
Application and Network Traffic Correlation of

Grid Applications

Jonathan Paisley

September 28, 2006

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy at the University of Glasgow

Department of Computing Science
University of Glasgow
c© 2006 Jonathan Paisley

2

Abstract

Dynamic engineering of application-specific network traffic is becoming more im-

portant for applications that consume large amounts of network resources, in par-

ticular, bandwidth. Since traditional traffic engineering approaches are static they

cannot address this trend; hence there is a need for real-time traffic classification to

enable dynamic traffic engineering.

A packet flow monitor has been developed that operates at full Gigabit Eth-

ernet line rate, reassembling all TCP flows in real-time. The monitor can be used to

classify and analyse both plain text and encrypted application traffic.

This dissertation shows, under reasonable assumptions, 100% accuracy for

the detection of bulk data traffic for applications when control traffic is clear text

and also 100% accuracy for encrypted GridFTP file transfers when data channels

are authenticated. For non-authenticated GridFTP data channels, 100% accuracy is

also achieved, provided the transferred files are tens of megabytes or more in size.

The monitor is able to identify bulk flows resulting from clear text control protocols

before they begin. Bulk flows resulting from encrypted GridFTP control sessions

are identified before the onset of bulk data (with data channel authentication) or

within two seconds (without data channel authentication). Finally, the system is

able to deliver an event to a local publish/subscribe server within 1 ms of identifi-

cation within the monitor. Therefore, the event delivery introduces negligible delay

in the ability of the network management system to react to the event.

3

Acknowledgements

I would like to thank the following people for their help and support during the

development of this dissertation:

My supervisors Joe Sventek and Peter Dickman for all their advice and patience,

and particularly for their support while I have been working away from Glasgow.

The p2popt project for allowing me to make use of their Gigemon hardware, and

also the project members at Lancaster University for providing access to remote

computing resources.

The systems team at DCS for letting me at their computers, and all the people in-

volved in setting up the Gigemon at the department router, in particular Pete Bailey,

Colin Cooper, Chris Edwards, Rolly Gilmour, and Douglas MacFarlane.

My DCS colleagues, particularly Alistair Hutton, for tea and banter, and for listen-

ing to my brain dumps.

The yoda of OmniGraffle, Peter McMaster, for his extensive diagram consultancy,

and for patiently advising while I was working at home.

My wonderful family: my parents for satisfying my thirst for wires and computery

things as a child, including letting me wire up the sofa; my brothers Mike and Matt

for humouring my techy obsession.

And finally, Deborah. For her delectable cooking, surest sense of ‘rightness’ and

objective advice. For being truly wonderful.

Contents

1 Introduction 10
1.1 Background . 10
1.2 Current Practice . 11
1.3 Dynamic Detection . 11
1.4 Thesis Statement . 12
1.5 Organisation of Dissertation . 12

2 Related Work 13
2.1 Networking Background . 13

2.1.1 Technology . 13
2.1.2 Management . 14
2.1.3 Summary . 16

2.2 Measurement . 16
2.2.1 Active . 16
2.2.2 Passive . 17
2.2.3 Summary . 18

2.3 Analysis . 18
2.3.1 Classification . 19
2.3.2 Application Level . 21
2.3.3 Encryption . 21
2.3.4 Tools . 21
2.3.5 Summary . 22

2.4 Monitoring . 23
2.4.1 Packet Level . 23
2.4.2 Flow Level . 26
2.4.3 Intrusion Detection . 28
2.4.4 Summary . 29

2.5 Conclusions . 29

3 Methodology 31
3.1 Network Infrastructure . 31
3.2 Line-Rate Data Capture . 32
3.3 Trace Analysis . 34

CONTENTS 5

3.4 Testing and Evaluation . 34
3.5 Summary . 35

4 Grid Bulk Transfer Applications 37
4.1 Characteristics . 37
4.2 HTTP . 39
4.3 FTP . 40
4.4 GridFTP . 43
4.5 Storage Resource Broker . 46
4.6 BBFTP . 49
4.7 iperf . 50
4.8 TLS/SSL . 52
4.9 Summary . 52

5 Real-Time Application Protocol Analyser 54
5.1 Requirements . 54
5.2 Bro Prototype . 55
5.3 Design . 56

5.3.1 Circular Buffer Capture Interface 58
5.3.2 TCP Reassembly . 59
5.3.3 Connection Processing . 61
5.3.4 Application Protocol Identification 61
5.3.5 Basic Protocol Analyser Interface 63
5.3.6 Threaded Protocol Analyser Interface 64

5.4 Implementation . 64
5.4.1 ProtoThreads . 65
5.4.2 Protocol Analyser Interface . 67
5.4.3 Application Protocol Identification 68
5.4.4 Event Reporting . 68
5.4.5 Testing . 69

5.5 Evaluation . 69
5.5.1 New Connection Rate . 69
5.5.2 Hash Table Sizing . 71
5.5.3 IP Fragments . 71
5.5.4 Scalability . 72
5.5.5 Points of Failure . 73

5.6 Summary . 76

6 Plain Text Analysis 77
6.1 Goals . 77
6.2 Costs and Limitations . 78
6.3 Analysers . 78

CONTENTS 6

6.3.1 Event Structure . 79
6.3.2 Generic Bulk Data . 79
6.3.3 SRB Analyser . 80
6.3.4 HTTP Analyser . 82
6.3.5 FTP Analyser . 83
6.3.6 BBFTP Analyser . 84
6.3.7 iperf Analyser . 85

6.4 Sample Flow Statistics . 85
6.4.1 HTTP . 86
6.4.2 FTP . 88
6.4.3 Elephants . 90

6.5 Evaluation . 91
6.5.1 Performance . 91
6.5.2 Memory Usage . 93
6.5.3 Design Trade-offs . 94
6.5.4 Analyser Development Case Study 95
6.5.5 Detection Accuracy Experiment 98

7 Encrypted Heuristic Analysis 102
7.1 Characterisation of the Problem . 102
7.2 Cryptography in Bulk Transfer Protocols 103
7.3 Heuristic Analysis Approaches . 104
7.4 GridFTP Timing Analysis . 107

7.4.1 Method . 107
7.4.2 Interpreting Results . 108
7.4.3 Aggregate Timing . 111
7.4.4 Discussion . 115

7.5 Simplified GridFTP Classification . 118
7.5.1 Design . 119
7.5.2 Implementation . 120
7.5.3 New Events . 122
7.5.4 Real-time Monitor Changes . 123

7.6 Evaluation . 123
7.6.1 Method . 124
7.6.2 Results . 125
7.6.3 Discussion . 127

8 Conclusion 130
8.1 Validation of the Thesis Statement . 130

8.1.1 Real-Time Network Monitor and Plain Text Analysis 130
8.1.2 Heuristic Analysis of Encrypted Traffic 131

CONTENTS 7

8.1.3 Event Generation for Traffic Re-engineering 132
8.2 Future Work . 132

8.2.1 Real-Time Monitor . 132
8.2.2 Protocol Analysis . 133

8.3 Summary . 134

A Real-Time Application Protocol Analyser Implementation 135
A.1 EPA Macros . 135
A.2 Header Fields . 137

Glossary 138

Acronyms 139

Bibliography 141

List of Figures

3.1 Experimental network topology. 32

4.1 Interactive FTP packet trace. 41
4.2 Interactive FTP transcript. 42
4.3 GridFTP transcript. 45
4.4 SRB topology. 48

5.1 Real-time analyser block design. 58
5.2 Circular capture buffer (1). 59
5.3 Circular capture buffer (2). 60
5.4 Data flow for TCP connections. 61
5.5 Finite state machine. 62
5.6 Finite state machine vs. linear search. 63
5.7 ProtoThread example. 66
5.8 Ragel input file. 68
5.9 Real-time monitor CPU load. 70
5.10 Connection rate experiment summary charts. 72
5.11 Virtual memory paging failure. 74

6.1 Network usage on DCS edge router between 20-11-2005 and 27-11-
2005. 86

6.2 HTTP connection counts over one week. 87
6.3 Cumulative distributions of HTTP responses. 88
6.4 FTP size and duration distributions. 90
6.5 Elephant detector transfer rates. 91

7.1 GridFTP message sequences. 109
7.2 GridFTP message timings. 109
7.3 GridFTP message sequence with long filename. 111
7.4 SIZE message close-up. 112
7.5 GridFTP delay distribution by message. 112
7.6 GridFTP delay distribution by hour. 114
7.7 GridFTP QQ Plot. 116
7.8 Time sequence of GridFTP. 118

7.9 Sets of potential GridFTP data connections. 120
7.10 Distribution of GridFTP RETR-150 time window durations. 126
7.11 Bulk data connection identification delay density. 126

A.1 ProtoThread internals. 136
A.2 DAG record header. 137

List of Tables

4.1 iperf header fields. 50
4.2 Summary of bulk transfer application details. 53

6.1 Distribution of HTTP server port numbers. 88
6.2 Counts of FTP port numbers seen for control and data flows. 89
6.3 Memory usage for plain text analysers. 93

7.1 Connection counts by file size. 126

List of Listings

6.1 iperf Ragel state machine definition 95
6.2 Source code to iperf analyser. 97
7.1 GridFTP heuristic analyser pseudocode. 121
7.2 Non-bulk simulation connection code. 125

List of Inserts

7.1 Introduction to box and whiskers plots. 113
7.2 Interpreting quantile-quantile plots. 117

Chapter 1

Introduction

1.1 Background

The practice of scientific research is increasingly associated with the extraction of
information from exponentially increasing volumes of experimental data [69]; ex-
amples abound in bioinformatics, geophysics, astronomy, medicine, engineering,
meteorology and particle physics. Ever-larger processing and communication re-
sources are required to support such information extraction, and significant finan-
cial support is provided by a number of governmental organisations (e.g., UK e-
Science [1], EGEE [2], TeraGrid [5]) to facilitate this practice.

Scientific research typically requires analysis and correlation of multiple ex-
perimental datasets. Once processing resources have been chosen, the requisite
data must be made available to these processing resources. While there are research
activities in support of distributed queries to remote data [10], much of the current
practice consists of transfers of entire experimental data collections for processing
by a local cluster of processors. As the datasets in many experimental domains are
extremely large, such transfers can consume a considerable portion of the band-
width available from academic research and/or commercial networks. The recent
development of high-speed TCP variants [56, 98] can only exacerbate the situation.

Research activities that use distributed network and computing resources in
this manner have become known as ‘Grid computing’, a term which embodies the
idea of dynamically managed, wide-area distributed computing. One definition is:

[A] Grid is a type of parallel and distributed system that enables the shar-
ing, selection, and aggregation of geographically distributed “autonomous”
resources dynamically at runtime depending on their availability, capability,
performance, cost, and users’ quality-of-service requirements. [27]

Although these ‘Grid’ systems represent a wide range of application types and cor-
responding network usage (for example, computationally driven experiments may
use very little network resources but significant processing resources), those involv-
ing bulk data transfers are the most relevant in this work because they dominate
the network load. As more and more Grid-style projects move into production, the
effect on the network will only increase.

1.2: CURRENT PRACTICE 11

1.2 Current Practice

Most operators of academic research and/or commercial networks will have pro-
visioned their networks sufficiently to handle the growing bulk transfer traffic, of-
ten by explicitly provisioning routers and links to carry this type of traffic. This is
certainly the case for the latest iteration of the UK’s education and research net-
work, SuperJANET5 [102]. Of primary concern to the operators is the impact of
prolonged, high-volume, traffic on the quality of service experienced by other users
of their networks. Ideally, traffic may be segregated, both to ensure the efficiency of
bulk data transfers but also to prevent disruption of other network users. However,
segregation requires detection and classification of the transfers.

If the operators are able to detect the onset of bulk transfer activity, they
can reengineer the bulk traffic onto specific resources. Unfortunately, the accurate
detection of many Grid-style applications is difficult because they do not make
use of fixed, well-known transport-level identifiers (such as TCP port numbers).
Therefore, Service-Level Agreements (SLAs) for both Grid users and others cannot
be maintained by static traffic engineering practises that fail to adequately cope
with such dynamic applications.

Traditional traffic engineering approaches involve time-scales of days or
more (often significantly longer) to respond to changing demands. Network util-
isation monitoring is carried out at too coarse a level to permit the identification
of particular flows, and certainly not in time to manage them properly. Therefore,
dynamic traffic engineering is needed.

Operators can use MPLS [93, 13] to define multiple paths (Label Switched
Paths, in MPLS terminology) between ingress and egress routers within their net-
work, which support differential routing based on factors other than destination
address (which is the fundamental principle of IP routing). The ingress router has
the task of assigning an incoming packet to an MPLS Forwarding Equivalence Class
(FEC) that dictates the subsequent path through the network.

By dynamically modifying the rules that choose the appropriate FEC based
on information available in the packet header, real-time traffic engineering can be
realised. However, as indicated above, the identification of Grid-style bulk trans-
fers at the network level is non-trivial. Doing so in real-time, such that the identified
flows can be re-engineered according to network operator policy, is even more dif-
ficult.

1.3 Dynamic Detection

Bulk data transfer protocols define two types of flow:

• Control traffic that determines the data to be transferred and various charac-
teristics of the actual data transfer.

1.4: THESIS STATEMENT 12

• Data traffic to actually transfer the data between the participants.

This dissertation focuses on the dynamic classification and detection of bulk data
Grid-style transfer applications by packet payload inspection, specifically address-
ing the following issues:

1. Signalling and data carried over the same flow.
2. Signalling and data carried over different flows.
3. Detection of such traffic when carried over flows with dynamically assigned

TCP port numbers.
4. Classification of such traffic when the signalling data is encrypted.

It is assumed that machine inspection of packet payloads for reasons of network
management is not, ultimately, a privacy concern. This assumption is validated by
the common use of intrusion detection systems that depend on payload scanning.

This work has been previously reported on, in less detail, in [81]. The work pre-
sented in this dissertation and [81] is entirely my own, but I am grateful to Professor
Joe Sventek for his assistance in co-authoring [81].

1.4 Thesis Statement

Given the background outlined above, I assert that:

T1. A real-time network monitoring tool can be built that performs full plain text
analysis of Grid bulk data traffic at line rate.

T2. This tool can be extended to perform heuristic analysis of encrypted or inac-
cessible payloads at line-rate.

T3. Such analysis can generate events early enough to enable dynamic traffic
re-engineering.

1.5 Organisation of Dissertation

The main body of the dissertation begins in Chapter 2 with the related work. Chap-
ter 3 covers the methodology used to validate the claims above, and in Chapter 4
some specific Grid applications used in the remainder of the work are studied in
detail. Chapter 5 describes in detail the development of a real-time monitoring tool
for the analysis of the applications of interest, and then plain text and encrypted
heuristic protocol analysis techniques are covered in Chapters 6 and 7, respectively.
Chapter 8 concludes and covers areas of potential future work.

Chapter 2

Related Work

This chapter examines related work that is relevant to the topic of this dissertation.
It begins by covering the necessary background in networking technologies and
network management practise. Next, approaches for making network-level mea-
surements are covered and widely used techniques for analysing the resulting data
are examined. Finally, the implementation challenges of building systems to handle
such analyses are examined.

2.1 Networking Background

This section summarises the main link- and transport-level networking technolo-
gies of relevance to the dissertation, and describes the issues involved in the man-
agement of today’s high-speed internets.

2.1.1 Technology

A key networking technology used in the core of many networks is Ethernet [3],
a link-layer protocol for packet exchange. Common deployments are Fast Ethernet
(100 Mbits/s) and Gigabit Ethernet (1 Gbits/s). Both of these may be transported
over an electrical twisted pair, while Gigabit Ethernet also supports an optical fibre
medium (a pair of fibres are used to achieve a full-duplex link). Fast Ethernet (and
also the original 10 Mbits/s Ethernet) are common in local area network (LAN) in-
stallations, whereas Gigabit Ethernet is often used as a backbone between switches
and routers.

Other carrier-grade link technologies include the range of Optical Carriers
(OC): OC-3, OC-12, OC-48, and OC-192, with unidirectional speeds of 155 Mbits/s,
622 Mbits/s, 2.5 Gbits/s, and 9.6 Gbits/s, respectively.

The Internet Protocol (IP) can be carried by any of the above link-layer pro-
tocols. In turn, the IP protocol can carry Transmission Control Protocol (TCP) [88]
packets. TCP is a reliable transport mechanism that provides a bidirectional stream
interface for communication between two end points. It adaptively adjusts the

2.1: NETWORKING BACKGROUND 14

transmission rate in response to network losses, and multiple TCP channels oper-
ating on a shared link will share the available bandwidth proportionally. The TCP
‘slow start’ mechanism allows a connection to slowly probe the network to de-
termine the available capacity, avoiding congestion from an inappropriately large
burst of data. Although this can be a problem for short-lived connections which
fail to reach the full bandwidth usage before they are terminated, it tends to be
insignificant for long-lived bulk data transfers.

In today’s very high bandwidth Internet paths—as used by large scien-
tific research projects—standard TCP suffers for several reasons. It uses a window
mechanism to limit the amount of data in-transit on the network that has not been
acknowledged by the recipient. For most efficient use of the network, the links
involved in the route between the end hosts should be constantly fully utilised.
This requires a window size equal to the product of the link bandwidth and the
transmission delay, known as the bandwidth-delay-product (BDP). A path with
very high bandwidth, very long delays, or both, may have a BDP that exceeds the
maximum allowable window size in TCP, which is 64 Kbytes. Extensions for high-
performance TCP have been established [55] to alleviate this problem, by introduc-
ing scaled windows, which increase the window size to 1 Gbyte.

Unfortunately, with such large window sizes standard TCP performs poorly
in the event of packet losses because they have a drastic effect on throughput. A
pragmatic approach that can help—and also ‘steal’ a larger share of bandwidth—is
to make bulk data transfers using parallel TCP streams. The detrimental results of
losses are then distributed among the streams, thus improving throughput.

Several alternative implementations of the TCP congestion control algorithm
have been proposed, such as TCP Vegas [23], FAST TCP [56], H-TCP [98], High-
Speed TCP [45] and Scalable TCP [61]. Vegas and FAST both use a delay-based
approach rather than loss as a measure of congestion. H-TCP and Scalable TCP,
which builds on HighSpeed TCP, make alterations to the congestion window up-
date algorithm to better support high BDP links. All of these TCP variations and
are intended to co-exist with other traffic using traditional TCP.

Beyond modifications to the TCP protocol to ensure high performance across
large BDP links, improvements to end-host TCP and application implementation
can be necessary to avoid processing bottlenecks. For example, use of zero-copy
sockets (where packets are received by the network card and made directly avail-
able to a user process without the overhead of copying) and checksum offloading
(the network card deals with checksum calculation) have been proposed [31].

2.1.2 Management

Management of a network involves both planning for future demand and ensuring
that the day-to-day operation of the network falls within the levels of service agreed
upon between an ISP and its customers. Failure to meet these levels could lead to

2.1: NETWORKING BACKGROUND 15

significant penalties, depending on the nature of the agreements made.
The process of managing the flow of traffic through a network is known as

traffic engineering [12]. This takes place over a range of timescales. For example:
capacity planning would be undertaken over periods ranging from days to years;
manual routing parameter adjustments from minutes to days; and packet-level pro-
cessing from picoseconds to microseconds. The engineering process depends on
having sufficient capacity and the ability to effectively control routes, queues and
anything else that can affect the traffic flow. The process used to make control deci-
sions may involve forecasting future demand or monitoring in real time to identify
actual link utilisation. Here, ‘real-time’ can simply mean humans monitoring the
network for congestion and attempting resolution on an ad-hoc basis.

Creating plans to cope with expected traffic demands is time consuming,
and large changes have the potential to cause disruption. Therefore, a significant
challenge is to achieve automated control processes that can adapt quickly without
being too costly or causing instability.

Diffserv1 [19] is a standard technique for specifying Quality of Service (QoS)
parameters for a flow, where an edge router may classify packets by setting or
reusing the Type of Service (TOS) field in the IP header. Internal routers can then
apply differential routing depending on this field in addition to the destination IP
address, according to some predefined QoS policy.

As previously described in Chapter 1, Multi Protocol Label Switching
(MPLS) [93], is an alternative technique that avoids the need for destination-based
routing within the network core. Packets are still classified at an edge router (a La-
bel Switching Router), but instead of setting TOS bits, a Forwarding Equivalence
Class is assigned that dictates the path through the network. Such paths are known
as Label Switched Paths (LSPs) and can be configured with different QoS guar-
antees, such as bandwidth, delay or loss. An advantage of MPLS over traditional
IP routing is that the forwarding decision at each node can be much simpler than
the potentially complex longest-prefix matching required by the IP protocol. MPLS
simply requires indexing into a table using a 20-bit label field. By adjusting LSPs
and classification rules, MPLS may be used for effective traffic engineering [13].

The long-term network planning activities described earlier generally man-
age to deal with long-term trends in traffic, but specific load changes or burstiness
(perhaps over several minutes or hours) are not accommodated. Given some mech-
anism for identifying the current state of the network, traffic can be re-engineered
by updating routing tables, adjusting LSPs, or changing the rules for Diffserv or
FEC mapping. Rondo [7] is an automated system intended to manage congestion
in core networks in near real time (around 30 seconds to one minute). Based on the

1. Contrast with Intserv, which requires applications to specify their requirements [22] and router
support along the entire path.

2.2: MEASUREMENT 16

results from a series of network probes, it reroutes Label Switched Paths to reduce
the number of overloaded links. It does not take into account the specific causes of
congestion (for example, a particular set of bulk data flows), dealing instead with
the aggregated LSPs that are responsible for congestion.

2.1.3 Summary

Gigabit Ethernet is an ideal technology for the development of network monitoring
techniques both because appropriate hardware is readily available, and because it is
frequently used at the edge of an ISP’s network, where the kind of monitoring sys-
tem dealt with in this dissertation would be deployed. MPLS traffic re-engineering
represents an effective way to dynamically manage specific flows due to its inde-
pendence from the IP routing protocol.

2.2 Measurement

Measurements are used to identify actual performance levels in a network. An
overall goal is to increase the performance of the network for its users. Measure-
ment may be undertaken within an ISP’s network to effectively inform traffic engi-
neering, as discussed in the previous section, or by end users, administrators, and
researchers to understand and resolve network performance issues (perhaps by ad-
justing configuration parameters or protocols). Measurements are also important
for straightforward tasks such as billing and customer reports.

Network measurements can be divided into two distinct categories: active
and passive. Active measurements inject synthetic traffic into the network to ob-
serve network performance. Some infrastructure is required at both endpoints2.
Passive measurements observe the actual traffic on a network link. Two-point pas-
sive measurements can be used to measure one-day characteristics; one example,
that of delay, requires that both measurement points have precisely synchronised
clocks (e.g., using Global Position System receivers).

2.2.1 Active

Active measurements can be undertaken relatively easily using straightforward
tools. They may involve the determination of round-trip times, available band-
width, IP routing, and loss. There are many deployed systems designed to gather
such measurements over long time periods. For example, the NIMI (National Inter-
net Measurement Infrastructure) [86] uses a distributed set of monitoring systems
supporting generic end-to-end, on-demand, monitoring. Other specific projects in-
clude the RIPE NCC3 Test Traffic Measurement project [91, 46], NLANR’s (National

2. Although this may just mean an Internet host that is willing to respond to ping messages.
3. Réseaux IP Europeéns Network Coordination Center

2.2: MEASUREMENT 17

Laboratory for Applied Network Research) NAI (Network Analysis Infrastructure)
[73] and PingER [70].

Other large-scale measurement projects, such as Surveyor [57] and AMP [74]
use similar techniques involving GPS-synchronised clocks for one-way measure-
ments. In contrast, the PingER4 project from the IEPM group at the Stanford Lin-
ear Accelerator Center (SLAC) [70, 54] makes use of the ping tool for performing
RTT measurements. All of these projects involve large numbers of geographically
distributed hosts (typically > 50) which form a testing matrix. In the case of the
PingER project, for example, ten 100-byte pings are sent at one second intervals,
followed by ten 1000-byte pings at one second intervals. These measurements are
repeated every 30 minutes.

2.2.2 Passive

Although active measurements can report on properties of the Internet paths be-
tween end hosts, they cannot yield information about the performance of specific
flows, nor aggregated properties of the traffic, such as the mix of flow durations
or the distribution of traffic according to the application responsible for it. These
types of measurements require inspection of the actual packets present on a link.
Compared to active measurements, the costs can be greater due to the need for
continuous collection of data on a link operating at full load.

Existing network infrastructure may be used to perform passive monitoring,
by leveraging such information as interface packet counters maintained by a switch
or router. The Simple Network Management Protocol (SNMP) [28] is a widely used
and supported protocol for retrieving this kind of information and making config-
uration changes. However, the interface is fairly low-level and suffers from high
overheads that make it inefficient for the transport of large amounts of monitoring
data.

The Internet Engineering Task Force (IETF) define a series of Management
Information Bases (MIBs) that specify a schema for the extraction of information
from an SNMP-enabled network device. Vendors implement the MIB specification
on their hardware, which in turn enables monitoring systems to retrieve measure-
ments using a standard interface. RMON [103] is one such SNMP definition for
remote network monitoring devices. In addition to basic interface statistics (such
as byte counts and packet counts), RMON specifies counters that are aggregated
by hosts, top-N-hosts, host sets and also arbitrary filters. Although hardware and
software vendors have implemented RMON-enabled systems, usually only a sub-
set of the specification is supported.

The IETF has also produced an architecture document [26] defining methods
to specify flows and standard metrics for flow measurement, with the intention

4. End-to-end Reporting.

2.3: ANALYSIS 18

that output from multiple vendors’ equipment/software will be interoperable. A
corresponding SNMP MIB is also given [25].

NetFlow [32] is a mechanism implemented by Cisco routers that tracks traffic
on a per-flow basis. This means that it can provide finer-grained data than plain
SNMP, but does not provide detail down to the individual packet level. A router
periodically flushes NetFlow records to a collection host via UDP (which runs, for
example cflowd [30]). Performance limitations usually dictate that NetFlow-style
records are based on sampled flows. Most packets are processed by a router’s fast
path, which precludes the updating of counters. These sampled flow statistics are
not ideal for billing purposes, nor do they give an accurate view of network usage.

2.2.3 Summary

Whilst active measurements can provide a great deal of useful information on the
performance characteristics of a network, they are not effective in identifying spe-
cific traffic features, such as those caused by bulk data transfers. Aggregate data col-
lection techniques like NetFlow can identify specific flow-level features, but their
granularity means that they are insufficient to allow the identification of specific ap-
plications and subsequent dynamic re-engineering during a flow’s lifetime. There-
fore, finer-grained passive measurements are required.

2.3 Analysis

This section considers the techniques used in the analysis of passively gathered
network traffic information (which includes both full packet traces and aggregated
statistics). Network traffic ‘analysis’ covers a broad range of activities, for example:
simple accounting based solely on packet headers; intrusion detection; network
debugging; and traffic classification (i.e., identifying the application responsible for
a particular flow). Alongside these different reasons for carrying out analysis there
are also different approaches. For example:

• Inspection of packet headers (e.g., IP addresses and well known ports).

• String matching within individual packet payloads.

• TCP stream reassembly for application-level content analysis.

• Time series analysis of packet arrival times [53].

• Statistical inferences based on flow properties.

Some of these techniques are suited to real-time operation (e.g., header inspection
or string matching) because of the bounded amount of work that needs to be done
per-packet. Others, due to their statistical nature, require longer time periods to
yield good results and are typically carried out on long packet traces. TCP stream

2.3: ANALYSIS 19

reassembly is complicated by the necessity for application-specific support to en-
able protocol interpretation, and for the requirement of effective buffer manage-
ment to construct an ordered set of packets/bytes.

Aggregate flow monitoring tools such as CoralReef [62] (see Section 2.3.4)
use simple packet header inspection to categorise traffic according to IP addresses,
network prefixes and port numbers. Summary statistics from this kind of analysis
can be useful for reporting on broad-scale network usage patterns. For example, the
Internet2 Netflow Weekly Reports [4] present a range of tables and graphs showing
packet and byte counts over a week-long period, split between bulk and non-bulk
traffic (where ‘bulk’ is defined to be a flow that transfers more than 10 Mbytes of
data). Measurement traffic such as iperf (see Section 4.7 for more details on this
application) frequently accounts for around 40% of the bulk data by volume. The
reports also show traffic categorised by application, which has been determined
by a fixed port-number based classification scheme. Although applications such as
GridFTP and BBFTP (see Chapter 4 for more details) are represented, they appear
to account for a very small proportion of the traffic. This is because the port-number
technique is only able to identify the control connection for a file transfer, and then
only if the software is configured with default port numbers. Therefore, it is likely
that a significant proportion of traffic corresponding to these applications is being
under-estimated.

2.3.1 Classification

The term ‘classification’ can take two different meanings in the context of traffic
analysis. Either the traffic of interest naturally belongs to some class (e.g., a data
connection corresponding to one of the applications mentioned above) and the
problem is to correctly identify this from the available network properties, or else
a categorisation is imposed by the investigator because it is useful for traffic en-
gineering or other purposes, such as distinguishing between ‘elephants and mice’
[83]. The selection of a categorisation technique for identifying traffic ultimately de-
pends on the context in which it is used. For example, the Internet2 weekly reports
[4] use a 10 Mbytes volume threshold for ‘bulk’ identification. In other situations
it might, for example, be preferable to employ a throughput-dependent threshold,
perhaps expressed as a fraction of the total link bandwidth.

The application signature approach to application identification [96, 67]
searches for application-protocol-specific patterns inside packet payloads. While
simple to understand, it introduces some significant problems. First, it cannot be
adapted automatically to unknown, recently introduced application protocols since
the protocol behaviour for each application of interest must be known. Second,
application-level pattern search in transport packets, usually achieved by recon-
struction of individual flows, generates significant processing load; application of
such systems to higher-speed network links usually results in overload for the soft-

2.3: ANALYSIS 20

ware, resulting in dropped packets. Finally, some application protocols avoid pay-
load inspection by using encryption algorithms (see Section 2.3.3).

Transport layer port identification [97] addresses the load and encryption
problems, as it does not produce much load at the measurement nodes and does
not rely on inspecting application payloads. This method still suffers from the in-
ability to adapt to modified or recently introduced protocols. Furthermore, many
applications have begun using ephemeral port numbers to deliberately avoid port-
based identification. As a result, port-based application identification can highly
underestimate the actual application traffic volume [58].

Heuristic-based network/transport layer approaches [58, 59] use simple net-
work/transport layer patterns, e.g., the simultaneous usage of UDP and TCP ports
and the packet size distribution of an application flow between components of
the application. These methods can give good performance for existing applica-
tion protocols and may even be used to discover unknown protocols. However, the
validation of such methods is a challenge.

Moore and Papagiannaki [77] have developed a framework for identifying
the application corresponding to network flows by a series of nine increasingly
complex classification techniques. Each technique builds upon the results of the
less complex. These techniques range from straight-forward port-based classifica-
tion through single packet signature recognition, signature recognition on the first
KByte of a flow, protocol recognition on the first KByte and analysis of the entire
control flow. Entire-flow analysis (for example, with FTP control channels) allows
the identification of associated flows (the data flows).

The results of this offline classification process have been used to aid in the
validation of heuristic techniques for application identification. For example, [78]
uses supervised machine learning to illustrate the application of Bayesian analy-
sis techniques to traffic classification, which categorises traffic into one of several
equivalence classes5. The pre-classified data set enabled the evaluation of the tech-
nique, which identified several important traffic discriminator properties, such as
the number of pushed data packets and the average segment size across a flow.
Similar results and approaches are reported in [107, 108, 72, 17]. Work is ongoing in
identifying the effectiveness of these techniques and, in particular, their applicabil-
ity to real-time classification.

BLINC [60] is a different approach to classifying traffic flows that is based
on observing patterns of host (rather than individual flow) behaviour at the trans-
port level. A host’s behaviour is examined in terms of its interaction with other
hosts, capturing communities of nodes and whether a host acts as a provider or
consumer of a service, or both. A similar, but less general, approach has been used
in combination with payload signatures in the identification of peer-to-peer traffic

5. Such as bulk, interactive, mail, www, peer-to-peer, attack, and multimedia.

2.3: ANALYSIS 21

[59].

2.3.2 Application Level

Application-level traffic analysis refers to the practise of interpreting the contents
of a flow in terms of the application-level protocol structure. This requires that a
flow has already been correctly classified.

In the analysis of the Skype peer-to-peer telephony protocol [15], detailed
investigations using tools such as ethereal (see Section 2.3.4) were undertaken,
yielding insights into the operation of the proprietary protocol. The results of this
kind of work can be used to inform the development of an automated analysis
system.

As mentioned in the previous section, application-level analysis can also be
used to inform the classification of other flows that relate to the flow under study.
A typical example of this is the identification of the FTP data channels set up by an
FTP control channel.

The intrusion detection system Bro (see Section 2.4.3) also uses application-
level protocol reconstruction.

2.3.3 Encryption

Encrypted flows preclude content inspection for traffic analysis. Instead, some ap-
proaches based on timing or packet size may yield useful information.

[99] presents a technique for reducing the scope of the search required for
a brute-force password attack (by about one bit per character pair for randomly
chosen passwords). It uses the inter-packet timings resulting from each key of a
password being entered over a secure shell (SSH) connection as well as the size
information leaked due to padding by the encryption algorithm.

A similar, size-based, attack against HTTPS (secure web connections) is pre-
sented in [51]. HTTPS leaks the approximate size of objects transferred (e.g., web
pages and referenced images), which means that a correlation between the actual
sizes of the resources present on a particular website and the leaked sizes can be
used as evidence that a particular site is being accessed. [18] extends the analysis
to exploit the statistical characteristics of HTTP connections that are encrypted as a
single flow (e.g., using WEP/WPA6, IPsec and SSH tunnels).

2.3.4 Tools

Several tools are available to support the manual inspection of packet contents in
order to enable protocol understanding. The familiar tcpdump tool provides a tex-
tual representations of packets, along with decoders for some common protocols.
The open-source ethereal [34] project offers a graphical user interface along with

6. These are wireless encryption standards.

2.3: ANALYSIS 22

a comprehensive range of protocol decoders. These decoders present protocol fea-
tures in a simple display that can be used to browse a trace file, and each decoded
element can be used in a filter expression to limit the set of packets being viewed.
A TCP reassembly feature means that a particular stream can be quickly identi-
fied and its contents viewed. NetDude [63] presents a similar graphical interface to
ethereal, but focuses on the efficient viewing and editing of large trace files.

Tools such as these are vital in the development of network analysis tech-
niques, since they can be used to improve the understanding of a protocol and
examine packet-level properties responsible for particular features, which might
be encountered during an investigation.

The MAGNeT [43] system is a monitor for application-level behaviour,
which operates by hooking into the Linux kernel to trace system calls and the flow
of data through the network stack. The resulting data could be used to drive dif-
ferent implementations of network protocols to test new designs, or analyse unex-
pected interactions between application and protocol behaviour that are the cause
of poor performance. Similar information can be obtained from passively monitor-
ing at the network level, but inferring the original application-level operations is
much more difficult.

The multi-protocol visualisation tool demonstrated in [50] builds upon the
Nprobe project [76] (see Section 2.4.2) and tcptrace tool [80] to visualise the corre-
lation between TCP-level and HTTP-level behaviour during a web page download
(along with associated resources such as images). Such visualisations can be used
to inform the development of an automatic mechanism for identification of specific
application/network features.

At a higher level than these systems for inspection of packet properties are
tools such as NeTraMet [24] and CoralReef [62], which can be used to automate
the extraction of aggregate properties of network traces and real-time links. Coral-
Reef is a passive traffic monitoring suite consisting of drivers and applications for
packet capture and real-time report generation. A variety of data sources can be
used, including NetFlow records, libpcap and native capture using a DAG card
(see Section 2.4.1). The tools focus on flow-level statistics, identifying traffic by host
addresses and port numbers and providing summary reporting of variables such
as packet counts, byte counts and other flow characteristics. For passive analysis
research, these kinds of measures can be very useful in identifying significant fea-
tures of a trace for further investigation.

2.3.5 Summary

Monitoring for application-level traffic classification and timely event generation
at Gigabit Ethernet line rates requires use of appropriate techniques in order to
achieve real-time performance. Signature scanning is effective, but becomes costly
when applied to a large proportion of packets. Therefore, it is important to iden-

2.4: MONITORING 23

tify header-level properties (such as packet size or specific TCP flags) to reduce
the candidate set. Heuristic analysis techniques that depend on long time scales
or whole-flow properties are inappropriate for small time-scale classification pur-
poses. Application-level approaches enable the extraction of additional information
that may be used to identify related flows (e.g., FTP control and data), but require
careful implementation to operate efficiently.

2.4 Monitoring

This section examines the range of approaches available for performing passive
network monitoring. Most of the techniques covered here involve attachment to an
operational network via some sort of passive tap mechanism. Low-speed Ethernets
using a central hub can simply be monitored by attaching to the hub. Some man-
aged switches have the facility for ‘port mirroring’ where all frames are delivered
to a special mirror port. However, this can lead to performance degradation of the
switch and skewed timing, and a single transmit channel on an Ethernet interface is
insufficient to carry full-duplex traffic (nor the potentially greater bandwidth of the
switch’s backplane). The preferred solution is to use an optical splitter, which trans-
mits packets both to the original destination and a monitoring interface. Provided
it is installed correctly and there is sufficient optical energy to maintain error-free
reception, the optical splitter can operate completely passively. The main drawback
is the downtime required to install the splitter.

2.4.1 Packet Level

In 1996 the OC3Mon [11] was a pioneer in high-speed passive network monitoring,
using two ATM network cards in a PC on an optically tapped link. The goal was
to avoid complicated statistical calculations by ensuring that every packet could
be captured (i.e., no sampling was required). Packets could either be recorded into
memory and later dumped to disk, or real-time flow-level aggregation could be
performed. Customised firmware on the ATM cards handled a double-buffering
scheme, where the host software would process a 1 Mbyte buffer while the card
filled (via PCI bus-mastering) another 1 Mbyte buffer. An interrupt from the card
once a buffer was filled indicated that the software should begin processing. In or-
der to achieve the greatest performance, the system was built upon DOS instead of
a Unix operating system. This decision was determined by the ease with which the
application could monopolise the CPU and memory, thus eliminating any compli-
cations arising from scheduling anomalies or memory fragmentation (the network
interface cards required access to physically contiguous memory regions).

Several years later the OC3Mon project has evolved into a commercial en-
terprise by Endace Measurement Systems, who produce a range of custom-built

2.4: MONITORING 24

hardware network monitoring cards. The ‘DAG’ hardware series [33] is capable
of full-duplex, full-payload, line-rate monitoring at up to OC-48 speeds. Accurate
time-stamping of captured packets is handled by the hardware at packet recep-
tion time, and the onboard clock can be accurately maintained via connection to
an external GPS signal. The double-buffering scheme employed by OC3Mon has
been extended to a full circular buffer, and the hardware is compatible with both
Linux and Windows operating systems. Recent developments have produced a co-
processor add-on [40] which is capable of filtering packets by header inspection
before they are delivered to the application.

While the DAG card represents a logical evolution of the OC3Mon project,
in terms of increasing the capabilities of the hardware to alleviate software-related
issues, several projects have tackled the problem of monitoring modern high-speed
networks using careful software techniques and commodity hardware. Before ex-
amining these in detail, it is necessary to highlight the issues surrounding efficient
packet capture and processing.

The classic network Unix network monitoring tool tcpdump [64], which is
based on the libpcap [65] library, is easy to use but design limitations mean that
it is unsuitable for high-speed capture.

tcpdump and libpcap’s architecture involve multiple copies of packet data
between network card, kernel space, and user space. On some platforms (libpcap
is supported on multiple Unix variants) a system call is required for each received
packet, which adds significant overhead, especially when large numbers of small
packets are involved. In addition to a system call per-packet, the network interface
card may also generate an interrupt for each packet. This can lead to the kernel
spending considerable time servicing interrupts. Packet time-stamps are generated
by calling gettimeofday after each packet is received, which means that process
scheduling latencies can compound the time-stamp error (which is of the order of
1 ms). Simple variations on libpcap using a user/kernel space shared ring buffer
[38, 106] can reduce the system call overhead but still require at least one copy of
each packet.

To overcome the problems of achieving line-rate capture and accurate time-
stamping7, one or more of the following techniques have been employed: a stan-
dard or modified open-source Unix operating system (Linux/FreeBSD/NetBSD);
network card supporting on-card time-stamping; multiplexing of received traffic
across several monitoring hosts; and GPS receivers for high-accuracy timing and
NTP for coarse synchronisation.

TICKET [105] uses two or more commodity PCs, one or more for packet
capture and one for processing. The passive monitoring capture machine(s) use a
stripped down Linux kernel whose init process has been modified to run only

7. Pásztor and Veitch [84] provide a detailed analysis of these timing issues.

2.4: MONITORING 25

the monitoring software and without leaving kernel mode (this is a similar to
OC3Mon’s approach of using DOS to drive the monitor). Time-stamps are made
in the kernel as soon as the packet is received from the network card, although it is
not clear how accurate these are. Packet headers only are buffered and passed to the
secondary processing host over a dedicated network interface. The load-sharing
features of a Gigabit Ethernet switch were used to distribute the load across two
capture machines, which enabled packet header monitoring at Gigabit speed.

Linuxflow [66] also uses a modified Linux kernel to achieve its goal, which
is a cost-effective network management tool capable of high-speed traffic account-
ing. A new Unix socket type is introduced to allow packet reception to bypass the
normal network stack for delivery directly to a user-space application. The multi-
threaded application is responsible for reading packet data from the kernel, aggre-
gating packets into flow records, and sending the aggregated data over the network
to a collection system. The authors report that a single four-processor, 64-bit host
is able to capture without loss at up to around 1 Gbits/s (i.e., half-duplex Gigabit
links).

pktd [47] is a packet capture/injection daemon, intended to be the sole
trusted, privileged entity needed by a host that provides external measurement
services. It multiplexes access to the network device, with different rights per user
as assigned by the system administrator. The Self-Configuring Network Monitor
(SCNM) project [6] uses pktd to implement a passive monitoring infrastructure for
packet headers that can be activated by end-users. Special UDP activation packets
cause the pktd filter to be updated to include the relevant host pair, and subse-
quently a corresponding trace is sent to one of the end hosts. A typical deployment
would involve SCNM measurement systems at two or more points along the net-
work route. This supports the identification of which segments of the network are
the source of problems for an application data stream. The authors report that the
hardware is capable of capturing all packets on an 80% utilised Gigabit Ethernet
with an average packet size of 800 bytes.

Although it was based on pktd, the SCNM project made some alterations
to the FreeBSD kernel to extract time-stamp information from a hardware regis-
ter in the Gigabit Ethernet network card (usually the system clock time when the
kernel processes the packet is used). pktd is based on libpcap, which provides
a packet filter mechanism based on the Berkeley Packet Filter (BPF) [71]. BPF sup-
ports arbitrary header-based filtering using a bytecode program that is executed in
the kernel. A simple filter language specifying such criteria as host addresses, port
numbers, packet size or TCP flags is compiled by libpcap and passed to the ker-
nel. The kernel checks that the bytecode is safe (that it has no backward branches
that might cause an unbounded loop) before accepting it. BPF suffers from the ne-
cessity to filter packets more than once. For example, once the in-kernel filter has
been evaluated, an application process may have to make similar header inspec-

2.4: MONITORING 26

tions in order to carry out its task.
The goals of the SCAMPI [35] project in 2003 were to produce a high-speed

network monitoring platform that specified a standard, efficient Monitoring API
(MAPI) to replace libpcap, to improve upon the expressive power provided by
current filtering mechanisms such as BPF, and to support scalability through op-
tional use of special-purpose hardware. An example of the kind of additional ex-
pressive power desired is the ability to specify sampling, perform TCP reassem-
bly, or automatically extract aggregates (packet/byte counters etc) from flows. A
later implementation [87] using both a standard Gigabit Ethernet network card
and DAG card (described earlier) was presented. The authors give an example of
the identification of ephemeral FTP data ports using MAPI and substring searches
within packets. However, they indicate that the maximum number of loss-free
flows that can be processed is only 100 at 700 Mbits/s. MAPI emphasises the flex-
ibility of multiple applications accessing the packet stream at once, and it appears
that in this implementation the flexibility comes at a cost.

A different implementation of the SCAMPI architecture was FFPF (Fairly
Fast Packet Filters) [20], which replaces BPF (and its Linux variant, the Linux Socket
Filter), providing compatible implementations of both MAPI and libpcap.

FFPF can automatically allocate filters to the best place in the processing
hierarchy (network interface, kernel and user space). An implementation on the
IXP1200 network processor supports filtering and buffering on-board. A consider-
ation in any system using memory on an expansion card (connected via the PCI
bus, for example) is whether the packet data should be copied. Three options are
available: leave packet data on the card and access it over the PCI bus; copy selected
packets to the host memory via bus-mastering; or copy all packets. For example, if
the host needs to examine the packet extensively then in the first case most reads
will have to cross the PCI bus, which is expensive. FFPF lets the administrator de-
cide at runtime which approach to use. While the filtering mechanisms provided
by FFPF allow independent applications to process the monitored packets, the per-
formance of the implementation (in kernel and on the IXP1200) and dependence
on essentially static filters to select relevant traffic makes it unsuitable for dynamic
traffic classification.

2.4.2 Flow Level

Several projects have focused on the correlation between network- and application-
level traffic. BLT [42] used examination of HTTP/TCP traces taken using Pack-
etScope [9]. Traces were stored to disk and periodically processed according to a
simple pipe-lined process. Rather than precisely reconstructing TCP flows (which
was difficult in the face of some packet loss by the monitoring device), a broader
technique was developed using the steps of IP flow demultiplexing, TCP sequence
number sorting, duplicate elimination and loss identification. From the resulting

2.4: MONITORING 27

data stream, HTTP protocol information was extracted by scanning for well-known
signatures (such as GET requests). This processing was done in real-time, due to
limitations of disk and tape storage.

An alternative and more general approach taken by the Nprobe [76] project
involves the real-time extraction of protocol-specific features, for online analysis of
protocol interactions and reducing the quantity of data that has to be stored on disk
for a trace. Protocol-specific knowledge is used to save only the information rele-
vant for later study. Nprobe uses several of the techniques encountered in the previ-
ous section to achieve high performance and accuracy, including time-stamps and
filtering by the network interface card, interrupt coalescing, kernel modifications
for efficient packet access by user-level processes, and striping across monitoring
hosts8. Performance results indicate that the system, when operating on a synthetic
HTTP load, is able to cope with 165,000 packets per second (for small HTTP trans-
actions) and 44,000 concurrent flows at 304 Mbits/s (117,000 packets per second).
These limits are due to a combination of memory usage and CPU time taken to
manipulate per-flow state.

The Windmill project [68, 104] had similar high-level goals to a combination
of SCAMPI and BLT, in that a broad range of measurement techniques should be
supported for multiple concurrent applications, including application-level proto-
col reconstruction and correlation with the underlying transport protocol’s events.
Windmill specifies a packet filter architecture, WPF, that addresses the performance
problems of filtering being performed both at the kernel and application level. The
output of a WPF filter includes the identity of the application/module that should
process the packet, so that subsequent filtering is not required. Protocol modules
were implemented to handle TCP reconstruction and analysis of application-level
conversations. Since for some application modules it may not be necessary to re-
construct a full TCP stream (perhaps only examining header and length fields), the
TCP module could be reconfigured to avoid the expensive TCP reassembly process.

The above projects implement TCP reassembly in the monitoring host to en-
able application-level traffic investigation. BLT used a somewhat ad-hoc approach
that was appropriate for the particular task of examining HTTP traffic, especially
given the hardware limitations at the time. Nprobe, Windmill, SCAMPI and FFPF
all are capable of TCP reassembly, but the details of the particularly implemen-
tations are not given. One significant problem is the potential for a large amount
of buffering required in the monitoring system for flows with large window sizes
(see Section 2.1.1). A novel hardware-based system, TCP-Splitter [94], employs an
active/passive hybrid technique that is deployed in-line with a network link. The
hardware has both an input and output interface operating at OC-48 rates. Packets
are passed from input to output via an FPGA (Field Programmable Gate Array) that

8. An n-valued hash of packet header fields is used to decide which monitor machine will accept a
packet. A drawback of this approach is its inability to cope with a single high-bandwidth flow.

2.4: MONITORING 28

selectively drops out-of-order packets from TCP connections9. The consequence of
such actions is that the retransmission mechanism in the end hosts will send the
next in-sequence segment. Therefore, an in-order stream of packets can be passed to
the host computer for further monitoring, with the crucial property that buffering
for TCP reassembly will not be required. The authors claim that actively dropping
frames may actually improve TCP performance for end hosts using a Go-Back-N
retransmission policy.

2.4.3 Intrusion Detection

Another class of network monitoring devices, which have a specific purpose rather
than the general aims of most of the projects previously mentioned, are Network
Intrusion Detection Systems (NIDS). They scan for malicious traffic patterns in or-
der to report to an operator the incidence of network-based attacks. Such a sys-
tem would usually be deployed at a gateway link within an organisation, rather
than at an ISP. Section 2.3 detailed the common techniques used. This section ex-
amines the properties of two specific NIDS: Snort [92] and Bro [85]. Snort is a
signature-based detection system that employs a library of patterns (which is con-
tinually kept up-to-date) against which packets are matched whereas Bro focuses
on application-level protocol interpretation. In Snort, the patterns are first matched
against network-masked host addresses and port numbers, and subsequently a rule
can restrict itself to specific IP/UDP/TCP header field values or perform content
inspection by string scanning. Since string scanning is an expensive operation, it is
important that any additional criteria limit the number of packets to search.

Snort also offers a TCP reassembly module that enables pattern matching
across packet boundaries. The module documentation indicates that it can operate
over ‘several thousand simultaneous connections’. While this level of performance
may be adequate for a small organisation, it is certainly insufficient to cope with the
level of traffic that might be expected at an ISP’s edge router. An active hardware-
assisted system using similar techniques to Snort is CardGuard [21]. Designed to
operate at Fast Ethernet (100 Mbits/s) speeds for a single host or small group of
hosts, it uses an IXP1200 network processor to perform online intrusion detection
to block malicious traffic. TCP flows are reconstructed on the network processor,
with the limitation that any buffering overflow causes the flow to be conservatively
dropped, i.e., non-malicious traffic may be completely blocked.

A substantially different approach is taken by Bro. It is designed to oper-
ate at Gigabit Ethernet line rate, and depends on libpcap for access to network
traffic. Bro employs full-protocol analysis, which is accomplished by fully reassem-
bling the monitored TCP streams (taking care to achieve the same reassembly as an

9. This requires a fixed-size TCP connection hash table to be maintained in hardware. Collisions
have the undesirable property that packets from different flows will be treated as if they were the
same connection.

2.5: CONCLUSIONS 29

end host, in the face of malicious traffic), classifying them by application according
to port numbers, and passing the incoming data to the appropriate application-
specific protocol interpreter module.

Once a protocol interpreter has identified an event of interest (for example, a
Finger protocol query for a particular user name), an event is generated that is then
handled by a policy script. The policy script is written in a Bro-specific interpreted
language and can be modified by the end user. This supports the separation of
the identification mechanism (in native C++) from the action policy. Indeed, Bro
has been extended for application to the task of network trace anonymisation by
using special policy scripts that mask sensitive application-level elements, whilst
preserving as much of the conversation as possible [82].

To avoid heavy processing (e.g., stream reassembly) overhead for unknown
TCP streams, Bro employs a packet filter to limit the packets under study to those
involving well-known port numbers for which a protocol analyser is installed. The
packet filter is also augmented to pass all TCP SYN and FIN packets, therefore
enabling the monitoring of protocol independent security incidents such as SYN
flooding or port scanning.

Like Snort, Bro operates most effectively near the edge of the Internet where
it can be used to monitor traffic at the organisation level. In order to achieve reason-
able performance it uses statically determined well-known-port filters, which limit
its ability to monitor potentially malicious traffic operating on unusual ports.

2.4.4 Summary

Flow-level traffic analysis techniques involving payload inspection allow the spe-
cific identification of control flows and their corresponding bulk data flows, which
means that bulk data encountered at the network level can be attributed to a par-
ticular application (and therefore can be covered by a traffic management policy).
Approaches that offer single-flow classification without reference to payload con-
tent cannot accurately identify these associated bulk flows.

While there has been some success in producing line-rate monitoring sys-
tems using commodity equipment, easy-to-use dedicated network monitoring
hardware is now available. Such technology means that an investigator can focus
on network analysis tasks with loss-free packet capture, rather than be concerned
with the complexities of attaining such performance.

2.5 Conclusions

This chapter has examined work relevant to the task of classifying bulk data traffic
according to the application responsible. Performing such analysis is difficult with-
out the use of control-traffic payload inspection to accurately discover IP addresses

2.5: CONCLUSIONS 30

and port numbers used by the bulk data transfers. Although statistical heuristic
analysis techniques can be applied to differentiate between broad traffic classes
(e.g., elephants and mice) and even more fine-grained equivalence classes (such as
bulk, mail, peer-to-peer, and www), they suffer from two main problems. Firstly,
they cannot be applied effectively in real time. Secondly, they cannot yet distin-
guish between bulk data resulting from different applications. Given some other
technique for control-traffic classification, hand-crafted heuristic techniques can be
effective for dealing with encrypted traffic.

Advances in network monitoring hardware mean that payload inspection
and application-level protocol reconstruction/interpretation are attainable at Giga-
bit Ethernet line rates. Combining a system of this type with modern traffic engi-
neering technologies, such as MPLS, can enable dynamic traffic re-engineering, and
therefore contribute to improved network performance.

The next chapter introduces the methodology used to prove these claims.

Chapter 3

Methodology

This chapter describes the methodology used to prove/disprove the Thesis State-
ment initially introduced in Section 1.4, namely that:

T1. A real-time network monitoring tool can be built that performs full plain text
analysis of Grid bulk data traffic at line rate.

T2. This tool can be extended to perform heuristic analysis of encrypted or inac-
cessible payloads at line-rate.

T3. Such analysis can generate events early enough to enable dynamic traffic
re-engineering.

3.1 Network Infrastructure

In order to carry out the investigation of Grid-style applications, two types of net-
work setup were required to support the necessary experiments: firstly, a small
test-bed network for the isolated investigation of application properties; and, sec-
ondly, a wide-area network for the testing and evaluation of the completed system.

Within each of these setups, it was necessary to be able to attach the pas-
sive network monitoring device at an appropriate location. Figure 3.1 shows the
structure of the network elements used.

Two academic institutions are represented: Glasgow University and Lan-
caster University. These obtain IP connectivity over the UK academic network,
JANET. At Glasgow, the main connection point is at the Computing Service, where
the link speed is 10 Gbits/s. Within the Glasgow campus, the diagram shows the
Bioinformatics and Computing Science (DCS) departments. Note that they achieve
connectivity from a Gigabit Ethernet link. A set of six machines in DCS (nsmc01 to
nsmc06) were used as the local test-bed. A combination of nsmcXX machines and
the remote kosciusko and bananarama (in the Bioinformatics department and
Lancaster University, respectively) were used for testing and evaluation.

Shown on the diagram are four points labelled A, B, C, and D. These repre-
sent potential locations for the attachment of the passive monitor device. Points A

3.2: LINE-RATE DATA CAPTURE 32

bananarama
Glasgow

Lancaster

Computing Services

Bioinformatics

Computing
Science (DCS)

kosciusko
nsmc01

nsmc06

...

100 Mbits/sec

1 Gbit/sec

100 Mbits/sec

B

A

C

D

X Potential point of attachment
for network monitor

1Gbits/s

Internet

Central IT

10Gbits/s

Computing Dept

Figure 3.1: Experimental network topology.

and D would observe all traffic to/from the Glasgow or Lancaster campus, respec-
tively. Point B allows all traffic between the Glasgow departments to be monitored,
as well as traffic passing from them to the internet (and vice-versa). Finally, point
C allows traffic between the test-bed machines to be observed.

During the course of the work, due to local policy and security restrictions
as well as the administrative overheads of managing the system at a remote site,
the monitoring hardware was only connected at points B and C.

3.2 Line-Rate Data Capture

As discussed in Section 2.4.1, full traces of high-bandwidth network traffic can be
captured using the commercially available DAG network monitoring hardware.
This solution was chosen because of its efficiency, and particularly because it elim-
inates any concerns about the reliability that might be encountered from an ap-
proach using off-the-shelf networking hardware (such as a standard Gigabit Ether-
net network interface card).

The manufacturer of the DAG card (Endace Measurement Systems) also pro-
duce a fully integrated rack-mountable PC system known as a GIGEMON, which
was used in this work. The GIGEMON incorporates the 64-bit PCI-X DAG card into
a dual processor 2.8 GHz Xeon system. The hardware and software can be tuned for
capturing full-payload traces to disk or performing real-time content-analysis. This
will be demonstrated in Chapter 5.

3.2: LINE-RATE DATA CAPTURE 33

A tape library was used to archive full payload traces in case the need to
revisit an experiment ever arises.

In order to understand the correlation between behaviour of an application
both at the application and network level, it was important to be able to gather
application-level logs at the same time as the network traces being gathered by the
monitoring hardware. Several techniques were used to do this:

• If source code is available, the application in question can be instrumented
by adding logging statements to the relevant parts of the source code.

• Many applications have ‘verbose’ run-time configuration options which
cause them to output extra information during execution—usually intended
to aid in debugging. This debug information may be used to trace the appli-
cation behaviour, without having to spend time on manually adding extra
logging information, or if source code is not available.

• For very simple applications (in terms of network behaviour), it is sometimes
sufficient for the application-level traces to consist simply of the start and
stop times for the application, and any configuration options given at launch
time.

Although additional application-level logging can affect application performance,
it is not significant enough to alter the behaviour of the application when viewed
at the network level, at least for the purposes of this work.

For the second case above, a tool was developed to make time-stamped
recordings of the verbose logging output from an application that could later be
correlated with the network-level timings. Correlation of these time-stamps re-
quires the synchronisation of clocks on the network monitoring card and the hosts
involved in running the applications. NTP [75] was used to synchronise system
clocks to approximately millisecond accuracy. Greater accuracy (as offered by the
use of a GPS time source) was not required.

The applications to be analysed (see Chapter 4) were driven in several ways:

Manual command-line runs or static batch scripts This technique was useful for
interactive debugging of the monitoring software and for small, manually
arranged, test runs.

Replay of network-level traces Rather than running the applications directly in
the test environment, the machines were instead used to replay full-payload
network packet traces onto the network. This can emulate a network con-
taining thousands of hosts, provided that the source trace data is sufficiently
diverse.

Synthetic network-level traces Simulating many thousands of clients by invoking
the applications themselves is difficult without copious hardware. However,
it was possible to test the monitoring system under different kinds of load

3.3: TRACE ANALYSIS 34

by programatically replicating network packet traces of a small number of
transfers by using software to time shift packets and adjust IP addresses and
port numbers. These were then replayed across the network.

The files used in the manual or script-driven runs of the application were a syn-
thetically generated data set. This makes trace-level analysis easier since the data
payload is known in advance. Sparse (zero-filled) Unix files of appropriate size
were used because they take up little space on the source disk, and disk I/O is also
negligible.

3.3 Trace Analysis

As mentioned above, network-level and application-level traces from particular
applications performing file transfer tasks were gathered. The traces were manually
inspected (using tools such as tcpdump and ethereal) to understand the basic
operations of the protocol and identify characteristic features enabling them to be
classified without resorting to well-known port number methods. In addition to the
trace data, documentation about the protocols (where available) was used to guide
the development of a plain text protocol analysis module.

These analyses were used to inform the design and implementation of the
core of the real-time monitoring tool, bearing in mind the requirement of T3:
“Such analysis can generate events early enough to enable dynamic traffic re-
engineering.”

Two main techniques were used for plain text control traffic analysis in
real time: initial string matching for protocol identification, and full-payload
application-protocol reconstruction for extraction of additional information about
the application behaviour (see also Section 2.3). In addition to these, simple rate-
based heuristics were employed for the identification of ‘elephant’1 flows.

The encrypted heuristic analysis used careful investigation of properties of
the control and data traffic that can be observed at the network level to inform the
development of a real-time analyser. It leverages both ‘leaked’ properties of the
application protocol (i.e., information that has not been subject to encryption) and
specific packet size/timing characteristics.

3.4 Testing and Evaluation

The system’s event-reporting capabilities were regularly validated during devel-
opment using trace files containing known behaviour. In order to evaluate the ef-
fectiveness of the system against unseen data, blind tests were carried out in which

1. The definition used here is of flows with a bandwidth above some threshold, as calculated over
a pre-set time window. See also Section 2.3.1.

3.5: SUMMARY 35

a third party was asked to run a series of the applications under study and keep
application-level logs. They were later asked to correlate the output of the monitor-
ing system with the application logs, in order to determine the system accuracy.

The heuristic analysis system was validated by using a set of test scripts
that exercised a wide range of possible application uses, including comparing the
performance between both relatively close and more distant hosts (within Glasgow
University and between Glasgow and Lancaster).

During the execution of these tests, the time between an event being raised
and the start of the bulk data flow to which it corresponds was measured.

Several metrics were identified for the system evaluation:

Accuracy: For plain text analysis, any positive output from the analyser should be
100% accurate in what it reports (no false positives), and the number of false
negatives should be minimised. For heuristic analysis, false positives are a
possibility, but false negatives should still be avoided.

Performance: In order for a real-time monitoring system to be useful, it must be
capable of operating in real time. Therefore, it is necessary to evaluate the
system under conditions of extreme load to determine the performance lim-
its.

Maintainability: The analysers require application-protocol specific implementa-
tion. The costs involved in developing such an analyser must be evaluated.

3.5 Summary

The methodology described above allows the assertions from the Thesis Statement
to be proven or contradicted. These are summarised below:

T1. A real-time network monitoring tool can be built that performs full plain
text analysis of Grid bulk data traffic at line rate.
By using appropriate hardware and software techniques, a real-time mon-
itoring system can be built. By achieving an understanding of the protocol
operations of a selected set of Grid-style applications, protocol analysers can
be developed within the real-time monitor.

T2. This tool can be extended to perform heuristic analysis of encrypted or
inaccessible payloads at line-rate.
By careful examination and investigation of the network properties of an en-
crypted control protocol from a comprehensive set of source data, a heuristic
technique can be developed to identify bulk data transfers in real time.

T3. Such analysis can generate events early enough to enable dynamic traffic
re-engineering.

3.5: SUMMARY 36

The combination of the above techniques, if properly implemented, can gen-
erate events in a sufficiently timely manner to enable re-engineering of the
bulk data flows in the network.

Chapter 4 describes the Grid applications under study. Chapter 5 then describes
the design and implementation of the real-time network monitoring infrastructure.
Chapters 6 and 7 cover the plain text and heuristic traffic identification techniques,
respectively, and Chapter 8 draws together the significant results of the work.

Chapter 4

Grid Bulk Transfer Applications

Modern scientific research is increasingly conducted with large collaborations,
large shared data sets and large shared clusters of processors. Grid computing rep-
resents a wide range of application types and corresponding network usage. In-
deed, network usage may be minimal in the case of compute-bound tasks (for ex-
ample, parallel random simulations that require a small number of parameters and
produce a similarly small amount of output). Applications that heavily utilise the
local network but only use the wide-area network for transmitting summaries or
aggregates also fall into this category. Wide-area, network-intensive, applications
include bulk transfers, real-time multimedia, interactive visualisations and tightly
coupled computations. Of these, bulk data transfers are the most relevant here be-
cause they tend to dominate the network load [49, 58].

4.1 Characteristics

In the following sections a number of bulk-transfer systems are examined and their
characteristics as seen at the network level are considered. All the protocols under
investigation are based on TCP connections. Each protocol is examined in terms of
the following criteria:

Standard ports Does the protocol have standard port numbers allocated to it?
Even though the real-time monitoring system is intended to identify traf-
fic without resorting to well-known port identification, this information is
still useful in the validation stages.

Reliability of port numbers How likely is it that traffic might be using a non-
standard port number? Since end-users and system administrators are able
to reconfigure the applications (e.g., via run-time options or by modifying
source code), well-known ports cannot necessarily be relied upon.

Data separate from control Is the file content transferred over a separate TCP con-
nection from the control connection? For some protocols this is always the
case, for others it depends on run-time configuration.

4.1: CHARACTERISTICS 38

Parallel data flows Does the protocol employ/support multiple parallel TCP flows
for the transfer of data?

Third-party transfers Can files be transferred to/from hosts other than the pair
involved in the control connection?

Plain text or encrypted Are control flows in the clear or encrypted? Are data flows
in the clear or encrypted?

Signature payloads Are there simple signature strings that may be identified in
packet payloads to identify the protocol?

A classifier/analyser has been developed for each of the applications considered
here, and these are detailed in later chapters.

There are several applications used for making bulk data transfers in the con-
text of the Grid. Indeed, the simplest of file transfer protocols like FTP and HTTP
(described below) may be used, in addition to a range of specialised tools that meet
the specific demands of high-bandwidth high-volume file transfers. The following
sections describe a number of these applications, comparing their attributes and
describing at a high level their effects on the network.

Before looking at the applications themselves in detail, some properties that
are desirable for a Grid-level bulk transfer application are considered. Here, any
project-specific concepts of the data to be transferred are abstracted away into the
familiar concept of a file. Such a file may correspond to a real file on disk, or it could
for example be a streamed representation of the contents of some kind of database
or tertiary store.

A characteristic of the types of files transferred within the context of the
Grid is their large size. Therefore, efficiency of data transfer and optimal utilisa-
tion of available network bandwidth are of prime importance. However, since Grid
projects are by definition distributed across wide areas and perhaps also different
administrative domains, a flexible authentication scheme is also important.

Beyond these two broad goals, a bulk transfer system may also be responsi-
ble for additional, higher-level, activities such as the management of user accounts
and keeping track of locations of files and their possible replicas in the network.
Simple protocols like HTTP and FTP deal with on-demand transfers of specific files
as guided by some external process, whereas more complicated brokering systems
such as the Storage Resource Broker (SRB) cover both account details and mapping
of logical file names to physical storage locations.

The following sections give details on the chosen set of file transfer applica-
tions/protocols, which were selected to be representative of the kinds of tools used
within the Grid community for transport of large files or making performance mea-
surements [36, 95]. The set was extended to include the HTTP protocol because of
its ubiquity and the particular challenges it poses for payload-level monitoring.

4.2: HTTP 39

4.2 HTTP

As a ubiquitous and straightforward transport protocol, the Hypertext Transfer
Protocol (HTTP) sees widespread use for general file transfer, mainly in the con-
text of the world-wide web. Its popularity in this context often means that its well-
known Transmission Control Protocol (TCP) port 80 traffic is treated specially (i.e.,
unfiltered) in environments where firewalling is in place. This in turn encourages
application developers to make use of HTTP as a transport protocol when it would
not otherwise be the best choice.

The HTTP protocol itself is very simple and is well specified in a series of
Internet Engineering Task Force Request For Comments (RFC) [16, 44, 90]. Prior to
HTTP/1.1, each file transfer corresponded exactly to the lifetime of a TCP connec-
tion. Therefore, the network behaviour could be simply described as follows:

1. Client opens connection to server

2. Client sends GET request with path to file to be retrieved

3. Server responds with header information

4. Server sends file to client

5. Client determines the end of the transfer when the server closes the TCP
connection

The many, typically small, files encountered on common web pages meant that
this protocol was inefficient, leading to the support for pipelined connection re-use
found in HTTP/1.1. Here:

1. Client opens connection to server

2. Client sends GET request with path to file to be retrieved

3. Client may send more requests for additional files

4. Server responds with header, including enough information to describe the
amount of data in the following file

5. Server sends file

6. Server repeats steps 4 and 5 for each incoming request

In summary, HTTP supports either precisely one or arbitrarily many file transfers
per TCP connection, depending on protocol version. Control and bulk data traffic
share the same connection, and there is no support for separating these.

Authentication in HTTP is generally accomplished by including an authen-
tication token of some sort (e.g., plain text name/password pair or the result of a
cryptographic computation with a challenge string) in the initial request header. If
this is not present, the server will respond with an error reply and possibly a chal-
lenge to be used in a subsequent authentication attempt. The underlying systems
that are used to manage the valid usernames and passwords are not specified.

A further development of the HTTP protocol adds encryption support. The
protocol, known as HTTPS (using well-known TCP port 443), wraps the standard
HTTP requests and responses in a Secure Sockets Layer (SSL) stream. SSL, de-

4.3: FTP 40

scribed in more detail in Section 4.8, uses public key cryptography and X.509 cer-
tificates to negotiate per-session encryption keys to be used in a stream cipher to
secure the plain text protocol. X.509 certificates on the client side can be used for
authentication (although this is relatively infrequently used), in addition to certifi-
cates provided by the server to prove its identify to the client.

The SSL connection is negotiated immediately after the TCP connection is
opened and thereafter the TCP connection is used to transfer SSL frames which
encapsulate messages from the underlying HTTP protocol. A consequence of this
entire wrapping of the HTTP protocol in an encrypted stream is that bulk data
transfers are subject to the computational overheads of encryption and decryption,
which can be significant in the context of the high-bandwidth networks used by
the Grid community. Whether or not bulk data encryption is necessary depends
on the nature of the files being transferred. The implicit assumption here is that
the authentication benefits and concealment of the paths and names of files being
transferred is desired, since otherwise plain HTTP could be used.

HTTP Summary

Standard ports Ports 80 (HTTP) and 443 (HTTPS)
Reliability of port numbers High. Web traffic on non-standard ports is unlikely to

be legitimate, given that web browsers assume the use of the standard ports.
Data separate from control No: all data is transferred over a single control/data

stream.
Parallel data flows No.
Third-party transfers No.
Plain text or encrypted Depends on protocol version (HTTP or HTTPS).
Signature payloads For unencrypted HTTP, initial data is seen from the client of

the form ‘GET /path HTTP/1.x’. For HTTPS, there is an initial TLS/SSL
handshake, which by itself is not differentiable from other TLS/SSL based
protocols. The direction and timing of encrypted messages may provide in-
dicators that HTTP-over-SSL is being used.

4.3 FTP

The File Transfer Protocol (FTP) [89] predates HTTP by almost two decades. Its fea-
tures grew out of requirements of computer networking in the 1970s and so has a
particular feature set suited to the file transfer needs of that time. It was intended
for interactive use, with the user connecting to an FTP server and issuing GET and
PUT commands in order to retrieve and store files1, as well as other familiar Unix-
style file system operations (e..g, change directory, make directory, remove). This

1. In fact, the user-level GET/PUT commands map from a command-line interface to the lower-level
FTP commands RETR and STOR.

4.3: FTP 41

1 <- 220 Dept. Computing Science FTP service - all activity is logged.
2 -> USER jp
3 <- 331 Please specify the password.
4 -> PASS ****
5 <- 230 Login successful.
6 -> SYST
7 <- 215 UNIX Type: L8
8 -> CWD /tmp
9 <- 250 Directory successfully changed.

10 -> PASV
11 <- 227 Entering Passive Mode (130,209,240,1,45,65)
12 -> LIST
13 <- 150 Here comes the directory listing.
14 <- 226 Directory send OK.
15 -> TYPE I
16 <- 200 Switching to Binary mode.
17 -> PASV
18 <- 227 Entering Passive Mode (130,209,240,1,245,66)
19 -> STOR sourcefile
20 <- 150 Ok to send data.
21 <- 226 File receive OK.
22 -> TYPE A
23 <- 200 Switching to ASCII mode.
24 -> PASV
25 <- 227 Entering Passive Mode (130,209,240,1,37,176)
26 -> LIST
27 <- 150 Here comes the directory listing.
28 <- 226 Directory send OK.
29 -> QUIT
30 <- 221 Goodbye.

Figure 4.1: Network trace of interactive FTP control session. Leading arrows have
been added to show each message direction, with left-pointing arrows representing
server-to-client messages, and vice-versa. The corresponding user input is shown in
Figure 4.2.

two-way transfer capability contrasts with HTTP which is mainly used for server-
client transfers (although HTTP does support transfers in either direction, it is un-
commonly implemented and primarily used for WebDAV page edits from HTML
editors). A transcript from a straightforward command-line FTP session is shown
in Figure 4.2 and the corresponding network-level conversation in Figure 4.1.

Data transfers in FTP (for files and, notably, also directory listings) take place
on a separate TCP connection from the control connection (which is on well-known
TCP port 21). This allows flexibility in separation of the control and the data trans-
fer processes, as well as supporting third-party file transfers. Although the FTP
standards specify several schemes for the transfer of file content, only the simplest
of these is commonly used. Here, the TCP socket is opened, the file contents are
sent through the socket, then the socket is closed. End-of-file detection is intrin-
sically linked with the closing of the socket, with the unfortunate side-effect that
unexpected socket errors can result in a silently truncated file2.

The default in the FTP protocol is for the server to make a connection back
to the client. In today’s internet, these kinds of connections can be hindered by

2. This problem is also present in HTTP when a Content-Size header is not present. With both
protocols problems can be detected when the file size is known.

4.3: FTP 42

1 $ ftp ftp.dcs.gla.ac.uk
2 Connected to ftp (130.209.240.1).
3 220 Dept. Computing Science FTP service - all activity is logged.
4 Name (ftp:jp):
5 331 Please specify the password.
6 Password:
7 230 Login successful.
8 Remote system type is UNIX.
9 Using binary mode to transfer files.

10 ftp> cd /tmp
11 250 Directory successfully changed.
12 ftp> ls
13 227 Entering Passive Mode (130,209,240,1,45,65)
14 150 Here comes the directory listing.
15 drwx------ 2 0 0 4096 Aug 29 08:13 ssh-lSyY6530
16 226 Directory send OK.
17 ftp> put sourcefile
18 local: sourcefile remote: sourcefile
19 227 Entering Passive Mode (130,209,240,1,245,66)
20 150 Ok to send data.
21 226 File receive OK.
22 39956 bytes sent in 0.00288 secs (1.4e+04 Kbytes/sec)
23 ftp> ls
24 227 Entering Passive Mode (130,209,240,1,37,176)
25 150 Here comes the directory listing.
26 -rw-r--r-- 1 290 108 39956 Sep 07 19:57 sourcefile
27 drwx------ 2 0 0 4096 Aug 29 08:13 ssh-lSyY6530
28 226 Directory send OK.
29 ftp> exit
30 221 Goodbye.

Figure 4.2: Transcript of interactive FTP session at the Unix command line. The corre-
sponding network trace is shown in Figure 4.1.

the presence of firewalls and Network Address Translation (NAT) routers. As an
alternative, the opposite connection direction can be negotiated where the client
connects to a dynamically allocated port on the server, which is more likely to be
supported by common firewall/NAT configurations. With either technique, arbi-
trary port numbers may be employed. This means that the data connection cannot
easily be matched to the corresponding control connection.

Although FTP was originally used mainly interactively for command-line
file transfer, involving interactively moving through the file system using familiar
Unix-like commands (as depicted in Figure 4.2), it can also be used from scripts/ap-
plications through the use of the appropriate libraries. For example, Web browers
generally have limited support for FTP, although the user experience isn’t usually
as good as with HTTP due to the additional complexities of the FTP protocol. The
net result of non-interactive use of the FTP protocol is that the network-level char-
acteristics of control protocol conversations are largely a function of application
implementation specifics rather than user behaviour.

The auxiliary data connections are not authenticated, so there is scope for
an attacker to connect in place of the real user. Properly implemented clients and
servers would safeguard against this by checking Internet Protocol (IP) addresses
of peers before exchanging data, however modern security practices dictate that by
itself this is insufficient. Similarly, FTP uses a simple plain text username and pass-

4.4: GRIDFTP 43

word combination for login purposes. As with HTTP, there are standards-based
extensions to to support more modern authentication mechanisms. RFC 2228 [52]
specifies FTP extensions for alternative authentication schemes, encryption of con-
trol conversations, and optional authentication and/or encryption of data streams.

The extensions manage the encrypted exchange of control traffic by passing
the plain text messages through an encryption and/or integrity protection algo-
rithm and then transmitting the Base64 encoded result in one of a series of new
FTP commands. These are ADAT, MIC, CONF and ENC (for exchange of authenti-
cation data, integrity protected commands, confidentiality protected commands,
and privacy protected commands, respectively). The actual security algorithms to
be used are negotiated by another command, AUTH, for which the Generic Secu-
rity Services Application Program Interface (GSSAPI) is described. As the name
suggests, GSSAPI is a generic API for performing secure message exchange. There
can be many concrete implementations of the API, and it is up to the client and
server using FTP with GSSAPI to use the same implementation. An example of a
concrete implementation is a GSSAPI wrapper for Kerberos. GridFTP, described in
Section 4.4 specifies another.

FTP Summary

Standard ports Port 21 (control). Port 20 is sometimes used for one side of a data
connection.

Reliability of port numbers High. FTP traffic on non-standard ports is unlikely to
be legitimate, given that clients (including web browsers) assume the use of
the standard ports.

Data separate from control Yes.

Parallel data flows No.

Third-party transfers Protocol support, but rarely used.

Plain text or encrypted Plain text.

Signature payloads 220 hello message from server. USER and PASS commands
and their respective responses.

4.4 GridFTP

GridFTP [8] is a specialisation of the extended FTP protocol from RFC 2228. It im-
plements the security extensions by using a GSSAPI library wrapping the Grid
Security Infrastructure (GSI). GSI is a public key based security system which sup-
ports mutual authentication with digital certificates, credential delegation and sin-
gle sign on. These features are vital for Grid projects in order to effectively support
the complexities of managing geographically distributed computer systems that
fall within different administrative domains. The low-level encryption algorithm

4.4: GRIDFTP 44

implementation in GSI (compared with, for example, the higher-level certificate
management policies and credential delegation mechanisms) is in fact simply SS-
L/TLS.

In addition to the specific security mechanisms in place, GridFTP extends
standard FTP by providing for multiple parallel TCP streams for the transfer of
files. As discussed in Section 2.1.1, multiple streams can be used to better utilise
the available network bandwidth. The presence of multiple parallel streams is a
common characteristic of bulk transfer applications, as also exhibited by SRB and
BBFTP (Sections 4.5 and 4.6).

Figure 4.3 on page 45 is a transcript of a sample GridFTP control session.
The left-hand column shows the truncated representations of the textual lines sent
and received on the connection. The middle column of numbers in square brackets
indicates the original character count for the truncated lines. The leading arrows
indicate the direction of the message and are not part of the original data. A left-
pointing arrow represents data from server to client, and vice-versa. The GridFTP
session begins with the selection of the GSSAPI security protocol (line 2). Lines 4–
11 negotiate the encryption algorithms to use and exchange X.509 certificates. The
square-bracketed numbers indicate the size of these exchanges, which are much
larger than anything that follows. Beginning at line 12, the right hand column
shows the plain text corresponding to the encrypted data in the left column. Since
certificates have been exchanged, the USER and PASS commands at lines 12 and 14
do not carry user-specific parameters. The client then proceeds to interrogate the
server to find out its capabilities (via the SITE HELP and FEAT) commands. The
multi-line responses to these commands are delivered in several encrypted lines
(17–23 and 25–35).

At this point it’s interesting to note that the version of the Globus GridFTP
server used in the test leaks a small amount of ‘confidential’ information in the
encrypted text due to an invalid assumption in the source code. This can be seen on
lines 18–22 and 26–34 where the character immediately following the number 631
in the left hand column should be a dash (-) but instead corresponds to the fourth
character of the plain text. This type of leak could be used to validate inferences
made by the heuristic analyser.

Continuing with the transcript walk-through, line 38 sees the client request-
ing the size of the file to be transferred (only 1.5 Kbytes) before setting the transfer
buffer size to 1 Mbytes (line 40). Line 43 indicates the IP address and port number
on the server for the client to connect back to. Following this, the RETR command
is issued and the transfer takes place on the auxiliary TCP connection. Once com-
plete, the control connection sees the ‘Transfer complete’ response on line 46 and
then the goodbye messages at the end of the session.

Although GridFTP has a well-known TCP port number (2811) assigned by
the Internet Assigned Numbers Authority (IANA), site administrators are free to

4.4: GRIDFTP 45

1 <- 220 tim GridFTP Serv [109] 220 tim GridFTP Server 1.17 CAS/SAML enabled GSSAPI
2 -> AUTH GSSAPI [11] AUTH GSSAPI
3 <- 334 Using authentica [54] 334 Using authentication type GSSAPI; ADAT must fol
4 -> ADAT FgMAAGEBAABdAwB [141]
5 <- 335 ADAT=FgMAAEoCAAB [1881]
6 -> ADAT FgMABuQLAAbgAAb [2749]
7 <- 335 ADAT=FAMAAAEBFgM [109]
8 -> ADAT FwMAACD++DJ4iF0 [57]
9 <- 335 ADAT=FwMAATCOfnp [421]

10 -> ADAT FwMAAjBruxUZ9CA [761]
11 <- 235 GSSAPI Authentic [35] 235 GSSAPI Authentication succeeded
12 -> ENC FwMAADCyMbN+ZRnH [76] USER :globus-mapping:
13 <- 631 FwMAAID+J5F5HEqV [184] 331 GSSAPI user /O=Grid/OU=GlobusTest/OU=simpleCA-g
14 -> ENC FwMAACD8dDV4ARCU [56] PASS
15 <- 631 FwMAADBZ0AsMcxPO [76] 230 User jon logged in.
16 -> ENC FwMAACDAhe/D7q7e [56] SITE HELP
17 <- 631-FwMAAGBk0GFJbCxw [140] 214-The following SITE commands are recognized (* =
18 <- 631UFwMAAGAoo6489QgL [140] UMASK GPASS ALIAS
19 <- 631IFwMAAFCQ2NL0aR7b [120] IDLE NEWER CDPATH
20 <- 631CFwMAAFB4U7lxP51h [120] CHMOD MINFO GROUPS
21 <- 631HFwMAAFDfsfoKugeJ [120] HELP INDEX CHECKMETHOD
22 <- 631GFwMAAFBX+coRHNqZ [120] GROUP EXEC CHECKSUM
23 <- 631 FwMAAEDB0KZfSkrz [96] 214 Direct comments to ftp-bugs@tim.
24 -> ENC FwMAACDIJU6HbJAM [56] FEAT
25 <- 631-FwMAADBPvp5a2tbA [76] 211-Extensions supported:
26 <- 631SFwMAADAeASL0UybR [76] REST STREAM
27 <- 631TFwMAACAFN46GWb/z [56] ESTO
28 <- 631EFwMAACC1HA0YAyTR [56] ERET
29 <- 631TFwMAACAsagSQIMAr [56] MDTM
30 <- 631SFwMAAGDyIYuvZRh8 [140] MLST Type*;Size*;Modify*;Perm*;Charset*;UNIX.mode*
31 <- 631ZFwMAACBUdyQ96SwR [56] SIZE
32 <- 631SFwMAACCYjsKkGWpp [56] CKSM
33 <- 631RFwMAACCtaYzKOS3t [56] PARALLEL
34 <- 631AFwMAACA4oeCotGeB [56] DCAU
35 <- 631 FwMAACCm8qMLZvSM [56] 211 END
36 -> ENC FwMAACD9mR0JDlTO [56] TYPE I
37 <- 631 FwMAADDnIwMQQn9V [76] 200 Type set to I.
38 -> ENC FwMAADDzQK5htDbZ [76] SIZE /tmp/source-file
39 <- 631 FwMAACAZg/CkCo/u [56] 213 1586
40 -> ENC FwMAADCz26In5BvS [76] PBSZ 1048576
41 <- 631 FwMAADBPrKAZ/T9T [76] 200 PBSZ=1048576
42 -> ENC FwMAACAba5QvAk8M [56] PASV
43 <- 631 FwMAAFDch2m4PFgN [120] 227 Entering Passive Mode (192,168,1,23,130,177)
44 -> ENC FwMAADC8pctm//jb [76] RETR /tmp/source-file
45 <- 631 FwMAAEA/E9grU3HU [96] 150 Opening BINARY mode data connection.
46 <- 631 FwMAADDnpTivqpYq [76] 226 Transfer complete.
47 -> ENC FwMAACAEq8al6Rz+ [56] QUIT
48 <- 631-FwMAAFDkw9QIxxQn [120] 221-You have transferred 1586 bytes in 1 files.
49 <- 631-FwMAAGASPUTbbfUv [140] 221-Total traffic for this session was 9474 bytes i
50 <- 631-FwMAAFBdiQ0mQor7 [120] 221-Thank you for using the FTP service on tim.
51 <- 631 FwMAADDFbIYt7LD7 [76] 221 Goodbye.

Figure 4.3: Encrypted GridFTP control connection (left, heavily truncated) alongside
plain text (right, less truncated). Leading arrows indicate direction of communication,
where a left-pointing arrow represents data from server to client, and vice-versa. The
middle column of numbers in square brackets indicates the total number of characters
before truncation in each line of the original conversation.

4.5: STORAGE RESOURCE BROKER 46

run servers on ports of their choosing, perhaps in order to work with local fire-
walling restrictions. Therefore, it is desirable to be able to identify GridFTP traffic
as such by inspecting packet contents or making statistical inferences based on the
higher-level traffic properties. GridFTP (using GSSAPI-GSI security) has a num-
ber of characteristic features that are likely to be useful in traffic identification. For
example: the GridFTP hello message from the server; the GSSAPI authentication
exchange; and certificates issued by known Grid certificate authorities.

GridFTP Summary

Standard ports Port 2811 (control).

Reliability of port numbers Low. Although port 2811 is allocated by IANA, ad-
ministrators may choose different ports according to local policy. Use of non-
standards ports is not a user-interface problem because GridFTP URLs will
usually be generated, stored and manipulated programatically.

Data separate from control Yes.

Parallel data flows Supported.

Third-party transfers Supported.

Plain text or encrypted Semi-plain text, encrypted commands.

Signature payloads 220 hostname GridFTP initial message from server. GSS-
API authentication negotiation. Certificate exchange containing Grid-issued
certificates.

4.5 Storage Resource Broker

The Storage Resource Broker [14] is a much more complicated system than the pro-
tocols described above. Rather than just being a file transfer application, it provides
a virtual file system (represented logically in an SQL database) that may be accessed
through the SRB protocol. The virtual file system provides mappings from logical
file names to physical storage locations, which may in turn be comprised of differ-
ent types of data resources. On-line disk storage is the most conventional of these,
but projects with huge storage requirements and compatible access patterns may
use a hierarchical storage system, such as a layering of archival mass storage (e.g.,
magnetic tape) and normal disks for short-term access.

In addition to the basic virtual file system front-end, SRB aids in manage-
ment of file replicas across distributed storage resources. Each storage system (disk,
tape, etc) is attached to a host which runs the SRB server software. Each SRB server
maintains an association with the Metadata Catalog (MCAT) which manages the
logical file name mappings and replica catalog.

The following paragraphs describe in detail the different components of an
SRB installation, starting with the central component—the MCAT.

4.5: STORAGE RESOURCE BROKER 47

MCAT The Metadata Catalog uses an SQL database backend to store username-
password pairs, descriptions of available physical storage systems and their
corresponding SRB server hosts, and the logical file system directory tree
and pointers to the corresponding physical storage locations. An MCAT is a
normal SRB server with additional functionality that is selected at software
compile time.

Server Each server contacts its statically configured MCAT to learn about the phys-
ical resources present on each system. This means that no resource-specific
configuration is stored on the individual servers—everything is stored cen-
trally in the MCAT. Clients connecting to a server are authenticated by pass-
ing on their credentials to the MCAT for verification. Servers may connect
to each other to perform file transfers, in which case a super-user account is
used to implement the credential delegation (in effect, the servers and MCAT
form a network of trust).

Client Tools A set of command-line client tools are provided that mimic the usage
of standard Unix tools. For example: Sls, Scd, Sput and Sget. In addition,
a C and Java library are available for making direct connections to the SRB
system from end-user code.
The SRB client is configured through the use of Unix dot-files in a user’s
home directory. These files contain the address of the SRB server to contact,
as well as the user name and password to be used for the connection. An SRB
client can be configured to connect to any SRB server in the network, since
all authentication is eventually proxied to the MCAT.

Communication between clients and servers uses a custom Remote Procedure Call
(RPC) protocol, which operates in the default configuration in plain text. After an
initial authentication handshake is performed, the client issues synchronous RPC
calls. These largely mimic the standard Unix file operations (open, close, read,
write, etc.) and therefore the SRB client library is a thin wrapper around the RPC
protocol. A consequence of this architecture is that large file transfers involve in-
terleaving control messages and data in the same TCP connection. For example,
by default file transfers are performed using a transfer buffer size of 4 Mb, which
means that there will be regular re-issues of read/write RPCs throughout the trans-
fer, carrying with them an associated loss in throughput. Furthermore, since data
is transferred over the single control connection, any file transfers that come from
a server other than the one to which a client has connected will be proxied through
the first-hop server. This is an inefficient use of network bandwidth.

Extensions to the SRB protocol have added additional procedures that ne-
gotiate auxiliary TCP connections to be used for the transfer of data. With this
scenario, transfers can be made directly from the client application to the server
managing the data resource, provided firewall restrictions allow it.

Figure 4.4 is a block diagram showing the different relationships between

4.5: STORAGE RESOURCE BROKER 48

MCAT

Server A Server C Server B

Client A Client B

Figure 4.4: Block diagram showing relationship between different components of an
SRB installation.

MCAT, Server and Client. Each Server, which provides access to one or more data
resources, connects to the MCAT for local resource configuration, logical file name
mapping and user authentication (thin solid line). Clients connect to their desig-
nated Server (dashed lines). Depending on Client configuration (whether auxiliary
TCP streams are being used), data is transferred over the control connection (thick
dashed line) or over one or more dedicated data connections (thick solid line). In
the former case, data to be transferred is proxied through the designated Server. In
the latter, a direct connection is established between Client and the Server respon-
sible for the data resource required.

At configuration/compile time, the SRB software can be configured to make
use of an encryption library to wrap the plain RPC protocol. It supports GSSAPI
(and therefore GSI) as well as a custom encryption library known as SEA (SDSC
Encryption/Authentication). While this makes the RPC protocol inaccessible by
direct payload inspection in a network monitor, it brings it to the same level as
GridFTP in terms of identification and statistical inferences.

SRB Summary

Standard ports Port 5544 for broker connection. Other ports allocated dynami-
cally.

Reliability of port numbers Low. Administrators may choose non-standard ports
according to local policy. Use of non-standards ports is not a user-interface
problem because the port number must always be specific when configuring
the SRB client software.

Data separate from control Depends on run-time configuration option.

Parallel data flows Supported.

Third-party transfers Yes (for example, the data transfer between Client B and

4.6: BBFTP 49

Server C from Figure 4.4 wherein Client B’s control connection is with Server
B).

Plain text or encrypted Both plain text and encrypted are supported, depending
on compile-time configuration.

Signature payloads Broker client sends START SRB as a null-terminated C-style
string. Server replies with port number as a 32-bit integer. This is indepen-
dent of any configured security mechanisms (e.g., GSSAPI).

4.6 BBFTP

BBFTP [41] was developed to support the BaBar project, transferring huge data files
between the Stanford Linear Accelerator Center (SLAC) and the the In2p3 Comput-
ing Center in Lyon, France. It is a very light-weight system that requires minimal
configuration at client and server.

The protocol is implemented solely in the bbftp command line tool and
corresponding bbftpd server. The client takes a single instruction or batch file of
instructions for files to transfer. It has support for on-the-fly compression of data
files and was explicitly designed to use parallel TCP streams to gain most effective
use of available network bandwidth. TCP connections may be made from client to
server or server to client, depending on run-time configuration options.

Authentication may be accomplished one of several ways, determined at
compile time:

1. Simple user name and password, verified on server against Unix password
file.

2. AFS/Kerberos tickets.

3. GSI via GSSAPI.

4. Pre-authentication as the user running the bbftpd server process.

For option 1, name and password may be passed in clear text, or encrypted using a
public-key scheme using the OpenSSL library. Regardless of which authentication
mechanism is employed, the rest of the control protocol is not encrypted. In option
4, the server process is usually started from a remote shell connection, for example
via Secure Shell (SSH). In this case, the control protocol conversation takes place
over the server process standard input/output files and therefore the observable
network traffic is the SSH-encrypted modulation of the basic BBFTP protocol.

The BBFTP protocol conversation after authentication is a conceptually sim-
ple request-response scheme that exchanges file paths and port numbers to be used
for the auxiliary parallel TCP connections. The actual implementation of the pro-
tocol, however, is somewhat irregular and poorly documented. Development of a
reliable network analyser requires inspection of the source code to identify devia-
tions from the regular structure of the request-response scheme. Furthermore, no

4.7: IPERF 50

Field Meaning

flags Bit field.
numThreads Number of parallel TCP streams to use.
port TCP port to connect back to.
bufferLen Application-level read/write buffer size.
winBand TCP window size (or 0 for default).
amount Positive indicates number of bytes. Negative indicates

time in milliseconds.

Table 4.1: Fields in the iperf client header message. Each entry is a 32-bit integer.
Since there are six fields the total message size is 24 bytes.

special identification strings are used in the initial exchange to ensure that both
sides of the connection are using the same protocol. This means that client/server
negotiation of different protocol versions is dependent on probing for failure re-
sponses to new-version messages, and that identification of the protocol from an
external analyser requires knowledge of the peculiarities of this process.

BBFTP Summary

Standard ports Port 5021 default control connection. Some data connections estab-
lished using 5020 as source port.

Reliability of port numbers Medium. Administrators may choose non-standard
ports according to local policy. Although using a non-default port requires
extra configuration options, automated invocations of BBFTP can easily in-
corporate non-standard configurations.

Data separate from control Yes.
Parallel data flows Yes.
Third-party transfers No.
Plain text or encrypted Plain text apart from authentication process, unless control

protocol transported over a remote shell.
Signature payloads No explicit ‘magic’ protocol identification strings. However,

the initial authentication exchange messages follow a basic RPC scheme that
can be identified.

4.7 iperf

The iperf [101] tool is used to evaluate network throughput using TCP or UDP.
The number of parallel TCP connections and the TCP buffer sizes are configurable.

Although iperf is not strictly a Grid bulk data transfer application, it is
widely used to determine the throughput of a network path and identify problems
[37]. A typical configuration is to run on a regular basis (e.g., hourly) to evalu-
ate performance of important network links over time. The network load resulting

4.7: IPERF 51

from such usage can be significant, and as such it is useful to be able to identify and
quantify iperf usage.

The iperf server and client are configured at the command line, and have
a default TCP port on which the initial connection is established. Bandwidth tests
are conducted over this connection, and over further connections if parallel mode
is requested. Data transfer may be in either (or both) directions, depending on run-
time configuration options. In the default single-direction mode, the client makes
one or more connections to the fixed server port and transmits data. In ‘dual’ or
‘tradeoff’ modes, the server connects back to the client on the same fixed port num-
ber to transfer data. ‘Dual’ mode makes simultaneous transfers in both directions,
whereas ‘tradeoff’ mode sends data from client to server and then from server to
client.

There are no well-defined ‘magic strings’ or other obviously recognisable
protocol features in the network-level conversation. Upon connection from client
to server (but not server to client), a parameter block containing the number of
parallel connections, buffer size, window size and test duration is exchanged. A
heuristic can be used to identify TCP connections as iperf by attempting to inter-
pret initial stream contents of every TCP stream as one of these parameter blocks.
If the resulting values make sense, further processing on the connection can take
place. For example, Table 4.1 shows the fields present in the iperf client message
header. Each field is a 32-bit integer but the numThreads and port fields, for ex-
ample, will never contain a value outside the range of a 16-bit integer. This adds a
constraint for recognising this initial control block. A byte-level regular-expression
style filter can be employed to make a first-cut classification that eliminates any
initial contents that are plainly not iperf; implementation details are described
further in Sections 5.3.4 and 5.4.3.

iperf Summary

Standard ports Port 5001 default.

Reliability of port numbers Medium. Administrators may choose non-standard
ports according to local policy, or perhaps to investigate network perfor-
mance problems. For example, an operator may employ packet shaping tech-
niques that depend on TCP port numbers.

Data separate from control No.

Parallel data flows Yes.

Third-party transfers No.

Plain text or encrypted Plain.

Signature payloads No. Heuristics required.

4.8: TLS/SSL 52

4.8 TLS/SSL

Although TLS/SSL is not a bulk data transport protocol in itself, its use in some
of the above applications, as well as in the heuristic analyser described in Chap-
ter 7, merits separate treatment. The protocol provides privacy and data integrity
between two communicating processes. It specifies two layers: the Handshake
Protocol and the Record Protocol. The Handshake Protocol is layered on top of
the Record Protocol, which in turn is layered on top of some reliable transport
protocol—usually TCP. At the start of a connection, the Handshake Protocol is used
to exchange encryption keys and verify identities. Thereafter, the application is free
to transport its own data in encrypted payloads encapsulated within the Record
Protocol.

The Record Protocol itself consists of a stream of type-, version- and length-
prefixed messages. These elements are transmitted in the clear, and enable the fram-
ing of the Record Protocol to be identified by monitoring the TCP-level communi-
cation.

The identity verification step mentioned above uses X.509 certificates [29],
which contain the name of the subject (amongst other attributes) and a reference
to the certificate of some other entity that attests the accuracy of (i.e., signs) the
information contained in the certificate. Certificates used by web servers, for ex-
ample, are typically signed by one of the major certificate authorities, which are
in turn trusted by major web browsers. The Grid community, on the other hand,
establishes its own chain of certificate authorities, over which the organisations in-
volved have control.

4.9 Summary

The preceding sections have described the behaviour, at a high level, of several bulk
data transfer applications, as might be expected to be used by Grid-style projects.
Some of these are well-established internet protocols (such as HTTP and FTP),
whereas others (SRB, BBFTP, iperf) are communications systems whose behaviour
is dictated almost entirely by the specifics of a single implementation. GridFTP, un-
usually, is a standards-based protocol that has evolved out of the needs of the Grid
community. It builds upon the framework of extended FTP (RFC 2228) and pro-
vides one of the few implementations of the abstract encryption/authentication
scheme there.

The protocols have been characterised by the possible behaviours at the net-
work level for the higher-level file transfer operations invoked by the user (or con-
trolling software entity). The simplest of these characterisations is the use of stan-
dard TCP port numbers—although in every case the software may be reconfigured

4.9: SUMMARY 53

HTTP FTP GridFTP SRB BBFTP iperf

Standard ports 80 211 28111 55441 50211 5001
Reliability of ports High High Low Low Med. Med.
Separate data No Yes Yes Maybe Yes Both
Parallel data flows No No Yes Yes Yes Yes
Third-party transfers No Yes Yes Yes No No
Plain/encrypted HTTPS2 No Yes Maybe SSH2 No
Signature control Yes Yes Yes Yes No No
Signature data N/A No Yes3 No No No

1. Control only 2. Optional 3. With data channel authentication

Table 4.2: Summary of bulk transfer application details.

to use site-specific ranges as dictated by firewall restrictions or policy. Table 4.2
summarises the properties of each of these protocols.

Chapter 5

Real-Time Application Protocol Analyser

In order to achieve the goal of recognising and reporting on Grid application traf-
fic, a real-time application protocol analyser was designed and implemented. This
chapter describes the system.

Since the applications of interest are all TCP-based, it is sufficient to focus
on the reassembly of TCP flows as the main monitoring technology. Reassembled
flows can be handed off to protocol analysis modules (specific implementations
of which are described in Chapter 6) and from there events may be generated for
delivery to a management system.

This chapter is structured as follows. After describing the requirements, a
prototype developed using Bro (see Section 2.4.3) is discussed. The limitations en-
countered therein, along with the initial requirements then drove the design of the
system in the following sections. Finally, some specifics of the implementation are
dealt with, followed by an evaluation of the system performance.

5.1 Requirements

The core requirements are as follows:

R1. Monitoring at full duplex Gigabit Ethernet line rate.
R2. Reassembly of all TCP flows.
R3. Content-based application protocol identification rather than use of well-

known ports.
R4. Framework for easily developing concurrent full-payload protocol analyser

modules.
R5. Simple event reporting mechanism for integration with a management sys-

tem.

The first requirement follows immediately from the first assertion of the thesis
statement, T1 on page 12. Full-duplex Gigabit Ethernet implies a maximum band-
width of 2 Gbits/s as seen by a network monitor observing both flow directions.
The costs (in terms of CPU time) of traffic analysis at this rate depend on two main

5.2: BRO PROTOTYPE 55

factors: the proportion of flows for which protocol analysers are required and the
distribution of packet sizes. If many flows are being actively monitored, demand
for CPU time will increase. Assuming that most traffic on the link is bulk (and there-
fore not subject to content processing), small packets will lead to a greater number
of packets in a given time and therefore CPU time will increase correspondingly.

Full reassembly of all TCP flows (R2) is vital for the accurate analysis of
the application-level protocols. It is assumed that the flows of interest are routed
symmetrically with respect to the monitoring point. If this were not the case, it
would not be possible to reconstruct both sides of the TCP conversation since a
flow is not guaranteed to be seen by the monitor.

Instead of depending on well-known ports for initial flow classification, re-
quirement R3 dictates that flow content be used to classify flows. Although this is
computationally more expensive, it is a much more powerful monitoring technique
than simple port-based identification, and becomes necessary when end users or
site network administrators adjust run-time or compile-time port number configu-
rations, perhaps to accommodate firewall/policy restrictions.

Since the approach for analysing the control protocols of interest is to fully
reconstruct application-level message exchanges, it is necessary for the real-time
monitoring system to support multiple concurrent analysis modules. For the sys-
tem to be truly useful, the development costs associated with the creation of an
analysis module must be minimised (R4).

Finally (R5), the system must be able to deliver events generated by the anal-
yser modules to a management system. A simple mechanism is sufficient to demon-
strate the effectiveness of the monitor. Subsequent integration with a management
system should be straightforward.

In summary, the requirements are for a line-rate Gigabit Ethernet monitoring sys-
tem with the ability to classify TCP streams, based on initial content, before hand-
ing off subsequent stream processing (if needed) to a protocol-specific analyser
module. These modules deliver events that classify control and bulk flows accord-
ing to protocol.

5.2 Bro Prototype

The Bro network intrusion detection system was used as a framework for initial
prototyping of the system. As described in Section 2.4.3, Bro is intended to be a
Gigabit Ethernet network monitor that supports accurate reassembly of TCP flows.
Application-protocol specific analysers written in C++ are responsible for initial
analysis of a particular flow and a separate policy is implemented using a custom
scripting language.

5.3: DESIGN 56

These features of Gigabit Ethernet monitoring and TCP flow reassembly pre-
cisely fit requirements R1 and R2. A simple C++ protocol analyser for the SRB pro-
tocol (see Section 4.5) was implemented using Bro’s framework. A limitation was
encountered at this point with respect to the handling of the SRB broker connection,
which negotiates an ephemeral port to be used for the main SRB session. Since Bro’s
libpcap-based packet filter is statically defined to include just the well-known
ports corresponding to the enabled protocol analysers, it was not possible for the
SRB analyser to see forthcoming traffic on the negotiated port.

Proper support for this would require the ability to modify the incoming
packet filter on the fly, in order to be able to process packets on the newly identified
port (which would not previously have been included in the packet filter rules).
Unfortunately, even though Bro could be augmented to support live modification
of the packet filter, it is likely that packets of interest would be lost in the time
window between recognising the SRB broker protocol and the new in-kernel packet
filter taking effect.

To work around this problem, the Bro packet filter was set to capture all
TCP traffic, irrespective of port number. Unfortunately, when running in this con-
figuration the system became overwhelmed by bulk traffic on the link due to the
overheads of TCP reassembly. Although this could be mitigated to some extent by
avoiding reassembly for flows that are known to be bulk data, the case of mixed
control and data (where both types of traffic within one TCP connection need to be
efficiently interpreted) could not be handled.

For these reasons, a stand-alone system optimised for application protocol
monitoring of bulk data transfers was devised. Building the SRB analyser in Bro
was instructive and the analyser implementation has been ported without major
modifications to work in the system described in the rest of this chapter.

5.3 Design

This section covers the key design decisions made during the development of the
real-time analyser. Given the experiences of using Bro, it was clear that an effi-
cient mechanism was required to manage TCP flow reassembly of different types
of flows (control vs. data). Furthermore, care would be necessary to reduce de-
mands on the memory bus and CPU in general so that the analyser could achieve
the line-rate of Gigabit Ethernet (as specified in R1).

The main architectural difference from Bro is the decision to exploit a cir-
cular buffer packet capture interface and to assume the availability of dedicated
network monitoring hardware that provides this interface. The advantages of this
architecture will be described in detail in the next section.

Several assumptions and simplifications were made to reduce the scope of
the project. These are listed below:

5.3: DESIGN 57

1. TCP only (no UDP)
The applications under study are only using TCP. The analyser could be ex-
tended in the future to support other IP protocols via auxiliary protocol re-
assembly modules.

2. IPv4 and IPv6
Although TCP transport is assumed, both IPv4 and IPv6 are explicitly sup-
ported.

3. No IP fragment handling
Properly configured end hosts should be able to negotiate the appropriate
maximum segment size (MSS) for the end-to-end path. Indeed, this is neces-
sary in order to obtain maximum throughput (as desired by bulk transport
protocols). If evidence later suggests that IP fragments are more prevalent
than assumed here, additional reassembly support could be added.

4. Studied applications are not used maliciously
Systems like Bro take steps to correctly process specially crafted packets that
are designed by attackers to bypass intrusion detection. The assumption here
is that traffic resulting from the protocols under study is not modified in this
way.
Related to this is the issue of dealing with malicious traffic that is not cov-
ered by the above assumption. For example, there may be denial of service
attacks crossing the monitoring point. Ideally, the monitor should be able
to cope gracefully with such traffic. Experimental evidence in Section 5.5.1
shows that the monitor copes with SYN flooding, a common form of denial
of service attack.

Throughout the design and implementation process, a number of design principles
were kept in mind to ensure that the completed system would operate as efficiently
as possible:

1. Minimise memory accesses
As little data as possible from each packet should be inspected and, similarly,
packet data should be copied as little as possible, both to minimise CPU load
and also to reduce contention on the PCI bus, which is shared by the packet
capture card and the CPU. If the bus is too busy then the card may not be able
to claim sufficient memory bandwidth to store incoming packets. In effect,
the goal is to avoid introducing any per-byte overheads into the analyser that
would become a bottleneck for scalability.

2. Minimise heap allocation
Heap-based memory allocation/freeing can be time consuming and causes
heap fragmentation. For a long-running monitoring system, this is a concern.

3. Process packets as soon as possible
If packets are not processed when they arrive, they must be buffered. Buffer-

5.3: DESIGN 58

Packet Capture Processing

Circular
buffer

Processing
loop

Connection
hash table

Connection
processor

Packet
capture

hardware
Full-duplex
Ethernet

Figure 5.1: Block design of real-time analyser, showing the circular buffer link between
the packet capture hardware and the packet processing software.

ing costs time and memory, and should be avoided where possible.

4. Single-threaded, data-driven structure
To simplify matters, the system is intended to run on a single processor, with
processing driven by the arrival of network packets. Potential for extension
to multiprocessor machines or multiple monitoring machines, operating in
unison, is future work (see Section 5.5.4).

5.3.1 Circular Buffer Capture Interface

The monitoring system is built around a main loop driven by the arrival of captured
packets in a circular buffer. Figure 5.1 is a block diagram showing the high-level
structure.

The capture card stores incoming packets into a traditional circular buffer of
several hundred megabytes. In parallel, the application processes the packets in the
buffer, and uses a hash table of TCP connections in order to track the per-connection
state. Once a connection has been identified, further processing is handed off to
another module.

The basic circular buffer arrangement is shown in Figure 5.2. The capture
hardware advances the ‘Write Pointer’ and will fill up to the ‘Application Acknowl-
edged Pointer’. As the application processes the packets, any non-TCP packets are
immediately skipped. A canonical1 quadruple consisting of (source port, source
address, destination port, destination address) is formed and looked up in the con-
nection hash table. If a lookup fails, additional lookups are performed against the
quadruples (source port, source address, 0, 0) and (destination port, destination
address, 0, 0). These correspond to provisional connections that may have been
installed by a protocol analyser that is expecting additional related connections
(for example, an FTP data connection whose destination IP/port is known but the

1. The source and destination pairs are ordered in the connection table according to their numeric
value.

5.3: DESIGN 59

Not-yet-
written

Processed

Application
Acknowledged Pointer

Unprocessed

Write Pointer

Figure 5.2: Circular capture buffer, showing the head of the circular queue (the “Write
Pointer”) and the tail of the queue (the “Application Acknowledged Pointer”).

source IP/port is unknown).
If all these lookups fail, a new connection is allocated and installed in the

table. Either way, the incoming packet is eventually dispatched to the connection
handler.

Aside from packet processing, the main loop also handles timers. These are
set up by the connection handler or protocol handler, and are mainly used to expire
connection records after inactivity or once a connection has been closed.

5.3.2 TCP Reassembly

By handing off packet capture to dedicated hardware, the CPU is free to take care of
analysis tasks rather than process interrupts and take care of buffer management,
as would normally be expected from the use of a traditional Ethernet card as a
capture source. In addition to these performance improvements, the circular buffer
can be further exploited for efficient real-time TCP flow reassembly.

Out-of-order TCP segments are treated specially: they are left in the capture
buffer rather than being copied onto the heap. A per-flow2 linked list of these re-
tained packets is maintained. In addition, a global linked list is constructed to allow
the main event loop to keep track of the lower limit in the circular buffer to which
the capture hardware is allowed to write. The first entry in this list always points
to the closest packet to the capture write pointer. The circular buffer arrangement
incorporating the retained packet scheme is shown in Figure 5.3.

The linked list data structure in each retained packet overwrites the capture
record header and some of the Ethernet header. Since only the IP protocol and lay-
ers above it are of interest, this is not a concern. In fact, by the time a packet has
become eligible for being retained, the IP header is no longer of interest so the
space occupied by it could be used for additional retained-packet book-keeping.

2. Each connection record is composed of two flow records, one for each direction.

5.3: DESIGN 60

Not-yet-
written

Processed

Application
Acknowledged Pointer

Retained (tracked in global
and per-flow linked lists)

Application
Processed Pointer

Unprocessed

Write Pointer

Figure 5.3: A revision of Figure 5.2 showing additionally the retained packets area
(“Retained”). Note how the application now maintains two pointers: “Processed” and
“Acknowledged”. Note that the retained packet area is likely to be sparse—its lower
bound is simply the oldest retained packet.

The per-packet processing required at this point is just a hash-table lookup and
some book-keeping of packet queues and data counters (used for statistical pur-
poses).

Once a packet arrives that represents the next segment to be delivered to the
application, any retained packets are processed and delivered if appropriate. After
delivery to a protocol analyser module, the protocol analyser may decide that it
would like to buffer the packet, in which case it will be re-retained (or retained
for the first time, if this is a newly arrived packet) and the protocol analyser will
become the new owner. This scheme ensures that any need for data copying can be
kept to a minimum throughout the lifetime of a connection.

If the main event loop determines that available space in the circular buffer
is limited (due to the capture write pointer becoming close to the earliest retained
packet), the owner of the retained packet (flow or protocol analyser) is given the
opportunity to spill the packet out of the circular buffer and on to the heap. The
threshold for performing this spilling is currently half the capture buffer size.

This threshold gives a large safety zone for incoming data to be stored. Since
packet processing is incrementally data-driven, the amount of time taken to process
each packet is bounded—protocol analysers are unable to block. As such, retained
packets can be incrementally spilled to keep the ring buffer sufficiently empty.
There is, however, a trade-off. Ideally, packets will be kept in the ring buffer for
as long as possible without spilling, so that they can be processed, in order, with-
out copying.

5.3: DESIGN 61

Flow
ignored?

Data on TCP
connection

TCP
reassembly

Process
raw?

Deliver to
raw analyser

Protocol
known?

Initial string
classification

Matched?Finished

Ignore
connection

Yes

No

Yes

No

Deliver to
analyser

Yes

No

Yes

No

Figure 5.4: Data flow for TCP connections.

By considering the timing limits with Gigabit Ethernet, basic figures can be
obtained for the duration of time a packet could remain in the buffer. For example,
given a 1 Gbyte ring buffer and maximum 2 Gbps fill rate (full-duplex), the buffer
will be filled in approximately 4 s. Therefore, a retained packet (with the current
half-fill threshold), will have a minimum lifetime of 2 s, or proportionally longer
for lower data rates.

5.3.3 Connection Processing

Figure 5.4 is a flow chart showing the broad stages of data processing for a TCP
connection. If a flow has been marked as inactive, further processing on a packet
is immediately abandoned. Assuming a flow is not ignored, raw packets may be
passed to an attached protocol analyser. This is useful for analysis techniques that
do not require full TCP reassembly to operate.

Following reassembly of out-of-order TCP segments, data is delivered in or-
der to a protocol analyser. By default, a ‘master’ analyser is attached whose respon-
sibility it is to identify the protocol by initial content inspection. Upon successful
identification, the connection is handed off to the corresponding analyser. If identi-
fication fails, the connection is marked to be ignored.

The next section details the initial content inspection classification technique
employed, and the following sections deal with the specifics of the abstract protocol
analyser design.

5.3.4 Application Protocol Identification

Before a TCP connection has a protocol analyser attached, it is necessary to identify
the correct protocol. This must be carried out for every TCP connection monitored
by the system. If a connection cannot be identified within the first few packets or a
limited number of bytes, it is abandoned. Once abandoned, a connection consumes
minimal resources because it is no longer necessary to keep track of full TCP pro-
tocol state, although a record is still maintained in the connection hash table for

5.3: DESIGN 62

1
Client

20
Server

http

ftp/
smtp

ssh

sslv3

23
’220’

10
’S’

6
’T’,space

22,3,0..1

’POS’

’GE’

’S’

space

’-’

14 15
’.’

’0’..’9’,’.’
16

’0’..’9’ ’-’

17

’0’..’9’
’-’

’0’..’9’,’-’

’SH-’,’0’..’9’

Figure 5.5: Graphical representation of finite state machine matcher for identifying
application protocol from initial data. Each transition is labelled with its numeric byte
or ASCII value within quotes. Ranges are given as nn..mm.

the lifetime of the connection to prevent repeated failed lookups and allocation of
a state record for a partial3 flow.

Protocol identification by payload inspection is generally based on scanning
for signature patterns. Due to TCP segmentation, it is possible to miss a pattern
when inspecting individual packets if the string of interest has been split across
several packets. Intrusion detection systems take care to be robust in the face of
such (potentially malicious) segmentation. Since only non-malicious use of known
protocols is considered here, and IP fragmentation issues are ignored, it is sufficient
to do simple initial-payload string matching after TCP reassembly.

Figure 5.5 depicts a simplified4 finite state machine (FSM) that could be used
to classify traffic. Double circles represent accepting states for SSLv3, HTTP, SSH
and FTP/SMTP. The HTTP matcher, for example, matches the initial strings GET
and POST . Note that the SSH string (such as SSH-1.99-OpenSSH) is valid from
either client or server.

Incoming data from client-server or server-client TCP flow is passed through
the corresponding FSM. If at any stage the data does not have a corresponding
transition in the state machine, the TCP connection is immediately flagged as being
ignored.

Figure 5.6 compares the performance of an FSM-based classification scheme
with a sequential string match. The sequential matching (upper line) scales linearly
with increase in the number of search strings. The FSM also scales approximately
linearly in this range, but the correlation coefficient is so small that it is insignificant
in comparison with the sequential matcher. As well as being able to express a wider
range of patterns than an exact string match, a secondary advantage of the FSM
approach is that it becomes trivial to scan across multiple TCP segments, since the
state of the matching process is captured by the FSM.

Some protocols do not feature a ‘magic’ string that enables them to be un-

3. A flow for which the initial connection handshake has not been seen.
4. Nodes with a single in and out transition have been merged to save space. For example, strings
of more than one character indicate omitted states.

5.3: DESIGN 63

Sequential string match compared with finite state machine

Number of search strings

T
im

e
 p

e
r

s
e
a
rc

h
 (

u
s
e
c
)

0 20 40 60 80 100

0.0

0.5

1.0

1.5

Figure 5.6: Performance comparison for sequential string matching (upper line) vs. a
precompiled finite state machine (lower line).

ambiguously identified. In these cases, an approximate match against the expected
fields in the header can be made. For example, the strings 220 or 220- are not
sufficient to differentiate FTP from SMTP. The full protocol analyser, once attached,
will be able to perform stricter checks once it gains control. The initial string match-
ing is intended to make a good first assessment of the application protocol for a
connection, ensuring that the per-connection overheads are minimised if the ma-
jority of connections on the link do not need to be analysed.

Any TCP segments involved in the FSM-based application identification
process are kept as retained packets, in order that they can be re-delivered to the
specific protocol analyser once it has been assigned. It is important that the ini-
tial protocol identification phase is bounded in terms of the number of packets
needed—both to limit the retained packet overheads and also to ensure prompt
identification and processing of the content. If processing is delayed too much then
associated auxiliary streams may commence before the control traffic that identifies
them is parsed.

5.3.5 Basic Protocol Analyser Interface

A simple protocol analyser may operate at two different levels:

1. Raw un-reassembled packets

2. Packets delivered in order

The first case is straightforward and provides support for simple packet-based size
or timing analysis.

The second case provides the full data from the connection. From the flow
reassembly point of view, in-order data segments are delivered to the protocol anal-
yser. If the protocol analyser determines that a block of data from the connection
is not of interest, it may inform the reassembler to ignore any packets correspond-
ing to a range of TCP sequence numbers. This allows, for example, an RPC-based

5.4: IMPLEMENTATION 64

transport protocol which carries both control and data over the same TCP flow
(e.g., the types of SRB flow that caused trouble with the Bro prototype from Sec-
tion 5.2) to be monitored efficiently during both the control traffic and bulk-data
phase. Matching packets do not need to be delivered or buffered. Thus, in most
cases of high-bandwidth packet reordering, packets do not need to be retained at
all.

5.3.6 Threaded Protocol Analyser Interface

Implementing a protocol analyser that is driven by the receipt of data blocks of
indeterminate size usually involves constructing an event-driven state machine
(EDSM), where the events are the arrival of in-sequence data packets from each di-
rection of the connection, and the states correspond to the request-reply sequences
of the protocol in question. This kind of code is difficult to understand and main-
tain, and can quickly become unwieldy.

In order to meet requirement R4, an alternative multi-threaded interface was
designed, building on the in-order delivery service described in the previous sec-
tion. The protocol analyser may be written as if it had access to two streams (one
for each flow direction). Blocking read operations may be performed, and the anal-
yser will be suspended until the requested amount of data has arrived. Therefore,
imperative programming may be used to describe the control flow, whilst being
based underneath on an efficient EDSM model.

Implementing such a system using normal OS-level threading primitives
would incur considerable overheads if a thread were allocated per connection. Fur-
thermore, pre-emptive multithreading would increase both development and run-
time costs in the proper use of synchronisation/locking primitives. Therefore, an
extremely lightweight user-level threading construct was employed. More details
of the system used and an example of a threaded protocol analyser are given in
Section 5.4.1.

5.4 Implementation

The system was implemented in C++. This gives the power and speed of plain C
with the flexibility of an object-oriented language. The SRB analyser from Bro was
written in C++, so it was a straightforward task to adapt it to work in the new
monitoring system.

An Endace DAG monitoring card was used, and the software is linked with
the Endace-supplied libdag in order to gain access to the DAG interface. libpcap
was also used to provide a trace-file-based testing interface. Although some as-
sumptions were made about the structure of the DAG packet capture header for
reasons of efficiency, porting the system to operate with different hardware would

5.4: IMPLEMENTATION 65

not be too difficult, since the actual interface to the capture hardware has been ab-
stracted.

The timer manager was implemented using a custom calendar queue pack-
age, where future events are added to one of a circular set of buckets, indexed by
the time until the timer is due to expire. These buckets can be thought of as days on
a year-planner calendar. Each day may contain multiple events. In common timer
implementations, strict ordering is required for event delivery. Here, per-second
accuracy is sufficient since timers are mainly used for expiring TCP connections.
This avoids the overheads of maintaining a time-ordered queue in each bucket.

The calendar queue buckets, as implemented, represent one second time
slots. There can be hundreds of thousands of timers due to expire in a given sec-
ond, so it is important to avoid processing all the timers at once because that could
cause a buffer overrun on the DAG card. Instead, the number of timers in the next
one-second bucket is examined every 20 ms (i.e., 50 times per second). Suppose the
number of timers in the next one-second bucket is N, the current time is t and the
deadline for the next bucket is T (a whole number of seconds). At each 20 ms inter-
val the number of intervals available to process n timers is i = (T − t)/0.02, and so
ideally n = N/i timers are processed at a time.

Per-packet overheads are minimised by avoiding any heap allocation in the
fast path. Protocol analysers work on the data directly in the circular buffer (unless
a packet has been spilled) so expensive memory copies of the entire packet are
avoided.

A logging library, rlog [48], was used to provide a flexible yet efficient
mechanism for logging. From the programmer’s perspective the logging directives
look similar to the familiar C printf function. Run-time configuration allows fine-
grained selection of log messages, and, when disabled, a particular logging state-
ment incurs minimal CPU instructions (corresponding to a load, test and branch).

5.4.1 ProtoThreads

As described above in Section 5.3.6, a lightweight user-level threading system is
used to ease the implementation of the protocol analyser modules. It is based on the
“ProtoThreads”5 [39] library, which achieves thread switching by stack unwinding
rather than traditional context switching.

The stack-unwinding process is conceptually based upon continuations—
that is, the ability to save the state of an execution path as a continuation, proceed
to execute other code and resume from the continuation later. In effect, a normal C
subroutine is turned into a co-routine that yields when there is insufficient data to
handle the next step of the protocol analyser.

By yielding, a C function is made to return (although this is hidden behind

5. “Proto” because they are small and not-quite real threads.

5.4: IMPLEMENTATION 66

the ProtoThreads implementation). A drawback of this approach is that the state
of local variables is lost between blocking reads on either TCP flow. However, C++
instance variables can be used to good effect to simplify the implementation. In
addition, a side-effect of losing local variable state is that the memory required for
the virtual context switch is minimised (compare this to a normal context-switching
system where the entire processor state must be saved and restored).

1 int AnalyserClass::AnalyserMain()
2 {
3 EPABuffer buf;
4 EPA_BEGIN();
5

6 // Read function id
7 EPA_READ(buf,EPA_CLIENT,2); // YIELDS
8 func_id = *(uint16_t*)buf.data;
9 // Responder sends number of arguments as 16-bit int

10 EPA_READ(buf,EPA_CLIENT,2); // YIELDS
11 num_args = *(uint16_t*)buf.data;
12 for (arg_idx=0;arg_idx<num_args;arg_idx++) {
13 EPA_READ(buf,EPA_CLIENT,4); // YIELDS
14 arg_length = *(uint32_t*)buf.data;
15 // Read the argument, but only the first 200 bytes needed
16 EPA_READ_AND_SKIP(buf,EPA_CLIENT,
17 arg_length,200); // YIELDS
18 // ... process the argument
19 }
20

21 EPA_READ(buf,EPA_SERVER,4); // YIELDS
22 result_value = *(uint32_t*)data;
23

24 EPA_END();
25 }

Figure 5.7: ProtoThread example showing processing of an RPC-style argument list.
Lines marked with YIELDS indicate points at which the function may yield.

Figure 5.7 shows a listing of an example ProtoThread-based analyser mod-
ule. The code in question is intended to parse a series of length-prefixed arguments
to an RPC call. A 16-bit function ID is sent, followed by the number of arguments
(again a 16-bit integer). Each argument is specified as a 32-bit length followed by
the appropriate number of bytes of data, with no padding.

In the listing in Figure 5.7, the EPA READ and EPA READ AND SKIP calls are
C preprocessor macros that check if there is sufficient data available to satisfy the
request. If there is not enough data, the function returns after updating the relevant
flow record to indicate how much data is required. The next time the function is
called, execution resumes from the last EPA READ statement.

Further details of the macro implementations are given in Appendix A.

5.4: IMPLEMENTATION 67

5.4.2 Protocol Analyser Interface

Initial development of the SRB analyser was used to identify the basic requirements
and programming interface for protocol analysis modules that interpret payload
content. The non-SRB-specific parts were then extracted to form a general C++
base class (ExpectingProtocolAnalyser, “EPA”) to be used by analysers of
the form introduced earlier (Section 5.4.1).

When a new TCP connection completes the three-way handshake, the
ConnectionEstablished() method is invoked on a new instance of the anal-
yser class. Here the analyser is given the opportunity to inform the EPA base class
how much data it is expecting to see on each side of the flow. So, for example, if the
protocol dictates that the client transmit a 10 byte hello message to the server, an
‘expectation’ for 10 bytes would be issued on the corresponding flow. When that
data arrives, the DoDeliver(flow,packet) method is invoked on the protocol
analyser.

The EPA class provides macros that automatically manage the notification
of expectations and combine them with the ProtoThreads library to enable the
straight-line representation of the protocol structure. In particular, the following
types and macros are available:

class EPABuffer
A simple wrapper for a data pointer and length value. Contains utility meth-
ods for extracting big-endian and little-endian integers. Used as the return
value in the EPA_ macros.

EPA READ(buffer,direction,size)

Attempts to read size bytes from the direction flow, specified by one of the
constants EPA CLIENT or EPA SERVER. The resulting data pointer is stored
in the EPABuffer buffer. Each of the EPA * macros may internally yield the
ProtoThread, so it is unsafe to make use of local variables across them.

EPA READ SKIP(buffer,direction,size,needed)

Similar to the above, but now needed describes the actual number of bytes
that the protocol analyser needs to see, whereas size represents the total num-
ber of bytes to pass over in the flow. This is used to efficiently skip large parts
of a mixed control/data flow that are not of interest.

EPA READ UCHAR(direction) EPA READ LE32/BE32(direction)

These macros may be used in an expression to yield the next byte or little-
endian or big-endian (respectively) 32-bit integer from the specified flow.

EPA READ UNTIL(buffer,direction,stopchar,maxlen)

Reads bytes until a specified character (stopchar) is found, up to maxlen bytes.
This can be used for efficiently reading a line at a time. If possible the filled
buffer will point directly into the packet remaining in the circular capture
buffer or in the heap if the packet had been previously spilled. Otherwise, a

5.4: IMPLEMENTATION 68

1 # Simple pattern for SSLv3
2 # First byte is content type id for handshake (22)
3 # Next bytes are protocol version (3.0 or 3.1)
4 ssl_v3 = 22 0x03 0x00..0x01;
5

6 # SSH protocol starts with version string like
7 # "SSH-1.99-OpenSSH_3.8.1p1"
8 ssh = "SSH-" ’0’..’9’ {1,2} ’.’ ’0’..’9’ {1,3} ’-’;
9

10 client = (
11 ssl_v3 @sslv3
12 |
13 ssh @ssh
14 |
15 ("GET " | "POST ") @http
16);

Figure 5.8: Fragment of a Ragel input file for compilation to a C++ finite state machine
implementation.

temporary buffer is allocated to store the incoming data up to maxlen bytes.

5.4.3 Application Protocol Identification

As described in Section 5.3.4, a finite state machine (FSM) is used to do initial iden-
tification of application protocol by examining initial content of the TCP flows. The
FSM is described using a regular-expression like language and converted to very
efficient native C++ code using an FSM compiler tool, Ragel [100]. Compile-time
binding of the FSM is not considered to be a limitation here because the protocol
analyser modules themselves must be compiled into the monitoring system. Addi-
tion of a new module involves creation of an appropriate branch in the FSM defini-
tion and corresonding code in a switch statement to instantiate the new protocol
analyser when necessary. Figure 5.8 shows a fragment of the FSM input language
showing patterns for SSLv3, SSH and HTTP.

Care must be taken when constructing the FSM to ensure that the pattern for
one protocol is not a prefix of the pattern for another. This can be visually checked
from the graphical representation (see Figure 5.5).

5.4.4 Event Reporting

Events of interest are delivered to a simple event sink class, the default implemen-
tation of which writes a line to a log file. Events may also be delivered across a Unix
domain socket to a local process. This process, which could be implemented in a
scripting language such as Perl, Python or Ruby, may act as a publish-subscribe
system for passing the event on to a management system. Pre-processing may be
also be implemented at this stage if the events need to be modified before forward-
ing.

The time latency between the real-time monitor dispatching an event and it
being received by a local process is governed by the operating system scheduler.

5.5: EVALUATION 69

On a multiprocessor system where the second processor can be dedicated to event
processing tasks, this latency is expected to be less than 1 ms6.

5.4.5 Testing

Unit tests exercise the normal and edge cases in the management of retained pack-
ets, TCP segment reassembly and delivery of data to protocol analysers. A basic-
block coverage analysis was used to aid in identifying sections of untested code.
The presence of these tests increases confidence in the accuracy of the monitor and
also means that as the software is further developed any regressions can hopefully
be identified.

A library of small trace files was created to support continuous verification
of the tool’s event-reporting output. These cover a range of application-level be-
haviour for the protocol analysers.

5.5 Evaluation

The preceding sections have described the requirements, design and implemen-
tation of the real-time application protocol analyser. The final part of this chapter
evaluates some performance aspects of the tool under a synthetic test load and
considers the scalability of the system. Section 6.5.1 in Chapter 6 completes the
evaluation in the context of the implemented protocol analysers, from a real-time
performance perspective and also in terms of detection accuracy. The analyser is
shown to operate at speeds approaching 10 Gbits/s.

5.5.1 New Connection Rate

Once a TCP flow has been marked as ignored, the fast path involves only inspec-
tion of the packet header followed by a hash table lookup. The main overhead in
processing such connections is the initial allocation and hash table insertion of the
connection control record and associated timer queue updates.

To evaluate system load under extreme conditions for connection processing,
TCP SYN packets were generated at a range of new-connection rates7. The rate was
varied and the CPU load measured over a period of 90 s. The main purpose of this
experiment was to gauge the limits of performance so as to obtain an approximate
bound for the raw connection processing rate, irrespective of TCP reassembly or
protocol analysis. The synthetic TCP SYN packets were sent across the monitoring
link, such that each packet corresponded to a unique connection. A pseudo random
number generator used to derive IP addresses and TCP port numbers was able
to generate sufficiently unique traffic, as evidenced by expected active connection
counts reported by the monitor.

6. Simple experiments showed the actual latency to be typically around 50 µs.
7. The monitor was positioned at point B on Figure 3.1 from page 32.

5.5: EVALUATION 70

CPU load over time by connection rate

Real Time (s)

T
o

ta
l
C

P
U

 (
%

)

0 20 40 60 80 100

20

40

60

80

100

100k/s

400k/s

86.3%

Figure 5.9: CPU load over time for different connection rates varied from 100,000–
400,000 connections per second in steps of 20,000.

A single CPU on a dual Xeon 2.4 GHz was able to produce around 80,000
packets per second of synthetic traffic. Two CPUs on each of three machines
brought the maximum packet rate that could be produced by the available hard-
ware to around 480,000 packets per second. The theoretical limit on a full-duplex
Gigabit Ethernet link is approximately 4 million packets per second8. Of course,
a real network with that many new connections per second would be unusual,
particularly when it is expected that most of the bandwidth is used by bulk data
transfer applications. Even so, exceptional circumstances may occur if denial-of-
service attacks are present on the network. What is important in these cases is that
the monitor copes gracefully. This is dealt with in further detail in Section 5.5.5.

Figure 5.9 charts CPU usage9 against elapsed time for connection rates rang-
ing from 100,000 to 400,000 new connections per second. In each case the monitor
was started cold.

After about 16 seconds the measurements show a sharp ramp-up before
settling to an approximately constant value. This corresponds to a 15 second un-
established connection timer expiring and the start of regular expiry of connection
records from the oldest connections10. At this point the number of active connec-

8. 1 Gbits/s× 2÷ 8 bits/byte÷ 64 bytes/packet [minimum frame size, assuming packet bursting] =
3,906,250 packets/s
9. Both user and system time is counted, however system time is less than 0.5% throughout except
during the initial ramp-up when memory allocations are being made. Here, system CPU usage peaks
below 10%.
10. The discrepancy between 15 and 16 seconds is due to the coarse grained calendar queue timer
implementation.

5.5: EVALUATION 71

tion records stabilises at approximately 15 × rate. For a rate of 400,000 packets per
second this corresponds to 6.4 million connection records. At this limit, CPU usage
is around 86%. Noise after 90 seconds, when the load is switched off, is an artifact
of timer processing when there are no regular incoming packets.

Each line shown on the graph represents a different connection rate, in steps
of 20,000 new connections per second. It is clear that the relationship between rate
and CPU usage is linear, which is largely governed by the hash table lookups. The
hash table is not dynamically sized, in order to avoid processing stalls resulting
from the rehashing that is needed during a size change. A larger hash table size
would reduce collisions and therefore system load. Once collisions are minimised,
the CPU load becomes more tightly linked to the analyser processing times.

5.5.2 Hash Table Sizing

It is up to the administrator to decide what hash table size is appropriate for the
system configuration (e.g., memory availability) and the types of traffic of interest.
The analyser can be configured to regularly log statistics relating to the connec-
tion hash table that may be used to inform the size configuration. For example,
over each logging interval (typically seconds or minutes) the following values are
given: the number of active connection table entries, the total number of lookup
operations, the number of failed lookups and the average hash lookup depth en-
countered. The fill-factor can be computed from the hash table size and the active
connection count. The number of lookup operations is roughly proportional to the
packet rate. The average chain depth gives an indication of the collision rate, and
any non-zero value is cause to consider increasing the hash table size, memory per-
mitting. The table consumes four bytes per entry.

To give an idea of typical values, Figure 5.10 shows a series of graphs
summarising various statistics from the new connection rate experiment. Fig-
ure 5.9, shown earlier, is a larger version of the lower-left chart (“Total CPU
(User+System)”). The top left chart shows the average lookup depth over time,
which stabilises at about 0.3 during the main part of the experiment. The hash table
size here was about 23.5 million entries; the ratio against the steady-state connec-
tion count of 6.4 million yields a similar value (0.27). A discrepancy between these
values would only be expected if the hash function were poor or the particular
connection tuples encountered were to cause collisions11.

5.5.3 IP Fragments

Assumption (3) on page 57 specified that the protocol analyser would not support
the reassembly of IP fragments. Although this restriction should not be too difficult
or costly to overcome given the flexibility of the retained packet scheme used by

11. This second condition might indicate a weakness of the hash function.

5.5: EVALUATION 72

htsize−989−23643637

Real Time (s)

0 50 100 150

0
2

0
4

0
6

0
8

0
1

0
0

Total CPU (User+System) (%)

0
2

0
4

0
6

0
8

0
1

0
0

User CPU (%)

0
2

0
4

0
6

0
8

0
1

0
0

System CPU (%)

−
0

.4
0

.0
0

.2
0

.4

Faults Per Second0
e

+
0

0
4

e
+

0
6

Active Connections

0
e

+
0

0
2

e
+

0
5

4
e

+
0

5 Packets Per Second

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Time Between Samples (s)

−
0

.4
0

.0
0

.2
0

.4

Dropped Packets (capped at 65535 per sample)

0
.0

0
.2

0
.4

0
.6

Average Hash Lookup Depth

0 50 100 150

0
1

2
3

Processing Lag (Real − Network Time) (s)

Figure 5.10: Connection rate experiment summary charts.

the analyser, it has not yet proved necessary. Emperical evidence to support this is
that in a week-long trace from the DCS12 edge router that contained 783 million IP
packets, only 93 TCP packets were fragmented.

5.5.4 Scalability

Multiprocessing

The current system is inherently single-threaded. The data-driven main loop guar-
antees causality between the identification of related flows and their later appear-
ance. The introduction of split-processing of the incoming packets—either via mul-
tiple DAG cards/buffers on a multi-CPU machine, or a cluster of machines with
DAG cards monitoring the same network—would remove this guarantee. Parallel
processing would mean that the start of a related flow might be processed before
the appropriate protocol handler has been set up.

One solution would be to deal with all packets using the retained packet
scheme, keeping each packet in a per-flow queue. Suppose that the workload is
split amongst CPUs/DAG cards by a network-level hashing filter that delivers all
packets from a particular flow to the same CPU. By keeping all initial packets on
a flow in the circular buffer for around one or two seconds (see Section 5.3.2), suf-
ficient time would be gained to send a message to the relevant monitor CPU. This
would allow it to reinterpret the retained packets from a particular flow (assuming

12. Department of Computing Science

5.5: EVALUATION 73

it has already started) before they have to be expired from the buffer.
The additional overheads of retaining packets should not be unmanageable,

since only the first second or so of any given flow need be maintained—sufficient
time for a message to be passed between monitoring systems.

Hardware Support

One of the design principles from Section 5.3 was to minimise memory accesses as
far as possible. For example, packet content is only inspected by a protocol analyser
when it is needed, and bulk data packets can be skipped entirely.

An aspect of IP and TCP that conflicts with this principle is the need for TCP
checksum verification. IP header verification is not a significant problem since most
of the header must be inspected anyway by the protocol analyser during the course
of normal processing. The TCP checksum, however, is calculated across the entire
payload and therefore can incur a non-trivial overhead.

The design of the monitoring system attempts to limit the overheads of TCP
checksumming by avoiding or delaying the calculation until a packet has reached
the point of delivery to a protocol analyser. Ignored flows do not need to be check-
summed, and the checksum can be lazily verified before any operation that changes
the state of the TCP flow in the analyser.

Hardware for TCP checksumming is commonly available in medium- to
high-end Ethernet interfaces and could be implemented on an FPGA daughter-
board on the DAG.

5.5.5 Points of Failure

Insufficient Memory

With 4 million new connections being created per second, an extreme version of the
scenario covered in Section 5.5.1, a significant amount of memory would be needed
to keep track of each of them. However, assuming that this level of traffic would
be the result of a denial-of-service attack, it would not be necessary to actually
maintain state for the connections. Instead, a limit of concurrent connections may
be set by the operator in order to set an upper bound on the memory used by
the monitor. Any new connections beyond this limit would be ignored. There is
obviously a loss of information here, as the analyser is no longer able to interpret
every session. However, even though this scenario is unlikely, graceful degradation
and timely reporting of the situation to the operator means that benefit can still be
gained.

If the monitor software were to allocate too much memory, the observed be-
haviour would be that the DAG driver software reports buffer overruns and there
is a sudden drop in CPU usage by the monitor application. The first effect is due to
the monitor application not servicing the packets in the capture buffer in a timely

5.5: EVALUATION 74

htsize−968−23643637

Real Time (s)

0 50 100 150

0
2

0
4

0
6

0
8

0
1

0
0

Total CPU (User+System) (%)

0
2

0
4

0
6

0
8

0
1

0
0

User CPU (%)

0
2

0
4

0
6

0
8

0
1

0
0

System CPU (%)

0
5

0
1

0
0

1
5

0 Faults Per Second0
e

+
0

0
4

e
+

0
6

Active Connections

0
5

0
0

0
0

1
5

0
0

0
0

2
5

0
0

0
0 Packets Per Second

0
5

1
0

1
5

2
0

Time Between Samples (s)

0
2

0
0

0
0

6
0

0
0

0

Dropped Packets (capped at 65535 per sample)

0
.0

0
.5

1
.0

Average Hash Lookup Depth

0 50 100 150

0
2

0
4

0
6

0
8

0
1

0
0 Processing Lag (Real − Network Time) (s)

Figure 5.11: Connection rate experiment summary charts when swapping occurs.

fashion. This in turn is caused by the onset of virtual memory swapping by the
operating system kernel on behalf of the monitor that is now using more memory
than is physically available.

Figure 5.11 is an example of the operational statistics reported from the mon-
itor in a low-memory situation. It is equivalent to Figure 5.10 except that a low-
memory condition has been artificially induced. The process is blocked whilst vir-
tual memory paging requests are handled, and as such the regular logging of the
statistics used to generate the graphs becomes intermittent. Where the points used
to draw the lines are greater than 1.5 s apart (the requested logging interval is 1 s
here) the values are shown with circled points. A filled point indicates the begin-
ning or end of a run of ‘sparse’ values. Note that most of the lines, corresponding to
the lower connection rates, are unaffected. Only the lines representing the topmost
rate (that causes memory requirements to exceed available physical memory) are
abnormal.

The ‘Faults Per Second’ chart on the right hand side represents the cause of
the unusual behaviour shown in each of the other charts. The ‘Total CPU’ chart
in the lower left shows a sudden drop, which is perhaps unintuitive. The reason
for this is that the process is no longer scheduled (until the paging request has
completed) and therefore it appears to be using very little CPU time. Instead, the
execution time becomes dependent on hard disk access times.

A further unintuitive result is shown in the ‘Packets Per Second’ chart. Here,

5.5: EVALUATION 75

despite paging activity, the analyser appears to be keeping up with the incoming
packets. In reality, the processing rate is calculated against the timestamp stored
in each packet, whereas the X-axis of the charts is given in wall-clock time. Since
the analyser is not able to keep up with real time, the DAG card gradually fills the
ring buffer. The ‘Processing Lag’ (top right) chart represents the difference between
real time and the time of the last packet seen by the analyser. The sudden drop
at around 140 s indicates that the analyser has caught up with real time—but only
because the DAG card has stopped capturing until the application buffer has been
cleared (‘Dropped Packets’).

Lost Packets

The plain-text full payload protocol analysis described in this chapter is largely
based on the parsing of full conversations between client and server. Any end-
to-end packet losses between client and server will be detected and retransmitted
by the end hosts’ TCP, which means the retransmissions will be seen by the anal-
yser. By using the DAG monitoring hardware, properly configured, packet cap-
ture losses at the passive monitor should be avoided. However, elimination of such
losses cannot be completely guaranteed. These could be caused by reception errors
at the Gigabit Ethernet protocol level that occur in the passive monitor but not at
either endpoint of the tapped link. Alternatively, PCI bus contention may mean
that the DAG card is unable to flush received packets to the circular capture buffer
when necessary. Finally, speed limitations in the monitor software may mean that
the contents of the capture buffer cannot be processed quickly enough, resulting in
overruns. An acknowledgement (TCP ACK) for a segment that has not been seen
is strong evidence for losses or asymmetric routing, and requires further investiga-
tion. The tool identifies such packets and logs them accordingly.

Since the system is intended to monitor network loads consisting of bulk
data transfers, most of the packets seen by the monitor should be of the uninterest-
ing variety. The design of the monitor is such that once a flow, or subset of a flow
(identified by a range of TCP sequence numbers) has been marked as uninteresting,
any packets falling within that range are completely ignored. The benefit of this is
that any lost packets matching these criteria do not incur failure in the analyser.

If, however, a non-ignored packet is actually lost during the parsing of a
known protocol, the analyser module will stall. This means that further packets on
the same TCP stream will be retained, as happens in cases of genuine end-to-end
packet loss. Once it becomes necessary for the earliest of these retained packets
to be spilled, the protocol analyser can make a decision about how to resolve the
situation. It may attempt to resynchronise against the data in the retained packets
(therefore responding to the spill request by freeing the retained packet rather than
actually spilling). Another option is for the analyser to abandon processing of the
connection (and report this action accordingly to the operator).

5.6: SUMMARY 76

All of the analysers currently spill packets rather than attempting resynchro-
nisation. If retained/spilled packets exceed a preset per-analyser or global limit, the
connection is abandoned. Such overflows should only occur in exceptional circum-
stances and, as described above, may be indicative of a configuration problem (e.g.,
losses in the Gigabit Ethernet optical tap) that should be investigated. During the
course of the experimental runs, the behaviour has not been observed, other than
during testing of the detection.

5.6 Summary

This chapter has covered the main design points of a real-time application-level
protocol analysis system. Relevant implementation details have been explained,
and the base system (ignoring specific protocol analyser implementations) has been
shown to meet the required performance levels.

The next chapter examines the specific protocol analysers in detail and re-
ports on their accuracy.

Chapter 6

Plain Text Analysis

Two different approaches are taken in the analysis of Grid bulk transfer traffic.
Firstly, control traffic is precisely interpreted in order to report in real time the file
transfer activity taking place. Secondly, heuristics are used to enable the classifica-
tion of bulk transfer streams in the presence of encrypted control traffic.

Chapter 7 examines these heuristic techniques, while this chapter covers the
content-specific control traffic analysis. This work has been carried out in the real
time application protocol analysis system described in Chapter 5. The specifics of
the technique are discussed first and then the capabilities of each of the imple-
mented protocol analysers are covered in detail. Following this is an evaluation
of the technique both in terms of meeting the event-reporting goals and satisfying
the performance constraints. The scalability of the approach is considered and the
suitability of the implemented system for application to emerging high-speed net-
working technologies is dealt with. Finally, the detection results from a week-long
monitoring session are described.

6.1 Goals

The goals in performing control traffic analysis are:

G1. To identify the protocol/application in use without resorting to fixed TCP
port number classification;

G2. To identify bulk-data TCP flows and attribute them to the corresponding
control flow (and hence file transfer application); and

G3. To gather extra information about the bulk file transfers being performed.

For G3, file size information can be extracted as well as more detailed protocol-
specific properties, such as the number of distinct file transfers being performed
within a single control session and the version number of client and server software
in use. Statistics aggregated from these may be used by ISPs to more clearly identify
trends in network usage. As well as observing trends in intentional network usage,
it may be possible, for example, to attribute anomalous traffic to broken or poorly
implemented client or server software.

6.2: COSTS AND LIMITATIONS 78

6.2 Costs and Limitations

In theory, monitoring of full protocol conversations—provided the conversations
are not encrypted—permits reconstruction of the application-level behaviour, at
least to a level that can provide useful data for network operators. Attaining this
level of information by close inspection of packet contents would require a signifi-
cant investment of time and expertise to cover all the traffic present on the network.
This is because it is necessary to manually construct a protocol analyser module for
each of the protocols in use. Development of an analyser module requires both an
understanding of the protocol in question—at the network level—and also suffi-
cient programmer skill to convert that protocol knowledge into the module code.

The costs involved can be reduced from two sides: firstly by limiting the
range of applications under study to those which are expected to represent a sig-
nificant network load; secondly by providing a framework for developing protocol
analysers that reduces the amount of complex coding required. Chapter 4 intro-
duced the set of bulk data transfer applications studied in this work, and Chapter 5
described in detail the framework for developing protocol analysers.

Analysis of control traffic by inspection of packet payloads is based on the
assumption that packet payloads are available to the monitoring system. This car-
ries with it an associated cost in terms of the additional system bandwidth required
on top of the monitoring of transport-level packet headers only. For example, the
packet capture hardware could be instructed to only copy headers into memory,
which for Ethernet/IP/TCP would be 60–70 bytes. Compare this to full payload
capture which might be expected to range from several hundred bytes up to 9000
bytes for jumbo Ethernet frames. In this work, the I/O bandwidth cost is weighed
against the benefits of control traffic analysis (as demonstrated in this chapter).

Although packet content inspection raises concerns over security and pri-
vacy it is assumed that machine inspection of packet payloads for reasons of net-
work management is not, ultimately, a privacy concern. The availability of a mech-
anism to exploit full content inspection for network management, along with evi-
dence to support its effectiveness, could be used as an argument towards any policy
changes necessary to support deployment of such a system.

6.3 Analysers

The following sections describe the specifics of each of the implemented protocol
analysers, outlining those protocol features on which the analysers report and iden-
tifying any limitations present. In addition to these protocol-oriented attributes,
any features of the protocol that dictate specific support in the protocol analysis
framework are highlighted.

6.3: ANALYSERS 79

6.3.1 Event Structure

Each event described in the following sections contains the full or partial TCP flow
tuple with which it is associated, as well as any parameters explicitly listed. Along-
side this is an optional reference to another ‘related’ connection. This is typically
set to the control flow that triggered the creation of the auxiliary connection record.
For example, the textual representation of an event looks like this (split over several
lines):

1139269632.05505991 BulkData:Created [192.168.1.23:33160 <-> *:0]

{192.168.1.32:64985 -> 192.168.1.23:5021}

id="5" source="BBFTP" ebytes_resp="522674"

The first field represents the event time (corresponding to the timestamp of the
network packet that triggered it). An event name consists of a family name and
event name, separated by a colon. Here the event family is BulkData and the name
is Created. Within square brackets is the flow identifier this event directly represents
(in this example, a pending connection to port 33160 of host 192.168.1.23). Within
curly brackets is the related flow identifier (giving the corresponding control con-
nection), which here represents a connection to a server on port 5021 of the same
host. Remaining parameters are listed in straightforward key=value form.

6.3.2 Generic Bulk Data

All of the protocol-specific analysers take advantage of a shared component known
as the ‘BulkDataAnalyser’. This is a pseudo-protocol analyser module attached to
flows that have been identified as bulk data but do not require any further inter-
pretation of contents. The module counts bytes sent and received on the connection
and generates an event when the analyser is created, when the connection is opened
and when the connection is terminated.

Events

BulkData:Created(source,expected_orig,expected_resp)

Issued as soon as the provisional connection is identified. The 〈source〉 pa-
rameter names the protocol from which the bulk data flow originates. For
example, the textual sample given above in Section 6.3.1 is BBFTP.
If the protocol analyser was able to determine an estimate for the amount of
data to be transferred over the connection, this is given by 〈expected orig〉
and 〈expected resp〉 (corresponding to bytes delivered from client to server
and server to client, respectively).

BulkData:Opened(source,expected_orig,expected_resp)

Issued once a connection has actually been established. It is possible for a
Created event to occur without a subsequent Opened event, in which case a

6.3: ANALYSERS 80

Freed event will be issued after a timeout. This can happen if a bulk data con-
nection has been identified by a protocol analyser but the transfer is aborted
before the connection is established.

BulkData:Closed(bytes orig,bytes resp,duration)

BulkData:Reset(bytes orig,bytes resp,duration)

BulkData:Freed(bytes orig,bytes resp,duration)

Three possible events are given at connection termination: Closed, Reset or
Freed. These correspond to the connection being gracefully closed by a TCP
FIN handshake, being closed by a TCP RST segment, or being freed due to
an inactivity timeout.

Resources

On top of the memory required by the TCP connection structure (see Section 6.5.2),
the BulkDataAnalyser requires 88 bytes.

6.3.3 SRB Analyser

The SRB analyser that has been implemented is able to analyse the basic RPC sys-
tem that underlies the SRB protocol. There are many functions corresponding to
traditional file system APIs such as open, close, read, write, seek and stat. In addi-
tion to these, there are functions to set up third-party transfers. The arguments or
return values to these functions specify IP addresses and port numbers that will be
associated with bulk data transport.

The SRB protocol starts with a very brief TCP handshake on a fixed port
(usually 5544) that negotiates another port number to which the client must recon-
nect in order to access the SRB server properly. The signature pattern of this bro-
ker connection is recognised in order to properly analyse the traffic on the second
ephemeral connection. This second connection does have some regularity in the
initial message exchanges that could be used to identify it as SRB traffic directly,
irrespective of any previous broker connection. However, the broker connection is
far simpler (containing just the string ‘START SRB’) and so reduces the complexity
of the analysis that has to be applied to the start of every TCP flow.

The main connection begins with a software version and authentication
handshake, after which the client takes control of a synchronous RPC exchange.
The protocol analyser reports on the software version numbers in use and then
identifies each RPC, with hooks at five points:

1. Once procedure identifier is known (i.e., which function is being called)

2. Before each argument is sent

3. After each argument has been sent

4. Once result code is known

5. After return value has been received

6.3: ANALYSERS 81

The basic SRB RPC protocol uses a set of straightforward ‘read’ and ‘write’ proce-
dure calls to exchange bulk data. By adding logging hooks at the appropriate parts
of the protocol exchange, events are raised in advance of the bulk data transfers.
For example, a ‘read’ operation is reported at stage 3 once the number of bytes to
be transferred is known. A ‘write’ operation is reported at 2 when the size of the
argument is known.

Since bulk data and control traffic are mixed in this scenario (typically using
4 Mbyte transfer units), it is important for the analyser system to efficiently ignore
the bulk data. This motivated the support for specifying a range of TCP sequence
numbers for which incoming TCP segments should be dropped as soon as possible.

The SRB protocol has several different procedures used for reading and writ-
ing data—the particular one used depends on the version of the software in use and
whether the transfer is client-client or server-server. The format of each of these pro-
cedures was identified by inspecting the native C SRB client and server source code
as well as a plain-Java implementation of the protocol.

Beyond the simple RPC read/write mechanisms, newer versions of the SRB
protocol are able to achieve much better network performance by separating the
control and data connections. Bulk data can be streamed on the separate connec-
tion(s) rather than being periodically held up by repeated invocation of RPC calls.
To implement this scheme, several SRB procedure calls identify the host name and
port number to use for the additional connections. Depending on the particular
run-time options, these may be from client to server, server to client, or third party
server to client. The analyser module is able to parse these RPC calls and generate
events to classify the auxiliary connection accordingly.

Events

In addition to BulkData events being generated with 〈source〉=“SRB” for the identi-
fied bulk data connections, the following events are issued:

Refer(port)

The result of the initial broker connection—specifies the port number to
which the client will reconnect.

Open(file_descriptor)

The client is opening a file. The 〈file descriptor〉 will be used in subsequent
ReadChunk or WriteChunk calls. This is the first indication that a control
connection is to be used for combined control and bulk data transport.

ReadChunk(file_descriptor,size)

WriteChunk(file_descriptor,size)

Read or write of 〈size〉 bytes of a previously opened file. This is reported
before the transfer takes place.

DataPut(host,port,size,num_threads)

6.3: ANALYSERS 82

DataGet(host,port,size,num_threads)

Referral for secondary TCP stream(s) to be used for separate data transfer.
BulkDataAnalysers will be created as necessary.

Resources

On top of the memory required by the TCP connection structure (see Section 6.5.2),
the SRB analyser requires 220 bytes.

6.3.4 HTTP Analyser

Since HTTP itself is a very simple protocol, the analyser is similarly straightfor-
ward. Unfortunately, since HTTP is so common, it is difficult to obtain useful infor-
mation from it without that information getting lost in the noise.

Basic parsing of the HTTP protocol is supported, including HTTP 1.1 connec-
tions with pipelined multiple transfers. For each transfer a small set of the response
headers are logged as event parameters: Content-Length, Content-Type and
Server.

The HTTP protocol is line-oriented, which means that parsing the stream
for attributes of interest requires examining each byte of the request and response
headers. If a Content-Length field is available then the size of the transfer is
known in advance and the connection can be efficiently skipped until the next re-
sponse. If there is no content length given, but ‘chunked’ transfer encoding1 is in
use, then each chunk can be efficiently skipped.

Byte-by-byte examination of packet payloads requires more memory band-
width than the precise approach available when parsing the SRB protocol, for ex-
ample, since message boundaries are determined by content rather than prefixed
length fields. Protocols such as SMTP are more problematic in this regard, since
the end of the ‘bulk’ payload (an email) is represented by a line containing only a
period. Therefore, the data from each line must be considered.

Events

GET(seq,content_type,content_length,server)

Start of a GET request. 〈seq〉, a natural number, indicates which request of
an HTTP 1.1 connection is being reported.

Summary(count,orig_bytes,resp_bytes,duration,howclosed)

Summary at the termination of each TCP connection. 〈count〉 indicates how
many requests were issued. 〈orig bytes〉 and 〈resp bytes〉 are as given for
BulkData events. 〈duration〉 is time in seconds and 〈howclosed〉 indicates the
reason for connection termination (“FIN”, “RST”, or “timeout”).

1. Chunked transfer encoding sends data in several length-prefixed chunks.

6.3: ANALYSERS 83

Resources

On top of the memory required by the TCP connection structure (see Section 6.5.2),
the HTTP analyser requires 328 bytes. Of these, 130 bytes are used to keep track of
Content-Type and Server header fields. These could be omitted for extra memory
savings.

6.3.5 FTP Analyser

FTP, like HTTP, employs a line-oriented control protocol. The same underlying code
for reassembling lines as used in the HTTP analyser is reused here. FTP is actually
layered on top of the Telnet protocol, which interleaves some escape sequences
with the application level messaging. A network intrusion detection system (NIDS)
which needs to cope with the evasive techniques of intruders has to filter these out
before scanning for FTP messages of interest, but since the classification of normal
network usage is of primary concern here, run-time costs, development time and
processing overheads can be reduced by ignoring such Telnet sequences.

Initial identification of the FTP protocol is accomplished by looking for an
initial string from the server: ‘220’ followed by a dash or space character (see Fig-
ure 5.5). Unfortunately, this simplistic approach contends with the hello message
of the SMTP protocol. Therefore, an intermediate analyser is first attached which
scans the initial messages exchanged on the connection. This allows the connec-
tion to be definitively identified as FTP before handing off control to the full FTP
analyser. If this intermediate analyser encounters the handshake indicative of a
GridFTP session, the GridFTP analyser is instantiated instead (see Chapter 7).

For plain FTP, the passive and active connection methods for data connection
establishment are parsed and an appropriate BulkDataAnalyser is prepared and
attached to a provisional connection record.

Events

Port(port)

Notification that the control session has negotiated a port for connections
back to the server.

Host(ip,port)

Notification that the control session has negotiated a host and port for con-
nections from the server to either the client or a third party.

RETR(size,ip,port)

Start of a transfer from server to client. 〈size〉, if known from a preceding
SIZE FTP command, is the size in bytes for the transfer. 〈ip〉 and 〈port〉
indicate one side of the connection to be involved. See also the generic Bulk-

Data:Created event.
STOR(ip,port)

6.3: ANALYSERS 84

Start of a transfer from client to server. 〈size〉, if known, is the size in bytes
for the transfer. 〈ip〉 and 〈port〉 indicate one side of the connection to be
involved. See also the generic BulkData:Created event.

Resources

On top of the memory required by the TCP connection structure (see Section 6.5.2),
the FTP analyser requires 212 bytes.

6.3.6 BBFTP Analyser

The plain-text BBFTP analyser is designed to understand a subset of the client-
server messages for BBFTP version 3. The source distribution does contain a docu-
ment describing the protocol structure for each of the three protocol versions (1, 2
and 3) but unfortunately it is somewhat unclear and insufficiently detailed to give
enough information for the development of a protocol analyser. As such, it was
necessary to turn to the source code to better understand the protocol behaviour.

The client and server software are distributed as separate packages, each
containing duplicated code that manages the network communication. Therefore,
there is not one canonical reference point for the protocol. To further complicate
matters, the source code is poorly structured which leads to difficulty in reverse-
engineering the network-level behaviour.

Although the basic network exchanges are based on a regular message struc-
ture (consisting of type, length and content), the use of these messages does not fol-
low a simple request-response sequence. In most cases, the messages of interest can
be interpreted and other messages ignored by skipping the appropriate amount of
data according to the length field in the message header. There is one message type
in which the length field is reused for another purpose, thus requiring special-case
handling.

Despite these disadvantages from the reverse-engineering perspective, the
tool itself performs very effectively.

Similarly to the SRB analyser, the application-framed messages are decoded
and the messages of interest are interpreted, resulting in updates to state stored in
the analyser.

Events

In addition to BulkData attachments for data connections:

Protocol(version)

Report on the result of protocol negotiation.

Retrieve(streams)

A file retrieve is about to start with 〈streams〉 parallel flows.

6.4: SAMPLE FLOW STATISTICS 85

Store(size,streams)

A file store is about to start with 〈streams〉 parallel flows and expected file
size of 〈size〉 bytes.

Resources

On top of the memory required by the TCP connection structure (see Section 6.5.2),
the BBFTP analyser requires 204 bytes.

6.3.7 iperf Analyser

Although iperf is not strictly a bulk data transfer application (in the sense that it
does not transfer useful data), it is obviously still capable of inducing high network
loads.

The network-level messaging used is very simple—as would be expected for
a straightforward testing tool. The protocol structure is not documented other than
in the source code, but the code is reasonably easy to understand and the relevant
command-line options map fairly simply to network-level parameters.

The analyser interprets the initial client-server header that describes the pa-
rameters for the performance test being undertaken (number of parallel streams,
duration, byte limit, etc.). This information is delivered in an event (see below) and
then the control flow turns into a bulk data flow. Thereafter it is reported on by the
BulkDataAnalyser module, alongside any auxiliary flows that have been identified.

Events

After the iperf header has been established, BulkData events will be reported for
the same flow (with 〈source〉=“iperf”) and for auxiliary flows (〈source〉=“iperf-
server”).

Settings(flags,threads,port,winband,[duration|bytes])

Report on fields from the iperf control structure. 〈threads〉 gives number
of parallel streams in use. 〈port〉 is the auxiliary TCP port to be used and
〈winband〉 indicates the configured TCP window size. 〈duration〉 or 〈bytes〉
will be present depending on client run-time configuration.

Resources

On top of the memory required by the TCP connection structure (see Section 6.5.2),
the Iperf analyser requires 168 bytes.

6.4 Sample Flow Statistics

As well as real-time traffic identification, the system can also be used in the gener-
ation of aggregate statistics over the analysed traffic. A key advantage of this type

6.4: SAMPLE FLOW STATISTICS 86

M
b
it
s
/s

08 16 00 08 16 00 08 16 00 08 16 00 08 16 00 08 16 00 08 16 00 08 16 00 08 16 00

0

5

10

15

20

25

30
Bioinformatics VLAN

0

5

10

15

20

25

30
Campus and beyond

In
Out

Campus average (in/out) = 1.29/0.62 Mbps

Bioinformatics average (in/out) = 0.21/0.51 Mbps

Sun Mon Tue Wed Thu Fri Sat Sun Mon

Figure 6.1: Network usage on DCS edge router between 20-11-2005 and 27-11-2005.

of usage over other traffic monitoring systems is that the protocol identification is
precise, and can therefore be used to identify unusual activity on unexpected port
numbers. In order to demonstrate the effectiveness of the system, statistics were
extracted from a trace.

The GIGEMON hardware was configured to take a week-long trace of traffic
passing the DCS router2 between 20–27 November 2005 (Sunday to Sunday). The
resulting trace of full packet payloads was 225 Gbytes. Figure 6.1 shows a traffic
summary over this time period, including the split between traffic from DCS to the
rest of the university campus and beyond to the internet, and between DCS and
the Bioinformatics group . The average data rate for traffic for the rest of the cam-
pus and the further internet was 1.29 Mbits/s in and 0.62 Mbits/s out. Although
analysers for SRB, BBFTP and iperf were enabled, no connections were expected or
reported by these analysers because the applications are not in regular use within
the department.

6.4.1 HTTP

Since the real time monitor is able to classify and interpret HTTP and FTP traffic
by inspecting full packet payloads, this section presents a summary of the results
produced by the tool. Corresponding with the diurnal variations seen in Figure 6.1,
Figure 6.2 shows similar trends in the number of HTTP connections: significant

2. Point B from Figure 3.1 on page 32.

6.4: SAMPLE FLOW STATISTICS 87

C
o
n
n
e
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d

Nov 21 Nov 23 Nov 25 Nov 27

0

5

10

15

Mon Tue Wed Thu Fri Sat Sun

Figure 6.2: HTTP connection counts over one week.

peaks during the working days Monday to Friday with much lower activity at the
weekend.

Of the HTTP connections identified, Table 6.1 sets out the server-side TCP
port numbers encountered by the analyser. Unsurprisingly, HTTP’s well-known
port 80 is responsible for over 70% of the connections and 65% of the traffic vol-
ume. Sessions on port 8080 can be largely attributed to clients of the campus web
proxy which listens on this port. Beyond these two, which together account for
over 99% of the connections and data, a handful of other ports occur frequently
enough to represent 0.01% or more of the connections. For example, traffic on port
443—which is intended for HTTPS traffic—was found to be non-encrypted HTTP
traffic in 647 connections. Port 3689, used by the Apple iTunes LAN music sharing
service, contributes 132 Mbytes. Beyond the port numbers shown in the table, an-
other 45 were identified, together totalling only around 0.03% of the connections
and only 11 Mbytes of data.

The HTTP protocol analysis performed by the monitor system keeps track of
response sizes (i.e., the size of files fetched via the web) and the number of requests
per connection (in the case of HTTP 1.1). Charts showing the cumulative distribu-
tion of response sizes and request counts are given in Figure 6.3. In the first of these,
Figure 6.3(a), the X-axis is presented on a log scale. Fewer than 5% of the transfers
were for amounts more than 100 Kbytes (105 bytes), and the largest transfer seen
was around 1 Gbyte (109 bytes). The mean, median and standard deviation of this
distribution were 41 Kbytes, 2.5 Kbytes and 1.5 Mbytes, respectively. In the interval
102 to 105 bytes the distribution appears to follow a logarithmic law, which tallies
with other analyses of HTTP traffic.

For HTTP 1.1 sessions, where multiple requests may be issued serially on a
single TCP connection, the analyser is able to track the request-response sequences.
When large response bodies are sent the analyser can efficiently skip over any bulk
data content by interpreting the presence of a Content-Length header field or the

6.4: SAMPLE FLOW STATISTICS 88

Port Count % Volume %
(Mbytes)

80 1,875,146 71.204 72,033 65.616
8080 749,244 28.451 36,933 33.644
2082 3,211 0.122 16 0.015
8052 2,006 0.076 13 0.012
8180 1,722 0.065 91 0.083
443 647 0.025 10 0.009
2869 473 0.018 1 0.002
3689 190 0.007 132 0.121
8069 15 0.001 347 0.316
8002 2 0.000 44 0.040
8035 1 0.000 126 0.115
8055 1 0.000 12 0.012

Others (45) 809 0.031 11 0.000

Table 6.1: Distribution of HTTP server port numbers. Ports contributing 0.01% or more
by connections or volume are shown, and the table is sorted by connection count.

Bytes

P
ro

b
a

b
ili

ty
(s

iz
e

>
X

)

10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

0.0

0.2

0.4

0.6

0.8

1.0

(a) Response sizes

Requests per HTTP connection

P
ro

b
a

b
ili

ty
 (

n
u

m
_

re
q

u
e

s
ts

 >
 X

)

0 5 10 15 20 25 30 35 40 45

0.00

0.05

0.10

0.15

 4

max=13666

(b) Requests

Figure 6.3: Cumulative distributions of HTTP responses.

HTTP 1.1 ‘chunked’ transfer encoding. Figure 6.3(b) shows the cumulative distribu-
tion of the number of requests seen per HTTP connection. Note that the Y-axis scale
here is limited to 0.2, and only 14% of the connections had more than one request;
furthermore, only 5% had more than 4 requests. Beyond the X-scale of the graph are
the relatively few connections with several hundred or more requests. The highest
number of requests was seen in four connections with over 10,000 requests, which
were attributable to a web-based newsreader performing regular updates over an
extended period.

6.4.2 FTP

A similar treatment can be given for FTP connections. Table 6.2 summarises TCP
port numbers seen for FTP control and data connections. The standard FTP control

6.4: SAMPLE FLOW STATISTICS 89

Control Port Count %

21 10,658 77.6
8021 2,884 21.0
333 188 1.4

Data Port Count % Volume %
(Mbytes)

20 2,107 15.3 305 2.4
Ephemeral 11,623 84.7 12,321 97.6

Table 6.2: Counts of FTP port numbers seen for control and data flows.

port, 21, accounts for over three quarters of the sessions seen, with just two other
ports identified: 8021 and 333. Adding 8000 to a well-known port is common prac-
tice for running servers on non-privileged ports (those above 1023) so 8021 is not
unusual. Port 333 is listed by IANA as ‘Texar Security Port’ and so in this instance
appears to have been arbitrarily chosen by an FTP server administrator. Only 15%
of the secondary FTP data connections are accounted for by the the well-known
FTP data port, 20, and they are even less significant in terms of volume. Over 97%
of the FTP data is carried on ephemeral ports, so this evidence strongly supports
the need for dynamic analysis of bulk data traffic.

The distribution of file sizes for FTP is similar to that of HTTP, but with
a significantly different range. Figure 6.4(a) shows two cumulative distributions
of FTP transfer sizes: the lower line gives the probability that size of any single
transfer is greater than x bytes, and the upper line gives the proportion of FTP data
accounted for by transfers of size x bytes or more. The line is broken where data
points are sparse. For example, there were only four transfers of more than 109

bytes, but these accounted for 40% of the total FTP data encountered.
Over the interval from 102 to 107 bytes, the transfer size distribution (lower

line) appears to follow a logarithmic law, which extends to two orders of magnitude
greater than that seen for the HTTP distribution in Figure 6.3(a). This corresponds
to a limit of around 10 Mbyte for FTP compared with 100 Kbyte for HTTP.

Figure 6.4(b) shows the distribution of FTP transfer durations, grouped ac-
cording to the reason for transfer termination. Note that the Y axis starts at 0.5. The
far left line represents connections that were properly closed. The vast majority of
these were under two minutes, with a few lasting as long as an hour. The remaining
two categorisations are shown as ‘Reset’ and ‘Timeout’. These correspond to con-
nections that were closed due to a TCP RST segment being received, and those con-
sidered to be abandoned by the analyser due to an inactivity timeout, respectively.
Clearly these abnormally terminated transfers tend to have lasted a lot longer than
the successful transfers. This could be a result of users aborting a session that they

6.4: SAMPLE FLOW STATISTICS 90

Bytes per FTP transfer

10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

0.0

0.2

0.4

0.6

0.8

1.0

Pr(transfer_size>X)

Total volume due

to transfers>X

(a) Volume

FTP transfer duration (seconds)

P
ro

b
a

b
ili

ty
 (

d
u

ra
ti
o

n
<

X
)

0 500 1000 1500 2000 2500 3000 3500

0.6

0.7

0.8

0.9

1.0

 130s

C
lo

se
d

R
e
se

t

T
im

e
o
u
t

(b) Duration

Figure 6.4: (a) Cumulative distribution of FTP transfer sizes shown against traffic vol-
ume resulting from transfer sizes. (b) Cumulative distribution of FTP transfer dura-
tions, showing results for gracefully closed connections (Closed), abnormally closed
(Reset), and those timed out due to inactivity (Timeout).

perceive to be taking too long.
The difference between the ‘Reset’ and ‘Timeout’ distributions arises from

the analyser’s active connection inactivity timer, which was set to 8 minutes during
this run. Subtracting this interval from the ‘Timeout’ line yields the dashed line
which runs alongside the solid ‘Reset’ trace. Since these distributions appear to
be similar, it is likely that the split between termination reason arises from different
software or hardware configurations, but is ultimately dictated by a similar process
(e.g., user control).

In absolute terms, the ‘Reset’ and ‘Timeout’ flows together account for 59%
of all the FTP flows encountered (50.3% and 8.7% respectively). This leaves just
41% of the observed FTP transfers completing successfully.

6.4.3 Elephants

The final results considered in this section are the events reported by a simple ‘ele-
phant’ detector built into the real-time monitor. This detector operates on all TCP
flows (whether allocated to a protocol analyser or not) and monitors data transfer
rates over a fixed time window. An event is generated if the volume of data trans-
ferred during the window exceeds a pre-set threshold. For the data under consid-
eration, the parameters were 5 seconds and 10 Mbits/s.

For traffic crossing the monitored link but not travelling beyond the campus
network, the most frequently encountered services were, unsurprisingly, HTTP,
SMB (Windows file sharing), and NFS. For internet-bound traffic, HTTP was again
dominant in frequency. However, SSH sessions accounted for almost 4.5 Gbytes of
traffic (compared to 3.7 Gbytes for HTTP), indicating the use of a secure file transfer
protocol that tunnels data in an SSH session (e.g., scp, sftp or rsync).

Figure 6.5 shows the distribution of maximum transfer rates reported by the

6.5: EVALUATION 91

Transfer rate (Mbytes/s)

C
o
u
n
t

2 4 6 8 10 12

0

10

20

30

Min = 1.19

Median = 2.52

Average = 3.78

Max = 11.40

StdDev = 2.93

Campus

2 4 6 8 10 12

Min = 1.20

Median = 2.08

Average = 2.16

Max = 7.01

StdDev = 0.81

Internet

Figure 6.5: Maximum transfer rates for flows identified by the ‘elephant’ detector.
Dashed lines on Campus plot show distribution after excluding port 8080 traffic.

detector for campus and internet traffic. The maximum rates seen, over a 5 second
interval, were 11.4 Mbytes/s for campus traffic and 7.0 Mbytes/s for internet traf-
fic. The concentration of transfers around the 2 Mbytes/s mark for both categories
of traffic can in part be attributed to internet bandwidth limits. By excluding cam-
pus traffic from web proxies on port 8080, the dashed lines on the ‘Campus’ plot
show more accurately the distribution of transfer rates on campus. The difference
between the original profile and the dashed profile closely corresponds to the shape
of the ‘Internet’ plot.

6.5 Evaluation

This section evaluates how the plain text analyser system meets the goals set out in
Section 6.1, and revisits the requirements for the real-time monitor system from Sec-
tion 5.1. The evaluation was incomplete in Chapter 5 because the specific instanti-
ations of protocol analysers had not yet been introduced. Given these, Section 6.5.1
considers the performance of the system. Section 6.5.2 discusses the memory usage
of the system with the implemented protocol analysers, and Section 6.5.4 examines
the software development load for new analysers with a case study of the develop-
ment process for one of the implemented analysers. Finally, Section 6.5.5 presents
the results of an experiment to test the accuracy of the system.

6.5.1 Performance

Line Rate

The load on the monitoring system is heavily dependent on the mixture of traffic
present on the link. For example, if the link is saturated with maximum-size packets
from a few parallel TCP streams (e.g., from an iperf session or any of the file transfer
protocols under study) then the CPU usage is less than 1%. The explanation for this

6.5: EVALUATION 92

is that (a) large packets imply fewer packets per second; (b) few connections lead
to fast hash table lookup; and (c) bulk data requires very little processing. On the
other hand, a link saturated with HTTP connections places heavier load on the
connection hash table and requires more CPU time in the analyser.

Sufficient hardware was not available to generate a synthetic load that would
saturate the link but still be valid HTTP traffic. Instead, a subset of a trace from the
DCS link was created that contained only traffic to or from TCP port 80. This trace
was fed into the analyser (with packets being read from disk into a virtual DAG
card ring buffer) and the user CPU time taken to process the trace was measured.
System CPU time is not counted, as it corresponds to the system call overhead of
reading from the trace file.

This sample HTTP-only trace was approximately 10 Gbytes and contained
12,370,868 packets and 204,324 distinct connections. Processing the file took 7.71 s
on average over ten runs (with standard deviation 0.01 s), which translates to a
rate of approximately 1.30 Gbytes/s or, equivalently, 10 Gbits/s. This is clearly far
beyond the bandwidth of Gigabit Ethernet, and is approaching that available with
10 Gigabit Ethernet (bearing in mind that actual bandwidth is twice that because
the link is full-duplex).

Therefore, for a typical mix of HTTP traffic, requirement R1 has been met.

Concurrent Control Connections

The previous section considered the performance limits when dealing with new
connections—the allocation of new connection control records and their later dis-
posal. Another aspect of performance evaluation is the number of concurrent pro-
tocol analysis sessions that can be supported. Here the term ‘concurrent’ is some-
what imprecise, since millions of dormant protocol analysers could be present even
if they are not actively processing incoming packets. Therefore, of specific interest
is the handling of concurrent control sessions that are active.

Under normal circumstances, the expectation is that most of the bandwidth
of the link will be occupied by the bulk data being transferred by the applications of
interest. As a result, the volume of control traffic should be relatively low. However,
as with the new connection rate experiments, of primary interest is establishing
how the system performs in extreme circumstances.

A trace-driven load of 4,000 concurrent SRB control sessions was generated
by merging slightly time-shifted duplicates of a master trace consisting of several
real concurrent SRB sessions. The separate TCP flow bulk data from these traces
were eliminated and each duplicate control flow was assigned a unique IP address
pair. Playback of the trace, ignoring the original timing information and sending
packets as quickly as possible, was limited by the processing power of the load-
generating machine. This resulted in 135 Mbits/s and 140,000 packets/sec of con-
trol traffic. During the handling of this traffic the monitoring system was parsing

6.5: EVALUATION 93

Analyser Bulk Data SRB HTTP FTP BBFTP iperf

Size (bytes) 88 220 328 212 204 168

Table 6.3: Memory usage for plain text analysers.

the control-level protocol for each stream. The corresponding CPU usage peaked at
27%.

The SRB analyser could be further optimised to take better advantage of the
retained packet scheme provided by the TCP stream reassembler. As currently im-
plemented, RPC-style arguments used in the SRB analyser are copied onto the heap
(incurring memory allocation and copying overhead). These arguments could in
general be left in the packet ring buffer and accessed directly from there once the
complete RPC call has been parsed.

6.5.2 Memory Usage

Gigabit Ethernet is limited to around 4 million packets per second (see footnote 8 on
page 70). Assuming that connections are active on average at least once per second,
this quantity of packets per second can be converted into a bound for the number
of concurrent connections: 4 million. If connections were active, on average, less
frequently than once per second, the number of active connections expected would
increase proportionately.

4 million connections without analysers attached (i.e., those which do not be-
long to one of the applications of interest) would require of the order of 800 Mbytes
of memory, since each connection record consumes around 200 bytes. This could
be reduced by using provisional ‘mini’ connection records that contain an order
of magnitude less state, as is done in some OS implementations to cope with SYN
flooding. These would be applicable to connections prior to becoming fully estab-
lished via the three way handshake.

In general, memory usage by the monitor system occurs for only two other
reasons beyond the base memory requirements of the TCP connection record struc-
ture (and associated hash table and timer entries). Firstly, memory may be allocated
when a retained packet must be spilled from the circular capture buffer. Secondly,
memory is allocated to maintain each protocol analyser’s state, and a protocol anal-
yser may in turn allocate memory in the course of its processing. Of the imple-
mented analysers, only the SRB analyser makes heap allocations (to keep track of
RPC arguments). The other analysers employ statically allocated buffers or are able
to report on data as it arrives. Table 6.3 summarises the static memory requirements
for each protocol analyser, which is typically just a few hundred bytes.

The decision to use static buffers (such as the Content-Type and Server

fields from the HTTP analyser) is dependent on the size of the memory area re-

6.5: EVALUATION 94

quired and the frequency of use and reuse. Clearly, infrequently used large buffers
are good candidates for dynamic allocation, whereas frequently used small buffers
are more suited to static allocation, especially when heap allocator overheads are
taken into consideration (e.g., the GNU C library malloc implementation has a 4
byte overhead per chunk, and a minimum real allocation size of 16 bytes).

Retained packets are spilled when a threshold is reached for the amount of
buffer space available to the DAG card for storing new packets. The threshold set-
ting determines how much time is available to make a decision about what to do
about the retained packet and then act upon that decision. In the simplest case there
is a protocol analyser that is retaining a packet optimistically—for example, in case
the content of a retained packet may be related to a packet/flow arriving shortly
afterwards. By the time the packet is due to be spilled it may no longer be relevant.
This provides a cheap timer mechanism for these situations.

If, on the other hand, the protocol analyser decides that it wants to hold on
to the data represented by the retained packet, it is necessary to incur the cost of
memory allocation and copying. The spilled packet is then the responsibility of the
protocol analyser to free when possible. A more sophisticated technique for deal-
ing with these situations—unimplemented as yet—would be to assign priorities to
different types of packets that may need to be retained. These priorities could be
evaluated across different protocol analysers, in order to effectively manage avail-
able memory in situations where free space is low. It may be appropriate to take
different actions, for example: ignore new connections, drop existing connections,
or prioritise existing connections and convert some to mini-records with less state.

Obviously each of these actions result in lost information. However, by
preparing for such situations and acting appropriately the monitor can act in the
most reliable way possible given the circumstances. By downgrading gracefully the
operator has the opportunity to investigate what is happening and tune parameters
appropriately to better deal with circumstances in the future.

6.5.3 Design Trade-offs

A consideration in the development of this kind of system is the conflict between
achieving high performance and ensuring maintainability. High performance gen-
erally entails coding as close to the hardware as possible and limiting the levels
of abstraction to avoid overheads of deeply nested function call-chains. Maintain-
ability, on the other hand, dictates cleanly separated design and judicious use of
abstraction to separate the layers of the system.

Both aspects have been dealt with by careful design, use of C++ language
features, and allowing the compiler to do a good job of code optimization. For
example, inline method implementations and limited use of virtual methods in the
fast path allow the compiler to make compile-time decisions about which code may

6.5: EVALUATION 95

1 iperf = (
2 (0x80 | 0x00) 0x00 0x00 (0x00 | 0x01) # High or low order bit set
3 0 0 0 1..255 # 1−255 threads
4 0 0 any any # Any 16 bit port
5 0 0 any any # Any 16 bit bufferlen
6 any any any any # Any window size
7 ((0xff 0xf0..0xff any any) # Up to about 3 hours
8 |
9 (0x00..0x7f any any any)) # Any unsigned byte count

10);

Listing 6.1: iperf Ragel state machine definition

be used. Using inline methods in place of C preprocessor macros where possible
improves code readability and considerably eases debugging.

6.5.4 Analyser Development Case Study

In order for the system to continue to be useful in the presence of new or revised
bulk transfer applications, it is important to be able to easily implement and main-
tain protocol analyser modules (R4 from Section 5.1). As described in Chapter 5,
analyser modules are represented by C++ classes. After initial string matching via
the classification module, an analyser is attached to a TCP connection. In cases
where this process is inexact, it may be necessary to add additional checks to the
start of the protocol analyser to fully identify the connection (see, for example, Sec-
tion 6.3.5).

This section describes the development of the iperf analyser module, in or-
der to give an idea of the complexity involved. To begin with, the command-line
tool was used in the normal way. This provided a basic understanding of the types
of network connections involved, and from where the control channels are man-
aged. As indicated in Section 6.3.7, a basic understanding of the protocol operation
was gained from reading the source code. With this additional knowledge, sim-
ple tcpdump traces of the network traffic were taken between machines on the lo-
cal network. These were manually inspected using a graphical traffic analysis tool
(ethereal) and comparisons were made between the actual network behaviour
and the predicted behaviour from the source code.

Having developed a good understanding of the network-level structure,
the possible values for the initial bytes seen on the client-server connection were
considered for the purposes of constructing a state machine (see Section 5.4.3) to
match iperf traffic in general. Since iperf does not employ any obvious identifica-
tion strings, it was necessary to identify the range of valid values for each field in
the header structure and convert these to a sequence of byte value ranges suitable
for use in the state machine.

Listing 6.1 shows the input to the state machine compiler corresponding to

6.5: EVALUATION 96

iperf. Consider the final section, starting on line 7. This represents the ‘amount’
field of the iperf structure which is a signed 32-bit big-endian integer. If the value is
negative it indicates a time period measured in 10 ms units; if the value is positive
it represents the number of bytes to transfer in the test. The expression for the time
period on line 7 (0xff 0xf0..0xff any any) was chosen to match a time pe-
riod of up to around 3 hours3. Simultaneously, the state machine matches any byte
count up to around 2 Gbytes (231 bytes) (line 9), which is the maximum range for
this field.

This pattern definition from Listing 6.1 can be examined to determine the
likelihood of a false positive. The pattern contains several any components and
broad byte ranges (such as 1..255). Together, these account for just under 105 bits4

from a 192 bit message. Therefore, the probability of a random match, assuming a
uniform distribution of all possible messages, would be just 2105−192 = 2−87, or
around 10−26. Note that the pattern does not match the all-zeroes message (which
could be expected to be relatively common) due to the minimum requirement of
one thread (line 3).

Creation of this state machine description is a fairly straightforward tran-
scription of the expected initial header values, taking care to make the matcher as
specific as possible whilst at the same time being flexible enough to match the ex-
pected uses of the application in question. As explained earlier, any false positives
at this stage could be eliminated by the more sophisticated control flow available
in the proper protocol analyser, although this facility is not needed for iperf.

Once the initial classification was prepared, the analyser C++ class could be
written. Apart from some common initialisation and book-keeping code, the iperf
analyser consists of just one function, shown in Listing 6.2. The entire function is
bracketed in calls to the macros EPA BEGIN and EPA END which hide the imple-
mentation details of the ProtoThread system.

An attempt is made to read the header block from the TCP flow using
the EPA READ macro. Upon return from this call, which may have blocked and
only re-entered the analyser once enough data was available, the local variable
buf represents the data available from the network. Since all the available header
information is now present in memory, the Settings event is constructed via the
BEGIN EVENT macro. If a specific event has been disabled at run time, the code in
the event block (lines 13–22) will not be executed. This mechanism ensures that the
whole analyser system can be easily configured at run-time to operate as efficiently
as possible, given the needs of the operator.

3. −(0xff [0xf0..0xff] any any) secs = 1 + (0x00 [0x00..0x0f] any any) secs ≤
1 + (0x00 0x0f 0xff 0xff) secs = 0x00100000 secs = 1048576 secs = 2.9 hours

4. The total is not precisely 105 bits because the 1..255 range on line 3 contributes a fractional number
of bits (log2(255), approximately 7.99).

6.5: EVALUATION 97

1 // Function to parse control flow from client to server.
2 PT_THREAD(IperfAnalyser::ParseMessage(struct pt *pt))
3 {
4 EPABuffer buf; // Represents most recently read data
5 EPA_BEGIN(pt); // ProtoThread setup
6

7 // Read iperf header structure (might block)
8 EPA_READ(buf, EPA ORIG, sizeof(iperf_client_hdr));
9 iperf_client_hdr *hdr = (iperf_client_hdr*) buf.data;

10

11 // Deliver event
12 BEGIN_EVENT("Settings") {
13 event.AddInfo("flags","%08x",ntohl(hdr->flags));
14 event.AddInfo("threads","%d",ntohl(hdr->numThreads));
15 event.AddInfo("port","%d",ntohl(hdr->mPort));
16 event.AddInfo("winband","%d",ntohl(hdr->mWinBand));
17 int32_t t = ntohl(hdr->mAmount);
18 if (t<0) { // Negative means time limit
19 event.AddInfo("duration","%.2f",(-t)/100.0);
20 } else { // Positive means byte limit
21 event.AddInfo("bytes","%d", t);
22 }
23 } END_EVENT;
24

25 // Check for connection back to server
26 int32_t flags = ntohl(hdr->flags);
27 if ((flags&IPERF_VERSION_1_7)!=0) {
28 // State machine (see listing 6.1) ensures numThreads has maximum of 255
29 int num_threads = ntohl(hdr->numThreads);
30

31 TCPConnectionKey key(conn->ConnectionKey()->addr_len,
32 conn->OrigAddr(), ntohl(hdr->mPort));
33 TCPConnection *newconn = new TCPConnection(
34 conn->Manager(), &key, NULL);
35 ProtocolAnalyser *bpa = new BulkDataAnalyser(
36 newconn, "iperf-server", num_threads);
37 newconn->SetProtocolAnalyser(bpa);
38 newconn->Install();
39 }
40

41 // Hand this connection over to BulkDataAnalyser
42 ProtocolAnalyser *pa = new BulkDataAnalyser(conn,"iperf");
43 conn->SetProtocolAnalyser(pa);
44 pa->ConnectionEstablished();
45

46 EPA_END(pt);
47 }

Listing 6.2: Source code to iperf analyser.

6.5: EVALUATION 98

Within the event description block, information is extracted from the iperf
header structure—including the time/volume mAmount field considered above in
the context of the classification state machine.

If the header flags indicate that a connection is going to be made back to
the client from the server, a BulkDataAnalyser is configured to recognise the forth-
coming flow (lines 31–38). Finally, the flow at hand (the iperf control flow itself) is
handed off to a separate BulkDataAnalyser in order that the bulk data to follow is
properly reported.

The simple nature of the iperf protocol means that the analyser system can
be also be fairly straightforward. However, the strength of the real-time monitor
is that the framework handles the complexities of the network layer integration
cleanly, and—perhaps more importantly—efficiently. The ProtoThread-based anal-
yser design means that attention can be given to the structure of the analyser rather
than, for example, managing buffering as would be necessary if data were deliv-
ered at the packet level. Although the flexibility of the system is not exploited fully
by the iperf analyser, it is used effectively in the other analysers presented earlier.

6.5.5 Detection Accuracy Experiment

A blind experiment was carried out to ascertain the accuracy of the system in de-
tecting flows corresponding to the implemented protocol analysers. A third party
was asked to run a series of file transfers of their choosing using the applications
under study and keep time-stamped logs. In parallel, the real-time monitor was
run and the event logs stored. The monitor was positioned at the edge of the DCS
network (point B on Figure 3.1).

Method

The experiment was carried out over a week-long period and consisted of 1,980
transfers. Most of the transfers were for files of size 10 Mbytes, purposefully small
to avoid triggering campus-level anomalous traffic detectors (based on daily Net-
Flow reports). Although 10 Mbytes is small in comparison to the huge files that
would be expected of a large Grid project, the precise nature of the detector means
that it can recognise the traffic irrespective of transfer size.

Results

The application-level logs and the event output from the detector were correlated
and it was found that the real-time monitor had 100% accuracy (no false negatives,
no false positives) in detecting the flows that correspond to the supported analysers
except in the unusual condition of long periods of control flow inactivity. If a control
flow is inactive (i.e., no packets are sent or received) for longer than the inactive
flow timeout then further activity will be ignored. This is because the late data

6.5: EVALUATION 99

is considered to be an incomplete connection (the three-way handshake was not
observed) and therefore not a candidate for full control-flow reassembly.

Problematic5 inactive control flows occur in two particular situations: (1)
when transfers are initiated in sequence over the same control connection, and any
transfer but the last takes long enough to trigger a timeout; or (2) when some tran-
sient client or server problem causes an unexpectedly long delay. For example, the
former may be experienced with serial FTP transfers. The latter situation was re-
sponsible for one missed event in the detection experiment, where an SRB server
reported an error. The error unfortunately contained insufficient detail to explain
the precise cause.

Flow Timeouts

The timeout period for inactive flows is a run-time configuration property of the
monitor system, and applies to flows that have completed the three-way hand-
shake. A separate, shorter timeout is applied to the initial stages of a connection,
in order to effectively deal with port scan and denial of service traffic. Although it
is not currently implemented, the results of this experiment suggest that provision
for a dynamic timeout would be beneficial.

A dynamic timeout mechanism would treat flows differently depending on
the protocol analyser that has been attached, if any. Uninteresting flows would re-
ceive a static timeout of several minutes, a value which gives a trade-off between
tracking accurate flows for statistical purposes (e.g., flow duration and size distri-
bution) and reducing resource usage in the monitor. A flow that is timed-out too
soon will later reappear as a separate connection, therefore skewing such statistical
information.

If a protocol analyser is attached, the flow timeout may be statically in-
creased to an operator-supplied value (for example, one hour) to help ensure cor-
rect tracking of a complete control session. A further refinement would be to pro-
vide an API for the protocol analyser to inform the lower-level TCP connection
tracking module of a desired timeout period. This timeout could be extended dur-
ing the course of a file transfer (at which time the control flow would be expected to
be inactive). The amount of extension could be another run-time configuration op-
tion, or a more accurate technique would be to use the presence of packets on a re-
lated bulk-data connection as a keep-alive for the control connection. Alternatively,
a table of typical transfer sizes could be maintained, keyed by source-destination
host. This could be used to inform the selection of timeout for future flows.

Letting the protocol analyser influence control flow timeout would be very
effective for case (1) of serial transfers from a single control connection but would
not aid case (2) where transient errors are involved. However, unless evidence from

5. A control flow can be inactive yet benign if, after a period of inactivity, no further transfers are
performed

6.5: EVALUATION 100

deployment were to suggest that such occurrences were non-negligible, it is un-
likely that a more sophisticated system would be necessary.

Meeting Goals

This section considers how the goals set out in Section 6.1 have been met during
the course of the experiment.

Content-based protocol identification (G1) was fully successful, since the
control connections corresponding to each file transfer were correctly identified
(including the differentiation between SMTP and FTP detailed in Section 6.3.5).

For each BulkData event reported by the analyser, the correct source at-
tribute was given, indicating the control protocol responsible for its creation (G2).
The bulk data flows corresponding to both single and parallel TCP streams were
matched, and the total transfer reported by the bytes orig and bytes resp at-
tributes tallied with the expected volume of data (obtained by multiplying the file
transfer size, 10 Mbytes, by the number of transfers).

In addition to these basic requirements, the success of the system at identify-
ing additional transfer information (G3) was evaluated. Generic support is present
for providing the ‘expected’ number of bytes to be found on a flow, and is shown
by the ebytes orig/resp attributes of the BulkData:Opened event. It can only be
populated if the control protocol communicates transfer size information before
the establishment of the bulk data connections. For BBFTP this happens on every
occasion, whereas for SRB it is dependent on run-time configuration. The specific
commands invoked by an FTP client determine the availability of size information.

During the blind test, 13 Gbytes were correctly ‘predicted’ (i.e., the Bulk-

Data:Opened event correctly specified the approximate number of bytes on the flow)
and 11 Gbytes were transferred with no prediction. In no cases was a prediction
made which turned out to be false. The bulk data flows without predictions were
due to FTP transfers in which the client did not issue SIZE command before the
transfer or mixed control/data SRB sessions, in which the total transfer size is
not known (however, the nature of the RPC mechanism means that each chunked
transfer—typically 4 Mbytes—is identified in advance).

The above prediction results correspond to 53% of the data transferred being
identified in advance. Of course, the precise mix of transfers which could or could
not be reported on accurately depends on those chosen by the person running the
file transfer applications. In some cases it may be possible to further augment a
protocol analyser to extract additional information available. For example, some
FTP servers will report the size of the file to be transferred within an unstructured
message. Heuristics could be developed to parse these messages for likely sizing
information to pass on to the appropriate BulkData events.

In any case, that the analysis system is able to report on any file transfer sizes
in advance means that a management system is better informed to make reengi-

6.5: EVALUATION 101

neering decisions.
Each of the implemented protocol analysers, described above, rely on the

state-machine based classification system to associate them with the relevant TCP
connections. The accuracy is therefore mainly dependent on the state machine rep-
resentation for each protocol. In the case of the FTP analyser, however, the accuracy
is dependent firstly on the state machine, but secondly on the module that differ-
entiates between FTP and SMTP.

Beyond the evaluation undertaken with the blind experiment, the analyser
has also been exhaustively tested with synthetic traffic (generated from scripted
runs of file transfer applications) and this has failed to uncover any situations in
which it does not work properly. These synthetic runs were designed to exercise a
wide range of run-time configuration options available in the file transfer applica-
tions in order to test the protocol analysers’ flexibility.

New versions or unusual uses of applications may not be supported by the
protocol analysers. However, the log output of the real-time monitor may be used
to identify the presence of such problems. If the occurrences are sufficiently fre-
quent or it is suspected that the control sessions in question are responsible for sig-
nificant bulk data flows then further manual inspection may be undertaken. The
monitor system can be reconfigured to record captured packets to disk (with corre-
sponding overheads) at the same time as the normal real-time analysis. The result-
ing trace files can then be studied offline using the appropriate tools to refine the
protocol analyser.

Chapter 7

Encrypted Heuristic Analysis

The preceding chapter discussed the analysis of bulk-data-transfer control traffic
by specific examination of packet payloads and reconstruction of full protocol con-
versations. As was demonstrated, this approach has the benefit of great accuracy
but suffers from being inapplicable when payloads are encrypted.

The work presented in this chapter tackles particular cases of encrypted traf-
fic by applying heuristic analysis techniques to the available network data.

7.1 Characterisation of the Problem

In Chapter 6 three key goals were specified: control protocol classification with-
out using TCP port numbers, attribution of bulk flows to the controlling applica-
tion, and gathering additional information about the transfers. The goals may be
rephrased as questions to be answered when considering the use of encryption:

Q1. Can control flows still be classified according to the application in use?

Q2. Can data flows be matched with their corresponding control flow?

Q3. What additional information can be extracted?

It is clear that with the use of encryption it is no longer possible to achieve 100%
accuracy in the identification of both control and data flows, and therefore it is nec-
essary to consider the answers to these questions in terms of rates of false positives
and false negatives. Two simple metrics can be used to make the evaluation: the
number of bytes transmitted by a misclassified flow or simply the number of mis-
classified flows. Which of these is relevant ultimately depends on the actions taken
by an operator in interpreting event output from the monitor. For example, if the
policy is to completely block Grid-style bulk data traffic, the consequences of a false
positive are much more severe than if a supposedly bulk flow is just routed over a
separately provisioned link.

The remainder of this chapter investigates possible approaches and presents
the results of applying a conceptually simple scheme to GridFTP file transfers.

7.2: CRYPTOGRAPHY IN BULK TRANSFER PROTOCOLS 103

7.2 Cryptography in Bulk Transfer Protocols

This section examines the use of cryptography (encryption, public key systems and
message digests) in the applications previously introduced in Chapter 4. Each ap-
plication is considered in order, starting with those using no encryption and mov-
ing on to the systems that represent a greater challenge for analysis.

The one application in the set that does not really qualify as a proper file
transfer tool is iperf, and consequently it has no provision or need for cryptogra-
phy.

There are two main variants of the SRB protocol worth considering. The first
employs the Globus Security Infrastructure (GSI) to manage certificate-based au-
thentication. However, the protocol is only extended to include the GSI credential
exchange and subsequent message safety. That is, the main RPC phase of the pro-
tocol still exchanges messages in the clear but they are protected by a signature
to avoid tampering. It is unclear why the full encryption capabilities of GSI have
not been used. This SRB variant presents no problem for the plain-text analyser of
Chapter 61.

The second alternative SRB protocol is the use of a custom-built security li-
brary known as ‘SEA’2. It sits between the application layer and the socket (TCP)
layer and manages message encryption after performing authentication. The core
SRB protocol is unchanged; the RPC-style messages just become subject to encryp-
tion.

Even with these two potential control-protocol encryption methods, the data
flows do not change: they are not encrypted nor authenticated beyond an initial
16-bit ‘cookie’, previously sent over the control connection. The SRB authors rec-
ommend compression and encryption of data sets on disk rather than at the file-
transfer level.

BBFTP, like SRB, can employ GSI to manage authentication. Again, like SRB,
it keeps the control protocol in the clear, changing only the initial credential ex-
change handshake. The plain-text monitor is able to interpret these connections
and report on bulk-data flows and file transfer sizes. One configuration that does
cause a problem is the tunnelling of BBFTP inside a secure shell (SSH) connection.
The advantage of this from an administrative point of view is that if SSH service
is already provided and managed, then authentication of BBFTP can be handled
transparently (BBFTP itself does no authentication when operating in tunnelling
mode, since it assumes that the user has been logged in appropriately by the SSH
daemon). At the network level, a tunnelled BBFTP connection looks like any other
SSH session because there are no clear-text-observable differences. Because the core
control protocol remains unchanged across different transport mechanisms, so too

1. Although it is possible that the protocol will be altered in the future to use full encryption.
2. SDSC Encryption/Authentication

7.3: HEURISTIC ANALYSIS APPROACHES 104

do the bulk data connections—i.e., they are not encrypted.
The RFC 2228 extensions to normal FTP (see Section 4.3) specify abstract

provision for encryption and message integrity that may be implemented in any
way mutually agreed by client and server. GridFTP is one such implementation. A
GridFTP control session can be easily identified due to the use of GSI as the cryp-
tography provider, and from server ‘hello’ strings representing known GridFTP
server software. The individual FTP commands are encrypted and therefore not
examinable, but the FTP protocol preserves the framing of the original commands,
so it is possible to reconstruct a GridFTP session into request-response sequences.

As each data flow is established, there is an optional ‘data channel authen-
tication’ process, which again follows the cryptography system negotiated by the
controlling FTP session. Since GSI actually maps directly to TLS/SSL, the initial
content of a data flow using authentication looks like any other TLS/SSL session.

As explained in Section 4.2, HTTPS uses TLS/SSL to transport a normal
HTTP session. Therefore there are no specific clear-text attributes that enable it to be
identified, which was also the problem with a tunnelled BBFTP session (although
there the transport protocol was SSH rather than SSL).

GridFTP is the only application considered above, other than HTTPS, where
encryption is certain. It has the advantage that it is clearly identifiable from control
connection content, although data connections appear (according to initial string
analysis) to be equivalent to other TLS/SSL flows.

7.3 Heuristic Analysis Approaches

The previous section outlined the ways in which cryptography is used within the
applications under study. Some are completely clear-text, some just use standard
public-key algorithms for authentication but not encryption, and others encrypt all
or just the interesting parts of the control session. This has an influence on whether
or not the control session can be identified according to the application in use. Re-
call the questions of Section 7.1, which query how well Grid-style bulk data can be
identified in the presence of encryption. This section considers the available infor-
mation and evaluates how it might be leveraged.

Before examining potential approaches in detail, it is useful to consider the
‘baseline’—that is, the level of information that can be extracted without perform-
ing any complicated analysis at all. Assuming for the moment that it is possible to
classify bulk flows as such according to some predefined threshold (for example,
the elephant detector of Section 6.4.3), the problem then becomes the task of cor-
rectly identifying a corresponding control connection and hence the application. If
a control flow has been identified (for example, as GridFTP), then its presence at the
same time as a bulk flow between the same host pair could be treated as evidence
for classification.

7.3: HEURISTIC ANALYSIS APPROACHES 105

The drawbacks of this simplistic approach are as follows: bulk flows from
applications other than the one for which a control flow has been identified would
be mis-classified, and the identification must be delayed due to the use of a time
window in the generic bulk data detector. It could be argued that the presence of
any Grid-style communication between hosts is cause for all traffic between the
hosts to be treated in the same way; whether this is reasonable depends on the
management policy in place. Since such policy is out of the scope of this work, it
is certainly worth pursuing a more accurate approach. Similarly, because timely
reporting of bulk-transfer events is important for effective real-time traffic man-
agement, the time from the start of a connection to an event report should be min-
imised.

As mentioned in Chapter 4, some transfer protocols are capable of third-
party transfers—where the client is not involved in the data transfer. Supporting
the identification of these kinds of bulk flows would require the baseline matching
rule to be broadened to say that any flow involving the server should be classed
as Grid bulk traffic (not just those involving both client and server). This would
certainly capture third-party transfers (provided their traffic passes the monitoring
point), but would incur a substantial false positive rate for any other connections
from the server. Furthermore, it creates the opportunity for abuse where an attacker
could make a connection that looks like a known Grid bulk transfer protocol to a
‘victim’ server. The result would be that all bulk flows to/from the victim would be
treated differently by the network management system. Again, the consequences
would depend on the policy in place, which could be advantageous (and therefore
an attacker might treat a host under his/her own control as the ‘victim’) or else
constitute a denial-of-service attack. To reduce the scope of the investigation, third-
party transfers are ignored.

Since the full application-level content is inaccessible due to encryption, the
remaining properties that can be used to inform the identification of bulk data flows
are message size, direction and timing, along with any information ‘leaked’ by
the encryption system in use. As these features are representations of the original
application-level messages, an obvious starting point is to attempt to reconstruct
as much information as possible about the original messages. An understanding of
the protocol structure might then be used to further abstract back to application-
level phase changes. Clearly it will never be possible to extract IP addresses and
port numbers without breaking the encryption, but by knowing the phase of the
application (at least to some degree of confidence) the likelihood of correct bulk
data classification could be improved.

The properties measurable at the network level are affected by several fac-
tors, which confound the reconstruction of application-level messages:

• Retransmissions/packet loss

7.3: HEURISTIC ANALYSIS APPROACHES 106

• Segmentation resulting from path MTU

• TCP stack configuration parameters

• Communication library framing and messages

• Encryption algorithm padding

Retransmissions and segmentation could be filtered out with TCP reassembly, but
the resulting timing fluctuations would remain. The extent to which such fluctua-
tions could be ignored depends on their magnitude relative to the higher-level tim-
ing. For example, the timing of messages from an application that only transmits or
receives every 10 seconds or more would mean that retransmission timing errors
would be negligible. Unfortunately, such intermittent behaviour in a file transfer
protocol would be unusual and therefore timing errors introduced by retransmis-
sions must still be considered. Analysis of specific losses could yield a ‘cleaned-up’
timing profile, by interpolating times for missed packets and adjusting responses
according to the delay incurred.

In order to infer application-level message sizes from the observed network
traffic, a set of packets must be combined into a logical message. A simple scheme
for doing so is to treat a sequence of packets in one direction as a unit, bounded
by the receipt of a message travelling in the other direction or the start of the con-
nection. A refinement is to treat gaps in packet receipt, according to some time
threshold, as a message separator. This is important where a message is the trigger
for a bulk transfer and the control session is idle until the end of a transfer.

An alternative technique is applicable when the encryption mechanism uses
a record format with identifiable boundaries, as is the case with TLS/SSL, GridFTP,
and SSHv1 (but not SSHv2). The application-level message sizes can then be di-
rectly extracted, subject to errors incurred by padding in the encryption algorithm
(using an 8, 16 or 32 byte block size, for example).

The discussion above has indicated the type of raw data available for in-
vestigation of an encrypted control channel. Any analysis of such data must be
achievable in real-time, and also be applicable to the few message exchanges ex-
pected in a bulk file transfer protocol—these usually correspond to an authentica-
tion exchange, some setting of transfer parameters, and a request for a particular
file referenced by some identifier, such as a file name. In particular, any analysis
technique must be able to produce results incrementally, without having to wait
until the completion of a flow (since in this case clearly it would be too late to raise
any events).

The next section investigates the properties of GridFTP file transfers by visu-
alising the control channel timing and size information in a series of charts. These
then support reasoning about the potential for time/size-based analysis.

7.4: GRIDFTP TIMING ANALYSIS 107

7.4 GridFTP Timing Analysis

A series of experiments were undertaken to investigate properties of GridFTP con-
trol sessions. They were carried out using scripted runs of the command line tool
globus-url-copy running on a machine at DCS and connecting to bananarama
at Lancaster.

The intent was to observe the range of message exchanges between client
and server, considering both the encrypted messages found at the network level
and the plain text messages being exchanged at the application level.

By setting appropriate environment variables before running the client pro-
gram, a log file was generated consisting of the plain text and encrypted messages
passing through the GSSAPI encryption library. Messages from this log file were
correlated with those extracted from the network-level trace, from which the mes-
sage timing is obtained.

For example, when the client sends the plain FTP command SITE HELP, an
encrypted message of the following form is produced:

ENC FwMAACBOTRjzEJphk2l+5UVgpG/VPtffkN+KdNvWUlliUwGyig==

This is an ENC command containing a base64-encoded encrypted payload.

7.4.1 Method

To get an idea of the variations in the protocol and the corresponding effect on
the observable network behaviour, the globus-url-copy program was run with
each of the following range of options:

-a ASCII transfer mode
-dcpriv Data channel privacy (encryption on data channel)
-dcsafe Data channel safety (signed hash authentication of data)
-nodcau No data channel authentication
-fast Use extended FTP transfer modes
-p 1 Parallel data mode, one channel
-p 4 Parallel data mode, four channels
-r Recursive directory copy

The program was also run without any special options, and in this case four files
with names of different lengths were transferred (10, 30, 50 and 80 characters). This
is relevant because the full file name/path is sent across the control connection, and
hence the size of the encrypted messages varies.

For the parallel modes, three files of different sizes were transferred: 1,000
bytes, 1,000,000 bytes, and 10,000,000 bytes. The small sizes of these files (compared
to the types of file that might be expected to be transferred over GridFTP) meant
that running the tests was a low-cost exercise, in terms of time and disk storage.

7.4: GRIDFTP TIMING ANALYSIS 108

Furthermore, these file sizes have the property that representing them in decimal
each requires a different number of characters—again something expected to be
seen at the encrypted message level.

The recursive mode transfers were of a directory containing 10 files of
1,000,000 bytes each.

The set of different configurations was run 10 times per hour over the course
of one week-day (a Wednesday). The 10 runs were carried out in sequence, with
each taking about two minutes to complete each combination within the set.

7.4.2 Interpreting Results

Inspection indicates that the -a mode has no effect on the control channel, and that
-fast is equivalent to -p 1.

In order to visualise the message sequences observed, a set of graphs were
produced to show the encrypted and plain text request response sequences. Two
different types of graph were considered: one that ignores real timing and sim-
ply shows the message sequence; the other shows real time. Examples of these are
shown in Figures 7.1 and 7.2, which correspond to the default options and transfer
of a file with 10 characters in the path name.

The lines and points in the graphs represent an FTP-level message. The y-
position indicates the message length; positive indicates client-server, negative is
server-client. In Figure 7.1, green triangles indicate the actual plain text message
lengths and red circles indicate the message length obtained from inspecting the
encrypted payload. In each case the red line has greater-or-equal magnitude to the
green. The maximum error between encrypted and plain-text messages is indicated
at the top left by ‘Max delta’. This delta is due to padding in the encryption algo-
rithm. For the algorithm in use (3DES-EDE), it should be less than 16.

Above each client-server point (positive) is an annotation showing the first
word of the corresponding FTP command3. The immediately following server-
client messages may be considered to be the server response to the command in
question. The server sends each line of its response as a separate encrypted mes-
sage. For example, the response to SITE HELP (the third client message in Fig-
ure 7.1) is:

214-The following SITE commands are recognized (* =>’s unimplemented).

UMASK GPASS ALIAS BUFSIZE

IDLE NEWER CDPATH PSIZE

CHMOD MINFO GROUPS FAULT

HELP INDEX CHECKMETHOD

GROUP EXEC CHECKSUM

214 Direct comments to ftp-bugs@tim.

The corresponding messages are the negative points between SITE and FEAT. The

3. For example, SIZE /some/file shows as simply SIZE.

7.4: GRIDFTP TIMING ANALYSIS 109

0 10 20 30 40

−
1
0
0

−
5
0

0
5
0

1
0
0

GridFTP encrypted/plain text message sizes: gridftp−−fn10a

Sequence

N
o
rm

a
lis

e
d
 M

e
s
s
a
g
e
 S

iz
e

U
S
E
R

P
A
S
S

S
IT

E

FE
A
T

TY
P
E S

IZ
E

P
B
S
Z

P
A
S
V R

E
TR

Q
U
IT

150

226

Encrypted

Plain

Max delta: 14
 Transfer with default options of small file with 10 characters in name

Figure 7.1: Sequence of messages exchanged by a GridFTP client and server. Values on
y-axis indicate size of message, showing both real message size and the quantised size
inferred from the encrypted payload. Positive values indicate message from client to
server. The name of the file being transferred was 10 characters in length.

0 20 40 60 80 100 120

−100

−50

0

50

100

Real Time (ms)

N
o

rm
a

lis
e

d
 M

e
s
s
a

g
e

 S
iz

e

GridFTP encrypted/plain text message sizes: gridftp−−fn10a

Transfer with default options of small file with 10 characters in name

U
S
E
R

P
A
S
S

S
IT

E

FE
A
T

TY
P
E

S
IZ

E

P
B
S
Z

P
A
S
V R

E
TR

Q
U
IT

150

226

Encrypted
Plain

Figure 7.2: Sequence of messages exchanged by a GridFTP client and server. x-axis
shows real time. Compare with Figure 7.1 where x-axis shows sequence number.

7.4: GRIDFTP TIMING ANALYSIS 110

chart also shows that the response to the FEAT command has a long line in the
middle (sequence number 19), as evidenced by line 6 in following extract from the
transcript:

211-Extensions supported:

REST STREAM

ESTO

ERET

MDTM

6 MLST Type*;Size*;Modify*;Perm*;Charset*;UNIX.mode*;UNIX.slink*;Unique*;

SIZE

CKSM

PARALLEL

DCAU

211 END

Figure 7.2 shows the same set of messages with a real-time x-axis rather than in-
teger sequence numbers. A small arrow is shown just after the RETR command,
pointing towards the x-axis. This arrow indicates the initial SYN packet of an aux-
iliary data flow. The direction of the arrow indicates whether the connection was
client-server (up) or server-client (down). The vertical blue line highlights the RETR
command.

Note that the messages at time 40 ms are overlaid—this is because the entire
encrypted response to the FEAT arrived in the same packet, hence each message re-
ceived the same time stamp. A similar phenomenon occurs for the SITE command.

The timings shown in this chart are slightly skewed since the packet trace
was taken on the client machine. Therefore, the delay between server response and
next client message is generally very small, whereas the time between client mes-
sage and server response is governed by the RTT. If the trace were taken somewhere
closer to the middle of the network, these measurements would be more balanced.

The chart appears to indicate that the response to the PASV command and
subsequent issue of the RETR command takes longer than the preceding TYPE,
SIZE, and PBSZ commands (at around time x = 70 ms). The response to the PASV
command is:

227 Entering Passive Mode (192,168,1,23,136,63)

Note that a server-side listening socket has been created, and the IP address and
port number have been communicated in this message to the client. It is tempting
to attribute the extra time to the kernel and network stack opening the socket on
the server. Indeed, a similar profile has been observed when the client allocates the
socket and notifies the server via the PORT command. However, the chart shown
corresponds to a single file transfer, and is not representative of the complete set of
traces. The aggregate properties of the traces will be dealt with in the next section.

7.4: GRIDFTP TIMING ANALYSIS 111

0 10 20 30 40

−
1
0
0

−
5
0

0
5
0

1
0
0

GridFTP encrypted/plain text message sizes: gridftp−−fn50a

Sequence

N
o
rm

a
lis

e
d
 M

e
s
s
a
g
e
 S

iz
e

U
S
E
R

P
A
S
S

S
IT

E

FE
A
T

TY
P
E

S
IZ

E

P
B
S
Z

P
A
S
V

R
E
TR

Q
U
IT

150

226

Encrypted

Plain

Max delta: 14
 Transfer with default options of small file with 50 characters in name

Figure 7.3: As Figure 7.1 but for a file name of 50 characters. Note that the SIZE and
RETR messages have increased accordingly, but all others are identical to the previous
figure.

Recall from Section 7.4.1 that the file transfers were carried out both with different
file path lengths and file content sizes. Figure 7.3 shows the sequence plot for a
file of path length 50 characters. It is identical to Figure 7.1 except that the message
length for the SIZE and RETR commands is larger. The sequence plots for the larger
file transfers (larger in terms of number of bytes) are also different, but more subtly
so.

Figure 7.4 shows close-ups of extracts from the sequence charts for the dif-
ferent file sizes. The plain text messages take the following form, where > and <

represent messages from client and server, respectively:

> SIZE fileA > SIZE fileB > SIZE fileC

< 213 1000 < 213 1000000 < 213 10000000

Since the number of characters required to represent these file lengths increases,
there is a corresponding increase in message size. The figure shows, however,
that the observed message size—as can be inferred by looking at the encrypted
payload—is quantised such that it does not change between the one million and 10
million byte files. Although it is certainly present, the one character difference in
the corresponding plain text messages is hard to discriminate from the figure.

7.4.3 Aggregate Timing

The previous section dealt with the initial interpretation of the GridFTP messages in
terms of the sizes and timings of messages and introduced the potential for timing
information to be used to better identify the phase of the GridFTP session. This
section gives a more rigourous evaluation of the additional delay observed around
the PASV and PORT commands.

7.4: GRIDFTP TIMING ANALYSIS 112

!

!

!

!

!

! !

! ! ! !

!

!

! !

! ! !

!

! ! ! ! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

0 10 20 30 40

!
1
0
0

!
5
0

0
5
0

1
0
0

GridFTP encrypted/plain text message sizes: gridftp!p!4!fn10a

Sequence

N
o
rm

a
lis

e
d
 M

e
s
s
a
g
e
 S

iz
e

U
S
E
R

P
A
S
S

S
IT

E

FE
A
T

TY
P
E

M
O

D
E S
IZ

E O
P
TS

P
B
S
Z

P
O

R
T

R
E
TR

Q
U
IT

150

226

! Encrypted

Plain

Max delta: 14
 Transfer with '!parallel 4' option of 1 kbyte file with 10 characters in name

!

!

!

!

!

! !

! ! ! !

!

!

! !

! ! !

!

! ! ! ! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

0 10 20 30 40

!
1
0
0

!
5
0

0
5
0

1
0
0

GridFTP encrypted/plain text message sizes: gridftp!p!4!fn10c

Sequence

N
o
rm

a
lis

e
d
 M

e
ss

a
g
e
 S

iz
e

U
S
E
R

P
A
S
S

S
IT

E

FE
A
T

TY
P
E

M
O

D
E S
IZ

E O
P
TS

P
B
S
Z

P
O

R
T

R
E
TR

Q
U
IT

150

226

! Encrypted

Plain

Max delta: 14
 Transfer with '!parallel 4' option of 10 mbyte file with 10 characters in name

!

!

!

!

!

! !

! ! ! !

!

!

! !

! ! !

!

! ! ! ! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

0 10 20 30 40

!
1
0
0

!
5
0

0
5
0

1
0
0

GridFTP encrypted/plain text message sizes: gridftp!p!4!fn10b

Sequence

N
o
rm

a
lis

e
d
 M

e
ss

a
g
e
 S

iz
e

U
S
E
R

P
A
S
S

S
IT

E

FE
A
T

TY
P
E

M
O

D
E S
IZ

E O
P
TS

P
B
S
Z

P
O

R
T

R
E
TR

Q
U
IT

150

226

! Encrypted

Plain

Max delta: 14
 Transfer with '!parallel 4' option of 1 mbyte file with 10 characters in name

1,000
bytes

1,000,000
bytes

10,000,000
bytes

Figure 7.4: Close-up of SIZE messages from the sequence plot for transfers of three
different file sizes.

T
im

e
 b

e
tw

e
e

n
 m

e
s
s
a

g
e

s
 (

m
s
)

2 3 4 5 6 7 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

10

20

30

40

50

’3
3

1
’

’P
A

S
S

’

’2
3

0
’

’F
E

A
T

’

’2
1

1
’

’R
E

S
T

’

’T
Y

P
E

’

’2
0

0
’

’S
IZ

E
’

’2
1

3
’

’P
B

S
Z

’

’2
0

0
’

’P
A

S
V

’

’2
2

7
’

’R
E

T
R

’

’1
9

4
.’

’1
5

0
’

’2
2

6
’

’Q
U

IT
’

’2
2

1
’

’2
2

1
’

9
3
m

s

>

>

Figure 7.5: Box and whiskers plot showing delay distribution for each GridFTP mes-
sage aggregated from 10 runs each hour for one day. Red spot indicates the median.

7.4: GRIDFTP TIMING ANALYSIS 113

Box and whiskers plots

A ‘box and whiskers’ plot is a simple way of summarising the distribution of a
data set. Firstly, it depicts the median and the interquartile range (IQR), which
is determined by the value of the first and third quartiles (equivalent to the 25
and 75 percentiles). The IQR is represented by the box in the plot. The median is
always inside the box.

The plot below describes 300 samples of the form |x|1.1, where x values are
drawn from the normal distribution (µ = 0, σ = 1). The discrete sample values
have been added to this diagram as small tickmarks just above the x-axis to aid
in the interpretation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

l median

box

1st 3rd whiskerwhisker outliers

The ‘whiskers’ of the plot extend to the most extreme data point which is no
more than 1.5 times the IQR away from the box. Here, the IQR is about 0.8, and
since there are no values less than 0 the lower whisker aligns with the smallest
sample value. The higher whisker, however, aligns with the sample at around
2.25. Samples beyond the whisker are drawn as outliers.

The box can be used to evaluate the spread of the data set, and the relative
positions of the whiskers with respect to the box indicate the degree of skew
present (this example is skewed by construction).

Insert 7.1: Introduction to box and whiskers plots.

The timing for all 240 runs4 per transfer configuration were aggregated to
investigate the variance in the timings across multiple runs and during the course
of a day. Figure 7.5 is a ‘box and whiskers’ plot5 of the message timing for a transfer
with default options. The y-axis values represent the time between the indicated
message and the one before it. Messages arriving at precisely the same time (i.e.,
having a y value of 0) have been omitted, as can be seen between sequence numbers
7 and 15.

In general, the messages from client (PASS, FEAT, TYPE, etc) show a neg-
ligible time delta due to the network trace having been taken using tcpdump on
the client machine. Most of the server messages have a median near 10 ms, which
was approximately the RTT for the route between client and server. However, the
REST and 226 replies from the server have a distinctly different profile with me-

4. 24 hours × 10 runs per hour
5. Insert 7.1 explains box and whiskers plots.

7.4: GRIDFTP TIMING ANALYSIS 114

Delay distribution for ’150’ (25) message

Delta Time (ms)

H
o

u
r

o
f

D
a

y

90 100 110 120 130 140 150

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

min = 92.26 ms
median = 92.94 ms
hourly median
outliers

Figure 7.6: Box and whiskers plot showing delay distribution by hour for GridFTP 150
messages corresponding to column 25 in Figure 7.5.

dian around 50 ms. These timings are an artefact of the TCP Nagle [79] algorithm,
where a second segment from server to client (sequence number 7) is delayed until
an ACK is received for the first segment (6). The sending of the ACK itself is de-
layed by the receiver (client) in the hope that the ACK may be piggybacked on a
data segment. Since the client sends nothing at this stage (it is waiting for the full
server response), the TCP stack times out and transmits an ACK with no data.

Ignoring those deltas influenced by TCP stack behaviour, the remaining
delta of interest is that at sequence number 25, the values of which (around 90 ms)
are beyond the scale of the graph. This message corresponds to the acknowledge-
ment by the server of the auxiliary data connection establishment (the 150 mes-
sage), and is the main candidate for leveraging timing information to inform the
real-time analysis of a GridFTP protocol conversation.

Figure 7.6 is a box and whiskers plot showing the delay distribution for these
messages over the course of the day. It is clear that the timing has a minimum near
90 ms and there are more outliers during the working hours of the day than at
other times, however the IQR and upper whiskers are not significantly different
from others.

In order to make a check for any additional artefacts in the timing data,
a quantile-quantile plot6 was made of the message time deltas from every run
against a normal distribution. The chart is shown in Figure 7.7. Mostly the mea-
surements roughly adhere to the normal distribution, as would be expected from

6. Insert 7.2 on page 117 describes quantile-quantile plots.

7.4: GRIDFTP TIMING ANALYSIS 115

random measurement error. Some messages show deviations from the straight line
that indicate a heavy-tailed distribution. Other messages show a bimodal distribu-
tion (e.g., REST, 226 and 221). The distribution in the REST messages is due to the
Nagle algorithm described above, and the 226 and 221 differences appear to be
the result of a process scheduling quantum on the server machine.

7.4.4 Discussion

The preceding investigation examined the GridFTP protocol structure in order to
establish whether the size/timing properties seen at the transport flow level ex-
hibit any regular patterns that may be used to more accurately classify bulk flows
as GridFTP. It was shown that there is a regular structure (as would be expected
from the use of a fixed client application) and that the creation of a data connection
corresponds to a significantly longer inter-control message delay (see element 25
from Figure 7.5) than the normal request-response sequence.

However, since following such a delay is a period of inactivity during the
actual transfer, a simpler approach presents itself: tag new bulk connections as
‘probably’ Grid if a bulk flow is established during the seconds after the last con-
trol message. Figure 7.8 depicts the coarse timing relationship between activity on
the GridFTP control session and the start of corresponding data flows. The phase
of a control session can be determined by observing this activity. The authentica-
tion handshake is identifiable from its content (FTP ADAT—authentication data—
commands are used instead of ENC). Thereafter is the ‘Initial commands’ phase,
the end of which is determined by the start of the ‘Bulk data establishment’ phase.
It begins with the RETR7 command and finishes with the 150 response. Although
neither of these messages can be identified directly because they are encrypted, the
control connection inactivity in the following ‘Bulk data phase’ means that the last
two messages after a timeout correspond to ‘Bulk data establishment’. The ‘Final
commands’ phase is indicated by subsequent control connection activity.

Only connections established during the ‘Bulk data establishment’ phase are
eligible to be treated as GridFTP bulk data. The time window should be small (sev-
eral RTTs) which limits the possibility of a false positive. Note in Figure 7.8 that
bulk data connection 2 is shown as starting inside the window, whereas connection
‘... n’ starts outside. In fact, only the first connection is guaranteed by the protocol
to be inside the window; the timing of subsequent connections is dependent on
how quickly they can be established. Despite this discrepancy, connections 2 and
beyond can still be identified, since the destination TCP port number is the same as
for connection 1.

Before describing and evaluating an implementation using the timing infor-
mation in the following sections, the next paragraph considers the possibilities for

7. Where RETR appears hereinafter, STOR is also possible.

7.4: GRIDFTP TIMING ANALYSIS 116

Normal Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s
 (

m
s
)

1
2

1
4

1
6

1
8

2
0

2
2

2: ’331’

−3 −2 −1 0 1 2 3

0
.5

6
0
.6

0
0
.6

4
0
.6

8 3: ’PASS’

1
3

1
4

1
5

1
6

1
7

4: ’230’

−3 −2 −1 0 1 2 3

0
.4

2
0
.4

6
0
.5

0
0
.5

4

5: ’FEAT’

1
0

1
5

2
0

2
5

3
0

3
5

6: ’211’
4
8

5
0

5
2

5
4

7: ’REST’

1
.2

0
1
.2

5
1
.3

0
1
.3

5

15: ’TYPE’

9
1
0

1
1

1
2

1
3

16: ’200’

0
.3

6
0
.3

8
0
.4

0
0
.4

2
0
.4

4

17: ’SIZE’

8
1
0

1
2

1
4

1
6

18: ’213’
0
.4

2
0
.4

4
0
.4

6
0
.4

8
0
.5

0
19: ’PBSZ’

1
0

1
2

1
4

1
6

1
8

20: ’200’

0
.3

5
0
.4

0
0
.4

5

21: ’PASV’

1
0

1
5

2
0

2
5

22: ’227’

0
.6

6
0
.7

0
0
.7

4

23: ’RETR’

8
9

1
0

1
1

1
2

24: data syn

9
0

1
0
0

1
2
0

1
4
0

25: ’150’

5
0

5
5

6
0

26: ’226’

0
.7

5
0
.8

0
0
.8

5

27: ’QUIT’

1
0

1
5

2
0

28: ’221’

−3 −2 −1 0 1 2 3

3
.5

4
.0

4
.5

5
.0

5
.5

29: ’221’

Figure 7.7: Quantile-quantile plot of time between encrypted GridFTP messages.
Above each plot is a sequence number followed by the initial message content.

7.4: GRIDFTP TIMING ANALYSIS 117

Quantile-quantile plots

A ‘quantile-quantile’ plot is a graphical way of comparing the distribution of
two sample sets. When one of the sets is drawn from a known distribution, the
plot provides a way to evaluate whether the unknown data are likely to be dis-
tributed in the same way.

A simple Q-Q plot could be formed by evaluating the 0.1, 0.2, ..., 0.9 quan-
tiles for the unknown and known data sets, then plotting then against one an-
other. The plot below shows this, where points are represented by the quantiles.
Notice that the x-axis value for the 0.5 quantile is 0, since this is the median of
the standard normal distribution (mean 0, standard deviation 1).

Normal quantiles

S
a

m
p

le
 q

u
a

n
ti
le

s

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2

0.1
0.2

0.3

0.4

0.5

0.6
0.7

0.8

0.9

The red crosses indicate the 1st (0.25) and 3rd
(0.75) quartiles (quantiles), through which a
straight line is drawn. Notice how the crosses do
not correspond to any actual data point in this
graph, because the nearest values are 0.2/0.3
and 0.7/0.8.

Since this plot is based on very few data
points, limited inferences can be drawn from it.
With more sample points, however, the plot can
be used to identify departures from normality
(or whatever other distribution is of interest).

Data sets drawn from the same distribution should yield points falling roughly
along the straight line. Departures from the line indicate skewness, heavy or light
tails, and possible extreme values.

Distribution

N
o
rm

a
l

U
n
if
o
rm

L
o
g
 N

o
rm

a
l

T
 (

d
f=

2
)

−4 −2 0 2 4

0.1

0.2

0.3

0.4

−1 0 0.5 1 1.5 2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 2 4 6 8 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

10

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

0.5

1

1.5

2

2.5

3

−3 −2 −1 0 1 2 3

−1.5
−1

−0.5
0

0.5
1

1.5

30

−3 −2 −1 0 1 2 3

−1

0

1

2

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

2

4

6

8

10

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

300

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

5

10

15

20

25

30

−3 −2 −1 0 1 2 3

−5

0

5

The table of charts above shows four distributions (normal, uniform, log-normal
and t) and sample Q-Q plots for sample sizes 10, 30 and 300.

Insert 7.2: Interpreting quantile-quantile plots.

7.5: SIMPLIFIED GRIDFTP CLASSIFICATION 118

1

Auth
en

tica
tio

n
Ini

tia
l co

mman
ds

Bulk
 da

ta
es

tab
lish

men
t

Fina
l co

mman
ds

Time

GridFTP control

GridFTP bulk data

2
... n

Bulk
 da

ta
ph

as
e

RETR 150

Key

Figure 7.8: Timing relationship between GridFTP control connection phases and data
connection establishment.

gathering additional transfer information (question Q3 from Section 7.1).
At the end of Section 7.4.2 on page 110 the relationship was investigated

between plain-text message lengths and the encrypted message lengths that have
been subject to padding. It was shown that differences in the response to a SIZE

command were sometimes visible (in the same way that changes in the file name
length of a requested file were apparent). Unfortunately, the coarseness of the
padding (16 bytes in this instance) means that there is only one switch-over point
between a short and long encrypted message, and therefore it would only ever be
possible to differentiate between file sizes of more or less than some threshold8. In
the example given the threshold was between 1,000 and 1,000,000 bytes. A further
complication is the correct identification of the SIZE message from just observ-
ing the encrypted control messages, which really depends on a fixed command se-
quence used by the client. Although the equal lengths of SIZE and RETR messages
could be used to inform this detection, the ultimate benefits are limited. Hence, the
focus is on the correct identification of bulk data flows themselves.

7.5 Simplified GridFTP Classification

GridFTP control sessions can be classified by inspecting the payload content, since
they are based on plain FTP but use GSSAPI security services, and also because a
server usually responds with a distinctive message9:

220 tim GridFTP Server 1.17 CAS/SAML enabled GSSAPI type Globus...

Therefore, the identification of the application (Q1) is guaranteed.
To recap on the approach: the lifetime of a control session between a pair of

hosts gives a coarse time window within which new connections between a partic-

8. A power-of-10 threshold representing a change in the number of decimal digits transmitted to
represent a file size.
9. The classification still works if the server administrator has disabled the banner.

7.5: SIMPLIFIED GRIDFTP CLASSIFICATION 119

ular host pair become candidates for classification as GridFTP bulk data. By using
knowledge of the control protocol (as discussed in the previous section) the time
window can be reduced, and consequently the false positive rate improves.

In addition to the time-based argument previously introduced, some con-
figurations of a GridFTP file transfer exhibit a further property that can be used
to definitively identify a corresponding bulk data session. Recall that the GridFTP
control session uses GSI to negotiate certificates for authentication. If data chan-
nel authentication is enabled (via an FTP command issued during the ‘Initial com-
mands’ phase), then the data connections also use GSI to authenticate. The purpose
is to prevent an attacker connecting to client or server (depending on whether ac-
tive or passive transfer mode has been enabled) and intercepting the data. The key
insight here is that the data connections then look like a TLS/SSL session (remem-
ber that GSI is layered on top of TLS/SSL), and will negotiate the same certificates
as were used on the control session. Therefore, a second, more robust, way of iden-
tifying GridFTP bulk data is to correlate certificates between data and control ses-
sions.

7.5.1 Design

So, there are two techniques to classify bulk flows as GridFTP:

1. Correlate connection start times with control session phases.
2. Correlate TLS/SSL certificate exchanges with control session certificates.

The first of these is combined with an additional method to determine whether a
connection is likely to be carrying bulk data.

Figure 7.9 depicts the relationship between different sets of TCP connections
that are candidates for classification as GridFTP bulk data. The first data connection
and subsequent connections are shown separately, since their timing restrictions are
different. Ignoring the DCAU/SSL segments for the moment, the first data connec-
tion is one that is established during the RETR/150 time window and has ‘consis-
tently large packets’ (the definition of which will be given shortly). For subsequent
connections the time window is relaxed to ‘soon after the 150 response’, provided
the destination port number matches the first connection.

Connections using data channel authentication are found by identifying
the SSL content and matching certificate usage with the control connection. The
RETR/150 time window and packet-size restrictions are not enforced here both
because the certificate match is accurate and the SSL protocol messages would be
unlikely to meet the packet-size criteria. Furthermore, a certificate match disables
the time-based heuristic approach for the control connection in order to reduce the
risk of false positives.

The technique for identifying ‘consistently large packets’ is simple: the num-
ber of data-bearing packets on a flow is counted, along with the total data amount.

7.5: SIMPLIFIED GRIDFTP CLASSIFICATION 120

All TCP connections between same host pair as control session

Established during control session lifetime

Established during RETR/150 interval Established soon after 150

DCAU = Data Channel Authentication

GridFTP data
(connection 1)

Consistently large packets

SSL

DCAU:
Same

certificates
as

GridFTP
control

GridFTP data
(connections 2+)

Same destination
port number as
connection 1

Figure 7.9: Sets of potential GridFTP data connections.

The average packet size can then be calculated and compared with the maximum
segment size for the link. If it is within a reasonable threshold (indicating mostly
maximum-size packets) then the flow is likely to be transporting bulk data of
some sort. A further restriction is also added: the flow must transmit data in only
one direction. This simple addition ensures that bidirectional connections—such as
SMTP—will never be matched.

As described in Section 7.4.4, in order to identify the RETR/150 time win-
dow, it is necessary to wait for the GridFTP control flow to become idle. The idle
timeout needs to be long enough to not be triggered by the time between messages
in the ‘Initial commands’ phase (see Figure 7.8). However, the length of the timeout
also influences the response time for the detector. Since it is necessary to wait for
the connection to be idle before identifying the non-DCAU bulk flows, data may
go undetected for a short period.

7.5.2 Implementation

The time-window and SSL-certificate-based GridFTP bulk data identification ap-
proach has been implemented in the real-time application protocol analyser intro-
duced in Chapter 5. Two new analyser classes were added to support the scheme;
these were the GridFTPAnalyser and SSLAnalyser. The purpose of the latter is to
identify SSL connections and compare any certificates exchanged with those found
on a GridFTP control session between the same host pair. It does not report any
events directly—it just delegates to the BulkDataAnalyser.

The GridFTPAnalyser is triggered by the FTP matching module mentioned
in Section 6.3.5. It processes the authentication exchange and stores a hash of each

7.5: SIMPLIFIED GRIDFTP CLASSIFICATION 121

1 # After a short period of inactivity on GridFTP control
2 bulk connections = []
3 window = last client msg time .. last server msg time
4

5 # First check for bulk connection starting in the window
6 for c in connections_between_hosts(src,dest) do
7 if c.start_time in window and
8 c.mss - c.average_packet_size < THRESHOLD and
9 c.data_in_only_one_direction? and

10 not c.known_protocol? then
11 c.assign_protocol_analyser BulkDataAnalyser("GridFTP-Window")
12 bulk connections.append(c)
13

14 # Match forthcoming connections to same host/port
15 register_future_connections c.dst,c.dst_port,
16 BulkDataAnalyser("GridFTP-Port")
17 end
18 end
19

20 # Now match against existing connections to same destination port
21 for b in bulk connections do
22 for c in connections_between_hosts(src,dest) do
23 if b != c and b.dst_port == c.dst_port then
24 c.assign_protocol_analyser BulkDataAnalyser("GridFTP-Port")
25 end
26 end
27 end

Listing 7.1: GridFTP heuristic analyser pseudocode.

certificate used for later interrogation by the SSLAnalyser. It also keeps track of
the time of each request and response on the connection and schedules a timer to
trigger the search for bulk data connections according to the process described in
Section 7.5.1. Since the granularity of the timers provided by the real-time monitor
is one second, the timeout period can only be a whole number of seconds, and may
be scheduled up to a second later than expected due to the calendar queue timer
implementation (see Section 5.4). Listing 7.1 shows pseudocode for the identifica-
tion process.

A threshold value is shown in the listing for the ‘consistently large packet’
criteria, which represents the allowable deviation, on average, from the connection
MSS (Maximum Segment Size). The threshold was set to 30 bytes. This is intended
to cover a moderate number of TCP options (which reduce the available space for
true data payload). The MSS is extracted from options in the initial TCP SYN hand-
shake, or else assumed to be around 1460 bytes (based on a standard Ethernet MTU
of 1500 bytes).

7.5: SIMPLIFIED GRIDFTP CLASSIFICATION 122

7.5.3 New Events

The new analyser introduces some new events and extends the functionality of
some existing events. For more information on the event system, see Section 6.3.1.

Generic Bulk Data

The generic bulk data analyser was extended to support the new usage within the
GridFTP analyser:

BulkData:Opened(...,orig bytes,resp bytes,elapsed)

In addition to the existing parameters described in Section 6.3.2, when the
analyser is attached to a flow after it has been established, the number of
bytes already passed on the flow is recorded along with the elapsed time.
This supports the determination of the number of bytes that were missed
before the flow was identified.

GridFTP Analyser

When the GridFTP analyser identifies a bulk data connection, it registers a Bulk-
DataAnalyser in the same way as the plain text protocol analyser described in Sec-
tion 6.3. However, it makes special use of the source field in order to differentiate
between identification mechanisms:

GridFTP-SSL Identified from SSL certificate match.

GridFTP-Window Flow started inside the RETR/150 window.

GridFTP-Port Same destination TCP port as a GridFTP-Window flow.

The following specific events are generated by the GridFTP analyser:

GridFTP:Control()

Registers the start of a GridFTP session.

GridFTP:Closed(stats,window)

Summarises the results of the GridFTP analyser. The window parameter in-
dicates the duration of the RETR/150 window.
The parameter stats contains connection counts for the following criteria:

• SSL certificate match (GridFTP-SSL).

• Accepted inside RETR/150 window (GridFTP-Window).

• Accepted due to same destination port as an accepted connection
(GridFTP-Port).

• Inside RETR/150 window but rejected due to not bulk data.

These values are a useful diagnostic for assessing the accuracy of the detec-
tor.

7.6: EVALUATION 123

7.5.4 Real-time Monitor Changes

The implementation described above required some isolated changes to the moni-
toring system. These were easy to implement, and did not require any modification
to the existing analysers.

Host-pair connection lists As the connections_between_hosts method from
the pseudocode in Listing 7.1 suggests, it is necessary to be able to efficiently
enumerate the active connections between a source-destination IP address
pair. The existing connection table was a single hash table indexed by the
TCP connection four-tuple. An auxiliary table was introduced, keyed by
host-pair. This required the addition of an extra field in the TCP connection
record to maintain a doubly linked list.
Connections are not added to this table until they have been fully estab-
lished. When added, the list is guaranteed to be kept in order of connection
start time, which means that an analyser making repeated passes over the
list can do so incrementally by keeping track of the most recent connection
visited.

Maximum Segment Size parsing The TCP option for negotiating the MSS during
the three-way handshake is parsed, and the value stored in the flow record.

Packet count The TCP flow manager previously kept track of the number of bytes
observed on a flow but not the number of packets. This was added.

The memory costs of the above changes are an additional 20 bytes (approximately
10%) per connection record (8 bytes for linked list entry plus a per-flow 32-bit
packet counter and 16-bit MSS field). The secondary host-pair connection table in-
curs a processing overhead when connections are established or freed, but other-
wise the only CPU costs are when the table is traversed by the GridFTPAnalyser.
Note that the table update takes place upon completion of the three-way hand-
shake, and therefore the system performance when coping with SYN flooding (as
covered in Section 5.5.1) is unaffected.

The per-connection costs for SSL connections (as used by HTTPS, secure
IMAP, etc) increase due to the requirement to look for an associated GridFTP ses-
sion. However, the lookup is only necessary if both client and server certificates are
exchanged, and most SSL connections involve only a server certificate.

7.6 Evaluation

An experiment was carried out to examine the effectiveness of the simple GridFTP
data classification system. Three hosts were used; one client machine (nsmc06) at
Glasgow University was set up to perform GridFTP transfers to and from two other
machines. These were called bananarama and kosciusko. The former machine

7.6: EVALUATION 124

was also used in the experiments from Section 6.5.5, and is located at Lancaster Uni-
versity. The latter machine, kosciusko, is at Glasgow University and the network
topology is such that communication between nsmc06 and kosciusko passes the
monitoring point10.

7.6.1 Method

A script was developed to run the globus-url-copy command-line file transfer
program with a range of options, host source/destination and file sizes. The most
important options were those controlling the use of data channel authentication
and the number of parallel TCP streams to be used. Transfers were performed with
either one stream or four. The file sizes used were 10, 25, 50 and 100 Mbytes. Al-
though these file sizes are much smaller than might be expected to be transferred
using GridFTP, they represent a sufficient range to demonstrate the performance of
the monitoring system.

The script was configured to run a random11 series of file transfers between
nsmc06 and one of the other two machines (transferring files in either direction)
over a 24 hour period. Between each transfer was a random idle period of between
30 and 90 s.

In order to ensure that there were additional TCP connections between the
hosts that might trigger a false positive, just before starting each file transfer a pro-
cess was started to produce a set of ‘confounding’ connections, with the following
properties:

• 20 connections intended to be non-bulk
• 5 bulk connections transporting 1 Mbyte
• Two bulk connections transporting up to 50 Mbytes at random

The connections from the first two items were each started with a random delay of
up to four seconds. The two random(50) Mbytes connections were started with a
400 ms offset. These connection counts, timings and transfer sizes were empirically
chosen to offer a reasonable chance of meeting the time-window criteria, and there-
fore triggering false positives. The non-bulk connections were intended to test the
effectiveness of the large average packet measurement. They were represented by
a process shown in Listing 7.2. The bulk and non-bulk connections were directed
towards different fixed ports on the target machines in order that the connections
could separated during the results analysis.

During the course of the experiment, the real-time monitor was reporting on
the network activity. The timeout period (see Section 7.5.2) was configured to be
the minimum of one second.

10. Point B from Figure 3.1 on page 32.
11. Each random value here was picked from the rand method provided by the Ruby scripting
language, which, according to the documentation, is a ‘modified Mersenne Twister with a period of
219937 − 1’.

7.6: EVALUATION 125

Connect to server socket
s = TCPSocket.new(@host, NON_BULK_PORT)
400.times do

Write 1 to 1000 bytes
s.write("N" * (1+rand(1000)))
Get random number between 0 and 1
r = rand
Sleep up to 2 seconds, biased towards shorter durations
sleep (r*r * 2)

end

Listing 7.2: Non-bulk simulation connection code.

7.6.2 Results

Every GridFTP bulk-data connection using data-channel authentication (i.e., the
SSL certificate match is possible) was correctly identified (there were 804 such con-
nections), and there were no false positives. Since a certificate-based match disables
the heuristic time-based analysis, this is as expected. Furthermore, since the match-
ing is triggered by the certificate exchange on the data connection before the bulk-
data phase starts, it is possible to properly report the entire bulk data connection.

The remainder of this section presents the data showing the efficacy of the
time-window-based analysis. Figure 7.10 shows the distribution of the duration of
the RETR/150 time window for the two target hosts. The closer machine, with a
round-trip time of approximately 4 ms, has a median window duration of 28 ms,
whereas the median duration of the remote machine (RTT = 12 ms) is 55 ms. The
latter measurement has a greater spread, as would be expected with the traffic be-
ing subject to more Internet routing delays and losses than the local machine. Even
so, the window size is still small in both cases; certainly it is usually less than 150 ms
(Pr[window < 150 ms] is 96% for bananarama and 99% for kosciusko). There-
fore, over the lifetime of a GridFTP transfer session (which could be several minutes
for a large file), the time window during which false positives may be triggered is
relatively very small.

Recall from Section 7.6.1 that files of size 10, 25, 50 and 100 Mbytes were
used. All of the bulk data connections from the 25 Mbytes and higher transfers were
correctly identified. Of the 10 Mbytes transfers, only 17% of the connections were
matched. This is caused by the transfer lasting insufficiently long for the control
session inactivity timer to trigger before the data has finished.

Of the connections that were successfully identified (including all of the
25 Mbytes and larger files), some of the data was transferred before the analyser
was able to report on it. This is related to the inactivity timer, and the volume of
data missed is proportional to the timer duration and the connection throughput
in the first few seconds. The results mentioned in this and the preceding paragraph
are summarised in Table 7.1. Note how the ‘Missed Volume’ percentage is inversely

7.6: EVALUATION 126

Window width (ms)

D
e
n
s
it
y

0 50 100 150 200 250 300

0.000

0.005

0.010

0.015 bananarama RTT = 12 ms

kosciusko RTT = 4 ms

bananarama mean/median = 63.6/54.7 ms

kosciusko mean/median = 45.2/28.0 ms

bananarama
kosciusko

Figure 7.10: Density plot showing distribution of GridFTP RETR-150 time window
durations. Marks along the baseline show the actual values.

Time before connection matched (ms)

D
e
n
s
it
y

0 500 1000 1500 2000 2500

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

bananarama median = 1459 ms

kosciusko median = 1566 ms

bananarama
kosciusko

Figure 7.11: Density plot showing distribution of delay from connection start time until
a GridFTP bulk data connection is identified. Marks along the baseline show the actual
values.

Size Total Bulk Data Matched Missed False
(MBytes) Transfers Connections Volume Positives

10M 116 320 17% 68.8% 3 2.6%
25M 93 225 100% 46.9% 16 17.2%
50M 103 247 100% 22.1% 10 9.7%
100M 100 250 100% 11.5% 8 8.0%

Table 7.1: Connection counts by file size for the non-certificate-based matcher, show-
ing total number of transfers of each size, the number of resulting data connections
and the proportion of these connections correctly identified by the analyser. ‘Missed
Volume’ column represents the proportion data transferred on a connection prior to
being identified by the analyser. ‘False positives’ gives the number of transfers that
triggered a mis-classification.

7.6: EVALUATION 127

proportional to the transfer size (since the available bandwidth is fixed) and that
number of ‘Bulk Data Connections’ is approximately 2.5 times the number of trans-
fers. This is because the transfer configuration was randomly chosen between one
or four data connections per transfer (the average of the total is 2.5).

Table 7.1 shows a ‘False Positives’ column, which indicates the number of
transfers for which a bulk data connection was incorrectly identified (i.e., a connec-
tion started during the RETR/150 time window that was not GridFTP bulk data).
The consequences of these results are considered shortly in Section 7.6.3.

The distribution of elapsed times before a bulk data connection is classified
was investigated, and is shown in a density plot in Figure 7.11. The values are
mostly uniformly distributed between one and two seconds, which corresponds
to the expected behaviour of the coarse-grained timer implementation. The mea-
surements below one second represent connections classified by having the same
destination port as another bulk data flow; these are not dependent on the timer
interval12.

7.6.3 Discussion

Section 7.6.2 presented the raw data resulting from the experiment. Recall that 100%
accuracy and no false positives was achieved for the certificate-based approach. For
the heuristic approach, files of size 25 Mbytes or larger were identified correctly (no
false negatives), showing that the technique is effective for reasonably sized file
transfers. However, some of the bulk-data ‘confounding’ connections described in
Section 7.6.1 triggered a false positive match (none of the non-bulk connections
matched). These are considered next.

It is difficult to give a specific value to the false positive rate for the technique,
because it is strongly dependent on the type of traffic present between the host
pair. Bear in mind that the ‘confounding’ connections were designed explicitly to
pass the criteria used by the heuristic technique. Only traffic with the following
properties is a potential match:

1. Average packet size in first few seconds close to MSS.
2. Unidirectional.
3. Start within RETR/150 time window (typically smaller than 150 ms).

In particular, any connection used by common Internet protocols (such as SMTP
or HTTP) will never match because they are bidirectional. The average-packet-size
restriction was evaluated independently on SMTP connections from a week-long
trace at the DCS monitoring point. Of 110,901 email transmissions, only 59 (0.05%)
matched after one second.

Given the above three restrictions, the likelihood of a connection being mis-
classified is extremely low. Any connection that did cause a false positive would

12. They correspond to pseudocode line 15 or lines 21 and later in Listing 7.1

7.6: EVALUATION 128

have to have bulk-data-like properties, and therefore its treatment as GridFTP-bulk
by a management system would hopefully not be too problematic. An additional
heuristic could be implemented to identify false-positives at the end of a GridFTP
transfer (see Section 8.2.2), therefore providing valuable information to the man-
agement system on the system accuracy.

For the connections that are identified correctly, the timeout period means
some initial amount of data will pass before the monitoring system is notified.
However, relative to the total transfer size for large files the missed data is insignif-
icant. For example, consider the case of a wide-area Internet path with 200–250 ms
RTT and (theoretical) infinite link capacity. The amount of data transmitted within
two seconds assuming the slow start behaviour of TCP Reno [88] and 1460 byte
MSS can be estimated as follows. In cycle i (counting from 0), 1460 × 2i bytes will
be transmitted. Therefore, after n cycles, the total number of bytes transmitted is
1460 × ∑n−1

i=0 2i = 1460 × (2n − 1). 200–250 ms RTTs within a two second interval
corresponds to 8–10 cycles (neglecting transmission times due to the infinite link
capacity), and therefore between 365 and 1460 Kbytes. With jumbo Ethernet frames
of up to 9000 bytes the upper limit increases to around 9 Mbytes.

Improving the immediacy of event-reporting would mean reducing the
timeout interval. This, in turn, would require potentially expensive modifications
to the real-time monitor to support more fine-grained timer activity. As it stands,
the one-second timeout appears to work well, but may need to be extended for file
transfers between more distant hosts than those involved in the experiment given.
There is potential for determining the timeout dynamically based on the observed
timing of the ‘Initial commands’ phase (see Figure 7.8).

To answer the questions posed in Section 7.1 for the case of GridFTP:

1. Can control flows still be classified according to the application in use?
Yes, reliably.

2. Can data flows be matched with their corresponding control flow?
100% accuracy for transfers with data channel authentication.
100% true positive rate for transfers above a threshold size, depending on
throughput (e.g., around 25 Mbytes). Negligible false positive rate for com-
mon Internet protocols.

3. What additional information can be extracted?
File sizes at end of transfer. Whether data channel authentication is being
used. Number of parallel transfers.

In summary, a protocol analyser for encrypted GridFTP traffic that achieves very
high accuracy has been constructed, based on a detailed investigation of the pro-
tocol behaviour. Minimal changes were made to the real-time monitoring system
(described in Chapter 5) in order to support this new technique, which comple-
ments the plain text analysis approach covered in Chapter 6. The next, and final,

7.6: EVALUATION 129

chapter draws together the key results from the entire dissertation and examines
areas for future work.

Chapter 8

Conclusion

The Thesis Statement of Chapter 1 presented three assertions, covering the build-
ing of a real-time network monitor for plain text protocol analysis, analysis of en-
crypted traffic, and generation of events to support traffic re-engineering. The first
part of this final chapter covers each of these in detail, with reference to the com-
pleted work. The second part considers the areas for future work.

8.1 Validation of the Thesis Statement

8.1.1 Real-Time Network Monitor and Plain Text Analysis

T1. A real-time network monitoring tool can be built that performs full plain text
analysis of Grid bulk data traffic at line rate.

Chapter 5 presented the detailed design, implementation and evaluation of a Giga-
bit Ethernet real-time monitoring system for analysis of application-level protocols.
Three novel aspects of the design ensured that the system was able to meet the re-
quirements: the use of the ‘retained packets’ scheme (Section 5.3.2) to avoid mem-
ory copies and buffering wherever possible; the ability to efficiently skip bulk-data
phases of a mixed control/data flow (Section 5.3.5); and the use of a co-routine-
based threading library for the efficient and easy implementation of protocol anal-
ysers (Section 5.4.1).

The monitoring system supports full reassembly of TCP flows and classifi-
cation of application protocols by initial string matching rather than well-known
ports. Protocol analysers may be implemented at a low level (operating directly on
raw packets or a reassembled TCP stream) or be based upon the threading library
mentioned above. The use of unit testing and regression testing against a library of
trace files increases confidence in the reliability of the system.

The system was shown to cope with high rates of new connections per sec-
ond (400,000 packets per second or more), as might be experienced under a SYN-
flooding denial-of-service attack (Section 5.5.1).

Chapter 6 built upon this monitoring system to implement several proto-
col analysers dealing with the plain text content of the applications introduced in

8.1: VALIDATION OF THE THESIS STATEMENT 131

Chapter 4. A case study of analyser development (Section 6.5.4) was presented for
iperf in order to demonstrate the ease with which analyser modules can be im-
plemented.

The plain text analysers were able to accurately identify the protocols in
question and extract from them information about auxiliary or embedded bulk
data flows. A blind test experiment was carried out to validate these claims (Sec-
tion 6.5.5). It showed that, except in the unusual case identified in that section, the
analysers had 100% accuracy in identifying bulk data connections, and in many
cases that transfer size information was available in advance.

Section 6.4 presented results from applying the monitor to extract informa-
tion about HTTP and FTP usage from a week-long trace, demonstrating the flexi-
bility of the system and the quality of the information obtained.

Based on a trace-driven timing analysis of HTTP connections, the monitor
was shown to operate at speeds approaching 10 Gbits/s. While this result would
be somewhat reduced in real-time operation due to additional contention for the
memory bus, it is a significant result that validates the design of the system and
indicates the potential for scaling to faster networks.

8.1.2 Heuristic Analysis of Encrypted Traffic

T2. This tool can be extended to perform heuristic analysis of encrypted or inac-
cessible payloads at line-rate.

Chapter 7, building upon the work of the previous two chapters, covered the pos-
sibilities for leveraging information available at the network monitor for reporting
on encrypted GridFTP file transfers. Theoretical approaches to extract additional
information were considered, and then Section 7.4 presented a detailed investiga-
tion of the message time and size properties from a range of GridFTP sessions. Sev-
eral observable features were identified (such as the message size relationship of
file path lengths and transfer sizes, and the distinctive control channel timing pro-
file at the start of bulk data transfers). These results were then used in Section 7.5
to construct a dual-approach system for GridFTP transfer identification.

The system was implemented in the real-time monitor described in Chap-
ter 5 and previously used in the work of Chapter 6. Although a small number of
changes were required to the core of the monitor, these were easy to implement
and caused minimal or no disruption to the monitor and other protocol analysers
(Section 7.5.4).

An evaluation of the new protocol analyser was carried out (Section 7.6),
which yielded 100% accuracy with no false positives for the certificate-based ap-
proach. The ‘fuzzier’ time-window-based approach correctly identified all bulk
transfers of 25 Mbytes or more within two seconds, but was susceptible to some
false positives. Section 7.6.3 argued both that the real-world likelihood of such false

8.2: FUTURE WORK 132

positives was negligible and that any false positives would be unlikely to be mis-
treated by a network management policy.

8.1.3 Event Generation for Traffic Re-engineering

T3. Such analysis can generate events early enough to enable dynamic traffic
re-engineering.

The previous two sections have dealt with the evidence to support the development
of a real-time monitor and the analysis of both plain text and encrypted control traf-
fic. The implemented systems generate events (as described in detail in Sections 6.3
and 7.5.3) that may be interpreted by a network management system (or some inter-
mediary) to dynamically re-engineer the corresponding TCP flows. As mentioned
in Chapter 1, it is expected that this will be achieved by updating the rules for de-
termining a Forwarding Equivalence Class in an ingress Label Switching Router.

The events corresponding to the plain text analysers of Chapter 6 are gen-
erated before the start of the corresponding TCP connection, and therefore it is
possible for a rule update to be realised before any data is transported over the
connection (depending, of course, on the specifics of the management system and
its interface).

The encrypted analysis of GridFTP traffic identifies bulk data flows in one of
two ways, and each has different timing properties. The certificate-based matching
technique identifies flows after they have been established, but before they begin to
transport bulk data. The time-window-based approach incurs up to a two second
delay from the start of a bulk transfer connection before an event is reported, and
therefore a quantity of data proportional to the connection throughput will have
passed before the event is delivered.

Events can be delivered to a local process on the monitoring host (see Sec-
tion 5.4.4) within 1 ms. From there the event may be processed further before ac-
tivating some change (if policy dictates) elsewhere in the management system.
Therefore, the event delivery introduces a negligible delay in the ability of the net-
work management system to react to the event.

8.2 Future Work

There are several avenues for future development of the work presented in this dis-
sertation. This final section examines possible directions to continue the research.

8.2.1 Real-Time Monitor

Further development of the real-time monitor of Chapter 5 would involve exten-
sion to faster line speeds, perhaps simply by swapping-in the next ‘step-up’ from
the Gigabit Ethernet DAG card, the DAG4.3S for OC-48 links (with total full-duplex

8.2: FUTURE WORK 133

bandwidth of 5 Gbits/s). User-level packet monitoring is limited at high band-
widths (such as 10 Gigabit Ethernet) by bus bandwidth. Therefore, the possibility of
dynamically pushing down packet filtering to the monitoring hardware should be
investigated (for example, by using the Endace DAG Coprocessor [40]). The packet
filtering would have to be dynamically modified according to the traffic identified
by the real-time monitoring system.

As indicated in Section 5.5.4, the system design extends itself to multiple pro-
cessors (either on the same machine or within a cluster). The main process would
remain single-threaded, and message-passing could be used between monitor in-
stances to access and update shared state. The costs and benefits of this approach
need to be evaluated.

The heuristic analysis from Chapter 7 required some minor changes to the
monitor to support the enumeration of flows between host pairs (Section 7.5.4).
The solution implemented was to use a hash table and linked list structure to
maintain this information in addition to the original connection table, which was
keyed/hashed by the connection 4-tuple. An alternative approach of using a two-
level hash for all connections should be evaluated.

The current system is limited in some ways by the available memory in the
monitor, because each flow requires the monitor to keep track of some state. Al-
though a few 32-bit pointer assumptions were made, extension to 64-bit machines
should not be too difficult. This would significantly increase the memory limit,
which is currently set by the 4 Gbytes virtual memory size of a 32-bit machine.

8.2.2 Protocol Analysis

The selection of Grid-style applications in Chapter 4 was constrained to bulk-data
transfer tools, and from that class of applications a representative set was chosen.
The selection could be extended to cover more bulk-data transfer applications (es-
pecially if a particular site is known to be primarily using one tool), but also other
types of Grid application (such as real-time multimedia, interactive visualisations
or tightly coupled computations). Of course, the predicted benefit of further de-
velopment on a particular application should be backed by evidence that it is a
significant user of network bandwidth. Human inspection of network anomalies,
using appropriate tools, could be used to guide this.

Similarly, as new versions of the chosen applications evolve, the protocol
analysers may need to be modified slightly to accommodate differences in the
application-level protocol. Logging output from the analysers can be used to iden-
tify the presence of unexpected protocol behaviour. Provided the changes are not
too great—which would normally be the case to ensure backward compatibility—
the maintenance task should not be too onerous.

As indicated in Section 3.1, it was not feasible to place the monitor system at
the edge of the Glasgow University campus network. However, discussions with

8.3: SUMMARY 134

the Computing Service have indicated that they would be interested in deploying
such a system once it is ready for operational use (rather than being under active
development). It would be interesting to evaluate the system at this new location
to assess its utility for monitoring at the institution level.

The heuristic analysis techniques presented in Chapter 7 focused on the GridFTP
application. Similar techniques could be applied to other protocols, such as SRB
with SEA encryption, that are identifiable from content inspection but whose main
conversation is encrypted.

In the specific case of the GridFTP analyser, the protocol-specific timing pat-
terns of the data connection establishment (see first paragraph of Section 7.4.4)
could possibly be leveraged to eliminate the need for the coarse 2 s latency for bulk
flow identification.

Section 7.3 restricted the heuristic analysis of GridFTP transfers to eliminate
cases of third-party transfers. The certificate-based identification approach extends
to third party transfers without difficulty, simply by relaxing the host-based con-
straint to include only the server host rather than both client and server. The time-
window-based technique suffers more because of the need to enumerate a poten-
tially greater number of connections due to the relaxed criteria. This in turn may
lead to an increased chance of false positives. Whether this is a serious limitation
depends on the typical ways in which a particular project uses the GridFTP system.
For example, if a third party transfer is used remotely (i.e., across the monitored
link) to transfer data between machines at a remote site, the bulk data flows will
not pass the monitor point, and therefore not be cause for concern.

As suggested in Section 7.6.3, an additional heuristic could be implemented
for identifying false positives at the end of a file transfer. Provided that the network
operator’s policy were to re-engineer rather than block an identified flow, a simple
approach would be to use the observation that the parallel TCP streams used for
file transfer should all transfer roughly the same amount of data and have a similar
lifetime. Any incorrectly identified flow that is not part of the file transfer process
would not exhibit these properties. The benefit of this additional heuristic is the
confidence given to the operator in knowing the true incidence of false positives.

8.3 Summary

In this dissertation, I have demonstrated that it is feasible for ISPs to use full line-
speed passive monitoring techniques for the accurate real-time identification of
Grid bulk data traffic. These techniques are applicable both to clear text and en-
crypted control flows. The identification results can be used to enable traffic re-
engineering and therefore improve network performance.

Appendix A

Real-Time Application Protocol Analyser Implementation

A.1 EPA Macros

The macro definitions behind the EPA READ and EPA READ AND SKIPmeth-
ods introduced in Section 5.4.1 use either C switch statements or a GCC exten-
sion known as “computed goto.” These two options are represented in Figure A.1.
The base source code in the top panel shows a straightforward while loop that
is conditional on there being enough data to work on. The actual calculations
involved to determine whether enough data is present or not is represented by
HAVE ENOUGH DATA—the precise details are not relevant here. The lower two pan-
els show the cleaned-up results of the C preprocessor macro expansion.

In the “Switch” implementation, the function preamble contains a switch

statement that covers the body of the function. The switch block is closed by the
EPA END macro. On first entry to the function, the pt->lc variable is 0, so execu-
tion continues normally. In order to yield, the pt yielded flag is set to 0, caus-
ing the function to return with the constant PT THREAD WAITING after saving the
resume-point (10, derived from the line number) back into pt->lc. When the func-
tion is re-entered, the switch statement jumps back to just before the point of return
last time. Since the pt yielded variable is now non-zero (due to the initialisation
on line 4), execution continues. It is up to the calling function (a pseudo-scheduler)
to take note of the return value and act accordingly.

The implementation for “Goto” is similar, but uses computed goto instead.
Here, the address of an inline C label is taken. This avoids the disadvantage of the
switch implementation whereby a nested switch statement cannot be used within
the ProtoThread function, however compiler detection of potentially unsafe vari-
able usage across resume points is not as reliable.

Although these constructs are somewhat complicated underneath, they
greatly simplify the coding of the analyser routines.

A.1: EPA MACROS 136

Source
1 int Analyser::SomeFunction() {
2 EPABuffer buf;
3

4 EPA_BEGIN();
5

6 while (!HAVE_ENOUGH_DATA) {
7 EPA_YIELD();
8 }
9

10 // do something with buf.data
11

12 EPA_END();
13 }

Switch
1 int Analyser::SomeFunction() {
2 EPABuffer buf;
3

4 char pt_yielded = 1; // EPA_BEGIN();
5 switch (pt->lc) {
6 case 0:
7

8 while (!HAVE_ENOUGH_DATA) {
9 pt_yielded = 0;

10 pt->lc = 10;
11 case 10:
12 if (!pt_yielded)
13 return PT_THREAD_WAITING;
14 }
15

16 // do something with buf.data
17 } // EPA_END();
18 pt->lc = 0;
19 return PT_THREAD_EXITED;
20 }

Goto
1 int Analyser::SomeFunction() {
2 EPABuffer buf;
3

4 char pt_yielded = 1; // EPA_BEGIN();
5 if (pt->lc != NULL)
6 goto *pt->lc;
7

8 while (!HAVE_ENOUGH_DATA) {
9 pt_yielded = 0;

10 LC_LABEL10: pt->lc = &&LC_LABEL10; // &&label is a compiler extension
11 if (!pt_yielded)
12 return PT_THREAD_WAITING;
13 }
14

15 // do something with buf.data
16

17 pt->lc = NULL; // EPA_EXIT();
18 return PT_THREAD_EXITED;
19 }

Figure A.1: The top listing, “Source”, represents the source code as entered by the
programmer. The lower two listings, “Switch” and “Goto”, represent the code seen by
the compiler in implementing the ProtoThreads.

A.2: HEADER FIELDS 137

timestamp (secs)
timestamp (fractional)

lctr
type rlenflags

wlen

ethernet dst

ethernet src
eth type

Endace Record Format

global list next ptr / spill flag
global list prev ptr

ethernet src
eth type

Retained packets

owner list next ptr
owner list prev ptr

tcp off unused payload offset
owner ptr

payload size

Figure A.2: DAG per-packet record header before and after a packet is converted into
a retained packet and added to the global and per-flow linked lists. Each row in the
diagrams above represent four byte quantities.

A.2 Header Fields

Figure A.2 shows the DAG per-packet record header before and after a packet is
inserted into the retained packet queues. The fields are as follows:

global next ptr, global prev ptr Doubly linked global list.
spill flag Sentinel value stored in global next ptr field to indicate that this retained

packet has been allocated on the heap.
owner next ptr, owner prev ptr Doubly linked list used by retained packet owner

(a particular TCP flow or, later, a protocol analyser) to keep track of pending
packets.

owner ptr Pointer to the owner of the packet so that it can decide whether to dis-
pose or spill the packet if it is holding up the acknowledged pointer for the
DAG card (see Figure 5.3).

tcp off Offset from start of packet to the TCP header. Not all retained packets have
a TCP header, since when spilling a packet the TCP header may no longer be
relevant.

payload off Offset from start of packet to the TCP payload.
payload size TCP payload length.

The pointer fields are each 32-bits in size. This assumes that the native pointer type
on the host is 32-bits. A 64-bit address space could be accommodated by storing
32-bit offsets from the capture buffer for the linked list fields, and ensuring that
the flow control blocks are allocated in a 32-bit memory window that can again be
specified with an appropriate offset in the retained packet structure.

Glossary

DAG Hardware network monitoring card produced by Endace Measurement Sys-
tems.

DCS Department of Computing Science, at the University of Glasgow.

EGEE Enabling Grids for E-science in Europe

JANET The UKs education and research network.

LBL Lawrence Berkeley National Laboratory
Co-located with University of California at Berkeley

NCSA National Center for Supercomputing Applications

SDSC San Diego Supercomputer Center

UKERNA The United Kingdom Education and Research Networking Association.
The company that manages the JANET network.

Acronyms

AIMD Additive Increase Multiplicative Decrease
API Application Programming Interface
ARP Address Resolution Protocol
CPU Central Processing Unit
EDSM Event-Driven State Machine
ERF Endace Record Format
FSM Finite State Machine
FTP File Transfer Protocol
GCC GNU Compiler Collection
GPS Global Positioning System
GSI Grid Security Infrastructure
GSSAPI Generic Security Services Application Program Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider
JANET Joint Academic NETwork
LAN Local Area Network
LBL Lawrence Berkeley Laboratory
MCAT Metadata Catalog
MSS Maximum Segment Size
MTU Maximum Transfer Unit
NAT Network Address Translation
NIDS Network Intrusion Detection System
NTP Network Time Protocol
PCI Peripheral Component Interconnect
RAID Redundant Array of Independent (or Inexpensive) Disks
RAM Random Access Memory
RFC Request For Comments
RPC Remote Procedure Call
RTT Round Trip Time

ACRONYMS 140

SLA Service Level Agreement
SMTP Simple Mail Transfer Protocol
SRB Storage Resource Broker
SSL Secure Sockets Layer
TCP Transmission Control Protocol
UDP User Datagram Protocol
VPN Virtual Private Network

Bibliography

[1] About the UK e-Science Programme. Available online at http://www.
rcuk.ac.uk/escience/.

[2] Enabling Grids for E-science. Available online at http://public.

eu-egee.org/.

[3] IEEE 802.3-2002 IEEE Standard for Information technology-
Telecommunications and information exchange between systems–Local
and metropolitan area networks-Specific requirements-Part 3: Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications.

[4] Internet2 NetFlow Weekly Reports. Available online at http://netflow.
internet2.edu/weekly/.

[5] Teragrid. Available online at http://www.teragrid.org/.

[6] D. Agarwal, J. M. Gonzalez, G. Jin, and B. Tierney. An Infrastructure for
Passive Network Monitoring of Application Data Streams. In Proceedings of
Passive and Active Measurement Workshop, 2003.

[7] J. L. Alberi, T. Chen, S. Khurana, A. Mcintosh, M. Pucci, and R. Vaidyanathan.
Using Real-Time Measurements in Support of Real-Time Network Manage-
ment. In Proceedings of Passive and Active Measurement 2001, 2001.

[8] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke. Protocols
and services for distributed data-intensive science. In Proc. Advanced Com-
puting and Analysis Techniques in Physics Research (ACAT), pages 161–163,
2000.

[9] N. Anerousis, R. Caceres, N. Duffield, A. Feldmann, A. Greenberg,
C. Kalmanek, P. Mishra, K. Ramakrishnan, and J. Rexford. Using the AT&T
labs PacketScope for internet measurements, design, and performance anal-
ysis. In AT&T Services and Infrastructure Performance Symposium, 1997.

[10] A. Anjomshoaa, M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. Hong,
B. Collins, N. Hardman, G. Hicken, A. Hume, A. Knox, M. Jackson,
A. Krause, S. Laws, J. Magowan, C. Palansuriya, N. Paton, D. Pearson, T. Sug-
den, P. Watson, and M. Westhead. The Design and Implementation of Grid
Database Services in OGSA-DAI. In Proc. UK e-Science All Hands Meeting,
Nottingham, UK, September 2003.

[11] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder. OC3Mon: flexible, af-

BIBLIOGRAPHY 142

fordable, high performance statistics collection. In Proceedings of INET 97.
National Laboratory for Applied Network Research, 1997. Available online
at http://www.nlanr.net/NA/OC3mon/.

[12] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and
Principles of Internet Traffic Engineering. RFC 3272 (Informational), May
2002. Available online at http://www.ietf.org/rfc/rfc3272.txt.

[13] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Require-
ments for Traffic Engineering Over MPLS. RFC 2702 (Informational), Septem-
ber 1999. Available online at http://www.ietf.org/rfc/rfc2702.txt.

[14] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource
Broker. In Proc. CASCON’98, Toronto, Canada, 1998.

[15] S. A. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-
Peer Internet Telephony Protocol. Technical Report cucs-039-04, Depart-
ment of Computer Science, Columbia University, 2004. Available on-
line at http://www1.cs.columbia.edu/˜library/TR-repository/
reports/reports-2004/cucs-039-04.pdf.

[16] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945 (Informational), May 1996. Available online at http:
//www.ietf.org/rfc/rfc1945.txt.

[17] R. Beverly. A Robust Classifier for Passive TCP/IP Fingerprinting. In Passive
and Active Network Measurement, 5th International Workshop, PAM 2004,
Antibes Juan-les-Pins, France, April 19-20, 2004, Proceedings, pages 158–167,
2004.

[18] G. D. Bissias, M. Liberatore, D. Jesnsen, and B. N. Levine. Privacy Vulner-
abilities in Encrypted HTTP Streams. In Proceedings of Privacy Enhancing
Technologies Workshop (PET 2005), 2005.

[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Archi-
tecture for Differentiated Service. RFC 2475 (Informational), December 1998.
Available online at http://www.ietf.org/rfc/rfc2475.txt.

[20] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis. FFPF: Fairly
Fast Packet Filters. In Proceedings of OSDI’04, 2004.

[21] H. Bos and K. Huang. Towards software-based signature detection for intru-
sion prevention on the network card. In Proceedings of Eighth International
Symposium on Recent Advances in Intrusion Detection (RAID2005), Seattle,
WA, September 2005.

[22] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSer-
Vation Protocol (RSVP) – Version 1 Functional Specification. RFC 2205 (Pro-
posed Standard), September 1997. Available online at http://www.ietf.
org/rfc/rfc2205.txt.

[23] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion Avoid-

BIBLIOGRAPHY 143

ance on a Global Internet. IEEE Journal on Selected Areas in Communica-
tions, 13(8):1465–1480, October 1995.

[24] N. Brownlee. Traffic Flow Measurement: Experiences with NeTraMet. RFC
2123 (Informational), March 1997. Available online at http://www.ietf.
org/rfc/rfc2123.txt.

[25] N. Brownlee. Traffic Flow Measurement: Meter MIB. RFC 2720 (Proposed
Standard), October 1999. Available online at http://www.ietf.org/

rfc/rfc2720.txt.

[26] N. Brownlee, C. Mills, and G. Ruth. Traffic Flow Measurement: Architecture.
RFC 2722 (Informational), October 1999. Available online at http://www.
ietf.org/rfc/rfc2722.txt.

[27] R. Buyya. Grid Computing Info Centre: Frequently Asked Questions (FAQ).
http://www.cs.mu.oz.au/˜raj/GridInfoware/gridfaq.html.

[28] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Manage-
ment Protocol (SNMP). RFC 1157, May 1990. Available online at http:
//www.ietf.org/rfc/rfc1157.txt.

[29] CCITT (Consultative Committee on International Telegraphy and Tele-
phony). Recommendation X.509: The Directory—Authentication Frame-
work, 1988.

[30] cflowd: Traffic Flow Analysis Tool. Available online at http://www.

caida.org/tools/measurement/cflowd/.

[31] J. Chase, A. Gallatin, and K. Yocum. End System Optimizations for High-
Speed TCP. IEEE Communications Magazine, 39(4):68–74, 2001.

[32] Cisco Systems. NetFlow whitepaper, 2000. Available online at http://www.
cisco.com/warp/public/732/netflow.

[33] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson. Design Prin-
ciples for Accurate Passive Measurement. In Proceedings of PAM2000: The
First Passive and Active Measurement Workshop, 2000.

[34] G. Combs. The Ethereal Network Analyzer. Available online at http://
www.ethereal.com/.

[35] J. Coppens, S. V. den Berghe, H. Bos, E. Markatos, F. D. Turck, A. Öslebö, and
S. Ubik. SCAMPI: A Scalable and Programmable Architecture for Monitor-
ing Gigabit Networks. In Proceedings of E2EMON Workshop, Belfast, UK,
September 2003.

[36] R. L. Cottrell, A. Antony, C. Logg, and J. Navratil. iGrid2002 demonstration:
Bandwidth from the low lands. Future Gener. Comput. Syst., 19:825–837,
2003.

[37] R. L. Cottrell, C. Logg, and I.-H. Mei. Experiences and Results from a New
High-Performance Network and Application Monitoring Toolkit. In Proceed-
ings of Passive and Active Measurement 2003, 2003.

BIBLIOGRAPHY 144

[38] L. Deri. Improving Passive Packet Capture: Beyond Device Polling. Available
online at http://www.ntop.org/PF_RING.html.

[39] A. Dunkels, O. Schmidt, and T. Voigt. Using Protothreads for Sensor Node
Programming. In Proceedings of the REALWSN’05 Workshop on Real-World
Wireless Sensor Networks, Stockholm, Sweden, June 2005.

[40] Endace Measurement Systems. Endace DAG Coprocessor and Applica-
tions. Available online at http://www.endace.com/Library/Endace_
DagCoprocessor_Rev_A.pdf.

[41] G. Farrache. bbFTP - Large files transfer protocol. Available online at http:
//doc.in2p3.fr/bbftp/.

[42] A. Feldmann. BLT: Bi-Layer Tracing of HTTP and TCP/IP. WWW9 / Com-
puter Networks, 33(1-6):321–335, 2000.

[43] W. Feng, M. Gardner, and J. Hay. The MAGNeT Toolkit: Design, Evaluation,
and Implementation. Journal of Supercomputing, 23(1):67–79, August 2002.

[44] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Available online at http://www.ietf.org/rfc/
rfc2616.txt.

[45] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Ex-
perimental), December 2003. Available online at http://www.ietf.org/
rfc/rfc3649.txt.

[46] F. Georgatos, F. Gruber, D. Karrenberg, M. Santcroos, H. Uijterwaal, and
R. Wilhelm. Providing Active Measurements as a Regular Service for ISP’s.
In Proceedings of Passive and Active Measurement Workshop, 2001.

[47] J. M. González and V. Paxson. pktd: A Packet Capture and Injection Daemon.
In Proceedings of Passive and Active Measurement Workshop, 2003.

[48] V. Gough. RLog - a C++ logging library. Available online at http://pobox.
com/˜vgough/rlog.

[49] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Za-
horjan. Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing
Workload. In Proceedings of SOSP’03, 2003.

[50] J. Hall, A. Moore, I. Pratt, and I. Leslie. Multi-protocol visualization: a tool
demonstration. In MoMeTools ’03: Proceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible network research,
pages 13–22. ACM Press, 2003.

[51] A. Hintz. Fingerprinting websites using traffic analysis. In Proceedings of
Privacy Enhancing Technologies workshop (PET 2002), 2002.

[52] M. Horowitz and S. Lunt. FTP Security Extensions. RFC 2228 (Proposed Stan-
dard), 1997. Available online at http://www.ietf.org/rfc/rfc2228.
txt.

BIBLIOGRAPHY 145

[53] A. Hussain, J. Heidemann, and C. Papadopoulos. Distinguishing between
Single and Multi-source Attacks using Signal Processing. Computer Net-
works, 46(4):479–503, November 2004.

[54] IEPM web site. http://www-iepm.slac.stanford.edu/pinger/.

[55] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Per-
formance. RFC 1323 (Proposed Standard), May 1992. Available online at
http://www.ietf.org/rfc/rfc1323.txt.

[56] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation, Architecture, Algorithms,
Performance. In Proceedings of IEEE INFOCOM, March 2004.

[57] S. Kalidindi and M. J. Zekauskas. Surveyor: An Infrastructure for Internet
Performance Measurements. In Proceedings of INET’99, 1999.

[58] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. File-
sharing in the Internet: A characterization of P2P traffic in the backbone.
Technical report, UCR, November 2003.

[59] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy. Transport layer iden-
tification of P2P traffic. In Proc. ACM SIGCOMM conference on Internet
measurement, 2004.

[60] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel Traffic
Classification in the Dark. In ACM SIGCOMM, 2005.

[61] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works. Computer Communication Review, 32(2), April 2003.

[62] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and k. claffy. The Architec-
ture of CoralReef: an Internet Traffic Monitoring Software Suite. In PAM2001
– A workshop on Passive and Active Measurements, 2001.

[63] C. Kreibich. NetDuDe (NETwork DUmp data Displayer and Editor). Avail-
able online at http://netdude.sourceforge.net/.

[64] Lawrence Berkeley National Laboratory Research Group. tcpdump. Avail-
able online at http://www.tcpdump.org.

[65] Lawrence Berkeley National Labs Network Research Group. libpcap. Avail-
able online at http://ftp.ee.lbl.gov.

[66] Z. Li, H. Zhang, Y. You, and T. He. Linuxflow: A High Speed Backbone Mea-
surement Facility. In Proceedings of Passive and Active Measurement Work-
shop, 2003.

[67] C. Lowth. ROPE - IpTables Scripting Language. Available online at http:
//www.lowth.com/rope/.

[68] G. R. Malan and F. Jahanian. An extensible probe architecture for network
protocol performance measurement. In SIGCOMM ’98: Proceedings of the
ACM SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, pages 215–227, New York, NY,
USA, 1998. ACM Press.

BIBLIOGRAPHY 146

[69] R. Mann, R. Williams, M. Atkinson, K. Brodie, A. Storkey, and C. Williams.
Scientific Data Mining, Integration and Visualisation. Technical Report
UKeS-2002-06, National e-Science Centre, Nov 2002.

[70] W. Matthews and L. Cottrell. The PingER Project: Active Internet Perfor-
mance Monitoring for the HENP Community. IEEE Communications, May
2000. Available online at http://www.comsoc.org/ci/private/2000/
may/Cottrell.html.

[71] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture
for User-level Packet Capture. In Proceedings of Winter USENIX Technical
Conference, Jan. 1993.

[72] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow Clustering Using Ma-
chine Learning Techniques. In Passive and Active Network Measurement,
5th International Workshop, PAM 2004, Antibes Juan-les-Pins, France, April
19-20, 2004, Proceedings, pages 205–214, 2004.

[73] A. J. McGregor, H. Braun, and A. Brown. The NLANR Network Analysis
Infrastructure. IEEE Communications, May 2000.

[74] T. McGregor and H.-W. Braun. Balancing Cost and Utility in Active Monitor-
ing: The AMP Example. In Proceedings of INET2000, 2000.

[75] D. Mills. Network Time Protocol (Version 3) Specification, Implementation
and Analysis. RFC 1305 (Draft Standard), March 1992. Available online at
http://www.ietf.org/rfc/rfc1305.txt.

[76] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt. Architecture of a Net-
work Monitor. In Proceedings of Passive and Active Measurement Work-
shop, 2003.

[77] A. W. Moore and K. Papagiannaki. Toward the Accurate Identification of
Network Applications. In Proceedings of Passive and Active Measurement
Workshop, 2005.

[78] A. W. Moore and D. Zuev. Internet traffic classification using bayesian analy-
sis techniques. In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMET-
RICS international conference on Measurement and modeling of computer
systems, pages 50–60, New York, NY, USA, 2005. ACM Press.

[79] J. Nagle. Congestion control in IP/TCP internetworks. RFC 896, January
1984. Available online at http://www.ietf.org/rfc/rfc896.txt.

[80] S. Ostermann. tcptrace. Available online at http://irg.cs.ohiou.edu/
software/tcptrace/index.html.

[81] J. Paisley and J. Sventek. Real-time Detection of Grid Bulk Transfer Traffic. In
Proceedings of NOMS 2006 (to appear), 2006.

[82] R. Pang and V. Paxson. A High-Level Programming Environment for Packet
Trace Anonymization and Transformation. In Proceedings of the ACM SIG-
COMM Conference, August 2003.

[83] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran, K. Salamatian, and

BIBLIOGRAPHY 147

C. Diot. On the Feasibility of Identifying Elephants in Internet Backbone
Traffic. Sprint ATL Research Report RR01-ATL-110918, Sprint ATL, 2001.

[84] A. Pásztor and D. Veitch. A Precision Infrastructure for Active Probing. In
Proceedings of Passive and Active Measurement Workshop, 2001.

[85] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.
Computer Networks, 31:2435–2463, 1999.

[86] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An Architecture for Large-
Scale Internet Measurement. IEEE Communications, 36(8):48–54, August
1998.

[87] M. Polychronakis and E. Markatos. Design of an Application Programming
Interface for IP Network Monitoring. In Proceedings of NOMS’04, 2004.

[88] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Available online at http://www.ietf.org/rfc/rfc793.txt.

[89] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct.
1985. Available online at http://www.ietf.org/rfc/rfc959.txt.

[90] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000. Available
online at http://www.ietf.org/rfc/rfc2818.txt.

[91] RIPE NCC Test Traffic Measurements. http://www.ripe.net/ttm/.

[92] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In USENIX
13th Systems Administration Conference - LISA ’99, 1999. Available online
at http://www.snort.org/.

[93] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Ar-
chitecture. RFC 3031, 2001. Available online at http://rtg.ietf.org/
rfc/rfc3031.txt.

[94] D. Schuehler and J. Lockwood. TCP-Splitter: A TCP/IP Flow Monitor in
Reconfigurable Hardware. In Proceeding of Hot Interconnects 10 (HotI-10),
2002.

[95] SDSC. SRB Projects. Available online at http://www.sdsc.edu/srb/
index.php/Projects.

[96] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network identifi-
cation of p2p traffic using application signatures. In Proc. 13th international
conference on World Wide Web, 2004.

[97] S. Sen and J. Wong. Analyzing peer-to-peer traffic across large networks. In
Second Annual ACM Internet Measurement Workshop, 2002.

[98] R. Shorten and D. Leith. H-TCP: TCP for high-speed and long-distance net-
works. In Proc. PFLDnet, Geneva, CH, February 2003.

[99] D. X. Song, D. Wagner, and X. Tian. Timing Analysis of Keystrokes and Tim-
ing Attacks on SSH. In USENIX Security ’01, 2001.

[100] A. Thurston. Ragel State Machine Compiler. Available online at http://
www.elude.ca/ragel/.

BIBLIOGRAPHY 148

[101] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf—The
TCP/UDP Bandwidth Measurement Tool. http://dast.nlanr.net/

Projects/Iperf/.
[102] United Kingdom Education and Research Networking Associa-

tion. SuperJANET5: An Architecture for Diversity. Available on-
line at http://www.ja.net/sj5/requirementsanalysis/

an-architecture-for-diversity.pdf.
[103] S. Waldbusser. Remote Network Monitoring Management Information Base.

RFC 2819 (Standard), May 2000. Available online at http://www.ietf.
org/rfc/rfc2819.txt.

[104] D. Watson, G. R. Malan, and F. Jahanian. An extensible probe architecture for
network protocol performance measurement, volume 34, chapter 1, pages
47–67. John Wiley & Sons, 2004.

[105] E. Weigle and W. Feng. TICKETing High-Speed Traffic with Commodity
Hardware and Software. In Proceedings of Passive and Active Measurement
Workshop, 2002.

[106] P. Wood. libpcap-mmap. Available online at http://public.lanl.gov/
cpw/.

[107] S. Zander, T. Nguyen, and G. Armitage. Automated Traffic Classification and
Application Identification using Machine Learning. In Proceedings of the
IEEE Conference on Local Computer Networks 30th Annversary (LCN’05),
2005.

[108] S. Zander, T. Nguyen, and G. J. Armitage. Self-Learning IP Traffic Classifica-
tion Based on Statistical Flow Characteristics. In Passive and Active Network
Measurement, 6th International Workshop, PAM 2005, Boston, MA, USA,
March 31 - April 1, 2005, Proceedings, pages 325–328, 2005.

