Effect of releasing the upper payload from a spinning tether with a non-zero

angular displacement relative to the local vertical. Solid: L = 50 km, long dashed: L = 25 km,

short dashed: L .,.10 km.
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Figure 6.21 Effect of releasing the lower payload from a spinning tether with a non-zero

angular displacement relative to the local vertical. Solid: L = 50 km, long dashed: L = 25 km,

short dashed: L - 10 km.

The results presented in Figure 6.1 S-Figure 6.19 demonstrate that a non-optimum release of

the paylo ..sd has a significant impact on the performance of payload transfer with tethers. The

absolute difference between the ideal and non-optimum &11 ranges anything from a few tens

of metres to several kilometres, The results emphasise the importance of a very precise and

accurately timed release since missing the point of release by a single degree with a spinning

tether, say. can cause the payload to entirely undershoot its target orbit or rendezvous.
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Consequently, future work on designing the payload release mechanism must deliver a very

accurate and reliable methodology as well as hardware. The results also show that a payload

release from a hanging tether must carefully control the librations of the tether, as well as

any tether vibrations. If payload lowering with a hanging tether is attempted from the

International Space Station. say, then any unwanted librations could cause the payload to

either under- or overshoot the required orbit by several kilometres.

Iloyt (2000a) discusses the use of a grapple mechanism for catching an incoming payload.

The amount of separation between the tether tip and the payload that the grapple mechanism

can overcome is not entirely clear but a presented graph in the paper suggests a few metres

discrepancy can be corrected by deploying the grapple at the end of a cable. Hoyt (2000b)

presents another proposal for a catch mechanism consisting of a net and a harpoon. From the

tether tip a large net structure is deployed, thus giving the incoming payload a large target

area into which a harpoon can be fired to establish the connection between the two. The use

of mechanical capture mechanisms will in most cases rely on the separation between the

tether tip and the incoming payload being probably in the region of perhaps a few tens of

metres or more. However, unless an ingenious concept is found the above results suggest the

reduction in orbital altitude due to a non-optimum release will most likely have to be

overcome by firing rocket thrusters within the payload instead of employing a mechanical

catching device.

6.8 Ccnclusions
Three fundamental tether motions investigated in this chapter were considered for payload

orbital transfer. hanging. prograde libration and prograde motorised spin. The symmetrical

double-ended motorised spinning tether performs best and is most efficient, improving by

two orders of magnitude on the librating tether which in turn improves on the hanging tether

by roughly a factor of two. An upper payload using long tethers with a motorised tether on a

circular orbit can be transferred from a low to a geostationary Earth orbit by employing

relatively high motor torque and a safety factor on the tether strength close to unity. Multiple

tethered stages or tethers on elliptic orbits will, therefore, have to be considered for

geostationary payload transfer unless expendable tethers are employed. Despite their poor

performance, short tethers are worth considering for use in conjunction with the multiple

tethered stages because of their efficiency, overall system mass reduction, cost effectiveness,

better survivability and greater range of initial conditions for which spin-up is possible.

Consequently, the motor should be spun prior to tether deployment rather than deploying the

tethers fully before commencing spin-up. Two common literature results, the constant

efficiency index of seven for a hanging tether upper payload release and the maximum
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efficiency index of fourteen for an upper payload released from a prograde librating tether,

are found to be a lower bound and quite readily breached, respectively. Orbit circularisation

through tether release is found to be feasible with retrograde librating tethers. Moreover,

upon circularising either the upper or lower payload the payload released from the other end

of a symmetrical tether will travel on a nearly circular orbit. When the point of release does

not occur along the local vertical then a non-optimum release of the payload is found to

severely reduce the performance of payload transfer with tethers. Consequently, a very

precise and accurately timed release is important for the success of payload orbital transfer

with tethers since missing the point of release by a single degree with a spinning tether, say,

can cause the payload to miss its required target. The large discrepancies in orbit transfer

between ideal and non-optimum release scenarios call into question the use of mechanical

catch mechanisms and therefore released payloads will most likely have to correct the

inaccuracy at release by firing rocket thrusters.
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Chapter z
Design Considerations and

Dynamics of a
Symmetrical Motorised Tether

7.0 Introduction

The previous chapter compared the pcrfonnance of motorised tethers at payload orbital

transfer with that achieved by hanging and librating tethers. An important observation was

made that for long tether lengths the motor torque may not be large enough to overcome the

gravity gradient torque, therefore, not permitting the system to spin-up. Although this is

undesirable for the motor's rotor, which is trying to generate as much i\V as possible for the

payloads, trapping the stator in the potential well may be a possible design solution for the

outrigger system. Furthermore, the previous chapter made several unsubstantiated

assumptions about the motorised tether's dynamics, such as the spin-up of the tether being

regular and periodic, thus allowing the payloads to be released at the desired point on orbit

with the tether in line with the gravity vector. Consequently, the evaluation of the motorised

tether concept is continued in this chapter by investigating the design of the outrigger system

and the planar spin-up of the motorised tether, as well as the effect of the motor's orientation

and out-of-plane initial conditions on the process of tether spin-up.

7.1 Design o(Outrigger System

Flywheels are employed in satellites to obtain the desired attitude orientation in space. The

following explores if a solid flywheel wheel can be used to provide the necessary reaction to

allow the propulsive tethers to spin up. The ability to replace the outrigger tethers would be

an advantage, as the motorised tether possesses the inherent risk of a catastrophic clash

occurring between the propulsion and outrigger tethers. The critical issue though is whether

a spinning disc can withstand the hoop and radial stresses or whether the disc will fail at the

required angular velocities. Lame's equations, as discussed by Polter (1967), allow the

maximum stress due to the constant angular velocity of a homogeneous, uniformly thick disc

to be determined, and is given by

3 +U 2,2
O'max =-S-PdJoW: -i» (7.1)

where P' = in-plane outrigger angular velocity, 'disc = radius of the reaction wheel, Pdlsc =
material density, Umax = ultimate tensile strength, v = Poisson's ratio. Note that Lame's
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equations do not strictly apply to the case of the motorised tether since the reaction wheel

would be accelerating and thus not spinning at a constant angular velocity. However,

applying Lamers equations provides a rough estimate as to whether a flywheel could provide

the necessary resistive torque. Rearranging (7.1) gives the maximum permissible angular

velocity

p' _ 80'ma.~

- (3+ v)pdlscrl<e

Assuming a flywheel is composed of steel, where Pdisc = 7850 kg/m", Umax = 450 MPa and v =

(7.2)

0.3, then (7.2) gives the maximum velocity the flywheel can withstand for a given dise

radius. The amount of time required for the flywheel with a thickness of 0.2 m to reach P'
for a given torque of 50 kNm, say, is obtained by integrating Newton's 2nd law once with

respect to time, where the result is plotted against rdisc in Figure 7.1. A larger disc radius is

seen to allow the flywheel to spin-up longer before attaining the critical stress. With a motor

torque of 50 kNm, which for the motorised tether is rather conservative, the critical stress is

arrived at in less than 60 seconds for disc radii less than 1.5 m. In comparison to the orbital

period this is simply too short since the motorised tether will need more than an orbit

revolution to impart the necessary AV. A flywheel with a radius of 2.5 m will reach the

critical stresses due to rotation in less than 5 minutes, a duration of time which is still too

short. Moreover, such a flywheel with the given dimensions would have an impractical mass

of 30,827 kg. Changing the material for the flywheel does increase the duration of spin-up

time but is not significant enough to allow the motor to spin-up the rotor. Hence, the reaction

wheel is not a viable means of providing the resistive torque for the motorised tether.

Tirne[rnin]
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3

2

1

0.5 1 1.5 2

Figure 7.1 Time required for a steel flywheel to reach a maximum sustainable angular

velocity for a specified disc radius.

A more effective means of providing the necessary resistive torque is to deploy two further

tethers from the stator drum, which are identical to the propulsive tethers and terminate in

end masses. If the effect of the gravity gradient is not employed to aid in the design of the

outrigger, then the outrigger's mass moment of inertia must equal or exceed that of the
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propulsive side. An unequal mass moment of inertia implies one side must spin faster than

the other, which is not acceptable for the outrigger as it would reach the maximum allowable

stress before the propulsive side. Thus, if the outrigger tethers are shorter than the propulsive

tethers then the outrigger's end masses must be larger than the payloads to equate the

propulsive side's mass moment of inertia. Outrigger tethers equal in length to the propulsive

tethers would require the outrigger end masses to be identical to the payloads. Outrigger

tethers longer than the propulsive tethers would permit smaller end masses to be attached to

the outrigger tips. Shorter outrigger tethers have the advantage of exposing less surface area

to micrometeorites and should therefore survive the space environment for longer. Their

disadvantage is the need to deliver more mass into orbit in the form of the end bodies for the

motorised tether to operate, which increases the mission's launch costs. Longer outrigger

tethers increase the stator's mass moment of inertia more effectively without a huge mass

penalty but are more exposed to micrometeorites. Equal propulsive and outrigger end masses

and tethers are probably only a serious option if the outrigger masses are additional payloads.

The gravity gradient exerts through the tether mass and end masses a torque about the

tether's centre of mass. Depend ing on the orientation of the tether about the local vertical the

torque will either resist or assist the motor torque's sense of direction. However, as seen in

Chapter 6 the gravity gradient can exert such a large resistive torque that the motor is unable

to spin-up the tether. Exploiting the gravity gradient could therefore provide a means of

reducing the mass of the outrigger's end bodies plus reduce the outrigger tether length, thus

decreasing the surface area exposed to high velocity particles. A similar analysis to that in

Chapter 6 is required to determine the necessary tether length required to trap the outrigger

in the gravitational potential well. The equation of motion governing the outrigger is

I P" eu.;+--=r
OUI ap

(7.3)

where p = angular displacement of outrigger system defined positive in the opposite

direction to 'P, foul = mass moment of inertia of outrigger and Uou/ = potential energy of

outrigger system. Integrating (7.3) with respect to p and assuming the initial outrigger

angular velocity is zero at the point of initiating the motor torque, gives

Pi = 12 r{ft2 - PI )+UOUI [fil ] - Uout [fi2 ]
~ i:

If the outrigger is to spin up then the velocity Pi has to be positive and real at P2 = tt/2.

(7.4)

Hence,

r(tt /2 - PI )+UOUI [PI ] - U0Ul [tt/2] > 0 (7.5)
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where UOIII is obtained from (2.94) or (2.98). Note, that this criterion is independent of the

tether's mass moment of inertia. The torque's magnitude is determined by the propulsive

tether side through the strength consideration in (6.35). With the motor torque selected, the

criterion in (7.5) can be used to determine the minimum outrigger length required for a given

initial condition to keep the outrigger trapped within the potential well.

Figure 7.2 compares the tether length of a spinning outrigger tether with the identical mass

moment of inertia as the propulsive side, to an outrigger captured by the gravity gradient

within the potential well. The motorised tether's dimensions and properties are: MM = 2500

kg, M»> 500 kg, MaUl = outrigger end masses = 50 kg, r, = 0.001 m, ru = rpayload = 0.5 rn, re =
7000 km, a",ax = 1.625 GPa, P = 970 kg/m', and P = 5.5 kW. Employing the motor torque as

a variable allows the possible pitch velocity to be determined using the relationship P = TII/' ,

which subsequently allows (6.35) to determine the propulsive tether length. The tether length

of the spinning outrigger can consequently be determined by equating the outrigger'S mass

moment of inertia with that of the propulsive side and the tether length of the gravity

gradient captured outrigger is obtained from (7.5). Figure 7.2 shows that the spinning

outrigger is always larger than the propulsive tether, whereas the captured outrigger is longer

than the propulsive tether for low torque values and shorter for higher magnitudes. For very

low torque values a spinning outrigger is shorter in length than a gravity gradient captured

outrigger system. However, for the majority of torque values and especially those of

practical interest the captured outrigger is significantly shorter than a spinning outrigger

tether, thereby exposing less surface area to the environment and requiring less tether mass

to be delivered into orbit. Moreover, the captured outrigger is significantly shorter than the

propulsive tether for large torque values.
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Figure 7.2 Comparison between a spinning and gravity gradient captured outrigger system in

relation to the propulsive tether length for a given motor torque with 13(0) = 0 rad.
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The graph in Figure 7.2 was generated by assuming a zero initial angular displacement in the

outrigger tether. As Figure 7.3 shows, the initial angular displacement of the outrigger has a

noteworthy effect on the required length necessary to ensure the tether remains captured

within the potential well. Initiating the motor torque with a large Iibration angle present in

the outrigger will require the outrigger to have several tens of kilometres of additional tetber

length. The optimum tether length is not, however, obtained for p(O)=O rad. Figure 7.4

shows for an applied torque of 200 kNm the shortest outrigger length is obtained for

p(O) ~ 0.4 rad. On the whole it is favourable to have a positive initial angular displacement

rather than a large negative one.
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100 200 300
Torque[ kNm]
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Figure 7.3 Propulsive and outrigger tether length required for a given motor torque, where

the outrigger system is trapped inside the potential well.
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Figure 7.4 Effect of initial angular displacement on the outrigger tether length required to

keep the system trapped within the potential well.

170



In Figure 7.5 the effect of the outrigger end body mass on the necessary tether length is

investigated for gravity gradient capture. As would be expected an increase in the mass of

the end body causes a decrease in the required outrigger tether length. Increasing MoUl from

SO to 500 kg yields, for the given data and r = 200 kNm, a corresponding decrease in tether

length of approximately 10 km. In other words, increasing MoUl by 450 kg only decreases the

tether mass by roughly 30 kg but exposes 10 km less to the environment. Increasing MOIII

would therefore appear to unnecessarily add to the launch costs and may be best kept as low

as possible. However, only a risk analysis quantifying the reduction in tether severing by

micrometeorites would be able to definitively quantify and conclude whether the cost of the

additional launch mass is worth an increase in predicted tether lifetime.
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Figure 7.5 Effect of outrigger end mass on required tether length to contain outrigger system

within the potential well.

7.2 Design Data for the Motorised Tether

The amount of &V a motorised tether is able to generate, can be estimated by multiplying the

tether length with (6.35) to obtain

t1V = a,4L
M,. + p.4L/2

(7.6)

The expressions in (6.35) or (7.6) are not wholly accurate as several forces are neglected in

the analysis. such as the gravitational force acting on the end body and tether masses or the

centripetal force experienced by the system whilst orbiting the Earth. A more detailed

strength formula was derived to take account of these forces on the tether but in comparing

the differences the centripetal force about the tether's centre of mass was found to

substantially dominate. The quantitative difference was found to affect the second significant

digit after the decimal point. which is negligibly small.
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slightly greater than the torque exerted by the gravity gradient then the gravity gradient's

effect is clearly evident in the motorised tether's angular velocity, shown in Figure 7.12.

However, a significantly larger torque exerted by the motor on the tether causes this effect to

lessen, as is evident in figure 7.13. Longer tethers and heavier end masses increase the

gravity gradient's torque on the motorised tether and thus the initial angular displacement

plays an important role as to whether the tether can spin-up. For example, the negative initial

angular displacement in figure 7.12 aids the motorised tether to spin, whereas the same but

positive initial angular displacement in Figure 7.14 does not permit any build up of tether

rotation.

When the planar motorised tether is placed on an elliptical orbit with an eccentricity of 0.1

then a much lower motor torque is able to get the tether to spin-up with a net increase in the

angular velocity than a motorised tether on a circular orbit with the identical initial angular

displacement. which implies the motor's power requirement can be reduced. Figure 7.15

demonstrates though that the spin-orbit coupling is strong when the motor's torque is low

and causes large fluctuations in the angular velocity but diminishes for greater torque values,

as shown in figure 7.16. Note that the tether in Figure 7.16 appears to be spinning faster

since a greater angular velocity is attained during the first 5 orbits. As the orbital period

increases with larger orbit eccentricities figure 7.16 cannot conclusively state whether the

elliptical orbit causes an actual increase in angular velocity because there is more time for a

tether to spin-up over a set number of orbits when comparing elliptical to circular orbits. As

is evident by figure 7.17, the elliptical orbit provides the motorised tether, as an alternative

to the reduction in rower requirement, more initial conditions that permit tether spin-up,

where for the same initial conditions the motorised tether does not spin on a circular orbit.

Figure 7.18 demonstrates that for the given motorised tether a larger orbit eccentricity of 0.2

allows the motor to spin up the tether for all initial angular displacements. Moreover, the

greater orbit eccentricity allows the magnitude of the applied torque to be reduced, as

exemplified by Figure 7.19, whilst still being able to spin-up from all initial displacements.
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Figure 7.9 Response of angular displacement and velocity of an untorqued planar motorised

tether on a circular orbit over 5 orbits with M» = 500 kg, L = 20 km, ",(0) = -0.575 rad.
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Figure 7.10 Response of angular displacement and velocity of a planar motorised tether on a

circular orbit o'er 5 orbits with t = 100 kNm, Mp = 500 kg, L = 20 km, ",(0) = 0.1 rad.
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Figure 7.11 Response of angular displacement and velocity of a planar motorised tether on a

circular orbit over 5 orbits with t = 144.25 kNm. Mp = 500 kg, L = 20 km, ",(0) =0.1 rad.
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Figure 7. t 2 Response of angular displacement and velocity of a planar motorised tether on a

circular orbit over 5 orbits with t = 250 kNm, Mp = 500 kg, L = 20 km, VI(O)=-0.575 rad.
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Figure 7.13 Response of angular displacement and velocity of a planar motorised tether on a

circular orbit over 5 orbits with t = 400 kNm, M; = 500 kg, L = 20 km, VI(O)= -0.575 rad.
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Figure 7.14 Response of angular displacement and velocity of a planar motorised tether on a

circular orbit over 5 orbits with t = 250 kNm, M» = 500 kg, L = 20 km, VI(O)= 0.575 rad.
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Figure 7. t 5 Response of angular displacement and velocity of a planar motorised tether over

5 orbits with e = 0.1, t = 100 kNm, Mp= 500 kg, L= 20 km, ",(0)=-0.575 rad.
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Figure 7.16 Response of angular displacement and velocity of a planar motorised tether over

5 orbits with e = 0.1, t =250 kNm, M» = 500 kg, L = 20 km, V/(O) = -0.575 rad.
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Figure 7.17 Response of angular displacement and velocity of a planar motorised tether over

5 orbits with e = 0.1. t =250 kNm, M; = 500 kg. L = 20 km, V/(O)= -0.2 rad.
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Figure 7.18 Response of angular displacement and velocity of a planar motorised tether over

5 orbits with e = 0.2, t =250 kNm, M; = 500 kg, L = 20 km. V/(O) = 1.4 rad.
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Figure 7.19 Response of angular displacement and velocity of a planar motorised tether over

5 orbits with e = 0.2. t = 150 kNm, M» = 500 kg, L = 20 km. V/(O) = 1.4 rad.
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The motorised tether remains planar on a circular orbit if the tether has no initial out-of-plane

angular displacement and with the motor axis aligned perpendicular to the orbital plane, as

seen in Figure 7.20. The graphs in Figure 7.20-Figure 7.27 were obtained by numerically

integrating (2.78)-(2.81) using~, = 500 kg, L = 10 km, or= 170 kNm and the same data as

before with the planar case. The initial angular velocities are both assumed to be zero.

Ilowever, with an initial out-of-plane displacement the motorised tether does not return to

the orbital plane. Figure 7.21 shows the motorised tether moves during its first two

completed orbits through large amplitude oscillations in the out-of-plane whilst beginning to

rotate in the pitch direction. The large amplitude oscillations quickly settle, though, into a

regime where the motorised tether is precessing in a prograde direction. With time the

largest out-of-plane amplitude during precession tapers off. For example, between the

motorised tether's eighth and tenth completed orbit, shown in Figure 7.22, a narrow band is

established within which the tether precesses. For an initially planar tether on a circular orbit,

but with the motor axis no longer perpendicular to the orbital plane, as in Figure 7.23, the

response again settles into a precessional motion after initial large out-of-plane oscillations.

Since less motor torque is directed into the ",-angle the rate of tether revolutions must

consequently be slower, as is evident by the fewer completed rotations in Figure 7.23 than in

Figure 7.21. The combination of both a non-zero y and a(O) generates at first some large

oscillations in Figure 7.24 but as the pitch angular velocity increases the motorised tether

returns to its characteristic precession. Figure 7.25 demonstrates that a motorised tether on an

elliptical orbit with an initial non-zero zero a(O) but y = 0 is qualitatively very similar to the

circular orbit case but with the tether completing more revolutions for the same number of

completed orbits. The initially planar tether, seen in Figure 7.26, with a non-zero y enters the

zone of precession much faster than the circular case, which suggests the tether is revolving

at a higher rate of rotation. Apart from a slightly faster rate of rotation there is little

qualitative difference between the motorised tether on an elliptical orbit with a non-zero y

and a(0) in Figure 7.27 and its motion on a circular orbit. Figure 7.20-Figure 7.27 suggest

that the motorised tether's motion is regular both on a circular and elliptical orbit. This is an

important observation to make for the viability of the motorised tether concept, especially

since the planar and 3D tether rotation in Chapters 4 and 5 were found to be chaotic.

Ilowever, the precession observed in Figure 7.20-Figure 7.27 suggests the possibility of the

motorised tether's motion being largely quasi-periodic. If this is proved to be the case then

the motorised tether will not be able to deliver the payload reliably along the local vertical at

the perigee upon reaching the desired l\V.
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Figure 7.20 Response of a motorised tether plotted on a unit sphere representing the local Xo-

yo-zo co-ordinate frame over 2 orbits with ",(0)= a(O)= r = 0 and e = o.

Figure 7.21 Response of a motorised tether plotted on a unit sphere representing the local Xo-

Yo-Zo co-ordinate frame over 2 orbits with ",(0) = r = 0, a(O) = 0.8 rad and e = o.

Figure 7.22 Response of a Motorised Tether between the 18th and 20th orbit plotted on a unit

sphere representing the local Xo-Yo-Zo co-ordinate frame with ",(0) = r = 0, a(O) = 0.8 rad

ande=O.
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Figure 7.23 Response of a motorised tether plotted on a unit sphere representing the local Xo-

Yo-zo co-ordinate frame over 3 orbits with V/(O) = a(O) = 0, r = 0.9 rad and e = O.

Figure 7.24 Response of a motorised tether plotted on a unit sphere representing the local Xo-

Yo-zo co-ordinate frame over 3 orbits with V/(O) = 0, a(O) = 0.5 rad, r = 0.9 rad and e =O.

Figure 7.25 Response of a motorised tether plotted on a unit sphere representing the local Xo-

Yo-Zo co-ordinate frame over 2 orbits with V/(O)= r = 0 and a(O) = 0.8 rad and e = O.l.
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Figure 7.26 Response of a motorised tether plotted on a unit sphere representing the local Xo-

Yo-Zo co-ordinate frame over 2 orbits with ",(0)= a(O)= 0, r = 0.9 rad and e = 0.1.

Figure 7.27 Response of a motorised tether plotted on a unit sphere representing the local Xo-

yo-zo co-ordinate frame over 2 orbits with ",(0) = 0, a(O) = 0.5 rad, r = 0.9 rad and e = 0.1.

Figure 7.28-Figure 7.31 show a view along the zo-axis of the relative rotating reference frame

centred at the motorised tether's COM in Figure 2.7, which thus represents a view onto the

orbital plane. The position of the upper mass about the COM is recorded at every perigee

passing and plotted onto a unit circle for f = 230 kNm, L = 50 km, Mp = 100 kg and

a(0) = r = O. Hence, the xo-axis is aligned along the perigee and a collection of points near

the xo-axis would therefore suggest that the motorised tether is able to reliably release the

payload at the perigee. Figure 7.28 shows the tether orientation at the first ten perigee

crossing for a motorised tether spinning up within the orbital plane. None of the tether

positions are remotely near the local vertical for the given tether. Continuing to plot the

tether's orientation over the next 490 perigee crossings as shown in Figure 7.29 leads to the

whole unit circle being filled with dots. Note, that the results in Figure 7.29 are wholly
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hypothetically as the tether strength is already exceeded in Figure 7.28. Transferring the

motorised tether from a circular to an elliptical orbit does not yield any different results. For

an eccentricity ofO.1 and 0.2 the given tether in Figure 7.30 and Figure 7.31 does not deliver

the upper payload close to the local vertical at the perigee over the first ten orbits. If the

tether material could withstand higher stresses then eventually the tether is seen in both these

cases to align with the perigee like in Figure 7.29. Consequently, Figure 7.28-Figure 7.31 do

not exhibit any periodic motion, which is necessary to reliably release the payload prior to

the maximum permissible stress being reached.

Yo

•

Figure 7.28 Position of the motorised tether's upper payload at each of the 10 perigee

crossing with e = 0 and ",(0) = -0.9 rad.

Xo

Figure 7.29 Position of the motorised tether's upper payload at each of the 500 perigee

crossing with e = 0 and ",(0)= -0.9 rad.
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Figure 7.30 Position of the motorised tether's upper payload at each of the 10 perigee

crossing with e = 0.1 and \11(0) = -0.5 rad.
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Figure 7.31 Position of the motorised tether's upper payload at each of the 10 perigee

crossing with e = 0.2 and \11(0) = -0.5 rad.

The bifurcation diagram in Figure 7.32 investigates whether any periodic windows exists for

a spinning motorised tether on a circular orbit for the given initial conditions. With the

diagram filled with dots and the lack of any periodic windows Figure 7.32 suggests that no

periodic motion is present. Placing the motorised tether on elliptical orbits yielded the same

result, however, with the angular displacement reaching several hundred thousand radians

within the first orbit passing the method of periodically sampling at the perigee in order to

generate the bifurcation diagram proved to be prohibitively costly in computational terms.

The first Lyapunov exponent in Figure 7.33 demonstrates that the motion in the bifurcation

diagram is quasi-periodic and not chaotic. Consequently, the planar or non-planar motorised

tether as proposed in this thesis with a constant motor torque is not able to reliably deliver

the payload at the point of release along the local vertical due to the presence of the quasi-

periodic motion. If the spinning motorised tether is to be of practical use in payload orbital
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transfer then in future a method of modulating the motor torque must be investigated. The

first goal must be to transform the quasi-periodic motion into a periodic regime followed by

shifting one of the periodic windows to coincide with the local vertical at perigee.

e

Figure 7.32 Bifurcation diagram of the angular displacement with respect to the orbit

eccentricity. Initial conditions are Ij/(O)= V/(O)=a(O)= a(O)= r = 0, with Mp = 100 kg, L =

20 km, r = 125 kNm. The step size in e is 0.01 and each column of results contains 50 points.
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e

Figure 7.33 First Lyapunov exponent with respect to the orbit eccentricity with M» = 100 kg,

L = 20 km, r = 125 kNm and Ij/(O)= V/(O)= a(O)= a(O)= r = O. The step size in e is 0.01 and

each exponent is evaluated over 40 orbits.

7.4 Duration of Spin-up

The time required to reach the intended AV will depend on many factors. For a 250 kg end

mass at the tip of a 50 km long tether with the motor applying a torque of 311 kNm a period

of approximately 22 hours is needed to reach the intended release velocity on a circular orbit.

Figure 7.34 shows that placing the motorised tether on an elliptical orbit can slightly

decrease the time required before the payload must be released. With an orbit eccentricity of
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0.3 the motorised tether is found in Figure 7.34 to reach the intended release velocity an hour

ooner than the motori ed tether on a circular orbit. A relatively large negative initial angular

di placement i needed to aid the motor to spin-up, whereas for the shorter tether in Figure

7.35 a mailer t rque and initial angular displacement is needed. The 20 km long tether in

Figure 7.35 reache the planned angular velocity in approximately 11 hours, with more

fa ourable initial angular displacements reducing this again by an hour. The point-mass

m del in (2.78)-(2.81) is employed to generate Figure 7.36 and Figure 7.37. Note how the

lack of teth r rna s and mass moment of inertia in the model reduces the expected spin-up

time from 22 hours to 18.5 hours, highlighting the importance of an accurate tether model.

When the motori ed tether is not initially planar then the spin-up time takes longer the larger

the initial out-of-plane angle measures. For the given values in Figure 7.36 the delay is,

howe er, at most 45-60 minutes. Figure 7.37 shows that the initial orientation of the motor

torque axi relative to the orbital plane is a critical parameter in the spin-up of the motorised

tether. he larger y i the more time is required to obtain the desired angular velocity. In

contra t to the previous cases, though, the delay is not roughly an hour but ranges between

60 minutes and 12 hours for the given values. Consequently, ensuring the motor torque axis

is perp ndicular to the orbital plane prior to engaging the motor can save a significant

amount of pin-up time.

0.02
0.0175

...... 0.015[/)

~ 0.0125cu
I-l 0.01
.w
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5 10 15 20 25
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Figure 7.34 Duration of spin-up with a motorised tether to reach payload release velocity

(da hed) f r 'f/(O)= -1.I rad r = 311 kNm, L = 50 km, M» = 250 kg, e = 0 (black), e = 0.1

(red), e = 0.2 (blue), e =OJ (green).
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Figure 7.35 Duration of spin-up with a motorised tether to reach payload release velocity

(dashed) for e = 0, r = 182 kNm, L = 20 km, Mp = 250 kg, '1'(0) = -0.4 rad (black), '1'(0) =
-0.6 rad (red), '!'CO)= -0.8 rad (blue), '1'(0) = -1.0 rad (green).
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Figure 7.36 Duration of spin-up with a motorised tether to reach payload release velocity

(dashed) for e = 0, r = 311 kNm, L = 50 km, M» = 250 kg, a(O) = 0 rad (black), a(O) = 0.2

rad (red), a(O) = 0.4 rad (blue), a(O) = 0.6 rad (green).
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Figure 7.37 Duration of spin-up with a motorised tether to reach payload release velocity

(dashed) for e = 0, r = 311 kNm, L = 50 km, M« = 250 kg, y = 0 rad (black), y = 0.2 rad (red),

y = 0.4 rad (blue), y = 0.6 rad (green).
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7.5 Conclusions

Employing a reaction wheel to provide the necessary resistive torque for the propulsive

tether to spin-up is not possible because the motor torque is too great for the flywheel's

relatively low mass moment of inertia. A way of increasing the outrigger's mass moment of

inertia is to deploy two further tethers from the stator drum with end masses attached to the

tether's tip. The tethered outrigger system could be designed to have the same mass moment

of inertia as the propulsive side but this leads to the outrigger tether always being longer than

the propulsive tether if the outrigger end masses are to be less than the payloads. A better

design is to utilise the gravity gradient and trap the outrigger system with the gravitational

potential well. In this manner the outrigger tether length can be significantly reduced and the

outrigger end masses can be minimised, thus saving valuable launch mass and cost, as well

as exposing less tether surface area to the space environment.

With current materials the maximum !lV to be expected with a motorised tether is between

600-1400 mls depending on the tether length and payload mass. The duration of the spin-up

lasts approximately between half and a full Earth day but may vary by an hour, say,

depending on the initial conditions and orbit eccentricity. Ensuring the motor torque axis

remains perpendicular to the orbital plane is vital otherwise the spin-up time will be greatly

increased. The centripetal accelerations at the point of release can be designed to be

acceptable for the transportation of astronauts. However, the motorised tether is suited more

to the transportation of cargo since the tether performs better with lower payload masses.

The motorised tether has the ability to shift the datum of a hanging tether, which may have

useful applications in Earth monitoring or tethered interferometry. Out-of-plane initial

angular displacements or the motor torque axis not remaining perpendicular to the orbital

plane cause the motorised tether to precess. Furthermore, the motion of the motorised tether

with a constant motor torque is found to be regular, but quasi-periodic, which implies that

the payload cannot be reliably delivered at perigee along the local vertical. If the spinning

motorised tether is, therefore, to be of practical use a method of modulating the motor torque

must be found in future to ensure the spin-up is periodic and commensurate with the local

vertical.
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ChapterS
Conclusions and Further "Work

8.0 Conclusions

Of the many proposed forms of advanced space propulsion, space tethers have the potential

in the near term to reduce the operational costs of the ISS, decrease costs of launching

payloads into orbit. deorbit space junk, transfer payloads from low to high orbits and vice

versa, and ultimately offer the possibility of a low cost and reusable transportation system for

cargo destined from Earth to space stations, asteroids, moons or planets. Space tethers are

high strength, low-density cables that connect satellites, probes or space stations to each

other in space. The cables are typically very long structures ranging from a few hundred

metres to several kilometres and have a relatively small diameter, being only a few

millimetres thick. Many applications have been proposed for tethers and much experience

and knowledge has been gained through in-orbit flight-testing of conductive and non-

conductive tethers. Tethers are also being supported by the major space agencies and

companies can already foresee the possibility of commercially exploiting tethers to make a

profit. The aim of this thesis was to address some of the issues relating to the performance

and dynamics of momentum exchange tethers.

The equations of motion governing a rigid massless tethered dumbbell and a rigid

symmetrical motorised tether were derived. Constraining the tether's motion to a Keplerian

orbit reduced and considerably simplified the three dimensional equations of motion from

four to two ordinary differential equations, thus making them more expedient to integrate

numerically. The presented results indicate that the simplified equations appear to be valid

approximations as the qualitative behaviour is wholly captured, but small quantitative

discrepancies exist. which need to be taken into account when considering payload orbital

transfer with tethers, for example. The multiple scales perturbation method successfully

generated an approximate closed-form solution to the three dimensional motion of a tethered

dumbbell on an elliptical orbit. which is valid for small initial angular displacements close to

the gravity vector and orbit eccentricities less than 0.1. Moreover, the derived analytical

solution elegantly explains some of the fundamental principles of the tether's motion.

However, numerical integration has to be employed if the dynamics of the tether are to be

comprehensively studied for values greater than the given initial conditions and those likely

to be encountered in space.
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The planar attitude dynamics of a tethered dumbbell on an elliptical orbit were numerically

explored. The orbit eccentricity and initial angular displacement were found to affect the

boundary between long-term libration and tumbling. The largest stable region exists for a

tether with no initial angular velocity and initially positioned close to the local vertical. The

long-term libration-tumbling boundary is globally symmetrical about the local vertical but

was not found in all cases to be a clearly defined and continuous curve since some regions

exhibited discontinuities. A further asymmetrical boundary was discovered for the onset of

spin during the first completed orbit, which results in a positive initial angular displacement

delaying the onset of tumbling, whereas a negative initial condition encourages tether

rotation. The two identified boundaries describe a region where tether Iibration occurs as a

transient and a remarkable structure was uncovered within the region that governs the

duration of the transient. The onset of chaos was similarly found to be a function of orbit

eccentricity and initial angular displacement. The first Lyapunov exponent with respect to

the orbit eccentricity and initial condition yielded a region corresponding to the area of long-

term libration. The correlation between tumbling and positive increase of the Lyaponov

exponent was found to be very striking and unequivocal. The results suggest a planar tether

with no initial angular velocity on an elliptical orbit does not indefinitely librate in a chaotic

manner and does not tumble in a periodic manner. Finally, the generation of velocity

increments upon completion of a single orbit through the spin-orbit coupling on an elliptical

orbit was not found to be of particular use. Few initial conditions exist that allow the payload

to be reliably released above the facility when the spinning tether is aligned exactly along the

gravity vector at perigee. Moreover, the largest positive AV of a couple of hundred metres

per second at perigee does not necessarily occur when the payload is above the facility with

the tether aligned along the gravity vector, thus releasing the payload in a non-optimum

configuration in relation to the orbital velocities.

A relatively small out-of-plane initial displacement was not found to significantly affect the

region of stable motion observed for the planar tethered dumbbell. The dumbbell deviated

from the planar tether's qualitative behaviour only when the initial out-of-plane angular

displacement became sufficiently large and the maximum permissible out-of-plane angle for

stable motion occurred for a tether initially aligned along the local vertical. A positive initial

condition in the orbital plane resisted tumbling within the first orbit but an increase in the

orbit eccentricity promoted tether rotation. In general a larger initial condition in the initial

out-of-plane angular displacement promoted tether rotation although a narrow band exists for

large initial out-of-plane angular displacements where the tether was found to librate during

the first completed orbit. The transient dynamics of the tethered dumbbell on a circular orbit

were observed to be intricate and complex. A multitude of plateaux exist where the same
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number orbits are completed before tumbling ensues. The boundary between two plateaux

was not observed to be a discrete jump but rather a peak is formed between two regions

where more orbits are completed before spin occurs. A strong link was observed between

libration and regular tether motion and between chaos and a tumbling dumbbell, which

suggests a dumbbell Iibrating out of the orbital plane is associated with regular motion and a

chaotic regime gives rise to tumbling.

Three fundamental tether motions were considered for payload orbital transfer: hanging,

prograde libration and prograde motorised spin. The symmetrical double-ended motorised

spinning tether performed best and was most efficient, improving by two orders of

magnitude on the librating tether which in turn improved on the hanging tether by roughly a

factor of two. An upper payload using long tethers with a motorised tether on a circular orbit

can be transferred from a low to a geostationary Earth orbit by employing relatively high

motor torque and a safety factor on the tether strength close to unity. Multiple tethered stages

or tethers on elliptic orbits have to, consequently, be considered for geostationary payload

transfer unless expendable tethers are employed. Despite their poor performance, short

tethers are worth considering for use in conjunction with the multiple tethered stages because

of their efficiency, overall system mass reduction, cost effectiveness, better survivability and

greater range of initial conditions for which spin-up is possible. Consequently, the motor

should be spun prior to tether deployment rather than deploying the tethers fully before

commencing spin-up, as modelled in this thesis. Two common literature results, the constant

efficiency index of seven for a hanging tether upper payload release and the maximum

efficiency index of fourteen for an upper payload released from a prograde librating tether,

were found to be a lower bound and quite readily breached, respectively. Orbit

circularisation through tether release was found to be feasible with retrograde librating

tethers. Moreover, upon circularising either the upper or lower payload the payload released

from the other end of a symmetrical tether travels on a nearly circular orbit. When the point

of release does not occur along the local vertical then a non-optimum release of the payload

was found to severely reduce the performance of payload transfer with tethers.

Consequently, a very precise and accurately timed release is important for the success of

payload orbital transfer with tethers since missing the point of release by a single degree with

a spinning tether, say, can cause the payload to miss its required target. The large

discrepancies in orbit transfer between ideal and non-optimum release scenarios call into

question the use of mechanical catch mechanisms and therefore released payloads will most

likely have to correct the inaccuracy at release by firing rocket thrusters.
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Employing a reaction wheel to provide the necessary resistive torque for the propulsive

tether to spin-up was deemed not to be possible because the motor torque is too great for the

flywheel's relatively low mass moment of inertia. A way of increasing the outrigger's mass

moment of inertia is to deploy two further tethers from the stator drum with end masses

attached to the tether's tip. The tethered outrigger system can be designed to have the same

mass moment of inertia as the propulsive side but this leads to the outrigger tether always

being longer than the propulsive tether if the outrigger end masses are to be less than the

payloads. A better design is to utilise the gravity gradient and trap the outrigger system with

the gravitational potential well. In this manner the outrigger tether length can be significantly

reduced and the outrigger end masses can be minimised, thus saving valuable launch mass

and cost, as well as exposing less tether surface area to the space environment.

With current materials the maximum 11V to be expected with a motorised tether is between

600-1400 mls depending on the tether length and payload mass. The duration of the spin-up

lasts approximately between half and a full Earth day but may vary by an hour, say,

depending on the initial conditions and orbit eccentricity. Ensuring the motor torque axis

remains perpendicular to the orbital plane was found to be vital otherwise the spin-up time is

greatly increased. The centripetal accelerations at the point of release can be designed to be

acceptable for the transportation of astronauts. However, the motorised tether is suited more

to the transportation of cargo since the tether performs better with lower payload masses.

The motorised tether has the ability to shift the datum of a hanging tether, which may have

useful applications in Earth monitoring or tethered interferometry. Out-of-plane initial

angular displacements or the motor torque axis not remaining perpendicular to the orbital

plane caused the motorised tether to precess. Furthermore, the motion of the motorised tether

with a constant motor torque was found to be regular, but quasi-periodic, which implies that

the payload cannot be reliably delivered at perigee along the local vertical.

8.1 Further Work

In the treatment of the tethered dumbbell this thesis assumed the initial in- and out-of-plane

angular velocity to be zero. Karasopoulos and Richardson (1992) carried out a preliminary

study for the planar dumbbell with vi(O):;tOand the resulting dynamics look intriguing as,

for example. a period one window emerges for a librating tether. However, the study is not

very deep and thus there is certainly more to be uncovered. Some ofthe dumbbell's periodic

attitude motion was identified in this thesis by inspecting the presented bifurcation diagrams

but a map of all possible periodic attractors is still lacking. A full description of the route to

chaos and a classification of the bifurcations that occur for the dumbbell have also not

appeared so far in the literature. Perhaps software such as Aut097 by Doedel (1981) can aid
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in the definition of the possible bifurcations. The Lyapunov exponent should be calculated

for the entire parameter space of the three-dimensional tethered dumbbell in order to

conclusively prove the link between tumbling and chaos. Moreover, the obtained results

could then be compared to the Melnikov function derived by Koch and Bruhn (1989), and

Tong and Rimrott (1991), to evaluate how val id the analytical predictions are for the chaotic

motion of the dumbbell. During the chaotic regime the rigid-body attitude model of the

dumbbell exhibits at times very fast modulations. In practice it is questionable whether a

flexible tether can withstand such modulations. A flexible tether model could, therefore, shed

light on the validity of the rigid-body model's predictions when chaos is present. The work

in this thesis could also be extended by investigating the dynamics of the tethered dumbbell

on parabolic and hyperbolic orbits. This has applications for spacecraft on flyby trajectories,

as well as the ascent trajectories of rockets from Earth.

The analytical treatment provided by the method of multiple scales in this thesis was not able

to provide any valid results for large orbit eccentricities. In particular the modulation

equations could not be employed for a stability analysis since these equations each contained

only a single term. Semi-analytical techniques used quite regularly in celestial mechanics to

analyse celestial dynamics at high orbit eccentricities, as described by Brumberg and

Brumberg (1999), can possibly be applied to the tethered dumbbell and thus permit an

advance to be made. Furthermore, an analytical or semi-analytical solution may contribute to

the physical understanding as to why the transient libration exists and why the instability

arises that ultimately causes the tether to tumble.

If the spinning motorised tether is to be of practical use, a method of modulating the motor

torque must be found in future to ensure the spin-up is periodic and commensurate with the

local vertical. Without this the motorised tether is of no use to payload orbital transfer with

tethers. The deployment process as proposed in this thesis should be modelled to investigate

whether the gravity gradient torque can in part be overcome by first initiating the motor and

then deploying the tethers to full length. A flexible tether model would be desirable to model

this deployment process. In addition to this, a flexible tether model could analyse and

quantify the potential hazard of the propulsive tethers clashing with the outrigger tethers. A

clash is probably highly likely as the distance between the rotor and stator is very small

compared to the length of the tethers, where any small out-of-plane angular displacement

will lead to a catastrophic failure. This is a fundamental problem that motorised tethers must

overcome if the concept is to be proven viable.
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If motorised tethers are in future shown to be practically feasible then the concept of

employing them in payload orbital transfer becomes interesting. The fundamental issue with

payload transfer with tethers is the ability to reliably and accurately catch and release the

payload. The release and catch mechanism must be flexible enough to account for the

payload's trajectory error, if no onboard fuel is to be expended by the payload, and yet must

be highly accurate if no further errors are to be introduced. Some ingenious conceptual

design is required here to solve this issue. Only when these issues are resolved can the

concept of interplanetary payload exchange with tethers be realistically considered. For this a

very realistic model is required to account for all the gravitational perturbations and shifts in

the tethers' centre of mass due to the attitude motion. Moreover, the Earth's oblateness needs

to be included, for example, to take account of the tether's perigee advance over time, which

would have an effect on the tether's pointing accuracy, say. Finally, the equation of motion

governing the three-dimensional motion of a massive motorised tether may be desirable for

such an analysis. If so then the derivation of these equations is probably best achieved by

employing Euler's equations instead of the methodology adopted in this thesis.
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